apolio computer

COMPANY CONFIDENTIAL

APOLLO DOMAIN ARCHITECTURE

by David L. Nelscn

PRELIMINARY COPY January 22, 1881

apoilo corhputer Ine. 5 Executive Park Drive, N. Billerica, MA 01862 617-667-8800

APOLLO DOL:AIN ARCHITECTURE

I.1 ARCHITECTUHE EVOLUTIOIl:

This figure dcpicts the cvolution of architecture over the past
20 ycars. In the <center diamond at the top we show batch
computing of the 1960's which is characterized by, first, very
little or no interactiveness and, second, very 1little or no
sharing of pcripherals and data files. At the mid to the end of
the 1960's architecture evolved into two distinct forums. On the
one hand there was timesharing which was intended for people who
nceded large machine architecture, but could sacrifice certain
degrees of performance and interactiveness. Timesharing systems
are characterized by poor interactiveness but very good sharing
characteristics and also large machine architecture. On the
other hand Dbatch evolved into a form called dcdicated
uinicomputers. liinicomputers are characterized by having good
interactiveness. That is, good human interfaces and very good
performance, but 1lacked 1in the sharing of peripherals and data
cuong a conkunity of users,

The Apollo DOHAIN system has evolved as a direct result of
improvements in technology and {is widely held to be the
architecture of the 1980's. It combines the good parts of both
tiunesharing and dedicated muninicowmputers, but eliminates the
disadvantages of both of these earlier forms. The Apollo DOHAIN
system has good sharing capabilities provided by a high speed
interactive network as well as interactiveness provided by a
dedicated computer available to each user.

Prelininary January 22, 1981

ARCH\TECTURE

EvoLution (1960-80)

I.2 GOVERNING PRINCIPLES:

There are several principles that have been used to pgovern the
design of the Apollo couputer system, First, and foremost, is
the mnotion that there exists a dedicated CPU for each user.
Second, cach user 1is interconnected with a high performance
local area nctuork. Third, the design of the architecture is
besed on high level abstractions so that we wmay independently
evolve lower level components (such as the instruction set, or
internal buses) with minimum impact. Fourth, 1is the wuse of
advanced technologies, 3uch as VLS1, VWinchester disks, and so
on.

¢

‘Prclimninary January 22, 1961

GOUERNING PRINCPLE S

o Demcated (CPu PeR useR
e TINTELGRAL WIDE BAND LDCAL NETWOR K
e HiGn Level Desian (TSP vAs Pms INDEPERDENCE)

e USE OF ADVANCED TECHNOLOGIES
(VLST CPU, wincHesTeR Disws,ete)

I.3 NIGH LEVCL IHPLEHEUTATION:

The Apollo system incorporates designs which are uniformly

advanced, or appear at a higher 1level than conventional
computers. A conventional computer 1is characterized by: (1) a
mazchine level instruction set or what we «call an ISP, (2) a

machine 1level address space or a virtual address space which is
a measure of the range of addressing that the computer can span,
(3) the processor memory bus organization, or what we call PlsS,
including the wenory buses, the attachment of processors, the
csttachment of multiple mecmory units and so on, and (4) the I/0
system of the computer, or the I/0 bus.

The Apollo system is designed around higher 1level abstractions
in each of these particular areas. For example, rather than an
instruction set, we talk about a high level language
iriplenentation, namely PASCAL. Similarly, instead of a machine
level address space, such as the 24 bit address space of the
Hotorola 686000, we talk about a 96 bit network wide global
objecet address space. Our thinking here 1is that objects are
very large entities that are 32 bits in length and whose
location should be anywhere on the network. This 96 bit network
vide object address space is the fundamental system address in
the Apollo DOMAIN system, and is designed to accommodate various
wachine level address spaces. Similarly, rather than designing
the system around a processor menory bus organization, the
Apollo system is desipgned around a two address packet network.
This network is used to attach computation units, peripheral
units and (ateways to other systems. It is the backbone of the
zystenm allowing users to intercomnmunicate, to access shared
prograns and data files and for access to shared peripherals.
Finally, our I/0 bus is not an integral part of our internal
systcn, but rather an IEEE proposed standard HULTIBUS which is
cxternally available to users and is widely acknowledged as a
standard for swall computers in the computer industry.

Preliminery January 22, 1981

e Levéer Deswan [TMPLEMEDTATION

MACHINE LEVEL
INSTRUCTION SeT

(TsP)

Hiayl Level

TMPEMESTA TIERD
LARGUAGE

MACH I0E LEVEL
ADDRESS SPAcE
(vas)

96 BT NeETwolX

Glaga. O0BTeCT
ADDRESS <Pace

e

PROCESSON - MEMDRT

BUus ORGANILATION
(Pms) |

\

PACLET NeTWORY
Ve woNecy

S —

—

$SYSTema T/o Qug
_ (X/o0)

Teee STARBARD
/o0 Buss

;

I.h ADVANCED CONCEPTS:

There are many advanced concepts that have been applied to the
Apollo architccture and they can be roughly broken down into
threce pgeneral categories: (1) those pertaining to the overall
system environuent, (2) those pertaining to the program

environment, (3) those pertaining to the user environment. It
is useful to point out certain particular features that have
been incorporazted into the DOMAIN system in each of these
cnvironments.

The Apollo systecw environment is unique in the sense that: (1)
The architecturc is based on a network as opposed to a central
systens architecture, (2) a network which allows shared data and
peripherals, (3) a network oriented object based operating
systewm that will be described in more detail later,

The processing environment for the Apollo system includes: (1)
a very large linear address space for virtual mewmory
nanagenent, (2) advanced coricepts, 3such as stream I/0 which
vill be described later, (3) new 1ideas such as shell

pregrawming which allow people to build procedures at the
command level.

The wuser environuent of the Apollo DOUAIN system is radically
different from conventional systems. Rather than a character
oriented dumb terminal, the Apollo system has for each user an
integral bit map display. This parallel device allows many
concurrent prograns to be executing on behalf of each individual
user, which is accomplished by dividing the screen into multiple
independent window areas.

Preliminary January 22, 1901

SY STEM ENVIRDN MENT

NETWORK ORGANMITATION

RWG NeTwoRk PROTOCOL
NODE ARCHI\TECTURE

PRocessivG EvViIRonmE T

NETWORK WIDE VIRTuaL MEMORY
PRocess STREAMING

SHELL PROGRAMMING
COMPILATION /BINDING / ERECUTION

USER ENVIRON MeNT

USER NAME SPACE
CONCURRENT PROCESSING
BIT MAP DIsPLAY MARAGEMENT

IT.1 SYSTEN LLVIRONHLCNT OBJECTIVES:

lictwork modularity is a principal design objective of the Apollo
computer systewm, providing a wide range in performance, a wide
range in growth capability, and a wide range 1in system level
availability. liodularity at the network level allows users to
increnentally expand their system by themselves on theilr site,
and without substantial programming. It means that they can
replicate nodes to obtain very high availability. it further
weans that the overall system configuration can conform to the
uscrs specific application in the most cost effective way he
chooses. Fromn a manufacturer's point of wview, network
nodularity significantly eases system maintenance, allowing the
rcplacenent of entire nodes as well as the ability for one node
to diagnose another.

A second design objective for the Apollo system environment was
to incorporate a high performance coaxial local area netwvork.
Although our systew is desipgned to accommodate any two address
fracket transport mechanism, the specific implementation that
Apollo has chosen involves a ring topology. Rings have numerous

advantages over alternative approaches: They generally allow
higher data banduwidths and 1longer distances, they allow
nigration to mnew technologies such as fiber optics, they are

very interactive allowing very fast network arbitration, and
finally they incorporate a free acknowledgement function with
the circulation of each packet.

A third systen environmnent objective was to maximize network
interactiveness, In this vregard, our design eliminates all
superfluous message buffering between nodes, allowing a message
gencrated frowm one process to be transmitted directly to another
process on a separate machine. Secondly, our network controller
transmits data throupgh +the block multiplexor channel which
allows all high perforuiance DHA devices to have access to the
total mewmory bandwidth of both machines. Consequently, when a
message 1is transmitting from one machine to another, the data
rate 1s at the maximum possible permitted by the two memory
systems.

Prcliminery | January 22, 1901

SCSTEM ENVIRDOMEVT DRI ECTIVES

NEeTWoRE ModuLALITY
-~ Wit PERFORWMAMLCLE RANGE
- Hin AVAnAR\\TY

G NEeTwor
— K sPeed /Long Buyamace

- MULTIVCLE TEHVOVLOULES

MAKIMIZ ¢ NETWORE INTERACTIWENESS

- NO SUuPeRFLuous Ms(BurFeRivg

- MAKximum DmA DATA RATEeS.

1.2 SYSTElL ORGADIZATION:

The system level organization of the Apollo system is based on
Lthe Apollo DOLAIN network. This nectwork allows an extremely
wide range in performance, gprowth and system availability.
lloreover, uscre attached to the system can intercommunicate, can
cececess shared prograns and data files across the network, can
e«ccess common pools of peripherals, and can finally access
remote facilities, dincluding large foreign machines or other
Apollo DOHAII systems. Consequently, the Apollo DOMAIN network
Lot,ether with the per user computing node is intended to provide
an entire computing facility to each user.

Prcliminery January 22, 1981

Eemote

yacty
Access

AVAILABILITY

—s—-———-’.
GROWTH

ComPuTIvg

3‘(STEM ORGANIVEATION

IT.3 TRING NETWORK PROTOCOL

The Apollo DOUAIlN system is designed around a two address packet
transport mnetuork. The specific ‘inplementation of this network
can take various torms, and the system is specifically designed
to be able to migrate from one form to another as the technology
rcequires.

The topolopy of the Apollo netuork is in the form of a circular
ring. Access to this ring is arbitrated through the passing of
a TOKEH which is a specific encoding of bits passed from one
node on the network to another. The system allows one and only
one TOKEN to be on the ring at any given instant, and the
pesusession of this single TOKEN gives a particular node
ciclusive use of the network.

The format of the message on the ring includes the destination
node address, the source node address, header information, data,
a CnhC checl, and ftinally an acknowledgement field. The
acknowledgercent field i3 adjusted by the destination node,
thereby aclknowledging the correct receipt of the packet to the
source node.

The encoding on the ring wuses a conventional bit stuffing
Lcchnique wherecby the occurrence of five consecutive 1's causes
the dinsertion of a 0 on transmission and a corresponding removal
of the 0 upon reception. A special flag character 1is wused to
establish packet synchronization and is encoded as a string of
six consccutive 1's enveloped by two 0 bits, The special
encoding of the TOKEHN deviates from the flag character by only
the cighth bit thereby allowing a node to acquire a TOKEN and
transmit a flag to its neighbor in only a single bit time. This
winimal requirencnt reduces the delay per node around the ring
and thereby maximizes system interactiveness,

Preliminary January 22, 1961

\‘F | Bor | secl vbr | PAvA | cRel ace\clc |\ T

ottino (Fwd)

T = oty (TOKeN)

-1
|

R ProvocovL

IT.h 32 BIT SYSTEU HIERARCHY:

The Apollo cecntral processing wunit 1is built around a VLSI
iicroprocessor with 32 bit earchitecture. The instruction set of
the processor includes both 32 bit data types as well as a 32

bit lincar virtucl address space. The physical parameters of
the systew, wrnost mnotably the width of the data path, can be
vicued in a hiergrchical arrangcmcnt. At the system level

couputer nodes are interconnccted with a 1 bit serial packet
netvork. Certain peripherals attached to an individual computer
node are intcrconnected with 8 bit (1 byte) data paths, whereas,
the mewory systew and high performance peripherals operate on a
16 bit data path. 1Internal CPU registers and arithmetic logic
unit arc all iuwplcmnented with full 32 bit data paths,

Consequently, the €PU is generally 32 bits wide, the memory
system is generzlly 16 bits wide, while the network system is
only a single bit wide. The width of the data path varies
inversely with the physical distance from the internal
processing repisters.

Prcelininery Januvary 22, 19061

32 B\T SYsTewn rherarcuy

\
PACKET BETwoORK — . _ - - 18wy SYSTEM
péﬁ'PHéQﬁ\. I/o ______ PeQ‘PﬂeaAL
MEMORY BUS, W1 peeF T/0 - - BoalO
CPu ReGistees, ALY, - - ciP

WIADTH OF DATA Patw

I1.5 1NODE ORGAHIZATION:

The internal Apollo node organization 1is comprised of several
key parts. First, there is the central processing unit
comprisced of multiple llotorola 68000's. This central processing
unit is connccted to a menory management unit which translates
the 24 bit virtuzl address out of the CPU into a 22 bit physical
address on Lhe physical menory bus. The memory managemcnt unit
i5 actually comprised of two parts: one for the CPU and another
part for the I1/0 system which I'11 describe later. The memory
system is coupriscd of multiple units - each wunit containing a
/40 megabyte., This unit 1is fully protected with error
correction codes and is available in sizes up to 1 megabyte.
The I/0 system of the Apollo node 1is broken down into two

parts. The first part 4is for those peripherals that are
integral to the Apollo system, such as the integral VWinchester
disk and the integral network node controller, These devices

are connected to what we call a block multiplexor channel.
Other peripherals, such as wuser supplied peripherals, line
printcrs, magztapes and so on, are connected to the MULTIBUS
controller,

The use of a block multiplexor channel through which all disk
and network traffic goes represents an essential part of the
Apollo systen. The system was designed to specifically maximize
the node-to-node responsiveness across the network. To do this
we wanted to guarantee that there would be no superfluous
buftering of paclet messages as they left a transmitting process

and entered a vreceiving process on another machine; and,
secondly, we wanted the transfer of this packet to operate at
near memory speeds. To accomplish this responsiveness we allow

the network full (100%) bandwidth access to primary memory,
disallowing all other block transfer devices, such as the
Winchester disk. Conscquently, the disk and the packet network
actually shure a common DIA channel into primary memory so that
both of these devices can transfer at data rates of nearly 100%
menory bandwidth. Occassionally, a disk transfer will overlap a
network transfer requiring that either device make one
additional revolution. But the system level performance
consequences of this interference is negligible.

Finally, the display system is comprised of a separate
autononous 1/8 negabyte bit map mewmory which is organized into a
square array of 1024 bits on each side, The display memory is
constantly refreshed onto an 800 x 1024 bit map CRT. There is a
scparate bit mover which 1s capable of moving rectangles from
one part of the screen onto another. part of the screen at a data
rate of 32 wegabits per second.

Prcliuinary January 22, 1981

Although the display memor
separate physical bus organi

same address space 8o that the CPU can instantaneously

display memory and alter its
mover can move display ar
program niemory. The system i
program menory and the di
display, and the bit mover

parallel and without interfer

Mém

DrisPuAY "1

Mwmy

Yy and the program menory

are in

zations, they actually sharce the

access

contents, Furthermore, the bit
eas (rectangles) 1inte and out of
s designed so the CPU can access
splay memory can refresh to the CRT
can be moving rectangles all in

ence,

|(‘_Pu

BLock
MPX

MULTIyS
COOTROLLEQR

A Powo

NDDE ORGANIZTATION

VETWORK

I¥.6 BIT UAP DISPLAY:

The bit map display
bit =array.

tcwporary

from any

The bit mover
woving entirely

The bit mover
1cuiory to/
the CPU can
exzclusive oring

Preclivinary

is ccmprised of a
rcctangular
trensferred onto the CRT display.
storage for character font tables.
hardvare prinitive uhich

relative to the screen itself,
scerolling and to create character strings from
operates at 32 megabit per second data rate when
the display memory.

cfficiently

1024 bit by
region of BOO by 1024 is physically
The remaining area is used

The bit mover is
is czpable of moving a rectangular
on the screen to any other place on the screen.
This primitive i3 uscd to move
Liemory, to move them

January 22,

such

102h

area

and out of main
to implement
character fonts.

rectangles from display
alligned buffers in program memory where
operations,
tvo or more graphic representations.

19861

as

as

RBIT MOVER WARDwnaRe

DisPLAYED
ALEA
81T maP
memol
1024

8

.//’/'é

—H

= T
\CE]

To/FRom PROGRAM
WEMDRY

— BT ALLGueD /BT Resoruriond RECTARGLES

- DisPLay memody O

PLOGKAWM MEMOR Y
— 32 MBITS /sec

ITI.1 PROCESSING LNVIROHHENT OBJECTIVES:

A principal objective in designing a system processing
environment wvas to abstract common entities, like programs and
data files, into a uniform abstraction which we call an object.
The totallity of objects across a network forms a 96 bit virtual
address spacc wvhich is comprised of two fields: a wunique object

name consisting of 64 bits, and a 32 bit byte address within an NV |QODW\€|\JT
object. A sccoud objective was to provide a demand paged PQOC&SS"\)(‘ 6‘

operating system to implement a network wide virtual menory. A

third objective was to provide an environment for efficient OE)IG,CT‘V(: S

process to process streaming and the control of this streaming
through shell programs. Finally, an efficient compiler, binding
and execution procedure whereby network wide programs can be run
interactively.

32 1T 0BRTEecT ADDResy SPACE
(NETWORK GLORAL)

Demaod PAGED T/o (NeTwoee § Di1sk)
UNIAue OBTecT nAmes (64 BT uzvs)

PRocess — PRoess STReAMIDG
SHeLL PRocRAMMING

EFFLOENT CoMPiLIog [/ BINOING [E€ReCuTION

Prelivinery January 22, 1981

I1I.2 SYSTEHN IAHE SPACES:

e nou turn Lo the operating system design in the Apollo DOHAIN
system. One way of viewing a complex system is to enumerate and
describe the various name spaces that occur in the system. For
cxample: First, therc is the user global namespace, or what the
user would normally type at a terminal to execute a program or

zccess a data file. Second, there 1s the system global
namespace, or Lthe namespace that the operating system uses at a
nctwork level. Third, there is an object address space, Qur

object address space is 32 bits long and contains programs and
files as well as other entities in the operating system which
I1'11 describe later, Fourth, there is a process virtual address
space Lhat rcspresents an address space in which a lotorola
686000 process execcutes. Fifth, there is the physical address
space which represents the amount of physical memory that can be
placed on the system. Sixth, there 1is the network address space
or the maximum number of nodes that can be placed on the
netvork. And, finally, there is the disk address space or the
wazimum of ,bytes or pages that disk can hold.

In the Apollo system the user global namespace 1s syntactically
represcnted as . a stream of characters separated by slashes.
This actually represents a hierarchical tree space which I will
deseribe later. The system global namespace is a 96 bit address
space comprised of a UID which is 6 bits and an offset which |is
32 bits wide. The 64 bit UID is unique in space and time. It
iz unique in space in that it includes an encoding of the
machine's serial number and it is unique in time in the sense
that it includes the time a4t which the name was created. This
;suarantecs that for all time in the future and for all machines
that Apollo builds, no two machines will ever create the same
UID, heuce the term unique ID,

UID's are nawes of objects., Objects are used to hold prograns,

tiles and various other entities in the Apollo system. ™ An
object dis a linear 32 bit address space, byte addressable, and
can be located generally any place on the network. Objects are

the primary focus for the Apollo DO!NAIN system and are cached
into the process address space provided by the llotorola 68000.
This” process address space, while very large, 1is still
considerably sualler than the 32 bit object address space.
Consequently, address regions of -an object are mapped into
regions of a process 1in much the same way that vregions of
physical wemory are frequently mapped into regions of a cached
memory. The process address space is a 24 bit virtual address
vhich is converted to a 22 bit physiecal address by memory
munagewent hardvare. The unit of allocation in the physical
address space is 1024 byte pages. .

Preliminary January 22, 1981

ek GLodal
VAME SbAce

sfsTem GLOBAL
NAME sPACe

A6 BAT AdDRESS,
uwutaue 1IN SPrcey TME

o0BTect AODRESS
SPACE

Plocess ADDRESS
sPnce

PrvsicAL ADDREsS
sPACe

N ETopRK ADDRESS
Pnce

Disv. AdDRESS
sbace

)

/ Jowes/ peoceams [soRT

—C‘G—.

\ uro

- 22

3L

| seement | |

-2 -

1B Y

\

1

£

-lz—"

L Pece |

(r/es_asa’c_J
)

o
non Yocal A

_\b-

I1I.3 SYSTElI RELATIOHNSHIPS:

The execution of a user command on the Apollo DOMAIN system 1is a
very complex process and involves many steps. First of all the
user types- a comnend which is translated by the naming server
into a UID. The UID is a 64 bit address which identifies one
particular object on the network. These objects then are
dynanically mapped by the operating system into a processes
virtual mewnory. Once mapped no data is transferred until the
CPU actually requests it. WWhen a page fault occurs the
operating systew will retrieve the requested page from some disk
structure e2cross the network and transfer it dinto the physical
uceunory - of the local processor, It will then set up the nemory
management unit to translate the virtual address into the
physical address of the requested page and then allow processing
to continue. ’

In this scenario we have four areas which are of interest.
First is the -operating system mapping structure, which maps

object address spaces into process address spaces. Second is
the memory wanagement hardware which translates process virtual
address spaces into physical memory address spaces. Third {is

the paging system wvhich transfers pages of physical memory into
and out of the memory system onto either 1local disk or across

the network to some remote disk. And, fourth, is the disk
structure that physically relates objects onto disk data
blocks. These circular relationships are dynamically and under

systen control mnanaged by the Apollo operating system.

Prclininary Januvary 22, 19081

NAME SERVER

Commavds
FiLEs ~__| —
PePreRALS

ul v

‘x,\\\ nowme

UseR

1
\ 96 817 nboRess
64 ' 3z

PHYSICAL
Dis¥s

OS5 mAPP L
STRUCTURe

PHYSCAL
MemMoe g

Vi€ Tuan
Mmemo R

III.4 SYSTEI: VIRTUAL ADDRESS SPACE:

The network (lobal object spaces are mapped selectively into a
process virtual address space of a particular node. Once the - .
napping occuras no data is transferred wuntil the processor STS‘E’N\ \]\QTUHL HDDQ&SS SPHCC
cctually requests it. Consequently the mapping of a large
addrees space frow an object into a large region of a process 1is

a reclatively inexpensive procedure. The objects, of course, are
nctuork tide; whereas, the processes are all in a particular
rode running on behalf of a particular user, The process

address spacc is subdivided into an area which is global to all
processes and then further divided into an area which is per
process supervisor and per process user, This address space
mwapping rcpresents the only primitive in which processes can
relate Lo objects. For the most part the operating system and
all higher 1level views of the system relate to objects rather
than processes, and consequently a great deal of network
trancsparency 1is attained.

Yy

GuLoBAL Address _— W1

t?’\p:;:f”
:‘. 7«_—’_——_‘%;@-@@:
PER 7 ‘
PRoOCesS S
supeevisoe|) N
Pe
PROCESS B —
wneel D
$9 i

ob——+ 7%

SINGLE NoDE NETWoRYK
PRocegs GLORAL
VIRTUAL ADDRESS 006TecT $PACE
sPACe

Prcliuvinary January 22, 1981

I7I.5 HEHORY HAHNAGEHLENT UNIT:

The wmcuory management wunit 1is a pilece of hardware which
translates the 28 bit virtual address spaces out of the lotorola
66000 CPU onto the 22 bit physical address in the Apollo node.

The 1HU works on 1024 byte physical page sizes and has separate
protection and statisties information for each page. There
cxists a scparate entry in a page frame table for each

individual page so that when the hardware faults out of the page
frame table (i.c. cannot find an appropriate requested page), an
interrupt ig taken to move the requested page in from secondary
storage. The HHU is actually a two level hierarchy, the page
frame table being at the highest level, A lower level cache,
called the page translation table contains the most recently
uscd pages and acts as a speed up mechanism to search the page
framc table.,

The translation of a virtual address into a physical address
proceceds roughly as follous, The 24 bit virtual address 1is
broken doun into three fields: First, a high order virtual page
number, Second, a page number. And, third, a byte offset
within the page. The 10 bit page number is used as an index
into the page translation table. The page translation table
contains a 12 bit pointer which points directly to the physical
rcquested page. Concurrent to the memory system beginning a
mcmory request, this 12 bit pointer is also used to index into
the page frame table from which the high order virtual page

nunbers are checked. If the check is okay, the protection is
allowved, and the process ID agrees, the menory reference
procceds uninterrupted. If, however, there is no apgreement on
any of these accounts, the memory request is suspended and a
search is mwmade in the page frame table for all entries
correspouding to this particular value of page number. All

possible values for this page number are linked together in a
circular 1ist and the harduare automatically searches for the
requested page number until: (1) It finds it and continues; or
(2) does not find it and causes a CPU interrupt. If the
requesting page 1s found in the page frame table, the location
wvithin the page framc table is updated to the page translation
table so that subsequent references can proceed without
rescarching the page frame table.,

Preliminary January 22, 1981

CY\ecK

b3 1) 113 (12

PyY seal .
MEMOR T —- — -
S————

7N\
PMG:s 1\\\ \ R
TRALSLATIO
TABLE w\\ N
a1l ‘9o § 10} P"’
ViRrvuar
MemoRY

MEMOR Y MARAGEMENT u 1T

I1I.6 TROTECTIOH/STATISTICS:

At each access to a page a set of rights (execute, read, write)
are checked as a function of a particular level that the process
is running at. The protection hardware specifies the particular
rights at this level and all higher levels, The levels are two
supervisor levels and two user levels,

The mcuory menagencent hardware automatically records and
naintains certain statistics about the page access. In
particular a bit is set every time a page 18 accessed and a
sccond bit 1is set when that page is modified. The operating
kernel scans these bits periodically to maintain knowledge of
the statistical wusage of the pages ftor the purpose of page
replacenent,

Prelivinary Januvary 22, 1981

PRovections Huepwaee (Pel Pase)

Levelr RAGMTS AT THIS LEVEL ANG HIGER
00 user domam 0 X X x
oL user domain L \——\éxecuTé
10 spvr dowain O Read Access

11 spvr domaim 1 WRATE ACESS

SYATISTICS (PeR PAGE)

X — AccesseD
X - MOIDIFLeED

(nsed B PAGE RePLacemenT o)

IYI.7 I/0 UAPPING:

Peripherals on the MULTIBUS are mapped into the 22 bit Apollo
physical address bus by means of an I/0 map. The I/0 map
consists of 256 page entries, each entry pointing to a
particular Apollo page. A peripheral on the MHNULTIBUS can
Generste a 16 bit word or byte address and have the high order
bits indexed 1into the page map and the low order bits indexed
relative to the page. In this way MULTIBUS peripherals can
directly address themselves into the virtual memory of a
process.

Prelininary January 22, 1981

MULTIBUS ADORESS

wieeo 1o Rit wWoRD /BTE

PeR Device

Y .

L]
BTe Deviee
A‘ a1 WORD DENINCE
qQ 317 WoRO W
i A]

€ R\ PAaGe b ‘

I/0 MAP

{z 8y PAGE

256 PAGe eordies

[1 19

20 BT APoLD PuysicAL ADDRESS

MULTI Bus T/o MﬁPPmﬁ

111.8

To iuwplcuent
tables are

objects arec mapped into process
tapped
for that virtual address,
table (AST).
the actual location of the pages,

into the
senment

local disk

that are logically mapped into a

swepped in
demand basis.

'relininary

OPERATING

SYSTEN KERNEL:
the netvork wide virtual memory system,
maintained within the operating system kernel. As

address spaces,
table (HST).
the operating system scans

segment

a remote network node.
process

or on
are being

and out of memory

Januery

several

entries are
WYhen a CPU fault occurs
the
This table contains a cache of pointers to
be they in physical memory, on
In this way, objects
constantly
across the network solely on a

nn
<

2, 1981

nade

active

Puvsient
MeMmpR Y

SELMELT
TABLE

OS_ Dam Base

0Ss
wmnA P
PRamImve

wh: Fa 41

VA _J/ér,b

MAPDPER
SEGMENT
TAbLe

I11.9 DISK STRUCTURE:

Objects are mapped onto physical disks using a rather dynamic
storapre allocation. First of all a disk structure contains a
physical volume label which is'a list of pointers which point to
multiple logical volume 1labels. The division of a physical
volume into multiple 1logical volumes is a means whereby fixed
puartitions can be created which do not compete for common
storage. In other words, one can create a logical volume and
uarantee it hzs a certain minimum amount of allocation.

Lach logical volume label contains a volume table of contents
map. The volume table of contents is a 1list of all of the
object UID's in that volume and for each object a set of object
cttributes. The object attributes consist of the object type,
access control information, accounting information (last date
accessed, last date mwmodified), and a map to all of the various
data blocks which comprise the object. The map is comprised of

3% pointers. The first 32 pointers point directly to data
blocks cach of which consists of a single page. The 33rd
pointer points to a block of second level pointers (256 of them)

wliich in turn point to actual data blocks. The 34th pointer
cixpands into three 1levels of storage and the 35th pointer
¢ripands into four levels of storage. Consequently, for small
objects data access 1is very efficient; and for large objects
storage allocation is very efficient.

ilach block contains not only 1024 bytes of data, but also the
uilp and object page number that this page represents.
Consequently if a failure should occur, the entire mapping
structure can be recreated by a single pass over all of the data
parges.

I'relininary January 22, 1961

\

T

ﬁ\‘(swm Joruwr ¢
LAQel

Disk STRUCTURE
R 2

HOR-

uip

opT Pt ¢

DATA

ory BYits

\

-

LOG\CAL VoLum
abe

VToc w™MAP

V10cC

_oBTeer TTPE
-AceEss ConTRO-
< ACCOUD TG

- MAP

uTh
(hashy)

I11.10 I/0 HIKRARCHY:

There are four levels of abstraction in the I/0 system of the
Lpollo DONAIN. The highest level is the language level which 1is
supported by the standard language compilers, such as Fortran
rcad and write. The implementation of this language level is
done by what we call the stream level, The stream level has the
characteristic of being object type independent and can
cecordingly talk to files, peripheral devices, or to other
processes. The implementation of the stream level is
csccomplished through the map primitives which were described
carlicr. The map primitives have the characteristic of being
object location independent thereby allowing streams to go
cross the nectwork. The mapped primitive associates object to

process addressing only. lo data is transferred until the
reference is mnade. All data transfer in the wentire system
occurs at the page level. The page level is the physical I/0 to
Jocal and remote dislkkts across the netwvork. This data is
transferred on dewand, resulting exclusively from a CPU page
fzult,

Preliwincry January 22, 1¢01

1/0 theraRcwY

wdustvy compatible,

' ndent
LANGUAGE T/0 Sstem ‘54494 e

object type independent,

STReAam L/0 fvocess—procebss,(‘\\e,Jevicz,e\‘c.

object localion (network w'ulc)
independent . agyociates ovjeck-
process addvessing only, no Aaf’c\
tvans jerted unti) veference is made,

MAPPEd L/0

Fhysical T/o 1o local and vemote
dvsks across wetwork, data

YTvansferred o dewand ™ , vesulhnq
feom CPW paqe fault.

PAGE T./0

ITII. 11 STREAL I/0:

The stream I/0 level deals with the interconnection of objects,
including process to file operations, and process to process
operctions. It has the principal characteristic of being object
type independent. And since it 1is implemented through the
mapped I/0 level, objects can be conceptually interconnected by
strecams both within the same node and across the network.

lhen s3treams are wused to interconnect processes, the output of
one process is connected to the input of another process. This
multiple proccess application can acquire the form of a stream
filter whercby every process forms some transformation on its
input and then passes the output to another process. When
applications are encoded 1in this manner, programmners are
encouraged to wurite processes as simple, modular programs that
pcrform sore primitive function.. Frequently, these functions
can be reused across many applications.

Prcelininery Januwiry 22, 19&1

Fiteg
A
/
7

Id
Ve _ 5 Devices

outTpPuT

-~ \\)
STREAmM PRocess

STREAM FITER ¢

PROCESS NeTwORE §

<strReAam T/0

111.12 SOFTUALRE TOOLS:

A larpge collection of program modules designed to perform some
primitive function have evolved over yecars of wuse by a large
collection of users. These modules are referred to as Software
Tools aud are widely distributed throughout the wuser cowmmunity.
“oftuare Tools follows the mwmethodology 1laid out in the book
cutitled "Software Tools" by Kernigan and Plauger, published by
Addison Vesley.

Applications can be casily formed by interconnecting streams of
data through ¢ collection of Software Tools. The collection of
standard Softuare Tools 1is derived from a library of programs -
& "toolbox" of Software Tools. In this way complex applications
can frequently be formed with 1little or no programming. The
tiimce required to develop a ncw application 1is significantly
reduccd. Furthermore, users are encouraged to write prograns
that are swall, conceptually simple, and wusable for many
applications and by many users.
-

Prclininary January 22, 1931

SOFTWARE

TOO\LS

APPLICATION !

I1I.13 SHELL PHOGRALNS:

L shell progrem is a higher 1level flow of control abovc the
conventional program level (e.g. Fortran or Pascal). Shell
programs are wvritten in a shell programming language that has a
rich set of constructs that are, in many respects, similar to a

conventional language. However, an executable statement within
a2 shell program frequently involves the complete execution of
one or mnorce conventional programs. In this regard, a shell

program can be thought of as a sophisticated command processor
tvhich coordinates the execution of multiple program steps.

The ability of wuscrs to program applications .in a shell
progranning language relieves a great deal of cowplexity that
vould othervise be required within a Fortran or Pascal progranm.
Consequently, programs written in these languages tend to be
simpler and have fewer input options.

The econcept of shell programming goes hand-in-hand with the
concept of Software Tools. Here, the shell programs represent
the interconnect of streams between various programs, and can be
cxtended to richly interconnect small programs in order to form
couplex applications.

Prelimincry Janucry 22, 10061

pnere PROGRAMS

CONIVEVTIOAL

' MAND LevEL

OP 5vs

erxecute pvegi
evecute progt

IF condition
THeN
erecute pvoy 3

Wwoke ghal proceduve

\

ELse
execute fprog 4

ie,tt.

I1I.1h COUPILATION/BIUDING/EXECUTION:

‘e now shift to the higher level organization of objects in the
system as they reclate to user programs, compilers, linkers and
loaders.

The compiler translates a source program object into a compiled
object. The coupiled object has a format which is suitable for
direct cxecution if there are no unresolved references (i.e., no
other subroutines which necd to be bound together). If the
application contained several source program objects, these
coripiled objects must be bound together prior to execution, a
process accomplished by the BINDER. The process of 1loading and
executing a ‘compiled oﬁject consists of: (1) Happing the pure
position indepcudent code into a region of a process address
space. (2) Crecating an impure data object and mapping that data
object into an inpure section of the process address space. (3)
Dynamically 1linking operating system references to the operating
system during execution.

There are two important points in this procedure: (1) The
output of a compiler can be directly executed iF there are no
cxternal rcferences to be resolved. (2) A compiled object, once
formed, is ncver referenced again wuntil it is in execution.
This represents a very efficient compile and run time design.

reliminary Januery 22, 1001

Soulce
PRrouAM
OB/TECTS

——

Cont, o0

0

v 0P s¥s

; —

STACK
\ —pute Pic |
cobt
|- cobt .
e
1/0 DATA

oBJects

Proces s
ADDRES S
Pace

II1.15 COHNPILED OBRJECT:

The compiled object format is comprised of two parts: The first
wajor part 1is position independent code and pure data which is
dircectly wmapped and executed into a process address space. The
second part is a database used by the loader to create an impure
temporary data object which 1s subsequently mapped into the
impure part of a process address space.

Prelininary January 22, 1901

CQMP\ Lebd
OBJECY
FORWMAT

Heno e

PosiTion
AN 0PI EDT
coo e
£

Puke
DAYA

AP 0s
MOOuLE ORECTORY 8

SELTION TAGLE EKECMTE
GL0GAL DICTIoNARY

IITAUEED (MP. DATH -
HisyoRY IVFO
SYMABoL TAPBLES

PROCESS

ADDRESS
sPAace

\%

IMPuRe
TempoRARyY
DATA
o8Jyecy

Iv.1 USER ENVIHONIDNT OBJECTIVES:

A key objective in designing the Apollo user environment is to
combine simplicity and wuniformity with a high degree of
functionality.

A1l objccts that the system 1is capable of referencing can be

crxpressed in a uniform name space that transcends the entire

netwvork. Further, a bit map display, as opposed to a character u SEQ 6’\)V‘QON MGUT DBJ&CT‘V(‘:S
display, is used to represent text and graphics output. The
output froi mwnultiple programs can be concurrently displayed
through mnmultiple windows, thereby providing a degrec of
tunctionality unavailable on conventional systems.

UMWFORM DAME SPACE
Bir maP DisPrax (Texr, GRaPwwce)

CONvCUuRRENT PROCESSING PeR WSER

Preliminary Januzry 22, 1901

IV.2 USER NALE SPACE:

The namcspace seen by a user is organized as a hierarchical tree
structure. The highest node of the network in the tree
represents the most global portions of the network. \UWhereas,
Lhe leaves at the bottom of the tree represent particular
objects, such as programs, files and devices. Intermediate
nodes are uscd to represent collection of objects that have some

common association. For example, an entire node on the network
nay be represented by an entire subtree in the tree hierarchy.
The overall namespace hierarchy 1s intended to represent a

logical organization of the network. All leaves, or the lowest
level of the tree, represents objects and the user has a variety
of asyntactical forms in which to express the 1location of an
object. First of all there is the network wide syntax which is
comprised of two leading slashes followed by a full path name to
reach the object. Second, there 1is the local root relative
syntax which can be used to express objects that are local to a
particular vuscrs node. Syntactically this is expressed by one
leading slash followed by a relative path name. For
convenience, the user may attach himself or his working
directory to &any point 1in the tree name hierarchy; and,
consequently, he may express a path name which is relative to
bis working directory. He does this by expressing the relative
path name without a leading slash. Each node in the network is
represented as a directory object and contains a 1list of
associations. For each name at a lower level there is contained
within the directory a UID or a path name. If it 1is a UID it
points to the next lower 1level directory or to the object
itself. If it is a path name, the path name 1is syntactically
substituted into the name being searched and the search
continues. This latter path name 1is wused for 1linking names
across the nctuork.

.Prelininary January 22, 1901

NAM e sPACe

NEeTwORK

NodE

ANWAN

DeviCe

SYNTA X
// A/B/C.. NeTwork wioe

LDCHL RooT REWAT \Wé

/ A /e/C...
A/B/C... WORKING DIRECTVRY

A

ReLaTive

DiRectoRy OBIECT

t
O;V\’fi to ner
oY
. $or oo
name | weod ‘j:;:f;,t Tu3es

IV.3 CONCURRELT USER EHVIROUNENT

The mnotion of concurrency is a nev concept on the Apollo DOHALN
system unavailable on conventional timesharing systeus. On
thece latter systems users are generally required to execute one
function at a tiwme. VYhen a user switches from one function to
another, enerally the context of the previous function is lost
and has to be subsequently recreated. The Apollo integral bit
wap display provides the user with the capability of displaying
nultiple windows simultanceously. FEach window can contain the
output of related or unrelated applications. For example, one
vindow can contain the sequential output of a program wvhile a
second window gpraphically displays the accumulated output of the
vane prograt. Similarly, program development, compilation,
cditing and an on-line help system can all be concurrently
displayed.

Consequcntly, the Apollo system 1is designed to accomnodate a

total wuser environuent, which we believe always involves a
number of concurrcnt functions.

Preliwminary January 22, 1281

SEQAUENTIAL

OuTPUYT ""bj — ComPrLaTiON

——ED\TTING

ACCUMULATED
ouTPUT ——P

F4+—____ON-LINE HELP

DomAnd
NETWORY

T PROGRAM EXELUTION

— \e\.ecﬁ&omc MAIL
I‘b\\\\-__()cx:““AehatfYT\OﬁJ

4\,@.\4& R\GS

CONCURRENT WUSER ENVIRONMENT,

IVv.h SCREEN HAHAGER

The sereen mnanager represents the outer most layer of logic
within the hpollo system ~-- that which controls the relationship
cnong the wmany windous projected onto the CRT screben.
hccordingly, the Apollo system adds two additional layers above
the conventional prograwmming level. As mentioned earlier, a

prorranmable shcll coordinates the activity of many programs (in
both parallel and sequential relationships). The output of this
shell is written into a virtual terminal, called a PAD.
Portions of this PAD are displayed through a rectangular window
vhich is then projccted onto the CRT display.

The schkcen nenager permits multiple windows to be displayed
concurrently, each of which can be executing an independent
shell or connend environrent. The philosophy of the screen
nanager is to allow programs to output data in a logical format,
uhile alloving the wuser to independently control what is
physically displayed.

The screen manager is controlled by the use of function keys on
the user keyboard. Pushing a function key causes the execution
(interpretation) of a user programmable sequence of screen
manager primitives. Consequently, the user can define function
keys to perform conplex screen manager functions.

34l

Prelivinary Januwry 22, 100

SCREEN MAMAGER

.

SCREEN MANAGER

1V.5 USER EHVIRONLENT:

The Apollo DONALN operating system creates a degrec of
independence belween application programs and what is actually
viecwed on the terminal screen, In particular, application
programs crcate virtual terminals which we call pads, The pads
are indepcendently windowed onto the CRT screen totally under
countrol of the user. VWindow images are superimposed on the pads
and can be moved relative to the pad in either a horizontal or a
vertical direction. Window images from various pads are stacked
logically on top of the screen so that only the one on top is
displayed. Conscquently the wuser environment i3 actually a
three dimensional volume: 800 bits going across, 1024 bits going
doun and many levels of windows deep, The wuser can also move
vindow areas up or down relative to the physical screcn and
finally can move wvindow areas 1into and out of the gscreen
relative to other window areas.

Prograus create the pad by writing command and data sequences

through a stream, The window image created by the screen
wanager frowm the pad can be placed anywhere in the CRT and can
be overlayed by other window images. Window 1images contain
lines and frames. A line is a single 1line sequence of
characters 2nd has only one dimension. A frame has two
dimensions and has a rectangular format. It contains characters
and/or graphic data. Finally, frames may also contain wuser
crcated bit maps. These bit maps may reside either within the
pad or within a separate user supplied object. Pad information

norually accunulates over the life—of a process. This allows a
user to scroll cither in reverse or in forward directions over
the entire 1life of the process. Hovever, for efficiency sake
certain commands may be emitted from the program to delete all
or part of the pad as appropriate.

Prelininery) January 22, 1981

PADS

(vaeTum TeRMALS)

[/

APPLICATION
PloLRAMS

Processes
RS i
A ,/‘
s A
- //
v
v’ 4 -
N\ /JL /”F——*~
-~ s
-, 7 Pd
4 A
/{ 7
ld
Y/ SCReen
S N
WIDBOW s

V.1 SUHNARY OF KEY POINTS
An Apollo computer systewm 1is comprised of a number of
network. ach of these nodes contains a large

architecture which implements a demand paged netuork
virtual mewmory systemr, allowing a large number of processes

Lhe machine's 32 bit orientation.

An object oriented network operating system coordinates
uscr's access to netvork wide facilities.

represcnting programs and data files, ete., are 1independent

their network location, and given appropriate access rights,
be accessed uniforuly by anyone on the system.

The user's display terminal is capable of displaying multi-font
text, graphies and can be divided into multiple windows each

displaying independent program output.

The Apollo syastem 1is designed around high technology.
incorporates VLSI CPU chips, large capacity Winchester disk,
cdvanced counnmunication technologies.

Prclinminary January 22,

the
Objects thenselves,
of
can

It
and

high
performance dcdicated computers interconnected over a local area
machine
wide
for
cach uscr, ecach process having a very large linear virtual
address space. Languages that run on the Apollo system include
Fortran 77 and Pascal and are implemented to take advantage of

SUMMAR ¥

OF ¥Kevw PomoTte

Hian PeReoRr M e
OF De0cATeED COMPUTERS

LocAL NeEeTworx

LARLE WmAlH)ve ARCH I \TECTURE

LARGE WMACRINE LADGUAGES [CompPiLeR s

OBTecr ORIEMTED NETWORK OPERATING ST STEmA

ADUANCED ULER INTERFACE COMBIvING
TEXT, GRAPHICS, conCueeent PROCESSING

ABVANILED VLST | WINCHESTER | cOMMUNL A Trons
T ECHVOLOU K

