


Apollo Computer Inc. 
330 Billerica Road 

Chelmsford, MA 01824 

u 
I II 

i 

Order No. 009413 
Revision 00 



Copyright © 1986 Apollo Computer Inc. 
All rights reserved. Printed in U.S.A. 

First Printing: November, 1986 

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and 
WPS are trademarks of Interleaf, Inc. 

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc. 

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAIN/IX, 
DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, OSEE, GMR, and GPR are trademarks of 
Apollo Computer Inc. 

UNIX is a registered trademark of AT&T. 

Apollo Computer Inc. reserves the right to make changes in specifications and other information 
contained in this publication without prior notice, and the reader should in all cases consult Apollo 
Computer Inc. to determine whether any such changes have been made. 

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE 
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE 
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. 
NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, 
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY , RESPONSE-TIME 
PERFORMANCE , SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL 
BE DEEMED TO BE A WARRANTY BY APOLLO COMPUTEI1 INC. FOR ANY PURPOSE, OR GIVE RISE TO 
ANY LIABILITY BY APOLLO COMPUTEF~ INC. WHATSOEVER. 

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL 
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) 
ARISING OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF 
APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY 
OF SUCH DAMAGES. 

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND 
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS. 

THE SOFTWARE AND DOCUMENTATION ARE BASED IN PART ON THE FOURTH BERKELEY SOFTWARE 
DISTRIBUTION UNDER LICENSE FROM THE REGENTS OF THE UNIVERSITY OF CALIFORNIA. 



Preface 

Audience 
The DOMAIN/IX Support Tools Guide consists of papers normally included in certain 
volumes of the UNIX Programmer's Manual as supplied by AT&T and the University of 
California at Berkeley. The papers were revised as necessary to reflect the DOMAIN® 
system environment. However, to help maintain the history of the UNIX® product as a 
multiuser system, we've included the Olore important references to operations con­
ducted at terminals. 

The Support Tools Guide is intended for users who are already familiar with UNIX soft­
ware, AEGIS ™ software, and DOMAIN" networks. 

The best introduction for those who want to use UNIX software on a DOMAIN node is 
Getting Started With Your DOMAIN/IX System (Order No. 008017). It explains how to 
use your keyboard and display, read and edit text, create and execute programs, and 
request DOMAIN system services interactively. Consult the DOMAIN/IX User's Guide 
(Order No. 005803) for detailed inforolation on user interfaces and the various shells 
available for use. 

Structure of This Manual 
This manual is structured as follows: 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Chapter 9 

Introduces awk, a pattern scanning and processing language de­
signed to make many common information retrieval and text ma­
nipulation tasks easy to state and to perform. 

Describes sed, the UNIX stream editor. 

Explains how to use lint, a C program checker. (This chapter is 
based on a 1978 AT&T Bell Laboratories memo by S. C. Johnson.) 

Describes make, a program for maintaining, updating, and regen­
erating groups of computer programs. (This chapter is based on an 
original technical report by S. 1. Feldman of AT&T Bell Laborato­
ries.) 

Tells about the System V extensions to the make program, de­
signed to handle problems within the original version of make. 

Details lex, a lexical analyzer which processes character input 
streams. 

Describes yaee, a general tool for imposing structure on the input 
to a computer program 

Explains how to use sees, the UNIX source code control system. 

Contains C language reference material. (This chapter was based 
on a section of The C Programming Language by Brian W. Ker­
nighan and Dennis M. Ritchie, Prentice Hall, Inc., 1978.) 

Preface 



Chapter 10 

Chapter 11 

Chapter 12 

Chapter 13 

Chapter 14 

Chapter 15 

Tells about ratfor, a preprocessor for a rational FORTRAN. (This 
chapter is based on a paper 'iVritten by Brian W. Kernighan, Bell 
Laboratories, Murray Hill, New Jersey.) 

Describes the m4 macro processor. (This chapter is based on a 
paper written by Brian W. Kernighan and Dennis M. Ritchie, Bell 
Laboratories, Murray Hill, New Jersey.) 

Details bc, a compiler for doing arbitrary precision arithmetic. 

Provides information about dlC, an interactive desk calculator that 
does arbitrary precision integer arithmetic. 

Describes the curses screen package, which provides for movement 
optimization and optimal screen updating. (This chapter is based 
on a paper written by Kenneth C. R. C. Arnold, Computer Science 
Division, Department of Electrical Engineering and Computer Sci­
ences, University of California - Berkeley.) 

Describes bsd4.2 interprocess communication facilities. (This chap­
ter is based on a July 9, 1984 draft of A 4.2BSD Interprocess Com­
munication Primer, by S. J. Leffler, R. S. Fabry, and W. N. Joy of 
the Computer Systems Research Group, Department of Electrical 
Engineering and Computer Science, University of California -
Berkeley. 

Related Manuals 
Getting Started With Your DOMAIN/IX System (Order No. 008017) is the first volume 
you should read. It explains how to log in and out, manage windows and pads, and 
execute simple commands. 

The DOMAIN/IX User's Guide (Order No. 005803) describes how the DOMAINIIX sys­
tem works, and contains extensive material on the C Shell, both versions of the Bourne 
Shell, and the bsd4.2 version of the mail progranl. 

The DOMAIN/IX Text Processing Guide (Order No. 005802) describes the UNIX text edi­
tors (ed, ex, and vi) supported by DOMAINIIX. It also contains material on the for­
matters troff and nroff, the macro packages -ms, -me, and -mm, and the preproces­
sors eqn and tbl. 

The DOMAIN/IX Command Reference for System V (Order No. 005798) describes all the 
UNIX System V shell commands supported by the sys5 version of DOMAINIIX. 

The DOMAIN/IX Programmer's Reference for System V (Order No. 005799) describes all 
the UNIX System V system calls and library functions supported by the sys5 version of 
DOMAINIIX. 

The DOMAINIlX Command Reference for BSD4.2 (IOrder No. 005800) describes all the 
BSD4.2 UNIX shell commands supported by the bsd4.2 version of DOMAINIIX. 

The DOMAIN/IX Programmer's Reference for System V (Order No. 005801) describes all 
the BSD4.2 UNIX system calls and library functions supported by the bsd4.2 version of 
DOMAINIIX. 

Preface 11 



System Administration for DOMAIN/IX BSD4.2 (Order No. 009355) and System Admini­
stration for DOMAIN/IX SysS (Order No" 009356) describe the tasks necessary to config­
ure and maintain DOMAINIIX system software services such as TCPIlP, the line 
printer spoolers, and UNIX-to-UNIX communications processing. Also explains how to 
maintain file system security, create user accounts, and manage various servers and 
daemons. 
The DOMAIN C Language Reference (Order No. 002093) describes C program develop­
ment on the DOMAIN system. It lists the features of C, describes the C library, and 
gives information about compiling, binding, and executing C programs. 
The DOMAIN System Command Reference (Order No. 002547) gives information about 
using the DOMAIN system and describes the DOMAIN commands. 

The DOMAIN System Call Reference (Order No. 007196) describes calls to operating 
system components that are accessible to user programs. 

Conventions 
Unless otherwise noted in the text, we use the following symbolic conventions; 
command 

output 

program line 

filename 

[ ] 

< > 

tD 

Command names and command-line options are set in Classic 
font, bold type. These are commands, letters, or symbols that you 
must use literally. 

Typewriter font is used to represent literal system output. 

Modern font is used to show lines that may be part of a program, 
non-literal characters or strings in an example, and all other sam­
ple information not attributed to being a literal command line or 
display of system output. 
Italicized terms or characters represent generic, or metanames in 
example command. lines. They may also represent characters that 
stand for other characters, as in We, where x is a digit. In text, the 
names of files written or read by programs are set in italics. 
Square brackets enclose optional items in formats and command 
descriptions. 

A vertical bar separates items in a list of choices. 

Angle brackets endose the name of a key on the keyboard. 

The notation t followed by the narne of a key indicates a control 
character sequence. You should hold down <CTRL> while typing 
the character. 
Horizontal ellipsis points indicate that the preceding item can be 
repeated one or more times. 

Vertical ellipsis points mean that irrelevant parts of a figure or ex­
ample have been omitted . 

........................... Questions, and Suggestions 
We appreciate comments from the people who use our system. In order to make it 
easy for you to communicate with us, we provide the User Change Request (UCR) sys­
tem for software-related comments, and the Reader's Response form for documenta­
tion comments. By using these formal channels you make it easy for us to respond to 
your comments. 

iii Preface 



You can get more information about how to subn1it a VCR by consulting the DOMAIN 
System Command Reference. You can view an on-line description of the command used 
to submit a VCR (crucr) by typing: 

0/0 /com/help crucr <RETURN> 

Note: Although we use a C Shell prompt in our example, you may type this command 
from any type of shell available to users of the DOMAINIIX system. 

For your documentation comments, we've included a Reader's Response form at the 
back of each manual. 

Preface iv 



Chapter 1 Awk: A Pattern Scanning and Processing Language 

1.1 Introduction ........................................................ 1-1 
1.2 Overview .......................................................... 1-2 

1.2.1 Usage ......................................................... 1-2 
1.2.2 Program Structure .............................................. 1-2 
1.2.3 Records and Fields ............................................. 1-3 
1.2.4 Printing ....................................................... 1-3 

1.3 Patterns ........................................................... 1-4 
1.3.1 The BEGlN and END Patterns .................................... 1-4 
1.3.2 Regular Expressions ............................................. 1-5 
1.3.3 Relational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-6 
1.3.4 Combinations of Patterns ........................................ 1-6 
1.3.5 Pattern Ranges ................................................. 1-6 

1.4 Actions ............................................................ 1-6 
1.4.1 Built-in Functions .............................................. 1-7 
1.4.2 Variables, Expressions, and )\...ssignments ........................... 1-7 
1.4.3 Field Variables ................................................. 1-8 
1.4.4 String Concatenation ............................................ 1-8 
1.4.5 Arrays ........................................................ 1-9 
1.4.6 Flow-of-Control Statements ...................................... 1-9 

1.5 Design ............................................................ 1-10 

Chapter 2 Sed: The Stream Editor 

2.1 Introduction ........................................................ 2-1 
2.2 Normal Operation ......................................... , ......... 2-2 

2.2.1 Command Line Flags ........................................... 2-2 
2.2.2 Order of Application of Editing Commands ......................... 2-2 

2.3 The Pattern Space ................................................... 2-2 
2.4 Addresses - Selecting Lines for Editing ................................ 2-3 

2.4.1 Line-Number Addresses ......................................... 2-3 
2.4.2 Context Addresses .............................................. 2-3 
2.4.3 Number of Addresses ........................................... 2-4 

2.5 Functions .......................................................... 2-4 
2.5.1 Whole-Line-Oriented Functions ................................... 2-5 
2.5.2 The Substitute Function .......................................... 2-6 
2.5.3 Input/Output Functions .......................................... 2-7 
2.5.4 Multiple Input-Line Functions .................................... 2-8 
2.5.5 Hold and Get Functions ......................................... 2-9 
2.5.6 Flow-of-Control Functions ....................................... 2-9 
2.5.7 Miscellaneous Functions ......................................... 2-10 

v Contents 



Chapter 3 Lint: A C Program Checker 

3.1 Introduction ........................................................ 3-1 
3.1.1 Usage ......................................................... 3-1 
3.1.2 Unused Variables and Functions .................................. 3-2 
3.1.3 SetlUsed Information ............................................ 3-3 
3.1.4 Flow of Control ................................................ 3-3 
3.1.5 Function Values ................................................ 3-3 
3.1.6 Type Checking ................................................. 3-4 
3.1.7 Type Casts .................................................... 3-4 
3.1.8 Nonportable Character Use ....................................... 3-5 
3.1.9 Assignments to "longs" and "ints" ................................ 3-5 
3.1.10 Unorthodox Constructions ....................................... 3-5 
3.1.11 Antiquated Syntax ............................................. 3-6 
3.1.12 Pointer Alignment ............................................. 3-7 
3.1.13 Multiple Uses and Side Effects .................................. 3-7 

3.2 Implementation Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-7 
3.2.1 Portability ..................................................... 3-8 
3.2.2 Suppressing Unwanted Output .................................... 3-9 
3.2.3 Library Declaration Files ........................................ 3-10 

3.3 Summary of Lint Options ............................................ 3-10 

Chapter 4 Make: A Program for Maintaining l)rograms 

4.1 Introduction ........................................................ 4-1 
4.2 Basic Features ...................................................... 4-2 
4.3 Description Files and Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
4.4 Usage ............................................................. 4-5 

4.4.1 Implicit Rules .................................................. 4-6 
4.4.2 An Example ................................................... 4-7 

4.5 Suggestions and Warnings ............................................ 4-9 
4.6 Summary of Suffixes and Rules ....................................... 4-9 

Chapter 5 System V Extensions to the Make Program 

5.1 General ............................................................ 5-1 
5.2 Environment Variables ............................................... 5-2 
5.3 Recursive Makefiles ................................................. 5-4 
5.4 Format of Embedded Shell Commands ................................. 5-5 
5.5 Archive Libraries ........................................ ,.......... 5-5 
5.6 Source Code Control System Filenames: The Tilde ....................... 5-8 
5.7 The Null Suffix ..................................................... 5-8 
5.8 Include Files ....................................................... 5-9 
5.9 Invisible SCCS Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-9 
5.10 Dynamic Dependency Parameters ..................................... 5-9 
5.11 Extensions of $*, $@, and $< ........................................ 5-10 
5.12 Output Translations ................................................ 5-10 

Contents vi 



Chapter 6 Lex: A Lexical Analyzer Generator 

6.1 Introduction ........................................................ 6-1 
6.2 Lex Source ......................................................... 6-3 
6.3 Lex Regular Expressions ............................................. 6-4 

6.3.1 Operators ..................................................... 6-4 
6.3.2 Character Classes ............................................... 6-5 
6.3.3 Arbitrary Character Match ....................................... 6-6 
6.3.4 Optional Expressions ............................................ 6-6 
6.3.5 Repeated Expressions ........................................... 6-6 
6.3.6 Alternation and Grouping ........................................ 6-7 
6.3.7 Context Sensitivity .............................................. 6-7 
6.3.8 Repetitions and Definitions ....................................... 6-8 

6.4 Lex Actions ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-8 
6.5 Ambiguous Source Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-11 
6.6 Lex Source Definitions ............................................... 6-13 
6.7 Usage ............................................................. 6-14 
6.8 Lex and Yacc ...................................................... 6-14 
6.9 More Examples ...................................................... 6-15 
6.10 Left Case Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. 6-17 
6.11 Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . 6-19 
6.12 Summary of Source Format ......................................... 6-20 

Chapter 7 Yacc: Yet Another Compiler Compiler 

7.1 Introduction ........................................................ 7-1 
7.2 Basic Specifications .................................................. 7-3 
7.3 Actions ............................................................. 7-4 
7.4 Lexical Analysis ..................................................... 7-6 
7.5 How the Parser Works ............................................... 7-7 
7.6 Ambiguity and Conflicts .............................................. 7-10 
7.7 Precedence ......................................................... 7-14 
7.8 Error Handling ..................................................... 7-16 
7.9 The Yacc Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-1 7 
7.10 Hints for Preparing Specifications .................................... 7-18 

7.10.1 Input Style .................................................... 7-18 
7.10.2 Left Recursion ................................................ 7-18 
7.10.3 Lexical Tie-Ins ................................................ 7-19 
7.10.4 Reserved Words ............................................... 7-20 

7.11 Yacc Input Syntax ................................................... 7-20 
7.12 Examples .......................................................... 7-22 

7.12.1 A Simple Example .............................................. 7-22 
7.12.2 An Advanced Example .......................................... 7-23 

7.13 Old Features Supported But Not Encouraged ............................ 7-27 

vii Contents 



Chapter 8 SCCS: The Source Code Control System 

8.1 Introduction ........................................................ 8-1 
8.2 Creating SCCS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-2 
8.3 Getting Files for Compilation ......................................... 8-3 
8.4 Changing Files (Creating Deltas) ...................................... 8-3 

8.4.1 Getting a Copy to Edit .......................................... 8-3 
8.4.2 Merging Changes ............................................... 8-3 
8.4.3 When to Make Deltas ........................................... 8-4 
8.4.4 The "sact" Command ........................................... 8-4 
8.4.5 ID Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-4 
8.4.6 The "what" Command .......................................... 8-5 
8.4.7 Where to Put ID Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-5 
8.4.8 Keeping SIDs Consistent Across Files .............................. 8-5 
8.4.9 Creating a New Release ......................................... 8-5 

8.5 Restoring Old Versions .............................................. 8-5 
8.5.1 Reverting to Old Versions ........................................ 8-6 
8.5.2 Selectively Deleting Old Deltas ................................... 8-6 

8.6 Auditing Changes ................................................... 8-6 
8.6.1 The "prs" Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-6 
8.6.2 Finding Why Lines Were Inserted ................................. 8-7 
8.6.3 Finding What Changes You Have Made ............................ 8-7 
8.6.4 The "unget" Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-7 

8. 7 Using SCCS on a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-8 
8.8 Error Recovery ..................................................... 8-8 

8.8.1 Recovering a Damaged Edit File .................................. 8-8 
8.8.2 Restoring the S-File ............................................. 8-8 

8.9 Using the "admin" Command ........................................ , 8-8 
8.10 Maintaining Different Versions (Branches) ............................. 8-9 

8.10.1 Creating a Branch ............................................. 8-9 
8.10.2 Getting From a Branch ......................................... 8-9 
8.10.3 Merging a Branch Back Into the Main Trunk . . . . . . . . . . . . . . . . . . . . . .. 8-10 

8.11 SCCS and the "make" Command ..................................... 8-10 
8.11.1 Maintaining Single Programs .................................... 8-10 
8.11.2 Maintaining a Library .......................................... 8-11 
8.11.3 Maintaining a Large Program ................................... , 8-12 

8.12 Summary of Commands ............................................. 8-12 
8.13 Summary of ID Keywords ........................................... 8-13 

Chapter 9 A C Language Reference 

9.1 Introduction ........................................................ 9-1 
9.2 Lexical Conventions ................................................. 9-1 

9.2.1 Comments ..................................................... 9-1 
9.2.2 Identifiers (Names) ............................................. 9-1 
9.2.3 Keywords ....................................................... 9-2 
9.2.4 Constants. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 

9.2.4.1 Integer Constants. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-2 
9.2.4.2 Explicit Long Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
9.2.4.3 Character Constants ........................................ 9-2 
9.2.4.4 Floating Constants.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 

Contents viii 



9.2.5 Strings ......................................................... 9-3 
9.2.6 Hardware Characteristics ......................................... 9-3 

9.3 Syntax Notation ...................................................... 9-4 
9.4 What's In a Name? ............ " ..................................... 9-4 
9.5 Objects and Lvalues .................................................. 9-5 
9.6 Conversions .................. " ..................................... 9-5 

9 .6.1 Characters and Integers .... " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
9.6.2 Float and Double ......... " ..................................... 9-5 
9.6.3 Floating and Integral ...... " ..................................... 9-6 
9 .6.4 Pointers and Integers ....... ' ..................................... 9-6 
9.6.5 Unsigned Integers .......... ' ..................................... 9-6 
9.6.6 Arithmetic Conversions .......................................... 9-6 

9.7 Expressions ........................................................ 9-6 
9.7.1 Primary Expressions ............................................ 9-7 
9.7.2 Unary Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-9 
9.7.3 Multiplicative Operators ......................................... 9-10 
9.7.4 Additive Operators .............................................. 9-10 
9.7.5 Shift Operators ............ ' ..................................... 9-11 
9.7.6 Relational Operators ....... ' ..................................... 9-11 
9.7.7 Equality Operators ......... ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-11 
9.7.8 Bitwise AND Operator ............................................ 9-12 
9.7.9 Bitwise Exclusive OR Operator ................................... 9-12 
9.7.10 Bitwise Inclusive OR Operator ................................... 9-12 
9.7.11 Logical AND Operator ... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 
9.7.12 Logical OR Operator ........................................... 9-12 
9.7.13 Conditional Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 
9.7.14 Assignment Operators .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 
9.7.15 Comma Operator .............................................. 9-14 

9.8 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14 
9.8.1 Storage Class Specifiers ......................................... 9-14 
9.8.2 Type Specifiers ................................................. 9-15 
9.8.3 Declarators .................................................... 9-15 
9.8.4 Meaning of Declarators .......................................... 9-16 
9.8.5 Structure and Union Declarations ................................. 9-17 
9.8.6 Initialization ................................................... 9-19 
9.8.7 Type Names ................................................... 9-20 
9.8.8 Typedef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-21 

9.9 Statements ......................................................... 9-22 
9.9.1 Expression Statement ........................................... 9-22 
9.9.2 Compound Statement, or Block ................................... 9-22 
9.9.3 Conditional Statement ........................................... 9-22 
9.9.4 While Statement ................................................ 9-22 
9.9.5 Do Statement .................................................. 9-23 
9.9.6 For Statement .................................................. 9-23 
9.9.7 Switch Statement ............................................... 9-23 
9.9.8 Break Statement ................................................ 9-24 
9.9.9 Continue Statement ............................................. 9-24 
9.9.10 Return Statement .............................................. 9-24 
9.9.11 Goto Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24 
9.9.12 Labeled Statement ............................................. 9-25 
9.9.13 Null Statement ................................ " ............... 9-25 

ix Contents 



9.10 External Definitions ............................................... 9-25 
9.10.1 External Functions Definitions ........... . . . . . . . . . . . . . . . . . . . . . . . 9-25 
9.10.2 External Data Definitions ...................................... 9-26 

9.11 Scope Rules ...................................................... 9-26 
9.11.1 Lexical Scope ................................................ 9-26 
9.11.2 Scope of Externals ........................................... 9-27 

9.12 Compiler Control Lines ............................................ 9-27 
9.12.1 Token Replacement ........................................... 9-28 
9.12.2 File Inclusion ................................................ 9-28 
9.12.3 Conditional Compilation ....................................... 9-28 
9.12.4 Line Control ................................................. 9-29 

9.13 Implicit Declarations ............................................... 9-29 
9.14 Types Revisited ................................................... 9-29 

9.14.1 Structures and Unions ......................................... 9-29 
9.14.2 Functions .................................................... 9-30 
9.14.3 Arrays, Pointers, and Subscripting ............................... 9-30 
9.14.4 Explicit Pointer Conversions .................................... 9-31 

9.15 Constant Expressions .............................................. 9-32 
9.16 Portability Considerations ........................................... 9-32 
9.17 Anachronisms .................................................... 9-33 
9.18 Syntax Summary .................................................. 9-33 

9.18.1 Expressions .................................................. 9-33 
9.18.2 Declarations ................................................. 9-34 
9.18.3 Statements ................................................... 9-36 
9.18.4 External Definitions ........................................... 9-37 
9.18.5 Preprocessor ................................................. 9-37 

9.19 Recent Changes to C .............................................. 9-37 
9.19.1 Structure Assignment .......................................... 9-38 
9.19.2 Enumeration Type ............................................ 9-38 

Chapter 10 Ratfor - A Preprocessor for a Rational Fortran 

10.1 Introduction ...................................................... 10-1 
10.2 Language Design .................................................. 10-2 

10.2.1 Statement Grouping ........................................... 10-2 
10.2.2 The "else" Clause ............................................ 10-3 
10.2.3 Nested "if" Statements ........................................ 10-4 
10.2.4 Ambiguity in "if-else" Structures ............................... 10-5 
10.2.5 The "switch" Statement ........................................ 10-5 
10.2.6 The "do" Statement ........................................... 10-6 
10.2.7 The "break" and "next" Statements ............................. 10-7 
10.2.8 The "while" Statement ........................................ 10-7 
10.2.9 The "for" Statement .......................................... 10-8 
10.2.10 The "repeat-until" Statement .................................. 10-10 
10.2.11 More on "break" and "next" Statements ........................ 10-10 
10.2.12 The "return" Statement ....................................... 10-10 
10.2.13 Cosmetics .................................................. 10-11 
10.2.14 Free-Form Input ............................................ 10-11 
10.2.15 Translation Services .......................................... 10-12 
10.2.16 The "define" Statement ....................................... 10-12 
10.2.17 The "include" Statement ....................................... 10-13 
10.2.18 Limitations ................................................. 10-13 

Contents x 



10.3 Implementation ................................................... 10-13 
10.4 Benefits and Drawbacks of Ratfor ................................... 10-15 
10.5 Conclusions ...................................................... 10-16 

Chapter 11 The M4 Macro Processor 

11.1 Introduction ...................................................... 11-1 
11.2 Usage ........................................................... 11-2 
11.3 Defining Macros .................................................. 11-2 
11.4 Quoting .......................................................... 11-3 
11.5 Arguments ....................................................... 11-4 
11.6 Arithmetic Built-ins ............................................... 11-5 
11.7 File Manipulation ................................................. 11-5 
11.8 System Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 
11.9 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 
11.10 String Manipulation .............................................. 11-7 
11.11 Printing ......................................................... 11-8 
11.12 Summary of Built-ins ............................................. 11-8 

Chapter 12 Be: An Arbitrary Preeislon Desk-Calculator Language 

12.1 Introduction ...................................................... 12-1 
12.2 Simple Computations With Integers .................................. 12-2 
12.3 Bases ........................................................... 12-3 
12.4 Scaling .......................................................... 12-4 
12.5 Functions ........................................................ 12-5 
12.6 Subscripted Variables .............................................. 12-6 
12.7 Control Statements ................................................ 12-6 
12.8 Summary of Important Features ..................................... 12-8 

12.8.1 Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-8 
12.8.1.1 Comments .............................................. 12-8 
12.8.1.2 Identifiers ............................................... 12-8 
12.8.1.3 Keywords ............................................... 12-8 
12.8.1.4 Constants ............................................... 12-9 

12.8.2 Expressions .................................................. 12-9 
12.8.2.1 Primitive Expressions ..................................... 12-9 
12.8.2.2 Unary Operators ......................................... 12-10 
12.8.2.3 Exponentiation Operator .................................. 12-10 
12.8.2.4 Multiplicative Operators ................................... 12-10 
12.8.2.5 Additive Operators ....................................... 12-11 
12.8.2.6 Assignment Operators .................................... 12-11 

12.8.3 Relations .................................................... 12-11 
12.8.4 Storage Classes .............................................. 12-11 
12.8.5 Statements ................................................... 12-12 

12.8.5.1 Expression Statements .................................... 12-12 
12.8.5.2 Compound Statements .................................... 12-12 
12.8.5.3 Quoted String Statements .................................. 12-12 
12.8.5.4 If Statements ............................................ 12-12 
12.8.5.5 While Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-12 
12.8.5.6 For Statements .......................................... 12-12 
12.8.5.7 Break Statements ......................................... 12-12 
12.8.5.8 Auto Statements ......................................... 12-13 

xi Contents 



12.8.5.9 Define Statements ........................................ 12-13 
12.8.5.10 Return Statements ....................................... 12-13 
12.8.5.11 Quit Statement .......................................... 12-13 

Chapter 13 Dc: An Interactive Desk Calculator 

13.1 Introduction ...................................................... 13-1 
13.2 Internal Representation of Numbers .................................. 13-3 
13.3 The Allocator ............ , ........................................ 13-3 
13.4 Internal Arithmetic ....... , ........................................ 13-4 

13.4.1 Addition and Subtraction ...................................... 13-4 
13.4.2 Multiplication ....... , ........................................ 13-4 
13.4.3 Division ..................................................... 13-5 
13.4.4 Remaindering ....... , ........................................ 13-5 
13.4.5 Square Roots ................................................ 13-5 
13.4.6 Exponentiation ............................................... 13-5 

13.5 Input Conversion and Base ......................................... 13-6 
13.6 Output Commands ................................................ 13-6 
13.7 Output Format and Base ........................................... 13-6 
13.8 Internal Registers ................................................. 13-6 
13.9 Stack Commands ................................................. 13-6 
13.10 Subroutine Definitions and Calls ................................... 13-6 
13.11 Programming dc ................................................. 13-7 
13.12 Push-Down Registers and Arrays ................................... 13-7 
13.13 Miscellaneous Commands ......................................... 13-7 
13.14 Design Choices .................................................. 13-7 

Chapter 14 Curses: Screen Functions With an "Optimal" Cursor 

14.1 Overview ........................................................ 14-1 
14.1.1 Compiling Data .............................................. 14-2 
14.1.2 Screen Updating .............................................. 14-2 
14.1.3 Naming Conventions .......................................... 14-2 

14.2 Variables ........................................................ 14-3 
14.3 Capabilities Provided by Termcap (bsd4.2) ............................ 14-10 

14.3.1 Overview .................................................... 14-10 
14.3.2 Variables Set by "settermO" ................................... 14-11 
14.3.3 Variables Set by "gettmodeO" .................................. 14-12 

14.4 The WINDOW Structure ........................................... 14-12 
14.5 Examples ........................................................ 14-13 

14.5.1 Screen Updating .............................................. 14-13 
14.5.1.1 Twinkle ................................................. 14-13 
14.5.1.2 Life .................................................... 14-15 

14.5.2 Motion Optimization .......................................... 14-16 

Chapter 15 BSD4.2 Interprocess Communications (IPC) 

15.1 Introduction ...................................................... 15-1 
15.2 Basics ........................................................... 15-2 

15.2.1 Socket Types ................................................. 15-2 
15.2.2 Socket Creation .............................................. 15-3 
15.2.3 Binding Names ............................................... 15-3 

Contents xii 



15.2.4 Connection Establishment ...................................... 15-4 
15.2.5 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15-5 
15.2.6 Discarding Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15-6 
15.2.7 Connectionless Sockets ........................................ 15-6 
15.2.8 Input/Output Multiplexing ...................................... 15-7 

15.3 Network Library Routines .......................................... 15-7 
15.3.1 Host Names ................................................. 15-8 
15.3.2 Network Names .............................................. 15-9 
15.3.3 Protocol Names .............................................. 15-10 
15.3.4 Service Names ............................................... 15-10 
15.3.5 Miscellaneous ................................................ 15-10 

15.4 Client/Server Model ............................................... 15-12 
15.4.1 Servers ...................................................... 15-13 
15.4.2 Clients ...................................................... 15-14 
15.4.3 Connectionless Servers ........................................ 15-15 

15.5 Advanced Topics .................................................. 15-18 
15.5.1 Out-of-Band Data ............................................ 15-18 
15.5.2 Signals and Process Groups .................................... 15-19 
15.5.3 Pseudo Terminals ............................................. 15-19 
15.5.4 Internet Address Binding ....................................... 15-20 
15.5.5 Broadcasting and Datagram Sockets ............................. 15-22 
15.5.6 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15-22 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Index-l 

xiii Contents 



1.1 

Awk.: A Pattern Scanning 
Processing Language 

1 

Awk is a programming language that lets you prepare programs that search a file or 
set of files for patterns, then perform actions on lines or parts of lines that contain in­
stances of those patterns. Awk makes certain data selection and transformation opera­
tions easy to express; for example, the following very simple awk program 

length> 72 

prints all input lines whose length exceeds 72 characters; the program 

NF % 2 == 0 

prints all tines with an even number of fields; and the program 

{ $1 = log($1); print} 

replaces the first field of each line by its logarithm. 

Awk patterns may include arbitrary Boolean combinations of regular expressions and 
of relational operators on strings, nUlnbers, fields, variables, and array elements. Ac­
tions may include the same pattern-matching constructions as in patterns, as well as 
arithmetic and string expressions and assignments, if-else, while, and for statements, 
and multiple output streams. 

This chapter explains how to write avvk programs. It also includes a discussion of the 
design and implementation of awk, for insight into the way UNIX software develop­
ment tools can be combined to produce programs for specific tasks. 

1-1 awk 



1.2 Overview 
Awk is a programming language designed to make many common information retrieval 
and text manipulation tasks easy to state and to perform. 

When invoked, awk scans a set of input lines (usually from a specified file) in order, 
searching for instances of patterns specified in the program. For any pattern, you can 
specify an action to be performed on each line that matches the pattern. 

Readers familiar with the UNIX program grep(l) recognize the approach, although pat­
terns in awk may be more general than in grep. ,Also, while grep allows only one ac­
tion (print the line), awk provides you with a variety of actions that may be taken on 
all or part of a line in which the matching pattern occurs. For example, in awk, 

{print $3, $2} 

prints the third and second fields of an input line in that order. The program 

$2 - IAIBICI 

prints all input lines with an A, B, or C in the second field. The program 

$1 != prev { print; prev = $1 } 

prints all lines in which the first field is different from the previous first field. 

1.2.1 Usage 
The command line 

% awk 'program' [inputyle(s)] <RETURN> 

executes the awk commands in the program string on the named inputYle(s). 

Note: When you include the awk program in the command line, it must be delimited 
by single quotes (as shown above) so that the shell knows that the entire pro­
gram is the first argument to awk. 

As is the case with other UNIX programs, awk reads the standard input if no file is 
specified, or if a dash (-) is specified in place of a filename, as shown he:'e: 

% awk 'program' - <RETURN> 

If program is more than a few statements long, you may want to place it in a file and 
execute it by including the -f option on the awk command line, as shown here: 

% awk -f programyle inputyle(s) <RETURN> 

1.2.2 Program Structure 
An awk program is a sequence of statements of the form: 

pattern 
pattern 

{ action} 
{ action} 

Each line of input is matched against each of the patterns in turn. For each pattern 
that matches, the associated action is executed. '¥hen all specified patterns have been 
tested against the contents of the first input line, the next line is fetched and the 
matching process starts again. 

awk 1-2 



Either the pattern or the action may be left out of an awk program line, but not both. 
If there is no action for a pattern, awk simply copies all matching input line(s) to the 
output. (Thus a line which matches several patterns can be printed several times.) If 
there is no pattern for an action, then the action is performed for every input line. A 
line which matches no pattern is ignored. 

Since patterns and actions are both optional, actions must be enclosed in braces to dis­
tinguish them from patterns. 

1.2 .. 3 Records and Fields 
Awk divides each input file into record.s terminated. by a record separator. The default 
record separator is the newline, so by default awk processes its input a line at a time. 
The number of the current record is available in a variable named NR. 

Each input record is considered to be divided into fields. These are normally separated 
by white space (blanks or tabs), although the input field separator may be changed to 
any other character by resetting the FS variable as described below. Fields are referred 
to as $1, $2, and so forth, where $1 is the first field, $2 is the second field, and $0 is 
the entire input record. Fields may be assigned to a numeric or string value. The num­
ber of fields in the current record is available in a variable named NF. 

The variables FS and RS refer to the input field and record separators. These may be 
changed to another (single) character at any time. The optional command-line argu­
ment -Fe may also be used to set FS to a character represented here bye. 

If the record separator is empty, an enlpty input line is taken as the record separator. 
Blanks, tabs, and newlines are then treated as field separators. 

The variable FILENAME contains the name of the current input file. 

Printing 
If an action has no pattern, the action is executed for all input lines (records). The 
simplest action is provided by the awk, command print, which prints some or all of a 
record. The simple awk program 

{ print} 

prints each input record. It merely copies the input to the output - something to which 
cat(l) is far better suited. A more useful awk prograrn might print a field or possibly 
selected fields from each record. For instance, the program 

{ print $2, $1 } 

prints the first two fields of each input record (since no pattern has been specified) in 
reverse order. Items separated by a comma in the print statement are separated by the 
current output field separator when printed. Items not separated by commas are con­
catenated, so this runs the first and second fields together: 

print $1 $2 

The predefined numeric variables, NF (Number of Fields) and NR (Number of Re­
cords), have many uses. For example, the program 

{ print NR, NF, $0 } 

prints each record preceded by its record number and the number of fields it contains. 

1-3 awk 



Output may be diverted to multiple files; the program 

{ print $1 >"fo01"; print $2 >"fo02" } 

writes the first field on the file fool and the second field on file fo02. The » notation 
can be used to append awk output to a file. Thus, the program 

{ print $1 »"foo" } 

appends the first field of every input record to the file foo. 

Note: When printing or appending output to a file, awk creates the specified output 
file if it does not already exist. 

The filename can be derived from a variable or a field, as well as a constant. Thus, 
this uses the contents of field 2 of the current input record as the output filename: 

{ print $1 >$2 } 

Note: You may not specify more than 10 output files in an awk program. 

Awk output can also be piped into another process; for instance, this mails the current 
input record to mail user bob: 

{ print I "mail bob" } 

The variables OFS and ORS may be used to change the current output field separator 
and output record separator. The output record separator is appended to the output of 
the print statement. 

Awk also provides the printf statement for output formatting: 

printf format expr, expr, ... 

formats the expressions in the list according to the specification in format and prints 
them. For example, 

printf "0/08.2f 0/o10Id\n", $1, $2 

prints $1 as a floating point number 8-digits wide, with two after the decimal point, 
and $2 as a 10-digit long decimal number followed by a newline. Output separators 
are not produced automatically; you must add them yourself, as in this example. The 
awk version of printf is identical to that used in the C programming language. 

1.3 Patterns 
A pattern to the left of an action acts as a selector that determines whether the action 
is to be executed. A variety of expressions may be used as patterns: regular expres­
sions, arithmetic relational expressions, string-valued expressions, and arbitrary 
Boolean combinations of all three. 

1.3.1 The BEGIN and END Patterns 
The special pattern BEGIN matches the beginning of the input, before the first record 
is read. The special pattern END matches the end of the input, after the last record 
has been processed. BEGIN and END provide a 'way to gain control before and after 
processing, for initialization and wrapup. 

awk 1-4 



As an example, the field separator can be set to a colon by 

BEGIN { FS = ";" } 
... body of program ... 

This line finishes an awk program by displaying a count of input lines: 

END {print NR } 

Note: If BEGIN is used, it must be the first pattern; END, is used, must be the last. 

1.3.2 Regular Expressions 
The simplest regular expression is a literal string of characters delimited by slashes: 

/smith/ 

This is actually a complete awk program which prints all lines which contain any oc­
currence of the name smith. Lines that contain smith as part of a larger word (e.g., 
blacksmithing) are also printed. 

Awk regular expressions include the regular expression forms found in the UNIX text 
editor ed(l) as well as those used by grep(l) (without back-referencing). In addition, 
awk allows parentheses for grouping, the vertical line (I) to separate alternatives, a 
plus sign (+) for "one or more", and a question mark (?) for "zero or one". All of 
these usages should be familiar to lex(l) users. Character classes may be abbreviated: 

[a-zA-ZO-9] 

matches the set of all letters and digits. As an example, the brief awk program 

/ [Aa] ho I [Ww] einberger I [Kk] ernighan/ 

prints all lines which contain any of the names Aho, Weinberger, or Kernighan, whether 
or not the first letter of the name is capitalized. 

Regular expressions (with the extensions listed above) must be enclosed in slashes, just 
as in ed(l) and sed(l). Within a regular expression, blanks and the regular expression 
metacharacters are significant. To escape a regular expression character and restore its 
"real" meaning, precede it with a backslash. The pattern 

/\/. *\// 

matches any string of characters enclosed in slashes. 

You can also specify that any field or variable matches a regular expression (or does 
not match it) with the operators - and !-. This program prints all lines where the first 
field matches john or John: 

$1 - /[jJ]ohn/ 

Note that this also matches Johnson, St. Johnsbury, and so on. To restrict it to exactly 
[jJ}ohn, use 

$1 - r [jJ]ohn$/ 

The caret C) refers to the beginning of a line or field, and the dollar sign ($) the end. 

1-5 awk 



1.3.3 Relational Expressions 
An awk pattern can be a relational expression involving the usual relational operators 
<, <=, ==, !=, >=, and >. For example, 

$2 > $1 + 100 

selects lines where the second field is at least 100 greater than the first field. Likewise, 

NF % 2 == 0 

prints lines with an even number of fields. 

In relational tests, if neither operand is numeric, a string comparison is made; other­
wise, a numeric comparison is made. Thus, 

$1 >= "s" 

selects lines that begin with an s, t, U, etc. In the absence of any other information, 
fields are treated as strings, so this program performs a string comparison: 

$1 > $2 

1.3.4 Combinations of Patterns 
A pattern can be any Boolean combination of patterns, using the operators II (or), && 
(and), and! (not). For example, 

$1 >= "s" && $1 < "t" && $1 != "smith" 

selects lines where the first field begins with s, but is not smith. The && and II guaran­
tee that their operands are evaluated from left to right; evaluation stops as soon as the 
truth or falsehood is determined. 

1.3.5 Pattern Ranges 
The pattern that selects an action may also comprise two patterns separated by a com­
ma, as in 

pat1, pat2 { ... } 

In this case, the action is performed for each line starting at an occurrence of pat 1 and 
ending at the first subsequent occurrence of pat2 (inclusive). For example, 

Istart/, Istopl 

prints all lines between start and stop, while this does the action for lines 100 through 
200 of the input: 

NR == 100, NR == 200 { ... } 

1.4 Actions 
An awk action is a sequence of one or more action statements terminated by newlines 
or semicolons. These action statements can be used to do a variety of bookkeeping and 
string manipulating tasks, many of which are described in this section. 

awk 1-6 



1 Built-in Functions 
Awk provides a length function to compute the length of a string of characters. The 
program below prints each record preceded by its length: 

{ print length, $0 } 

By itself, length is a "pseudo-variable" that yields the length of the current record. 
With an argument (any expression), it becomes a function that yields the length of its 
argument, as in the following: 

{ print length ($0) , $0 } 

Awk also provides the arithmetic functions sqrt (square root, base e), log (logarithm), 
exp (exponential), and int (integer). 

The name of one of these built-in funetions, without argument or parentheses, stands 
for the value of the function on the whole record. This program prints lines whose 
length is less than 10 or greater than 20: 

length < 10 II length > 20 

The function substr(s, m, n) produces the substring of s that begins at position m (ori­
gin 1) and is at most n characters long. If n is omitted, the substring goes to the end 
of s. The function index(s1, s2) returns the position where the string s2 occurs in sl, 
or zero if it does not. 

The function sprintf(f, e1, e2, ... ) produces the value of the expressions e1, e2, etc., in 
the printf format specified by f Thus, 

x = sprintf("0/oB.2f %1 Old" , $1, $2) 

sets x to the string produced by formatting the values of $1 and $2. 

Variables, Expressions, and Assignments 
Awk variables assume numeric (floating point) or string values according to context. 
Thus, in 

x = 1 

x is clearly a number, while in 

x = "smith" 

it is clearly a string. Strings are converted to numbers and vice versa whenever context 
demands it. For instance, 

x = "3" + "4" 

assigns the value 7 to x. Strings which can't be interpreted as numbers in a numerical 
context generally have numeric value zero, but it is unwise to count on this behavior. 

By default, variables (other than built-·ins) are initialized to the null string, which has 
numerical value zero; this eliminates the need for most BEGIN sections. For example, 
the sums of the first two fields can be computed by 

{ s 1 += $1; s2 += $2 } 
END {print s1, 52 } 

Arithmetic is done internally in floating point. The arithmetic operators are: +, -, *, /, 
and % (mod). The C increment (++) and decrement (--) operators are also available, 

1-7 awk 



as are the assignment operators +=, -=, "'=, /=, and %=. You may use all these opera­
tors in expressions. 

1.4.3 Field Variables 

Fields in awk share essentially all of the properties of variables; they may be used in 
arithmetic or string operations, and may be assigned to a numeric or string value. Awk 
lets you, for example, replace the first field with a sequence number like this: 

{ $1 = NR; print} 

or accumulate two fields into a third, like this: 

{ $1 = $2 + $3; print $0 } 

or assign a string to a field: 

{ if ($3 > 1 000) 

print 
} 

$3 = "too big" 

which replaces the third field by the string "too big" when the field exceeds an arbi­
trary size (in this case, 1000 characters), then prints the record. 

Field references may be numerical expressions, as in 

{ print $i, $(i+ 1), $(i+n) } 

Whether a field is deemed numeric or string depends on context. In ambiguous cases 
such as this, 

if ($1 == $2) ... 

fields are treated as strings. 

Each input line is split into fields automatically as necessary. It is also possible to 
split any variable or string into fields: 

n = split(s, array, sep) 

splits the the string s into array(l), ... , array(n). Awk returns a value indicating the 
number of elements found. If the sep argument is provided, it is used as the field sepa­
rator; otherwise FS is used as the separator. 

1.4 .. 4 String Concatenation 
Strings may be concatenated, e.g., this returns the length of the first three fields: 

length ($1 $2 $3) 

In a print statement, 

print $1 " is " $2 

prints the two fields separated by is. Variables and numeric expressions may also ap­
pear in concatenations. 

awk 1-8 



5 
Array elements are not declared; they are created as necessary. Subscripts may have 
any non-null value, including non-nun:1eric strings. As an example of a conventional 
numeric subscript, the statement 

x[NR] = $0 

assigns the current input record to the NR-th element of the array x. In fact, it is pos­
sible in principle (though perhaps slow) to process the entire input in a random order 
with the awk program 

{ x[NR] = $0 } 
END { ... program ... } 

The first action merely records each input line in the array x. 

Array elements may be named by non-numeric values, which gives awk a capability 
rather like the associative memory of Snobol tables. Suppose the input contains fields 
with values like apple, orange, etc. Then the program 

lapplel { x["apple"]++ } 
lorangel { x["orange"]++ } 
END { print x["apple"], x["orange"] } 

increments counts for the named array elements, and prints them at the end of the in­
put. 

Any expression can be used as a subscript in an array reference. Thus, 

x[$1] = $2 

uses the first field of a record (as a string) to index the array x. 

Suppose each line of input contains two fields, a name and a non-zero value. Names 
may be repeated. To print a list of each unique name followed by the sum of all the 
values for that name, you could use this program: 

{ amount[$1] += $2 } 
END {for (name in amount) 

{ print name, amount[narne] } 

To sort the output, replace the last line by 

print name, amount[name] I "sort" 

Statements 
Awk provides these flow-of-control statements: if-else, while, for, and statement 
grouping with braces, as in C. We showed the if statement earlier without describing 
it. The condition in parentheses is evaluated; if it is true, the statement following the if 
is done. The else part is optional. 

The while statement is exactly like that of C. For example, to print all input fields one 
per line, specify this: 

i = 1 
while (i <= NF) { 

print $i 
++i 

} 

1-9 awk 



The for statement is also exactly that of C: 

for (i = 1; i <= NF; i++) 
print $i 

does the same job as the while statement above. 

An alternate form of the for statement is suited for accessing the elements of an asso­
ciative array. Thus, 

for (i in array) 
statement 

does statement with i set in turn to each element of array. The elements are accessed 
in an apparently random order. Problems develop if the variable i is altered, or any 
new elements are accessed during the loop. 

The expression in the condition part of an if, while, or for can include relational op­
erators such as <, <=, >, >=, == ("is equal to"), and 1= ("not equal to"); regular ex­
pression matches with the match operators - and 1-; the logical operators II, &&, and 1; 
and, of course, parentheses for grouping. 

The break statement causes an immediate exit from an enclosing while or for; the 
continue statement causes the next iteration to begin. 

The statement next causes awk to skip immediately to the next record and begin scan­
ning the patterns from the top. The statement exit causes the program to behave as if 
the end of the input had occurred. 

Comments may be placed in awk programs: they begin with the pound sign (#) and 
end with the end of the line, as in 

print x, y # this is a comment 

105 Design 
The UNIX system provides several programs that operate by passing input through a 
selection mechanism. The grep(l) program, one of the simplest, merely prints all lines 
which match a single specified pattern. Egrep(l) provides more general patterns, i.e., 
regular expressions in fun generality; and fgrep(l) searches for a set of keywords with 
a particularly fast algorithm. The stream editor sed(l) applies most of the editing fa­
cilities of the editor ed(l) to a stream of input. None of these programs provide nu­
meric capabilities, logical relations, or variables. 

Lex(l) provides general regular expression recognition capabilities. By serving as a C 
program generator, it is essentially open-ended in its capabilities. To use lex, however, 
you need a knowledge of C programming. Furthermore, you have to compile and load 
a lex program before using it; this discourages its use for one-time applications. 

Awk provides general regular expression capabilities and an implicit input/output loop. 
It also supplies convenient numeric processing, variables, more general selection, and 
control flow in the actions. Awk doesn't require compilation, nor does it presuppose 
extensive knowledge of C. Finally, it provides a convenient way to access fields within 
lines; it is unique in this respect. 

Awk also tries to integrate strings and numbers completely, by treating all quantities as 
both string and numeric, deciding which representation is appropriate as late as possi­
ble. In most cases, you can simply ignore the differences. 

awk 1-10 



Most of the development effort applied to awk went into deciding what it should or 
should not do (for instance, it doesn't do string substitution) and what the syntax 
should be (no explicit operator for concatenation), rather than on writing or debugging 
the code. The authors of the program (A. V. Aho, P. J. Weinberger, and B. W. Ker­
nighan) tried to make the syntax powerful, easy to use, and well adapted to scanning 
files. For example, the absence of declarations and implicit initializations, while prob­
ably a bad idea for a general-purpose programming language, is desirable in a lan­
guage that is meant to be used for tiny programs that may eveR be composed on the 
command line. 

In practice, awk usage seems to fall into two broad categories. One area of use is "re­
port generation", or processing of an input to extract counts, sums, sub-totals, etc. 
This also includes the writing of trivial data validation programs, such as verifying that 
a field contains only numeric information or that certain delimiters are properly bal­
anced. The combination of textual and numeric processing is invaluable here. 

A second area of use is data trans forrrlation , that is, converting data from the form 
produced by one program into that expected by another. The simplest examples merely 
select fields, perhaps with rearrangements. 

The actual implementation of awk uses several of the UNIX language development 
tools discussed in other chapters of this manual. The grammar is specified with 
yacc(l), and the lexical analysis is done by lex(l). The regular expression recognizers 
are deterministic, finite automata constructed directly from the expressions. An awk 
program is translated into a parse tree, which is then directly executed by a simple in­
terpreter. 

1-11 awk 



Lb:apter 2 

Sed: The Stream Editor 

2.1 Introduction 
Sed (1) is a non-interactive context editor designed to be especially useful for: 

• Editing files too large for comfortable interactive editing 

• Editing a file of any size where the sequence of editing commands is too compli-
cated to be comfortably typed in interactive mode 

• Doing multiple "global" editing functions efficiently in one pass through the input. 

Since only a few lines of the input reside in real merrlory at one time, and no tempo­
rary files are used, the effective size of a file that can be edited is limited only by the 
requirement that the input and output fit simultaneously into available secondary stor­
age. 

Complicated editing scripts can be created separately and given to sed as a command 
file. This often saves considerable typing, and provides a way to make special-purpose 
filters based on sed. 

The principal losses of functionality in sed, as compared with an interactive editor, are 
lack of relative addressing (because of the line-at-a-time operation), and lack of im­
mediate verification that a command has done what was intended. 

Sed is a lineal descendant of the UNIX line editor, ed(l). Because of differences be­
tween interactive and non-interactive operation, sed represents considerable advance­
ment over ed. Even experienced ed users should read this chapter before trying to use 
sed. The most striking family resemblance between the two editors is in the class of 
patterns ("regular expressions") that they recognize. The code for matching patterns 
that sed uses is copied almost verbatim from the code for ed, so the two programs be­
have identically in this respect. 

2-1 sed 



2.2 Normal Operation 
By default, sed copies the standard input to the standard output, perhaps performing 
one or more editing commands on each line before writing it to the output. This be­
havior may be modified by flags on the command line. 

The general format of an editing command is: 

[address 1 , address 2] [function] [arguments] 

You may omit one or both addresses. We show the format of addresses in the next 
section of this chapter. Any number of blanks or tabs may separate the addresses from 
the function. The function must be present. The arguments may be required or op­
tional, depending on the function. Functions and arguments are discussed later. 

Tab characters and spaces at the beginning of lines are ignored. 

2.2.1 Command Line Flags 
Sed recognizes three command line flags: 

-n 

-e 

Copy only those lines specified by p functions or p flags after s functions. 

Take the next argument as an editing command. 

-f name Get commands to be used by sed from file name. Name must be a file 
that contains editing commands, one to a line. 

2.2.2 Order of Application of Editing Commands 
Before any editing is done or any input file opened, all the editing commands given to 
sed are compiled into a form that is moderately efficient during the execution phase 
(when the commands are actually applied to lines of the input file). The commands 
are compiled in the order in which they are encountered; this is generally the order in 
which they are attempted at execution time. The commands are applied one at a time; 
the input to each command is the output of all preceding commands. 

The default linear order of application of editing commands can be changed by the 
flow-of-control commands t and b. However, the input line to any command is always 
the output of any previously applied command. 

2.3 The Pattern Space 
The range of pattern matches is called the pattern space (usually, one line of the input 
text). You must use the N command to request that more than one line to be read into 
the pattern space. Beginning with this section, we supply several examples. Except 
where otherwise noted, all the examples assume the following input text: 

sed 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

2-2 



The command 

2q <RETURN> 

quits after copying the first two lines of the input. The output is: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

Addresses -- Selecting~ Lines 
You can select lines in the input file(s) to which editing commands are to be applied 
by addresses. Addresses may be either line numbers or context addresses. 

To control the application of a group of commands by one address (or address-pair), 
group the commands in braces as shown here: 

{commands} 

1 Line-Number Addresses 
A line number is a decimal integer. As each line is read from the input, a line-num­
ber counter is incremented; a line-nurnber address matches (selects) the input line that 
causes the internal counter to equal the address line-number. The counter runs 
cumulatively through multiple input files. It is not reset when a new input file is 
opened. As a special case, a dollar sign ($) matches the last line of the last input file. 

Context Addresses 
A context address is a pattern ("regular expression") enclosed in slashes (I). The 
regular expressions recognized by sed are constructed as follows: 

[1] An ordinary character (not one of those discussed below) is a regular expression 
and matches that character. 

[2] A caret C) at the beginning of a regular expression matches the null character 
at the beginning of a line. 

[3] A dollar sign ($) at the end of a regular expression matches the null character 
at the end of a line. 

[4] The characters \n match an imlbedded newline character, but not the newline at 
the end of the pattern space. 

[5] A period (.) matches any character except the terminal newline of the pattern 
space. 

[6] A regular expression followed by an asterisk (*) matches any number (including 
0) of adjacent occurrences of the regular expression it follows. 

[7] A string of characters in square brackets ( [ ] ) matches any character in the 
string, and no others. If, however, the first character of the string is a caret (as 
in "1), the regular expression ITlatches any character except the characters in the 
string and the terminal newline of the pattern space. 

[8] A concatenation of regular expressions is a regular expression that matches the 
concatenation of strings matched by the components of the regular expression. 

2-3 sed 



[9] A regular expression between the sequences \( and \) is identical in effect to 
the unadorned regular expression, but has side-effects described under the s 
command below and specification [10] imrnediately below. 

[10] The expression \d means the same string of characters matched by an expres­
sion enclosed in \( and \) earlier in the same pattern. Here d is a single digit; 
the string specified is that beginning with the dth occurrence of \( counting 
from the left. For example, the expression 

A\(. *\)\ 1 

matches a line beginning with two repeated occurrences of the same string. 

[11] The null regular expression standing alone (e.g., II) is equivalent to the last 
regular expression compiled. 

To use one of the special characters 

C$·*[]\/) 

as a literal (to match an occurrence of itself in the input), you must precede the spe­
cial character with a backslash (\). 

For a context address to "match" the input, the whole pattern within the address must 
match some portion of the pattern space. 

2.4.3 Number of Addresses 
The commands in the next section can have 0, 1, or 2 addresses. Under each com­
mand, we list its maximum number of allowable addresses (an error occurs if this 
number is exceeded). 

If a command has no addresses, it is applied to every line in the input. If a command 
has one address, it is applied to all lines that match that address. If a command has 
two addresses, it is applied to the first line that nnatches the first address, and to all 
subsequent lines until (and including) the first subsequent line that matches the second 
address. An attempt is made on subsequent lines to again match the first address, and 
the process is repeated. Two addresses must be separated by a comma. 

Here are some examples: 

[1] lanl matches lines 1, 3, 4 in our sample text 

[2] Ian. *anl matches line 1 

[3] IA anI matches no lines 

[ 4] 1.1 matches all lines 

[5] 1\.1 matches line 5 

[6] Ir*anl matches lines 1,3, 4 (number = zero) 

[7] I\(an\). *\11 matches line 1 

2.5 
All functions are named by a single character. For each function, the following sum­
mary provides the maximum number of allowable addresses (in parentheses), the sin-

sed 2-4 



gle character function name, possible arguments (in angles), an expanded English 
translation of the single-character narne, and a description of what each function does. 

Note: The angles around the arguments are not part of the argument, and should not 
be typed in actual editing comrnands. 

1 
(2)d 

(2)n 

Delete from the file (but don't write to the output) all lines matched by 
its addressees). As a side effect, attempt no further commands on the de­
leted line. Once this function is executed, a newline is read from the in­
put, and the list of editing commands is restarted from the beginning of 
the newline. 

Read next line from the input, replacing the current line. Write the 
current line to the output if it should be, and continue the list of editing 
commands. 

(l)atext Append text to the output after the line matched by its address. This 
command is inherently multi-line. It must appear at the end of a line, 
and text may contain any number of lines. To preserve the one-com­
mand-to-a-line convention, interior newlines in text must be hidden by a 
backslash (\) immediately preceding the newline. The text argument is 
terminated by the first unhidden newline. Once this function is success­
fully executed, text is written to the output regardless of what later com­
mands do to the line that triggered it. The triggering line may be deleted 
entirely; text is still written to the output. The text is not scanned for ad­
dress matches, and no editing commands are attempted on it. It does not 
change the line-number counter. 

(l)itext Insert text in the output before (not after, as in a) the matched line. 

(2)ctext Delete lines selected by its address(es), and replace them with text. 
Like a and e, lines in c must be followed by a newline hidden by a back­
slash; and interior new lines in text must be hidden by backslashes. The c 
command may have two addresses, and therefore select a range of lines. 
If it does, all the lines in the range are deleted, but only one copy of text 
is written to the output, not one copy per line deleted. As with a and i, 
text is not scanned for address matches, and no editing commands are 
attempted on it. It does not change the line-number counter. After a line 
has been deleted by a c function, no further commands are attempted on 
the line. text is appended after a line by a or r functions, and the line 
is subsequently changed, the text inserted by the c function is placed be­
fore the text of the a or r functions. 

Within the text put in the output by these functions, leading blanks and tabs dis-
appear, as always in commands. To get leading blanks and tabs into the 
output, precede the first desired blank or tab by a backslash; the backslash 
doesn't appear the output. 

To illustrate the use of some of the editing commands just described, consider this: 

n 
a\ 

d 

2-5 sed 



If applied to our standard input, these lines produce: 

In Xanadu did Kubla Khan 
xxxx 
Where Alph, the sacred river, ran 
XXXX 
Down to a sunless sea. 

For that matter, either of the two following comn1and lists produce the same results: 

n 
i\ 
XXXX 
d 

n 
c\ 

XXXX 

2.5.2 The Substitute Function 
The s (substitute) function changes parts of lines selected by a context search within 
the line. In prototype, it looks like this: 

(2)spattern replacement flags 

The part of a line matched by pattern is replaced with the text of replacement. Pattern 
contains a pattern like those in addresses. The only difference between pattern and a 
context address is that the context address must be delimited by slash ("I") characters; 
pattern may be delimited by any character other than space or newline. By default, 
only the first string matched by pattern is replaced. See the g flag below. 

The replacement argument begins immediately after the second delimiting character of 
pattern, and must be followed immediately by another instance of the delimiting char­
acter. (Thus, there are exactly three instances of the delimiting character.)-

The replacement is not a pattern, and the characters that are special in patterns do not 
have special meaning in replacement. Instead, other characters are special: 

& Replaced by the string matched by pattern. 

\d (where d is a single digit) Replaced by the dth substring matched by parts of pattern 
enclosed in \( and \). If nested substrings occur in pattern, the dth is determined 
by counting opening delimiters (\( ). As in patterns, special characters may be 
made literal by preceding them with backslash (\). 

The flags argument may contain the following flags: 

g Substitute replacement for all (non-overlapping) instances of pattern in the 
line. After a successful substitution, begin the scan for the next instance 
of pattern just after the end of the inserted characters; don't rescan char­
acters put into the line from replacement. 

p Print the line if a successful replacement was done. In other words, cause 
the line to be written to the output if and only if the s function actually 
made a substitution. (Notice that if several s functions, each followed by 
a p flag, successfully substitute in the same input line, multiple copies of 
the line is written to the output, one for each successful substitution.) 

w filename Write the line to filename if a successful replacement was done. That is, 
cause lines actually substituted by the s function to be written to a file 
named by filename. If filename exists before sed is run, overwrite it; other-

sed 2-6 



wise, create it. Note that a single space must separate wand filename. 
The possibilities of multiple, somewhat different copies of one input line 
being written are the sarrle as for p. A maximum of 10 different files 
may be mentioned after 'w flags and functions. 

To illustrate how substitutions are done, consider the following command line: 

s/to/by/w changes <RETURN> 

When applied to our standard input, this line produces, on the standard output: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

and, on the file changes: 

Through caverns measureless by man 
Down by a sunless sea. 

If the nocopy option is in effect, the command: 

s/[.,;?:]/*P&*/gp <RETURN> 

produces: 

A stately pleasure dome decree*P:* 
Where Alph*P,* the sacred river*P,* ran 
Down to a sunless sea*P.* 

Finally, to illustrate the effect of the g flag, the command: 

IX/s!an/AN/p <RETURN> 

produces (in no copy mode): 

In XANadu did Kubla Khan 

and the command: 

IX/s/an/AN/gp <RETURN> 

produces: 

In XANadu did Kubla KhAN 

2.5 .. 3 Input/Output Functions 
(2)p Write the addressed lines to the standard output file. (The lines 

are printed at the time the p function is encountered, regardless of 
what succeeding editing commands may do to the lines.) 

(2)w filename Write the addressed lines to filename. If filename previously existed, 
overwrite it; if non-existent, create it. (The lines are written ex­
actly as they exist when the w function is encountered for each 
line, regardless of what subsequent editing commands may do to 
them.) Exactly one space must separate w from filename. A maxi­
mum of ten different files may be mentioned in \\'Tite functions 
and w flags after s functions, combined. 

2-7 sed 



(l)r filename Read the contents of filename and append it after the line matched 
by the address (regardless of what subsequent editing commands 
do to line that matched its address). If e and a functions are exe­
cuted on the same line, the text from the a functions and the r 
functions is written to the output in the order that the functions 
are executed. Exactly one space must separate r from filename. If 
a file mentioned by r cannot be opened, it is considered a null 
file, not an error, and no diagnostic is given. 

Note: Only a limited number of files can be opened simultaneously. Make sure that 
you mention no more than ten files in w functions or flags. This is reduced by 
one if any r functions are present. (Only one read file is open at one time.) 

To illustrate the functions mentioned above, assume that the file note1 contains: 

Note: Kubla Khan (more properly Kublai Khan: 1216-1294) 
was the grandson and most eminent successor of Genghiz 
(Chingiz) Khan, and founder of the Mongol dynasty in China. 

Then the following command: 

IKubla/r note1 <RETURN> 

produces: 

In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) 
was the grandson and most eminent successor of Genghiz 
(Chingiz) Khan, and founder of the Mongol dynasty in 
China. 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

2 .. 5 .. 4 Multiple Input-Line Functions 
Three functions, all spelled with capital letters, deal specially with pattern spaces con­
taining imbedded newlines. They mainly provide pattern matches across lines in input: 

(2)N Append next input line to the current line in the pattern space; separate 
the two input lines by an imbedded newline. Pattern matches may extend 
across the imbedded newline(s). 

(2) D Delete first part of the pattern space, up to and including the first 
newline character in the current pattern space. If the pattern space be­
comes empty (the only newline was the terminal newline), read another 
line from the input. In any case, begin the list of editing commands again 
from its beginning. 

(2)P Print first part of the pattern space, up to and including the first newline. 
(The P, I, and D functions are equivalent to their lowercase counterparts 
if there are no imbedded newlines in the pattern space.) 

sed 2-8 



2.5.5 and Get FunctiOlns 

Several functions save and retrieve part of the input for possible later use: 

(2)h Copy the contents of the pattern space into a hold area (destroying the 
previous contents of the hold area). 

(2)H Hold and append to pattern space. Specifically, append the contents of 
the pattern space to the contents of the hold area. The former and new 
contents are separated by a newline. 

(2)g Only get contents of hold area. Copy the contents of the hold area into 
the pattern space (destroying the previous contents of the pattern space). 

(2)G Get (and append) contents of hold area. In particular, append the con­
tents of the hold area to the contents of the pattern space; the former 
and new contents are separated by a newline. 

(2) x Exchange the contents of the pattern space and the hold area. 

To help illustrate the use of sed functions for saving and retrieving input, consider: 

lsI did. *// 

G 
s/\nl :1 

When applied to our standard example, these lines produce: 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

2.5 .. 6 FIOlW-Olf-COlntrOlI Functions 
These functions do no editing on the input lines, but control the application of func­
tions to the lines selected by the address part: 

(2)! 

(2) {group} 

(O):label 

(2)blabel 

Cause the next command (written on the same line) to be applied to all 
and only those input lines not selected by the address part. 

Cause the next set of cornmands to be applied (or not applied) as a 
block to the input lines selected by the addresses of group. The first of 
the commands under control of the grouping may appear on the same 
line as the left brace ({) or on the next line. The group of commands is 
terminated by a matching right brace (}) on a line by itself. Groups can 
be nested. 

Mark a place in the list of editing cOlnmands that may be referred to by 
band t functions. The label may be any sequence of eight or fewer char­
acters; if two different colon functions have identical labels, generate a 
compile time diagnostic, and attempt no execution. 

Branch to label. Cause the sequence of editing commands being applied 
to the current input line to be restarted ilnmediately after the place where 
a colon (:) function with the same label is encountered. If no colon func-

2-9 sed 



(2)tlabel 

tion with the same label is found after all the editing commands are com­
piled, produce a compile time diagnostic, and attempt no execution. Take 
a b function with no label to be a branch to the end of the list of editing 
commands; do whatever should be done with the current input line, and 
read another input line; restart the list of editing commands from the be­
ginning on the new line. 

Test to see whether any successful substitutions have been made on the 
current input line; if so, branch to label; if not, do nothing. The flag that 
indicates the execution of a successful substitution is reset by reading a 
new input line or executing a t function. 

2.5.7 Miscellaneous Functions 
(1)= Write, to the standard output, the number of the line matched by its ad­

dress. 

(l)q Cause the current line to be written to the output (if it should be), any 
appended or read text to be written~1 and execution to be terminated. 

sed 2-10 



c ter 3 

Lint:: A C Program Checker 

3.1 Introduction 
Lint(l) examines C source code, detecting any bugs or obscurities. It enforces the type 
rules of C more strictly than the C cotnpilers do. It may also be used to enforce many 
portability restrictions involved in moving programs between different machines and/or 
operating systems. Furthermore, it detects certain constructions which, although techni­
cally "legal," are nonetheless wasteful!. error-prone, or otherwise best avoided. Lint 
accepts multiple input files and library specifications, and checks them for consistency. 

The separation of function between lint and the C cOITlpilers has both historical and 
practical rationale. The compilers turn C programs into executable files rapidly and 
efficiently. This is possible, in part, because the compilers don't do sophisticated type 
checking, especially between separately-compiled programs. Lint takes a more global, 
leisurely view of the program, looking much more carefully at the compatibilities. 

This chapter discusses the use of lint, gives an overview of the implementation, and 
gives some hints on the writing of machine independent C code. 

3.1.1 Usage 
Suppose there are two C source files, filel.c and file2.c, that are ordinarily compiled 
and loaded together. Then the command 

% lint file1.c file2.c <RETURN> 

produces messages describing inconsistencies and inefficiencies in the programs. This 

% lint -p file1.c file2.c <RETURN> 

also produces these messages, as well as other messages that relate to the "portability" 
(to other operating systems and machines) of the programs. Replacing the -p by -h 

3-1 lint 



produces messages about constructions that, athough legal, demonstate poor program­
ming style (according to lint). You may use both options 

% lint -hp filel.c file2.c <RETURN> 

to get both types of messages. 

Many of the facts that lint needs to establish may, in reality, be impossible to dis­
cover. For example, it may not be possibe to know whether a given function in a pro­
gram ever gets called without also knowing the input data. Deciding whether exit is 
ever called is equivalent to solving the famous "halting problem," known to be recur­
sively undecidable. 

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, 
it can never be called. If a function is mentioned, lint assumes it can be called. 

Lint tries to give only relevant information. Messages of the form "xxx might be a 
bug" are easy to generate, but are acceptable only in proportion to the fraction of real 
bugs they uncover. If this fraction of real bugs is too small, loses credibility, and 
its "error" messages merely clutter up the output, obscuring other, possibly more im­
portant messages. 

3 .. 
As sets of programs evolve, previously used variables and arguments to functions may 
become unused. It isn't uncommon for external variables, or even entire functions, to 
become unnecessary, and yet not be removed fron1 the source. These "errors of com­
mission" rarely cause working programs to fail, but they are a source of inefficiency, 
and make programs harder to understand and change. Moreover, information about 
such unused variables and functions can occasionally help you to discover bugs; if a 
function does a necessary job and is never called, something is probably wrong. 

Lint complains about variables and functions that are defined but not otherwise men­
tioned. An exception is variables that are declared through explicit extern statements 
but are never referenced; thus, the statement 

extern float sin 0 ; 
evokes no comment if sin is never used. Note that this agrees with the semantics of the 
DOMAIN C compiler. In some cases, these unused external declarations might be of 
some interest; they can be discovered by adding the -x option to the invocation. 

Certain styles of programming require many functions to be written with similar inter­
faces; frequently, some of the arguments may be unused in many of the calls. The -v 
option suppresses the printing of complaints about unused arguments. When -v is in 
effect, lint produces no messages about unused arguments except for those arguments 
that are unused and also declared as register arguments. This can be considered an 
active (and preventable) waste of the register resources of the machine. 

In one particular case, information about unused or undefined variables is more dis­
tracting than helpful. This is when lint is applied to some, but not all, files in a collec­
tion that is normally loaded together. Here, many of the functions and variables de­
fined may not be used, and, conversely, many functions and variables defined else­
where may be used. Use the -u option to suppress the spurious messages that might 
otherwise appear. 

lint 3-2 



1.3 Set/Used Information 
attempts to detect cases where a variable is used before it is set. This isn't easy 

to do. Many algorithms take a good deal of time and space, and still produce "error" 
messages about perfectly valid progran1s. Lint detects local variables (automatic and 
register storage classes) whose first use appears physically earlier in the input file than 
the first assignment to the variable. It assumes that taking the address of a variable 
constitutes a "use," since the actual use may occur later, in a data-dependent fashion. 

The restriction to the physical appearance of variables in the file makes the algorithm 
very simple and quick to implement, since the true flow-of-control need not be discov­
ered. This genre of complaint has its roots in stylistic, rather than actual, error. Be­
cause static and external variables are initialized to zero, no meaningful information 
can be discovered about their uses. The algorithm deals correctly, however, with initial­
ized automatic variables, and variables used in the expression that first sets them. 

The set/used information also permits recognition of those local variables that are set 
and never used; these form a frequent source of inefficiencies, and may also be symp­
tomatic of bugs. 

Flow of Control 
Lint attempts to detect unreachable portions of the programs which it processes. It 
complains about unlabeled statements immediately following goto, break, continue, or 
return statements. It attempts to detect loops that can never be left at the bottom, de­
tecting the special cases while(l) and fore;;) as infinite loops. Lint also complains 
about loops that can't be entered at the top. As is often true when lint makes false ac­
cusations, . this condition may not be a bug, but an complaint about programming style. 

Lint has an important area of blindness in the flow of control algorithm: it can't detect 
functions that are called and never return. Thus, a call to exit may cause unreachable 
code that lint doesn't detect; the most serious effects of this are in the determination 
of returned function values (see the next section). 

A break statement that can't be reached causes no message. Programs generated by 
yacc(l) and lex(l) may have hundreds of unreachable break statements. The -0 op­
tion in the C compiler often eliminates the resulting object code inefficiency. Thus, 
these unreached statements are of little importance, there is typically nothing you can 
do about them, and the resulting messages would clutter up lint's output. If you want 
to see these messages, invoke lint with the -b option. 

5 Values 
Sometimes functions return values that are never used; sometimes programs incorrectly 
use function "values" that have never been returned. Lint addresses this problem in a 
number of ways. Locally, within a function definition, the appearance of both 

return ( expr ): 

and 

return : 

statements is cause for alarm; lint gives the message 

function name contains returnee) and return 

3-3 lint 



The most serious difficulty with this is detecting when a function return is implied by 
flow of control reaching the end of the function. For example: 

f ( a ) { 
if ( a ) return ( 3 ): 
9 0: 
} 

Notice that, if a tests false, f calls g and then returns with no defined return value; this 
triggers a complaint from lint. If g, like exit, never returns, the message is produced 
even though nothing is actually wrong. In practice, some potentially serious bugs have 
been discovered by this feature. It also accounts for a substantial fraction of the 
"noise" messages produced by lint. 

On a global scale, lint detects cases where a function returns a value, but this value is 
sometimes or always unused. When the value is always unused, it may constitute an 
inefficiency in the function definition. When the value is sometimes unused, it may 
represent bad style (e.g., no testing for error conditions). 

The dual problem of using a function value when the function does not return one is 
also detected. This is a serious problem that has been observed in "working" programs 
where, by chance, the desired function value was computed in the function return reg­
ister. 

3.1.6 Type Checking 
Lint enforces the type checking rules of C more strictly than the compilers do. The 
additional checking goes on in four major areas: across certain binary operators and 
implied assignments, at the structure selection operators, between the definition and 
uses of functions, and in the use of enumerations .. 

Several operators have an implied balancing between types of the operands. The as­
signment, conditional ( ?: ), and relational operators have this property. The argument 
of a return statement, and expressions used in initialization also suffer similar conver­
sions. In these operations, char, short, int, long, unsigned, float, and double types 
may be freely intermixed. The types of pointers lilUSt agree exactly, except that arrays 
of x's can be intermixed with pointers to x's. 

The type checking rules also require that, in structure references, the left operand of 
the "->" be a pointer to structure, the left operand of the"." be a structure, and the 
right operand of these operators be a member of the structure implied by the left oper­
and. Similar checking is done for references to unions. 

Strict rules apply to function argument and return value matching. The types float and 
double may be freely matched, as may the types c:har, short, int, and unsigned. Also, 
pointers can be matched with the associated arrays. Aside from this, all actual argu­
ments must agree in type with their declared counterparts. 

With enumerations, lint checks to see that enumeration variables or members are not 
mixed with other types or other enumerations. Another check ensures that the only op­
erations applied are =, initialization, ==, !=, and function arguments and return. 

3.1.7 Type Casts 
The type cast feature in C was introduced largely as an aid to producing more portable 
programs. Consider this assignment, where p is a character pointer: 

lint 3-4 



p = 1 ; 

Lint has reason to complain. Now, consider the assignment 

p = (char *) 1 ; 

in which a cast has been used to convert the integer to a character pointer. This as­
signment clearly signals the desired action. It seems harsh for lint to continue to com­
plain about this. On the other hand, if this code is to be truly portable, such constructs 
should be examined carefully. The -c option controls the printing of comments about 
casts. When -c is in effect, casts are treated as though they were assignments subject 
to complaint; otherwise, all legal casts are passed without comment, no matter how 
strange the type mixing seems to be. 

3.1.8 Nonportable Character lJse 
On most C implementations, characters take on only positive values. Lint flags certain 
comparisons and assignments as illegal or nonportable. For example, the fragment 

char c; 

if( (c = getcharO) < 0 ) 

works where the version of C allows a character to have a negative value, but fails on 
machines where characters always assume positive values. The real solution is to de­
clare c an integer, since getchar is actually returning integer values. In any case, lint 
responds with "nonportable character comparison". 

A similar issue arises with bitfields; when assignments of constant values are made to 
bitfields, the field may be too small to hold the value. This is especially true because, 
on some machines, bitfields are considered signed quantities. While it may seem unin­
tuitive to consider that a two-bit field declared as type int cannot hold the value 3, the 
problem disappears if the bitfield is declared to have type unsigned. 

3.1.9 Assignments of "longs" to "ints" 
Bugs may arise from the assignment of long to an int, which loses accuracy in some 
implementations. This may happen in programs that have been incompletely converted 
to use typedefs. When a typedef variable is changed from int to long, the program can 
stop working because some intermediate results may be assigned to ints, losing accu­
racy. Since there are a number of legitimate reasons for assigning longs to ints, the 
detection of these assignments is enabled by the -a option. 

3.1.10 Unorthodox Constructions 
Lint flags several perfectly legal, but somewhat unorthodox, constructions in the hope 
of promoting better code quality and dearer style, and even of pointing out bugs. The 
-h option enables these checks. For example, in the statement 

*p++ ; 

the asterisk (lI<) does nothing. This provokes the message "null effect" from lint. In the 
following program fragment, 

unsigned x : 
if( x < 0 ) ... 

3-5 lint 



the test never succeeds. Similarly, the test 

if( X > 0 ) 

is equivalent to 

if( x != a ) 
which may not be the intended action. Lint accuses you of making a "degenerate un­
signed comparison" in these cases. If the code says 

if( 1 != 0 ) .... 

lint reports "constant in conditional context", since the comparison of 1 with 0 gives a 
constant result. 

Another construction detected by lint involves operator precedence. Bugs arising from 
misunderstandings about the precedence of operators can be accentuated by spacing 
and formatting, making such bugs extremely hard to find. For example, the statements 

if( x&077 == 0 ) ... 

or 

x«2 + 40 

probably don't do what was intended. The best solution is to place such expressions in 
parentheses, and lint encourages this by an appropriate message. 

Finally, when the -h option is in force, lint complains about variables that are 
redeclared in inner blocks in a way that conflicts with their use in outer blocks. This is 
legal, but is considered by many to be bad style, often unnecessary, and frequently a 
bug. 

3. 11 Syntax 
Lint attempts to discourage several forms of older syntax. These fall into two classes: 
assignment operators and initialization. 

The older forms of assignment operators (e.g., =+, =-, ... ) could cause ambiguous 
expressions, such as 

a 

This expression could be interpreted as either 

a =- 1 ; 

or 

a = -1 ; 

It is especially perplexing when such ambiguity arises as the result of a macro substitu­
tion. The newer and preferred operators (+=, -=, etc. ) don't cause such confusion. To 
spur the abandonment of the older forms, complains about these older operators. 

A similar issue arises with initialization. Older versions of C allowed 

int x 1 ; 

to initialize x to 1. This also caused syntactic difficulties. For example, 

lint 3-6 



int x ( -1 ) ; 

looks somewhat like the beginning of a function declaration: 

int x ( y ) { ... 

and the compiler must read some distance past x to be sure what the declaration really 
is. Again, the problem is even more perplexing when the initializer involves a macro. 
The current syntax places an equals sign between the variable and the initializer: 

int x = -1 ; 

This is free of any possible syntactic ambiguity. 

3" 12 Pointer Alignment 
Certain pointer assignments may be reasonable on some machines, and illegal on oth­
ers, due entirely to alignment restrictions. On machines where double precision values 
may begin on any integer boundary, it is reasonable to assign integer pointers to dou­
ble pointers. On other machines, double precision values must begin on even word 
boundaries; thus, not all such assignrrlents make sense. tries to detect cases where 
pointers are assigned to other pointers, and such alignment problems might arise. The 
message "possible pointer alignment problem" results from this situation whenever 
either the -p or -b options are in effect. 

3.. 13 Multiple Uses and Side! Effects 
In complicated expressions, the best order in which to evaluate subexpressions may be 
highly machine dependent. For example, on machines in which the stack runs back­
wards, function arguments are probably be best evaluated from right-to-Ieft; on ma­
chines with a stack running forward, lleft-to-right seerns most attractive. Function calls 
embedded as arguments of other functions mayor may not be treated similarly to ordi­
nary arguments. Similar issues arise with other operators which have side effects, such 
as the assignment operators and the increment and decrement operators. 

So that the efficiency of C on a particular machine isn't unduly compromised, the C 
language leaves the order of evaluation of complicated expressions up to the local 
compiler, and, in fact, the various C compilers have considerable differences in the 
order in which they evaluate complicated expressions. In particular, if any variable is 
changed by a side effect, and also used elsewhere in the same expression, the result is 
explicitly undefined. 

Lint checks for the important special case where a simple scalar variable is affected. 
For example, the statement 

a.U] = bU++] ; 

draws the complaint: 

warning: i evaluation order undefined 

Lint consists of two programs and a driver. The first program is a version of the Port­
able C Compiler. This compiler does lexical and syntax analysis on the input text, con­
structs and maintains symbol tables, and builds trees for expressions. Instead of writ-

3-7 lint 



ing an intermediate file which is passed to a code generator (as the other compilers 
do), lint produces an intermediate file which consists of lines of ASClI text. Each line 
contains an external variable name, an encoding of the context in which it was seen 
(use, definition, declaration, etc.), a type specifier, and a source file name and line 
number. The information about variables local to a function or file is collected by ac­
cessing the symbol table, and examining the expression trees. 

Comments about local problems are produced as detected. The information about ex­
ternal names is collected onto an intermediate file. After all the source files and li­
brary descriptions have been collected, the internlediate file is sorted to bring together 
all information collected about a given external name. The second, rather small, pro­
gram then reads the lines from the intermediate file and compares all of the defini­
tions, declarations, and uses for consistency. 

The driver controls this process, and is also responsible for making the options avail­
able to both passes of lint. 

3.2.1 Portability 
This section describes some of the differences between C implementations, and dis­
cusses the lint features that encourage portability. 

Uninitialized external variables are treated differently in different implementations of 
C. Suppose two files contain a declaration without initialization, such as 

int a ; 

outside of any function. The loader resolves these declarations and cause only a single 
word of storage to be set aside for a. Under SOIT1e implementations, this isn't feasible, 
so each such declaration causes a word of storage to be set aside and called a. When 
loading or library editing takes place, this causes fatal conflicts that prevent the proper 
operation of the program. If lint is invoked with the -p option, it detects such multiple 
definitions. 

A related difficulty comes from the amount of information retained about external 
names during the loading process. Names known externally to UNIX software have 
seven significant characters, with the upper/lowercase distinction preserved. On other 
systems, the number of characters used and the preservation of case distinction may 
not be handled the same way. This leads to situations where programs that run fine 
under the UNIX system encounter loader problerns on other systems. Lint -p causes 
all external symbols to be mapped to one case and truncated to six characters, provid­
ing a worst-case analysis. 

A number of differences arise in the area of character handling. The UNIX system 
uses eight-bit ASClI. Other systems may use other character lengths or even other en­
coding schemes (e.g., EBCDIC). Moreover, character strings go from high to low bit 
positions ("left to right") on some systems, and low to high ("right to left") on the 
others. Thus, code attempting to construct strings out of character constants, or at­
tempting to use characters as indices into arrays, are suspect. Lint is of little help 
here, except to flag multi-character character constants. 

Other problems are likely to arise in shifting or Inasking words. C supports a bit-field 
facility that can be used to write much of this code in a reasonably portable way. Fre­
quently, portability of such code can be enhanced by slight rearrangements in coding 
style. For example, consider the use of 

lint 3-8 



x &= 0177700 ; 

to clear the low order six bits of x. If the bit field feature cannot be used, the same 
effect can be obtained by writing the following, which works on many machines: 

x &= 9- 8 077 ; 

The right shift operator is arithmetic shift on the PDP--ll, and logical shift on most 
other machines. To obtain a logical shift on all machines, the left operand can be 
typed unsigned. Characters are considered signed integers on the PDP-ii, and un­
signed on the other machines. This persistence of the sign bit may be reasonably con­
sidered a bug in the PDP-11 hardware that has infiltrated itself into the C language. If 
there were a good way to discover the programs that would be affected, C could be 
changed; in any case, lint is no help here. 

The above discussion may have made the problem of portability seem bigger than it in 
fact is. The issues involved here are rarely subtle or mysterious, at least to the im­
plementor of the program, although they can involve some work to straighten out. The 
most serious bar to the portability of lJNIX system utilities has been the inability to 
mimic essential UNIX system functions on the other systems. The inability to seek to a 
random character position in a text file, or to establish a pipe between processes, has 
involved far more rewriting and debugging than any of the differences in C compilers. 
On the other hand, lint has been very helpful in moving the UNIX operating system 
and associated utility programs to other machines. 

3.2.2 Suppressing Unwanted ()utput 
Sometimes you want lint to refrain from citing various constructs that, while techni­
cally "wrong", are nevertheless there for a good reason. There may be valid reasons 
for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, 
the flow of control information produced by lint often has blind spots, causing occa­
sional spurious messages about perfectly reasonable programs. Thus, some way of con­
trolling lint's output is often desirable. 

The fonn that this mechanism should take is not at all clear. New keywords would re­
quire current and old compilers to recognize these keywords, if only to ignore them. 
This has both philosophical and practical problems. New preprocessor syntax suffers 
from similar problems. 

What was finally done was to cause a number of words to be recognized by lint when 
they were embedded in comments. This required minimal preprocessor changes; the 
preprocessor just had to agree to pass comments through to its output, instead of delet­
ing them as had been previously done .. Thus, lint directives are invisible to the compil­
ers, and the effect on systems with the older preprocessors is merely that the lint di­
rectives don't work. 

The first directive is concerned with flow of control information; if a particular place 
in the program cannot be reached, but this is not apparent to lint, it can be asserted 
by the directive 

1* NOTREACHED *1 

at the appropriate spot in the program.. Similarly, if you want to turn off strict type 
checking for the next expression, you can use the directive 

1* NOSTRICT *1 

3-9 lint 



This causes the program to revert to the previous default after the next expression. 
The -v option can be turned on for one function by the directive 

1* ARGSUSED * I 

Complaints about variable number of arguments in calls to a function can be turned 
off by using this directive 

1* VARARGS * / 

before the function definition. Sometimes, it is desirable to check the first several argu­
ments, and leave the later arguments unchecked. This can be done by following the 
V ARARGS keyword immediately with a digit giving the number of arguments to be 
checked; thus, this causes the first two arguments to be checked, the others unchecked: 

1* VARARGS2 * I 

Finally, the directive 

/* LlNTLIBRARY * / 

at the head of a file identifies this file as a library declaration file (see next section). 

3.2 .. 3 Library Declaration Files 
Lint accepts certain library directives, such as 

-Iy 

and tests the source files for compatibility with these libraries by accessing library de­
scription files whose names are constructed from. the library directives. These files all 
begin with the directive 

1* LlNTLIBRARY * / 

followed by a series of dummy function definitions. The critical parts of these defini­
tions are the declaration of the function return type, whether the dummy function re­
turns a value, and the number and types of arguments to the function. You can use 
the V ARARGS and ARGSUSED directives to specify features of the library functions. 

Lint library files are processed almost exactly like ordinary source files. The only dif­
ference is that functions defined on a library file, but not used on a source file, draw 
no complaints. Lint doesn't simulate a full library search algorithm, and complains if 
the source files contain a redefinition of a library routine. 

By default, lint checks the programs it is given against a standard library file, which 
contains descriptions of the programs which are normally loaded when a C program is 
run. When the -p option is in effect, another file containing descriptions of the stan­
dard I/O library routines that are expected to be portable across various machines is 
checked. The -n option can be used to suppress all library checking. 

3.3 Summary 
The command currently has the form 

% lint [options] files ... library-descriptors... <RETURN> 

lint 3-10 



The following options are available: 

-h Perform heuristic checks. 

-p Perform portability checks. 

-v Don't report unused arguments. 

-u Don't report unused or undefined externals. 

-b Report unreachable break stateJnents. 

-x Report unused external declarations. 

-a Report assignments of long to int or shorter. 

-c Complain about questionable casts. 

-n Don't do any library checking. 

-s Perform heuristic checks (same as h). 

3-11 lint 



4.1 Introduction 

Chapter 4 

Mak:e: A ProgralD for 
Maintaining ProgralDs 

It is common practice to divide large programs into sn1aller, more manageable pieces. 
The pieces may require quite different treatments: some may need to be run through a 
macro processor, some may need to be processed by a sophisticated program generator 
such as yacc(l) or lex(l). The outputs of these generators may then have to be com­
piled with special options and with certain definitions and declarations. The code re­
sulting from these transformations may then need to be loaded together with certain 
libraries under the control of special options. Related maintenance activities involve 
running complicated test scripts and installing validated modules. 

Unfortunately, it is very easy to forget which files depend on which others, which files 
have been modified recently, and the exact sequence of operations needed to make or 
exercise a new version of the prograrrl. After a long editing session, you may easily 
lose track of which files have been changed and which object modules are still valid, 
since a change to a declaration can render obsolete a dozen other files. Forgetting to 
compile a routine that you've changed or one that uses changed declarations result in a 
program that does not work, and a bug that can be very hard to track down. On the 
other hand, recompiling everything in sight just to be safe is very wasteful. 

Make(l) is a program that mechanizes many of the activities of program development 
and maintenance. If the information on inter-file dependencies and command se­
quences is stored in a file, the simple command 

% make <RETURN> 

is frequently sufficient to update the interesting files, regardless of the number that 
have been edited since the last "make". In most cases, the description file is easy to 

4-1 make 



write and changes infrequently. It is usually easier to type the make command than to 
issue even one of the needed operations, so the typical cycle of program development 
operations becomes 

think - edit - make - test . . . 

Make is most useful for medium-sized programming projects; it does not solve the 
problems of maintaining multiple source versions or of describing huge programs. This 
chapter is a guide for users of make. 

4.2 Basic Features 
The basic operation of make is to update a target file by ensuring that all of the files 
on which it depends exist and are current, then creating the target if it has not been 
modified since its dependents were. Make does a depth-first search of the graph of 
dependences. The operation of the command depends on the ability to find the date 
and time that a file was last modified. 

To illustrate, let us consider a simple example. A program named prog is made by 
compiling and loading three C language files x.c., y.c, and Z.c with the IS library. By 
convention, the output of the C compilations are found in files named x.o, y.o, and z.o. 
Assume that the files x.c and y.e share some declarations in a file named dejs, but that 
z.c does not. That is, x.c and y.c have the line 

#include "defs" 

The following text describes the relationships and operations: 

prog : x.o y.o z.o 
cc x.O y.o z.O -IS -0 prog 

x.o y.o : defs 

If this information is stored in a file named make file , the command 

% make <RETURN> 

performs the operations needed to recreate prog after any changes had been made to 
any of the four source files x.c, y.c, z.c, or dejs. 

Make operates by using three sources of information: a user-supplied description file 
(as above), filenames and "last-modified" times from the file system, and built-in 
rules to bridge some of the gaps. 

In our example, the first line says that prog depends on three ".0" files. Once these 
object files are current, the second line describes how to load them to create prog. The 
third line says that x.o and y.o depend on the file dejs. 

From the file system, make discovers that there are three" .c" files corresponding to 
the needed" .0" files. It then uses built-in infornlation on how to generate an object 
from a source file (Le., issue a cc(l) command with the -c option). 

The following description file is equivalent to the one above, but takes no advantage of 
make's innate knowledge: 

make 4-2 



prog : x.o y.o z.o 
cc x.o y.o z.o -IS -0 prog 

x.o : x.c defs 
cc -c x.c 

y.o : y.c defs 
ee -e y.e 

z.() : z.e 
ee -c z.e 

If none of the source or object files had changed since the last time prog was made, all 
of the files would be current, and the command 

% :make <RETURN> 

simply announces this fact and stop. If, however, the defs file had been edited, x.c and 
y.c (but not z.c) is recompiled, and then prog is created from the new" .0"· files. If 
only the file y.c had changed, only it is recompiled, but prog must still be reloaded. 

If no target name is given on the makE~ command line, the first target mentioned in the 
description is created; otherwise, the specified targets are made. The command 

% make x.o <RETURN> 

recompiles x.o if x.c or defs had changed. 

If the file exists after the commands are executed, its time of last modification is used 
in further decisions; otherwise, the current time is used. It is often useful to include 
rules with mnemonic names and comrrlands that don't actually produce a file with that 
name. These entries can take advantage of make's ability to generate files and substi­
tute macros. Thus, an entry "save" might be included to copy a certain set of files, or 
an entry "cleanup" might be used to throwaway unneeded intermediate files. In other 
cases, one may maintain a zero-length file purely to keep track of the time at which 
certain actions were performed. This technique is useful for maintaining remote ar­
chives and listings. 

Make has a simple macro mechanism for substituting in dependency lines and com­
mand strings. Macros are defined by command arguments or description file lines with 
embedded equal signs. A macro is invoked by preceding the macro name with a dollar 
sign; macro names longer than one character must be parenthesized. The name of the 
macro is either the single character after the dollar sign or a name inside parentheses. 
The following are valid macro invocations: 

$(CFLAGS) 
$2 
$(xy) 
$Z 
$(Z) 

The last two invocations are identical. 

Note: To get a dollar sign, escape it with another dollar sign. The sequence $$ is es­
caped to $. 

All of these macros are assigned values during input, as shown below. Four special 
macros change values during the execution of the command: 

4-3 make 



• $* 

• $@ 

• $? 

• $< 

They are discussed later. The following fragment shows the use: 

OBJECTS = x,O y,o Z,O 

LIBES = -IS 
prog: $(OBJECTS) 

cc $(OBJECTS) $(UBES) -0 prog 

The command 

% make <RETURN> 

loads the three object files with the lS library, The command 

% make "LIBES= -II -IS" <RETURN> 

loads them with both the lex (-II) and the standard (-IS) libraries, since macro defini­
tions on the command line override definitions in the description. (The shell requires 
that you quote arguments that include embedded blanks.) 

The following sections detail the form of description files and the command line, and 
discuss options and built-in rules in more detail. 

4.3 Description Files and Substitutions 
A description file contains three types of information: 

• macro definitions 

• dependency information 

• executable commands 

A comment convention is also supplied: all characters after a pound sign (#) are ig­
nored, as is the pound sign itself. Blank lines and lines beginning with this character 
are totally ignored. If a non-comment line is too long, it can be continued using a 
backslash. If the last character of a line is a backslash, the backslash, ne\vline, and fol­
lowing blanks and tabs are replaced by a single blank. 

A macro definition is a line containing an equal sign not preceded by a colon or a tab. 
The name (string of letters and digits) to the left of the equal sign (trailing blanks and 
tabs are stripped) is assigned the string of characters following the equal sign (leading 
blanks and tabs are stripped.) The following are valid macro definitions: 

2 = xyz 
abc = -II -Iy -IS 
UBES = 

The last definition assigns LIBES the null string. A macro that is never explicitly de­
fined has the null string as value. Macro definitions may also appear on the make 
command line. 

Other lines give information about target files. The general form of an entry is: 

make 4-4 



target1 [target2 0 0 0] : [:] [dependent1 0 0 0] [; commands] [# 0 0 0] 

[ (tab) commands] [# 0 0 0] 

Items inside brackets may be omitted. Targets and dependents are strings of letters, 
digits, periods, and slashes. (Shell metacharacters "*,, and "?" are expanded.) A com­
mand is any string of characters not including a pound sign (except in quotes) or 
newline. Commands may appear either 

• after a semicolon on a dependency line, or 

• on lines beginning with a tab immediately following a dependency line. 

A dependency line may have either a single or a double colon. A target name may ap­
pear on more than one dependency line, but all of those lines must be of the same 
(single or double colon) type. 

For the usual single-colon case, at most one of these dependency lines may have a 
command sequence associated with it. If the target is out-of-date with any of the de­
pendents on any of the lines, and a cotnmand sequence is specified (even a null one 
following a semicolon or tab), it is executed; otherwise, a default creation rule may be 
invoked. 

In the double-colon case, a command sequence may be associated with each depend­
ency line; if the target is out of date with any of the files on a particular line, the as­
sociated commands are executed. A built-in rule may also be executed. This detailed 
form is of particular value in updating archive-type files. 

If a target must be created, the sequence of commands is executed. Normally, each 
command line is printed and then passed to a separate invocation of the shell after 
substituting for macros. (The printing is suppressed in silent mode or if the command 
line begins with an @ sign). Make normally stops if any command signals an error by 
returning a non-zero error code. (Errors are ignored if the -i option is specified on 
the make command line, if the fake target name ".IGl\TORE" appears in the descrip­
tion file, or if the command string in the description file begins with a hyphen. Some 
UNIX commands return meaningless status). Because each command line is passed to 
a separate invocation of the shell, care must be taken with certain commands (e.g., cd 
and shell control commands) that have meaning only within a single shell process; the 
results are forgotten before the next line is executed. 

Before issuing any command, certain rnacros are set: 

• $@ is set to the name of the file to be "made" 

• $? is set to the string of names that were found to be younger than the target. If 
the command was generated by an implicit rule (see below), $< is the name of the 
related file that caused the action, and $ * is the prefix shared by the current and 
the dependent filenames. 

If a file must be made but there are no explicit commands or relevant built-in rules, 
the commands associated with the nanle ".DEFAULT" are used. If no such name ex­
ists, make prints a message and stops" 

4.4 Usage 
The make command takes four kinds of arguments: macro definitions, flags, descrip­
tion filenames, and target filenames. The prototypical make command line is: 

4-5 make 



% make [flags] [ macro definitions] [ targets] <RETURN> 

The following summary of the operation of the command explains how these argu­
ments are interpreted. 

First, all macro definition arguments (arguments with embedded equal signs) are ana­
lyzed and the assignments are made. Command-line macros override corresponding 
definitions found in the description files. 

Next, the flag arguments are eXaJnined. The perrnissible flags are as follows: 

-i Ignore error codes returned by invoked commands. This mode is entered if the 
fake target name ".IGNORE" appears in the description file. 

-s Silent mode. Do not print command lines before executing. This mode is also 
entered if the fake target name" . SILENT" appears in the description file. 

-r Do not use the built-in rules. 

-n No execute mode. Print commands, but do not execute them. Even lines begin-
ning with an "@" sign are printed. 

-t Touch the target files (causing them to be up-to-date) rather than issue the 
usual commands. 

-q Question. The make command returns a zero or non-zero status code depending 
on whether the target file is or is not up-ta-date. 

-p Print out the complete set of macro definitions and target descriptions. 

-d Debug mode. Print out detailed information on files and times examined. 

-f Description filename. The next argument is assumed to be the name of a de-
scription file. A filename of "-" denotes the standard input. If no -f arguments 
appear, the file named makefile or Makefile in the current directory is read. 

Note: The contents of the description files override any built-in rules present. 

Finally, the remaining arguments are assumed to be the names of targets to be made; 
they are done in left to right order. If there are no such arguments, the first name in 
the description files that does not begin with a period is "made". 

4.4.1 Implicit Rules 
Make uses a table of suffixes and a set of transformation rules to supply default de­
pendency information and implied commands. The default suffix list is as follows: 

.0 Object file 

.C C source file 

.e Efl source file 

.r Ratfor source file 

.f Fortran source file 

.S Assembler source file 

.y Yacc-C source grammar 

.yr Y acc-Ratfor source gramrrlar 

make 4-6 



.ye Yacc-Efl source grammar 

.I Lex source grammar 

The following diagram summarizes the default transformation paths. If there are two 
paths connecting a pair of suffixes, the longer one is used only if the intermediate file 
exists or is named in the description. 

~.O~ 
.c .r .e.f.s.y .yr .ye .d 

/\ I 
.y .1 .yr 

If the file X.D is needed and there is an x.e in the description or directory, it is com­
piled. If there is also an x.l, that grammar is run through lex before compiling the re­
sult. However, if there is no x.e but there is an x.l, then make discards the intermedi­
ate C-Ianguage file and uses the direct link shown in the figure above. 

It is possible to change the names of some of the compilers used in the default, or the 
flag arguments with which they are invoked by knowing the macro names used. The 
compiler names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. 
The command 

% make CC=newcc <RETURN> 

causes the newee command to be used instead of the usual C compiler. The macros 
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these com­
mands to be issued with optional flags. Thus, 

% make "CFLAGS=-O" <RETURN> 

causes the optimizing C compiler to be used. 

4.4 .. 2 An Example 
To illustrate the use of make, here's the description file used to maintain the make 
command itself. The code for make is spread over many C source files and a yacc 
grammar. The description file contains: 

# Description file for the Make command 

P = und -3 I opr -r2 # send to GCOS to bE~ printed 
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c 
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o 
UBES= -IS 
UNT = lint -p 
CFLAGS =-0 

make: $(OBJECTS) 
cc $ (CFLAGS) $ (OBJECTS) $ (UBES) -0 make 
size make 

$ (OBJECTS) : defs 
gram.o: lex.c 

4-7 make 



cleanup: 
-rm "*.0 gram.c 
-du 

install: 
@size make lusr/bin/make 
cp make lusr/bin/make ; rm make 

print: $(FILES) # print recently changed files 
pr $? I $P 

test: 

touch print 

make -dp I grep -v TIME >1 zap 
lusr/bin/make -dp I grep -v TIME >2zap 
diff 1 zap 2zap 
rm 1zap 2zap 

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c 

arch: 

$(LlNT) dosys.c doname.c files.c main.c misc.c version.c gram.c 
rm gram.c 

ar uv Isys/source/s2/make.a $(FILES) 

Make usually prints each command before issuing it. Typing make with no arguments 
in a directory containing only the source and description file outputs the following: 

cc -c version.c 
cc -c main.c 
cc -c doname.c 
cc -c misc.c 
cc -c files.c 
cc -c dosys.c 
yacc gram.y 
mv y.tab.c gram.c 
cc -c gram.c 
cc version.o main.o doname.o misc.o files.o d08YS.O 
gram.o -IS -0 make 
13188+3348+3044 = 19580b = 046174b 

Although none of the source files or grammars are mentioned by name in the descrip­
tion file, make found them using its suffix rules and issued the needed commands. 
The string of digits results from the "size make" command; the printing of the com­
mand line itself was suppressed by an @ sign. The @ sign on the size command in the 
description file suppressed the printing of the con1mand, so only the sizes are written. 

The last few entries in the description file are useful maintenance sequences. The 
"print" entry prints only the files that have been changed since the last "make print" 
command. A zero-length file print is maintained to keep track of the time of the print­
ing; the $? macro in the command line then picks up only the names of the files 
changed since print was touched. The printed output can be sent to a different printer 
or to a file by changing the definition of the P macro: 

make print "P = apr -sp" 

or 

make print "P= cat >zap" 

make 4-8 



4.5 Suggestions and Warnings 
The most common difficulties arise from make's specific understanding of what consti­
tutes a dependency. If file x.c has a "#include "defs"" line, then the object file x.o de­
pends on defs; the source file x.c does not. (If defs is changed, it is not necessary to do 
anything to the file x.c, while it is necessary to recreate x.o.) 

To discover what make would do, the -·n option is very useful. The command 

% make -n <RETURN> 

orders make to print out the commands it would issue without actually taking the time 
to execute them. If a change to a file is absolutely certain to be benign (e.g., adding a 
new definition to an include file), the _·t (touch) option can save a lot of time, instead 
of issuing a large number of superfluous recompilations, make updates the modifica­
tion times on the affected file. Thus, the 'command 

% make -ts <RETURN> 

("touch silently") causes the relevant files to appear up-to-date. Be careful, though, 
because this mode of operation subverts the intention of make and destroys all mem­
ory of the previous relationships. 

The -d (debugging) option causes make to print a very detailed description of its ac­
tivities, including file times. The output is verbose, and recommended only as a last 
resort . 

. 6 Summary of Suffixes :and Rules 
The make program itself does not know what file name suffixes are interesting or how 
to transform a file with one suffix into a file with another suffix. This information is 
stored in an internal table that has the form of a description file. If the -r option is 
used, this table is not used. 

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make 
looks for a file with any of the suffixes on the list. If such a file exists, and if there is 
a transformation rule for that combination, make acts as described earlier. The trans­
formation rule names are the concatenation of the two suffixes. 

The name of the rule to transform a ".1" file to a ".0" file is thus ".r.o". If the rule is 
present and no explicit command sequence has been given in your description files, 
the command sequence for the rule" .LO" is used. If a command is generated by using 
one of these suffixing rules, the macro $ lie is given the value of the stem (everything 
but the suffix) of the name of the file to be made, and the macro $< is the name of 
the dependent that caused the action. 

The order of the suffix list is significant, since it is scanned from left to right, and the 
first name that is formed that has both a file and a rule associated with it is used. If 
new names are to be appended, you can just add an entry for" . SUFFIXES" in his 
own description file; the dependents are added to the usual list. A ".SUFFIXES" line 
without any dependents deletes the current list. (It is necessary to clear the current list 
if the order of names is to be changed.) 

4-9 make 



The following is an excerpt fron1 the default rules file: 

.SUFFIXES: .0 .c .s .r .f .y .yr .ys .1 .s 
YACC=yacc 
Y ACCR=yacc -r 
Y ACCE=yacc -s 
YFLAGS= 
LEX=lsx 
LFLAGS= 
CC=cc 
AS=as -
CFLAGS= 
RC=sc 
RFLAGS= 
EC=sc 
EFLAGS= 
FFLAGS= 
.c.o: 

$(CC) $(CFLAGS) -c $< 
.s.o .r.O .f.o: 

$ (EC) $ (RFLAGS) $ (EFLAGS) $ (FFLAGS) -c $< 
.s.O: 

.y.O: 

.y.c: 

make 

$(AS) -0 $@ $< 

$ (Y ACC) $ (YFLAGS) $< 
$(CC) $(CFLAGS) -c y.tab.c 
rm y.tab.c 
mv y.tab.o $@ 

$ (Y ACC) $ (YFLAGS) $< 
mv y.tab.c $@ 

4-10 



5.1 General 

Chapter 

Syst(~m V Extensions to the 
Make Program 

5 

This chapter describes an augmented version of make(l) specifically supported for Sys­
tem V use. Since this version is upwardly compatible with the old version, we provide 
only a discussion of the extensions to make, along with some reasons for the chosen 
implementation, and examples to demonstrate the additional features. 

The make command is an excellent program administration tool. However, previous 
versions of make hindered large-scale use because of the following shortcomings: 

• Handling of libraries was tedious. 

• Handling of the Source Code Control System (SCCS) filename format was difficult 
or impossible. 

• Environment variables were completely ignored. 

• Ability to maintain files in a remote directory was inadequate. 

The augmented version of make eliminates these problems. The additional features are 
within the original syntactic framework of make and few, if any, new syntactical enti­
ties are introduced. A notable exception is the include file capability. Most additions 
result in a "Don't know how to make ... " message from the old version of make. 

This chapter illustrates the additional features of the make program. In general, the 
examples are taken from existing makefiles. 

5-1 System V Extensions to Make 



5.2 Environment Variables 
Environment variables are read and added to the macro definitions each time make 
executes. Precedence is a prime consideration in doing this properly. The following de­
scribes make's interaction with the environment. A new macro, MAKEFLAGS, is 
maintained by make and defined as the collection of all input flag arguments into a 
string (without minus signs). The new macro is exported and thus accessible to further 
invocations of make. Command line flags and assignments in the makefile update 
MAKEFLAGS. Thus, to describe how the environment interacts with make, consider 
the MAKEFLAGS macro (environment variable). 

When executed, make assigns macro definitions in the following order: 

1. Read the MAKEFLAGS environment variable. If it isn't present or null, set the in­
ternal make variable MAKE:FLAGS to the null string. Otherwise, assume each let­
ter in MAKEFLAGS to be an input flag argument and process it as such. (The only 
exceptions are the -f, -p, and -r flags.) 

2. Read and set the input flags from the command line. The command line adds to 
the previous settings from the MAKEFLAGS environment variable. 

3. Read macro definitions from the command line. Make these non-resettable, so that 
any further assignments to these names are ignored. 

4. Read the internal list of macro definitions found in the file rules.c of the source for 
make. The complete makefile that represents the internally defined macros and 
rules of the current version of make is as follows: 

# LIST OF SUFFIXES 

.SUFFIXES: .0 .c .c- .y .y- .1 .1- .s .s- .sh .sh- .h .h-

# PRESET VARIABLES 

MAKE=make 
YACC=yacc 
YFLAGS= 
LEX=lex 
LFlAGS= 
LD=ld 
LDFLAGS= 
CC=cc 
CFLAGS=-o 
AS=as 
ASFLAGS= 
GET=get 
GFLAGS= 

# SINGLE SUFFIX RULES 

.c: 
$ (CC) -n -0 $< -0 $@ 

-c: 
$(GET) $(GFLAGS) -p $< > $*.c: 
$(CC) -n -0 $* .c -0 $* 

.sh: 

.sh-: 

-rm -f $*.c 

cp $< @ 

$(GET) &(GFLAGS) -p $< > .sh 
cp $* .sh $* 
-rm -f $* .sh. 

System V Extensions to Make 5-2 



# DOUBLE SUFFIX RULES 

.c.o: 
$(CC) $(CFLAGs) -c $< 

.C-.O: 
$(GET) $(CFLAGS) --p $< > $*.c 
$(CC) $(CFLAGS) -0 $*.c 
-rm -f $*.c 

.C-.C: 
$(GET) $(GFLAGS) --p $< >$*.c 

.S.O: 
$ (AS) $ (ASFLAGS) --0 $@ $< 

.s-.O: 
$(GET) $(GFLAGS) --p $< > $*.s 
$(AS) $(ASFLAGS) --0 $* .0 $* .s 
-rm -f $*.s 

.y.o: 
$(YACC) $(YFLAGS) $< 
$(CC) $(CFLAGS) -G y.tab.c 
rm y.tab.o$@ 

.y-.o: 
$(GET) $(GFLAG) -p $< > $*.y 
$(YACC) $(YFLAGS) $*.y 
$(CC) $(CFLAG) -c y.tab.c 
rm -f y.tab $*.y 
mv y.tab.o $*.0 

.1.0: 
$ (LEX) $ (LFLAGS) $< 
$(CC) $(CFLAGS) -G lex.yy.c 
rm lex.yy.c 
mv lex.yy.o $@ 

.1-.0: 
$(GET) $(GFLAGS) _.p $< > $*.1 
$(LEX) $(GFLAG) $*.1 
$(CC) $(CFLAGS) -G lex.yy.c 
rm -f lex.yy.c $*.1 
mv lex.yy.o $*.0 

.y.C: 
$ (Y ACC) $ (YFLAGS) $< 
mv y.tab.c $@ 

.y-.c: 
$(GET) $( GFLAGS) -p $< > $*.y 
$(YACC) $(YFLAGS) $*.y 
mv-f$*.c 
-rm -f $*.y 

.I.c: 
$(LEX) $< 
mv lex.yy.c$@ 

.c.a: 
$(CC) -c $(FLAGS) $< 
ar rv $@ $*.0 
rm -f $*.0 

.c-.a: 
$(GET) $(GFLAGS) _.p $< > $*.c 
$(CC) -c $(CFLAGS) $*.c 
ar rv $@ $*.0 

5-3 System V Extensions to Make 



.s-.a: 
$(GET) $(GFLAGS) -p $< > $*.s 
$(AS) $(ASFLAGS) -0 $*.0 $*.s 
ar rv $@ $*.0 
-rm -f $*. [SO] 

.h-.h: 
$(GET) $(GFLAGS) -p $< > $*.h 

Thus, if you type make -r ... and a makefile includes the makefile in the above ex­
ample, the results are identical to excluding the -r option and the include line in 
the makefile. To reproduce the internal definitions output shown above, type 

# make -fp - < Idev/nuH 2>/dev/nuH <RETURN> 

The output appears on the standard output. I)efault definitions for the C compiler 
(CC=cc) are also included. 

5. Read the environment, treating environment variables as macro definitions and 
marking them as exported (in the shell sense) .. MAKEFLAGS* isn't an internally 
defined variable (in rules.c), so the same assignment is done twice (except when 
MAKEFLAGS is assigned on the command line). It was read previously to turn the 
debug flag on before anything else was done. :MAKEFLAGS is read and set again. 

6. Read the makefile(s). The assignments in the makefile(s) override the environment. 
Thus, when a makefile is read and executed, you can anticipate the results. That is, 
you get what is seen unless the -e flag is used. The -e is an additional command 
line flag that tells make to have the environrrlent override the makefile assignments. 
Thus, typing make -e ... causes the variables in the environment to override the 
definitions in the makefile (there is no way to override the command line assign­
ments.) Also, MAKEFLAGS overrides the environment if assigned. This is useful 
for further invocations of make from the current makefile. 

It may be clearer to list the precedence of assignments. Thus, in order from least bind­
ing to most binding, the precedence of assignments is as follows: 

1. internal definitions (from rules.c) 

2. environment 

3. makefile(s) 

4. command line. 

The -e flag changes the order to: 

1. internal definitions (from rules.c) 

2. makefile(s) 

3. environment 

4. command line. 

This order is general enough to let you define a makefile or set of make files whose pa­
rameters are dynamically definable. 

5.3 Recursive Makefiles 
Another feature was added to make concerning the environment and recursive invoca­
tions. If the sequence "$(MAKE)" appears anywhere in a shell command line, the line 

System V Extensions to Make 5-4 



is executed even if the -n flag is set. Since the -n flag is exported across invocations 
of make (through the MAKEFLAGS variable), the only thing that actually gets exe­
cuted is the make command itself. This feature is useful when a hierarchy of 
makefile(s) describes a set of software subsystems. For testing purposes, make -n ... 
can be executed and everything that would have been done gets printed out, including 
output from lower level invocations of make. 

5 Format of Embeddedl Shell Commands 
The make program remembers embedded newlines and tabs in shell command se­
quences. Thus, if you put a for loop in the make file with indentation, indentation and 
backslashes are retained when make prints it out. The output can still be piped to the 
shell and is readable. This is obviously a cosmetic change; no new function is added. 

5.5 Archive Libraries 
The make program has an improved interface to archive libraries. Previously, you 
named a member of a library in one of the following ways: 

lib (object. 0) 
lib ( (_Iocaltime) ) 

(The second form actually refers to an entry point of an object file within the library. 
Make looks through the library, locates the entry point, and translates it to the correct 
object filename.) To use this procedure to maintain an archive library, you need this 
type of makefile: 

lib:: lib(ctime.o) 
$(CC) -c -0 ctime.c 
ar rv lib ctime.o 
rm ctime.o 
lib:: lib(fopen.o) 
$(CC) -c -0 fopen.c 
ar rv lib fopen.o 
rm fopen.o 
... and so on for each object ... 

This is tedious and error-prone, however. Command sequences for adding a C file to 
a library are the same for each invocation, except for a different filename each time. 

The current version lets you access a rule for building libraries. The handle for the 
rule is the" .a" suffix. Thus, a ".c.a" rule is the rule for compiling a C language 
source file, adding it to the library, and removing the" .0" cadaver. Similarly, the 
".y.a", the" .s.a", and the" .l.a" rules rebuild yacc(l), assembler, and lex(l) files, re­
spectively. The current archive rules defined internally are" .c.a", ".c{.a", and" .s{.a". 
You can define in makefile other rules needed. 

The above two-member library is then maintained with the following shorter makefile: 

lib: lib(ctime.o) lib(fopen.o) 
echo lib up-to-date. 

The internal rules are already defined to complete the preceding library maintenance. 
The actual ".c.a" rules are as follows: 

5-5 System V Extensions to Make 



.c.a: 
$(CC) -c $(CFLAGS) $< 
ar rv $@ $*.0 
rm -f $*.0 

Thus, the $@ macro is the" .a" target (lib); the $< and $* macros are set to the out­
of-date e language file; and the filename scans the suffix, respectively (ctime.c and 
ctime). The $< macro (in the preceding rule) could have been changed to $* .c. 

It might be useful to go into sonle detail about exactly what make does when it sees 

lib: lib(ctime.o) 
@echo lib up-to-date 

Assuming the object in the library is out-of-date with respect to ctime.c, and there is 
no ctime.o file, here is the route that make takes: 

1. Do lib. 

2. To do lib, do each dependent of lib. 

3. Do lib(ctime.o). 

4. To do lib(ctime.o), do each dependent of lib(ctime.o). (There are none.) 

5. Use internal rules to try to build lib(ctime.o). (There is no explicit rule.) Note that 
lib(ctime.o) has a parenthesis in the name to identify the target suffix as ".a". This 
is the key. There is no explicit" .a" at the end of the lib library name. The paren­
thesis forces the" .a" suffix. In this sense, the" .a" is hard wired into make. 

6. Break the name lib(ctime.o) up into lib and ctime.o. Define two macros, $@ (=lib) 
and $ * (=ctime). 

7. Look for a rule" .X.a" and a file $* .X. The first" .X" (in the .SUFFIXES list) that 
fulfills these conditions is ".c" so the rule is ".c.a", and the file is ctime.c. Set $< 
to be ctime.c and execute the rule. In fact, make must then do ctime.c. However, 
the search of the current directory yields no other candidates, and the search ends. 

8. The library has been updated. Do the rule associated with the "lib:" dependency; 
namely: 

echo lib up-to-date 

Note that, to let ctime.o have dependencies, the following syntax is required: 

lib(ctime.o) : $(INCDIR)/stdio. h 

Thus, explicit references to .0 files are unnecessary. There is also a new macro for ref­
erencing the archive member name when this form is used. The $% macro is evaluated 
each time $@ is evaluated. If there is no current archive member, $% is null. If an ar­
chive member exists, then $% evaluates to the expression between the parenthesis. 

Here is a sample makefile for a larger library. Note that there are no lingering "'" .0" 

files left around in this example; the result is a library maintained directly from the 
source files (or, e.g., sees files). 

System V Extensions to Make 5-6 



# @(#)/usrlsrc/cmd/make/make.trn 3.2 

LIB =Isxlib 
PR=lp 
INSDIR = Irl/flopOI 
INS = eval 
Isx: $(LIB) low.o mch.o 

Id -x low.o mch.o $(LIB) 
mv a.out Isx 
@size Isx 

# Here, $(INS) as either "." or "eval". 
Isx: 

print: 

$(INS)'cp Isx $(INSDIR)lsx .. 
strip $(INSDIR)lsx . " 
Is -I $(INSDIR)lsx' 

$(PR) header.slow.smch.s* .h*.c Makefile 
$(LIB): 

. s.o: 

.o.a: 

.s.a: 

$(LIB) (CLOCK.o) 
$(LIB) (main.o) 
$(LIB) (tty. 0) 
$(LlB) (trap.o) 
$(LIB) (sysent.o) 
$(LIB) (sys2.0) 
$(LIB) (syn3.0) 
$(LIB) (syn4.0) 
$(LIB) (sys1.0) 
$(LlB) (sig.o) 
$(LIB) (fio.o) 
$(L1B) (kl.o) 
$(LIB) (alloc.o) 
$(LIB) (nami.o) 
$(LIB) (iget.o) 
$(LIB) (rdwrLo) 
$(LIB) (subr.o) 
$(LIB) (bio.o) 
$(LIB)(decfd.o) 
$(LlB) (sip.o) 
$(LIB) (space.o) 
$(LIB) (puts.o) 
@echo $(L1B) now up to date . 

as -0 $*.0 header.s $*.s 

ar rv $@ $< 
rm -f $< 

as -0 $*.0 header.s $*.s 
ar rv $@ $*.0 
rm -f $*.0 

5-7 System V Extensions to Make 



5.6 Source Code Control Systerrl Filenames: The Tilde 
The syntax of make doesn't directly permit referencing of prefixes. For most types of 
files on UNIX operating system machines, this is acceptable since nearly everyone uses 
a suffix to distinguish different types of files. The sees files are the exception. Here, 
"s." precedes the filename part of the complete pathname. 

To allow make easy access to the prefix "s." requires either a redefinition of the rule 
naming syntax of make or a trick. The trick is to use the tilde (-) as an identifier of 
sees files. Hence, ".c-.o" refers to the rule that transforms an sees e language 
source file into an object. Specifically, the internal rule is 

CC-.O: 
$(GET) $(GFLAGS) -p $< > $*.c 
$(CC) $(CFLAGS) -c $*.c 
-rm -f $*.c 

Thus, the tilde appended to any suffix transforrris the file search into an sees file­
name search with the actual suffix named by the dot and all characters up to (but not 
including) the tilde. 

The following sees suffixes are internally defined: 

.C-

.y-

.s-

.sh-

.h-

The following rules involving sees transformations are internally defined: 

.c-: 

.sh-: 

.c-.O: 

.S-.O: 

.y-.o: 

.1-.0: 

.y-.c: 

.c-.a: 

.s-.a: 

.h-.h: 

Obviously, you can define other rules and suffixes that may prove useful. The tilde 
gives you a handle on the sees filename format so that this is possible. 

5.7 The Null Suffix 
In the UNIX system source code, many commands consist of a single source file. It 
was wasteful to maintain an object of such files for make. The current implementation 
supports single suffix rules (a null suffix). Thus, to maintain the program cat, a rule in 
the makefile of the following form is needed: 

.c: 
$(CC) -n -0 $< -0 $@ 

In fact, this ".c:" rule is internally defined so that no makefile is necessary. You need 
only type 

System V Extensions to Make 5-8 



# make cat dd echo date <RETURN> 

(these are notable single file programs) and all four e language source files are passed 
through the above shell command line associated with the" .c:" rule. Though you may 
add others in the makefile, the internally defined single suffix rules are 

.c: 

.c-: 

.sh: 

.sh-: 

5.8 Include Files 
The make program has an include file capability. If the string include appears as the 
first seven letters of a line in a makefile and is followed by a blank or a tab, the string 
is assumed to be a filename read by the current invocation of make. File descriptors 
are stacked for reading include files so that no more than about 16 levels of nested 
includes are supported. 

5.9 Invisible sees Makefiles 
sees makefiles are invisible to make. Thus, if you type make, and only a file named 
s.makefile exists, make does a get(l) on the file, and then reads and removes the file. 
Using the -f, make gets, reads, and relTIOVeS arguments and include files. 

5.10 Dynamic Dependency Parameters 
A new dependency parameter has been defined. It has meaning only on the depend­
ency line in a makefile. The $$@ refers to the current "thing" to the left of the colon 
(i.e., $@). Also, the form $$(@F) allows access to the file part of $@. Thus, in 

cat: $$@.c 

the dependency is translated at execution time to the string "cat.c". This is useful for 
building a large number of executable files, each of which has only one source file. 
For instance, the UNIX software commland directory could have a makefile such as: 

CMOS = cat dd echo date cc crnp comm ar Id chown 

$(CMDS): $$@.c 
$(CC) -0 $? -0 $@ 

This is a subset of all the single file programs. For multiple file programs, a directory 
is usually allocated and a separate makefile is made. For any particular file with a pe­
culiar compilation procedure, a specific entry must be Inade in the makefile. 

The second useful form of the dependency parameter is $$(@F). It represents the file­
name part of $$@ is evaluated at execution time. It helps in maintaining lusrlinclude 
from a makefile in lusrlsrclhead. Thus, lusrlsrclheadlmakefile would look like this: 

INCDIR = lusr/include 

INCLUDES = \ 

$(INCDIR)/stdio.h \ 
$(INCDIR)/pwd.h \ 

5-9 System V Extensions to Make 



$(INCIOR)/dir.h \ 
$(INCOIR)/a.out. h 

$(INCLUDES): $$(@F 
cp $? $@ 
chmod 0444 $@ 

This should completely maintain the lusrlinclude directory whenever one of the above 
files in lusrlsrclhead is updated. 

5.11 Extensions of $*, $@, and $< 
The internally generated macros $*, $@, and $< are useful generic terms for current 
targets and out-of-date relatives. To this list has been added the following related 
macros: $(@D), $(@F), $(*D), $(*F), $«D), and $«F). The "D" refers to the direc­
tory part of the single letter macro. The "F" refers to the filename part of the single 
letter macro. These additions are useful when building hierarchical makefiles. They al­
low access to directory names for purposes of usIng the cd command of the shell. 
Thus, a shell command can be 

cd $«0); $(MAKE) $«F) 

The following command forces a complete rebuild of the operating system: 

FRC=FRC make -f 70.mk 

where the current directory is ucb. The FRC is a convention for forcing make to com­
pletely rebuild a target starting from the beginning. 

5.12 Output Translations 
Macros in shell commands can now be translated when evaluated as follows: 

$(macro:string1 =string2) 

The meaning of $(macro) is evaluated. For each appearance of string1 in the evaluated 
macro, string2 is substituted. The meaning of finding string1 in $(macro) is that the 
evaluated $(macro) is considered as a bunch of strings each delimited by white space 
(blanks or tabs). Thus, the occurrence of string1 in $(macro) means that a regular ex­
pression of the following form has been found: 

* <string1 >[T ABI BLANK] 

This particular form was chosen because make usually concerns itself with suffixes. A 
more general regular expression match could be implemented as needed. The useful­
ness of this type of translation occurs when maintaining archive libraries. Now, all that 
is necessary is to accumulate the out-of-date members and write a shell script that 
can handle all the C language programs (i.e., those files ending in ".c"). Thus, the fol­
lowing fragment optimizes the executions of mak.e for maintaining an archive library: 

$(L1B): $(LIB)(a.o) $(L1B)(b.o) $(L1B)c.o) 
$(CC) -c $(CFLAGS) $(?:.o=.c) 
ar rv $(LIB) $? 
rm $? 

A dependency of the preceding form is necessary for each of the different types of 
source files ( suffices) that define the archive library. These translations are added in 
an effort to make more general use of the wealth of information generated by make. 

System V Extensions to Make 5-10 



6.1 Introduction 

Chapter 

Lex: A Lexical Analyzer 
Generator 

6 

Lex(l) is a program generator designt~d for lexical processing of character input 
streams. It accepts a high-level, problem-oriented specification for character string 
matching, and produces a program in a general purpose language that recognizes regu­
lar expressions. You must specify the regular expressions in the source specifications 
given to lex. The code written by lex recognizes these expressions in an input stream 
and partitions the input stream into strings matching the expressions. At the bounda­
ries between strings, program sections that you provide are executed. The lex source 
file associates the regular expressions and the program fragments. As each expression 
appears in the input to the program 'written by lex, the corresponding fragment is exe­
cuted. 

You must also supply the additional code beyond expression matching needed to com­
plete the tasks, possibly including code written by other generators. The program that 
recognizes the expressions is generated in the general purpose programming language 
employed for your program fragments. As a result, a high-level expression language is 
provided to write the string expressions to be matched while your freedom to write ac­
tions is unimpaired. Thus, for example, if you want to use a string manipulation lan­
guage for input analysis, you are not forced to write processing programs in the same 
and often inappropriate string handling language. 

Lex is not a complete language, but rather a generator representing a new language 
feature that can be added to different programming languages, called "host lan­
guages." Just as general purpose languages can produce code to run on different com­
puter hardware, lex can write code in different host languages. The host language is 

6-1 lex 



used for the output code generated by lex, as well as the program fragments added by 
the user. Compatible run-time libraries for the different host languages are also pro­
vided. This makes lex adaptable to different environments and different users. Each 
application may be directed to the combination of hardware and host language appro­
priate to the task, your background, and the properties of local implementations. Cur­
rently, C is the only supported host language. Although lex is a UNIX program, code 
generated by lex may be taken anywhere the appropriate compilers exist. 

Lex turns input expressions and actions (known collectively as source), into the host 
general-purpose language. The generated program, yylex, recognizes expressions in a 
stream (input) and performs the specified actions for each expression as it is detected. 
The diagram below summarizes these features. 

Source -+ lex --+ yylex 

Input -+ yylex I --+ Output 

To illustrate, consider a program for deleting from the input all blanks or tabs at the 
ends of lines. This is all that is needed: 

[ \t] +$ [\t]; 

The program contains a %% delimiter to mark the beginning of the rules, and one 
rule. This rule contains a regular expression that nlatches one or more instances of the 
characters blank or tab (written \t for visibility, in accordance with the C language 
convention) just prior to the end of a line. The brackets indicate the character class 
made of blank and tab; the + indicates "one or more ... "; and the $ indicates "end of 
line," as in QED. No action is specified, so the program generated by lex (yylex) ig­
nores these characters. Everything else is copied. To change any ren1aining string of 
blanks or tabs to a single blank, add another rule: 

%% 

[ \t]+$[ \t]: 
[\t]+ [\t]printf(" "); 

The finite automaton generated for this source scans for both rules at once, observing 
at the termination of the string of blanks or tabs whether or not there is a newline 
character, and executing the desired rule action. The first rule matches all strings of 
blanks or tabs at the end of lines, and the second rule all remaining strings of blanks 
or tabs. 

You can use lex alone for simple transformations, or for analysis and statistics gather­
ing on a lexical level. Lex can also be used with a parser generator to perform the 
lexical analysis phase; it is particularly easy to interface lex and yacc(l). Lex programs 
recognize only regular expressions; yacc writes parsers that accept a large class of con­
text-free grammars, but require a lower level analyzer to recognize input tokens. Thus, 
a combination of lex and yacc is often appropriate. 

When used as a preprocessor for a later parser generator, lex is used to partition the 
input stream, and the parser generator assigns structure to the resulting pieces. The 
flow of control in such a case (which might be the first half of a compiler, for exam-

lex 6-2 



pie) is shown in the following diagram .. Additional programs, written by other genera­
tors or by hand, can be added easily to programs written by lex. 

lexical grammar 
rules rules 
~! ~! 

lex yacc 

Input ~I yylex I ~ Iyyparsel ~ Parsed input 

lex with yacc 

Yacc users realize that the name yylex is what yace expects its lexical analyzer to be 
named, so that the use of this name by lex simplifies interfacing. 

Lex generates a deterministic finite automaton from the regular expressions in the 
source. The automaton is interpreted, rather than compiled, in order to save space. 
The result is still a fast analyzer. In particular, the time taken by a lex program to rec­
ognize and partition an input stream is proportional to the length of the input. The 
number of lex rules or the complexity of the rules is not important in determining 
speed, unless rules that include forward context require a significant amount of rescan­
ning. What does increase with the nun1ber and complexity of rules is the size of the 
finite automaton, and therefore the size of the program generated by lex. 

In the program written by lex, the fragments supplied by you (representing the actions 
to be performed as each regular expression is found) are gathered as cases of a 
switch. The automaton interpreter directs the control flow. You are provided with an 
opportunity to insert either declarations or additional statements in the routine contain­
ing the actions, or to add subroutines outside this action routine. 

Lex is not limited to source that can be interpreted on the basis of one-character 
lookahead. For example, if there are two rules, one looking for ab and another for 
abcdefg, and the input stream is abcdefo" lex recognizes ab and leaves the input pointer 
just before cd. This type of backing up is more costly than the processing of simpler 
languages. 

6.2 Lex Source 
The general format of lex source is: 

{definitions} 
0/0% 
{rules} 
%0/0 
{user subroutines} 

where the definitions and the user subroutines are often omitted. The second %% is 
optional, but the first is required to mlark the beginning of the rules. 

6-3 lex 



The absolute minimum lex program is 

(no definitions, no rules), which translates into a program that copies the input to the 
output unchanged. 

In the outline of lex programs just shown, the rules represent a user's control decisions. 
They are a table in which the left column contains regular expressions and the right 
column contains actions - program fragments to be executed when the expressions are 
recognized. Thus, an individual rule might appear 

integer printf("found keyword INT"); 

to look for the string integer in the input stream and print the message "found keyword 
INT" whenever it appears. Here, the host procedural language is C and the C library 
function print! is used to print the string. The end of the expression is indicated by the 
first blank or tab character. If the action is merely a single C expression, it can be 
given on the right side of the line; if it is compound, or takes more than a line, it 
should be enclosed in braces. As a slightly more useful example, suppose you want to 
change several words from British to Jt\merican spelling. Lex rules such as 

colour printf(" color"); 
mechanise printf(" mechanize"); 
petrol printf(" gas"): 

would be a start. These rules are not quite enough, however, since the word petroleum 
would become gaseum. A way of dealing with this situation is described later. 

6.3 Lex Regular Expressions 
The definitions of regular expressions are very sirrlilar to those in QED. A regular ex­
pression specifies a set of strings to be matched. It contains text characters (which 
match the corresponding characters in the strings being compared) and operator char­
acters (which specify repetitions, choices, and other features). The letters of the alpha­
bet and the digits are always text characters; thus the regular expression 

integer 

matches the string integer wherever it appears and the expression 

a570 

looks for the string a57D. 

6.3.1 Operators 
The following operator characters are available: 

• " 

• \ 

• [ 

• ] 

• 

lex 6-4 



• 
• ? 

• 
• * 

• + 

• I 
• ( 

• ) 

• $ 

• / 

• { 

• } 

• % 

• < 

• > 

If any operator is to be used as a text character, you Inust escape it with quotes. The 
quotation mark operator (") indicates that whatever is contained between a pair of 
quotes is to be taken as text characters. Thus, 

xyz"++" 

matches the string xyz++ when it appears. Note that a part of a string may be quoted. 
It is harmless (but unnecessary) to quote an ordinary text character; the expression 

"xyz++" 

is the same as the one above. If you quote every non-alphanumeric character being 
used as a text character, you can avoid having to remember the list of current operator 
characters, or having to worry that further extensions to lex might lengthen the list. 

You may also turn an operator character into a text character by preceding it with a 
backslash (\), as in 

xyz\+\+ 

This is another, less readable, equivalent of the above expressions. The quoting mecha­
nism may also be used to get a blank into an expression. Normally, blanks or tabs end 
a rule. Any blank character not contained within square brackets (Le., []) must be 
quoted. Several normal C escapes with a backslash are recognized. For instance, \n is 
newline, \t is tab, and \b is backspace. To enter a literal backslash, use two backs lash 
characters (\ \). Since newline is illegal in an expression, \n must be used; it is not 
required to escape tab and backspace. Every character but blank, tab, newline, and 
those included in the list above is always a text character. 

6.3.2 Character Classes 
You can specify classes of characters by using the operator pair represented by square 
brackets ([ D. The construction [abc] matches a single character, which may be a, b, 

6-5 lex 



or c. Within square brackets, most operator meanings are ignored. Only three charac­
ters are special; these are a backslash (\), a dash (-), and a caret C). A dash indi­
cates ranges. For example, this indicates the character class containing all the lower­
case letters, the digits, the angle brackets, and underline: 

[a-zO-9<> _] 

Ranges may be given in either order. Using a dash between any pair of characters that 
are not both uppercase letters, both lowercase letters, or both digits is implementation 
dependent and gets a warning message. (For exarrlple, [O-z] in S-2ASCIISO is many 
more characters than it is in S-2EBCDICSO.) If you must include the dash character in 
a character class, it should be first or last; thus, this matches all the digits and the two 
signs: 

[-+0-9] 

In character classes, a caret C) must appear as the first character after the left brack­
et, to indicate that the resulting string is to be con1plemented with respect to the com­
puter character set. Thus, 

[Aabc] 

matches all characters except a, b, or c, including all special or control characters, and 

[Aa-zA-Z] 

matches any character that is not a letter. The backs lash character (\) provides the 
usual escapes within character class brackets. 

6.3.3 Arbitrary Character ]\1atch 
A period or dot ( . ) matches all characters except newline. Escaping into octal is pos­
sible, although non-portable. The following matches all printable characters in the AS­
CII character set, from octal 40 (blank) to octal 17 6 (tilde): 

[\40-\ 176] 

6.3.4 Optional Expressions 

A question mark (?) indicates an optional element of an expression. Thus, 

ab?c 

matches either ac or abc. 

6.3.5 Repeated Expressions 
Repetitions of classes are indicated by an asterisk (*) and a plus sign (+). Thus, 

a* 

is any number of consecutive a characters, including zero, while 

a+ 

matches one or more instances of a. Furthermore, this 

[a-z]+ 

lex 6-6 



represents all strings of lowercase letters, and 

[A-Za-z] [A-Za-zQ-9] * 

indicates all alphanumeric strings with a leading alphabetic character. This is a typical 
expression for recognizing identifiers in computer languages. 

6 .. 3.6 Alternation and Grouping 

The pipe operator ( I ) indicates alternation. For example, this 

(ablcd) 

matches either ab or cd. Note that we use parentheses for grouping, although they are 
not necessary on the outside level. In fact, this 

ablcd 

would have sufficed. Parentheses can be used for more complex expressions, e.g., 

(ablcd+)?(ef) * 

which Inatches such strings as abefej, efefej, edej, or eddd (but not abc, abed, or abedef). 

6.3.7 Context Sensitivity 
Lex recognizes a small amount of surrounding context. The two simplest operators for 
this are the caret C) and the dollar sign ($). If the first character of an expression is a 
caret, the expression is only matched at the beginning of a line (after a newline char­
acter, or at the beginning of the input stream). This can never conflict with the other 
meaning of the caret, complementation of character classes, since that only applies 
within the square bracket operators. If the last character is a dollar sign, the expres­
sion is only matched at the end of a line (when immediately followed by newline). The 
latter operator is a special case of the slash (/), \vhich indicates trailing context. The 
expression 

ab/cd 

matches the string ab, but only if followed by cd. Thus, 

ab$ 

is the same as 

ab/\n 

Left context is handled in lex by start conditions, which are explained later. If a rule is 
only to be executed when the lex automaton interpreter is in start condition x, use an­
gle brackets and prefix the rule by 

<x> 

If we consider "being at the beginning of a line" to be start condition ONE, then a 
caret is equivalent to 

<ONE> 

6-7 lex 



6.3.8 Repetitions and Definitions 
Braces ({ }) specify either repetitions (if they enclose numbers) or definition expansion 
(if they enclose a name). For example, 

{digit} 

looks for a predefined string named digit and inserts it at that point in the expression. 
The definitions are given in the first part of the h~x input, before the rules. In contrast, 

a{1,5} 

looks for 1 to 5 occurrences of a. 

An initial percent (%) character is special; it is the separator for lex source segments. 

6.4 Lex Actions 
When an expression written according to the rules presented in the last section is 
matched, lex executes the corresponding action. This section describes some lex fea­
tures that aid in the writing of actions. 

Note: By default, lex performs a copy of the input to the output on all strings not oth-
erwise matched. 

Lex users who want to absorb the entire input without producing any output must pro­
vide rules to match everything. This is the normal situation when lex is being used 
with yacc. If you assume that an action is something lex does instead of the default 
action (copying the input to the output), it follows that a rule that merely copies can 
be safely omitted. As a corollary to this, a character combination that is omitted from 
the rules and appears as input is likely ,to be printed on the output, thus calling atten­
tion to the gap in the rules. 

A simple "solution" is to ignore the input. Specifying a C null statement (;), as an 
action causes this result. A frequent rule is 

[ \t\n] ; 

which causes the three spacing characters (blank, tab, and newline) to be ignored. 

Another easy way to avoid writing actions is to use the action character I, which indi­
cates that the action for this rule is the action for the next rule. The previous example 
could also have been written as 

" " 
"\t" 
"\n" 

with the same result, although in different style. The quotes around \n and \t aren't 
required. 

In more complex actions, you probably want to know the actual text that matched 
some expression like [a-zJ+. Lex leaves this text in an external character array named 
yytext. Thus, to print the name found, a rule such as 

[a-z] + printf(" 0/05", yytext); 

prints the string in yytext. The C function print! accepts a format argument and data to 
be printed; in this case, the format is "print string" (% indicating data conversion, and 

lex 6-8 



s indicating string type), and the data are the characters in yytext. So this just places 
the matched string on the output. This action is so common that it may be written as 
ECHO. Thus, 

[a-z]+ ECHO; 

is the same as the above. Since the default action is just to print the characters found, 
why give a rule, like this one, which merely specifies the default action? Such rules 
are often required to avoid matching some other rule that is not desired. For example, 
if there is a rule that matches read it normally matches the instances of read contained 
in bread or readjust; to avoid this, a rule of the form [a-zJ+ is needed. This is further 
explained below. 

It is sometimes more convenient to know the end of what has been found; hence lex 
also provides a count yyZeng of the number of characters matched. To count both the 
number of words and the number of characters in words in the input, you might write 

[a-zA-Z]+ {words++; chars += yyleng;} 

which accumulates in chars the number of characters in the words recognized. The last 
character in the string matched can be accessed by 

yytext [yyleng-1 ] 

Occasionally, a lex action may decide that a rule has not recognized the correct span 
of characters. Two routines are provided to aid with this situation. First, yymore() can 
be called to indicate that the next input expression recognized is to be tacked on to the 
end of this input. Normally, the next input string overwrites the current entry in yytext. 
Second, yyZess(n) may be called to indicate that not all the characters matched by the 
currently successful expression are wanted right now. The argument n indicates the 
number of characters in yytext to be retained. Additional characters previously matched 
are returned to the input. This provides the same sort of lookahead offered by the 
slash (/) operator, but in a different form. 

Consider a language that defines a string as a set of characters between a set of dou­
ble quotation marks. To include quotation marks in a string, you must escape them 
with a preceding backslash (\). The regular expression that matches such a case is 
somewhat confusing., so that it might be preferable to write 

\"[""]*\" { 
if (yytext[yyleng-1] == '\ \') 
yymoreO; 
else 
. .. normal user processing 
} 

This, when faced with a string such as "abc\ "def", first matches the five characters 
"abc\; then the call to yymore() causes the next part of the string, "del, to be tacked 
on the end. Note that the final quote terminating the string should be picked up in the 
code labeled "normal processing". 

The function yyZess() might be used to reprocess text in various circumstances. Con­
sider the C problem of distinguishing the ambiguity of "=-a". Suppose you want this 
treated as "=- a" but a message also printed. A rule might be 

6-9 lex 



=-[a-zA-Z] { 
printf("Operator (=-) ambiguous\n"); 
yyless (yyleng-1 ) ; 
... action for =- ... 
} 

which prints a message, returns the letter after the operator to the input stream, and 
treats the operator as "=-". Alternatively, you may want this treated as "= -a". To do 
this, just return the minus sign as well as the letter to the input. 

=-[a-zA-Z] { 
printf("Operator (=-) ambiguous\n"): 
yyless (yyleng-2) : 
... action for = ... 
} 

This performs the other interpretation. Note that the expressions for the two cases 
might more easily be written 

=-/[A-Za-z] 

in the first case and 

=I-[A-Za-z] 

in the second; no backup is required in the rule action. It isn't necessary to recognize 
the whole identifier to observe the ambiguity. The possibility of "=-3", however, makes 

=-/[" \t\n] 

an even better rule. 

In addition to these routines, lex also permits access to the I/O routines it uses. They 
are as follows: 

input 0 

output (c) 

unput(c) 

Returns the next input character 

Writes the character c on the output 

Pushes the character c back onto input stream to be read later by inputO 

By default, these routines are provided as macro definitions, but you can override them 
and supply private versions. These routines define the relationship between external 
files and internal characters, and must all be retained or modified consistently. They 
may be redefined, to cause input or output to be transmitted to or from unusual 
places, including other programs or internal merrlory; but the character set used must 
be consistent in all routines; a value of zero returned by input must mean end of file; 
and the relationship between unput and input must be retained or the lex lookahead 
does not work. Lex does not look ahead at all if it does not have to, but every rule 
ending in a plus sign, asterisk, question mark, or dollar sign, or containing a slash im­
plies lookahead. Lookahead is also necessary to Inatch an expression that is a prefix of 
another expression. The character set used by lex is discussed below. 

Note: The standard lex library itnposes a 100-character limit on backup. 

Another lex library routine that you may want to redefine is yywrapO which is called 
whenever lex reaches an end-of-·fite. If yywrap returns a 1, lex continues with the nor­
mal wrapup on end of input. Sometimes, however, it is convenient to arrange for more 
input to arrive from a new source. In this case, provide a yywrap that arranges for new 

lex 6-10 



input and returns O. This instructs lex to continue processing. The default yywrap al­
ways returns 1. 

This routine is also a convenient place to print tables, summaries, and the like at the 
end of a program. Note that it is not possible to write a normal rule that recognizes 
end-of-file; the only access to this condition is through yywrap. In fact, unless a pri­
vate version of input() is supplied, a file containing nulls cannot be handled, since a 
value of 0 returned by input is taken to be end-of-file. 

6.5 Ambiguous Source R.ules 
Lex can handle ambiguous specifications. When more than one expression can match 
the current input, lex chooses as follows: 

• The longest match is preferred. 

• Among rules that matched the same number of characters, the rule given first is 
preferred. 

Assume that the rules 

integer keyword action ... : 
[a-z] + identifier action ... ; 

have been given in that order. If the input is integers, it is taken as an identifier, be­
cause [a-zJ+ matches 8 characters while integer matches only 7. If the input is integer, 
both rules match 7 characters, and the keyword rule is selected because it was given 
first. Anything shorter (e.g., int) does not match the expression integer and so the iden­
tifier interpretation is used. 

The principle of preferring the longest match makes rules containing expressions like 
. * dangerous. For example, 

, *, 

might seem a good way of recognizing a string in single quotes. In fact, it is an invita­
tion for the program to read far ahead, looking for a distant single quote. Presented 
with the input 

'first' quoted string here, 'second' here 

the above expression matches 

'first' quoted string here, 'second' 

which is probably not what was wanted. A better rule is of the form 

'["'\n] *, 

which, on the above input, stops after 'first'. The consequences of errors like this are 
mitigated by the fact that the. (dot) operator does not match a newline. Thus, expres­
sions like 

* 

stop on the current line. Don't try to defeat this 'with expressions like 

[.\n]+ 

or equivalents; the generated program~ tries to read the entire input file, causing inter­
nal buffer overflows. 

6-11 lex 



Note that lex is normally partitioning the input stream, not searching for all possible 
matches of each expression. This means that each character is accounted for once and 
only once. For example, suppose it is desired to count occurrences of both she and he 
in an input text. Some lex rules to do this might be 

she s++: 
he h++: 
\n I 

where the last two rules ignore everything besides he and she. Remember that dot does 
not include newline. Since she includes he, lex normally does not recognize the in­
stances of he included in she, since once it has passed a she those characters are gone. 

You may override this choice. The action REJECT means "go do the next alternative." 
It causes whatever rule was second choice after the current rule to be executed. The 
position of the input pointer is adjusted accordingly. Suppose you really want to count 
the included instances of he: 

she {s++: REJECT:} 
he {h++: REJECT:} 
\n I 

these rules are one way of changing the previous example to do just that. After count­
ing each expression, it is rejected; whenever appropriate, the other expression is then 
be counted. In this example, of course, you could note that she includes he but not vice 
versa, and omit the REJECT action on he; in other cases, however, it would not be pos­
sible a priori to tell which input characters were in both classes. 

Consider the two rules 

a[bc]+ { ... : REJECT:} 
a[cd]+ { ... : REJECT:} 

If the input is ab, only the first rule matches, and on ad only the second matches. The 
input string accb matches the first rule for four characters and then the second rule for 
three characters. In contrast, the input aced agrees with the second rule for four char­
acters and then the first rule for three. 

In general, REJECT is useful whenever the purpose of lex is not to partition the input 
stream but to detect all examples of some items in the input, and the instances of 
these items may overlap or include each other. Suppose a digram table of the input is 
desired; normally the digrams overlap, that is, the word the is considered to contain 
both th and he. Assuming a two-dimensional array named digram is to be incremented, 
the appropriate source is 

%% 

[a-z] [a-z] {digram [yytext[O]] [yytext[1 ]]++: REJECT:} 
7 .. 99\n 

where the REJECT is necessary to pick up a letter pair beginning at every character, 
rather than at every other character. 

Note: REJECT doesn't rescan the input; instead it remembers the results of the previ­
ous scan. This means that if a rule with trailing context is found, and REJECT 
is executed, you must not have used unput to change the characters forthcoming 
from the input stream. This is the only restriction on the user's ability to ma­
nipulate input that is not yet processed. 

lex 6-12 



6.6 Lex Source Definitio][}s 
As we have stated, the format of lex source is: 

{definitions} 
%% 

{rules} 
%% 

{user routines} 

So far only the rules have been described. There is a need for additional options to 
define variables for use in user programs and for use by lex. These can go either in 
the definitions section or in the rules section. 

Remember that lex is turning the rules into a prograrn. Any source not intercepted by 
lex is copied into the generated program. Such source falls into three classes: 

• Lines that aren't part of a lex rule or action beginning with a blank or tab are cop­
ied into the lex generated programl. Such source input prior to the first %% delim­
iter is external to any function in the code; if it appears immediately after the first 
%%, it appears in an appropriate place for declarations in the function written by 
lex which contains the actions. This material must look like program fragments, 
and should precede the first lex rule. As a side effect of the above, lines beginning 
with a blank or tab and containing a comment are passed through to the generated 
program. This can be used to include comments in either the lex source or the gen­
erated code. The comments should follow the host language convention. 

• Anything included between lines containing only %{ and %} is copied out as above, 
and the delimiters are discarded. This permits entering text like preprocessor state­
ments that must begin in column 1, or copying lines that don't look like programs. 

• Anything after the third %% delimiter, regardless of format, is copied out after the 
lex output. 

Definitions intended for lex are given before the first %% delimiter. Any line in this 
section not contained between %{ and %}, and begining in column 1, is assumed to 
define lex substitution strings. The format of such lines is 

name translation 

where translation becomes associated with name. The name and translation must be 
separated by at least one blank or tab, and the name must begin with a letter. The 
translation can then be called out by the {name} syntax in a rule. Thus, using {D} for 
the digits and {E} for an exponent field might abbreviate rules to recognize numbers: 

D [0-9] 
E [DEde] [-+]?{D}+ 
%0/0 
{D}+ printf(" integer"): 
{D}+" ." {D} * ({E})? 
{D} *" ." {D}+( {E})? 
{D}+{E} printf(" real"): 

Note the first two rules for real numbers; both require a decimal point and contain an 
optional exponent field, but the first requires at least one digit before the decimal 
point and the second requires at least one digit after the decimal point. 

6-13 lex 



To correctly handle the problem posed by a FORTRAN expression such as 35.EQ.I 
(which doesn't contain a real number), a context--sensitive rule such as 

[0-9] +1" . " EO printf(" integer"); 

could be used in addition to the normal rule for integers. 

The definitions section may also contain other commands, including the selection of a 
host language, a character set table, a list of stant conditions, or adjustments to the de­
fault size of arrays within lex itself for larger source programs. We discuss these possi­
bilities further below in the "Summary of Source Format." 

6.7 Usage 
There are two steps to compiling a lex source program. First, the lex source must be 
turned into a generated program in the host general purpose language. Then this pro­
gram must be compiled and loaded, usually with a library of lex subroutines. The gen­
erated program is on a file named lex.yy.c. The I/O library is defined in terms of the C 
standard library. 

The library is accessed by the loader flag -II. So an appropriate set of commands is 

lex source 
cc lex.yy.c -II 

The resulting program is placed on the usual file a.out for later execution. To use lex 
with yacc, see the next section. Although the default lex 110 routines use the C stan­
dard library, the lex automata themselves do not do so; if private versions of input, 
output, and unput are given, the library can be avoided. 

6.8 Lex and Yacc 
Before you use lex with yacc, note that lex writes a program named yylexO, the name 
required by yacc for its analyzer. Normally, the default main program on the lex li­
brary calls this routine, but if yacc is loaded, and its main program is used, yacc calls 
yylexO. In this case, each lex rule should end with 

return (token); 

where the appropriate token value is returned. An easy way to get access to yacc's 
names for tokens is to compile the lex output file as part of the yacc output file by 
placing this line in the last section of yaee input: 

# include "Iex.yy.c" 

If the grammar is named good and the lexical rules are named better, you can use this 
command sequence: 

yace good 
lex better 
ee y.tab.c -ly -II 

The yaee library (-ly) should be loaded before the lex library to obtain a main pro­
gram that invokes the yaec parser. The generation of lex and yace programs can be 
done in either order. 

lex 6-14 



6.9 More Examples 
Consider copying an input file while adding 3 to every positive number divisible by 7. 
Here is a lex source program to do just that: 

°/0°/0 
int k; 

[0-9]+ { 
k = atoi(yytext); 
if (ko/07 == 0) 
printf("O/od", k+3); 
else 
printf("O/od" ,k); 
} 

The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary and stores 
the result in k. A percent (%) operator (remainder) is used to check whether k is divis­
ible by 7; if it is, it is incremented by 3 as it is written out. However, you may not 
want the program to alter such input items as 49.63 or X7, or to increment the abso­
lute value of all negative numbers divisible by 7. To avoid this, just add a few more 
rules after the active one: 

int k; 
-?[0-9]+ { 

k = atoi (yytext) ; 
printf("%d", ko/07 == 0 ? k+3 : k); 
} 

-?[0-9.]+ ECHO; 
[A-Za-z] [A-Za-zO-9] + ECHC); 

Numerical strings containing a dot ( . ) or preceded by a letter are picked up by one 
of the last two rules, and not changed" The if-else has been replaced by a C conditional 
expression to save space; the form 

a?b:c 

means "if a then b else c". 

For an example of statistics gathering, here is a program that histograms the lengths 
of words, where a word is defined as a string of letters: 

int lengs[1 00]; 
°/0% 

[a-z] + 

\n 
°/0°/0 
yywrapO 
{ 
int i; 

lengs [yyleng] ++; 

printf(" Length No. words\n"); 
for(i=O; k100; i++) 
if (Iengs[i] > 0) 
printf(" °/05 d % 1 Od\n" ,i, lengs [i]): 
return(1) : 
} 

6-15 lex 



This program accumulates the histogram, while producing no output. At the end of the 
input, it prints the table. The final statement return(l); indicates that lex is to perform 
wrapup. If yywrap returns zero (false), it implies that further input is available and the 
program is to continue reading and processing. If you provide a yywrap that never re­
turns true, it generates an infinite loop. 

To further illustrate, here are some parts of a program for converting double precision 
FORTRAN to single precision FORTRAN. Because FORTRAN does not distinguish up­
percase and lowercase letters, this routine begins by defining a set of classes including 
both cases of each letter: 

a [aA] 
b [b8] 
c [cel 

z [zZ] 

An additional class recognizes white space: 

W [ \t] * 

The first rule changes "double precision" to "real", or "DOUBLE PRECISION" to 
"REAL" . 

{d}{o} {u}{b}{I} {e} {W} {p} {r} {e} {c} {i}{s} {i} {o} {n} { 
printf(yytext[O]=='d'? "real" : "REAL"); 
} 

Care is taken throughout this program. to preserve the case (upper or lower) of the 
original program. The conditional operator is used to select the proper form of the key­
word. The next rule copies continuation card indications to avoid confusing them with 
constants: 

"" "[" 0] ECHO; 

In the regular expression, the quotes surround the blanks. It is interpreted as "begin­
ning of line, then five blanks, then anything but blank or zero." Note the two different 
meanings of the caret C). Next, we find a few rules to change double precision con­
stants to ordinary floating constants. 

[0-9]+{VV}{d}{VV}[+-]?{VV}[O-9]+ I 
[0-9] +{VV} " . " {VV} {d} {VV} [+-]? {VV} [0-9] + I 
" . " {W} [0-9] +{VV} {d} {VV} [+-]? {W} [0-9] + { 
/* convert constants * / 
for(p=yytext; * p != a; p++) 
{ 
if (*p == 'd' II *p == '0') 
*p=+ 'e' - 'd'; 
ECHO; 
} 

After the floating point constant is recognized, it is scanned by the for loop to find the 
letter d or D. The program than adds 'e'-'d', which converts it to the next letter of the 
alphabet. The modified constant, now single-precision, is written out again. Following 
that, a series of names must be respelled to remove their initial d. By using the array 
yytext, the same action suffices for all the names (only a sample of a rather long list is 
given here). 

lex 6-16 



{d}{s}{i}{n} I 
{d}{c}{o}{s} I 
{d}{s}{q}{r}{t} I 
{d}{a}{t}{a}{n} I 

{d} {f} {I} {o} {a} {t} printf(" %s" ,yytext+ 1); 

Another list of names must have initial d changed to initial a: 

{d}{I}{o}{g} I 
{d}{I}{o}{g}10 I 
{d}{m}{i}{n} 1 I 
{d}{m}{a}{x}1 { 

yytext[O] =+ 'a' - 'd'; 
ECHO; 
} 

And one routine must have initial d changed to initial r: 

{d} 1 {m}{a}{c}{h} {yytext[O] =+ 'r' - 'd'; 
ECHO; 
} 

To avoid such names as dsinx being detected as instances of dsin, some final rules pick 
up longer words as identifiers and copy some surviving characters: 

[A-Za-z] [A-Za-zO-9] * 
[0-9]+ I 
\n I 

ECHO; 

Note that this program is not complete; it does not deal with the spacing problems in 
FORTRAN or with the use of keywords as identifiers. 

6.10 Left Context Sensitivity 
It is sometimes desirable to have several sets of lexical rules applied at different times 
in the input. For example, a compiler preprocessor might distinguish preprocessor 
statements and analyze them differently from ordinary statements. This requires sensi­
tivity to prior context, and there are several ways of handling such problems. The caret 
C), for example, is a prior context operator, recognizing immediately preceding left 
context just as a dollar sign ($) recognizes immediately following right context. Adja­
cent left context could be extended to produce a facility similar to that for adjacent 
right context. However, it is unlikely to be as useful, since the relevant left context fre­
quently appeared some time earlier, such as at the beginning of a line. 

This section describes three means of dealing with different environments: a simple 
use of flags, when only a few rules change from one environment to another; the use 
of start conditions on rules, and the possibility of making multiple lexical analyzers all 
run together. In each case, there are rules that recognize the need to change the envi­
ronment in which the following input text is analyzed, and set some parameter to re­
flect the change. This may be a flag explicitly tested by the user's action code; such a 
flag is the simplest way of dealing with the problem, since lex is not involved at all. 

It may be more convenient, however, to have lex remember the flags as initial condi­
tions on the rules. Any rule may be associated with a start condition. It is only recog-

6-17 lex 



nized when lex is in that start condition. The current start condition may be changed at 
any time. Finally, if the sets of rules for the different environments are very dissimilar, 
clarity may be best achieved by writing several distinct lexical analyzers, and switching 
from one to another as desired. 

Suppose you want to copy the input to the output, changing the word magic to first on 
every line that began with the letter a, changing magic to second on every line that be­
gan with the letter b, and changing magic to third on every line that began with the let­
ter c. All other words and all other lines are left unchanged. 

These rules are so simple that the easiest way to do this job is with a flag. The follow­
ing program should be adequate: 

int flag; 

"a {flag = 'a'; ECHO;} 
"b {flag = 'b': ECHO;} 
"c {flag = 'e': ECHO:} 
\n {flag = 0 : ECHO:} 
magic { 

switch (flag) 
{ 
case' a': printf("first"): break; 
ease 'b': printf("seeond"); break; 
ease Ie': printf("third"); break: 
default: ECHO; break; 
} 
} 

To handle the same problem with start conditions, each start condition must be intro­
duced to lex in the definitions section with a line reading 

%Start name 1 name2 ... 

where the conditions may be named in any order. The word Start may be abbreviated 
to s or S. The conditions may be referenced at the head of a rule with the <> brackets: 

<name 1 >expression 

is a rule that is only recognized when lex is in the start condition name 1. To enter a 
start condition, execute the action statement 

BEGIN name1: 

which changes the start condition to name 1. To resume the normal state, this resets the 
initial condition of the lex automaton interpreter: 

BEGIN 0; 

A rule may be active in several start conditions. Thus, this is a legal prefix: 

<name1,name2,name3> 

Rules not beginning with an angle bracket « » prefix are always active. The previous 
example can be written another way: 

lex 6-18 



%ST ART AA BB CC 
%% 

"a {ECHO; BEGIN AA;} 
"b {ECHO; BEGIN BB:} 
"c {ECHO; BEGIN CC:} 
\n {ECHO: BEGIN a:} 
<AA>magic printf("first"); 
<BB>magic printf(" second"); 
<CC>magic printf("third"); 

Here, the logic is exactly the same as in the previous method of handling the problem, 
but lex does the work rather than your own code. 

6.11 Character Set 
The programs generated by lex handle character liD only through the routines input, 
output, and unput. Thus, lex accepts the character representation provided in these rou­
tines and uses it to return values in yytext. For internal use, a character is represented 
as a small integer that, if the standard library is used, has a value equal to the integer 
value of the bit pattern representing the character on the host computer. Normally, 
the letter a is represented as the same form as the character constant 'a'. If this inter­
pretation is changed, by providing I/O routines that translate the characters, lex must 
be given a translation table. This table must be in the definitions section, and must be 
bracketed by lines containing only "%T". The table contains lines of the form 

{integer} {character string} 

indicating the value associated with each character. Thus, this example character table 

%T 

1 Aa 
2 Bb 

26 Zz 
27 \n 
28 + 
29 
30 0 
31 1 

39 9 
O/oT 

maps the lowercase and uppercase letters together into the integers 1 through 26, 
newline into 27, plus (+) and minus (-) into 28 and 29, and the digits into 30 through 
39. Note the escape for newline. If a table is supplied, every character that is to ap­
pear either in the rules or in any valid input must be included in the table. No charac­
ter may be assigned the number 0, and no character may be assigned a bigger number 
than the size of the hardware character set. 

6-19 lex 



6.12 Summary of Source Format 
The general form of a lex source file is: 

{definitions} 
0/0% 
{rules} 
%0/0 
{user subroutines} 

The definitions section contains a combination of the following: 

• Definitions, in the form "name space translation". 

• Included code, in the form "space code". 

• Included code, in the form 

0/0 { 
code 
%} 

• Start conditions, given in the form 

0/08 name1 name2 ... 

• Character set tables, in the form 

%T 
number space character-string 

%T 

• Changes to internal array sizes, in the form 

%x nnn 

where nnn is a decimal integer representing an array size and x selects the parame­
ter as follows: 

p positions 

n states 

e tree nodes 

a transitions 

k packed character classes 

0 output array size 

Lines in the rules section have the form "expression action" where the action may be 
continued on succeeding lines by using braces to delimit it. 

Regular expressions in lex use the following operators: 

x the character "x" 

"x" an "x", even if x is an operator 

\x an "x", even if x is an operator 

[xy] the character x or y 

lex 6-20 



[x -z ] the characters x, y or z 

[AX] any character but x 

any character but newline 

AX an X at the beginning of a line 

<y> X an x when lex is in start condition y 

x$ an x at the end of a line 

x? an optional x 

x* 0,1,2, ... instances of x 

x+ 1,2,3, ... instances of x 

xly an x or a y 

(x) an x 

x/y an x but only if followed by y 

{xx} the translation of xx from the definitions section 

x{m,n} m through n occurrences of x 

6-21 lex 



Chapter 9 

A C Language Reference 

9.1 Introduction 
This chapter describes the C language on the DEC PDP-ii, the Honeywell 6000, the 
IBM System/370, and the Interdata 8/32. Where differences exist, it concentrates on the 
PDP-ii, but tries to point out implementation-dependent details. With few exceptions, 
such dependencies follow directly from the properties of the hardware; the various 
compilers are generally quite compatible. 

9.2 Lexical Conventions 
There are six classes of tokens: identifiers, keywords, constants, strings, operators, and 
other separators. Blanks, tabs, newlines, and comments (collectively, "white space") 
are ignored except as they serve to separate tokens. Some white space is needed to 
separate otherwise adjacent identifiers, keywords, and constants. If the input stream 
has been parsed into tokens up to a given character, the next token is taken to include 
the longest string of characters that could constitute a token. 

9.2.1 Comments 
A slash followed by an asterisk (i.e., 1'*) introduces a comment. The reverse of this 
(Le., '* /) terminates a comment. Comments do not nest. 

9.2.2 Identifiers (Names) 
An identifier is a sequence of letters and digits; the first character must be a letter; the 
underscore ( _ ) counts as a letter. Uppercase and lowercase letters are different. No 

9-1 C Language Reference 



more than the first eight characters are significant, although more may be used. Exter­
nal identifiers, used by various assemblers and loaders, are more restricted: 

DEC PDP-ll 
Honeywell 6000 
IBM 360/370 
Interdata 8/32 

7 characters, 2 cases 
6 characters, 1 case 
7 characters, 1 case 
8 characters, 2 cases 

9.2.3 Keywords 

These identifiers are reserved for use as keywords, and may not be used otherwise: 

int short goto for 
char unsigned return do 
float auto sizeof while 
double extern break switch 
struct register continue case 
union typedef if default 
long static else entry 

The entry keyword is not currently implemented by any compiler but is reserved for 
future use. Some implementations also reserve the words fortran and asm. 

9.2.4 Constants 

There are several kinds of constants, as listed below. Hardware characteristics that af­
fect sizes are summarized in Section 9.2.6. 

9.2.4.1 Integer Constants 

An integer constant consisting of a sequence of digits is taken to be octal if it begins 
with 0 (digit zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 
respectively. A sequence of digits preceded by Ox or OX (digit zero) is taken to be a 
hexadecimal integer. The hexadecimal digits include a or A through f or F with values 
10 through 15. A decimal constant whose value exceeds the largest signed machine in­
teger is taken to be long; an octal or hex constant that exceeds the largest unsigned 
machine integer is likewise taken to be long. 

9.2.4.2 Explicit Long Constants 

A decimal, octal, or hexadecimal integer constant immediately followed by I (letter ell) 
or L is a long constant. As discussed below, on some machines integer and long val­
ues may be considered identical. 

9.2.4.3 Character Constants 

A character constant is a character enclosed in single quotes, as in 'x'. The value of a 
character constant is the numerical value of the character in the machine's character 
set. 

Certain non-graphic characters, the single quote ( , ) and the backslash ( \ ), may be 
represented according to the following table of escape sequences: 

C Language Reference 9-2 



newline NL(LF) \n 
horizontal tab HT \t 
backspace BS \b 
carriage return CR \r 
form feed FF \f 
backs lash \ \ \ 
single quote \' 
bit pattern ddd \ddd 

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits that are 
taken to specify the value of the desired character. A special case of this construction 
is \0 (not followed by a digit), to indicate the character NUL. If the character follow­
ing a backslash is not one of those specified, the backslash is ignored. 

9.2.4.4 Floating Constants 

A floating constant consists of an integer part, a decimal point, a fraction part, an e or 
E, and an optionally signed integer exponent. The integer and fraction parts both con­
sist of a sequence of digits. Either the integer part or the fraction part (not both) may 
be missing; either the decimal point or the e and the exponent (not both) may be miss­
ing. Every floating constant is taken to be double-precision. 

9 .. 2 .. 5 Strings 
A string is a sequence of characters surrounded by double quotes, as in " ... ". A string 
has type "array of characters" and storage class static (see Section 9.4) and is initial­
ized with the given characters. All strings, even when written identically, are distinct. 
The compiler places a null byte at the end of each string so that programs that scan 
the string can find its end. In a string, the double quote character ( " ) must be pre­
ceded by a backs lash ( \ ). Also, the same escapes as described for character con­
stants may be used. A backs lash and the immediately following newline are ignored. 

9.2.6 Hardware Characteristics 

The following table summarizes certain hardware properties that vary from machine to 
machine. Although these affect program portability, in practice they are less of a prob­
lem than might be thought a priori. 

DEC PDP-11 Honeywell 6000 IBM 370 Interdata 8/32 
ASCII ASCII EBCDIC ASCII 

char 8 bits 9 bits 8 bits 8 bits 
int 16 36 32 32 
short 16 36 16 16 
long 32 36 32 32 
float 32 36 32 32 
double 64 72 64 64 
range ±10±38 ±10±38 ±10±76 ±10±76 

9-3 C Language Reference 



9.3 Syntax Notation 
In the syntax notation used in this chapter, syntactic categories are indicated by italic 
type, and literal words and characters in bold type. Alternative categories are listed on 
separate lines. An optional terminal or non-terminal symbol is indicated by the sub­
script "opt," so that 

{ expression opt} 

indicates an optional expression enclosed in braces. The syntax is summarized in Sec­
tion 9.18 of this chapter. 

9.4 What's In a Name? 
C bases the interpretation of an identifier upon two attributes of the identifier: its stor­
age class and its type. The storage class determines the location and lifetime of the 
storage associated with an identifier; the type determines the meaning of the values 
found in the identifier's storage. 

There are four declarable storage classes: automatic, static, external, and register. 
Automatic variables are local to each invocation of a block (see Section 9.9.2), and are 
discarded upon exit from the block; static variables are local to a block, but retain 
their values upon reentry to a block even after control has left the block; external vari­
ables exist and retain their values throughout the execution of the entire program, and 
may be used for communication between functions, even separately compiled func­
tions. Register variables are (if possible) stored in the fast registers of the machine; 
like automatic variables they are local to each block and disappear on exit from the 
block. 

C supports several fundamental types of objects: 

• Objects declared as characters (char) are large enough to store any member of the 
implementation's character set, and if a genuine character from that character set is 
stored in a character variable, its value is equivalent to the integer code for that 
character. Other quantities may be stored into character variables, but the imple­
mentation is machine-dependent. 

• Up to three sizes of integer, declared short int, int, and long int, are available. 
Longer integers provide no less storage than shorter ones, but the implementation 
may make either short integers, or long integers, or both, equivalent to plain inte­
gers. "Plain" integers have the natural size suggested by the host machine architec­
ture; the other sizes are provided to meet special needs. 

• Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 
$2 sup n$ where $n$ is the number of bits in the representation. (On the PDP-11, 
unsigned long quantities are not supported.) 

• Single-precision floating point (float) and double-precision floating point (double) 
may be synonymous in some implementations. 

Because objects of the foregoing types can usefully be interpreted as numbers, they are 
referred to as arithmetic types. Types char and int of all sizes are collectively called 
integral types. Types float and double are collectively called floating types. 

C Language Reference 9-4 



Besides the fundamental arithmetic types, there is a conceptually infinite class of de­
rived types constructed from the fundamental types in the following ways: 

• arrays of objects of most types; 

• functions that return objects of a given type; 

• pointers to objects of a given type; 

• structures containing a sequence of objec(s of various types; 

• unions capable of containing anyone of several objects of various types. 

In general, these methods of constructing objects can be applied recursively. 

9.5 Objects and Lvalues 
An object is a manipulatable region of storage; an lvalue is an expression referring to 
an object. An obvious example of an lvalue expression is an identifier. There are op­
erators that yield lvalues: for example, if E is an expression of pointer type, then *E is 
an lvalue expression referring to the object to which E points. The name "lvalue" 
comes from the assignment expression El = E2 in which the left operand El must be 
an lvalue expression. The discussion of each operator below indicates whether it ex­
pects lvalue operands and whether it yields an lvalue. 

9.6 Conversions 
A number of operators may, depending on their operands, cause conversion of the 
value of an operand from one type to another. This section explains the result to be 
expected from such conversions. Section 9.6.6 summarizes the conversions demanded 
by most ordinary operators; it is supplemented by the discussion of each operator. 

9 .. 6 .. 1 Characters and integers 
A character or a short integer may be used wherever an integer may be used. In all 
cases the value is converted to an integer. Conversion of a shorter integer to a longer 
always involves sign extension; integers are signed quantities. Whether or not sign-ex­
tension occurs for characters is machine dependent, but it is guaranteed that a member 
of the standard character set is non-negative. Of the machines treated in this chapter, 
only the PDP-11 sign-extends. On the PDP-11, character variables range in value 
from -128 to 127; the characters of the ASCn alphabet are all positive. A character 
constant specified with an octal escape suffers sign extension and may appear nega­
tive; for example, '\377' has the value -1. 

When a longer integer is converted to a shorter or to a char, it is truncated on the left; 
excess bits are simply discarded. 

9.6.2 Float and Double 
All floating arithmetic in C is carried out in double-precision; whenever a float ap­
pears in an expression it is lengthened to double by zero-padding its fraction. When a 
double must be converted to float, for example by an assignment, the double is 
rounded before truncation to float length. 

9-5 C Language Reference 



9.6.3 Floating and Integral 
Conversions of floating values to integral type tend to be rather machine-dependent; in 
particular the direction of truncation of negative numbers varies from machine to ma­
chine. The result is undefined if the value doesn't fit in the space provided. 

Conversions of integral values to floating type are well behaved. Some loss of precision 
occurs if the destination lacks sufficient bits. 

9 .. 6.4 Pointers and Integers 
An integer or long integer may be added to or subtracted from a pointer; in such a 
case the first is converted as specified in the discussion of the addition operator. 

Two pointers to objects of the same type may be subtracted; in this case the result is 
converted to an integer as specified in the discussion of the subtraction operator. 

9.6.5 Unsigned Integers 

Whenever an unsigned integer and a plain integer are combined, the plain integer is 
converted to unsigned and the result is unsigned. The value is the least unsigned inte­
ger congruent to the signed integer (modulo $2 sup roman wordsize$). In a 2's comple­
ment representation, this conversion is conceptual and there is no actual change in the 
bit pattern. 

When an unsigned integer is converted to long, the value of the result is the same nu­
merically as that of the unsigned integer. Thus, the conversion amounts to padding 
with zeros on the left. 

9.6.6 Arithmetic Conversions 
A great many operators cause conversions and yield result types in a similar way. 
This pattern is called the "usual arithmetic conversions." 

.. First, any operands of type char or short are converted to int, and any of type 
float are converted to double. 

.. Then, if either operand is double, the other is converted to double and that is the 
type of the result. 

.. Otherwise, if either operand is long, the other is converted to long and that is the 
type of the result. 

.. Otherwise, if either operand is unsigned, the other is converted to unsigned and 
that is the type of the result. 

.. Otherwise, both operands must be int, and that is the type of the result. 

9.7 Expressions 
The precedence of expression operators is the same as the order of the major subsec­
tions of this section, highest precedence first. Thus, for example, the expressions re­
ferred to as the operands of + (see Section 9.7.4) are those expressions defined in Sec­
tions 9.7.1-9.7.3. Within each section, the operators have the same precedence. Left­
or right-associativity is specified in each section for the operators discussed therein. 

C Language Reference 9-6 



The precedence and associativity of all the expression operators is summarized in the 
grammar of Section 9.18. Otherwise, the order of evaluation of expressions is unde­
fined. In particular, the compiler considers itself free to compute subexpressions in the 
order it believes most efficient, even if the subexpressions involve side effects. The or­
der in which side effects take place is unspecified. 

Expressions involving a commutative and associative operator (*, +, &, I, ") may be 
rearranged arbitrarily, even in the presence of parentheses; to force a particular order 
of evaluation an explicit temporary must be used. 

The handling of overflow and divide check in expression evaluation is machine-de­
pendent. All existing implementations of C ignore integer overflows; treatment of divi­
sion by 0, and all floating-point exceptions, varies between machines, and is usually 
adjustable by a library function. 

9.7.1 Primary Expressions 
Primary expressions involving ., ->, subscripting, and function caBs group left to right. 

primary-expression: 
identifier 
constant 
string 
( expression ) 
primary-expression [ expression ] 
primary-expression ( expression-list opt ) 

primary-Ivalue . identifier 
primary-expression -> identifier 

expression-list: 
expression 
expression-list, expression 

An identifier is a primary expression, provided it has been suitably declared as dis­
cussed below. Its type is specified by its declaration. If the type of the identifier is 
"array of ... ", however, then the value of the identifier-expression is a pointer to the 
first object in the array, and the type of the expression is "pointer to ... ". Moreover, 
an array identifier is not an lvalue expression. Likewise, an identifier declared "func­
tion returning ... ", when used except in the function-name position of a call, is con­
verted to "pointer to function returning ... ". 

A constant is a primary expression. Its type may be int, long, or double depending on 
its form. Character constants have type int; floating constants are double. 

A string is a primary expression. Its type is originally "array of char", but following 
the same rule given above for identifiers, this is modified to "pointer to char" and the 
result is a pointer to the first character in the string. (There is an exception in certain 
initializers; see 9.8.6.) 

An expression in parentheses expression is a primary expression whose type and value 
are identical to those of the unadorned expression. The presence of parentheses does­
n't affect whether the expression is an Ivalue. 

A primary expression followed by an expression in square brackets is a primary ex­
pression. The intuitive meaning is that of a SUbscript. Usually, a primary expression 
has type "pointer to ... ", a subscript expression is int, and type of the result is " ... ". 

9-7 C Language Reference 



The expression El[E2] is identical (by definition) to *((El)+(E2)). All the clues 
needed to understand this notation are contained in this section together with the dis­
cussions in Sections 9.7.1, 9.7.2, and 9.7.4 on identifiers, *, and + respectively; 9.14.3 
summarizes the implications. 

A function call is a primary expression followed by parentheses containing a possibly 
empty, comma-separated list of expressions that constitute the actual arguments to the 
function. The primary expression must be of type "function returning ... ", and the re­
suit of the function call is of type " ... ". 

As indicated below, a hitherto unseen identifier followed immediately by a left paren­
thesis is contextually declared to represent a function returning an integer; thus in the 
most common case, integer-valued functions need not be declared. 

Any actual arguments of type float are converted to double before the call; any of type 
char or short are converted to int; and as usual, array names are converted to point­
ers. No other conversions are performed automatically; in particular, the compiler does 
not compare the types of actual arguments with those of formal arguments. If conver­
sion is needed, use a cast; see Sections 9.7.2 and 9.S.7. 

In preparing for the call to a function, a copy is made of each actual parameter; thus, 
all argument-passing in C is strictly by value. A function may change the values of its 
formal parameters, but these changes cannot affect the values of the actual parame­
ters. 

On the other hand, it is possible to pass a pointer on the understanding that the func­
tion may change the value of the object to which the pointer points. An array name is 
a pointer expression. The order of evaluation of arguments is undefined by the lan­
guage; take note that the various compilers differ. Recursive calls to any function are 
permitted. 

A primary expression followed by a dot followed by an identifier is an expression. The 
first expression must be an lvalue naming a structure or a union, and the identifier 
must name a member of the structure or union. The result is an lvalue referring to the 
named member of the structure or union. 

A primary expression followed by an arrow (built from a - and a » followed by an 
identifier is an expression. The first expression must be a pointer to a structure or a 
union and the identifier must name a member of that structure or union. The result is 
an lvalue referring to the named member of the structure or union to which the pointer 
expression points. 

Thus the expression El->MOS is the same as (*El).MOS. Structures and unions are 
discussed in 9.S.S. The rules given here for the use of structures and unions are not 
enforced strictly, in order to allow an escape from the typing mechanism. See Section 
9.14.1. 

C Language Reference 9-S 



9.7.2 Unary Operators 
Expressions with unary operators group right-to-Ieft. 

unary-expression: 
* expression 
& Ivalue 
- expression 
! expression 
- expression 
++ Ivalue 
-- Ivalue 
Ivalue ++ 
Ivalue --
( type-name ) expression 
sizeof expression 
sizeof ( type-name ) 

The unary * operator means indirection: the expression must be a pointer, and the re­
sult is an Ivalue referring to the object to which the expression points. If the type of 
the expression is "pointer to ... ", the type of the result is " ... ". 

The result of the unary & operator is a pointer to the object referred to by the lvalue. 
If the type of the Ivalue is " ... ", the type of the result is "pointer to ... ". 

The result of the unary - operator is the negative of its operand. The usual arithmetic 
conversions are performed. The negative of an unsigned quantity is computed by sub­
tracting its value from $2 sup n$, where $n$ is the number of bits in an into There is 
no unary + operator. 

The result of the logical negation operator ! is 1 if the value of its operand is 0, 0 if 
the value of its operand is non-zero. The type of the result is int. It is applicable to 
any arithmetic type or to pointers. 

The - operator yields the one's complement of its operand. The usual arithmetic con­
versions are performed. The type of the operand must be integral. 

The object referred to by the lvalue operand of prefix ++ is incremented. The value is 
the new value of the operand, but is not an lvalue. The expression ++x is equivalent to 
x+=l. See the discussions of addition (9.7.4) and assignment operators (9.7.14) for in­
formation on conversions. 

The lvalue operand of prefix -- is decremented analogously to the prefix ++ operator. 

When postfix ++ is applied to an lvalue, the result is the value of the object referred to 
by the lvalue. The result is noted, and then the object is incremented in the same man­
ner as for the prefix ++ operator. The type of the result is the same as the type of the 
lvalue expression. 

When postfix -- is applied to an lvalue, the result is the value of the object referred to 
by the lvalue. The result is noted, and then the object is decremented in the manner as 
for the prefix -- operator. The type of the result is the same as the type of the lvalue 
expression. 

An expression preceded by the parenthesized name of a data type causes conversion of 
the value of the expression to the named type. This construction is called a cast. Type 
names are described in 9.8.7. 

9-9 C Language Reference 



The sizeof operator yields the size, in bytes, of its operand. (A byte is undefined by 
the language except in terms of the value of sizeof. However, in all existing implemen­
tations a byte is the space required to hold a char.) When applied to an array, the re­
sult is the total number of bytes in the array. The size is determined from the declara­
tions of the objects in the expression. This expression is semantically an integer con­
stant and may be used anywhere a constant is required. Its major use is in communi­
cation with routines like storage allocators and 1/0 systems. 

The sizeof operator may also be applied to a type name in parentheses. In that case, it 
yields the size, in bytes, of an object of the indicated type. 

The construction sizeof(type) is taken to be a unit, so the expression sizeof(type)-2 is 
the same as (sizeof(type))-2. 

9.7.3 Multiplicative Operators 
The multiplicative operators *, I, and % group left-to-right. The usual arithmetic con­
versions are performed. 

multiplicative-expression: 
expression '* expression 
expression 1 expression 
expression % expression 

The binary * operator indicates multiplication. The * operator is associative and ex­
pressions with several multiplications at the same level may be rearranged by the com­
piler. 

The binary 1 operator indicates division. When positive integers are divided truncation 
is toward 0, but the form of truncation is machine-dependent if either operand is 
negative. On all machines covered by this chapter, the remainder has the same sign as 
the dividend. It is always true that (a/b)*b + a%b is equal to a (if b is not 0). 

The binary % operator yields the remainder from the division of the first expression by 
the second. The usual arithmetic conversions are performed. The operands must not be 
float. 

9.7.4 Additive Operators 
The additive operators + and - group left-to-right. The usual arithmetic conversions 
are performed. There are some additional type possibilities for each operator. 

additive-expression: 
expression + expression 
expression - expression 

The result of the + operator is the sum of the operands. A pointer to an object in an 
array and a value of any integral type may be added. The latter is in all cases con­
verted to an address offset by multiplying it by the length of the object to which the 
pointer points. The result is a pointer of the same type as the original pointer, one that 
points to another object in the same array, appropriately offset from the original ob­
ject. Thus, if P is a pointer to an object in an array, the expression P+l is a pointer to 
the next object in the array. 

No further type combinations are allowed for pointers. 

C Language Reference 9-10 



The + operator is associative and expressions with several additions at the same level 
may be rearranged by the compiler. 

The result of the - operator is the difference of the operands. The usual arithmetic 
conversions are performed. Additionally, a value of any integral type may be sub­
tracted from a pointer, and then the same conversions as for addition apply. 

If two pointers to objects of the same type are subtracted, the result is converted (by 
division by the length of the object) to an int representing the number of objects sepa­
rating the pointed-to objects. This conversion will in general give unexpected results 
unless the pointers point to objects in the same array, since pointers, even to objects of 
the same type, do not necessarily differ by a multiple of the object-length. 

5 Shift Operators 
The shift operators « and » group left-to-right. Both perform the usual arithmetic 
conversions on their operands, each of which must be integral. Then the right operand 
is converted to int; the type of the result is that of the left operand. The result is unde­
fined if the right operand is negative, or greater than or equal to the length of the ob­
ject in bits. 

shift-expression: 
expression « expression 
expression » expression 

The value of El«E2 is El (interpreted as a bit pattern) left-shifted E2 bits; vacated 
bits are O-filled. The value of El»E2 is El right-shifted E2 bit positions. The right 
shift is guaranteed to be logical (a-fill) if El is unsigned; otherwise it may be (and is, 
on the PDP-11) arithmetic (fill by a copy of the sign bit). 

9 .. 7.6 Operators 
The relational operators group left-to-right, but this fact is not very useful; a<b<c does 
not mean what it seems to. 

re/a tiona/-expression: 
expression < expression 
expression > expression 
expression <= expression 
expression >= expression 

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater 
than or equal to) all yield a if the specified relation is false and 1 if it is true. The 
type of the result is into The usual arithmetic conversions are performed. Two pointers 
may be compared; the result depends on the relative locations in the address space of 
the pointed-to objects. Pointer comparison is portable only when the pointers point to 
objects in the same array. 

9 .. 7 .. 7 
equality-expression: 

expression == expression 
expression 1= expression 

The == (equal to) and the != (not equal to) operators are exactly analogous to the rela­
tional operators except for their lower precedence. (Thus a<h == c<d is 1 whenever 
a<b and c<d have the same truth-value). 

9-11 C Language Reference 



A pointer may be compared to an integer, but the result is machine dependent unless 
the integer is the constant O. A pointer to which 0 has been assigned is guaranteed not 
to point to any object, and will appear to be equal to 0; in conventional usage, such a 
pointer is considered to be null. 

9.7.8 Bitwise AND Operator 
and-expression: 

expression & expression 

The & operator is associative and expressions involving & may be rearranged. The 
usual arithmetic conversions are performed; the result is the bitwise AND function of 
the operands. The operator applies only to integral operands. 

9.7.9 Bitwise Exclusive OR Operator 
exclusive-or-expression: 

expression A expression 

The " operator is associative and expressions involving A may be rearranged. The usual 
arithmetic conversions are performed; the result is the bitwise exclusive OR function of 
the operands. The operator applies only to integral operands. 

9.7.10 Bitwise Inclusive OR Operator 
inclusive-or-expression: 

expression I expression 

The I operator is associative and expressions involving I may be rearranged. The usual 
arithmetic conversions are performed; the result is the bitwise inclusive OR function of 
its operands. The operator applies only to integral operands. 

9.7.11 Logical AND Operator 
logical-and-expression: 

expression && expression 

The && operator groups left-to-right. It returns 1 if both its operands are non-zero, 0 
otherwise. Unlike &, && guarantees left-to-right evaluation; moreover the second op­
erand is not evaluated if the first operand is O. 

The operands need not have the same type, but each must have one of the fundamen­
tal types or be a pointer. The result is always into 

9.7.12 Logical OR Operator 
logical-or -expression: 

expression II expression 

The II operator groups left-to-right. It returns 1 if either of its operands is non-zero, 
and 0 otherwise. Unlike I, II guarantees left-to-right evaluation; moreover, the second 
operand is not evaluated if the value of the first operand is non-zero. 

The operands need not have the same type, but each must have one of the fundamen­
tal types or be a pointer. The result is always into 

C Language Reference 9-12 



9.7.13 Conditional Operator 
conditional-expression: 

expression ? expression : expression 

Conditional expressions group right-to-Ieft. The first expression is evaluated and if it 
is non-zero, the result is the value of the second expression, otherwise that of third 
expression. If possible, the usual arithmetic conversions are performed to bring the 
second and third expressions to a common type; otherwise, if both are pointers of the 
same type, the result has the common type; otherwise, one must be a pointer and the 
other the constant 0, and the result has the type of the pointer. Only one of the second 
and third expressions is evaluated. 

9.7.14 Assignment Operators 

There are a number of assignment operators, all of which group right-to-Ieft. All re­
quire an lvalue as their left operand, and the type of an assignment expression is that 
of its left operand. The value is the value stored in the left operand after the assign­
ment has taken place. The two parts of a compound assignment operator are separate 
tokens. 

assignment -expression: 
Ivalue = expression 
Ivalue += expression 
Ivalue -= expression 
Ivalue *= expression 
Ivalue /= expression 
Ivalue 0/0= expression 
Ivalue »= expression 
Ivalue «= expression 
Ivalue &= expression 
Ivalue "= expression 
Ivalue I = expression 

In the simple assignment with the equal sign (=), the value of the expression replaces 
that of the object referred to by the Ivalue. If both operands have arithmetic type, the 
right operand is converted to the type of the left preparatory to the assignment. 

The behavior of an expression of the form El op= E2 may be inferred by taking it as 
equivalent to El = El op (E2); however, El is evaluated only once. In += and -=, the 
left operand may be a pointer, in which case the (integral) right operand is converted 
as explained in 7.4; all right operands and all non-pointer left operands must have 
arithmetic type. 

The compilers currently allow a pointer to be assigned to an integer, an integer to a 
pointer, and a pointer to a pointer of another type. The assignment is a pure copy op­
eration, with no conversion. This usage is nonportable, and may produce pointers that 
cause addressing exceptions when used. However, it is guaranteed that assignment of 
the constant 0 to a pointer will produce a null pointer distinguishable from a pointer to 
any object. 

9-13 C Language Reference 



9.7.15 Comma Operator 
comma-expression: 

expression , expression 

A pair of expressions separated by a comma is evaluated left-to-right and the value of 
the left expression is discarded. The type and value of the result are the type and 
value of the right operand. This operator groups left-to-right. In contexts where 
comma is given a special meaning, for example in a list of actual arguments ,to func­
tions (see Section 9.7.1) and lists of initializers (see Section 9.8.6), the comma opera­
tor as described in this section can only appear in parentheses. For example, 

f( a, (t=3, t+2) , c) 

has three arguments, the second of which has the value 5. 

9.8 Declarations 
Declarations specify the interpretation that C gives to each identifier; they don't neces­
sarily reserve storage associated with the identifier. Declarations have the form 

declaration: 
dec/-specifiers declarator-list opt ; 

The declarators in the declarator-list contain the identifiers being declared. The decl­
specifiers consist of a sequence of type and storage class specifiers. 

dec/-specifiers: 
type-specifier decl-specifierst opt 

sc-specifier dec I-specifiers opt 

The list must be self-consistent in a way described in Section 9.8.1. 

9 .. 8 .. 1 Storage Class Specifiers 
The sc-specifiers are: 

sc-specifier: 
auto 
static 
extern 
register 
typedef 

The typedef specifier does not reserve storage and is called a "storage class specifier" 
only for syntactic convenience; it is discussed in 9 .8.8. The meanings of the various 
storage classes were discussed in 9.4. 

The auto, static, and register declarations also serve as definitions in that they cause 
an appropriate amount of storage to be reserved. In the extern case there must be an 
external definition (10) for the given identifiers somewhere outside the function in 
which they are declared. 

A register declaration is best thought of as an auto declaration, together with a hint to 
the compiler that the variables declared will be heavily used. Only the first few such 

C Language Reference 9-14 



declarations are effective. Moreover, only variables of certain types will be stored in 
registers; on the PDP-ll, they are int, char, or pointer. One other restriction applies to 
register variables: the address-of operator & cannot be applied to them. Smaller, faster 
programs can be expected if register declarations are used appropriately, but future 
improvements in code generation may render them unnecessary. 

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing 
from a declaration, it is taken to be auto inside a function, extern outside. Exception: 
functions are never automatic. 

9.8 .. 2 Type Specifiers 
The type-specifiers are 

type-specifier: 
char 
short 
int 
long 
unsigned 
float 
double 
s truct -or -union-specifier 
typedef-name 

The words long, short, and unsigned may be thought of as adjectives. The following 
combinations are acceptable: 

short int 
long int 
unsigned int 
long float 

The meaning of the last is the same as double. Otherwise, at most one type-specifier 
may be given in a declaration. If the type-specifier is missing from a declaration, it is 
taken to be into 

Specifiers for structures and unions are discussed in 9.8.5; declarations with typedef 
names are discussed in 9.8.8. 

9.8.3 Declarators 
The declarator-list appearing in a declaration is a comma-separated sequence of 
declarators, each of which may have an initializer. 

declarator-list: 
init-declarator 
init-declarator , declarator-list 

init-declarator: 
declarator initializer opt 

Initializers are discussed in 9.8.6. The specifiers in the declaration indicate the type 
and storage class of the objects to which the declarators refer. 

9-15 C Language Reference 



Declarators have the syntax: 

declarator: 
identifier 
( declarator) 
.. declarator 
declarator 0 
declarator [ constant-expression opt ] 

The grouping is the same as in expressions. 

9.8.4 Meaning of Declarators 
Each declarator is taken to be an assertion that when a construction of the same form 
as the declarator appears in an expression, it yields an object of the indicated type and 
storage class. Each declarator contains exactly one identifier; it is this identifier that is 
declared. 

If an unadorned identifier appears as a declarator, then it has the type indicated by the 
specifier heading the declaration. 

A declarator in parentheses is identical to the unadorned declarator, but the binding of 
complex declarators may be altered by parentheses. See the examples below. 

Now irnagine a declaration like this, where T is a type-specifier (like int, etc.) and Dl 
is a declarator: 

T 01 

Suppose this declaration makes the identifier have type" ... T," where the" ... " is 
empty if Dl is a plain identifier (type of x in "int x" is just int). If Dl has the form 

*0 

the type of the contained identifier is " ... pointer to T." If Dl has the form 

DO 
then the contained identifier has the type" ... function returning T." 

If D 1 has either of these two forms 

D [constant-expression] 

O[] 

then the contained identifier has type" ... array of T." 

In the first case, the constant expression is an expression whose value is determinable 
at compile time, and whose type is int. (Constant expressions are defined precisely in 
9.15.) When several "array of" specifications are adjacent, a multi-dimensional array 
is created; the constant expressions that specify the bounds of the arrays may be miss­
ing only for the first member of the sequence. This elision is useful when the array is 
external and the actual definition, which allocates storage, is given elsewhere. The first 
constant-expression may also be omitted when the declarator is followed by initializa­
tion. In this case, the size is calculated from the number of initial elements supplied. 

An array may be constructed from one of the basic types, from a pointer, from a 
structure or union, or from another array (to generate a multi-dimensional array). 

C Language Reference 9-16 



Not all the possibilities allowed by the syntax above are actually permitted. Functions 
may not return arrays, structures, unions or functions, although they may return point­
ers to such things. Further, there are no arrays of functions, although there may be 
arrays of pointers to functions. Likewise, a structure or union may not contain a func­
tion, but it may contain a pointer to a function. As an example, the declaration 

int i, *ip, fO, *fipO, (*pfi)O; 

declares an integer i, a pointer ip to an integer, a function f returning an integer, a 
function fip returning a pointer to an integer, and a pointer pfi to a function that re­
turns an integer. It is especially useful to compare the last two. The binding of *fipO 
is * (fipO) , so that the declaration suggests, and the same construction in an expression 
requires, the calling of a function fip, and then using indirection through the (pointer) 
result to yield an integer. In the declarator (*pfi)0, the extra parentheses are neces­
sary, as they are also in an expression, to indicate that indirection through a pointer to 
a function yields a function, which is then called; it returns an integer. For example, 

float fa[17], *afp[17]; 

declares an array of float numbers and an array of pointers to float numbers. Finally, 

static int x3d [3] [5] [7]; 

declares a static three-dimensional array of integers, with rank 3x5x7. In complete de­
tail, x3d is an array of three items; each item is an array of five arrays; each of the 
latter arrays is an array of seven integers. Any of the expressions x3d, x3d[i] , 
x3d[i]U], x3d[i]UHk] may reasonably appear in an expression. The first three have 
type "array," the last has type into 

9 .. 8.5 Structure and Union Declarations 
A structure is an object consisting of a sequence of named members. Each member 
may have any type. A union is an object that may, at a given time, contain anyone of 
several members. Structure and union specifiers have the same form. 

struct -or -union-specifier: 
struct-or-union { struct-decl-list } 
struct-or-union identifier { struct-decl-list } 
struct-or-union identifier 

struct-or-union: 
struct 
union 

The struct-decl-list is a series of declarations for members of the structure or union: 

struct-decl-list: 
struct-declaration 
struct-declaration struct-decl-list 

struct-declaration: 
type-specifier 
struct-declarator-list ; 

struct-declarator-list: 
struct-declarator 
struct-declarator , struct-declarator-list 

9-17 C Language Reference 



Usually, a struct-declarator is just a declarator for a member of a structure or union. 
A structure member may also consist of a specified number of bits. Such a member is 
also called a field; its length is set off from the field name by a colon. 

struct-declarator: 
declarator 
declarator: constant-expression 
: constant-expression 

Within a structure, the objects declared have addresses that increase as their declara­
tions are read left-to-right. Each non-field member of a structure begins on an ad­
dressing boundary appropriate to its type; therefore, there may be unnamed holes in a 
structure. Field members are packed into machine integers; they do not straddle words. 
A field that doesn't fit into the space remaining in a word is put into the next word. 
No field may be wider than a word. Fields are assigned right-to-Ieft on the PDP-11, 
left-to-right on other machines. 

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed 
field useful for padding to conform to externally-imposed layouts. As a special case, 
an unnamed field with a width of 0 specifies alignment of the next field at a word 
boundary. The "next field" presumably is a field, not an ordinary structure member, 
because in the latter case the alignment would have been automatic. 

The language doesn't restrict the types of things that are declared as fields, but imple­
mentations aren't required to support any but integer fields. Moreover, even int fields 
may be considered unsigned. On the PDP-11, fields aren't signed and have only inte­
ger values. In all implementations, there are no arrays of fields, and the address-of 
operator may not be applied to them, so that there are no pointers to fields. 

A union may be thought of as a structure all of whose members begin at offset 0 and 
whose size is sufficient to contain any of its members. At most, one of the members 
can be stored in a union at any time. 

A structure or union specifier of the second form, that is, one of 

struct identifier { struct-decl-list } 
union identifier { struct-decl-list } 

declares the identifier to be the structure tag (or union tag) of the structure specified by 
the list. A subsequent declaration may then use the third form of specifier, one of 

identifier 
union identifier 

Structure tags allow definition of self-referential structures; they also permit the long 
part of the declaration to be given once and used several times. It is illegal to declare 
a structure or union that contains an instance of itself, but a structure or union may 
contain a pointer to an instance of itself. 

The names of members and tags may be the same as ordinary variables. However, 
names of tags and members must be mutually distinct. 

Two structures may share a common initial sequence of members; that is, the same 
member may appear in two different structures if it has the same type in both and if 
all previous members are the same in both. (Actually, the compiler checks only that a 
name in two different structures has the same type and offset in both, but if preceding 
members differ the construction is nonportable.) 

C Language Reference 9-18 



A simple example of a structure declaration is 

struct tnode { 

}; 

char tword [20] ; 
int count; 
struct tnode * left; 
struct tnode * right; 

which contains an array of 20 characters, an integer, and two pointers to similar struc­
tures. Once this declaration has been given, the declaration 

struct tnode s, *sp; 

declares s to be a structure of the given sort and sp to be a pointer to a structure of 
the given sort. With these declarations, the expression 

sp->count 

refers to the count field of the structure to which sp points; 

s.left 

refers to the left subtree pointer of the structure s; and 

s. right->tword [0] 

refers to the first character of the tword member of the right subtree of s. 

9 .. 8 .. 6 Initialization 
A declarator may specify an initial value for the identifier being declared. The in­
itializer is preceded by an equal sign (=), and consists of an expression or a list of val­
ues nested in braces. 

initializer: 
= expression 
= { initializer-list } 
= { initializer-list , } 

initializer-list: 
expression 
initializer-list , initializer-list 
{ initializer-list } 

All the expressions in an initializer for a static or external variable must be constant 
expressions (described in 9.15), or expressions that reduce to the address of a previ­
ously declared variable, possibly offset by a constant expression. Automatic or register 
variables may be initialized by arbitrary expressions involving constants, and previously 
declared variables and functions. 

Uninitialized static and external variables are guaranteed to start off as 0; uninitialized 
automatic and register variables are guaranteed to start off as garbage. 

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it 
consists of a single expression, perhaps in braces. The initial value of the object is 
taken from the expression; the same conversions as for assignment are performed. 

When the declared variable is an aggregate (a structure or array) then the initializer 
consists of a brace-enclosed, comma-separated list of initializers for the members of 

9-19 C Language Reference 



the aggregate, written in increasing subscript or member order. If the aggregate con­
tains subaggregates, this rule applies recursively to the members of the aggregate. If 
there are fewer initializers in the list than there are members of the aggregate, then 
the aggregate is padded with O's. It is not permitted to initialize unions or automatic 
aggregates. 

Braces may be elided as follows. If the initializer begins with a left brace, then the 
succeeding comma-separated list of initializers initializes the members of the aggre­
gate; it is erroneous for there to be more initializers than members. 

If, however, the initializer does not begin with a left brace, then only enough elements 
from the list are taken to account for the members of the aggregate; any remaining 
members are left to initialize the next member of the aggregate of which the current 
aggregate is a part. 

A final abbreviation allows a char array to be initialized by a string. In this case, suc­
cessive characters of the string initialize the members of the array. For example, 

int x[] = { 1, 3, 5 }: 

declares and initializes x as a l-dimensional array that has three members, since no 
size was specified and there are three initializers. 

float y[4][3] = { 

}: 

{ 1, 3, 5 }, 
{ 2, 4, 6 }, 
{ 3, 5, 7 }, 

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array 
y[O], namely y[OHO], y[OHl], and y[O][2]. Likewise, the next two lines initialize y[l] 
and y[2]. The initializer ends early and therefore y[3] is initialized with O. Precisely 
the same effect could have been achieved by 

float y[ 4] [3] = { 
1, 3, 5, 2, 4, 6, 3, 5. 7 

}: 

The initializer for y begins with a left brace, but that for y[O] does not, therefore 3 
elements from the list are used. Likewise the next three are taken successively for 
y[l] and y[2]. Also, this initializes the first column of y (regarded as a two­
dimensional array) and leaves the rest 0: 

float y[4] [3] = { 

}; 

Finally, this 

{ 1 }, { 2 }, { 3 }, { 4 } 

char msg [] = "Syntax error on line 0/050: 

shows a character array whose members are initialized with a string. 

9.8.7 Type Names 
In two contexts (specifying type conversions explicitly by means of a cast, and as an 
argument of sizeof), you should supply the name of a data type. Use a "type name" 
(a declaration for an object of that type that omits the name of the object) to do this. 

C Language Reference 9-20 



type-name: 
type-specifier abstract-declarator 

abstract-declarator: 
empty 
( abstract-declarator) 
.. abstract-declarator 
abstract-declarator 0 
abstract-declarator [ constant-expression opt ] 

To avoid ambiguity, in the construction 

( abstract-declarator) 

the abstract-declarator must be non-empty. This restriction makes it possible to iden­
tify uniquely the location in the abstract-declarator where the identifier would appear if 
the construction were a declarator in a declaration. The named type is then the same 
as the type of the hypothetical identifier. For example, 

int 
int * 
int * [3] 
int (*)[3] 
int *0 
int (*)0 

name the types "integer," "pointer to integer," "array of 3 pointers to integers," 
"pointer to an array of 3 integers," "function returning pointer to integer," and "point­
er to function returning an integer" respectively. 

9.8.8 Typedef 
Declarations whose "storage class" is typedef don't define storage. Instead, they define 
identifiers that can be used later as if they were type keywords naming fundamental or 
derived types: 

typedef-name: 
identifier 

If a declaration involves typedef, each identifier appearing therein becomes syntacti­
cally equal to the type keyword (naming the type associated with the identifier) in the 
way described in 9.8.4. 
For example, after 

typedef int MILES, 1< KLICKSP; 
typedef struct {double re, im;} complex; 

the constructions 

MILES distance; 
extern KLiCKSP metricp; 
complex z, *zp; 

are all legal declarations; the type of distance is int, that of metricp is "pointer to 
int," and that of z is the specified structure. The zp is a pointer to such a structure. 

The typedef declaration does not introduce brand new types, only synonyms for types 
that could be specified in another way. Thus, in the example above, distance is consid­
ered to have exactly the same type as any other int object. 

9-21 C Language Reference 



9.9 Statements 
Except as indicated, statements are executed in sequence. 

9 .. 9 .. 1 Expression Statement 
Most statements are expression statements, having the form 

expression ; 

Usually expression statements are assignments or function calls. 

9.9.2 Compound Statement, or Block 
So that several statements can be used where one is expected, the compound statement 
(also, and equivalently, called "block") is provided: 

compound-statement: 
{ declaration-list opt statement-list opt } 

declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
statement statement-list 

If any of the identifiers in the declaration-list were previously declared, the outer dec­
laration is pushed down for the duration of the block, after which it resumes its force. 

Any initializations of auto or register variables are performed each time the block is 
entered at the top. It is currently possible (but a bad practice) to transfer into a block, 
so that the initializations aren't performed. Initializations of static variables are done 
only once when the program begins execution. Inside a block, extern declarations do 
not reserve storage so initialization is not permitted. 

9.9.3 Conditional Statement 
The two forms of the conditional statement are 

if ( expression) statement 
if ( expression ) statement else statement 

In both cases the expression is evaluated and if it is non-zero, the first sub statement is 
executed. In the second case the second substatement is executed if the expression is 
O. As usual the "else" ambiguity is resolved by connecting an else with the last en­
countered else-less if. 

9.9.4 While Statement 
The while statement has the form 

while ( expression ) statement 

The sub statement is executed repeatedly so long as the value of the expression re­
mains non-zero. The test takes place before each execution of the statement. 

C Language Reference 9-22 



9.9.5 Do Statement 
The do statement has the form 

do statement while ( expression ) ; 

The substatement is executed repeatedly until the value of the expression becomes 
zero. The test takes place after each execution of the statement. 

9.9.6 For Statement 
The for statement has the form 

for ( expression-1 opt ; expression-2 opt ; expression-3 opt ) statement 

This statement is equivalent to 

expression-1 ; 
while (expression-2) { 

statement 
expression-3 ; 

} 

Thus the first expre'lsion specifies initialization for the loop; the second specifies a 
test, made before each iteration, such that the loop is exited when the expression be­
comes 0; the third expression often specifies an incrementing that is performed after 
each iteration. 

Any or all of the expressions may be dropped. A missing expression-2 makes the im­
plied while clause equivalent to while(l); other missing expressions are simply dropped 
from the expansion above. 

9.9.7 Switch Statement 
The switch statement causes control to be transferred to one of several statements de­
pending on the value of an expression. It has the form 

switch ( expression ) statement 

The usual arithmetic conversion is performed on the expression, but the result must be 
into The statement is typically compound. Any statement within the statement may be 
labeled with one or more case prefixes as follows: 

case constant-expression : 

where the constant expression must be into No two of the case constants in the same 
switch may have the same value. Constant expressions are precisely defined in 9.15. 

There may also be at most one statement prefix of the form 

default: 

When the switch statement is executed, its expression is evaluated and compared with 
each case constant. If one of the case constants is equal to the value of the expression, 
control is passed to the statement following the matched case prefix. If no case con­
stant matches the expression, and if there is a default prefix, control passes to the 
prefixed statement. If no case matches and if there is no default then none of the 
statements in the switch is executed. 

9-23 C Language Reference 



The case and default prefixes in themselves do not alter the flow of control, which 
continues unimpeded across such prefixes. To exit from a switch, see break, 9.9.8. 

Usually the statement that is the subject of a switch is compound. Declarations may 
appear at the head of this statement, but initializations of automatic or register vari­
ables are ineffective. 

9.9.8 Break Statement 
The statement 

break; 

causes termination of the smallest enclosing while, do, for, or switch statement; con­
trol passes to the statement following the terminated statement. 

9.9.9 Continue Statement 
This statement causes control to pass to the loop-continuation portion of the smallest 
enclosing while, do, or for statement (i.e, to the end of the loop): 

continue; 

More precisely, in each of the statements 

while ( ... ) { do {for ( ... ) { 

contin: ; contin: ; contin: ; 
} } while ( ... ); } 

a continue is equivalent to goto contino (Following the contin: is a null statement; see 
Section 9.9.13.) 

9.9.10 Return Statement 
A function returns to its caller by means of the return statement, which has one of the 
forms 

return; 
return expression ; 

In the first case the returned value is undefined. In the second case, the value of the 
expression is returned to the caller of the function. If required, the expression is con­
verted, as if by assignment, to the type of the function in which it appears. Flowing off 
the end of a function is equivalent to a return with no returned value. 

9.9.11 Goto Statement 
Control may be transferred unconditionally by means of the statement 

goto identifier ; 

The identifier must be a label (9.9.12) located in the current function. 

C Language Reference 9-24 



9.9.12 Labeled Statement 
Any statement may be preceded by label prefixes of the form 

identifier : 

which serve to declare the identifier as a label. The only use of a label is as a target 
of a goto. The scope of a label is the current function, excluding any sub-blocks in 
which the same identifier has been redeclared. See Section 9.11. 

9.9.13 Null Statement 
The null statement has the form 

A null statement is useful to carry a label just before the right brace ( } ) of a com­
pound statement or to supply a null body to a looping statement such as while. 

9.10 External Definitions 
A C program consists of a sequence of external definitions. An external definition de­
clares an identifier to have storage class extern (by default) or perhaps static, and a 
specified type. The type-specifier (9.8.2) may also be empty, in which case the type is 
taken to be into The scope of external definitions persists to the end of the file in 
which they are declared just as the effect of declarations persists to the end of a block. 
The syntax of external definitions is the same as that of all declarations, except that 
only at this level may the code for functions be given. 

9.10.1 External Function Definitions 
Function definitions have the form 

function-definition: 
decl-specifiers opt function-declarator function-body 

The only sc-specifiers allowed among the decl-specifiers are extern or static; see 
9.11.2 for the distinction between them. A function declarator is similar to a declarator 
for a "function returning ... " except that it lists the formal parameters of the function 
being defined. 

function-dec/ara tor: 
declarator ( parameter-list opt ) 

parameter-list: 
identifier 
identifier I parameter-list 

The function-body has the form 

function-body: 
dec/aration-list compound-statement 

The identifiers in the parameter list, and only those identifiers, may be declared in the 
declaration list. Any identifiers whose type is not given are taken to be into The only 

9-25 C Language Reference 



storage class that may be specified is register; if it is specified, the corresponding ac­
tual parameter will be copied, if possible, into a register at the outset of the function. 

A simple example of a complete function definition is 

int max(a, b, c) 
int a, b, c; 
{ 

} 

int m; 

m = (a > b) ? a : b; 
return((m > c) ? m : c): 

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, C; is 
the declaration-list for the formal parameters; { ... } is the block giving the code for 
the statement. 

C converts all float actual parameters to double, so formal parameters declared float 
have their declaration adjusted to read double. Also, since a reference to an array in 
any context (in particular as an actual parameter) is taken to mean a pointer to the 
first element of the array, declarations of formal parameters declared "array of ... " are 
adjusted to read "pointer to ... ". Finally, because structures, unions and functions can­
not be passed to a function, it is useless to declare a formal parameter to be a struc­
ture, union or function (pointers to such objects are of course permitted). 

9.10.2 External Data Definitions 
An external data definition has the form 

data-definition: 
declaration 

The storage class of such data may be extern (the default) or static, but not auto or 
register. 

9.11 Scope Rules 
A C program need not all be compiled at the same time; the source text of the pro­
gram may be kept in several files, and precompiled routines may be loaded from li­
braries. Communication among the functions of a program may be carried out both 
through explicit calls and through manipulation of external data. 

Therefore, there are two kinds of scope to consider: first, what may be called the lexi­
cal scope of an identifier, essentially the region of a program during which it may be 
used without drawing "undefined identifier" diagnostics; and second, the scope associ­
ated with external identifiers, characterized by the rule that references to the same ex­
ternal identifier are references to the same object. 

9.11.1 Lexical Scope 
The lexical scope of identifiers declared in external definitions persists from the defini­
tion through the end of the source file in which they appear. The lexical sCupe of iden­
tifiers that are formal parameters persists through the function with which they are as­
sociated. The lexical scope of identifiers declared at the head of blocks persists until 

C Language Reference 9-26 



the end of the block. The lexical scope of labels is the whole of the function in which 
they appear. 

Because all references to the same external identifier refer to the same object (see 
9.11.2) the compiler checks all declarations of the same external identifier for compati­
bility; in effect their scope is increased to the whole file in which they appear. 

In all cases, however, if an identifier is explicitly declared at the head of a block, in­
cluding the block constituting a function, any declaration of that identifier outside the 
block is suspended until the end of the block. 

Remember also (9.8.5) that identifiers associated with ordinary variables on the one 
hand and those associated with structure and union members and tags on the other 
form two disjoint classes that don't conflict. Members and tags follow the same scope 
rules as other identifiers. All typedef names are in the same class as ordinary identifi­
ers. They may be redeclared in inner blocks, but an explicit type must be given in the 
inner declaration: 

typedef float distance: 

{ 
auto int distance; 

The int must be present in the second declaration, or it would be taken to be a decla­
ration with no declarators and type distance II< • 

9 .. 11.2 Scope of Externals 

If a function refers to an identifier declared to be extern, then somewhere among the 
files or libraries constituting the complete program there must be an external definition 
for the identifier. All functions in a given program that refer to the same external 
identifier refer to the same object, so be sure that that the type and size specified in 
the definition are compatible with those specified by each function that references the 
data. 

The appearance of the extern keyword in an external definition indicates that storage 
for the identifiers being declared will be allocated in another file. Thus in a multi-file 
program, an external data definition without the extern specifier must appear in ex­
actly one of the files. Any other files that wish to give an external definition for the 
identifier must include the extern in the definition. The identifier can be initialized 
only in the declaration where storage is allocated. 

Identifiers declared static at the top level in external definitions are not visible in other 
files. Functions may be declared static. 

9.12 Compiler Control Lines 
The C compiler contains a preprocessor capable of macro substitution, conditional 
compilation, and inclusion of named files. Lines beginning with a pound sign (#) com­
municate with this preprocessor. These lines have syntax independent of the rest of the 
language; they may appear anywhere and are effective, independent of scope, until the 
end of the source program file. 

9-27 C Language Reference 



9.12.1 Token Replacement 
A compiler-control line of the form 

#define identifier token-string 

(note the lack of a trailing semicolon) causes the preprocessor to replace subsequent 
instances of the identifier with the given string of tokens. A line of the form 

#define identifier( identifier, ... , identifier) token-string 

where there is no space between the first identifier and the left parenthesis, is a macro 
definition with arguments. Subsequent instances of the first identifier followed by a left 
parenthesis, a sequence of tokens delimited by commas, and a right parenthesis are 
replaced by the token string in the definition. Each occurrence of an identifier men­
tioned in the formal parameter list of the definition is replaced by the corresponding 
token string from the call. The actual arguments in the call are token strings separated 
by commas; however commas in quoted strings or protected by parentheses don't sepa­
rate arguments. The number of formal and actual parameters must be the same. Text 
inside a string or a character constant is not subject to replacement. 

In both forms the replacement string is rescanned for more defined identifiers. In both 
forms a long definition may be continued on another line by writing a backslash (\) at 
the end of the line to be continued. 

This facility is most valuable for definition of "manifest constants," as in 

#define T ASSIZE 100 
int table [T ASSIZE] : 

A control line of the form 

#undef identifier 

causes the identifier's preprocessor definition to be forgotten. 

9.12.2 File Inclusion 
A cornpiler control line of the form 

#include IIfilename" 

causes the replacement of that line by the entire contents of filename. The named file 
is sought first in the directory of the original source file, and then in a sequence of 
standard places. Alternatively, a control line of the form 

#include <filename> 

searches only the standard places, and not the directory of the source file. You may 
nest #include' s. 

9.1203 Conditional Compilation 
A compiler control line of the form 

#if constant-expression 

checks to see if the constant expression (see 9.15) evaluates to non-zero. 

C Language Reference 9-28 



A control line of the form 

#ifdef identifier 

checks to see if the identifier is currently defined in the preprocessor; that is, whether 
it has been the subject of a #define control line. A control line of the form 

#ifndef identifier 

checks to see if the identifier is currently undefined in the preprocessor. All three 
forms are followed by an arbitrary number of lines, possibly containing a control line 

#else 

and then by a control line 

#endif 

If the checked condition is true then any lines between #else and #endif are ignored. If 
the checked condition is false then any lines between the test and an #else or, lacking 
an #else, the #endif, are ignored. These constructions may be nested. 

9.12.4 Line Control 
For the benefit of other preprocessors that generate C programs, a line of the form, 

#line constant identifier 

causes the compiler to believe, for purposes of error diagnostics, that the line number 
of the next source line is given by the constant and the current input file is named by 
the identifier. If the identifier is absent, the remembered filename does not change. 

13 Implicit Declarations 
You need not always specify both the storage class and the type of identifiers in a dec­
laration. The storage class is supplied by the context in external definitions and in dec­
larations of formal parameters and structure members. In a declaration inside a func­
tion, if a storage class but no type is given, the identifier is assumed to be int; if a 
type but no storage class is indicated, the identifier is assumed to be auto. An excep­
tion to the latter rule is made for functions, since auto functions are meaningless (C 
being incapable of compiling code into the stack); if the type of an identifier is "func­
tion returning ... ", it is implicitly declared to be extern. 

In an expression, an identifier followed by a left parenthesis and not already declared 
is contextually declared to be "function returning int". 

1 Types Revisited 
This section summarizes operations that can be performed on objects of certain types. 

9.14 .. 1 Structures and Unions 
There are only two things that can be done with a structure or union, that is, to name 
one of its members by means of the period or dot ( . ) operator, or to take its address 
by a unary ampersand (&). Other operations, such as assigning from or to it or pass­
ing it as a parameter, draw an error message. In the future, these operations (but not 
necessarily others) may well be allowed. 

9-29 C Language Reference 



Section 9.7.1 says that in a direct or indirect structure reference (with. or -» the 
name on the right must be a member of the structure named or pointed to by the ex­
pression on the left. To allow an escape from the typing rules, this restriction is not 
firmly enforced by the compiler. In fact, any lvalue is allowed before ., and that lvalue 
is then assumed to have the form of the structure of which the name on the right is a 
member. Also, the expression before a -> is required only to be a pointer or an inte­
ger. If a pointer, it is assumed to point to a structure of which the name on the right 
is a member. If an integer, it is taken to be the absolute address, in machine storage 
units, of the appropriate structure. Such constructions are non-portable. 

9. Functions 
Only two things can be done with a function: call it, or take its address. If the name of 
a function appears in an expression not in the function-name position of a call, a 
pointer to the function is generated. To pass one function to another, say, for example: 

int fO: 

g(f) : 

Then the definition of g might read 

g(funcp) 
int (*funcp) 0; 
{ 

(*funcp)O: 

} 

Note: An f must be declared explicitly in the calling routine since its appearance in 
g(t) was not followed by the left parenthesis. 

9 .. 14.3 Arrays, Pointers, and Subscripting 

Every time an identifier of array type appears in an expression, it is converted into a 
pointer to the first member of the array. Because of this conversion, arrays are not 
lvalues. By definition, the subscript operator [] is interpreted so that El[E2] is identi­
cal to *((El)+(E2)). Because of the conversion rules that apply to +, if El is an array 
and E2 an integer, then El[E2] refers to the E2-th member of E1. Therefore, despite 
its asymmetric appearance, subscripting is a commutative operation. 

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n- di­
mensional array of rank $i times j times ... times k$, then E appearing in an expres­
sion is converted to a pointer to an $(n-1)$-dimensional array with rank $j times ... 
times k$. If the * operator, either explicitly or implicitly as a result of subscripting, is 
applied to this pointer, the result is the pointed-to $(n-1)$-dimensional array, which 
itself is immediately converted into a pointer. 

For example, consider 

int x[3] [5]: 

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to 
a pointer to (the first of three) 5-membered arrays of integers. In the expression x[i], 
which is equivalent to * (x+i) , x is first converted to a pointer as described; then i is 

C Language Reference 9-30 



converted to the type of x, which involves multiplying i by the length the object to 
which the pointer points, namely 5 integer objects. The results are added and indirec­
tion applied to yield an array (of 5 integers) which in turn is converted to a pointer to 
the first of the integers. If there is another subscript, the same argument applies again; 
this time the result is an integer. 

Thus, arrays in C are stored row-wise (last subscript varies fastest), and the first sub­
script in the declaration helps determine the amount of storage consumed by an array 
but plays no other part in subscript calculations. 

9.1 Explicit Pointer Conversions 

Certain conversions involving pointers are permitted but have implementation-depend­
ent aspects. They are all specified by means of an explicit type-conversion operator, 
described in Sections 9.7.2 and 9.8.7. 
A pointer may be converted to any of the integral types large enough to hold it. 
Whether an int or long is needed depends on the machine. The mapping function is 
also machine dependent, but is intended to be unsurprising to those who know the ad­
dressing structure of the machine. We give details for some specific machines below. 

An object of integral type may be explicitly converted to a pointer. The mapping al­
ways carries an integer converted from a pointer back to the same pointer, but is oth­
erwise machine dependent. 

A pointer to one type may be converted to a pointer to another type. The resulting 
pointer may cause addressing exceptions if the subject pointer doesn't refer to an ob­
ject suitably aligned in storage. A pointer to an object of a given size may always be 
converted to a pointer to an object of a smaller size and back again without change. 

For example, a storage-allocation routine might accept a size (in bytes) of an object to 
allocate, and return a char pointer. The pointer might be used in this way: 

extern ehar * alloe 0 ; 
double *dp; 

dp = (double *) alloc(sizeof(double)): 
*dp = 22.0 / 7.0; 

The aHoc must ensure (in a machine-dependent way) that its return value is suitable 
for conversion to a pointer to double; then the use of the function is portable. 

The pointer representation on the PDP-11 corresponds to a 16-bit integer and is meas­
ured in bytes. The chars have no alignment requirements; everything else must have 
an even address. 

On the Honeywell 6000, a pointer corresponds to a 36-bit integer; the word part is in 
the 18 bits, and the two bits that select the character in a word just to their right. Thus 
char pointers are measured in units of $2 sup 16$ bytes; everything else is measured 
in units of $2 sup 18$ machine words. All double quantities and aggregates containing 
them must lie on an even word address (0 mod $2 sup 19$). 

The IBM 370 and the Interdata 8/32 are similar. On both, addresses are measured in 
bytes; elementary objects must be aligned on a boundary equal to their length, so 
pointers to short must be 0 mod 2, to int and float 0 mod 4, and to double 0 mod 8. 
Aggregates are aligned on the strictest boundary required by any of their constituents. 

9-31 C Language Reference 



9.15 Constant Expressions 
At times, C requires expressions that evaluate to a constant: after case, as array 
bounds, and in initializers. In the first two cases, the expression can involve only inte­
ger constants, character constants, and sizeof expressions, possibly connected by the 
binary operators 

+ _ * / % & I A < < > > == ! = < > <= >= 

or by the unary operators 

or by the ternary operator 

?: 

Parentheses can be used for grouping, but not for function calls. 

More latitude is permitted for initializers; besides constant expressions as discussed 
above, one can also apply the unary ampersand (&) operator to external or static ob­
jects, and to external or static arrays subscripted with a constant expression. The unary 
ampersand can also be applied implicitly by appearance of unsubscripted arrays and 
functions. The basic rule is that initializers must evaluate either to a constant or to the 
address of a previously declared external or static object plus or minus a constant. 

9.16 Portability Considerations 
Certain parts of C are inherently machine-dependent. The following list of potential 
trouble spots is not meant to be all-inclusive, but to point out the main ones. 

Purely hardware issues like word size and the properties of floating point arithmetic 
and integer division have proven in practice to be not much of a problem. Other facets 
of the hardware are reflected in differing implementations. Some of these, particularly 
sign extension (converting a negative chatacter into a negative integer) and the order 
in which bytes are placed in a word, are a nuisance that must be carefully watched. 
Most of the others are only minor problems. 

The number of register variables that can actually be placed in registers varies from 
machine to machine, as does the set of valid types. However, the compilers all behave 
properly for their own machine. Excess or invalid register declarations are ignored. 

Some difficulties arise only when dubious coding practices are used. It is exceedingly 
unwise to write programs that depend on any of these properties. 

The order of evaluation of function arguments is not specified by the language. It is 
right to left on the PDP-ll, left to right on the others. The order in which side effects 
take place is also unspecified. 

Since character constants are really objects of type int, multi-character character con­
stants may be permitted. However, the specific implementation is very machine de­
pendent, because the order in which characters are assigned to a word varies from one 
machine to another. 

Fields are assigned to words and characters to integers right-to-Ieft on the PDP-ll 
and Ieft-to-right on other machines. These differences are invisible to isolated pro­
grams that don't indulge in type punning (for example, by converting an int pointer to 
a char pointer and inspecting the pointed-to storage), but must be accounted for when 
conforming to externally-imposed storage layouts. 

C Language Reference 9-32 



The language accepted by the various compilers differs in minor details. Most notably, 
the current PDP-ll compiler doesn't initialize structures containing bit-fields, and 
doesn't accept a few assignment operators in certain contexts where the value of the 
assignment is used. 

9.1 7 Anachronisms 
Since C is an evolving language, certain obsolete constructions may be found in older 
programs. Although most versions of the compiler support such anachronisms, ulti­
mately they will disappear, leaving only a portability problem behind. 

Earlier versions of C used the form =op instead of op= for assignment operators. This 
leads to ambiguities, typified by 

x=-1 
which actually decrements x since the equal sign and the dash are adjacent, but which 
might easily be intended to assign -1 to x. 

The syntax of initializers has changed. Previously, the equal sign that introduces an 
initializer was not present, so instead of 

int x = 1; 

one used 
int x 1; 

The change was made because the initialization 

int f (1 +2) 

resembles a function declaration closely enough to confuse the compilers. 

9.18 Syntax Summary 
This summary is intended as an aid to understanding C syntax, rather than an exact 
statement of the language. 

9.18.1 Expressions 
The basic expressions are: 

expression: 
primary 
* expression 
& expression 
- expression 
! expression 
N expression 
++ Ivalue 
-- Ivalue 
Ivalue ++ 
Ivalue --
sizeof expression 
( type-name ) expression 
expression binop expression 
expression ? expression : expression 
Ivalue asgnop expression 
expression , expression 

9-33 C Language Reference 



primary: 
identifier 
constant 
string 
( expression ) 
primary ( expression-list opt ) 

primary [ expression ] 
Ivalue . identifier 
primary -> identifier 

Ivalue: 
identifier 
primary [ expression ] 
Ivalue . identifier 
primary -> identifier 
'* expression 
( Ivalue ) 

The primary-expression operators 

o []. -> 

have highest priority and group left-to-right. The unary operators 

* & - ! - ++ -- sizeof (type-name) 

have priority below the primary operators but higher than any binary operator, and 
group right-to-Ieft. Binary operators group left-to-right; they have priority decreasing 
as indicated below. The conditional operator groups right to left. 

binop: 
'* / 

+ 
» « 
< > <= >= 
-- I-.-
& 

1 
&& 

" 1: 

Assignment operators all have the same priority, and all group right-to-left. 

8sgnop: 
= += -= '*= /= 0/0= »= «= &= "= 1= 

The comma operator has the lowest priority, and groups left-to-right. 

9 .. 18 .. 2 Declarations 
declaration: 

decl-specifiers init-declarator-list opt 

decl-specifiers: 
type-specifier decl-specifiers opt 

sc-specifier decl-specifiers opt 

C Language Reference 9-34 



sc-specifier: 
auto 
static 
extern 
register 
typedef 

type-specifier: 
char 
short 
int 
long 
unsigned 
float 
double 
struct-or-union-specifier 
typedef-name 

init-declarator-list: 
init-declarator 
init-declarator , init-declarator-list 

init-declarator: 
declarator initializer opt 

declarator: 
identifier 
( declarator) 
'* declarator 
declarator 0 
declarator [ constant-expression opt ] 

struct-or -union-specifier: 
struct { struct-decl-list } 
struct identifier { struct-decl-list } 
struct identifier 
union { struct-decl-list } 
union identifier { struct-decl-list } 
union identifier 

s truct -decl-I ist: 
struct-declaration 
struct-declaration 
struct-decl-list 

struct-declaration: 
type-specifier struct-declarator-list ; 

struct-declarator-list: 
struct-declarator 
struct-declarator , struct-declarator-list 

struct-declarator: 
declarator 
declarator: constant-expression 
: constant-expression 

9-35 C Language Reference 



initializer: 
= expression 
= { initializer-list } 
= { initializer-/ist , } 

initializer-list: 
expression 
initializer-list , initializer-list 
{ initializer-list } 

type-name: 
type-specifier abstract-declarator 

abstract -declara tor: 
empty 
( abstract-declarator) 
* abstract-declarator 
abstract-declarator 0 
abstract-declarator [ constant-expression opt ] 

typedef-name: 
identifier 

9.18.3 Statements 
compound-statement: 

{ declaration-list opt statement-list opt } 

declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
sta tement s ta tement -/is t 

statement: 
compound-statement 
expression ; 
if ( expression ) statement 
if ( expression) statement else statement 
while ( expression ) statement 
do statement while ( expression ) ; 
for ( expression-1 opt; expression-2 opt ; expression-3 opt) statement 
switch ( expression) statement 
case constant-expression: statement 
default : statement 
break; 
continue; 
return; 
return expression ; 
goto identifier ; 
identifier: statement 

C Language Reference 9-36 



9 .. 18 .. 4 External Definitions 

program: 
external-definition 
external-definition program 

external-definition: 
function-definition 
data-definition 

function-definition: 
type-specifier opt function-declarator function-body 

function-declarator: declarator ( parameter-list opt ) 

parameter-list: 
identifier 
identifier, parameter-list 

function-body: 
type-decl-list 
function-s ta tement 

function-s ta tement: 
{ declaration-list opt statement-list} 

data-definition: 
extern opt type-specifier opt init-declarator-list opt ; 

static opt type-specifier opt init-declarator-list opt ; 

9 .. 18.5 Preprocessor 
#define identifier token-string 
#define identifier( identifier, .u., identifier) token-string 
#undef identifier 
#include "filename" 
#include <filename> 
#if constant-expression 
#ifdef identifier 
#ifndef identifier 
#else 
#endif 
#line constant identifier 

9.19 Recent Changes to C 
A few extensions have been made to the C language beyond what is described in the 
book The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, 
Prentice Hall, Inc., 1978. This section describes some of the major extensions. 

9-37 C Language Reference 



9.19.1 Structure Assignment 

Structures may be assigned, passed as arguments to functions, and returned by func­
tions. The types of operands taking part must be the same. Other plausible operators, 
such as equality comparison, have not been implemented. 

There is a subtle defect in the PDP-Ii implementation of functions that return struc­
tures: if an interrupt occurs during the return sequence, and the same function is 
called reentrantly during the interrupt, the value returned from the first call may be 
corrupted. The problem can occur only in the presence of true interrupts, as in an op­
erating system or a user program that makes significant use of signals; ordinary recur­
sive calls are quite safe. 

9.19 .. 2 Enumeration Type 

A new data type analogous to the scalar types of Pascal has been provided. It is: 

enum-specifier 

with syntax 

enum-specifier: 
anum { enum-list } 
anum identifier { enum-list } 
anum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant -expression 

The role of the identifier in the enum-specifier is entirely analogous to that of the 
structure tag in a struct-specifier; it names a particular enumeration. For example, 

enum color { chartreuse, burgundy, claret, puce }: 

enum color * cp, col: 

makes color the enumeration-tag of a type describing various colors, and then declares 
cp as a pointer to an object of that type, and col as an object of that type. 

The identifiers in the enum-list are declared as constants, and may appear wherever 
constants are required. If no enumerators with an equal sign (=) appear, then the val­
ues of the constants begin at 0 and increase by 1 as the declaration is read from left 
to right. An enumerator with an equal sign gives the associated identifier the value in­
dicated; subsequent identifiers continue the progression from the assigned value. 

Enumeration tags and constants must all be distinct; unlike structure tags and mem­
bers, they are drawn from the same set as ordinary identifiers. Objects of a given enu­
meration type are regarded as having a type distinct from objects of all other types, 
and lint flags type mismatches. In the PDP-Ii implementation, all enumeration vari­
ables are treated as if they were into 

C Language Reference 9-38 



Ch:apter 

Ratfor: A Preprocessor 

1 e 1 Introduction 
Many programmers feel that Fortran is the closest thing to a universal programming 
language currently available. It is often the most "efficient" language available, particu­
larly for programs requiring much computation. In spite of this, Fortran has some im­
portant weaknesses. 

Perhaps the worst deficiency is in the control flow statements (conditional branches 
and loops) that express the logic of the program. The conditional statements in Fortran 
are primitive. The Arithmetic IF forces you into at least two statement numbers and 
two (implied) GOTO's; it leads to unintelligible code, and is eschewed by good pro­
grammers. The Logical IF is better, in that the test part can be stated clearly, but 
hopelessly restrictive because the statement that follows the IF can only be one Fortran 
statement (with some further restrictions). And, of course, there can be no ELSE to a 
Fortran IF; you cannot specify an alternative action if the IF is not satisfied. 

The Fortran DO limits you to going forward in an arithmetic progression. It is fine for 
"1 to N in steps of 1 (or 2 or ... )", but there is no direct way to go backwards, or 
even (in ANSI Fortran) to go from 1 to N-1. Moreover, the DO is useless if your 
problem doesn't map into an arithmetic progression. 

Thus, Fortran programs must be written with many labels and branches. The resulting 
code is very difficult to read and understand; hence, it is hard to debug and modify. 

To overcome the deficiencies, and to translate Fortran into a language that uses a 
preprocessor, ratfor(l) is available. This chapter explains the basic concepts and im­
plementations of this language. 

10-1 ratfor 



10.2 Language Design 
Ratfor attempts to retain the merits of Fortran (universality, portability, efficiency) 
while hiding the worst Fortran inadequacies. The language is Fortran except for two 
aspects. First, since control flow is central to any program, regardless of the specific 
application, ratfor's primary task is to conceal this part of Fortran from the user, by 
providing good control flow structures. These structures are sufficient and comfortable 
for structured programming in the narrow sense of programming without OOTO's. Sec­
ond, since the preprocessor must examine an entire program to translate the control 
structure, many of the "cosmetic" deficiencies of Fortran can be eliminated, providing 
a language that is easier and more pleasant to read and write. 

Beyond these two aspects - control flow and cosmetics - ratfor does nothing more 
about Fortran's weaknesses. Though it would be straightforward to extend it to provide 
character strings, for example, they aren't needed by everyone, and the preprocessor 
would be harder to implement. The design of ratfor was based on the principle that it 
need not know any Fortran; any language feature that required understanding of For­
tran has been omitted. Even within the confines of control flow and cosmetics, we'd 
tried to be selective in the features provided, focusing only the most useful constructs. 

The remainder of of this section contains an informal description of ratfor. The control 
flow aspects will be quite familiar to readers familiar with languages like Algol, PLII, 
and Pascal. The cosmetic changes are equally straightforward. 

10.2.1 Statement Grouping 
Fortran doesn't provide a way to group statements together, short of making them into 
a subroutine. A standard construction "if a condition is true, do this group of things" 

if (x > 100) 
{ call error("x>100"); err = 1; return} 

cannot be written directly in Fortran. Instead, you must state the negative condition 
and branching around the group of statements: 

10 

if (x .Ie. 100) goto 10 
call error(5hx> 100) 
err = 1 
return 

When the program doesn't work, or must be modified, you must translate this group of 
statements back into a clearer form before anyone can tell what it does. 

Ratfor eliminates this error-prone and confusing back-and-forth translation. The first 
form shown above is the way the computation is written in ratfor. A group of state­
ments can be treated as a unit by enclosing them in braces ({ }). Throughout the 
language, wherever a single ratfor statement can be used, several may be enclosed in 
braces. (Braces seem clearer and less obtrusive than begin and end or do and end, 
and, of course, do and end already have Fortran meanings.) 

Cosmetics contribute to the readability of code, and thus to its understandability. The 
greater-than character (» is clearer than ". GT.", so ratfor translates it appropriately, 
along with several other similar shorthands. Although many Fortran compilers permit 
character strings in quotes (e.g., "x>lOO") , quotes are not allowed in ANSI Fortran, so 
ratfor converts them into the right number of H's. 

ratfor 10-2 



Ratfor is a free-form language. Statements may appear anywhere on a line, and sev­
eral may appear on one line if they are separated by semicolons. Our previous exam­
ple could also be written in ratfor like this: 

if (x > 100) { 

} 

call errar(" x> 1 00") 
err = 1 
return 

Here, no semicolon is needed at the end of each line because ratfor assumes there is 
one statement per line unless told otherwise. 

Of course, if the statement that follows the if is a single statement (ratfor or other­
wise), no braces are needed: 

if (y <= 0.0 & z <= 0.0) 
write(6, 20) y, Z 

No continuation need be indicated, because the statement is clearly not finished on the 
first line. In general, ratfor continues lines when it seems obvious that they are not yet 
done. (The continuation convention is discussed in detail later.) 

Although a free-form language permits wide latitude in formatting styles, readability is 
important. In particular, proper indentation is necessary to make the logical structure 
of the program obvious to the reader. 

10.2.2 The "else" Clause 
Ratfor provides an else statement to handle the construction "if a condition is true, do 
this thing, otherwise do that thing." For instance, this writes out the smaller of a and 
b, then the larger, and sets sw appropriately: 

if (a <= b) 
{ sw = 0: write (6, 1) a, b } 

else 
{ sw = 1: write (6, 1) b, a } 

The Fortran equivalent of this code is circuitous indeed: 

if (a .gt. b) gata 10 
sw = 0 
write(6, 1) a, b 
gata 20 

10 sw = 1 
write(6, 1) b, a 

20 

This is a mechanical translation; shorter forms exist, as they do for many similar situ­
ations. But all translations suffer from the same problem: since they are translations, 
they are less clear and understandable than code that isn't a translation. To understand 
the Fortran version, you must scan the entire program and see that no other statement 
branches to statements 10 or 20 before you know for sure that you're dealing with an 
if-else construction. 

With the ratfor version, there's no question about how to get to the parts of the state­
ment. The if-else is a single unit that can be read and understood, or ignored if not 

10-3 ratfor 



relevant. The program says what it means. If the statement following an if or an else 
is a single statement, no braces are needed: 

if (a <= b) 
sw = a 

else 
sw = 1 

The syntax of the if statement is as follows, where the else part is optional: 

if (legal Fortran condition) 
rattor statement 

else 
ratfor statement 

The legal Fortran condition is anything that can legally go into a Fortran Logical IF. 
Ratfor doesn't check this clause, since it doesn't know enough Fortran to tell what is 
permitted. The ratfor statement is any ratfor or Fortran statement, or any collection of 
them in braces. 

10.2.3 Nested "if" Statements 
The statement following an if or an else can be any ratfor statement, so it can also be 
another if or else. Consider this problem: the variable f is to be set to -1 if x is less 
than zero, to +1 if x is greater than 100, and to ° otherwise. Then in ratfor, we write 

if (x < 0) 
f = -1 

else if (x > 100) 
f = +1 

else 
f = a 

Here, the statement after the first else is another if-else. Logically, it's just a single 
statement (though rather complicated). This code says what it means. Any version writ­
ten in straight Fortran is necessarily indirect, because Fortran doesn't let you be so 
specific. Following an else with an if is one way to write a multi-way branch in ratfor. 
This structure provides a way to specify one of several alternatives: 

if ( ... ) 

else if ( ... ) 

else if ( ... ) 

else 

Ratfor also provides a switch statement that does the same job in certain special 
cases; in more general situations, we have to make do with spare parts. The tests are 
laid out in sequence, and each one is followed by the code associated with it. Read 
down the list of decisions until you find one that is satisfied. The code associated with 
this condition is executed, and then the entire structure is finished. The trailing else 
part handles the "default" case, where none of the other conditions apply. 

ratfor 10-4 



If there is no default action, this final else part is omitted: 

if (x < 0) 
x=O 

else if (x > 100) 
x = 100 

10.2.4 Ambiguity in "if-else" Structures 
Let's consider complicated structures involving nested if's and else's. For example, 

if (x > 0) 
if (y > 0) 

write(6, 1) x, y 
else 
write(6, 2) y 

shows two if's and only one else. With which if does the else belong? 

This is a genuine ambiguity in ratfor, as it is in many other programming languages. 
The ambiguity is resolved in ratfor (as elsewhere) by saying that in such cases the else 
goes with the closest previous un-else'ed if. Thus in this case, the else goes with the 
inner if, as we have indicated by the indentation. 

We recommend that you resolve such cases by explicit braces, just to make your intent 
clear. Using the case above, then, we would write 

if (x > 0) { 
if (y > 0) 

write(6, 1) x, Y 
else 

write(6, 2) Y 
} 

This doesn't change the meaning, but it eliminates ambiguity. If we want the other as­
sociation, we must write 

if (x > 0) { 
if (y > 0) 

write(6, 1) x, Y 
} 
else 

write(6, 2) Y 

10.2.5 The "switch" Statement 
The switch statement provides a clean way to express multi-way branches that branch 
on the value of some integer-valued expression. The syntax is 

switch (expression) { 

} 

case expr1 : 
statements 

case expr2, expr3 : 
statements 

default: 
statements 

10-5 ratfor 



Each case is followed by a list of comma-separated integer expressions. The expres­
sion inside switch is compared against the case expressions expr 1, expr2, and so on in 
turn until one matches; then, the statements following that case are executed. If no 
cases match the expression, and a default section exists, the statements with it are 
done; if there is no default, nothing is done. In any case, as soon as some block of 
statements is executed, the entire switch is exited immediately. (Readers familiar with 
C should be aware that this behavior is not the same as the C switch.) 

10.2.6 The "do" Statement 
The do statement in ratfor is quite similar to the DO statement in Fortran, except that 
it uses no statement number. The statement number, after all, serves only to mark the 
end of the DO, and this can be done just as easily with braces. Thus 

do i = 1, n { 

} 

x(i) = 0.0 
y(i) = 0.0 
z(i) = 0.0 

is the same as 

do 10 i = 1, n 
x(i) = 0.0 
y(i) = 0.0 
z(i) = 0.0 

10 continue 

The syntax is: 

do legal-Fortran-DO-text 
rattor statement 

The part that follows the keyword do must be something that can legally go into a For­
tran DO statement. Thus if a local version of Fortran allows DO limits to be expres­
sions (not currently permitted in ANSI Fortran), they can be used in a ratfor do. 

The ratfor statement part is often enclosed in braces, but as with the if, a single state­
ment need not have braces around it. This code sets an array to zero: 

do i = 1, n 
x(i) = 0.0 

Slightly more complicated, 

do i = 1, n 
do j = 1, n 

m(i, j) = 0 

sets the entire array m to zero, and 

do i = 1, n 

ratfor 

do j = 1, n 
if (i < j) 

m(i, j) = -1 
else if (i == j) 

m(i, j) = 0 
else 

m(i, j) = +1 

10-6 



sets the upper triangle of m to -1, the diagonal to zero, and the lower triangle to +1. 
(The operator == is "equals", that is, ".EQ.".) In each case, the statement following 
the do is logically a single statement, however complicated, and thus needs no braces. 

10.2.7 The "break" and "next" Statements 
Ratfor provides a statement for leaving a loop early, and one for beginning the next 
iteration. A break causes an immediate exit from the do; in effect it is a branch to the 
statement after the do. A next is a branch to the bottom of the loop, so it causes the 
next iteration to be done. For example, this skips over negative values in an array: 

do i = 1, n { 

} 

if (x(i) < 0.0) 
next 

process positive element 

The break and next also work in the other ratfor looping constructions explained in 
the next few sections. A break and next can be followed by an integer to indicate 
breaking or iterating that level of enclosing loop; thus 

break 2 

exits from two levels of enclosing loops, and break 1 is equivalent to break. Specifying 
next 2 iterates the second enclosing loop. Multi-level break's and next's aren't used 
much, since they lead to coct'e that is hard to understand and slightly risky to change. 

10.2.8 The "while" Statement 
One of the problems with the Fortran DO statement is that it generally insists upon 
being done once, regardless of its limits. If a loop begins 

DO I = 2, 1 

this is typically done once with I set to 2, even though common sense suggests that 
perhaps it shouldn't be. Of course, a ratfor do can easily be preceded by a test 

if (j <= k) 
do i = j, k { 

} 

but this has to be a conscious act, and is often overlooked. 

A more serious problem with the DO statement is that it encourages programs written 
in terms of an arithmetic progression with small positive steps, even though that may 
not be the best way to write them. Code that must be contorted to fit the requirelnents 
imposed by the Fortran DO is that much harder to write and understand. 

To overcome these difficulties, ratfor provides a while statement that is simply a loop: 
"while some condition is true, repeat this group of statements". It has no preconcep­
tions about why one is looping. For example, this routine to compute sin(x) by the 
Maclaurin series combines two termination criteria: 

real function sin (x, e) 
# returns sin(x) to accuracy e, by 
# sin(x) = x - x* *3/3! + x* *5/5! - ... 

10-7 ratfor 



sin = x 
term = x 

i = 3 
while (abs(term»e & k100) { 

term = -term * x**2 / float(i*(i-1)) 
sin = sin + term 

} 

return 
end 

i = i + 2 

Note: If the routine is entered with term already smaller than e, the loop is done zero 
times, that is, no attempt is made to compute x * * 3 and thus a potential under­
flow is avoided. Since the test is made at the top of a while loop instead of the 
bottom, a special case disappears - the code works at one of its boundaries. 
(The test i<100 is the other boundary - making sure the routine stops after 
some maximum number of iterations.) 

A pound sign (#) in a line marks the beginning of a comment; the rest of the line is 
the comment itself. Comments and code can co-exist on the same line. You can make 
marginal remarks, which is impossible with Fortran's "C in column 1" convention. 
Blank lines are also permitted anywhere (they are not in Fortran) to emphasize the 
natural divisions of a program. 

The syntax of the while statement is 

while (legal Fortran condition) 
rattor statement 

As with the if, legal Fortran condition is something that can go into a Fortran Logical 
IF, and ratfor statement is a single statement, which may be multiple statements in 
braces. 

The while encourages a style of coding not normally practiced by Fortran program­
mers. For example, suppose nextch is a function that returns the next input character 
both as a function value and in its argument. Then a loop to find the first non-blank 
character is simply 

while (nextch(ich) == iblank) 

A semicolon by itself is a null statement, necessary here to mark the end of the while; 
if not present, the while controls the next statement. When the loop is broken, ich con­
tains the first non-blank. Of course, the same code can be written in Fortran as 

100 if (nextch (ich) . eq. iblank) goto 100 

but many Fortran programmers (and a few compilers) consider this line illegal. 

10.2.9 The "for" Statement 
The for statement is another ratfor loop that attempts to carry the separation of loop­
body from reason-for-Iooping a step further than the while. A for statement allows 
explicit initialization and increment steps as part of the statement. Thus, a DO loop is 

for (i = 1; i <= n; i = i + 1) ... 

ratfor 10-8 



which is equivalent to 

i = 1 
while (i <= n) { 

i = i + 1 
} 

The initialization and increment of i have been moved into the for statement, making it 
easier to see at a glance what controls the loop. 

The for and while versions have the advantage that they are done zero times if n is 
less than 1; this is not true of the do. 

The loop of the sine routine in the previous section can be rewritten with a for as 

for (i=3; abs(term) > e & i < 1 DO; i=i+2) { 
term = -term * x**2 / float(i*(i-1)) 
sin = sin + term 

} 

The syntax of the for statement is 

for ( init ; condition; increment) 
rattor statement 

The init is any single Fortran statement that gets done once before the loop begins. 
The increment is any single Fortran statement that gets done at the end of each pass 
through the loop, before the test. The condition is again anything that is legal in a logi­
cal IF. Any of init, condition, and increment may be omitted, although the semicolons 
must always be present. A non-existent condition is treated as always true, so fore;;) is 
an indefinite repeat. (But see the repeat-until in the next section.) 

The for statement is particularly useful for backward loops, chaining along lists, loops 
that might be done zero times, and similar things hard to express with a DO statement 
and obscure to write out with IF's and GOTO's. For example, here is a backwards DO 
loop to find the last non-blank character on a card: 

for (i = 80; i > 0; i = i - 1) 
if (card(i) != blank) 

break 

(" !=" is the same as ".NE."). The code scans the columns from 80 through to 1. If a 
non-blank is found, the loop is immediately broken. (The break and next work in for's 
and while's just as in do's). If i reaches zero, the card is all blank. 

This code is rather difficult to write with a regular Fortran DO, since the loop must go 
forward, and we must explicitly set up proper conditions when we fall out of the loop. 
(Forgetting this is a common error.) Thus: 

DO 10 J = 1, 80 
I = 81 - J 
IF (CARO(I) .NE. BLANK) GO TO 11 

10 CONTINUE 
1=0 

11 

The version that uses the for handles the termination condition properly for free; i is 
zero when we fall out of the for loop. 

10-9 ratfor 



The increment in a for need not be an arithmetic progression. The following program 
walks along a list (stored in an integer array ptr) until it finds a zero pointer, adding 
up elements from a parallel array of values: 

sum = 0.0 
for (i = first; i > 0; i = ptr(i)) 

sum = sum + value(i) 

Notice that the code works correctly if the list is empty. Again, placing the test at the 
top of a loop instead of the bottom eliminates a potential boundary error. 

10.2.10 The "repeat-until" Statement 
In spite of warnings, there are times when you need a loop that tests at the bottom af­
ter one pass through. This service is provided by the repeat-until: 

repeat 
ratfor statement 

until (legal Fortran condition) 

The ratfor statement part is done once, then the condition is evaluated. If it is true, the 
loop is exited; if it is false, another pass is made. 

The until part is optional, so a bare repeat is the cleanest way to specify an infinite 
loop. Of course, such a loop must ultimately be broken by some transfer of control 
such as stop, return, or break, or an implicit stop such as running out of input with a 
READ statement. 

The repeat-until statement is less popular than the other looping constructions; in par­
ticular, it is typically outnumbered ten to one by for and while. Be cautious about us­
ing it, for loops that test only at the bottom often don't handle null cases well. 

10.2.11 More on "break" and "next" Statements 
A break exits immediately from do, while, for, and repeat-until. A next goes to the 
test part of do, while, and repeat-until, and to the increment step of a for. 

10.2.12 The "return" Statement 
The standard Fortran mechanism for returning a value from a function uses the name 
of the function as a variable that can be assigned to; the last value stored in it is the 
function value upon return. Here is a routine called equal that returns 1 if two arrays 
are identical, and zero if different. Array ends are marked by the special value of -1. 

ratfor 

# equal _ compare str1 to str2: 
# return 1 if equal, 0 if not 

integer function equal(str1, str2) 
integer str1 (100), str2(100) 
integer i 

for (i = 1; str1 (i) == str2(i): i = i + 1) 
if (str1 (i) == -1) { 

} 
equal = 0 
return 
end 

equal = 1 
return 

10-10 



In many languages (e.g., PLII) one instead says 

return (expression) 

to return a value from a function. Since this is often clearer, ratfor provides such a 
return statement. In a function F, 

return (expression) 

is equivalent to 

{ F = expression; return } 

For example, here is equal again: 

# equal _ compare str1 to str2; 
# return 1 if equal, 0 if not 

integer function equal(str1, str2) 
integer str1 (100), str2(100) 
integer i 

for (i = 1; str1 (i) == str2 (i); i = i + 1) 
if (str1 (i) == -1) 

return(1) 
return (0) 

end 

If there is no parenthesized expression after return, a normal RETURN is made. We 
present another version of equal shortly. 

10.2 .. 13 Cosmetics 
The visual appearance of a language has a substantial effect on how easy it is to read 
and understand programs. Accordingly, ratfor provides a number of cosmetic facilities 
that make programs more readable. 

10.2.14 Free-form Input 
Statements can be placed anywhere on a line; long statements are continued automati­
cally, as are long conditions in if, while, for, and until. Blank lines are ignored. Multi­
ple statements may appear on one line, if they are separated by semicolons. No semi­
colon is needed at the end of a line, if ratfor can make some reasonable guess about 
whether the statement ends there. Lines ending with any of the characters 

= + lit & ( 
are assumed to be continued on the next line. Underscores are discarded wherever 
they occur; all others remain as part of the statement. 

Any statement that begins with an all-numeric field is assumed to be a Fortran label, 
and it is placed in columns 1-5 upon output. Thus 

write(6, 100); 100 format(" hello") 

is converted into 

write(6, 100) 
100 format(5hhello) 

10-11 ratfor 



10.2.15 Translation Services 
Text enclosed in matching single or double quotes is converted to nH... (but is other­
wise unaltered except for formatting; it may get split across card boundaries during the 
reformatting process). Within quoted strings, the backslash (\) serves as an escape 
character; the next character is taken literally. This provides a way to get quotes (and 
the backslash itself) into quoted strings: 

"\ \ \'" 

Here, a string containing a backslash and an apostrophe is represented. (It isn't the 
standard convention of doubled quotes, but it is easier to use and more general.) 

Any line beginning with a percent (%) is unaltered except that the percent is stripped 
off and the the line is moved one position to the left. This helps in inserting control 
cards, and other items that should not be transmogrified (e.g., an existing Fortran pro­
gram). Use a percent only for ordinary statements; do not use it for the condition parts 
of if, while, etc., or the output may appear in an unexpected place. 

The following character translations are made, except within single or double quotes or 
on a line beginning with a percent character: 

-- .eq. 1-. - .ne . 
> .gt. >= .ge. 
< . It. <= .Ie . 
& .and. .or . 

. not. ,not. 

These translations are also provided for input devices with restricted character sets: 

[ 
$( 

{ 
{ 

] 
$) 

} 
} 

10.2 .. 16 The "define" Statement 
Any string of alphanumeric characters can be defined as a name. Thereafter, whenever 
that name occurs in the input (delimited by non-alphanumerics), it is replaced by the 
rest of the definition line. (Comments and trailing white spaces are stripped off). A 
defined name can be arbitrarily long, and must begin with a letter. 

A define is typically used to create symbolic parameters: 

define ROWS 100 
define eOlS 50 
dimension a(ROWS) , b(ROVVS, eOlS) 

if (i > ROWS I j > eOlS) ... 

Alternately, definitions may be written as 

define(ROWS, 100) 

Here, the defining text is everything after the comma up to the balancing right paren­
thesis (allowing multi-line definitions). You should use symbolic parameters for most 
constants, to help make clear the function of what would otherwise be mysterious num­
bers. 

ratfor 10-12 



Here's the routine equal again, this time with symbolic constants: 

define YES 1 
define NO 0 
define EOS -1 
define ARB 1 00 

# equal compare str1 to str2; 
# return YES if equal, NO if not 

integer function equal (str1, str2) 
integer str1 (ARB), str2(ARB) 
integer i 
for (i = 1; str1 (i) == str2(i); i = i + 1) 

if (str1 (i) == EOS) 

return(NO) 
end 

return (YES) 

10.2.17 The "include" Statement 
The statement 

include file 

inserts the file found on input stream file into the ratfor input in place of the include 
statement. The standard usage is to place COMMON blocks on a file, and include that 
file whenever a copy is needed: 

subroutine x 
include commonblocks 

end 

suroutine y 
include commonblocks 

end 

This ensures that all copies of the COMMON blocks are identical. 

10.2.18 Limitations 
Ratfor catches certain syntax errors, such as missing braces, else clauses without an if, 
and most errors involving missing parentheses in statements. Beyond that, since ratfor 
knows no Fortran, any errors you make are reported by the Fortran compiler, so from 
time to time you must relate a Fortran diagnostic back to the ratfor source. 

Keywords are reserved; using if, else, etc., as variable names typically wreak havoc. 
Don't leave spaces in keywords. Don't use the Arithmetic IF. 

The Fortran nH convention is not recognized anywhere by ratfor; use quotes instead. 

10.3 Implementation 
Ratfor was originally written in C on the UNIX operating system. The language is 
specified by a context free grammar and the compiler constructed using yacc(l). 

10-13 ratfor 



The ratfor grammar is simple and straightforward, being essentially 

prog : stat 
I prog stat 

stat : if ( ... ) stat 
I if ( ... ) stat else stat 
I while ( ... ) stat 
I for ( ... : ... : ... ) stat 
I do ... stat 
I repeat stat 
I repeat stat until ( ... ) 
I switch ( ... ) { case ... : prog ... 

default: prog } 
I return 
I break 
I next 
I digits stat 
I { prog } 
I anything unrecognizable 

The observation that ratfor knows no Fortran follows directly from the rule that says a 
statement is "anything unrecognizable". In fact most of Fortran falls into this category, 
since any statement that does not begin with one of the keywords is by definition "un­
recognizable. " 

Code generation is also simple. If the first item on a source line is not a keyword (if, 
else, etc.) the entire statement is simply copied to the output with appropriate charac­
ter translation and formatting. (Leading digits are treated as a label.) Keywords cause 
only slightly more complicated actions. For example, when if is recognized, two con­
secutive labels Land L+1 are generated and the value of L is stacked. The condition is 
then isolated, and the code 

if (.not. (condition)) goto L 

is output. The statement part of the if is then translated. When the end of the state­
ment is encountered (it may be some distance away and include nested if's), the code 

L continue 

is generated, unless there is an else clause, in which case the code is 

gota L+1 
L continue 

In this latter case, the code 

L+ 1 continue 

is produced after the statement part of the else. Code generation for the various loops 
is equally simple. 

You might argue that more care should be taken in code generation. For example, if 
there is no trailing else, 

if (i > 0) x = a 

should be left alone, not converted to 

if (.not. (i .gt. 0)) goto 100 
x=a 

100 continue 

ratfor 10-14 



But what are optimizing compilers for, if not to improve code? It is a rare program in­
deed where this kind of "inefficiency" makes even a measurable difference. In the few 
cases where it is important, the offending lines can be protected by a percent (%). 

The use of a compiler-compiler is definitely the preferred method of software develop­
ment. The language is well-defined, with few syntactic irregularities. Implementation is 
quite simple; the original construction took under a week. The language is sufficiently 
simple, however, that an ad hoc recognizer can be readily constructed to do the same 
job if no compiler-compiler is available. 

The C version of ratfor is used on UNIX and on the Honeywell GCOS systems. C 
compilers are not as widely available as Fortran, however, so there is also a ratfor 
written in itself and originally bootstrapped with the C version. The ratfor version was 
written so as to translate into the portable subset of Fortran, so it is portable, having 
been run essentially without change on at least twelve distinct machines. (The main 
restrictions of the portable subset are: only one character per machine word; subscripts 
in the form c*vJc; avoiding expressions in places like DO loops; consistency in subrou­
tine argument usage, and in COMMON declarations. Ratfor doesn't gratuitously gener­
ate non-standard Fortran.) 

The ratfor version is about 1500 lines of ratfor (compared to about 1000 lines of C); 
this compiles into 2500 lines of Fortran. This expansion ratio is somewhat higher than 
average, since the compiled code contains unnecessary occurrences of COMMON dec­
larations. The execution time of the ratfor version is dominated by two routines that 
read and write cards. Clearly these routines could be replaced by machine coded local 
versions; unless this is done, the efficiency of other parts of the translation process is 
largely irrelevant. 

10.4 Benefits and Drawbacks of Ratfor 

"It's so much better than Fortran" is the most common response of users when asked 
how well rat for meets their needs. Although cynics might consider this vacuous, it 
does appear that decent control flow and cosmetics converts Fortran from a bad lan­
guage into quite a reasonable one, assuming that Fortran data structures are adequate 
for the task at hand. 

Although there are no quantitative results, users feel that coding in ratfor is at least 
twice as fast as in Fortran. More important, debugging and subsequent revision are 
much faster than in Fortran. Partly this is simply because the code can be read. The 
looping statements that test at the top instead of the bottom seem to eliminate or at 
least reduce the occurrence of a wide class of boundary errors. And of course it is 
easy to do structured programming in ratfor; this self-discipline also contributes mark­
edly to reliability. 

One interesting and encouraging fact is that programs written in ratfor tend to be as 
readable as programs written in more modern languages like Pascal. Once freed from 
the limits of Fortran's clerical detail and rigid input format, you can easily write code 
that is readable, even esthetically pleasing. For example, here is a ratfor implementa­
tion of the linear table search discussed by Knuth: 

10-15 ratfor 



A(m+1) = x 
for (i = 1; A(i) != x; i = i + 1) 

if (i > m) { 

} 
else 

m = i 
B(i) = 1 

B(i) = B(i) + 1 

A large part (5400 lines) of ratfor, including a subset of the ratfor preprocessor itself, 
can be found in Software Tools, by B. W. Kernighan and P. J. Plauger (Addison-Wes­
ley, 1976). 

The biggest single problem is that many Fortran syntax errors are not detected by rat­
for but by the local Fortran compiler. The compiler then prints a message in terms of 
the generated Fortran, and in a few cases this may be difficult to relate back to the 
offending ratfor line, especially if the implementation conceals the generated Fortran. 
This problem could be dealt with by tagging each generated line with some indication 
of the source line that created it, but this is inherently implementation-dependent, so 
no action has yet been taken. Error message interpretation is actually not so arduous 
as might be thought. Since ratfor generates no variables, only a simple pattern of IF's 
and GOTO's, data-related errors like missing DIMENSION statements are easy to find 
in the Fortran. Furthermore, there has been a steady improvement in ratfor's ability to 
catch trivial syntactic errors like unbalanced parentheses and quotes. 

A number of implementation weaknesses are a nuisance, especially to new users. For 
example, keywords are reserved. This rarely makes any difference, except for those 
who want to use an Arithmetic IF. A few standard Fortran constructions are not ac­
cepted by ratfor, and this is perceived as a problem by users with a large body of ex­
isting Fortran programs. Protecting every line with a percent character (%) is not really 
a complete solution, although it serves as a stop-gap. The best long-term solution is 
provided by Struct, a program (developed at AT&T Bell Laboratories) that converts ar­
bitrary Fortran programs into ratfor. 

Users who export programs often complain that the generated Fortran is "unreadable" 
because it isn't tastefully formatted and contains extraneous CONTINUE statements. 
To some extent this can be improved (ratfor now has an option to copy ratfor com­
ments into the generated Fortran), but it has always seemed that effort is better spent 
on the input language than on the output esthetics. 

One final problem is partly attributable to success - since ratfor is relatively easy to 
modify, there are now several dialects of ratfor. Fortunately, so far most of the differ­
ences are in character set, or in invisible aspects like code generation. 

10.5 Conclusions 
Ratfor demonstrates that with modest effort it is possible to convert Fortran from a 
bad language into quite a good one. A preprocessor is clearly a useful way to extend 
or ameliorate the facilities of a base language. 

When designing a language, it is important to concentrate on the essential requirement 
of providing the user with the best language possible for a given effort. You must 
avoid throwing in "features" - things that the user may trivially construct within the 
existing framework. 

ratfor 10-16 



You must also avoid getting sidetracked on irrelevancies. For instance, it seems point­
less for ratfor to prepare a neatly formatted listing of either its input or its output. Us­
ers can prepare their own organized input. It is much more important that the lan­
guage provide free-form input so that you can format it neatly. (In most instances, no 
one should have to read the output anyway.) 

10-17 ratfor 



Chapter 11 

The M4 Macro Processor 

11.1 Introduction 
A macro processor is a useful way to enhance a programming language, to make it 
more palatable or more readable, or to tailor it to a particular application. The #define 
statement in C and the analogous define in Ratfor are examples of the basic facility 
provided by any macro processor - replacement of text by other text. 

The m4(1) macro processor is an extension of a macro processor called M3 which was 
written by D. M. Ritchie for the AP-3 minicomputer. M3 was, in turn, based on a 
macro processor documented by B. W. Kernighan and P. J. Plauger (Software Tools, 
Addison-Wesley, Inc., 1976). Readers unfamiliar with the basic ideas of macro proc­
essing may wish to read some of the discussion contained in that source. 

A suitable front end for Ratfor and C, m4 has also been used successfully with Cobol. 
Besides the straightforward replacement of one string of text by another, it provides 
macros with arguments, conditional macro expansion, arithmetic, file manipulation, 
and some specialized string processing functions. 

The basic operation of m4 is to copy its input to its output. As it reads the input, how­
ever, it checks each alphanumeric "token" (i.e., string of letters and digits). If a token 
is the name of a macro, then m4 replaces that name by its defining text, and pushes 
the resulting string back onto the input for rescanning. You may call macros with argu­
ments; m4 collects the arguments and substitutes into the right places in the defining 
text before rescanning the text. 

M4 provides a collection of about twenty built-in macros that perform various useful 
operations. You can also define new macros. Built-ins and user-defined macros work 
in exactly the same way, except that some of the built-in macros have side effects on 
the state of the process. 

11-1 m4 



11.2 Usage 
Basic usage of m4 is as follows: 

% m4 [files] <RETURN> 

Each argument file is processed in order; if there are no arguments, or if a dash (-) is 
used as an argument, the standard input is read. The processed text is written on the 
standard output, which may be captured for subsequent processing with 

% m4 [files] > outputjile <RETURN> 

11.3 Defining Macros 
The primary built-in function of m4 is define, used for defining new macros. Thus, 

define(name, stuff) 

causes the string name to be defined as stuff. All subsequent occurrences of name are 
replaced by stuff. The name must be alphanumeric and must begin with a letter (an un­
derscore also counts as a letter). The stuff argument is any text that contains balanced 
parentheses; it may stretch over multiple lines. Therefore, as a typical example, this 
defines N to be 100, and uses this "symbolic constant" in a later if statement: 

define(N, 100) 

if (i > N) 

The left parenthesis must immediately follow the word define, to signal that define has 
arguments. If a macro or built-in name isn't followed immediately by a left parenthe­
sis, m4 assumes that it has no arguments. This is the situation for N above. It is actu­
ally a macro with no arguments. When used, it need not be followed by ellipses ( ... ). 

M4 recognizes a macro name only if it's surrounded by non-alphanumerics. Thus, in 
this example, the variable NNN is absolutely unrelated to the defined macro N, even 
though it contains many N' s: 

define(N, 100) 

if (NNN > 100) 

You may also define things in other ways, e.g., this defines both M and N to be 100: 

define(N, 100) 
define (M, N) 

But, what if N is redefined? In other words, is M defined as N or as 100? In m4, the 
latter is true; M is 100, so even if N subsequently changes, M doesn't. This happens 
because m4 expands macro names into their defining text as soon as possible. Thus, 
when the string N is seen as the arguments of define are being collected, it is immedi­
ately replaced by 100, as if you had typed this in the first place: 

define(M, 100) 

If this isn't what you really want, there are two ways out of it. The first, specific to 
this situation, is to interchange the order of the definitions: 

define(M, N) 
define(N, 100) 

m4 11-2 



Now M is defined to be the string N, so when you ask for M later, you'll always get 
the value of N at that time (because the M is replaced by N which is replaced by 100). 

11.4 Quoting 
The more general solution is to delay the expansion of the arguments of define by 
quoting them. Any text surrounded by single quotes (' ') is not expanded immediately, 
but has the quotes stripped off. If you type 

define(N, 100) 
define(M, 'N') 

the quotes around the N are stripped off as the argument is being collected, but they 
have served their purpose, and M is defined as the string N, not 100. M4 always strips 
off one level of single quotes whenever it evaluates something. This is true even out­
side of macros. If you want the word define to appear in the output, you must quote it 
in the input, as in 

'define' = 1; 

To further illustrate this, consider redefining N this way: 

define(N, 100) 

define(N, 200) 

The N in the second definition is evaluated as soon as it's seen; that is, it is replaced 
by 100, so it's as if you had written 

define(100, 200) 

M4 ignores this statement, since you can only define things that look like names. But, 
to really redefine N, you must delay the evaluation by quoting: 

define(N, 100) 

define(' N', 200) 

In m4, it is often wise to quote the first argument of a macro. If single quotes are not 
convenient, you can change the quote characters with the built-in changequote: 

changequote ( [, ]) 

This makes the new quote characters the left and right brackets. You can restore the 
original characters by typing: 

changequote 

Two additional built-ins relate to define. The undefine built-in 

undefine('N') 

removes the definition of some macro or built-in. 

This removes the definition of N. You can remove a built-in with undefine, as in 

undefine (' define') 

but once you remove one, you can never get it back. 

11-3 m4 



The built-in ifdef lets you determine if a macro is currently defined. In particular, m4 
has predefined the name unix on the corresponding system: 

ifdef(' unix', 'define(wordsize, 16)' ) 

makes a definition appropriate for the particular machine. Don't forget the quotes! 

The ifdef actually permits three arguments; if the name is undefined, the value of ifdef 
is then the third argument, as in 

ifdef(' unix', on UNIX, not on UNIX) 

11.5 Arguments 
So far we have discussed the simplest form of macro processing: replacing one string 
by another (fixed) string. User-defined macros may also have arguments, so different 
invocations can have different results. Within the replacement text for a macro (the 
second argument of its define) any occurrence of $n is replaced by the nth argument 
when the macro is actually used. Thus, the macro bump, defined as 

define(bump, $1 = $1 + 1) 

generates code to increment its argument by 1, so 

bump(x) 

is 

x = x + 1 

A macro can have as many arguments as you want, but only the first nine are accessi­
ble, through $1 to $9. (The macro name itself is $0, although that is less commonly 
used.) Arguments not supplied are replaced by null strings. Therefore, we can define a 
macro cat, which simply concatenates its arguments, like this: 

define(cat, $1$2$3$4$5$6$7$8$9) 

Thus 

cat(x, y, z) 

is equivalent to 

xyz 

Since no corresponding arguments were provided, $4 through $9 are null. 

M4 discards leading unquoted blanks, tabs, or newlines that occur during argument 
collection. It retains all other white space. Thus 

define(a, b c) 

defines a to be be. 

Arguments are separated by commas, but parentheses are counted properly, so a com­
ma "protected" by parentheses does not terminate an argument. That is, in 

define(a, (b,c)) 

there are only two arguments; the second is literally (b,c). And, of course, a bare com­
ma or parenthesis can be inserted by quoting it. 

m4 11-4 



11.6 Arithmetic Built-ins 
M4 provides two built-in functions for performing arithmetic on integers (only). The 
simplest is incr, which increments its numeric argument by 1. Thus, to define a vari­
able as "one more than N", write 

define(N, 100) 
define(N1, 'incr(N)') 

Then N 1 is defined as one more than the current value of N. 

The more general mechanism for arithmetic is a built-in called eval, which is capable 
of arbitrary arithmetic on integers. It provides these operators (in decreasing order of 
precedence) : 

unary + and -
!Ie!le or " (exponentiation) 
!Ie / % (modulus) + 
- == != < <= > >= 
! (not) 
& or && (logical and) 
I or II (logical or) 

You may use parentheses to group operations where needed. All operands of an ex­
pression given to eval must ultimately be numeric. The numeric value of a true rela­
tion (like 1>0) is 1, and false is O. The precision in eval is 32 bits on UNIX software. 

As a simple example, suppose we want M to be 2 * * N+ 1. Then, 

define(N, 3) 
define(M, 'eval(2* *N+1)') 

Note: As a matter of principle, we recommend quoting the defining text for a macro 
unless it is very simple indeed (e.g., just a number). 

11.7 File Manipulation 
You can include a new file in the input at any time by using the built-in include: 

include (filename) 

This inserts the contents of filename in place of the include command. The contents of 
the file is often a set of definitions. The value of include (i.e., its replacement text) is 
the contents of the file; this can be captured in definitions and the like. 

A fatal error occurs if the file named in include cannot be accessed. To control this, 
you may use the alternate form sinclude ("silent include"), which says nothing and 
continues if it can't access the file. 

You can also divert the output of m4 to temporary files during processing, and output 
the collected material upon command. M4 maintains nine of these diversions, num­
bered 1 through 9. If you say 

divert(n) 

all subsequent output is put onto the end of a temporary file referred to as n. Divert­
ing to this file is stopped by another divert command; in particular, divert or divert(O) 
resumes the normal output process. 

11-5 m4 



Diverted text is normally output all at once at the end of processing, with the diver­
sions output in numeric order. You can, however, bring back diversions at any time 
(i.e, append them to the current diversion). Thus, 

undivert 

brings back all diversions in numeric order, and undivert with arguments brings back 
the selected diversions in the order given. The act of undiverting discards the diverted 
text, as does diverting into a diversion whose nutnber is not between 0 and 9 inclusive. 

The value of undivert is not the diverted text. Furthermore, the diverted material is not 
rescanned for macros. 

The built-in divnum returns the number of the currently active diversion. This is zero 
during normal processing. 

11.8 System Command 
You can run any program in the local operating system with the syscmd built-in. For 
example, to run the UNIX system date(l) command, use this: 

syscmd ( date) 

Normally, syscmd is used to create a file for a subsequent include. 

To help make unique filenames, the built-in maketemp is provided, with specifications 
identical to the system function mktemp(3). Thus, a string of XXXXX in the argument 
is replaced by the process id of the current process. 

11.9 Conditionals 
A built-in called ifelse lets you perform arbitrary conditional testing. Its simplest form, 

ifelse(a, b, c, d) 

compares the two strings a and b. If these are identical, ifelse returns the string c; oth­
erwise it returns d. Thus, we might define a macro called compare, which compares 
two strings and returns "yes" or "no" if they are the same or different. 

define(compare, 'ifelse($1, $2, yes, no)') 

Note the quotes, which prevent too-early evaluation of ifelse. If the fourth argument is 
missing, it is treated as empty. 

An ifelse can actuaHy have any number of arguments, and thus provides a limited 
form of multi-way decision capability. Here, if the string a matches the string b, 

ifelse(a, b, c, d, e, f, g) 

the result is c. Otherwise, if d is the same as e, the result is f. Otherwise, the result is 
g. If the final argument is omitted, the result is null, so 

ifelse(a, b, c) 

is c if a matches b, and null otherwise. 

m4 11-6 



11.1 String Manipulation 
The built-in len returns the length of the string that makes up its argument. Thus, 

len (abcdef) 

is 6, and 

len( (a,b)) 

is 5. 

The built-in substr can be used to produce substrings of strings. The substr(s, i, n) 
returns the substring of s that starts at the ith position ( origin zero), and is n charac­
ters long. If n is omitted, the rest of the string is returned, so 

substr('now is the time', 1) 

is 

ow is the time 

If i or n are out of range, various sensible things happen. 

The index(sl, s2) returns the index (position) in sl where the string s2 occurs, or -1 if 
it doesn't occur. As with substr, the origin for strings is O. 

The built-in translit performs character transliteration. 

translit(s, f, t) 

modifies s by replacing any character found in f by the corresponding character of t. 
This replaces the vowels by the corresponding digits: 

translit(s, aeiou, 12345) 

If t is shorter than f, characters that don't have an entry in t are deleted; as a limiting 
case, if t isn't present at all, characters from f are deleted from s. So the following de­
letes vowels from s: 

translit(s, aeiou) 

A built-in called dnl deletes all characters that follow it up to and including the next 
newline. It is most useful for discarding empty lines that otherwise tend to clutter up 
m4 output. For example, if you write 

define(N, 100) 
define(M, 200) 
define(L, 300) 

the newline at the end of each line isn't part of the definition, so it is copied into the 
output, where it may not be wanted. If you add dnl to each of these lines, the newlines 
disappear. Another way to achieve this, is 

divert(-1 ) 
define( ... ) 

divert 

11-7 m4 



11.11 Printing 
The built-in errprint writes its arguments on the standard error file. Thus, you can say 

errprint C fatal error') 

The built-in dumpdef is a debugging aid that dumps the current definitions of defined 
terms. If there are no arguments, you get everything; otherwise, you get the ones you 
name as arguments. Don't forget to quote the names! 

11.12 Summary of Built-ins 
The following summarizes the usage and function of built-in commands available to 
users of m4. 

changequote(L, R) 

define (name , replacement) 

divert ( number) 

divnum 

dnl 

dumpdef('name', 'name', ... ) 

errprint(s, s, ... ) 

eval(numeric expression) 

ifdefCname', this if true, this if false) 

ifelse(a, b, c, d) 

include (file) 

incr( number) 

index(s1, s2) 

len (string) 

maketemp( .. . XXXXX ... ) 

sinclude (file) 

substr(string, position, number) 

m4 

Restores original characters or makes new 
quote characters the left and right brackets 

Defines new macros. 

Diverts output to 1-out-of-l0 diversions. 

Returns the number of the currently active di­
version. 

Reads and discards characters up to and in­
cluding the next newline. 

Dumps the current names and definitions of 
items named as arguments. 

Prints its arguments on the standard error file. 

Prints arbitrary arithmetic on integers. 

Determines whether a macro is currently de­
fined. 

Performs arbitrary conditional testing. 

Returns the contents of the file named in the 
argument. A fatal error occurs if the filename 
cannot be accessed. 

Returns the value of its argument incremented 
by 1. 

Returns the position where the second argu­
ment begins in the first argument pf index. 

Returns the number of characters that makes 
its argument. 

Facilitates making unique filenames. 

Returns the contents of the file named in the 
argument. The macro remains silent and con­
tinues if the file is inaccessible. 

Produces substrings of strings. 

11-8 



syscmd(s) 

transUt(str, from, to) 

undefine('name') 

undivert(number,number, ... ) 

Executes the UNIX system command given in 
the first argument. 

Performs character transliteration. 

Removes user-defined or built-in macro defi­
nitions. 

Discards the diverted text. 

11-9 m4 



12 

Bc: An Arbitrary Precision 
Desk-Calculator Language 

12.1 Introduction 
Be(l) is a language and a compiler for doing arbitrary precision arithmetic. The output 
of the compiler is interpreted and executed by a collection of routines called de(l), 
which can input, output, and do arithmetic on indefinitely large integers and scaled 
fixed-point numbers. These routines are themselves based on a dynamic storage al­
locator. Overflow doesn't occur until all available core storage is exhausted. 

The compiler is by no means intended to provide a complete programming language; it 
is a minimal language facility that was written in yacc(l). 

The language has a complete control structure as well as immediate-mode operation. 
Functions can be defined and saved for later execution. Two five hundred-digit num­
bers can be multiplied to give a thousand digit result in about ten seconds. 

Be is most helpful in doing computation with large integers, and especially when com­
putation must be accurate to many decimal places. It is also helpful in converting num­
bers from one base to another. 

A small collection of library functions is available. The library currently consists of 
sine (s), cosine (c), arctangent (a), natural logarithm (1), exponential (e) and Bessel func­
tions of integer order G (n,x». To load a set of library functions, type 

% be -1 <RETURN> 

A scaling provision permits the use of decimal point notation. (The library mentioned 
above sets the scale to 20; you may reset it.) Provision is also made for input and out­
put in bases other than decimal. Numbers can be converted from decimal to octal by 
simply setting the output base to equal 8. 

12-1 be 



The actual limit on the number of digits that can be handled depends on the amount 
of storage available on the machine. Manipulation of numbers with many hundreds of 
digits is possible even on the smallest versions of the UNIX operating system. 

The syntax of be was deliberately selected to agree substantially with the C language. 
In fact, the following constructs work in be just as they do in the C language. Consult 
the next section of this chapter or The C Programming Language by B. W. Kernigham 
and D. M. Ritchie (Prentice-Hall, 1978) for their specific workings. 

x=y=z is the same as 
x =+ y 
X=- Y 
x =* Y 
x =/ Y 
x =0/0 Y 
x ="y 
x++ 
x-­
++x 
--x 

x=(y=z) 
x=x+y 
x = x-y 
x = x*y 
x = x/y 
x = x%y 
x = x"y 
(x=x+ 1 )-1 
(x=x-1)+ 1 
x = x+1 
x = x-1 

Note: Even if you don't intend to use the constructs, typing one inadvertently may pro­
duce unexpected results. Furthermore, in some of these constructions, spaces 
are significant. For example, x=-y and X= -yare very different; the first re­
places x by x-y and the second by -yo 

If you type 

% be file ... <RETURN> 

be reads and executes the named file or files before accepting commands from the 
keyboard. In this way, you may load your favorite programs and function definitions. 
To exit a be program, type "quit". 

12.2 Simple Computations With Integers 
The simplest kind of statement is an arithmetic expression on a line by itself. For in­
stance, if you type in the line: 

142857 + 285714 

the program responds immediately with the line 

428571 

The operators -, *, /, %, and A can also be used; they indicate subtraction, multiplica­
tion, division, remaindering, and exponentiation, respectively. Division of integers pro­
duces an integer result truncated toward O. Division by 0 produces an error comment. 

Any term in an expression may be prefixed by a minus sign to indicate that it is to be 
negated (the 'unary' minus sign). This expression is interpreted to mean that -3 is to 
be added to 7: 

7+-3 

More complex expressions with several operators and with parentheses are interpreted 
just as in Fortran, with a caret C) having the greatest binding power, then asterisk (*) 

be 12-2 



and percent (%) and slash (/), and finally plus (+) and minus (-). Contents of paren­
theses are evaluated before material outside the parentheses. Exponentiations are per­
formed from right to left and the other operators from left to right. These expressions 

a"b"c 
a" (b"c) 

are equivalent, as are the two expressions 

a*b*c 
(a*b)*c 

Be shares with Fortran and C the undesirable convention that 

a/b*c 

is equivalent to 

(a/b) *c 

Internal storage registers to hold numbers have single lowercase letter names. The 
value of an expression can be assigned to a register in the usual way. The statement 

x=x+3 

increases by three the value of the contents of the register x. When, as in this case, 
the outermost operator is an equal sign (=), the assignment is performed but the result 
is not printed. Only 26 of these named storage registers are available. 

If an assignment statement is placed in parentheses, it then has a value and can be 
used anywhere that an expression can. For example, this line makes the indicated as­
signment, and it also prints the resulting value: 

(x=y+17) 

To illustrate a use of the value of an assignment statement even when parentheses are 
not used, consider the following: 

X = a[i=i+1] 

This causes a value to be assigned to x; it also increments i before using it as a sub­
script. 

The built-in square root function truncates its result to an integer (but also see scaling 
below). The lines 

x = sqrt(191) x 

produce the printed result 

13 

12.3 Bases 
Be uses special internal quantities, called ibase and abase. The contents of ibase, in­
itially set to 10, determine the base used for interpreting numbers read in. Thus, 

ibase = 8 11 

produces the output line 

9 

12-3 be 



and you are set up to do octal to decimal conversions. Don't, however, try to change 
the input base back to decimal by typing 

ibase = 10 

Because the number 10 is interpreted as octal, this statement is ineffectual. For those 
who deal in hexadecimal notation, the characters A-F are permitted in numbers (regar­
less of base in effect) and are interpreted as digits having values 10-15 respectively. 
Typing this changes you back to decimal input base regardless of current input base: 

ibase = A 

Negative and large positive input bases are permitted but are useless. No mechanism 
exists for the input of arbitrary numbers in bases less than 1 and greater than 16. 

The contents of obase, initially set to 10, serve as the base for output numbers. Thus, 

abase = 16 1000 

produces the output line 

3E8 

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases 
are permitted, and they are sometimes useful. For example, large numbers can be out­
put in groups of five digits by setting abase to 100000. Strange (Le. 1, 0, or negative) 
output bases are handled appropriately. 

Very large numbers are split across lines with 70 characters per line. Continued lines 
end with a backslash (\). Decimal output conversion is almost instantaneous, but out­
put of very large numbers (Le., more than 100 digits) with other bases is rather slow. 
Non-decimal output conversion of a 100-digit number takes about three seconds. 

Remember that ibase and obase have no effect on the course of internal computation or 
the evaluation of expressions, but only affect input and output conversion, respectively. 

1 
A third special internal quantity called scale is used to determine the scale of calcu­
lated quantities. Numbers may have up to 99 decimal digits after the decimal point. 
This fractional part is retained in further computations. We refer to the number of dig­
its after the decimal point of a number as its scale. 

When two scaled numbers are combined by means of one of the arithmetic operations, 
the result has a scale determined by the certain rules. For addition and subtraction, the 
scale of the result is larger of the scales of the two operands. this case, there is 
never any truncation of the result. For multiplications, the scale of the result is never 
less than the maximum of the two scales of the operands, never more than the sum of 
the scales of the operands and, subject to those two restrictions, the scale of the result 
is set equal to contents of the internal quantity scale. The scale of a quotient is the 
contents of the internal quantity scale. The scale of a remainder is the sum of the 
scales of the quotient and the divisor. The result of an exponentiation is scaled as if 
the implied multiplications were performed. An exponent must be an integer. The scale 
of a square root is set to the maximum of the scale of the argument and the contents 
of scale. 

All of the internal operations are actually carried out in terms of integers, with digits 
being discarded when necessary. every case where digits are discarded, truncation 
(and not rounding) is performed. 

be 12-4 



The contents of scale must be no greater than 99 and no less than O. It is initially set 
to O. If you need more than 99 fraction digits, you may arrange your own scaling. 

The internal quantities scale, ibase, and abase can be used in expressions just like other 
variables. The line 

scale = scale + 1 

increases the value of scale by one, and the line 

scale 

causes the current value of scale to be printed. 

The value of scale retains its meaning as a number of decimal digits to be retained in 
internal computation even when ibase or abase aren't equal to 10. The internal compu­
tations (conducted in decimal, regardless of the bases) are performed to the number of 
decimal digits specified, never hexadecimal or octal or any other kind of digits. 

1 
The name of a function is a single lower-case letter. permits function names to col-
lide with simple variable names. Twenty-six different defined functions are permitted, 
in addition to the twenty-six variable names. The line 

define a(x){ 

begins the definition of a function with one argument. This line must be followed by 
one or more statements, which make up the body of the function, ending with a right 
brace ( } ). Return of control from a function occurs when a return statement is exe­
cuted or when the end of the function is reached. The return statement can take either 
of these two forms: 

return 
return (x) 

In the first case, the value of the function is 0, and in the second, the value of the ex­
pression in parentheses. 

Variables used in the function can be declared automatic by a statement of the form 

auto x,y,z 

There can be only one "auto" statement in a function, and it must be the first state­
ment in the definition. These automatic variables are allocated space and initialized to 
o on entry to the function, and thrown away on return. The values of any variables 
with the same names outside the function are not disturbed. Functions may be called 
recursively and the automatic variables at each level of call are protected. Parameters 
named in a function definition are treated the same as the automatic variables of that 
function, with the single exception that parameters are given a value on entry to the 
function. An example of a function definition is 

define a(x,y){ 
auto Z 

} 

Z = x*y 
return(z) 

12-5 be 



The value of this function, when called, is the product of its two arguments. 

A function is called by the appearance of its name followed by a string of arguments 
enclosed in parentheses and separated by commas. The result is unpredictable if the 
wrong number of arguments is used. 

Functions with no arguments are defined and called using parentheses with nothing be­
tween them, e.g., bOo 

If the function a above is defined, then the line 

a(7,3.14) 

causes, the result 21.98 to be printed and the line 

x = a(a(3,4) ,5) 

causes the value of x to become 60. 

12.6 Subscripted Variables 
A single lowercase letter variable name followed by an expression in brackets is called 
a subscripted variable (an array element). The variable name is called the array name 
and the expression in brackets is called the subscript. Only one-dimensional arrays are 
permitted. Be permits the names of arrays to collide with the names of simple vari­
ables and function names. Any fractional part of a subscript is discarded before use. 
Subscripts must be greater than or equal to 0 and less than or equal to 2047. 

Subscripted variables may be freely used in expressions, in function calls, and in re­
turn statements. 

An array name may be used as an argument to a function, or may be declared as 
automatic in a function definition by the use of empty brackets: 

f(a[]) define f(a[]) auto a[] 

When an array name is so used, the whole contents of the array are copied for the use 
of the function, and thrown away on exit from the function. Array names that refer to 
whole arrays cannot be used in any other contexts. 

12.7 Control Statements 
You can use "if", "while", and "for" statements to alter the flow within programs or 
to cause iteration. The range of them is a statement or a compound statement consist­
ing of a collection of statements enclosed in braces. They are written this way: 

or 

be 

if(relation) statement 
while (relation) statement 
for(expression1; relation; expression2) statement 

if (relation) {statements} 
while (relation) {statements} 
for(expression1: relatior;l; expression2) {statements} 

12-6 



A relation in one of the control statements is an expression of the form 

x>y 

where two expressions are related by one of the six relational operators <, >, <=, >=, 
==, or !=. The relation == stands for "equal to" and != stands for "not equal to". The 
meaning of the remaining relational operators is clear. 

Note: Beware of using = instead of === in a relational. Although both of them are legal 
(so you do not get a diagnostic message), = does not do a comparison. 

The "if" statement causes execution of its range if and only if the relation is true. 
Then control passes to the next statement in sequence. 

The "while" statement causes execution of its range repeatedly as long as the relation 
is true. The relation is tested before each execution of its range and if the relation is 
false, control passes to the next statement beyond the range of the while. 

The "for" statement begins by executing "expression1". The relation is then tested; if 
true, the statements in the range of the "for" are executed. Then "expression2" is exe­
cuted. The relation is tested, and so on. The typical use of the "for" statement is for a 
controlled iteration, as in the statement 

for(i=1: k=10: i==i+ 1) i 

which prints the integers from 1 to 10. 

Here are some examples of the use of the control statements: 

define f(n) { 
auto i, x 
x=1 
for(i=1; k=n; i=i+1) x=x*i 
return (x) 
} 

This line prints a factorial if a is a positive integer: 

f(a) 

Here is the definition of a function that computes values of the binomial coefficient 
(assuming m and n are positive integers): 

define b(n,m){ 
auto x, j 
x=1 
for(j=1; j<=m; j=j+ 1) x=x* (n-j+ 1 )/j 
return (x) 
} 

The following function computes values of the exponential function by summing the 
appropriate series without regard for possible truncation errors: 

12-7 be 



scale = 20 
define e(x) { 

} 

auto a, b, c, d, n 
a = 1 
b = 1 
C = 1 
d=O 
n = 1 
while(1 ==1) { 

} 

a = a*x 
b = b*n 
c = C + alb 
n = n + 1 
if( c==d) return (c) 
d=c 

12.8 Summary of Important Features 
This section contains a synopsis of the important features and constructs associated 
with the use of be. 

12.8.1 Tokens 
Tokens consist of keywords, identifiers, constants, operators, and separators. Token 
separators may be blanks, tabs or comments. Newline characters or semicolons sepa­
rate statements. 

12.8.1.1. Comments 
Be uses a comment convention identical to that of C and of PL/I. Thus, comments be­
gin with I*' and end with *' I characters. 

12.8.1.2 Identifiers 
There are three kinds of identifiers - ordinary identifiers, array identifiers and function 
identifiers. All three types consist of single lower-case letters. Array identifiers are fol­
lowed by square brackets, possibly enclosing an expression describing a subscript. Ar­
rays are singly dimensioned and may contain up to 2048 elements. Indexing begins at 
o so an array may be indexed from 0 to 2047. Subscripts are truncated to integers. 
Function identifiers are followed by parentheses, possibly enclosing arguments. The 
three types of identifiers do not conflict; a program can have a variable named x, an 
array named x and a function named x, all of which are separate and distinct. 

12.8.1.3 Keywords 
The following are reserved keywords: 

ibase if 
obase break 
scale define 
sqrt auto 
length return 
while quit 
for 

be 12-8 



Constants consist of arbitrarily long numbers with an optional decimal point. The hexa-
decimal digits are also recognized as digits with values 10-15, respectively. 

value of an expression is printed unless the main operator is an assignment. 
Precedence is the same as the order of presentation here, with highest appearing first. 

or right associativity, where applicable, is discussed with each operator. 

1 

Named expressions These primitive expressions are places where values are stored. 

Function calls 

Simply stated, named expressions are legal on the left side of an 
assignment. The value of a named expression is the value stored 
in the place named. The following are named expressions: 

identifiers Simple identifiers are named expres­
sions. They have an initial value of O. 

array-name [ expression] Array elements are named expressions. 
They have an initial value of O. 

and . "»d'JL"'''C:; 

This internal register is a named ex­
pression. It is the number of digits after 
the decimal point to be retained in 
arithmetic operations. It has an initial 
value of O. 

These internal registers are the input 
and output number radix respectively. 
Both have initial values of 10. 

function call consists of a function name followed by parenthe­
ses containing a comma-separated list of expressions, which are 
the function argurnents as follows: 

function-name ( [expression [, expression .. ,] ] ) 

whole array passed as an argument is specified by the array 
name followed by empty square brackets. All function arguments 
are passed by value. Thus, changes made to the formal parameters 
don't affect the actual arguments. If the function terminates by 
executing a return statement, the value of the function is the value 
of the expression in the parentheses of the return statement or is 0 
if no expression is provided or if there is no return statement. 

of function calls are defined as follows: 

sqrt (expression) 

length (expression) 

The result is the square root of the expression, 
and is truncated in the least significant deci­
mal place. The scale of the result is the larger 
of the scale of the expression or the value of 

The result is the total number of significant 
decimal digits in the expression. The scale of 
the result is O. 

12-9 be 



Constants 

Parentheses 

scale (expression) The result is the scale of the expression. The 
scale of the result is O. 

These are another form or primitive expressions. 

An expression surrounded by parentheses is a primitive expres­
sion. The parentheses are used to alter the normal precedence. 

12.8.2.2 Unary Operators 

The unary operators bind right to left. 

-expression 

++named-expression 

--named-expression 

named-expression++ 

named-expression--

The result is the negative of the expression. 

The named expression is incremented by one. The result is the 
value of the named expression after incrementing. 

The named expression is decremented by one. The result is the 
value of the named expression after decrementing. 

The named expression is incremented by one. The result is the 
value of the named expression before incrementing. 

The named expression is decremented by one. The result is the 
value of the named expression before decrementing. 

12.8.2.3 Exponentiation Operator 

The exponentiation operator binds right to left. 

expression expression The result is the first expression raised to the power of the 
second expression. The second expression must be an in­
teger. If a is the scale of the left expression and b is the 
absolute value of the right expression, then the scale of the 
result is: 

min(axb,max(scale,a) ) 

12.8.2.4 Multiplicative Operators 

The operators *, /, % bind left to right. 

expression * expression 

expression / expression 

expression % expression 

be 

The result is the product of the two expressions. If a and b 
are the scales of the two expressions, then the scale of the 
result is: 

min(a+b,max(scale,a,b) ) 

The result is the quotient of the two expressions. The scale 
of the result is the value of scale. 

The % operator produces the remainder of the division of 
the two expressions. More precisely, a%b is a-a/b* b. The 
scale of the result is the sum of the scale of the divisor and 
the value of scale. 

12-10 



12.8.2.5 Additive Operators 

The additive operators bind left to right. 

expression + expression The result is the sum of the two expressions. The scale of 
the result is the maximum of the scales of the expressions. 

expression - expression The result is the difference of the two expressions, and the 
scale of the result is the maximum of the scales of the ex­
pressions. 

12.8.2.6 Assignment Operators 

The assignment operators bind right to left. 

named-expression = expression 

named-expression =+ expression 
named-expression =- expression 
named-expression =... expression 
named-expression =/ expression 
named-expression =% expression 
named-expression = A expression 

12.8.3 Relations 

This results in assigning the value of the expression 
on the right to the named expression on the left. 

The result of these expressions is equivalent to 
"named expression = named expression OP expres­
sion", where OP is the operator after the equal sign. 

Unlike all other operators, the relational operators are only valid as the object of an if, 
while, or inside a for statement. 

expression < expression 
expression> expression 
expression <= expression 
expression >= expression 
expression == expression 
expression != expression 

12.8.4 Storage Classes 
Be has only two storage classes: global and automatic (local). Only identifiers that are 
to be local to a function need be declared with the auto command. The arguments to a 
function are local to it. All other identifiers are assumed to be global and are available 
to all functions. All identifiers, global and local, have an initial value of O. Identifiers 
declared as auto are allocated on entry to the function and released upon return from 
the function. Thus, they don't retain values between function calls. The auto arrays are 
specified by the array name followed by empty square brackets. 

Automatic variables in be don't work in exactly the same way as they do in either C 
or PLII. On entry to a function, the old values of the names that appear as parameters 
and as automatic variables are pushed onto a stack. Until return is made from the 
function, reference to these names refers only to the new values. 

12-11 be 



12.8.5 Statements 
Normally, statements are typed one to a line. You may also type several statements on 
a line separated by a semicolon or newline. Except where altered by control state­
ments, execution is sequential. 

12.8.5.1 Expression Statements 

When a statement is an expression, unless the main operator is an assignment, the 
value of the expression is printed, followed by a newline character. 

12.8.5.2 Compound Statements 

Statements may be grouped together and used when one statement is expected by sur­
rounding them with braces ( { } ). 

12.8.5.3 Quoted String Statements 

"any string" 

This statement prints the string inside the quotes. 

12.8.5.4 If Statements 

if(relation)statement 

The substatement is executed if the relation is true. 

12.8.5.5 \Vlrlle Statements 

while (rela tion)s ta tement 

The statement is executed while the relation is true. The test occurs before each execu­
tion of the statement. 

12.8.5.6 For Statements 

for(expression; relation; expression)statement 

The for statement is the same as 

first-expression 
while(relation) { 

statement 
last-expression 

} 

All three expressions must be present. 

12.8.5.7 Break Statements 

break 

A break causes termination of a for or while statement. 

be 12-12 



12.8.5.8 Auto Statements 

auto identifier[,identifier] 

The auto statement causes the values of the identifiers to be pushed down. The identi­
fiers can be ordinary identifiers or array identifiers. Array identifiers are specified by 
following the array name by empty square brackets. The auto statement must be the 
first statement in a function definition. 

12.8.5.9 Define Statements 

define ([parameter[ ,parameter ... ]]) { 
statements} . 

The define statement defines a function. The parameters may be ordinary identifiers or 
array names. Array names must be follo·wed by empty square brackets. 

12.8.5.10 Return Statements 

return 

return (expression) 

The return statement causes termination of a function, popping of its auto variables, 
and specifies the result of the function. The first form is equivalent to return(O). The 
result of the function is the result of the expression in parentheses. 

12.8.5.11 Quit Statement 

The quit statement stops execution of a be program and returns control to UNIX sys­
tem processing when it is first encountered. Because it is not treated as an executable 
statement, it cannot be used in a function definition or in an if, for, or while state­
ment. 

12-13 be 



Cha 13 

Dc: An Interactive 
Desk Calculator 

An arbitrary precision arithmetic package, de(l) is implemented in the form of an in­
teractive desk calculator. It works like a stacking calculator using reverse Polish nota­
tion. Ordinarily, de operates on decimal integers, but you may specify an input base, 
output base, and a number of fractional digits to be maintained. 

A language called be(l) accepts programs written in the familiar style of higher-level 
programming languages and compiles output interpreted by de. (Be was first intro­
duced in a paper entitled BC - An Arbitrary Precision Desk-Calculator Language, written 
by L. L. Cherry and R. Morris.) Some of the commands described in this chapter were 
designed for the compiler interface and are difficult for human users to manipulate. 

Numbers typed into de are put on a push-down stack. De commands take the top 
number or two off the stack, perform the desired operation, and push the result on the 
stack. If you supply a filename argument, de taKes input from that file until its end, 
and then uses the standard input. 

1301 User-Oriented Commands 
This section describes de commands intended for human use. Any number of com­
mands are permitted on a line. Blanks and newline characters are ignored except 
within numbers and in places where a register name is expected. 

number Push the value of the number onto the main stack. A number is 
an unbroken string of the digits 0-9, and the capital letters A-F 
(treated as digits with values 10-15 respectively). The number may 
be preceded by an underscore to input a negative number. Num­
bers may contain decimal points. 

13-1 dc 



+ - * % '" 

sx 

Ix 

d 

P 

f 

x 

[ ... ] 

q 

<x>x=x!<x!>x!=x 

v 

e 

i 

o 

k 

de 

Add (+), subtract (-), multiply (*), divide (I), remainder (%), or 
exponentiate C) the top two values on the stack. Pop the two en­
tries off the stack; push the result on the stack in their place. The 
result of a division is an integer truncated toward zero. An expo­
nent must not have any digits after the decimal point. 

Pop the top of the main stack and store it in a register named x, 
where x may be any character. the s is capitalized, treat x as a 
stack and push the value onto it. Any character (including blank or 
newline) is a valid register name. 

Push the value in register x onto the stack, without altering the 
register x itself. the 1 is capitalized, treat register x as a stack 
and pop its top value onto the main stack. All registers start with 
empty value, which is treated as a zero by the command I and as 
an error by the command 

Duplicate the top value on the stack. 

Print the top value on the stack, without changing the value itself. 

Print all values on the stack and in registers. 

Treat the top element of the stack as a character string; remove it 
from the stack, and execute it as a string of commands. 

Put the bracketed character string onto the top of the stack. 

Exit the program. If executing a string, pop the recursion level by 
two. If q is capitalized, pop the top value on the stack and then 
pop the string execution level by that value. 

Pop and compare the top two elements of the stack. they obey 
the stated relation, execute register x. The exclamation point repre­
sents negation. 

Replace the top element on the stack by its square root. Truncate 
the square root of an integer to an integer. (See detailed desciption 
below on treatment of numbers with decimal points.) 

Interpret the rest of the line as a UNIX command. Return control 
to de when the UNIX command terminates. 

Pop all values on the stack (the stack becomes empty). 

Pop the top value on the stack and use it as the number radix for 
further input. If i is capitalized, push the value of the input base 
onto the stack. Currently, no mechanism exists for the input of ar­
bitrary numbers in bases less than 1 or greater than 16. 

Pop the top value on the stack and use it as the number radix for 
further output. If 0 is capitalized, push the value of the output 
base onto the stack. 

Pop the top of the stack, and use that value as a scale factor to 
influence the number of decimal places maintained during multipli­
cation, division, and exponentiation. The scale factor must be 
greater than or equal to zero and less than 100. If k is capitalized, 
push the value of the scale factor onto the stack. 

13-2 



z Push the value of the stack level onto the stack. 

? Take a line of input from the input source (e.g., the keyboard) and 
execute it. 

1 
uses a dynamic storage allocator for storing numbers internally. Numbers are kept 

the form of a string of digits to the base 100 stored one digit per byte (centennial 
digits). string is stored with the low-order digit at the beginning of the string. For 
example, representation of 157 is 57,1. After any arithmetic operation on a num-
ber, all digits should be in the range 0-99, and the number should have no leading ze­
ros. The number zero is represented by the empty string. 

Negative numbers are represented in the 100's complement notation (analogous to 
two's complement notation for binary numbers). The high order digit of a negative 
number is always -1 and all other digits are in the range 0-99. The digit preceding the 

order -1 digit is never a 99. The representation of -157 is 43,98,-1. This is called 
the canonical form of a number. The advantage of this kind of representation of nega­
tive numbers is ease of addition. When addition is performed digit by digit, the result 
is formally correct. result need only be modified, if necessary, to put it into ca-
nonical form. 

Because largest valid digit is 99 and the byte can hold numbers twice that large, 
addition can be carried out and the handling of carries done later when that is conven-

as it sometimes is. 

An additional byte is stored with each number beyond the high order digit to indicate 
of assumed decimal digits after the decimal point. The representation of 

.001 is 1,3 '11Tn,or&:> scale has been italicized to emphasize fact that it isn't the 
order digit. of this extra byte is called the scale factor of the number. 

1 
uses a dynamic string storage allocator all of its internal storage. All reading 
writing of internally is done through the allocator. Associated with each 

the allocator is a four-word header containing pointers to the beginning of the 
of string, the next place to write, and the next place to read. Com-

111"'01'""'<::111"1£"\11"1 between the allocator and is done via pointers to these headers. 

allocator initially has one large string on a list of free strings. All headers except 
one pointing to this string are on a list of free headers. Requests for strings are 

by size. The size of the string actually supplied is the next higher power of 2. 

a string request is made, the allocator first checks the free list for a string of 
desired size. If none is found, the allocator finds the next larger free string and 

splits it repeatedly until it has a string of the right size. Left-over strings are put on 
the free list. are no larger strings, the allocator tries to coalesce smaller free 
strings into larger ones. Since all strings are the result of splitting large strings, each 
string has one next to it core and, if free, can be combined with it to make a string 

as long. is an implementation of the "buddy system" of allocation detailed 
C. Knowlton in A Fast Storage Allocator, Comm. ACM 8, Oct. 1965). 

to find a string of the proper length after coalescing, the allocator asks the sys­
more space. The amount of space on the system is the only limitation on the 

13-3 dc 



size and number of strings in dc. If the allocator runs out of headers while trying to 
allocate a string, it also asks the system for more space. 

The allocator contains routines for reading, writing, copying, rewinding, forward-spac­
ing, and backspacing strings. All string manipulation is done using these routines. The 
reading and writing routines increment the read pointer or write pointer so that the 
characters of a string are read or written in succession by a series of read or write 
calls. The write pointer is interpreted as the end of the information-containing portion 
of a string and a call to read beyond that point returns an end-of-string indication. An 
attempt to write beyond the end of a string causes the allocator to allocate a larger 
space and then copy the old string into the larger block. 

13.4 Arithmetic 
All arithmetic operations are done on integers. The operand(s) needed for the opera­
tion is popped from the main stack and its scale factors stripped off. Zeros are added 
or digits removed as necessary to get a properly scaled result from the internal arith­
metic routine. For example, if the scale of the operands is different and decimal align­
ment is required (as it is for addition), zeros are appended to the operand with the 
smaller scale. After performing the required arithmetic operation, the proper scale fac­
tor is appended to the end of the number before it is pushed on the stack. 

A register called scale plays a part in the results of most arithmetic operations. It is 
the bound on the number of decimal places retained in arithmetic computations. This 
register may be set to the number on the top of the stack truncated to an integer with 
the k command; k may be used to push the value of scale on the stack. Scale must be 
greater than or equal to 0 and less than 100. The descriptions of the individual arith­
metic operations include the exact effect of scale on the computations. 

13 .. 4 .. 1 Subtraction 
The scales of the two numbers are compared and trailing zeros are supplied to the 
number with the lower scale to give both numbers the same scale. The number with 
the smaller scale is multiplied by 10 if the difference of the scales is odd. The scale of 
the result is then set to the larger of the scales of the two operands. 

Subtraction is performed by negating the number to be subtracted and proceeding as in 
addition. 

Finally, the addition is performed digit by digit from the low order end of the number. 
The carries are propagated in the usual way. The resulting number is brought into ca­
nonical form, which may require stripping of leading zeros, or for negative numbers 
replacing the high-order configuration 99,-1 by the digit -1. Digits not in the range 
0-99 must be brought into that range, propagating any carries or borrows that result. 

13 .. 4.2 Multiplication 
The scales are removed from the two operands and saved. The operands are both 
made positive. Then multiplication is performed in a digit by digit manner that exactly 
mimics the hand method of multiplying. The first number is multiplied by each digit of 
the second number, beginning with its low order digit. The intermediate products are 
accumulated into a partial sum, which becomes the final product. The product is put 
into the canonical form and its sign is computed from the signs of the original oper­
ands. 

de 13-4 



The scale of the result is set equal to the sum of the scales of the two operands. If 
that scale is larger than the internal register scale and also larger than both of the 
scales of the two operands, then the scale of the result is set equal to the largest of 
these three last quantities. 

13.4.3 Division 

The scales are removed from the two operands. Zeros are appended or digits removed 
from the dividend to make the scale of the result of the integer division equal to the 
internal quantity scale. The signs are removed and saved. 

Division is performed much as it would be done by hand. The difference of the 
lengths of the two numbers is computed. If the divisor is longer than the dividend, 
zero is returned. Otherwise the top digit of the divisor is divided into the top two digits 
of the dividend. The result is used as the first (high-order) digit of the quotient. It 
may turn out to be one unit too low, but if it is, the next trial quotient is larger than 
99 and this is adjusted at the end of the process. The trial digit is multiplied by the 
divisor and the result subtracted from the dividend and the process is repeated to get 
additional quotient digits until the remaining dividend is smaller than the divisor. At 
the end, the digits of the quotient are put into the canonical form, with propagation of 
carry as needed. The sign is set from the sign of the operands. 

13.4.4 Remaindering 
The division routine is called and division is performed exactly as described. The 
quantity returned is the remains of the dividend at the end of the divide process. Since 
division truncates toward zero, remainders have the same sign as the dividend. The 
scale of the remainder is set to the maximum of the scale of the dividend and the 
scale of the quotient plus the scale of the divisor. 

13.4.5 Square Roots 
The scale is stripped from the operand. Zeros are added if necessary to make the inte­
ger result have a scale that is the larger of the internal quantity scale and the scale of 
the operand. The method used to compute sqrt(y) is Newton's method with successive 
approximations by the rule 

x sub {n+1} -=- half ( x sub n ;- y over x sub n ) 

The initial guess is found by taking the integer square root of the top two digits. 

13.4.6 Exponentiation 
Only exponents with zero scale factor are handled. If the exponent is zero, then the 
result is 1. If the exponent is negative, then it is made positive and the base is divided 
into one. The scale of the base is removed. 

The integer exponent is viewed as a binary number. The base is repeatedly squared 
and the result is obtained as a product of those powers of the base that correspond to 
the positions of the one-bits in the binary representation of the exponent. Enough dig­
its of the result are removed to make the scale of the result the same as if the indi­
cated multiplication had been performed. 

13-5 de 



13.5 Input Conversion and Base 
Numbers are converted to the internal representation as they are read in. The scale 
stored with a number is simply the number of fractional digits input. Negative numbers 
are indicated by preceding the number with a minus sign (-). The hexadecimal digits 
A-F correspond to the numbers 10-15 regardless of input base. The i command can 
be used to change the base of the input numbers. This command pops the stack, trun­
cates the resulting number to an integer, and uses it as the input base for all further 
input. The input base is initialized to 10 but may, for example, be changed to 8 or 16 
to do octal or hexadecimal to decimal conversions. The command I pushes the value 
of the input base on the stack. 

13.6 Output Commands 
The command p causes the top of the stack to be printed. It doesn't remove the top of 
the stack. All of the stack and internal registers can be output by typing the command 
f. The 0 command can be used to change the output base. This command uses the top 
of the stack, truncated to an integer as the base for all further output. The output base 
in initialized to 10. It works correctly for any base. The command 0 pushes the value 
of the output base on the stack. 

13.7 Output Format and Base 
The input and output bases only affect the interpretation of numbers on input and out­
put; they don't affect arithmetic computations. Large numbers are output with 70 char­
acters per line; a backslash (\) indicates a continued line. All choices of input and out­
put bases work correctly, although not all are useful. A particularly useful output base 
is 100000, which has the effect of grouping digits in fives. Bases of 8 and 16 can be 
used for decimal-octal or decimal-hexadecimal conversions. 

13.8 Registers 
Numbers or strings may be stored in internal registers or loaded on the stack from reg­
isters with the commands sand L The command sx pops the top of the stack and 
stores the result in register x. The x can be any character. An Ix puts the contents of 
register x on the top of the stack. The I command has no effect on the contents of reg­
ister x. The s command, however, is destructive. 

13.9 Stack Commands 
The command c clears the stack. The command d. pushes a duplicate of the number 
on the top of the stack on the stack. The command z pushes the stack size on the 
stack. The command X replaces the number on the top of the stack with its scale fac­
tor. The command Z replaces the top of the stack with its length. 

13.10 Subroutine Definitions and Calls 
Enclosing a string in square brackets ( [ ] ) pushes the ascii string on the stack. The q 
command quits or in executing a string, pops the recursion levels by two. 

de 13-6 



13.11 Programming dc 
Use the load and store commands together with square brackets ( [ ] ) to store strings; 
x to execute; and the testing commands <, >, =, !<, I>, and != to program de. The x 
command assumes the top of the stack is a string of de commands and executes it. 
The testing commands compare the top two elements on the stack, and if the relation 
holds, execute the register that follows the relation. Thus, this prints the numbers 0-9: 

[lip1+ si 1i10>a]sa Osi lax 

1 .12 Push-Down Registers and Arrays 
These commands were designed for used by a compiler, not by people. They involve 
push-down registers and arrays. In addition to the stack that commands work on, de 
uses individual stacks for each register. These registers are operated on by the COlTI­

mands Sand L. Sx pushes the top value of the main stack onto the stack for the regis­
ter x. Lx pops the stack for register x and puts the result on the main stack. The com­
mands s and I also work on registers, but not as push-down stacks. An I doesn't affect 
the top of the register stack, and s destroys what was there before. 

The commands to work on arrays are colon (:) and semi-colon (;). A :x pops the stack 
and uses this value as an index into the array x. The next element on the stack is 
stored at this index in x. An index must be greater than or equal to 0 and less than 
2048. A ;X is the command to load the main stack from the array x. The value on the 
top of the stack is the index into the array x of the value to be loaded. 

13.13 Miscellaneous Commands 
An exclamation point 0) interprets the rest of the line as a UNIX command and 
passes it to UNIX software to execute. One other compiler command is Q. This com­
mand uses the top of the stack as the number of levels of recursion to skip. 

13.1 Design Choices 
The dynamic storage allocator lets a general purpose program be used for a variety of 
other tasks. It has some value for input and for compiling (i.e., the bracket [ ... ] com­
mands) where a string's length cannot be known in advance. Thus, at a modest cost in 
execution time, all considerations of string allocation and sizes of strings were removed 
from the remainder of the program and debugging was made easier. The allocation 
method used wastes approximately 25% of available space. 

Using 100 as a base for internal arithmetic may not seem very beneficial. Yet the base 
cannot exceed 127 because of hardware limitations and at the cost of 5% in space, de­
bugging was made a great deal easier and decimal output was made much faster. 

A stack-type arithmetic design allowed all de commands from addition to subroutine 
execution to be implemented in essentially the same way. As a result, there was much 
logical separation of the final program into modules with very little communication be­
tween modules. 

The lack of interaction between the scale and the bases provided an understandable 
means of proceeding after a change of base or scale when numbers had already been 
entered. An earlier implementation that had global notions of scale and base didn't 

13-7 de 



work well. If the value of scale was to be interpreted in the current input or output 
base, then a change of base or scale in the midst of a computation would cause great 
confusion in the interpretation of the results. The current scheme has the advantage 
that the value of the input and output bases are only used for input and output, re­
spectively, and they are ignored in all other operations. The value of scale isn't used 
for any essential purpose by any part of the program; it is used only to prevent the 
number of decimal places resulting from the arithmetic operations from growing be­
yond all bounds. 

The scales of the results of arithmetic were designed so that significant digits are never 
thrown away if, on appearance, you actually want them. Thus, if you wanted to add 
the numbers 1.5 and 3.517, it seemed reasonable to provide the result 5.017 without 
requiring that you necessarily specify obvious requirements for precision. 

On the other hand, multiplication and exponentiation produce results with many more 
digits than their operands and it seemed reasonable to give as a minimum the number 
of decimal places in the operands but not to give more than that number of digits un­
less you asked for them by specifying a value for scale. Square root can be handled 
like multiplication. The operation of division gives arbitrarily many decimal places and 
there is simply no way for the program to guess how many places you want. In this 
case only, you must specify a scale to get any decimal places at all. 

The scale of remainder makes it possible to recreate the dividend from the quotient 
and remainder. This is easy to implement; no digits are thrown away. 

de 13-8 



Curses: , , 

1 1 Overview 
The curses(3X) package helps C programmers do the most common type of terminal 
dependent functions - movement optimization and optimal screen updating - with 
nearly as much ease as is necessary to simply print or read text. 

The package is composed of three parts: one for screen updating; another for screen 
updating with user input; and a third for cursor motion optimization. You can use the 
motion optimization without using either of the other two. You can also perform screen 
updating and input without any programming knowledge of the motion optimization, or 
indeed of the database itself. 

In the curses package, a window is defined as an internal representation containing an 
image of what a section of the terminal screen may look like at some point in time. 
This subsection can either encompass the entire terminal screen, or any smaller portion 
down to a single character within that screen. 

Furthermore, a terminal (or terminal screen) is defined as the package's idea of what 
the terminal's screen currently looks like, i.e., what you see now. A screen is a subset 
of windows that are as large as the terminal screen, i.e., they start at the upper left 
hand corner and encompass the lower right hand corner. One of these, stdscr, is auto­
matically provided for you. 

14-1 curses 



1 1 
To use the library, you must have certain types and variables defined. Thus, you need 

#include 

at the top of the program source. header file <curses.h> must include <sgtty.h>. 
Compilations should have following form: 

% cc [flags] file ... _R6'1111-rIl:'I:1I11:' <RETURN> 

Note: The screen package also uses standard I/O library, so <curses.h> includes 
<stdio.h>. You need not also include it, although it is harmless if you do. 

1 
To update the screen optimally, the routines must know what the screen currently looks 
like and what you want it to look like next. For this purpose, a data type (structure) 
named WINDOW is defined to describe a window image to routines, including its 
starting position on the screen (the (y, x) coordinates of the upper left hand corner) 
and its size. One of these, curscr (current screen), is a screen image of how the termi­
nal currently looks. By default, stdscr (standard screen) is provided as a screen on 
which to make changes. 

A window is a purely internal representation, used to build and store a potential image 
of a portion of the terminal. It doesn't bear any necessary relation to what is really on 
the terminal screen, but is more like an array of characters on which to make changes. 

When you have a window that describes what SOlne part the terminal should look like, 
refreshO (or wrefresh() if the window is not stdscr) is called. The rejreshO routine makes 
the terminal, the area covered by the window, look that window. 

1 

Changing something on a window does not change terminal. Actual updates 
to the terminal screen are made only calling refreshO or wrefreshO. This lets 
you maintain several different ideas of what a portion of the terminal screen 
should look like. You can make changes to windows in any order, regardless of 
motion efficiency. Then, at will, you can effectively say "make it look like this," 
and let the package worry about the best way to do this. 

Although the routines can use several windows, only two are automatically given: 
curscr, which knows what the terminal looks like, and stdscr, which is what you want 
the terminal to look like next. You should never really access curscr directly. Make 
changes to the appropriate screen, and then call the routine refresh 0 (or wrefresh 0) . 
Many functions are set up to deal with stdscr as a default screen. For example, to add 
a character to stdscr, call addchO with the desired character. a window is to 
be used, use the routine waddchO (window-specific addchO). 

Note: Actually, addchO is a "#define" macro with arguments, as are most of func-
tions that deal with stdscr as a default. 

This convention of prepending function names with a "w" when they are to be applied 
to specific windows is consistent. The only routines that do not do this are those to 
which a window must always be specified. 

curses 14-2 



To move the current (y, x) coordinates from one point to another, use the move() and 
wmove() routines. It is often desirable to first move and then to perform some I/O op­
eration. To avoid clumsiness, most I/O routines can be preceded by the prefix "mv" 
and the desired (y, x) coordinates then can be added to the arguments to the function. 
For example, the calls 

move(y, x); 
addch(ch); 

can be replaced by 

mvaddch(y, x, ch); 

and 

wmove(win, y, x); 
waddch(win, ch); 

can be replaced by 

mvwaddch(win, y, x, ch): 

Note: The window description pointer (win) comes before the added (y, x) coordinates. 
If such pointers are need, they are always the first parameters passed. 

1 Variables 
Many variables that describe the terminal environment are available: 

Type Name Description 

WINDOW'" 
WINDOW'" 
char '" 
bool 

curser 
stdscr 
Def term 
MyJerm 

Current version of the screen (terminal screen). 
Standard screen. Most updates are usually done here. 
Default terminal type if type cannot be determined. 
Use the terminal specification in Def _term as 
terminal, regardless of real terminal type. 

char '" 
int 
int 
int 

Full name of the current terminal. 
Number of lines on the terminal. 
Number of columns on the terminal. 
Error flag returned by routines on a fail. 

int 

ttytype 
LINES 
COLS 
ERR 
OK Error flag returned by routines when things go right. 

Several "#define" constants and types are also generally useful: 

reg storage class "register" (e.g., reg int i;) 

bool boolean type, actually a "char" (e.g., bool doneit;) 

TRUE boolean "true" flag (1) 

FALSE boolean "false" flag (0) 

14-3 curses 



addch(ch) 
char ch; 

waddch(win, ch) 
WINDOW* win; 
char ch; 

addstr(str) 

Add the character ch on the window at the current (y, x) coordinates. If 
the character is a newline (\n) , clear the line to the end. Then, change 
the current (y, x) coordinates to the beginning of the next line if newline 
mapping is on, or to the next line at the same x coordinate if it is off. A 
return (\r) moves to the beginning of the line on the window. Tabs (\t) 
are expanded into spaces in the normal tabstop positions of every 8 char­
acters. Return ERR if screen will be made to scroll illegally. 

char* str; 

waddstr(win, str) 
WINDOW* win; 
char* str; 

Add the string pointed to by str on the window at the current (y, x) coor­
dinates. In this case, put on as much as possible. Return ERR if screen 
will be made to scroll illegally. 

box(win, vert, hor) 
WINDOW* win; 
char vert, hor; 

clearO 

wclear( win) 

Draw a box around the window using vert as the character for drawing 
the vertical sides, and hor for drawing the horizontal lines. If scrolling is 
not allowed, and the window encompasses the lower right-hand corner of 
the terminal, leave the corners blank (to avoid a scroll). 

WINDOW* win; 

Reset the entire window to blanks. If win is a screen, this sets the clear 
flag, which causes a clear-screen sequence to be sent on the next re­
fresh() call. This also moves the current (y, x) coordinates to (0, 0). 

clearok(scr, boolf) 
WINDOW* scr; 
bool boolf; 

curses 

Set the clear flag for the screen scr. If boolf is TRUE, force a clear­
screen to be printed on the next refresh (); stop it from doing so if boolf is 
FALSE. This only works on screens, and, unlike clear(), doesn't alter the 
contents of the screen. If scr is curscr, the next refresh() call causes a 
clear-screen, even if the window passed to refresh() is not a screen. 

14-4 



clrtobotO 

wclrtobot(win) 
WINDOW*' win; 

Wipe the window clear from the current (y, x) coordinates to the bottom. 
Do not force a clear-screen sequence on the next refresh under any cir­
cumstances. This has no associated "mv" command. 

clrtoeolO 

wclrtoeol (win) 
WINDOW* win; 

delchO 

wdelch(win) 

Wipe the window clear from the current (y, x) coordinates to the end of 
the line. This has no associated "mv" command. 

WINDOW*' win; 

Delete the character at the current (y, x) coordinates. Shift each charac­
ter after it on the line to the left, and make the last character blank. 

deletelnO 

wdeleteln(win) 
WINDOW*' win; 

eraseO 

werase(win) 

Delete the current line. Move every line below the current one up, and 
make the bottom line blank. Don't change the current (y, x) coordinates. 

WINDOW* win; 

insch(c) 
charc; 

Erase the window to blanks without setting the clear flag. This is similar 
to cZearO, except that it never causes a clear-screen sequence to be gen­
erated on a refreshO. This has no associated "mv" command. 

winsch(win, c) 
WINDOW*' win; 
char c; 

Insert c at the current (y, x) coordinates. Each character after it shifts to 
the right; the last character disappears. Return ERR if s~reen will be 
made to scroll illegally. 

insertlnO 

winsertln(win) 
WINDOW*' win; 

Insert a line above the current one. Shift every line below the current line 
down, and make the bottom line disappear. The current line becomes 
blank, and the current (y, x) coordinates remain unchanged. Return ERR 
if screen will be made to scroll illegally. 

14-5 curses 



move(y, x) 
int y, x; 

wmove(win, y, x) 
WINDOW* win; 
int y, x; 

Change the current (y, x) coordinates of the window to (y, x). Return 
ERR if screen will be made to scroll illegally. 

overlay(winl, win2) 
WINDOW* winl, *win2; 

Overlay winl on win2. Place the contents of winl, insofar as they fit, on 
win2 at their starting (y, x) coordinates. Do this non-destructively (i.e., 
blanks on winl leave the contents of the space on win2 untouched). 

overwrite(winl, win2) 
WINDOW* winl, *win2; 

Overwrite winl on win2. Place the contents of winl, insofar as they fit, on 
win2 at their starting (y, x) coordinates. Do this destructively (Le., blanks 
on winl become blank on win2). 

printw(fmt, argl, arg2, ... ) 
char* fmt; 

wprintw(win, fmt, argl, arg2, ... ) 
WINDOW* win; 
char* fmt; 

Perform a printfO on the window starting at the current (y, x) coordi­
nates. Use addstrO to add the string on the window. Use the field width 
options of printfO to avoid leaving things on the window from earlier 
calls. Return ERR if screen will be made to scroll illegally. 

refreshO 

wrefresh(win) 
WINDOW* win; 

Synchronize the terminal screen with the desired window. If the window 
isn't a screen, update only that part covered by it. Return ERR if screen 
will be made to scroll illegally. Update whatever possible without causing 
a scroll. 

standoutO 

wstandout(win) 
WINDOW* win; 

standendO 

wstandend(win) 
WINDOW* win; 

curses 

Start and stop putting characters onto win in standout mode. The stand­
autO routine causes any characters added to the vvindow to be put in 
standout mode on the terminal (if it has that capability). The standendO 
routine stops this. The sequences SO and SE (or US and UE if they are 
not defined) are used (see next major section). 

14-6 



crmodeO 

nocrmodeO 

echoO 

noechoO 

getchO 

wgetch(win) 

Set or unset the terminal to/from cbreak mode. 

Set the terminal to echo or not echo characters. 

WINDOW* win; 

getstr(str) 

Get a character from the terminal and, if necessary, echo it on the win­
dow. Return ERR if screen will be made to scroll illegally. Otherwise, re­
turn the character gotten. If noecho is set, leave the window unaltered. 
(To retain control of the terminal, one of noecho, cbreak, or rawmode 
must be set. Otherwise, whatever routine you call to read characters sets 
cbreak for you, and then resets to the original mode when finished.) 

char* str; 

wgetstr(win, str) 
WINDOW* win; 
char* str; 

rawO 

norawO 

Get a string through the window and put it in the location pointed to by 
str, which is assumed to be large enough to handle it. Set tty modes if 
necessary, and then call getchO(or wgetch(win)) to get the characters 
needed to fill in the string until a newline or EOP is encountered. Strip 
the newline off the string. Return ERR if screen will be made to scroll 
illegally. 

Set or unset the terminal to/from raw mode. (On version 7 UNIX soft­
ware, this also turns off newline mapping (see nlO)). 

scanw(fmt, argl, arg2, ... ) 
char* fmt; 

wscanw(win, fmt, argl, arg2, ... ) 
WINDOW* win; 
char* fmt; 

delwin(win) 

Perform a scanfO through the window using fmt. Use consecutive getchO's 
(or wgetch(win)'s) to do this. Return ERR if screen will be made to scroll 
illegally. 

WINDOW* win; 

Delete the window from existence. Free all resources for future use via 
caHoc(3C). If a window has a subwinO allocated window inside it, delet­
ing the outer window the subwindow isn't affected, even though this does 
invalidate it. Therefore, delete subwindows before their outer windows. 

14-7 curses 



endwinO 

Finish up window routines before exit. Restore the terminal to the state it 
was before initscr() (or gettmode() and setterm()) was called. You should 
always call this before exiting. It does not exit, and is especially useful 
for resetting tty stats when trapping rub outs via signal (2) . 

getyx(win, y, x) 
WINDOW* win; 
in ty, x; 

inchO 

winch (win) 

Put the current (y, x) coordinates of win in the variables y and x. Since it 
is a macro, not a function, you do not pass the address of y and x. 

WINDOW* win; 

initscrO 

Return the character at the current (y, x) coordinates on the given win­
dow. Don't make any changes to the window. Has no associated "mv". 

Initialize the screen routines. (This must be called before using any 
screen routines; it initializes necessary terminal-type data.) If standard 
input is not a tty, set the specifications to the terminal whose name is 
pointed to by Def_term (initialy "dumb"). If the boolean My_term is 
TRUE, always use Def_term. 

leaveok(win, boolf) 
WINDOW* win; 
boo lboo{f,' 

Set the boolean flag for leaving the cursor after the last change. If boolf 
is TRUE, leave the cursor after the last update on the terminal, and 
change the current (y, x) coordinates for win accordingly. If it is FALSE, 
move the cursor to the current (y, x) coordinates. (This flag, initially 
FALSE, retains its value until you change it.) 

longname(termbuf, name) 
char* termbuf, *name; 

Fill in name with the long (full) name of the terminal described by the 
term cap entry in termbuf. The routine tells you, in a readable format, 
what terminal we think you have. This is available in the global variable 
ttytype. Termbuf is usually set via the term lib routine tgetent(). 

mvwin (win , y, x) 
WINDOW* Wln; 
int 

curses 

y, x; 

Move the home position of the window win from its current starting coor­
dinates to ( y, x). If part or all of the window is off the edge of the ter­
minal screen, return ERR and do not change anything. 

14-8 



WINDOW * 
newwin(lines, cols, beginJ, begin_x) 
int lines, cols, beginy, begin_x; 

nlO 

nonlO 

Create a new window with lines lines and cols columns starting at position 
(beginy, begin_x). If either lines or cols is 0 (zero), set that dimension to 
(LINES - beginy) or (COLS - begin_x) respectively. Thus, to get a new 
window of dimensions LINES x COLS, use newwin(O, 0, 0, 0). 

Set or unset the terminal to/from nl mode, i.e., start/stop the system from 
mapping <RETURN> to <LINE-FEED>. If no mapping is done, refreshO 
can do more optimization; thus, we recommend that you turn it off. 

scroHok(win, boolf) 
WINDOW* win; 
bool boo{f,' 

Set the scroll flag for the given window. If boolf is FALSE, scrolling is 
not allowed. This is its default setting. 

touchwin(win) 
WINDOW* win; 

WINDOW * 

Make it appear that the every location on the window has been changed. 
This is usually only needed for refreshes with overlapping windows. 

subwin(win, lines, cols, beginJ, begin_x) 
WINDOW* win; 
int lines, cols, beginy, begin_x; 

unctrl(ch) 
char 

gettmodeO 

Create a new window with lines lines and cols columns starting at position 
(beginy, begin_x) in the middle of the window win. (Thus, any change 
made to either window in the area covered by the subwindow is made on 
both windows; beginy, begin_x are specified relative to the overall screen, 
not the relative (0, 0) of win.) If either lines or cols is 0 (zero), set that 
dimension to (LINES - beginy) or (COLS - begin_x) respectively. 

ch; 
Return a string that represents ch.(This is actually a debug function for 
the library, but it is of general usefulness.) Make control characters their 
upper-case equivalents preceded by a caret C). Leave other letters just as 
they are. To use unctrlO, you must have this in your file: 

#include <unctrl. h> 

Get the tty stats. This is normally called by initscrO. 

mvcur(lasty, lastx, newy, newx) 
int lasty, lastx, newy, newx; 

Move the terminal's cursor from (lasty, lastx) to (newy, newx) in an ap­
proximation of optimal fashion. This routine uses the functions borrowed 
from eX(1) version 2.6. You can use this optimization without the screen 

14-9 furses 



s croll (win) 

routines. With the screen routines, you should not call this. The moveO 
and refreshO should be used to move the cursor position, so that the rou­
tines know what's going on. 

WINDOW* win; 

savettyO 

resettyO 

Scroll the window upward one line. You normally need not use this. 

Save the current tty characteristic flags. This is performed automatically 
by initscrO and endwinO. 

Restore the tty characteristic flags to what savettyO stored. This is per­
formed automatically by initscrO and endwinO. 

setterm(name) 
char* name; 

tstpO 

Set the terminal characteristics to be those of the terminal named name. 
This is normally called by initscrO. 

If the new tty ( 4) driver is in use, save the current tty state and then put 
the process to sleep. When the process gets restarted, it restores the tty 
state and then calls wrefresh(curscr) to redraw the screen; initscrO sets the 
signal SIGTSTP to trap to this routine. 

1 Capabilities Provided by Termcap (BSD4.2 only) 
The description of terminals is a difficult business, and we only attempt to summarize 
the capabilities here. For a full description, see termcap(5) in the DOMAIN/IX Program­
mer's Reference for BSD4.2. 

14 .. 3 .. 1 Overview 
Capabilities from term cap are of three kinds: string valued options, numeric valued 
options, and boolean options. The string valued options are the most complicated, 
since they may include padding information, which we describe now. 

Intelligent terminals often require padding on intelligent operations at high (and some­
times even low) speed. This is specified by a number before the string in the capabil­
ity, and has meaning for the capabilities that have a P at the front of their comment. 
This normally is a number of milliseconds to pad the operation. 

In the current system, which has no true programmable delays, we do this by sending 
a sequence of pad characters. These characters are normally nulls, but they can be 
changed (specified by PC). In some cases, the pad is better computed as some number 
of milliseconds times the number of affected lines (to the bottom of the screen usually, 
except when terminals have insert modes that shift several lines.) This is specified as, 
e.g., 12* before the capability, to say 12 milliseconds per affected whatever (currently 
always line). Capabilities where this makes sense say P*. 

curses 14-10 



14.3.2 Variables Set by "settermO" 

Type Name Pad Description 

char '" AL P* Add new blank Line 
bool AM Automatic Margins 
char * BC Back Cursor movement 
bool BS BackSpace works 
char * BT P Back Tab 
boo I CA Cursor Addressable 
char * CD P* Clear to end of Display 
char '" CE P Clear to End of line 
char '" CL P* CLear screen 
char * CM P Cursor Motion 
char * DC P'" Delete Character 
char * DL P* Delete Line sequence 
char '" DM Delete Mode (enter)char * 
DO Dawn line sequencechar * 
ED End Delete mode 
bool EO Erase Overstrikes with ' 'char * 
EI End Insert mode 
char * HO HOme cursor 
bool HZ HaZeltine - braindamage 
char * IC P Insert Character 
bool IN Insert-Null blessing 
char * 1M Enter Insert 1-10de (IC usually set, too) 
char * IP P* Pad after char Inserted using IM+IE 
char '" LL Quick to Last Line, column 0 
char * MA Ctrl character MAp for cmd mode 
bool MI Move in Insert mode' 
bool NC No Cr: \r sends \r\n then eats \n 
char * ND Non-Destructive space 
bool OS OverStrike works 
char PC Pad Character 
char '" SE Standout End (may leave space) 
char '" SF P Scroll Forwards 
char * SO Stand Out begin (may leave space) 
char '" SR P Scroll in Reverse 
char * TA P TAb (not "lor with padding) 
char * TE Terminal address enable Ending 

sequence 
char * TI Terminal address enable Initialization 
char '" UC Underline a single Character 
char * UE Underline Ending sequence 
boo I UL UnderLining works even though lOS 
char '" UP UPline 
char '" US Underline Starting sequence 
char '" VB Visible Bell 
char '" VB Visual End sequence 
char '" VS Visual Start sequence 
bool XN Newline gets eaten after wrap 

Note: US and UE, if they don't exist in the termcap entry, are copied from SO and 
SE in settermO. Names starting with X are reserved for special cases. 

14-11 curses 



14.3.3 Variables Set by "gettmodeO" 

Type 

bool 
bool 
bool 

Name 

NONL 
GT 
UPPERCASE 

Description 

Term can't hack linefeeds doing a CR 
Gtty indicates Tabs 
Terminal generates only uppercase letters 

14.4 The WINDOW Structure 
# define 
struct win st { 

- - short 

}; 

# define 
# define 
# define 
# define 
# define 

short 
short 
short 
bool 
boo I 
boo I 
char 
short 
short 

WINDOW struct win st 

_cury, _curx: 
maxy, maxx; 

=begy, '=-begx; 
_flags; 
_clear; 
_leave: 
_scroll; 
* * y; 
* flrstch; 
*=Iastch; 

SUBWIN 01 
ENDLINE 02 

-FULLWIN 04 
-SCROLLWIN 010 

STANDOUT 0200 

The current (y, x) coordinates for the window are _cury and _curx. New characters 
added to the screen are included at this point. The maximum values allowed for 
Lcury, _curx) are _maxy and _maxx. The starting (y, x) coordinates on the terminal for 
the window (i.e., the window's home) are _begy and _begx. The _cury, _curx, _maxy, 
and _maxx coordinates are measured relative to Lbegy, _begx) , not a terminal's home. 

Note: All variables that you don't normally access directly are named with an initial 
underscore ( _ ) to avoid conflicts with user variables. 

The _clear variable tells if a clear-screen sequence is to be generated on the next re­
fresh() call. It is only meaningful for screens. The initial clear-screen for the first re­
fresh() call is generated by initially setting clear to be TRUE for curscr, which always 
generates a clear-screen if set, regardless of the dimensions of the window involved. 
The _leave variable is TRUE if the current (y, x) coordinates and the cursor are to be 
left after the last character changed on the terminal, or not moved if there is no 
change. If scrolling is allowed, _scroll is TRUE. 

Since y is a pointer to an array of lines that describe the terminal, 

y[i] 

is a pointer to the ith line, and 

y[i] [j] 

is the jth character on the ith line. 

curses 14-12 



The ..flags variable can have one or more values or'd into it. _ S UBWIN means that the 
window is a subwindow, which indicates to delwinO that the space for the lines is not 
to be freed. _ENDLINE says that the end of the line for this window is also the end of 
a screen. _FULLWIN says that this window is a screen. _SCROLLWIN indicates that the 
last character of this screen is at the lower right-hand corner of the terminal; i.e., if a 
character was put there, the terminal would scroll. _STANDOUT says that all characters 
added to the screen are in standout mode. 

14.5 Examples 
This section contains representative (but not comprehensive) examples of usage. 

14.5.1 Screen Updating 
The following examples demonstrate the basic structure of a program using the screen 
updating sections of the package. Several of the programs require calculational sections 
that are irrelevant to the examples, and are therefore usually not included. The data 
structure definitions should help you understand what the relevant portions do. 

14.5.1.1 Twinkle 

This is a moderately simple program that prints pretty patterns on the screen. It 
switches between patterns of asterisks, putting them on one-by-one in random order, 
and then taking them off in the same fashion. It is more efficient to write this using 
only the motion optimization, as is demonstrated in the following. 

# include 
# include 
1* 

<curses.h> 
<signal.h> 

* the idea for this program was a product of the imagination of 
* Kurt Schoens. Not responsible for minds lost or stolen. 
*1 

# define 
# define 
# define 
struct locs { 

} ; 

NCOlS 80 
NUNES 24 
MAXPATTERNS 4 

char y, x; 

typedef struct locs laCS; 
laCS layout [NCOlS * NUNES]; / * current board layout * I 
int 

mainO { 

} 
} 

Pattern, 
Numstars; 

char 
int 
srand (getpid 0 ) ; 
initscrO; 
signal (SIGINT, die); 
noechoO; 
nonlO; 

/* current pattern number * / 
/* number of stars in pattern * / 

*getenvO; 
dieO; 

/ * initialize random sequence * / 

leaveok(stdscr, TRUE); 
scrollok (stdscr , FALSE); 
for (;;) { 

make board 0 ; / * make the board setup * / 
puton (' * ') ; / * put on '*' s '* / 

puton (' '); /* cover up with ' 's * / 

14-13 curses 



curses 

/* 
* On program exit, move the cursor to the lower left corner by direct addressing, since 
'I< current location is not guaranteed. We lie and say we used to be at the upper right 
." corner to guarantee absolute addressing. 
*/ 

dieO { 

} 

signal (SIGINT, SIG IGN); 
mvcur(O, COLS-1:- LlNES-1, 0); 
endwinO; 
exit (0) ; 

/* 

} 

* Make the current board setup. It picks a random pattern and calls ison 0 to determine 
* if the character is on that pattern or not. 
* / make board 0 { 

reg int y, x; 
reg LaCS *Ip; 
Pattern = randO % MAXPATTERNS; 
Ip = Layout; 
for (y = 0; y < NLiNES; y++) 

for (x = 0; x < NCOLS; x++) 
if (ison (y, x)) { 

Ip->y = y; 
Ip++->x = x; 

} 
Numstars = Ip - Layout; 

/* 
* Return TRUE if (y, x) is on the current pattern. 
*/ 

ison(y, x) 
reg int y, x; { 

switch (Pattern) { 
case 0: /* alternating lines * / 

return I (y & 01); 
case 1: / * box * / 

if (x >= LINES && y >= NCOLS) 
return FALSE; 

if (y < 3 II y >= NLiNES - 3) 
return TRUE; 

return (x < 3 II x >= NCOLS - 3): 
case 2: / * holy pattern! * / 

return ((x+y) &01): 
case 3: / * bar across center * / 

return (y >= 9 && y <= 15); 
} 
/* NOTREACHED * / 

} 
puton(ch) 
reg char ch; { 

} 

reg LaCS *Ip; 
reg int r; 
reg LaCS * end: 
LaCS temp; 
end = &Layout [Numstars] : 
for (Ip = Layout; Ip < end; Ip++) { 

r = rand 0 % Numstars; 
temp = *Ip; * 
Ip = Layout [r]; 
Layout [r] = temp; 

} 

for (Ip = Layout; Ip < end; Ip++) { 
mvaddch(lp->y, Ip->x, ch); 
refresh 0 ; 

} 

14-14 



14.5.1.2 Life 

This program plays the famous computer pattern game of life (Scientific American, 
May, 1974). The calculational routines create a linked list of structures defining the 
location of each piece. Nothing here claims to be optimal, merely demonstrative. This 
program, however, is a very good place to use the screen updating routines, as it lets 
them worry about how the last position looked, instead of you. It also demonstrates 
some of the input routines. 

# include 
# include 
/* 

<curses.h> 
<signal.h> 

* Run a life game. This is a demonstration program for 
* the Screen Updating section of the -Icurses cursor package. 
*/ 

struct Ist_st { 
int 

struct 1st st 
}; -

y, x; 
*next, *Iast; 

/ * linked list element * / 
/ * (y, x) position of piece * / 
/ * doubly linked * / 

typedef struct Ist_st LIST; 

LIST *Head; /* head of linked list * / 
main(ac, av) 
int 
char 

} 
/* 

ac; 
*av[]; { 
int dieO; 
evalargs(ac, av); 

initscrO; 
signal (SIGINT, die); 
crmodeO; 
noechoO; 
nonlO; 

getstartO; 
for (;;) { 

} 

prboardO; 
updateO; 

/* evaluate arguments * / 

/ * initialize screen package * / 
/ * set to restore tty stats * / 
/ * set for char-by-char * / 
/* input * / 
/* for optimization * / 

/ * get starting position * / 

/* print out current board * / 
/ * update board position * / 

* This is the routine which is called when rubout is hit. It resets the tty stats to their 
* original values. This is the normal way of leaving the program. 
*/ 

dieO { 

} 
/* 

signal (SIGINT. SIG_IGN); 
mvcur(O, COlS-1, L1NES-1, 0); 
endwinO; 
exit (0) ; 

/ * ignore rubouts * / 
/ * go to bottom of screen * / 
/ * set terminal to initial state * / 

* Get the starting position from the user. They keys u, i, 0, j, I, m, " and . are used for 
* moving their relative directions from the k key. Thus, u move diagonally up to the left, , 
* moves directly down, etc. x places a piece at the current position, " " takes it away. 
* The input can also be from a file. The list is built after the board setup is ready. 
* / getstart 0 { 

reg char c; 
reg int x, y; 

box(stdscr, '1', '_'}; 
move(1, 1}; 

14-15 

/ * box in the screen * / 
/ * move to upper left corner * / 

C1Irses 



} 
/* 

do { 
refresh 0; / * print current position * / 

if ((c=getchO) == 'q') 

} 

break; 
switch (c) { 

case 'u': 
case'i': 
case '0': 
case 'j': 
case 'I': 
case 'm': 
case' ,': 
case ',': 

adjustyx(c) ; 
break; 

case 'f': 
mvaddstr(O, 0, "File name: "); 

getstr (buf) ; 

} 

readfile (buf) ; 
break; 

case 'x': 
addch('X') ; 
break; 

case' ': 
addch (' '); 
break; 

if (Head I = NUll) / * start new list * / 
dellist (Head) ; 
Head = malloc(sizeof (LIST»; 
/* 

* loop through the screen looking for 'x's, and add a list element for each one 
*/ 

for (y = 1; Y < LINES - 1; y++) 
for (x = 1; x < eOlS - 1; x++) { 

move(y, x}; 

} 

if (inchO == 'x') 
add list (y, x); 

* Print out the current board position from the linked list 
* / prboard 0 { 

} 

reg LIST *hp; 

erase 0 ; 
box(stdscr, 'I', '_'}; 
/* 

/ * clear out last position * / 
/ * box in the screen * / 

* go through the list adding each piece to the newly blank board 
*/ 

for (hp = Head; hp; hp = hp->next) 
mvaddch(hp->y, hp->x, 'X'}; 

refresh 0 ; 

14.5.2 Motion optimization 
The following shows how motion optimization is written on its own. Programs that flit 
around without regard for existing conditions usually don't need the overhead of space 
and time associated with screen updating; they should use motion optimization instead. 

The twinkle program is a good candidate for simple motion optimization. Here is how 
it could be written (only the routines that have been changed are shown): 

curses 14-16 



mainO { 

} 

reg char 
char 
int 

srand (getpid 0 ) ; 
if (isatty(O)) { 

gettmodeO; 

*sp; 
*getenvO; 
_putchar 0, die 0 ; 

if (sp=getenv( "TERM")) 
setterm (sp) ; 

signal (SIGINT, die); 
} 
else { 

/ * initialize random sequence * / 

printf (" Need a terminal on %d\n", tty ch); 
exit(1); - -

} 
_puts (TI) ; 
_puts (VS) ; 

noechoO; 
nonlO; 
tputs(Cl, NUNES, _putchar); 
for (;;) { 

} 

makeboard 0 ; 
puton(' *'); 

puton(' '); 

/ * make the board setup * / 
/* put on ,*'s */ 
/* cover up with' 's * / 

/* 

} 

* _putchar defined for tputsO (and _putsO) 
*/ 
putchar(c) 

reg char c; { 

putchar (c) ; 

puton(ch) 
char ch; { 

static int lasty, lastx; 
reg laCS * Ip; 
reg int r; 
reg laCS *end; 
laCS temp; 

end = &layout[Numstars]; 
for (Ip = layout; Ip < end; Ip++) { 

r = randO % Numstars; 
temp = *Ip; 

} 

*Ip = layout [r] ; 
layout [r] = temp; 

for (Ip = layout; Ip < end; Ip++) 
/ * prevent scrolling * / 

} 

if (lAM II (Ip->y < NUNES - 1 II Ip->x < NCOlS - 1)) { 
mvcur(lasty, lastx, Ip->y, Ip->x); 

putchar(ch) ; 
lasty = Ip->y; 
if ((Iastx = Ip->x + 1) >= NCOlS) 

if (AM) { 

} 
else 

14-17 

lastx = 0; 
lasty++; 

lastx = NCOlS - 1; 

curses 



1 .1 
One of the most important parts of D()MAINIIX bsd4.2 is its interprocess communica­
tion (IPC) facilities. These facilities are the result of several years of research at the 
University of California at Berkeley. They incorporate many of the ideas from current 
research, while trying to maintain a philosophical compatibility with the UNIX system. 

Prior to the advent of these IPC facilities, the only standard mechanism that allowed 
two processes to communicate was the pipe. Unfortunately, pipes are very restrictive in 
that the two communicating processes must be related through a common ancestor. 
Further, the semantics of pipes make them almost impossible to maintain in a distrib­
uted environment. 

Earlier attempts at extending the UNIX IPC facilities met with mixed reaction. Most of 
the problems were related to the fact that these facilities were tied to the UNIX file 
system; either through naming or implementation. Consequently, the !PC facilities pro­
vided in 4.2BSD are designed as a totally independent subsystem. The 4.2BSD !PC al­
lows processes to rendezvous in many ways. Processes may rendezvous through a 
UNIX file system-like name space (a space where all names are pathnames) as well as 
through a network name space. In fact, new name spaces may be added at a future 
time with only minor changes visible to users. Further, the communication facilities 
have been extended to include more than the simple byte stream provided by a pipe­
like entity. These extensions have resulted in a completely new part of the system with 
which users need time to familiarize themselves. As these facilities are used more, 
they will probably be refined. 

This chapter is organized into several topics: new system calls and the basic model of 
communication, supporting library routines useful in constructing distributed applica- . 

15-1 BSD4.2 fPC 



tions, the client/server model used in developing applications (including examples of 
the two major types of servers), and advanced topics that sophisticated users may en­
counter when using the IPC facilities. 

1 
The basic building block for communication is the socket, an endpoint of communica­
tion to which a name may be bound. Each socket in use has a type and one or more 
associated processes. Sockets exist within communication domains, abstractions intro­
duced to bundle common properties of processes communicating through sockets. One 
such property is the scheme used to name sockets. For example, in the Internet com­
munication domain, socket names contain an Internet address and port number. Sock­
ets normally exchange data only with sockets in the same domain (it may be possible 
to cross domain boundaries, but only if some translation process is performed). The 
4.2BSD IPC supports two separate communication domains: the UNIX domain, and the 
Internet domain (used by processes that communicate via DARPA standard communi­
cation protocols). The underlying communication facilities provided by these domains 
have a significant influence on the internal system implementation as well as the inter­
face to socket facilities available to a user. Currently, the DOMAINIIX system only 
supports the Internet domain. 

15.2.1 Socket Types 
Sockets are typed according to communication properties visible to a user. Processes 
are presumed to communicate only between sockets of the same type, although nothing 
prevents communication between sockets of different types should the underlying com­
munication protocols support this. 

Three types of sockets are currently available to users. A stream socket provides for 
the bidirectional, reliable, sequenced, and unduplicated flow of data without record 
boundaries. Aside from the bi-directionality of data flow, a pair of connected stream 
sockets provides an interface nearly identical to that of pipes. 

A datagram socket supports bi-directional flow of data not pron1ised to be sequenced, 
reliable, or unduplicated. That is, a process receiving messages on a datagram socket 
may find messages duplicated and, possibly, in an order different from the one sent. 
An important characteristic of a datagram socket is that record boundaries in data are 
preserved. Datagram sockets closely model the facilities found in many contemporary 
packet switched networks such as the Ethernet. 

A raw socket provides users access to the underlying communication protocols that 
support socket abstractions. These sockets are normally datagram-oriented, though 
their exact characteristics depend on the interface provided by the protocol. Raw sock­
ets aren't intended for the general user; they are mainly for those developing new com­
mun~cation protocols, or for gaining access to some of the more esoteric facilities of 
an existing protocol. We consider the use of raw sockets later in this chapter. 

Two potential socket types having interesting properties are the sequenced packet sock­
et and the reliably delivered message socket. A sequenced packet socket is identical to 
a stream socket, except that record boundaries are preserved. This interface is very 
similar to that provided by the Xerox NS Sequenced Packet protocol. The reliably de­
livered message socket has similar properties to a datagram socket, but with reliable 
delivery. While these two socket types are loosely defined, they are currently unimple­
mented in BSD4.2. Thus, we describe only the three socket types now supported. 

BSD4.2 fPC 15-2 



15 .. 2 .. 2 Socket Creation 
To create a socket, use the socket(2) system call: 

s = socket(domain, type, protocol); 

This call requests that the system create a socket in the specified domain and of the 
specified type. You may also request a particular protocol. If the protocol is left un­
specified (a value of 0), the system selects an appropriate protocol from those proto­
cols comprising the communication domain and may be used to support the requested 
socket type. You are returned a descriptor (a small integer number) that may be used 
in later system calls that operate on sockets. The domain is specified as one of the 
manifest constants defined in the file <sys/socket.h>. 

Note: The manifest constants are named AF _name as they indicate the "address for­
mat" to use in interpreting names. Currently, the DOMAlNIIX system only sup­
ports the Internet domain constant, AF _ INET. 

The socket types are also defined in this file, and one of SOCK_STREAM, 
S o CK_D GRAM , or SOCK_RAW must be'specified. To create a stream socket in the 
Internet domain, the following call might be used: 

s = socket(AF_INET, SOCK_STREAM, 0); 

This call results in a stream socket being created with the TCP protocol providing the 
underlying communication support. To create a datagram socket for on-machine use, a 
sample call might be: 

s = socket(AF_INET, SOCK_DGRAM, 0); 

To obtain a particular protocol, select the protocol number, as defined within the com­
munication domain. For the Internet domain, the available protocols are defined in 
<netinet/in.h>. Better yet, use one of the library routines discussed in Section 15.3, e.g., 
getprotobyname(3N) : 

#include <sys/types.h> 
#include <sys/socket. h> 
#include <netinetiin. h> 
#include <netdb. h> 

pp = getprotobyname (" tcp" ) ; 
s = socket(AF _INET, SOCK_STREAM, pp->p_proto); 

A socket call may fail for several reasons. Aside from the rare occurrence of lack of 
memory (ENOBUFS), a socket request may fail if the protocol is unknown 
(EPROTONOSUPPORT) , or if the socket has no supporting protocol (EPROTOTYPE). 

15 .. 2 .. 3 Binding Names 
A socket is created without a name. Until a name is bound to a socket, processes can't 
reference it. Consequently, no messages may be received on it. The bind(2) call as­
signs a name to a socket: 

bind(s, name, namelen); 

The bound name is a variable length byte string that is interpreted by the supporting 
protocol(s). Its interpretation may vary from communication domain to communication 
domain (this is one of the properties that comprise the domain). In the Internet do­
main, names contain an Internet address and port number. 

15-3 BSD4.2 [PC 



In binding an Internet address, the actual call is rather simple: 

#include <sys/types.h> 
#include <netinetlin.h> 

struct sockaddr _in sin; 

bind(s, &sin, sizeof (sin)): 

However, the selection of what to place in the address sin requires some discussion. 
We return to the problem of formulating Internet addresses when we discuss the li­
brary routines used in name resolution. 

15.2.4 Connection Establishment 
With a bound socket, it is possible to rendezvous with an unrelated process. This op­
eration is usually asymmetric with one process being a client and the other a server. 
The client requests services from the server by initiating a connection to the server's 
socket. The server, when willing to offer its advertised services, passively listens on its 
socket. On the client side, the connect(2) call initiates a connection. Using the Internet 
domain, this might appear as follows: 

struct sockaddr _in server; 
connect(s, &server, sizeof (server)); 

If the client process's socket is unbound at the time of the connect call, the system 
automatically selects and binds a name to the socket (see Section 15.5.4). An error is 
returned when the connection is unsuccessful (although any name automatically bound 
by the system remains). Otherwise, the socket is associated with the server, and data 
transfer may begin. 

Many errors can be returned when a connection attempt fails. The most common are: 

ETIMEDOUT After failing to establish a connection for a 
period of time, the system decided there was 
no point in retrying the connection attempt. 
This usually occurs because the destination 
host is down, or because problems in the net­
work resulted in transmissions being lost. 

ECONNREFUSED The host refused service for some reason. 
When connecting to a host running 4. 2BSD, 
this error is usually due to a server process 
not being present at the requested name. 

ENETDOWN (EHOSTDOWN) These operational errors are returned based on 
status information delivered to the client host 
by the underlying communication services. 

ENETUNREACH (EHOSTUNREACH) These operational errors can occur either be­
cause the network or host is unknown (no 
route to the network or host is present), or be­
cause of status information returned by inter­
mediate gateways or switching nodes. Often, 
the status returned isn't sufficient to distin­
guish a network being down from a host being 

BSD4.2 fPC 15-4 



down. In these cases, the system is conserva­
tive and indicates that the entire network is 
unreachable. 

For the server to receive a client's connection, it must perform two steps after binding 
its socket. First, it must indicate a willingness to listen for incoming connection re­
quests: 

listen(s, 5); 

The second parameter to the listen(2) call specifies the maximum number of outstand­
ing connections that may be queued awaiting acceptance by the server process. Should 
a connection be requested while the queue is full, the connection isn't refused; the in­
dividual messages comprising the request are ignored. This gives a busy server time to 
make room in its pending connection queue while the client retries the connection re­
quest. Had the connection been returned with the ECONNREFUSED error, the client 
would be unable to tell if the server was up or not. It is still possible (though unlikely) 
to get the ETIMEDOUT error back. The system limits the backlog figure supplied with 

to a maximum of five pending connections on anyone queue. This avoids the 
problem of processes monopolizing system resources by setting an infinite backlog, 
then ignoring all connection requests. 

With a socket marked as listening, a server may accept(2) a connection: 

fromlen = sizeof (from); 
snew = accept(s, &from, &fromlen): 

A new descriptor is returned on receipt of a connection (along with a new socket). If 
the server wants to find out who its client is, it may supply a buffer for the client 
socket's name. The value-result parameter fromlen is initialized by the server to indi­
cate how much space is associated with from, then modified on return to reflect the 
true size of the name. If the client's name isn't of interest, the second parameter may 
be zero. 

The accept fuction normally blocks. That is, the call to accept doesn't return until a 
connection is available or the system call is interrupted by a signal to the process. Fur­
ther, a process cannot indicate that it accepts connections only from specific individ­
ual(s). The user process must consider who the connection is from and close down the 
connection if it doesn't want to speak to the process. If the server process wants to ac­
cept connections on more than one socket, or not block on the accept call, there are 
alternatives (see Section 15.5 for further information). 

1 5 
With a connection established, data may begin to flow. A number of calls can be used 
to send and receive data. With the peer entity at each end of a connection anchored, 
you can send or receive a message without specifying the peer. As you might expect in 
this case, the normal read(2) and write(2) system calls are useable: 

write(s, buf, sizeof (bun); 
read(s, buf, size of (bun); 

In addition to the above calls, the new calls send(2) and recv(2) may be used: 

send(s, buf, sizeof (buf), flags); 
reeves, buf, sizeof (bun, flags); 

15-5 BSD4.2 fPC 



While send and recv are virtually identical to read and write, the extra flags argument 
is important. The flags may be specified as a non-zero value if one or n10re of the fol­
lowing is required: 

MSG OOB 

MSG PEEK 

MSG DONTROUTE 

Send/receive out-of -band data. 

Look at data without reading. 

Send data without routing packets. 

Out-of-band data is a notion specific to stream sockets, and one that we don't imme­
diately consider. The option to have data sent without routing applied to the outgoing 
packets is currently used only by the routing table management process, and is unlikely 
to be of interest to the casual user. The ability to preview data is, however, of interest. 
When MSG_PREVIEW is specified with a recv call, any data present is returned to the 
user, but treated as still unread. That is, the next read or recv call applied to the sock­
et returns the data previously previewed. 

15.2.6 Discarding Sockets 
Once a socket is no longer of interest, it may be discarded by applying a close(2) to 
the descriptor: 

close(s); 

If data is associated with a socket that promises reliable delivery (e.g., a stream sock­
et) when a close takes place, the system continues to try transferring the data. How­
ever, if the data is still undelivered after a fairly long period of time, it is discarded. 
Should you have no use for any pending data, the system may perform a shutdown(2) 
on the socket prior to closing it. This call is of the form: 

shutdown(s, how); 

where how is 0 if you are no longer interested in reading data, 1 if no more data is to 
be sent, or 2 if no data is to be sent or received. Applying shutdown to a socket 
causes any data queued to be immediately discarded. 

15 .. 2.7 Connectionless Sockets 
Thus far, we have been concerned mostly with sockets that follow a connection-ori­
ented model. However, there is also support for connectionless interactions typical of 
the datagram facilities found in contemporary packet switched networks. A datagram 
socket provides a symmetric interface to data exchange. While processes are still likely 
to be client and server, there is no requirement for connection establishment. Instead, 
each message includes the destination address. 

Datagram sockets are created as before, and each should have a name bound to en­
able the recipient of a message to identify the sender. To send data, use the sendto 
primitive as follows: 

sendto(s, buf, buflen, flags, &to, tolen); 

The s, but, buflen, and flags parameters are used as before. The to and to len values in­
dicate the intended recipient of the message. When using an unreliable datagram inter­
face, it's unlikely that errors will be reported to the sender. Where information is pre­
sent locally to recognize a message that may never be delivered (e.g., when a network 
is unreachable), the call returns -1 and the global value errno contains an error num­
ber. 

BSD4.2 fPC 15-6 



To receive messages on an unconnected datagram socket, use the recvfrom primitive: 

recvfrom(s, buf, buflen, flags, &from, &fromlen); 

Once again, the fromlen parameter is handled in a value-result fashion, initially con­
taining the size of the from buffer. 

Besides the two calls mentioned above, datagram sockets may also use the connect call 
to associate a socket with a specific address. In this case, any data sent on the socket 
is automatically addressed to the connected peer, and only data received from that 
peer is delivered to the user. Only one connected address is permitted for each socket 
(Le., no multi-casting). Connect requests on datagram sockets return immediately, as 
this simply results in the system recording the peer's address (as compared to a stream 
socket where a connect request initiates establishment of an end to end connection). 
Other details of datagram sockets are described in Section 15.5. 

15.2.8 Input/Output Multiplexing 
One last facility often used in developing applications is the ability to multiplex I/O 
requests among multiple sockets and/or files. This is done using the select(2) call: 

select (nfds, &readfds, &writefds, &execptfds, &timeout); 

Select takes as arguments three bit masks, one for the set of file descriptors for which 
the caller wishes to be able to read data on, one for those descriptors to which data is 
to be written, and one for which exceptional conditions are pending. Bit masks are cre­
ated by or-ing bits of the form 

1 « fd 

That is, a descriptor fd is selected if a 1 is present in the fd'th bit of the mask. The 
nfds parameter specifies the range of file descriptors (Le., one plus the value of the 
largest descriptor) specified in a mask. 

A timeout value may be specified if the selection is not to last more than a predeter­
mined period of time. If timeout is set to 0, the selection takes the form of a poll, re­
turning immediately. If the last parameter is a null pointer, the selection blocks indefi:­
nitely. 

Note: To be more specific, a return takes place only when a descriptor is selectable, 
or when a signal is received by the caller, interrupting the system call. 

Select normally returns the number of file descriptors selected. If the select call re­
turns due to the timeout expiring, then a value of -1 is returned along with the error 
number EINTR. 

Select provides a synchronous multiplexing scheme. Asynchronous notification of out­
put con1pletion, input availability, and exceptional conditions is possible through use of 
the SIGIO and SIGURG signals described in Section 15.5. 

1 
We have indicated the possible need to locate and construct network addresses when 
using the interprocess communication facilities in a distributed environment. To aid in 
this task, a number of routines have been added to the standard C run-time library. In 
this section, we consider the new routines provided to manipulate network addresses. 

15-7 BSD4.2 fPC 



While the 4.2BSD networking facilities support only the DARPA standard Internet pro­
tocols, these routines have been designed with flexibility in mind. As more communica­
tion protocols become available, we recommend that the same user interface be main­
tained in accessing network-related address databases. The only difference should be 
the values returned to the user. Since these values are normally supplied to the system, 
users needn't be directly aware of the communication protocol and/or naming conven­
tions in use. 

Locating a service on a remote host requires many levels of mapping before client and 
server may communicate. A service is assigned a name intended for human consump­
tion (e.g., the login server on host monet). This name, and the name of the peer host, 
must then be translated into network addresses not necessarily suitable for human con­
sumption. Finally, the address must then used in locating a physical location and route 
to the service. 

The specifics of these three mappings are likely to vary between network architectures. 
For instance, it is undesirable for a network to require that hosts be named so that 
their physical location is known by the client host. Instead, underlying services in the 
network may discover the actual location of the host at the time a client host wants to 
communicate. This ability to have hosts named in a location-independent manner may 
induce overhead in connection establishment, as a discovery process must take place, 
but allows a host to be physically mobile without requiring it to notify its clientele of 
its current location. 

Standard routines are provided for mapping host names to network addresses, network 
names to network numbers, protocol names to protocol numbers, and service names to 
port numbers and the appropriate protocol to use in communicating with the server 
process. The file <netdb.h> must be included when using any of these routines. 

15.3.1 Names 

A host name to address mapping is represented by the hostent structure: 

struct hostent { 
char h name: /* official name of host * / 
char 1< *h _aliases; /* alias list 1< / 

int h_addrtype; /* host address type * / 
int ' h_length; /* length of address 1< / 

char *h_addr: /* address * / 
}; 

The official name of the host and its public aliases are returned, along with a variable 
length address and address type. The routine gethostbyname(3N) takes a host name 
and returns a hostent structure, while the routine gethostbyaddr(3N) maps host ad­
dresses into a hostent structure. A host may have many addresses, all having the same 
name. Gethostybyname returns the first matching entry in the data base file fete/hosts; 
if this is unsuitable, the lower level routine gethostent(3N) may be used. For example, 
to obtain a hostent structure for a host on a particular network, this routine might be 
used (for simplicity, only Internet addresses are considered): 

BSD4.2 fPC 15-8 



#include <sys/types. h> 
#include <sys/socket. h> 
#include <netinetlin.h> 
#include <netdb. h> 

struct hostent * 
gethostbynameandnet(name, net) 

char *name; 

{ 
int net; 

register struct hostent * hp; 
register char * * cp; 

sethostent(O) ; 
while ((hp = gethostentO) != NULL) { 

if (hp->h _ addrtype != AF _INET) 
continue: 

if (strcmp(name, hp->h_name)) { 
for (cp = hp->h_aliases; cp && *cp != NULL; cp++) 

if (strcmp(name, *cp) == 0) 

} 
found: 

goto found; 
continue; 

if (in_netof(*(struct in_addr *)hp->h_addr)) == net) 

} 
endhostent(O) ; 

break; 

return (hp): } 

Note: The standard routine in_netof(3N) returns the network portion of an Internet ad­
dress. 

15.3.2 Network Names 
As for host names, routines for mapping network names to numbers, and back, are 
provided. These routines return a netent structure: 

1* 
* Assumption here is that a network number 
* fits in 32 bits -- probably a poor one. 
*1 

struct 

}; 

netent { 
char *n_name; 
char * * n _aliases; 
int n_addrtype; 
int n_net: 

I * official name of net * I 
1* alias list *1 
1* net address type * I 
1* network # * I 

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the net­
work counterparts to the host routines described above. 

15-9 BSD4.2 fPC 



15.3.3 Protocol Names 

For protocols, the protoent structure defines the protocol-name mapping used with the 
routines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N): 

struct protoent { 
char *p_name; /* official protocol name * j 
char * *p_aliases; /* alias list * j 
int p_proto; /* protocol # * j 

}: 

15.3.4. Service Names 

Information regarding services is more complicated. A service is expected to reside at 
a specific port and employ a particular communication protocol. This view is consistent 
with the Internet domain, but inconsistent with other network architectures. Also, a 
service may reside on multiple ports or support multiple protocols. If either of these 
occurs, the higher level library routines must be bypassed in favor of homegrown rou­
tines like the gethostbynameandnet routine described above. A service mapping is de­
scribed by the servent structure: 

struct servent { 
char *s_name: / * official service name *j 

char * *s_aliases: /* alias list * j 
int s_port; /* port # * / 
char *s_proto: /* protocol to use *j 

}: 

The routine getservbyname(3N) maps service names to a servent structure by specify­
ing a service name and (optionally) a qualifying protocol. Thus, the call 

sp = getservbyname("telnet", (char *)0); 

returns the service specification for a telnet server using any protocol; the call 

sp = getservbyname("telnet", "tcp"); 

returns only that telnet server that uses the TCP protocol. Also provided are the rou­
tines getservbyport(3N) and gets ervent (3N) . The getservbyport routine has an interface 
similar to that provided by getservbyname; an optional protocol name may be specified 
to qualify lookups. 

15.3 .. 5 Miscellaneous 

With the support routines we've described, an application program should rarely have 
to deal directly with addresses. Thus, services can be developed in a largely network­
independent fashion. However, purging all network dependencies is difficult. So long as 
you must give network addresses when naming services and sockets, there will always 
be some network dependency in a program. For example, the normal code included in 
client programs, such as the remote login program, is of the form shown here: 

BSD4.2 fPC 15-10 



#include <sys/types. h> 
#include <sys/socket.h> 
#include <netinetlin. h> 
#include <stdio. h> 
#include <netdb. h> 

main(argc, argv) 
char * argv [] : 

{ 

} 

struct sockaddr _in sin: 
struct servent '" sp: 
struct hostent "'hp: 
int s: 

sp = getservbyname("login", "tcp"): 
if (sp == NULL) { 

} 

fprintf(stderr, "rlogin: tcp/login: unknown service\n"): 
exit(1) : 

hp = gethostbyname(argv[1]): 
if (hp == NULL) { 

} 

fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]): 
exit(2): 

bzero((char *)&sin, sizeof (sin)): 
bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length): 
sin.sin family = hp- >h addrtype; - -
sin. sin port = sp->s port; 
s = socket(AF_INET~SOCK_STREAM, 0); 
if (s < 0) { 

} 

perror(" rlogin: socket"); 
exit(3); 

if (connect(s, (char *)&sin, sizeof (sin)) < 0) { 
perror(" rlogin: connect"); 
exit(5); 

} 

Note: This example is considered in more detail in Section 15.4. 

To make the remote login program independent of the Internet protocols and address­
ing scheme, we would be forced to add a layer of routines that masked the network 
dependent aspects from the mainstrearrl login code. For the current facilities available 
in the system, the effort doesn't seem worthwhile. Perhaps when the system is adapted 
to different network architectures, the utilities will be reorganized more cleanly. 

Aside from the address-related database routines, several other interesting routines are 
available. Most of these simplify manipulation of names and addresses. The following 
summarizes the routines for manipulating variable length byte strings and handling 
byte swapping of network addresses and values: 

15-11 BSD4.2 fPC 



bcmp(sl, s2, n) 

bcopy(sl, s2, n) 

bzero(base, n) 

htonl (va l) 

htons(val) 

ntohl(val) 

ntohs(val) 

Compare byte-strings; 0 if same, not 0 otherwise. 

Copy n bytes from s 1 to s2. 

Zero-fill n bytes starting at base. 

Convert 32-bit quantity from host to network byte order. 

Convert 16-bit quantity from host to network byte order. 

Convert 32-bit quantity from network to host byte order. 

Convert 16-bit quantity from network to host byte order. 

The byte swapping routines are provided because the operating system expects ad­
dresses to be supplied in network order. On a VAX, or machine with similar architec­
ture, this is usually reversed. Consequently, programs are sometimes required to byte 
swap quantities. The library routines that return network addresses provide them in 
network order so that they may simply be copied into the structures provided to the 
system. This implies that you should encounter the byte swapping problem only when 
interpreting network addresses. Thus, you need this code to print out an Internet port: 

printf("port number %d\n", ntohs(sp->sj>ort)); 

On machines other than the VAX, these routines are defined as null macros. 

15.4 Client/Server Model 
The most commonly used paradigm in constructing distributed applications is the cli­
ent/server model. In this scheme, client applications request services from a server 
process. This implies an asymmetry in establishing communication between the client 
and server examined in Section 15.2. In this section, we look more closely at the inter­
actions between client and server, and consider some of the problems in developing 
client and server applications. 

Client and server require a well-known set of conventions before service may be ren­
dered and accepted. This set of conventions comprises a protocol that must be imple­
mented at both ends of a connection. The protocol may be symmetric or asymmetric. 

In a symmetric protocol, either side may play the master or slave roles. In an asym­
metric protocol, one side is immutably recognized as the master, the other the slave. 
The TELNET protocol used in the Internet for remote terminal emulation is an exam­
ple of a symmetric protocol. An example of an asymmetric protocol is the Internet file 
transfer protocol, FTP. Whether the specific protocol used to get service is symmetric 
or asymmetric, a client process and a server process must exist for service access. 

A server process normally listens at a well-known address for service requests. Alter­
native schemes that use a service server may be used to eliminate a flock of server 
processes clogging the system while remaining dormant most of the time. The Xerox 
Courier protocol uses the latter scheme. When using Courier, a Courier client process 
contacts a Courier server at the remote host and identifies the service it needs. Then, 
the Courier server process creates the appropriate server process (based on a database) 
and splices the client and server together, voiding its part in the transaction. 

The Courier server process may provide a single contact point for all services, as well 
as carrying out the initial steps in authentication. However, in spite of how attractive it 
may be for standardizing access to services, this scheme introduces some overhead due 

BSD4.2 fPC 15--12 



to the intermediate process involved. Implementations that provide this type of service 
within the system can minimize the cost of client server rendezvous. The portal notion 
described on the telnetd(8) and ftpd(8) manual pages embodies many of the ideas 
found in Courier, with the rendezvous mechanism implemented internal to the system. 

1 1 Servers 
In the DOMAINIIX system, most servers are accessed at known Internet addresses. 
When a server is started at boot time, it advertises it services by listening at a well­
known location. For example, the remote login server's main loop is of this form: 

main(argc, argv) 

{ 

int argc: 
char * 1< argv; 

int f; 
struct sockaddr in from; 
struct servent *sp; 

sp = getservbyname(" login" , "tcp"); 
if (sp == NULL) { 

} 

fprintf(stderr, "rlogind: tcp/login: unknown service\n"); 
exit(1) ; 

#ifndef DEBUG 
«disassociate server from controlling terminal» 

#endif 

} 

f = socket(AF_INET, SOCK_STREAM, 0); 

if (bind(f, (caddr_t)&sin, sizeof (sin)) < 0) { 

} 

listen(f, 5): 
for (::) { 

} 

int g, len = sizeof (from): 

9 = accept(f, &from, &Ien): 
if (g < 0) { 

} 

if (errno != EINTR) 
perror(" rlogind: accept"): 

continue; 

if (forkO == 0) { 

} 
close(9): 

close(f) : 
doit(g, &from): 

15-13 BSD4.2 fPC 



The first step taken by the server is to look up its service definition: 
sp = getservbyname("login", "tep"); 
if (sp == NULL) { 

fprintf(stderr, "rlogind: tep/login: unknown serviee\n"): 
exit(1): } 

This definition is used in later portions of the code to define the Internet port at which 
it listens for service requests (indicated by a connection). 

Step two is to disassociate the server from the controlling terminal of its invoker. This 
is important, as the server probably doesn't want to receive signals delivered to the 
process group of the controlling terminal. 
Once a server has established a pristine environment, it creates a socket and begins 
accepting service requests. The bind(2) call is required to ensure that the server listens 
at its expected location. The main body of the loop is fairly simple: 

for (;;) { 
int g, len = sizeof (from); 

9 = aeeept(f, &from, &Ien); 
if (g < 0) { 

if (errno != EINTR) 
perror(" rlogind: accept"): 

continue; 
} 
if (forkO == 0) { 

close(f) ; 
doit(g, &from); 

} 
close(g); } 

An accept(2) call blocks the server until a client requests service, and could return a 
failure status if interrupted by a signal such as SIGCHLD (see Section 15.5). There­
fore, the return value from accept is checked to ensure that a connection has actually 
been established. 

With a connection in hand, the server forks a child process and invokes the main body 
of the remote login protocol processing. Note how the socket used by the parent for 
queueing connection requests is closed in the child, while the socket created as a result 
of the accept is closed in the parent. The address of the client is also handed the doit 
routine for authenticating clients. 

15.4.2 Clients 
We showed the client side of the remote login service earlier in this chapter. Separate, 
asymmetric roles of the client and server are apparent in the code. The server is a pas­
sive entity, listening for client connections; the client process is an active entity, initiat­
ing a connection when invoked. 

Let's consider more closely the steps taken by the client remote login process. As in 
the server process, the first step is locating the service definition for a remote login: 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

} 

BSD4.2 [PC 

fprintf(stderr, "rlogin: tep/login: unknown serviee\n"); 
exit(1) ; 

15-14 



Next, the destination host is looked up with a gethostbyname call: 

hp = gethostbyname (argv [1 ] ) ; 
if (hp == NULL) { 

} 

fprintf(stderr, "rlogin: O/os: unknown host\n", argv[1]); 
exit(2); 

All that remains now is establishing a connection to the server at the requested host 
and starting up the remote login protocol. The address buffer is cleared, then filled 
with the Internet address of the foreign host and number of the port where the login 
process resides: 

bzero((char *)&sin, sizeof (sin)); 
bcopy(hp->h_addr, (char *)sin.sin_addr, hp->h_length); 
sin.sin_family = hp- >h_addrtype; 
sin.sin_port = sp->s_port: 

A socket is created, and a connection initiated: 

s = socket(hp->h addrtype, SOCK STREAM, 0); 
if (s < 0) {- -

} 

perror(" rlogin: socket"); 
exit(3); 

if (connect(s, (char *)&sin, sizeof (sin)) < 0) { 
perror(" rlogin: connect"); 
exit(4); 

} 

The details of the remote login protocol are not considered here. 

15 .. 4 .. 3 Connectionless Servers 
While connection-based services are the norm, some services are based on the use of 
datagram sockets. One in particular is the rwho (1 C) service that provides users with 
status information for hosts connected to a local area network. This service, while 
predicated on the ability to broadcast information to all hosts connected to a particular 
network, is of interest as a sample usage of datagram sockets. 

A user on any machine running the rwho server may find out the current status of a 
machine with the ruptime(lC) program. The output generated is illustrated here: 

15-15 BSD4.2 fPC 



arpa up 9:45, 5 users, load 1.15, 1.39, 1.31 
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59 
calder up 10: 10, o users, load 0.27, 0.15, 0.14 
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65 
degas up 25+09:48, o users, load 1.49, 1.43, 1.41 
ear up 5+00:05, o users, load 1.51, 1.54, 1.56 
ernie down 0:24 
esvax down 17:04 
ingres down 0:26 
kim up 3+09: 16, 8 users, load 2.03, 2.46, 3.11 
matisse up 3+06: 18, o users, load 0.03, 0.03, 0.05 
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50 
merlin down 19+15:37 
miro up 1 +07:20, 7 users, load 4.59, 3.28, 2.12 
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07 
oz down 16:09 
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86 
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28 

Status information for each host is periodically broadcast by rwho server processes on 
each machine. The same server process also receives the status information and uses it 
to update a database. This database is then interpreted to generate the status informa­
tion for each host. Servers operate autonomously, coupled only by the local network 
and its broadcast capabilities. 

The server performs two separate tasks. First, it receives status information broadcast 
by other hosts on the network. This job is carried out in the main loop of the program. 
Packets received at the rwho port are interrogated to ensure they've been sent by an­
other rwho server process, then are time stamped with their arrival time and used to 
update a file indicating the status of the host. 

When a host has not been heard from for an extended period of time, the database 
interpretation routines assume that the host is down and indicate such on the status 
reports. Although somewhat prone to error (e.g., a server may be down while a host is 
actually up), this algorithm serves our current needs. 

The second task performed by the server is supplying information about the status of 
its host. This involves periodically acquiring system status information, packaging it up 
in a message and broadcasting it on the local network for other rwho servers to hear. 
The supply function is triggered by a timer and runs off a signal. Locating the system 
status information is somewhat involved, but not very interesting. Having to decide 
where to transmit the resultant packet does, however, indicate some problems with the 
current protocol. 

The rwho server, in a simplified form, is pictured as follows: 

BSD4.2 fPC 15-16 



mainO 
{ 

} 

sp = getservbyname("who", "udp"}; 
net = getnetbyname ( "local net") ; 
sin.sin_addr = inet_makeaddr(INADDR_ANV, <fiet}; 
sin.sin_port = sp->s_port; 

s = socket(AF _INET, SOCK_DGRAM, O}; 

bind(s, &sin, sizeof (sin)); 

sigset(SIGALRM, onalrm); 
onalrmO; 
for (;;) { 

} 

struct whod wd; 
int cc, whod, len = sizeof (from); 

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &Ien); 
if (cc <= O) { 

} 

if (cc < 0 && ermo != EINTR) 
perror ( "rwhod: recv"); 

continue; 

if (from.sin_port 1= sp->s_port) { 

} 

fprintf (stderr, "rwhod: %d: bad from port\n" , 
ntohs(from.sin_port}) ; 

continue; 

if (!verify(wd.wd_hostname)) { 

} 

fprintf (stderr, "rwhod: malformed host name from %x\n", 
ntohl (from .sin_addr .s_addr}) ; 

continue; 

(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname); 
whod = open (path, 0_ WRONL VI 0_ CREATE I 0_ TRUNC, 0666); 

(void) time (&wd.wd_recvtime) ; 
(void) write(whod, (char *)&wd, cc); 
(void) close (whod) ; 

Status information is broadcast on the local network. Networks that don't support the 
idea of broadcast must use another scheme to simulate or replace broadcasting. While 
it's possible to list known neighbors (based on the status received), some bootstrapping 
information is needed, as a server started up on a quiet network has no known neigh­
bors and thus never receives or sends any status information. The routing table man­
agement process also faces this problem in propagating routing status information. 

The standard solution, unsatisfactory as it may be, is to inform one or more servers of 
known neighbors and request that they always communicate with these neighbors. If 
each server has at least one neighbor supplied to it, status information may then 
propagate through a neighbor to hosts that aren't (possibly) direct neighbors. If the 
server can support networks that provide a broadcast capability, as well as those that 
don't, then networks with an arbitrary topology may share status information. 

Note: If a host is connected to multiple networks, it receives status information from 
itself. This can lead to an endless, wasteful exchange of information. 

15-17 BSD4.2 fPC 



The second problem with the current scheme is that the process services only a 
single local network, and this network is found by reading a file. It is important that 
software operating in a distributed environment not have any site-dependent informa­
tion compiled into it. This would require a separate copy of the server at each host 
and make maintenance difficult. 4.2BSD attempts to isolate host-specific information 
from applications by providing system calls that return the necessary information. (An 
example of such a system call is the gethostname(2) call, which returns the host's "of­
ficial" name.) 

Unfortunately, no straightforward mechanism currently exists for finding the collection 
of networks to which a host is directly connected. Thus the server performs a 
lookup in a file to find its local network. Abetter, though still unsatisfactory, scheme 
used by the routing process is interrogatation of system data structures to locate those 
directly connected networks. A mechanism to acquire this information from the system 
would be a useful addition. 

1 
A number of facilities have yet to be discussed. For most IPC users, the mechanisms 
already described suffice in constructing distributed applications. However, others must 
use some of the features that we consider in this section. 

1 1 
The stream socket abstraction includes the notion of out-of-band data. Out-of-band 
data is a logically independent transmission channel associated with each pair of con­
nected stream sockets. Out-of-band data is delivered to the user independent of nor­
mal data along with the SIGURG signal. In addition to the information passed, a logi­
cal mark is placed in the data stream to indicate the point at which the out-of -band 
data was sent. The remote login and remote shell applications use this facility to 
propagate signals between client and server processes. When a signal is expected to 
flush any pending output from the remote process (es), all data up to the mark in the 
data stream is discarded. 

The stream abstraction defines that the out-of-band data facilities must support the 
reliable delivery of at least one out-of-band message at a time. This message may 
contain at least one byte of data, and at least one message may be pending delivery to 
you at anyone time. For communications protocols that support only in-band signaling 
(i.e., urgent data is delivered in sequence with normal data) the system extracts the 
data from the normal data stream and stores it separately. This lets you choose be­
tween receiving the urgent data in order and receiving it out of sequence without hav­
ing to buffer all the intervening data. 

To send an out-of-band message, supply the MSG_OOB flag to or sendto calls. 
To receive out-of-band data, indicate MSG_OOB when performing a recvfrom or recv 
call. To find out if the read pointer is currently pointing at the mark in the data 
stream, the SIOCATMARK ioctl is provided: 

ioctl(s, SIOCATMARK, &yes); 

If yes is a 1 on return, the next read returns data after the mark. Otherwise (assuming 
out-of-band data has arrived), the next read provides data sent by the client prior to 
transmission of the out-of-band signal. The routine used in the remote login process 
to flush output on receipt of an interrupt or quit signal is shown here: 

BSD4.2 fPC 15-18 



1 

oobO 
{ 

} 

int out = 1 + 1 ; 
char waste [BUFSIZ], mark: 

ioctl(1, TIOCFLUSH, (char *)&out); 
for (::) { 

} 

if (ioctl (rem, SIOCATMARK, &mark) < 0) { 
perror(" ioctl"): 
break; 

} 
if (mark) 

break; 
(void) read(rem, waste, sizeof (waste)): 

recv(rem, &mark, 1, SOF _OOB); 

Because the SIGURG and SIGIO signals exist, each socket has an associated process 
group (as is true for. terminals). This process group is initialized to the process group 
of its creator, but may be redefined at a later time with the SIOCSPGRP ioctl: 

ioctl(s, SIOCSPGRP, M.,. ..... 'nr1l41n 

A similar ioctl, SIOCGPGRP, determines the current process group of a socket. 

Many programs don't function properly without a terminal for standard input and out­
put. Since a socket is not a terminal, a pseudo terminal is often needed for processes 
to be able to communicate over the network. A pseudo terminal is actually a pair of 
devices, master and slave, that let a process serve as an active agent in communication 
between processes and users. 

Data written on the slave side of a pseudo terminal is supplied as input to a process 
reading from the master side. Data written on the master side is given to the slave as 
input. Thus, the process manipulating the master side of the pseudo terminal has con­
trol over the information read and written on the slave side. 

The remote login server uses pseudo terminals for remote login sessions. If you log in 
to a machine across the network, you are provided a shell with a slave pseudo terminal 
as standard input, output, and error. The server process then handles the communica­
tion between the programs invoked by the remote shell and the user's local client proc­
ess. 

When you send an interrupt or quit signal to a process executing on a remote ma­
chine, the client login program traps the signal, sends an out-of-band message to the 
server process who then uses the signal number, sent as the data value in the out-of­
band message, to perform a kiUpg(2) on the appropriate process group. 

15-19 BSD4.2 fPC 



15.5.4 Internet Address Binding 

Binding addresses to sockets in the Internet dom.ain can be rather complex. Communi­
cating processes are bound by an association composed of local and foreign addresses 
and local and foreign ports. Port numbers are allocated out of separate spaces, one for 
each Internet protocol. Associations are always unique; thus, no duplicate <protocol, lo­
cal address, local port, foreign address, foreign port> tuples may exist. 

The bind system call lets a process specify half of an association, <local address, local 
port>, while the connect and accept primitives complete a socket's association. (The 
association is created in two steps, so be careful not to violate its need to be unique.) 
It is unrealistic to expect user programs to always know proper values for the local ad­
dress and local port, since a host may reside on multiple networks and the set of allo­
cated port numbers is not directly accessible to a user. 

To simplify local address binding, the notion of a wildcard address is available. If you 
specify an address as lNADDR_ANY (a manifest constant defined in <netinet/in.h», 
the system interprets the address as any valid address. For example, to bind a specific 
port number to a socket, but leave the local address unspecified, the fonowing code 
might be used: 

#include <sys/types.h> 
#include <netinetiin. h> 

struct sockaddr _in sin: 

s = socket(AF_INET, SOCK_STREAM, 0): 
sin.sin_family = AF _INET; 
sin.sin_addr.s_addr = INADDR_ANY: 
sin.sin port = MYPORT; 
bind(s~ (char *)&sin, sizeof (sin)): 

Sockets with wild carded local addresses may receive messages directed to the specified 
port number, and addressed to any of the possible addresses assigned a host. For ex­
ample, suppose a host is on networks 46 and 10 and a socket is bound as we just 
showed in our code. If an accept call is perfortned, the process can accept connection 
requests that arrive either from network 46 or network 10. 

In a similar fashion, if a local port is left unspecified (specified as zero), the system 
selects an appropriate port number for it. For example: 

sin.sin_addr.s_addr = MYADDRESS; 
sin.sin port = 0; 
bind(s~ (char *)&sin, sizeof (sin)); 

The system selects the port number based on two criteria. First, ports numbered 0 
through 1023 are reserved for privileged users (i.e., super user). Secondly, the port 
number should not be currently bound to some other socket. 

To find a free port number in the privileged range, the remote shell server uses the 
following code: 

BSD4.2 fPC 15-20 



struct sockaddr _in sin; 

Iport = IPPORT _RESERVED - 1; 
sin,sin_addr.s_addr = INADDR_ANY; 

for (;;) { 

} 

sin . sin_port = htons ( (u _short) Iport) ; 
if (bind(s, (caddr_t)&sin, sizeof (sin)) >= 0) 

break; 
if (errno != EADDRINUSE && errno != EADDRNOTAVAIL) { 

perror(" bind"); 
break; 

} 
Iport--; 
if (Iport == IPPORT _ RESERVED/2) { 

} 

fprintf(stderr, "socket: All ports in use\n"); 
break; 

The restriction on allocating ports lets processes executing in a secure environment 
perform authentication based on the originating address and port number. 

In certain cases, the algorithm used by the system to select port numbers is unsuitable 
for an application. This is due to associations being created in a two-step process. For 
example, the Internet file transfer protocol, FTP, specifies that data connections must 
always originate from the same local port. However, duplicate associations are avoided 
by connecting to different foreign ports. 

In this situation, the system disallows binding the same local address and port number 
to a socket if a previous data connection's socket is present. To override the default 
port selection algorithm, an option call must be performed prior to address binding: 

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)0, 0); 
bind(s, (char *)&sin, sizeof (sin)); 

With the above call, local addresses already in use may be bound. This doesn't violate 
the uniqueness requirement, as the system still ensures at connect time that any other 
sockets with the same local address and port do not have the same foreign address 
and port. If an association already exists, the error EADDRINUSE is returned. 

Local address binding may be somewhat haphazard when a host is on multiple net­
works. Logically, you may expect the system to bind the local address associated with 
the network through which a peer is communicating. 

For instance, if the local host is connected to networks 46 and 10 and the foreign host 
is on network 32, and traffic from network 32 is arriving via network 10, the local ad­
dress to be bound is the host's address on network 10, not network 46. This isn't al­
ways the case. For reasons too complicated to discuss here, the local address bound 
may appear to be chosen at random. 

This property of local address binding is normally invisible to users unless the foreign 
host doesn't understand how to reach the address selected. (For example, if network 
46 isn't known to network 32, and the local address is bound to that located on net­
work 46, then even though a route between the two hosts exists through network 10, a 
connection ultimately fails.) 

15-21 BSD4.2 fPC 



15.5.5 Broadcasting and Datagram Sockets 

By using a datagram socket, broadcast packets can be sent on many networks sup­
ported by the system. However, the network itself must support the notion of broad­
casting; the system provides no broadcast simulation in software. Broadcast messages 
can place a high load on a network since they force every host on the network to serv­
ice them. Consequently, the ability to send broadcast packets has been limited to the 
super-user. 

To send a broadcast message, an Internet datagram socket should be created: 

s = socket (AF_INET, SOCK_DGRAM, 0); 

and at least a port number should be bound to the socket: 

sin. sin_family = AF _INET; 
sin. sin addr.s addr = INADDR ANY; 
sin.sin=port = -MYPORT; -
bind(s, (char *)&sin, sizeof (sin)); 

Then the message should be addressed as: 

dst.sin_family = AF _INET: 
dst.sin_addr.s_addr = INADDR_ANY: 
dst. sin_port = DESTPORT: 

and, finally, a sendto call may be used: 

sendto(s, buf, buflen, 0, &dst, sizeof (dst)); 

Received broadcast messages contain the sender's address and port (datagram sockets 
are anchored before a message is allowed to go out). 

15.5.6 Signals 

Two additional new signals, SIGURG and SIGIO, may be used in conjunction with the 
interprocess communication facilities. 

The SIGURG signal is associated with the existence of an urgent condition. It is cur­
rently supplied a process when out-of-band data is present at a socket. If multiple 
sockets have out-of-band data awaiting delivery, a select call may be used to deter­
mine those sockets with such data. The SIGIO signal is used with interrupt driven 110 
(not presently implemented). 

SIGCHLD is an old signal that helps in the construction of server processes. This sig­
nal is delivered to a process when any children processes have changed state. Nor­
mally servers use the signal to reap child processes after exiting. 

The remote login server loop shown in a previous example may be augmented. The 
following code shows how this may be done. Be aware, however, that if the parent 
server process fails to reap its children, a large number of zombie processes may be 
created. 

BSD4.2 fPC 15-22 



int reaperO; 

sigset(SIGCHLD, reaper): 
listen(f, 10); 
for (;;) { 

int g, len = sizeof (from); 

9 = accept(f, &from, &Ien, 0); 
if (g < 0) { 

if (errno != EINTR) 

} 

continue; 
} 

#include <wait. h> 
reaperO 
{ 

union wait status; 

perror(" rlogind: accept"): 

while (wait3(&status, WNOHANG, 0) > 0) 

} 

15-23 BSD4.2 fPC 



Index 

Primary page references are listed first. The letter f means "and the following page"; the 
letters ff mean "and the following pages". Symbols are listed at the beginning of the 
index. 

Symbols (caret) 
in bc 12-2 

& ( ampersand) in dc 13-2 
C operator 9-9, 9-12, 9-29 in sed 2-3 
in ratfor 10-11 lex operator 6-4, 6-6f 

< > (angle brackets) (colon) 
in awk 1-6, 1-10 in dc 13-7 
in dc 13-7 in yacc 7-3 
lex operator 6-5 (comma) 
in sed 2-5 

C operator 9-14 
* (asterisk) 

in ratfor 10-11 
awk operator 1-7 

(dash, or minus) in bc 12-2 
in C comments 9-1 C operator 9-9 

in dc 13-2 in bc 12-2 

in ratfor 10-11 in dc 13-2 

in sed 2-3 in ratfor 10-11 

lex operator 6-5f lex operator 6-5f 

C operator 9-9, 9-10 $ (dollar sign) 

\ (backslash) in awk 1-5 
in awk 1-5 in make 4-4 
in bc 12-4 in sed 2-3 
in C language 9-3 in yacc 7-5 
in ratfor 10-12 lex operator 6-5, 6-7 
in sed 2-4 && (double ampersand) 
lex operator 6-4, 6-6 C operator 9-12 
yacc escape 7-3 in awk 1-6 

{ } (braces) %% (double percent), in yacc 7-3 
in awk 1-9 II (double pipes) 
in bc 12-5 awk operator 1-6 
in sed 2-9 

C operator 9-12 
in yacc 7-4 

" (double quotes) 
lex operator 6-5, 6-8 

[ ] (brackets) in C strings 9-3 

in dc 13-6, 13-7 in ratfor 10-12 

lex operator 6-4 lex operator 6-4 

II (double slashes), in sed 2-4 

Index-l 



= (equal sign) in bc 12-2 
C operator 9-11 in C comments 9-1 
in dc 13-7 in sed 2-3 
in ratfor 10-11 lex operator 6-5 

(exclamation mark) (tilde) 
in dc 13-7 C operator 9-9 
C operator 9-9 in make 5-8 

( ) (parentheses) (underscore) 
in ratfor 10-11 in C identifiers 9-1 
lex operator 6-5 in ratfor 10-11 

(period, or dot) in yacc 7-3 
C operator 9-29 
lex operator 6-5 A 
in yacc 7-3 

% (percent) arguments, unused 3-2 
in bc 12-2 arithmetic, arbitrary precision 12-1, 13-1 
in dc 13-2 awk 
in yacc 7-6 actions 1-1 
lex operator 6-5 arithmetic functions 1-7 

(pipe) arrays in 1-9 
C operator 9-10, 9-12 BEGIN pattern 1-4f 
in awk 1-5 comments 1-10 
in ratfor 10-11 END pattern 1-4f 
in yacc 7-4 fields 1-8 
lex operator 6-5, 6-7 if -else statement 1-9 

+ (plus sign) NF variable 1-3 
awk operator 1-7 NR variable 1-3 
C operator 9-9, 9-10 patterns 1-4f 
in bc 12-2f print action 1-3f 
in dc 13-2 printf statement 1-4 
in ratfor 10-11 program structure 1-2f 
lex operator 6-5f regular expressions 1-5 

? (question mark) split function 1-8 
in awk 1-5 strings 1-6ff 
in dc 13-3 variable initialization 1-7 

lex operator 6-5 
(semicolon) 8 

in dc 13-7 
in yacc 7-3, 7-4 be 

(single quote) and C language 12-3 
in m4 11-3 and dc 12-1 
in ratfor 10-12 and FORTRAN 12-3 
in yacc 7-3 and yacc 12-1 

/ (slash) array elements 12-6 
C operator 9-10 functions 12-5f 
in awk 1-7 ibase 12-3f 

Index-2 



integers 
in C 9-4ff, 9-1S 
large 12-1 

interprocess communication 
binding socket names lS-3f 
establishing a connection lS-4f 
data transfer lS-S 
host names lS-8f 
network library routines lS-7f 
system calls and primitives used in 

accept lS-14, lS-20 
bind lS-3, lS-14, lS-20 
close lS-6 
connect lS-4, lS-20 
gethostbyname lS-lS 
listen lS-S 
read lS-S 
receive 
select 
send 

lS-S 
lS-7 
lS-S 

shutdown lS-6 
lS-S write 

Internet lS-2, lS-4, lS-13, lS-20 

L 

length function 1-7 
lex 

actions 6-2 
and make 4-7f 
and awk 1-10, 1-11 
and yacc 6-2, 6-14 
default actions 6-8f 
regular expressions 6-4 
REJECT 6-13 
rules 6-2 

line number, in sed 
lint 

and DOMAIN cc 3-2 
and ~x, yacc 3-3 
flow of control 3-3 

2-3 

functions 3-3f 
L~IB~Y 3-12 
messages 
NO STRICT 
NOTREACHED 

3-6 
3-11 
3-11 

portability 3-8 
type-checking 3-4 f 
V ARARGS 3-11 

login, remote lS-10f, lS-13f, lS-19 

M 

m4 built-in functions 
changequote 11-2, 11-8 
define 11-2f, 11-8 
divert 11-S, 11-8 
divnum 11-6, 11-8 
dnl 11-7, 11-8 
dumpdef 11-8 
errprint 11-8 
eva I 11-5, 11-8 
ifdef 11-4, 11-8 
ifelse 11-6, 11-8 
include 11-S, 11-8 
incr 11-S, 11-8 
index 11-7, 11-8 
len 11-7, 11-8 
maketemp 11-6, 11-8 
sinclude 11-S, 11-8 
substr 11-7, 11-8 
syscmd 11-6, 11-9 
translit 11-7, 11-9 
undefine 11-3, 11-9 
undivert 11-S, 11-9 

macro definitions 11-2, 11-8 
make 

Index-3 

and lex 4-1, 4-7f, S-S 
and SCCS S-l, 5-9 
and yacc 4-1, 4-7f, 5-5 
command arguments 4-6 
comments 4-4 
dependency line 4-S 
extensions S-lff 
include files S-9 
libraries, archive S-Sff 
macros 4-3ff, S-10 
MAKEFLAGS variable 5-2 
suffix rules 4-6f, 4-9 

makefile 4-7f, 5-2f 
metacharacters, in awk 1-5 



network library routines 15-7f 
network names 15-9 
NOSTRICT 3-11 
NOTREACHED 3-11 

o 

output 0 , in lex 6-1, 6-19 

patterns 
in awk 
in sed 

1-1 
2-2f 

p 

pointers, in C 
portability 

9-10, 9-30f 

of lint 3-8 
of C language 9-32f 

preprocessor, C 9-37 
program administration S-1ff 
protocol names 1S-10 

ratfor 
and yacc 10-13 
break statement 10-7, 10-10 
define statement 10-12 
do statement 
error handling 
for statements 

10-6 
10-13 
10-8f 

if-else statement 10-3ff 
include statement 10-13 
next statement 10-7, 10-10 
repeat-until statement 10-10 
return statement 10-10 
switch statement 10-Sf 
while statement 10-7f 

raw socket 1S-2 
record separator 1-3 
regular expressions 

escaping l-S, 9-2 

in awk 1-4 
in lex 
in sed 

REJECT 

6-4, 6-20f 
2-1, 2-3 

6-12 
release number 8-2, 8-S 
remote login lS-10f, 1S-13f, 1S-19, 1S-22 

s 

sccs 
admin command 8-8 
and make 8-10 
delta 8-2 
get command 
ill keywords 
release number 
prs command 
sact command 
s-file 8-1 
SID 8-2 
unget command 
what command 

screen 

8-3 
8-4f 
8-2, 8-S 
8-6 
8-4 

8-7 
8-4 

definition in curses 14-1 
updating 14-2, 14-13ff 

scripts, Shell 
converting source to sees 8-2 

searching for text 1-1, 1-11 

Index-4 

sed 
and awk 1-10 
commands 2-2ff 
functions 2-8ff 
range selection 2-S 

server process 1S-12ff, lS-1S, 1S-22 
service names, network lS-10 
signals 1S-19, 1S-22 
sockets lS-2f, lS-6 
sprintf function 1-8 
statements, in C 9-22ff, 9-36 
stream editor 2-1 
stream socket 
structures, in e 
subscripts, in awk 
SUFFIXES 4-11 

1S-2, 1S-18 
9-17ff, 9-38 

1-9 



T 

TCP protocol 15-10 
termcap database 14-10ff 
terminal screen 14-1 
types, in C 9-21f 

u 
unions, in C 
unputO, in lex 

9-17f 
6-10, 6-19 

v 
V ARARGS 3-11 

v 

yacc 
actions 7-4ff 

error 7-9 
goto 7-8 
reduce 7-8 
shift 7-8 
within rules 7-14f 

and awk 1-11 
and be 12-1 
and lex 7-7 
and lint 7-3 
and make 4-7f 
and ratfor 10-13 
comment 7-3 
conflict messages 7 -15 
declarations 7-3 
endmarker 7-4 
error handling in 7-9, 7-16 
grammar rules 7-3 
parser actions 7 - 7ff 
start symbol 7-4 

yydebug 7-18 
yylex 6-2f 
yytext· 6-8f 
yyval 7-9 
yywrap () 6-10 

Index-S 



Reader's Response 

Please take a few minutes to send us the information we need to revise and improve our manuals from 
your point of view. 

Document Title: DOMAIN/IX Support Tools Guide 
Order No.: 009413 Revision: 00 Date of Publication: November, 1986 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language _________ _ 

__ System maintenance person __ Manager/Professional 

__ System Administrator Technical Professional 
__ Student Programmer Novice 

Other 

How often do you use the DOMAIN system? _______________________ _ 

What parts of the manual are especially useful for the job you are doing? 

What additional information would you like the manual to include? 

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure, 
or table number wherever possible. Specify additional index entries.) 

Your Name Date 

Organization 

Street Address 

City State Zip 

No postage necessary if mailed in the U. S . 



FOLD 

o 
c .... 

--------------------------------------------------------------------------------------------) 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

______________________________________________________ _____________________________________ ~h 

FOLD 

I 
I 
I 
I 
I 
L 


	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB

