APR 15 1981

apollo computer

APOLLO DOMAIN
ARCHITECTURE

(February 1981)

apollo computer inc.
5 Executive Park Drive, N. Billerica, MA 01862 617-667-8800

ARCHITECTURE EVOLUTION (1960-80)

1.1 ARCHITECTURE EVOLUTION:

This figure depicts the evolution of architecture over the
past 20 years. In the center diamond at the top we show
batch computing of the 1960’s whichis characterized by,
first, very little or n® interactiveness and, second, very
little or no sharing of peripherals and datafiles. In the late
1960’s computer architecture evolved into two distinct
forms. On the one hand there was timesharing which was
intended for people who needed large machine
architecture, but could sacrifice certain degrees of
performance and interactiveness. Timesharing systems
are characterized by poor interactiveness but very good
sharing characteristics and also large machine
architecture. On the other hand batch evolvedinto a form

calied dedicated minicomputers. Minicomputers are
characterized by having good interactiveness, good
human interfaces, and very good performance, but
lacked in the sharing of peripherals and data among a
community of users.

The Apollo DOMAIN system has evolved as a direct result
of improvements in technology and is widely held to be
the architecture of the 1980's. It combines the good parts
of both timesharing and dedicated minicomputers, but
eliminates the disadvantages of both of these earlier
forms. The Apolio DOMAIN system has good sharing
capabilities provided by a high speed interactive network
as well as interactiveness provided by a dedicated
computer available to each user.

GOVERNING PRINCIPLES

e DEDICATED CPU PER USER
e INTEGRAL WIDE BAND LOCAL NETWORK
e HIGH LEVEL DESIGN (ISP, VAS, PMS INDEPENDENCE)

e USE OF ADVANCED TECHNOLOGIES
(VLSI CPU, WINCHESTER DISKS, etc.)

1.2 GOVERNING PRINCIPLES:

There are several principles that have been used to
govern the design of the Apollo computer system. First,
and foremost, is the notion that there exists a dedicated
CPU for each user. Second, each user is interconnected
with a high performance local area network. Third, the

design of the architecture is based on high level
abstractions so that we may independently evolve lower
level components (such as the instruction set, or internal
buses) with minimum impact. Fourth, is the use of
advanced technologies, such as VLSI, Winchester disks,
and so on.

HIGH LEVEL
DESIGN/IMPLEMENTATION

MACHINE LEVEL
INSTRUCTION SET
(ISP)

MACHINE LEVEL
ADDRESS SPACE
(VAS)

PROCESSOR-MEMORY
BUS ORGANIZATION
(PMS)

SYSTEM I/0 BUS
(1/0)

1.3 HIGH LEVEL DESIGN/IMPLEMENTATION:

The Apollo system incorporates designs which are
uniformly advanced, or appear at a higher level than
conventional computers. A conventional computer is
characterized by: (1) a machine level instruction set or
what we call an ISP, (2) a machine level address space or
avirtual address space which is a measure of the range of
addressing that the computer can span, (3) the processor
memory bus organization, or what we call PMS, including
the memory buses, the attachment of processors, the
attachment of multiple memory units and so on, and (4)
the I/0 system of the computer, or the /O bus.

The Apollo system is designed around higher level
~ abstractions in each of these particular areas. For
example, rather than an instruction set, we talk about a
high level language implementation, namely PASCAL.
Similarly, instead of a machine level address space, such
as the 24 bit address space of the Motorola 68000, we talk
about a 96 bit network wide global object address space.
Our thinking here is that objects are very large entities

HIGH LEVEL
IMPLEMENTATION
LANGUAGE

96 BIT NETWORK
GLOBAL OBJECT
ADDRESS SPACE

PACKET NETWORK
INTERCONNECT

IEEE PROPOSED
STANDARD
1/0 BUS

that are 32 bits in fength and whose location should be
anywhere on the network. This 36 bit network wide object
address space is the fundamental system address in the
Apollo DOMAIN system, and is designed to
accommodate various machine level address spaces.
Similarly, rather than designing the system around &
processor memory bus organization, the Apollosystemis
designed around a two address packet network. This
network is used to attach computation units, peripheral
units and gateways to other systems. Itis the backbone of
the system allowing users to intercommunicate, to
access shared programs and data files and for access to
shared peripherals. Finally, our /0 bus is not an integral
part of our internal system, but rather an |EEE proposed
standard MULTIBUS which is externally available to
users and is widely acknowledged as a standard for small
computers in the computer industry.

ADVANCED CONCEPTS

SYSTEM ENVIRONMENT
6 NETWORK ORGANIZATION
® RING NETWORK PROTOCOL
® NODE ARCHITECTURE

PROCESSING ENVIRONMENT
© NETWORK WIDE VIRTUAL MEMORY
© PROCESS STREAMING
© SHELL PROGRAMMING
© COMPILATION/BINDING/EXECUTION

USER ENVIRONMENT
€¢ USER NAME SPACE
© CONCURRENT PROCESSING
© BIT MAP DISPLAY MANAGEMENT

.4 ADVANCED CONCEPTS:

There are many advanced concepts that have been
applied to the Apollo architecture and they can be
roughly broken down into three general categories: (1)
those pertaining to the overall system environment, (2)
those pertaining to the program environment, (3) those
pertaining to the userenvironment. Itisuseful to point out
certain particular features that have been incorporated
into the DOMAIN system in each of these environments.

The Apollo system environment is unique in the sense
that the architecture is based on a network as opposed to
a central systems architecture. This network allows
shared data and peripherals, and is controlied by an
object oriented operating system that will be described in
more detail later.

The processing environment for the Apollo system
includes: (1) a very large linear address space for virtual
memory management, (2) advanced concepts, such as
stream /O which will be described later, and (3) new
ideas such as shell programming which allow people to
build procedures at the command level.

The user environment of the Apolio DOMAIN system is
radically different from conventional systems. Rather
than a character oriented dumb terminal, the Apollo
system has for each user an integral bit map display. This
paraliel device allows many concurrent programs to be
executing on behalf of each individual user, which is
accomplished by dividing the display into multiple
independent window areas.

e HIGH AVAILABILITY
RING NETWORK

SYSTEM ENVIRONMENT OBJECTIVES

NETWORK MODULARITY
e WIDE PERFORMANCE RANGE

* HIGH SPEED / LONG DISTANCE
e MULTIPLE TECHNOLOGIES

MAXIMIZE NETWORK INTERACTIVENESS
e NO SUPERFLUOUS MESSAGE BUFFERING
e MAXIMUM DMA DATA RATES.

1.1 SYSTEM ENVIRORMENT OBJECTIVES:

Network modularity was a principal design objective of
the Apollo computer system, providing a wide range in
performance, a wide range in growth capability, and a
wide range in system level availability. Modularity at the
network level aiiows users to incrementaily expand their
system by themselves on their site, and without
substantial programming. It means that they can
replicate nodes to obtain very high availability. It further
means that the overall system configurations can
conform to the user'sspecific application in the most cost
effective way he chooses. From a manufacturer's point of
wview. network modularity significantly eases system
maintenance, allowing the replacement of entire nodes
as well as the ability for one node to diagnose another.

A second design objective for the Apollo system
environment was to incorporate a high performance
cecaxial local area network. Although our system is
designed to accommodate any two address packet
transport mechanism, the specific implementation that

Apollo has chosen involves a ring topology. Rings have
numerous advantages over alternative approaches: They
generally allow higher data bandwidths and longer
distances, they allow migration tonew technologies such
as fiber optics, they are very interactive allowing very fast
network arbitration, and finally they incorporate a free
acknowledgement function with the circulation of each
packet.

A third system environment objective was to maximize
network interactiveness. In this regard, our design
eliminates all superfluous message buffering between
nodes. allowing a message generated from one process
to be transmitted directly to another process on a
separate machine. Secondly, our network controlier
transmits data through the block muitipiexor channel
which allows all high performance DMA devices to have
access to the total memory bandwidth of both machines.
Consequently, when a message is transmitting from one
machine to another. the data rate is at the maximum
possibie permitted by the two memory systems.

SYSTEM ORGANIZATION

G
g&e
R
S
REMOTE A
FACILITY OQQ“ A onERP
ACCESS & e pe® 5
Xy e |
: § Xlo
COMMUNICATING AVAILABILITY
sese I
—> ! c "'6"
GROWTH

COMPUTING

1.2 SYSTEM ORGANIZATION:

The system level organization of the Apolio system is
based on the Apollo DOMAIN network. This network
allows an extremely wide range in performance, growth
and system availability. Moreover, users attached to the
system can intercommunicate, can access shared
programs and data files across the network, can access

common pools of peripherals, and can finally access
remote facilities, including large foreign machines or
other Apollo DOMAIN systems. Consequently, the
Apollo DOMAIN network together with the per user
computing node is intended to provide an entire
computing facility to each user.

RING NETWORK PROTOCOL

DST | SRC | HDR|DATA

CRC| ACK| CRC

TOKEN=011111100
FRAME=011111101

MESSAGE HEADER=011111110
MESSAGE SEPARATOR=011111111

1.3 RING NETWORK PROTOCOL:

The Apolio DOKAIN system is designed around a two
address packet transport network. The cpecific
implementation of this network can take various forms,
and the system is specifically designed to be able to
migrate from one form to another as the technology
requires.

The topology of the Apollo network is in the form of &
circular ring. Access to this ring is arbitrated through the
passing of a TOKEN which is a specific encoding of bits
passed from one node on the network to another. The
system aiiows cne and only one TOKEN to be on thering
at any given instant, and the possession of this single
TOKEN gives a particular node exciusive use of the
network for the duration of a message transmission.

The format of the message on the ring includes the
destination node address, the source node address,

header inforrnation, data, a CRC check, and finally an
acknowledgement field. The acknowledgement field is
adjusted by the destination node, thereby acknowledging
the correct receipt of the packet to the source node.

The encoding on the ring uses a conventional bit stuffing
technique whereby the occurrence of five consecutive 1's
causes the insertion of a 0 on transmission and a
corresponcding removal of the 0 upon reception. Several
special flag characters are used to establish packet
synchronization and are encoded as a string of six
consecutive 1's followed by two identifier bits. One of
these 1s the TOKEN which deviates from other fiag
characters by only the last bitthereby allowing a node to
exclusively acquire a TOKEN by simply altering a single
bit. This allows minimal buffering in each node and
therefore maximizes network responsiveness.

32 BIT SYSTEM HIERARCHY

PERIPHERAL I/O

MEMORY BUS, HI PERFORMANCE I/0

CPU REGISTERS, ALU.‘__

16 BITS

32 BITS

SYSTEM

PERIPHERAL

BOARD

CHIP

~"

WIDTH OF DATA PATH

1.4 32 BIT SYSTEM HIERARCHY:

The Apollo central processing unit is built around a VLSI
microprocessor with 32 bit architecture. The instruction
set of the processorinciudes both 32 bit datatypes as well
as a 24 bit linear virtual address space. The physical
parameters of the system, most notably the width of the
data path, can be viewed in a hierarchical arrangement.
At the system level computer nodes are interconnected
with 2 1 bit serial packet network. Certain peripherals
attached to an individual computer node are
interconnected with 8 bit (1 byte) data paths, whereas, the

memory system and high performance peripherals
operate on a 16 bit data path. Internal CPU registers anc
an arithmetic logic unit are all implemented with full 32 bit
data paths.

Consequently, the CPU is generally 32 bits wide, the
memory system is ‘generally 16 bits wide, while the
network system is only a single bit wide. The width of the
data path varies inversely with the physical distance from
the internal processing registers.

NODE ORGANIZATION

MEMORY
UNIT

DISPLAY j

MEMORY

DISPLAY B

MEMORY
MANAGEMENT

CPU

BIT
MOVER

[

BLOCK
MULTIPLEXOR

MULTIBUS

1.5 NODE ORGANIZATION:

The internal Apollo node organization is comprised of
several key parts. First, there is the central processing
unit comprised of multiple Motorola 68000's. This central
processing unit is connected to a memory management
unit which translates the 24 bit virtual address out of the
CPU into a 22 bit physical address on the physical
memory bus. The memory management unit is actually
comprised of two parts: one for the CPU and another part
for the 1/O system which will be described later. The
memory system is comprised of multiple units - each unit
containing a . megabyte. This unit is fully protected with
error correction codes and is available in sizes up to 1
megabyte. The I/O system of the Apollo node is broken
down into two parts. The first part is forthose peripherals
that are integral to the Apollo system, such asthe integral
Winchester disk and the integral network node controiler.
These devices are connected to a block multiptexor
channe!l. Other peripherals, such as user supplied
peripherals, line printers, magtapes and so on, are
connected to the MULTIBUS controller.

The use of a block multiplexor channel through which all
disk and network traffic goes represents an essential part
of the Apolio system. The system was designed to
specifically maximize the node-to-node responsiveness
across the network. To do this we wanted to guarantee
that there would be no superfluous buffering of packet
messages as they left a transmitting process and entered
a receiving process on another machine; and, secondly.
we wanted the transfer of this packet to operate at near

CONTROLLERE

memory speeds. To accomplish this responsiveness we
allow the network full (100%) bandwidth access to
primary memory, disallowing all other block transfer
devices, such as the Winchester disk. Consequently the
disk and the packet network actually share g com;non
DMA channel into primary memory so that both of these
devices can transfer at data rates of nearly 100% memory
bandwidth. Occassionally, a disk transfer will overlap a
network transfer requiring that either device make one
additional revolution. But the system level performance
consequences of this interference are negligible.

Finally, the display system is comprised of & separate
autonomous 1/8 megabyte bit map memory which is
organized into a square array of 1024 bits on each sige.
The display memory is constantly refreshed ontoan 800 x
1024 bit map CRT. There is a separate bit mover which is
capable of moving rectangles from one part of the display
onto another part of the display at a data rate of 32
megabits per second.

Although the display memory and the program memory
are in separate physical bus organizations, they actually
share the same address space so that the CPU can
instantaneously access display memory and alter its
contents. Furthermcre, the bit mover can move display
areas (rectangles) into and out of program memory. The
system is designed so the CPU can zccess program
memory and the display memory can refresh to the CRT
cisplay, and the bit mover can be moving rectangles allin
parallel and withcui interference.

BIT MAP DISPLAY

1024

DISPLAYED

- AREA ,
‘ BIT MAP,

z MEMORY

1024

TO/FROM PROGRAM
MEMORY

= BIT ALIGNED /BIT RESOLUTION RECTANGLES

~— DISPLAY MEMORY

(YR O)

PROGRAM MEMORY

— 32 MBITS/SEC

1.6 BIT MAP DISPLAY:

The bit map display system is comprised of a 1024 bit by
1024 bit array. A rectangular region of 800 by 1024 is
physically transferred onto the CRT display. The
remaining area is used as temporary storage for
character font tables. The bit mover is a hardware
primitive which is capable of moving a rectangular area
from any place on the display tc any other place on the
display. This primitive is used to move windows into and
out of main memory, to move them relative to the display

itself, to implement scrolling and to create characte:
strings from character fonts. The bit mover operates at ¢
32 megabit per second data rate when moving entirel.
within the display memory.

The bit mover can move bit aligned rectangles fro~
display memory to/from word alignecd buffers in prograr
memory where the CPU can efficiently perform rasts
operations, such as exclusive ORing two or more graphic
representations.

€ SHELL PROGRAMMING

PROCESSING ENVIRONMENT
OBJECTIVES
@ 32 BIT OBJECT ADDRESS SPACE (NETWORK GLOBAL)
© DEMAND PAGED 1/0 (NETWORK & DISK)
© UNIQUE OBJECT NAMES (64 BIT UIDs)

€ PROCESS — PROCESS STREAMING

C EFFICIENT COMPILING/BINDING/EXECUTION

1.1 PROCESSING ENVIRONMENT
OBJECTIVES:

A principal objective in designing a system processing
environment was to abstract common entities, like
programs and data files, into a uniform abstraction which
we call an object. The totality of objectsacross a network
forms a 86 bit virtual address space whichis comprised of
two fields: a unique object name consisting of 64 bits, and
a 32 bit byte address within an object. A second objective

was to provide a demand paged operating system to

implement a network wide virtual memory. A third
objective was to provide an environment for efficient
process to process streaming and the control cf this
streaming through shell programs. Finally, an efficient
compiler, binding and execution procedure whereby
network wide programs can be run interactively.

SYSTEM NAME SPACE

USER GLOBAL
NAME SPACE

SYSTEM GLOBAL l
NAME SPACE

/JONES/PROGRAM/SORT

96

—

(96 BIT ADDRESS,
UNIQUE IN SPACE

—

uIb

& TIME)

OBJECT ADDRESS
SPACE

PROCESS ADDRESS
SPACE

PHYSICAL ADDRESS
SPACE

NETWORK ADDRESS
SPACE

DISK ADDRESS
SPACE

1.2 SYSTEM NAME SPACES:

We now turn to the operating system design in the Apolio ‘

DOMAIN system. One way of viewing a complex system
is to enumerate and describe the various name spaces
that cccur in the system. First, there is the user global
namespace, or what the user would normally type at a
terminal to execute a program or access a data file.
Second, there is the system global namespace, or the
namespace that the operating system uses at a network
level. Third, there is an object address space, which is 32
bits long and contains programs and files as well as other
entities in the operating system which will be described
later. Fourth, there is a process virtual address space that
represents an address space in which a Motorola 68000
process executes. Fifth, there is the physical address
space which represents the amount of physical memory
that can be placed on the system. Sixth, there is the
network address space or the maximum number of nodes
that can be placed on the network. And, finally, there is
the disk address space or the maximum bytes or pages
that the disk can hold.

In the Apollo system the user global namespace is
syntactically represented as a stream of characters
separated by slashes. This actually represents a
hierarchical tree space which will be described later. The
system global namespace is a 96 bit address space

32

l 32 |
[SEGMENTI J
15

|2 |

L J

|—— 22—

10

| —20—|

]

]

comprised of a unique ID (UID) which is 64 bits and z:
offset which is 32 bits wide. The 64 bit UID is unique i
space and time. It is unique in space in that it includes a-
encoding of the machine’s serial number and it is uniqus
in time in the sense that it includes the time at which the
name was created. This guarantees that for all time in the
future and for all machines that Apollo builds, no twt
machines will ever create the same UID, hence the term
unique ID.

UID’s are names of objects. Objects are used to hoic
programs, files and various other entities in the Apolic
system. An object is a linear 32 bit address space, byi¢
addressable, and can be located generally any place o”
the network. Objects are the primary focus for the Apolic
DOMAIN system and are cached into the process address
space provided by the Motorola 68000. This process
address space, while very large, is still considerabliy
smaller than the 32 bit object address space.
Consequently, address regions of an object are mappec
into regions of a process in much the same way the!
regions of physical memory are frequently mapped intc
regions of a cached memory. The process address space
is a 24 bit virtual address which is converted to a 22 bi!
physical address by memory management hargware. The
unit of allocation in the physical address space is 1024
byte pages.

SYSTEM RELATIONSHIPS

NAME SERVER

P COMMANDS

E FILES

USER

PERIPHERALN

PATHNAME uiD

l 96 BIT ADI.DRESS J

DISK

STRUCTURE

PHYSICAL
DISKS

PAGING
SYSTEM

0S MAPPING
STRUCTURE

)

MEMORY

PHYSICAL

MEMORY UNIT

MANAGEMENT Y|

A

1.3 SYSTEK RELATIONSHIPS:

The execution of auser command on the Apollo DOMAIN
system is a very complex process and involves many
steps. First of all the user types a command which is
translated by the naming server intoc a UID. The UID is a
64 bit address which identifies one particular object on
the network. These cbjecis then are dynamically mapped
by the cperating system into a processes virtual memory.
Once mapped no datais transferreduntil the CPU actually
requests it. When a page fault occurs the operating
system will retrieve the requested page from some disk
structure across the network and transfer it into the
physical memory of the local processor. It willthensetup
the memory management unit to translate the virtual
address into the physical address of the requested page
and then allow processing to continue.

VIRTUAL
MEMORY

In this scenario we have four areas which are of interest.
First is the operating system mapping structure, which
maps object address spaces into process address spaces.
Second is the memory management hardware which
translates process virtual address spaces into physicai
memory address spaces. Third is the paging system
which transfers pages of physical memory into and out of
the memory system onto either local disk or across the
network to some remote disk. And, fourth, is the disk
structure that physically relates objects onto disk data
blocks. These circular relationships are dynam'écany and
under system control managed by the Apollo operating
system.

OPERATING SYSTEM MAPPING

SUPERVISOR

PER
PROCESS
USER

<

0

SINGLE NODE
PROCESS

VIRTUAL ADDRESS
SPACE

[11.4 OPERATING SYSTEM MAPPING:

The network global object spaces are mapped selectively
into a process virtual address space of a particular node.
Once the mapping occurs no data is transferred until the
processor actually requests it. Consequently, the
mapping of a large address space from an object into a
large region of & process is a relatively inexpensive
procedure. The objects, of course, are network wide;
whereas, the processes are all in a particular node
running on behalf of a particular user. The process

ADDRESS

GLOBAL SPACE
MAPPING

PER -l//
process | E |
A

NETWORK
GLOBAL
OBJECT SPACE

address space is subdivided into an area which is glot:
to all processes and then further divided into an are:
which is per process supervisor and per process use’
This address space mapping represents the or
primitive in which processes can relate to objects. Fortr:
most part the operating system and all higher level viev.

of the system relate to objects rather than processes, &-

consequently a great deal of network transparency
attained.

MEMORY MANAGEMENT UNIT

CHECK
PID STATISTICS
| | | unk
/ PROT VPN
PHYSICAL - 32
MEMORY ———— B 4 7
- -
' . PAGE ’
4
R FRAME ¢ Q-
- -’ TABLE ,,’ k.
— /’/
l e
”’ ,----—d
27 47
12 2 f{
o \ ,’
o B
PAGE “n. ™ e
TRANSLATION Ny '\
Cloe Lo Jraee - 8> &
VIRTUAL '
MEMORY

.5 MEMORY MANAGEMENT UNIT:

The memory management unit (MMU) is a piece of
hardware which translates the 24 bit virtual address
spaces out of the Motorola 68000 CPU onto the 22 bit
physical address in the Apollo node. The MMU works on
1024 byie physical page sizes and has separate
protecticn and statistics informationforeach page. There
exists & separate entry in a page frame table for each
individua!l pege so that when the hardware faults out of
the page frame table (i.e. cannot find an appropriate
requested page), an interrupt is taken to move the
requested page in from secondary storage. The MMU is
actuzlly & two level hierarchy, the page frame table being
at the highest level . A lower level cache, called the page
translation table contains the most recently use 3 pages
and acts as a speed up mechanism to search the page
frame table.

The translation of a virtual address into a physical
address proceeds roughly as follows. The 24 bit virtual
address is broken down into three fields: (1) a high order
virtual page number, (2) a page number, and (3) a byte
offset within the page. The 10 bit page number is.used as

an index into the page translation table. The page
translation table contains a 12 bit pointer which points
directly to the physical requested page. Concurrent to the
memory system beginning a memory request, this 12 bit
pointer is also used to index into the page frame table
from which the high order virtual page numbers are
checked. If the check is okay, the protection is allowed
and the process ID agrees, then the memory reference
proceeds uninterrupted. If, however, there is no
agreement on any of these accounts, the memory request
is-aborted and a search is made in the page frametable for
all entries corresponding to this particular value of page
number. All possible values for this page number are
linked together in a circular list and the hardware
automatically searches for the requested page number
until: (1) it finds it and continues. or (2) does not find it
and causes a CPU interrupt. If the requesting page is
found in the page frame table, the location within the
page frame table is updated to the page translation table
so that subsequent references can. proceed without
researching the page frame table.

MEMORY MANAGEMENT UNIT
PROTECTION/STATISTICS

PROTECTION HARDWARE(PER PAGE)

LEVEL RIGHTS AT THIS LEVEL AND HIGHER

00 USER DOMAIN 0
01 USER DOMAIN 1
10 SPVR DOMAIN 0
11 SPVR DOMAIN 1

STATISTICS (PER PAGE)

X - ACCESSED
X - MODIFIED

EXECUTE
READ ACCESS
WRITE ACCESS

7

(USED BY PAGE REPLACEMENT LOGIC)

1.6 KEMORY MANAGEMENT UNIT -
PROTECTION/STATISTICS:

At each access to a page a set of rights (execute, read,
write) are checked as a function of a particular leve! that
the process is running at. The protection hardware
specifies the particular rights at this level and all higher
levels. The levels are two supervisor levels and two user
levels.

The memory management hardware automatically
records and maintains certain statistics about the page
access. In particular a bit is set every time a page is
accessed and a second bit is set when that page is
modified. The operating system nucleus scans these bits
pericdically to maintain knowledge of the statistical
usage of the pages for the purpose of page replacement.

MEMORY MANAGEMENT
UNIT—I/0 MAPPING

WIRED
PER DEVICE

MULTIBUS ADDRESS
16 BIT WORD BYTE &

]

BYTE DEVICE

W\
[

8 BIT PAGE=

1:0 MAP

12 BIT PAGE]

256 PAGE ENTRIES

WORD DEVICE

1

9 BIT WORD &

0

22 BIT APOLLO PHYSICAL ADDRESS

I11.7 MEK.ORY MANAGEMENT UNIT - 1/0
MAPPING:

Peripherals on the MULTIBUS are mapped in‘o the 22 bit
Apollo physical address bus by means of an I/O map. The
I/0 map consists of 256 page entries, each entry pointing
to a particular Apollo page. A peripheral on the
MULTIBUS can generate a 16 bit word or byte address

and have the high order bits indexed into the page map
and the low order bits indexed relative to the page. Inthis
way MULTIBUS peripherais can directly address
themselves-into the virtual memory of a process.

PAGING SYSTEM

ACTIVE
SEGMENT
TABLE

PRIMITIVE

MEMORY
MAP
TABLE

PAGE

-
PHYSICAL 0I5 F5N ‘/
MEMORY
3
VA Q&
MAPPED
SEGMENT

TABLE

1{1.8 PAGING SYSTEM:

To implement the network wide virtual memory system, (AST). This table contains a cache of pointers to the
several tables are maintained withinthe operating system actual location of the pages, be they in physical memory,
nucleus. As objects are mapped into process address on local disk or on a remote network node. In this way,
spaces, entries are made into the mapped segment table objects that are logically mapped into a process are being
(MST). When a CPU fault occurs for that virtual address, constantly swapped in and out of memory across the
the operating system scans the active segment table network solely on a demand basis.

DISK STRUCTURE

PHYSICAL VOLUME
LABEL

N

LOGICAL VOLUME
LABEL

A VTOC (VOLUME TABLE OF CONTENTS)

VTOC MAP
OBJECT TYPE
ACCESS CONTROL
ACCOUNTING
MAP
; | 32 111 ‘]/ :
HEADER (
uiD - o
OBJECT cos & ’ vres B
PAGE® * .
DATA
e 1024
BYTES e /i (/: s
k3

I11.8 DISK STRUCTURE:

Objects are mapped onto physical disks using a rather
dynamic storage allocation. First of all a disk structure
contains a physical volume label which is a list of pointers
which point to multiple logical volume labels. The
division of a physical volume into multiple logical
volumes is a means whereby fixed partitions can be
created which do not compete for common storage. In
other wcrds. one can create a logical volume and
guarantee it has a certain minimum amount of allocation.

Each logical volume label contains a volume table of
contents map. The volume table of contents is a list of all
of the object UID’s inthat volume and for each object a set
of object attributes. The object attributes consist of the
object type, access control information, accounting
information (last date accessed, last date modified), and a

see
o8

see

map to all of the various data blocks which comprise the
object. The map is comprised of 35 pointers. The first 32
pointers point directly to data blocks each of which
consists of a single page. The 33rd pointer points to a
block of second level pointers (256 of them) whichinturn
pointto actual data blocks. The 34th pointer expandsinto
three levels of storage and the 35th pointer expands into
four levels of storage. Conseguently, for small objects
data access is very efficient; and for large objects storage
allocation is very efficient.

Each block contains not only 1024 bytes of data, but also
theUlDandobject page number thatthis page represents.
Consequently if a failure should occur, the entire
mapping structure can be recreated by a single pass over
all of the data pages.

/0 HIERARCHY

INDUSTRY COMPATIBLE,

LANGUAGE 1/0

SYSTEM INDEPENDENT.

OBJECT TYPE INDEPENDENT,

PROCESS-PROCESS, FILE, DEVICE,

ETC.

OBJECT LOCATION (NETWORK
WIDE) INDEPENDENT. ASSOCIATES

OBJECT - PROCESS ADDRESSING

ONLY, NO DATA TRANSFERRED
UNTIL REFERENCE IS MADE.

PHYSICAL 1I/0 TO LOCAL AND

REMOTE DISKS ACROSS NETWORK.

STREAM I/0
MAPPED /0
PAGE I/0

DATA TRANSFERRED “ON DEMAND,”

RESULTING FROM CPU PAGE FAULT.

[11.10 I/O HIERARCHY:

There are four levels of abstraction in the I/0 system of
the Apolioc DOMAIN. The highest level is the language
level which is supported by the standard language
compilers, such as Fortran read and write. The
implementation of this language level is done by what we
call the stream level. The stream level has the
characteristic of being object type independent and can
accordingly talk to files. peripheral devices, or to other
processes. The implementation of the stream level is
accomplished through the map primitives which were

described earlier. The map primitives have the
characteristic = of being object location independent
thereby allowing streams to go across the network. The
mapped primitive associates object to process
addressing only. No datais transferred until the reference
is made. All data transfer in the entire system occurs at
the page level. The page level is the physical /O to local
and remote disks across the network. This data is
transferred on demand. resulting exclusively froma CPU
page fault.

STREAM I/0

INPUT
STREAM

STREAM FILTER:

PROCESS NETWORK:

.11 STREAM [/0:

The stream 1/0 level deals with the interconnection of
objects, including process to file operations, and process
to process operations. It has the principal characteristic
of being object type independent. Sinceitis implemented
through the mapped /O level, objects can be
conceptuatly interconnected by streams both within the
same node and acress the network.

When streams are used to interconnect processes, the

~

~
OUTPUT ’\~
STREAM “
LN

PROCESS

output of one processis connected to the input of another
process. This multiple process application can acquire
the form of a stream filter whereby every process forms
some transformation on its input and then passes the
output to another process. When applications are
encoded in this manner, programmers areencouragedto
write processesas simple, modular programs that perform

© some primitive function. Frequently, these functions can

be reused across many applications.

SOFTWARE TOOLS

APPLICATION:

I11.12 SOFTWARE TOOLS:

A large collection of program modules designed to
perform some primitive function has evolved over years
of use by a large collection of users. These modules are
referred to as Software Tools and are widely distributed
throughout the user community. Software Tools follows
the methodology laid out in the book entitled "Software
Tools" by Kernigan anc Plauger. published by Addison
Wesley.

Applications can be easily formed by interconnecting

streams of data through a coliection of Software Tools.
The collection of standard Software Tools is derived from
a library of programs - a “toolbox” of Software Tools. In
this way complex applications can frequently be formed
with little or no programming. The time required to
develop a new application is significantly reduced.
Furthermore. users are encouraged to write programs
that are smali. conceptually simple, and usable for many

© applications and by many users.

SHELL PROGRAMS

SHELL PROGRAM
PROGRAM

OP SYSTEM

111.13 SHELL PROGRAMS:

A shell program is a higher leve! flow of control above the
conventional program level (e.g. Fortran or Pascal). Shell
programs are written in a shell programming language
that has arich set of constructsthat are.in manyrespects,
similar to a conventional language. However. an
executable statement within a shell program frequently
involves the complete execution of one or more
conventional programs. In this regard. a shell program
can be thougnt of as asophisticated command processor
which coordinates the execution of multiple program
steps.

CONVENTIONAL
COMMAND LEVEL

EXECUTE PROG 1
EXECUTE PROG 2

IF conpiTion

THEN
EXECUTE PROG 3

INVOKE SHELL PROCEDURE
ELSE
EXECUTE PROG 4
etc.

The ability of users to program applications in a shell
programming language relieves a great deal of
complexity that would otherwise be required within a
Fortran or Pascal program. Consequently, programs
written in these languages tend to be simpler and have
fewer input options.

The concept of shell prcgramming goes hand-in-hand
with the concept of Scftware Tools. Here. the shell
programs represent the interconnect of streams between
various programs., and can be extended to richly
interconnect small progrems in order to form complex
applications.

COMPILATION/BINDING/EXECUTION

SOURCE

COMPILE

MAP
&
EXECUTE

OPERATING
SYSTEM

PURE P.I.C
CODE

PROGRAM
OBJECTS

COMPILED
OBJECTS

POSITION
INDEPENDENT
CODE &
PURE DATA

GLOBAL DICTIONARY,
IMPURE DATA
VARIABLES
SYMBOL TABLES
HISTORY INFO

LOADER
CREATES

DATA
OBJECTS

IMPURE
DATA

e

[11.14 COMPILATION/BINDING/EXECUTION:

We now shift to the higher level organization of objects in
the system as they relate to user programs. compilers,
binders and ioaders.

The compiler translates a source program object into a
compiled object The compiled object has a format which
is suitable for direct execution if there are no unresolved
references (i e.. no other subroutines which need to be
bound togetherj. If the application contained several
source program objects. these compiled objects must be
bound together prior toc execution, a process
acccmplished by the BINDER. The process of loading
anc executing a compiled object consists of: (1) mapping
the pure position independent code into a region of a
process address space. (2; creating an impure data
object and mapping that cata object into an impure
section of the process address space. and (3)

-
o
5

dynamically linking operating system references to the
operating system during execution.

There are three important points in this procedure: (1)
The output of a compiler can be directly executed if there
are no external references to be resolved. (2) A runnable
ctject. once formed. is paged into memory atrun time. or
demand. (3) Source program objects, compiled objects.
and bounc objects can be resident anywhere on th¢
network. ‘

The compiled object format is .comprised of two paris
The first major part is position independent code an&
pure data which 1s directly mapped and executed intc ¢
process address space. The second part is a databasfi
used by the loader to create an impure temporary ca%
object which is subsequently mapped into the imput®
part of a process address space.

USER ENVIRONMENT OBJECTIVES

©UNIFORM NAME SPACE
€BIT MAP DISPLAY (TEXT, GRAPHICS)
G CONCURRENT PROCESSING PER USER

V.1 USER ENVIRONMENT OBJECTIVES:

A key cojective in designing the Apollo userenvironment
istc combine simplicity and uniformity with a high degree
of functionality.

All objects that the system is capable of referencing can
be expressed in a uniform name space that transcends

the entire network. Further abit map display, asopposed
to a character display. is used to represent text and
graphics output. The output from multiple programs can
be concurrently displayed through multiple windows,
thereby providing a degree of functionality unavailable
on conventional systems.

USER NAME SPACE

NETWORK
A

NODE

DEVICE

SYNTAX

//A/B/C..NETWORK WIDE
/8/C/D..LOCAL ROOT RELATIVE
C/D/E..WORKING DIRECTORY RELATIVE

DIRECTORY OBJECT

POINTS TO NEXT
DIRECTORY OR

NAME

TARGET OBJECT

Ve
uiD
OR
PATHNAME « PATHNAME
SUBSTITUTED
IN NAME (LINK)

IV.2 USER NAME SPACE:

The namespace seen by a user is organized as a
hierarchical tree structure. The highest node of the
network in the tree represents the most global portions of
the network. Whereas, the leaves at the bottom of the tree
represent particular objects, such as programs, files and
devices. Intermediate nodes are used to represent
collection of objects that have some common
association. For example, an entire node on the network
may be represented by an entire subtree in the tree
hierarchy. The overall namespace hierarchy Is intenced
to represent a logical organization of the network. All
leaves. or the lowest level of the tree, represent objects
and the user has a variety of syntactical forms in whichto
express the location of an object. First of all there is the
network wide syntax which is comprised of two leading
slashes followed by a full path name to reach the object.
Second, there is the local root relative syntax which can

be used to express objects that are local to a particular
user's node.Syntactically this is expressed by one leading
slash followed by a relative path name. For convenience,
the user may attach himself or his working directory to
any point in the tree name hierarchy; and, consequently,
he may express a path name which is relative to his
working directory. He does this by expressing the relative
path name without a leading slash. Each node in the
network is represented as a directory object and contains
a iist of associations. For éach name at a lower level there
is contained within the directory a UID or a path name. Ifit
is a UID it points to the next lower level directory ortothe
object itself. If it is a path name, the path name is
syntactically substituted into the name being searched
and the search continues. This latter path name is used
for linking names across the network.

CONCURRENT USER ENVIRONMENT

SEQUENTIAL
OuUTPUT

ACCUMULATED
OUTPUT

B Il

-—— COMPILATION

<<— EDITING

<€——— ON-LINE HELP

IV.3 CONCURRENT USER ENVIRONMENT:

The notion of concurrency is a new concept onthe Apollo
DOMAIN system unavailable on conventional
timesharing systems. On these latter systems users are
generally required to execute one function at a time.
‘When a user switches from one function to another,
generally the context of the previous function is lost and
has to be subsequently recreated. The Apollo integral bit
- map display provides the user with the capability of
displaying multiple windows simultaneously. Each

DOMAIN
NETWORK

PROGRAM EXECUTION

€——— ELECTRONIC MAIL

hae——— DOCUMENTATION

J<— QUERIES

window can contain the output of related or unrelated
applications. For example, one window can contain the
sequential output of a program while a second window
graphically displays the accumulated output of the same
program. Similarly, program development, compilation,
editing and anon-line help system can all be concurrently
displayed.

Consequently, the Apollo system is designed to
accommodate atotal user environment, whichwe believe
always involves a number of concurrent functions.

DISPLAY MANAGER

IV.4 DISPLAY MANAGER:

The display manager represents the outer most layer of
logic within the Apollo system -- that which controls the
relationship amongthe many windows projected onto the
CRT display. Accordingly, the Apollo system adds two
additional layers above the conventional programming
level. As mentioned earlier, a programmable shell
coordinates the activity of many programs (in both
pearailel and sequential relationships). The output of this
shell is written into a virtual terminal. called a PAD.
Porticns of this PAD are displayed through a rectangular
window which is then projected onto the CRT display.

The display manager permits multiple windows to be

DISPLAY MANAGER

displayed concurrently, each of which can be executing
an independent shell or command environment. The
philosophy ofthe display manageristo aliow programs to '
output data in alogical format, while allowing the user to
independently control what is physically displayed.

The display manager is controlled by the use of function
keys onthe userkeyboard. Pushingafunction key causes
the execution (interpretation) of a user programmable
sequence of cisplay manager primitives. Consequently.
the user can define function keys to perform complex
display manager functions.

USER ENVIRONMENT

PADS
(VIRTUAL TERMINALS)

WINDOWS

IV.5 USER ENVIRONMENT:

The Apollo DOMAIN operating system creates a degree
of independence between application prcgrams and
what is actually viewed on the terminal display. In
particular, application programs create virtual terminals
which we cell pads. The pads are independently
windowed onto the CRT display totally under user
control. Window images are superimposed on the pads
and can be moved relative to the pad in either a horizontal
or a vertical direction. Window images from various pads
are stacked logically on top of the display so that only the
one on lop is displayed. Consequently the user
environment is actually a three dimensional volume: 800
bits going across, 1024 bits going down and many levels
of windows deep. The user can also move window areas
up or down relztive to the physical display and finally can
move window areas into and out of the dispiay relative to
other window areas.

PLICATION
PROGRAMS

PROCESSES

DISPLAY

Programs create the pad by writing command and data
sequences through a stream. The window image created
by the display manager from the pad can be placed
anywhere in the CRT and can be overlayed by other
window images. Window images contain lines and
frames. A line is a single line sequence of characters and
has only one dimension. A framehastwo dimensions and
has a rectangular format. it contains characters and/or
graphic data. Finally. frames may also contain user
created bit maps. These bit maps may reside either within
the pad or within a separate user supplied object. Pad
information normaily accumulates over the life of a
process. This allows a user to scroll eitherin reverse orin
forward directions over the entire life of the process.
However. for efficiency sake certain commands may be
emitted from the programto delete all or partof the pad as
appropriate.

TECHNOLOGIES

SUMMARY OF KEY POINTS

HIGH PERFORMANCE LOCAL NETWORK OF
DEDICATED COMPUTERS

LARGE MACHINE ARCHITECTURE
LARGE MACHINE LANGUAGES/COMPILERS
OBJECT ORIENTED NETWORK OPERATING SYSTEM

ADVANCED USER INTERFACE COMBINING
TEXT,.GRAPHICS, CONCURRENT PROCESSING

ADVANCED VLSI, WINCHESTER, COMMUNICATIONS

V.1 SUMMARY OF KEY POINTS:

An Apollo computer system is comprised of a number of
high performance dedicated computers interconnected
over a local area network. Each of these nodes containsa
large machine architecture which implements a demand
paged network wide virtual memory system, allowing a
large number ¢of processes for each user. each process

having & very large linear virtual address space
Languegesthatrun onthe Apolio systeminciude Fortran
- 77 anc Pascal ang are implemented to take advantage of

a:
the machine's 22 bit crientation.

crientec

An croject network - operating system
coordinates the user's access 10 network wide facilities.

Objects themselves, representing programs and data
files, etc., are independent of their network location, and
given appropriate access rights, can be accessed
uniformly by anyone on the system.

The user's display terminelis capable of displaying multi-
font text. graphics and can be divided into multiple
windows each cisplaying independent program output.

The Apoliosystemis designed around high technology. It
incorporates VLSI CPU chips, a large capacity
Ninchester disk. and advanced communiceation
technologies.

	001
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01

