
o

o

o

o

o

DOMAIN System
Utilities

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 009414
Revision 00

Copyright © 1986 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: September, 1986

This document was produced using the SCRIBE document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-lOO, DOMAIN/DQC-lOO, DOMAIN/Dialogue,
DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR,
and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRffiED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSffiILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRffiED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

c

('
'-.

('
'-_.

C'

c

o

o

o

o

o

Preface

The DOMAIN System Utilities is the fourth volume in the four-volume introduction to the
DOMAIN Computing System. The first volume, Getting Started With Your DOMAIN System,
provides a tutorial approach to getting started on your node. The second volume, DOMAIN
System User's Guide, constitutes a handbook that takes you beyond the introductory stage into
practical applications of Display Manager (DM) and Shell operations. The third volume,
DOMAIN System Command Reference provides reference information on all of the DM and
Shell commands that are available to you.

This fourth document details specific commands which are considered utilities. They previously
were Appendices to the DOMAIN System Command Reference manual. We assume that you
are familiar with the material in the first three books before you attempt to use this reference
manual. Fundamental concepts like file structure and usage are taken for granted here. We tell
you how to use the utilities; not why you might want to use them.

Organization of this Manual

This manual contains nine chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Describes the utility CALENDAR which sets the date and time in the hardware
calendar, and stores time zone information on a logical volume.

Describes the utility CHUVOL, a tool for system builders and serVIce
representatives, which changes all UIDs on a disk.

Describes the utility DCALC which provides the features of a desk calculator,
evaluating both logical and arithmetic expressions.

Describes the utility ED which invokes the line editor.

Describes the utility EDFONT which is a menu-driven program to design your
own letters, numbers and/or special characters.

Describes the utility FMT which is a general purpose text formating program.

Describes the utility INVOL which initializes physical disk volumes, creates
logical volumes and maintains badspot lists.

Describes the utility ITEST which test the type managers that manage input
and output to objects.

Describes the utility SALVOL which verifies, and if necessary, corrects the
tables that describe the allocation of disk blocks to the files stored on the disk.

1 Preface

Pro blems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (VCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels you make it easy for us to respond to your comments.

You can get more information about how to submit a VCR by consulting the description of the
Shell command CRVCR (CREATE_USER_CHANGE_REQUEST). You can also get more information
by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader's Response form is located at the back of this
Guide.

Preface 2

c

c'

c

o

o

o

o

o

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPEROASE

lowercase

{ }

< >

OTRL/Z

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation OTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the < OTRL > key while typing the
character.

Horizontal ellipsis points indicate that the preceding item may be repeated one
or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have
been omitted.

3 Preface

c

c:

(~.

c
Preface 4

o

0

0

0

Contents

Chapter 1 CALENDAR

1.1. Introduction
1.2. Running CALENDAR

Chapter 2 CHUVOL (Change UID of Volume)

2.1. Introduction
2.2. Running CHUVOL

Chapter 3 DCALC (DESK_ CALCULATOR)

3.1. Introduction
3.2. Expressions
3.3. Examples

Chapter 4 ED (EDIT)

4.1. Introduction
4.2. Summary of ED Commands
4.3. Limitations
4.4. ED Commands In Detail
4.5. ED Commands
4.6. Diagnostics

Chapter 5 EDFONT (Editing a Character Font)

5.1. Introduction
5.2. Invoking EDFONT
5.3. Sample EDFONT Display
5.4. Using EDFONT
5.5. Glossary of Terms

Chapter 6 FMT (FORMAT _ TEXT)

6.1. Introduction
6.2. Examples

-6.3. Using FMT
6.4. Diagnostics
6.5. Request Line Summary

1-1

1-1
1-1

2-1

2-1
2-1

3-1

3-1
3-1
3-2

4-1

4-1
4-1
4-2
4-3
4-4
4-6

5-1

5-1
5-2
5-3
5-7

5-15

6-1

6-1
6-1
6-2
6-5
6-5

Contents

Chapter 7 INVOL (Initialize_Volume)

7.1. Introduction
7.2. Invoking INVOL
7.3. Operations

Chapter 8 ITEST (lOS _ TEST)

8.1. Introduction
8.2. Command Summary
8.3. Debugging Managers

Chapter 9 SALVOL (Salvage_Volume)

9.1. Introduction
9.2. Invoking SALVOL
9.3. Salvaging Strategy
904. Limitations

Index

Contents ii

7-1

7-1
7-2
7-2

8-1

8-1
8-1
8-5

9-1

9-1
9-1
9-3
9-6

Index-l

c

c.

o

o

o

o

o

Illustrations

Figure 5-1. Sample EDFONT Display
Figure 7-1. Sample Logical Disk Organizations

5-3

7-2

Illustrations

. __ ._--_._ .. __ ._-- --

c

c

Tables o
Table 1-1. Valid Time Zones 1-2

o

o

o

o
Tables

c

C'

o

o

o

o

o

1.1. Introduction

Chapter 1
CALENDAR

The calendar utility, CALENDAR, sets the date and time in the hardware calendar, and stores
time zone information on a logical volume. You must use this utility at least once on any volume
from which the operating system will be started. Its use is unnecessary on other volumes.
CALENDAR must be run only on initialized disks.

You may run CALENDAR either from the Shell or from the Mnemonic Debugger. From the
Shell, type

$ calendar

and follow the prompts as described below.

1.2. Running CALENDAR

To run the calendar utility from the Mnemonic Debugger, first shut down the Display Manger by
typing SHUT in the DM input window. When you receive the Debugger prompt II> II, enter
service mode by flipping the NORMAL/SERVICE switch on your node to the SERVICE position,
then type the following command:

>EX CALENDAR <RETURN>

This command loads and starts the calendar as a stand-alone utility. The utility identifies itself,
then requests the type of disk and the logical volume number. Type W for a Winchester disk, S
for a storage module disk, or F for a floppy disk. To specify a unit number, append 0 or 1 to the
letter. For example, S1 denotes storage module unit 1. Unit 0 is the default. Next, enter the
number of the logical volume if it is not 1.

The utility now checks to see if the volume already contains any calendar information. If the
calendar has already been set, the utility informs you of the settings and allows you to change
them. If the calendar has never been set, the utility prompts you for the required information.

First, the utility requests a time zone. The time zone is necessary because all date/time
information is recorded internally in Coordinate Universal Time (UTC). The time zone offset is
the value which, when applied to a UTC time, produces a local time. You can specify either a
time zone name (see below) or a positive or negative offset from UTC. If you specify an offset,
the utility later prompts you for an optional 1 to 4 character identifier to be used as a time zone
name. Offsets may be in whole or half-hour increments. Other fractional offsets produce an
error message.

After you enter the time zone, the utility prints the date and time stored in the hardware
calendar and asks if you want to make changes. If so, specify the date in the following format:

[yy]yy/mm/dd

1-1 CALENDAR

Leading zeros are not required, and you can omit the century. For example, 84/6/7 specifies
June 7, 1984.

Next, the utility requests the local time. Enter the local time in hh:mm format.

A warning message appears if you attempt to set the time backward, or attempt to set it forward
by more than five minutes. If you are sure that what you typed is correct, ignore the message.
The utility then sets the date and time in the hardware calendar and exits.

When you have completed the CALENDAR routine, place the NORMAL/SERVICE switch back
in its NORMAL setting.

Table 1-1. VaIid Time Zones

Name Time Zone ----
EDT Eastern Daylight Time
EST Eastern Standard Time
CDT Central Daylight Time
CST Central Standard Time
1vIDT Mountain Daylight Time
MST Mountain Standard Time
PDT Pacific Daylight Time
PST Pacific Standard Time
GMT Greenwich Mean Time
UTC Coordinate Universal Time

CALENDAR 1-2

--------------------------_ ... _._._-_

(",

\..~j

I~

\"---'

C"

c

o

o

o

o

o

Chapter 2
CHUVOL (Change UID of Volume)

2.1. Introduction

Every node has an identifier recorded in read-only memory that is internal to the node. If the
node has a Winchester disk, this node ID is also stored on the disk as part of the UID (unique
identifier) of each object on the disk. For proper system performance, the IDs stored on the disk
must match the ID of the node to which the disk is physically attached.

The CHUVOL (Change UID of Volume) utility changes all UIDs on a disk so that the node ID
component of each UID matches the ID of the node to which it is physically attached.

NOTE: This procedure is for use by system builders, their designated service representatives,
and our service representatives. It is not intended for end users.

Always run CHUVOL after replacing the Winchester disk in the mass storage module. If you
attempt to boot the operating system without first running CHUVOL, you will receive a warning
message. The system checks the ID of the root directory of the boot volume against the node ID,
and prints the following warning message when the two do not match:

The node number of this node differs
from that stored on the boot volume.
Prom node #nnnnnn, stored node #nnnnnn.
Do you want to proceed?

If you respond N(o) to this question, the operating system will shut down and exit to the
Mnemonic Debugger. Then, you can run CHUVOL. (It is possible to run CHUVOL on-line; the
program resides in the JCOM directory UCOMjCHUVOL. To run it, you load the operating
system from another node, as if the node were diskless.) We recommend, however, that you run
CHUVOL off-line, using the procedure that follows.

NOTE: CHUVOL is intended for use on new disks received from the manufacturer. It is not
intended as a general-purpose means of moving a disk from one node to another. In
particular, if you run CHUVOL on a disk that contains unrecorded badspots or an
inconsistent file system, it may become necessary to completely reinitialize and reload
the disk.

To change IDs, CHUVOL establishes a source ID and a target ID. The source ID is the node ID
component of the UID of the boot volume's root directory. This ID is generated when you run
INVOL. The target ID is the node ID, which is stored in the node's read-only memory.
CHUVOL changes any ID that matches the source ID to the target ID. The following procedure
describes how to run CHUVOL.

2.2. Running CHUVOL

1. If the node is not already under the control of the Mnemonic Debugger, shut down the
operating system (use the instructions in Chapter 4, Section SHUTDOWN. SEC, if
necessary).

2-1 CHUVOL (Change UID of Volume)

2. Ensure that the Winchester disk is operational. Do not run CHUVOL if you suspect
there is a problem with the Winchester disk.

3. Type the following to reset the Mnemonic Debugger and execute CHUVOL:

RE <RETURN>
<RETURN>
EX CHUVOL<RETURN>

The program header and a warning then appear:

Change_ UID _of_ Volume - Version xx, yy/mm/dd

CAUTION: This program changes the unique indentifier of every file on the
volume. It should be run only once after the disk is installed, and
after the disk diagnostic has successfully completed. If the node
crashes during CHUVOL, re-execute CHUVOL; do not salvage the
volume at this point, or files may be lost. If you wish to abort, type
Q to the following prompt:

Controller type (W=winchester,S=storage module, F=floppy)?

If you wish to continue, enter W <RETURN> to show that you are running
CHUVOL. Otherwise, follow the program's instructions and abort. If you do so, the
program prints the message RUN ABORTED.

4. For each logical volume on the disk, CHUVOL checks to make sure the volume does
not need salvaging. If it does, then CHUVOL prints the following:

LOGICAL VOLUME n REQUffiES SALVAGING
PLEASE RUN SAL VOL AND THEN

RE-EXECUTE THIS PROGRAM

Then, it returns to the Mnemonic Debugger. At this point, you should run the
SALVOL utility (for more information see the chapter on SALVOL) and execute
CHUVOL again.

5. The program then displays the node ID stored on the logical volume and the node ID
stored in read-only memory:

Logical volume 1 was built with node ID nnnnnn,
to be changed to nnnnnn.
Is this correct?

If you wish to abort, reply N <RETURN> to this question; the program displays
the message RUN ABORTED. Note that this is your last chance to abort. If you
wish to continue, reply Y <RETURN>.

6. The program then starts to update the logical volume, and it reports the percentage of
the volume that it has changed, as follows:

CHUVOL (Change UID of Volume) 2-2

c

o

o

o

o

o

Logical volume 1, % complete:
20
40
60
80

100

Logical volume 1 update complete.

If there is more than one logical volume on the disk, CHUVOL proceeds to the next
logical volume. If the ID of the next logical volume is the same as the original ID of
the logical volume just processed, then CHUVOL uses the same source and target IDs.
If the ID of the next logical volume differs from that of the previous volume, the
program prompts you, as shown in Step 5.

7. Once it has processed all logical volumes on the disk, CHUVOL prints: Physical

volume update complete, and returns to the Mnemonic Debugger.

2-3 CHUVOL (Change UlD of Volume)

c

c

2-4

o

o

o

o

0

Chapter 3
DCALC (DESK_ CALCULATOR)

3.1. Introduction

DCALC mimics the features of a desk calculator, evaluating both logical and arithmetic
expressions.

ARGUMENTS

pathname

(optional)

OPTIONS

Specify input file containing expressions to be evaluated, one
expression per line.

Default if omitted: read standard input; stop with CTRL/Z

If no options are specified, all operations are decimal-based.

-H
Specify hexadecimal operations.

3.2. Expressions

Input expressions can be simple arithmetic expressions or variable assignment expressions.
DCALC writes the value of each evaluated expression on standard output. Variables hold
temporary values, which DCALC does not automatically write.

Expressions may include any of the operators listed below (in order of precedence):

1. +

2. « »

3. **
4. * / %

5. +

6. --
!=
>
>=
<
<=

unary plus and negation operators. These may only
appear at the start of an expression or within
parentheses.

logical left and right shift

exponentiation

multiply, divide, modulo (remainder)

add, subtract

equal to
not equal to
greater than
greater than or equal to
less than
less than or equal to

3-1 DCALC (DESK_CALCULATOR)

7.

8.

unary logical not

logical or
logical and
logical xor

Relational operators return the value 1 for true and 0 for false. DeALe performs operations in
double precision floating point, except for logical operators listed as items 2 and 8 above, which
use 32-bit integers.

Variables

Expressions may include previously declared variables. Use this format to declare a variable:

name = expression

• A variable name must begin with a letter and may consist of any combination of
letters and digits .

• DeALe does not automatically print replacement expressions, because they usually
contain temporary values.

Radix Control

You can change the default base for input or output using ibase (input base) and obase (output
base) statements. For example,

ibase = 2
obase = 16

causes DeALe to interpret input in binary and print results in hexadecimal.

To set an individual number's radix, precede it with the desired radix and a pound sign. For
example,

16#100

specifies the hexadecimal number 100 (equals 256 in decimal).

3.3. Examples

Your input: DCALC output:

1. 10 + (-64/2**4)

2. temp = 2#101
temp -- 5

3. ibase = 16
obase = 2
11 + 28

6

1 (true)

111001
la + Of 101001
(Note that when you type a hexadecimal number that begins with
a letter, you must precede it with a zero.)

DCALC (DESK_CALCULATOR) 3-2

c

o

o

o

o

o

Your input:

4. ibase = 16
numa = 100
numb = 100
numa + numb

DCALC output:

512

3-3 DCALC (DESK_CALCULATOR)

c

c

c
3-4

o

o

o

o

o

4.1. Introduction

Chapter 4
ED (EDIT)

ED invokes the line editor. Input text and editing commands are read from standard input.
While you may use ED to create text files interactively, it is better suited for use in programs and
scripts. Use the <EDIT> key or the DM command, CE, to create and edit files interactively.

NOTE: There is a homonymous DM command: ED -- Delete character preceding cursor. See
the ED command description in the DM chapter for details.

ARGUMENTS

pathname

(optional)
Specify file to be edited. ED reads the file into a buffer for
editing and remembers its name for future use. ED operates on
the buffer copy; changes made there have no effect on the
original file until you issue a W (write) command from within
ED. Files are limited to 6400 lines.

If the 'pathname' argument is omitted, the edit buffer is empty
and no file name is remembered for future use. You will have to
specify an explicit file name when you exit the editor.

Default if omitted: see above

OPTIONS

-N
Suppress the printing of line counts by the E (edit), R (read),
and W (write) commands.

4.2. Summary of ED Commands

Commands to ED have a consistent format: zero, one, or two line addresses followed by a
single-character command, with optional parameters following the command. The general format
is:

[line.] [line] command parameters

The [line] specifies a line number or address in the current edit buffer. There is usually a useful
default for each command (normally the current line) so that you don't need to specify an address
explicitly.

Addresses:

17 a decimal number
the current line

4-1 ED (EDIT)

$
/pat/
\pat\
line+n

the last line of the file
search forward for line containing pat
search backward for line containing pat
n lines forward from line

line-n n lines backward from line

Defaults:

(.)
(. +1)
(. ..)
(1.$)

use current line
use the next line
use current line for both line numbers
use all lines

Commands:
(.) A
(. .. n) Bn

(. •.) C
(. •.) D

(.)
(. ..)
(. ..)
(. ..)
(.)

(. ..)
(1.$)

(.)
(. +1)
(1.$)

(1. $)

E file

F
F file
I
Kline
Mline
P
Q

R [file]
S/pat/new/GP

W [file]

= [P]
<CR>
G/pat/command

X/pat/command

'"
$n

Append text after line (text follows)
Browse over the next n lines (default n is 22).
If n is negative. print last n lines before
current line. If 'B.' is specified. print n
lines with current line in center of screen.
Change text (text follows)
Delete text
Discard current text. enter file. remember

filename
Print filename
Remember filename
Insert text before line (text follows)
Copy text to new line after specified line
Move text to line after specified line
Print text (can be appended to other commands)
Quit
Read file. appending after current line
Substitute new for leftmost pat (G implies all
occurrences)
Write file. leave current text unaltered (if
no file is specified. write to current filename)
Print line number. current line
Print next line
Execute command on lines con"taining pat
(except A. C. I. Q commands)
Execute command on lines not containing pat
(except A. C. I. Q commands)
Comment
Read or write temporary buffer. "n".

The error message II? II is printed whenever a command fails or is not understood.

4.3. Limitations

• Files being edited can contain up to 6400 lines.

• When a global search and substitute combination fails, the entire global search stops.

• Problems sometimes occur when removing or inserting NEWLINE characters (via @n),
especially in global commands.

ED (EDIT) 4-2

c

c

c

o

o

0

o

o

4.4. ED Commands In Detail

ED accepts commands interactively (from the keyboard) and in a batch-like manner (from script
files). To use a script file, substitute the script file name for standard input:

ED [options] [pathname] <script

Command Format

Commands to ED have a consistent format: zero, one, or two line addresses followed by a
single-character command, with optional parameters following the command. The general format
IS:

[line.] [line] command parameters

The [line] specifies a line number or address in the current edit buffer. There is usually a useful
default for each command (normally the current line) so that you don't need to specify an address
explicitly.

~ine addresses are formed from the following components:

17 an integer number
the current line

$ the last line in the buffer
.+n n lines past the current line
.-n n lines before the current line
/pattern/ a forward context search
\pattern\ a backward context search

Line numbers can be separated by commas or semicolons; a semicolon sets the current line to the
previous address before the next address is interpreted. This feature can be used to determine the
starting line for forward and backward context searches U / and \ \).

Regular Expressions

ED supports regular expression notation for specifying patterns in line addresses and in the S, G,
and X commands. A regular expression represents one or more strings of characters for which to
search. For a description of regular expressions, refer to the chapter on DM basics. The notation
is summarized below for your convenience. These search and substitute operations are identical
in function to their Display Manager counterparts, although the syntax of the DM's S command
differs slightly. Summary of Regular Expression Notation

c
?

%
$
[...]
[- ...]
[c1-c2]
@c
@n
@t

*
{ ... }

Literal character
Any character (except newline)
Beginning of line
End of line
Character class (anyone of these characters)
Negated character class (all characters except those in brackets)
Any single character in the range c1 to c2
Escaped character (e.g .. @%. @[. @*)
Newline
Tab character
Closure (zero or more occurrences of previous pattern)
Tagged pattern

4-3 ED (EDIT)

4.5. ED Commands

The following is a list of ED commands. Default line addresses are in parentheses. Commands
may be typed in either upper- or lowercase.

(.)A
[text]

The append command reads the text and appends it after the addressed line. The current
line is left on the last line input, if any. If no lines are input, the current line remains on
the addressed line. Signify the end of the text by typing a line with a period as its first and
only character.

(.)B[+ / ./-] [screensize]

c

The browse command is a shorthand command to print out a screen of data. It has three
basic forms, any of which may be followed by a screensize. A simple B (or B+) prints the
current line and the screen after it. B- prints the screen of text preceding (and including)
the addressed line. B. prints a screen of text, centered on the addressed line. Except for the C'
B. command, these commands leave the current line at the last line printed. The default _/

(.,.)C
[text]

screensize is 23 lines. If you specify a screensize, it becomes the default screensize for the
rest of the editing session or until changed.

The change command deletes the addressed lines, then accepts input text which replaces
these lines. The current line is left at the last line input, if there were any, otherwise at the
first line not deleted. Signify the end of the text by typing a line with a period as its first
and only character.

(.,.)D The delete command deletes the addressed lines from the buffer. The line originally after
the last line deleted becomes the current line; however, if the lines deleted were at the end
of the file, the new last line becomes the current line.

E [filename]
The edit command deletes the entire contents of the buffer and then reads in the named

(~

file. When it executes this command, ED sets the current line to the last line of the buffer C __ '
and displays the number of lines read. Also, it remembers the supplied filename for possible --
use as a default filename in subsequent R or W commands.

F [filename]
If you specify a filename, the currently remembered filename is changed to that name.
Otherwise, ED prints the currently remembered filename.

(l,$)G/regular expression/command
The global command executes the other specified command for every line that matches the
regular expression. To execute multiple commands on the lines matched, place each on a
separate line and terminate each command except the last with an II at II sign (@). For
example,

g/foo/s/bar/zot/@
s/wazoo/munch/

ED (EDIT)

For all lines containing the string "foo".
replace "bar" with "zot" and "wazoo" with
"munch" .

4-4

o

o

o

o

o

{.)I
<text>

The insert command inserts <text> before the addressed line. The current line becomes
the last line input, or, if there are no new lines, the addressed line. This command differs
from the A command only in the placement of text. Signify the end of the text by typing a
line with a period as its first and only character.

{.,.)K<address>
The kopy command copies the addressed lines to the position after the line specified by
<address>. The last of the copied lines becomes the current line.

{.,.)M < address>
The move command deletes the addressed lines from their original location, and places them
after the line specified by <address>. The last of the moved lines becomes the current
line.

(.,.)P The print command prints the addressed lines. The last line printed becomes the current
line. The P command can be used as a modifier following any other command, except the
A, C, I, or Q commands. When used in this way, it prints the last line affected by the
command.

Q The quit command causes ED to exit. If you have not written the file since changing it, ED
reminds you once to do so.

(.)R [filename]
The read command reads the named file into the buffer after the addressed line. If you do
not specify a filename, ED uses the remembered filename (see E and F commands). The
remembered filename is not changed. The address 0 (zero) causes ED to read the file in at
the beginning of the buffer. If the read is successful, the number of lines read is displayed.
The last line read becomes the current line.

{.,.)S/regular expression/replacement/
(.,.)S/regular expression/replacement/G

The substitute command searches each addressed line for an occurrence of the regular
expression. On each line that contains a match, ED replaces the first occurrence of the
expression with the replacement string. If the global replacement indicator G follows the
command, all occurrences of the regular expression are replaced. The delimiting character
for the regular expression and replacement need not be a slash U); you can use any
character except a space or newline. If the substitution fails on all addressed lines, ED
prints a question mark (7). The last line substituted becomes the current line. If no regular
expression is specified (for example, S/ /pat/), ED uses the previous regular expression.

An ampersand (&) in the replacement is replaced by the string that matched the regular
expression. To suppress this special meaning of &, precede it with an at sign (@). Note
that except for &, all characters in the replacement string are inserted literally.

To split or merge lines, use the symbol @n to stand for the NEWLINE character at the end
of a line.

(l,$)W [filename]
The write command writes the addressed lines into the file. If the specified file does not
exist, it is created. This command does not change the remembered filename. If no

4-5 ED (EDIT)

._-_ __ _---- ---

filename is given, the remembered filename is used (see the E and F commands). The
current line is left unchanged. If the command is successful, ED displays the number of
lines written.

(l,$)X/regular expression/command
The except command is the same as the global command except that commands are
executed for every line that does not contain a match for the regular expression.

(.)= The equals command displays the line number of the addressed line. The current line is not
changed.

comment
Text following a pound sign (#) in the first column of a line is treated as a comment and is
ignored by the editor. This command allows ED scripts to contain comments. Only
whole-line comments are permitted (i.e., you can't place comments at the end of other legal
command lines).

(. + 1) < carriage return>
An address alone on a line causes the addressed line to be displayed. A blank line alone is
equivalent to '.+1' and thus is useful for stepping through text.

4.6. Diagnostics

This message is printed whenever the file exceeds 6400 lines.
file size exceeded

A message is printed if you attempt to quit without writing a file that you edited. ED requires
you to retype the command as a verification.

The error message II?II is printed whenever a command fails or is not understood.

ED (EDIT) 4-6

c

c

c

o

o

o

o

o

Chapter 5
EDFONT (Editing a Character Font)

5.1. Introduction

EDFONT is a menu-driven program that allows you to design your own letters, numbers and/or
special characters by constructing them, one at a time, on a screen grid. This grid is displayed as
part of the initial EDFONT screen image. You can designate any character(s) you have created as
a new font, store this font in a file and access it later for editing or printing. EDFONT allows
you to do the following:

o Design a character by using grid spaces (pixels), lines, arcs, and filled or outlined
circles and boxes

o Change the space size between characters

o Change the space size between lines

o Change the grid/character size

o Rotate a character on the grid

o View an actual size replica of the character you are currently designing

o Replace the character you are currently editing with one from the same or an
alternate font file

In addition to designing your own fonts, you can modify existing system fonts. Refer to the FL
(FONT _LOAD) command description in the DOMAIN System Command Reference for further
information.

What is a Font?

A font is data that graphically describes a set of related character images. Fonts are stored in
named files on a node. A font file contains exactly one font.

All of the characters which appear on a display are read from a font file. You can select the font
to be used by using the Display Manager command FL (FONT_LOAD) or by calling PAD or GPR
system routines from your own program. At least two fonts are always in use by a node: the
standard font, contained in /SYS/DM/FONTS/STD (plus the 1I.19LII or II.COLORII suffixes for the

associated display types), and the window legend font, contained in /SYS/DM/FONTS/LEGEND (plus
the 1I.19LII or II.COLORII suffixes for the associated display types).

Fonts are generally classified into two categories: mono-spaced and proportionally-spaced.
Characters in mono-spaced fonts are all exactly the same size, making these fonts most useful
whenever column alignment is important. Character sizes in proportionally-spaced fonts vary
from character to character. Proportionally-spaced fonts are generally used in typesetting and
other document preparation applications.

5-1 EDFONT (Editing a Character Font)

See the Glossary of Terms at the end of this chapter for defintions of related terms. The
Glossary is also useful for additional background information.

The size of a font file is limited by the amount of hidden display memory available. EDFONT
will display a warning when you have exceeded the size limit.

The following is a procedural description of the EDFONT program.

5.2. Invoking EDFONT

This program is designed to be used with either a mouse or a touchpad. To invoke EDFONT,
type the following in the Shell input pad.

EDFONT <RETURN>

The initial screen image is displayed.

The font pathname specifies the name of a font file. It can be either a new font name or the name
of an existing font. Enter the font name in the following form:

II _____ 1 _____ 1 _____ <RETURN>

You can also invoke EDFONT by entering the name of the font right on the Shell input line.
Example: EDFONT /SYS/DM/FONTS/STD

To exit, simply position the cursor on Exit and press either the Function 1 key (Fl) or the
leftmost Mouse key (MI). See item 5, following, for more information on Exit.

NOTE: The Fl and Ml keys are hereafter referred to collectively as the Select key.

EDFONT (Editing a Oharacter Font) 5-2

(-.~

c

o

o

o

o

o

5.3. Sample EDFONT Display

Figure SAMPLE_DISPLAY shows a sample screen display. The following numbered items
correspond to the numbered items in Figure SAMPLE _DISPLAY.

NOTE: You can get additional information about any item on the display by pressing the
SHIFT and HELP keys at the cursor position where you need help. Move the cursor out of the
help box to return to the original display.

®

•
g

Yet. @

Figure 5-1. Sample EDFONT Display

5-3 EDFONT (Editing a Oharacter Font)

1. Font
When you position the cursor here and press the Select key, EDFONT displays the
current font pathname. (For a description of how to enter the font pathname, see
INVOKING EDFONT.)To keep the same name, simply move the cursor out of the
pop-up. To change the name, use the LINE DEL key to delete, then enter the new
font name and press RETURN. Position the cursor on Load This Font and press the
Select key. If you have modified the font, EDFONT asks if you want to discard those
modifications. Position the cursor on the appropriate box and press the Select key.

2. Spacing
Select this option to change font values for vertical spacing, horizontal spacing, or
space size. (Refer to the Glossary of Terms for definitions.) Position the cursor at the
appropriate line, enter the new information and press the RETURN key.

NOTE: These values pertain to the whole font, not only to the character being
edited.

3. Defaults
This option allows you to change or create default values for character width and/or
height. (Refer to the Glossary of Terms for definitions.) These are the values that
EDFONT will assign to the width/height of any newly created character.

4. Info
To view information about the current font (number of characters in font, maximum
height and maximum width) press the Select key at this option. You cannot modify
these values.

5. Exit
Select this option to quit. If you have not modified the font, then EDFONT will quit
immediately. If you have made modifications, then EDFONT will ask if you want to
keep or discard them. If you decide to keep the modifications, the font file will be
updated with the new design information.

6. Copy From
When you select this option, you can change the character image on the grid to
another character in the same or in a different font. Enter the name of the font in
which you wish to view this character and press RETURN. Next, type the character
you wish to view and press RETURN. The designated character image appears on the
grid.

7. Rotate
Select this option to turn the character image on the grid anywhere from 0 to 360
degrees. When you press the Select key, EDFONT displays a circle showing the degree
selection. Press the Select key to indicate the begin point, then move the cursor to the
desired number of degrees on the circle. Press the Select key again. The amount of
rotation you select appears as the highlighted portion of the circle with the number of
degrees printed underneath. The current character image appears on the grid in the
designated position of rotation.

8. Resize
Pressing the Select key here causes EDFONT to display the x-y coordinates for the
current font. To change either or both, delete the old number(s) with the CHAR DEL

EDFONT (Editing a Character Font) 5-4

c

o

o

o

o

o

key, type in the new number(s), and press RETURN. Next, position the cursor on
Change Size and press the Select key. The new coordinate(s) are registered. To keep
the same coordinates, simply move the cursor out of the pop-up.

9. Save
Select this option to save your font file, on disk, at any point In its creation or
modification without exiting the program.

10. Set Origin
When you press the Select key here, a crosshair appears on the grid. By moving the
cursor, you can move the crosshair to the location you wish to designate as the origin
for the current character. When you press the Select key at the desired location, a
small box appears on the grid to indicate the new point of origin. Remove the
crosshair by moving the cursor completely off the grid.

11. Character
When you position the cursor here and press the Select key, EDFONT displays a table
showing upper- and lowercase letters. To change the selection on the table to special
characters and numbers, position the cursor on Special Chars and press the Select key.
To regain the letters, position the cursor on Letters and press the Select key. Each
time you choose a letter or special character by pressing the Select key, that
letter /special character is displayed, actual size, directly under the table.

12. To select a particular character from the table, position the cursor on that character
and press the Select key, then move the cursor to Edit This One and press the Select
key again. If you select a character from an existing font, EDFONT displays that
character on the grid. If you select a character to be created, the cursor moves to its
designated point of origin on the grid. EDFONT stores whatever you create, in the
font file that you assign it, as the character that you selected it to represent.

13. Undo
Select this option to cancel the last operation you performed. Mter you press the
Select key, EDFONT displays the next to last version of the character.

14. Design Menu
This menu offers the following options:

o Pixel
Select this option to build a design one grid square at a time. Position the
cursor and press Select at the square you wish to fill.

o Line
This option refers to a series of pixels with a defined beginning and end
point. Mter selecting Line and pressing the Select key, move the cursor to
a begin point and press Select. Now as you move the cursor, "rubber
banding" allows you to see the potential length of the line. When the line
stretches to the desired length, press the Select key. All the grid squares
between the two points are then filled.

o Paint
This option allows you to fill a continuous series of squares simply by
pressing the Select key at the first square, then moving the cursor . You

5-5 EDFONT (Editing a Character Font)

don't need to press Select after each subsequent square as In Pixel.
Pressing Select again turns this option off.

• Box
Use this option to draw a box with a series of squares. Set two points on
the grid to define the size and shape of the box. The first point is the
center and the second point, the radius. After you press Select for the
center point, use rubber banding to grow and shrink the box. Press Select
at the size box you want. (See items 14 and 15 for additional options.)

• Arc
Use this option to draw an arc with a series of squares. After setting the
first point, use rubber banding as a guide for the size and sweep of your
arc.

• Circle"
This option allows you to draw a circle with a series of squares. Set the
center of the circle, then use rubber banding as a guide for the radius. (See
items 14 and 15 for additional options.)

15. By pressing the Select key or space bar you can switch this option from On to Invert
to Off and select any of these by pressing the Select key at the desired option.

On

Invert

Off

turns on the pixel.

turns the pixel from on to off or vice versa, depending on its
current state.

turns off the pixel highlight.

16. This option is also switchable, in this case from Filled to Outline.

Filled

Outline

fills the space between selected points with pixel squares; available
only for Box and Circle.

fills only a line between selected points with pixel squares.

17. This box shows the character/number you are currently designing on the grid in its
actual size.

18. Col Row
This box indicates the position of the cursor on the grid (in pixels) at any time.

19. This box shows the name of the current font.

20. Delete
With this option you can delete the current char~cter from the font along with its
image from the grid.

21. Erase
To clear the grid, position the cursor here and press the Select key.

EDFONT (Editing a Character Font) 5-6

c

c

o 5.4. Using EDFONT

The following exercise is intended to familiarize you with EDFONT. Please follow the
instructions below.

1. Invoke EDFONT by typing the following in the Shell input pad.

$ EDFONT<RETURN>

The EDFONT menu appears.

Font Spacing Default size

Copy from .. Rotata

Character

o I Font pathnamo[/.y./dm/fonts/now.

o
2. At "Font Pathname: II type the following:

/SYS/DM/FONTS/NEW <RETURN>

3. Move the cursor to Character. Press the Select key to display the alphabet table.

o

o
5-7 EDFONT (Editing a Character Font)

4. Position the cursor on the letter E and press the Select key. The E on the alphabet
table is outlined.

Fonl il Spa~ln9

Copy from.

'.'

Default size

Rola"

Character

g Lollo"

••••••••••••••• • • • • • • • • • • • • • • • • •••••••••••••••• ••••••••••••••••

COL ROW

5. Position the cursor at Edit This One and press the Select key. EDFONT displays a
grid with a small box on the lower left side. This box indicates the default point of
origin. To change the letter's point of origin, see SAMPLE EDFONT DISPLAY,
item 10.

Font Spacing Default size Current limits Exit

Copy from .. Rolate Resize

Character

•

EDFONT (Editing a Character Font) 5-8

c

c'

c

c'

o

o

o

o

o

6. Check that the Pixel option in the Design Menu (item 13) and the On option (item 14)
are both selected. If not, select them.

7. Begin constructing your new E by pressing the Select key at the grid square shown in
the illustration below .

. : :.: .

••

8. At the Design Menu, position the cursor on Line and press the Select key.

5-9 EDFONT (Editing a Character Font)

9. Return to the grid and press the Select key at the next box up to be filled. As you
move the cursor towards the top of the screen, rubber banding allows you to see the
potential length of the line.

.: .

10. Now, move the cursor to the ending box and press the Select key. All squares between
these two points automatically fill. You now have an image that looks like this:

Font Spacing Default size

Copy from.,

Character

EDFONT (Editing a Character Font) 5-10

-------------------------_ .. _. __ ._-.. _•....

c

o

o

o

o

o

11. Move the cursor to the Design Menu and select the Paint option.

12. Move the cursor to the top square, press the Select key, then move to the right the
number of squares shown below. The Paint option allows you to fill in the desired
number of squares simply by moving the cursor.

Font

Olletl

13. Using the Pixel, Line, and/or Paint options, complete the letter "E".

-: :.

E

5-11 EDFONT (Editing a Character Font)

14. Instead of exiting the program, clear the screen for another exercise by moving the
cursor to Erase and pressing the Select key.

The next exercise is intended to familiarize you with the remaining EDFONT options.

15. Check that the On and Outline options are selected. If not, select them.

16. Position the cursor on Box and press the Select key.

17. On the grid, set up the center of the box by pressing Select. Now, using rubber
banding as a guide, select the size of the box.

18. When you press the Select key, EDFONT automatically outlines the box.

D

EDFONT (Editing a Character Font) 5-12

c

o

o

o

o

o

19. Now create a box using the Filled option.

20. Use Erase to clear the screen.

21. A circle is created in exactly the same way as a box and also has Filled or Outline
options. Create a circle using both the Filled and Outline options.

22. Use Erase to clear the screen.

23. Select Arc and return the cursor to the grid.

24. Select two points, pressing the Select key after each one. Rubber banding allows you
to see the potential shape of the arc.

5-13 EDFONT (Editing a Character Font)

25. When you press the Select key a third time, EDFONT draws the arc from point to
point.

) --_ 7 ...

26. To quit, move the cursor to Exit and press the Select key. A pop-up asks if you wish
to keep or discard the modifications. Position the cursor on the desired response and
press the Select key.

27. You have now completed the EDFONT exercise.

EDFONT (Editing a Character Font) 5-14

- --_._-_. __ ._---_. ------------------------

c

c

0

0

0

o

o

5.5. Glossary of Terms

ASCII Value The two-digit hexadecimal number to which a given character corresponds, as
follows:

gs:t, hex dec. gs:t, hex ~ gs:t, hex .de.i:

00 00 NUL 00 60 30 0 48 140 60 96
01 01 SGI 01 61 31 1 49 141 61 a 97
02 02 STX 02 62 32 2 50 142 62 b 98
03 03 £TX 03 63 33 3 51 143 63 c 99
04 04 ror 04 64 34 4 52 144 64 d 100
05 05 ENQ 05 65 35 5 53 145 65 e 101
06 06 N:.K 06 66 36 6 54 146 66 f 102
07 07 BEl. 07 67 37 7 55 147 67 9 103
10 08 BS 08 70 38 8 56 150 68 h 104
11 09 In' 09 71 39 9 57 151 69 105
12 OA NL(LF) 10 72 3A 58 152 6A 106
13 OB vr 11 73 3B 59 153 6B 107
14 DC FF 12 74 3C 60 154 6C 108
15 OD CR 13 75 3D = 61 155 6D m 109
16 OE FRS 14 76 3E > 62 156 6E n 110
17 OF BRS 15 77 3F ? 63 157 6F 0 111
20 10 RCP 16 100 40 64 160 70 P 112
21 11 XON 17 101 41 A 65 161 71 q 113
22 12 HLP 18 102 42 B 66 162 72 r ll4
23 13 XOFF 19 103 43 C 67 163 73 s ll5
24 14 HLR 20 104 44 D 68 164 74 t ll6
25 15 NAK 21 105 45 E 69 165 75 u 117
26 16 SYN 22 106 46 F 70 166 76 v ll8
27 17 ETB 23 107 47 G 71 167 77 w 119
30 18 CAN 24 110 48 H 72 170 78 x 120
31 19 EM 25 111 49 I 73 171 79 Y 121
32 1A SUB 26 112 4A J 74 172 7A z 122
33 1B mc 27 ll3 4B K 75 173 7B { 123
34 1C FS 28 114 4C L 76 174 7C I 124
35 lDGS 29 115 4D M 77 175 7D } 125
36 IE RS 30 116 4E N 78 176 7E 126
37 IF US 31 117 4F 0 79 177 7F DEL 127
40 20 SP 32 120 50 P 80
41 21 1 33 121 51 Q 81
42 22 34 122 52 R 82
43 23 • 45 123 53 S 83
44 24 $ 36 124 54 T 84
45 25 % 37 125 55 U 85
46 26 38 126 56 V 86
47 27 39 127 57 W 87
50 28 40 130 58 X 88
51 29 41 131 59 y 89
52 2A 42 132 SA z 90
53 2B + 43 133 5B (91
54 2C , 44 134 5C \ 92
55 2D - 45 135 5D ! 93
56 2E 46 136 5E 94
57 2F / 47 137 SF 95

Character Descriptor
That part of a font which contains the information necessary for the system to
display a character. This information is in the form of five scalar components:
up, down, right, left, and width. The first four describe how many pixels the
character image occupies in two directions. The fifth, width, is not related to
the width of a character image as described in the font header, but is a spacing
device used by EDFONT to tell the system how much space to leave between
the origin of one character and the origin of the next.

Character Image The graphic image stored in memory by the bitmap and displayed on the
screen as an array of pixels.

Default Height

Default Width

A value that designates the height (number of pixels occupied by a character
image in the vertical direction) of any character in a font file edited by
EDFONT. You can change this value.

A value that designates the width (number of pixels occupied by a character

5-15 EDFONT (Editing a Character Font)

Fixed Width

Font File

Font Header

image in the horizontal direction) of any character in a font file edited by
EDFONT. You can change this value.

A font with characters that are all of the same width. These fonts produce
displays and documents that are monospaced (no allowance for character width
differences). Fixed width fonts are most useful whenever column alignment is
important.

A file that holds one font. All of the characters that appear on a display are
read from a font file. The EDFONT current font file format restricts the
character image size to a maximum of 224 by 224 pixels, and the character
descriptor components to a range of -127 to 127.

That part of a font that contains data for the entire font; namely, the number
of characters in the font, the maximum height of characters, the maximum
width of characters, the amount of space between characters, the amount of
space between lines, and the amount of space that will be skipped for an
undefined character. All, except the number of characters, are expressed in
pixels. The height and width of characters may vary, but no character can be
higher or wider than the values listed in the font header for height and width.

Font Pathname The path that the system must take to find the location of a specific font file.

Font

Entered at the initial EDFONT display, the font pathname conforms to the
DOMAIN pathname format.

The data compiled by EDFONT relating to a character image created on the
grid. A font can consist of as little as one character, but the term usually refers
to a group of characters related by size and/or typeface design.

Horizontal Spacing
The amount of space between each character in a font that EDFONT will skip
in a horizontal direction. This is user-modifiable data, expressed in pixels, that
affects the font as a whole, rather than only one character at a time. (Refer to
Figure 5-1, item 2.)

Maximum Height The value, in pixels, for the tallest character in a font.

Maximum Width The value, in pixels, for the widest character in a font.

Monospaced Characters

Origin

Pixel

See Fixed Width.

The x-y coordinate pair set by the system at which a character is displayed,
where x is defined as a pixel having a II right II scalar value of 1, and y as a pixel
having an II up II scalar value of 1.

Any of the tiny picture elements that form a digitalized picture on a tv or crt
screen. Pixel also describes the units of space (grid squares) that you use in
EDFONT to create or edit a character. Because display pixels are too small to
work with comfortably, the EDFONT grid uses enlarged pixels. However, no
matter what size pixel you work with, the pixel size on the printed output and
on displays other than the grid are set by the particular device you are using
and are not modifiable.

EDFONT (Editing a Character Font) 5-16

c'

o

o

o

o

o

Proportionally Spaced Characters
See Varying Width.

Scalar Components
See Character Descriptor.

Space Size The number of pixels to skip in the horizontal direction when an undefined
character is written. When you press a key for a character not in the font, or
an arrow key, the cursor moves this number. You can modify this data. (Refer
to Figure 5-1, item 2.)

Varying Width A font in which character size varies from character to character. These fonts
produce displays and documents that are proportionally spaced (with allowance
for character width differences). Varying width fonts are most useful in
typesetting and other document preparation applications.

Vertical Spacing The amount of space between each line of characters that EDFONT will skip.
This is user-modifiable data, expressed in pixels, that affects the font as a
whole, rather than only one character at a time. (Refer to Figure 5-1, item 2.)

5-17 EDFONT (Editing a Character Font)

c

c'

.. ---------------------.---.- .. -.----.-.-----~--

o

o

o

o

o

Chapter 6
FMT (FORMAT _ TEXT)

6.1. Introduction

FMT is a general purpose text formatting program, allowing you to arrange output text
according to formatting directives embedded in the input file or typed on standard input.

By default, formatted text is written to standard output. You may redirect it to a file with the
-OUT option.

ARGUMENTS

pathname
(optional)

OPTIONS

-F n

-T n

-8

-PO n

-LF

-OUT pathname

6.2. Examples

Specify input file to be formatted. Multiple pathnames and
wildcarding are permitted; however, FMT will concatenate
multiple files prior to formatting. If FMT cannot find one of the
specified input files, control shifts to standard input.

Default if omitted: read standard input

Begin output at the first page numbered n.

Terminate output at the first page numbered higher than n.

Stop before printing each page, including the first. This option
is useful for paper manipulation. The prompt II Type return to
begin a page ll is issued only once, before the first page.

Page Offset. Shift the entire document n spaces to the right.

List names of files as they are processed.

Specify output file. If this option is omitted, formatted text is
written to standard output.

$ fmt mary -out mary.formatted -po 9
$

Format "mary" with a page offset
of 9 spaces, and write the
results to "mary.·formatted".

6-1 FMT (FORMAT _ TEXT)

6.3. Using FMT

Input consists of text lines, which contain information to be formatted, intermixed with FMT
request lines, which tell the program how to format the text lines. Request lines must begin with
a special control character, normally a period. The Request Line Summary that follows this
section lists the FMT commands.

Line Endings

If you use the fill (.fi) command, FMT adds as many words to an output line as will fit. FMT
determines the line break; the <RETURN> you type when entering text does not establish line
breaks on the output.

Justification

You can turn right justification on and off with the .ju and .nj commands. Strings of embedded
spaces are retained so that the output line contains at least as many spaces between words as the
input line. However, spaces at the beginning of input lines are output without modification.

Line Breaks

In certain cases, FMT generates breaks. A break consists of cancelling right justification for a
particular line (even while you are using .ju) and beginning the next input line on a new output
line.

Breaks are caused by an empty input line, by an input line that begins with a space, or by certain
commands (see the II break II column on the Request Line Summary chart at the end of this
section). You can also cause a break by using the .br command. Breaks are used most often to
create paragraph breaks.

Tabbing

You may use FMT's tabbing feature as an aid in creating tables, lists, and other items which
require multiple columns. The .ta command, followed by a list of integers, sets tabs stops at the
given columns (i.e., .ta 5 10 sets tabs at columns 5 and 10.) The .tc command declares the tab
character: for instance, .tc \ would cause FMT to move output to the next tab stop whenever a
backslash (\) is encountered in the input text. Finally, the .rc command establishes a
"replacement character II for use in tabbing operations. The replacement character is printed
from the current point to the next tab stop. This can be useful when creating a table of contents,
for instance.

The following input file:

.ta 50

. tc \
Section\Page
. rc
.sp
Chapter 1\1
Chapter 2\15
Chapter 3\25
. rc

would produce:

FMI' (FORMAT_TEXT)

Set a tab stop at column 50 .
Declare the tab character (\).

Declare the replacement character (.) .

Return the replacement character to blank .

6-2

c

o

o

o

o

o

Section Page
Chapter 1 .. 1
Chapter 2 .. 15
Chapter 3 .. 25

Running Titles

Running titles may appear at the top and bottom of every page. A title line is a single line
comprising three textual fields: the first is placed flush with the left margin, the second is
centered, and the third is placed flush with the right margin. The first nonblank character in the
title is used as the delimiter to separate the three fields. FMT replaces any pound signs (#) in a
title with the current page number, and replaces any percent (%) characters with the current
date.

Number Registers

FMT provides 26 number registers named a through z. The .nr command defines a number
register. The command

.nr x m

sets number register x to m;

.nr x +m

increments number register by m; and

.nr x -m

decrements x by m. To insert the value of number register x in the text or a command line,
specify @nx. Number registers are useful for running counts. For example, table numbers in this
manual are stored in number register t. The register is set to zero at the beginning of every
chapter and is incremented each time a new table appears.

Fixed Spaces

You can insert a fixed number of spaces anywhere in the text except header and footer titles.
Fixed spaces are most often used to override the justification command (.ju), which inserts extra
spaces to justify a line.

By default, the pound sign character (#) represents a fixed space. For example, placing three
pound signs in a string results in exactly three spaces. The phrase

Plot###data

in the source file would appear in the formatted output as:

Plot data

To print an actual pound sign, II escape II it with an at sign. For example:

16@#100 appears as 16#100

6-3 FMT (FORMAT_TEXT)

To change the default to another character, use the .sc command.

In-Line Boldfacing and Underlining

In-line flags allow you to mark text to be underlined or boldfaced, without giving the command
on a separate line. The flags are:

{_underlines these words_}
{!boldfaces these words!}

These underlining and boldfacing flags can be used instead of the .ul, .cu, and .bd commands,
which must be on lines separate from the text to which they apply.

The underlining flags apply to the entire string they surround; hence embedded spaces (including
fixed spaces) will be underlined.

Each of the character sequences {_, {I, _}, and !} is treated as a unit. Therefore you need only
one at sign, preceding the sequence, to nullify its special meaning as a flag.

Defining New Oommands

You can define your own commands with the .de command. For example, the following sequence
defines a paragraph command named .pg .

. de pg

.sp

.ti +3

.en

Defined commands can be invoked with arguments, separated by blanks or tabs. Within a
command definition, arguments are referenced using "1, "2, etc., up to a maximum of nine
arguments. Omitted arguments default to the null string, and "0 refers to the command name
itself. For example, the following version of the paragraph command uses the argument to
determine the amount of indentation .

. de pg

.sp

.ti +"'1

.en

This command could be invoked by:

.pg 3

to get the same effect as the previous version.

Inserting Files

The .so command,

.so filename

causes the contents of the named file to be inserted in place of the command line. You can nest
.so commands.

FMT (FORMAT_TEXT) 6-4

c

c

r~
'-

o

o

o

o

o

6.4. Diagnostics

If your input file contains an invalid FMT request, the following message is displayed .

.. string II: unrecognized command ignored

The names of number registers must be a through z, or the following message is displayed.

invalid number register name

If no name was supplied with the .de command, the following message will be displayed.

missing name in command definition

If the limit for nesting included source files has been exceeded, the following message will be
displayed .

. so commands nested too deeply

If the buffer holding input characters has been exceeded, the following message will be displayed.

too many characters pushed back

6.5. Request Line Summary

Request Initial Default Break Meaning

.#

.bd n

.bp n

.br
n=l

.cc c c=.

.ce n

.cu n

.de xx

. ef /l/c/r

. eh /l/c/r

.en

.fi yes

.fo /l/c/r

.he /l/c/r

.in n n=O

. ju yes

.ls n n=l

.m1 n n=3

n=l
n=n+1

c=.
n=l
n=l

n=O
yes
n=l
n=3

no

no
yes
yes
no
yes
no
no
no

no

no
yes
no

no

yes
no
no
no

Ignore this line. Precede comment
lines with this symbol.
Boldface the next n lines
Begin new page and number it n
Break
Control character becomes c
Center the next n input lines
Continuously underline next n input lines
Command xx; ends at .EN
Foots on even pages are l(eft). c(enter) .
r(ight) . '#' and '%' produce page number
and date. respectively.
Heads on even pages are l(eft). c(enter) .
r(ight) . '#' and '%' produce page number
and date. respectively.
Terminate command definition
Begin filling output lines
Foot titles are l(eft). c(enter). r(ight)
'#' and '%' produce page number and date.
respectively.
Head title is l(eft). c(enter). r(ight)
'#' and '%' produce page number and date.
respectively.
Set left margin to column n+1
Begin justifying filled lines
Set line spacing to n
Space between top of page and head

6-5 FMI' (FORMAT_TEXT)

Request Initial Default Break Meaning (continued)

.m2 n n=2

.m3 n n=2

.m4 n n=3

.ne n

.nf no

.nj no

.nr x m m=O

.of /l/c/r

.oh /l/c/r

.pl n n=66

.po n n=O

.rc c

.rm n n=65

.sc c c=#

.so file

.sp n

.st n

. ta nl n2 ...

.tc c

.ti n

.ul n

IN-LINE FLAGS

{ c }
{!c!}
@nc

KEY

n=2
n=2
n=3
n=O

m=O

n=66
n=O

n=65
c=#

n=l
n=O

n=O
n=l

no
no
no
yIn
yes
no
no

no

no

no
no
no
no
no
no
yes
yes

no
no
yes
no

no
no
no
no

n
t
c

denotes numerical values
denotes titles
denotes single characters

Space between head and text
Space between text and foot
Space between foot and bottom
Need n lines; break if new page
Stop filling
Stop justifying
Set number register x to m,
-m, +m for decrement, increment
Foots on odd pages are l(eft), c(enter) ,
r(ight) . '#' and '%' produce page number
and date, respectively.
Heads on odd pages are l(eft), c(enter) ,
r(ight) . '#' and '%' produce page number
and date, respectively.
Set page length to n lines
Set page offset to n spaces
Tab replacement character is c
Set right margin to column n
Change fixed space character to c
Switch input to file
Space n lines, except at top of page
Space to line n from top; -n spaces to line
n from bottom
Set tab stops at columns nl, n2, ...
Tab character is c
Temporarily indent next output line n spaces
Underline words in the next n input lines

Underline characters enclosed in braces
Boldface characters enclosed in braces
Replace with value in number register c
Insert literal blank

Signed numbers signify relative changes to a quantity; unsigned numbers signify absolute settings.
Unless otherwise noted, omitted n fields set the value to 1, omitted t fields are empty, and
omitted c fields restore the default character.

FMT (FORMAT ~TEXT) 6-6

---------------------'------------"---'-----------

c

c

c~

c'

o

o

o

o

o

Chapter 7
INVOL (Initialize_Volume)

7.1. Introduction

INVOL initializes physical disk volumes, creates logical volumes, and maintains badspot lists.
Once initialized, a volume can be mounted with the MTVOL (MOUNT_VOLUME) command, or can
be used to bootstrap the operating system, providing it contains the necessary files.

Disks that have been corrupted by system crashes or network failure can be salvaged without
having to be reinitialized, thus saving existing data. See Appendix SAL VOL for details on
SALVOL (SALVAGE_VOLUME).

Logical Volumes

Various logical organizations of a disk are shown in Figure DISK_ ORG. Each disk has a
physical volume label, created when the disk is initialized. Following the physical volume label
are one or more logical volumes. Each logical volume is a logically independent storage area and
has a name. A logical volume can span all or part of a physical disk. INVOL can create logical
volumes when it first initializes the disk, and can add logical volumes later, by partially
initializing a physical volume.

Space on the disk that is not allocated to a logical volume is called a IIvacancy.1I For example,
on a partially initialized disk, a vacancy follows the logical volumes. After deletion of a logical
volume, a vacancy takes its place. If adjacent logical volumes are deleted, one vacancy is formed.
When initializing a partial physical volume, you can fill any vacancy with one or more logical
volumes.

Badspots

Badspots are defective blocks that cannot be used for data storage. During manufacturing, we
write a list of badspots onto every Winchester disk. Normally, you need not alter the
factory-supplied badspot list. However, if you determine that the list is incomplete or inaccurate
-- as the result of repeated disk I/O errors at the same location -- you can add new badspots to
the list (see operation nine at the end of this appendix).

Floppy disks typically do not have factory badspots. In cases of recurrent floppy disk I/O errors,
the simplest solution is to replace the floppy disk.

Examples 1, 2, and 3 in Figure DISK_ ORG show three possible disk organizations. In Example
1, a single logical volume occupies the entire disk. Example 2 shows a partially initialized disk
where a vacancy follows the logical volumes. Example 3 shows a disk on which one or more
logical volumes have been deleted, and vacancies thereby created.

7-1 INVOL (Initialize _ Volume)

Physical Volume Label Physical Volume Label Physical Volume Label

logical volume1 logical volume 1

logical volume2 vacancy 1

logical volume 1
logical volume3 logical volume2

vacancy vacancy 2

Example 1 Example 2 Example 3

Figure 7-1. Sample Logical Disk Organizations

7.2. Invoking INVOL

INVOL can run on-line under the AEGIS Shell or can run as a stand-alone utility in the
Mnemonic Debugger. To invoke the program from the Shell, type:

$ INVOL

From the Mnemonic Debugger, type

> EX INVOL

In either case, the program prompts you for all required information. After gathering the
required information, INVOL performs the requested operation.

Exiting

INVOL exits normally when you signal completion of a particular operation. To exit from
INVOL before an operation is complete, type OTRL/Z or OTRL/Q (under AEGIS) or
OTRL/ <RETURN> (under the Mnemonic Debugger). Be careful, though. If you exit while
INVOL is initializing the disk, the logical volume being initialized will be unusable. If INVOL is
initializing a new physical volume, the entire volume is unusable and will stilL require
initialization before it can be used.

7.3. Operations

INVOL can perform ten operations:

1. Initialize a virgin physical volume.

INVOL (Initialize _ Volume) 7-2

-----------------------------------_._-----------_._.--_._ ..

C

c'

o

o

o

o

C)

2. Partially initialize a physical volume, preserving existing logical volumes.

3. Reinitialize a logical volume.

4. Delete a logical volume.

5. List logical volumes.

6. List badspots on a physical or logical volume.

7. Input and record badspot information.

8. Create or modify an os paging file on an existing logical volume.

9. Add to existing badspot list.

10. Set or display the sector interleave factor.

The following sections describe these operations.

1. Initializing ~ Virgin Physical Volume

Every new disk must be initialized before it can be used. When you initialize a new
disk, all existing data on the disk are overwritten. Do not initialize a disk that
contains any data you need to save. We initialize Winchester disks during the
manufacturing process, before installing the system software.

To initialize a new disk, follow this procedure:

a. INVOL asks which operation to perform. Type 7 to create or replace the
badspot list. (See "Recording Badspot Information "). Type 9 if you want
to add to the existing badspot list. Otherwise, type 1 to initialize a new
physical volume.

b. Specify the type of disk to initialize. INVOL prompts with:

Disk types are:
W - Winchester
S - Storage module
F - 2-sided double density floppy

Respond by typing W, S, or F. To specify a unit number, append 0 or 1 to
the letter. For example, Sl denotes storage module unit 1. Unit 0 is the
default.

c. Choose one of the following verification options:

1 - No verification
2 - Write all blocks on the volume
3 - Write and reread all blocks on the volume

If you choose no verification (option 1), INVOL does not read or write to
the disk, except to create the volume structure. This option is the fastest,
but means that the disk is not verified until it is mounted and read or
written by AEGIS.

7-3 INVOL (Initialize _ Volume)

If you choose the second option, INVOL attempts to write to each block on
the disk. The third option, writing and rereading all blocks on the
volume, is the safest but also the slowest. For example, to format a
complete 33MB Winchester, option 1 requires about five minutes, option 2
requires about fifteen minutes, and option 3 requires about 30 minutes.

A Note on Floppie8

If a floppy disk is initialized with INVOL on a busy node, there is a small
chance that a format operation will fail, but that the failure will not be
reported to INVOL. For this reason, INVOL writes each block during
floppy initialization, even for verification Option 1. If a write fails after a
purportedly successful format, INVOL will print the message:

format failed for daddr <disk_address>:<write status>--retrying format

and will reformat (and rewrite) the track in error. This happens whether
or not the floppy has been previously initialized.

d. Enter the average file size, when prompted:

Expected average file size,in blocks(CR for default-5 blocks):

Press <RETURN> to accept the default value of 5 blocks. Supplying a
relatively accurate value for the average file size can save space on the
disk, because the volume table of contents (a system table) will be
allocated more efficiently.

e. INVOL requests the size (in blocks) and name of each logical volume to be
created. After each entry, INVOL tells you how much space remains.
After entering the size and name of all logical volumes, enter a blank line
to terminate input. A physical volume can contain up to 10 logical
volumes.

For example:

There are 1231 blocks available.

volume 1: 1231,vol1

The logical volume size must be at least 30 blocks, and must be a multiple
of the track size for the disk. If you specify a logical volume size that is
not a multiple of the track size, INVOL rounds it up to the next multiple
track size, and informs you. Note that the physical volume label occupies
the first block on the volume. Thus, the size of the first logical volume is
always one less than a multiple of the track size.

Logical volume names are optional, and are used only when INVOL lists
the logical volumes on the disk (option 5). You cannot change the name of
a logical volume after creating it. .

f. INVOL requests badspot information by asking whether or not you wish to

INVOL (Initialize _ Volume) 7-4

--------------------------- ••... _ ..•.. _ .•.. _ ••.....

(~
'-_ .. ./

o

o

o

o

o

use the prerecorded badspot list shipped with the disk. ANSWER IlYESIi.
To erase the existing list, ANSWER II NO II. If you want to initialize the
physical badspot list on a virgin disk, use operation seven, not operation
one. Use operation nine to add to an exisiting list. You must have a
hardcopy of the badspots in order to enter them in. INVOL has retained
the badspot prompt in operation one only for compatibility with existing
Shell files. After your affirmative response, INVOL displays the badspot
list, indicating the physical disk address, cylinder, head, sector, and byte
offset range.

If, in later operations, you wish to provide your own badspot information,
you can enter badspots for a Winchester disk or storage module in two
forms: as hexadecimal physical disk addresses, or as physical
cylinder /head/byte addresses, in the form cylinder-head byte. Terminate
badspot entry with a blank line.

For a floppy disk, enter badspots as hexadecimal physical disk addresses,
one per line. Terminate badspot entry with a blank line.

g. INVOL asks for the name of the physical volume. Then it initializes the
disk. As formatting proceeds, INVOL displays milestone messages to
report its progress. It also displays a message for each volume it
initializes, and another when it completes.

h. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

2. Partially Initializing ~ Volume

Using operation 2, you can partially initialize a volume, that is, add logical volumes
to a physical volume, while preserving the existing logical volumes. Follow this
procedure: .

a. INVOL asks which operation to perform. Type 2 to partially initialize a
disk.

b. Specify the type of disk to initialize. (See operation lb.)

c. INVOL prints a list of the logical volumes and vacancies on the disk. If
the disk has more than one vacancy, INVOL asks where to place the new
logical volume by requesting a vacancy number. Indicate the vacancy that
you want INVOL to use by entering its number. If there are logical
volumes following the vacancy that you choose, INVOL prints a warning
message and then automatically increments the volume numbers of those
succeeding volumes by one.

d. Choose a verification option for the logical volume being initialized. (See
operation lc.)

e. Enter the expected average file size, in blocks. (See operation ld.) Press
<RETURN> for the default value, 5 blocks.

7-5 INVOL (Initialize _ Volume)

f. Enter the name and size of each logical volume to be formatted. (See
operation Ie.) After each specification, INVOL informs you of how much
space is available. Terminate input with a blank line. A physical volume
may have up to ten logical volumes.

g. Enter badspot information. (See operation If.) Terminate badspot entry
with a blank line.

h. Enter the name of the physical volume. (See operation 19.)

i. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

3. Reinitializing ! Logical Volume

You can reinitialize a logical volume, retaining its size and name, with operation 3.
All existing data in the volume will be lost. This operation is useful for reinitializing
floppy disks, where one logical volume typically occupies the entire physical volume.

To reinitialize a single logical volume, use the following procedure:

a. INVOL asks which operation to perform. Type 3 to reinitialize a logical
volume.

b. Specify the type of disk to initialize. (See operation lb.)

c. Choose a verification option: no verification, write all blocks, or write and
reread all blocks. (See operation lc.)

d. Enter the expected average file size, in blocks. (See operation Id.) Press
<RETURN> for the default value, 5 blocks.

e. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

4. Deleting! Logical Volume

To delete a logical volume, use the following procedure:

a. INVOL asks which operation to perform. Type 4 to delete a logical
volume.

b. Specify the type of disk from which the volume will be deleted. (See
operation lb.)

c. Enter the number of the logical volume to delete. You can determine the
logical volume numbers present on a disk with operation 5.

d. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

INVOL (Initialize _ Volume) 7-6

r
~- ..

c

c

c

o

o

o

o

o

NOTE: INVOL renumbers the logical volumes following the deleted volume.

5. Listing Logical Volumes

To list the logical volumes on a disk, use the following procedure:

a. INVOL asks which operation to perform. Type 5 to list the logical
volumes on a disk.

b. Specify the type of disk. (See operation lb.) INVOL lists the volumes on
that disk. .

c. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

6. Listing Badspots

To list the badspots in one or more logical volumes, or for the physical volume, use
the following procedure:

a. INVOL asks which operation to perform. Type 6 to list badspots.

b. Specify the type of disk. (See operation lb.)

c. Specify the badspots to be listed, by entering one of the following:

a logical volume number
ALL
PHYS

Enter a logical volume number to list the badspots in that logical volume.
(The logical volumes present on a disk can be listed using operation 5.)
Enter ALL to list the badspots in all logical volumes. Enter PHYS to list
all badspots on the disk.

d. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

7. Recording Badspot Information

Using operation 7, you can create or replace the badspot list on the disk. (Use
operation 9 to add badspots to an existing badspot list.)

a. INVOL asks which operation to perform. Type 7 to enter the disk's
badspot list.

b. Enter the location of the badspots, one per line. (See operation 1£ for the
proper format.) Terminate badspot information with a blank line.

c. Mter you have typed in the list, INVOL asks you to check for errors. If
you made any errors in the list, you must retype the entire list by
returning to step a and beginning again.

7-7 INVOL (Initialize _ Volume)

d. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

8. Creating ~ Modifying !!! OS Paging File 2!!. !!! Existing Logical Volume

You can create an operating system (OS) file or modify the size of an existing one.
The OS paging file is required if you intend to run the AEGIS operating system off of
this logical volume.

To create or modify an OS paging file, perform the following steps:

a. INVOL asks which operation to perform. Type 8.

b. Specify disk type. (See operation lb.)

c. Specify logical volume number. The logical volumes present on a disk may
be listed using operation 5.

d. If an OS paging file already exists on this volume, INVOL displays the
file's current size and asks if you want to change it. If you reply Y,
INVOL proceeds to step e. If you. reply N, INVOL skips to step f.

e. INVOL prompts you to enter the number of pages you want in the OS
paging file. Press <RETURN> to use the default, 352 pages. Type "0"
(zero) to delete an existing paging file, or specify any number of pages
between land 288. If the size you enter is larger than the current OS
paging file, INVOL displays milestones as it initializes new disk records.

f. INVOL asks if you have any more requests. Type Y to return to step a, or
type N to return to the calling program (AEGIS command Shell or
Mnemonic Debugger).

9. Adding Badspot Information~

Using operation 9, you can add to the disk's existing badspot list. Run SALVOL
when you complete this option.

a. INVOL asks which operation to perform. Type 9 to add to the disk's
badspot list.

b. Enter the location of the badspots, one per line. (See operation 1f for the
proper format.) Terminate badspot information with a blank line.

c. After you have typed in the list, INVOL asks you to check for errors. If
you made any errors in the list, you must retype the entire list by
returning to step a and beginning again.

d. INVOL asks if you have any more requests. Type Y to return to step a, or
N to return to the calling program (AEGIS command Shell or Mnemonic
Debugger).

INVOL {Initialize _ Volume} 7-8

c

c

c

~----~-- ---------------------

o

o

o

o

o

10. Setting 2!: Displaying the Sector Interleave Factor

Using operation 10, you can set or display the sector interleave factor for a volume.
The correct interleave factor is set when a logical volume is created. However, as
performance improvements are made, it may become necessary to change it to achieve
optimal block read/write rates. Operation 10 displays the current value and the
optimal value which we recommend.

a. INVOL asks which operation to perform. Type 10 to set or display the
sector interleave factor.

b. Specify disk type. (See operation lb.)

c. INVOL displays a list of logical volumes for that physical volume. Specify
the appropriate logical volume number. INVOL then displays the current
sector interleave factor and the value which we recommend.

d. INVOL prompts for the new interleave factor. If you do not wish to
change the interleave factor, enter a carriage return.

e. INVOL asks if you have any more requests. Type Y to return to step a, or
type N to return to the calling program (AEGIS command Shell or
Mnemonic Debugger).

7-9 INVOL (Initialize _ Volume)

c

c

c
7-10

o

o

o

o

o

8.1. Introduction

Chapter 8
ITEST (lOS _ TEST)

ITEST is a program for testing type managers that manage input and output to objects. ITEST
allows you to open a stream to any type of object and then use selected lOS calls on the open
stream. With ITEST, you can open streams to existing or new objects. For more information on
using ITEST to test type managers, see Using the Open System Toolkit for Extending the
Streams Facility.

OPTIONS

-INIT
Call the lOS _ $INITIALIZE routine (within a type manager) at
startup time.

8.2. Command Summary

ITEST prompts for commands. Any valid, unambiguous prefix of one of the following commands
will suffice. Each command calls the lOS call with a similar name. For example, the CLOSE
command calls lOS $CLOSE.

SYNTAX
(abbreviation shown
in uppercase)

CHANGE PATH NAME stream-id pathname

CLOSE stream-id

FUNCTION

Changes the pathname of an object.

Closes a stream.

CREATE create-mode [open-options] pathname typename

DELETE stream-id

DUP stream-id stream-id

EQUAL stream-id-l stream-id-2

8-1

Creates an object and opens a stream
to it.

Deletes an object and closes the
associated stream.

Creates a copy of a specified stream
ID.

Determines whether two stream IDs
refer to the same object.

!TEST (lOS _ TEST)

EXPORT stream-id Simulates stream passing via a
PGM_$INVOKE system call. This
command tests a type manager's
export and import procedures.

FORCE WRITE stream-id Forcibly writes an object and the
directory containing the object to
II stable" storage.

GET [put-get-option] stream-id count Copies data from a stream into a
buffer.

INQ_BYTE_POS [pos-opt] stream-id Returns the byte position of the
stream marker. If you omit a position
option. the default is the current
position of the stream marker.

INQ_FLAGS stream-id

INQ_FULL_KEY [pos-opt] stream-id

INQ_PATH_NAME [name-type] stream-id

INQ_REC_POS [pos-opt] stream-id

INQ_SHORT_KEY [pos-opt] stream-id

LOCATE stream-id count

OPEN [open-options] pathname

!TEST (lOS_TEST) 8-2

Returns the length of the record at
the current stream marker.

Returns object usage attributes.

Returns the attribute set of an
object's type manager.

Returns a full seek key. If you omit
a position option.
the default is the current position
of the stream marker.

Returns the pathname of the object
to which a stream is open. If you
omit a name-type. the default is
-ROOT.

Returns the record position of the
stream marker. If you omit a position
option. the default is the current
position of the stream marker.

Returns the number of bytes remaining
in the current record.

Returns the record type of an object.

Returns a short seek key. If you omit
a position option. the default is the
current position of the stream
marker.

Returns the type UIO of an object.

Reads data from a stream. returning a
pointer to the data (rather than
copying the data to a buffer) .

Opens a stream to an existing object.

('
\ ' "- "

o

o

o

o

o

PUT [put-get-options] [-NL] stream-id string

REPLICATE stream-id stream-id

Writes data into an object. The -NL
option inserts a newline character
at the end of the string. the default
writes only the data.

Creates a copy of a specified stream
ID.

SEEK [-RELATIVE [-MINUS]] [-RECORD] stream-id count

SEEK FULL stream-id recadr byteadr

SEEK SHORT stream-id key

SEEK TO BOF stream-id

SEEK TO EOF stream-id

SWITCH stream-id stream-id

TRUNCATE stream-id

Performs an absolute or relative seek
using byte or record positioning. If
you omit the -RELATIVE option. the
default is an absolute seek. If you
omit the -MINUS option. the default
is to seek forward. towards the end
of the file. If you omit the -RECORD
option. the default is to seek by
bytes.

Performs a seek using a full (a-byte)
seek key.

Performs a seek using a short 4-byte
seek key.

POSitions the stream marker to the
beginning of an object.

Positions the stream marker to the
end of an Object.

Switches a stream from one stream
ID to another stream ID.

Deletes the contents of an Object
following the current stream marker.

Use one of the following to specify 'create-mode'.
These options correspond to the IOS_$CREATE_MODE_T data type.

-NO PRE EXIST Returns an error if Object already exists.

-PRESERVE Saves contents of Object. if it exists. opens
Object. and positions stream marker at BOF.

-RECREATE Deletes existing Object and creates new one of the same name.

-TRUNCATE Opens Object. then truncates the contents.

-MAKE BACKUP Creates a backup (.BAK) file when closed.

-LOC NAME ONLY Creates a temporary unnamed Object. uses pathname to specify
location of Object. and locates it on the same volume.

8-3 !TEST (lOS_TEST)

Use one of the following to specify 'name-type'.
These options correspond to the IOS_$NAME_TYFE_T data type.

-LEAF

-NDIR

-NODE

-NODE DATA

-ROOT

-WDIR

Specifies leaf name regardless of object's name.

Specifies leaf name if object's name is a name in
current naming directory; otherwise, specifies full pathname.

Specifies name relative to the root directory if object is
a name in boot volume; otherwise, specifies full pathname.

Specifies leaf name if object's name is a name
in current 'node data directory; otherwise, specifies
full pathname.

Specifies full pathname, for example, //node/sid/file.

Specifies leaf name if object's name is a name in
current working directory; otherwise, specifies full
pathname.

Use one or more of the following to specify ·open-options·.
These options correspond to the IOS_$OPEN_OPTIONS_T data type.

-Write

IOS_$OPEN does not wait for the open to complete
before returning.

Permits writing data to a new object.

-UNREGulated Permits concurrent writing (unregulated read and write access)
to the object.

-END OF FILE Positions stream marker at EOF at open.

-INQuire_only Opens Object for attribute inquiries only.

Use one of the following to specify 'pos-opt'.
These options correspond to the IOS_$POS_OPT_T data type.

-BOF Returns key for end-of-file (EOF) marker.

-EOF Returns key for beginning-of-file (BOF) marker.

Use one or more of the following to specify 'put-get-options·.
These options correspond to the IOS_$PUT_GET_OPTS_T data type.

-COND

-PREview

Gets or puts data conditionally. If the data is not
available, returns with a status indicating that condition.

Determines if a put/get would succeed, but does not actually
perform data transfer.

-PARTial_record Puts the data, but does not terminate the record.

-NO_REc_bndry Ignore record (line) boundaries.

ITEST (lOS _TEST) 8-4

c

('

o

o

o

o

o

S.3. Debugging Managers

Under normal conditions, user-written managers are dynamically loaded into the opener's address
space. While you can use ITEST to test such managers, the manager code itself can not be
debugged using DEBUG at the present time.

To debug managers using ITEST, you must follow the convention that your manager contains no
"main program" (PROGRAM in Pascal, "main" in C). Instead, the initialization for your
manager (the part that calls TRAIT _$MGR_DCL, etc.) should be placed in a procedure named
II ios _ $initialize II. To debug your manager module using ITEST, bind all the pieces of your
manager together with II /com/itest ll

• Then use DEBUG on the result of the bind and give the
-!NIT switch. For example:

$ bind -b my_itest «~I
my_mgr.bin
my_mgr_uid.bin
/sys/traits/io traits
/com/itest -

$ debug -src my_itest -init

8-5 ITEST (lOS_TEST)

c~ I

c'

c

c
8-6

o

o

o

o

o

9.1. Introduction

Chapter 9
SALVOL (Salvage_Volume)

Each logical volume is divided into disk blocks. (See Appendix 7, INVOL, for a detailed
description of logical disk volumes.) SALVOL verifies, and if necessary, corrects the tables that
describe the allocation of disk blocks to the files stored on the disk. SAL VOL also returns all
blocks that are no longer in use to the free space pool. (Those blocks allocated to temporary files
or to deleted portions of permanent files are included).

The label of every logical volume on every physical disk contains its last mount and dismount
times. When the Mnemonic Debugger loads AEGIS into memory, it checks these two times. A
system crash or improper dismount may mean that the volume has been mounted since its last
proper dismount. If so, AEGIS warns you that the volume needs salvaging, and then proceeds to
run SALVOL automatically, provided that the NORMAL/SERVICE switch is set at NORMAL.

Even though SAL VOL is not run automatically when your node is in SERVICE mode, you still
receive a warning message if some boot volume error is detected. Although you can proceed after
AEGIS's "Disk needs salvaging" message, we strongly encourage you to take the time to salvage
the logical volume. As part of its normal operation, AEGIS periodically updates the essential
data on each disk volume. When the volume is wrested from the system's control by either an
improper dismount or a system crash, the information on that volume is at most a few minutes
out of date. Proper salvaging can identify and correct almost all the inconsistent block allocation
information with no loss of files. Of course, memory-resident data buffers that were not written
to the volume cannot be reconstructed.

If you mount the volume without running SAL VOL, AEGIS incorrectly assumes that the block
allocation information is correct. Extensive damage may occur to files that would otherwise be
intact. The need to salvage a volume is satisfied only by using SAL VOL on that volume.

9.2. Invoking SAL VOL

SAL VOL can run under the AEGIS operating system or as a stand-alone utility. To invoke the
program under the operating system, type:

$ SALVOL

If you invoke SAL VOL under the operating system, it cannot salvage mounted volumes (you must
dismount them), nor can it salvage the boot volume on which the operating system is running.

To invoke the program as a stand-alone utility, type the following command to the Mnemonic
Debugger:

>EX SALVOL

In either case, SAL VOL identifies itself and prompts for the type of disk (Winchester, storage
module, or floppy) and the number of the logical volume to be salvaged, as indicated below.

g-l SALVOL (Salvage_ Volume)

$ salvol

Salvage_volume - Version 6.0

Controller type (W=winchester.S=storage module.F=floppy)? w
Salvol options:

-A read all blocks in all files
-V : verify only (don't write anything to disk)
-U : print uids ~ vtocx's as well as any filenames

Please input Iv_num [-option]... :

Controller Types

In response to the II Controller type ? II prompt, you must specify which storage device you wish to
salvage. Do this by typing

type[unit]

where

type

unit

Options

indicates the device type. Valid types are

W for Winchester disks

S for storage modules

F for floppy disks

is an integer indicating the unit number of the device. There must be no
blanks between the 'type' and 'unit' specifiers. If this specifier is omitted, the
default unit number is 0 (zero). This specifier is useful only when there are two
or more of the same storage devices attached to the node (i.e., type "wIII to
salvage the second disk in a node with two Winchesters.)

In response to the "Please input Iv _num [-option] II prompt, you may specify the number
(beginning with I) of the logical volume you wish to salvage, and one or more of the following
three options. (If you omit the logical volume number, logical volume I is salvaged.)

-A

-v

Direct the salvager to read every block of every file on the disk. This option is
useful because AEGIS cannot always provide detailed descriptive information
when an uncorrectable disk read or write error occurs online. SAL VOL can
diagnose these problems, but does not usually correct their cause.

Without the -A option, SAL VOL reads only the minimum number of blocks
necessary to ascertain the proper allocation of blocks to files; specifically, it
reads the volume-table-of-contents (VTOC), block availability table (BAT),
volume label, and file index blocks.

Instruct the salvager to examine the disk for possible inconsistency, but not to
correct any damage it finds; do not write anything to the disk. This option
allows you to inspect the disk without changing its current state. Select this
option only if you believe that salvaging the volume might cause further
damage or destroy lIevidence" needed to debug or trace a system problem.

SALVOL (Salvage_ Volume) 9-2

C,"
..... ,.'.

c

o

o

o

o

o

-u Identify problems by UID. Using this option presumes detailed knowledge of
the DOMAIN disk structure. It causes the salvager to identify problems not
just by filename, but also by UID and VTOC index (VTOCX). The -U option
is useful only if you intend to try manually repairing disk problems that
SAL VOL does not attempt. You should rarely need this option.

Normally, SALVOL collects free blocks, displays a brief summary of free space on the volume,
and terminates. If the disk was not properly dismounted, SAL VOL may find errors in the block
availability table (BAT). Even with the -A option, execution should take at most a few minutes
to run on a Winchester disk. The salvager always displays extensive descriptive information
about problems, and repairs the volume as necessary, using conservative strategies.

If any rile has I/O errors, or if block allocation for a file is detectably wrong (for example, a block
is destroyed because some other file wrote over it), SALVOL sets a IIfile trouble" flag in the file's
VTOC entry. Other DOMAIN software (such as the STREAM_$OPEN system routine) checks this
flag upon processing the file. If the flag is set, a warning or fatal error status may be returned.

9.3. Salvaging Strategy

The next two sections describe the salvager's processing strategy, the repairs it can make, and the
meanings of the more verbose error messages. Refer to these sections whenever the salvager
produces unexpected error messages.

Salvager Message Output

When the salvager processes a disk volume on which the logical structure is intact, it collects free
blocks, prints a free block count, sometimes finds that the BAT is bad, and terminates. Just
before termination, it confirms that the volume contains no multiply-allocated blocks.

Any other messages -- in particular, messages identifying multiply-defined blocks -- deserve
careful attention. The salvager detects and describes four common classes of errors:

1. Out-of-range pointers - Any block addresses that point outside the logical volume.
These are rare, and are usually the result of hardware or operating system errors.
When found, the block pointers are set to zero, leaving a II hole II in the file. In
addition, if the pointers are file pointers, the file trouble flag is set.

2. I/O errors - Any read or write attempts that fail at the disk driver level. Most write
errors are fatal to the salvager, because it writes only critical blocks that contain
space allocation information. For read errors in files, the salvager sets the trouble
flag but takes no corrective action, on the assumption that other tools may be able to
recover data.

3. Block header validation errors - These are "soft" I/O errors which, like disk driver
errors, are fatal on critical system blocks. In normal files, these errors are simply
detected and described, and a file trouble flag is set. Block header validation errors
are usually the result of hardware or software failure.

4. Multiply-allocated blocks - These blocks are allocated to more than one file, or to a
file and to a system structure, such as the VTOC, the BAT, or the badspot list.
Multiply-allocated blocks may occur if you ignore the AEGIS warning to run the
salvager. Less often, they result from AEGIS errors.

Q-3 SALVOL (Salvage_ Volume)

The salvager attempts to repair multiply-allocated blocks, and may display a summary of blocks
that have been moved on the volume. In addition, SAL VOL displays a list of all files for which it
set the trouble flag. Note that the trouble flag is set only if the salvager is sure that a file has
problems (an out-of-range pointer that was zeroed, an I/O header error, or a multiply-allocated
block that was removed from the file map). For example, if the salvager finds a
multiply-allocated block that is owned by two files, and can determine which file the block
belongs to, then it sets the trouble flag only for the non-owning file.

Finally, the salvager may report on some uncommon conditions, including:

table overflow

disk full

in ternal errors

This indicates that the logical structure on the volume is severely damaged.
Mount the volume under AEGIS (but not as the boot volume), and move files
to other volumes. If the error persists you may need to reinitialize this volume.

This error prevents the salvager from repairing the disk. Mount the volume
under AEGIS (but not as the boot volume) long enough to delete one or more
files, then dismount and salvage it.

These include nonzero multiply-allocated block count, bad linked lists, etc.
Most are fatal to the salvager, and may mean that the volume itself is in
trouble.

A number of detailed errors are associated with system blocks, including:

no boot file Every logical volume from which AEGIS is started must have a boot file.
Hence, this error can be fixed only by reinitializing the volume. If this logical
volume is not used to start the operating system, ignore the message.

trouble with badspot list
Usually, the same block address appears twice in the badspot list; just ignore
it. It could mean that the badspot list points to a block in the BAT. Ignore
the message unless a BAT block really is bad (signified by repeated I/O errors),
in which case the volume must be reinitialized.

vtoce with incorrectly hashed uid found
The VTOCE (VTOC entry) is unusable, so respond lIyll to the salvager's
II delete it?," prompt, unless you want to save the VTOCE to trace a probable
AEGIS error.

too many bad spots
Table overflow occurred in salvager. This is okay unless multiply-allocated
blocks are found on the volume, in which case repair logic may fail.

label check error Apparently, some other process is writing to the volume while the salvager is
running; this error should never happen.

badspot list in Iv label is full
System limitation exceeded. Either the badspot list has been misused or the
physical disk must be replaced.

vtoc chain pointer zeroed
Some files may have been lost because VTOC chains are used to handle
overflow of files hashed (by UID) to a full block.

SALVOL (Salvage_ Volume) 9-4

c

c

o

o

o

o

o

Salvager Processing Strategy

This section describes some subtleties of salvager processing. This information is not needed for
typical use of the salvager. In extreme cases, however, the details provided below may be helpful.

Two high-level observations first: DOMAIN disk volumes are structured so that naming
directories and space/location information (in a VTOC) about files are kept separately.
Currently, the salvager does not synchronize these on-disk structures. That is, it understands the
UID file system and VTOC, but not naming directories. In particular, it cannot detect orphans,
that is, files in the VTOC that have no names. Second, disk blocks on floppy disks are not
self-identifying, as they are on the Winchester. Hence, the salvager's diagnosis and repair logic is
much more limited with floppy disks than with Winchester disks.

The salvager is a 2-pass processor, but the second pass is executed only if multiply-allocated
blocks are detected. During the second pass, the salvager completes the list of owners of each
multiply-allocated block, if, as in most cases, this cannot be done in the first pass. Both passes
consist of a sequential VTOC scan, including descent of any VTOC block chains which result
from (UID) hash overflow. For each VTOC entry that points to a permanent file, SALVOL reads
the file map or list of block addresses sequentially to construct a new block availability table.

SAL VOL reads and verifies the file blocks themselves only if you choose the -A option, or if
problems must be resolved. Pass two terminates when the owners of all multiply-allocated blocks
are identified, and thus may not be a complete sequential pass. After each pass, SAL VOL repairs
the volume if multiply-allocated blocks were found, and writes out the updated BAT and logical
volume label.

I/O errors that occur on physical and logical volume labels or on the block availability table
(BAT) for a logical volume are fatal to the salvager. All other errors are reported, but are
non-fatal.

The salvager corrects I/O errors in files only in the following special case. AEGIS may report an
I/O error in a file if the block header is incorrect. If the block is multiply-allocated, which could
cause such an error report, the salvager allocates it exclusively to the II real II owner, and zeros the
pointer(s) in any other file{s), leaving holes but eliminating the I/O errors. On a floppy, because
the owner cannot be determined, SAL VOL copies the block into all II owner II files, and sets the
trouble flag. After the salvager terminates, you can inspect the data to determine which files are
really intact.

SAL VOL zeros bad block pointers. This loses data, and even whole files when the bad pointers
are in the VTOC itself, but currently the salvager cannot locate the correct data even if it is on
the disk.

Generally, the salvager always repairs the BAT (except in case of hard I/O errors) and the
VTOC. Thus, if AEGIS badly malfunctions, writing normal file blocks over the BAT or VTOC
blocks, for example, the salvager repairs the BAT or VTOC and file. To do so, it copies the data
into a newly allocated block and reinitializes the overwritten block.

If a block is multiply-allocated to both the badspot list and to a file or a VTOC chain, the
salvager tries to copy any potentially valid data to a newly allocated block. If the block is in the
badspot list because of persistent device level errors, however, the copy may fail; the salvager
then prompts for alternatives. The salvager and badspot listing cannot be used to correct
persistent errors in the BAT or VTOC hash space, however. The salvager aborts in the former
case, and simply reports the I/O error in the second case. The only solution is to reinitialize the
volume around such badspots using INVOL.

9-5 SALVOL (Salvage_ Volume)

Finally, note that table overflow in the salvager is most serious. You can try to rerun the
salvager several times, if some repair is apparent on each run, and if the salvager attempts to
complete in each case without doing additional damage. However, in some cases, data may be
unnecessarily lost. You should never mount the volume under AEGIS while this condition
persists, except to copy/dump and delete files, or to reinitialize the volume.

9.4. Limitations

• SAL VOL can process only one logical volume at a time.

• SAL VOL can correctly process at most 64 multiply-allocated blocks and/or header
validation errors on a logical volume.

• Because floppy disks do not have block headers, so that blocks are not self-identifying,
the salvager is much less effective in repairing floppy disk problems than it is in
repairing Winchester disk or storage module problems.

SALVOL (Salvage _ Volume) Q-6

c

c

("

o

o

o

o

o

Badspots, described 7-1

CALENDAR 1-1

CHUVOL 2-1

Conventions

in this manual 3

Desk calculator functions 3-1

Disks

initialize 7-1

salvage 9-1

Documentation conventions 3

EDFONT 5-1

Edit

file (Shell) 4-1

font 5-1

Fonts

edit 5-1

Format

text file 6-1

Initialize a disk volume 7-1

INVOL 7-1

Line mode editor 4-1

Logical volumes, described 7-1

Node clock 1-1

Salvage

disk 9-1

SALVOL 9-1

System calendar 1-1

Time zone settings 1-2

Index

Index-l

l'

c'

o

o

o

o

o

READER'S RESPONSE

We use readers' comments in revising and improving our documents.

Document Title: DOMAIN System Utilities
Order No.: 009414
Revision: 00
Date of Publication: September, 1986

What is the best feature of this manual?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page,
section, figure, or table number wherever possible.)

What type of user are you?

How often do you use your system?

Nature of your work on the DOMAIN System:

Your name Date

Organization

Street Address

City State Zip/Country

No postage necessary if mailed in the U.S. Fold on dotted lines (see reverse), tape, and mail.

n s-
o
"'"
0' (a:
S» \'''"'---_/'

0'
::J
co
Q.

2
i
Q.

5"
CD

FOLD
---________________ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED

IN THE C-_. UNITED STATES _'

._---, C' FOLD

c

o

o

o

o

o

READER'S RESPONSE

We use readers' comments in revising and improving our documents.

Document Title: DOMAIN System Utilities
Order No.: 009414
Revision: 00
Date of Publication: September, 1986

What is the best feature of this manual?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page,
section, figure, or table number wherever possible.)

What type of user are you?

How often do you use your system?

Nature of your work on the DOMAIN System:

Your name Date

Organization

Street Address

City State Zip/Country

No postage necessary if mailed in the U.S. Fold on dotted lines (see reverse), tape, and mail.

FOLD

I I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POST AGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

0 s
0 .,
0' c:
S»
0"
:l
co
a.
2
i
a.

s·
CD

--,
FOLD

-~--- .. -- -------_._._------- --- -----_._------- ----------

C

(-'"
'-.. /

c

