AEGIS OUTLINE

PHILOSOPHY of AEGIS

Integrated System
Object orientation
Managers as Model for Data Abstraction

OVERVIEW of AEGIS CONCEPTS

Processes
Ob]ect—Based File System

- Naming |
Mapping / Address Space Management
Memory Management
Networking
Protection

OBJECTS

‘Storage and Disk Structures
pvol, Ivol, bat, vtoc
important bootstrapping information
in the lv_label
- UIDs, Attributes, Segmentatlon Locatmg
Locking (local)

NAMING

Directories
/, 1/, ‘Node_Data, WD, ND
Links (hard and soft) |

ACCESSING OBJECTS

Address Spaces (asids, global)
Mapping Objects (mst) |

- Active Objects (ast)
Paging/Purifier

NETWORK FILE SYSTEM

Remote vs. Local

Paging Server, Remote File Server
Asknode

INTERPROCESS COMMUNICATION

The Ring

Packets and Sockets

Major Clients of Sockets
- MBX

SECURITY

Acls, Registry, Protected Subsystems
Login, SIDs

PROCESS MANAGEMENT (Supervisor Mode)

Process Switching (dispatching)
- Interrupt Handling |
- Processor Scheduling

Synchronization (eventcounts)

Mutual Exclusion

Special CPU B Handling

O

Process Creation and Deletion
Clocks and Time—-Driven Events

* PROCESS MANAGEMENT (User Mode)

Program Management

Parsing | |

Program Levels, Procceses and Fork
Mapped Segment Manager (ms)
Storage Allocator (rws)

The Loader, KGT

Libraries; Global and Private

PROCESS MANAGEMENT

‘(Error and Fault Handling)

Kinds of Faults |
Supervisor Mode Fault Handling/Generation
User Mode Fault Generation
Fault Handlers

Dynamic Cleanup Handlers
Static Cleanup Handlers
Mark/Release Handlers

STREAMS

The Stream Table
Opening Streams
The Generic Switch Call

Some Special Switch Calls

The D_File Manager
Other Managers

FROM POWER-UP TO LOGIN
| Physical / Virtual Address Space Layout

MD |
SIO vs. Display KBD
Service / Normal
Boot Device Selection
Commands : Internal vs. External

~ (D,LO,EX)
SYSBOOT / NETBOOT

Aegis initialization | |
required directories and files
creating the first level 2 process

THE BOOT SHELL

ENV / Libraries , |
the basic idea (SH DM, SPM)
firmware (PEB and COLOR)
global libraries
startup—files (wWhere and why)

DISKLESS NODES
NETWORK SERVERS

SPM /CRP
SIOLOGIN

SF HELPER
ALARM SERVER

C,

THE APPLICATION LEVEL

PST

NETSTAT

HPC

NETLOG

DB

FST

TB
COMPILER/BINDER

GPIO

MULTIBUS Limits
Device Driver Considerations

R Philosophy & Overview
o of AEGIS

Philosphy: 3 perspectives
market |
hardware technology
system architecture technology

Overview: textbook OS taxonomy
processor management
address space management

. - memory management
O file system
network |
I/O device management

Apollo Computer

- The premier supplier of workstations

for the technical professional

Maximize the productivity of the technical
professnonal via:

1. ability to run large, mainframe class application
programs tailored to his profession

2, high user <—> computer bandwidth

3. network for cooperation and sharing with others

~ Implications:

1. a. Fast, 32 bit CPU
b. Virtual memory

2. a. Bit-mapped display

b. Window-oriented user environment

3. a. Distributed system
b. Net—wide access to files

AEGISis the operating system that
resulted to support these objectives.

Hardware Technology

1. VLSI CPU’s
2. 64k RAM
3. Winchester disks

Pioneered by the Alto at Xerox PARC, started
to see other systems: »

Nu Machine (MIT)

SUN Machine (Stanford)

This new, cheaper computing power was changing
the focus on how computing was done....

OF

MAINFRAME

CAPABILITY

PRODUCTIVITY

OPERATIONS

LOCAL AREA

PRODUCTIVITY
.OF

PEOPLE

DEDICATED

COMPUTING

INTERACTIVE

GRAPHICS

NETWORKS

- DOMAIN

System Architecture Technology

Operating systems 2 Dok
Multics (MIT) 6.vie stumpt
original implementation
restructuring studies
Hydra, Medusa (CMU)
System/38 (IBM) |

Distributed syStems
Pilot (Xerox PARC)
WFS (Xerox PARC)

Languages
Mesa (Xerox PARC)
- CLU (MIT)
~ Alphard (CMU)
Smalltalk (Xerox PARC)
Ada (DoD)

Key attributes of AEGIS |

AEGIS is a

— distributed

— Integrated

— local area network
— object-oriented
— personal workstation

O operatihg system.

Distributed Systems

‘Advantages:
robustness, reliability
when one node fails, system still runs
incremental expansion of computing power
just keep on adding nodes |
potential for higher performance
run computations in parallel

Problems:
‘ partial failures
‘ O if you need the node that failed...
\ “richer” set of errors |
not just “up” or “down”
replication needed for reliability
hard to do automatically
parallelism needs to be explicitly programmed
no automatic decomposition today
- sharing & cooperation N
can be hard to get back to timesharing level

~ Where does Aegis fit?

Lots of different kinds of distributed systems.

- VAXcluster: a distributed multi~-computer
— meant to act exactly like one big VAX
- — good sharing & cooperation
— all the problems of timesharing

— ARPAnet: communicating, autonomous hosts
— seperately owned and administered
| — limited sharing & cooperation
Q — remote login, file transfer, mail

Aegis falls somewhere in between.

Structural Implications

- distributed systems are naturally structured
differently than centralized ones

— Aegis was built from the ground up to be
distributed

“Local access is the special case” — PHL
“..but it still has to be fast”’ - — P

-10 -

Contrast to Post-Hoc
Distributed Systems

Application

Remote y
0S

Y Local
(013

A complete remote OS is layered on top of a
complete local OS; applications determine which is
being requested at each use.

- 11 -

Aegis Structure |

In Aegis, each component has a local and remote

part within it.

Application

Remote MBX
Local MBX

Remote Name
Local Name

Remote File
Local File

Remote Paging
Local Paging

-12 -

User
Supervisor
7 Server | : To Data r;m —
%@(@:_’;J, ;
s\\\fa\\
‘Pageable
Wired,
: Location
E Dependent
v_ l L 4

NS ES AST)JJJJJ*

| - Geive sesment 10| (77722777
Q pJ NETWORK L

-t S . Sur.Jur o g fur g g w4 E

2323 PNIAP22222 N Datagram |
ggJJﬂMJ‘i‘)Jjjﬁ :‘\\;\\Eﬁé\rz\?‘\\\K\—» PG | j

2
2 Page MAP) 555 SAA
32320300000)

e To Net Hardware
. Memory
P ok o o
o '}"fe-*-*-
Legend:
. V |OC o : Local OSs

Volume Table

of Contents -

| BAT

:) Biock Aliocation §
Table ‘

Cached Oss[;”

Location l'ndependent
[0

' Remote OSS ==

Single Level Store[F E E

‘Lock Manager[::ii

- Disk Hardware » Name Server[—_—]

O ~ File System Structure

Aegis Structure II:
Net-Wide Caching

Another example of “ground up” distribution:

Network-wide caching of objects would probably

not have been feasible without having desngned it
in from the start. |

The file locking operations were specifically
designed to allow cache control in addition to
concurrency control.

- 14 -

Personal Workstation Implications'

With a 'network of personal workstations:

— (potentially) can share what’s important
— information, programs
— expensive peripherals

— don’t share what’s not important
— CPU cycles: they're cheap

— you can decide how to use your node
— autonomy

Potential advantages:

— cooperation & sharing
— use network
— dedicated, controllable performance
— you allocate your node
— high user <—> computer bandwidth
— CPU is close to the display |
— highly interactive user environment
— simpler OS if only run one user

- 15 -

Simpler 0S

Protection
— all computation on a node is on behalf
of a single person
— don’t worry about maliciousness
— just worry about accidents

Fairness of resource allocation
- just do what the owner says

Accounting
—isin terms of the whole node

Structure
— can put software in user space
— easier to modify, debug, replace

Openness

— more facilities can be made accessible
if needn’t worry about above items

- 16 -

Problems with Personal
Workstation Model

- How to manage tension between autonomy and

cooperation.

— autonomy means independence
— cooperation means dependence

Solution: make cooperation voluntary; but how"

— need mechanisms
— usually, cooperation & autonomy go along
machine boundaries
— on same machine: cooperate
— on different machine: autonomy
— hot good enough for personal workstations

-17 -

Problems I

How to provide traditional system services:
- - identifying users to the system
~ printing |
- — backup
-~ mail
— storage of community information
— at project, department, organization and
corporate levels
— data integrity
— data privacy |
— communication gateways
- background computation (batch)

Partial solution: use ‘“servers” to provide them
— dedicated nodes running trusted applications

- 18 -

Cooperatien VS. Autonomy
Why are both needed?

Cooperation:
-~ heed to cooperate wnth colleagues to get
your job done »
— personal workstation didn’t change that!

Autonomy:
— need to control resources of own node
— in order to get controllable response
- need to control sharing
— to protect privacy of data
- — need to manage own data files
— to guarantee data integrity
— heed to operate when network is down
— need enough independence to do so

- 19 -

O _

Server Issues

Protection: |
- all programs on same server node trust each
other

-~ Fairness of resource allocation:

— they also trust each other to be reasonable
in their resource use |

Accountlng

~ is up to each server to do in an application
specific way

-20-

Local Area Network Implications

Local area networks are sufficiently different from

other kinds of networks that different techniques
heed to be used to take advantage of them.

BandW|dth -
~ typical networks are orders of magmtude
slower than the memory bus |
— LAN’s are faster: ours has 2/3 the bandwidth
of the memory bus of a DN400.

Error rates: |
— typical network error rates: 10**—4 or so.
— LAN error rates much lower

SO:
— minimize CPU time to “get on and off the
wire”
don’t spend it trying to optimally utilize
network bandwidth -
— don’t worry as much about errors
use simple retransmission techniques

—21-

'Prob|em Oriented Protocols

‘Don’t use the traditional OSI “layered” architecture

— make a very cheap datagram service.

— don’t use virtual circuits, sessions,
presentation layer. |

— take advantage of operation semantics to
cheaply do what those layers normally do.

— use “end-to-end” argument. oveid stkacuicigenents.
Examples: | |
— idempotent operations

— transaction IDs |
- “natural” State clon't S()u?a“j etkaye data, |

-22 -

O

P-O-P Examples

Idempotent operations

— has same effect if done twice in a row as /f
done once.
— example: read page N of a f/le

— use simple two message protocol
— RR: request/response
— retransmit on time out
— duplicate requests no problem

— saves an acknowledge message (RRA)

Transaction IDs
— eliminate duplicate replies
— tag each request with a unique number
— discard replies with duplicate TIDs

‘Natural state

— for non—-idempotent operations

— save request TID in a database that was

- heeded anyway |

— discard requests with duplicate TIDs; resend
old response |

— example: lock database

- 23 -

Integrated Distributed System

‘System provided, user selectable mechanisms
that:

— Preserve autonomy.
= Permit cooperation & sharing (when
desired). | o

Provide the user with a unified system:
-~ hame files, not hosts
— system wide user identification

Integrated Implications

Network wide file system:
~ to make sharing easy

Network transparency:
~ location transparency:
- all resources accessed |n same way,
regardless of their location
— easier software development
— Supports incremental changes to system
— easier to realize increased reliability
— simpler user model
— name transparency:

U CM.‘VIO\{] - ‘(ov\
~ name doesn’t imply location ot S
N

— allows relocation, substitution et
Control mechanisms:

— access control
— hetwork wide user identification

- 25 —

“Integrated Implications I

O

Reliability crlterlon
— must always be able to access information on
own node, even if network down
— if two nodes are up and want to cooperate,
then no single failure will stop them
— s0, third parties must be replicated

Functional integration: |
— each node has a complete set of OS facmtles
— SO can run when network down
— also for performance reasons -

- 26 -

DISK

CPU DISPLAY
%g%" KEYBOARD FULL USER
WORKSTATION
CPU
MEM COMPUTATION or
NET
1/0 SERVER
CPU
MEM FILE
NET . SERVER
CPU DISPLAY
- MEM |
NED KEYBOARD DISKLESS
USER
NODE
CPU DISPLAY
MEM KEYBOARD
NET

MODULAR WORKSTATION DESIGN

aupncmons

Object Orientation

| Object:

~ user level: some sealed data plus operations
- — OS level: a storage container for uninter—
preted data, plus a type tag that
— identifies the object’s manager

— tells how to interpret the data. et
- pn‘\j”j e

DY K
A ‘.
l\/\lﬂ bﬂ

Managers:
— each module is manager of some object.
— object is some meaningful (OS) entity
— disk block, process, file, directory, etc.
— manager handies all details of “its” objects
— interface to manager gives all permissable
- operations; completely defines object to
clients
— clients only manlpulate object through
the interface
~ manager is solely responsible for the
integrity of its objects |
— knowledge of representation (data
structures) confined to manager
— managers correctness depends only on
itself, managers of components

-27 -

o Objects I
O Why°
| — understandable semantics for modules;
a principle for OS decomposition into

~ modules e

— managers are orthogonal and independent
— can isolate bugs to one manager
— can find manager to change to make an

enhancement

o
.
O

- S0:

Protection

Need access control to allow you to choose with
whom to share and cooperate.

Can’t protect data on a node from the node owner:
— has physical access |

— allow each node to protect own data
against access from the network

-~ don’t try to protect data from deliberate
efforts of node owner

— try to make accidents improbable

-29 —

—

Aegis Interface

Mivpsee s

Single Level Store MST

Object Storage System FILE

LowLevel PC MSG
Naming Server NAME

Processes | PROC2, EC2

Faults FAULT, M~

Display ~~ COLOR, SMD, SMDU

10 MT, LPR, PBU,,

DISK, VOLX, TERM
Protection ACL

\\ V.

~Info | AS BAT ASKNODE,

PROC1, VTOC, CAL, NETWORK,
=08, PEB, TPAD, NETLOG,
GET _BUILD_TIME, OSINFO

Misc TIME, UID, VFMT

UID_LIST

Processes

independent, asynchronously exe'cuting’

33 total ¥ processes wsered for 05

- one is the Display Manager (<’
Shell windows are processes, edit pad

~ windows are not

Serarate address space per process

asid

* for protection »
* because the address space is too
- small (less than 10 MB min.)

Address Space

* 256 (or 16) Megabyte
* objects mapped into it
* R/W with ordinary instructions

Object Types
- * programs, libraries, data
Aegis is in each address space

O

Processes 2

— Synchronization and Communication

* Shared Objects (communication)

same object in AS of > 1 proc.
both observe changes
restricted to 1 machine

* Eventcounts (synchronization)

~ processes can wait on an EC
processes can “advance” EC
to wake up waiters
also restricted to 1 machine

*IPC (MBX)
~ both comm. and synch.
sends data, wakes up receiver
network wide! | ‘
“local, too; exactly the same
semantics (but more efficient)

PrOcesses 3

Dispatching Scheduling
~ dynamic (recalculates)
— priority based

- — priority is inversely proportional to the

amount of CPU time used
* attempts to give interactivity priority
* paging is currently a problem

- — Priority boost

* delta added to the priority
computed above

* Dispaly Manager gets it *
* It is not user settable
— Process Layering

PM
PROC2
PROCH1

PROC1 SR

| P
-~ Synchronlzed with EC1 # ¥
~ — A finite number of them (32)

— Wired state

- State = registers
PSW
ASID
locks

— Runs only in global space
— Needed to implement Virtual Memory
¥ purifier
“paging server
* file server

Vv Somde addvess space,
0 Processes. neecico‘ to | WP&‘M% Kernel < use Seme clate bascs

2 MmASCGI

PROC2

O ,
- Synchronized with EC2
— Runs in its own address space
— Can use Virtual Mem‘ory
— Potentially unwired state
Q | - * eventually bind and unbind

¥ copies state in VM

ot :&V
ML
— Mutex Lock
— Uses EC1
- Deadlock detection
O

V/'ir'\ual addvess 5{)“66

) ' 256

| o 'SUPERVISOR ot

S GLOBAL eyt .

SUPERVISOR PRIVATE /i i
2 -)
~ USER GLOBAL .

0 (AGD

16

14

SUPERVISOR GLOBAL .
/ and /ICOM directories /_QSV‘S i

1

SUPERVISOR PRIVATE

‘ D)
WD and ND directories %7, 1 o ¢

256

USER PRIVATE
', ADDRESS SPACE
' |

MAPPED OBJECTS
RWS

SHELL

DM_MBX

GUARD gdﬁmn"L (saphum Pm-ﬂvﬁm: guacd fralt) ‘

STACK S"h“"l3 61‘4 oS g S'ejp’\-(fv\'!"s) 8\(6\‘55 ’l,'\ci(j\(fwliklj

GUARD

' STATIC DATA for GLOBAL LIBRARIES

GUARD

|USER GLOBAL o

GLOBAL LIBRARIES and DATA

puch Seyment T 32k

‘ . (
Gupe e gloet

VA Range Oby Start Pathname dont 5
8000 - FFFF 0 /sys/node data/global data
10000 - iFFFF 0 /lib/pmlib
20000 -~ 37FFF 0 /lib/syslib. 460
38000 - 3FFFF - 0 /1ib/vfmt_streams
40000 - 47FFF 8000 /sys/node_ data/global data
48000 - &7FFF -0 /lib/streams '
68000 - 7FFFF . 0 /lib/error .
80000 - 9FFFF ‘0 /lib/swtlib
AQOODO - A7FFF 0] /lib/pbulib
ABOOO - AFFFF 10000 /sys/node_ data/global data
BOOOO - BFFFF 0 /1lib/ftnlib
CO000 - E7FFF 0o /lib/gprlib
- EBOOO - FFFFF 0 /1lib/clib .
100000 - 117FFF 0 /1ib/shlib
118000 - 11FFFF 0 /lib/auxlib :
120000 - 127FFF 18000 /sys/node_ data/global data
128000 - 137FFF 0 /lib/tfp
138000 - 13FFFF 0 /1ib/x251ib
140000 - 147FFF 20000 /sys/node_data/global_data
148000 - 14FFFF 0 /sys/node_data/stream_$sfcbs
800000 - B97FFF 0 —- temporary file —— Stk
898000 - B9FFFF - 0 /sys/node_data/dm_mbx
BAOOOO — BA7FFF O /com/sh ,
- BAB0OOO - BAFFFF 0 —— temporary file —— Stack
8B0O0O0OO - BB7FFF : 0 /com/las
. 8B8000 - BDFFFF 98000 —— temporary file —— stuck
8EO0OO - BE7FFF -0 /¥/1las. big
F788000 - F797FFF 0 /¥ N
F798000 - F7A7FFF 0 //node_28B+4

2368 KB mapped.

Single Level Store

Direct access to objects via machine
instruotions

"Map” an object into a portlon of a

~ process’ address space

Only page in the needed pieces

Similar to Multics, IBM System/38 and
Xerox Pllot

Distributed over the whole network

OPERATING SYSTEM MAPPING

232

ADDRESS

GLOBAL : SPACE
. MAPPING

PER
PROCESS |

SUPERVISOR

PER
PROCESS
USER

0

. SINGLE NODE .
. PROCESS o "~ NETWORK

VIRTUAL ADDRESS . , GLOBAL
SPACE o » : OBJECT SPACE

ADDRESS I
SEAGE

MAPPING

o
LA
b

1

HODE

T i

BN

JLy e

k-2

FHYSICAL MEMOI

Q o | Libraries |
— the environment for programs

* all callable entry points not bound
with the program ety el i

o pregren s efevnce s ko

* most of the system services are " rs
made available through libraries
(nucleus calls are in a library)

~ dynamic linking to libraries
e we " symbolic references left in program

'NQ“"‘) /\'D‘(

) Wil (the name of the proc/subr/func)
QYN gt _ |
Qo * resolved by the loader when the

program is invoked
* uses the KGT (known global table)
— loading vs. installing |

programs are loaded -
(J

~* libraries are installed, entries are
kept in the KGT

!ffpo fhis one searched /P\‘vsjr bj Jeacle,.

fh»o kG«T)S , /))Er Préﬂ"'-’s _

Q | - Sjs)f% -wide

~ Global vs. Private Libraries

- Global
— inthe Address Space of all processes
— automatic

— don’t need to be loaded when each
process is created

— more efficeintsharing (hardware)’
- installed when the system comes up
(ENV)
Private
— inthe AS of processes that load it
~ installed after the system comes up
"~ not enough global space for all libraries

Qach precess does NGB .

— still Sharable, but more Cosﬂy (becanse of vir buel s FE

Fwse MST Pa‘..« lers = reséldt:’))

- INLIB command

Programs
a file system object
a kind of procedure (or set of ...)
special cohve_ntion for invocation
* args are an array of strings

redirection upon invocation

d not normally in AS, must be
mapped |

“resource management unit

* all resources a program acquires
are released when program exits

open streams are closed
mapped objects are unmapped
scratch space is released
database areas are cleaned up

* extensible

mark/release handlers
new managers install their own

Memory Management

Demand Paged Virtual Memory
— LRU replacement | -
— purifier (write-behind) ey 10 seconds go0 Throgh % o vy

ASTE’s
— hold disk addresses for “active” objects
- also object attributes

. J
05 iy ISTC's - 128)ASTE’s per megabyte - |
65 ceed i3 k——\) dehive 953‘"“ ot dable gatries (COG) ¢s of Vioc for e 0&3007‘) diskf/pehsork addes
- Sequential access N
O — touch~ahead (read aheac

— allocate for disk locality

Random access to very large files
adgeet = large: more than@ meg/meg of main memory
— causes 2 disk 1/O per page

— one for file map
SK}
3/‘* SR() =3 ;

— one for the page

Yo
){ \\a\ft = 2
s \n P\STQ‘JWGM C ol ar res 4 =
B e e T
ook R o "ol 10 undocomented optiun fo
. Mot © N\ o
pST s @ \3(3 ol thet leks Yo sed fle

- 30 -

paT step

O

File System Management

File system =
Object storage system
+ Naming server

+ Streams

- 31 -

| Streams

Traditional device independent sequential I/O, plus
- seek | .
- record structure
— locate mode

Operations:
— Open, Close, Read, erte
- ak.a. get_rec, put_rec
— “handle” is a stream ID (small integer)

Implementation:

— “switch”
— uses type UID
~ calls type dependent manager

— Files: . |
— map into the address space (window)
- slide the window over file
— access via “load/store”

meve mode — COpPIes data into caller’s buffer
— ho nucleus intervention

~ toueh ahead automatically set ciepz.cling on aceess
Tread

-32 -

Object Storage System ~ 55

— network transparent data access

— access files anywhere in the network
‘as if they were local

— port Fortran, C, Pascal programs
~ without change |

— preserve investment

~— only a 90% solution

***BUT a very important one | ***

Totally distributed systems are not builtin a
day! ‘

— object orientation

— all operations are operations on some
object | |

— a ’'natural’ way to distribute

Software Environment

S Aegis Operating System
— Objects
* named by UID
— Object attributes ‘
* UID of ACL
O ‘

* UID of type descriptor
* physical storag‘e descriptor

* misc. (DTM, DTU, etc.)

¥ Uﬂ\('/ﬂw@r é\r. hot ‘l"' Can bﬁ qupec{) I.Vrl’b SUJFQ’N:SLT 5Pac,eu

Supported Object Types

alphanumeric text
record structured data
IPC ”mailboxes”

IPC "pipes”
executable procedure
directories

ACLs

~serial I/O ports
magnetic tape drives

display bit maps

(reate own ébd’evl« %QLS ¥ managers ot SR T ¢
‘E’X-"ﬁms“\h[e S'{'YCC‘»'“S,

Internal/External Names

— External Name
- * user visible, human usable

* text string

— Internal name
- * computer convenient "handle”
~ for an object |
- — Choices for form of internal name
~ *UD |

? 9 e e (F - e weu
* "structured name” "o helf s

where i+ i stored |

— UID 7 Chece of /-\e,ﬁ‘."s

~ * just like a bit string that uniquely
identifies an object

* but doesn’t tell how to find it
* like a Social Security Number

NS — Structured name |
* multiple components
" gives location of, or route to,
object

* may or may not be reused

* may or may not be one-to—one
with object

UIDs

* 64 BIT UNIQUE NAME
* NEVER (EVER) REUSED
* CONCRETE REPRESENTATION

| ’ 16 BITS >
A — ;
CREATION TIME
4 WORDS | |
AVAILABLE
NODE ID
v
* OBJECTS ARE ACCESSED BY
MAPPING INTO THE VIRTUAL
MEMORY
* (OBJECT ACCESS IS NETWORK
TRANSPARENT
Cérm.\ﬂ MDSs Wil r;_g\,ef he treeted ¢ Y Canned WIDST

used o bring wp cerbein cmpme,\‘fs o fle O.S,
fﬂd/j o€]’)r'asmmwad v’mb Phe Bogf lor-c:mg‘

- WHY UIDs ?
location independence

absolute names with respect to
processes, hodes

simple nucleus interface

uniform naming for all objects; by most
levels

composite objects |

typed objects

‘LocatingObjects

- Make the task easner by restnctlng
locations

%* (i have

don’t let objects move 0.0 i

s ®) ¥ require objects to be on the same
s =)™ volume as the directory in which it

is cataloged

*

estabhsh equivalence classes
among volumes

|y
no restrictions; broadcast . ity
— Requirements

* removable volumes

* internet environment compatibility

e _locake coll

O — Use "hints”
~* from node ID in UID
* from "hint manager”: takes hints

from anywhere directory manager
-user .

— Improve algorithm over time
1. look local, then the node on which

the object was created.

2. local; hint manager; then the node
O - of creation

3. modify 2. to try remote first if the
node ID in the UID is remote

- Goncurrency Control
(ak.a. the stale cache problem)

4 3\@‘&\&‘5&

- SLS makes no consistency guarantee

| (property: purely local use is OK)
— Locking and timestamp techniques
" lock before use; unlock after

* tlmesteﬂp detects stale data

- — Lock (an object) MBX

%

send message to home node
(acts as a coordinator)
* get back version number
~ (timestamp)
* discard stale pages
(ones with older timestamps)

— Unlock

* send modified pages back to
home node
send message to release lock

*

(O = Pageln

* returns page’s version number

* check version number against
current one

* return error if no match

— Page Out

* bumps version number, returns it
* checks, rejects if not owner
requesting

O | — Client Protocols

* Possible because cache flushing
operations are exported

Uniform Name Space

— Same "absolute ” file name refers to
the same object anywhere in the
network

— Allows file names to be exchanged
without changing meaning

- Means data, programs are more easily

shared

'USER NAME SPACE

NETWORK
G
&
LOCAL ROOT -
DIRECTORY o,
®
0
5
(- :
k .
S, ‘\ CURRENT WORKING
© DIRECTORY
ve
SYNTAX

//ENG/JONES/PROG...NETWORK WIDE |
/JONES/PROG/SORT...LOCAL ROOT RELATIVE
SORT/V4..WORKING DIRECTORY RELATIVE

POINTS TO NEXT

DIRECTORY OBJECT DIRECTORY OR
L . TARGET OBUJECT
_ " UID
‘NAME. - OR
PATHNAME PATHNAME

l SUBSTITUTED
IN NAME (LINK)

Naming
Text string names

— hierarchical tree structure’

* "path name”

* made up of *component names”
* for example,‘/x/y/z

— directory objects

*

component name => UID

*

component name => path name /s

— absolute path name o
* starts at "root” directory
¥ leads to UID of an object
* valid network wide, like UID

Network Management

Sockets:
— datagram service
— IDs are small integers |
— services are at “well known” sockets
— reply sockets allocated as needed

MBX: ™plenenked on fop of J
— virtual circuit service
— IDs are UIDs, hames
- — “advertise” service in hame space
— is not in the nucleus

- 33 ~

f
e l\/\S""‘ nee

Sec ket Y s Hw
prgg sohet

I/lO Management

Barely any; all special cased

— disk |
— serial /O Al dose Y L st
— network ek o

— magtape manage’>:

— line printer

-34 -

Protection

| User identification
- registry

Access Control Lists (ACLSs)
Protected Subsyste»ms deto preteded fron wew |

bur not v\eéessaf;lj feom a
Pro;"‘mw\ Pt o uses [aveles.

- 35—

Registry

-~ System wide registry of people,
projects, and accounts

- ide_ntifies a user to the system, not
just a node

— replicated for reliability, availability

O — each node owner doesn’t have to be a
- system administrator.

Can't hevt acl's

o owt acoown by (f‘ej;shfp

- Why not just OSS and SLS ?

good if data << computing

* user pays computing cost |
* automatic caching

not so good if computing << data

*

cost of moving data high

not so good: ‘exposes representation
of data % the whole network:

“good when one process is computing

on distributed data

not so good when many , distributed
processes are working on distributed
data

*

more processes =>
~more reliability
more processes =>
more performance
‘need synchronization

*

*

O

General Distributed Computing Tools
Rémote procedure calls
Concurrent programming
Replicated objects
Consistency control
“Yellow Pages”

Remote process invocation
and migration |

Debugging

Basic AEGIS Vocabulary
UD |
¥ TUnique Identifier
Object |

* Anything where existence is associated with
a UID (e.g. Files, Volumes, Processes)

File |
| * Disk Resident ObJect oSG ijl’ﬁs (itz era'd'eJ) P clisk
(048 .« gecret Fer nefosed

Page

* Smallest spearable unit of Memory, Disk,
Object (1024 bytes for us)

Segment

* 32—-page grouping of Virtual Memory of
object——smallest MAP-ABLE unit

Mapping

* Associates Vlrtual Memory Segment with
Object Segment

Disk Glossary

— Physical Volume

* A disk

- — Disk Block

* 1056 byte section on a disk
(32 byte header/1024 byte data)

— Logical Volume

* A section of a physical volume that is

completely self—describing and contained
(Usually one L. V. per P. V.)

— Physical-Volume Label

* Single disk block that describes the
Physical Volume

— Logical-Volume Label

* Single disk block that describes the
Logical Volume |

— Disk Address (DADDR)

* Disk block number as an offset from the
start of Logical-Volume (usually)

6) Disk Block HEADER

— Reliability
— Recoverability

32 bytes in addition to 1024 data bytes
1056 total |

o UID of object to which | -
g™ block belongs

O oo Page# in file
[0 e AL . . '

, Time written el g

\\Q;‘e'r ” %

o |

Checksum of Data
Disk Address

- Anatomy of a UID

Time Since 1/1/1980

e . MBZ Node ID
16 millisecond units |

36 bits 8 20

34.8 Years worth of
Uniqueness
(2014 1)

1 million nodes

+. We’re not worried yet !

o “Canned” UID’s
O |
- — Hand constructed by R & D
— To identify “SPECIAL” objects
* Examples:

“Canned” ACLs—
9%.9%0.%.%
FNDWRX
0001800F0 e

* Disk Structures

o PHYS_VOL_LABEL b ‘&oe o
~00000200,0 chovet et W

chang €
* “Canned” People (!)

- USER 00000500,0

i
]

g
H b

auanf

13
FR
SRR

ATl CEEIUR —M._.ﬂr;..

d

aun,n.»ﬂ.x& .CHA:
steck Shrge
Syste~~

2 :

.c,_?%, (_1 pee ﬁguﬂos_ bleck ¢ J.ﬁ.iﬁ?z&

(EIAT

+ \muw \uum.\:&@&p*of

O

PHYSICAL VOLUME LABEL

VERSION NUMBER

“APOLLO”

'PHYSICAL VOLUME
NAME

PHYSICAL VOLUME
UID

- BLOCK COUNT

BLOCKS PER TRACK

TRACKS PER CYLINDER

DISK ADDRESS (DADDR)
OF LOGICAL VOLUME 1

DISK ADDRESS (DADDR)
OF LOGICAL VOLUME 2

Describes the
DISK

Locates Logical
Volumes
(up to 10 per Physical
Volume)

plus Alternate Logical
Volume Labels

LOGICAL VOLUME LABEL

VERSION #

LV NAME

LV UID

BAT HEADER

 VTOC HEADER

TIME MOUNTED
TIME DISMOUNTED

TIME SALVAGED
NODE MOUNTED ON
TIME ZONE

BAD SPOT
LIST

g s fo opfmze @pf

FREE BLOCK
MANAGEMENT

'VOLUME TABLE

OF CONTENTS

VOLUME
MAINTENANCE

o afron s

BAT HEADER

NUMBER OF BLOCKS Jeld to Tavel
REPRESENTED |

NUMBER OF FREE BLOCKS lvolfe

DISK ADDRESS OF FIRST
BAT BLOCK

BLOCK NUMBER REPRESENTED
BY THE FIRST BIT IN THE BAT

NEEDS SALVAGING FLAG

P

O

VTOC HEADER

\/TOC, ' deres
ok tovec &Y

NUMBER OF HASH BUCKETS

NUMBER OF BLOCKS USED

)

VTOCX OF NETWORK ROOT
DIRECTORY

VTOCX OF LOGICAL VOLUME
- ENTRY DIRECTORY

VTOCX OF OS PAGING FILE

VTOCX OF SYSBOOT BOOT FILE

VTOC MAP

Jhr Pajias'-ﬁk
(S always coahguer
Used a} best fime
os P“d'\‘f& QLQ s
the huclq'ng sfee fr
3 221 meads of e
0.5. (Gl af qddeess
but hse of fhem g

afu.lajs weed

VOLUME TABLE OF CONTENTS

VTOC
LOGICAL
VOLUME LABEL
BLOCK 1| 2| 3| 4 B11] 2| 44
VIoCc ' 7
BLock 10| 1] 2] 3| 4 | VTOC ;ﬁr(}:agSION
mock 3 [0 1] 2| 34 5 (0~4) VTOCEs
per VTOC BLOCK

‘ hashed
o yTOCK (vToc nde)
\\7 ,
\/‘T/O CE (COY\{YL:\\S ?{L@/ I‘/\QP ?L'f Ob\]ec{_)
N fle -
C(,,mlus‘.-x5 Mfans; o chrechey

oodn
Y\OM(U‘D P objcd’,

USING THE VTOC

VTOC HEADER

Voo

HASH FIND START
FUNCTION—-@% OF HASH
THREAD
HASH
RESULTS | |
«| vToc BLOoCK
7 | DISK ADDRESS
USE “THREAD” ,
EXTENSION Y Te T
EXTEX SEARCH VTOC
BLOCK ENTRIES
FAIL | FOR MATCH
WIN !
N/

VTOCK

O

o e

.
A

VTOC ENTRY

VTCOE (vee-toe—chee)

e

DATA BLOCK POINTERS Li 15113
FOR SEGMENT #0 1771
ICXASS
2 07
mu\\\e\wb ; ‘(\&\0%3 onned
SYS IQER M UIK/}M UID TYPE |CURR | BLKS
TYPE UID |LEN |USED
Vot Vo LRI IO
ekt
ACL DIRP el | REF [ah
: Lrle vession hows meny files
Using Iklf chiect
LOCK [laks acen't
KEY "i;b objects)/}}\zg‘ni
O'V\Lj el S |
VTOC HEADER
O +4Yt\3;~.-¥€s ol e o
e 3 NeT 36 cuch®
\Toc

o~

VTOC ENTRY
"VTCOE (vee-toe—chee)

HDR

DATA BLOCK POINTERS |
- FOR SEGMENT #0

LEVEL 1 FILE MAP
256 Disk Addresses

'~ 256 data blocks (32-287)
— segments #1 — #8

32

\2

VTOC ENTRY

VTCOE (vee-toe—chee)

DATA BLOCK POINTERS

HDR | FOR SEGMENT #0

LEVEL 2 FILE MAP

256 DISK ADDRESSES

- - 256 LEVEL 1
O FILE MAPS

\4

11

— SUPPORTS 2048
SEGMENTS

W

L1

A\ 4

L1

VTOC ENTRY
- VTCOE (vee-toe—chee)

DATA BLOCK POINTERS

HDR | EOR SEGMENT #0
I EVEL 3 FILE | ~
MAP —>| L2 —— | L1
256 DISK \ L1
ADDRESSES | 5[1,
~ 256 LEVEL 2 -
~ "FILE MAPS
— SUPPORTS |—>
524288 L2 -
SEGMENTS 1
—>| 1.2 —— | L1
o \ L1
o
. []
b ; \ 53‘°°k P(g(<
\ﬂ QD; Silvg %’D ﬁe“ K(J%L lv\"*}“ P,j/> ‘Wc&%}

Jr
\/\“j (M‘W(j(j 2)

. Example L{‘ﬁC?L@ b&C/Cm ﬁ!\(ﬂ m ()(/_SK
Q k |) AN
' - FILE_CREATE (LOC_UID, UID, ST)

1. Find the volume that holds
LOC UID

2. Call UID_$GEN to get a UID

3. Build a VTOCE-heagder for the
- new file. |

o 4. Add the VTOCE to the VTOC

- DONE!

~ Allocating Blocks on Disk

— Strategy

* Nearest available block to last
allocated block

Aaking inte aecount e

* “BAT” step

— Mechanism

" Read the appropriate part of
the “BAT” into memory

* Find FREE blocks and change in
‘memory copy of BAT (erte it
back later . . .) Vi memong nast of The Fim

Note: SALVOL’s biggest job is to fix
- the BAT, since the ON-DISK
copy is almost always out—of-
date! |
CE's
Salvel et ?Lﬂéﬁfiﬁf‘f“ 40
Jo updeft

- Apollo Virtual Memory

- — The Idea

* Lots of processes with
independent address spaces
(256 MB or 16 MB) |

* Some stuff GLOBAL to all
processes

* Divide A. S into 32 Kbyte
segments

O * Divide objects into 32 Kbyte
‘ | segments |

* Some processes will live only in
the nucleus and won’t need |
private space. . .only GLOBAL!

PROCESS ADDRESS SPACE

FFFFFF
F00000

E00000

C00000

BC0000

(PROTECTION
BOUNDARY)

200000

000000

: FFFFFFF
I/O
AEGIS
F800000
UNUSED
SUUPERVISOR PRIVATE | F788000
PER
PROCESS
PRIVATE
ADDRESS
SPACE
0800000
GLOBAL
LIBRARIES | |
k\‘ 0000000
.,}\ »

\1

\
env nstils
o canned Vit oF namRS.

O

MAPPING

- Virtual Memdry Glossary

ASID: Address Space Identifier

O is deg®

L g pm or SP

* Binding V.A. Segments with
OBJECT Segments

MST: Mapped Segment Table @ per process)

Active Segments

* Object segments whose
information and data are cached
in physical memory.

AST: Active Segment Table

PMAP

* Disk Address & Physical Address
(if resident) of each page in an
- object segment

O

O

VIRTUAL MEMORY

The Main Players

Virtual Address

MST AST

Object Address .
to
Physical Address

to
Object Address

Virtual Address
to

Physical Address
(!\\ Gan MLm Orj\

MMU

—

96 Bit Address

System Global Name UID Object Address
Space. Names Unique L ,
for all Time - 64 bits 32 bits
Object Address Space Segment# | Page# Byte#
o 17 bits 5, 10
7 D aphes g P es [69
OBJECT ADDRESS A 97 o vt fpt
VIRTUAL ADDRESS
S(e\%rr?fgg# Page# Byte#
17 bits 10
Byte# |
PageZ | Object
=]\25 Object UID 5> Address
o ASID Object Segment# _|
MST indexed by
Virtual Address Segment#
and Current ASID 1 Per ASID

MST

——

@,

-

TERN (DNX60) Virtual Addressing
- —> Virtual Addressing differs slightly

Region# Segment# Pagett Byte#

5 12 5 10

Why: 1) Simplifies table organization for big
address space
2) Simplifies hardware/microcode

it’s transparent to everyone but
BUT: AEGIS memory management
| code

Finding the RIGHT MST

CURRENT ’
| ASID» GLOBAL A
PRIVATE
| UNUSED
VIRTUAL ——
ADDRESS T
IN : NO IN NO IT’S v
GLOBAL A 7 GLOBAL B 7 PRIVATE !
\l/YES YES
USE SPECIAL B -
AT S=VA/32KB
PART OF |
MST MSTE MST [ASID, S]

O

MAPPED SEGMENT TABLE ENTRY

(MSTE)
OBJECT UID of the Object
UID | |
OBJECT T
SEGMENT Segment within the
NUMBER Object
EXTEND OK | Can the File be
FLAG Extended ? :
ACCESS Access Righk
GUARD Is this a Guard
- Segment ?
HINT |
ASTE ‘ Performance
IN@(ED Enhancement

- LOCATION Disk or Network

YTOC Y,

— Now improved with “Touch Ahead
Count” —

THE ACTIVE SEGMENT TABLE

.

— An Array of AST Entries (ASTES)

— Each ASTE is a cache entry over the
VTOC

, A |
HESATI])EER OBJECT SEGMENT PAGE MAP (PMAP)

— ASTE Header

* Object UID

O * Object Segment Number
| * ACL UID
- * Location borewte,

* DTM e

rEmoft ’4 ST

— Object Segment Page Map

* 32 PMAP Entries (PMAPE:);
one per page in the segment

* Current PPN puscdt guge mote

* Disk Address (DADDR)

- Object Address —> Physical Address

(UID, SEG#, PAGE#, BYTE#)

. Find ASTE for (UID, SEG#). If not
in AST, read VTOC and fill in an
ASTE.

Look in PMAP for the ASTE to get
the disk address for page “PAGE#”.

. Find a free physical memory page.
Read the disk.
Update the PMAP.

Load the MMU (so it can succeed
next time!).

Memory Management Unit (MMU)

(Virtual Address, ASID, Operation)

Protection Violation

MMU
Physical Address
(MMU Hit) \V/
~ Not Found

(MMU Miss) page Fau 't

/

On to the MST

Operations Are:
Read, Write,
| Execute

VIRTUAL ADDRESS
o
OBJECT ADDRESS

Any ObjeCt Segment may be:
. ‘ » . \
— MAPPED BUT NOT ACTIVE . «isfied
— ACTIVE BUT NOT MAPPED - o%a:*:;:“f:;‘j{i‘ff}:::

— MAPPED TO MORE THAN
ONE ADDRESS SPACE
SEGMENT WITHIN A SINGLE
ADDRESS SPACE |

— MAPPED TO DIFFERENT
- ADDRESS SPACE SEGMENTS "
IN DIFFERENT PROCESSES >~

MST

Virtual |
Address UID segment# location access
300000 | Ugh 0 Node - 2 rw
308000 | U, 1 | Node-2 | rw ASllD
301000 | Uy 0 Node — 2 r
300000 Ub 0 Node — 2 T _
308000 ASID
- 2
I1AST
UID segment # attribs page map
Ua 1 | (32 daddrs & ppns)
Up 0 | . (32 daddrs & ppns)
U, 0 | ..

(32 daddrs & ppns)

- EXAMPLE: MST & AST in a running system

T
REMFILE |

|
+ -~ +

ll‘)C’lll'lll'lllllllllllll.lllll'(l+w

G we em em s e v ve e v we e wm v e

!
+ .-

N
s S 1

I
]
|
1
|
1
-+

-, W w. we we e we

. we we on wa wn - wm wm we we wn wa o

H
|
it

N S -
MST
N S

@ we e e we wn wn

FRR—

“ .o ve -n
I
!
I
) !
“n wn wn we we we

-
e -

1
"
4
1]
L]
1]
{
)

-t

1
L
.
H
]
]

]
]
e

L—lll

is

1 3

+ -+

]
“+ .-

(user space)

[}

1

[}

1

¢

]

4

13

[

]

4

'
—t—t4
y ACL
N

4 -
T
4
’

e
AST
e

s

.8
T

N
BA]J
e

T "'

e Y

1
’

.o o

$mmm et
e

e S

]
'
i
L
1
1]

‘NAME
e

- wn wm we we - o

1
'
e

- - wn we wm wn wn we w

- oo we e . wn -, eE e we e We WA WE we e We W - we we - e e w. v wm wnm o

$—t—t—t—t—+
i+

W WE e WR e W WR WG B VR W YR e WE WG W WE W W WE WR W W WA WA We VR WA W WE W WA WA WA We wE W W W ..‘7

"E We we WE me WS WR WS W WS e WE W W W WG WE WEe WER W W WK WS WR W WS W BN W BE @R WT W WE WE WE We we we we -

-+
|
]
I
-+
I
]
I
+

R I LI T R A I L]

e we

B S S

e —

bt

e

e s S

T

[}
$

SOCK
gt

H
]
L}
4
1
N
PKT

]
]
e
e 't

[}
L}
+

L3
1}

- —m e wa we

et
s o

[3
’

., we we wm va va o

!

!
|
|
d e e -e

e i e S S S Y

» WIN |

P SM

' FLP

N

s T e T Ses——

wﬁi_ﬁ a1 ; =N .n.h?

14
MH..'ﬁ m E.x.m .”“MW. m...,._: “.H”m

smad st n_::..

?:m

.,f Fal W
Y

: :H.Mr m'.. w_na. _._Tc.;ﬂ
sfeiet

|
Loy

_q ey T

LEED
Type
D mz o (Eo)

UiD
Page | -

K=

Hala

~,

‘1

FETTR Y o0

.Em A W_Mttf. mm

1 e §

2

T

[-cier=yd

'

ST

R

2¢)

a
]

.

rﬁmo{{
6'»3\

(9
(m}.\’. mum §ize 50>

h(’,‘ffova —P

j Server 'Poo\. S

TNVOL =10

Lirtual fddress

Tra

NETWORK FILE SYSTEM

~ Remote-file server

~ handles file level operations
lock, unlock, directory—lookup,
-get-attributes, create, delete

Arguments are passed from the
client to the server, the server
executes the call and passes back
the answer. -

Remote paging server
handles paging operations
page—in, page-out, attributes

based on unique object addresses
(uid, segment #, page #)

FILE SERVER

N,

LD -51

“ Menu of Services
File Services Node Information
Services
m VOLUME
LOCK FREE SPACE
m UNLOCK '
| ‘?gglc;{aEss
|
CREATE INFORMATION
©~ | DELETE 1/0
R ~ STATISTICS
TRUNCATE TIME
INFORMATION HELP WITH
| LCNODE
NAME LOOKUP o

LOCK REQUEST

LOCK MANAGER
Lock 1l s local | Handle It
USER | Reduest d | ,
remotel “Rem_file”
‘ (LkoB
NETWORK /O | uds e 1K
_ MANAGER ' dedn base ¢ ‘
NETWORK I/O
MANAGER
A4
FILE
SERVER

L.OCK MANAGER

A LOCKING OBJECTS

'CONCURRENCY CONTROL (2 models)
(1) n readers XOR 1 writer
any nhumber of readers,
or exactly one writer.
(2) cowriters
| any number of readers,

5\“’“ :

A : ; . :
o or any number of writers all from -
, | ANz o\D ek Aof2" N _ede
O the same node. NG
| | Lo e Wi

- LOCKING MODES (3 kinds)
(1) READ ONLY
(2) READ & WRITE
(3) READ — INTENDING - WRITE
(warning that I'll change to
. READ & WRITE before I'm done)

THE ROLE OF THE LOCK MANAGER

Enforce con'c’urrency rules at lock time
Control all LOCAL files
Cooperate on REMOTE files
Maintain the LOCK TABLE

Support the distributed system -
Help manage the object caches
 (flushing when needed) |
Pass authorization information
to paging system through
the object’s lock key.

o " Lock Managers Tools
— Lock Table: Database

— Authorization Control
 * Set Object Lock—key
ZERO means read—only
NODE_ID means only that
node may write
0 — V. M. Cache Control
* Get object DTM
* Flush cache if needed

* Purify
send changes home

O AL Node 2 Node3 BOB”

C D

Node 1 AL gets us rolling.

/ | Ferx - B

AL locks X for reading
and touches the page

&l

gk | Then AL unlocks X.

Note that Node 2 keeps it's
STEP 1 copy of X in case it's needed
| again soon.

O AL Node 2 Node 3 BOB’

- BOB gets in on the fun!
Node 1 .
| | X starts out as
O Q/ | BOB locks X for writing
— touches the page, and
| | changes it to:
X BOB unlocks X, forcing
— the modified page back
to Node 1.
Note that Node 2 doesn’t know.
STEP 2 - | Note that the disk doesn’t get
‘ updated nght away.

®

AL Node 2

&

Node 3 ’ BOB”'

AL’s back for more!

X starts out a

AL locks X for reading and
finds out that his copy of the|
page is out—of-date. He
flushes his cache and gets
a hew copy.

Note that if X hadn’t changed, AL
wouldn’t have needed a new copy.

Note that AL’s bad copy of the page
isn’t flushed until AL locks X again.

(Pa%’ Pw?%‘ér

Wr\.._as mod:&%e()\ ?ag&s«}-o ctglk -
i puees’ dhe page
‘ Cquig‘rtg’t obk‘)”“h art “‘\mpweﬂ

O

ORPHAN LOCKS

SHADOW ENTRY

AL |X]AL| R| JOE

——

X ALl R

1) AL LOCKS “X” FOR READ
(LOCK TABLE ENTRY MADE)

2) THE NETWORK “BEREAKS”

LOCK TABLE ENTRY

| 3) AL IS UNABLE TO COMPLETE

THE UNLOCK WHEN FINISHED
4) JOE WANTS TO MODIFY “X”

“X??

IS «“X” IN USE ?

LLko® -N
oby nod(...(ld
\-X“ . AL
LD JAL
AL DV'}'vPU"V\(‘I

ULkop “X" -F

ULko® -FoRrCe

4 :
alne . | *
[|
- i .\w
; 1 ¥
m Sarvay Ta ,
_ gy yraven gt goenes - ,
e : Fz i L | farsrn | e
i L : s SRR el mw
. — Clisnt :
| + —

ildiredl

e AL TN
METWORK . S

Cliznt

I .)

oLty po,
I

S

Har dhwe

.r.w.r

S

Naming Vocabulary

Naming Server

* Set of routines that store and
retrive (NAME, UID) mapping.

Directories

* The file storage database used by
the naming server.

“Resolve”

- * The Naming Server operation
- that takes a name and returns a

UID.
“GPATH” (get—path)

* The Naming Server operation
that takes a UID and returns a
name.

o)

NAMING VOCABULARY 2

— Soft Links : A Naming Server facility
that allows text substitution i In names
. AV 9,
durlng ‘name resolve L‘\‘i?’é 7 ok

— Hard Links : A facility supported by "«
the Naming Server that allows more
than one name to be paired with a
single UID (needed to support AUX)

 — Entry Directory : The directory cétated

by INVOL to be the root of all named
objects on a Logical Volume — wes®’ v

A Qﬁ“ ° \\C(Q
poker

VOLUME ENTRY

| ™ opmecrory

OK | NEVER

- Naming Vocabulary (Cont’d)

- I (lwavs /> yow Can I,\a\,& u()‘—o [0
Node entry directory (alwey W joucor b gl [0

[me Can ‘3{

* The entry directory of the boot wonled as e
volume. beck wlane.

— N etwork Root

* The special directory created by
INVOL to hold the node entry
directory (NAME, UID) pairs
for nodes in the network. ““//”’
ALWAYS refers to the network
root directory “hidden” on the
BOOT VOLUME.

— Initial ACL’s

* The Naming Server facility to
allow newly created files to inherit
their ACL based on the directory
that holds their name.

NAME RESOLUTION

BOOT VOLUME

e

: ENTRY DIRECTORY
object @ JAL/DOC/NAM_SVR
UID » ¢ AL 1 & ;
| _ @ .
directory®| 99 BOB 2
. | TT[@]Cooe
STUFF 3 0 Z SRC 5
| | AMES “/BOB/FUN"|
2 FUN 11
0 WORK 12 |
(®> | AM_SRV 6

O - | | (D / NETWORKS 7

PROJ PLAN 8

11 PETAL 13 ®
2 LUNAR 14

6 ‘
13 6,,(,,[05}:\3
11‘ ivectony 0D 1 »

used by G PATH cperafion
Cfob associates «
) ») a noam W \H/» o U(D
Q , Chﬁa"e ov CUPj - R‘l*’- ¥

Ob:jécA' s (,nzceh’/cf an fojicd Vo(ué«x@ {? ‘. "
. ‘ : urky A bbde(,{z live e same
0’&: eﬁClOSu’\S dlf‘CC‘}'D*"j § } (OJ cal VO(M.W 65 ,'/}\e‘,- eno{og A_j

0'\(‘66 *’OFJ,

‘V AN

)
object
UID »

N directory#
UID

NAME RESOLUTION

BOOT VOLUME |
ENTRY DIRECTORY @ Find: /AL/GAMES/PETAL
0 —
> | 1 "~ DOC 4
/ STUFF 3 5 - ,
? GAMES “/BOB/FUN’
N Vg ’

FUN 11

2 Name becomes: /BOB/F UN/PETAL
0 / WORK 12
® 4 NAM_SRV 6
1 NETWORKS 7
PROJ PLAN 8
11 PETAL 13
2 / LUNAR 14
® 6
4 text file
13
11

ancL o7 ()h ans ¢
{’b 'P\’y» cl wn (;ﬁ‘f’ﬁléﬁeﬁe

(/:)Y\ D'P‘!Cm ob\jgb~l' :5 & (D
an Umnamecl p@rm;ne,ﬁ' 101',6 , w",'f’hm*‘!' «~ hé-""ﬁ,>

uids |
’H'\,(’, OS pa,\(j:\ns' ‘p\“e ;5

o

DIRECTORY STRUCTURE e

r
AT el
et

Entry Blocks Cﬂ‘fﬁ
/—,YY\
r »

g b

22 \93&63)

Linear
List pf
Entries

“Hash
Threads |

/
~—~—

N A A

one disk aceess dur (livectores [of diechry sweeis
w\“},\(\ ,8 O6r {655 ’%'C%. 25350\,@.;4'5 — NV /300 inanes

ADVANCED NAMING TOPICS

Why SALD (salvage-directory)
internal directory structure contains
hash threads that can be damaged
when the system crashes.

'COLOCATION OF NAME and OBJECT

un-necessary for correct operation
but necessary for sanity! |

HARD LINKS (needed for AUX)
UNIX allows a file to have many
names, as long as all of the nhames
live on the same disk volume. |

galu;c(/je LP,mmauclS‘; |

Scw,\lcl
| Snl(C/ |
Salat ' o
SD(,‘»{%) \(Consol,‘z(u}fs ACL olu(gc/s)

> Cupdates vegisties)

MTVOL AND CTNODE

| Q Background:
When a logical volume is created with INVOL, it is given 5 things:
1) A Network Root 7 + VTOL 4 RAT

2) An entry directory for the volume ~
3) A SYSBOOT file entry

4) /SYS directory

5) ‘NODE_DATA directory

Each of these has a UID, let us say UID1, UID2, UID3, UID4 and
UID5, respectively. The initial state of the network root is to
contain the pair (NODE_nnnn, UID2). The initial state of the
entry directory is to contain the pairs (SYSBOOT, UID3),

(SYS, UD4) and /SYS contains (‘NODE_DATA, UID5).

Network Root directory Logical Volume
Entry directory
O NODE_nnnn . :
SYS . v
SYSBOOT | e NODE_DATA|

SYSBOOT blocks

When a system is running, its network root is accessed through the
naming convention of “//”. “//” ALWAYS refers to the network root
directory on the BOOT LOGICAL VOLUME. The node entry directory
is accessed through the naming convention “/”. “/” ALWAYS refers
to the logical volume entry directory on the BOOT LOGICAL VOLUME.

I i5 o catelagpd anywhe —its He ity elintchey fhats pof catoteged. i
O Eack node fasibs o local 7/ diceclory.” R
| e
~ ()an+ c[@ & afwle IOCaﬁe m o (Cananed umn L@sw\u

becauwse N code o id e n ¢ CCan’lCo(),

'\.‘ .

W |c1&~rd'¥\3 et // leel s d gcpﬁm
dhun an g hert else « »

MTVOL

MTVOL F 1 /FLOPS/FLP_1

LOCAL | e >

| v |
SYSBOOT | e

LOCAL P

v
SYSBOOT | e
'FLOPS | o

Aisk tontslits fable entry

Winchester Logical Volume One

and
Boot Logical Volume

CTNODE

| “//”

JACK NODE: 1A4

O

SAM »
JANE \4
| TACK SYSBOOT
CTNODE JACK 1A4 Y |
Q SAM NODE: 53
v ,
’ X o Y «
JACK | o——» JANE | *T——»
SAM |Z v SAM |Z v
JANE |Y .- JACK x| 1 e

“//”

JANE NODE: 12C

Co—locating Names & Objects

— System architecture does NOT
require it. |

— SANITY DEMANDS IT!

~ So.. Released utilities ENFORCE IT!

Naming Issues Today (1/85)

. Set of Legal Characters

. Case Sensitivity' »

. Character “Conflicts”
e)

. Component name length |

. Directory size limit

' AUX/UNIX compatibility issue.

VM Performance Issues

— Disk through-put |
| Ordered secks as of SRY

* File layout

o ((‘,‘P(}ef o ‘m@ ow cc/wfj S 3(1*
* Touch—ahead J) Y

| Four Paﬁe» Minmue
— Network through-put - ¥=:
* Touch-ahead
| el B

* Paging server queuing " eomence. degredet
* Expoliting overlap |

— Page replacement
* Purifier
“ LRU

— ASTE Replacement '{'l\fff:;‘v“g“ ﬁi Z,g;fh‘ib
* LRU .

o A Networking at Apollo

1. The Ring
. . o /”»‘» 0‘&’,&3“,:\ Seivice
- 2. Packets & Sockets o sy
’ o o | “. \m?
3. Clients of Sockets o ;:,bww‘:; 3 "W:\,
. . ’ OQ N‘\S'G, \Z:EL.J’(A OE
— Paging Server e
1 » (r(frc’cc\
— File Server P
S ; — NETMAN
- - MBX

The Apollo Ring Network

— Ours IS a TOKEN—PASSING RING
) network

* TOKEN PASSING

- A special bit—pattern circulates
through the network
(“passing” from |
node-to—node). In order to
transmit a message, a node

must have control of this
TOKEN.

* RING

The nodes are connected in a
circle.

a(]/"w of Indovmeton is Counterclockwise

L,] ‘}\Jpeg of Sj'ﬁ(l ‘Ql\ara(/«fe,/s

Why a ring like ours?

Token—passing for distributed control
of communications hardware.

Graceful degradation under heavy
traffic bursts.

Automatic acknowledge of

' . e Chnpoledge s halt info
successful transmission. dekenoiecge

e Mingmissisn "LGC"\“:(("& ‘

Allows different “WIRING” -
technologies.

* e.g. Fiber, microwave

THE APOLLO RING NETWORK

— Every message goes “through”;eifery |
node (ring hardware)

- = Only targeted receiver “processes” the
message (DMA into memory, change
the ACK byte) |

— The transmitter “removes” the message
after one full circle

— The transmitter examines the ACK
- byte to see if the intended receiver got
the message (altered the ACK byte)

-, THEAPOLLO RING NETWORK

A ring
interface

ring C
interface

MEMORY MEMORY

O

ring
interface

MEMORY

(&)

THE APOLLO RING NETWORK

“A” Disconnected

A ring - ' . ring C
interface interface

1/ |
| N OUT J |
MEMORY — l MEMORY
|
| ouT IN I I
IN ouT
| ¢ {tllrtlgrface
MEMORY

®)

'THE APOLLO RING NETWORK

IDLE - no node wants to TRANSMIT

O K|E
T N
@ ring ring @
interface interface
-
| [
ouT |
MEMORY - | MEMORY
' ' !
IN
IN ouT
Iy rin
¢ integrface
MEMORY
&
&»50« .
W)
Mot e
{\61/ » 1% o
, ‘e P ‘\“gw* 2!
B (‘Q/\O‘{’ vy Le
: Loy N\
o \ AL
U\QJ\CM\X onc_&k '\he/ . \Lq‘w
O N 9’" \)/.\»0
’ do@“ ‘JOb
WY

aetoht Fells yes
it delay e s bten

SW(\)(O\\Q/A 'H\ 1

THE APOLLO RING NETWORK

“B” sends to “C” and watches
for the ACK fields

A ring ring C
interface interface.

MEMORY MEMORY

—5| FIFO

) u ring
| bucket

MEMORY

PACKETS
&

SOCKETS

LD =U gives You dhe U of files Tn dlircctony

%,

%
i

l

3

mﬂ HES

m_“..—.. itin,

pit

:uu-_
at)

..:.,..
PRI
L & aan LB

s

mu:
[+

THE TYPE FIELD

BROADCAST
SOFTWARE | To receive a packet :
DIAGNOSTIC _
HARDWARE | 1) The “To Node”
DIAGNOSTIC | must match or
| BROADCAST
PLEASE must be set
THANKS ~AND
USER 2) The “To Node”
| must be willing
- to accept packets
PAGING of this TYPE
extra

C{n(leal. widh AT}GQ maske .
JW:)Q@ mosk 1 set bﬂ |\€,4's~/c s

o Y
TV (DMA 1s Pregre
Loy goek o s | bw* e hfanQ

Apollo NetWork Sockets

'~ Queues of received packets

| LL\k ?e{ bd‘ VQ\ b 5
. o o . INZ @ ‘M()ll CS;
— Identified by “simple” numbers ro?,. o
| 113 ‘” Y EL _ e b ke
(e.g. 1 ' 4) wt;;jll\'ﬁs :::33 ;\)U(Z{d“}
e 4 e

— Numbers unique within a node, but
not unique across nodes

~ Two “kinds”— Well-known and Reply
* Well-known | |

O Used by System Services (e.g.
Paging Server uses Socket #1 in
every Apollo node)

* Reply
Noe s bt Used by clients of well-known sty
0~ top o AskNedt Kk | ke et Ja{;‘; 'Legcggf/.
 Magger sockets | | e e L S

numbr J

- Allocated as needed from a pool

R Provide a “return address” to
., be sent with service requests. =

RN o \-
: R 3 ‘7\05“ ‘ : v . K&Qr \g\u,
O & o e
. Qe Y L5 \(\,\J
NG | BT R ARG TS
ko\° b /bﬂi Q‘” @\\9\5 ((/\u L X
N0t ¥ e NGNS
VU et SO AN
Q-'J G @QNUPB k : . 6\\%" ‘

O - Clients of “Socket”

1 Paging Server
2. File Server/Information Server

3. Netman

4. MBX

— Each of these servers is assigned a
O well-known socket number. To
| obtain service, a client must address
a packet containing the REQUEST to
a (NODE, SOCKET) pair. (Paging
server on node 1BA can receive

paging requests on Socket #1 at
node 1BA.

()

G

PAGING
SERVER

SOCKETS

FILE
SERVER

incoming
packets

v

NETMAN

USER
REPLY

P, ,_.;:.
e
SRR

RING

RECEIVE
INTERRUPT

'HANDLER

‘To decline incoming packets, the Interrupt Handler
examines the Packet Software Header for the Target
Socket Number

5 To oot
(o039

hadpe

DN\A o w\-td buql’l:(/

l
A O«v\J W ‘\(‘"d

‘Socket Service

. DATAGRAM

. Unreliable |

— Can lose/discard packets

— Can arrive out of sequence

— Can deliver duplicates

. The ONLY Apollo packet delivery
mechanism. |

. Available to user space through the
(unreleased/undocumented) “MSG”
interface. | |

User Available IPC
MBX

Interprocess
Intra— and Inter— node
User callable
Fully documented
Full-duplex virtual circuits
* Flow control
* Guaranteed delivery

Identified by pathnames

A MAILBOX

MBX FILE HEADER AND
SERVER INFORMATION

CHANNEL 1 HEADER

Client to Server Queue Header

Server to Client Queue Header |
CHANNEL 2 HEADER
Client to Server Queue Header

Server to Client Queue Header

Client to Server DATA
Server to Client DATA

Client to Server DATA
Server to Client DATA

* “Owned” by the SERVER

* SERVER specifies the number ofchannels
and the size of the DATA area

+ Shared memory (co—writers)

whole clofh objects heee

bohet b W\du\\\w\’~ ——

-

no ba(‘/kiw\f) Storcd
5 At : tThey con never bt Pﬂgcél,
’ ‘ (permdnfﬂ"l"j w\.d’,LD-

SERVER AND CLIENT CO-RESIDENT

MBX

Shared memery

. cwin S
MBX file et oo

get_rec

CLIENT

put_rec
<

&_’ Wi

bachs

SERVER to CLIENT
DATA

put_rec

CLIENT to SERVER

get_rec

DATA

SERVER

pers pusF

e ne

e .

SERVER AND CLIENT ON DIFFERENT NODES

DATA

SYSMBX file
get_rec ’ put_rec
SERVER to CLIENT ° | CLIENT
DATA NODE
CLIENT put_rec MBX
> HELPER
NODE A ; /
NODE B ,
| MBX file
Y
SERVER|
M ERI—=°° | CLIENT to SERVER| %"

SERVER HANDLE and FLAGS

SERVER OPEN TIME

e

MBX LOCK s & ¥ e
™

ANY CHANNEL EVENTCOUNT

ANY ROOM EVENTCOUNT

QUEUE SIZE

NUMBER OF CHANNELS

SET OF OPEN CHANNELS

SET OF CHANNELS WITH DATA

SWEEP INDEX

MAILBOX SERVER INFORMATION

' A QUEUE DESCRIPTOR

- USAGE AND FLAGS

BYTES IN EVENTCOUNT

BYTES OUT EVENTCOUNT

REMOTE BYTES NEEDED

QUEUE START OFFSET

QUEUE END OFFSET

QUEUE IN OFFSET

QUEUE OUT OFFSET

' QUEUE OUT REMAINING

IN FRAGMENTED PUT

FRAGMENTED START

FRAGMENTED LENGTH

UNUSED
LOCAL
REMOTE
EOF_PENDING

\§Q+ b3 (whl/z
of C[,\avm(?f

or @a d

CIRCULAR QUEUES

]

FREE | | FREE
AREA DATA AREA
2 | 1
| ~ |
OUT IN
| |]

DATA | FREE | DATA
5 | AREA | 1
| ~ |
IN OuUT

IN
T)
| ALL FREE
OR
l ALL EMPTY ?
|
OUT

FREE IFF BYTES IN = BYTES OUT

MESSAGES

NORMAL CASE

DATA

N\
7

MBX
HELPER

mbx_$put_rec

< OK status_ok

'FRAGMENTED CASE

DATA3| |DATA2| |DATAl> MBX
HELPER

(UP TO X FRAGMENTS)
7

OK

p
N\

mbx_$put_frag

last fragment ?

status_ok

AEGIS Process Management

— Topics:

*

*

*

Process Switching (dispatching) g

fost

Interrupt Handling

Processor Scheduling

Synchronization‘ (eventcounts) ¢
Mutual Exclusion e

Special CPU B Handling e
Process Creation & Deletion =~
Asynchronous Fault Delivery

Clocks & Time-Driven Events

O AEGIS Process Management (Cont’d)

PmCCSS ma '\ctgvéw\en +

— Managers: | anages

*
*

*

Level One Processes (PROC 1)
Level Two Processes (PROC 2)
Level One Eventcounts (EO

Level Two Eventcounts (EC2)

Mutex Locks (ML) o

Timers (Timé)

WHY TWO LEVELS ?

PROCESS 2 e pegatte

unbounded number

- named by UID

can create and delete
mainly user processes

MST, etc.

VIRTUAL MEMORY |

PROCESS 1

fixed numbr 2°

named by PID - sl inkegers
no creation or deletion
some special virtual memory processs

eSoarcts wild
(/i«trin\r) 0S imt

£S

What is a Level One Pr'o’ces's?

— Processor State B L

o o Weot
g (WX Q

* Stack Pointers (SSP, USP)
* Address Space ID (ASID) 8 bt o
* Virtual Time Clock e ¥ o Lfiﬁ”‘f "

proc
* “Resource LQck”v Set

Scheduling Information
Lock @

: S T “egeowret T
* Scheduling Priority « ™"

~* Resource Lock Set

* Remaining Time Slice
* Time Since Last Wait

* State:
bound s ¢
waiting o we s
“suspended ussedebie 3
suspend PEenAing ;e suspd «preess sifha rsosre lock.
TSE with resource lock |

H.m shiee gad

s o -scheduted

Resource Locks

— Not really locks at PROC1 level
— Control deadlock detection
— Control scheduling priority

* A process with a resource lock
has proirity over a process with
none | |

* A process with an “important”
resource lock has proirity over a
less important one

Resource Locks (Cont’d)

— Control ability to turn on CPU B

" A process with an lock higher
than OK_ON_B can run on
CPU B Sigael +o A‘s()mu P 0930 " bo fuke

[P&je | FIL ("
* A process witn no locks or whose

highest lock is less than
OK ON_B cannot run on B

— Prevent process suspension

— User-mode code never holds a
- resource lock

Example : A Disk Driver

— needs exclusive access to the device

— must be runnable on CPU B

P1

P2 .

wants high priority

a time line :

holds disk lock

}‘P ,\b:)'

v OCCUr
lock ce B

M"’}b\’e’ o

Jeod

\I'\}

use disk return

o process
. o interrupt
leait }——
| page fault
v | wait
Thotds15F,
- onb lock lock
I <4 CPU A » | <

CPU B

from
fault

hma“ﬂswrw
‘ ' TE Y mal‘fsflw
N2 wedet ¥ om
Resource Locks e T actie, 5
. neo”> feed ot
e uaﬂam’ﬁ‘“‘
op
network $server lock {001}
mt_$lock {01 2}
ml_$free3 {024}
ml_$freed {03 8}
ml_$free5 {04 10 }
file_$lock lock { 05 20 }
ec2_$lock { 06 40 }
smd_$respond_lock { 07 80 }
smd_S$request_lock { 08 100 }
disk_$mnt_lock { 09 200 }
term_$lock { 10 400 } :
procl_$create lock { 11 800 } Jev) o
onb_$lock { 12 1000 faulted to CPUB } - ‘{“f.‘“ o
bok_$lock { 13 2000 runnable on B } o7
vtuid_$lock { 14 4000 } ©
vtoc_$lock { 15 8000 }
bat_$lock - { 16 10000 }.
ast_$lock { 17 20000 } o T N P
pag_$lock { 18 40000 } o T
ml_$free6 { 19 80000 } oY
flp_$lock { 20 100000 } |
win_$lock { 21 200000 }
ring_$xmit_lock { 22 400000 }
ml_$free7 { 23 800000 }
{ the next two locks are the
highest } o
time_$proc_lock { 24 1000000 -clock process
only }
time_$lock { 25 2000000 clock process
" database } .
o 64
¢ (W ¥) (O U \%\ " -
\ot\- sobe”” \X ot \o(‘,\'f \ WL 5‘5,\;. C\Q’Kiw
A’O \pove & . Qo \e - Wit \N)\Oio\“wh
Ws 0 N A (O 5

- The PROC1 Database

— The Process Control Block (PCB)

* Stores processor state &
scheduling information

* One per level one process
— The PCB Array | -
* Array [pid_t] of peb t
* pid t=1.32
— The CUrrently Running Process
* PROC1_$CURRENT
— The Ready List
* A linked list of PCBs

* Ordered by CPU scheduling
priority »

— All PROCI1 data is wired -

N PROCI OperatiOns
. U | | ‘ |
— Scheduling |
| * PROC1_$CHG_PRI

(pid, priority_increment)

increment/decremént CPU
priority

assigns new time slice

returns old priority

| | | * PROC1_$SET TS
o (pid, new_time _slice),

used only internally and by
clock process

O

PROC1 Operations (Cont’d)
— Resource Locks

- * PROCI1_$SET LOCK
- (lock_no)

crash system if higher lock
already held

* PROCI_$CLR_LOCK
| (lock_no)

crash if not held or not highest
lock held

*PROC1_$SPECIAL_CLR_LOCK
used for CPU B-A transition

| More PROC1 Operations
— SUSPEND/RESUME
* PROCI_$SUSPEND (pid)

returns boolean — success

set SUSPEND PENDING
otherwise:

* PROC1_$SUSPEND_EC
advanced when actually
suspended | |

* PROC1_$SUSPENDP (pid)

- returns boolean —> process
now suspended o

* PROC1_$RESUME (pid)

More PROC1 Operatlons

- Inqulry
* PROC1_$GET CPUT
(virtual tlme)

" Y\“(12
* PROCI_SGET_INFO ¥, 5"
(pid, mfo_record)

— Bind/Unbind

* PROC1_$BIND
(start_pc, stack_ptr, stack_base)

allocate PCB

build call frame on stack
make ready

returns new pid

* PROC1_$UNBIND (pid)
| suspend process

- make PCB available
(unbound)

——
Q

— Allocate Supervisor Stack

* PROCI_$ALLOC STACK
(size_needed) fotecrred

 returns STACK_PTR
wires pages of new stack

* PROC1_$FREE_STACK
~ (stack ptr), | |
* PROC1_$CREATE (start, vt
stack_size)

not really create—just a

combination of ;
ALLOC STACK and BIND

used only for special nucleus
processes

: b;v\C(

0O Implementing PROC1 Calls

— Rule: Ready = Current . he
* Except when interrupts are
disabled inside PROC1

" — Procedure
1. Check validity of call
2. Disable interrupts |
3. Modify PCB
o 4. Reorder ready list
5

. Dispatch

O Dispatching
— Procedure o |
* IF ready < > current THEN

save CPU state of current
- establish CPU state of ready

* Enable interrupts
* Return
- — Only hard part is,maintaining
O - time slice/virtual clock

* Special timer chp holds remaining
time slice

— Null process
* pid =2 |
* Always ready

weaas 1} can't have

* Always lowest priority (@ L&k

* Just loops loeks «t rewdy st
£ B out of srder = crash Ha sysfem
(p lomiBes eyt wnot in [ineecr ftlir)

— What if hlghest priority process not

readable on CPU B?
* Determmed by resource locks

* Just run null process

)

Interrupt Handling

— Interrupts vector directly to driver—
- no special interrupt queueing or
dispatching mechanism inftsgh octus,
' | MP‘ oyl page ¢
— Most interrupt handlers are very

simple—just advance an eventcount
and return—actual interrupt processing
done by driver in requesting process

(0 } o tee o da
: , o ‘ N3 pr el les el
— PROC1_$INT_ADVANCE has beea Ye,;{ VHe~
. _ S Assembler,
* Jump to here to advance an
eventcount and return from an
‘interrupt
. | o
* Push all registers on stack, plus wﬂji‘?, 5
eventcount address | ey
Keep ()66‘"
) R 1‘.*“’”
* Must be done in assembly
language

* INT_ADVANCE simply calls a
spec:1al version of

EC_$ADVANCE that doesn’t
- dispatch or enable interrups, then
calls dispatch if this interrupt is
returning to level 0

~ PROCI_S$INT _EXIT

* Use to simply return from
interrupt

~* Jump here with all rregisters intact

* Calls dispatch if necesseiry, then
RTE |

SCHEDULING ALGORITHM

READY LIST IS ORDERED BY THE FOLLOWING 48 BIT
QUANTIY (VIEWED AS A SINGLE INTEGER) |

=16

32 BIT RESOURCE LOCK SET 16 BIT PRIORITY

PRIORI’I;Y VARIES FROM 1 TO 16 WITH 16 BEING THE
HIGHEST

NULL PROCESS HAS PRIORITY ZERO
'THE PRIORITY OF A NEW PROCESS IS 16

PRIORITY IS DECREMENTED BY ONE AT EACH TIME
SLICE END

PRIORITY IS INCREMENTED BY ONE FOR‘ EACH 1/4

- SECOND OF WAIT TIME WHEN A PROCESS FINISHES

EC $WAIT J(wcsﬁﬁ“‘bf”—hu \\J an {a%{_’

A PROCESS IS ADDED TO THE READY LIST AT THE
END OF ITS PRIORITY CLASS. THIS IMPLEMENTS
ROUND-ROBIN SCHEDULING FOR PRIORITY ONE.

IF A TIME SLICE END OCCURS WHILE A PROCESS
HOLDS A RESOURCE LOCK, IT IS MOVED TO THE END
OF ITS PRIORITY CLASS WHEN THE LAST RESOURCE
LOCK IS CLEARED (TSE_ONB IN THE PCB)
SCHEDULING STATE)

THE TIME SLICE VALUES ARE LARGER FOR LOW
PRIORITY PROCESSES AND SMALLER FOR HIGH
PRIORITY PROCESSES. PRIORITY 16 GETS 1/10 SEC. ,
PRIORITY 1 GETS 1/2 SEC. (MAX. IN 16 BITS)

~ THE DISPLAY MANAGER ALWAYS HAS PRIORITY 16

O

- Level One Eventcounts

— Operations

- * EC_$WAIT (ecl, ec2, ec3,
valuel, value 2, value 3,)

* EC_$SWAITN (ec_ptr_list,
value_list, count)

~ these both return ordinal of
- first EC in list which is
O | satisfied |
* EC_$SADVANCE (ec)
- * EC_SREAD (ec)
returns current Value

normally done by inline code
for speed

* EC_$INIT (ec)

- Initializes an eventcount

Level One Eventcounts (Implementation)

O

— Format

- Integrated with PROC1

Value
Waiters list head
Waiters list tail

— Waiters list nodes allocated in process

stack

* wait value
* PCB pointer |
* forward/backward waiters list

, P1 . '
. wait _(ecl, ec2N%2, ec3)
wvl T P2 wv4

wvZz

s ~ links

P3

wait (ec2)
wv3 e wv5

dispatch
frame

P1 STACK

wv6

dispatch
frame

dispatch
frame

P2 STACK

P3 STACK

Mutual Exclusion
~ Operations

* ML_$LOCK (resource_lock)

obtain exclusive use of
resource

crash if 4
RESOURCE _LOCK < =
highest currently held lock
(enforced by

PROC _$SET LOCK)

* ML_$SUNLOCK (resource lock)
release exclusion -

crash if RESOURSE_LOCK
- <> highest currently held lock

Mutual Exclusion (ImplementatiOn)

— Data

*

- ML_
1.

One eventcount and one lock byte
for each of the 32 resource locks

$LOCK
Call PROC1_$SET LOCK—

" must be done flI'St

Try to set lock bit (BSET
- instruction) return in successful

. Get a “ticket” (eventcount Value

to wait for)
* Must be done disabled

* QGuarantees FIFO ordering

Q Mutual Exclusion (Cont’d)
- ML _$UNLOCK
1. Clear lock byte

2. If ticket value = EC value there
are no waiters —> return

3. Advance eventcount

—Reality

| * Because these calls are very
O - heavily used, they have been
merged with PROCI, refer to
PCBs directly, and are carefully
coded in assembly language

| ‘Svpecial Considerations For
@ 2 CPU (68000)Systems
— 3 B-A Returns
* Normal
CPU A proceeds ’ normally.
* Error

- Cause bus error on A.
Usually generates user mode
fault. |

O * Interrupt

- Cause interrupt on A. Used
when process returning to A
is not the highest priority.

Vectors directly to
PROC1_SINT EXIT.

O | - Special Considerations For
2 CPU (68000) Systems

— Multiple Faults in Same Instruction

* It can happen on B-A return that
- an interrupt is desired because
ready <> current. However, it
may not happen due to second
page fault in some instruction.
"PROC_$SET LOCK detects this
and fixes the ready list.
O -
| — Force Dispatch
* It may happen on CPU B that
ready = current but current
cannot run on B. A special
version of dispatch is used by
PROC1_$CLR LOCK to force
a process switch.

Timer Hardware

— Battery operated “digital watch”

* Retains date and time
Used only at node boot

* Updated by standalone
calendar utility

Not as accurate as real digital — 1"
watch (- 1 part in 10%) |

The Real Time Clock

— Two generally accessible external
variables

* TIME_$CLOCKH—The high
32 bits of the 48 bit system time.
Incremented by 1 at each
- interrupt from 4 usec timer (every
1/4 sec).

* TIME_$CLOCKH_EC—An
eventcount which is advanced
everytlme TIME $CLOCKH

‘is incremented.
— One procedure call
* TIME $CLOCK (real time)

Returns the full 48 bit system
by reading the 4 usec timer.

Real-Time Events

— Operations |
* TIME_$SWAIT (rel _abs,
expiration_time) |
~ Blocks caller until a relative
~or absolute expiration time.
~* TIME_WAIT2 (rel_abs,
exp_time, eventcount)

Waits for expiration time, or
for one arbitrary eventcount.

Returns boolean — event—
count went off, no timer.

* TIME_$ADVANCE (rel_abs,
exp_time, eventcount)

Advances eventcount when
EXP_TIME is reached.

Virtual Time Events

— Handled by_ interrupt routine for
 Susec timer

~— Per—process virtual time queue

- H’andles repeating events, like time—
slice—end

— Future virtual-time events

* UNIX signals

* Working set memory management

| The Clock Process

A special high priority, wired, system
process (pid #3)

Handles real-time events and time-
slice ends |

One big loop waiting on a single clock ’
process EC

Real-time event processing

* List of all real-time events,

ordered by absolute expriation
time |

* 32 usec timer loaded with next
event | o

* Interrupt from this timer
advances clock process EC

* Clock process discovers expired
events, advances associated EC,
and dequeues them.

Level Two Process Manager
— Creates and deletes user prOCesses
— Manages UID process name space
— Passes through some PROCI calls
— Allocatés user stack files

— Maintains level 2 process stack
* user stack UID

*

UNIX process ID information

* whether a process is an “orphan”

* whether a process should be

stopped at logout

B
process group UID % gulier

— Implements asynchronous faults

-, LEVELTWO PROCESS MANAGER

User Stack Allocation

— Maintains a pool of used user Stack,files to avoid
file_$create / file_$delete overhead

—~ PROC2_$ALLOC_STACK_FILE
— PROC2_$FREE_STACK_FILE
—~ PROC2 _CLEANUP STACKS (subject_id)

Pass Through Operations

— PROC2_$SUSPEND (puid)
O | Waits for successful suspension if necessary

~ PROC2_$RESUME (puid)

Inquiry Operations

— PROC2_S$LIST (puid_list, list_size, process_count) ®s7¢"
- returns a list of active level 2 processes

— PROC2_$GET INFO(p2_uid, info_buf, buf_size)
- —PROC2_$WHO_AM I (p2_uid) |

- PROC2_$MY_PID |
return level 2 and level 1 names of current process

Miscellaneous
— PROC2_$MAKE_SERVER (p2_uid)

make given process a “server”
server processes are not stopped at logout

‘Create / Delete Operations

PROC2_SCREATE
(stack_uid, start_pc, is_orphan, new_uid)
allocate a new address space and map the user
stack (stack_uid); allocate a supervisor stack and
bind all to a level one process; process will execute
starting at start_pc in user mode; allocate new
process group UID of orphan o

PROC2_$FORK (satck_uid, start_pc, new_uid)

like PROC2_$CREATE but different treatment
of new address space for UNIX; a forked process
is never an orphan

PROC2 S$MAKE_ORPHAN (p2_uid)
make the given process an orphan

PROC2_$DELETE

~ delete the calling process and release all the
- resources; calls almost all nucleus managers to

cleanup their per—process data; if orphan, frees the
user stack; otherwise advances the process |
termination eventcount; cannot currently delete
other processes

O LEVEL TWO EVENTCOUNTS

— Like level one except that eventcounts
are unwired and can be anywhere in
Virtual Memory

— Level two calls can also wait on level
one eventcounts — they are recognized
by their special addresses, obtained
from manager specific calls that return

them

O — Level two eventcount calls do not
work over the network

— Operations are almost identical to
level one; manager name is EC2
Documented in System Programmer
manual |

LEVEL TWO EVENTCOUNT
IMPLEMENTATION

Data Structures

— One level 1 ec per process; all EC2_SWAIT
calls wait ong this

— Each level two ec heads a linked list of

WAITERS NODES:
| VALUE
EVENTCOUNT Waiters List
Head
WAIT VALUE
WAITERS NODE o | LK
~ EC2_SWAIT

For level 2 ec : allocate and chain a waiters node
For level 1 ec: include in ec_$waitn call

- EC2_SADVANCE
Runs in user mode for speed if no waiters;

Increment value; if waiters list is not null, call
EC2_$WAKEUP (an SVC)

- EC2_$WAKEUP
Search waiters list for any satisfied wait values
If found, remove from list and advance the level
one ec of the corresponding process

User Mode Process/Program Management
o ’Program Lévels, Processes, and Fork
¢ The Stack File
¢ Mapped Segment Manager (MS)
& Storage allocator (RWS)
¢ The loader, KGT, etc.

¢ Libraries, global and‘ private

The User Program Environment
¢ Contains:
o A storage (virtual memory) allocator
e A mapped file manager
e A stream manager
e Some "standard” streams
e Some program arguments

e Exception handling mechanisms

¢ Semi-isolated
e Parent affects child only by

o passing arguments
v o passing streams
O . o inherited state
o pre-arranged sharing
° Child affects parent.only by
o returned status '
o "permanent” side-effects

o pre_arranged sharing

¢ Design Trade-offs
e What state to inherif automatically

e What system calls should have "permanent” side-effects (e.g. gpr_S$init,
stream_S$create, pad_S$def pfk) '

New Process vs. Same Process

Q ¢ Goal: make them identical except for

e performance (
. ‘C)‘v\,_ $ bdﬂi;'

Ne Conlur r{/f\(/j i’(‘ t)(;v\ clo P

e potential concurrency

e address space available

- & Reality:
e Substantial performance penalty for new process
e New process can’t use private libraries

e Complex export-import operations required to use most resources in new

process — most managers (e.g. gpr, smd, gpio, magtape) don’t
implement. '
. . A el st o
e pgm_Sinvoke for new process not documented ,P 5 M-—.-Erlﬂ\/ol’{[_] ,, gy
| maftes H &
Q ¢ Result: customer use of multiple processes is very limited chsid precess

Program Environment Tree

Process 1

- Level 0

A\ 4

1

2

Level 0

1

A 4

Process 3

Level 0

2 .

Level 0

3

Process 2

Process 4

| 1

.

Level 0

Process 5

Each small box is a separate program environment
Within a process, program levels form a stack

Calls That Create Program Environments

Q <© pgm_$invoke_s(name, name_len, argc, argyv, sidc, sidyv,
flags, ecp, statusl, status2)

e makes a new process if

o pgm_$wait NOT in flags
— creation record left mapped in parent
— parent can wait for termination and check status

o pgm_S$background in flags
~ creation record unmapped
— process disappears when done

o program is a protected subsystem
~ caller waits for termination

¢ pgm_Sexec(name, namelen, argc, argv, env, status)

e like pgm_S$invoke, except A

O o never makes a new process
o first exits current level with partial cleanup

o doesn’t rearrange streams

Miscellaneous Process-related Calls

O

¢ pm_$finish(ecp, status)

Waits for process termination

Returns its status

Unmaps creation record

Releases stack file

Note: this call should be made even if ec2_S$wait is used

& pm_$make_orphan(ecp, p2uid, ‘statu’s') .
e Makes process an orphan |

e Returns process UID (all subsequent references must use this instead of
ecp)

e This operation cannot be undone

Process Names

¢ Processes are initially unnamed
¢ Name can be assigned by creator or by process itself

¢ Names are just process UIDs, cataloged in
‘node_data/proc_dir

<& Name can only be set once (because there is no way to tell
DM to change name in banner)

¢ Several PM_$' calls to set/inquire process names

Fork

\) - o pm_$fork(is_vfork, parent_SP, child_puid, child_suid, ecp,
status) | |

¢ Makes a new process
e copies the parent’s stack file

e copies the parent’s address space, except that references to parent’s
stack are replaced with references to child’s stack

¢ Managers with global state (e.g. streams) must be
informed

e streams pre-fork/post—fork

) pfm_$staﬁc_fork

O

Vfork
¢ Push a program level

- & Make a new process

e Address space is an EXACT duplicate of parent

¢ Parent waits untilA child executes PGM_$EXEC

e Child’s activity during this time limited mainly to streams operations

© When child executes PGM_$EXEC

e Address Space is cleared

- o Equivalent of new process pgm_$invoke is done, using already created
process)

e New stack file is initialized at this point

¢ Parent resumes execution, and pops a program level to
recover streams state /

Sta_ck File Allocation

Holds ALL per-process read—-write data

File offset ‘ | Virtual Address

; O Creation record

. termination eventcount
. termination status

. arguments

. exported streams

. program to execute

. login info

. UNIX context

8000
| Per process static data for global libraries
30000 guard segment
38000 _
User mode execution stack
78000 guard segment
80000 ~

Storage managed by RWS

200000

208000
230000
238000

278000

various

Mapped Storage Manager (MS)

maps objects into the private address

space

handles object locking and unlocking

objects are automatically unmapped

- and unlocked at level exit

based on kernel FILE and MST
managers |

used by EVERYBODY, including
other PM services
(read / write storage manager)

MS_$MAPL (name, len, start, length, conc, access,
extend_ok, length_mapped, status):
univ_ptr

- maps the area of the file ‘name’ (‘len’ chars)
starting at offset ‘start’ for ‘length’ bytes

— returns the virtual address of the first byte mapped
(function value), and the number of bytes mapped
(‘length_mapped’) |

— locks the file according to (conc, access); ‘conc’
specifies the desired concurrency control:
ms_$nr xor_1w N readers XOR 1 writer
ms_ $cowriters N readers and N writers™
ms_$none ~ no locking

— *cowriters must be on the same node

— ‘access’ specifies the desired access to the file:

ms_S$r read

“ms_$rx read, execute
ms_$wr write, read
ms_$wrx | write, read, execute

ms_$riw read intend to write

— allows file growth if extend_ok is true

)

MS_$SMAPL_UID (uid, start, length, conc, access,
extend ok, length mapped,
status): univ _ptr

— similar to MS_$MAPL, except ‘uid’ is spemfled in
lieu of ‘name’ and ‘len’

| MS $CRMAPL (name, len, start, length, conc,

status): univ_ptr

— similar to MS_$MAPL, but creates the object and
catalogs it under ‘name’, ‘len’

- ’object is mapped for read / write
— extend_ok is true (it MUST be!)

— obiject is made permanent

MS $CRMAPL _UID (uid, start, length, conc,
status): univ_ptr

— similar to MS_$SMAPIL._UID except that an
object is created and its uid is returned

— object is NOT made permanent

7
\U" nu,l\f'«b

b @:H oS pegns e

MS $CRTEMP (location len, start, length, conc,
status): univ_ptr

— like MS_$CRMAPL but creates a temporary,
unnamed object

— ‘location’, ‘len’ descibe the volume on which the
temporary object is to be created
MS _SREMAP (va, start, length, length_mapped,

status): univ _ptr

— unmaps a portion of the object at ‘va’ and maps a
new section (‘start’, ‘length’) |

— object stays locked as before

MS_SADDMAP (va, start, length, length mapped,
status): univ_ptr

— maps an additional part of object mapped at ‘va’

— object at ‘va’ is not unmapped

— object remains locked as before

— object is unlocked when the oldest part is
unmapped

—

O

ON

MS_SUNMAP (va, length_mapped, status)

— unmaps the object specified by ‘va’ and
‘length_mapped’

— unlocks the object if this ‘va’ was returned from
from a procedure other than MS_SADDMAP
MS_S$UNMAP PARTIAL astd Dy lowdes

— unmaps part of a mapping done by one of the
MS_§xxMAPxx procedures

— does not unlock the object

MS SRELOCK (va, access, status)
— changes the lock on an object

— access must be ‘ms_$r’ or ‘ms_$rw’

MS_SATTRIBUTES (Va attributes, actlen maxlen,
status)

— returns the attributes of the object mapped at ‘va’

— attributes include:

permanent flag

immutable flag

current length

disk blocks used

date/time used, modified, created
MS_$TRUNCATE (va, length, status)
— truncates object mapped at ‘va’ to ‘length’ bytes
MS_$SMK _ PERMANENT (va, opts, name, len,

status)

— makes a temporary object (created with
MS_$CRTEMP) permanent and names it

— optionally creates a backup file if an ob]ect
with an identical name exists

MS_$MK_TEMPORARY (va, status)

~ makes a permanent file (mapped at ‘va’)
temporary

— drops its name

O

MS_$MK_IMMUTABLE (va, status)

— makes the object mapped at ‘va’ immutable

MS_$NEIGHBORS (val, va2, status): boolean

— determine if the objects mapped at ‘val’ and
‘va?2’ reside on the same disk volume

MS_$FW_FILE (va, status)

— causes the file mapped at ‘va’ to be force—written
to disk

— doesn’t return until the forced write completes

MS_$FW_PARTIAL (va, length, status)
— force writes part of the object mapped at ‘va’
— ‘length’ bytes are force—written

— doesn’t return until the force write is complete

MS_$STREAMS_FLAG (va, flag, status)

— sets an internal flag saying, ”the mapping at this
virtual address is owned by a STREAMS type
manager”’

— needed because of UNIX ‘exec’ primitive

~ required because of mangers orientation to
‘Mark/Release’ instead of ‘Resouces’

Storage Allocation (RWS)

Q) | ¢ Basic call:

e p :=rws_$alloc_rw __pool(size, {rws_$std_pool | rws_8$streams_tm_pool})

Allocates non-returnable vanilla virtual memory

Recovered at program termination

e rws_$streams_tm_pool used to avoid recovery at pgm_S$exec (because

streams are supposed to stay open across EXEC.

¢ Implementation

0

Maintain high Water mark in stack file
Allocate and ms_$mapl in multiples of a segment

Maintain VM high water mark within a given stack allocation

Just push and pop high water marks- at program level transitions.

cleanup takes care of the rest

¢ Heap allocation

rws_$alloc_heap_pool and rws_§$release_heap
Layered on rws_$alloc_rw_pool

Maintains special free-lists for sniall blocks

16 bytes overhead precedes each allocated block

Not notably fast

MS

Coup (flah
{

s®

(nv’_ more u\nociw(es7 fle mere ﬁlciﬁiu‘:\j
with s&h\:\ﬂ up data bdse,s)enf‘rj Conbre

Object Module |

32 byte stream header (obs.) T’

32 byte object module header ~

Pure | pmcec'tv*gi Jts
. - . - § \ n:.l’""
Sections Debvy™

(y,,zdl‘?SS mgl’i«“g

Impure data e varichic

Priags Mot haet |2 chundl)

e solved by dinder

Global Symbol Data .. . ceci

Dn?,b wg h.bu;

Relocation Data ‘Em- (et daja

ms_$unmap_
partial

More impure data ~peat
)

v

— (0");(’5 p(a'{l(;/\{'D

rws_$alloc, A

copy,
resolve ext.

More global symbols

More relocation data

and relocate

 fke londed y 11T
un w\apptol pé‘-’h‘d’l “{)b
’(Le Pvlrfr S£LHO¢\S, '

(iw'A\ Ste bn

care of unloading

¢ o Pm:,j(éwvn)

| t
wm,\ on Coecw
) ged 6\°b“l)

U_,\(\isol

wee fhe KGT fo 7

S ‘Dymm:c ini

Ve data Strysin mEnovy bteaust yom

¢ Note that normal cleanup of MS and RWS managers takes

[blectss fla ’0«3& fie ’cdd(wj Pmccﬁj,

' &r
r - S WANt
O,\\ [pad fon pu)“s ¥ j

{-{ahza';n'm (s Mucln)muck vpaskr,

Touch .

ot 255

o P
anate Libraries (INLIB)

¢ Start with normal load

¢ Enter marked global symbols into private KGT

e e e

M { { (;L'hb' kerez
@" main progr@do kel hon

< Persists only until termination of current program level

¢ Hence INLIB is an internal shell command

—

V‘M\Y\ v

e C
&\)&\\: b\\.h \1 b

Unresolved Globals

¢ Never terminate any loading process

¢ Generate TRAP instruction, followed by symbol name, in
"DATA$ ‘

¢ When trap occurs at run time, KGT is tried again Second ‘l‘g‘ Sl
' : n
e if successful, TRAP is replaced by IMP
. I 05;‘*3’ was CLS
o otherwise fault handling proceeds no Sulher a'HCMp"’
ok pesolwbion

s alg
N g
\(Q‘((\Ov b\%ﬁ/("/'/ /y\o"“> //
B A\ £ \\w& Y ;\é\w\ O
QO‘ \b /iy e \/\()(
(\("“)\
5\33 » - Y \‘LG/\
V”v" Q‘ \Q‘JL\
9(03(‘”
m‘w)tﬁ)

(’\QQ | ‘\\ \’)\)'
LS s
Global Libraries R
v \V\"'\‘m \“Jq’“_\,‘ﬁ L‘\S
<o I:oadeeLby ENV in response to DM SH, SPM, or GO
RTEEN \w“‘Q ‘
S0t el NS
<> Use mst $map global mstead of ms $mapl o e ; Y ¥
(;7 (o"’b ‘A’Gé \L(“/\ '
. " .
¢ Use globrws_$alloc_rw for DATAS section \\\oa S
¢ Use privrws_8$alloc_rw for impure sections other than
DATA X :
$,\\:\6 U‘g:\sx QI\’OLQL,S"
o Skip initializationy » "
*\Uv 3,,‘..
o Map stack file mto appropriate range of private address space in

pm Sinit

¢ Make DATAS read-only after loading is compiete

e Shared storage managers initialized first

¢ Main program called in every new process / 9858(“5,{);:“(le

e Hence should be avoided if library is not always needed

“Dynamlc lmkmg” not possible btcause you can'$
J ‘ . write "H\Jvf{

{obals linkg st Up in 3mpuo& area

Error and Fault Handling

¢ Kinds of faults

¢ Supervisor mode fault handling/generation
¢ User mode fault generation

¢ Fault handlers -

< Dynainic Cleanup Handlers

¢ Static Cleanup Handlers

o Mark/Release

Error and Fault Handlin‘gv
~ ¢ Kinds of faults |

< Supervisor mpde fault_handling/gen_eration
¢ User mode fau]t generation

¢ Fault handlers

¢ Dynamic Cleanup'Handlers

¢ Static Cleanup Handlers

- © Mark/Release

Kinds of Faults

{
O ¢ Program error
e Unimplemented instruction
e Odd address error 2
- g ged T o
e Reference to invalid address nov th oy
e Access violation ot et gD
e Reference to unresolved global
e Guard fault (stack overflow)
¢ System error
e Network failure (e.g. too many transmit retries)
e Disk full
s e Disk error
O
o Asynchronous
e Quit
e Stop
e UNIX signal (e.g. child death)
. gl
: 4%
\GaS¥ 7
{ TS
Q | BOF g 0

Supervisor Mode Fault Handling (synchronous) |

_—
L) ¢ Address-related faults

e These are all page faults that cannot be resolved, either because of a user
program error, or due to system failure

e Assign appropriate status code
e On 68000 systems, return to CPU A with a bus error

e If fault occurred in supervisor mode:

o If address in supervisor range, crash system

o Otherwise, reportAboth supervisor and user mode state

e Go to fim_$com to report fault to user mode

¢ CPU-detected faults N
. . VAT 'a‘u
. %{r"'\'\‘“\L o~

e Just set the status code, and go to fim_$com

Q . <& Common fault handling

e Push a fault frame on the user mode stack

e If this causes anothér fault, process dies
e Fault frame contains registers, PC, status, etc.
e Fault frame flagged with 16#DFDR

e Force supervisor stack to contain a simple exception frame with PC set to
the user mode fim (set by fim_$install)

e RTE

le

Asynchronous Fault Generation

© Set desired fault status in fim_S$trace_status

¢ Set trace—trap bit in supervisor stack of process to receive
fault

¢ Advance fim_S$quit_ec to get process out of nucleus if
necessary — long waiters also wait on this and
fim_$quit_value |

¢ When trace-trap occurs, use fim_$trace_status, and go to
fim_$com to complete fault handling normally

< Disabling handled in user mode support

¢ User mode must acknowledge fault (using
fim_S$acknowledge) before further asynchronous faults can
occur

Multiple Asynchronous Faults

U ¢ proc2_Strace_fault(p2_uid, fault_status, status)

e FError if a fault is pending which has not yet been acknowledged by
fim_S$acknowledge

e DM says "another fault is pending for this process”

¢ May be inhibited in user mode by pfm_ $inhibit, due to user program or
system library error in missing a re-enable

e May be hung in nucleus in a call (network retry is typical) that doesn’t
wait on fim_$quit_ec ' |

e User fim may be trashed and getting faults in the fault handler before
- previous fault can be acknowledged

o procz_$trace_fault_enq(p2_uid, fault_status, status)

e Enqueues multiple faults
D e Subsequent féults delivered after fim_8$acknowledge

e Used by UNIX signal mechanism to avoid losing faults

Process Groups

© This mechanism supports AUX

o It only affects asynchronous fault delivery

¢ A parent and its child (either pm_$fork or pgm_S$invoke)
are in the same process group

¢ A background process (pgm_$background to pgm_Sinvoke,
or pgm_$make_orphan) starts a new process group

© A process may decree itself to be in a new process group

o A process group is denoted by a UID

o proc2_$trace_fault_pgroup and
proc2_Strace_fault_pgroup_enq

e Deliver faults to all members of process group
e Process UID may ;ﬁ% used to denote the process group it is in

e The DM uses this form of the call for quits

User Mode Fault Layering

continue
execution

'fault

pfm_$fault handlers

pfm_S$enable

pgm_Sexit

pfm_Serror_
trap

W e ' dynamic
Ak s - pfm_8$signal ‘cleanup
54 o handlers
W
supervisor \/

‘\;\‘ .‘C"’
\ '\'V(,U\Q‘ cq ot 5()“

o e

Fault Handlers

P seal Py / ' (
] I “ an €x erw“
o Always »’static” (i.e. not related to call stack) b be
m tull
et ia hcrmwl ovdtr on Y over stacle 'F(‘Gwmé,-.' ot

¢ Established by pfm_$establish_fault_handler(func_ptr)

e Returns handle for later'felease

e Func_ptr is a Pascal (or C) functiori_pointer whose single argument is the
fault frame constructed in the nucleus

¢ Called in inverse ordér of establishment, by pfm_$fault
¢ Not called on asynchronous faults if inhibited

<o Return value from fault handler can cause_ fault to be
ignored, if restart is possible ’

e restartability is recorded in the fault frame by the nucleus, depending on
the nature of the fault — addressing faults are usually not restartable

e if a fault handler says to ignore the fault, no further fault handlers are
called, and the program is restarted

¢ if no fault handler says to ignore the fault, then proceed to pfm_S$signal,

and dynamic cleanup handlers

O~

) - 4\()*\[“& L
Dynamic Cleanup Handl ol
‘ ynamlc eanup ranaiers . o»\‘"”/js
¢ Associated with active call frames on stack
cleanup list SP .__.»‘ ‘E-:-:-:-:-:-:-:-:-:-:-:-:-:::-:-:Z* 7
i | |

A5-A7 - g
PC '

cleanup record
A5-A7
PC

stack

< Activated (not called) by pfm_$signal

e thus includes all program termination except return from main program

o Return to exceptibn handling only by resignal

¢ Cleanup handler automatically released when activated.

¢ pfm_S8inhibit done automatically

A

Dynamic Cleanup Handlers (page 2)

¢ Consistency checking

e cleanup list scanned for handler with SP >= current SP
e cleanup record checked for overwriting due to reuse of stack frame

exited without pfm_Srelease_cleanup

¢ These cleanup handlers are moderately expensive in
relation to a simple procedure call. We are working on a
cheaper mechanism '

© We should really have language support for this, but...

o | Typical Cleanup Handler Usage
U var -
cleanup_rec: pfm_S$cleanup_rec;

BEGIN

status := pfm_S$cleanup(cleanup_rec);
IF status.all = pfm_$cleanup_set THEN
BEGIN
{ normal operation }
pfm_Srelease_cleanup(cleanup_rec);
END ‘
ELSE BEGIN |
{ cleanup the mess we started }

{ depending on the operation we desire, either: }

PFM_$ENABLE;

RETURN; { turns fault into normal bad status from

Q this procedure }
{ OR } -
pfm_S$signal(status); { resignal other cleanup
, handlers }
END;
END;

Disabling Asynchronous Faults

< pfm_$inhibit
e Increment inhibit counter
¢ pfm_$fault

e If fault is asynchronous (recorded in fault frame by nucledf fim) and
inhibit count is not zerok)record' status and ignore fault.

¢ pfm_$enable

o Decrement inhibit counter

e If zero, and status recorded by pfm_$fault, then pfm_S$error_trap

¢ Many system calls (e.g. ec2_$wait_svc, but not é02_$wait)
will return error status if asynchronous faults are inhibited
and one occurs '

<& Note: these calls ONLY inhibit asynchronous faults. Since
it is very difficult to preventasynchronous faults altogether,
it is best to use a cleanup handler if you need to be robust
and can afford the cost. |

Program Initiation/Termination
O ¢ A. K. A. Mark/Release

¢ pm_$proc_mark

o called by pgm_8invoke after program is loaded and streams switched
e pm_S$level <- pm_$leve1 +1

e call mark/release handlers

. establish normal cleanup handler

e set status/severity td status_$OK

e if not cleanup, call main program

e call pm_S$release

© pm_$proc_release
O e call static cleanup handlers
e pm_S$level <- pm_Slevel - 1
e call mark/release handlers
¢ pgm_$set_severity

e Set status.code (used in pm_S$mark) to the severity value

. Les
. . \Q(&v(‘ w""
i v\u“j’urj o ¥¢ A,\O e
I/‘ &\:\/’ Vl . D e g‘/’% Y\a" qgcb\
\(L . e I W €
? ,Mvv

e
Static Cleanup Handlers W 1 e e

¢ Executed (calléd) at program termination, from the level
at which handler was established

¢ Established via pfm_$static_cleanup(ecb_addr, status)
¢ Called in inverse order of establishment

¢ Calling sequence is

e handler(false, new_level_number, termination_status, is_exec)

¢ No actual relation to fault handling

¢ Preferred method of cleanup for managers in global or
‘private libraries (better than a mark/release handler)

¢ Try to avoid depending on managers other than MS, RWS,
STREAMS in your static cleanup handler, since other
managers’ cleanup routines may be called before yours (we
should fix this, but are not sure how)

Mark/Release Handlers

&) ¢ Like static fault handlers except:

e called on all level transition, both up and down

¢ Use when

e you need to keep client status at each level
e you need to initialize default state for new programs

e you have to "init” call where you could conveniently establish a static
cleanup handler

e almost all programs will use your services (e.g. streams)

¢ Otherwise use a static cleanup handler, established in your
?init” call, and released in your ”terminate’ call.

¢ pfm_Strace_info \p & “_&bv,

Fault State and Traceback Recording

¢ Information reported by FST and TB commands

i

¢ At the end of pfm_$fault, and before pfm_S$signal, the
registers, etc., in the fault frame are copied to a global
buffer for later use. Alsok the stack is scanned (if possible)
and routine names and line numbers are put in another
- global buffer ‘

¢ Traceback collection sometimes gets a second fault

Ouuf
o pfm_$fault_info . Qi
o5 Y
(857
(4%

. 9
(‘7)\&“‘ N Yroe®
- o N
W \ 29

g R

A SE el
e "’.g; ¢
b'y"“}y W Fo
0’ (1;70 C’L(i‘b"'&
47 i 00
\,)l

o THE STREAM MANAGER
_ DeVice Independent I/O
N .

' o, . el bOX T
- — ABig Switch s Vﬁgﬂv

USER PROGRAMS

/1 1\

D _FILE

VIR_TERMINAL MAGTAPE

TYPE MANAGER

[,

@

o

Topics
The Stream Table
Opening Streams
The Generic Switch Call
Some Special Switch Calls

The D_FILE Manager

Other Managers

‘THE STREAM TABLE

g

- The Database of the Switch itself -
» | Qe
— Array [0...127] of stream_table entry —

comivo bloc ke

roces

— Each entry is :

UID
HANDLE

MANAGER TYPE
O o OPEN PM_LEVEL
| | SOME UNIX BITS :

* close_on_exec
* ndelay

o

OPENING A STREAM |

PATHNAME

\l/ name_Sresolve

ALLOCATE A
STREAM TABLE
ENTRY |

\

A4

ulD ——
file_Sattributes
/
VTOCE |
\L TYPE UID
CONVERT TO
MANAGER
TYPE
\LMGR_TYPE
CALL TYPE
MANAGER’S
OPEN HANDLE

STREAM TABLE

S A TYPICAL CALL
O

- stream_$get_rec

6 stream_id

| stream_get rec

\l/ handle

Type Manager

WITH stream_table[stream_id] DO
CASE manager_type OF

d_file: dfile_$get_rec(handle,args...)
vir_term: vt_$get rec(handle,args...)

END ‘Q‘,r-m\ Jerminst

O

~Stream Table Operations

— STREAM_$SWITCH

* Move stream table entry to a
different stream 1d.

* Caller can specify new sid —
otherwise allocate downward
from 127 | et e,
(/W\»ea (lto :::HG; pef\ -
— STREAM $REPLICATE and |
STREAM _$DUP _ mm e |

Pt 547
* Copy stream table entry to a v“‘“ ﬁon
different sid w

Two resulting streams are |
indistinguishable by type manager

* PM_OPEN_LEVEL and some
other STREAM TABLE Values
may differ

* MGR_SREPLICATE is called to
increment replication count

- * DUP & REPLICATE differ in order
- of allocating new sid

Inquire/Redefine

Mixture of switch attributes and

- manager specific attributes—
manager called only if switch can’t

do operation itself.

Pathname operations done in switch,
since manager is pathname
independent.

Best to operate on only one attribute
per call, so sensible errors can be
reported. | -

Growing number of inquires that
manager must answer makes
manager implementation tedious.

MGR_S$INQUIRE must be able to
open object temporarily, for inquire by
name.

IMPORT/EXPORT

— Like replicate, except new stream is in
a different process.

— Used to pass standard streams to a new
process. |

— Both manager data and stream table
data, which are not shared, must be
- packed for export.

M""

@ - STREAM_$GET_XP_BUF

* Call MGR_$EXPORT to
package data

* Add STREAM _TABLE data

* Caller provides buffer (in creation
record for PGM_$INVOKE) |

* Also called by
PAD $CREATE[WINDOW]

IMPORT/EXPORT (Cont’d)

- - STREAM_$SOPEN_ XP_BUF

* Allocate and fill
STREAM_TABLE entry

* Call MGR_$IMPORT
* Called by PM_$INIT in new,
| process
- - STREAM_$FORK

* Just call MGR $FORK—data
already cop1ed ‘

Manager Specific Functions

‘Operations that are not common to all
types of streams | |

* eg. PAD $USE FONT,
SIO_$CONTROL

They take a STREAM_ID as

argument, however

These entries must look in the stream
table to find their handles, and to
check that the stream is open and has
the right type. |

MGR_SCREATE is a manager
specific function because there is no
open stream involved, and no object
from which to derive the type.

STREAM_$CREATE is mis—named.
It should be/D_FILE3_CREATE.

\ o WASC

po—

The D_FILE Manager

- — The file structure

* VTOCE, stream header
— The open stream structure
* PFCB, SFCB

. . . Y\\ LN\) \\
- “Windowing” myzjw @wfg parie T

— Data Organization
* D_FILE1
Counted Records (REC)
* D_FILE2 L
- Byte Stream (UN DgF)
* D_FILE3 e

Byte Stream (UASC) >

— Locking and Concurrency

THE FILE STRUCTURE

32 BYTE BLOCK

HEADER
+ LENGTH .§ b\jlfﬂa- c§ I
+ RECORD TYPE
VTOCE CONTROL
TYPE UID + ASCII/BINARY
+ HEADER
T CHECKSUM
TEMP/PERM N
OS STUFF 4
DATA
024 BYTES-OF
PATA—
Lo
. \00\/"{” \\2, . Cl\{)u} , ; - Lo*{
wol 0\0 e PAW'(’ Lo L?“ ot “WZ‘O\L
O T e @

THE OPEN STREAM STRUCTURE

PRIVATE TO EACH

SHARED AMONG ALL

L

PROCESS PROCESSES ON A NODE
Handle | |
| PFCB SFCB
UID > UID, TYPE
Replication Count | Usé Counts °
Mapping Information 4 users
| # writers

| Open Attributes

¥ opos e y
*oconc e

Redefmed Attributes

&move*/ locate
*force locate Ly
* append |

Private Seek Key
‘Seek Key Shared ?

no_concurrent_write
opens

Lock Bit

| Header Cache

if TRUE

> Shared Seek Key

'ONE TO MANY RELATIONSHIP

PFCB

o psz W‘:D
bt S ot
2T (e
SSK PFCB - PFCB
/

-~ PFCB

SFCB /

SSK

PFCB

WINDOWING

— The d_file managers do “I/O” by

mapping files

- l6i1</IB may be too small to map a

whole file

— So, we move a window over the file
VA := stream_window(PFCB, offset, lenth)

0
_ _ Segment boundary = |
map_info in, PFCB
| 7 AT
offs_et/ A% ;ff/ 777
: spgment Heanda /
% 27771
VIRTUAL ADDRESS{ j
| O\ M IKTICTK
| | | 77
| _ _segment boundary _
* OPTIMIZATION:
potential callers of stream_$window

check and use map info first

FILE

‘Data Organization

— Byte Stream

* UNDEF : D_FILE2

* UASC: D_FILE3
— File (except header) is “pure data”
— Seek key is 4-byte file offset

— No “record” seek
- GETREC/GETBUF

* UNDEF | |
Return the number of bytes
requested, up to EOF

* UASC

GETREC: return # of bytes
requested, up to EOF/newline.
Say how many bytes would be
returned if the buffer were big

enough.
GETBUF: same as UNDEF

DATA ORGANIZATION
- Countéd Records : (REC=d_filel)

* 4 byte count followed by data

* The count (hence data) always
word aligned

* 8 byte seek key o c?jéld,\ "
| \O“Gw w\w?s
Record Offset Bytifl (f)ﬂféfset
- 2 Subtypes :

* V: Variable Length

* F2 : Fixed Length
allows record seeks

if set by Redefine, causes
error on Putrec if length is
wrong

Data Operation (Cont’d)

— Creation
. D. fle?

* STREAM_$CREATE makes
UASC/ASCII

D el

* STREAM_$CREATE_BINARY
- makes REC/binary

* All others must be made by
redefine.

'Locking & Concurrency

‘— Files locked only once per node

— SFCB reflects actual concurrent use
on the node

— Special lock call (FILE_$LOCK_

STREAM) used to support the
following sequence:

* Process 1 — open F
¥ _Process 2 — open F
* Process 1 — close F

Locking & Concurrency (Cont’d)

— If both openers and file header agree
on concurrent access (including at
least one writer) then USE_COUNT i in

SFCB control access

- — SFCB is locked on each read/write
whenever file and opener allow
concurrency |

* Lock is done by bitset & periodic
retry

* Timeout yields “unable to obtain
needed resources”

* ULKOB also releases streams
lock, and invalidates SFCB.

Subsequent operation gets |
“internal fatal error—table verlfy

failed”.

Other Managers

- NULL_DEV

* EOF on read, bit bucket on
write |
DUMB_TERMINAL
* READ/WRITE SIO lines

* Disk object used to determine <° Lo

\occ:f"a

type and line number - o 03
VIR_TERMINAL .) pu o,

None o’xﬂ ffl—esa culle are 1€ 186/526(,

- * Display manager input/
transcript pads

DM_EDIT PAD

~* Allows only subset of pad
operations and close

MBX_FILE

* Interface to MBX manager for
clients

3

iy
Y&

Other Managers (Cont’d)

- PIPE_FILE
* UNIX pipes

— DIRECTORY

* UNIX format directory reader
- MAGTAPE '
* STREAM level interface to
MAGTAPE support
— CASE_HM 2% 4@% | ol A

l‘f\\(e' \é\% W Y\A GNP:) P" 25/

* CASE (DSEE) history manager
reader ~

~ All but NULL DEV, CASE HM use
PFCB variant

— Only D_FILE, transcrlpt pads use
SFCB P e

PROTECTION

Identifying and Authenticating Users

Subject ID (SID)

Registry
Access Control Lists
Protected Subsystems

Locksmith

Identifying Users

Subject ID (SID)
who is accessing the object:

person

project

organization
protected subsystem

PPO

— abbreviation for :
person, project, organization

— a user

— 1f the subsystem is important : PPOS

Representation :

~ each component of the SID (PPOS)
is a UID |

Authenticating Users
Establishing the user’s identity and
authorization to use the system

- a. k. a. “login”

N etwork Registry

— database of text string PPO to UID
translations

— database of accounts

O subset of PPO combinations that
can log in

password

home directory

Local Registry
— one per node (use when network down)
fouss> 725 ped?

— last 10 users to log in on that node

— guarantees login on your own node

O

. Registry Algorithms

Reglstry file format (PPO and ACCT)

TRAN SACTION UID
COMMITTED BIT
READ VERSION

VERSION

Atomic Transaction

O — all or nothing
— roll forward / roll back

Read Algorithm
— find one, read it

Update Algorithm basics

— make change to one copy

(clear committed bit)
— “commit” it | |
— propogate changes to all the rest

O

©

Update and Récdvery

Update
— lock all resigtry copies for RIW
login can still happen

— pick one to update

— clear the comitted bit (force write)

— generate new transaction UID
(time stamp) |

— make changes; force write

— set committed; force write

— propogate changes to all copies

Crash Recovery
— find the latest committed copy
- make sure the clocks are in sync!

— overwrite all the rest with it
rolls foward if changes finished
rolls backward if changes unfinished
takes advantage of the replication
no separate before | after images

— done before each update
no work (just checking) if no crash

Propogation: same as crash recovery

REGISTRY

A network—w1de d1str1buted
rephcated database

Contains people’s names, projects,
organizations (PPO)

Contains accounts: subset of all PPO’s
that are authorized to log in (ACCT)
* Password

* Home directory

‘Why Replicated?

- * Auvailability in face of failures
* PARTIAL FAILURE
A fact of life for d1str1buted
~ systems

REGISTRY LOCATOR

/REGISTRY/REGISTRY
3 ENTRIES \
C , g‘(\‘ R
g
)%
. .. | The LOCATOR
//nodel/registry/rgy site
| SEHLYEY file is a list of
- locations of a
- distributed object.
) //mode2/registry/alt_site |
| SEARCH FOR
ONE !
//node3/registry/alt_site

PARTIAL INFORMATION IS A FACT
OF LIFE IN A DISTRIBUTED SYSTEM

COMMITTED

- LOCK

TRANS UID
COMMITTED LOCK
TRANS UID
COMMITTED LOCK
TRANS UID
ﬁXS v
”’i& ,\}\\95;
< e Kk Mi&u\“ 3
\ch ' e

NORMAL CASE

COMMITTED | LOCK
YES NO
TRANS UID |
11:00 AM
COMMITTED | LOCK
YES NO
TRANS UID
11:00 AM
COMMITTED | LOCK
| YES NO
TRANS UID

11:00 AM

START UPDATE

11:00 AM

COMMITTED LOCK
~ NO RIW
TRANS UID
2:00 PM
COMMITTED | LOCK
YES RIW
TRANS UID
11:00 AM
COMMITTED LOCK
-~ YES RIW
TRANS UID N dined

~ COMMIT UPDATE

O ,
COMMITTED LOCK
- YES W
TRANS UID
2:00 PM
COMMITTED | LOCK
YES RIW
| TRANS UID
O | 11:00 AM
COMMITTED LOCK
YES RIW
TRANS UID
11:00 AM

< " O O

COMMITTED

LOCK

11:00 AM

YES RIW
TRANS UID
2:00 PM
COMMITTED LOCK
NO W
TRANS UID |
2:00 PM
- COMMITTED " LOCK
__YES RIW
TRANS UID o

1 PROGATION DONE

COMMITTED LOCK
YES RIW
TRANS UID
2:00 PM
COMMITTED LOCK
YES RIW
TRANS UID |
2:00 PM
COMMITTED LOCK
YES RIW
TRANS UID |

11:00 AM

ALL DONE

COMMITTED LOCK

YES NO
TRANS UID |
2:00 PM
COMMITTED | LOCK
YES | NO
TRANS UID |
2:00 PM
'COMMITTED 1L.OCK
YES NO
"TRANS UID
- 2:.00 PM

ACLs

Basic: list of (SID, rights) entries

- Rights
—files: dwrx
_directories: dcalr
—-all: pgn
Initial ACLs '

stored in directory

ACL given to newly created files
and directories

inherited by new directory

ACL Format

Version

Type (file, dir)

Default Node

Number of Entries

Subsystem Manager

Subsystem Data

ACL Entries

Entry format: PPOSNER

RHZ
o

person, project, organization UIDs
subsystem UID (not currently used)
node to which rights apply
expiration date gnot currently used)
rights bits (32)

O

Protected Subsystéms

A way to restrict access to certain objects

to certain programs

The protected subsystem has a UID

The “certain objects”:

—have subsystem UID in the
“subsystem data” field of their ACL
—called “protected” or “sealed” data

The “certain progams”:
—have subsystem UID in the “sub—
system manager” field of their ACL
—called “subsystem manager”

Subsystem managers
—have complete control over access
- —have all rights to protected data

e,

O) - Protected Subsystems II

- Commands:
CRSUBS

— create a new protected subsystem |

ENSUBS

— enter a subsystem at shell level

— examine, debug protected data
and managers

— make new managers, protect data

- SUBS
O mak
—make new manager, protected data
—increase priveledge
— print subsystem status of an object
name of owning subsystem
name of subsystem that the
 program manages

XSUBS |
—execute a shell program as a
protected subsystem manager

Protected Subsystems I

Protected subsystem creation

— copy shell into /sys/subsys/name
— generate subsystem UID
it’s the UID of the shell!
- — set subsystem manager field of shell
— now have a shell to use to protect data,
make new managers |

Protected subsystem invocation

— pgm_S$invoke sees its a manager
— creates new process for it

Protected Subsystems IV
(Rights Checking)

Outside |

— when not running in a manager

— in a manager, but wzthout increased
priviledge

— get ordinary “base rights from ACL,

Inside
— in manager, with increased priviledge
— get all rights

 Increased priviledge
—“UP”, “DOWN?” calls
— why ?
prevents trickery
pass subsystem data where manager
expected ordinary object

Protected Sub'systems A%
(and miscellaneous)

“Login” protected subsystem

— ships with system |
— has one extra priviledge:
it can set SID
— it promlses to do so only after checkmg
PPO, password in reglstry

Subsystem names

— look up subsystem UID in /sys/subsys
— find object whose ACL has that UID in
subsystem manager field

— use its name

— if none on that node can’t get name
Locksmith

~a project and a protected subsystem
— has all rights to EVERYTHING

| .xHowc ﬁfg; 1() |
ADDRESS SPACE

O pHYSICAL ¢ MAPPED

emoo-'ss“//ztoo 400 -
At \\;;S,f;igs 4000 FFB800 (fffb800)
Yo %

8000 FFB400 (tfb400)

<
fand &~ D "
\o SN E Aerny i, e

E <lo 0&‘*‘9‘“’50;:»' e
U k&c‘“ e
80000 — 7 e
OPTIONAL | o wijes ™
REAL | 1/2 MB 3 | |
MEMORY 100000 - E0O0000 (£80000)
‘ MD PAGE
Q | 100400 0o
o TRAP PAGE
100800 ' ?
COLD START
100C00

~ E00400
DUMP PAGE

| proc
data { AEGIS

tables

saus 102000 Iaffons ‘

DIAGs 10A000

- F00000
- syssoor 13D800 |
\n“”’\y o l I/ O
bx’\“’ iisi&w” ’0)(09‘“ l
\@“:w“’ 17D800 FFFFFF

O |
A ﬁgls ma[)(%d behoeen fgooco”
' and Os- P(‘oc.__ ond labe (

PROM " 5wm’ W“‘*Plsche es.

disavled

— 0~ 3FFF Physical % segrent
- = Major Pieces ; o et
* SYS INIT ESIOS MMU, I/O)
* Boot Logic |
* Dev1ceDr1vers
DISPLAY
SIoS
O DISKS—WIN, FLP, SM
RING (ETHER?)
LEDS

* Diagnostics |
* MD CMDS & PARSING

— Runs Dlsabled ~ (lots aot Service interrvipts o
(Nasm wd Wbl chrringe (¢

— Runs Either Physical or Mapped All
IO Mapped e |

i , v C“ J// ‘S QQ mee Md
Q‘ . QM " M(’Q'QJ

PROM (Cont d

,,\
v\v\ Ko

— Machine ID at 100
0 Old DN400, 420, 600

1 DN420, 600
e
o |2 DN30O ot P
/3 DSP80 o
L 4 DNx60 v
5 DNS550

Power-On

(Reset Switch)

=

-~ h’t’k'

INIT SP oo

INIT PC 7

o

40

INIT System

- Test
Normal/Service
Sw1rch

\/

SERVICE

DIAGNOSTICS LD | COMMAND LOOP

LO
EX
/ spwoL? ~

\%
GET BOOT

LO

LOAD LD
EX Aféals ‘

v

“CALL” PROGRAM
RTS

QUIET_RETURN

Interconnect

\%
DLLF

TRAP F o
ug(/d }H’ LO
g :(,c: Jf"“ﬁ& " EX
fand ™
N
o) e}& , &((.
‘ (\Q\’}(v +°nl’. gt & X
¢ ” \/v?; /g\lé ¥ > wwo NG e
N 0\
)V e N Wy B
» S SR , Qﬂ@. w\y
o M- WD (\2 \{,\\“W>
QJO X\‘ o Q}}‘Q\\

GETTING A BOOT

DIN [n] ~Controller W, 5, F

Type ? — =l
~ Initialize disk
“Read PVL
| R
DTN | SYSBOOT
@ > (Read 2 - B) |
¥ | Find HOST
| Call BOOT
O Request |
NETBOOT
- 113 99 no
Read | EX”?
NETBOOT
yes
Call Program
Command
Loop

O

SYSBOOT and NETBOOT

— Parse commands, pick driver

SYSBOOT | NETBOOT
READ: |
~ PV Label my place or yours ?
~ LV Label ~ Chat with NETMAN
(Salvage ?) |—p-&x salvol - Read file
‘ l< lv — Get UlDs :

* oine fil
— Root Directory (/) paging file

) -~ * Find /SAUn *
— VTOCE for /SAUn *
— /SAUn directory =~ —— ~ DONE !

* Find program
o

— VTOCE for program

LD
— Program ‘

(Right machine ID)

— Done | <«—

(Return “GO” flag to MD)

O

Get UIDs

" — Resolve “//”

— Resolve /”

~ * UNLOCK

* CREATE

* SET DEFAULT ACLs

~ Resolve « ‘NODE_DATA.nnn

Resolve “ ‘NOD’E_DATA.nnn/

OS_PAGING FILE”

*CREATE or EXTEND

3

\o\“‘w

Copy ‘NODE_DATA/SHELL

YN
A@Sp N ‘(\%&”ﬁ“(/ Y\" ‘
i \Gm’« \no 0,‘.%3
07 e o
BT O el

\/\;\9 Q \‘.\5 .
q t ~\“"3(Lo
\0"

n - Copy /SYSISYSDEV => | juu™”
o ‘NODE_DATAnnn/DEV

— Copy
~ /SYS/DM/STARTUP TEMPLATES

* Add KBD 2 if DN300

* Use
ISYS/SPM/STARTUP TEMPLATES
1f server (Ds%oﬁ

‘ ~ REPLY WITH UIDs of
O A
* |
* ‘NODE_DATA/OS_PAGING FILE
-~ PROBLEM? Run:
* NETMAN in window
* NETMAN -DB

Moo ks
: . <y
~G&N5 - Lo gt ™ b 5\0“\’6
e e Ne - _d g
e ; . ANV ' o
NQ}&%CR\A’ .5 ! \cw w An u)ko,'\/ S ﬁ a‘\ ‘“05"'
‘A “\'“:Ww\o e ok e
Nl W™ b 1 gty o)
RN UL 4 E
VAR (4o =

| | e
RFC FORMAT ' ¢
) w' L ¢
| e
: ok @,
? v)(65(’ (’ V‘k (S
LOAD ADDRESS gyt
o
e
START ADDRESS s b ol
63‘5 12, lovt© ok
wmp T
" | MACHINE g
PL o | D | foad 2dd
MEMORY
IMAGE

RFC - Run File Converter

| “Calhng Sequence :

Xr"‘w

MUNCH (ctypg unit, Iv_num, flags, os_data)
flags = set of (new_prom, dtty, normal)

os_data = Paging file UID
Root directory UID
Node UID (host)
His node ID

O

e Y -

1
\
N

AEGIS Initialization Sequence
* Save ARGS for PROM
* Copy TRAP PG to 100400

* Initialize MMU 1:1

* Initialize OS TRAP /FAULT
Vectors s

£
e S ol © oY

* Turn On ECCC/Parity "= 4

* Call OS_$INIT to Do Hard Stuff

K

E S

", | AEGIS Initialization Sequence OS. INIT

Initialize I/O Devices

Initialize Managers—Clock, UID
PROCI, SMD, DTTY, EC2,
DBUF g

(ﬁslf— buwtlecs

Mount BOOT VOL & Verity
Calendar |

W\mj

In1t1ahze VM MGRS—MST
AST, FILE

Fix Up Address Space
(Activate Segs, Wire, Whole

| Cloth) TRt

Create OS Processes—Clock, ewit puesss
Term Helper, Purifer, Net
Servers

Become Process 1 DM, e 5
Initialize PROC2 MGR
PROC2_$ STARTUP

FTp einly

ki a ..:.__

we
Lawy,

“t

& Lo LIES:
s “.n mlf _.nv._ —“H-nw ..”ww w
;vﬁ:&mm VT ARG |
-t W

-
-
e
et

AAKE BR/IO rced on'y
TRE

_r,_u i m v

[ERERLH

=

JATA

aua »..-t n\.i

Fi ___f.u. m.n...

i o o : {iDE
1 ﬁ i .,_ﬁ, ® m.ﬂ,,._ . oo
. F o F s A PALD -

4 {SYSTEMY vt i

i ﬁymgqn%_, Y

(e

HIOGE

nu.f @N\ ,...r—n..lu -; ..al.\...
2ot BHELL (RFCRk 2

3 STATIC *| HepE

LW

HoO0G — - ——— :
& . SUPERVIGOR PRIVATE !

O UNUSED I

e | IO

Ty

O

Bootshell

- RFC’ed PGM
- Mostly VeStigial reSting point now
— Commands |
* Version of MD
* VM, FS commands . Q
B
WD, LD, MAP, UMA
ot gt ¢ gmmmind s

* /BSCOM |
| LAS, CPBOOT, DLT

é C‘GO” CCDM’D CCSH” 6(SPM9? __> ~
loads ENV & passes flag

— Runs as USER.NONE.NONE
except for DM, GO, SH, SPM

TAPE BOOT

Why ? DNS550 has no floppy, so how do

you load software on a new disk ?

The NEW Invol creates /sys/mode data
From PROM > DI C ex (any SAU)

Cartridge Tape :

ctboot|fm] ...aegis... bscom/rbak_shell |

A f
| | |

“CPBOOT /SYS —-DEV CT” “WBAK -SYSBOOT’

" AEGIS: “NO, LET’S NOT PAGE TO THE

CARTRIDGE TAPE”

PROC2_SINIT: “IF BOOTED FROM TAPE,
FIRST RBAK BSCOM/RBAK_SHELL

RBAK_SHELL : LIKE SHELL, BUT RBAK

FILE #1 BEFORE CONTINUING
THEN; “GO”, LOGIN, INSTALL FROM TAPE

ere s

il

N

REQUESTING AGENT

FILES REGQUIRED DURING BOOT 01/18/85

FILE

PROM

if tern:

SYSBOOT

AEGIS

[

\¢
e

G

(7
c.(‘y .\QA‘&

\0\

‘5‘5;)‘«5\(&(“ '

/SYSBOOT (records 2-B on track O)

/SAUNn/WCS . UC ({microcode file)
DCODE.UC (instr. decode RAM contents) :
SPAD.UC (scratchpad constants and temps)
ULOAD (program to load the above)

/SAUn/AEGIS (AEGIS load file)

/SAUn/SALVOL (only if salvage required)

Los paging filel (uncatalogued)

// (UIDs found and saved by NAME_$INIT)

/

/COM

/8YS/NODE_DATA

/8YS/PEB_MICROCODE or PEBZ_MICROCODE(1)

*NODE_DATA/SHELL(2) (mapped by PROCZ_$INIT)

;@ e TTrYe———

SHELL *f;r*”

ENV

DM

BOOT

Notes

%

/8YS/APOLLO_LOGO(3) o

: le, P+t o e
boot shall et [glen{ly e P9
*NODE_DATA/STARTUP_SHELL(3) <(cmd file to override df Its)

/SYS/ENV (SHELL tells him what to run)

/LIB/ 7% o

/SYS/DM/DM “GO" command or normal boot -0R-
/SYS/B0OT “SH" or boot from S10 line ~-0R-

/SYS/SPM/SPM “SPM" or normal boot on server node
\NODE—DATA/DEV/Slol VM eiree éSStLj& ﬂc‘@b hert wien |¥ avrashes ,
/SYS/DM/FONTS -
*NODE_DATA/STARTUPL.1SL, .COLOR3(3)
/8YS/B0OT
/REGISTRY/REGISTRY(4) {(+PP0O,Account files pointed to)
LOCAL _REGISTRY
LOCAL_S1TE/?»

/COM/SH .

(1) PEB is disabled if microcode file not found.

(2) If booted from cartridge tape, the tape is first searched for BSCOM/RBAK_SHELL.
(3) Optional -— system will manage without it.

(4) If no registries are available, you can login only as USER.NONE.NONE.

- wmo wm we we wm a= aw

STARTUP FILES

: : 06/23/84
"= === > => unconditionally executes 7
- = = =3 =) executes if it exists

Netman copies /sys/dm/startup_templates (startup, startup.191,

startup.color to ‘node_data : +
(If booting node is a DN300, only STARTUP.ISL is copied, '
and a “kbd 2" command is tacked onto the end.) v
AEGIS :
v : : ‘
“NODE_DATA/SHELL - - - - - > “NODE_DATA/STARTUP_SHELL Ak :
' (override of default starting '
' of dm, sh, or spm)y ;. .texciia ¥
V ‘ ‘ I‘;l‘ v)hlr‘k'u 9 heier
/SYS/DM/DM ===== 3 ‘NODE_DATA/STARTUP ~ (420 portrait)
H STARTUP.19L (300, 320, 460, 550)
H STARTUP.COLOR (600, 660)
H (def ine dm windows, start netman,
\ mbx_helper, etc., kbd command)
H (If ‘node_data/startupl.xxx] isn’t found, the DM will fook for
; /sys/dm/startupf.xxx], but this is undocumented & not shipped.)
Vo =====> /3YS/DM/STD_KEYSL2]
(LOGIN) (default key definitions)
N et > USER_DATA/KEY_DEFSC2]
H (persoﬁal key defs from last login)
H - = = = = > °“NODE_DATA/STARTUP_LOGIN C(.15L, .COLOR]
; else
VY = e = > /SYS/DM/STARTUP_LOGIN [.19L, .COLOR]
H (per—{ogin processes, first window,
) by convention, points to ————————-—- +
H - - == =2 USER_DATA/STARTUP DM [.19L, .COLOR] <--—-+
' (personal key defs, bgc, etc.,
b optionally points to +
v ~ ' :
/COM/SH - = = = = > USER_DATA/SYARTUP.SH {mm e —+

(check mail, ﬁetsvc, etc.)

CRASHES

NODE IS
HUNG IN MD (Cc>9a
USE
| NETSTAT ~%
NPST - all PST ~iy -
- LSYSERR
LOOK FOR
DISK / NETWORK ERRORS
SICK SIO ?
MEMORY PROBLEMS
NETWORK TRAFFIC

READY LIST MESSED UP "
VTOC (SALVOL)

CRASHES
NODE IS

SLOW IN MD (%>

CHECK

LIGHTS ?
CURSOR ?-
NETWORK ?
KEYBOARD ?
~ SERVICE MODE ?

N

CTL RETURN RESET
Double Bus Error
?\Ioetl;(,)(?rli){' Disabled Loo
Lost Interrupt Bus (L gcé\é%\/l .
iqh
Ready LISt (bad controller) J
Sick CPU
Y i o of
ovder, e delede
PBu.(5h * LGP0 s
Mafor culgeit in 5 giewing
Y@ ready ’156},

CRASHES
'NODE IS

O

HUNG , SLOW

¢ o pd ae
SN2 P R [e N
\r.x'e MJV:J unn"‘() ¢e!° d

‘T, “8”, “U”, “Z” ¥ CRASH STATUS
o gt A
111 b b / '

-

Bad CPU
Bad Controller
Look at Instruction

O | HARDWARE SOFTWARE OPERATIONAL
| DISK (8xxxx) A0001 10005
NET (11xxxx) 1B0001
FLT (12xxxx E0007
PBU (1Exxxx F0007
VME,,, (27xxxX) | - 50006
CI‘M/;"{,LWV\
A 5:4’&% aj“’vx\'-
> G
L4702
SG okt 2

| Q CSureen sortocd qp)

AF (refcesh screen)

TN

Q

- DB

E20458— AEGIS.MAP

\W

LOADED BY “AM”

e

w,,»"

)(\f-"vrl,q?x\?’(r‘

5| SAVED MMU

PF0000 &

DUMP

LOADED BY “MA”

33A058

- {\\‘&
\o‘;(o
&L

“AL” MISS STATUS

T

. DB CRASH ANALYSIS
— State of the machine:
7;(,,\\»‘) &Q . i
ST, DR, DN460, DP, RL, GD,

fer 8 *

TS, MST <a51d> VM

— Error H1story
DS, MR, LE

N — Disk Status
o) DCT, DVT, PVL, LVL

— AEGIS Variables s

W o o
S

MISS_STATUS, VME_$SAVE
NETWORK_$DISKLESS
TIME_$CLOCKH

PARITY INFO,
DCTE.BLK_HDR_PTR’

CPU B PBU SWITCH

O

_ Spm s alweys <
SV(V\ one et cicates TITC

SMP/CRP S
— Server Process Manager

* Services requests to create
processes on this node

* Supports CP, CPO, CPS
requests

* Replaces DM on DSP-type v
nodes |

* Requires MBX_HELPER

— Create Remote Process
* Makes requests of remote SPMs
* Supports CP, CPO, CPS requests

- * Provides streams for CP requests
“window on remote process”

* Requires MBX HELPER

fle

D*J(’S M@'&
‘D\K V\\ 0 5!

S SPM Details

N
/\(\ N

- If Process 1: (DSP, DM Replacement)

* INIT process name directory
open STD streams e ety Jpre e

Set name to |
- “SERVER_PROCESS MANAGER?”

Set WD, ND, to “p

Process arguments

¥ HIGH LOW = priority of
spawned
processes

¥ | MBX = mailbox to open on

* NLOGIN = processes get SID of
SPM \

Process
‘NODE DATA/STARTUP SPM

Create mailbox
(NODE_DATA/SPM_MBX)

SPM Details (Cont’d)

~— Wait for things to happen
* Invocation requests on mailbox

* MBX HELPER problems
(restart)

* Shutdown (if PROCESS_1)

CRP Details

Processes Options (-DB)

If CP, Creates Remote Mailbox

* "NODE_DATA/CRP_MBX.n

Opens Channel on Remote

* SPM_MBX

Issues Invocation Request

‘Waits

* SPM_MBX for Response
* CRP_MBX.N for Opens (CP)
Closes SPM_MBX Channel

Waits and Services Inputs

* STDIN -> CRP MBX
% CRP _MBX -> STDOUT

Honors Certain Pad Function Calls

| CRP Details (Cont’d)

— Faults
o QUIT, INTERRUPT

forwarded only
* ALL OTHERS Step fuult weded

fo stop (RD
forwarded & signaled
— Invocation Flavors
. % CP

opens streams to MBX _UID
passed

invokes SPMLOGIN passing
command line

* CPO and CPS | |
opens streams to /DEV/NULL

invokes SPMSID passing
command line

— Processes are Marked as “Servers”

-~ SPMLOGIN & SPMSID must be

stamped in LOGIN subsystem

- I/O Anomalies for CP’d Processes
¥ Prompts

Type—-ahead Forwarded
Immediately

* No Graphics or Pad Calls
Supported

- ACLS

* on SPM node |
K

‘NODE _DATA = CRL for
directories and DWRX for
files

* on client node

'NODE_DATA =R

- SHUTDOWN Event
(SPM = PROCESS 1)

* Kills All Processes
* Closes SPM Mailbox
* Calls OS_$SHUTDOWN

'~ Can Run in Window, Logs Events

CRP -CP

DSP - xxx
Server Process_Manager USER_X.SFE
- : MBX_HELPER |
“/COM/SH”
(11 SPM”
N
/DEV/ SL(lSP M ' ‘Node_Data
'."\V. Y RVEE .
ot f{a‘fa‘ g w0 SPM_MBX ‘Node_Data
o* RO o\\\i
e A CRP_MBX.n
(‘}‘,w- _L
A
USER_NODE_SFE F; .o
. 3= w,}g . (“6/.
PROCESS_X Lo et
= \i s X:?e"*“: ao%‘;‘& | v
o & ./\\r‘ Wl -\
é————=’= \ \;\‘;‘\\(;T Sﬂﬂ\c\oqw '
“CRP” e
ooooaoad MBX_HELPER
Bﬁﬁ VIR |

O EVEN MORE SPM DETAILS

 SPM REQUEST :

VERSION NUMBER
OPERATION [CP, CPO, CPS]
MBX _UID (for CP)
LOGIN INFO (for CP)

COMMAND LINE for

INVOKED PROCESS

SPM RESPONSE :

VERSION NUMBER
STATUS
PROCESS_UID
ERROR_NAME

' SIOMONIT

— Supports successive logins over SIO
lines, independent of local node use.

* Invokes SIO line watchers

~ SIOLOGIN
* Gets instructions from a file
* Logs its activities

* Should run as a server

SIOLOGIN

Watches a single SIO line

Runs the SHELL FILE ,
'NODE_DATA/STARTUP _SIO.SH

Performs login sequence

Invokes specified program :

- Supports DIALIN and DIRECT
connect

uy&ﬁ

Additional password on DIALIN °
One login per invocation

Must be stamped in LOGIN subsystem

o SIOMONIT and PROGENY

‘ ‘node_data/siomonit_log |

_/
HISTORY

SIOMONIT
- Siomonit_file '
' ISYS/SIOLOGIN|
| ~ /SIOMONIT
INSTRUCTIONS

‘node_data/startup_sio.sh

!

SHELL
COMMANDS

. SIOLOGIN?2

DIALIN

SIOLOGIN1 ‘node_data/siologin_access
(shhhhh... 1)
/ISYS/SIOLOGIN| -
/SIOLOGIN
. ‘node_data/siologin_log

Z\/ | HISTORY

/DEV/SIO1

ISYS/SIOLOGIN
/SIOLOGIN

N

/DEV/SIO2

e | | Other Things to Know
— SIOMONIT

* Reads SIOMONIT FILE

At Startup

At Child Death if
—RESTART option

" When ‘QUIT’ Fault Received

ol - Every 15 minutes if there is |
| Child Death -

— You can change SIOMONIT_ FILE
and “SIGP” to kick it off.

- “SIGP -STOP” will stop SIOMONIT.

— Waits 15 seconds to be sure child
stays alive. |

— SIOLOGIN

* Must be stamped in the LOGIN
- subsystem

Hangs up phone line if
—DIALIN option

* Can use STARTUP_SIO.SH
to force unlock

“ULKOB /DEV/SIOx -F”

| deswi loé‘d o

ALARM_SERVER """
- Brings to user’s attention certain
asynchronous events
— Events currently supported
* MAIL ‘
* DSEE TASKLISTS
~* Disk is full for “/”
* Ring hardware failures -
* N ETMAIN observations

— Requires MBX HELPER

~ ALARM_SERVER: How It Works

Internal Scheduler plus Array of
Procedures

Schedules by Time and Certain
Event Counts | |

Opens Mailboxes in
- 'NODE_DATA and
~-USER_DATA for
SEND ALARMS

Diddles ACL on -USER_DATA
MBX for MBX_HELPER

Requires Binding with
Initialization and Service
Procedures

Cost
* once/minute = 1.5% CPU

Proca_$oeTomy_name

Store and Forwérd

TPC from X to Y when Y may not be
available

Contrast to MBX
Stuffs meSsages in SF_ QUEUES

- Requires at least one SF_HELPER on
ring o |

Supports routing & notification
‘Special Queue : /SYS/SF/LOCAL_Q
- Used by DSEE

Interface NOT released

Mes
/e it rfx”& g
NPT :
eqﬂfj“‘mﬂ ;
S N F [00‘“’5 a/d’ . , /’ G@LC
So\w«hﬂ": | /" Qxcp .
ynctob) 4 de _uplatt

 SF—How it Works

— Program calls SF_$PUT

* “Enqueue this message over
there.”

“OK—done?” or “Couldn’t. I
put it in the LOCAL_Q.”

- — Some time later

* SF_HELPER wakes up

* Looks at his queues

* Moves message ‘over there’ |
* Can look at all LOCAL_Q’s

Uses // directory for
"ALL LOCAL

* Runs as USER.SERVER.NONE
— Notification Support

* A process may register at a queue
and receive fault notice

AEGIS
PERFORMANCE

ANALYSIS

Performance Analysis

— Proactive
’ | C‘iésif}vx pe-’&mm‘tcza
* COSt: X ' o a{)pl{cwﬁm
* Benefit: 10X
— Reactive,

% Cost: 10X

* Benefit: X

s

Important Nonlinear Effects

* Queueing

- * Caching

* Tuning

moOZ>23TVOMIMTU

QUEUEING

6(‘)60%{’5 ow 1le y\g%o«k)

7 of Pacicetz, Ypockats = magimum goeae depth of scekets
QUEYE DEPTH N
| ‘ Worst cagss: ‘
fast. X Hat reads
go\v’é P.’"al)um"s 0\:”‘3 Y)&’jﬁs f/a o ¢ %Jl+ﬂn,6“rtr1¥js 8"\‘9-) {1&-\26‘;‘:‘
/ an \
by oot 4 ‘i; o NI lm{h_&”g@,;;.»ﬁﬁﬁﬁé o | |
By weD pelly M2 w8 o, ‘“thw“e'tw o oo

o Y).‘S)ﬁ“ ' %
. Dl P pateg e e 1S

mOZ>»>ZVOTMIMTU -

CACHING

/\uﬂnl\s thtch Ha
Pwugﬁ(’f = devnud paﬁv‘j’

\CW‘“ ‘105 iy e Ce (o cles., Se

“he Pur
» ”’ r\hsp“ (ﬁmf’ c‘f' Scﬁz« andd c]?ﬂ‘é/ﬂ nes
/](}"‘S |Sn0j‘ a5 A/ fle Pacg, Hot you Can ign'
bad &5 ASTE Phreshing ¢ P iwgc'rmqh'bm {S ﬂcwd.
o ASTE bt e o 4
30/+ “ ,V:.fﬁ el e PG | CM.WG ,
Cflge— Ejjw” (0O
N
CACHE SIZE .
) .
ey S} Yot
sorY ¢ \\’ Cl\)
N I SN 040 o po e
VOCM\/ A 4’0"\0"«“3 ldaa}u@r@
i . m)p(\\/\rl\\\3 o "
(by ©

O

mOZ>Z3J/VOMI/MTU

TUNING

TIME SPENT TUNING

A\

Tuning

* Start with a known baseline
' e giwple Jest pre
ortke qﬁ;P gre Ilvw(?hfb

avam S
lﬁms .

* Define performance require—
‘ments |

* Go for “smoking gun(s)”

’n\lnjs -f\a-k lww{; pass?ble, dmma'h‘c 65&6/5

* Measure effects ot cech pond
in Ahe uning process,

O ,

Benchmarks

o0 how netsuc

. NETSVC -L (if possible) = egguor pesfomerc

,,a(f (all 595+Hns o ne#wa«k>

. BLDT (;Ma,fbé Sut jow 0‘0‘1'} havt

difweat revg g e peksork)

. /SYSTEST/COM/CALIBRATE pght b 0P

T Tmeasues CPU peve

. NETSTAT -L —CONFIG (before
and after)

. PST -—PA ~-L.1 (before and af'ter).
. Run benchmark

. Save pad and a LD -A -SI (_;;f all

important files

CP“(

O /SYSTEST/COM/CALIBRATE i **

— CPU “benchmark”
| * no I/O or paging
* single memory reference
* extremely consistent

* can be affected by “ldading”

| — Typical Values (calibration ratios)
© DN400: 104 '
- DN300: 0.70
DN420 (w/ PEB): 0.70
DSP80: 0.80
DN550: 0.82
DN460: 0.19

\
N e whole (oc-?
7,[\{.}3;,1 e }c,ackt

The Complete Application
Debugger’s Toolbox

DEBUG

PROGRAM
¥ Self—Monitoring

TB (Traceback)

FST (Fault Status) i diagaestic frenc

PST (Process Status) '

LAS (List Address Space) -u |
LLKOB (List Locked Objects) -

DB (MD-style Debugger)

o - DEBUG

« Us | =
. Sd""b"‘ dor i
"PAS -DBS or -DBA
* REGS |
& FPREGS oot al 3@4@,},«%@%“
* DB
— PROGRAM self-monitoring
% Use
o - PAS -COND B
| {% DEBUG} VEMT _$...
- * Switches
| -DB

~MONIT (eg. EMT)

~ PST - |
| -L1 (Level one processes)
-TYPE (aegis/user/server)

O

DISPLAY MANAGER

CORE GRAPHICS

| GRAPHIC

GPR LIBRARY

- (Graphics Primitives)

STANDARD LIBRARIES

METAFILE
RESOURCES

PM, STREAM etc.
USER ,
SUPERVISOR
Monochrome BLT and
: monochrome text OUTPUT
SMD control

Keyboard / Locator .}INPUT

Display Arbitration

VIRTUAL MEMORY ‘and PROCESS CONTROL

apollo
DOMAIN

Integrated Local Network of Workstations

Workstatlon (node)
— virtual memory
~ bit-map graphics / pointing device
— 12 megabit / sec token passing ring

Operating system (AEGIS)

— hetwork—wide flat file system
typed containers identified by UIDs

— network-wide hierarchical name-space

— network transparency for object access

— single-level-store (SLS) |
objects are “mapped” into the
process virtual address space and
operated on with machine instructions

Hierarchical
pathnames

A 4

NAMING

.....................

SRR AN R S R e N N i

O, name-to-uid
o

i
l
Ra

Direct Mapping Concurrency
(virtual addresses) demands

M T

|

' STORE

R cache
object address management

(uid / offset) | - l

l

OBJECT STORAGE SYSTEM

O | SINGLE LEVEL STORE
| (SLS)
Mapping objects |
- manage per-process Vvirtual address space
segmented — address space and objects
 virtual address —> object address |
- NO KNOWLEDGE OF OBJECT LOCATION

| virtual process'
Q S address id

mapped segment table |
manager

object address
(UID, offset)

| S OBJECT STORAGE SYSTEM (OSS)

- Object locating
UID —_ /ocat/on in the network

Location independent object management
create, delete attributes control

Demand paging |
(UID, offset) —> physical memory page #
physical memory page cache management
O “active” object table management
disk storage management |

object address
(UID, i)ffset)

active segment table

diik phyiical netvtork

O 1/0 memory 1/0

$ netstat -l -config

The node 1D of this node is 1797.

*kk® Node 1797 +4«vx “//slash”
Time 1985/03/05.17:12:12 Up since 1985/03/05.17:10:57

Net 1/0: total= 18 revs = 10 xmits =

0 page-in requests issued.
0 page-out requests issued.
0 page-in requests serviced.
0 page-out requests serviced.

Detected concurrency violations —— read: 0 write: O
Xmit count 8 Recv eor 0
NACKs 0 Rev cre 0
WACKs 0 Rev timout 0
Token inserted 1 Rcv buserr 0

- Xmit overrun 0 Rcv overrun 0
Xmit Ack par 0 Rev xmit-err 0
Xmit Bus error 0 Rcv Modem err 0
Xmit timout -0 Rev Pkt error 0
Xmit Modem err - 0 Rcv hdr chksum 0
Xmit Pkt error 0 Rev Ack par 0

Delay switched OUT.
Winchester 1/0: +total= 1540 reads= 1149 writes=

Not ready 0 Contrir busy 0
Seek error 0 Equip check : 0
Drive time out 0 Overrun 0

CRC error percentage: 0.00%

No ring hardware failure report.
System configured with 1.5 mb of memory.
A total of O parity errors were detected.

NODE CONFIGURATION
Node Type: DN300/DN320
Display type: 17/19 inch landscape display
Disk type: MSD-34M . ~

391

¢ pst ~il ~pa -ty -r

Processor | PRIORITY | Program § State ! Private | Global DISK $ NET § Typs .4 Procsss
Time (sec) | mn/cu/mx § Counter ' { Faults { Faults | Page 0 § Page 101 (WD | Name
17752 s one e s .J""’{ * 0. X - agi
. 18 0 (i (;?kady:,(wp‘l' Q“‘(‘ oy Q0 O s\\,\Q"*] 0 ,aegis <Mull Process>
L 0.767 1/16/18) - Mait n‘\‘){ 0 }O‘\,,w’:’b“n 0 ’ (] \Q} 0) aegis <Clock Process>
Q 2,037 1/16/18 COCCOOED | Wait \‘k\‘* 0 wa‘ 0 [4718 ™ 0\%«” aegis <Pags Purifier>
. 0.368 1/18/18 C&COOEOS Mait © 0/ ay)‘“] { 0 0 aegis <Terminal Server?>
0,001 1/18/186 COHCCOOEQ | Mait 0 ¥ 0 0 0 aegis <Net Receive Server>
0.001 1/16/16 COCCOOED S Wait 0 0 0 o aegis <Net Paging Server?
0.026 1716716 COCCOOEQD / Mait 0 1 '\ 3] aegis <Net Request Server>

18.786 - 18/18/186 1A6D6 MHait 545 889 / 981 0 user display_manager
2.181 1/18/16 1A496 Hait 76 -74 (na 0 server print_server
- 0,463 1/16/18 1AZ1E MWait 29 11 3 0 server wbx_helper
1.538 1/14/18 IASAE Wit 55 25 [48 1 user process_3
0.776 1/14/18 <active? Resady 56 S N 17 .0 user process_4

174.723 761 763 1662 1

Processor | PRIORITY § FProgram § State ! Private | Global ! D ISK ! NET | Type | Process
Time (sec) | mn/cu/mx ¢ Counter | §{ Fauits §| Faults § Page 10 § Page 10§ $ Name:

26,138 1/ 0718 0 Ready] 0 [\)] aegis <Null Process>
0.099 1/16/16 COCCOOED Hait 0 0 0 0 aegis <Clock Process>
0.099 1/16/18 COCCOOEO Hait 0 0 9 0 aegis <Page Purifier>
0.129 17168716 CHCCOOED Hait 0 2 2 [\] asgis <(Terminal Server?>
0.000 17167186 COCCOOED Mait LY 0 Y [\ aegis <Net Recsive Server’
0,000 17187186 CCCOOEC Hzit 0 0] 0 aegis <Net Paging Server?
0.001 1/186/186 CCCOOED Hait 0 o 0 [\] asgis <Net Request Server’
2.4497 18/16/16 1ABEE Ready 7 7 74 o user display_manager

Q 0.016 1/18/16 1A498 Mait 0 0 o 0 server print_server
0.000 1/18/16 1AZ1IE Hait 0 0 0 0 server wmbx heiper
0.276 1/15/16 38B5E Ready 10 4 19 0 user process_3
0.655 1716716 <Cactive> Ready 3 2 2 0 user procsss_4
29.864 20 15 S9 0
Processor | PRIORITY ! Program § State ! Private ! Global 1 DISK§ NET { Type ! Process
Time (sec) § wn/cu/mx | Counter § { Faults § Fauits ! Page IO § Page 10 ¢ H Name

16,701 17 0/16 0 Ready]] [\ o geqis <Null Process?
0.097 1/16/16 COCCOOED Mait o 0 o 0 aegis <Clock Process>
0.086 1/15/18 CSCCOOED Wait 0 0] [\ aegis <(Page Purifier?
0,064 1718716 - COHCCOOED MWait 0]] 0 aegis <Terminal Server?
0.000 1716716 CSCCOOED Hait 0 0 0 0 segis <Net Recsive Server>
0.000 1716716 CSCCOOED Hait 0 0 0 0 aegis <MNet Paging Server>
0.000 1718718 CSCCOOED MHait 0 0 0 0 aegis <Net Request Server>
1,189 18/18/16 1A6B8 Ready V] Y [0 user dispiay_manager
0.016 1/16/16 1A4968 Hait 0 o o 0 server print_server
0.000 1718/16 1A21E Hait 0 0 o 0 server wbx_helper
11.209 17 /18 280078 Ready 35 21 31 0 user process_3
0.805 1718718 <active> Ready 2 0 (4]] user process_4

29.969 37 21 37)

.
@,

$ ringlog -start ,éjsfesf/ssatyﬁ|/m4¢¢oj - start
Ringlog [3.2] -Sfop
$ lcnode

" The node ID of this node is 2246.
2 other nodes responded.

Node ID Boot time Current time | Entry Directory

2246 19685/03/05 10:49:54 1385/03/05 10:55:33 //srB8.1

2EF6 1985/03/0S5 10:41:55 1985/03/05 10:49:23 //node_Zef6 ~ ‘
146C 1965/03/705 10:11:25 1985/03/05 10:49:23 ++» DISKLESS »#* partner node: ZEFB
$ 1d //node_2ef6

Directory “//node_2ef6":

bscom com dev domain_examples
ftu install Iib preserve
registry sauZ saud sse_035

K113 sys.delete sysboot systest

16 entries.
$ Id //node_2efB6/com

Directory "//node_ZefG/com":

acl arcf args bind “bidt
calendar catf chhdir . chn chpass
chpat chuvol ~ elstr cmf cmsrf
cmt cpboot cpf cpfx25 cpl
cpscr cpt crd crddf crefpas
crefs ' crf o cri crp crpad
crrgy crsubs crucr ctnode - ctob
cvt_rec_uasc date db ' dcalc debug
didup! dif dil , dit dmtvol
dsee ed edacct edac| edfont
edmtdesc edppo edstr em3270.icci em3270 . kmw
em3270.pci emhasp emrje emt emtx25
ensubs esa exfid find_orphans filen
fme fmt fpat ‘ fpatb fppmask
fserr fst ftn ftp haspsvr
help host : hpe invol | amf
las Ibr Ienode Id tkob

i {kob login lopstr irgy lusr
Ivoifs macro mtvol mvf nd

net netmain netmain_chklog netmain_note netstat
netsve obty oed 05 pagf
pas ppri ; prf probenet prsvr
pst rbak revl rjesvr rwmt
salacl sald salrgy salvol scrto
sh siqgp siorf _ siotf srf
stcode subs - tb - topstat tetl
tee : telnet tile tpm tugs
tugs_author tz uctnode uctob ulkob
vetl vsize - vt100 wbak wd

wi wlist xdme xsubs :

149 entries.

O

$ llkob //node_2ef6/com

Use

43 files locked.

Constraint

nR_xor_1W
Cowriters
nR_xor_1NW

. pR_xor_1KW

nR_xor_1W

“nR_xor_IW -

nR_xor_1W
AR_xor_1W
nR_ xor_lu
nR_xor_1HW
nR_xor_1W
nR_xor_1W
nR_xor_1W
nR_xor_1W
nR_xor_IW
nR_xor_1W
nR_xor_1HW
nR_xor_IN
nR_xor_1W
Cowriters
nR_xor_1W
nR_xor_1W
Cowriters
nR_xor_1IW
Cowriters
nR_xor_INW
nR_xor_1W
nR_xor_INW
nR_xor_1NW
nR_xor_1MW
nR_xor_1W
Cowriters
nR_xor_I1W
nR_xor_1W
nR_xor_1W
Cowriters
nR_xor_1MW
nR_xor_1W
Cowriters
nR_xor_1W
nR_xor_1W
nR_xor_1W
nR_xor_IW
nR_xor_IW
nR_xor_1W
Cowriters
nR_xor_1KW
nR_xor_INW
nR_xor_1W

Home
Node

2246
2246
2246
2246
2246
2246

2246

2246
2246
2246
2246
2246
2246
2246

. 2246

2246
2246

2246

2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246

2246

2246
2246
2246
2246
2246

2246

2246
2246
2246
2246

2246

Locking
Node

2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2746
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246
2246

- 2246

2246
2246
2246
2246
2246
2246
2246

Pathname

/sys/node_data/stack
/sys/node_data/shel |
/sys/node_datas/hint_file
/sys/node_data/sys_error_log
/sys/node_data/data$
/sys/env
/sys/node_data/global_data
/iib/pmlib

/Vib/syslib

“/lib/streams

/1ib/vfmt_streams
/lib/error

/1ib/swtlib

/1ib/ftnlib

/1ib/pbulib

/lib/gpriib

/lib/clib

/1ib/shlib

/1ib/tfp :

/sys/node_ datasac! _cache
/sys/node_data/stream_$sfcbs

~ /sys/dm/dm

/sys/node_data/dm_mbx

/sys/node_data/pdb

—— temporary file —

/sys/dm/fonts/fSx9
/sys/dm/fonts/legend. 191
/sys/dm/fonts/icons
/sys/node_data/paste_buffers/all_group
/sys/node_data/paste_buffers/invis_group
/sys/node_data/paste_buffers/icon_group
/sys/node_data/sysmbx

. /ecom/sh

/sys/mbx/mbx_helper
/com/prsvr
/sys/node_data/dm_mbx
/sys/node_data/dev/sio2
- Display Manager PAD —-
/sys/node_data/dm_mbx

~- Display Manager PAD --
/com/sh

/com/sh

/com/pst
/sys/node_data/paste_ buffers/agann
-- Display Manager PAD —-
/sys/node_data/dm_mbx
/com/sh :
/systest/com/callbrate
/com/ 1 lkob

% ringlog ~stop

Ringlog £3.21
odata.index = 53

From TO

NODE TID Sock Sock RQST/RPLY
xut 0002 ICWHO INFO 2 O
rov ZEF8 1C INFO WHO 2 1
rcv 2EF8 1IC WHO INFO 2 0
rcv 146C 1C INFO WHO 2 1
rov 146C ~ IC WHD INFO 2 0
xmt 2EF6 1D 12 INFO 2 2
rcv 2EF6 1D INFO© 12 2 3
xmt 2EF6 JE 12 INFO 2 C
rcvy 2EF8 1E INFO 12 2]
xwt 2EF8 IF 12 INFO 4 4
rcv 2EF8 IF INFO 12 2 S
xmt 2EF8 20 12 PAGE info' raost:
rcv ZEF8 20 PAGE 12 info rply:
xmt 146C 21 12 IW0 2 2
rcv 148C 21 INFO . 12 2 3
xmt 146C 22 12 INFO 2 c
rcv 146C 22 INFO 12 2 D
xmt O00Z 23 WHD INO 2 0
rov 2ZEF6 23 INFO WHOD 2 1
rcv 26F8 23 WHO INFO 2]
rcv 146C 23 INFO WHO Y4 1
rcv 146C 23 WHD INFO 2 0
xwt 2EF6 24 12 INFO 2 2
rcv 2EF8 24 INFO 12 2 3
xmt 2EF6 25 12 INFO 2 C
rcv 2EF8 25 INFO 12 . 2 V]
xmt 26EF8 26 12 INFO 2 4
rcv2EF6 26 IO 12 2 5
xwt 2EF8 27 12 PAGE info root:
rcv 2EFB8 - 27 PAGE 12 info rply:
xmt 146C 28 12 INFO 2 2
rov 148C 28 IN0 12 2 3
xmt 148C 29 12 INFO 2 C
rev 148C 29 INFO 12 2 0
xmt 2EF8 2A 12 PAGE info rost:
rev 2EF6 ZA PAGE 12 info rply:
xwt 26F6 2B 12 FILE lock rast:
rcv 26F6 ZB FILE 12 fock rply:
xmt 26F6 2C 12 PASE info rqst:
rcv 2EF6 2C PAGE. 12 info rply:
xmt 2EF6 20 12 PAGE multpg rqst:
rocv 2EFS 20 PAGE 12 multpg rply:
rcv 2EF6 2D PAGE 12 mulipa rﬁty:
xwt 2EF6 2E 12 FILE unlock rast:
rov 2EF8 2E FILE 12 unlock rply:
xmt 26F6 2F 12 PASE info rast:
rcv 2EF8 2F PAGE 12 info rply:

SO 00O

02246 3E7 E0 38E8 E2 1000 2246 1 €0 8000
‘0 0 O ZEF8 BIFF 37 C 2 20 13 Ffi
02246 3EE €0 30E8 €2 2020 2020 2020 2020 2020
0 0 0148C BIFF JEEFECO O 0 E2ESSC
02248 3ES £0 3WBES E£2 2020 2020 2020 2020 2020
0 0 109 0 7EF7 0 1000 2246 1 £0 8000
0 2524 SE2C 2524 €407 cC 2 20 13 Ffi

0 FO FBA 3 FFO0 1000 2246 1 €0 8000

0 O02EF8 24 8407 C 2 20 13 Fi

0 FO FBA 3 FFOO 1000 Z24¢ 1 £0 8000

0 24FB €042 S000 ZEF§ cC 2 20 13 Fi

24FBCO42 . S000ZEFS type=8 SS=8000

29FBCO42 ,S0002EF8 info=

porm aysdir (nif) at=0

0 0 148 0 7e08 0 1000 2248 1 E0 8000
0 0 2524 42E5 2524 6407 FeCO 0 0 €2 €E55C
0. 0 14F 0 7EB1 0 1000 2246 1 E0 8000
0 0 0 ZEF8 FF24 64D7 F8CO 0 0 E2 €55C
02248 3E7 EO0 3BEG E2 1000 2246 i E0 8000
0 0 0 ZEF¢ BIFF 3E7 ¢ 2 20 13 Fi
02246 38 EO0O3WBEB E2 61 0 0 1 119F
0 0 0 146C BIFF 3EB FECO O 0 EZ ESSC
02246 3ES E0 3BE8 €2 C 2 20 13 Fi
0 0 268 0 D45 0 1000 2246 1 EO0 8000
0 0 2524 SE2C 2524 657A cC 2 20 13 Fl
0 0 268 07045 0 1000 2246 1 EO 8000
0 0 O26F86 24657A. C 2 20 13 Fi1
0 0 288 O 7045 0 1000 2246 1 E0 8000
0 0 24FB €042 S000 2EFE cC 2 20 13 Fi

29FBCO4Z ,50002EF8 type=8 SS=8000

24FBCO42 ,S0002EF6 info=

perm aysdir (nil) st=0

0 0 2FA 0 7006 0 1000 2246 1 €0 8000
0 0 2524 42£S 2524 657A FECO 0 0 E2 €55C
Ly 0 301 0 7CFF -0 1000 2246 1 E0 8000
0 0 O ZEF6 FF29 657TAFECO O 0

24FBCO42 . 500026F8 type=8 SS=6000

24FBCO4Z .S0002EFS info=

£2 ES5C

perm sysdir (nil) st=0

24FBCO92.50002EF8 —read lock — SS=8000

dtm=25245E31 .18 st=0

29FBCO42 . S0002EF8 1ype;=6 SS=6000

29FBCO4Z .S0002EFE info=
29FBCO42 .S0002EFS page=
29FBCO4Z ,S0002EFE page=
24FBCO42 ,.S0002EF8 page=
24FBCO4Z, 500026
st=0

perm sysdir (nil) st=0
0 (4 pages) dtm=
0 (1 of 2) dtwh=2524 s1=0
0 (Z of 2) dtwh=2524 3¢=0

£578009 '

24FBCM2 . S0002EF8 typs=8 S3I=6000

29FBCOIZ .S0002EFE info=

perm sysdir (nit) st=0

8§8=8000

88=8000

§5=8000

836000

22524 SS=B000

xmt 2EFG
rcv 26F68

rcv 2EF8
xmt 2EFG
rcv 2EF6
xmt ZEFB
rcv 2EFS
xwt ZEFS
rcv 26F8
xmt 2EFQ
rcv 26F6
xmt 2EF6
rcv 2EF6
rcv 26Fg
rcv 2EF8
xmt Z2EF6
rcv Z2EFQ
rov 2EFG

rcv 26EF6
rcv 26F8
rcv 26F8
xmt 2EF6
rev 26F6
rov 2EF8

rcv ZEF6
xmt 2EFG
rcv 26EF6
xmt 26F8
rcv 26F6

" xmt 2EF6

rcv 2EF6
xmt 2EFG
rcv 26F6

30 12 FILE nraive
30 FILE 12 nrsive
31 12 PAGE info

31 PAGE 12 info

32 12 FILE nrailve
32 FILE 12 nrsive
33 12 FILE lock

33FILE 12 lock
31 12 PAGE info -
34 PAGE 12 info

35 12 PAGE muitpg
35 PASE 12 muitpg
36 12 PAGE muitpg
38 PAGE 12 muitpg
38 PAGE 12 muitpg
38 PAGE 12 multpg
37 12 PAGE multpg
37 PAGE . 12 multpg
37 PAGE 12 muitpg
38 12 PAGE multpg
38 PASE 12 muitpg
38 PAGE 12 multpg
38 PASE 12 muitpg
39 12 PAGE muitpg
39 PAGE 12 mulitpyg
30 PASE 12 muitpg
3A 12 FILE untock
3A FILE 12 unlock

38 12 PAGE info
38 PAGE 12 info
3C 12 FILE lock
3C FILE 12 fock
30 12 FILE untfock
30 FILE 12 unlock
3E 12 PAGE info
3E PASE 12 info

rost:
rply:
rost;
rply:
rgst:
rply:
rost:
rply:
rgst:
rply:
rost:
rply:
roat:
rply:
rpfy:
rply:
rast:
rply:
rply:
raat:
rply:
rply:
rply:
rost:
rply:
rply:
rgst:
rply:
rqst:
rply:
rqst:
rply:
rast:
rply:
rast:
rply:

24FBCO42Z ,S0002EFG “COME. ,

“COM” st=0

8378000

29FBC7A4 . 90002EFE¢ type=8 SS=B000
29FBC7A4 . D0002EFE info= perm dir (nif) at=0

24FBCO42 ,S000Z2EFE “COME . ,

“COM" - st=0

“
.

S3=6000

29FBCTAY . 90002EF6 —read fock — SS=B000

dtm=2501C959.68 st=0

29FBC7A4 . 90002EF8 type=6 SS=8000
24FBC7A4 .90002EFG info= perm dir (nif) st=0

24FBCTA4 . 90002EF8 page=
24FBCTA4 , 90002EFS page=
24FBCTA4 , 90002EF8 page=
29FBC7A4 . 90002EFE page=
24FBC7A4 . 9000Z2EF¢ page=
24FBCTA4 . 90002EFG page=
24FBC7A4 , D0002EFS page=
24FBCTA4 . D0002EF8 page=
24FBC7A4 . D0002EFG page=

24FBCTA4 . 90002EFS page= -

24FBC7A9 . 9000Z2EFS page=
24FBCTA4 . 90002EFS page=
24FBCTA4 . S0002EF8 page=
24FBC7A4 .90002EFE page=
24FBC7A4 . 90002EF8 page=
24FBCTAY . 90002EF8 page=

G DOODDORD DD OO

24FBC7A4 .9000ZEF8 SS=8000

st=0 :

(4 pages) dtw= 82524 SS=8000

(1 of 1) dtwh=2501 s¢=0

(4 pages) dtw=52160598 SS=6000

{1 of 3) dtmh=2501 st=0
(Z of 3) dtmh=2501 3t=0
(3 of 3) dtmwh=2501 st=0

(4 pages) dtw=1AFECS59 SS=8000

(1 of 2) dtwh=2501 st=0
{2 of 2) dtwh=2501 st=0

(4 pages) dtw1AFECOSS SS8=8000

(1 of 3) dtwh=2501 st=0
(2 of 3) dtmh=2501 st=0 .
(3 of 3) dtwh=2501 st=0

(4 pages) dim=IAFECS59 SS=8000

(1 of 2) dtwh=2501 st=0
(2 of 2) dtwh=2501 st=0

Z9FBCTA4 . 90002EFE type=8 SS=B8000
29FBCTA4 . D0002EFS info= perm dir (nil) st=0
29FBCO42 ,.S0002EF¢ ——read Jock — S8=68000

dtm=25245E31.18 st=0

24FBCO4Z .S0002EF6 SS=B000

st=0

24FBCO42 ,S0002EFE type=B8 SS=6000
24FBCO42 ,.S0002EFS info= perm sysdir (nil) st=0

Changes for global libraries: 82/05/26

1) Global
a)

b)

c)

2) Global
a)
b)
c)

d)
e)

f)
3) Global

a)
b)

d)

2)

I Address Space
global space (8000-200000, or roughly Z MB)
1) pure KGT

2) pure code & data

available private space (200000-BC0000, or roughly 9+ MB)
1) 200000 (1) - process creation record
2) 208000 (5) - impure library data
3) 230000 (1) - guard segment
4) 238000 (8) - stack
S) 278000 (1) - guard segment
6) 280000 (2) - private kgt, rws scratch space
7> 230000 - available

you'fl see “guard fault" on stack overflow -_ohly once per process

Library Changes

all read-only sections, plus data$ are shared, ergo...

data$ section must be pure (ecb’s, ac’s, constants only!)

all other data must be placed in other sections (sugg. name: module_data$)
use new VAR statement syntax in Pascal, common in Fortran 7

impure externs must be handled specially (assembler module is required)
all uninitialized pure and impure data are guaranteed to be set = 0,
generaliy eliminating the need for library initialization procedures

2 new libraries: pmlib (process manager) and shlib (shell)

Library Installation

installed by process manager when ENV or DMENV is loaded
to install new global library:

1) rename old library (use change_name’'s -D option)

2) copy new library into /lib

3) exit and re-start the display manager (it's unnecessary to restart 03)
4) delete the old library (when you're confident of the new one!)

Iibrary initialization procedures are stili-called at process creation
streams is initialized at DMENV load time, by calling stream_$process_init
(a misnomer); no per—process streams initialization is currently

required

libraries are not unmapped upon return to boot shell. They are re-mapped
by env or dmenv '

4) Debugging Libraries in User Space

a)
b}

c)

d)
e)

use db’'s install command, as presently done

2e doesn’'t apply, so a main program or |n|t procedure may be required

to zero-fill data

names are inserted into private kgt, wh:ch iz searched prior to

global (pure) kgt

just a reminder that mark/release is still not called (this is unchanged)
special handling for streams: to use shared stream sfcb’s, don’'t bind
stream_pure_data.bin (omission of this will cause the global space
definitions to be used

5) Nhaf SSR's and certain customers should know:

a)
b)
_c)

d)

e)

can't mix and match SR4 libraries and OS with previous releases
customers may no longer bind their libraries with FINLIB

customers using mst_$map_at and mst_$seg_guard must also be sensitive
to these changes .

customers may now install a private library by creating an object

file named "“/lib/userlib.private”. The uvid of this file is captured

at system startup time (i.e. the time at which env or dmenv is loaded)
This mechanism is not supported

customers may install a global library by creating an object file named
“/tib/userlib.global“. These global libraries must adhere to the rules
outlined above. Apollo is NOT releasing or supporting customer global

libraries

O

Additional information on installed libraries.

1. Installing a library adds the entry points to a per-process database
called the “known global table“. This table is later used by the
loader to resolve globals that were left unresolved by the compiler
or the binder. ' ‘

2. If the object module is processed by the binder, all entry points which
are to be added to the known global table must be “marked” using either
the -mark or the —allmark binder commands.

3. The main program in an installed library:

When a library is installed using the inlib command, its main pfogram
is called only once, during execution of the inlib command, right
after the library is loaded.

When a library is installed as a global library (/lib/userlib.private),

its main program is called once in each process, when the process is

being created. Since the DM (or SPM) process is created when the node

is booted, the main program is invoked then, before the DM (or SPM) is
running. A library need not have a main program, and for global fibraries,
it is recommended that they N0V have a main program, since this impacts

the performance of process creation. Initialization will be discussed
further, befow. :

4, Multiple uses of library procedures:

Since a library's static data is initialized only once, when it is loaded,
and since the library may be used multiple times by different programs,
it will in general be necessary for a library to clean up its static

data when programs terminate execution. In many cases, the library will
have a termination entry that should be called by application programs
before they return to the shell. If the application program gets a fault,
or neglects to call the termination entry, the library should call it
avtomatically., (For example, any streams which are left open by an
application program are closed automatically by the stream manager (which is
a global library), when the program terminates. In order gain control at
program termination, a library may use the pfm_$static_cleanup. See the
programmer’s reference manuval for further information (actuvaliy, I'm not
sure this is documented right now). The ideal time to make

this call (i.e. to establish the static cleanup handler) is in the first
call made to a library procedure by the application program.

S. Initialization of static data:

When a library is installed using the inlib command, its static data are
loaded and initialized normally, just as if it were bound with the calling
program.

When a library is installed as a global library (/I:b/userltb private),
its static data is initialized in a special way: 4

1) The section named DAVA$, which by default contains all static data,
is initialized normally at load time (when the node is booted), but
is READ-ONLY when the library code is actually exscuted. This is

“done to save the overhead of re-initializing the static data in each
new process.

2) Other impure sections are allocated address space when the library
is loaded, but any static initialization specified in the object
module is ignored. Instead, these sections are always initialized
to zero in each new process. This is inexpensive, because all newly
referenced pages of virtuval memory are set to zero by the 08. These
pages always occupy the the same range of addresses in each process,
but are private to the process. Because they are guaranteed to be
zero, the library can determine whether further initialization is
needed by declaring a boolean variable which will be guaranteed to
be false on the first use of the library in a new process. Note that
this variable should also be given a static initial value at compile
time, since the static data of a library that is. INL1B'ed is NOT
initialized to zero. This way, the library will work whether it is
a global library or is INLIB'ed,

The way you get a static data section in Pascal ;s to follow the
VAR keyword by the section name in parenthesis:

VAR {(my_static_data)
init_done: boolean := false;
other_stuff: ...

The way you get a static data section in Fortran is to use named
common.

In C, each global variable is placed in its own static data section.

To summarize, when a library is INLIB'ed, its static data is loaded and
initialized normally, and uninitialized data will have random values. When
a l'ibrary is global, its DAVTA$ section is initialized, but is global,
shared, and read-only, whereas its named data sections are read-write,

- private, initialized to zero, and always occupy the same address range in
each process,

. Multiply defined names. If an external symbol defined by a library is

already in the Known Global Table at the time a library is installed
(either via INLIB, or global) the new definition will override the oid
one as long as the library remains installed. In the case of INLIB,
the overridden names will be re—instated when the shell that executed

~ the inlib command returns to its caller (e.g. a lower level shell). It

is thus possible to redefine system entry points using this mechanism, but
this is not generally recommended, because there is no way to reach the
real entries while the library is installed —— even from the library itself.

. Dynamic linking. A limited form of dynamic linking is available. When

a library is loaded, any external references which are still unresolved
after looking in the known global table are left unresolved, and no
message is given. This is true of ordinary programs as well as libraries.

If an attempt is made to call one of these entries, the attempt will be
trapped, and the symbo! wil! be looked up in the known global table again.
If it is now found, the trap will be removed, and the linkage will be

established permanently. Thus, a library can reference another library
which is loaded later. Note that this works only for procedure and function

calls =~ it does not work for data references. (When we relsase the system
call that installs libraries, possibly at SR3, this feature will be more
useful).

Asynchronous Fault Handling 1n AEGIS 83/09/08

INTRODUCTION

Async fault handling is broken down into two related operations
within the kernel: post and delivery.

An async fault is posted by calling PROCZ_$TRACE_FAULY with a
target process’'s pZ2_uid and a fault code (status_%$t) to be sent.
The post is most frequently made by a user space process; the
display manager requesting a quit fault is most common. Less frequently,
the kernel posts an async fault be sent to a process; sio line quits

and floating point (peb) faults are examples. All kernel-generated

async faults that I know about are generated by the terminal helper
process. (They can’t be generated by interrupt routines or cpu-B-eligible

code because the user process 08 stack may not be valid and
PROCZ_$TRACE_FAULT is unwired.)

Async fault delivery is done by FIM_UNWIRED. MWhen an async

fault is posted, FIM_UNWIRED is entered with a trace fault.
(Implementation details follow.) The trace fault code pushes a
diagnostic frame onto the stack containing the status code passed to
PROCZ_$TRACE_FAULT. It then enters the user space FIM (usually the
process fault manager) to perform user space fault handling.

A process that has received an async fault must acknowledge

it by calling FIM_$ACKNOWLEDGE. This must be done before any
more async faults are accepted by PROCZ_$VRACE_FAULY for posting.
FIM_$ACKNOWLEDGE is vsually called by the user space FIM.

IMPLEMENTATION

N.B.: The term “quit" or “quit favlt" used in the variable names and
the code is an anachronistic reference to the days when the model of
async faults was simpler. MWhen you see “quit“, read “async".

The kernel data structures used by the async fault mechanism are
indexed by the address space id of the target process. They are:

fim_$trace_sts: ARRAY [asid_t) OF status_st
the status code to be delivered to the process when a trace-
fault occurs. ,

fim_$quit_inh: ARRAY Lasid_tJ OF char
a flag that indicates the state of async fault handling.
A false (00) valus indicates that an async fault may be
posted for the process; a true value (FF) indicates that

the process has an outstanding (unacknowledged) async
fault.

fim_%$quit_ec: ARRAY Lasid_t] OF eventcount_t
a level 1 eventcount that can be used to trigger a process
wake up in the event of an async fault. Kernel code that
desires to be woken up on an async fault includes this
eventcount in the ec_$wait call.

s

fim_$quit_value: ARRAY [asid_t] OF linteger
the fim_%$quit_ec value for the last acknowledged async
fault. Kernel code that waits on fim_%$quit_ec uses
fim_$quit_valuetl as the wake up value.

fim_$deliv_ec: . ARRAY [asid_t3 OF eventcount_t
an eventcount on which a posting process may wait for
the target process to acknowledge a previously posted

fault. These ec's are exported to user space via
PROCZ_$GET_EC.

PROCZ_$TRACE_FAULT operates with the procZ mutex lock held,
thereby avoiding problems when Z processes try to post a fault
to the same target at the same time. (1t also avoids posting

a fault to a target process that deletes itself before the post
is complete.)

PROCZ_$1RACE_FAULT determines if an async fault is outstanding
for the target process. If so, it refuses to post another one
and instead returns with the PROCZ_$FAULT_PENDING status.

If no async fault is outstanding, it sets the status code,

the async fault inhibit flag (to say that an async fault is

now outstanding), and the trace bit in the process’s 05 stack SR.
It then advances the fim_$quit_ec to wake up the process if

its waiting on a quittable event inside the kernel.

When the target process returns to user space, the trace fault
occurs af ter one user space instruction is executed. The trace
fault causes entry to FIM_UNMWIRED trace fault code.

" The trace fault code is distinguished from the common

FIM code only in that the status code placed in the diagnostic
frame is that stored in fim_$trace_sts.

Running in the kernel FIM does not cause the fault to be
acknowledged. This means that PROCZ_$VTRACE_FAULY will not yet allow
another async fault to be posted for the target process. Also, the
fim_$quit_value is not set to the fim_$quit_ec.value; this

allows process—~blocking calls such as ecZ_$wait_svec to

return with a fault-while-waiting status instead of blocking.

The user space fim is responsible for acknowledging the fault
when it is capable of accepting another. The user space PM

does this when the fault is dispatched. (Dispatching occurs
immediately if not pfm_ $lnh|b|ted, or when the PM‘s async inhibit
counter reaches zero.)

When the fault is acknowledged, FIM_$ACKNOWLEDGE sets the

fim_$quit_value to the fim_%$quit_ec.value, clears the

way for another async fault by setting fim_%$quit_inh to false,
and advances the fim_%$deliv_ec.

USING “FIM_$QUIT_EC"

Fim_$quit_ec is used in various places within the kernel to allow
blocking process to wake up on an asynchronous faults. Code that
wakes up on the fim_%$quit_ec must set the fim_$quit_value to the
fim_$quit_ec.value. This is required to prevent spurious wake ups that
could occur between the time the fault is posted (eventcount is
advanced) and the time the fault is acknowledged.

This requvrement is NEW as of 83/09/06. Existing kernel code that
used fim_%$quit_ec prior to this date has been updated to follow the
prescribed protocol.

05 module codes:

##NOTE: this list is not “official “waw

BAT 1 BAT manager
vT0C 2 VTOC manager
AST 3 AST manager
MST 4 MST manager
PMAP 3] PMAP manager
MMAP 6 MMAP manager
MMU 7 MMU manager
DISK 8 DISK manager
EC 9 level 1 eventcounts
PROC1 A level 1 process manager
TERM B “{sio line) terminal manager
DBUF C disk-buffer manager
TIME D time manager
NAME E naming server
FILE F file manager
I0 10 1/0 manager
NETWORK 11 networks
FAULT 12 ‘M68000 and MMU detected faults
- SMD 13 screen manager display driver
VOLX 14 volume manager
CAL 15 calendar maint. manager
16
17
EC2 18 level two eventcounts
- PROCZ 13 level two process mgr
IMEX 1A logical volume import/export mgr
0s 1B os startup/shutdown
VFMT 1C vfmt input & decode routines
CBUF 10 circular buffer manager
PBU - IE peripheral bus unit module
LPR 1F line printer module
~OSINFO 20 0S info supplier
21 available
MT 22 magtape routines
ACL 23 access control |ist manager
PEB 24 PEB debugging module
NETLOG 25 network logging mechanism
COLOR 26 ~ color display system

VME 27 ‘ " vme errors

Notes on the MBX helper process 5/83

1. This is what a mailbox file looks fike:

MBX FILE HEADER

+ --
+ --

-CHANNEL 1
H Channel 1 header .
i Channel 1 client to server data buffer |
! Channel 1 server to client data buffer !

CHANNEL 2

Channel Z header

Channel 2 client to server data buffer

Channel 2 server to client data buffer

 oomcmom o --
L

(The size of the buffers are specified By the creator of the mailbox.)

2. The Model

Each Mailbox supports a Server-with-multiple clients model. The mailbox
is used to pass messages between the server and his clients (never between
two clients directly). The server ’‘owns’ the mailbox and must open it
first before any clients can use it.

If the client and the server processes are in the SAME node, they use
shared memory to communicate through the file (both map for CO-WRITERS).
(Note that the MBX file doesn’t have to exist on the same node, just the
processes do.) If the client and the server processes are in DIFFERENT -
nodes, they must use MBX HELPERS to communicate, since two processes on
different nodes can’t map the same file for CO-WRITERS. (Note that

the client needs a helper process even if the MBX file is on the same
node as the client.) ’

3. Here is a picture of server—client communication through a mailbox when
the processes are co-resident: '

B MBX File .
E----—‘—_g put-rec é client-to~server dataé get-rec E 3
o i ’ i én-‘ ----- ’ SERVER
§ é get-rec 5 server“to—c‘}ent dataé gut-rec E %

-~

‘When the Server and Client are not co-resident, each needs a mailbox

helper to deliver messages to the other. Here is what happens when
a client opens a mailbox to a server:

a.

The client MBX routines get information about the file lock on the MBX
file. It must be locked for co-writers (server has opened the mailbox).
If it is locked locally, see figure 3 above. If it is not locked

in the client’'s node, continue below.

A channel is opened for the client on his local mailbox, SYSMBX,
(which is serviced by his local MBX-helper (let’s call him 'MH-C'))
and a message is sent to the remote MBX-helper (we'll call him 'MH-S')
at his well-known socket in the server's node. The client process
then waits on the SYSMBX channe! for the open response.

‘MH-S’ in the serving node ‘helps’ the client by doing an open to
the target mailbox on behalf of the requestor. He then records
information in the channel header about the remote client.

The server in turn reads his mailbox normally (get_rec), sees the

open request and (eventually) does a put_rec to his MBX file accepting
the open. The MBX library routines, used by the server, ‘see’ that
the addressed channel is really remote and so 'bounce’ the msg over
over the network to the remote MBX-helper. WNote that the server
application NEVER KNOW3 that the client is remote.

MH-C receives the open response and delivers it through the SYSMBX
channe! to the waiting client process. The open response is then
delivered to the client application as if the open on the target file
occurred locally. Actually, what the client has is an open channel
that is partly on his local SYSMBX (for reading) and partly in the
target file (for writing). Note that the client application NEVER
KNOWS that the server is remote and that his mailbox is sort of
schizophrenic. :

Communication between the client and server now procedes apace, with

the client reading from his channe!l (in SYSMBX) normally (get_rec),
while his put_rec’'s bounce off his SYSMBX mailbox to the remote MH-S.
MH-S puts the msgs in the target mailbox, which the server process reads
normally, while the server’s put_recs bounce off the target mailbox

to the client’'s MH-C which stuffs them in SYSMBX.

Note that all get_recs are local for both the client and server. The
MBX-helper is needed only for put_recs.

A picture is worth a thousand words

he

o

NODE A

SYSMBX file

[
|
€ o |
=3 & |
WL |
.% |
]
1
!
t
o 1
[|
p_._
|
-
a1
a il
v -
e e ve ve wn we o
o]
-
;]
o
-
c
@
(2]
]
o
-+
1
'
@
>
b
]
0
en va wo wn wm we o
| ~
! ~ON
o | o |
® | @
= | L |
11]
<+ | -+
@ | 39
- a i
v i

/\
/

/\

\Y2

/

NODE B

MBX File

+/
/e

e e e va -

SERVI

rec

client_to_server data

\ get_

DIRECTORY STRUCTURE

header directory configuration information

~linear list - sequentially used directory entries

info block ACL managér‘s intial ACL deséription block

hash threads Pointers to linked lists of hashed entries

entry
blocks

"Holding blocks for hashed entries
and/or link text

P A L L L T A A
- W o, eE WR . W wm W, wh e =

Directory Overview

(dir_t) '
total fength — 2 full segments
(name.pvt.pas) ' ‘
0 i version MBZ ; info block version number
2 3 info block fength total length of info block
4 | info block hdr length length of the info block header (8)
6 MB Z H reserved for future use
8 | default acl uid ; uid of acl to be applied fo directories
A § for directories ; catalogued in this directory
c default acl uid , uid of ac! to be applied to files
E for files ' catalogued in this directory
10 24 unused bytes H : Aréserved for future use

Directory “info block"
infoblk_hdr_t

total length - 48 bytes
{name.pvt.pas)-

20
22
24

26

28

SR WR we A R R WA WA A NR WR WA we We TR WA we wE We .

W we mm wh WA W wm eRm RN e we we e

entry name

. unused

unused

unused

name len entry type

4 words of
entry data
(either UID or link

text description)

WA wR AR Ce Ah YR eh e SR U WA YE wm wWE BE YR e e e PR .

Directory "entry"
dir_entry_t -
total length - 48 bytes
(name.pvt.pas)

next block number

prev block number

‘use count | block type
entry block
data

. . W, - "N, ehA YE ee we ee W, -

Directory “entry block"
"entry_block_t

total length - 150 bytes
(name.pvt.pas)

3Z bytes of entry name
reserved |

reserved

. reserved

name len - # of useful characters in entry name
entry type -~ 0 = not in use

name/uid pair

name/ | ink—-data pair

3

if entry type = 1, this is the UID
entry type = 3, this describes the link text:
link text len
block that holds link text chars 1- 144
block that holds fink text chars l4b~256
reserved for future use

forward thread for doubly finked list
backward thread for doubly finked list

use count - # of used entries in this block
block type- 0 = not in use

- 1 = hash block with 3 dir entries
link text holding block

-3

either 3 dir entries or
up to 144 chars of link text

version

version number of this directory (1)

hash value

of hash threads used for entry name hashing

list size

of entries configured into linear list (18)

pool size

of entry blocks in this directory (429)

entries per block

high block number

of the highes entry block used so far

free block thread

4
#
¥
of entries that fit in an entry block (3)
¥

of the first block on the free block Iist

m o » O O &~ N O

e NS WE CE e s B WA w WS WS WA R wR P SR TR wm WA W YE wm WA Wh wE we we

n WA e WE e WE WE WA wh WA mE WA M WA WR YR WE WE @R TR e WA e WR we WA we

. unused reserved for future use
10 unused reserved for future use
12 unused reserved for fﬁture use
14 unused reserved for future use
16 entry count ¥ of entfies currently catalogued in this dir
18 maximum count ¥ of entries this directory CAN hold (1300)

Directory "header"
first part of dir_t
total length - 26 bytes

{name.

pvt.pas)

Notes on directories:

1. To add an entry to a directory:

(a)

(b)
{(c)

(d)

(e)
Sf)

Look for an unused entry in the linear list.
If you find one, use it and you're done.
Hash the name you want to add.
Get the hash thread for the specified hash value
and call that value the found block.
If the found block number is O then we need a new entry block, so:
(i) See if there are any blocks threaded through the
free block list and if so, take one of those.
Otherwise, bump the high block number and use that.
(ii) Initialize the newly obtained block, add it to the
end of the apprpriate hash chain, add the new entry
as the first entry in the new entry block and you're done.
If there is an unused entry in the found block,
use it and you're done.
Change the found block value to the number in the current
found block’'s NEYX BLOCK field and goto step (d).

2. The searching rule for a directory is:

(a)
{b)
(c)

(d)
(e)

(f)

look in the linear list.

hash the name you’re searching for. -

follow the hash thread for the specified hash value

to the first entry block with that hash synonym.

search all (3) of the entries in the found entry block
follow the “next block number” in the found entry block
to get a NEW found entry block. If the next block number
is zero, then return NOT FOUND. :

goto step (d) with the newly found block.

CRASH ANALYSIS QOMMANDS

Here are the first three tt1ings you will do. The "ma” (map) command maps the dump
and gives its length and starting location. (The dump is mapped for read/write
access, no extend.). The "da", "am", and "st" commands are described below. You

may want to start by reading their descriptions.

§$ db .
! ma dump.425.04.07
134000 bytes mapped at 2F8000

! da 1
System built on Tuesday, March 22, 1983 3:13:09 pm (EST)

! am map.425.04.07

System built at 1983/03/22 15:14:02 EST (Tue)
mapped mode entered ’ .
Current asid = 1

! st

a7 [<Kvalue>] set SP at time of dump

A7 must always be saved or remembered before taking a dump, since it gets
clobbered. This ocommand will set the SP displayed by the IR command to the given
value. If no value is entered, the contents of OEO03FC (physical 1003FC) are used.
(This is where crash _system saves a7 before entering the prom.)

afblwl|l}[e] <sym> access via symbol name

These are special flavors of db's 'a' command that take a symbol name rather than a
hex address. The suffixes ‘'b', 'w', '1l' stand for byte, word, long. 'e' can also be
aprended if you specify a procedure name and want its ecb instead of its entry

point. ‘
1 al os stack base

E31CEC: 0
E31CF0: E4D400
E31CF4: 0

E31CF8: EAB800
E31CFC: EA9400
E31D00: EA9CO0
'E31D04: EAA400
E31D08: EAB00O /

! ale ast_$touch
E29DC4: 4EF900EO
E29DC8: 182400E2 /
!

am <path> . load Aegis Map
This tells db to load a map of aegis as produced by bind aegis. Example:

! am //hlfl/sau/aegls map
System built at 1983/03/ 24 13:17: 08 EST (Thu)

mapped mode entered
Current asid = 2

The first line printed indicates when the system was built (this is the first line
of the map file); the second line is printed if a dump (or, actually, anything) has
been previously mapped with db's map command; the third line mdlcates the current
address space (procl $as_id). ,

If you are looking at a dump, the map should, of course, correspond to the version
of aegis in the dump. To determine this, compare the build time printed by the
'am' command (see below) with the build time shown by the 'st' command. These
times should be within 15-20 seconds of each other; if they are not, you've got the
wrong map. If the 'st' command says "Build time not available", which it will for
any aegis built before 02/28/83, then you should perform some reasonability checks
if you have any doubts as to whether or not you have the correct map.

Note 1

In systems built after 02/18/83 the clockh of the build time is stored in
BUILD_STIME, which is at OE00800, wired, and should always be in the dump.)

Note 2 _ v ;
The 'am' command can be uéed even if you haven't mapped a dump. The ‘'wh' ocommand

can . then be used to look up symbols in the map. This is useful, for example, if you
have crashed node next to one on which the map can be examined.

as [Kasid>] set/display current asid

This command is useful only if you have to look in the private address space of a
process other than the current process. For example, if process 9 (user process 1)
is current but you want to look at the stack of user process 2, you will need to
set the asid to 3. (His stack, of ocourse, may not be in the dump.) If you don't
know the asid of a process, dump its pcb with the 'dp' command.

1 as
current asid =1

! as 2

!

.aste <addr>l<astex> print contents of aste

) The 'aste' command dumps an aste (active segment table entry) identified e1ther by
O astex (aste index, starting at 1) or by an address. Example:

! aste 2

~aste 2 at EDCOBO: //HIFI/SYS/NETVRAGING FILE.4BA
fsegno = 1, link = 1 (= EDC000), con_ctrl = 0 (none)
permanent, not immutable, no file trouble, not in trans, hold count = 1
vtoce_addr = 8000039F, fm addr = 0, sys type = 0 ,
file map not modified, blocks_delta = 0, cur_len = 8001
gtms = false, dtm flag = true, grace flag = false, volx = 15, npr = 28
dtm= Monday, April 4, 1983 7:27:32 pm (EST)
type= uid _$nil, acl= acl_$nil

0: wired=l resident, ppn=442 " 14: wired=0 resident, ppn=6C5

1: wired=1 resident, ppn=443 15: wired=0 resident, ppn=78C
2: wired=l resident, ppn=444 16: wired=0 resident, ppn=6CA
3: wired=l resident, ppn=445 17: wired=0 resident, =4ED
4: wired=1 resident, ppn=446 18: wired=0 resident, pon=6EB
5: wired=1l resident, pon=447 19: wired=0 resident, =7CA
6: wired=l resident, pon=448 20: wired=0 resident, ppn=788
7: wired=l resident, ppn=449 21: wired=0 resident, ppn=457
8: wired=l resident, pmn=44A 22: wired=0 resident, ppn=458
9: wired=0 resident, pm=6Dl 23: wired=0 resident, ppn=45B
10: wired=0 resident, ppn=6D9 . " 24: wired=0 resident, ppn=45C
11: wired=0 resident, ppn=6DA 25: wired=0 resident, ppn=45D
[-12: wired=0 resident, ppn=4F2 26: wired=0 resident, ppn=6E6
U 13: wired=0 resident, ppn=6C7 . 27: wired=0 resident, pon=6DD

Next (cr), link (1) or done (g)?q

If you type return to the above prompt, the next sequential aste is displayed. If
the aste has a non-zero hash thread, you can display the next aste on the hash
thread by typing "1". The aste command will bitch 1f you give it an wnreasonable
astex or an address outside the ast.

a460
This prints hardware information unique to DNx60 processors:
! £460

This dump was taken by CPIO (not CPU)
Current hardware region registers:

RAR (00-07) : C0200C00 80272C00 0 0 0 0 0
RAR (08~0F) : ‘ 0 0 0 0 0 0 0
- RAR(10-17): 0 0 0 0 0 0 0
RAR (18-1F): 0 0 0 0 0 0 8029F800 CO02

CPU state as saved by CPIO: c C
, CPU PC: 3256, CRU SR: 8282700, CPU USP: 875258
-': DO-D7: 82AD004 FFFFFFFF 13AA 100 2020000C F9257464 400 2080C
O AO-A7: 20A852 20852 BCOO 900 BCOO 8401 200130 20R8:

"da [<clockh>] display date

The long word entered is interpreted as a clockh_t and displayed. If you do not
enter a time, the build time of the system in the dump is displayed.

! al build Stime
E0082A: 171ES1FD /

! da 171e81fd |
Tuesday, March 22, 1983 3:13:09 pm (EST)

! da ,
System built on Tuesday, March 22, 1983 3:13:09 pm (EST)

Note 1 This command can be used even if a map of aegis has not been loaded. It can
thus be used when deciding what map to load.

h

db enter/leave debug mode

This command (which won't appear in the help 1list) toggles an internal variable

that controls the display of certain debugging information, particularly during the

process of converting mapped addresses into their dump-relative equivalents. You

should normally have no need of this oommand, but if you are getting strange
results or wmexpected vtop misses or access violations, turning on debug mode may
help isolate the problem.

dct [Kindex>] display dcte(s)

One or all (if <index> is omitted) of the dctes are displayed. Each dcte oontains

information about a particular disk or ring controller on the system. Example:
! ct 0

DCTE for ctype 0 (mnchester) at E2F4A8 (cnum=0) :
ctlr status = 0
lock_no=0015, iomap base=0040, vector_ptr—240, csrs_ptr—FFQCOO
blk_hdr_ptr = E2F400 PAGE INIT
int_entry = E2F584 DCTE4 + 0
int_routine = E3469A WIN_$INT<e> . .
int ec at 274EBA: 114502 E2F4BC E2F4BC DCTE.WIN + 14

df <address> | display fault diagnostic record

Just like an "fst -a", except you have to supply the address of the fault record.
Usually, you- won't know where a fault diagnostic record is. One technique is to

5

enter physical mode and search the mapped dump for occurences of DFDF:
$ db

! ma dump.144b.01.17
200400 bytes mapped at 2F8000

! s 2£8000 2£8000+2003fe O0AfAf :w

3066A0: DFDF
338D32: DFDF
392420: DFDF
424804: DFDF

I af 424804

Fault Diagnostic Information

Fault Status = 9B450000:

status 9B450000

Fault occured in supervisor due to user program error.

Access Addr = FFF0246E
IR . = 0014

Acc. Info = 4E56

User Fault PC = 488148Cl

D0-D7: 00000000 64BA2000 00000000 00000000 00000000 00000001 00020000 388E0000
A0-A7: 00200000 388E0000 55480000 64900000 64940000 649A2F0D 42A72F08 2A680006

Supervisor EB = 2803242E
Supervisor SR = FFF4 '
- Supervisor PC = 264A528A

Most of the DFDF's you find will not be real diagnostic records, and df will
display junk. The one above, for example, has very few reasonable numbers and
should be ignored. :

dpt ' disable PIT (remove from address space)

The PIT, mapped at 700000, is removed from the address space. Subsequent references
to virtual addresses in the range 700000-7FFFFF will reference user space

addresses.

dp [Kpid>] _ display pcb (first ten if no pid entered)

The 'dp' command displays the contents of a pcb (process oontrol block) in nice
easy to digest format. If "pid" is not specified, the pcb's of all bound processes
are dumped. Example:
L d 9
E2FB82: PID = 9, ASID = 2 *kk USER PROCESS 1 ***
LOCKS HELD: none
STATE: bound waiting on 3 eventcounts:
E32890: 4 EBEF4A EBEF4A SOCK_$SOCKET<d> + 80
E33396: 392138772 EA9304 EBEF5A TIME SCLOCKH_EC<d>

E30550: 0 EBEF6A EBEF6A FIM $QUIT EC<d> + 18
REMAINING TIMESLICE = 764 NEXT = E2FA6A, PREV = E2FA6A STACK PIR = EBEF36
CLOCKH_T AT START OF LAST WAIT = 175F58D5 PRIORITY = 3 SP's=277B04/EBEF90
! A

(J Note 1

If a lock is dlsplayed as:
LOCKS HELD: win_$lock (W)

it means that the the process is waiting to acquire the lock; someone else is
actually holding the lock. (db notlces that the process is waiting on an eventcount
in LOCK_$EVENT _LISTS.) .

Note 2

"STACK PIR" is a pointer to where the USP and SP were saved on the process's
stack. The saved USP and SP are displayed following "SP's". For the current
process, all three of these fields should be ignored; the current SP is in the
registers saved by MD (if you're lucky).

Note 3

Examination of "CLOCKH_T AT START OF LAST WAIT" is sometimes useful in determining
which processes have run recently. ,

Note 4

In the interpretation of the eventoounts a process is waiting on, the first f£field
O (the count) is in decimal.

Note 5

One of the first things you should do in analyzing dumps, particularly those of

obscure cause, is dump all the pcbs. This will tell you who was running (current),

who was ready to run, who ran recently, and who was blocked and why. After looking

at a few dumps, you will recognize which processes are in their normal quiescent
- states and which have had their cages rattled. See also the RL command.

dr display registers at crash

This command dumps the last set of registers saved by MD. Note that this is NOT a
shorthand for "d d0 a7 8:1", which will show meaningless information.

1 dr . , ,
do: 0 FFFFFFFF 13 0 10 0 1 8000
al: 7D8 E00294 EOQ2E2 E2FA10 E00242 FFB001 E00200 140000
) v

Note 1

The A6 and A7 shown above are typical of the registers saved following a reset
O command; they should be 1gnored. (Usually only A7 has been clobbered.)

ds display disk statistics

The "ds" command Gumps WIN_SCNT, SM _SONT (if t-.he system has a storage module), and
DISK_SERROR_INFO -~ information about the most recent disk error.

! ds

Winchester I/0: total= 18441 reads= 10338 writes= 8103
Not ready 0 Contrlr busy 0
Seek error 0 Bquip check 0
Drive time out 0 E Overrun 0

CRC errors 0

No disk error info has been recorded.
!

dv <addr> convert db address to virtual address

If you have had to go into physical mode (see' p" command) to look at something,
the "dv" command can be wused to translate physical addresses back into their
virtual equivalents (if one ex:Lsts) Examples:

! dv 32c188 :
32C188 = 0/E2F988 P(BS<d>

! dv 69
addr not part of dump

The number preceeding the f'/" is the asid of the address.

dvt " print disk volume table

The "dvt" command dumps the entire disk voltine table. Use this to see what volumes
were mounted at the time of the dump, the state of the volumes, etc. -

! avt

INTE for lvolx 1 at E33F4E: mounted
unit = 0, dtype = 0, dcte ptr = E2FOA8 DCTE.WIN + O ,
b_per_vol = EB67 (60263), b_per_trk = 12, t_per _cyl = 3, curr_cyl = 1D3
lv_base = 1, owner pid = 1, volume ui»d = 11EA304C.10000105

DVIE for pvolx 2 at E33F72: free

‘IVTE for pvolx 3 at E33F9%: free

IVIE for pvolx 4 at E33FBA: free

IVIE for pvolx 5 at E33FDE: free

e,

DVTE for pvolx 6 at E34002: mounted
‘unit = 0, dtype = 0, dcte ptr = E2F0A8 DCTE.WIN + O
b per vol = EB68 (60264), b_per_trk = 12, t_per_cyl = 3, curr_cy.
lv_base = 0, owner pid = 1, volume uid = 11EA2E85.00000105

1 .

ept enable PIT into the address space

The PIT is mapped into the address space at 700000. This also enables the PT
command.

ff [<addr>] try to find stack frame in addr - addr+1024

This command attempts to find a reasonable looking stack frame in 1K bytes starting
with the specified address. If it finds one, it then calls the trace stack command
to display the stack from that point. If you don't 1like the resulting chain of
stack frames, type "ff" again with no argument. The search will be restarted just
after (above) the first frame found.

! ££ 0ea%000

stack frame at: EA9006... ' :
previous frame: EA906C PROCESS 4 STACK - 394

ecb : E31CC8 EC_SWAITN<e>

unit list : 0 .
caller' db : E340B8 WIN_$RD WRI<e> + C
pc for return : E2FE6C EC_SWAIT<A> + 24
argument 1 ¢ EA9028 PROCESS 4 STACK - 3D8
arqument 2 : EA9034 PROCESS 4 STACK - 3CC
argument 3 ¢ 200El ‘

Continue trace back? n
1 : , :

Note 1 ' ‘ J

If you hit on an old chain of stack frames, the trace back will mostly 11ke1y end
up a garbagey stack frame, access violation, etc. Several "ff" commands are usually
needed before finding a reasonable chain that reaches all the way back to top of
the processs'es stack.

od [Kunit>] get (pbu) dcte

This command will dump the current state of a PBU dcte (not to be oconfused with
disk/net dcte's). This oommand is only useful on systems that have a pbu;
particular dcte's of interest are those of the tape (3) and storage module (4) If
no it number is specified, all the PBU dctes are dumped.

1gd 0

O

- DCTE 0 AT E3B946:

int_addr: E3BC00
asid: 0000
pid: 0

- flags/eci: 0060 (ec not advanced, int_addr not set)

base_wnit: 0
uint_addr: 000000
ec_addr: 000000

ec: 0, E3B95A, E3B95A
timer: 0, E3B966, E3B966
usp: 000000

csr_pmn: 0

csr_ptr: 000000

iomap base: 0

iomap start: 0000
iomap end: 0000
mem _ptr: 000000
mem_len: 0000
mem_iova: 0000
! .

ha <hi> <1o> | <addr> hash uid to astex

Unit 0

The "ha" command will accept a uid or the address of a uid and ‘calculate the index -
of the start of the ast hash thread for that uid. This is useful when you have the
uid of an object and want to examine what the ast says about the current state of

the object.

! wh network_$paging file uid
network_$paging file uid at E2BRA10

! ha 0e2bal0 |
hashs to 48, first astex = B
! ha 1790BA98 800003D4
hashs to 40, first astex = 8A
le list system error log

If system error logging is turned on, the le command displays the contents of the

! le
Thursday, October 20, 1983

~ mapped log file at the time of the crash.

5:32:15 am (EDT') system startup

1:23:28 pm (EDT) crash on Tuesday, October 20, 1983

1:19:21 am (EDT)

crash status — manual stop: type G<ret>G *+2<ret> to oontinue (0S/terminal manager
1:23:28 pm (EDT) system startup '
4:25:34 pm (EDT) system shutdown

O

4:25:55 pm (EDT') system startup
6:19:11 pm (EDT) system shutdown
6:19:30 pm (EDT) system startup

Error totals: :
system startups
disk errors
eccc errors
parity errors
system shutdowns
system crashes

ONOOO N

1lvl <addr> print logical volume label

This will interpret and display a logical volume label starting at <addr. This
command can also be used after rwvol has been used to read the 1lv label.

m . enter mapped mode

- In mapped mode, all addresses that you feed db are interpreted according to the

state of the mmu when the dump was taken. In addition to normal virtual addresses,
certain (mapped) hardware addresses can be entered. These are:.

FFF800-FFF9FE IOMAP

700000-7FFFFF PIT

FFB404-FFB407 MMU status register (Apollo_l only)
- FFB40A-FFB40B MMU bus status register

FFB80O-FFF7FF PFT

Certain other pages (e.g., trap page, debugger page) can be referenced by both |
their physical and virtual addresses.

Note 1

Mapped mode is automatically entered by the 'am' and 'ma' commands once a dump has
been mappred and a map loaded

Note 2

It is possible for the mmu (ptt, pft, etc.) to be messed up in a dump. This can
cause the mapped-to-physical address translation mechanism in db to cause access
violations. Since db's fault handler immediately tries to use the same mechanism,
an infinite loop can result. To prevent this, db briefly leaves mapped mode when
there's a possibility of a fault being generated. If there IS a fault, you will see
the fault message and be left back in physical mode. Just type 'm' agin to
oontinue. (This hack will be fixed up sometime.)

"Note 3

In a dump taken from a floppy, only the first 1K entries of the pft will be present

(since only the first 1M of memory will fit on a floppy).

mm <addr> | <ppn> print mmap entry

- The "mm" command shows you the current state of a rphysical page of memory. Of

particular interest is the astex, which will indicate the aste of the object to
which the page belongs. Example- " ‘

! mm 500

E41C00: ppn 500: C4B50117 in use, astex=B5, daddr_h=0, pttx=117
avail=true, null=false, mod=false, usedp=false, usedr=true

Next (cr) or done (q)?

E41C04: ppn 501: CA30020E in use, astex=30, daddr_h=0, pttx=20E
avail=true, null=false, mod=false, usedp=false, usedr=true

Next (cr) or done (qg)?g

v

mr print mem rec (eccc or parity error log)
The contents of the memory eccc or parity record are displayed. (Info is the same
as that displayed at the end of a netstat -1.)

! mr
A total of 0 parity errors were detected.

S e e e e e S e st — ——
— e

ms <érgs> mapped search (just like md's 's')

This works just like md's "s" command, except that you specify dump-relative
addresses. (There are bugs here.)

mst [<asid>|<msteaddr>] print mst for an asid (0 for gbl, omit for curr)

This command will dump the mst' (mapped segment table) for a given asid. If
anitted, the current asid is used (see "as" command). The "mst" command will also
accept an address that is in some part of the mst. It will figure out which asid
corresponds to that address and dump the entire mst for that asid. .

! mst 3
— MST is at EC8000 — ‘
MST for asid 3. 1st MSTE is at: ECBCO0

VA Range Obj Start UID/Pathname

200000 ~ 28FFFF 0 1784E56D.70000192
290000 - 297FFF 0 /SYS/NODE_DATA/DM_MBX

O

298000 - 29FFFF 0 /ooM/sH ;
2A0000 - 2BFFFF 90000 1784E56D.70000192

2C0000 - 2C7FFF 8000 1784E56B.30000192
2C8000 - 2D7FFF 0 /ooM/DB

2D8000 - 2F7FFF B0000 1784ES56D.70000192
BC0000 - BCFFFF 0 /GMS/MEMDS

BD0000 - BDFFFF 0 /NOS

mste <addr> print the mste for a particular virtual address

The *mste” command is similar to the "mst" command, but only the mste corresponding
to the given virtual address is dumped. The current asid is used. Addresses in the
global A or B areas can be specified without switching to asid 0.

! mste 298000

mste at EBD30:

298000 - 29FFFF 0 176930FB.300003D4 = fsegno=0, ext_ok=false
access=rx, guard=false, pastex=78, locx=10000001 (ta_cnt=4, 1lcl, volx = 1)

P ' enter physical (normal) mode |
Physical mode (as opposed to mapped mode, which see) is the normal state of

affairs in d. Addresses fed to db are 1nterpreted ~as referring to the address
space of the process in which you are running db. \

It is occasionally useful to enter physical mode when analyzing a dump in order to
search the entire dump for some pattern. For example, if you are 1looking for all

fozzards that have ppn 425 in their back pocket, you could do the following (don't
expect such terse output as is shown herel):

l'p
! s 2£8000 2f8000+l34000 425:w (using the values printed by the 'ma' command)
2FA68A: 425 |

Im _ (just so you don't forget)

1 dv 2fa68a (convert db addr back to virtual addr)
2FA68A = 0/FFBASA
! wh 0f£fba8a

PFT + 28A (as you might expect)

!

Physical mode is also useful if a page in the dump has useful information but was
not in the mmu at the time of the dump (see next command).

pf <ppn>|<addr> display pft entry
" This command displays a pft entry given either a pon or an address in the pft. .
! pf 500

pfte for 500 at FFCCO0: 06630519 asid=3, access=wr, xsvpn=3
~eoc=false, pmod=false, used=false, global=false, 1link=519

Next (cr), link (1) or done (qQ)?1

pfte for 519 at FFCC64: Ol7EF5E7 asid=0, access=swrk, xsvpn=E
eoc=true, pmod=true, used=true, global=true, 1link=5E7

Next (cr), link (1) or done (q)21

pfte for S5E7 at FFCF9C: 08636500 asid=4, access=wr, xsvpn=3
eoc=false, pmod=true, used=true, global=false, 1ink=500

Next (cr), link (1) or done (q)2?q

pt <pttx> display ptt entry
The "pt" command displays the ptt entry for a given ptt index (pttx). Example:

! pt 241
790400 (2F8682) = FC38

P

The first address is where the entry would appear in a real ptt. The virtual
- addresses corresponding to the pttx in the above example would be x90400 (90400,
290400, E90400, etc.). To see what the ptt entry is currently pointing to, display
the pft entry pointed to by the ptt entry (ignore the top 4 bits, e.g., C38 in the
example). The number in parens is where the ptt entry is stored in the dump, in
case you want to poke around in physical mode. Note that in physical mode the ptt
has only one entry for every 1K entries in the real pft, e.g., the ptt entry at
physical location 2F8684, pttx 242, would appear in the real ptt at 790800.

To use this command, you must first "enable" the PIT with the EPT command.

pv <ppn> convert ppn to virtual address

The 'pv' command shows you what virtual address is currently associated with a
physical page from the dump. Examples: :

! pv 425
425 = 0/E08C00 PMAP_SGROW<p> + Ad

! ov 4dbe
pen 4BE is not in use, but is at 32B800

'The number preceeding the */" is the asid of the address.
_In the second emple, the prn was not in the mmu at the time of the dump (e.q.,

maybe someone was doing i/o to or from it). In this case, db prints the address
where the page can _be found in physical mode (see 'p' command).

vl <addr> print physical volume label

This will interpret and display a physical volume label starting at <addr. This
command can also be used after rwvol has been used to read the pv label. :

'rl [check] print ready list

This is like the DP (display P(Bs) command except that the PMs are displayed in
the order in which they appear in the ready 1list, starting with the current
process. If you give the RL command any argument, the ready 1list is Jjust checked
for correct order.

st ' . display status at crash | v
This is usually the first thing i’:o do after loadiﬁg the mép of .aegis. Eicample:
| ! st |
Cx:ésh occurred on. Monday, April 4, 1983 1:40:26 pm (EST) -nbde = 105
SysEan built on Thursday, February 14, 1980 8:07:18 am (EST).

Machine id = 0 \
System configqured with 1024K of memory

Crash status: 120020: supervisor fault while resource lock(s) set (OS/fault handler)
ECB: E2FA6A » _

current process: 1

E2FA42: PID =1, ASID =1 = *** DISPLAY MANAGER ***

- LOCKS HELD: acl_S$lock ,
STATE: tse_onb bound current »
REMATNING TIMESLICE = 7749 NEXT = E2FAE2, PREV = E2FA6A STACK PIR = E4DC92
CLOCKH_T AT START OF LAST WAIT = 175F8FFC PRIORITY = 16 SP' s=FFFFFFFF/E4DCDC

current mmu status: BEC000
bus status: FFB2 cpub_status: 80110007 remote node failed to respond to request (0S

last miss handled by cpub: AEBE000O (miss, sup data read)
last state saved by md:

O

ao: 0 FFFFFFFF : 13 0 10 0 1 8000
al: - 7D8 E00294 EQ02E2 E2FAl 0 E00242 FFBOO1 E00200 100100

T e e e e e e e e s T~
——— — s — ————

ts <pid or addr> traceback stack

The "ts" command shows you where a process is, given either its pid or a valid SB.
If you specify the pid of the current process, the current SB in the registers
saved by MD is used. For other processes, the starting SB is taken from what STACK
PIR is pointing at (the second address following "SP'S= in a pcb display).
Example: :

!l ts 8
stack frame at: EBFF24... (non—standard stack frame)

previous frame: EBFF/A PROCESS 8 STACK - 86
EBFF28 : EO35FE DISPATCH<p> + 8

EBFF2C : E31CE0 EC_SREAD<e> + C
EBFF30 : EOABSA EC SWATTN<p> + 10A
FBFF34 : 986 ‘

Continue trace back? _

stack frame at: EBFF7A...
previous frame: EBFFEC PROCESS 8 STACK - 14

ecb : E31CC8 EC_SWAITN<e>

it list : 0 ’ o ‘ :
caller' db : E30FF8 NETWORK_SLOCATE<e> + C
pc for return : E2FE6C EC_SWAIT<A> + 24
arqument 1 s+ EBFF9C PROCESS 8 STACK - 64
arqument 2 : EBFFA8 PROCESS 8 STACK - 58
arqgument 3 s 300E0 ‘

Contmue trace back"

stack frame at: EBFFEC...
previous frame: 0 »
ecb : E30EF4 NETWORK_SMONITOR<e>
unit list : 0
caller' db : E2F988 PM®BS<d>
pc for return : E036DE INIT STACK<p> + 2C

~ argument 1 0
argument 2 9000
arqument 3 16C4929E
1
Note 1 _ ‘
The first two stack frames for a waiting process will always be the dispatcher and
EC_SWATTN. "non-standard stack frame" is printed when db notices that a
non-standard calling'sequence was used. '
Note 2

If you want to trace a stack back into user space, you should first set the asid
appropriately. ,

Note 3
If you do not have a valid SB, use the mEfn command.

uid <hi> <lo> | <addr> interpret uid

The "uid" command will tell you all it can find ,oi:t about a uid. You can either
specify the address of a uid or the uid itself as two hex numbers. Examples:

! ui 174F38C7 90000192

/SYS/DM/DM \
1 wh network_$paging file uid
network_S$paging file uid at E3103E

! ui 0e3103e
11EA3AOD.50000105

! ui 0eOcfda
‘name_S$canned _root_uid

Note 1 v
A name _Sgpath is attempted on the uid, so if the network is flakey or down, there

will be a significant pause during the Bls Memorial Timeout period. This will also
occur during other commands that invoke the "uid" command internally. -

- vd <addr> convert virtual address to db address

This command will show YOu where in the mapped dump a certain virtual address is to
be found. Example:

! vd 0e2£988
E2F988 = 32C188
1 .

ve <addr> print vtoce at <addr>

This command is useful when investigating disk/vtoc/file related problems and you
want to see what dbuf has in its back pocket. Note that the first vtoce will appear
4 bytes beyond the address of one of pages in dbuf_blks. Example:

! wh dbuf_blks
douf_blks at EC0000

! ve 0ec0004

vtoce 0 at EC0004: version = 0, sys type = 0
.con_ctrl = 0 (none), permanent, not immutable, no file trouble,

object uid= 16C4929E.B0000105
type uid= object_file Suid
acl uid= 16E73FAl.40000105
dir uid= 167F3ACD.60000105

cur_len = 296792, blocks_used = 293, ref_cont =0
dtue= Thursday, March 17, 1983 5:13:40 pm (EST)
dtm= Thursday, March 17, 1983 5:13:40 rm (EST)
0: ADF AE2 AES AES AEB AEE AF1 - AF4
8: AEQ AE3 AE6 AE9 AEC AEF AF2 AF5
16: AEl AE4 AE7 AEA AED AFQ AF3 AF6
- 24: AFA AFD BO1 B04 B07 B13 Bl6 AFB

f2: AFE 1FBA 0
Next (cr) or done (q)?

Note 1

This command can also be used to look at a blocks read by online rwvoi.

vm

verify mmu (against mmap)

- The "vm" command steps through the mmap, puEt, and ptt in the dump and ver1f1es that

b
4

O

. they are consistent with one another.

-1 vm : -

pen 414: more than one eoc in chain

pon 414: mmap 417 wrong pttx is 15 sb 12

pon 414: more than one eoc in chain

prn 414: mmap E66 wrong pttx is 15 sb 12
- ppn 414: pft has bad chain pointer

pen D4F: mmap E8F wrong pttx is 163 sb 15B

pen D4F: pft has bad chain pointer

pttx: 334 mismatch. is DD7 sb EF8

pttx: 336 mismatch. is DIF sb B6

pttx: 33F mismatch. is E20 sb 0

Note 1

At the current time (SR6.0 and earlier), Aegis does not bother remove the pages of
(nonexistent) second display memory from the mmu, although it does release the
corresponding mmap pages. For this reason, the "vm" command ignores errors
involving ppns 100-180.

vp <addr> ‘ convert virtual address to ppn

The 'vp' ocommand converts a virtual address from the dump into the pmn
corresponding to the address when the dump was taken. Examples: :

! vp 0ec0000
EC0000 = 402

! vp 200400
mmy_$vtop — mmu miss (OS/MMJ manager)

!

In the seoond example, there was no entry for 200400 in the mmu when the dump was
taken. : :

vv <addr> <data> verify vmtest page

On systems with flakey memory or disk hardware, this command is useful to pinpoint
vmtest failures that result in system crashes (e.g., memory parity, disk data
checks, etc.) The page at the specified address is scanned using the given
starting data and vmtest's increment/decrement values. Note: the page of interest
may well not be in the mmu, so you may have to resort to a db-relative starting
address (p mode).

1 vv 348c00 348c00 :
offset 0 s/b 0034C000, is 00000000
offset 4 s/b 0034C004, is 1A98ED9B
!

whipldle] <sym or addr> look up [procldatalecb] or address in aegis map

The 'wh' command takes either a symbolic name or a virtual address, the latter
starting with a numeric, as always. When looking up a procedure, the suffixes "p",
"d", "e" can be used to select a particular definition of the symbol: procedure,
data, or its ecb. When finding an address, db appends "<p>", "<Kd>", "<e>" the the
symbolic name to indicate where in the map the symbol was found. Examples:

! wh pcbs
pcbs at E2F988

! wh 0e12345
FILE_SSET_LEN<p> + 7

! wh mst_S$touch
mst_Stouch at E049B4

! whd mst_S$touch
mst_Stouch at E30C32

! whe vtoc _S$allocate
vtoc_Sallocate at E3350C

!

N

INTERVAL TIMER IMPLEMENTATION

Existing timer facilities"

In aegis there are two mechanisms which provide timer facilities to

user processes. One mechanism uses the clock process to implement its

timer functions. The corresponding user callable procedures are implemeted in
time.pas and include time_$wait, time_$advance and time_%$cancel. The second
mechanism uses the terminal helper process in conjunction with the eventcount
time_#clockh_ec. The user callable procedures using this mechanism are
implemented in time_$unwired.pas and include the procedures time_$alarm

and time_%$free_ asid. The first mechanism can handle time specvflcatsons

in the order of microseconds whereas the second mechanism can handle it

only in the order of seconds. The advantage of the second mechanism

is that it much more efficient in cpu time consumption.

Background information on the clock process

The timer interrupt handler handles interrupts from three timers and
depending on which timer went off it does the following.

o If the interrupt was from the time_of_day clock then it advances
time_$clockh_ec. (happens every 1/4 th of a second). The terminal process
suspends itself on this eventcount and is awakened to compliete the
timer refated processing required by user processes.

o If the interrupt was from the 8 micro second timer for time slice end
it calls procl_%$end_time_slice and and procl_$int_exit which reorder
the ready list, set the timer and dispatch a new process. procl_$end_time
_slice updates the cumulative virtuval time used by the process and
also assigns a new time slice to the process.

o If the interrupt was from the 32 microsecond real time timer then
it advances time_$int_ec.'This awakens the clock process which
does timer related processing for user processes and sets the next
timer value at which it should be awakened. It suspends itself by
waiting on time_int_ec.

Interval timers implemented

There are two types of interval timers which have been implemented. They

are the real timer which decrements in real time and the virtual timer which
decrements in user process virtual time only. The two functions generic to
both the timers are getitimer and setitimer which read the current value and
set new values for the interval timers. Interval time completion is made
known to the user process by posting an appropriate fault.

Real interval timer implementation

The real interval timer has been implemented by enhancing the first mechanism
(i.e. the clock process). The second mechanism was not chosen since bsd 4.2
required time intervals in units of the system clock (4 micro seconds). Setting
the real interval timer translates into the modification of the timer queue. If

the entry is made into the head of the timer queuve then a new value is written

into the 32 micosecond real time timer. When the clock process is awakened due
to an interval time completion it checks if the queue entry belongs to an
interval timer. If so it reintroduces the entry back into the queue for the
next interval completion. In addition it communicates with the terminal process
to actually post the fault to the user process. The clock process cannot
directly post the fault to the user process since it is capable of running

on the B processor in two processor system. The communication with the terminal
process is done in the following manner. The clock process updates a database
called the time_$itimer_db and then advances the eventcount calied time_$itimer
_ec. The terminal process suspends itself on a list of eventcounts one of which
is the time_%itimer_ec. When it awakens due to the advancing of this eventcount
it looks at the database time_$itimer_db and posts a fault to the proper

user process.

Virtual interval timer implementation

The virtual interval timer has been implemented by enhancing the mechanism

which keeps track of the cumilative time used by a process. The functions

which perform this are the dispatcher, eventcount advance and the time_slice_end.
These functions use the 8 microsecond timer. The advance procedure has bsen modified
not to alter the time slice if the virtual timers are being used. This implies
that the control for time slice selection will only be done by the time_slice_
end function. The time_slice_end function has been

enhanced to check for interval timer completion and also setting the next

time slice such that it never exceeds the next interval. If the time_slice_end
function recognizes the expiry of an interval time it communicates with the
terminal process in the same manner as the clock process. The database in this
case is called time_$vitimer_db and the eventcount on which the terminal process
sleeps is time $V|t|mer ec. The terminal process then completes the posting of
the fault to the user process.

Force writing Files

As of the SR3.0 software release, AEGIS supports two user space célls that

force the modified pages of a file to be written to disk. These calls
guarantee that any changes to a file are recorded on disk and therefore that
such changes will not be lost in the event of a system crash. The services

provided are identical for both local and remote files.

‘There is one caveat to the use of the file force write calls. These calls

are intended for use while the file is locked for writing (in the
“file_$lock” sense) by their caller. There is no enforcement of this
condition, and in fact the force write calls may be safely issued by any
process on any node at any time. However, the guarantee is weakened when a
force write cal{ is issued by process A and the file is locked for writing by
process B. Specifically, +the changes made by B will not necessarily be
written to disk if (1) A and B are running on different nodes, and (2) B is a
remote wuser of the relevant file. The description of the calls below does not

- call out this exception explicitly.

FILE_$FW_FILE (uid, status)

The first of these calls is FILE_$FW_FILE. This call takes as its only input
argument the UID of the file being force written. Once called, FW_FILE either
returns an error code in its status return argument or STATUS_$0K to indicate
that all of the file's modified pages have been safely written to disk.

FILE_$FN_PARTIAL (uid, start, length, status)

This call may be wused to force write a specified section of a file rather
than the whole file. The caller must provide the UID of the file to be force
written, the byte offset into the file at which force writing is to begin,
and the number of bytes starting at the supplied byte offset to include in
the operation. As with FILE_$FW_FILE, this partial file force write returns
either an error status code or STATUS $0K to indicate a successful force
write.

Proceedings of the Symposium on Principles of Distributed Computing, Ottawa, Canada, Aug. 1982, pp. 34-41.

. UIDs as Internal Names in a Distributed Flle_System‘

Paul J. Leach, Bernard L. Stumpf,
James A. Hamllton, and Paul H. Levine
Apollo Computer, Inc. ‘
19 Alpha Road, Chelmsford, MA 01824

Abstract

The use of UIDs as internal names in
an operating system for a local net-
work is discussed. The use of inter-
nal names in other distributed sys-
tems is briefly surveyed. For this
system, UIDs were chosen because
of their intrinsic location indepen-
"dence and because they seemed to’
lend themselves to a clean structure
for the operating system nucleus.
The problems created by UIDs were:
generating UIDs; locating objects;
supporting multiple versions of ob-
jects; replicating objects; and los-
ing objects. Some solutions to these
problems are presented; for others,
no satisfactory solution has yet been
implemented.

1. Introduction
Although the area of distributed systems is a rela-

tively new one, there are already many examples of im-
plemented distributed operating systems for local net-

 works and their attendant file systems. Many of these

systems have chosen to use internal names for the ob-
jects they support, into which user visible text string
names are mapped. Among the most popular forms of
internal name have been unique identifiers (UIDs); how-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distribtited
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of thé Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee, and/or specific permission.

(C) ACM 0-89791-081-8/82/008/0034 00.75 -

ever, there has been little in the literature discussing the
motivation for choosing one form of name over another,
or the consequences of a choice once made. This paper
presents the experiences that resulted from using UIDs
as internal names in one particular distributed system:
the Aegis operating system for the Apollo DOMAIN
network [APOL 81}, [NELS 81].

1.1. Organization

The rest of this paper is organized as follows. Sec-
tion 2 discusses internal names as they are used in sev-
eral other distributed systems. Section 3 presents an
overview of the DOMAIN system environment, and of
the nature of UIDs and objects in Aegis. Section 4 deals
with the motivations and perceived advantages that led .
us to choose UIDs. Section 5 deals with the problems
we foresaw or discovered in the process of implement-
ing the system, and presents some solutions to these
problems. Section 6 offers some final observations and
conclusions. ’ '

2. Internal names in other sys-
tems

Given that one decides to use internal names, there
seem to be just two fundamental alternatives: to use
UIDs or "structured names”. UIDs can be thought of as
simply large integers or long bit strings, although some
other information may be encoded within them. The
important characteristic is that they are large enough
that the same UID will never refer to two different ob-
jects at the same time. Structured names, as in [SVOB
79}, contain more than one component, some of which
are used to indicate the location of, or route to, the
object named. However, individual components may
be unique for all time only within the context of the
other components; some Systems with this property

" have called their internal names UIDs. -This section

briefly indicates the internal naming schemes used by

several distributed systems or their distributed file sys-
tem components.)

2.1. WFS

The Woodstock File Server (WFS) [SWIN 79] uses
"file identifiers” (FIDs) to name files. FIDs are 32 bit
unsigned integers, which are unique for all time within
a individual WFS server, but may be duplicated across
servers. Thus, it is up to each WFS client to remember
the server associated with each FID. The combination
of server name and FID is a form of structured name.
The mapping from FID to physical disk addresses is via
“a hash table.

2.2. Pilot

Pilot [REDE 80] uses "universal identifiers (UIDs)”
to name files; they are 64 bits long and ”guaranteed
unique in both space and time”. UlDs were chosen so
that removable volumes could be transported between
machines without fear of conflict. A B-tree is used to
. map UIDs to physical disk addresses.

2.3. DFS

The distributed file system (DFS) [STUR 80] also
uses UIDs. We suspect that they are really UIDs be-
cause the implementors provide ”a simple locating ser-
vice” to help find the server which holds a file, given
only its UID; a structured name would not need a lo-
cating service. Like Pilot, a B-tree is used to map UlIDs
to physical disk addresses.

2.4. CFS

The Cambridge File Server (CFS) [DION 80] uses .

what it calls UIDs to name flles. They are 64 bits
long; 32 bits are a random number, and 32 bits con-
tain the disk address of the object’s descriptor. The
use of garbage collection [GARN 80] guarantees that
an object will not be deleted while a reference to it ex-
ists, and therefore that, within a single server, a UIlD
can never refer to more than one object. However, it
seems that UIDs can be duplicated on different servers,
although the 32 bit random number makes it highly
‘improbable. '

2.5. Felix

The Felix File Server [FRID 81] uses a system gen-
erated "File Identifier” (FID) to name files. An FID
is a "universal access capability” for the fille it names.

When the file is deleted, its FID is guaranteed not to be
reused for a certain period of time. It also seems that
FIDs with the same numerical value can be in use by
more than one server at the same time.

2.6. LOCUS

The LOCUS system [POPE 81] uses structured in-
ternal names. A name is a pair ” <flle group number,
file descriptor number>". The file group number can
be thought of as uniquely identifying a logical volume.
The file descriptor number is an index into a per-file-
group array of file descriptors; it is unique within a file
group as long as any references to the file it identifies
exist. The choice of internal name seems to have been
motivated by UNIX (TM, Bell Laboratories) compat-
ibility constraints: directory structures are visible to
application programs and contain file descriptor num-
bers, which are relative to the file group containing the
directory.

2.7. Others

There are a number of other recent implementa{
tions of, or designs for, distributed systems for which
descriptions have been published: S/F-UNIX [LUDE
81]; ACCENT [R_ASH 81]; TRIX [WARD 80], [CLAR
81]; EDEN [LAZO 81). However, they concentrate on
other aspects of distributed systems design, and do
not provide much information on their use of internal
names.

2.8. Summary

‘When the design of Aegis began in early 1980, there
were fewer examples of distributed systems to study;
Pilot and WF'S particularly influenced us. . Pilot uses
UlDs; WFS uses IDs which are unique within a single

" file server, but which require its clients to remember

upon which server files reside. From our studies we
got little motivation for either choice; yet upon starting
our design it became clear that there were non-trivial
problems involved with either choice.

3. DOMAIN system environment
3.1. Hardware

A DOMAIN system consists of a collection of pow-
erful personal computers (nodes) connected together by
a high speed (12 megabit/second) local network. Each’
node has a "tick’ time [LAMP 80] of 1.25 microseconds

O

and can have up to 3.5 megabytes of main memory.
Most nodes have 33 megabytes of disk storage and a 1

~ megabyte floppy disk, but no disk storage is required .

for a node to operate. A bit mapped display has 800 by
1024 pixels, and a bit BLT (block transfer) to move ar-
bitrary rectangular areas at high speed. The display is
allocated into windows (called PADs) which are a form
of virtual terminal [LANT 79]; multiple concurrent pro-
cesses, each possessing its own window(s), can be con-
trolled by the user simultaneously. Dynamic address
translation hardware allows each process to address 16
megabytes of demand paged virtual memory. The net-
work arbitrates access using a token passing method;
each node’s network controller provides a unique node
ID which is assigned at the factory and contained in the
controller’s microcode PROMs.

3.2. System usage characteristics

It is expected that the nodes in a network will be
owned by many organizations, with each organization
owning many nodes. One organization is likely to be
chartered to provide computing related services and re-
sources to the entire network community. Within an
organization, a high degree of cooperation will be de-
sired; while between organizations, a higher degree of
autonomy will be preferred; and the service organiza-
tion wants resource sharing, protection and (perhaps)
accountability. Aegis provides tools to allow a high de-
gree of cooperation, and tools to create policies which
can allow a high degree of autonomy. This results in
an environment of ”"policy parameterized autonomy”.

3.3. Objects and UlDs

At the highest level, Aegis is an "object-oriented”
system, and objects are named by UIDs. Objects are
typed and protected: associated with each object is the
UID of an access control list, the UID of a type descrip-

" tor, as well as a physical storage descriptor, and some

other attributes. Supported objects include: alphanu-
meric text, record structured data, IPC mailboxes, exe-
cutable modules, directories, access control lists, serial
1/0 ports, magnetic tape drives, and display bit maps.

‘UIDs are also used to identify persons, projects, and
* subsystems for protection purposes.

Aegis UIDs are 64 bit structures, containing a 36
bit creation tfme, a 20 bit node ID, and 8 other bits
whose use is described later. UIDs possess the address-
ing aspects of a capability, but without the protection
aspects [FABR 74]. Or, a UID can be thought of as the
absolute address of an object in a 64 bit address space.

The hardware does not support this form of address, so
programs access objects by presenting a UID and asking
for the object it names to be "mapped” into the pro-

 gram’s hardware processor address space (see [REDE

80] on the desirability of mapping in distributed sys-
tems). After that, they are accessed via virtual memory
paging: not to create shared memory semantics, but as
a form of lazy evaluation, since only the needed por-
tions of objects are actually fetched from disk or over
the network. '

The system provides a high degree of network
transparency in accessing objects. The mapping opera-
tion is independent of whether the UID is for a remote
or local object. As long as programs assume that their
objects are not local, and hence operations on them
are subject to communication failures, they need not
be aware of their location (see [POPE 81] for a discus-
sion).

‘3.4. Naming Objects

Text string names for objects are provided by a
directory subsystem layered on top of the Aegis nu-
cleus. The name space is a hierarchical tree, like Mul-
tics [ORGA 72] or UNIX [RITC 74), with directories at
the nodes and other objects at the leaves. Each direc-
tory is primarily a simple set of associations between
component names (strings) and UIDs. The absolute
path name of an object is an ordered list of component
names. All but (possibly) the last are names of directo-
ries, which, when resolved starting from a network-wide
distinguished "root” directory, lead to the UID of the
object. Thus, an absolute path name, like a UID, is
valid throughout the entire network, and denotes just
one object.

" 4. Motivation for using UlIDs

There were several main reasons for choosing UIDs
as internal names. First, we wanted location indepen-
dence: to divorce the internal name of an object from
its location in the network. Second, we wanted absolute
internal names: ones that could be passed from process
to process, and from node to node, without having to
be relocated at each step. Third, we wanted to sepa-
rate text string naming from internal naming, in order
to remove string name management from the nucleus.
Fourth, we wanted a uniform way of naming all objects’
in the system. Fifth, we wanted to be able to construct
composite objects (objects which refer to other objects)

easily, and to allow user programs to do likewise. Sixth,
" we wanted to allow for typing of objects, and in a po-
tentially extensible and manageable way.

‘We wanted objects to be able to move without hav-
ing to find and alter all references to them. The system
does not move objects except when explicitly directed
to do so. However, users may want to move dismount-
able volur_nes‘ from one node to another, or to move a

_peripheral from a disabled node to a functioning one.

Structured names imply locations, which makes moving
an object harder, because references to the moved ob-
ject have to be updated; this in turn mitigates against
composite objects. UIDs, because of their location in-
dependence, have no such problem.

From an implementation point of view, we wanted
to be able to start with simple object locating algo-
rithms, perhaps with restrictions placed on object loca-

tions, and work up to better ones, again without chang-

ing any stored data. Structured names seemed to freeze
this decision too early: the locating scheme is bound
into the name. We also wanted to avoid the prolifera-
tion of ad hoc internal names by having a single, simple,
cheap, uniformly applicable naming scheme available at
all but the lowest levels of the system.

Text string names can also be made location in-

dependent, but we wanted the nucleus interface to be

simpler than string names. Also, string names are too
long to be embedded in objects, too expensive to re-
solve, and therefore can usually be used only at fairly
high levels in the system.

So, unlike structured names, UIDs had the right
properties to satisfy these requirements. They are in-

trinsically location independent: they uniquely identify -

an object no matter where it resides. The node ID con-
tained in our UIDs says where the object was created,
but has no necessary connection with its current loca-
tion. They are absolute, and they are (relatively) short
and of fixed length. The combination of these attributes

means that it is easy to embed UIDs in objects to make

composite objects, and that there is little space penalty
in using them to name all objects. It also makes it
easy to do mapping from text string names to UIDs in
a layer above the nucleus. A UID can be used to de-
" note the type of an object. New types (UIDs) can easily
be generated without interfering with others doing the
same,' and can extensibly refer to a type descriptor ob-
ject containing type data and operations.

There were other, less crucial, advantages that
we foresaw. AUIDs are good for objects without string
names, such as temporary files; objects can even be

created as temporaries, then given string names later.
Because they are short, they can be easily hashed, and
stored in system tables, and passed in IPC messages.

‘Because they are guaranteed to be unique, they can be

used as transaction IDs, with the TID also serving to
name the commit record object for the transaction. Fi-
nally, because UIDs are hard to guess, there are certain
capability protection aspects to them: in some cases, it
may be acceptable to use possession of a UID as per-
mission to operate on the underlying object.

5. Problems with UlIDs

We also quickly discovered that there were prob-
lems that needed solution to use UIDs effectively.

1. Generating UIDs and guaranteeing their unique-
ness.

. Locating an object given its UID.
. Naming different versions of an object

. Replication of objects

Dok W N

. Lost objects

5.1. Generéting U]Ds

We thought that generating UIDs would be easy:
concatenate the node ID of the generating node with a
reading from its real time clock. The first issue to deal
with was choosing the size of the UID. We had a 48 bit 4
microsecond basic system clock, but that, plus a 20 bit
node ID, and a few bits for future expansion, seemed to
imply a UID that we felt would be a bit long. We settled
on a 36 bit creation time, which meant a 16 millisecond
resolution. We justified it by noting that, since most
objects reside on disk, they can’t be created faster than

. disk speeds; 36 bits allowed a resolution several times

higher. To allow for possibly bursty UID generation,
the system remembers unused UIDs from the previous
minute or so, and uses them before generating new ones.

The second issue is guaranteeing uniqueness. Con-
catenating a node ID and a real time clock reading guar-
antees uniqueness as long as one makes sure that the
clock dlways advances. We thought this could be as-
sured by providing a battery operated calendar clock
from which to initialize the real time clock. But bat-
teries have a limited shelf life; and since it is important
that a UID not be reused, other measures were needed.
So the system stores the last shutdown time on the disk,
and checks it against the calendar clock during initial-
ization. If the time is too far wrong, either backward, or

forward, it requests verification and/or correction from

the user. It is clear that the clock cannot be allowed
to go backwards; what may not be so instantaneously
obvious is that too long a forward jump is also danger-
ous. Such a jump is likely to be an error, requiring later
correction; but if any UlDs are generated from the erro-
neously advanced clock, they may be duplicated when
real time catches up to that point.

Another solution is to use other nodes in the net-
work to corroborate the calendar clock reading; but
since it is possible that none will be available, our solu-
tion would still need to be resorted to in that case. It
seems that no solution is foolproof, but that the prob-
ability of failure can be made fairly small. Our expe-
rience to date supports this conclusion: with several
hundred nodes in use, we know of no problems.

5.2. Locating objects

A direct consequence of the location independence

of UIDs is that a locating service is needed to find an ob-
ject given its UID. This is the fundamental distributed
algorithm in Aegis: no global state information is kept
about object locations. The complexity of this task de-
pends on the restrictions on object location that higher
levels of the system can enforce, and on the desired level

of performance. Some examples of the effect of various

restrictions that could be imposed are as follows. - One
can restrict objects not to move from the node where
they are created, in which case node ID part of the
UID is certain to be the location of the object. - One
can restrict (most) objects to be on same volume as the
directory in which they are cataloged. Then, as long
as the locations of a few volume root directories can
be found, all other objects can be found. - One can re-
strict objéct, location as in either of the above examples,
then relax it by establishing equivalence classes among
nodes or volumes, such that if the above rules allowed
an object to be on one node or volume of a class, then
by these rules, it could be on any node or volume in the
class. This would allow multiple physical copies of an
object with the same UID to exist and be located. - Of
course, it is possible to have no restrictions at all, and
still locate objects. After whatever other means exist
have failed, a request to return the location of an object
can be broadcast, and an answer awaited. Also, in this
case, there is absolutely no necessary relation between
nodes or volumes and directory hierarchies, making hi-
erarchy backup and crash reconstruction difficult.

‘We considered all the schemes indicated b‘y the
above examples. Because we allow removable volumes,

the assumption that objects reside at the node where
they were created is not valid. We also convinced our-

. selves that in a sufficiently large (inter)network, and -
given the possibility of removable volumes whose node
of origin was in a disjoint network, we could not guar-
antee to find an object even if it were online and acces-
sible. As noted above, even in this case the object could

" be found if one were willing to make a broadcast to the
entire internet, and wait a (possibly) very long time for
an answer; but since this had performance implications,
as well as the other problems noted above, we were un-
willing to base our design on this approach. Thus, we
would have to rely on heuristics, and, ultimately, per-
haps even help from the user. Our initial goal was to

- pursue the second approach, as it met our immediate
requirements; and it can readily be extended into the
third scheme, which we think is sufficiently flexible to
eliminate any need for the fourth.

We have already gone through three generations of
locating algorithms, and can foresee more. They used
two sources of ‘hints’: the node ID in the UID, and
the hint manager. The sources for the hint manager’s
hints can be any program which believes it can guess
“the whereabouts of an object, or even direct input from
a user. In particular, the string name manager guesses
that a cataloged object is on the same node as the di-
rectory in which it is cataloged (except for special node
boundary crossing points).

The first generation algorithm was very simple. To
locate an object given a UID, it would first search all lo-
cal disks. If the local search failed, it would try the node
whose ID was contained in the UID. This procedure
could always find local objects, objects on dismount-
able volumes mounted locally, and remote objects that
had never moved from where they were created; others,
howe\;er, could not be located. In particular, remote ob-
jects on removable volumes that had been moved from

* their creation node were unlocatable. Also, for remote

objects, time was wasted searching local secondary stor-
age. Note that for remote objects in this scheme, the
node ID in the UID was more than just a hint: it had
to be right.

The second algorithm added the hint manager. Af-
ter trying locally, it would consult the hint manager,
and if a hint were present, would use the hint. If this
failed, it would proceed as in the first case. Therefore,
even remote objects on removable volumes could be lo-
cated, if they were on the same node as the directory
in which they were cataloged. This would normally be
very likely even if we didn’t enforce it (which we cur-
rently do).

The time wasted searching locally for remote ob-

jects in the previous algorithms was noticeable, so a
~ third was adopted. Before searching locally, the node
ID in the UID is examined; if it is not the ID of the
local node, then the local search is bypassed. Only if
the remote search fails is a Iocal search initiated.

In the future, it is likely that direct input to the
hint manager will be added, as will the equivalence
class technique. "Also, in an internet environment, a
second level of hint manager, usually residing on gate-
way nodes, will probably become necessary. However,
its task will be eased considerably because it will only
have to store location information for objects that could
not be located using the other available hints.

It is significant to note that the object locating ser-
vice is layered above the nucleus. An object’s location
is determined when it is mapped into a process’ address
space, and retained. Thus, it is guaranteed to be known
at critical junctures, such as when servicing page faults.
It is also cached, so that the location of active objects
is likely to be in the cache. The first case is important
for clean system structure; the second for good system
performance. However, even in the absence of cached
or retained information, locating a remote object usu-
ally takes only one, and at most two, messages with the
current algorithm.

Using UlDs, plus repeated improvement to locating
algorithms, has allowed us to benefit from the location
independence of UIDs, without paying a serious perfor-
mance penalty.)

5.3. Object versions

If UIDs are allowed to be embedded in objects, the
object version problem arises. The object containing
the reference may wish not to refer to a particular in-
stance of an object, but to its latest version. A pro-
cedure object may contain the UIDs of other programs
or of libraries, for example. The fundamental prob-
lem is that the same UID can not name two different
objects, even if they are just different versions. (For
Aegis UIDs, this is true; if they contained an explicit
version number, it need not be true.) We see two pos-
sible solutions to this problem in our context, both of
which involve the use of indirection objects; in one case,
the indirection object contains a symbolic name; in the
other, the UID of the current version of the object. (In-
direction objects with symbolic names are also used in
the iIMAX-432 filing system [POLL 81}, where they are
called linkage objects.) In the first case, whenever a new
version becomes available, the binding of the symbolic

name is changed to refer to the new version. In the
second case, the indirection object is updated with the
new version’s UID. In our environment, the second so-
lution is simplest, because it doesn’t involve the string
name manager to resolve the reference. (The IMAX-432
uses the symbolic solution because it doesn’t have real
UIDs.) o

5.4. Replication

To take advantage of the potential for enhanced
reliability that distributed systems offer, it is desirable
to be able to redundantly store objects at more than
one node. The logical object thus created we call a
replicated object and each of the redundant copies we .

‘call a replica. If a replicated object is immutable, this

presents no great problem. It is relatively easy for the
nucleus to support a replicated immutable object: all
the replicas can have the same UID. Even though this
results in multiple physical objects with the same UID,
since they are all immutable and identical, it never mat-
ters which one the nucleus finds and uses; there is only
one logical object with that UID. One of the object at-
tributes supported by Aegis’ nucleus is immutability.

For mutable objects, however, it is not as easy;
updates to the object instances must be coordinated so
that all clients see a consistent state. We don’t deal with
the concurrency management problem here, only the
problem of naming the replicated object and its com-
ponents. ([GIFF 79] and [POPE 81] deal directly with
replication; DFS [STUR 80] provides general support
for multi-node atomic operations which can be used for
replication purposes.) Because it is complex, it is desir-
able to leave the management of replication out of the
nucleus, while still allowing it to be conveniently layered
on top. In order to make the new layer transparent to
client programs, it is necessary that they be able to

" refer to a replicated object via one UID. The replica-

tion manager, on the other hand, needs to distinguish

between the replicas, because internally to it they will
have different states, even though the client only sees
consistent states. Thus it needs different UIDs for each -
replica. This leads to essentially the same difficulty as

in the object version problem: the same UID needs to

refer to more than one object. The replication manager .
must map a UID presented by a client into the UIDs of

the mutable replicas.

One way to accomplish this is to record the UlDs
of the replicas in an immutable object, and have clients
use its UID to denote the replicated object. A copy of
this immutable object is then put at each site holding

a replica. When a client refers to the replicated object,
its UID is used to locate one of the immutable object
copies; if one can be found, then at least the replica at
the same site will be available. However, this does not
allow the addition of new replicas. To solve this, we use

" 4 of the 8 ’other’ bits in the UID to denote f)articular
replicas; let us call it the replica field. A replicated
object has a UID with a replica field of zero; there is no
physical object with this UID. Each of the replicas (up
to fifteen of them) has the same UID except for a non-
zero replica fleld. Thus, a client of a replicated object
always names it with a UID having a replica field of
zero; the replication manager selects and operates on
specific replicas via non-zero replica flelds.

Contrasting the two solutions, we see that using an
immutable object supports an arbitrary mapping from
UID of a replicated object to the UIDs of the replicas
which constitute its representation; whereas the sec-
ond scheme causes these UlIDs to be easily computable
from one another, eliminat,ing the need for the arbitrary
map. In addition, the second solutiqn allows replicas to
be added and deleted.

5.5. Lost objects

A lost object is one which exists, but for which no
references exist; hence it is inaccessible, i.e. lost. Un-
fortunately, it still takes up disk space. Objects become
lost due to crashes, or when objects which contain ref-
erences to them are deleted. Actually, objects are never
completely lost: a scan of a volume’s (undamaged) ta-
ble of contents data structure can find all objects on a
volume. However, if an object becomes inaccessible via
its text string name, it is often as good as.completely
lost. The only complete way to recover is garbage col-
lection, but we chose not to implement it. Again, the
consideration was nucleus complexity: if internode ob-
ject references are allowed, a distributed, asynchronous
collector is called for, such as [BISH 77]. We knew of
no implemented example; the nearest thing is the CFS
garbage collector [GARN 80], which is asynchronous,
but which doesn’t handle internode references. Fur-
thermore, in our current objects, there is no general
way to locate all the UlDs, although the implementa-
tion of partitioned objects (objects segregated into UID
- parts and data parts [JONE 80]) would solve this prob-
lem. Finally, we felt that most common cases could be
handled without it. Most objects are cataloged; and
by arranging that an object is not marked permanent
until it has successfully been cataloged, any newly cre-
ated but not yet cataloged object will still be tempo-

rary if the system crashes, and will be deleted by the
file system salvager (see [REDE 80]). Furthermore, all
objects have a father object attribute, which is the UID
of the directory in which they are cataloged, or of the

- (primary) object which contains its UID. If the father

object should cease to exist, the resulting lost object(s) -
can be deleted. Thus, object tree structures can be han-
dled. We felt that the sum of these techniques would
be sufficient.

6. Observations and conclusions

The principal advantages of UIDs are their size, lo-
cation independence, and the opportunity for layering
the nucleus implementation that they provided. Most
of the problems involved have been overcome or are
understood satisfactorily; the possible exception is the
general lost object problem. A feature of UIDs we have
taken advantage of is that, because they are location in-
dependent, initial implementations of higher layers can
impose restrictions on object location, and the restric-

" tions can later be removed without restructuring the

lower layers; the same would seem to be hard to ac-
complish with structured names.

- of course, it is eventually necessary to translate
UlDs into structured names, because the knowing the
location of an object is a prerequisite to accessing it.
We have found it advantageous to delay this binding as
long as possible, and to make general and uniform use
of the unbound names.

Aegis as currently implemented is missing some of
the features described above. Presently, it does not sup-
port indirection objects, object replication, partitioned
objects, garbage collection, network verified time for
UID generation, or extensible types. However, the fun-
damental groundwork, that of makihg a design that can
be gracefully extended, and anticipating the most likely
areas of extension, is essential to any system which is
intended to have a long and useful life. We think that
we have accomplished that goal.

REFERENCES

[APOL 81] — Apollo DOMAIN Architecture. Apollo

Computer Inc., Chelmsford, Mass., 1981.

[BIRR 80] Birrel, A. D., Needham, R. M.

"A Universal File Server.” IEEE Tranactions
on Software Engineering, SE-8, 5 (September
1980), pp. 450-453

-

O

O

<

[BIRR 82) Birrel, A. D., Levin, R., Needham, R. M.,
Schroeder, M. D.]

"Grapevine: An Exercise in Distributed Com-
puting.” Communications of the ACM, 25, 4
(April 1982), pp. 260-274.

[BISH 77) Bishop, P. B. Computer Systems with a
Very Large Address Space and Garbage
Collection. . Technical Report LCS/TR-178,
Laboratory for Computer Science, M.I.T., Cam-

“bridge, Mass., May 1977.

[CLAR 81] Clark, D., Halstead, B., Keohan, 8., Sieber, J.,
Test, J., Ward, S.
»The TRIX 1.0 Operating System.” Newsletter
of IEEE Tech. Comm. on Distributed Process-
ing, 1, 2 (December 1981), pp. 3-5.

[DION 80] Dion, J.

: . "The Cambridge File Server.” Operating Sys-

tems Review, 14, 4 (October 1980), pp. 26-35.

[FABR 74] Fabry, R.S., ,
” Capability-Based Addressing” Communications
of the ACM, 17, 7 (July 1974), pp. 403-412.

[FRID 81) Fridrich, M., Older, W.

"The FELIX File Server.” Proceedings of the

Eighth Symposium on Operating Systems Prin-
ciples, December 1981, pp. 37-44.

[GARN 80] Garnett, N. H., Needham, R. M.
"An Asyncronous Garbage Collector for the
Cambridge File Server.” Operating Systems Re-
" view, 14, 4 (October 1980), pp. 36-40.

[GIFF 79] Gifford, D. K.
“Weighted Voting for Replicated Data,” Pro-
ceedings of the Seventh Symposium on Operat-
ing Systems Principles, December 1979, pp. 150-
162.

[JONE 80] Jones, A.K.
' ”Capability Archictecture Revisited.” Operating
Systems Review, 14, 3 (July 1980), pp. 33-35.

[LAMP 80] Lampson, B. W., and Redell, D. D.

"Experience with Processes and Monitors in

Mesa.” Communications of the ACM, 23, 2
(February 1980), pp. 105-113.

[LANT 79] Lantz, K. A., Rashid, R. F.
"Virtual Terminal Management in a Multiple
Process Environment.” Proceedings of the Sev-
enth Symposium on Operating Systems Princi-
ples, December 1979, pp. 86-97.

[LAZO 81] Lozowska, E., Levy, H., Almes, G., Fischer, M.,

Fowler, R., Vestal, S.

@

"The Architecture of the Eden System.” Pro-
ceedings of the Eighth Symposium on Operating
Systems Principles, December 1981, pp. 148-
159.

[LEVI 79] Levin, R., Cohen, E., Corwin, W., Pollack, F.,
Wulf, W.)
"Policy/Mechanism Seperation in Hydra.” Pro-

ceedings of the Fifth Symposium on Operating

Systems Principles, December 1979, pp. 132-
140.

[LISK 79] Liskov, B.
"Primitives for Distributed Computing”. Pro-

ceedings of the Seventh Symposium on Operat-
ing Systems Principles, December 1979, pp. 33-
42,

[LUDE 81] Luderer, G. W. R., Che, H., Haggerty, J. P.,
Kirslis, P. A., Marshall, W. T.
” A Distributed Unix System Based on a Virtual
Circuit Switch”. Proceedings of the Eighth Sym-
posium on Operating Systems Principles, De-
cember 1981, pp. 160-168.

[NEED 78] Needham, R. M., Schroeder, M. D.
. "Using Encryption for Authentication in Large
Networks of Computers.” Communications of
the ACM, 21, 12 (December 1978), pp. 993-999.

[NELS 81] Nelson, D. L.
"Role of Local Network in the Apollo Computer
System.” Newsletter of IEEE Tech. Comm. on
Distributed Processing, 1, 2 (December 1981),
pp. 10-13.

[ORGA 72] Organick, E. I. The Multics System: An
Examination of Its Structure M.I.T. Press,
1972. ' '

[POLL 81] Pollack, F'., Kahn, K., Wilkinson, R.
"The iIMAX-432 Object Filing System.” Pro-
ceedings of the Eighth Symposium on Operat-
ing Systems Principles, December 1981, pp. 137-
147.

[POPE 81] Popek, G., Walker, B., Chow, J., Edwards, D.,
Kline, C., Rudisin, G., Thiel, G.
"LOCUS: A Network Transparent, High Relia-
bility Distributed System.” Proceedings of the
Eighth Symposium on Operating Systems Prin-
ciples, December 1981, pp. 169-177.

[RASH 81) Rashid, R. F., Robertson, G. G.
' ”Accent: A Communications Oriented Network
Operating System Kernel,” Proceedings of the

E:gbtb Symposium on Operating Systems Prin-
ciples, December 1981, pp. 64-75.

. [REDE 80] Redell, D. D., Dalal, Y. K., Horsley, T. R.,
Q Lauer, H. C., Lynch, W. C., McJones, P. R.,
Murray, H. G., Purcell, S. C.

"Pilot: an Operating System for a Personal
Computer.” Communications of the ACM, 28,

2 (February 1980), pp. 81-91.

[RITC 74] Ritchie, D. M., Thompson, K. :
”"The UNIX time-sharing system” Communica-
tions of the ACM, 17, 7 (July 1974), pp. 365-
375.

[STUR 80] Sturgis, H., Mitchell, J., Israel, J.
"Issues in the Design and Use of a Distributed
File Server.” Operating Systems Review, 14, 3
(July 1980), pp. 55-69.

[SVOB 79] Svobodova, L., Liskov, B., Clark, D. Dis-
tributed Computer Systems: Structure
and Semantics. Technical Report LCS/TR-
215, Laboratory for Computer Science, M.I.T.,
Cambridge, Mass., March 1979.

[SWIN 79] Swinehart, D., McDaniel, G., Boggs D. :
"WEF'S: A Simple Shared File System for a Dis-
tributed Environment.” Proceedings of the Sev-.
enth Symposium on Operating Systems Princi-
ples, December 1979, pp. 9-17.

Q[WARD 80] Ward, S.
. "TRIX: A Network-oriented Operating System.”
Proceedings. of COMPCON ’80, San Fransisco,

Feb. 1980.

[WULF 74] Wulf, W., Cohen, E., Corwin, W., Jones. A.,
Levin, R., Pollack, F.
"Hydra: The Kernel of a Multiprocessor Operat-
ing System.” Communications of the ACM, 17,
6 (June 1974), pp. 337-345.

O

O

To Appear: ACM Computer Science Conference, New Orleans, LA, March 13-15, 1985.

The File System of an Integrated Local Network

Paul J. Leach, Paul H. Levline,
James A. Hamlilton, and Bernard L. Stumpf

‘ Apollo Computer, Inc.
15 Elizabeth Drive, Chelmsford, MA 01824

Abstract

The distributed file system component of
the DOMAIN system is described. The DO-
MAIN system is an architecture for networks
of personal workstations and servers which cre-
ates an integrated distributed computing envi-
ronment. The distinctive features of the file sys-
tem include: objects addressed by unique iden-
tifiers (UIDs); transparent access to objects, re-
gardless of their location in the network; the
abstraction of a single level store for accessing
all objects; and the layering of a network wide
hierarchical name space on top of the UID based
flat name space. The design of the facilities is
described, with emphasis on techniques used to
achieve performance for access to objects over
the network. -

1. Introduction

This paper describes the design of the distribut;ed

flle system for the Apollo DOMAIN operating system.

DOMAIN is an integrated local network of powerful
personal workstations and server computers ([APOL
81], [NELS. 81]); both of which are called nodes. A
DOMAIN system is intended to provide a substrate on
which to build and execute complex professional, engi-
neering and scientific applications ([NELS 83]). Other
systems built following the integrated model of dis-

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee, and/or speciﬁé permission.

tributed computing include EDEN [LAZO 81] and LO-

CUS [POPE 81].

-Within the DOMAIN system, the network and the
distributed file system contribute to this goal by al-
lowing the professional to share programs, data, and
expensive peripherals, and to cooperate via electronic
malil, with colleagues in much the same manner as on
larger shared machines, but without the attendant dis-
advantage of sharing processing power. Cooperation
and sharing are facilitated by being able to name and
access all objects in the same way regardless of their
location in the network.

Thus, when we say that DOMAIN is an integrated
local network, we mean that all users and applications
programs have the same view of the system, so that
they see it as a single integrated whole, not a collec-
tion of individual nodes. However, we do not sacrifice
the autonomy of personal workstations to achieve in-
tegration: each personal workstation is able to stand
alone, but the system provides mechanisms which the
user can select that permit a high degree of cooperation -
and sharing when so desired.

Another reason we say that DOMAIN is an inte-

' grated local network is that each machine runs a com-

plete (but highly configurable) set of standard software,
which (potentially) provides it with all the facilities it
normally needs — file storage, name resolution, and so
forth. In contrast are server-based distributed systems,
wherein network wide services. are provided by desig-
nated machines (”servers”) which run special purpose
software tailored to providing some single service or
small number of services (e.g. Grapevine [BIRR 82],
WFS [SWIN 79], and DFS [STUR 80]). DOMAIN has
server nodes; however, they are created by configur-
ing the standard hardware and software for a special
purpose — a "file server” node, say, is created using a
machine with several large disks and system software
configured with the appropriate device drivers.

1.1. Organization

The rest of this paper is organized as follows. The
remainder of this introduction briefly descibes the hard-
ware environment on which the system runs. Section
2 provides an overview of the flle system, and breaks
it into four major component groups. Section 3 gives a
block diagram of the flle system structure, and a brief
description of each module, locating it within one of the
component groups. Sections 4, 5, 6, and 7 each describe
one of these component groups. Finally, section 8 fo-
cuses on those aspects of the design which we believe
have contributed most to the efficiency of the system. ‘

1.2. Hardware Environment

A DOMAIN system consists of a collection of
powerful personal workstations and server computers
(generically, nodes) interconnected by a high speed lo-
cal network. :

1.2.1. User Interface

Users interact with their personal nodes via a dis-
play subsubsystem, which includes a high resolution
raster graphics display, a keyboard and a locating de-
vice (mouse, touch pad, or tablet). A typical display
has 800 by 1024 pixels, and bit BLT (bit block trans-
fer) hardware to move arbitrary rectangular areas at
‘high speed. Server nodes have no display, and are con-

trolled over the network. More information on the user

environment can be found in [NELS 84].

1.2.2. CPU

There are several models of both personal and sever

nodes. Their ’tick’ times [LAMP 80] range from .4

to 1.25 microseconds; their maximum main memory
ranges from 3.5 megabytes to 8 megabytes. Most per-
-sonal nodes have 33 to 154 megabytes of disk storage
and a 1 megabyté floppy disk, but no disk storage is
required for a node to operate. Server nodes configured
as flle servers can have 300-1000 megabytes or more
of disk storage; those configured as peripheral servers
can have printers, magnetic tape drives, plotters, and
so forth. ‘

All nodes have dynamic address translation (DAT)

hardware which supports up to 128 processes, with .

each process able to to address 16 or 256 megabytes
of demand paged virtual memory (depending on CPU
rnodei). The DAT hardware on some models uses a re-
verse mapping scheme, similar to that used in the IBM

System/38 [HOUD 78]; it is a large, hardware hash
table keyed by virtual address, with the physical ad-
dress given by the hash table slot number in which a
translation entry is stored. Other models use a forward
mapping scheme, similar to the VAX [DEC 79] or Sys-
tem/370 [IBM 76]). The DAT also maintains used and
modifled statistics on a per page basis for the use of page
replacement software, and access protection controlling
read, write and execute access. The differences between
the DATs of the different models are abstracted away
by an MMU (memory management unit) module.

1.2.3. Network

The network is a 12 megabit pef second baseband
token passing ring (other ring implementations are de-
scribed in [WILK 79], [GORD 79]; and reasons for pre-
ferring a ring network in [SALT 79}, [SALT 81]). Each
node’s ring controller provides the node with a unique
node ID, which is assigned at the factory and contained
in the controller’s microcode PROMs. The maximum
packet size is 2048 bytes. The controller has a broad-
cast capability.

‘We will not discuss the network further here; for
purposes of the file system, all that is required is that
the it deliver messages with high probability and low
CPU overhead. For more information on the ring con-
troller and data link layer protocols see [LEAC 83].

2. File System Overview

The DOMAIN file system is actually made of four
distinct components: an object storage system (OSS),
the single level store (SLS), the lock manager, and the
naming server. (See figure 1 for a’ block diagram.)

The OSS provides a flat space of objects (storage
containers) addressed by unique identifiers (UIDs). Ob-
jects are typed, protected, abstract information con-
tainers: associated with each object is the UID of a
type descriptor, the UID of an access control list (ACL)
object, a disk storage descriptor, and some other at-
tributes: length; date time created, used and modi-
fled; reference count; and so forth. Object types in-
clude: alphanumeric text, record structured data, IPC
mailboxes, DBMS objects, executable modules, directo-
ries, access control lists, serial I/O ports, magnetic tape
drives, and display bit maps. (Other objects which are
not information containers also exist. UIDs are used
to identify processes; and to identify persons, projects,
organizations, and protected subsystems for authenti-

C

cation and protection purposes.) The distributed OSS
makes the objects on each node accessible throughout
the network (if the objects’ owners so choose by setting
the objects’ ACLs appropriately). The operations pro-
vided by the OSS on storage objects include: creating,
deleting, extending, and truncating an object{; reading
or writing a page of an object; getting and setting at-
tributes of an object such as the ACL UID, type UID,
and length; and locating the home node of an object.
The OSS automatically uses a node’s main memory as a
cache of recently used pages, attributes, and locations
of objects, including remote ones. It does nothing to
guarantee cache consistency between nodes; however,
it does provide mechanisms that the lock manager can
use to make and enforce such guarantees.

A unique aspect of the DOMAIN system is its net-
work wide single level store (SLS). (Multics [ORGA 72]
and the IBM System/38 [FREN 78] are examples of a
single level store for centralized systems.) Programs ac-
cess all objects by presenting their UIDs and asking for
them to be "mapped” into the program’s address space
(see [REDE 80} on the desirability of mapping in dis-
tributed sYstems); subsequently, they are accessed with
ordinary machine instructions, utilizing virtual memory
demand paging. '

The purpose of the single level store is not to create
network wide shared memory semantics akin to those
of a closely coupled multiprocessor; instead, it is a form’
of lazy evaluation: only required portions of objects are
actually retrieved from disk or over the network. An-
other purpose is to provide a uniform, network trans-

parent way to access objects: the mapping operation '

is independent of whether the UID is for a remote or

.local object. As long as programs make thg worst case

assumption that their objects are not local, and hence
that operations on them are subject to communication
failures, they need not be aware of their location. (See
[POPE 81] on the desirability of network transparency.)

The lock manager serializes multiple simultaneous
access to objects by many processes, including ones on
different nodes. A process must lock an object prior
to its use; the lock manager arbitrates lock requests,
and uses the sequence of requests to keep main memory
caches consistent.

The naming server allows objects to be referred to

by text string names. It manages a collection of di-

rectory objects which implements a hierarchical name
space much like that of Multics or UNIX! [RITC 74].
The result is a uniform, network wide‘name space, in

which objects have a unique canonical text string name

JUNIX is a trademark of Bell Laboratorles.

as well as a UID. The name space supports convenient
sharing, which. would be severely hampered without
the ability to uniformly name the objects to be shared
among the sharing parties.

3. File System Structure

Figure 1 shows a block diagram of the file sys-
tem. Each of the major component groups is indicated
by a different form of shading. The arrows between
blocks indicate call dependencies; in addition, all mod-
ules above the “pageable” boundary have an implicit
dependency on the SLS. '

~The system is stuctured using a data abstraction
approach, sometimes called a “type manager” approach
when applied to operating systems ([JANS 76]). Each
module has a set of operations and a private database
in which to record its state. Thus, in describing the
components of the system, we will identify the man-
agers which comprise that component, and then, for
for each manager, the essential operations provided by
that manager, and an indication of the form of the
database and algorithms used to implement the opera-
tions. (Note: in the descriptions of calls in this paper,
irrelevant details have often been suppressed for ease of
exposition; the intent is to capture the semantic flavor
of the interfaces, not their precise syntax.)

4. Object Storage System

The OSS is the DOMAIN counterpart of dis-
tributed file systems such as WFS [SWIN 79] and DFS
[STUR 80]. The purpose of the OSS is to provide per-
manent storage for objects, and to allow objects to be

) identified by and operated on using UlIDs, independent

of their location in the network.

At the level we will discuss here, an object is just a
data container: an array of uninterpreted data bytes, or
more precisely, an array of pages (1024 byte units into
which objects are divided). Other object attributes,
such as it’s type descriptor and access control list are
not used by the OSS, but are simply stored for the
use of higher levels. (Not all objects are represented by
storage containers: for example, processes are identified
by UIDS, but are not associated with any permanent
storage.)

The OSS consists of several component subgroups:
a local OSS, remote OSS, cached OSS, and an object lo-
cating service. The top-level location independent OSS

- -

Supervisor

f

% 'Sér?e'r<</{§
e

To Datagram
- IPC

Pageable
Wired,
Location
, Dependent
v l v_
32035ASTIINNSY s
(Active Segment Table) %/7//’///// \
- - ~
2 3333 PMAP3333 NETWORK: {{ Datagram
333 Pans MAPY 293 IPC
205 FPage MAP) 555
2 > 3 3 d ok ok oy 2)o))

VTOC

Volume Table
of Contents

Tabl

MR
?

Disk Hardware

To Net Hardware

. Legend:

Local OSS

Cached OSS|[: : :

Locatlon Independent ——
oss ==

Remote OSS

Single Level Store

Lock Manager|

Name SerVerl:]

- File System Structure

abstraction is created utilizing these services.

4.1. Identifying Objects

 UIDs of objects are bit strings (64 bits long); they
are made unique by concatenating the unique ID. of the
node generating the UID and a time stamp from the
node’s timer. (The system does not use a global clock.)
_ UIDs are also location independent: the node ID in an
object’s UID can not be considered as anything more
than a hint about the current location of the object.
(More detail on the use and implementation of UIDs is
presented in [LEAC 82].)

At any point in time, the permanent storage for an
object resides entirely at only one node; also, the system
never attempts to transparently move it to a different
node. So, for every object there is always one distin-
guished node which is. its "home”, and which serves as
the locus of operations on the object. Above the OSS
level, only UIDs are used to address objects; an opera-
tion whose UID addresses a remote object is sent to the
object’s home node to be performed. '

4.2, Local OSS

This subgroup provides access to.local objects: i.e.,

those objects stored on disk volumes which are attached

to the node accessing them. It provides operations to
create and delete local objects, and to access the at-
tributes and contents (pages) of existing objects (see
figure 2). There are two managers in this group: the
VTOC (volume table of contents) and the BAT (block
allocation table). '

The VTOC for a volume contains an entry for
each object on the volume; an object’s VTOC entry
contains the object’s attributes and the root of its file
map, which translates page numbers within an object to
disk block addresses. (VT'OC entries are very similar to
UNIX inodes [THOM 78].) The VTOC is organized as
an assoclative lookup table keyed by object UID, which
permits rapid location of an object’s VT'OC entry given
its UID. (Using a large direct mapped hash table with
chained overflow buckets and avoiding high utilization,
the average lookup time is just over one disk access.)

To access the contents of an object requires two
steps: translate the object reference to disk block ad-
dress, then read (or write) the disk block. (An object
reference is a pair consisting of the object’s UID and
a page number within the object.) The VTOC only
provides operations to do the tra'nslation, not the reads
or writes, because the translations are then cached and

allocate — allocate a VTOC entry for an empty object and
set its attributes

The object is created on the local disk vol-
ume specified by ‘vol-index’. The object de-
scriptor contains the object’s UID and initial
attributes. !

FUNCTION allocate(vol-index, obj-decriptor): vtoc-index

lookup — get the VTOC index of an object
FUNCTION lookup(vol-index, obj-uid): vtoc-index

read — get the VTOC entry of an object given its VTOC
index

Attributes in the ‘vtoc-entry’ include: object
UID; type UID; ACL UID; length; time cre-
ated, used, and modified; reference count, etc.

FUNCTION read(vol-index, vtoc-index): vtoc-entry

write — write the VTOC entry of an object given its VTOC
index :

Note: overwriting a VTOC entry for an object
with an empty VTOC entry has the effect of
deleting the object. '

FUNCTION write(voi—inclex, vtoc-index, vtoc-entry)

_read-fm — get the file map for a segment of an object

Object are divided into 32 page segments; the
‘seg-no’ indentifies the segment; the ‘file-map’
is an array of 32 disk block addresses, one for
each page in the segment.

FUNCTION read-fm(vol-index, vtoc-index, seg-no): file-map

write-fm — write the file map for a segment of an object
FUNCTION write-fm(vol-index, vtoc-index, seg-no, file-map)

Figure 2: Sample VTOC Operations

used by the cached OSS (see below). The translation
is done by reading or writing the flle map for 32 page
units of the file called segments.

- The BAT for a volume keeps track of which disk
blocks are available for allocation on that volume. The
principle operations on the BAT are ones to allocate
and free disk blocks. One interesting feature is that
" the allocation operation aids in creating locality of the
pages within an object on the disk. One of the input
parameters of the allocation operation is a disk block
address; an attempt is made to make the newly allo-
cated block as close as possible to it. When a new page
is being added to an object, this parameter is usually
set to the disk address of the previous logical page of
that object. We observe that this causes much better
clustering of objects on the disk than not doing any-
thing at all, except when the disk is nearly full. (We

have not analyzed the benefit quantitatively. Also, to

get rgally good locality, it is probably necessary to use
the more comprehensive methods of [MCKU 84].)

4.3. Cached OSS

Disk operations and remote operations are both
expensive, so it is desirable to avoid them when possible.

One means of doing so is to cache recently obtained

results of such operations, and reuse them when it can
be ascertained that they are still valid.

The cached OSS consists of the AST, PMAP, and
MMAP managers. The AST (active segment table)
caches locations, pages, and attributes of active (re-
cently used) objects, whether local or remote. Each
entry in the AST contains the UID, location and at-
tributes of an object, plus the PMAP for one segment
of the object. The PMAP (page map) for a segment con-
tains the file map for that segment, plus references to all
resident main memory pages. Part of the maintenance
of PMAPs is done by the purifier process, which period-
ically writes back modified pages to secondary storage
(local or remote, as need be). The MMAP (memory
map) is the allocator of main memory pages, and keeps
track of their contents.

The AST provides operations to access pages and
attributes (including locations) of objects (see figure 3).
If the requested information is not in its cache (or
'"PMAP’s), then it uses the local or remote OSS to get
the necessary information and encache it. The touck
operation fetches object contents {pages). (There is no
write operation; pages are modified via the single level
store while in the cache, then written back later by the
PMAP purifier process.) The get-attr operation fetches

touch — cause several consecutive pages of an object to be
cached in. main memory

Cause ‘n’ pages pages starting with ‘page-
num’ of object with UID ‘object-uid’ to be
cached. The object ‘location’ is the ID of the
remote node or local volume where the object
resides. .

FUNCTION touch(location, object-uid, page-num, n): phys-
page-list :

get-attr — get an object’s attributes

Attributes in the ‘attr-rec’ include: type UID;
ACL UID; length; time created, used, and
modified; reference count, etc.

FUNCTION get-attr{object-uid): attr-rec

set-attr-X — set attribute X of an objectv

This is a set of operations, where X can be
replaced by any of the attributes above.

PROCEDURE set-attr-X(object-uid, X-value)

cond-flush — remove stale pages of an object from the cache

The boolean ‘flushed’ is true if any stale data
was I_iushed.

FUNCTION cond-flush(object-uid, dtm): flushed

purify — send all modified pages of an object back to its
‘home’ node

if ‘force’ is true, write the pages to disk imme-
diately at the home node, else just leave them
in the home node’s cache.

PROCEDURE purify(object-uid, force)

Figure 3: Sample AST Operations

object attributes, and set-attr allows objects’ attributes
to be individually changed.

The AST also provides operations to manage its
cache’s consistency with that of other nodes, and which
are designed to be used by the lock manager: it only
allows access to objects if they are properly locked; it
maintains a version number for each object; and it pro-
vide operations to control the contents of the cache.

'4.3.1. Lock Enforcement

As one of its attributes, each file system object has
a Jock key. The lock key is set to either a network node
ID or one of (for now) two special values: readbyall
and writebyall. When an object’s lock key is set to N,
only OSS requests from node N are processed. All other
requests are denied with an error indication of concur-
rency violation. When the lock key is set to readbyall,
read requests (for pages and attributes) from every node

are allowed while all write requests are denied regardless

of their source. Finally, a lock key value of writebyall
completely disables the OSS level concurrency control
checking and so all requests are always fulfilled.

4.3.2. Object Versions

A time stamp based version number scheme is used
to support the cache validation mechanism. An object’s
version number is its date-time modified (DTM) at-
tribute. (See [KOHL 81] for a survey of distributed con-
currency techniques.) Every object has a DTM with 8
millisecond resolution associated with it, which records
the time the object was last modified.

The DTM of an object is maintained at its home

" node. When an object is modified by locally originating
memory Writes, the page modified bits in the DAT hard-
ware record that fact; periodically, the modified bits are
scanned and cause the object’s DTM to be updated. If
an object is modified by a remote node, eventually the
object’s modified pages are sent back to the home node;
_the paging server updates an object’s DTM in response
to remotely originating OSS requests to write its pages.

In addition, every node also remembers the DTM
for all remote objects whose pages it has encached in its
main memory. Every time a page of an object is read
from or written back to its home node, the latest DTM
is sent with the network reply message. Recall that the
requests for page level operations are filtered through
the lock key based low-level concurrency control.

4.3.3. Content Control

There are several operations explicitly provided by
the AST to allow for cache management by higher level
synchronization mechanisms.

1. A conditional flush operation expunges from the
cache all pages of an object that are not from
the current version of the object. (This is used
by the lock manager when it discovers that the
DTM associated with the cached pages of an ob-
ject is different from the object’s real DTM.)

2. A get-attr operét,ion returns (among other at-
tributes) the DTM of the current version of an
object.

3. A purification operation sends copies of all mod-
ified pages of an object back to the home node
of the object (but leaves the pages encached for
possible later use). (This is used by the lock
manager at unlock time.)

4. A force write variant of the purification opera-
tion causes a page to be written to permanent
store on its home node; its purpose is to be a
minimally sufficient toe hold with which to im-

. plement more complex atomic operations.

We shall see that using by using the AST’s lock en-
forcement, object version, and cache content control fa-
cilites, the lock manager can effectively guarantee cache
consistency for all clients who obey the system locking
rules (see section 6).

4.4. Locatioh Independent OSS

"Location independent access to objects is prov_ided
by the SLS and the location independent OSS. The SLS
provides access to the contents of already existing ob-

nject.s, while the location independent OSS provides ac-

cess to object attributes, and supports object creation
and deletion.

The location independent OSS consists of the FILE
manager, and the HINT manager. The FILE manager
exports the attribute access and cache control opera-
tions of the AST to user programs in a location in-
dependent way. In addition, it implements a create
operation to create new objects, a delete operation to
destroy them, and a locate operation to return the node
ID of the home node of an object (see figure 4). To cre-
ate location independence, the FILE manager uses the
HINT manager to determine the location of an object,
then either does the operation locally (using the local
or cached OSS), or uses the services of REMFILE (see
below) if it must go remote.

create — create an object

the new object is created on the same node as
‘loc-object-uid’

FUNCTION create(loc-object-uid): new-object-uid

delete — delete an object
PROCEDURE delete(object-uid)

- Jocate — return the node address of the home node of an

object
FUNCTION locate(object-uid): node-id

Figure 4: Sample FILE Operations

The HINT manager is the backbone of the locat-
ing service: given an object’s UID, it finds the ID of the
node on which an object resides. This is the fundamen-
tal distributed algorithm in the system: no global state
information is kept about object locations. Instead, a
heuristic search is used to locate an object. Complete
details are in [LEAC 82], including design considera-
tions and the evolutionary history of the algorithm. To
summarize briefly, the current algorithm relies heavily
on hints about object location. One source is the node
ID in the object’s UID, another is the hint file. Any time
a software component can make a good guess about the
location of an object, it can store that guess in the hint
file for later use; one particularly good source of hints
is the naming server, which guesses that objects are
co-located with the directory in which they are cata-
logued. If all hints fail to locate the object, then the
requesting node’s local disk is searched for the object.
The algorithm works because, although it is possible
for objects to do so, they rarely move from the node
where they were created; and if they do, then the nam-
ing servers hint will nearly always be correct. A last
resort, which would be completely sufficient, would be
to accept user input into the hint file; this has not yet
been implemented, as it hasn’t really been needed.

4.5. Remote OSS

The remote OSS is separated into two parts which
are at two very different layers of the system: the NET-
WORK manager, which provides remote access to the
attributes and contents of already existing objects; and

the REMFILE manager, which provides facilities to re-
motely create and delete objects. This is in contrast to
the local OSS, where one set of managers provides both
capabilities; the purpose is to separate the pieces of the
remote OSS which are needed to resolve page faults

from those which are not. This both minimizes the
- amount of code and data which must be permanently

resident in main memory in order to implement vir-
tual memory, and allows the REMFILE manager to use
the virtual memory provided by the SLS. Both NET-
‘WORK and REMFILE are location dependent abstrac-
tions: in order to access a remote object, its location
must already be known. Both of these managers can
be thought of as hand-coded stubs for a simple form of
remote procedure call (RPC) [BIRR 84].

The NETWORK manager is divided into a client
side and a server side. The client side is used by
the cached OSS to access the attributes and contents
(pages) of already existing remote objects that are not
in the main memory cache. When the client side is
called to make a remote access, it is given the request
parameters and the node ID of the home node of the
object being accessed. (The request parameters always
include the UID of an object, and, for a read page re-
quest; would include the page number of the object to
read, for example). It packages the request parame-
ters into a message, sends it to the given node using the
low-level socket datagram IPC and waits for a response.
Since the requests are all idempotent, it can use-a very
simple request-response protocol ([SPEC 82]); for more
details on sockets and protocols see [LEAC 83].

The server side uses a remote paging server pro-

"cess to handle client requests, which services all re-

motely originating requests to read or write pages and
attributes of objects on that node. The paging server
has a socket assigned to it, with a well known ID, upon
which it receive requestsﬁ it uses the local access mech-
anism to fulfill those requests. Remote paging oper-
ations are requested via (UID, page number) pairs
only, never by disk address, and other remote opera-
tions only via UlDs; thus, a node never depends on any
other node for the integrity of its object store. (This
is one of the reasons the system is truly a collection of
autonomous nodes — to which are added mechanisms
permitting a high degree of cooperation — as distin- .
guished from, say, a locally dispersed loosely coupled
multiprocessing system.) '

The REMFILE manager is also divided into client
and server sides, and except that the operations are to
create and delete objects, its structure is nearly identi-
cal to the NETWORK manager. The server side uses

a remote file server process; it services client requests
by calling the FILE manager to service requests. REM-
FILE also handles remote lock requests for the LOCK
manager; see section 6.

‘5. Single Level Store

The single level store concept means that all mem-
ory references are logically references directly to ob-
jects. This is in contrast to a multi-level store, which
typically has a "primary” store and one (or more) "sec-
ondary” store(s); only the primary store is directly ac-
cessible by programs, so they have to do explicit "1/0"
operations to copy an object’s from secondary to pri-
mary store before the data can be accessed. To make
the distinction between primary and secondary store
transparent, a single level store has to manage main
memory as a cache over the object store: fetching ob-

jects (or portions of objects) from permanent store into .

main memory as needed, and eventually writing back
modified objects (or portions thereof) to the permanent
store. SLS is thus a form of virtual memory, since all
referenced information need not (indeed could not) be
in main memory at any one time.

Our implementation of SLS has many aspects in
common with implementations of SLS for a centralized
system: main memory Is divided into page frames; each
page frame holds one object page; main memory is man-
aged as a write-back cache; DAT hardware allows refer-
ences to encached pages at main memory speeds. If an
instruction references a page of an object which is not in
main memory, the DAT hardware causes a page fault,
and supplies the faulting virtual address and the ID of
the faulting process to software. The page fault han-
dler finds a frame for the page; reads the page into the
frame; updates the DAT related information to show
that the page is main memory resident; and restarts or
continues the instruction. '

The SLS is implemented by the MST manager,
which comes in two modules: one which is permanently
‘resident, called MST-wired; and one which is pageable,
called MST-unwired. Both manipulate a per process
table, the Mapped Segment Table (MST), which trans-
lates a virtual address to a (UID, page number) pair.

MST-unwired implements a map operation, which
adds an object to the address space of a process given
the object’s UID; an unmap operation, which removes
an object; a get-uid operation to inquire about the ob-
jects in an address space; and a set-touch-ahead-cnt
operat,ion to cause read-ahead on page faults. To map

map — make an object accessible through a virtual address
space range

FUNCTION map(object-uid, protection, grow-ok, out obj-
length). virt-addr

unmap — remove an object from the address space
PROCEDURE unmap(virt-addr) :

getuid — get the UID of a mapped object
FUNCTION getuid(virt-addr): object-uid

set-touch-ahead-cnt — set demand paging cluster factor for
a mapped object

Causes pages of the object to be read /written
in ‘cluster-size’ units.’

PROCEDURE set-touch-ahead-cnt(virt-addr, cluster-size)

touch — cause a page to be cached in main memory

The page refered to by virtual address ‘virt-
addr’ is brought into memory, and the MMU is
loaded with the ‘virt-addr’ <-> ‘phys- page-
addr’ association.

PROCEDURE touch(virt-addr): phys-page-addr

wire — cause a page to be cached in main memory and made
non-pageable

_PROCEDURE wyire(virt-addr): phys-page-addr

find — find the phyical page address for a virtual address
Optionally wire the page if ‘wire-flag’ is true.

PROCEDURE find(virt-addr,wire-flag): phys-page-addr

Figure 5: Sample MST Operations

an object into the address space, an entry defining the
(virtual address, UID) association is made in the

MST; unmapping just removes the appropriate entry.

None of these operations are required while servicing a
page fault; thus, the module can be pageable.

" MST-wired implements a touch operation, which
for a given virtual address, causes the object page asso-
ciated with it to be cached in main memory. The touch
operation is given the virtual address of the faulting
page, which it looks up in the MST to get the UID of

the object mapped at that address; fetching the page‘

is then just a request to the OSS, even if the page be-
longs to a remote object (see figure 5). If the touch
ahead count is more than one, it will also pre-fetch suc-
ceeding pages of the object. Other operations include
a wire operation, which is similar to touch, except that
the page is made permanently resident as well; and a
find operation, which returns the main memory address
of a page if it is resident.

What distinguishes our implementation from a cen-
tralized one is the necessity of dealing with multiple
main memory caches: in fact, one for each node in the
network. This leads to the problem of synchronizing
the caches in some way: of finding and fétching the
most up-to-date copy of an object’s page on a page
fault, and of avoiding the use of ”"stale” pages (ones

that are still in a node’s cache, but have been more

recently modified by another node). The objective of
synchronijzation is to give programs a consistent view
of the current version of an object in the face of (po-
tentially) many updaters. A second objectlve is that
the synchronization algorithm should be quite simple
and need only a small data base, as it would be part
of the SLS implementation and hence be permanently
resident in main memory.

These objectives appeared, for pr_actical purposes,
to be mutually exclusive, so our SLS implementation
does not guarantee consistency or the use of the cur-

rent version. Instead, the implementation does provide -

operations and information from which a higher level
can build a mechanism that makes the stronger guar-
antees. In addition, the higher level can use the virtual
memory provided by SLS, and thereby be in large mea-
sure freed of the constraints mentioned earlier on the
- size of it and its data base. The system provides a

readers/writers locking mechanism at the higher level;
however, other clients are free to construct their own.

synchronization mechanism at this level if they do not
wish to use ours.

10

lock — lock an object

See text for explanation of ‘obj-mode’; ‘acc-
mode’ is one of read, write, or read-intend-
write. The boolean ‘locked’ is returned true if
the object was locked; the caller never waits.

FUNCTION lock(object-uid, obj-mode, acc-mode): locked

relock — change the access mode of an lock

The boolean ‘changed’ is returned true if the
access mode was changed.

FUNCTION relock(object-uid, acc-mode): changed

unlock — unlock an object
FUNCTION unlock(object-uid, acc-mode)

read-entry — find the lock entry record for an object

the ‘lock-rec’ contains the object uid, process
uid of the locking process, the object and ac-
cess modes of the lock, and a transaction ID
(see text). :

FUNCTION read-entry(object-uid): lock-rec

iter-entry — iterate through all locked objects

if ‘volume-uid’ is non-nil, restrict the iteration

to just objects on that volume; ‘N’ starts at
0, and after each call is the index of the next

entry to 4be returned. :

FUNCTION iter-entry(volume-uid, N, object-uid): lock-rec

Figure 6: Sample LOCK Operations

6. Lock Manager

The LOCK manager provides clients of the file sys-
tem the means to obtain control over an object and to
block processes that wish to use the object in an in-
compatible way. The tools that the lock manager has
at its disposal are its own lock data base and the lock
key attribute associated with each object.

The lock operation supports two locking modes for
objects. The more familar is the many readers or single
writer lock mode [HOAR 74]. A co-writers (co-located
writers) lock mode is also provided, which makes no re-
strictions on the number of readers and writers, but de-
mands that they be co-located at a single network node.
This mode allows the use of shared memory semantics,
but only among processes located at the same node.

(Guardians [LISK 79] employ this same notion, but at
the level of linguistic support for distributed computa-
tion.) For either mode, several types of access mode are
supported: read, write, read with intent to write later
[GIFF 79]. '

Other operations include: unlock, to unlock an ob-
ject; relock, to change one type of lock to another with-
out unlocking; read-entry, to inquire whether an object
is locked, and if so, how; and iter-entry, to list all locked
objects on a node. '

An instance of the lock manager exists on every
network node, and each lock manager keeps its own
‘lock data base. This data structure records all of the
objects, local or remote, that are locked by processes
running on the local node. The same structure also
records locks that remotely running processes are hold-
ing over local objects. Lock and unlock requests for
remote objects are always sent to the home node of the
object involved, and both the requesting node and the
home node update their data bases. The LOCK man-

ager uses the REMFILE manager to handle the remote -

requests.

The lock manager enforces compatible use of an
object by not granting conflicting lock requests. How-
ever, it guards against accidental or malicious subver-
sion of the locking mechanism by communicating its
current intent to the OSS on a per object basis through
the lock key. When an object is locked in a2 way that ex-
cludes any writers, the lock manager sets its lock key to
the readbyall value. When an object is locked for use
by a single writer, the lock manager sets its key to the
node ID of the writing process. This causes both reads
and writes from any other node in the network to be
refused as concurrency violations. Today’s implemen-
tation of the lock manager does not use the writebyall
value for the lock key, however newly created objects
have their lock key initialized to this value.

Locks are either granted immediately or refused;
processes never wait for locks to become available, so
there is no possibility of deadlock (but indefinite post-

ponement is of course possible). This kind of locking .

is not meant for distributed database types of transac-
tions, or for providing atomicity in the face of node fail-
ures, but for human time span locking uses such as file
editing. For this same reason, locks are not timed out,
since realistic time outs would be unreasonably long.

6.1. Cache Consistency

In a centralized virtual memory system, the main
memory is the single cache over the permanent storage

11

of a file system object. "Since all of the users (both
simultaneous and serial) of an object run on the same
system, the memory cache is common to each of them
and so no cache validation need ever be done. When the
object is “unlocked” by one process, its pages may stay
in the main memory cache for awhile, and if another
process comes along to use the same ﬁle,' that second
process will always see the latest version of the object.

In the DOMAIN distributed SLS the simultaneous
users of a particular file are either all readers (in which
case the data they see is identical), or all processes run-
ning on the same node (in which case the main memory
cache they see is the same as in the case of a single
centralized system). All other simultaneous uses of a
file system object are unsupported by the DOMAIN file
system. However, we would like serial users of an ob-
ject in the DOMAIN file system to each correctly see
all changes made to the file by earlier users.

The simplest demonstration of the problem we
faced requires two nodes A and B. Suppose a one page
long file system object O resides on a disk that is phys-
fcally connected to node A. A process on B locks the
object O and reads its single page. That page moves
through the network from A to B and ends up in the
main memory of system B. After studying the page for
some time, the process on B unlocks the file and goes
about its business. A short time later, another process
on B wants to read the same file O. It locks O for read-
ing and accesses that page. We wanted the second user
of O to be able to dependably use (or knowingly dis-
card) the copy of the page cached in B’s main memory.
It should be able to use that page (wlithout refetching
it from the network) if the file O has not been modified
since the page was fetched, and it must refetch the page

_if the file has been modified. In this case, we needed to

be able to answer the question: Did a process on A
modify O between the time the page was delivered to

" B and the time the second B process wanted to use it?

The mechanism described below allows us to efficiently
answer that question, and to invalidate the cached copy
if it was modified by A.

The version number (DTM) kept by the AST for
each object can be used to synchronize main memory
caches, as follows. The remote user of an object can
prove the validity of his cached copy by verifying that
the current DTM (as kept by the home node of the ob-
ject) is identical to the DTM his node has remembered
for the cached pages. Should they be different, the lo-
cally cached pages need 1o be invalidated. The lock
manager performs this validation at lock time for all
remote objects: a request to lock a remote object that

O

is granted returns the current version number (DTM)
of the object, which is used in a conditional flush oper-
ation, thereby removing stale pages of the object from
the requesting nodes main memory.

A second version of the caching problem is to insure

that if (extending the example above) the first B pro- '

cess to use O had modified the object, that the change
be available to a process on A that wants to use the

" object immediately after the B process releases it. To

guarantee correctness in this case, copies of all changed
pages of remote objects are delivered back to their home
node before the object is unlocked. This function is
performed by the lock manager as part of the unlock
function: a request to unlock a remote object first puri-
fies the object (forces modified pages back to the home
node), then frees the lock to make the object available.

Note that concurrency’violat,ions can only occur in
multi-node situations: if an object is never locked, and
is used by only one node, that node is the only source
of version number changes, and will hence always see
a consistent view of the current version. This is why
the LOCK and HINT managers’ state can be stored in
virtual memory: the objects that store their code and
data do not need to be locked because they are only
used on one node. '

6.2. Discussion

This two-layer approach to concurrency manage-
ment has several desirable attributes. First is that it
allows the (presumably) more complicated and larger
higher level protocol to use the services of OSS to main-
tain its datd base. Second is its flexibility. Changes
to the higher-level lock manager can be accomplished
without affecting the OSS-level implementation at all.
Also, because the operations to manage the cache are
exported, clients can implement their own schemes, any
number of which can coexist as long as they manage
disjoint sets of objects. Lastly, the burden of lock key
checking assigned to the per-page operations at the OSS
level is very slight compared to the lock manager’s data
base maintenance.

One restriction that it would be desirable to re-

lax is that the concurrency granularity of the current
implementation is at the level of entire objects. The
lock key as described is insufficient for some forms of
concurrency control. However, if the highef—level pro-
tocols wanted to take on the entire control task, the
lock key could be set to its writebyall value to disable
concurrency checking by the OSS—lével. Note that the
per-object techniques described above, but with a ver-

12

. sion number (DTM) per page, would allow page level

concurrency control. We already store the DTM with
each page on backing store; thus keeping one DTM per

_ main memory page frame would suffice for this exten-

sion.

7. Naming Objects

For users, UIDs are not a very convenient means
to refer to objects; for them, text string names are
preferable. However, like UlDs, they should be uni-
form throughout the network, so that the name of an
object does not change from node to node. In DO-
MALIN, text string names for objects are provided by a
directory subsystem layered on top of the single level
store. The name space is a hierarchical tree, like Mul-
tics [ORGA 72] or UNIX [RITC 74], with directories
at the nodes and other objects at the leaves. A direc-
tory is just an object, with its own UID, containing pri-
marily a simple set of associations between component
names (strings) and UIDs. (A symbolic link facility, like
that of Multics, is the other major feature of directo-
ries.) A single component name is resolved in the con-
text of a particular directory by finding its associated
UID (if any). The absolute path name of an object is
an ordered list of component names. All but (possibly)
the last are names of directories, which, when resolved
starting from a network-wide distinguished "root” di-
rectory, lead to the UID of the object. Thus, an ab-
solute path name, like a UID, is valid throughout the
entire network, and denotes just one object. (There are
other forms of path name besides the absolute form;
these relative path names are mainly for convenience,
since absolute path names are potentially very long in a
large network with large numbers-of objects. They are .

- all expressible as the concatenation of some absolute

path name prefix to the relative path name itself.)

8. Lessons

The first implementation of the DOMAIN system
was completed in March of 1981. Since then, the system
has been tested, used, and measured extensively. At
this writing, the largest operational DOMAIN network
system is a single token-ring network consisting of over
600 nodes, and DOMAIN installations of over 70 nodes
are not uncommon. As a result of this almost four
years of experience, we believe we have learned some
important practical lessons — some of .which validate

(and in some cases vindicate) our choices and others
that suggest alternative implementations.

8.1. Choosing SLS

The DOMAIN-chosen technique mapping file sys-
tem objects into process address space and then turn-
ing MMU faults into object read requests of the form
(UID, pageno) has been very successful. It enjoys the
benefits of simplicity of implementation, stateless re-
mote servers and the efficency of demand-paging lazy
evaluation. Further, a single main memory cache man-
agement mechanism equally manages object pages for
local and remote objects. Our original goal for the re-
mote paging system was to have remote sequential file
system I/O take no more than two times longer than
the file I/O from a local disk. Over the years, this ratio
has averaged around 1.8 to 1.

8.2. Seduction by SLS

The characteristics of network location trans-
parency and a low penalty for remote transparent ac-
cess combine to make the “map-it, use-it, unmap-it”
approach to object manipulation terrifically attractive.
However, we have learned that there are sometimes
compelling pratical reasons for avoiding the allure of
network transparency at the SLS level for some object
managers that want to provide a higher level of abstrac-
tion.

Cur naming server, which implements the direc-
tory hierarchy and the name-to-UID translation, was
originally implemented completely on top of the loca-

tion transparent SLS level. As a result, it mapped and

operated on directories without regard to their location
in the network. The naming server, then, did not, in
fact could not, distinguish between directories on lo-
cal disks and those on remote disks. As a result, the

~ server was straightforward to implement, and as soon

as it worked on local directories, it worked on remote
directories.

The problem with this implementation strategy for
the naming server was that the storage system (natu-
rally) provided no layer of abstraction for the notion of

- directory. The SLS provided access to the raw bits of
a directory to each naming server that wanted to ma-

nipulate that directory. This was fine as long as each
naming server in the network could operate on direc-
tories of the same format. In practice, however, the
naming servers are not the same on every node in the
network (generally due to software updates occuring at

13

different times) and the older naming servers are un-
able to handle constructs added to directories by newer
naming servers running on other nodes.

Directories are an important example for a system
like DOMAIN. They are permanent (stored on disk),
heavily shared by multiple nodes, and most transac-
tions on them take very little time. Also, they are likely
candidates for extensions and improvements over time.
Because we can never demand simultaneous update of
software on every node in a network, and because we
want very much to offer cross-release compatibility, we
have found ourselves constrained by our original imple-
mentation.

As if that were not enough, we have found that the
performance of the naming server tree-walk was signif-
icantly increased by asking the node that owned the
target directory do the lookup work itself, rather than
sending pages of the directory over to the requesting
node. This change demanded that the naming server
learn the difference between local and remote directo-
ries, and was an example of when "moving the work
to the data” was a win over "moving the data to the
computation.”

8.3. Use Simple Protocols

) The key to the attainment of our remote perfor-
mance goals has been the use of light-weight problem-
oriented protocols. We have taken full advantage of
the relatively clean environment provided by our high-
speed ring network to avoid often costly protocol sup-
ported reliability.

. Operations that are idempotent (i.e. for which re-
peated applications have the same effect as a single ap-
plication) use a connectionless protocol [SWIN 79)] and
retry often enough to achieve the desired level of relia-
bility. Network operations to read and write attributes

" and pages are all of this form.

Operations which are not idempotent (i.e. which
have side effects), but which naturally have some state
associated with them, can often be made idempotent
using a transaction ID. Each time a client sends a new
request (not a retry) to perform an operation, it chooses
a new transaction ID. If an operation was performed
once with a particular transaction ID, the receipt of a
second request with the same ID should be rejected.
File locking, for example, saves the the transaction ID
of the operation which set the lock along with the lock
state.

The SLS protocols we use are inexpensive because
they are end-to-end protocols [SALT 80] and do not

rely on the communications substrate to provide any
service guarantees. Instead, each remote operation in-
dividually implements the least mechanism required by
its reliability semantics.

8.4. Obtaining High Performance

Much has been written on this subject lately for
distributed systems. (In particular, see [CHER 83] and
[LAZO 84].) The DOMAIN file system has evolved over
the years to provide as much as six times the perfor-
mance of its original implementation. Certainly in the
case of completely diskless nodes, but also very fre-
quently in the case of disked nodes,-the performance-
critical information needed is elsewhere in the network.
Our . performance goals coupled with our aggressive
remote-to-local ratio goal has influenced the implemen-
tation in several ways.

The disk subsystem implements fairly familiar
techniques for performance enhancement including:
physical locality optimizing, control structure caching,
batched reads, and clustered writes. Physical lbcality is
encouraged by the increasingly clever allocation of suc-
cessive file blocks and their file maps and VTOC entries.
The basic disk control structures (free-block allocation
tables and VTOC control blocks) are cached in their
own set of control block buffers. File page reads are
"batched” at the SLS-level. Recall that in DOMAIN, all
file read activity is caused by touching the bytes of the
file with normal CPU instructions and thereby page-
faulting on the needed page. When the SLS catches
the page-fault and determines the need for some (UID,
pageno), it may ask the lower levels for up to 31 addi-
‘tional successive object pages. Most disk write opera-
tions are instigated by the page purifier process, and it
tries to hand the low-levels a large collection of pages to
write so that seek-ordering and rotational-ordering can
be performed. In addition, for remote file system I/0,

DOMAIN implements trans-network batched reads; a

8.5. Indefinite Postponement

In theory, the remote file server running on one
node can service requests from any number of clients.
In practice, however, a single server can be flooded
with requests from ten, twenty, even one hundred hun-
gry clients. Because the communications protocol layer
provides no delivery guarantees to the higher layers, it

‘blit,hely discards messages it receives after its assorted

queues and buffers fill up. In theory, the issuer of the
discarded message will send a time-out based retry and
all will be well. In practice, indefinite postponement is
a definite possibility. As networks get larger, and in
particular as server nodes get busier, a solution that
formally addresses this problem completely is needed
(rather than an ad hoc approach that, for example, in-
creases the depth of the queues periodically).

8.6. Conclusion

The essential ingredients to good performance of
a distributed file system include all those things re-
quired for a good centralized file system: caching, bulk
data transfer from the disk, and good object locality
on the disk. In addition, the distributed file system
needs more: it needs caching of remote data to avoid
as many remote operations as possible; cheap, fast pro-
tocols; and bulk data transfer over the network, even
when the protocols are very cheap.

REFERENCES

[APOL 81] Apollo Computer, Inc.

[BIRR 82

Apollo DOMAIN Architecture, Apollo Com-
puter Inc., Chelmsford, Mass., 1981.

Birrel, A. D., Levin, R., Needham, R. M,
Schroeder, M. D.)

"Grapevine: An Exercise in Distributed Com-
puting,” Communications of the ACM, 25, 4
(April 1982), pp. 260-274.

single read page request message may result in as many [BIRR 84] Birrel, A. D., Nelson, B. J.

as eight reply pages in anticipation of their need. In this
way, the ultimate client receives more of the benefit of
disk page touch-ahead.

‘We have ended up caching more kinds of infor-
mation than we originally expected and probably in
slightly different ways. In cases where the cost of a
disk access would have been barely acceptable, the cost
of a network message pair in addition encouraged the
use of more aggressive caching strategies.

“Implementing Remote Procedure Calls”, ACM
Transactions on Computer Systems, 2, 1 (Febru-
ary 1984), pp. 39-59.

[CHER 83] Cheriton, D. R., Zwaenepoel, W.

"The Distributed V Kernel and its Performance
for Diskless Workstations,” Proceedings of the
Ninth Symposium on Operating Systems Princi-
ples, October 1983, pp. 128-139. '

[DEC 79] Digital Equipment Corporation.

14

VAX 11/780 Hardware Handbook, Digital

Equipment. Corporat.ion, Maynard, MA, 1979.
[FREN 78] French, R. E., Collins, R. W., Loen, L. W,

Q System/38 Technical Developments, IBM Gen-
eral Systems Division, pp. 63-66, 1978.

[GIFF 79] Gifford, D. K.

"Weighted Voting for Replicated Data,” Pro-
ceedings of the Seventh Symposium on Operat-
ing Systems Principles, December 1979, pp. 150-

159.

[GORD 79] Gordon, R. L., Farr, W., Levine, P. H.
"Ringnet: A Packet Switched Local Network
with Decentralized Control,” Computer Net-
works, 3, North Holland, 1980, pp. 373-379.

. [HOAR 74] Hoare, C. A. R.
"Monitors: an Operating System Structuring
Concept,” Communications of the ACM, 17, 10
(October 1974), pp. 549-557.

[HOUD 78] Houdek, M. E., Mitchell, G. R.
” Translating a Large Virtual Address,” IBM Sys-
tem/38 Technical Developments, IBM General
Systems Division, pp. 22—24 1978.

[IBM 76]
[JANS 76] Janson, P. A.

" "Using Type Extension to Organize Vir-

tual Memory Mechanisms,” Technical Re-

port LCS/TR-167, Laboratory for Computer

Science, M.I.T., Cambridge, Mass., September,
1976.

[KOHL 81]) Kohler, W. H.
"A Survey of Techniques for Synchronization
and Recovery in Decentralized Computer Sys-
- tems,” Computing Surveys, 13, 2 (June 1981),

pp. 149-184.

Internatlonal Business Machines Corporation
IBM System/ 370 Principles of Operation,
GA22-7000-5 IBM, 1976

[LAMP 80] Lampson, B. W., and Redell, D. D.
"Experience' with Processes and Monitors in
Mesa,” Communications of the ACM, 23, 2
(February 1980), pp. 105-113.

[LAZO 81] Lazowska, E., Levy, H., Almes, G., Fischer, M.,
Fowler, R., Vestal, S.
"The Architecture of the Eden System,” Pro-
ceedings of the Eighth Symposium on Operating
Systems Prmcxples, December 1981, pp. 148-
159.

”System/38 Machine Storage Management,” IBM

[LAZO 84) Lazowska, E. D., Zahorjan, J., Cheriton, D. R.,
Zwaenepoel, W.
“File Access Performance of Diskless Work-
stations”, Technical Report 84-06-01, Depart-
ment of Computer Science, University of Wash-
ington, Seattle, ‘WA, June 1984.

[LEAC 82] Leach, P. J., Stumpf, B. L., Hamilton, J. A.,
Levine, P. H. ‘
"UIDs as Internal names in a Distributed File
System,” Proceedings of the Ist Symposium on
" Principles of Distributed Computing, Ottawa,
Canada, Aug. 1982. '

[LEAC 83] Leach, P. J., Levine, P. H., Douros, B. P.,
Hamilton, J. A., Nelson, D. L., Stumpf, B. L.
"The Architecture of an Integrated Local Net-
work,” IEEE Journal on Selected Areas in Com-
munication, SAC-1, 5 (November 1983), pp.
842-857.

[LISK 79] Liskov, B. H.
"Primitives for Distributed Computing,” Pro-
ceedings of the Seventh Symposium on Operat-
ing Systems Principles, December 1979, pp. 33-
42.

[MCKU 84] McKusick, M. K., Joy, W. N., Leffler, S. J,,
Fabry, R. S. ‘
" A Fast File System for UNIX,” ACM Transac-
tions on Computer Systems, 2, 3 (August 1984),
pp. 181-197.

[NEED 79] Needham, R. M.
"Systems Aspects of the Cambridge Ring,” Pro-
ceedings of the Seventh Symposium on Operat-
ing Systems Principles;, December 1979, pp. 82-
85.

Nelson, D. L.

"Role of Local Network in the Apollo Computer
System,” Newsletter of IEEE Tech. Comm. on
Distributed Processing, 1, 2 (December 1981),
pp. 10-13. ‘

[NELS 83] Nelson, D. L.
" "Distributed Processing in the Apollo DOMAIN,”
The CAD Revolution, Second Chautauqua on
Productivity in Engineering and Design, (spon-
sored by Schaeffer Analysis, Inc., Mont Vernon,
New Hampshire). Kiawah Island, South Car-
olina, November 1983, pp 45-51. ’

Nelson, D. L., Leach, P. J.

”The Architecture and Applications of the Apollo
DOMAIN,” IEEE Computer Graphics and Ap-
plications, 4, 2 (April 1984), pp. 58-66.

[NELS 81]

[NELS 84]

15

»

O

[REDE 80]

" [RITC.74]

[SALT 79]

[ORGA 72] Organick, E. L

The Multics System: An Examination of
Its Structure M.I.T. Press, 1972.

[POPE 81) Popek, G., Walker, B., Chow, J., Edwards, D.,

Kline, C., Rudisin, G., Thiel, G.

"LOCUS: A Network Transparent, High Relia-
bility Distributed System,” Proceedings of the
Eighth Symposium on Operating Systems Prin-
ciples, December 1981, pp. 169-177.

Redell, D. D., Dalal, Y. K., Horsley, T. R.,
Lauer, H. C., Lynch, W. C., McJones, P. R.,
Murray, H. G., Purcel], S. C. ~
"Pilot: an Operating System for a Personal
Computer,” Communications of the ACM, 23,
2 (February 1980), pp. 81-91.

Ritchie, D. M., Thompson, K.
"The UNIX time-sharing system,” Communica-
tions of the ACM, 17, 7 (July 1974), pp. 365-375.

Saltzer, J.H., Pogran, K.T.

”A Star-Shaped Ring Network with High Main-
tainability,” Proceedings of the Local Area Com-
munications Network Symposium, Mitre Corp,

‘May 1979, pp. 179-190.

[SALT 80]

O

Saltzer, J. H., Reed, D. P., Clark, D. D.

"End-to-End Arguments in System Design,”
Notes from IEEE Workshop on Fundamental Is-
sues in Distributed Systems, Pala Mesa, Ca., De-

. cember 15-17, 1980.

[SALT 81]

[SPEC 82]

[STUR 80]

[SWIN 79]

Saltzer, J. H., Clark, D. D., Pogran, K. T.
"Why a Ring,” Proceeding Seventh Data Com-
munications Symposium, October 27-29, 1981,
pPp. 211-217. :

Spector, A. Z.

"Performing Remote Operations Efficiently On a
Local Network,” Communications of the ACM,
25, 4 (April 1982), pp. 246-260.

Sthrgis, H., Mitchell, J., Israel, J.

"Issues in the Design and Use of a Distributed

File Server,” Operating Systems Review, 14, 3
(July 1980), pp. 55-69.

Swinehart, D., McDaniel, G., Boggs, D.

"WFS: A Simple Shared File System for a Dis-
tributed Environment,” Proceedings of the Sev-
enth Symposium on Operating Systems Princi-
ples, December 1979, pp. 9-17.

[THOM 78] Thompson, K.

O

"UNIX Implementation,” Bell System Technical

Journal, 57, 6 (July-August 1978), pp.
1946.

1931-

[WILK 79] Wilkes, M. V., and Wheeler, D. J.

16

”The Cambridge Digital Communication Ring,”
Proceedings of the Local Area Communications
Network Symposium, May, 1979, pp. 47-61.

ANATOMY OF A PAGE FAULT 3/83

This is the story of how the pages of an object are brought into memory.
We will concentrate on objects mapped by segments into a process
virtval address space.

The tale begins with the mapping of the object (usually through an mst_$map call)
somewhere in the address space. The unit of mapping is a segment, s0 3Z consecutive
pages of the virtval address space are reserved by creating an entry in the mst.

The mst is a two dimensional array whose first indice is a process id and whose
second indice is an mst entry for an object in that process’s address space.

Each time an entry is added to the mst (representing the mapping of a segment of

an object in some process’s virtual address space), an entry must also be made for

that object segment in the ast. The ast

is a table used to keep track of ‘active’ objects; it relates pages of segments of
objects to physical memory; it caches static and dynamic information about objects

(e.qg. where they live and whether they’ve been modified). There is one ast for the
whole system (it is not per-process); its size determines how many objects can have
pages resident at a time and is a function of physical memory size.

Back to the mst. An mst entry (mste) contains information about a segment of a
mapped object (e.g. the segment number, access rights, its storage location) and
it contains a page map (pmap), a table with 3Z entries. Each entry in the pmap is
used to describe the status of one page in the segment. A page may be:

wired not available for page stealing
resident in memory
in_trans in some sort of transition state, so hands off

Each pmap entry also contains the physical page number for the page or its disk
block address if it is not resident.

Mapping an object does NOT cause any of its pages to be brought into memory.
Instead, the first reference to a page within the object causes a page fault to
occur. (PAGE FAULT: <the result of trying to reference a virtval address that
is not currently mapped to a physical address). Briefly, the page fault brings
you into code which determines that this is indeed a fault

on a non-resident page and calls mst_$touch. Mst_$touch does some checking to
be sure the page exists (or can be created (object is writable)) and eventually
determines that it should call ast_$touch. If the page does NOT have to be
created, mst_$touch includes in its request to ast_$touch a count of the number
of consecutnve pages within the segment it really would fike to have resident
(beginning with the referenced page). This is the 'touch—ahead’ count for the
object; it is settable from user space (mst_$set_touch_ahead_cnt) and is used
to get better paging performance.

Ast_$touch does a little checking of its own and then calls pmap_%$touch, whose
Job it is (finally) to get the page(s) into memory. :

Pmap_$touch determines how many of the pages requested really can be touched by
looking at the page map in the ast for this segment. It will only try to touch

consecutive pages, starting at the first page requested and stopping at the point
that:

1. the count would cause a segment boundary to be crossed
2. a page is found in transition (remember hands off?)

3. a page is found already resident in memory

or 4. a page is found that has not yet been created

Pmap_$touch puts the pages it is going to read in transition (in the pmap) and then
allocates enough physical memory to hold the pages (a local subroutine ‘alloc’
callis mmap_%$alloc — but the mmap is another story for another time). Pmap_$touch
also determines if the object is local or remote and calls either disk_$read_ahead
or network_%$read_ahead to trigger the i/0. If there are any errors in the i/0, one
or more of the pages requested will be released from transition. Pmap_$touch then
installs each successfully-read page in the mmap (by calling mmap_$install) and, in {
pmap, marks each page as resident and sets its ppn to the physical page number. It
then returns the count of pages touched with each page still marked in transition.

Seeing that the pmap touch was successful, ast_$touch returns (to mst_$touch) which
installs all the touched pages in the mmu {mmu_$install), clears the in-transition
bit for the pages and returns to the fim code which resumes the favlting process,
having successfully resolved the page fault.

Somewhat more than this happens of course if the original page cannot be read in,
or if there is a concurrency violation in pages received from the network or if a
page needs to be created, etc.

A few more words should be said about the locking involved in all this. Most of
this work is done under the page resource lock, 'pag_%$lock’, which must be held
whenever a change is to be made to the state of a page (as reflected in the
information in the pmap). However, there is another rule that says the page

lock cannot be held during i/0 (so comeone else can get work done while you wait
for the i/0). To prevent a page from being stolen or modified by someone else
when you have to give up the page lock, the in-transition bit in the pmap must

be set. However, this in itself isn’'t enough. The mmap (remember?) is a table
that describes the state of physical memory. It contains one entry for each
physical page. This still isn’'t the time for the mmap story, but suffice it to
say that there is some code that doesn’t know about the pmap and the in-transition
bit, but only knows about the mmap and the avail bit. Any page in the mmap marked
“‘avail’ is eligible to be taken for use. (Available does not mean 'not used’, it
means 'may be stolen for another use’.) So, to keep a page from being tampered
with when you can’'t keep the page lock, the in-transition bit in the pmap MUST

be set AND the avail bit in the mmap MUSY NOT be set (call mmap_$unavail).

DISK TERMINOLOGY gms 07/16/84

Further information (and pictures) for most disk data structures and
layouts can be found in the section on the File System in the Engineering
Handbook. Pascal type definitions are mostly in ins/vol.ins.pas, with

a fewer lower level ones in ins/base.ins.pas. Exceptions are noted.
Values for particular disk parameters can be found under Peripheral 1/0
in the handbook.

ALTERNATE LV LABEL

O

When INVOL initializes a logical volune, it allocates a block (typically
the last block on the logical wvolume) to hold a copy of the logical volume
label. The physical volume label contains an array (alt_lv_list) of the

physical disk addresses of the alternmate lv labels for all logloal volumes
on the disk.

If the 1lv label of a volume gets desttoyed, it can be regenerated from the
alternate 1lv label with the following steps:

1. Find the daddr of the alternmate 1lv label by reading the pv label and
finding the alt_lv_list. If the pv label has also been destroyed, use
rwvol to read the blocks at the end of the logical volume (assume that
the volume is the maximum number of blocks) and look for a block whose

block header uid is 201.0.

2. Use rwvol to read the alternate lv label.

3 Use DB (or MD, if runm.ng offline) to patch page number (3rd long word)

"and daddr (8th long word) as follows:

4, Use rwvol to write out the block to daddr 1.

ASSIGNED DISK

A physical or logical volume whose "ownership" has been assigned to a user

process using either the disk_$pv_assign or disk_$1v_assign call. An assigned

disk is not used for file system (virtual memory) operations; all i/o to the

disk is performed by user programs using the disk_$as read and disk_S$as_write
calls. NOTE: even though the disk is under the control of a user program, the
physical block format — 32 byte header and 1024 bytes of data — is unchanged.

See also Assigned Disk Routines; contrast with Mounted Disk.

- ASSIGNED DISK ROUTINES

There are seven routines that are available to handle assigned disks.
These routines and their functions are described below (Calllnq sequences

are defined in /us/ins/disk.ins.pas. Arqument types and meanings are as
described herein.)

¥ 'disk_$pv__assign — assigns oontrol of a physical ‘volume to the caller and

returns the volx of the volume to use in subsequent assigned calls.
The caller must supply controller type, controller number, and drive
unit number. If known, the size of the physical volume, blocks/track,

and tracks/cylinder can be supplied. If they are unknown, the size of

the physical wvolume (b_per_pvol) should be specified as 0, and the

appropriate parameters will be returned by the low-level driver. (If

ge 1<))w-1eve1 driver doesn't know the disk parameters, you MUST supoly
e{l.

Q dlSlL$lV assign — ass:.gns oontrol of a logical volume and returns the
volx of the volume to use in subsquent calls. The volx of the physical
volume, which must have been previously mounted or assigned, must be
supplied by the caller. The address of the alternmate lv label is also
returned. (This is because the online SALVOL needs the address of the
alternate 1v label, but may not be able to read it from the ;hysmal
volume label if the volume has been mounted.)

disk_Sas_read — reads a block from the assigned volume and returns the
block header and data. The data buffer must be page aligned. The read
is under the oontrol of the assigned options as described under
disk_Sas_options. Note: Aegis assumes that the caller doesn't know
what the block header should contain, so an assigned read will never
generate a block header error.

disk_Sas_write — writes a block to the assigned volume. The data buf fer
must be page aligned. The write is under the control of the assigned
options as described under disk_S$as options.

disk_$format — the specified track on the assigned volume is formatted.
disk_$as_options — this allows the override of some of the default behavior

of the low-level disk routines. Options are:
write_protect — logically write-protects the assigned volume.

no_crc_retry — if a data check occurs during a read, it is not
, O ‘ retried (used by FBS).
use_caller_blkhdr — tells Ang.s not to touch the block header, in

particular not to £ill in the d&tm, pad, chksum, or daddr fields
(used by FBS). ; .

disk_S$unassign — relinquishes control of an assigned volume. Any assigned
options that have been specified are reset.

BADSPOT CYLINDER | ,
A cylinder, typically one of the last two on -a physical disk (see Engineering
Handbook) » used by INVOL to hold the physical badspot list. The physical badspot
list is written out to each head on the badspot cylinder in an attempt to

overcome any badspots that might appear on the badspot cylinder.

BADSPOT LISTS

There are two types of badspot lists — physical and logical. The physical
badspot list is constructed by INVOL or a disk diagnostic and written out to
the badspot cylinder (which see). There is also a logical badspot list contained
in the LV label of each logical volume on the disk. This list describes only
those badspots which lie within the confines of the logical volume.

BADSPOT MANAGER

A set of subroutines that ocontain all knowledge about the format of the
physical and logical badspot lists. Programs needing to reference the badsvot
lists (INVOL, SALVOL, FBS) all call the badspot manager to read, write, and
update the badspot lists.

d

BAIBPOT

A media defect on a disk that renders one or more blocks unusable for data

. storage. Most disks we use come from the manufacturer with a list of badspots.

(Some storage module packs are guaranteed defect-free; floppies do not have
badspot lists.)

When a disk is 1n1tialized, INVOL is used to translate the hard-copy badspot
list for permanent storage on the disk (see Badspot Cylinder). In some cases,
the badspot information is stored on the disk by the manufacturer, and the
appropriate disk diagnostic can be used to automatically read this information
and construct the physical badspot list on the disk.

As part of disk initialization, INVOL reads the physical badspot list and
removes any bad blocks from the Block Availability Table (which see). Note
in particular that Aegis knows nothing about badspots; they just appear to

. be pre-allocated blocks on the disk.

BAT

See Block Availability Table.

BLOCK

See Disk Block.

BLOCK AVAILABILITY TABLE (BAT)

O

A bitmap describing the current allocation of blocks in a 1ogiéal volume.
The location and size of the BAT is described by the BAT header, which lives
in the logical volume label.

Each bit in the BAT describes the state of one disk block — 0 if the block
is free, 1 if the block is in use (or is a badspot). The BAT header contains
the disk address of the block represented by the first bit in the map.

The BAT is 1m£1allzed by INVOL during initialization of a logical wvolume.
When SALVOL is run, the BAT is reoconstructed using the current state of the
VIOC and the badspot list in the logical volyme label.

See Disk Block Header.

BLOCKS_PER_VOL

A disk parameter giving the total number of blocks on a physical volume

that are available for the definition of logical volumes. Typically,
blocks_per_vol will equal blocks_per_pvol (which see) minus the number of
blocks in the badspot and diagnostic cylmders. On some disks, blocks_per_vol
is artificially reduced further so that the primary and secondary sourced
disks will be of comparable size.

BLOCKS_PER_PVOL

BOOT

A disk parameter giving the total number of usable blocks on a physical
disk volume (contrast with Blocks_Per_Vol).

) See SYSBOOT.
CALENDAR

~\ An offline (SAU) or online (/OOM) command used to set the calendar
clock on a node. The calendar utility will also update the last valid
tJ.me in the logical volume label.

NOTE: calendar should be run on a node before using the offline INVOL :
to initialize a disk on the node. If this is not done, INVOL will generate
invalid UIDs for the disk. (INVOL will check for this in the future.)

- CHECKSUM CDMMAND

A command (see /usx/com) used to enable, disable, and display the
checksum status of the system. The format of the command is:

Cs [-e | -d] [winchester | floppy | storage_module | network]

"—e" enables checksumming for the specified device; "-d" disables
checksumming. Only one device can have checksumming enabled at a time.
If neither -e or —-d is specified, the checksum status of the system is
displayed.

When checksumming is enabled for a deVice, Aegis performs the following
~actions whenever a block is read or written:

1. Before writing a block, a software checksum is calculated and
stored in the block header. The 16-bit checksum is a simple sum
of the 512 words of data in the block.

O 2. After any block is written to the device, it is immediately reread
_ - and checked as in #3.

3. When any block is read from the device, if the checksum in the
header is non-zero (meaning that it was'prevmusly written with
checksumming enabled) » a new checksum is calculated and compared
with the checksum in the header.

When checksunmmg is enabled, Aeqgis w111 crash on any of the following
conditions:

read_after_write (8001C) Following a write, the subsequent read
incurred an uncorrectable disk error or
the block had an incorrect block header.
read_chksum : - (8001F) A read (not a read after_write) failed
the checksum test.
read_after_write_chksum (80020) A read after_write failed the checksum test.

cs
See Checksum Oommand

CHUVOL (G'IANGE_}_UIDS_CN_VOLUME)
An offline (SAU) and online (in /INSTALL) utility used to change every
UID on a physical volume, The need for this procedure arises when a disk

is initialized on a node whose node ID is different from the ID of the
node to which the disk is eventually to be attached. (For example, manufacturing

initializes, loads, and stockpiles IN300 disks without knowing the eventual
‘ destinations of the disks.) When Aegis is running, it expects the node ID
part of UIDs for local objects to match the ID of the node on which it is
running. If these IDs differ, Aegis performance suffers because the algorithm
for finding object in the network generates many needless network transmits
O (trying to find the node that originally initialized the disk)..

To prevent this, once a disk reaches its eventual home, CHUWOL is run to
"rename" every object on the disk. This involves reconstructing the VIOC
and changing the block header of every block in use.

WARNING: CHUVOL should be run only when you have a hlgh degree of confidence
in the disk hardware and the file system on the disk in known to be in

a oonsistent state. If there are user files on the disk (i.e., files not
replaceable from master release media), they should be backed up prior to
running CHUVOL.

NUM
See Controller Number.

(DN'JROLLER NUMBER (QNUM)
A number defmmg which ocontroller of a given controller type you want
to talk about. A oontroller number can be 0 (first ocontroller) or 1
(second controller). Currently, Aegis and the standalone utilities
support only one controller number — O.

CONTROLLER TYPE (CTYPE_T) |

' An ennumerated type defining the names of the various ocontrollers that
O support file system activity. Possible values are

WINCHESTER (all flavors of winchester disks)
FLOPPY
RING_XMIT o (use this, not ring rcv)
RING_RCV
STORAGE MODULE (includes Intel controller and file server disks)
CTAPE (cartridge tape)
CPBOOT

A command for copying SYSBOOT onto a disk (and the ONLY way SYSBOOT
can be placed on a disk — see also SYSBOOT). Command format is

CPBOOT <source-dir> <target-dir>

Note that the source and target are pathnames of the dlrectorles
containing SYSBOOT; do not specify SYSBOOT as part of the pathnames. '

CTYPE
See Controller Type.
CYLmDER

A vertical slice through a physical disk. A cylmder oontains one or
more heads or tracks.

DADDR

See Disk Address.
DeT .
O See Device Controller Table.
DEVICE CONTROLLER TABLE (DCT) i

(Aegis internal) A table internal to Aegis that describes the controllers,
ring and disk in particular, that are or may be part of the hardware
configuration of the system. Each DCT entry (DCTE) contains the controller
number and type, and a set of parameters that are common to all controllers
in the table (interrupt vector address, 1omap slots, read/wnte routine
addresses, etc.). The DCTE type definition is in ins/io.ins.pas; actual
DCTEs are defined in ker/io | tbls asm. ‘

DIAGNOSTIC CYLINDER

A cylinder — typically the last or next to the last on a physical disk
(see Engineering Handbook) — reserved for diagnostic operations by disk
diagnostics (offline diagnostics, controller built-in diagnostics, the
online TESTVOL program).

DISK ADDRESS (DADDR)

The address of a block on disk, sometimes represented as cylinder/head/sector
numbers, but more typically represented as a single DADDR — the sequence
number of the block in a physical or logical volume (starting from 0).

| DADDR = (cylinder*tracks/cylinder + track) * sectors/track + sector
O ("track" is the same as "head".)

Disk addresses can be physical or logical. A physical daddr is the absolute
address of a block relative to the start of the physical volume regardless
of which (if any) logical volume it may be in. A logical daddr is the address
of a block relative to the start of the logical volume to which it belongs.
So, for example, the physical daddr of the first logical volume label on a
disk is 1; its logical daddr is 0. (In general the logical daddrs of all
disk addresses on the first logical volume w111 be one less than their
physical disk addresses)

ALL disk addresses appearing in a logical volune (except those in block
headers) are logical disk addresses.

DISK BLOCK

A sector or record on a disk. A disk block consists of a 32-byte software
header (see Disk Block Header) and 1024 bytes of data, so the physical block
size on disk is 1056 bytes. (Floppy disk blocks have no headers, so the t
physical block size is 1024 bytes.) For disk block addressing, see Disk Address.

DISK BLOCK HEADER (BLK_HDR_T)

The first 32-bytes of data in any physical disk block (except for floppies,
which have no headers). The block header is used by Aegis to verify that the
correct block was read and by SALVOL to verify the consistency of the file

- system. The block header ocontains the following information:

UID The UID of the file to which the block belongs; '
PAGE The page number of the block within the file (the first
. block is page 0, the second is page 1, etc.);
The UID and page number are sufficient to miquely
identify any block in use.
. DIM The time (as a clockh_t) when the block was last written
O to the disk.
BLKTYP Identifies the block as data (0) or level 1, 2, 3 filemap
SYSTYP Identifies the type of object (file, dir, sysdlr)
(HKSUM A software calculated checksum for the data in the block.
(This is used only if read-after-write checksumming is
turned on — see Read-After-Write Checksum.)
PAD Unused (0's).
DADDR The physical disk address of the block.

DISK PARAMETERS

A set of numbers that describe the size and "shape"” of a physical
disk volume. These numbers are stored in the physical volume label
(which see) of a disk so that Aegis and the standalone utilities can
determine the size of a disk without depending on self-identifying
hardware on the disk drive. The parameters describing a disk are

DRIVE TYPE
BLOCKS_PER_PVOL
BLOCKS_PER _TRK
TRACKS_PER_CYL
PHYS_SECIOR_SIZE
PHYS SECTOR_START
SECTOR_DELTA

OISK VOLUME: TABLE (DVT)

(Aegis internal) A table setup and maintained by Aegis to describe the
state of all mounted and assigned disks on the system. Each IVT entry
(DVIE) contains the state of the volume (being mounted, mounted, assigned),
the disk parameters describing the volume, the identity of the current
owner, the UID of the volume, and a pointer to the DCTE for the controller
of the drive on which the volume resides. For both mounted and assigned
volumes, disks are identified by Aegis by a Volume Index (VOLX), which

is the index of the INTE for the disk in the IVT. The layout of a IVIE is
in ins/disk.pvt.pas; the actual VT lives in nuc/disk_wired.pas.

DISK_ERR
An online utility (in /SYSTEST/SSR UTIL) that prints out information
saved by Aegis on most recent unrecovered disk error. The information
includes the disk volx, the time, disk address, and physical page number
into which the block was read, the error status, and the requested and
actual block headers.

DMTVOL (DISPDUNI‘_VQJU!'E)

" An online command to dismownt a mounted volume.

DRIVE TYPE (DTYPE) -

A number, which can be passed in to disk_$pv_assign but is more typically

set and returned by the lower controller-specific driver, that identifies
a particular drive type for a controller that can support more than one

kind of drive (e.g., 30MB and 70MB winchesters).

{Currently, the only disk driver that takes dtype as an IN argqument is

the floppy driver, for which the drive type is used to differentiate between
single and double density floppies — commg soon from pjl.)

Q/TI’YPE

See Drive Type.

IVIE

See Disk Volume Table.

EXTENT

A contiguous set of blocks in the VIOC. Each VIOC extent is descrlbed
by an entry in the VIOC map (whlch see).

~ FBS (FIND_BADSFOTS)

An offline (SAU) utility that can be used to construct a badspot list
for a physical volume if the original badspot list has been lost. FBS -
writes and reads several worst-case data patterns to every block on the
disk for a user-specified number of passes. The original contents of the
dlsk are, of course, completely hosed.

FILE MAP

A list of (logical) disk addresses that define the locations of the blocks
of an object in a logical volume. There are four levels of file maps,
referred to as Level 0, 1, 2, and 3. A Level 0 file map points to the
first 32 blocks (pages 0-31) of an object and lives in the VIOC entry for
the object. A Level 1 file map is 256 entries long and points to pages
33-287 of the object. A Level 2 file map contains up to 256 pointers to
further Level 1 file maps for the object. A Level 3 file map contains up
to 256 pointers to Level 2 file maps. The first Level 1, 2, and 3 file maps
are pointed to by the VIOC entry. The maximum size of an object is thus

(32 + 256 + 256%*2 + 256%*3) * 1024 = 17,247,300,000 bytes

Ievel 1, 2, and 3 file maps are each 1024 bytes long and are allocated ’

as required when a file grows. The UID of the block header for file map
blocks is that of the owning object; the block type will identify the
level of the filemap.

HEAD

One of the n thingamawidgets that sit on disk surfaces and do reads
and writes. Number of heads = number of tracks/cylmder.

INTERLEAVING

O

The physical layout of logically contiquous pages 'of an object on disk.
Since Aegis (and/or the disk controller) typically isn't fast enough to

‘'read consecutive hlocks from the disk without losing a revolution of the

disk, Aegis, when allocating disk blocks to an object, skips one or more
disk blocks between consecutive pages of the object. So, for example,
pages 6, 7, 8, 9 of a file might be given disk addresses 100, 103, 106,
109, 10C (assuming an interleave factor or Sector Delta of 3). 'Ihe optimal
interleave factor is a function of the speed of revolution of the disk,

the amount of work required by the disk driver, and the pattern of reference
' by the program using the file. Interleave factors range from 2 for a
floppy disk up to 9 or so for a storage module on an Intel controller.

INVOL (INITIALIZE VOLUME)

O An offline (SAU) or online (/QOM) utility for 1n1t1allzmg disk volumes.
. INVOL has several options that allow initializing logical volumes, entering
badspot information, building an os paging file, and displaying the status
of the volume. Complete instructions on usage are in some manual.

LOGICAL DADDR

The address of a disk block relative to the start of the logical volume
to which it belongs. All disk addresses (excluding those in block headers)
on a logical volume are relative to the start of the logical volume. -
See also Disk Address.

i
LOGICAL VOLUME

A self-contained and independently addressable entity on a physical volume.
A physical disk volume may contain one or more logical volumes, each of
which may be mounted (for file system operations) or assigned (for assigned
i/o). ILogical volumes are numbered starting at 1.

Logical volumes are created using INVOL. The first block of a loglcal
volume is the Logical Volume Label, which contains the name and UID of the

logical volume and information about the other structures on the logical
volume.

@M VOLUME LABEL (LV LABEL)

The first block in a logical volume (logical daddr 0), holding information

about the size and state of the logical volume, headers for other data

structures on the logical volume (the BAT and VIOC), and pointers (VIOCXs)
~ to certain standard objects on the logical volume (network root — //,

root directory — /, os paging file, SYSBOOT).

The 1lv label also oontains the date-times of last mount, dismount, and

salvage (see SALVOL).

See also Alternate Loglcal Volume Label.

IV LABEL
See Logical Volume Label.
MOUNTED DISK |

A physical or logical volume that is available for file system (virtual
memory) operations. A volume is mounted using the MIVOL command (an
exception being the boot volume, which is automatically mounted by Aegis
at system startup). Once mounted, all access to the volume is ocontrolled
by Aegis via file system and virtual memory paging operations.

See also Assigned Disk.

Q‘!IVOL (M)UN’IQKLUME)

The command used to mount a logical volume and catalog the volume
in the file system.

. NEIWORK ROOT (//)

A directory, //, that is initialized by INVOL as part of any loglcai

volume. A pointer (VIOCX) to the network root directory is stored by
O INVOL in the logical volume label.

0S PAGING FILE

An uncataloged permanent object that must appear on any logical volume
that is to be used as the boot device for Aegis. The os paging file is
the backing store for those parts of Aeg;.s that are eligible to be paged
out to dlsk The paging file is built using INVOL, and a pointer (VIOCX)
to the paging file is stored in the logical volume label.

PHYSICAL DADDR

The absolute physical address of a disk block relative to the start
of the physical volume; see Disk Address.

PHYSICAL VOLUME

A disk, oonsisting of a physical volume label (first block on the disk,
daddr 0), one or more logical volumes, a badspot cylinder, and a diagnostic
cylinder. A physical volume can be mounted or assigned. See also

Logical Volume.

PHYSICAL VOLUME LABEL (PV LABEL)

The first block — physical daddr 0 — of a physical disk volume. The

pv label contains parameters describing the physical disk (see Disk
O Parameters) and lists containing the addresses (physical daddrs) of

each logical volume and its associated alternate 1lv label. .

Since the pv label is the first record on a disk, it can be read
without first knowing the exact parameters of the disk, which are
normally required to convert a daddr into cyl-head-sector for the
- low-level disk driver. Aegis and the standalone utilities make use
- of this fact when mounting (or assigning) a disk on a drive whose
parameters are unknown.

PV LABEL
See Physical Volume Label.

READ-AFTER-WRITE CHECKSUMMING
See Checksum Command.

ROOT DIRECIORY (/) , .
A directory, /, that is initialized by INVOL as part of any logical
volume. A pointer (VIOCX) to the root directory is stored by INVCL
in the logical volume label. The root directory is the top level of
the directory structure for the file system on the logical volume.

CDWVOL (READ/WRITE_VOLUME)

A standalone (SAU) or online (/SYSTEST/SSR UTIL) utility for reading
and writing blocks from a physical disk. (To use the online RWVOL,

the pmys:.al disk cannot be mounted.) FRWVOL is a useful tool for
. . examining and repairing parts of the file system. It can also be
used to help diagnose failing controllers or drives.

SALVOL (SALVAGE_VOLUME)

O A standalone (SAU) or online (/COM) utility for salvaging a disk
after a system crash or other occurrence that may have corrupted
the file system on the disk. Since many changes to files, the VIOC,
and other parts of the file system are not immediately reflected:
‘on the disk, a crash may leave the disk in an inconsistent state.
For example, a file may have grown (had new blocks allocated to it),
but the Block Availability Table (BAT) may not have been updated
on the disk.

A logical volume is identified as needing salvage by examining the
last-mounted-time, last-dismounted-time, and last-salvage-time,
three fields in the logical volume label. If the last mount predated
the last dismount, and the last salvage was not performed after ‘
the last mount, then the volume was not correctly dismounted and
has not yet been salvaged.

The chief operatlon performed by SALVOL is to scan the entire VIOC
on a logical volume and reconstruct the BAT so as to be consistent
with the contents of the VIOC. In the process, SALVOL will detect
and attempt to fix many other file system errors, for example,
multiply allocated blocks (blocks that claim to belong to two or
more objects), bad chain pomters in VIOC blocks, and incorrect ACL
reference counts.

When booting a node in normal mode, SYSBOOT checks to see if the
boot volume needs salvaging. If it does, SALVOL is autanatlcally
run before bringing up Aegis.

SECTOR |
Same as Disk Block (which see).

SECTOR DELTA

' See Interleaving.

STANDALQNE UTILITIES (SAUS)

- A set of programs that live in the SAUn directory and perform
various disk maintainence and diagnostic functions. The standalone
utilities are CALENDAR, CHUVOL, INVOL, FBS, RWWOL, and SALVOL
(all of which see). Most of these utilities have online versions
that can be run under Aegis on an assigned disk (a disk which is
not the boot volume and has not been mounted for file system use).
Online versions of CALENDAR, INVOL, and SALVOL live in /QOM; the
online (HUVOL lives in /INSTALL; the online RWVOL lives in
/SYSTEST/SSR_UTIL.

SYSBOOT

\ A program that lives in (physical) disk blocks 02-0B on any physical
C/ volume that is to be used as a boot device. SYSBOOT is read from
the selected boot device by MD whenever an EX, EY, IO, or LD command
is issued. SYSBOOT knows just enouch about the file system to be able

~ to £ind the SAUn directory and read in the requested file. SYSBOOT
. can also recognize a volume in need of salvaging and, when asked to
- load Aegis in normal mode, will first execute SALVOL.

- Records 02-0B are also the first 10 data blocks of the first logical -

O volume on the disk. These blocks are set aside (marked in use in the
BAT) by INVOL when the first logical volume is initialized. INVOL
also catalogs SYSBOOT in the root directory of the first logical volume,
but DOES NOT copy SYSBOOT onto the logical volume. To do this, the
CPBOOT command (which see) must be used. Also, since SYSBOOT occupies
a particular physical position on the disk, it (ANN)'I' be replaced by
normal flle system operations (e.g., CPF). _

. TESTVOL (TEST_VOLUME)

An online disk diagnostic that lives in /SYSTEST.

TRACKS_PER CYL

A disk parameter defining the number of tracks (heads) per cyllnder
on a physical disk.

UID

Unique identifier. A 64-bit number that is the wnique "name" of any
object (file, physical or logical volume, acl, directory, etc.) that
lives in or is part of the Apollo file system. Certain objects, since

- their UIDs must be known a priori, are given "canned" UIDs. In particular
the following parts of a disk have canned UIDs:

Q Physical volume label 200.0
Logical volume label 201.0
VIOC blocks 202.0
BAT blocks ‘ 203.0
UNIT

The number of a particular disk drive controlled by a given disk
controller. Unit numbers range from 0 to 3, 0 being the number of
the first (or only) drive on a ocontroller.

VOLUME INDEX (VOLX)

The number returned by the disk $pv_assign and disk_$1v_assign calls
that is used to identify the assigned volume in subsequent calls for
assigned i/o (read, write, format, etc.). (Internally, the VOLX is
“the index of the assigned volume in the Disk Volume Table, which see.)

VOLUME TABLE OF CONTENTS (VIOC)

A table describing the current contents of a logical volume. The VIOC

is an area allocated near the center of a logical volume by INVOL_ during
- the initialization of a logical volume. The size of the VIOC is a function
of the size of the loglcal volume and the average file size as specified
by the user.

C) The VIOC is allocated in from l'to 8 extents,k each extent being a ocontigquous
set of blocks. Each extent is described by an entry in the VIOC map, a
table in the VIOC header (which is in turn part of the 1lv label). INVOL

allocates the VIOC in such a way as to minimize conflicts w1th badspots and
thus keep the number of VIOC extents to a minimum.

Each block in the VIOC contains up to 5 VIOC entries (which see). Each

VIOC entry contains information about an object stored on the disk. The

Q VIOC entry for a particular object is found by hashing the UID of the object

 (using a hash modulus stored in the VIOC header) to obtain the index of the

VIOC block in which the VIOC entry for the object is to be found. (This
calculation produces the daddr portion of a VIOC Index, which see.)
If an object is being created, and its UID hashs to a VIOC block that
already contains 5 entries, a VIOC extension block (hash backet) is allocated
and chained to the full VIOC block.

VOLX

~ See Volume Index.

VIOC
See Volume Table of Contents.

VIOC ENTRY (V’.IOCE:)
An entry in a VIOC block describing the attributes and location of an object
on a logical volume. A VIOC entry contains the UID of the object, the
date/times last used and modified, the current length and the UIDs of
the ACL, TYPE, and containing directory for the object (the latter only if
the object is cataloged).

A VIOC entry also ocontains pointersk to the first 32 blocks of the object
and pointers to the Level 1, 2, and 3 file maps (if any) for the object.

VIOC INDEX (VIOCX_T)

A pointer to the VIOC entry for an object of the form DDDDDX, where DDDDD
is the logical daddr of the VIOC block for the VIOC entry of the object
and X is the index (0-4) of the VIOC entry in the block.

For example; the pointer to root directory in the VIOC header is a VIOCX.

If it has a value of 734D0, then the VIOC entry for "/" is the first entry

in physical disk block 734E, assuming the logical volume starts at daddr 1.
VIOC MAP | |

An array in the VIOC header (in the lv label) describing the location
and size of up to 8 VIOC extents. See VIOC.

VTOCE

See VIOC Entry.
VIOCX

Seé VIOC Index.
“IRITE PROTECTED

The state of a mounted or assigned volume that inhibits anyv writes
to the volume. Of the disks supported by Aegis, only floppies and

some storage modules have hardware write protect mechanisms. When a -
, yolume is write protected (by the —protect option of MIVOL or by
dlle$as_optlons) , the protected state is recorded by Aegis (in the
IVTE for the volume) and prevents Aegis from attempting writes.

i

STLAY
M ANAGEENL

L

>

c

L J

o

L]

Dispray Manvacer

-DCG'«;"("lov\:

Tuts Structures

1P Mechanigins

T he Big Picture

Nih&gub -Disr‘.w[Fuvxdamev\}nh
Obscure Windcws

5ome +'.“92u\\ Sequemes
- Ovdimq ow\'fcd Yo o ‘\'nnscﬁf"
- Cuvr'\gjc rebarm jn an ."\P“* Pu‘

- Cvu'\-"v\J « process
- 0““'\'\1«) an eAid ?A&

l e

O

V-DEFUJ 1TieNd S

-Dis?(u' Mﬂv\aser v Yhe progrem called /S,S/Jm/c{m.
'H\o.’* Yung iv\ “j’)zfnuss ', 'hst“sﬂ' “i"\ f‘-l.
pregram inker Lece w streams, Dees not
inclade 3nf‘\:u or device dvivers.

Pad: o seguence of elements wWhich ave cither
lines or "Grames”. often Jus4 o sih‘)\t Gstit

Yext Sile.

Frame: & two dimensional element of o rml
i“ uh{d\ x-y Pusl*fv)\:\\a qng\ bM
mediated 30{:'\36 are Poss'cue.

“i\&oub: a cec-hnsw\ar rfs"cn o(’ ‘H\Q “«reen,
con.’ct'un'né « bamner Gl a. (cbﬂtl). « berder,
and contents which e towme gt o

Pﬁ&. MulH 'k windouws wmey “ew g “‘-.,5(4 prae

?A\QS " sub-w\'mlew 0"' * \«vatr window. Pcmes‘
\Mlt ercrl, bt ol Ganwners. ‘ﬂ\e behevt
Jus{' like full windows iw terms ol_vieuc'n5

- Pul.

N1
. Lo 4312' (f)“) ur?
\5&-‘) o W a*"i ol

. ‘)

v
\,?M“‘x

Pao InTERNALS »

'\W"OJCKL 8(\"?% |
(‘)SAOA\:‘O‘ \’&((‘\ DQVH*' b
fql-k&v.'* line_\ndex A w?
\ \ine en*q
S$Tre
e e seek \u, heeop
s gy ¢
l :Lf’h-h'vs(. \, ke bq-‘t"’ \¢ n,"
I N — e
-‘covd- \ndey
L hos—frame
\ 3 has. £
(}L}(‘,LS o& \PM,. o ’) }
\\“""\.\5 e m\‘w/; TR unde badfer
AU L e (i ..,Q .
S [o et |
e e O

e L\li wu‘(y \& own u\v\.ame‘. ‘\'cm‘)ann’ (\k‘ oOne ?CV

'\Yonscn,"/(é ¥ Pad (n{»-p& peds hevt Gine tnder 1a ‘\ta?’

. * Ineu.* PMU Nave mby channe! & \wobead of sheam o,
A\ lines ave \» h(up

e Kine inder qrews b1 re Mc~f{s‘ﬁ le of ewnds

¢ UNDe Bw‘:i»tr .\s (78 C-.'.Ycu.‘.o.v arrm, 0 Q ‘EOVMCV
line wnder ¢ Jhaes. F“".‘“5 \\cud: s\'on.jc . defleyred
\u\“\ N’W\, Leaics WNDo bu“»t r.

o
g U Do tode comeen g X7 O
/ -%'?o(r@‘ob*‘ 3evotl baclk +o o \M‘do L(’\" Q,(O\\(b&\\rv'l"
Oreviows Lommend Aot gecurtd %@;r 6&0‘“9 © e

befe o ’0“3 }vunxﬁpl‘ oukpat.

O

W:no ow J vrernacs

b@h’\f(

TSyl 7777

tpy

O b‘x -w "b.c.‘!’-‘tc.n?._.‘:\ ‘}}: i .o n o fGp— ne’*r
‘ y .
i pii 1> dr (dh"\uv feaiov\)

=\

» SR 0 KA e o

Wmoogd_- ‘Pkb Reur‘nwl.sm(’s

wWIND oW S

- v e v wm "

\ m,d.-.v‘

f’(3 PADY

Vityj,\;d,

O

O

_O?Eek‘m}& AN Epir Yoo (ku& kej)

° Kﬁ'sh’o’u soes ‘l"\rbua“ usu“' F“*k 4_‘
parse- cmd wih "ev §'Read file:'

* Discover '€ and call read-sm.inrd'

o Whole M runs rewrsinl-‘ unhil en

command enqueucs pothrame rvespinse T
Command Windew, and :n(oer discovers b

'"urt and rd-urns &om read-!w.-v'nfw"

* wawmgsvresclye pethname , aud (cole up o

l.n CarrenH ofen Pa(s. I& -(ouml. ")us“'
call create. Windew on Hat fu(.

e call s’fnam-toren. and them Wl cveuh.fu\
P wake a new M Mark i+ reu\-o-dr (%.,P,J)

. u_fcu‘c-?.a Calls read. mare to read He
fivst 100 lines of He Gle. Recdowvre calls
scan.line Lor ecch bulfey C..\\, se Hu Seme
‘arou:s;us 30\5 dint o> Lvv *Vunscvc'pf't

o Ca\\ create.window

/

Sc ME Sl €E MEASURES

¢ /5’5/6.’»\/4»&

24 modules & aSm, a3 Pasu()
AN3Y Vnes of code

(2% 13K bytes of orocedure text

Yo 1 b,ks of stetic dota
o PAD.S 4 VYT & oOalls in sthreams

'S woeduleg (v asm, W Posa‘)
‘f%oo \t'v\e,s o-‘ CQJQ

IYK bytes o4 procedure fext

- b\l bes ot S"'a.""\.t data

O CQGAT\NG A& Peocess (shell km,’

Ix'-ecr recieve s ‘“15’0’0‘;! awnd posses o
to iwchar. Jnchay discovers deCintiom,
awnd passes eP leem/sh™ b Pawso.-cnd

. Disfah.L 42 CP ctomrrand

e Read Paﬂuqme (/¢°M/S‘\), +ead avauuowh
(hone im +his Co..sc), build avauw.u.* st

’ Rfad ev beild Precess hoawme C.?vecets-N.. Qtv\.
Q His Co‘.‘c) and cheek S navie cendliods,

« CaW\ ?oa_-tz!w.-cvea&c $o cveabe Hoe L\ Lov
Ha -!'va.o»,gu-ift and redurn o sheawm b
W, Thic Lile s always demperary + unnarned,
M'-\‘-ﬂ POJ Corvaand ' 3.“49 k‘.

« Catt crufc.fae(Yo alloeate ¢ t'v\.i-'-(a\e'éc -
?s.& recovd,

4 Cd—“ ?u_gdwx-crca‘re (ar H.e O.hfv-f' ".’u!..
Thie wses mbg-zoren.b1.stvucv. Cov
O create -?m(Leor o deo,

~G

cP - én#c;\ucc& C

iy, ———

* C"-“ ij‘."tn\'.‘!dt, fassiuj -H-.g ;n.(u.!' G‘?Vtt\:»’:!-:é‘
twice, avd He 'hu-.su;?f stmeam td dusice,
'\'t.c a‘.vtah.g iqp;r*/c;fcr‘!’ mecke wisrn 3:4.-7
He shreams eprn an H. wew precess,

e Close He ’.hfuf pod stream. Ovly wecded
-(.vcv exPow)'.

e Sed Ho precess wame and woke o+ an

~

cvr&au

o Cat\ crente_windew LHir He %auun'f'),
avd relede Gv He .!V\?w‘.' pove, These
nse vcaiu indormation or defaulls
s beltished Pv'\or 1. d.-fs.pe.‘.ch:nj H ¢P

Cevarsand.

/0

eEa—

10 gAzmAa_e Reruen N AN TNPOT Pas

* TniKal conditivni: one s’ucomphh \tne of
text s i the input prd, and Hhe ucer process
hes writen an unterminated output line %o
the trunscript as o anls*. This prompt 1s
' nek 704’ sty\a-/d auywkorc on +he screen

i * User program calls streamdged.vec, vh-iqefvec
Sends inrd- re1uc:* Vi st-SS;jvuJ. and

waiks Lor input in the mailbex,

:O i Sism-‘ ?nwﬁihj ™ m(oe?-‘ '
- call ‘:'Ovi'\Puf 4o check (ov lnfu" 1‘Y¢A‘\‘ '\'036
- Since Here s none, record He request w Ha

'."F""’ ped, and eatl "Jvouf“’ o exbtact Ha
unterminated line hrom Hee ‘)‘Yauscn'f{' awd

dbrlu, W m He inrd window. The endire

Ss‘»d Windew contints ave vc-Abrkytd.
SwowWd. WINDeW understands P"”f“"

e CR he,s%oh avrvives TN (t\'copt
- call nechur +o handle \ccrs‘\w&e
= iwn.char discovers that Hoe k!’-’ o dekined,
and callg PARSE.cmD with the s“‘n'uj “en’
O © parse.cmd calls wmeerd.wl 1n response +
e EN command.

/

C - Cvn'\'\.kut(

[e

- serb_nl

(s wathin

nokices Haut o precess
bor input on Hhiv P4,
and et Hus Wne can sa.h'sL, e
request. I+ vemeves He lLine frem
the Prd (ins_lines (-0), deletes Yhe

prompt, ond redisplays He (new em,(-r)
t'upu‘l' window.

= T4 Huw wrikes He line ko Ha hewseript,

and calls arpnd-,)u\ to wp date 1478
‘\'Vaucvi"" windgw Jf:r'm,. Q

O

Orscure Winbow S

L Roo"f (ﬁﬁﬁ:?ﬁ&ﬁ) Uiu‘o@t ave Ma.rkea assuav(’
ard o list ok visible sub-windows v computed.

o Uiu\.u Ccv\"!w"! (P&At) cawn a\d‘t'ﬁ ‘oe YCA(?'a,OJ
O chetrving He visihle regions, but Lul redisplay
tS necessary - the bir bl ts vt used

* Window berders «+ benners Avv:" (““7 cbserve
obscurity, “Tsoetvl-€ or screen condi 3“""‘.‘;

ZFtsafs re‘.\: re | bgﬂom'&P vredru)

—

e

* Minimum vedraw obber conGgurabion cravge
»ﬁi““""”(’iﬁ,’l&” Hose windaws onrhr/cl s., He
Window being Mmdlsnwh/puﬁed. B‘*‘,t‘,ft‘?
vedvew r{&u’wﬂ Hed Nu, window o;?;(a”!«‘ '97

[winlaw be.m.s \'!4\"1-6& wlse Le reclroum.

O

/3

O Roruaey A.sc_l_L OuTPw\"_—_rg_g_ TrAVSCcRIPT _

s Wser Pmc’nn Calls s*r/lﬂifwhwc

¢ vhtputvee calls d.Rled.sput.vec b append
/‘Hu. kne Hee -Fslc, Hen sevds an cuﬁwd’

Y(qtus" vik 5M4-5~$j?\\.()

T

. Iulnf receiyes the sisu(and clls opreud.’md

. A?f‘“'f““ r@.]; He \ine Lo Hee Lile

(via s’wuxw..isc*- bq-(-, m Sovee. lowate Mec‘.c)
and checks Hv o V(a";cs'? sequence.

——re

. Fivdip.s sohe, ¥ calls m"l“"._{v uyt‘&‘.‘t. He

Vine indey.

Scanm.)ine exorines €cch chavacker
can-line

and precessec newlnes, frpn leeds, bens, and

"“d""ﬁﬁt and ‘"‘”*ifjfﬁ‘f;f__k vepuests. Iy alis

ins,. lines (¢V) s v«eccssuy

1’:"«.\\1, show, windew \s co\Ved, bu‘ajcd' v He
52“;t,5 of held, antebcld, sevefl, ete. Theve
Qve Sewme of";mijo“l'ous Hot sueid catls h
ﬂ\ow.wikdgw Lov ommen 'f“';“ cases.

—

Zz

lcommmd:

\ ln\oop ‘J
{smd_tevert wait

; “}l.w_.\. —
locator : 5 signel

TPAD :&e& tlose/

Keystwie :

N i it

printeble |
chovr
rse.cmd lecal \
O 3 \ %eJH-
\ods o
other shuld |
- UTILITY MobulLEs
£ind P“‘“ dis?ky mainbain
cevee Wwindow P“*
, on SEvEew contents contents

]

—-——

(5

Wiwpew Disecay Fuvvamenracs O

¢ ‘rwl?iu\ Screen editnr al?fmac‘.z
- nmake Jsamses o file
- call 3¢Mr..\ screen u.?dd-c. Pwulun. 4o

re-discover d““ﬂ“ and Moli‘«, cksfhr

] Co'ﬂﬂfﬁ’:";@‘ 0{, b.l*"M‘P d;‘r'ay. Mn\k?‘c “Q\'\"T\ b.(""bt"'
Q“idencr make dhig a’fnoc‘\ more difCeuld

. Genem\ uﬁa"—c froa‘urc W the DM
- & current imjg TY < u’a-h-dd-c., we |
redrew enhire window contonts O
- C“\GNJ.\QC on‘y P(?osi‘:‘om'nj Y heccswfr -
"'\'Jun out hew b wse bbbl 4 '0"*.‘"":5‘

o hocal G‘\ausu made .m((cw‘ \;1 sffém(Purpese code
= inserbon/delebion of C'NAVOW“!!'&/(“\O;
- Substitute, M&/pﬁ(within & :.w.s\c e =
Lor multiple Iimes, do St Yt&isf'ay
= Yhege oer’«yA\‘ou: ﬂluin ot He Cayser
be on the line W 1»\‘8“»0\{ hat F Le Visible
- \ud d\auaeg w\ut"’ Iuvc Window reurc(

consishnd with ochual A'\ﬁr'ﬁr

/%

wlubow - Window RelAronsuwips

Man.windows R
I (
|
A e @

‘7

FiLes Usep By Tie DM

° Mtgggs\.s’l\shck (:Rol'-da“\/ﬁhb‘-)
-ovdn\avr ?rcceduyl Cal\ s\-m.k,??.
- bo ?rc-a“ccd'cJ wWindow recerds
- other DM skhc Yanables

L \U\QJC.JN"&/?Db
- hnr ile o
- ?al recerds

“’CQP Lunnamel +CMP (\\t ~ Mmax Si}c \d ;MQ)
- Mc(.{(‘\.u(lines c‘ IR S (|.nrvd' ?x&‘

- fine indaxes & 'nmpvd’ peds

- wnoo dulfers

- \tel &(gh\'l\'\.bws

varscelaneous 1&0&0: t ‘H\'\hjs

° /Sy-‘l/l(m/cwff«.‘f + ‘lfuf

- em‘Jl-y Lles whose wid's iAu\%:(», the interqal
DPm zw?wf < cud'?ud' ?*(8

° S"‘"V"‘\Ar. 541' ‘Q(-(QJ;“’ 3*-;‘_ ker"
user.la-\m/kq-dc bs, fnls

* “nede.doti/dm . ervor. \eJ

1P Mewpanisms

User k DM

el s tite }‘

E=2 ranecriehF—
creru\'lov\ }

—> Smd.&sigv\a!'\ ped.id

. mbx
| \(ﬂnpd'ldﬂ) S

wrmmAnL

rvrrr-l <

[P

o cevar TN g

PAD. 8 CALLS

° g—ﬁ@ﬁigﬁ, ﬁé’eaasewz.eg l{%m?%’ @cx\'Pw" @pfrf&h.owj)
- ?aéw%"um,&w%
- ?&»eﬁ@fﬁf e e
”?&dw@g?vwﬁ&%g é‘&&@%ﬁw% wmesd QPR ef&
= qnst Q@seape sequeness
- dhaoe ave jw%‘%” ?w%’ 1 *%@mwscm.P" °No
$‘§m@5wwx°e5&%%?@@ @F red’(v; V%u:@%@?. ReJu"y
noeil escape s woed

® ﬁe%&ws% -S?egwé‘we’ﬁ
- vequiR @ w??vg, ov wewmevel of re‘gm:{— Svom
“%V@%%&WE?‘%
= use @ llerent emméj:z@ chornebar (o 1))
= \l%’@@?&‘%’.m@, wwg@&%@ wsﬁ%mv? aler om%‘p«d
%ﬁﬁi@mémﬁ w;ﬁ, e ?*ﬁ@%@%‘%’ charecter

o MQ V'ﬁ?u%‘%’ ﬁmé\ gsw_?ﬁ $@’q%€wzg?s comsis ot
He W?Wg@f@scw@@ chovorde Lo llowed ‘1 o
one ’ta?% printable ascii epeede, fotlowed \,7
@*’jmﬁ@%“” ™ %%:‘v*ﬂ-ef? (erzcept ansl Escopes

20

