
o o

-

M A

Making the
Transition to SR9.5

, N
Order No. 009492

Revision 00

Making the
Transition to SR9.5

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 009492
Revision 00

Copyright © 1986 Apollo Computer Inc.
All rights reserved. Printed in U. S. A.

First Printing:
Latest Printing:

January, 1987
January, 1987

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are
trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAIN/IX,
DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR, and GPR are trademarks of Apollo
Computer Inc.

Apollo Computer Inc. reserves the right to make changes In specifications and other Information contained in this
publication without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE T'ERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMiTED TO
STATEMENTS REGARDING CAPACITY , RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO
COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER iNC.
WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC.
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

Making the Transition to SR9.5 describes several major changes at Software Release 9.5 that could intro­
duce some inconsistencies with earlier software versions. It describes what features work differently than
before, and how to adjust your programs accordingly.

We've organized this manual as follows:

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Provides reasons for upgrading to SR9. 5 to take advantage of the perfor­
mance enhancements provided with this release. It tells which programs
you must recompile with SR9. 5 compilers, and which programs you are
not required to recompile.

Describes how to rebuild your programs using SR9.5 compilers. It in­
cludes a list of possibly incompatible features to check before recompil­
ing. Also, it shows how to maintain pre-SR9. 5 programs with updated
SR9.2 tools.

Describes changes made to the DOMAIN C compiler that might affect
programs developed on earlier versions.

Describes changes made to the DOMAIN FORTRAN compiler that
might affect programs developed on earlier versions.

Describes changes made to the DOMAIN Pascal compiler that might af­
fect programs developed on earlier versions.

Describes the new optimizing enhancements made with this realease, and
how they could affect C, FORTRAN, or Pascal programs developed on
earlier versions.

iii Preface

Related Manuals
Most of the information in this document deals primarily with updating to SR9.5. For general information
on the features added with SR9.5, see the following manuals:

• DOMAIN C Language Reference (002093-03).

• DOMAIN Pascal Language Reference (000792-04).

• DOMAIN FORTRAN Language Reference (000530-05).

• DOMAIN Language Level Debugger Reference (001525-04).

• DOMAIN Assembler Reference (008862-01).

• Programming With General System Calls (005506-00).

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In order to make it easy for you to com­
municate with us, we provide the User Change Request (UCR) system for software-related comments,
and the Reader's Response form for documentation comments. By using these formal channels you make
it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System Command
Reference. Refer to the crucr (CREATE_USER_CHANGE_REQUEST) Shell command description. You
can view the same description on-line by typing:

$ help crucr

For your documentation comments, we've included a Reader's Response form at the back of each manu­
al.

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following symbolic conventions.

boldface

typewriter

CTRL/Z

•
•
•

Preface

Bold, lowercase words or characters in text represent either keywords or
commands that you must use literally.

Typewriter font words in command examples represent values that you
must supply. We also use typewriter font for program examples.

The notation CTRLI followed by the name of a key indicates a control
character sequence. You should hold down <CTRL> while typing the
character.

Vertical ellipsis points mean that irrelevant parts of a figure or example
have been omitted.

iv

Contents

Section 1 Why You Should Rebuild with SR9. 5 Tools

1.1. Advantages of Rebuilding Existing Programs with SR9. 5 2
1.2. When You Must Rebuild with SR9. 5 ... 2

Section 2 How to Rebuild Your Programs under SR9.5

2.1. Rebuilding Your Pre-SR9. 5 Programs under SR9. 5 3
2. 1.1. Before Recompiling under S R9 . 5 ~ 3
2.1.2. Compiling and Debugging Your Programs under SR9.5 5
2.1.3. Binding Your Programs under SR9. 5 .. 5

2.2. Maintaining Your Pre-SR9.5 Programs with the 9.2 Versions 5
2.2.1. Compiling Pre-SR9. 5 Programs with the Maintenance Compiler 6
2.2.2. Debugging Pre-SR9. 5 Programs with the Maintenance Debugger 6

Section 3 Changes to C

3.1. Changes to Enumerated Types in C . 6
3.2. Changes to Formal Array Parameters ... 7
3.3. Register Storage Class Specifier . 9

Section 4 Changes to FORTRAN 9

Section 5 Changes to Pascal

5.1. Changes to Subrange of char in Pascal .. 9
5.2. Pascal's in, out, and in out Parameter Extensions 10
5.3. Changes to Pascal's goto Statement ... 11
5.4. Changes to Pascal's Treatment of Subrange of Integers 11
5.5. Changes to Pascal's Runtime System ... 12

Section 6 Optimizing Enhancements Affecting Generated Code

6.1. Changes to the -opt Compiler Option .. 13
6.2. Eliminating Unused Assignment Statements .. 14
6.3. Using volatile to Prevent Compiler Optimizations . 14

6.3.1. Rules for Using volatile in C and Pascal 16
6.3.2. Preventing Compiler Optimizations in FORTRAN 17

v Contents

Table

1.
2.
3.

Tables

Page

What to Recompile with SR9. 5 Compilers 2
What Does Not Need to be Recompiled with SR9.5 Compilers 3
SR9.5 Compiler Changes that Affect Your Programs . 4

Examples

Example Page

1. Change to Declaring Arrays as Formal Parameters 7
2. Declaring Arrays as Formal Parameters to std_$call 8

Contents vi

Making the Transition to SR9.5

Making the Transition to SR9.5

This software release (SR9.5) is a major release of the DOMAIN operating system. Its primary goal is to
improve overall system performance. It is especially concerned with improving the performance of C pro­
grams. To achieve these performance goals, however, it was necessary to change some internal data repre­
sentations and runtime conventions. Some of these changes are internally inconsistent with earlier soft­
ware versions. However, we attempted to minimize incompatibilities as much as possible.

Generally, you can upgrade your node to SR9.5 without any problems: Programs developed on earlier
versions will most likely run on SR9.5. However, to take full advantage of the performance gains offered
in this release, you will want to recompile existing programs with SR9. 5 compilers. In doing so, you could
find some differences with SR9.5 that will introduce some inconsistencies. This document is intended to
describe the problems you might encounter when recompiling your programs with SR9.5 compilers.

This document contains:

• Advantages of rebuilding under SR9. 5

• How to rebuild your programs under SR9. 5

• Changes to C

• Changes to FORTRAN

• Changes to Pascal

• Optimization enhancements affecting generated code

1

Making the Transition to SR9.5

1. Why You Should Rebuild with SR9.5 Tools
This section describes the advantages of rebuilding programs with SR9. 5 and when you must rebuild pro­
grams with SR9.5.

1.1. Advantages of Rebuilding Existing Programs with SR9.5
The SR9. 5 compilers generate more efficient object modules that run faster than modules generated by
older compilers. On certain compute-bound programs we have seen performance gains of between 10 and
20 percent. Because your individual applications differ, your performance gains may vary, but the vast
majority of programs should show considerable performance improvement.

1.2. When You Must Rebuild with SR9.5
Usually, you will want to recompile existing program modules with SR9.5 compilers to take advantage of
the performance gains with this release. However, there are certain circumstances under which you must
recompile programs with SR9.5 compilers. Table 1 lists these circumstances. Section 2, "How to Rebuild
Your Programs under SR9.5," explains how to go about recompiling your programs with SR9.S compilers.

Table 1. What to Recompile with SR9.5 Compilers

What You Must Recompile:

Any program module that you plan to bind
with an SR9. 5 object module

Any user-installed library that will be
called from SR9. 5 modules

All type managers

Why You Must Recompile:

The DOMAIN Binder will not allow you to bind an
SR9.5 object module with a pre-SR9.5 object mod­
ule because runtime conventions and the object
module format have changed at this release. The
Binder prevents you from mixing object module
formats to avoid any unexpected results.

If you provide your own global or private libraries,
you will depend on a new procedure pointer format.
This means you must recompile the library before
recompiling any programs that reference the library.
During the transition, you can adjust your libraries to
recognize both pre-SR9. 5 and SR9. 5 runtime
conventions.

If you developed a type manager using the Open
Systems Toolkit as described in "Using the Open
Systems Toolkit to Extend the Streams Facility,"
(008863), you must recompile the manager
with an SR9. 5 compiler. Your manager depends. on
DOMAIN-supplied global libraries in SR9.5 format.
These particular global libraries do not recognize
pre-SR9.5 runtime conventions.

2

Making the Transition to SR9.S

Table 2 lists the types of program modules that will run as expected without having to recompile with
SR9.5 compilers. (However, to benefit from SR9.5 performance enhancements, you might want to recom­
pile these program modules.)

Table 2. What Does Not Need to be Recompiled with SR9.5 Compilers

What You Do Not Have to Recompiie:

Any module that calls DOMAIN global
libraries

Program modules relying on SR9. 5 versions
of DOMAIN layered products

Why NOl;;

Global libraries recognize pre-SR9. 5 conventions and
make the necessary conversions to SR9.5 conventions.

Most layered products are backward compatible,
so any programs developed with pre-SR9. 5 compilers
will run under SR9. 5 standard software. See the
Release Notes for the individual layered products for
full information on compatibility issues.

2. How to Rebuild Your Programs under SR9.5
SR9 .5 comes with two versions of the debugger and each compiler. The primary versions are for develop­
ing programs using the performance enhancements provided with SR9. 5. The secondary versions are for
maintaining programs developed on earlier versions of DOMAIN compilers. The maintenance versions
ha ve the suffix, "_ sr9 .2." The following sections describe how to:

• Upgrade programs developed on earlier versions by recompiling with SR9.5.

• Maintain programs developed on earlier versions without recompiling with SR9.5.

2.1. Rebuilding Your Pre-SR9.5 Programs under SR9.5
In most cases, you'll want to upgrade your existing software programs to take advantage of the perform­
ance improvements of SR9. 5. This section highlights changes to keep in mind when you recompile. It also
describes how to recompile and bind your existing programs with SR9. 5.

2.1.1. Before Recompiling under SR9.5

Before recompiling existing programs with SR9.5 compilers, you should know what might work differently
from in the past. Most programs will compile as you expect. However, you might receive new warning or
error messages if you don't make a few changes before you recompile. Table 4 highlights the changes you
might need to make. The remainder of this document provides details about these changes.

Note'that the new warning messages you might receive when you recompile occur largely because the com­
pilers analyze programs more rigorously when optimizing them. These warning messages often reflect pos­
sible errors or improper use of programming constructs. So, it's important to check your program when
these warnings occur.

3

Making the Transition to SR9. 5

Table 3.

Change

C enum Variables

C Arrays as Formal
Parameters

FORTRAN nil Pointer

Pascal Subrange of char

Pascal in out Parameter

Pascal go to Statement

Pascal Subrange of Integers

Pascal Runtime System

-opt Compiler Option

Dead Store Optimization

SR9.5 Compiler Changes that Affect Your Programs

Description

DOMAIN C now has short' enum and long enum data types, and the
default enum is now 32 bits rather than 16 bits. This could make data
files incompatible if they are shared by SR9. 5 and pre-SR9. 5 programs.

DOMAIN C fixes a bug in formal parameters declared as arrays. This
new way is consistent with Portable C Compilers (PCC). DOMAIN C now
treats all array formal parameters as pointers. This affects taking ad­
dresses of formal parameters, and using them as arguments to std_$call.

FORTRAN programmers who used IAADR(O) to pass a nil pointer to a
FORTRAN function or subroutine must replace it with O.

In DOMAIN Pascal, a subrange of the char data type is now 8 bits long
rather than 16 bits. This could make data files incompatible if they are
shared by SR9.5 and pre-SR9.5 programs.

DOMAIN Pascal changes the interpretation of the in out parameter. It
now means that you must pass a value to this parameter and that the
called routine can (but is not required to) assign a value to it. Prior to this
release, in out was treated the same as var in that you could, but were
not required to, pass a value to the parameter.

Pascal does not allow you to use a goto statement to transfer control into
the middle of the following statements: for, While, case, with, or repeat.
You can still use them within then and else clauses, and from one case­
action to another case-action within the same case statement.

Pascal now performs unsigned comparisons for all unsigned variables.
Prior to this release, PASCAL performed signed comparisons for any
subrange of integers that required more than 8 bits, but fewer than 16
bits.

A number of errors in the Pascal runtime system have been corrected. If
you improperly depended on these defects in previous releases of Pascal,
you may find that your program no longer executes.

DOMAIN compilers now allow you to specify increasing degrees of opti­
mization from 0 to 4. Prior to this release, you could only turn optimiza­
tion on and off. For C and Pascal, the default -opt performs more op­
timizations so that, in some cases, your program might produce warnings
that it didn't produce before.

DOMAIN compilers now perform an optimization, called the dead store,
which eliminates assignments to variables whose values are subsequently
never used. When this occurs, the compiler generates a warning that is a
good indication that your program is not doing what you intended.

4

Making the Transition to SR9.5

Table 3. SR9.5 Compiler Changes that Affect Your Programs (Concluded)

Change Description

Procedure Pointers Procedure pointers now point to the address of the routine, rather than to
a data structure containing the ECB address. This affects you if you ac­
cess the Known Global Table (KGT) , install your own global libraries,
and write type managers in C using the Open Systems Toolkit.

If you accessed the KGT prior to this release, the KGT returned a pointer
to the ECB, and you were required to construct a pre-SR9.5 procedure
pointer manually. Now the KGT returns a SR9.5 procedure pointer, so
you do not need to build a procedure pointer before assigning a value to
it. You can assign a pointer value to the variable directly.

If you use the Open Systems Toolkit to write your own type managers in
C, you have a similar situation. Prior to this release, you had to construct
a nil procedure pointer when you wanted to initialize a procedure pointer
to nil. (You did so by defining it as an array of two long integers, each of
which contained the value of 0.) Now, you can simply pass a value of O.

2.1.2. Compiling and Debugging Your Programs under SR9.5

To take advantage of the performance enhancements of SR9. 5, you must rebuild the programs with SR9. 5
compilers.

You must use the SR9.5 version of debug to debug programs compiled with the standard SR9.5 compilers.
If you attempt to debug such a program with any earlier version of the debugger (including debug_sr9.2)
you will receive an error message to that effect. At SR9.5, debug contains many enhancements that are
documented in the DOMAIN Language Level Debugger Reference (001525).

2.1.3. Binding Your Programs under SR9.5

At SR9.5, there is one version of the DOMAIN Binder (unlike DOMAIN compilers and debuggers, which
have both SR9.5 and pre-SR9.5-maintenance versions). Use the binder to bind either SR9.5 or pre­
SR9.5 object modules. You will get an error if you attempt to bind object modules that are produced by
an SR9. 5 and a pre-SR9. 5 compiler because the object module formats are different.

2.2. Maintaining Your Pre-SR9.S Programs with the 9.2 Versions
You may not want to recompile existing program modules with the performance-enhanced SR9. 5 compil­
ers. This release provides you with updated compilers and a debugger that allow you to continue compil­
ing programs with the pre-SR9.5 object module format and runtime conventions.

5

Making the Transition to SR9.S

2.2.1. Compiling Pre-SR9.5 Programs with the Maintenance Compiler

To maintain earlier programs, we suggest that you label the pre-SR9. 5 programs and the directories con­
taining them with a descriptive extension (such as _sr9.2) so that you can easily distinguish the programs
that depend on the earlier format. You can recompile programs using SR9. 2 compilers by specifying the
compiler" labeled with the SR9. 2 extension.

For example, to compile a C program using the SR9.2 version of the compiler, specify the following:

$ cc_sr9.2 your_sr9. 2_program

These maintenance compilers are similar to those released at SR9. 2 except that they include new bug fixes
and syntax enhancements for SR9.5 constructs. For details, refer to the documentation accompanying the
appropriate language compiler.

2.2.2. Debugging Pre-SR9.5 Programs with the Maintenance Debugger

You must use the maintenance debugger (debug_sr9.2) supplied with this release for pre-SR9.5 pro­
grams. That is, pre-SR9.5 debuggers will not run under SR9.5. If you attempt to debug pre-SR9.5 pro­
grams with an earlier debugger, the program crashes without an error message. (The debug_sr9.2 debug­
ger is an SR9.5 debugger for pre-SR9.5 programs.) This debugger contains many enhancements that are
documented in the DOMAIN Language Level Debugger Reference (001525).

To debug the program using the debugger that recognizes the SR9.2 format, specify the following:

$ debug_sr9.2 your_sr9. 2_program

3. Changes to C
SR9.5 contains a few new features to DOMAIN C. Most features are compatible with earlier versions,
and they are described in detail in the C language documentation. The following sections describe only the
changes made in DOMAIN C at SR9.5 that affect programs developed on earlier versions. Later sections
in this document describe changes that affect all DOMAIN compilers. The following sections describe:

• An extension to DOMAIN C's enumerated type

• A bug fix to DOMAIN C's formal array parameters

• Usage of DOMAIN C's register storage class specifier

3.1. Changes to Enumerated Types in C
Prior to this release, DOMAIN C supported one enumerated type, declared with the keyword enum,
which was 16 bits long. With this release, you can declare an enum variable to be either 16 bits (Short
enum) or 32 bits (long enum). When you specify the enum keyword without a size, the default size is 32
bits. This change was !Dade to be consistent with other C compilers.

The change of the default enum size presents a problem for data structures or data files that depend on
the internal storage representation. Take, for example, two programs: one compiled with a 9.5 compiler
and the other compiled with an earlier compiler. If both programs define a structure containing an enu­
merated value, and use the same data file, the data file will be misused because the structure has different
storage requirements. To correct this, you" can do either of the following:

• Recompile the pre-9.5 program on a SR9.5 compiler. Do this if the data file is temporary, be­
cause its format will change.

• Change the enum declaration in your 9.5 program to be a short enum to be consistent with pro­
grams compiled with earlier versions. Do this if you do not expect to recompile the earlier source
program, or if the format of the data file must be preserved.

6

Making the Transition to SR9.5

Note that many DOMAIN system calls depend on Pascal enumerated types (which remain 16 bits long).
Consequently, we changed any enum declarations in the C language insert files to be short enum. There­
fore, any program that depends on a DOMAIN-supplied insert file will compile properly. However, if
your program makes procedure calls to any DOMAIN system manager but does not use the supplied
Isyslinslxxx.ins.c insert file, you must change the enum declarations in your program to be short enum to
be compatible with the 16-bit Pascal enumerated type size.

Previous documentation states that DOMAIN C enforces strict separation between enumerated types and
integer values. The current implementation, in keeping with most C compilers, will not generate errors if
you assign integer values to enumerated types. However, it is good programming practice to treat enumer­
ated type values as distinct variable types. Try to limit the operations on enumerated types to the follow­
ing:

• Assigning an enumerated value to an enumerated variable

• Comparing an enumerated value to another enumerated value

• Using an enumerated value as a subscript to an array

3.2. Changes to Formal Array Parameters
In this release, DOMAIN C corrects the way it handles arrays as formal parameters. It now considers all
arrays that are formal parameters to be pointers rather than arrays. Since the formal array is actually a
pointer, if you take the address of the array, you will get a pointer to a pointer.

Note that this case occurs only when you are declaring an array as a formal parameter. If the array is de­
clared as a global or local variable, DOMAIN C treats the array as you would expect.

Prior to this release, DOMAIN C considered any attempt to take an address of a formal array parameter
to be redundant, and therefore, quietly ignored it. With this release, the compiler takes the address of a
formal array parameter, because it converts any formal array parameter type to be a pointer type.

Example 1 shows how the C compiler treats formal array parameters before and after this bug fix:

BEFORE

foo(ar)

char ar [] ;

{
bar(&ar); /* Compiler ignored the ampersand because it considered

* that it was an address of an array. Function "bar"
* must expect an argument of type (char*). */

}

AFTER

foo(ar)

char ar[];

{

}

bar(&ar);j* Compiler takes the address of "ar" because it now treats
* a formal char array as a pointer to char. Function "bar"
* must expect an argument of type (char**). */

Example 1. Change to Declaring Arrays as Formal Parameters

7

Making the Transition to SR9.5

This change is of particular interest if you use the standard calling convention (std_ScalI), because
std_ScalI implicitly takes the address of each parameter when passing it. If you pass an array using
std_ScalI, you must de-reference the array to avoid making a pointer-to-pointer reference.

Example 2 shows how you should pass an array as a formal parameter to a std_Scall function with this re­
lease. The main procedure invokes a function that calls ios_Screate (using std_Scall) to create a file for
write access. Since it passes the filename (which DOMAIN defines as a character string array) as a formal
parameter, the name is already considered to be a pointer, so you must de-reference the name in the call
to avoid a pointer-to-pointer reference.

#module create_file

/* Function create_name calls ios_$create to open a file. It returns the
stream id to the main procedure. */

ios_$id_t create_name(name)
name_$pname_t name;

{
stream;

/* Name is a formal parameter. */
/* name_$pname is a char array.*/

/* Create an ASCII file and open it for write access. */
/* Notice that we dereference the array variable "name" because it was

* declared as a formal array parameter, and is now regarded as a pointer
* type. If we didn't, we would have a pointer-to-pointer reference, which
* is not what we want. */

ios_$create (*name,
(short)strlen(name)
uasc_$uid,
ios_$write_opt,
stream,
status) ;

/* Close file. */
ios_$close (stream, status);

/* Pass value of stream to main */
return (stream);
} /* end create_name */

mainO
{

ios_$id t fid;
status_$t status;

/* Dereference array !!! */
/* Length of name. */
/* ASCII uid */
/* Open options */

/* Call create_name function to create the file. */

fid = create_name ("myfile");

} /* main */

Example 2. Declaring Arrays as Formal Parameters to std_$call

8

Making the Transition to SR9.5

3.3. Register Storage Class Specifier
Prior to this release, the register storage class specifier (which you supply with a C variable declaration to
suggest that the compiler store the variable in a register) was ignored. When performing optimizations, the
compiler would treat the register variable like an automatic (auto) variable. This meant that automatic
variables were just as likely to be placed in registers as register variables.

With this release, the compiler more frequently stores register variables in registers. This is because the
compiler gives them a higher priority over automatic variables when determining which variables are allo­
cated to registers. Still, the compiler does not guarantee that all register variables will actually be stored. in
registers; however, it's most likely.

4. Changes to FORTRAN
SR9.5 introduces only one change to. DOMAIN FORTRAN that could affect existing programs: FOR­
TRAN programmers who used IADDR(O) to pass a NIL procedure pointer to a FORTRAN function or
subroutine must replace it with O.

For details on FORTRAN enhancements at SR9.5, see the FORTRAN documentation accompanying this
release. Later sections in this document describe changes that affect all DOMAIN compilers.

5. Changes to Pascal
This release contains a few features added to DOMAIN Pascal. Most features are compatible with earlier
versions, and they are described in the Pascal documentation accompanying this release. The following
sections describe some Pascal features that might produce unexpected results in your current programs
due to the new data representations and runtime conventions. Later sections in this document describe
changes that affect all DOMAIN compilers. The following sections describe changes to:

• Storage requirements for the subrange of char data type

• The in out parameter extension

• Use of the goto statement

• Subrange of integers

• Errors in the runtime system

5.1. Changes to Subrange of char in Pascal
SR9.5 changes the storage allocation for the subrange of char data type in a packed record. At SR9.5, the
subrange of char requires eight bits and is byte-aligned. (Prior to this release the subrange of char incor­
rectly required 16 bits.) Since this could create incompatibilities with earlier compiler revisions, the com­
piler will issue a warning message for this revision only.

Pascal's subrange data type allows you to specify a variable's valid range of values. This range of values is
a subset of another data type called the base type. For example, a subrange of a char base type is:

VAR { Declaring a variable as a sub range of CHAR.}
capital_letters : /A/ .. /Z/;

Usually, the storage allocation for subrange variables is the same as its base type, except when the sub­
range is a field in a packed record. Prior to this release, a field in a packed record with subrange of char
data type incorrectly required 16 bits and was word-aligned. All other subrange fields in a packed record
took up the number of bits required for their extreme values and were bit-aligned. At SR9.5, subrange of
char in a packed record requires eight bits and is byte-aligned.

9

Making the Transition to SR9.5

Due to this change in storage allocation, data files that are shared by programs compiled with different
versions -- some compiled with an SR9. 5 compiler, others compiled with a pre-SR9. 5 compiler -- will be
misused. For example, if you declare afield in a record to be a subrange of char type and you manipulate
the same data file using programs compiled with different compiler versions, some data gets destroyed be­
cause the storage requirements differ.

To correct this, you can do either of the following:

• Recompile the pre-9. 5 program on an SR9. 5 compiler. Since the format of the data file will
change, do this if you don't need to preserve the format of the file.

• Adjust the subrange of char declaration in your 9.5 program to be consistent with programs com­
piled with earlier versions. To do so, pad the record by inserting an 8-bit field before the subrange
field. Do this to preserve the format ,of a data file, o!, if you do not expect to recompile the earlier
source program.

5.2. Pascal's in, out, and in out Parameter Extensions
DOMAIN Pascal supports in, out, and in out parameter extensions to allow you to specify the direction of
parameter passing. Previous versions considered that the in out parameter extension was synonymous
with the var parameter type. However, the SR9.S Pascal compiler makes a distinction between in out and
var parameter types when optimizing code. Consequently, when you recompile programs with this version,
you might receive a warning message that you never received before.

The warning message states that the compiler is eliminating an assignment statement if you never use the
new value after the assignment. This is a result of a compiler optimization, called the dead store elimina­
tion, which we describe in detail in Section 6.2., "Eliminating Unused Assignment Statements." In this
section, we describe how DOMAIN Pascal interprets parameter types when optimizing code.

The reason you get this warning is that DOMAIN Pascal performs certain optimizations depending on the
way you declare parameters. By specifying a parameter direction when declaring a parameter, you prom­
ise to use the parameter values in a specific way. The compiler uses the information from your parameter
declaration to determine how to optimize code.

DOMAIN Pascal refers to the following rules regarding the parameter extensions. A parameter is the
name declared in the formal routine declaration. An argument is the actual expression or variable that
the caller passes when making the subsequent procedure or function call. In the following list, only the in­
terpretation of the in out parameter changes with this release.

in

out

in out

var

(blank)

Tells the compiler that you are passing a value to this parameter and that
the called routine cannot change the value. If the routine tries to change
its value (by using it on the left side of an assignment statement) you will
usually get the error, "Assignment to in argument."

Tells the compiler that you are not passing a value to this parameter, but
the called routine will assign a value to it. If the routine does not assign a
value to the parameter before returning, you might get the warning,
"Variable not initialized before this use."

Tells the compiler that you are passing a value to this parameter and that
the called routine might (but is not required to) assign a value to it. You
must initialize a variable before passing it as an argument to the routine.

Tells the compiler that you might pass a value to the parameter. The
compiler cannot count. on any initial or assignment values so it cannot
perform any dead store eliminations.

Tells the compiler to make a private copy of the formal parameter. The
called routine can change the copy, and it does not affect the value of the
formal parameter. (This is often referred to as passing by value.)

10

Making the Transition to SR9.5

The following example shows how you can get unexpected results if you don't use the arguments as speci­
fied in the routine declaration. In this example, plist is declared as an out parameter, which indicates that
you're passing in an uninitialized variable, and you expect to assign a value to it within the procedure.

PROCEDURE list_names (OUT: plist: listptr);

•
•
•

if (condition) then
plist := 1;

If you call the above procedure with the following statements

lp := NIL;
list_names (lp);

Pascal matches the actual argument lp to the formal parameter, plist. Since plist is declared as an out pa­
rameter, it assumes that lp will be assigned a value within the procedure. Thus, the assignment statement
(lp := NIL) is redundant, so Pascal eliminates it. However, the procedure assigns a value to lp only if the
condition is true. Since lp might not get a value, you receive a warning.

To correct this, declare plist to be a var parameter rajher than an out parameter. This way, Pascal exe­
cutes the assignment statement preceding the procedure because the procedure expects an initial value. In
addition, by specifying var rather than out, Pascal cannot assume that the procedure will always assign a
value to lp.

5.3. Changes to Pascal's goto Statement
At this release, Pascal detects more invalid uses of the goto statement. DOMAIN Pascal now complies
with the ISO/ANSI standard in that it does not allow you to use a goto statement to transfer control into
the middle of a structured statement such as the for, while, case, with, or repeat statements. If you try
to transfer control into one of these statements, you will get the error: "GOTO transfers control to a struc­
tured statement outside of its scope (cleanup)."

Note that DOMAIN Pascal continues to permit you to use the goto statement to transfer control:

• Into a then or else clause of an if-then-else statement from inside or outside the statement.

• From one case-action to another case-action in the same case statement.

5.4. Change to Pascal's Treatment of Subrange of Integers
Prior to this release, PASCAL performed signed comparisons for any subrange of integers that required
more than 8 bits, but fewer than 16 bits. However, if the unsigned integer required the entire 16 bits, Pas­
cal performed an unsigned comparison.

For example, if a program declared a is-bit unsigned integer as follows

VAR
posint : O .• 32767; { 1S-bit unsigned integer, stored in a WORD}

Pascal would perform the following code fragment as a signed conditional branch.

IF posint > 10 THEN ...

11

Making the Transition to SR9.5

Normally, this wouldn't matter, because the high bit should be zero. However, in one case, the previous
Pascal compiler generated a signed comparison and did not execute the THEN clause.

posint := 65535; {Out-of-range assignment }
{ is not defined in PASCAL }

IF posint > 10 THEN

With this release, Pascal is more consistent by performing unsigned comparisons for all unsigned variables.
That is, referring to the above example, Pascal evaluates the IF clause to TRUE (65535 is greater than
10), and executes the THEN-clause.

Note that Pascal always performs unsigned comparisons on unsigned subrange variables requiring a full 16
bits (for example, TYPE pinteger= 0 .. 65535). This change was added so that unsigned variables requiring
less than 16 bits are treated the same as unsigned variables requiring the entire 16 bits.

As a result of this change, programs that attempt to check ranges of an unsigned variable will receive a
warning message. For example, in the following program fragment

IF posint < 0 OR ELSE posint > 32767
THEN

{ Out-of-range value! }

Pascal generates a warning message, indicating that the expression posint < 0 was known to be FALSE at
compiletime and has been constant-folded. You can avoid these warnings (and simplify your program) by
using the in_range Pascal function. That is, you can replace the above program fragment with:

IF NOT IN_RANGE(Posint)
THEN

{ Out of range value! }

The in_range function generates efficient code to determine whether any scalar variable is within its de­
fined range.

5.5. Changes to Pascal's Runtime System
As part of the work to comply with the ISOI ANSI Pascal standard, a number of errors in the Pascal run­
time system have been corrected. If you improperly depended on these defects in previous releases of Pas­
cal, you may find that your program no longer executes.

For example, the Pascal standard says that it is illegal to call eoln when eot is true. Previous releases of
Pascal did not enforce this restriction. SR9.5 Pascal correctly issues an error message at runtime and ter­
minates the erroneous program.

12

Making the Transition to SR9.5

6. Optimizing Enhancements Affecting Generated Code
The following sections describe the new optimizing enhancements, and how they could affect your C,
FORTRAN, and Pascal programs. They describe:

• A change to the compiler -opt option that allows you to specify varying degrees of optimization.

• The new dead store optimization that might produce a new warning message.

• The volatile feature, which prevents the compiler from making unwanted optimizations.

6.1. Changes to the -opt Compiler Option
At SR9. 5, the -opt compiler option allows you to specify increasing levels of optimization. In prior re­
leases, you could either generate optimized code (by default, all DOMAIN compilers optimize programs)
or you could suppress optimization with the -nopt compiler option. Now you can specify the degree of
optimization you want: from no optimization (-opt 0), to some optimization (-opt 1, 2 or 3) to the great­
est amount of optimization (-opt 4). The -opt 0 level is equivalent to the -nopt compiler option.

For details on the specific optimizations that occur at each optimization level, refer to the documentation
accompanying the appropriate language compiler.

By specifying various levels of optimization, users have greater control over how the compiler generates
code. In general, as the optimization level increases, the compiletime increases. Consequently, you may
want the compiler to perform fewer optimizations when you are compiling for syntax checking and other
simple error detection. At a later stage of development, you're likely to compile your program with greater
amounts of optimization so the compiler can generate the most efficient code possible.

In certain cases, some programs may take longer to compile under SR9.5 and still not benefit significantly
from the new optimizations in terms of execution speed. Therefore, you can compile such programs with a
lower -opt level to reduce the amount of time they take to compile.

Previously, DOMAIN FORTRAN had two levels of optimization with the -opt and the -optall options.
FORTRAN users were encouraged to use -optall (which is equivalent to C and Pascal's -opt) to get the
most optimizations. FORTRAN's -opt option contained fewer optimizations but was the desirable op­
timization level for extremely large application programs. In such cases, using -optall took considerably
more time to compile, but it did not improve runtime performance significantly.

Currently, FORTRAN's default -opt level is -opt 1, which generates about the same degree of optimiza­
tion as FORTAN's previous -opt (except that -opt no longer performs any register optimizations at this
level). Consequently, the compiletime for your program should not greatly increase. FORTRAN's -optaH
option is equivalent to -opt 3. You can specify an even greater amount of optimization with -opt 4. Note
that even though DOMAIN FORTRAN continues to support the -optaH option, you are encouraged to
specify levels of optimization with -opt.

For C and Pascal, the default level for the -opt option is -opt 3. The number of optimizations that occur
at this level are significantly greater than those performed under SR9.2 with the default -opt option. In
most cases, your programs will not take significantly longer to compile and most programs will run as fast
or faster than they did under SR9. 2. In addition, the size of the generated code for your program is sig­
nificantly reduced.

The expanded levels of optimization can make debugging optimized programs difficult. For this reason,
the -dbs debug option now works independently of the -opt option. So you must specify both the -opt
and the -dbs options on the command line to debug optimized programs. The -dbs option creates a line
number table and a symbol table, while the -opt [1, 2, 3, 4] option turns on the particular level of op­
timization you want. If you cannot debug your pro gam successfully at that optimization level, you can re­
duce the level. As in previous releases, the -dba option does not perform any optimizations (even fewer
than those performed at the -opt 0 level). So, -dba removes all optimization-induced obstacles to debug­
ging.

13

Making the Transition to SR9.5

When recompiling your program under SR9. 5, you might receive new warning messages because of a new
optimization. The most common warning you will see is a result of the dead store elimination, which we
describe in the next section.

6.2. Eliminating Unused Assignment Statements
SR9.5 compilers optimize source code by eliminating an assignment if the new value is never used after
the assignment. This is often referred to as dead store elimination. If the computation has side effects,
such as a routine call or references to variables with a device attribute, the compiler will compute the
value of the assignment, but will eliminate the assignment to the identifier. If the value computed was not
a result of a function or device reference call, the value computation is eliminated also.

The following example shows how the compiler eliminates useless statements. In this example the compiler
does not execute the first assignment to m (m := j + i), because the program reassigns a value to m without
ever using the initial value.

PROGRAM deadstore;
VAR

i, j, k integer;
integer; m, n

BEGIN
read In (j, k);
FOR i := j TO k
DO BEGIN

END;

m := j + i;
n := 3;
IF (i > (j + n»

THEN n .- k + j;
m := n;
writeln (m);

END. {* deadstore *}

{* statement eliminated *}

{* m reassigned before it's used. *}

In some cases, you might have intended to create a throw-away value, so you can disregard the compiler's
warning message. For example, your program could call a function and not care about what it returns. (In
Pascal, you can suppress the warning message with the discard builtin function. See the Pascal documen­
tation for details.)

In many cases, though, the compiler's warning message is a good indication that your program is not do­
ing what you intended. Consequently, you should review your program for a possible error. For other de­
tails in Pascal, see Section 5.2., "Pascal's in, out, and in out Parameter Extensions."

6.3. Using volatile to Prevent Compiler Optimizations
To support better compiler optimizations, DOMAIN compilers are permitted to operate on variables (in­
cluding variables within structures and arrays) in any manner that generates the most efficient code, as
long as they obey the semantics of the source language. In most cases, this will make your program more
efficient. However, the compiler might not perform optimizations correctly in the following situations:

• When a variable is in a shared memory location that is accessed by more than one process.

• When a variable can be accessed by two different paths, such as two or more pointers referring to
the same data area.

• When a variable's value changes during an asynchronous fault (a CTRL/Q sequence), and the
program continues execution. This is called an asynchronous update. Note that this is not usu-

14

Making the Transition to SR9.5

ally a problem, because DOMAIN compilers do not optimize variables associated with DO­
MAIN's pfm_$cleanup or C's setjmp/longjmp.

The reason the compiler cannot perform optimizations properly is due to the way the compiler stores vari­
ables in memory. Previously, compilers updated memory after most operations. Now, the compiler can
choose to save the variable in a register and not update memory until nec~ssary.

In cases where the compilers cannot keep track of memory contents correctly, DOMAIN Pascal and C
prc.ride ~n extensien th3.t 3.!!e'w':s yeu to mark these variables with the y~~atHe keyword. This keyword tells
the compiler not to perform the optimizations that it normally would.

The following example demonstrates how a compiler can misinterpret data. The variable i can be accessed
by two alternate paths. That is, the statement p" := p" + 1 actually changes the value of i since p and i re­
fer to the same memory location.

MODULE volatile_example;

VAR
P : ... integer;

PROCEDURE ini t (VAR. v
BEGIN

p .- addr(v);
END;

PROCEDURE top;
VAR

integer);

i : integer; { Correct this with:

BEGIN
init(i);
i := 0;

i [volatile] integer; }

WHILE i < 10 DO
p'" := p'" + 1; { Anonymous path: p and i point to same variable}

{ Hidden modification to i }
END;

Since the compiler does not know that i and p'" share the same memory locations, it believes that the value
of i is always zero. So, the while loop becomes while 0 < 10 DO; which is an infinite loop. Note that this
occurs because a program statement created an anonymous path. If you replaced the statement p'" := p" +
1 with p := ADDR(i) then the compiler notices that i has had its address taken and makes the variable im­
plicitly volatile.

Similarly, if a program declares two pointers, p and q, with the same base type, the compiler conserva­
tively treats all assignments to p'" as a possible change to q".

To ensure that the compiler evaluates the value of i correctly, you can declare it with the volatile attrib­
ute. To identify and mark the variables as volatile, you can do the following:

1. Locate any variables (usually pointers) that are shared by more than one process or that can be
accessed by two different paths.

2. Mark the variable declaration with the keyword volatile as defined by the language syntax rules:

In C, you declare a variable with the volatile specifier of the #attribute declaration modifier:

extern char KEYBOARD #attribute[volatile];

In Pascal, you signify a volatile variable with the volatile attribute extension:

keyboard : [volatile] CHAR;

15

Making the Transition to SR9.5

Note that all DOMAIN compilers attempt to recognize possible volatile variables associated with cleanup
handlers. So, cleanup handlers will act as you would expect.

6.3.1. Rules for Using volatile in C and Pascal

The implementation of volatile is similar for both Pascal and C. This section lists how each compiler in­
terprets the volatile attribute. Since FORTRAN does not support the appropriate syntax to add attributes
such as volatile, the next section describes what you can do to prevent optimizations in FORTRAN.

When a variable is not marked as volatile, DOMAIN Pascal and C compilers optimize ordinary variable
references any way that they see fit. They perform the following optimizations for external (global) vari­
ables:

• Save values of variables in registers during execution of the routine body.

• Do not save values of variables across routine calls.

• Write the value of a variable to memory after an assignment before completing the execution of a
statement.

When you use the volatile attribute to suppress compiler optimizations, the compilers obey the following
rules. Note that the only difference between the C and Pascal implementation concerns inheritance.

• C's volatile attribute is inherited by higher constructs. That is, if you mark a field within a struct
with the volatile specifier, the compiler interprets the entire structure to be volatile. Conse­
quently, the compiler will not perform any optimization 'on the entire structure. (This is compat­
ible with other C implementations. However, this differs from DOMAIN Pascal.)

• Pascal's volatile attribute is not inherited. Consequently, you can mark a single field of a record
to be volatile. The compiler will not perform any optimizations on that field, but it can optimize
other fields in the record. (Note that this differs from DOMAIN C's implementation.)

• The volatile attribute prevents the compiler from saving a value in a register for more than one
statement.

• The volatile attribute guarantees that the compiler will update memory by the end of the state­
ment if the statement changes the contents of memory.

Note that another DOMAIN C and Pascal extension, the device specifier, is implicitly volatile. The device
specifier informs the compiler that a device register (control or data) is mapped as a specific virtual ad­
dress. In addition to suppressing the optimizations mentioned above, a device variable makes the follow­
ing constraints on optimization. It:

• Prevents the compiler from merging references to adjacent memory locations into a larger refer­
ence.

• Guarantees that the compiler accesses the variable only once per source-language reference. So,
if you need to access a variable or field more than once, you must use more than one statement.

• Tries to perform in a single instruction those operations that the 68000 can perform in one in­
struction. For example, the statement v := v + 1 generates the instruction ADD. W #1, V.

• Prevents the compiler from generating unnecessary read-modify-write references for device regis­
ters. (This means that the compiler will avoid generating 68000 CLR and ST instructions for any
device variables.)

For more information on the ~olatile and device specifiers, see the DOMAIN Pascal Language Reference
(000792) and/or the DOMAIN C Language Reference (002093).

16

Making the Transition to SR9.S

6.3.2. Preventing Compiler Optimizations in FORTRAN

FORTRAN does not support the appropriate syntax to add attributes such as volatile. To get nearly the
same effect in FORTRAN as volatile has in Pascal and C, place any variables you want treated as volatile
in common, and avoid using the -opt 4 optimization level. The FORTRAN compiler can save common
variables in registers inside a routine, but it updates common variables to memory at each assignment
statement. Note also that the vari~bles declared with FORTRAN's namelist statement are implicitly vola­
tile.

17

Index

The letter f means "and the following page"; the letters ff mean "and the following pages" .

A

Applications
See Layered products

Automatic variables 9

B

Binding programs 5

C

c

changes to 6ff
enum variables 4, 6f
insert files 7
optimizing levels 13
register storage class specifier 9

cc_sr9.2 6
char, subrange of 4, 9
common, FORTRAN variable 17
Compiler option

-dba 13
-dbs 13
-nopt 13
-opt 13
-optall 13

o
-dba compiler option 13
-dbs compiler option 13
Dead store optimization 4, 11, 14
debug_sr9.2 6
device specifiers 14, 16
discard, Pascal built-in 14
DOMAIN Binder 3, 5
DOMAIN Debug 5

optimizing programs 13

E

ECB address
See Entry control block

Entry contol block (ECB) 5
Enumerated types 4, 6f
Errors, due to optimizing 13, 14
Example

See Program sample
External variables 13, 16

F

Formal parameters 7 f
FORTRAN

Change to nil pointer 4, 9

optimizing levels 13
preventing compiler optimizations

17
Functions

throw-away values 14

G

Global libraries 3, 5
goto statement

changes to 11

lAD DR, in FORTRAN 9

in out Pascal parameter 10f
Insert files 7
Integers

subrange of 4, 11 f
Internal data representations 1, 6f,

9f
ios_Screate 8

Index-1

K

Known Global Table (KGT) 5

L

Layered products 3
Library

updating user-installed 2
See Also Global libraries

long en urn 4, 6

M

Maintaining programs
compiling 5 f
debugging 6

without recompiling 5 f

N

namelist 17
nil pointer 9

-nopt compiler option 13

o
Object modules 2
Open Systems Toolkit 5, 2
-opt compiler option 13
-optall compiler option 13
Optimizing programs

affecting generated code 13ff
affecting Pascal in out parameter

10
debugging 13
dead store 4
eliminating unused assignments

14f
preventing in FORTRAN 17

preventing with volatile 14ff
specifying levels of 13
suppressing 13, 14 ff

p

Packed record 9
Pascal

change to goto statement 11
change to in out parameters 10f
change to subrange of char 9f
change to subrange of integers

l1f
optimizing levels 13
parameter definitions 10
runtime system 12
throw-away function values

(discard) 14
Passing by value 10
Passing C arrays with std_Scall 8
Performance, system 1
pfm_Scleanup 15
Pointers

C formal array parameters 7f
See also Procedure pointers

Preserving registers 4
Procedure pointers 5
Program sample

declaring arrays as formal
parameters to std_Scall 8

R

Recompiling programs
changes affecting 2f
new warning messages 3

Register, C specifier 9
Runtime environment

conventions 1, 2
Runtime system

changes in Pascal 12

Index-2

s
setjrnp/longjrnp 15
short enurn 4, 6f
SR9 . 5 programs

See Recompiling programs
std.;...$call 8
Storing variables in registers 9
struct, volatile fields 16
Subrange of char 9f
Subrange of integers IH

T

Throw-away values 14

Type managers
recompiling with SR9. 5 2

u
Upgrading to SR9. 5 Hf

v
volatile attribute 14ff

w

Warning messages 3, 9, 10, 13, 14

Index-3

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: Making the Transition to SR9.5

Order No.: 009492 Revision: 00

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? _______________________ _

What parts of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to include? ______________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.) _____________ _

Your Name Date

Organization

Street Address

City State Zip

FOLD

I I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

o
S
o .,
0'
a:
m
0"
::J
co
Co
2
CD
Co

::J
CD

--,
FOLD

III1111111111
00~3482

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	Index-01
	Index-02
	Index-03
	replyA
	replyB
	xBack

