
Using Your BSD
Environment
011 020-A 00

apollo

Using Your BSD
Environment

Apollo Computer Inc.
330 Billerica Road

Chelmsford. MA 01824

Order No. 01l020-AOO

Confidential and Proprietary. Copyright © 1988 Apollo Computer, Inc.,
Chelmsford, Massachusetts. Unpublished -- rights reserved under the
Copyright Laws of the United States. All Rights Reserved.

First Printing: July, 1988

This document was produced using the Interleaf Technical Publishing Software (TPS)
and the InterCAP Illustrator I Technical illustrating System. a product of InterCAP
Graphics Systems Corporation. Interleaf and TPS are trademarks of Interleaf. Inc.

Copyright 1979. 1980. 1983. 1986 Regents of the University of California and 1979.
AT&T Bell Laboratories. Incorporated.

UNIX Is a registered trademark of AT&T In the USA and other countries.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

ETHERNET Is a registered trademark of Xerox Corporation.

Personal Computer AT and Personal Computer XT are registered trademarks of Inter­
national Business Machines Corporation.

3DGMR. Aegis, D3M, DGR, Domain/Access. Domain/Ada. Domain/Bridge. 00-
maln/C, Domaln/ComController, Domaln/CommonLISP. Domain/CORE. Domain/De­
bug, Domaln/DFL. Domain/Dialogue. Domain/DOC, DomalnllX, Domaln/Laser-26.
Domain/LISP, Domaln/PAK, Domaln/PCC, Domaln/PCI, Domaln/SNA, Domain X.25,
DPSS, DPSS/Mall, OSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel,
Network Computing System, Network LIcense Server, Open Dialogue. Open Network
Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super Workstation,
Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trade­
marks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes In specifications and other
Information contained In this publication without prior notice. and the reader should In
all cases consult Apollo Computer Inc. to determine whether any such changes have
been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER
INC. HARDWARE PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC.
SOFTWARE PROGRAMS CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REP­
RESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICA­
TION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING
BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATING TO THIS
PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COM­
PUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POS­
SIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL
INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR
ITS LICENSORS.

Preface

Using Your BSD Environment details the BSD environment, one of
the operating environments supported by the Domain@/OS operat­
ing system. This manual is for users who are acquainted with both
UNIX· software and Apollo@ networks. If you're not familiar with
the UNIX system, these tutorial references may be helpful:

• Bourne, Stephen W. The UNIX System. Reading: Ad­
dison-Wesley, 1982.

• Kernighan, Brian W. and Rob Pike. The UNIX Program­
ming Environment, Englewood Cliffs, N.J.: Prentice-Hall,
1984.

• Thomas, Rebecca and Jean Yates. A User's Guide to the
UNIX System. Berkeley: Osborne/McGraw-Hill, 1982.

By now, you also should have read Getting Started with Domain/OS
(002348), the beginner's guide to using BSD software on an Apollo
node. Thus, you know how to use the keyboard and display, read
and edit text, create and execute programs, and request system
services using interactive commands. You'll need a working knowl­
edge of these tasks to fully understand the concepts presented in
this more advanced user's guide.

* UNIX is a registered trademark of AT&T in the U.S.A. and
other countries.

Preface iii

The manual is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

iv Preface

Introduces the Domain/OS operating
system, describing how objects are or­
ganized in the system naming tree, and
how to identify these objects.

Describes the features of the BSD envi­
ronment under Domain/OS.

Discusses how the system functions at
Startup and login. Describes how to cre­
ate, modify, and organize the various
scripts that set up your node's particular
operating environment. Also tells how
to change your password, log-in shell,
user information, and home directory.

Explains the function of the Display
Manager (DM), the default window
management tool. Also describes how
to use DM commands, and how to de­
fine keys to perform DM functions.

Describes how to use the DM, the de­
fault window manager, to control your
node's display.

Describes how to use the DM to control
the characteristics of edit pads and to
edit text.

Briefly introduces the shells available in
the BSD environment.

Explains how to use the C shell.

Describes how to use the Bourne shell.

Explains how to use the Korn shell.

Describes file management, including
procedures for creating, renaming,
copying, comparing, removing, display­
ing, and printing files.

Chapter 12

Chapter 13

Chapter 14

Related Manuals

Describes directory management, in­
cluding procedures for creating, renam­
ing, copying, comparing, removing, and
displaying directories.

Describes link management, including
procedures for creating, displaying, re­
defining, renaming, copying, and re­
moving links.

Explains how to control access to files
and directories on the system by using
both standard UNIX file protection
mechanisms and Domain/OS Access
Control Lists (ACLs).

The following file lists current titles and revisions for all available
manuals:

/install/doc/apoll%s. v.latest software release number_manuals

At SR10.0, e.g., refer to /install/doc/apoll%s.v.l0.0_manuals
to ensure that you are using the correct version of manuals. You
may also want to use this file to ensure that you have ordered all of
the manuals that you need. The Domain Documentation Quick Ref­
erence (002685) and the Domain Documentation Master Index
(011242) provide a complete list of related documents. For more
information on using the BSD environment, refer to the following
documents:

If you are a new user, read Getting Started With Domain/OS
(002348). This tutorial manual explains how to log in and out,
manage windows and pads, and execute simple commands. It gives
user-oriented examples and includes a glossary of important terms.

The Domain Display Manager Command Reference (011418) con­
tains information about the use of the default Display Management
software. This manual is arranged for quick and easy access, and
provides examples where necessary.

Preface v

The BSD Command Reference (005800) describes all the UNIX
shell commands supported in the BSD environment. This manual
documents various general purpose, communications, and graphics
commands and application programs. It also describes games avail­
able to the BSD user.

The BSD Programmer's Reference (005801) describes all UNIX
system calls; C, standard 110, mathematical, internet network, and
compatibility library subroutines; special files; file formats and con­
ventions; and language conventions supported in the BSD environ­
ment.

Domain/OS Programming Environment Reference (011010) de­
scribes the support tools and utilities available to BSD users. You
may also need to consult the Domain Distributed Debugging Envi­
ronment Reference (011024) if you plan to use Domain/OS debug­
ging tools for your programming tasks.

UNIX Text Processing (011018) contains material on the text edi­
tors supported by the BSD environment. It also describes the avail­
able BSD text formatters, standard macro packages, and supported
preprocessors.

Managing BSD System Software (010853) describes the tasks nec­
essary to configure and maintain BSD system software services such
as TCP/IP, line printer spoolers, and UNIX communications proc­
essing. Also explains how to maintain file system security, create
user accounts, and manage servers and daemons. You may also
wish to consult Planning Domain Networks and Internets (009916)
and Managing Domain/OS and Domain Routing (005694) to learn
more about creating and managing networks.

The DOMAIN C Language Reference (002093) describes C pro­
gram development on Domain/OS. It lists the features of C, de­
scribes the C library, and gives information about compiling, bind­
ing, and executing C programs.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. To
make it easy for you to communicate with us, we provide the
Apollo Product Reporting (APR) system for comments related to

vi Preface

hardware, software, and documentation. By using this formal
channel, you make it easy for us to respond to your comments.

See the mkapr (make apollo product report) command description
in the BSD Command Reference for information about how to sub­
mit an APR. (You may also view the description online by following
the procedure described in the next section of this preface.) Alter­
natively, you may use the Reader's Response Form at the back of
this manual to submit comments about the manual.

Getting Help

For information about available UNIX commands, system calls,
and functions, press <HELP>. Then, at the prompt, type the name
of the relevant command, system call, or function as follows:

Help on: name

This invokes the man (manual information) command, which lets
you select and display on-line versions of reference material from
the BSD Command Reference, the BSD Programmer's Reference,
and Managing BSD System Software. A read window containing a
formatted version of the manual page(s) on the specified name is
opened and remains open until you close it by pressing <EXIT>.
While the manual page is displayed, you may continue to execute
shell commands (including other man commands).

NOTE: The man command uses the symbolic
links in effect for the SYSTYPE of the
shell in which it is executed. See Chapter
2 for more on the SYSTYPE environ­
ment variable.

Documentation Conventions

Unless otherwise noted, this manual uses these symbolic conven-
tions:

Preface vii

literal values

user-supplied values

example user input

output

{ }

< >

CTRLI

-------88-------

viii Preface

Bold words or characters in formats and
command descriptions represent com­
mands or keywords that you must use
literally. Pathnames are also in bold.
Bold words in text indicate the first use
of a new term.

Italic words or characters in formats
and command descriptions represent
values that you must supply.

In examples, information that the user
enters appears in. color.

Information that the system displays ap­
pears in this typeface.

Square brackets enclose optional items
in formats and command descriptions.

Braces enclose a list from which you
must choose an item in formats and
command descriptions.

Angle brackets enclose the name of a
key on the keyboard.

The notation CTRLI followed by the
name of a key indicates a control char­
acter sequence. Hold down <CTRL>
while you press the indicated key.

Horizontal ellipsis points indicate that
you can repeat the preceding item one
or more times.

Vertical ellipsis points mean that irrele­
vant parts of a figure or examples have
been omitted.

This symbol indicates the end of a
chapter.

Contents

:hapter 1 Introducing Domain/OS

Overview. .. 1-2
The Naming Tree 1-4
Using Pathnames 1-6

The Working Directory. .. 1-9
The Horne Directory .. 1-10
The Parent Directory 1-12
Pathname Summary 1-13

:hapter 2 Using Domain/OS Features in
the BSD Environment

Domain/OS Architecture .. 2-1
The User Interface 2-2
Software Extensions in /usr/apollo .. 2-2
The Display and the Display Manager 2-3
Keyboard Mapping. .. 2-3
UNIX Key Definitions .. 2-4
Environment Variables 2-6

Contents ix

Name Space Support , 2-9
Environment Switching 2-10
Password and User Identification 2-12
File Protection, Permissions, and Ownership 2-12

Chapter 3 Understanding Startup and Login

Understanding the System at Startup 3-2
Disked Node Startup 3-2
Diskless Node Startup 3-8

Understanding the System at Login 3-14
Logging In .. 3-20

Logging In to a Default Account 3-20
Changing Your Password. .. 3-20
Changing Your Home Directory 3-21
Changing Your Default Log-In Shell 3-21
Changing Your User Information 3-22
Logging In to a Domain/OS Server Processor (DSP) ... 3-22
Logging In Over a Dialup Line 3-22

Chapter 4 Using The Display Manager

Using DM Commands " 4-1
DM Command Conventions 4-3
Using DM Special Characters 4-4
Defining Points and Regions 4-5
Specifying Points on the Display 4-5

Using Keys to Perform DM Functions 4-9
Keyboard Types and Key Definitions 4-10
Key Naming Conventions 4-13
Defining Keys.................................. 4-15
Deleting Key Definitions 4-18
Disp.laying Key Definitions 4-19
Controlling Keys from Within a Program. 4-19

Using DM Command Scripts 4-20

x Contents

Chapter 5 Controlling the Display

Controlling Cursor Movement .. 5 - 2
Creating Processes 5-4

Creating a Process with Pads and Windows 5-5
Creating a Process without Pads and Windows 5-7
Creating a Daemon (Server Process) 5-8

Controlling a Process. .. 5-8
Interrupting and Stopping a Process 5-9
Suspending and Resuming a Process 5-10

Creating Pads and Windows 5-10
DM Rules for Defining Window Boundaries 5-11
Creating an Edit Pad and Window 5-13
Creating a Read-Only Pad and Window 5-14
Copying a Pad and Window 5-15

Closing Pads and Windows 5-16
Managing Windows 5-17

Changing Window Size " 5-18
Moving a Window. .. 5-20
Pushing and Popping Windows. 5-21
Changing Process Window Modes 5-22
Defining Default Window Positions 5-25
Responding to DM Alarms 5-26

Moving Pads Under Windows 5-26
Moving to the Top or Bottom of a Pad 5-27
Scrolling a Pad Vertically 5-28
Scrolling a Pad Horizontally. .. 5-29
Saving a Transcript Pad in a File. 5-30

Using Window Groups and Window Icons 5-30
Creating and Adding to Window Groups. 5-31
Removing Entries from Window Groups 5-32
Making Windows Invisible 5-33
Using Icons 5-33
Setting Icon Default Position and Offset 5-35
Displaying the Members of a Window Group 5-36

Contents xi

Chapter 6 Editing a Pad

Setting Edit Pad Modes .. 6-2
Setting Read/Write Mode 6-3
Setting Insert/Overstrike Mode. .. 6-3

Inserting Characters " 6-4
Inserting a Text String 6-5
Inserting a Newline Character 6-5
Inserting a New Line. .. 6-5
Inserting an End-of-File Mark 6-6

Deleting Text 6-6
Deleting Characters .. 6-7
Deleting Words 6-7
Deleting Lines 6-8

Defining a Range of Text 6-8
Copying, Cutting, and Pasting Text 6-10

U sing Paste Buffers .. 6-10
Copying Text .. 6-11
Copying a Display Image 6-13
Cutting Text 6-13
Pasting Text 6-14

Using Regular Expressions. .. 6-15
ASCII Characters 6-16
Beginning of Line (%) 6-16
End of Line ($) 6-16
Single Character Wildcard (1) 6-17
Expression Wildcard (*) .. 6-17
Strings and Character Classes .. 6-17
Escape (@) 6-19
Text Pattern Matching with {expr} 6-19

Searching for Text. .. 6-20
Repeating a Search Operation 6-22
Canceling a Search Operation 6-23
Setting Case Comparison 6-23

Substituting Text 6-23
Substituting All Occurrences of a String 6-25
Substituting the First Occurrence of a String. 6-25

xii Contents

Changing the Case of Letters 6-26
Undoing Previous Commands 6-26
Updating an Edit File 6-27

Chapter 7 Introduction to Shell Usage

Opening a Default UNIX Shell. .. 7-1
Opening Additional UNIX Shells 7-2

Shell Start-Up Files 7-3
Using a Terminal .. 7-4
Search Path .. 7-6
Shell Program Execution 7-6
Wildcards .. 7-7

Chapter 8 Using the C Shell

Starting the Shell 8-2
The Basic Notion of Commands 8-2

Flag Arguments 8-3
Output to Files 8-4
Input From Files Using Pipelines. 8-5

Metacharacters in The C Shell .. 8-6
Filenames .. 8-7
Quotation ... 8-11
Terminating Commands 8-12
Starting, Exiting, and Modifying the C Shell 8-13

Opening a C Shell When You Log In , 8-13
Log-In and Log-Out Scripts 8-14
Shell Variables 8-16
History 8-17
Aliases .. 8-20
More Redirection Using » and >& 8-21
Background, Foreground, and Suspended Jobs 8-22
Working Directories 8-28
Useful Built-In Commands 8-31

Contents xiii

Shell Control Structures and Shell Scripts 8-32
Invocation and the argv Variable 8-33
Variable Substitution .. 8-34

Expressions .. 8-36
A Sample Shell Script 8-37
Other Control Structures .. 8-40
Supplying Input to Commands 8-41
Catching Interrupts 8-42
Additional Options 8-42

Other Shell Features 8-42
Loops at the Terminal and Variables as Vectors 8-43
Braces { ... } in Argument Expansion " 8-44
Command Substitution 8-45

Chapter 9 Using the Bourne Shell

Simple Commands 9-2
Background Commands 9-2
Input/Output Redirection 9-3
Pipelines and Filters 9-4
Generating Filenames--...~ 9-5
Quotation "'. .. 9-6
Prompting '~ 9-8
Starting the Bourne Shell 9-8
Shell Scripts .. 9-9

Control Flow Using for Statements 9-10
Control Flow Using case Statements 9-12
Here Documents 9-14
Shell Variables 9-16
The test Command .. 9-19
Control Flow Using while Statements 9-20
Control Flow Using if Statements 9-21
Command Grouping 9-24
Debugging Shell Scripts 9-24

Keyword Parameters 9-25
Parameter Transmission 9-26
Parameter Substitution 9-26

xiv Contents

Command Substitution 9-28
Evaluation and Quoting 9-29
Error Handling 9-32
Fault Handling. .. 9-34
Command Execution 9-36

Chapter 10 Using the Korn Shell

Starting the Korn Shell 10-1
Opening a Korn Shell When You Log In 10-2

Shell Variables .. 10-3
Arithmetic Evaluation 10-5
Functions and Command Aliasing 10-7
Input and Output .. 10-11
Re-entering Commands .. 10-12
In-line Editing 10-14
Job Control 10-15
Miscellaneous .. 10-16

Tilde Substitution 10-16
Built-in 110 Redirection 10-16
Added Options 10-17
Previous Directory .. 10-17
Additional Variables and Parameters 10-17
Modified Variables 10-19
Timing Commands 10-19
Command Substitution 10-19
Whence 10-20
Added Traps 10-20
Additional Test Operators " 10-20
No Special Meaning for Circumflex n 10-20
Performance 10-21

Sample Korn Shell Script 10-21

Contents xv

Chapter 11 Managing Files

Moving Around the Naming Tree 11-2
Creating Files .. 11-2
Copying Files ,................ 11-4
Moving or Renaming Files 11-5
Printing Files 11-6

Using the prf Command. .. 11-7
Printing Files Using the Print Menu Interface. 11-8

Displaying File Attributes 11-11
Removing Files .. 11-12
Copying the Display to a File 11-12
Comparing ASCII Files .. 11-13

Chapter 12 Managing Directories

Creating Directories .. 12-2
Renaming Directories. .. 12-2
Copying Directory Trees 12-3
Comparing Directory Trees. .. 12-4
Displaying Directory Information 12-5
Removing Directory Trees. .. 12-6

Chapter 13 Managing Links

Creating Links 13-2
Renaming Links .. 13-2
Copying Links 13-3
Removing Links. .. 13-4

xvi Contents

:hapter 14 Controlling Access to Files and
Directories

Using Standard UNIX Object Protections 14-1
Listing File Permissions. .. 14-2
Changing Access Rights .. 14-3

Using Access Control Lists (ACLs) 14-4
The Subject Identifier (SID) 14-4
Access Rights .. 14-7
Searching Directories and Removing Objects 14-8
Managing ACLs 14-9

Displaying ACLs .. 14-9
Changing ACLs 14-10

Rules to Specify ACL Entries. 14-12
Setting ACL Entries 14-13
Changing Entry Rights. .. 14-14
Adding Entry Rights 14-15
Removing ACL Entries. .. 14-15

Copying ACLs 14-16
Initial ACLs 14-16

Displaying Initial ACLs .. 14-18
Changing Initial ACLs .. 14-18
Copying Initial ACLs .. 14-19

.ppendix A

.ppendix B

Initial Directory and File
Structure

Summary of Predefined Standard
and UNIX Key Definitions

Operating Considerations for Multinational Keyboards B-9
Arrangement of Multinational Keyboard Keys B-9
Key Interpretation During Service Mode B-10

Contents xvii

Appendix C

Appendix, D

Appendix E

Appendix F

Summary of Bourne Shell
Grammar

Summary of Bourne Shell Meta­
characters and Reserved Words

Summary of C Shell
Metacharacters

Composing European Characters
The Compose Function F-l

European Characters and the Multinational Keyboard ... F-3
Printing Latin-l Characters F-3
Restrictions on Using Latin-l Characters F-4

Character Compose Sequences F-4

Glossary

Index

xviii Contents

Figures

1-1 A Simple Domain/OS Network. 1-2
1-2 A Sample Naming Tree. 1-4
1-3 A Sample Path Through the Naming Tree. .. 1-7
1-4 A Sample Path Beginning at the Node

Entry Directory .. 1-8
1-5 A Sample Path Beginning at the Current

Working Directory. .. 1-10
1-6 A Sample Path Beginning at the User's

Home Directory 1-11
1-7 A Sample Path Beginning at the Parent

Directory .. 1-12

3-1 The Start-Up Sequence for Disked Nodes. .. 3-3
3-2 A Sample DM Start-Up Script. 3-7
3-3 The Start-Up Sequence for a Diskless Node. 3-9
3-4 The Start-Up Script Search Sequence 3-14
3-5 The Log-In Sequence 3-15
3-6 A Sample DM Log-In Start-Up Script 3-17
3-7 A Sample DM Start-Up Script 3-19
3-8 Login Over a Dialup Line 3-23

4-1 Invoking a DM Command Interactively. 4-3
4-2 Defining a Display Region 4-8
4-3 Key Names for the Low-Profile Keyboards .. 4-11

5-1 A Process Running the Bourne Shell 5-6
5-2 Creating an Edit Pad and Window. 5-13
5-3 Copying a Pad and Window 5-15
5-4 Growing a Window Using Rubberbanding ... 5-19
5-5 Pushing and Popping Windows 5-21
5-6 Process Window Legend 5-23
5-7 Location of Pad Scroll Keys 5-29
5-8 Default Icon for Shell Process Windows. 5-34

Contents xix

6-1 The Edit Pad Window Legend 6-2
6-2 Defining a Range of Text with <MARK> 6-9
6-3 Copying Text with the xc -r Command. 6-12

11-1 The Print Menu 11-9
11-2 Specifying a Filename on the Print Menu ... 11-9
11-3 Comparing Two ASCII Files. 11-14

12-1 Sample Directory Tree. 12-3
12-2 Copying a Directory Tree 12-4
12-3 Removing a Directory Tree 12-6

14-1 Structure of an ACL Entry. 14-4
14-2 Sample ACL Entries 14-5
14-3 Sample Extended ACL Entries. 14-6
14-4 Sample ACL Display 14-9
14-5 Initial ACLs for Files and Directories. 14-17

A -1 The Node Entry Directory (I) and
Subdirectories A-2

A-2 The System Software Directory (/sys) A-3
A-3 The Display Manager Directory (/sys/dm) . .. A-4
A-4 The Network Management Directory

(/sys/net) A-5

B-1 Multinational Keyboard Numeric Keypad , . .. B-10

xx Contents

fables

1-1 Pathname Symbols .. 1-9

2-1 Keys Remapped to std_keys.unix 2-5
2-2 Environment Variables Used by the BSD

Bourne Shell .. 2-8
2-3 Top-Level BSD Directory Organization 2-9

3-1 Node DM Start-Up Script Files 3-7
3-2 Node Log-In Start-Up Script Files. 3-17

4-1 Ranges for Coordinate Values. 4-7
4-2 Default Mouse Key Functions 4-9
4-3 Key Definition File Names 4-12
4-4 Key Naming Conventions 4-14

5-1 Cursor Control Commands 5-3
5-2 Commands for Creating Processes 5-5
5-3 Commands for Controlling a Process 5-9
5-4 Commands for Creating Pads and Windows.. 5-10
5-5 Commands for Closing Pads and Windows .. 5-16
5-6 Commands for Managing Windows 5-18
5-7 Process Window Modes. 5-23
5-8 Commands for Moving Pads 5-27
5-9 Commands for Controlling Window Groups

and Icons 5-31
5-10 Window Paste Buffers 5-37

6-1 Commands for Setting Edit Modes. 6-2
6-2 Commands for Inserting Characters 6-4
6-3 Commands for Deleting Text 6-7
6-4 Commands for Copying, Cutting, and

Pasting Text 6-10
6-5 Commands for Searching for Text 6-21
6-6 Commands for Substituting Text. 6-24

Contents xxi

7-1 Shell Start-Up Files. 7-3
7-2 Control Characters Defined in a UNIX Shell 7-5

9-1 Some Common Bourne Shell Metacharacters 9-7
9-2 Evaluation of Bourne Shell Metacharacters by

Quoting Mechanisms 9-31
9-3 UNIX Signals Commonly Used by BSD

Software 9-33

11-1 Shell Commands Submenu Items 11-10

12-1 Commands for Managing Directories 12-1

13-1 Commands for Managing Links 13-1

14-1 Access Rights for Files and Directories 14-8
14-2 Summary of Commands for Changing ACLs. 14-11
14-3 Abbreviations for Required Rights. 14-13
14-4 Summary of Commands for Changing and

Copying Initial ACLs 14-17
14-5 Options for Copying Initial ACLs 14-20

B-1 Controlling the Cursor. B-2
B-2 Creating Processes ', B-3
B-3 Controlling Processes B-3
B-4 Creating Pads and· Windows B-3
B-5 Closing Pads and Windows B-4
B-6 Managing Windows B-4
B-7 Moving Pads B-5
B-8 Controlling Window Groups and Icons B-6
B-9 Setting Edit Modes • B-6
B-10 Inserting Characters B-7
B-11 Deleting Text B-7
B-12 Copying, Cutting, and Pasting Text. B-8
B-13 Commands for Searching for Text B-8
B-14 Commands for Substituting Text B-9

F-1 Compose Sequences for Latin-1 Characters . F-4

xxii Contents

Chapter 1

Introducing Domain/OS

Domain/OS is an operating system which supports a high-speed
communications network connecting two or more of our computers,
called nodes. Each node loads programs into its own memory, and
uses the computing functions of its own central processing unit
(CPU). Because Domain/OS enables nodes to share information,
you can log into any node and access information stored anywhere
in the network.

Many of the operations you'll perform on the system involve the
use of objects (files, directories, devices, and links) that store in­
formation such as programs, data, or text. Before you can work
with these objects, you must understand how the system organizes
and identifies them.

This chapter describes Domain/OS, how it organizes objects in the
system naming tree, and how to use pathnames to identify these
objects.

Introducing Domain/OS 1-1

Overview

Domain/OS uses a physical network, in which member nodes can
load data from the network into memory just as they would load
data from their own disk. Let's take a look at how nodes use the
system to share information. Figure 1-1 shows a simple network
composed of three nodes and two disks.

node_8

(Diskless)

Figure 1-1. A Simple Domain/OS Network

Domain/OS makes the information on all disks available to any
node in the network. For example, in Figure 1-1, node_c can ac­
cess information stored on its own disk, as well as information
stored on the disk connected to node_b. Although node_a doesn't
have its own disk, it can, via the network, access information stored
on the disks connected to node_b or node_c.

1-2 Introducing Domain/OS

Each node in the network requires the use of at least one disk,
called a boot volume, that contains the operating system and other
system software it needs to run. Some nodes, called dis ked nodes,
are physically connected to the disk that they use as the boot vol­
ume. Other nodes, called diskless nodes, share the boot volume of
some other disked node in the network, called a network partner.
In Figure 1-1, node_b and node_c are disked nodes. Because
node_a is a diskless node, it must use either node_b or node_c as
its partner.

To run in the network, a diskless node must have a network part­
ner. The network partner's disk provides all of the necessary oper­
ating system and support software for the diskless node. Because a
diskless node relies on its partner for system software, it can oper­
ate only when the partner node is operating. If the partner node is
removed from the network while the diskless node is running, the
diskless node will crash.

The user interface on each node, whether disked or diskless, is
made up of two main programs: the Display Manager (DM) and
the shell.

The DM is the system program that controls your node's display
and enables you to create processes. The DM responds to DM
commands that you type in the DM command input pad of your
display. Later in this manual, we'll describe your node's display
environment and explain how to use the DM to control this envi­
ronment.

The shell is the program that you use to perform more traditional
computing operations such as managing files and compiling pro­
grams. Three shells are available to the BSD user: the Bourne shell,
the C shell, and the Korn shell. Each shell responds to commands
that you type in the shell process's command input pad. Each com­
mand invokes a different utility program that performs a specific
computing operation. This manual describes these shell programs
and the shell commands you use to perform standard computing
operations.

Introducing Domain/OS 1-3

The Naming Tree

To make information available to all the nodes in the network, Do­
main/OS organizes objects in a hierarchical structure called a nam­
ing tree. The naming tree serves as a type of map that the system
uses to keep track of where objects reside in the network. To access
an object, you refer to its location in the naming tree. Figure 1-2
shows a sample naming tree.

Figure 1-2. A Sample Naming Tree

The double slashes (1/) in Figure 1-2 represent the top level of the
naming tree, the network root directory. Each node maintains its
own copy of the network root directory, which contains the name of
each node entry directory the node can access. Figure 1-2 shows
a network root directory containing the names of two node entry
directories: node_b and node_c.

Each disked node in the network has a node entry directory name
associated with it. This name refers to the branch of the naming
tree that resides on its disk. (Since diskless nodes don't have disks,
they use the node entry directory of their partner.) In Figure 1-2,

1-4 Introducing Domain/OS

all of the objects under the node entry directory, node_b, reside on
the disk node b, while all of the objects under the node entry di­
rectory node_c reside on the disk node_c.

Entry directories contain one or more upper-level, or root-level,
directories. A root-level directory is one level below the entry di­
rectory and normally serves as the main directory for a branch of
logically related objects. For example, the /sys directory that we
supply is a root-level directory that contains many of the system
objects that make up the operating system. (Appendix A contains a
set of figures that illustrate how the system organizes the software
we supply with your node.) A root-level directory can also serve as
a user's main directory for storing files.

In Figure 1-2, the directories owner and user_l are root-level di­
rectories, one level below the entry directory node_b. The direc­
tory owner serves as the main directory for all objects that belong
to the owner of the node. The root-level directory user_l is the
main directory for the user of a diskless node (node_a) that uses
node_b as its entry directory. The directory user serves as the main
directory for the user on node_c. (This is a custom only.)

In summary, the network root directory contains the names of node
entry directories in the network. The system uses your node's net­
work root directory to determine which node entry directories in
the network it can access. Each node entry directory contains one
or more root-level directories. A root-level directory serves as the
main directory for a group of objects.

Your node can access only the node entry directories whose names
appear in the local copy of the network root directory. To keep
your local copy of the network root directory up to date, you should
catalog new disked nodes as they are added to the network. To
catalog new nodes, use the shell command ctnode (catalog node)
described in the BSD Command Reference.

Some network sites use the ns_helper (naming server helper) to
maintain a current network root directory. If this applies to your
site, you needn't use ctnode to catalog nodes; ns_helper does it for
you. Ask your system administrator for more information. Manag­
ing BSD System Software describes ns_helper and explains how to
catalog nodes to update the network root directory.

Introducing Domain/OS 1-5

Using Pathnames

The system identifies each object in the naming tree by its unique
location. Whenever you specify a command to create or access an
object, you also specify a pathname that points to the object's loca­
tion in the naming tree. The pathname tells the system what path to
follow when searching for an object.

The commands you use to create and manage objects require you
to specify a pathname as a command argument. When you invoke a
command, the command specifies the operation, and the pathname
tells the system where in the naming tree to perform it.

For example, the following shell command removes the file memo
in the naming tree shown in Figure 1-3:

% rm lin ode b/user lImemo
y

command

- -
I

pathname

The shell command rm (remove file) tells the system to remove the
file at the location specified by the pathname. Figure 1-3 shows the
path the system follows to the file.

The pathname directs the system to:

1. Start at the network root directory (//).

2. Follow the path through the entry directory, node_b, and
the subdirectory, user_I.

3. Stop at the file, memo.

1-6 Introducing Domain/OS

Figure 1-3. A Sample Path Through the Naming Tree

When the system searches for a location in the naming tree, it be­
gins its search at some point in the tree and follows a path to the
location. The pathname in the previous examples explicitly speci­
fied the network root directory as the starting point for the system's
search through the naming tree. The double slashes (1/) at the be­
ginning of the pathname specify the network root directory. This
type of pathname, called an absolute pathname, tells the system
the full path, from the network root directory to the final location.

You don't have to begin pathnames with the network root directory
specification. For example, the single slash (I) symbol directs the
system to begin its search at your node's entry directory. Here is an
example using the single slash to start a search at your node's entry
directory:

% rm /user_1/memo

Introducing Domain/OS 1-7

Figure 1-4. A Sample Path Beginning at the Node
Entry Directory

For this example, let's assume that your node's entry directory is
node_b. As shown in Figure 1-4, the pathname directs the system
to:

1. Start at your node's entry directory, node_b.

2. Follow the path through the root-level directory, user_I.

3. Stop at the file, memo.

You can specify other starting points in the naming tree by begin­
ning a pathname with any of the symbols in Table 1-1.

1-8 Introducing Domain/OS

Table 1-1. Pathname Symbols

Symbol System starts search at:

II Network root directory

I Node entry directory

No symbol or Working directory

,..,.. Home directory

" Parent directory

The Working Directory

If you specify a pathname without a symbol preceding it, or precede
it with a dot, the system starts its search at a default location in the
naming tree called the working directory. Think of the working
directory as the directory location in which you are currently work­
ing (thus, it may also be known as your current directory). Each
process that you create uses one of the directories in the naming
tree as its working directory.

When you log into a node, the system creates a process running the
shell program and sets that process's working directory to the home
directory name designated in your user account. The system uses
this directory as your working directory unless you change it to an­
other directory. (Chapter 12 describes how to change your working
directory.)

The following command removes the file memo in the current
working directory:

% rm memo

In this example, let's assume that the current working directory is
the directory reports. As shown in Figure 1-5, the system begins its
search at reports and removes the file memo.

Introducing DomainlOS 1-9

Figure 1-5. A Sample Path Beginning at the
Current Working Directory

In Figure 1-5, another file named memo exists at another location
in the naming tree (in the directory user_1). If the current working
directory was user_1 instead of reports, the command in our ex­
ample would remove this file instead. So you see, a pathname that
starts at the working directory functions differently depending on
the directory currently being used as the working directory.

The Home Directory

If you begin a pathname with the tilde symbol ("'), the system
starts its search at a location in the naming tree called the home
directory. Like the working directory, each process has a home
directory that points to some directory in the naming tree.

When you log into a node, the system creates a process running the
shell program and sets it to the home directory name designated in
your user account. The system uses this directory as your home
directory unless you change it to another directory. (Chapter 3 de­
scribes how to change your home directory.)

1-10 Introducing Domain/OS

The following command removes the file memo in the directory
reports found in the home directory:

% rm /reports/memo

In this example, let's assume that the home directory is the root­
level directory owner. As shown in Figure 1-6, the pathname di­
rects the system to:

1. Start at your home directory, owner.

2. Follow the path through the directory, reports.

3. Stop at the file, memo.

Like pathnames that use the current working directory, pathnames
starting at the home directory work differently depending on the
directory currently being used as your home directory.

Note that a tilde with no pathname given as an argument defaults to
the current user's home directory.

Figure 1-6. A Sample Path Beginning at the User's
Home Directory

Introducing Domain/OS 1-11

The Parent Directory

If you precede the pathname with two dots (..), the system starts its
search at a location called the parent directory. A parent directory
is the directory one level above the current working directory. For
example, the following command uses the double dot symbol to
remove the file memo in the directory user_I:

% rm . .lmemo

In this example, let's assume that the current working directory is
the directory plans. As shown in Figure 1-7, the system begins its
search at the directory user_I (the parent directory of the current
working directory plans) and removes the file memo. It is impor­
tant to note that these double dots can be strung together with
slashes (e.g., .. / .. /filename) to search the parent's parent directory
and so on.

Figure 1-7. A Sample Path Beginning at the Parent Directory

1-12 Introducing Domain/OS

Pathname Summary

In this section, you learned how to use pathnames to point to ob­
jects in the system naming tree. The examples showed you how to
use pathnames with commands to tell the system the naming tree
location where you want a particular operation performed.

Pathnames also serve to identify objects. As you read through this
manual, you will find that many of the objects that make up the
operating system are referred to by their pathnames. For example,
Chapter 3 describes many of the objects the system uses at startup
and login. Appendix A illustrates how the system organizes the sys­
tem software that we supply with your node; system objects are re­
ferred to by their pathnames. By understanding which objects the
system uses and where they are located, you'll better understand
how these objects work together to make up a functioning system.

---88---

Introducing Domain/OS 1-13

Chapter 2

Using Domain/OS Features in
the BSD Environment

The BSD environment under Domain/OS supports a distributed file
system. and mUltiple networks using bit-mapped. high-resolution
displays. Besides bringing the benefits of a networked architecture
and a true single-level store to a UNIX system. Domain/OS offers
many features seldom found on either time-sharing or workstation
implementations of software. This chapter highlights those features.

Domain/OS Architecture

Domain/OS architecture comprises two or more nodes connected
by a high-speed local area network. Each node is a functional
workstation. with its own central processor. memory. and memory
management hardware. Programs and data required by processes
running on a node may be demand-paged across the network.

This remote paging ability means. for example. that a process run­
ning on one node can invoke a program that resides on the disk of
another node to manipulate data that reside on a third node. You
may even create remote processes (processes that run on other
nodes in the network) that you can manipulate through a window
on your node. thus distributing the computational workload over
multiple processors.

Using Domain/OS Features in the BSD Environment 2-1

Those nodes that have their own mass storage devices may be oper­
ated as standalone computers, and can support additional users (in­
cluding those connected via serial communications ports). To take
advantage of this networked architecture, all Domain/OS software
supports a distributed file system. Data and programs on all
mounted volumes in the network are accessible (given the neces­
sary permissions) to any node in the network. The resultant system
is one in which an arbitrary number of users can be serviced with­
out adversely affecting performance. Users have the power of a
dedicated processor, memory-management hardware, and a high­
resolution bitmapped display at their disposal.

The User Interface

We provide for a more varied user interface by supplying features
that significantly differ from those provided in other UNIX imple­
mentations. The most important difference, from the user's point of
view, is the ability of an Apollo node to display "windows" into
many processes (shells, programs, etc.). These windows have some
unique features not found on the CRT terminals largely used in the
development of UNIX software.

Software Extensions in /usr/apollo

BSD provides a directory called lusr/apollo. The lusr/apollo direc­
tory contains the subdirectories bin, lib, and include, which supply
software extensions beyond the standard set normally found on the
Berkeley 4.3 distribution tape. The directory lusr/apollo/bin con­
tains commands, lusr/apollollib contains object libraries and
needed files, and lusr/apollo/include contains .h files.

NOTE: Normally, users don't refer to the path­
name lusr/apollo/include directly, but
rather use lusr/include/apollo, which is
a soft link to lusr/apollo/include. This
specific feature allows use of the notation
include <apollo/ev.n>.

2-2 Using DomainlOS Features in the BSD Environment

The commands, libraries, and include files' in these subdirectories
handle functions that specifically apply to Domain/OS. (Note, how­
ever, that some additional related files can be found in the /etc
directory.) For example, there are special network commands,
commands for manipulating windows and displays, and commands
for doing disk volume maintenance.

In most cases, the commands found in /usr/apollo/bin follow the
conventions of other standard UNIX commands. However, there
may be some exceptions when it comes to command line options or
arguments. Be sure to check the appropriate manual page in the
BSD Command Reference for complete information before using
these software extensions.

The Display and the Display Manager

Your node's display is your "window" into Domain/OS. Unlike
most terminals that dedicate their entire display to a single program
or process, Apollo nodes let you divide the display screen into mul­
tiple environments for running programs, and reading or editing
files. With each new environment you create, a set of display com­
ponents through which you can enter input and view output are also
generated.

What you see through a window is either a "frame" contammg
graphics or a "pad" containing text. Refer to the Domain Display
Manager Command Reference for more information about frame
mode and graphics.

Keyboard Mapping

On Apollo nodes, nearly all key binding is programmable. The DM
normally binds the keys to a default function map when you log in.
Although you can change these key bindings any time, it is usually
best to begin with the default bindings, and then customize your key
definitions as needed. For more information on the DM and key­
board mapping, see the Domain Display Manager Command Refer­
ence.

Using Domain/OS Features in the BSD Environment 2-3

Domain/OS supports three types of keyboards: the Low-Profile
Model I keyboard. the Low-Profile Model II keyboard. and the
Multinational keyboard.

The directory /sys/dm contains the command files that define each
type of keyboard;

• std_keys3 keyboard definitions for the Low-Profile Model
II keyboard

• std_keys2 keyboard definitions for the Low-Profile Model
I keyboard

• std_keys3 [a-g] keyboard definitions for the Multinational
keyboard

All of these files contain a line invoking the command file
std keys. basic. The Multinational keyboard command files also
invoke the std_keys.mn file.

UNIX Key Definitions

An alternate version of the standard key definitions. modified to
provide necessary UNIX functions. resides in the /sys/dm direc­
tory. This alternate version is named std_keys.unix.

The std_keys. unix definition file includes commands that bind
various keys to certain version-specific (or shell-specific) features.
They are described in detail later in this manual. in the Bourne
shell and the C shell chapters. If your environment is set to one of
the UNIX environments. these key definitions files are automati­
cally invoked.

To put any key definition file into effect. execute the cmdf (com­
mand file) command at the Display Manager prompt. where the
filename argument is one of the key definitions files mentioned ear­
lier. For example. to invoke UNIX key definitions on a keyboard:

Command: cmdf /sys/dm/std_keys. unix

2-4 Using Domain/OS Features in the BSD Environment

Table 2-1 shows which keys are redefined when the keyboard is
remapped to std_keys.unix in this manner.

Table 2-1. Keys Remapped in std_keys.unix

Key

<DELETE>

<HELP>

<SHELL>

<TAB>

CTRL/C

CTRL/D

CTRL/H

CTRL/I

CTRL/J

CTRL/L

CTRL/M

CTRL/N

CTRL/O

CTRL/P

CTRL/Q

CTRL/R

Definition

Deletes a character.

Gets a specified UNIX manual page.

Executes the DM command cp $ (shell)
which creates a BSD shell as specified by
the $SHELL environment variable.

Inserts a literal ASCII tab character.

Generates an interrupt signal.

Produces an end-of-file (EOF) condition
in the input pad.

Deletes a character.

Generates a literal ASCII tab character.

Performs a carriage return.

Redraws the screen.

Performs a carriage return.

Searches for next occurrence of pattern.

Flushes output (not implemented).

Searches for previous occurrence. of pattern.

Turns off hold mode in the window.

Does nothing. (The standard UNIX func­
tionality is irrelevant in a pad.)

(Continued)

Using DomainlOS Features in the BSD Environment 2-5

Table 2-1. Keys Remapped in std_keys.unix (Cont.)

Key Definition

CTRL/S Turns on hold signal.

CTRL/U Deletes a line of input text from the cursor
to the start of the line.

CTRL/Y Suspends when read (not implemented).

CTRL/Z Produces a suspend process signal normally
used by shells that support job control
(Le., /bin/ksh, /bin/csh.

CTRL/\ Generates a quit signal.

CTRL/"-J Moves to previous window.

Environment Variables

UNIX users should be familiar with the concept of environment
variables, process-wide ASCII strings that assume the general form

name = value

Environment variables are maintained by the kernel's process man­
ager and. are made available to UNIX programs. Typically, you in­
itialize these variables in one of the command files that the window
manager reads when the node is booted, and later when you log in.

When a new process is created, all environment variables of the
creating process are inherited by the new process. All process crea­
tion mechanisms (e.g., pgm_Sinvoke, fork, vfork) provide for this
inheritance.

When a new process is created by the Display Manager, that proc­
ess inherits all environment variables from the current context proc­
ess. The DM also inherits environment variables when cv (read
file) and ce (edit file) are used.

2-6 Using Domain/OS Features in the BSD Environment

Environment variables defined in the OM startup file are inherited
by all server processes created during OM startup, and by the first
process you create at login.

NOTE: After the first user process is created, the
OM inherits environment variables from
the current context process (and passes
them to new processes) as described
above.

A program interface for environment variable usage is defined in
the /usr/inciude/apollo/ev.h files. C language programs may ma­
nipulate environment variables through these interfaces. Alterna­
tively, C programs may use the UNIX calls getenv and putenv or
access the external environment variable.

Certain environment variables are well-known. Some variables are
predefined by the system at login; others have special significance
to system software or other special attributes.

One such environment variable determined at login time is the SYS­
TYPE environment variable, which specifies the default UNIX ver­
sion running on a node. The UNIX version acts as a modifier of the
environment in which programs execute on the node. Valid SYS­
TYPES are bsd4.3 (4.3 Berkeley Software Distribution) and sys5.3
(System V, Release 3).

The /etc/environ file contains a line that specifies the SYSTYPE
for a node; this, in turn, helps determine the default log-in shell for
the user. (See Chapter 3 for further information on this.) To dis­
play or change the SYSTYPE used to execute programs from a
UNIX shell, use the ver (version) command as shown in the "Envi­
ronment Switching" section later in this chapter.

Table 2-2 shows the entire set of environment variables used by the
BSD Bourne shell.

Using Domain/OS Features in the BSD Environment 2-7

Table 2-2. Environment Variables Used by the BSD Bourne Shell

Variable Name Description

USER User's login name.

LOGNAME Synonomous with USER. The synonyms are
provided to support both the SysV and BSD
environments.

PROJECT Project (group) ID under which the user logged in.

ORGANIZATION The current Apollo organization ID for the user.

NODEID The unique node identifier for the node on which
the process is running; expressed in hexadecimal.

NODETYPE The type of node on which the process is running.

HOME The user's home directory pathname, established
at login.

TERM The device name of the "terminal" in use;
predefined for the sake of C or UNIX programs.
Values for Apollo displays are of the form
apollo_xxx where xxx is three or more characters.
The file letc/termcap lists valid terminal types.

SHELL The pathname of the shell in which the process
is running (in this case, Ibin/sh).

TZ The timezone string. Like TERM, this variable
is predefined for the sake of C or UNIX pro-
grams. The valid format is SSSnDDD, where
SSS is the standard timezone name (e.g.,
EST), n is the difference between the standard
timezone and UTC, and DDD is the daylight
timezone name.

SYSTYPE UNIX system version in use (i.e., bsd4.3).

ENV If ENV is part of the environment at shell
startup or is set on the sh command line
(-DENV=-I.shrc), the value is used as a path-
name to a shell startup script. This is the same
as the Kom shell ENV variable.

2-8 Using Domain/OS Features in the BSD Environment

Name Space Support

The UNIX file system has traditionally contained a small number of
system directories with well-known names (/usr, /bin, fete, /dev,
and /tmp). The structure and content of these directories differ
between versions of UNIX software. To support identically-named
AT&T and Berkeley versions of these directories on the same Do­
main/OS file system, we use "variant" links. These links allow a
portion of the link text to be replaced by an environment variable.

Symbolic links placed in your node's root directory during the in­
stallation procedure let programs use either the sys5.3 or bsd4.3
versions of the /bin, and /usr directories (/tmp, fete, and /dev are
common to both). Normally, the links are created by the installa­
tion script; if, at some time, you need to re-create them, use the In
(make links) command. For example, to create a SYSTYPE-de­
pendent link for /bin, type the following command line:

% In -s '/$ (systype)/bin' /bin

NOTE: Single quotes around link text are re­
quired, to keep the dollar sign from being
interpreted as a shell meta character .

The SYSTYPE environment variable is used to select the UNIX file
system variant, and therefore, commands, libraries, spool directo­
ries, etc. Table 2-3 shows top-level BSD directory organization.

Table 2-3. Top-Level BSD Directory Organization

Name Objeet Type Contents

/usr directory bin, lib, include, apollo,
apollo/bin, ueb, man

/bin variant link -
fete directory SYSTYPE-specific links and files

/dev ordinary link -
/bsd4.3 directory usr, bin, ete

Itmp ordinary link -

Using Domain/OS Features in the BSD Environment 2-9

NOTE: In Table 2-3, ordinary links are those
that don't contain the name of an envi­
ronment variable. In the case of Idev and
Itmp, these should be links to your
node's 'node data/dev and 'node datal
tmp files respectively. -

Each node's Itmp directory is usually a link to 'node_data/tmp.
One of the less obvious side effects of this can be easily illustrated.
For example, the following two command lines executed on node
IIfoo both list the contents of IIfoo's 'node_data/tmp directory:

% Is Itmp
cat toe
% Is Ilfoo/tmp
cat toe
%

ipc.out toc143

ipc.out toc143

To list the contents of Ilbar/tmp, you need to be more explicit:

% Is IIbarlsys/node_data/tmp
dirs In
%

Environment Switching

The object-module stamping scheme, described earlier, lets you
execute SysV programs from any BSD shell and vice versa, without
any knowledge of the UNIX version for which the program was
targeted.

When you invoke a program stamped with a systype other than
any, the SYSTYPE environment variable for the process in which
the program is running is set to the value found in the object mod­
ule. This ensures that programs of one UNIX version that depend
on certain system files continue to work when executed from a
process running in another version. The lusr/apollo/bin/systype
program displays the version stamp of the specified object files.

2-10 Using DomainlOS Features in the BSD Environment

A shell's SYSTYPE value defines the version (bsd4.3, sysS.3) of
system directories searched when a command name is given; hence,
it defines the version of the command that is executed.

To simplify the execution of a version x command from a version y
shell, we provide a "set-version" command. See the ver (change
shell command version) command in the BSD Command Refer­
ence. You can use ver in these three ways:

• To display the current value of SYSTYPE, execute ver
with no arguments, as shown in the following example:

% ver
bsd4.3

This is equivalent to typing the following:

% echo $SYSTYPE

• To change the value of SYSTYPE, and the version of sub­
sequently executed commands, use the form ver value.
For example, you may do the following:

% ver sysS.3
% Is
prog.c
prog.o
testfile
%

Here, the first command line sets the SYSTYPE to sysS.3.
This is equivalent to typing

% setenv SYSTYPE=sysS.3
% rehash

The second command line executes a sysS.3 version of Is
(SYSTYPE remains the same until it is reset).

• To execute the value version of command without chang­
ing SYSTYPE, use the form ver value command. For ex­
ample, the first command executes the sysS.3 version of
the man (print manual page), searching for the manual
page on the Is (list directory) command:

% ver sysS.3 man Is

Using Domain/OS Features in the BSD Environment 2-11

This is equivalent to typing the following two consecutive
command lines:

% SYSTYPE=sysS.3
% man Is

Remember that the value of SYSTYPE remains the same
as it was before the man command was executed.

Password and User Identification

The process of login verification and home-directory setting are
always handled by the Domain/OS login mechanism, but we pro­
vide a way to generate an /etc/passwd file so that UNIX programs
that need to access it can do so.

Users cannot edit the /etc/passwd file directly, although they can
read it. The registry server program rgyd generates the /etc/passwd
file from the registry database, and updates /etc/passwd when the
registry is updated. We provide the edrgy (edit registry) command
so you can edit your registry information. Chapter 3 describes how
to use edrgy to change your home directory.

All Domain/OS network registry information must be case correct.
Otherwise, case sensitive programs will report that your home direc­
tory cannot be found.

File Protection, Permissions, and Ownership

Domain/OS supports the standard UNIX protection mechanisms.
We also provide an additional protection mechanism, the access
control list (ACL). Every object (file, directory, etc.) has an ACL
associated with it, although this is not noticeable if you only use
standard UNIX permissions.

In addition to its own ACL, each directory contains two ACLs
called initial ACLs. You can use the initial ACLs to control the
way files and directories created in a directory inherit their protec­
tions. When you create a new file or directory, or copy one to a
new location in the file hierarchy, the system assigns an ACL to it

2-12 Using Domain/OS Features in the BSD Environment

by copying the appropriate initial ACL stored in the parent direc­
tory.

The lusr/apollo/bin commands chacl (change ACL). cpacl (copy
ACL). lsacl (list ACL). and dbacl (Domain/Dialogue-based ACL
editor) let view and control ACL values. For information about
these commands. see the BSD Command Reference. A general de­
scription of ACLs is also located on the manual page for the acl
(access control list) command.

----88----

Using Domain/OS Features in the BSD Environment 2-13

Chapter 3

Understanding Startup
and Login

Each time you start up a node and log in to it, the system executes
various programs that set up the node's operating environment.
You can tailor the operating environment on your node by modify­
ing the scripts the system uses at startup and login. For example,
you may want to start specific daemons (server processes) when
you start up your node. Or, you may want your own specific key
definitions, default window positions, and tabs defined each time
you log in.

This chapter describes how the system functions at startup and
login, and describes the steps you can take to tailor your operating
environment. It also describes procedures for changing your pass­
word, log-in shell, user information, and home directory after you
log in.

Understanding Startup and Login 3-1

Understanding the System at Startup

The operating guide for your node describes the proper procedure
for starting it up. When you initiate the node's startup by turning on
the power, the node performs a series of operations to boot the
operating system (load the operating system from disk into mem­
ory) and begin executing it. The operating system then executes a
series of start-up files to set up the operating environment on your
node.

This section explains the sequence of events occurring at startup for
both disked and diskless nodes.

Disked Node Startup

If your node is a disked node, it reads the programs it needs for
startup from its own disk. The flowchart in Figure 3-1 shows the
start-up sequence on a disked node.

3-2 Understanding Startup and Login

Figure 3-1. The Start-Up Sequence for Disked Nodes

Understanding Startup and Login 3-3

The descriptions that follow explain each step in the start-up se­
quence shown in Figure 3-1.

1. When you power on your node in normal mode (follow
the instructions in your operating guide), a program called
the Mnemonic Debugger (MD) begins executing. The
MD resides in the node's boot PROM (Programmable
Read-Only Memory).

2. The MD reads a program called sysboot from your node's
disk and loads it into the CPU's memory. The MD then
transfers control to sysboot. The sysboot program is re­
sponsible for booting the operating system.

3. The sysboot program loads the operating system into the
CPU's memory. Once loaded, the operating system begins
executing and takes control.

4. The operating system reads the file /etc/sys.conf to load
global libraries.

5. The operating system starts the init process by running the
program /etc/init.

The /etc/init program reads the file /etc/environ. The
/etc/environ file contains two lines, one for specifying the
environment (BSD, SysV, Aegis'M), and one for specifying
the SYSTYPE variable (bsd4. 3, sys5. 3). If the environ­
ment is BSD or SysV, the default log-in shell for the node
is /bin/sh (Bourne shell). If the environment is Aegis, the
default log-in shell is /com/sh (Aegis shell).

6. The init process runs the /etc/rc script to start the neces­
sary daemons. The /etc/rc file, which is normally a link to
'node data/etc/rc, is a file of commands to be executed
at boot time. Many of these commands invoke daemons
that must be invoked by the super-user ("root"). Any
programs started by /etc/rc inherit the SYSTYPE value
specified in the /etc/environ file.

The /etc/rc program executes two additional rc scripts
named /etc/rc. user (not run as "root", but as "user") and
/etc/rc.local. The rc scripts contain commands that start
various daemons. These server programs run regardless of
log-in and log-out activity and provide various system
services to the node.

3-4 Understanding Startup and Login

For example, the netman program makes the node avail­
able as a host for diskless partners. For a description of
these and all of the Domain server programs, see Manag­
ing BSD System Software.

If you want your node to automatically start any daemons,
there are two methods you can use. The method you use
depends on the types of servers you wish to run.

• To start servers such as netman or mbx_heJper,
that do not have to run (and will not be run) with a
user ID of "root", edit the /etc/rc. user file and re­
move the pound sign (#) from the command line
that invokes the server.

• To start up UNIX daemons such as cron, inetd,
and Jpd, or the Network Computing System (NCS)
servers IIbd and gJbd (the location brokers), create
a file in the directory /etc/daemons that has the
same name as the server you wish to start. That is,
if you wish to run the IIbd server, create the file
/etc/daemonslIIbd (it doesn't matter what's in the
file, /etc/rc only looks at the file name). See Man­
aging the NCS Location Broker for more informa­
tion about NCS servers.

Note, however, that the system will not start any of these
servers until the next time the rc script is run. To do this,
you should shut down and restart your node. (See your
node's operating guide for node startup and shutdown pro­
cedures.)

7. The /etc/init program reads the file /etc/ttys (normally,
this file is a link to the file 'node_data/etc/ttys) and starts
the /etc/dm_or_spm program associated with the display
and listed in the file. Any programs started by /etc/ttys in­
herit the SYSTYPE value specified in the /etc/environ
file. Other lines in the etc/ttys file contain directives that
start getty on the tty lines for the node; see the /etc/ttys
file for further information.

Understanding Startup and Login 3-5

8. The letcldm_or_spm program starts either:

• The Display Manager (DM) on nodes with dis­
plays.

• The Server Process Manager (SPM) on Domain
Server Processors (DSPs). The SPM allows you to
create a process on a DSP from a remote node in
the network. (For more information about the
SPM, see Managing BSD System Software.)

9. The DM or the SPM executes a start-up file that sets up
the initial operating environment on your node. Table 3-1
lists the different files used at startup. As shown in Table
3-1, the system chooses which file to execute according to
the type of node.

All of the DM start-up script files listed in Table 3-1 re­
side in the directory 'node_data. The tick character (')
that precedes the directory name is a special symbol that
returns a value for node_data.

NOTE: On Apollo nodes, the tick character is lo­
cated on the same key as the tilde (---)
character. It is not to be confused with
the quote character ('), which is on the
same key as the double quotes (").

For example, on disked nodes, 'node_data points to the
Isys/node_data directory on the node's disk. On diskless
nodes, the directory 'node_data points to the directory
Isys/node_data.node_id on the partner node's disk. The
node id suffix refers to the diskless node's hexadecimal
node-ID. (Refer to the "Diskless Node Startup" section
for more information on diskless node startup.)

3-6 Understanding Startup and Login

Table 3-1. Node DM Start-Up Script Files

Node Type

l024x800 (Landscape)

DN3xx. DN460. DN550. DN560.
DN570. DN3000 (Color).
DN3000 (15-inch Black & White)
DN4000 (Color)

1280x1024 (Color Landscape)

DN580

Start-Up Scripts

startup. 191

startup.1280color

1280xl024 (Black & White Landscape) startup.1280bw

DN3000 (19-inch Black & White).
DN4000 (19-inch Black & White)

Displayless startup.spm

Domain Server Processors (DSPs)

Figure 3-2 shows a sample DM start-up script similar to
the one we provide with DN3000 nodes. The DM start-up
scripts for other nodes are similar.

startup, Isys/dm, default system startup command file for 12BOx1024

WIndow positions for the DM's Input and output windows.
Do not comment these out.

(60B,744)dr; (1023,799)cv Isys/dm/output
(556,744)dr; (60B,799)cv Isys/dm/output;pb
(O,744)dr; (556,799)cv Isys/dm/lnput

The default Apollo compose key Is F5. It Is normally NOT enabled.
To enable It, uncomment the following line.

cps lusr/apollo/bln/kbm -c f5

To change It to a different key, edit the previous line as appropriate.

Figure 3-2. A Sample DM Start-Up Script

Understanding Startup and Login 3-7

The OM start-up scripts that run on nodes that have dis­
plays contain a set of commands that instruct the Display
Manager to draw the initial display windows on the screen.
One of the windows contains the "login:" prompt.

These OM start-up scripts also let you enable a default
Apollo compose key, or to change it to another key. For
more information about this function, see Appendix F.

The startup.spm script used by DSPs is similar to the
other start-up scripts. However, since DSPs don't have
displays, startup.spm does not contain commands for cre­
ating windows.

10. Once the DM start-up script finishes executing, the node
startup completes, and the system prompts you to log in.

Diskless Node Startup

The start-up sequence for diskless nodes is somewhat different
than the start-up sequence for disked nodes. A diskless node does
not have its own disk to store the operating system and other soft­
ware files it needs to run. Therefore, each time it starts up, the
diskless node must load parts of the operating system across the
network from its partner node. The diskless node also relies on its
partner for any utility programs and libraries it needs. Figure 3-3
presents a flowchart showing the start-up sequence for a diskless
node.

From your perspective as a user, starting up a diskless node is the
same as starting up a disked node; you turn the power on in normal
mode and wait for the log-in prompt to appear. However, the start­
up sequence that goes on internally is somewhat different. The de­
scriptions that follow explain each step in the diskless node start-up
sequence shown in Figure 3-3. Once you've read the descriptions,
go back and compare each step with the disked node start-up se­
quence described in the "Disked Node Startup" section.

3-8 Understanding Startup and Login

Figure 3-3. The Start-Up Sequence for a Diskless Node

Understanding Startup and Login 3-9

1. When you power on your node in normal mode (by fol­
lowing the instructions in your node's operating guide), a
program called the Mnemonic Debugger (MD) begins exe­
cuting. The MD resides in the node's boot PROM (Pro­
grammable Read-Only Memory).

2. Because a diskless node does not have a disk, the MD
cannot load sysboot and transfer control to it. Instead, the
MD must boot the system from another disked node in the
network. The MD then broadcasts a message across the
network asking for a partner node to volunteer the use of
its boot volume.

3. All nodes running the netman program receive these re­
quest messages (netman's purpose is to respond to them).
In response to the diskless node's request, netman on a
disked node checks the file Isys/net/diskless list. This
file on the disked node contains a list of hexadecimal node
IDs for all nodes the disked node may offer partnership.

If the diskless list contains the ID of the diskless node re­
questing partnership, netman volunteers the node as a
partner. The first disked node to volunteer becomes the
partner of the diskless node. (It remains the diskless
node's partner until the next time the diskless node
boots.) At this point, the diskless node displays the part­
ner node's node ID for your information.

You can take a look at a sample diskless list by reading the
file Isys/netlsample_diskless_list. For a complete de­
scription of how to create a diskless list and set up partners
for diskless nodes, see Managing BSD System Software.

4. Once the diskless node finds a partner, the MD copies the
netboot program from the file Isys/net/netboot on the
partner node into the diskless node's memory. The net­
boot program is a special version of sysboot that diskless
nodes use to boot the operating system across the network.
The MD, when finished loading petboot, transfers control
to it.

5. The netboot program, running on the diskless node, loads
the operating system from the partner node's boot volume
into memory.

3-10 Understanding Startup and Login

6. The operating system reads the file /etc/sys.conf to load
global libraries.

7. The operating system runs /etc/init to start the init proc­
ess; /etc/init reads the file /etc/environ. The /etc/environ
file establishes the default log-in shell and default SYS­
TYPE for the node.

The /etc/environ file contains two lines, one for specifying
the environment (BSD, SysV, Aegis), and one for specify­
ing the SYSTYPE variable (bsd4.3, sys5.3). If the environ­
ment is BSD or SysV, the default log-in shell for the node
is /bin/sh (Bourne shell). If the environment is Aegis, the
default log-in shell is /corn/sh (Aegis shell).

8. The init process runs the /etclrc script to start the neces­
sary daemons. The /etc/rc file, which is normally a link to
'node data/etc/rc, is a file of commands to be executed
at boot time. Many of these commands invoke daemons
that must be invoked by the super-user ("root"). Any
programs started by /etc/rc inherit the SYSTYPE value
specified in the /etc/environ file.

The /etc/rc program executes two additional rc scripts
named /etc/rc.user (not run as "root", but as "user") and
/etc/rc.local. The rc scripts contain commands that start
various daemohs. These server programs run regardless of
log-in and log-out activity and provide various system
services to the node. For example, the netman program
makes the node available as a host for diskless partners.
For a description of these and all of the Domain server
programs, see Managing BSD System Software.

If you want your node to automatically start any daemons,
there are two methods you can use. The method you use
depends on the types of servers you wish to run.

• To start servers such as netman or mbx helper,
that do not have to run (and will not be run) with a
user ID of "root", edit the /etc/rc.user file and re­
move the pound sign (#) from the command line
that invokes the server.

Understanding Startup and Login 3-11

• To start up UNIX daemons such as cron, inetd,
and Ipd. or the Network Computing System (NCS)
servers IIbd and glbd (the location brokers), create
a file in the directory /etc/daemons that has the
same name as the server you wish to start. That is,
if you wish to run the IIbd server, create the file
/etc/daemons/llbd (it doesn't matter what's in the
file, /etc/rc only looks at the file name). See Man­
aging the NCS Location Broker for more informa­
tion about NCS servers.

Note, however, that the system will not start any of these
servers until the next time the rc script is run. To do this,
you should shut down and restart your node. (See your
node's operating guide for node startup and shutdown pro­
cedures.)

9. The /etc/init program reads the file /etc/ttys (this is nor­
mally a link to the file 'node_data/etc/ttys) and starts the
/etc/dm_or_spm program associated with the display and
listed in the file. Any programs started by /etc/ttys inherit
the SYSTYPE value specified in the /etc/environ file.
Other lines in the etc/ttys file contain directives that start
getty on the tty lines for the node; see the / etc/ttys file for
further information.

10. The /etc/dm_or_spm program starts either:

• The Display Manager (DM) on nodes with dis­
plays.

• The Server Process Manager (SPM) on Domain
Server Processors (DSPs). The SPM allows you to
create a process on a DSP from a remote node in
the network. (For more information about the
SPM, see Managing BSD System Software.)

11. The DM or the SPM executes a start-up file that sets up
the initial operating environment on your node. Table 3-1
lists the different files used at startup. As shown in Table
3-1, the system chooses which file to execute according to
the type of node.

Since diskless nodes don't have files of their own, the DM
or SPM must look to the partner node to find its start-up
script file. Just as on a disked node, the DM or SPM on a

3-12 Understanding Startup and Login

diskless node searches for the script file in the directory
'node data. Unlike a disked node, however, 'node data
for a diskless node points to the Isys/node_data.node_id
directory on the partner's disk. (The node_id suffix is the
hexadecimal node 10 of your diskless node.)

NOTE: The tick character (') that precedes the
directory name is a special symbol that
returns a value for node data. On
Apollo nodes, the tick character is lo­
cated on the same key as the tilde (-)
character. It is not to be confused with
the quote character ('), which is on the
same key as the double quotes (").

12. Once the OM or SPM finds the diskless node's OM start­
up script, the script executes, the node startup completes,
and the system prompts you to log in.

Figure 3-2 shows a sample OM start-up script similar to the one
we provide with ON3000 nodes. For information about this script
refer to the "Understanding the System at Login" section.

A single disked node can serve as the partner for several diskless
nodes. Each diskless node may need to use a "node-specific" boot
script to set up its own unique operating environment. Therefore,
the system uses the node _id suffix to denote a unique OM start-up
script location for each diskless node assigned to the partner.

At startup, if the partner does not have a 'node_data directory set
up for the diskless node, netman creates one, copying it from a
template stored in the partner's 'node_data directory. The netman
program then copies the partner node's OM start-up script file into
the diskless node's 'node_data directory. If you want the newly
created script to perform different operations at startup than its
partner, edit the script.

A major difference between the disked node and diskless node
start-up sequence is the step where the OM or SPM searches for
the node's OM start-up script. Figure 3-4 summarizes this search.

Understanding Startup and Login . 3-13

Netman creates
node data. node Id
copies the script to it.
then instructs the OM
or SPM to execute the
start-up script

Figure 3-4. The Start-up Script Search Sequence

Understanding the System at Login

Once a node is up and running, you are ready to log in. At login,
the system executes a series of scripts that set up the working envi­
ronment for your log-in session. This section describes the se­
quence of steps the system performs at login. This section also ex­
plains how to create and modify scripts to tailor your log-in envi­
ronment. Figure 3-5 shows the log-in sequence for a node.

3-14 Understanding Startup and Login

Figure 3-5. The Log-In Sequence

The descriptions that follow explain each step in the log-in se­
quence shown in Figure 3-5.

Understanding Startup and Login 3-15

1. After you enter your usemame and password, the operat­
ing system verifies your account.

The system verifies your account by checking the site reg­
istry. If the usemame and password match a valid account
in the registry, the system executes the next step. If the
system cannot verify the account, the log-in attempt fails,
and the system displays a log-in error message in the DM
output window: For more information about user accounts
and registries, see Managing BSD System Software.

2. The DM sets your home directory from your account entry
in the registry and looks there for a .environ file. If found,
the DM sets the environment and then the SYSTYPE vari­
able; otherwise, the node defaults are used. The DM then
sets the variables SHELL, HOME, USER, LOGNAME,
PROJECT, ORGANIZATION, and TERM. If no SHELL
variable is specified in the registry entry, the node default
is used. Based on the environment, the DM loads base key
definitions, both std_keys. basic and either std_keys or
std_keys. unix.

3. The DM reads the file keLdefs_8bit3 (for nodes with
Low-Profile Model II keyboards), and key_defs_Sbit2
(for Low-Profile Model I keyboards). These files, located
in the user_data directory of your log-in home directory,
contain a record of any key definitions that you made the
last time you were logged in. By reading these files, the
DM carries over key definitions to the new log-in session.
These files are non-ASCII files; therefore, you cannot edit
them. The "Defining Keys" section in Chapter 4 describes
the key definition files in more detail.

4. The DM (on nodes with displays) executes the node's
log-in start-up script, which resides in one of the files
listed in Table 3-2. As shown in Table 3-2, the system
chooses which log-in start-up file to execute according to
the type of node you are using. Note that on DSPs, the
SPM does not execute a log-in start-up script.

The DM looks for log-in start-up scripts in two different
locations. First, it looks in 'node data, which refers to the
node's specific Isys/node_data directory. (By default, no
log-in start-up script exists in 'node_data; you must put
one there.) If the DM doesn't find the log-in start-up

3-16 Understanding Startup and Login

script in 'node_data, it executes one of the default log-in
start-up scripts that we supply in the directory Isys/dm.

Table 3-2. Node Log-In Start-Up Script Files

Node Type Log-In Start-Up Scripts

1024x800 (Landscape) startup_login. 191
D3xx, DN460, DNSSO, DNS60,
DNS70, DN3000 (Color),
DN3000 (IS-inch Black &
White), DN4000 (Color)

1280xl024 (Color Landscape) startup_login. 1280color
DNS80

1280xl024 (B & W Landscape) startup_login. 1280bw
DN3000 (19-inch Black &
White), DN4000 (19-inch Black
& White)

S. As shown in Figure 3-6, the command that creates the
log-in shell process is not commented out in the script.
You may leave it in, comment it out by preceding it with a
pound sign (#), or change it to draw the process's windows
in a different location. The DM executes the login sh
command. The login_sh command executes your log:'in
shell based on the current value of SHELL, as set by the
DM.

startup-,ogln (the per_login startup file In 'node_data or Isys/dm

main shell whose shape Is generally agreeable to users of this node

(O,300)dr: (700,700)cp Isys/dmllogln_sh

and the user's private dm command file from his home

directory's user_data sub-directory. Personal key_defs file Is also

kept In user_data by OM.

cmdf user_data/startup_dm.1280bw

Figure 3-6. A Sample DM Log-In Start-Up Script

Understanding Startup and Login 3-17

This log-in shell looks for a shell log-in script in your
home directory. If this script exists, the shell executes it to
set up your initial shell environment. The C shell looks for
a script named ",I. login (the C shell also executes a script
named ",I.cshrc; see Chapter 8 for more information
about this script). The Bourne shell and the Korn shell
look for a script named ",I. profile (see Chapters 9 and
10).

6. At this point, the log-in sequence is complete.

You may want to create a DM log-in start-up script in 'node_data
in cases where you don't want the DM to execute the default ver­
sion. For example, a diskless node, by default, uses one of the
log-in start-up scripts located in its partner's Isys/dm directory. If
you want the diskless node to execute its own unique DM log-in
start-up script, you can create a copy in the diskless node's
'node_data directory. For more information about 'node_data for
diskless nodes, refer back to the "Diskless Node Startup" section.

The system uses log-in start-up scripts to start processes that you'll
need while you are logged in to your node. The log-in start-up
scripts contain commands to execute a log-in shell, and to run
your personal DM start-up script. For example, the log-in start­
up scripts that we supply for nodes with displays create a process
running the shell program. When you log out, the DM stops the
shell process and deletes its pads and windows from the display.

If you wish to execute certain commands or processes once, when
you log in, then you should create a ",I. profile or ",I. login file
containing the commands. This file is only executed by a log-in
shell. If you have commands that you wish to execute every time
you start a new shell, you should create an additional shell start-up
file. For more information about shell start-up files, see Chapters
7, 8, 9, and 10.

The last line in the sample script shown in Figure 3-6 contains the
DM command cmdf (command file). This command invokes an­
other script, startup_dm.1280bw. The DM attempts to execute
this additional script as part of the log-in sequence.

3-18 Understanding Startup and Login

If no pound sign precedes the emdf command line, the OM looks
in the user_data subdirectory of your log-in home directory for the
specified file. If the OM finds the file, it executes the script; other­
wise, it displays an error message in the OM output window when
the log-in sequence completes.

This script, called the DM start-up script, is an optional script that
you create to execute additional OM commands during login. For
example, you may want to include commands that make specific
key definitions or run specific programs. Figure 3-7 shows a sample
DM start-up script.

user_data/startup_dm (In login home directory)
Some personal preference keys:

Define < F4 > and < F5 > for easy Pascal Indenting and undentlng:

kd F4 t1 ;s/% " ke
kd F5 t1 ;s/%1 1 ke

Set tab every 8 spaces:

ts 8 -r

Set window default location
(O,770)dr;(600,110) wdf1

Build a Korn shen window

(O,500)dr; (799,955) cp Ibln/ksh -DENV=-I.kshrc

Figure 3-7. A Sample DM Start-Up Script

Remember, we don't suppl~ a OM start-up script or a shell log-in
script as part of the system; if you want to use a OM start-up script
or a shell log-in script, you must create one. If you do create a OM
start-up script, remember to create a file that has the same file­
name as the file specified with the emdf command. For example,
the cmdf command in Figure 3-6, specifies the filename
startup_dm.1280bw. The suffix 1280bw is the suffix for files used
by nodes with 19-inch monochromatic landscape displays, like the
ON3000.

Understanding Startup and Login 3-19

Logging In

This section describes the various log-in procedures you can use to
log in as user, change your password, home directory, default shell,
and user information. It also explains how to log in to a Domain
Server Processor (DSP) and how to log in over a dialup line.

Logging In to a Default Account

The registry file account, described earlier in the "Understanding
the System at Login" section, contains a default account named
user. none. none, or simply user. This default account allows any
user anywhere in the network to log in to an Apollo node.

To use the default account, log in with the username user:

login: user

NOTE: Your system administrator may have
added a password to this account. In this
case, ask him or her about it.

Changing Your Password

You can change your password anytime after you log in by using the
passwd (change log-in password) command as follows:

% passwd username

The passwd command prompts for the old password and then for
the new one. For verification purposes, you are asked to type the
new password twice.

Use the new password the next time you log in. If you want to
maintain a secure account, avoid using obvious passwords such as
anyone's name or your initials. In addition, it is best to select a
password that is at least six characters long. If security is not a high
priority, you can use a blank password. (Note, however, that blank
passwords destroy system security.)

3-20 Understanding Startup and Login

The passwd command first writes to the registry; then, the system
builds the /etc/passwd file from the information supplied to the
registry. Only the owner of the account or the super-user may
change a password. The super-user does not need to know the
password in order to change it; anyone else does.

Changing Your Home Directory

Each system account has a directory associated with it, called the
home directory. Anytime you log in, the system sets your initial
working directory to your home directory. You can change your
home directory by using edrgy (edit registry) command as follows:

% /etc/edrgy
edrgy => change username -h new...pathname
edrgy => quit

When you enter the pathname of your new home directory, the
system attempts to update the account in your site registry direc­
tory. The registry database contains information about your ac­
count, such as your username, password, and home directory. By
updating the registry, the system stores your new home directory for
logging in later. See Managing BSD System Software for more in­
formation about system registries; see Managing BSD System Soft­
ware for more information about the edrgy command.

Changing Your Default Log-In Shell

You can change your default shell after logging in by specifying the
chsh (change shell) command using the following format:

% chsh username

Unless you are the super-user, the new log-in shell must be one of
the approved shells listed in the /etc/shells file. If /etc/shells does­
n't exist on your node, the only shells that may be specified are
/bin/sh, /bin/csh, /bin/ksh, and /corn/sh (assuming that you have
a /com directory on your node). The super-user may change any­
one's log-in shell; other users may only change their own log-in
shell.

Understanding Startup and Login 3-21

Changing Your User Information

Information concerning your username is kept in the /etc/passwd
file. On Domain/OS systems, the /etc/passwd file is a typed file that
is generated by the registry daemon automatically. If user informa­
tion in your registry has not been made read-only, it is possible to
change your full name. To do this, you must execute the chfn
(change password file information) command as follows:

% chfn username

Unless you are the super-user, you may only change your own user­
name.

Logging In to a Domain Server Processor (DSP)

Unlike user nodes, a Domain Server Processor (DSP) doesn't have
a keyboard or display. Therefore, you must log in to it from a user
node in the network.

As described earlier in the "Disked Node Startup" section, when
you start up a DSP, the system starts a program called the Server
Process Manager (SPM). The SPM makes it possible for you to
create a process on the DSP, log into the process, and execute pro­
grams and commands, all while you sit at a user node in the net­
work. For a complete description of the procedure for logging into
a DSP, see the Owner's Guide for your particular processor.

Logging In Over a Dialup Line

When logging in over a dialup line, the process is somewhat differ­
ent from that mentioned earlier in this chapter. Figure 3-8 illus­
trates this process.

NOTE: If, after you get carrier, the login prompt
appears scrambled, it is likely that the
baud rate on your terminal is incorrect.
To correct this, try pressing <RETURN>
once or twice. If this fails, send a
"break" from your terminal; this will
force a baud rate change.

3-22 Understanding Startup and Login

Figure 3-8. Login Over a Dialup Line

Understanding Startup and Login 3-23

Chapter 4
Using the Display Manager

By default, the Display Manager (DM) is the window manager
program that controls your node's display. Using DM commands,
you cart instruct the DM to perform specific display management
operations, such as: moving the cursor around the display, creating
and controlling processes, creating and manipulating pads and win­
dows, and modifying display characteristics.

This chapter explains the functions of the DM and describes how to
specify DM commands. It also describes how to define keys to per­
form DM operations. Chapter 5 describes how to use the DM to
perform specific display-management tasks.

Using DM Commands

DM commands enable you to control your node's display by in­
structing the DM to perform specific display management opera­
tions. To use a DM command, you normally perform two basic
steps:

1. Move the cursor to the spot on the display where you want
the DM operation performed.

2. Specify a DM command to execute the operation.

Using the Display Manager 4-1

You indicate a spot on the display either by moving the cursor to
the desired spot, or by explicitly defining a point on the screen as a
command argument. If you don't perform a pointing operation us­
ing either method, the DM executes the command at the current
cursor position.

Some DM commands require you to define an area, or region, on
the screen instead of a single point. You define the size of a region
by defining two points on the screen; one point specifies the upper
left comer, and the other specifies the lower right comer. The re­
gion is simply the area between the two points. The .. Defining
Points and Regions" section describes how to define points and re­
gions.

To specify a DM command interactively:

1. Press <CMD> to move the cursor next to the "Com­
mand:" prompt in the DM input pad. (The DM remem­
bers where the cursor came from so it can apply the next
command to that point.)

2. Type the command along with any arguments or options.

3. Press <RETURN> to invoke the command.

Use this procedure to specify commands interactively from your
keyboard. You can also specify commands in special DM programs,
called scripts. When you invoke a DM script, the DM reads and
executes DM commands in the order you specify them. The "Using
DM Command Scripts" section describes how to use DM scripts.

The method you use to define a point depends on the DM com­
mand you use, and how you use it. When you specify a command
interactively, you usually move the cursor to the desired point; in
scripts, you specify a point explicitly as a command argument. Fig­
ure 4-1 illustrates the interactive procedure for invoking the wc
(window close) command to delete a window.

4-2 Using the Display Manager

Figure 4-1. Invoking a DM Command Interactively

You can also invoke DM commands interactively using DM func­
tion keys and control key sequences. The "Using Keys to Perform
DM Functions" section describes how to use these keys to perform
DM functions.

DM Command Conventions

DM commands have the following general format:

[region] command [arguments ...] [options ...]

Separate the components of a command with the proper command
line delimiters, as follows:

• Separate an argument from a command and any addi­
tional arguments or options with at least one blank space.

• Precede each option with a hyphen (-). Separate each op­
tion from commands, arguments. or any additional options
with at least one blank space.

Using the Display Manager 4-3

• If you precede the command with a region, make sure you
use the correct syntax to define each point (see the section
"Specifying Points on the Display"). You can place multi­
ple blanks before and after the region, although they are
not required.

• You can string multiple commands together on the same
line by separating each command with a semicolon (;) as
shown below:

pt;tt;tl

This command sequence executes three separate com­
mands to move the cursor to the first character in a pad.

Using DM Special Characters

When you use commands in scripts and key definitions, you can
use several special characters that control how the OM interprets
commands. The following describes the rules for using these spe­
cial characters:

@ The escape character (@) always nullifies the meaning of
any special character (e.g., the input request character) it
precedes. When the OM reads a command line containing
the escape character, it strips off the @ character, and any
special meaning of the character following it.

If you can't remember whether a character has some spe­
cial meaning, it is safe to escape the character. If the
character is not special, the OM still removes the @, so the
character appears as it should. Character escaping is gen­
erally confined to search and substitute operations (see
Chapter 5), commands requiring quoted strings, and key
definitions.

When the OM reads the pound sign (#) in a OM script, it
ignores the information on the remainder of the line. Use
this character to add comments to your OM script or to
prevent the execution of a line in the script.

Use the semicolon (;) to separate commands that you
specify on the same line.

4-4 Using the Display Manager

& The input request character (&) enables you to supply
keyboard input from the OM input pad to a command in a
key definition or script. When the OM reads the &, it
stops reading commands and moves the cursor to the OM
input pad. When you enter input (usually a command
argument), the OM replaces the & character with the
specified input and continues reading commands. You can
also specify a prompt in the form

& 'prompt'

to display a prompt in the OM input pad that requests the
proper input.

Like the & character, the kd, es, cp, cpo, and cps commands ac­
cept strings surrounded by single quotes. When you use single
quotes, the only characters in the quoted string that retain their
special meaning are @ and &; all other characters revert to their
literal values. Note, however, that the kd (key definition) com­
mand does not recognize single quotes within the definition string.

Defining Points and Regions

As noted earlier, you may specify the location for a OM operation
by using either the cursor or an explicit coordinate list.

If you use the cursor, remember that it actually occupies many indi­
vidual screen points. When you use the cursor to point to a spot on
the screen, the lower left-hand corner of the block cursor desig­
nates the exact point. (When you point to the upper edge or right
edge of a window, the OM adjusts the point position to account for
the size of the cursor. See the "Creating Pads and Windows" sec­
tion in Chapter 5 for more information on how the OM defines win­
dow boundaries.)

Specifying Points on the Display

If you choose not to point with the cursor, you can explicitly define
a point or pair of points (a region) using any of the point formats
described below. Note that some formats define points in pads, and
others define points on the display as a whole. You normally define
points in pads when performing the pad editing operations de­
scribed in Chapter 6.

Using the Display Manager 4-5

line-number

Specifies a line location in a pad. Line numbers begin at 1
and increase moving toward the last line in the pad. To re­
fer to the last line in a pad, you may specify a dollar sign
($). The edit pad window legend displays the line number
of the top line in a window. You can also display the line
number (plus the column number, and x- and y-coordi­
nates) of the current cursor position by using the D1\1 com­
mand =.

+/- n

Specifies a line location in a pad that is n lines before (-)
or after (+) the current cursor position.

[line-number] [,column-number]]

Specifies a point in a pad by line and column number. The
DM assumes the current line if you omit line-number; it
assumes column 1 if you omit column-number. Line num­
bers range from 1 to the last line in the pad. Column num­
bers range from 1 to 256. Some examples are:

[127,14)

[53]

[,12]

Line 127, column 14.

Line 53, column 1.

Column 12 of the current line.

Note that you must use the outer set of square brackets;
however, when you specify line-number only, the brackets
are optional. When using this format, you cannot use the
dollar sign ($) to specify the last line in a pad; you must
specify the number of the last line.

/regular-expression/ or \regular-expression\

Specifies a string in a pad that begins or ends a specific re­
gion. Chapter 6 describes regular expressions.

4-6 Using the Display Manager

([x-coordinate] [,y-coordinate])

Specifies a point on the display by screen coordinates.
Screen coordinates indicate bit positions on the display.
The origin 0,0 is at the extreme upper-left comer of the
screen. Table 4-1 shows the ranges for coordinate values.

Table 4-1. Ranges for Coordinate Values

Display Type x-coordinate y-coordinate

1024x800 o to 1023 o to 799

1280x1024 (landscape) o to 1279 o to 1023

800x1024 (portrait) o to 799 o to 1023

1024x1024 (square) o to 1023 o to 1023

If you omit either coordinate from the specification, the
DM uses the coordinates of the cursor. You must enclose
the coordinates in parentheses. Some examples are:

(200,450)

(135)

(,730)

Bit position with an x-coordinate of
200 and a y-coordinate of 450.

Bit position with an x-coordinate of 135
and the same y-coordinate as the
current cursor position.

Bit position with the same x-co­
ordinate as the current cursor position,
and a y-coordinate of 730.

When you specify any of the formats described above in the DM
input pad, the DM moves the cursor to the specified position. For
example, to move the cursor to line 75, column 5 in an edit pad,
specify the following in the DM input pad:

Command: [75,5]

Using the Display Manager 4-7

You can also use any of the formats for defining points to define a
region on the display. To define a region, you must define two
points as follows:

[point] dr; [point]

The first point defines the beginning of the region and the dr com­
mand marks it. The second command defines the end of the re­
gion. When defining a two-dimensional region, the first point de­
fines one comer, and the second point defines the opposite comer
as shown in Figure 4-2.

Figure 4-2. Defining a Display Region

When you define a region, if you don't specify a second position,
the DM uses the current cursor position.

Like defining a single point, an easy way to define a region is to
point with the cursor. Press <MARK> to invoke the dr command,
which marks the first point. To define a region using the cursor:

1. Move the cursor to the first point.

2. Press <MARK>.

4-8 Using the Display Manager

3. Move the cursor to the second point.

4. Specify the DM command.

For a complete description of the DM commands used to control
marks, see the Domain Display Manager Command Reference.

For commands that require a region in which to operate, you have
the option of specifying the region as part of the command. The cv
(create view) command, shown below, creates a read-only pad and
window. It uses a region to define the size and location of the win­
dow it creates.

Command: (350,200) dr; (700,600)

I
region

cv report_file

~
command

Using Keys to Perform DM Functions

You can also perform display management operations using keys,
called function keys, that we've defined as specific DM commands.
When you press a function key, it invokes its assigned DM com­
mand or command sequence.

By default, many keys perform DM operations when pressed simul­
taneously with <CTRL>. Like function keys, these key combina­
tions, called control key sequences, provide you with a "short­
hand" method of specifying commands.

Domain/OS predefined function keys and control key sequences
enable you to execute commonly performed operations. For ex­
ample, the directional keys described in Chapter 5 are predefined
keys that you'll use routinely to move the cursor.

We've also defined the mouse's function keys to perform three use­
ful DM operations. Table 4-2 describes the default mouse key
functions.

Using the Display Manager 4-9

Table 4-2. Default Mouse Key Functions

Mouse Key Function

Left Key (M 1) Performs a GROW/MARK operation to
change the size of windows. See
Chapter 5 for details on using the left
mouse key to change the size of a
window.

Center Key (M2) Works just like <POP>. To use it,
move the cursor inside the window you
want to pop, then press the key. See
Chapter 5 for more information.

Right Key (M3) Lets you read files whose names ap-
pear in the pad (any full or relative
pathname also works). This key exe-
cutes the cv command with the name
of the file you indicate with the cur-
sor. To use this key, position the
cursor over any part of the name of
the file you want to read, and then
press the key.

Keyboard Types and Key Definitions

Domain/OS supports two basic types of keyboards:

• Low-Profile keyboards

• Multinational keyboard

Low-Profile keyboards (shown in Figure 4-3) include the Low­
Profile Model I keyboard and the Low-Profile Model II keyboard.
Notice that the key layout for both of these keyboards is the same
except that the Model II keyboard has a numeric keypad and two
additional function keys, FO and F9.

4-10 Using the Display Manager

Figure 4-3. Key Names for the Low-Profile Keyboards

Using the Display Manager 4-11

The Multinational keyboard is a Low-Profile Model II keyboard
adapted to international standards. The Multinational keyboard has
seven additional keys that impose a slightly different overall ar­
rangement, as well as some different key labels. Each national ver­
sion of the Multinational keyboard has the same physical layout.
See Appendix B for information on the predefined keys of the Mul­
tinational keyboard.

European characters do not appear on the standard North Ameri­
can keyboards, and only a subset appears on the various models of
the Multinational keyboards. You can create and display European
characters in the Latin-l character set that do not appear on your
keyboard, by using the Domain/OS compose function. See Appen­
dix F for information about the compose function.

The system stores the definitions for its predefined keys in a key­
board-specific definition file. Table 4-3 lists the names of the defi­
nition file for each keyboard.

Table 4-3. Key Definition Filenames

Keyboard Key Definition File

Low-Profile Model I /sys/dm/std_keys2

Low-Profile Model II /sys/dm/std_keys3

Multinational Keyboard /sys/dm/std_keys3x

(x is a letter from a-g)

The assigned key definitions for the Multinational keyboard are
stored in a keyboard-specific definition file, /sys/dm/std_keys3x,
where x is a letter from a to g representing the following:

a
b
c
d
e
f
g

Germany
France
Norway/Denmark
Sweden/Finland
United Kingdom
(Reserved for future use)
Switzerland

4-12 Using the Display Manager

All command files listed in Table 4-3 contain a line invoking the
standard Domain/OS key definition file, Isys/dm/std_keys. basic.
(In addition, the Multinational keyboard key definitions invoke the
file Isys/dm/std_keys.mn). If your environment is set to either
BSD or SysV, the Isys/dm/std_keys.unix file is automatically in­
voked when you log in. This file overwrites some of the standard
key definitions to provide necessary UNIX functions.

The UNIX key definitions file includes commands that bind various
keys to certain version-specific (or shell-specific) features. Chap­
ter 2 describes which keys are redefined when the keyboard is
remapped to std_keys.unix. You can also define your own func­
tion keys and control key sequences by assigning commands to spe­
cific key names. But, before you can define keys, you must under­
stand how they are named. The following sections describe key
naming conventions and describe how to define keys.

Key Naming Conventions

The DM identifies each key on your keyboard (and mouse) by a
unique name. The names of the ordinary character keys (letters
and numbers) have the same name as the characters they repre­
sent. For example, the A key has the name" A". Other keys, like
the DM function keys, have special names that are different than
the names written on them. <READ>, for example, has the name
"R2". Figure 4-3 shows the names and locations of the keys on
both the low-profile type keyboards.

For instance, the <CUT>I<COPY> function key (LlA) performs a
different function when you use it with <SHIFT>. The name L1A
identifies the key's normal function (when you press the key
down). The name L1AS, the key's shifted name, identifies the
key's function when pressed along with <SHIFT>. The key's up­
transition name, LIAU, identifies the function that the key per­
forms when it goes up. The name L1AC, the key's control key
sequence name, identifies the function when pressed along with
<CTRL>.

NOTE: The names of the Multinational numeric
keypad keys differ from those found on
the standard Low-Profile Model II key­
pad keys. Appendix B provides further
detail on the Multinational keyboard.

Using the Display Manager 4-13

When defining a key as a command or sequence of commands, you
use the same name that the DM uses to identify the key. Some
keys, like the DM and program function keys, function differently
depending on how you use them. Therefore, each of these keys has
a set of additional names that identify the manner in which the key
is used.

Table 4-4 describes the key naming conventions you should use
when defining keys.

Table 4-4. Key Naming Conventions

Key Type Description

Ordinary Have the same name as the numbers and let-
Characters ters they represent. You can assign functions to

lowercase letters and numbers, capital letters,
and special characters. When specifying ordi-
nary characters, enclose in single quotes (' ').

ASCII Standard line control keys named:
Control

CR Carriage Return
BS Back Space
TAB Tab
TABS Shifted Tab
ATAB Control Tab
ESC Escape (Low-Profile)
DEL Delete (Low-Profile)

Control Ordinary character or program function keys
Key used with <CTRL>. Specify a control key

name as AX (where x is an ordinary character
or program function key name). For example,
use Ay for CTRLlY or AF4 for CTRLlF4 or
F4C.

(Continued)

4-14 Using the Display Manager

Table 4-4. Key Naming Conventions (Cont.)

Key Type Description

Program Reserved for user program control. They ap-
Function pear at the top of the keyboard and are

named Fi-F8 as labeled. (For Low-Profile
Model II keyboards, these keys are named
FO-F9.) Their up-transition names are FOU-
F9U; their shifted names are FOS-F9S; and
their control key names are AFO-AF9 (or
FOC-F9C.

Numeric Only available on Low-Profile Model II key-
Keypad board and the Multinational keyboard. The

keypad's numeric keys are named NPO-NP9.
The ENTER key is named NPE. Low-Profile
Model II keypad symbols are named NP+,
NP-, and NP respectively. Keys 0-9, plus (+),
and minus (-) can have shifted names (e.g.,
NP+S), up-transition names, and control key
names.

Mouse Located on the optional mouse. Named Ml,
M2, and M3; up-transition names are MiU,
M2U, M3U. Can have shifted and control key
names (e.g., M1S, M1C).

DeiIning Keys

As we described earlier, Domain/OS provides a set of default func­
tion keys and control key sequences defined as DM commands.
You can override these definitions or create new ones in either of
the following ways:

• Specify the kd (key definition) command from the key­
board or in a script.

• Call the system routine pad_SdeCpfk from a program.

If you wish to redefine your keys, we suggest you look in the direc­
tory Idomain_examples/keydefs. This directory contains some
sample key definitions which you may find useful.

Using the Display Manager 4-15

When you define keys with the kd command during a session on
your node, the DM writes the new definitions to one of the follow­
ing files:

• key_defs_8bit2 for the Low-Profile Model I keyboard

• key_defs_8bit3 for the Low-Profile Model II keyboard

• key_defs_8bii3 ior the Muitinationai keyboard

These files reside in the user_data subdirectory of your log-in
home directory (see Chapter 3); they apply only to you, not to
other node users. The DM checks these files whenever you log in,
and sets your personal definitions to reset any of the standard key
definitions set up by /sys/dm/std_keys(n) (see Table 4-3).

Definitions made from within a program override those made by kd
commands; however, they work only within the program's process
window. Therefore, keys defined from a program may function dif­
ferently in different windows. "Controlling Keys from Within a Pro­
gram" describes how programs control key functions.

To define a key from the keyboard or from a script, specify the kd
command in the following format:

kd key_name definition ke

In the kd command format, key_name specifies the unique name of
the key you want to define. The previous section describes key
naming conventions, and Figure 4-3 shows the location and names
of keys. Remember, always enclose ordinary character and special
character names in single quotes. For example, to define the Z key,
specify 'Z'.

The definition argument specifies either a single DM command or a
sequence of DM commands that the desired key will perform. (The
Domain Display Manager Command Reference describes all of the
DM commands you can use in key definitions.) When you specify
a sequence of commands, either specify each command on a new
line (in scripts) or separate each command with a semicolon (;).
Always follow the definition argument with the ke argument, which
signals the end of the kd command.

4-16 Using the Display Manager

The command in this example defines the program function key,
Fl, to move the cursor to the end of the previous line in a window:

~L!l~
command key_name definition

The definition argument in the example above specifies a command
sequence composed of two commands: au, which moves the cursor
up to the previous line, and tr, which moves the cursor to the end
of the line. You can specify any number of commands, but you
cannot exceed 256 characters in the entire kd command.

You can embed key definitions inside other key definitions, and
thereby define keys that define other keys. The embedded key
definition follows the same rules as any other key definition; how­
ever, you must precede the semicolon (;) with an escape character
(@) to separate the embedded kd command from the next com­
mand. The following example shows an embedded key definition:

kd F3 es 'This is a test' ke@; pv ke
I

I
embedded key definition

This command defines the F3 key to perform the following opera­
tions when pressed:

• Define CTRLlX to print out the string, "This is a test."
(The embedded key definition specifies this function.)

• Invoke the pv (pad vertical) command to scroll the cur­
rent pad one line. (Chapter 5 describes the pv command.)

The DM scans embedded key definitions three times when:

1. It makes the outer key definition.

2. It executes the outer key definition and makes the inner
key definition.

3. It executes the inner key definition.

Using the Display Manager 4-17

To define a key that prompts you for input, specify as part of the
definition argument, the input request character (&) as follows:

&'prompt'

where prompt specifies the prompt string. The input request charac­
ter and prompt cause the DM to prompt for part of the definition
argument you specified in the key definition. For example,
<READ> (R3) has the following default key definition:

kd R3 cv @&'read file:' ke

When you press <READ>, the DM displays a prompt, "read file: ..
in the DM input pad and moves the cursor next to it. When you
respond by typing the name of a file and pressing <RETURN>, the
DM replaces &read file: from the key definition with your re­
sponse. Thus, the cv (create view) command opens the file you
specify.

NOTE: When you define keys in scripts, you
must precede the input request character
(&) with the escape. character (@). Make
sure that you do not include tab charac­
ters in DM commands.

When you enter a response to a prompt, the DM remembers the
response you typed. The next time you press the key, the DM
automatically displays the previous response next to the prompt.
(This is why the <READ> and <EDIT> keys remember the last files
used.) You can either move the cursor to the right of the previous
response and press <RETURN> to enter the response, or delete the
previous response and enter a new one.

Deleting Key Definitions

To delete a key definition, specify the kd command without a defi­
nition argument. For example:

kd F1 ke

4-18 Using the Display Manager

deletes the current definition for the key named Fl. For keys with
ordinary character names, the key reverts to its normal graphic
value.

Displaying Key Definitions

To display a key's current definition, specify the kd command with­
out the definition or ke arguments. The current key definition is
displayed in the OM output window. The command in the follow­
ing example displays the definition for the READ key (R3):

kd R3

Controlling Keys from Within a Program

Domain/OS enables application programs to assume control of vari­
ous display and keyboard functions. For example, the character
font editor, edfont (edit font), displays several different menus on
your screen that you control with your mouse keys (M 1 through
M3). When used, the edfont program defines how these keys func­
tion; the keys do not maintain their normal OM definitions. The
OM restores the mouse keys to their normal OM definitions when
you end your edfont session. The Domain Display Manager Com­
mand Reference describes the edfont character font editor.

For your own applications, you can control key definitions through
program calls to the pad_SdeCpfk and pad_Sdm_cmd routines.
For more information on these system routines, refer to the pad
routines section of the Domain/OS Calls Reference.

You may find the normal functions of the OM keys useful even
when using an application program that has redefined them. With
<HOLD>, you can temporarily override the application program's
key definitions and use the normal OM definitions.

To override an application program's key definitions, press
<HOLD>. By pressing <HOLD> again, you restore the application
program's key definitions. Note that this function of <HOLD> is
different from the normal OM function of switching a window in
and out of hold mode (see Chapter 5).

Using the Display Manager 4-19

Using DM Command Scripts

A DM script is a file that contains one or several DM commands.
You can use DM scripts to perform any of the DM operations de­
scribed in this manual, such as creating and controlling processes,
manipulating pads and windows, editing files, and defining keys.

You execute scripts by specifying the name of the script file with the
DM command emdf (command file) as follows:

emdf file

Make sure that you do not include tab characters in DM com­
mands. The start-up scripts discussed in Chapter 3 are examples of
DM command scripts that the system uses to set up your node's
operating environment. In fact, your node's log-in start-up script
uses the emdf command to invoke the DM start-up script that you
create.

----88----

4-20 Using the Display Manager

Chapter 5

Controlling the Display

This chapter describes how to use the OM to control your node's
display. Each section describes a set of related screen-management
tasks and the OM commands you use to perform them.

You can execute a OM command either from a OM script or inter­
actively by specifying the command in the OM input window. In
some cases, you can also execute a OM command by typing a func­
tion key or control key sequence.

The command summary tables, at the beginning of each section, list
the OM commands, and related function keys and control key se­
quences, used to perform a specific set of tasks. The predefined
control keys that appear in this chapter are the UNIX keys.

Chapter 4 explains how to specify OM commands from the key­
board and from scripts, and how to use function keys and control
key sequences. For a complete description of all the OM com­
mands described in this chapter, refer to the Domain Display Man­
ager Command Reference.

Controlling the Display 5-1

Controlling Cursor Movement

Moving the cursor is the most basic of all display management op­
erations; it's also the one you'll perform most frequently. You use
the cursor to move to a location on the display where you want to
perform a specific operation. For example, you can move the cur­
sor to point to the location where you want a DM command to
operate, or you can move the cursor into the OM input window to
type the name of a command.

This section summarizes the OM commands and control key se­
quences used to control cursor movement. Table 5-1 lists the com­
mands used to control the cursor. It also shows the predefined di­
rectional keys on low-profile keyboards.

NOTE: In this command summary table, the
symbols enclosed in parentheses are the
unique OM keynames. Refer to Chapter
4 for more information on key names
and defining keys. This note applies to all
command summary tables in this chapter.

5-2 Controlling the Display

Table 5-1. Cursor Control Commands

Task DM Command Predefined Key

Move left one character al - (LA)

Move right one character ar - (LC)

Move up one line au t (L8)

Move down one line ad ! (LE)

Set arrow key scale
factors

as x y None

Move to the beginning
of line

tl I- (L4)

Move to end of line tr -+I (L6)

Move to top line in tt SHIFT! m window
(LDS)

Move to bottom line in
window tb SHIFT! m

(LFS)

Tab to window borders twb [I. r. t. b] None

Move to the beginning ad; tl CTRLlK
of next line

Tab left thl CTRLI<TAB>

Tab right th TABS

Set tabs ts [n1 n2 ...] None

Move to DM input pad tdm <CMD> (LS)

Move to next window on tn <NEXT WNDW>
screen (LB)

Move to next window in ti None
which input is enabled

Move to previous window tlw CTRLI""

Controlling the Display 5-3

Crea ting Processes

When you execute a program on an Apollo node, you run it in a
computing environment called a process. Each process that you
create is unique, providing a separate computing environment.
Since Domain/OS enables you to create multiple processes on your
node, you can run several programs simultaneously. You can create
and run up to 56 simultaneous processes.

The system associates each process that you create with a subject
identifier (SID). The SID identifies the owner of a process and
consists of the user's name, group, and organization. SIOs enable
the system to control user access to processes and other objects on
the system. Chapter 14 describes how the system uses SIOs and
Access Control Lists (ACLs) to control access to system objects. By
default, the system assigns the same SID to each process that you
create.

You can create processes that have pads and windows that let you
enter data and view program output. Or, you can create processes
that run without the use of the display. The type of process you
create depends on the program and its application.

To run an interactive program, for example, you create a process
with pads and windows. The shell programs that we supply with
your system are interactive programs. Each shell that you invoke
prompts you for input (shell commands) and displays output.

We also supply a set of special programs called daemons that pro­
vide you, or a program, with access to some service, such as the use
of a peripheral device. These daemons run in processes called serv­
ers that you can create using any of the process creation commands
described in this chapter. Many of these servers run as background
processes without pads or windows.

Table 5-2 summarizes the commands used to create processes.

5-4 Controlling the Display

Table 5-2. Commands for Creating Processes

Task DM Command Predefined Key

Create new process, cp command None
pads, and windows

Create new process cpo command None
without pads or windows

Create a server process cps command None

Creating a Process with Pads and Windows

To create a process with input and output pads and windows to view
these pads, use the cp (create process) command in the following
format:

[region] cp [options] command [arguments]

The region argument specifies the coordinates of the process win­
dow and command specifies the pathname of the program you want
the process to execute. The process pads and windows that the cp
command creates enable you to supply input to programs and view
program output.

The command in the following example creates a process that exe­
cutes an interactive program called counter. The program prompts
for program input and displays its output to the process's transcript
pad.

cp -n counter Ihorace/progs/counter

The -n option assigns the process the name counter. When
counter completes (or if you stop the program or process), the in­
put and transcript pads close. To delete the remaining process win­
dow, press <EXIT>. Note that in this example, since no region is
specified, the OM uses its default window coordinates to create the
window. (See the "Defining Default Window Positions" section
later in this chapter.)

Controlling the Display 5-5

One process that you'll create frequently is a process that runs a
shell program that we supply. You can create a process running
your default shell by pressing <SHELL>. You can also run a spe­
cific shell by typing the cp command with the appropriate pathname
at the DM prompt. For example, to run a Bourne shell, type the
following:

Command: co Ihin/sh

This command creates an input pad and a transcript pad, and
opens the input pad as standard input. (Standard input is where,
by default, a program gets user input.) Figure 5-1 shows a process
running the Bourne shell.

Figure 5-1. A Process Running the Bourne Shell

To stop both the Bourne shell program and its process, press the
end-of-file (EOF) key CTRLlD in the shell's process input pad. To
close all the windows associated with the shell's process, press
<EXIT>. The section "Controlling A Process" describes how to
stop programs and processes. The section "Closing Pads and Win­
dows" describes how to close windows.

5-6 Controlling the Display

In many cases it is desireable to run a script for each new pad. This
can be done by defining the ENV variable as follows in the OM
input window:

Command: cp Ibin/sh -DENV= I.shrc

This will cause the script .shrc in the user home directory to be run
when the shell starts up. It is important, however, to reset or unset
the ENV variable at the end of the script. This will prevent the shell
created in this pad from rerunning the script later on.

Creating a Process without Pads and Windows

To create a background process without associated pads and win­
dows, specify the cpo (create process only) command in the follow­
ing format:

cpo command [options]

The command argument specifies the pathname of the file that you
want the process to execute.

When you invoke the cpo command, the system assigns the created
process the SID of the process that invoked the cpo command. The
created process runs until the owner of the process logs out.

Suppose you wanted to create a process running the alarm server
program to monitor your disk usage, and to warn you when your
disk becomes 90% full. To create the process and start the alarm
server, specify the following command:

cpo Isys/alarm/alarm_server -disk 90

In this example, the alarm server runs as a background process on
your node. When you log out, the process is killed. Managing BSD
System Software provides detailed information about the alarm
server and other servers.

Controlling the Display 5-7

If you include the cpo command in the DM start-up script,
'node_data/startup, the system assigns the created process the SID
user. server. none. In this case, the created process continues to
run regardless of who logs in or out. You can perform this same
function by executing the cps command from the DM input win­
dow.

Creating a Daemon (Server Process)

You can create a daemon (server process) without pads and win­
dows that runs continually on your node by specifying the cps (cre­
ate process server) command in the following format:

cps command [options]

The command argument specifies the pathname of the program you
want the process to execute.

Use the cps command when you want to create a server that has an
SID of user.server.none and runs regardless of whether anyone is
logged in. For example, the following command starts the mailbox
server mbx_helper:

cps /sys/mbx/mbx_helper -n mbx_helper

In the example above, the -n option assigns the process the name
mbx_helper.

You can invoke cps commands from your node's DM start-up
script (startup). (Chapter 3 describes the start-up script files the
system uses when you start your node.) You can also invoke the
cps command from the DM input window.

Controlling a Process

Once you create a process, you can use the DM's process control
commands to stop, suspend, or restart it. Table 5-3 summarizes the
DM commands used to control processes, and the predefined
UNIX keys for those commands.

5-8 Controlling the Display

Table 5-3. Commands for Controlling a Process

Task DM Command Predefined Key

Quit a process dq -c 9010003 CTRL/\
(abnormal termination)

Interrupt a running dq -i CTRLlC
process (normal
termination)

Stop or blast a process dq [-sl-b n] None

Suspend execution of a dq -c 120028 CTRLlZ
process

Resume execution of a dc None
suspended process

Interrupting and Stopping a Process

To interrupt a process, position the cursor inside the window of the
associated process and use the dq (debug quit) command in the
following format:

dq -i

Using the -i option generates an interrupt signal to the running
process. This causes normal termination of the current process and
returns the process to the caIling program (usually the shell). It
produces the same effect as using CTRLlC.

To stop a process, causing abnormal priority termination, position
the cursor inside the window of the process and specify the dq com­
mand without any options. This is equivalent to typing CTRL/\.

To stop the current process and close any open streams, files, and
pads, specify the following DM command:

dq -s

Controlling the Display 5-9

To delete the remaining window, move the cursor inside the win­
dow and press <EXIT>.

If you want to end a UNIX shell process, move the cursor to the
shell's process input window and press the end-of-file (EOF) key,
CTRLlD. Typing CTRLlD in the shell's process input window sig­
nals the completion of input and usually stops both the shell and the
process. You may find this method easier than using dq -so

Suspending and Resuming a Process

You can temporarily suspend a process and then restart it using the
ds (debug suspend) and dc (debug continue) commands.

To suspend a process, position the cursor inside the process win­
dow; then specify the ds command. Later, to restart the process,
position the cursor inside the process window and specify the dc
command.

Although these DM commands may be helpful, you may find it
more convenient and appropriate to use the job control feature
available in the C shell (see Chapter 8 for further detail).

Creating Pads and Windows

To read or edit a file, you must create a pad to hold it and a win­
dow to view it. Table 5-4 lists the DM commands and predefined
keys used to create pads and windows for editing and reading files.

Table 5-4. Commands for Creating Pads and Windows

Task DM Command Predefined Key

Create an edit pad and
window

ce file <EDIT> (R4)

Create a read-only window cv file <READ> (R3)

Create a copy of an
existing pad and window

cc None

5-10 Controlling the Display

Before you can use the commands that create pads and windows,
you should understand just how the DM determines what bounda­
ries to assign to a new window.

When a window's size or position on the screen is changed in any
way, the DM calculates the new boundaries of the window based on
a pair of points on the screen called a point pair. (Usually, you
define the first point in the pair with the dr command, and the
second point by the current cursor position. You may also provide
absolute point coordinates as described in the "Defining Points and
Regions" section in Chapter 4.)

Each point in a point pair may specify either a new or existing edge
of a window, or a new or existing corner of a window. The DM
creates a new window based on the relationship between the x- and
y-coordinates of the two points.

DM Rules for Defining Window Boundaries

The relationship between the two points in the point pair affects the
actions of the DM window-creation commands, cp, ce, CV, cc, and
the window-movement commands, wm, wme, wg, and wge (see
the "Managing Windows" section). The list below shows how the
DM defines window boundaries according to the points given for
window-creation and window-movement commands.

For points that differ in both x- and y-coordinates:

Create

Move

Each set of coordinates form opposing corners
of the window.

The first point selects the nearest unobscured
corner (this corner must be visible) and the
DM repositions the corner at the second
point.

For points that are equal:

Create

Move

Create a 512 by 512 window centered as
nearly as possible to the given cursor position.

Select unobscured corner nearest the given
point, and move the corner to that point.

Controlling the Display 5-11

For points that have equal y-coordil'\ates:

Create

Move

Create a window bounded by the given x­
coordinates, the top of the display, and the
DM command window. In other words, create
a full vertical window.

Select the un obscured vertical edge nearest to
the first point and change the x-coordinate of
that edge to that of the second point.

For points that have equal x-coordinates:

Create

Move

Create a window bounded by the given y­
coordinates and each side of the display. In
other words, create a full horizontal window.

Select the unobscured horizontal edge nearest
to the first point, and change the y-coordinate
of that edge to that of the second point.

When only one point is given (no dr is specified):

Create

Move

The DM uses one of its five default window
regions (see the "Defining Default Window
Positions" section), or it determines the posi­
tion by the last window creation or deletion
command as follows:

• If the last command was window deletion
(wc) , the default region is the same as
that for the deleted window.

• If the last command was a successful win­
dow-creation command, the default re­
gion is the next t,hird of the screen

• If the last command was an unsuccessful
window-creation command, the default
region is the same as that specified in the
unsuccessful command.

Grow is illegal; move acts as if both points are
equal.

5,.;.12 Controlling the Display

Creating an Edit Pad and Window

To create an edit pad and window, specify the ce (create edit) com­
mand in the following format:

[region] ce file

The file argument specifies the name of the file you want to edit. If
the file you specify exists, the ce command opens the file for edit­
ing. If the file does not exist, the ce command creates a new file,
assigns it the pathname you specified, and opens it for editing. Note
that the ce command does not create a process; it opens a file for
editing within the current DM process.

Once you create an edit pad, you can use the DM edit commands
to manipulate the text that appears on the pad. Chapter 6 describes
how to use the DM edit commands to edit pads.

You can also create an edit pad and window using <EDIT>. When
you press <EDIT>, an "edit file: " prompt appears in the DM input
window, and the DM moves the cursor next to the prompt. To edit
a specific file, type the file's pathname next to the prompt (as
shown in Figure 5-2), and press <RETURN>.

Figure 5-2. Creating an Edit Pad and Window

Controlling the Display 5-13

Creating a Read-Only Pad and Window

A read-only pad and window is identical to an edit pad and window
with one exception: you cannot make changes to a read-only pad;
you can only read it. (Note, however, that you can copy text from a
read-only pad.)

To create a read-only pad and window, specify the Cv (create view)
command in the following format:

[region] cv file

The file argument specifies the name of the file you want to read. If
the file you specify exists, the cv command opens the file and dis­
plays its contents. If the file does not exist, the DM displays the
following error message:

(cv) filename - Name not found

Note that the cv command does not create a process; it opens a file
for reading within the current DM process.

If the file you want to read is currently active in another window,
you can create another new pad and window to read it. You can­
not, however, edit a file while anyone else on the network has it
open for editing.

On occasion, you may create a read-only pad and window and
decide that you would like to make changes to the file. Instead of
creating a new edit pad and window for the file, you can specify the
DM command, ro (set read/write mode), to change the read-only
pad to an edit pad. Chapter 6 describes how to use the ro com­
mand to set a pad's read/write mode.

You can also create a read-only pad and window using <READ>.
For a description of how to use <READ>, see Chapter 4.

5-14 Controlling the Display

Copying a Pad and Window

With the cc (create copy) command, you can create a copy of an
existing pad and window and display it at a specific area on the
screen. Figure 5-3 illustrates how to use the cc command to copy a
pad and window.

Figure 5-3. Copying a Pad and Window

The numbers in Figure 5-3 correspond to the following steps:

1. Mark opposite comers of the new window. To mark each
comer: first move the cursor to the point on the screen
where you want the comer to appear, then either press
<MARK> or specify the dr command. (Chapter 4 de­
scribes how to use dr <MARK> to mark regions on the
display.)

2. Move the cursor inside the window you want to copy.

3. Specify the cc command.

This procedure creates a copy of the pad and window and displays
it at the location on the screen that you marked. If you issue the cc
command without marking the display region, the DM determines
the location according to the rules described earlier in the "Creat­
ing Pads and Windows" section.

Controlling the Display 5-15

Closing Pads and Windows

When you finish reading or editing a pad, you can close the pad
and window using any of the commands listed in Table 5-5.

Table 5-5, Commands for Closing Pads and Windows

Task DM Command Predefined Key

Close window and pad; pw; wc-q <EXIT> (R5)
update file

Close window and pad; wc -q <ABORT> (R5S)
no update

Close (delete) a window wc [-ql-f] None

To delete (quit) a read-only or edit pad and associated windows,
position the cursor inside the window and press <ABORT> or spec­
ify the following command:

we -q

The -q option causes we to delete the pad and window without
saving the contents of the pad. If you modified the edit pad, you'll
receive the following message in the DM input window asking you
to confirm your request to quit:

File Modified. OK to quit?

If you respond by typing y or yes followed by <RETURN>, the we
command deletes the pad and window without saving the contents
of the pad. If you respond n or no, the system ignores the quit
request and returns the cursor to the edit pad.

5-16 Controlling the Display

If you modify an edit pad and want to save its contents (write its
contents to a file), press <EXIT> or specify the pw command with­
out any arguments.

The pw (pad write) command copies the edited pad to a file that
has the same name as the original file. The system saves the con­
tents of the original pad in a file with the same name and the added
suffix .bak. Once you've saved the pad, use we to close the edit
window.

Managing Windows

Window control commands enable you to change the size, position,
and characteristics of windows on the screen. You can use window
control commands to manage edit pad windows, or process win­
dows. Table 5-6 summarizes the window control commands.

Controlling the Display 5-17

Table 5-6. Co;"mands for Managing Windows

Task DM Command Predefined Key

Change window size wg None

Change window size with
rubberbanding

wge <GROW> (LA3)

Move a window wm None

Move a window with wme <MOVE> (LA3S)
rubberbanding

Set scroll mode ws [-on I-off] None

Set autohold mode wa [-on I-off] None

Scroll and autoholf wa; ws CTRLlA
mode

Set hold mode wh <HOLD> (R6)

wh -on CTRLlS

wh -off CTRLlQ

Define position of wdf [n] None
default windown

Acknowledge alarm aa None

Acknowledge alarm and ap None
pop window

Changing Window Size

Once you create a window on your screen, you can enlarge or
shrink it with the wge (window grow echo) command.

5-18 Controlling the Display

As shown in Figure 5-4. the wge command displays a flexible bor­
der. or rubberband. that changes as you move the cursor to enlarge
or shrink the window. The rubberband shows you the size and
shape the window will become when you complete the operation.

Figure 5-4. Growing a Window Using Rubberbanding

Use the following procedure to change the size of a window:

1. Move the cursor to the window corner or edge you want to
move.

2. Press <GROW> or specify the wge command. A rubber­
band border appears.

3. Move the cursor to stretch or shrink the rubberband until
the rubberband matches the new size you want for the
window.

4. Either press <MARK> or specify the dr command to com­
plete the operation.

Controlling the Display 5-19

To cancel the procedure at any time, press CTRLlX or specify the
abrt command.

If you have a mouse, you can change the size of'a window by using
the left mouse key. To use the mouse to change the size of a win­
dow, perform the following procedure:

1. Move the cursor to the window corner or edge you want to
move.

2. Press and hold the left mouse key. A rubberband border
appears.

3. Holding the left key down, move the cursor to grow or
shrink the window.

4. When the rubberband matches the new size you want for
the window, release the left mouse key.

Moving a Window

To move a window to another location on the display, use the wme
(window move echo) command. The wme command, like the wge
command, uses a rubberband border to show you the exact position
the new window wiIl occupy.

Use the following procedure to ,move a window:

1. Move the cursor to any corner of the window you want to
move.

2. Press <MOVE> or specify the wme command. A rubber­
band border appears.

3. Move the cursor until the rubberband is at the new win­
,dow position.

4. Either press <MARK> or specify the dr;echo command
sequence to complete the operation.

To cancel the procedure at any time, press CTRLlX or specify the
abrt command.

5-20 Controlling the Display

Pushing and Popping Windows

As you create multiple windows on your screen, you may begin to
stack windows one on top of another. Some windows will partially
obscure or completely hide others. To view hidden windows, use
the wp (window pop) command in the following format:

wp [options 1 [window_name 1

The wp command either pops a window to the top of the stack or
pushes a window to the bottom of the stack, depending on where
you position the cursor. Figure 5-5 illustrates how to push and pop
windows.

Figure 5-5 Pushing and Popping Windows

If you position the cursor in a partially obscured window, the wp
command pops the window to the top of the stack. If you position
the cursor in a completely visible window (the window on top), wp
pushes the window to the bottom of the stack.

Controlling the Display 5-21

Use the following procedure to push or pop windows:

1. Position the cursor inside the window you want to push or
pop.

2. Pop or push the window by either pressing <POP> (on
low-profile type keyboards only), specifying the wp com­
mand.

You can also refer to a window you want to push or pop by specify­
ing the name of the window. To specify a window name, either
enter it as an argument to the wp command, or point to window
name as follows:

1. Use the cursor to point to a text string that contains the
name of the window you want to push or pop.

2. Press <MARK>, or specify dr to mark the window name.

3. Specify the wp command.

This second method is useful when you're displaying a list of all
windows that you currently have open (see the description of the
cpb command in the .. Displaying the Members of a Window
Group" section later in this chapter).

Changing Process Window Modes

The DM provides several modes that control how the DM inserts
text into process input windows, and how process transcript win­
dows display program output. Table 5-7 describes these modes.

You control window modes by positioning the cursor inside the
process window and specifying window mode control commands. If
you specify a command without any options, the command toggles
the mode setting (turns it on or off depending on its current state).

5-22 Controlling the Display

Table 5-7. Process Window Modes

Mode Description

Insert Insert text in the input window rather than
overstrike

Scroll Output scrolls one line at a time.

Hold Content of the window does not change when the
program sends output to the pad.

Autohold Window automatically enters hold mode.

The window legend at the top of the process window displays a
letter code that indicates which modes are on. Figure 5-6 shows the
mode indicators and other components that make up the process
window legend.

Process Window Legend

Process Name

Figure 5-6. Process Window Legend

By default, the window legend displays the letter I to show that the
process input window is in insert mode. In insert mode, the DM
inserts characters you type at the current cursor position. The re­
mainder of the line moves to the right to make room for new char­
acters.

With insert mode turned off, the process input window is in over­
strike mode, in which characters you type replace those under the
cursor.

Controlling the Display 5-23

To turn insert mode on or off. specify the ei command in the fol­
lowing format:

ei [-on I -off]

If you do not specify an option. ei toggles the current mode.

To turn scroll mode on or off. specify the ws (window scroll) com­
mand in the following format:

ws [-on I -off]

With scroll mode turned on. the window displays output one line at
a time as the transcript pad moves beneath the window. With scroll
mode turned off. output does not appear a line at a time. Instead.
when the program finishes sending output to the transcript pad. the
window automatically displays the end of the pad and any new out­
put.

Initially. all transcript pad windows have scroll mode turned on.
The window legend at the top of the window displays the letter S
when scroll mode is on.

To turn hold mode on or off. specify the wh (window hold) com­
mand in the following format:

wh [-on I -off]

When you turn hold mode on. the DM freezes the position of the
transcript pad beneath the window. The window will not display
new program output until you release the pad by turning hold mode
off. When you turn hold mode off again. the window automatically
displays the end of the transcript pad and any new program output.

Initially. all transcript pad windows have hold mode turned off.
With hold mode turned off. the window automatically displays new
output as the pad moves beneath it. The window legend displays the
letter H when hold mode is on. You can also turn hold mode on or
off by pressing <HOLD>. or by pressing CTRLlS (hold mode on)
and CTRLlQ (hold mode off).

5-24 Controlling the Display

To turn autohold mode on or off, specify the wa (window
autohold) command in the following format:

wa [-on I -off]

With autohold mode turned on, the window automatically turns
hold mode on under either of the following conditions:

• A full window of output is available and none of it has
been displayed.

• A form feed or create frame operation is output to the
pad. In this case, the window displays the output preceding
the form feed. When the window exits from hold mode,
the output following the form feed or create frame opera­
tion starts at the top of the window.

To continue displaying output, turn hold mode off.

Initially, all transcript pad windows have autohold mode turned off.
The window legend contains an A when autohold mode is on. You
can also turn autohold mode on or off by pressing CTRLlA (which
invokes the commands wa;ws).

Defining Default Window Positions

The DM uses default window positions to determine where to dis­
play the first five windows you create. To define any of the DM's
five default window positions, specify the wdf (window default)
command in the following format:

[region] wdf [n]

The region argument specifies the position that the window will oc­
cupy on the screen (see the "Specifying Points on the Display" sec­
tion in Chapter 4), and n specifies the indentification number of the
default window you are defining. If you omit n, the wdf command
causes the DM to discard any current window information and be­
gin creating windows using its default window boundaries.

The command in the following example defines the window position
for default window four. Note the format of the region definition.

Controlling the Display 5-25

(0,770) dr; (600,110) wdf 4
I I

region

If you want to use your own default positions for each log-in ses­
sion, include wdf commands in your OM start-up script
(startup_dm). Once you've defined your default window positions,
you should add the command wdf;cms. This command instructs
the OM to use the first wdf command to set up the default position
for the first window you create. Otherwise, the OM uses the last
wdf command in your script to determine the default position of
the first window you create. For more information on OM start-up
scripts, see "Understanding the System at Login" in Chapter 3.

Responding to DM Alarms

Whenever the OM writes output to a partially obscured or hidden
window, it sounds an alarm and displays a small pair of bells in the
alarm window. To respond to an alarm, specify either the aa or ap
commands.

The aa command acknowledges the OM alarm by turning off the
current alarm and enabling further alarms (which may already be
waiting).

The ap command acknowledges the OM alarm and pops to the top
of the stack, the window to which the alarm pertains. This com­
mand is particularly useful when the window is completely hidden,
and you can't point to it.

Moving Pads Under Windows

The OM pad control commands enable you to move a pad under a
window. Table 5-8 summarizes the pad control commands.

5-26 Controlling the Display

Table 5-8. Commands for Moving Pads

Task DM Command Predefined Key

Move top of pad into pt None
window

Move cursor to first pt;tt;tl CTRLIT
character in pad

Move bottom of pad into pb None
window

Move cursor to last pb;tb;tr CTRLlB character in pad

Move pad n pages pp [-]n []IT]
(LD. LF)

Move pad n lines pv [-] n SHIFT! t
(L8S)

SHIFT! !
(LES)

Move pad n characters ph [-]n ElB
(L7. L9)

Save transcript pad in a pn None
file

Moving to the Top or Bottom of a Pad

Two DM commands enable you to move from the current position
in a pad to the top or bottom of a pad. The pt (pad top) command
moves the top line of a pad to the top of the current window. The
pb (pad bottom) command moves the bottom line of a pad to the
bottom of the current window. Neither command accepts argu­
ments or options.

We also provide two predefined control key sequences that perform
the same functions as the pt and pb commands; they also move the
cursor to either the first or last character in the pad. To move the
cursor to the first character in the pad. press CTRLlT (defined as

Controlling the Display 5-27

the command sequence pb;tt;tl). To move the cursor to the last
character in the pad, press CTRLlB (defined as the command se­
quence, pb;tb;tr).

Scrolling a Pad Vertically

You can scroll a pad up or down by a specified number of lines or
pages using the vertical scroll commands or associated function
keys. To scroll a pad by pages, specify the pp (pad page) command
in the following format:

pp [-]n

The n argument specifies the number (or fraction) of pages you
want to scroll. A positive n (n) scrolls the pad up n pages; a nega­
tive n (-n) scrolls the pad down n pages. The DM considers a page
the smaller of the following values:

• The number of lines that fit in a window.

• The number of lines between the bottom of the window
and the next form feed or frame.

The command in the following example scrolls the pad down one
and one-half pages: .

pp -1.5

We also provide two predefined keys that scroll a pad either up or
down one-half page at a time. Figure 5-7 shows the location of
these keys.

5-28 Controlling the Display

~~I@fl
~~~ 
~~~ 
~~~ 

8~B 

Figure 5-7. Location of Pad Scroll Keys 

To scroll a pad by lines. specify the pv (pad line) command in the 
following format: 

pv [-]n 

The n argument specifies the number of lines you want to scroll. A 
positive ri (n) scrolls the pad up n lines; a negative n (-n) scrolls the 
pad down n lines. 

You can also use the two predefined function keys shown in Figure 
5-7 to scroll a pad either up or down one line at a time. To scroll 
one line at a time. press <SHIFT> and the pad scroll key simultane­
ously. 

Scrolling a Pad Horizontally 

To scroll a pad horizontally by a specified number of characters. 
use the ph (pad horizontal) command or its associated function 
keys. The ph command has the following format: 

ph [-]n 

Controlling the Display 5-29 



The n argument specifies the number of characters you want to 
scroll. A positive n (n) scrolls the pad to the left n characters; a 
negative n (-n) scrolls the pad to the right n characters. 

You can also use two predefined function keys to scroll a pad either 
right or left 10 characters. Figure 5-7 shows the location of these 
keys. 

Saving a Transcript Pad in a File 

Normally, the OM deletes a transcript pad when you stop the pad's 
process and delete all windows. To keep a log of the current tran­
script pad and save the log in a file, specify the pn (pad name) 
command in the following format: 

pn file 

The file argument specifies the name of the file where the OM 
saves the contents of the pad. You must specify a file on your node; 
you cannot use a name cataloged on another node. 

The pn command stores the current transcript pad in a file that 
remains opened and locked until you stop the process and delete all 
windows. Once you specify the pn command, the OM saves all cur­
rent and subsequent output written to the pad. 

Using Window Groups and Window Icons 

The OM provides several commands that enable you to create win­
dow groups, make these groups invisible, or use icons to represent 
them. Table 5-9 summarizes the commands used to control window 
groups and icons. 

5-30 Controlling the Display 



Table 5-9. Commands for Controlling Window 
Groups and Icons 

Task DM Command Predefined Key 

Create or add to a wgra grp _name None 
window group [entry_name] 

Remove a window from wgrr grp _name None 
a window group [entry_name] 

Make windows invisible wi [entry_name] None 

Change windows to icon SHIFT/<POP> 
icons [entry_name] (RIS) 

[options] 

Set icon positioning idf None 
and offset 

Display list of windows cpb grp_name None 
in group 

Creating and Adding to Window Groups 

When you create a window group, you establish a group name and 
assign windows to the group. You can then make the window group 
invisible or represent the group with icons by specifying the group 
name. Groups can contain individual windows, as well as other 
groups of windows. 

To create a window group or add a window to an existing group, 
specify the wgra (window group add) command in the following 
format: 

wgra group_name [entry_name] 

The group _name argument specifies the name of the group you 
want to create or add to, and entry_name specifies the name of the 
window or window group you want to add. For process windows, 
entry_name specifies the process name that appears in the window 
legend; for edit pad windows, entry_name specifies the pathname 
that appears in the window legend. 

Controlling the Display 5-31 



You must specify the group_name argument when you use this com­
mand. If you omit the entry_name argument, wgra uses the name 
of the window where you last positioned the cursor. 

The commands in the following example create a window group: 

wgra shell windows padO 1 
wgra shelC windows pad02 
wgra shell_windows pad03 

The first command creates a window group named shell_windows 
and adds the window named padOl to the group. The remaining 
commands add additional windows (pad02 and pad03) to the 
shell_windows group. 

Removing Entries from Window Groups 

To remove an entry (window or window group) from a window 
group, specify the wgrr (window group remove) command in the 
following format: 

wgrr group_name [entry_name] 

The group_name argument specifies the name of the group that 
contains the entry you want to remove, and entry_name specifies 
the window name or window group name you want to remove. You 
must specify the group_name argument when you use this com­
mand. If you omit the entry_name argument, wgrr uses the path­
name of the window where you last positioned the cursor. 

The command in the following example removes a window named 
padOl from the group named shell_windows: 

wgrr shell_windows padOl 

5-32 Controlling the Display 



Making Windows Invisible 

To control whether a window or window group is visible or invisible, 
specify the wi (window invisible) command in the following format: 

wi [entry_name] [-w] [-i] 

The entry_name argument specifies the name of the window or win­
dow group you want to make visible or invisible. If you omit the 
entry_name argument, wi uses the pathname of the window where 
you last positioned the cursor. 

The -w option forces the window or group to appear as a window; 
the -i option forces the window or group to become invisible. If you 
specify the wi command without either of these options, wi toggles 
the setting (makes the window or group visible or invisible, which­
ever is the opposite of its current state). 

The command in the next example makes the window group 
shell_windows invisible: 

wi shell_windows -i 

Using Icons 

You use icons to represent a window or group of windows on your 
display. Because icons are small, they enable you to keep windows 
and window groups easily accessible without having them open on 
the display. 

Icons are very similar to the windows they represent. For example, 
you can move icons with the wme command (see the "Moving a 
Window" section discussed earlier), or you can set the position on 
the screen where icons will appear by default. You cannot, how­
ever, change the size of an icon on the display. 

The DM displays an icon as a small window containing a specific 
icon symbol. The icon symbol describes the type of information the 
related window or group contains. Figure 5-8 shows the default 
icon for shell process windows. 

Controlling the Display 5-33 



Figure 5-8. Default Icon for Shell Process Windows 

To change a window or window group into an icon, or to change an 
icon into the window or group it represents, use the predefined key 
SHIFT/<POP> or specify the icon command as follows: 

icon [entry_name] [-i] [-w] [-c 'char'] 

The entry_name argument specifies the name of the window or win­
dow group you want to change into an icon, or change back into a 
window. If you specify the name of a window group as the entry 
name, the icon command changes each window in the group. If you 
omit the entry_name argument, icon uses the window where you 
last positioned the cursor. 

The -w option forces the specified window or window group to ap­
pear as a window; the -i option forces the specified window or 
group to change to an icon. If you specify the icon command with­
out either of these options, icon toggles the setting (changes the 
window or group to the opposite of its current state). The easiest 
way to change individual windows and icons is to position the cursor 
inside the window or icon and specify the icon command. 

The icon command also accepts the -c option that allows you to 
specify which icon you want to use. Before we look at an example, 
let's look at how the system uses icons, and where it stores them. 

The system uses certain default icons that we supply to represent 
specific types of windows. For example, whenever you change a 
shell process window into an icon, the system, by default, uses the 

5-34 Controlling the Display 



icon shown in Figure 5-8. Similarly, the system uses a special edit 
icon to represent read/edit windows. Many application programs 
that we supply also represent their specific process windows with 
their own specific default icons. 

The system stores default icons in a font file, /sys/dm/fonts/icons. 
(This file is not an ASCII file; you cannot read it.) You can exam­
ine this file by using the edfont (edit font) program described in the 
Domain Display Manager Command Reference. Use edfont to cre­
ate your own icons or change those the system uses by default. 

Each icon in the font file icons is associated with a specific key­
board character. For example, the default shell icon is associated 
with the lowercase s character. When you create an icon, you first 
choose a character, and then use edfont to transform the character 
into an icon symbol. (This is how we created the default icons that 
the system and various application programs use.) To use your own 
icon once you've created it, specify its associated character name 
with the -c option. 

The -c option allows you to specify the character associated with 
the icon you want to use. For example, suppose you used edfont to 
create your own icon associated with the uppercase F character in 
the icons file. To use this icon to represent the read/edit window 
june_report, use the following command: 

icon june_report -i -c 'F' 

In this example, the icon command directs the OM to change the 
read/edit window june_report into an icon. Normally, the OM uses 
the default icon for read/edit windows. The -c option directs the 
OM to use· the icon that is associated with the character F in the file 
/sys/dm/fonts/icons instead of the default read/edit icon. 

Setting Icon Default Position and Offset 

The OM allows you to set the position of an icon on your screen 
and specify an offset that the OM uses to determine the positions 
of the next icons you create. The offset value specifies the position 
of new windows relative to the position of the previous icon. 

Controlling the Display 5-35 



By default, the DM displays icons in a vertical line along the right 
side of landscape displays. The default offset is the width of one 
icon (60 bits), vertically for landscape displays. 

With the idf (icon default) command, you can change the default 
positioning and offset of an icon, or to establish the position of an 
icon you create in a script. You can use the idf command in any of 
the following ways: 

• Move the cursor to the desired default icon position. Press 
<MARK> or specify the dr command to mark the posi­
tion. Specify the idf command to set the new position. 
Since you did not specify an offset value, the DM places 
any new icons that you create at this one position. 

• Move the cursor to the desired default icon position. Press 
<MARK> or specify the dr command to mark the posi­
tion. Move the cursor to indicate the offset vector for the 
next icon. Specify the idf command to set the new position 
and offset. 

• Specify the icon position and offset explicitly in the follow­
ing command line format: 

(position) dr; (offset) idf 

The position argument specifies the x- and y-coordinates 
of the icon position and offset specifies the coordinates of 
the offset vector. For example, the following command 
line sets an icon position and offset: 

(800,10) dr; (850,60) idf 

This command sets the position for the first icon at bit 
position (800,10). The next icon will appear at bit position 
(850,60), an offset of (50,50) from the original position. 
Refer to "Defining Points and Regions" in Chapter 4 for 
further information. 

Displaying the Members of a Window Group 

To display a list of windows in a specific group, use the cpb (create 
paste buffer) command in the following format: 

5-36 Controlling the Display 



cpb group_name 

The group_name argument specifies the name of the window group 
you want to list. The group_name refers to a paste buffer that 
contains the names of the windows in the group. The cpb command 
creates a window to the paste buffer you specify as the group_name 
and displays the paste buffer's contents. For example: 

This command displays the names of all the windows in the window 
group mYJroup. A paste buffer named my_group contains these 
window names. 

The DM automatically creates three special paste buffers to help 
you manage your windows and icons. Table 5-10 describes these 
paste buffers. 

To list the contents of one of these special paste buffers, specify the 
cpb command with the special group_name as follows: 

cpb invis_group 

This command opens the paste buffer invis_group that contains 
the names of all the windows you've made invisible. 

Table 5-10. Window Paste Buffers 

Mode Description 

invis_group Contains the pathnames of all the windows 
that you've made invisible. 

icon_group Contains the pathnames of all the windows 
represented by icons. 

allJroup Contains the pathname of every window open 
on your node, including: shell J'rocess win-
dows, DM windows, viSible an invisible 
windows, and windows represented by icons. 

----88----

Controlling the Display 5-37 





Chapter 6 
Editing a Pad 

Chapter 5 describes how to create pads and windows to read and 
edit files. This chapter describes how to use the OM to control the 
characteristics of edit pads, and how to edit text. 

Each section in this chapter describes a set of editing tasks and the 
OM commands you use to perform them. You can execute a OM 
command either from a OM script or interactively by specifying the 
command in the OM input window. In many cases, you can exe­
cute a OM editing command by typing a function key or control key 
sequence. 

The command summary tables at the beginning of each section list 
the OM commands, related function keys, and control key se­
quences used to perform a specific set of editing tasks. Note that 
the predefined keys listed in these tables apply only to low-profile 
keyboards. 

Chapter 4 explains how to specify OM commands from the key­
board and from scripts, and how to use function keys and control 
key sequences. For a complete description of all the OM editing 
commands described in this chapter, refer to the Domain Display 
Manager Command Reference. 

Editing a Pad 6-1 



Setting Edit Pad Modes 

All edit pads are controlled by a very important feature of the OM: 
the modes in which the OM currently operates. The modes deter­
mine whether you can make changes to the material in the pad, 
and whether the OM either inserts characters that you type or over­
strikes them. Table 6-1 summarizes the OM commands used to 
change edit pad modes. 

Table 6-1. Commands for Setting Edit Modes 

Task DM Command Predefined Key 

Set read/write mode ro [-on I-off] SHIFT/<AGAIN> 

Set insert/overstrike ei [-on I-off] <INS> (L1S) 
mode 

Figure 6-1 shows the window legend for edit pads. The edit pad 
window legend provides information about a window's characteris­
tics, such as the pathname of the file and current window modes. 
The edit pad window legend also displays the line number of the 
line at the top of the window and the horizontal offset (column 
number), which indicates the number of columns the wincJow has 
been scrolled sideways over the pad. The horizontal offset number 
appears only when you scroll the window sideways over the pad. 

Edit Pad Window Legend 

Pathname Mode Indicators 
(Insert, readonly) 

Figure 6-1. The Edit Pad Window Legend 

6-2 Editing a Pad 



Setting ReadlWrite Mode 

Edit pads can be in read-only mode or write mode. In read-only 
mode, you cannot write to or make changes to the text in a pad. 
However, you can copy, search for, and scroll the text. In write 
mode, you can write to a pad and change text using all of the edit­
ing commands described in this chapter. 

When a pad is in read-only mode, the letter R appears in the win­
dow legend as shown in Figure 6-1. The R disappears in write 
mode. 

To turn read-only mode either on or off, specify the ro (set read 
only mode) command in the following format: 

ro [-on I -off] 

The -on option instructs ro to set the pad to read-only mode. The 
-off option causes ro to set the pad to write mode (Le., it turns 
read-only mode off). If you do not specify an option, the ro com­
mand toggles the current mode setting. 

If you've modified the text in a pad, you cannot change the pad to 
read-only mode without first writing the changes to a disk file (sav­
ing the file). The pw command, described in the "Updating an Edit 
File" section, allows you to write your changes to a disk file without 
closing the pad and window. 

Setting Insert/Overstrike Mode 

The DM has two modes to control how text is added to a pad: 
insert mode or overstrike mode. In insert mode, the DM inserts 
characters you type at the current cursor position. The remainder 
of the line moves right to make room for the new characters. 

In overstrike mode, characters you type replace, or "overstrike," 
those under the cursor. Overstrike mode is useful when you want to 
enter text into a pre formatted file without disrupting the file's for­
mat. 

Editing a Pad 6-3 



When a pad is in insert mode, the letter I appears in the window 
legend as shown in Figure 6-1. The I disappears in overstrike 
mode. All pads are initially in insert mode, although this is irrele­
vant if the pad is also read-only. 

To turn insert mode either on or off, specify the ei (set edit/over­
strike mode) command in the following format: 

ei [-on I -off] 

The -on option instructs ei to set the current pad to insert mode. 
The -off option causes ei to set the pad to overstrike mode (i.e., it 
turns insert mode off). If you do not specify an option, the ei com­
mand toggles the current mode. 

You can also toggle the current mode by pressing <INS>. This key 
invokes the ei command without options. 

Inserting Characters 

Any pad that is in write mode automatically accepts anything that 
you type at the keyboard as input to that pad. The commands listed 
in Table 6-2 perform special insertion functions. 

Table 6-2. Commands for Inserting Characters 

Task DM Command Predefined Key 

Insert string at cursor es 'string' Default DM 
operation 

Insert newline character en <RETURN> 

Insert tab character None <TAB> 

Insert new line after 
current line 

tr;en;t1 <F1> 

Insert raw (noecho) 
character 

er nn None 

Insert end-of-file mark eef CTRLlD 

6-4 Editing a Pad 



Inserting a Text String 

When a pad is in write mode, the DM inserts any text character you 
type at the current cursor position. This is the default Display Man­
ager action. If you try to type text into a read-only pad, the DM 
displays an error message in the DM output window. 

To insert a text string at the current cursor position, specify the es 
(edit string) command in the following format: 

es 'string' 

The 'string' argument is the text that you want to insert. Enclose 
the text in single quotes ("). 

The es command inserts a string of text at the current cursor posi­
tion. Since text insertion is the default action, you'll probably find 
this command most useful in key definition commands where you 
want some text written out when the key is pressed. Chapter 4 de­
scribes how to define keys to perform DM functions. 

Inserting a Newline Character 

The newline character marks the end of a line. To insert a newline 
character at the current cursor position, press <RETURN> or spec­
ify the en (edit newline) command. When you insert a newline 
character, the cursor moves to the beginning of the next line. 

Inserting a New Line 

To insert a new blank line following the current line, specify the 
following command sequence: 

tr;en;tl 

The tr (to right) command moves the cursor to the end of the line, 
en inserts (or overstrikes) a newline character, and tl (to left) 
moves the cursor to the beginning of the next line. 

By default, <Pi> invokes the tr;en;tl command sequence. 

Editing a Pad 6-5 



Inserting an End-of-File Mark 

To insert an end-of-file mark (EOF) in a pad, type CTRL/D or 
specify the eef (edit end-of-file) command. If the line containing 
the cursor is empty, the DM inserts the end-of-file mark on that 
line. Otherwise, the DM inserts the end-of-file mark following the 
current line. 

It is a common (although not universal) convention for programs to 
terminate execution and return to the process that called them 
when they receive an end-of-file mark on their standard input 
stream. 

Whether or not the DM also deletes the transcript window depends 
on the setting of its auto-close mode. If auto-close mode is dis­
abled (the default setting), then you must manually delete any win­
dows associated with the closed transcript pad by using the DM 
command line wc -q, or by pressing <ABORT> . 

Chapter 5 describes the we -q command line. See the we (window 
close) command description in the Domain Display Manager Com­
mand Reference for more information about auto-close mode. 

Deleting Text 

The commands listed in Table 6-3 delete characters, words, or 
lines of text. To delete a larger block of text, refer to the "Cutting 
Text" section. 

6-6 Editing a Pad 



Table 6-3. Commands for Deleting Text 

Task DM Command Predefined Key 

Delete character ed <CHAR DEL> 
at cursor (L3) 

Delete character ee <BACK SPACE> 
before cursor or <DELETE> 

Delete "word" dr;/[~ a-zO-9! $_]/xd <F6> of text 

Delete previous dr;\[~ @@t@@n]\; CTRLlW 
"word" [ @@t@@n]\; ar;xd 

Delete text from dr;tI;xd CTRLlU 
cursor to begin-
ning of line 

Delete from es ";ee;dr;tr;xd;t1;tr <F7> 
cursor to end 
of line 

Delete entire cms;tl;xd <LINE DEL> 
line (L2) 

Deleting Characters 

To delete a character under the cursor, press <CHAR DEL> or 
specify the ed (edit) command. If the character under the cursor is 
a newline, ed joins the current line and the following line. 

To delete a character left of the cursor, press <BACK SPACE> or 
<DELETE>, or specify the ee (edit erase) command. If the pad is 
in overstrike mode, the ee command replaces the character with a 
blank. <CHAR DEL>, <BACK SPACE>, and <DELETE> are re­
peat keys. You can repeat the operation by holding down the key. 

Deleting Words 

To delete a word of text at the current cursor position, press the 
predefined function key <F6>. In this case, a "word" consists of a 
string of characters that may include a tilde (~) in the first position 
of the word, and includes upper or lowercase letters, numbers, dol­
lar signs ($), or underscores C). The deletion stops at the next 

Editing a Pad 6-7 



space, punctuation mark, or special character (other than a dollar 
sign or underscore). Here are some examples of character strings 
that <F6> will delete: $file, my_file3, ""report. The <F6> function 
key invokes the command sequence 

dr;/[ ...... a-zO-9!- $_l/xd 

The DM writes the deleted word to its default paste buffer (a tem­
porary file). You can reinsert the word elsewhere by moving the 
cursor to the desired location and either pressing <PASTE> or 
specifying the xp (paste) command. For more about paste buffers 
and the xp command, see "Copying, Cutting, and Pasting Text". 

To delete text to the beginning of a line, use CTRL/U. To delete 
the previous word, use the CTRL/W control key sequence. 

Deleting Lines 

To delete text from the current cursor position to the end of the 
line (excluding the newline character), press the predefined func­
tion key <F7>. The <F7> key invokes this command sequence: 

es ' ';ee;dr;tr;xd;tl;tr 

The DM writes the deleted line to its default paste buffer. You can 
reinsert the line elsewhere by either pressing <PASTE> or specify­
ing the xp command. For more information about paste buffers 
and the xp command, see "Copying, Cutting, and Pasting Text". 

Defining a Range of Text 

The editing commands that perform cut (delete), copy, and substi­
tute functions operate on a range, or block, of text. Mark a range 
of text just as you would any other region in a pad (see "Defining 
Points and Regions" Chapter 4). However, you may not declare a 
range as an argument to an editing command. Use the dr (define 
region) command or <MARK> before using the editing command. 

To use dr to define a range of text, define two points as follows: 

[point] dr; [point] 

6-8 Editing a Pad 



The first point defines the beginning of the range, and the dr com­
mand marks it. The second point defines the end of the range. If 
you do not specify literal points, dr places the marks at the current 
cursor position. 

An easy way to define a range of text is to indicate a position with 
the cursor and use <MARK>, which invokes the dr and echo (text 
echo) commands that in turn mark the first point and begin high­
lighting the text. Figure 6-2 illustrates how the DM highlights the 
text as you move the cursor to the end of the range. 

To define a range of text using the cursor and <MARK>: 

1. Move the cursor to the first point (the beginning of the 
range of text). 

2. Press <MARK>. 

3. Move the cursor to the second point (end of the range). 

4. Specify the appropriate DM editing command. 

Please note that the character under the cursor at the end of the 
range is not included within the range. 

Figure 6-2. Defining a Range of Text with <MARK> 

Editing a Pad 6-9 



Copying, Cutting, and Pasting Text 

The commands listed in Table 6-4 copy, cut, and paste a range of 
text. They allow you to move blocks of text from one place to an­
other in a pad (or between pads). 

Before specifying the commands that copy or cut text, use the dr 
(define region) command or <MARK> to define the range of text 
to be copied or cut (see the previous section). If you do not define 
a range, the DM copies or cuts the text from the current cursor 
position to the end of the line. 

Table 6-4. Commands for Copying, Cutting, and Pasting Text 

Task DM Command Predefined Key 

Copy text to a xc [name I -f fi/e] [-r] <COpy> (UA) paste buffer or 
file 

Cut (delete) text xd [name I -f file] [-r] <CUT> (UAS) 
and write it to a 
paste buffer or 
file 

Paste (write) text xp [name I -f file] [-r] <PASTE> (L2A) 
from a paste 
buffer or file 
into a pad 

Using Paste Buffers 

To perform copy, cut, and paste operations, the DM uses tempo­
rary files called paste buffers. Paste buffers hold text you've copied 
or cut so th~t you can paste it in elsewhere. 

You can create up to 100 paste buffers, each containing different 
blocks of text. To create a paste buffer, you specify a name for the 
paste buffer as an argument to the commands that copy or cut text 

6-10 Editing a Pad 



(xc and xd). To insert the contents of a paste buffer you have 
created. specify the name of the paste buffer as an argument to the 
command that pastes text (xp). We describe the xc. xd. and xp 
commands in the following sections. 

When you log off. the OM deletes all paste buffers you have cre­
ated during the session. If you want to save the copied or cut text 
for use during another session. you can write it to a permanent file 
(see the xc and xd command descriptions in the following sec­
tions). 

If you do not specify the name of a paste buffer or permanent file 
when you specify the commands that copy or cut text. the OM 
writes the text to its default (unnamed) paste buffer. The OM 
also uses this default paste buffer when you press the predefined 
function keys and control key sequences that copy. delete. and 
paste text. 

Copying Text 

NOTE: In a paste buffer. the OM saves only the 
text copied or deleted during the last OM 
operation. Therefore. do not write any­
thing else to the paste buffer until you 
have reinserted its contents. Otherwise. 
you will lose the text you're attempting to 
move. 

To copy a defined range of text from any pad into a paste buffer or 
file. specify the xc (copy text) command in the following format: 

xc [name I -f file] [-r] 

The name argument specifies the name of a paste buffer that the 
OM creates to hold the copied text. The -f file option specifies the 
name of a permanent file for the text. For example. the following 
copies a defined range oftext into a paste buffer named copy_text: 

Editing a Pad 6-11 



6-12 

As another example. the following command line copies a defined 
range of text into a permanent file named copy_text: 

xc -f copy_text 

If you supply the name of an existing paste buffer or file. xc over­
writes its contents with the newly copied text. If you omit the name 
of a paste buffer or permanent file. xc writes the copied text to the 
default (unnamed) paste buffer. 

The -r option instructs xc to copy a rectangular block of text that 
you have defined by marking the upper left and lower right corners 
of a text region. To define the region. use the cursor and the dr 
command or <MARK> to specify the left corner. then move the 
cursor to specify the right corner. If you specify a column (the left 
and right corners in the same column). xc copies all characters to 
the right of the column. 

Figure 6-3 shows the two cursor positions used to mark the column. 
The dotted rectangle shows the block of text that the xc -r com­
mand line copies. (The dotted rectangle is only for the purpose of 
illustration; it does not appear on your display.) 

In classrooms and homes throughout the country. 
young children are happily hunting and pecking their way 
across computer keyboards as rapidly as many formally 
trained typists. 

The Impetus for this enthusiasm has nothing to do with 
typing skills; rather It Is due to the phenomenal 
attraction with whlc-J\ computers are grabbing the attention 
of children from age 5 on. To cite a few examples: 

c~pute7s ha:' -;;r::~-;h; Coila; B~d~t.IFor 
the first time In hlst9.rv. high schOOl student will 
be able to take a coll8Qe entrance examlnat on In 
computer science In 1984. 

I 

Figure 6-3. Copying Text with the xc -r Command 

Editing a Pad 



By default. <COpy> invokes the xc command using the default 
(unnamed) paste buffer. You must specify the xc command with 
the name argument or the -f file option if you want to copy text to 
a named paste buffer or permanent file. 

Once you have copied a range of text. you can use the xp com­
mand to paste the text in elsewhere (see "Pasting Text"). 

Copying a Display Image 

To copy a display image into a GMF. use the xi (copy image) com­
mand in the following format: 

xi [-f file] 

The -f file option specifies the name of the file you want to store 
the display image. If you omit the -f option. the system writes the 
image to the file 'node_data/paste_buffers/default.gmf. Once 
you copy the image to a file. you can print the file using the prf 
command with the -plot option as follows: 

prf my_file.gmf -plot 

To use the xi command. mark the range of the display you want to 
copy. If you do not specify a range. xi copies the entire window in 
which the cursor is positioned. (On a color node. the xi command 
only copies the text plane. not the full color image.) Note that if 
you want to copy the whole screen. use the shell command cpscr 
(copy screen). Chapter 11 describes the cpscr command. 

Cutting Text 

When you cut text from a pad. the DM copies the text into a paste 
buffer or file and then deletes it from the pad. To cut a defined 
range of text. specify the xd (cut text) command in the following 
format: 

xd [name I -f file] [-r] 

Editing a Pad 6-13 



The name argument specifies the name of a paste buffer that the 
DM creates to hold the deleted text. The -f file option specifies the 
name of a permanent file for the text. You can use this command 
only in pads created with <EDIT> or the ce (create edit) command. 

If you supply the name of an existing paste buffer or file, xd over­
writes its contents with the newly deleted text. If you omit the name 
of a paste buffer or permanent file, xd writes the deleted text to the 
default (unnamed) paste buffer. 

The -r option instructs xd to delete a rectangular block of text that 
you have defined by marking the upper left and lower right corners 
of a text region. To define the region, use the cursor and the dr 
command or <MARK> to specify the left corner, then move the 
cursor to specify the right corner. If you specify a column (the left 
and right corners in the same column), xd deletes all characters to 
the right of the column. 

By default, <CUT> invokes the xd command using the default (un­
named) paste buffer. You must specify the xd command with the 
name argument or the -f file option to write deleted text to a 
named paste buffer or permanent file, respectively. 

Once you have cut a range of text, you can use the xp command 
(described in the next section) to paste the text in elsewhere. 

Pasting Text 

To insert the contents of a paste buffer or file into a pad at the 
current cursor position, specify the xp (paste) command in the fol­
lowing format: 

xp [name I -f file] [-r] 

The name argument specifies the name of an existing paste buffer 
that contains the text you want to insert. The -f file option specifies 
the name of an existing file that contains the text you want to insert. 
If you do not specify the name of a paste buffer or permanent file, 
xp inserts the contents of the default (unnamed) paste buffer. 

You can use this command only in pads created with <EDIT> or 
the ce (create edit) command. 

6-14 Editing a Pad 



The -r option instructs xp to insert a rectangular block of text that 
you have copied or deleted using the xc or xd command and the -r 
option. The xp command uses the current cursor position as the 
origin (upper left comer) of the block. 

By default. <PASTE> invokes the xp command using the contents 
of the default (unnamed) paste buffer. You must specify the xp 
command with the name argument or the -f file option to insert the 
contents of a named paste buffer or permanent file. respectively. 

Using Regular Expressions 

The DM search and substitute operations (described in the next 
several sections) allow you to use special notation. called regular 
expressions. to specify patterns for search and substitute text 
strings. You also use UNIX regular expressions with the shell com­
mands ed (edit). sed (stream editor). and grep (pattern search). 
Note. however. that the UNIX regular expressions used by these 
commands are very different from the DM regular expressions dis­
cussed in this chapter. See the BSD Command Reference for de­
scriptions of these commands. 

Regular expressions permit you to concisely describe text patterns 
without necessarily knowing their exact contents or format. You can 
create expressions to describe patterns in particular positions on a 
line. patterns that always contain certain characters and at times 
may include others. or patterns that match text of indefinite length. 

Following is a a list of the characters used to construct regular ex­
pressions and a brief description of their functions. Remember that 
these special characters apply only to regular expression operations. 
Some of these characters also have meanings (often radically differ­
ent) in shell commands and other software products. If you want to 
use a regular expression as a part of one of those shell commands 
or products. be sure to enclose the expression in quotation marks 
so that it will not be misinterpreted. 

Editing a Pad 6-15 



ASCII Characters 

Any standard ASCII character (except those listed in this section) 
matches one and only one occurrence of that character. By default, 
the case of the characters is insignificant. Use the sc (set case) 
command to control case significance (see the "Setting Case Com­
paris on" section). The following examples are all valid expressions: 

SAM 
fred 12 
Joe (a&b) 

Beginning of Line (%) 

A percent sign (%) at the beginning of a regular expression matches 
the empty string at the beginning of a line. If a % is not the first 
character in the expression, it simply matches the percent charac­
ter. Use this special feature to mark the beginning of a line in a 
regular expression. For example: 

%Print matches the string in line a but not line b because, 
in line b, Print is not at the beginning of the line. 

End of Line ($) 

(a) Print this file 
(b) This Print file 

A dollar sign ($) at the end of a regular expression matches the 
end-of-line character (nUll) at the end of a line. If $ is not the last 
character in the expression, it simply matches the dollar sign char­
acter. Use this special feature to mark the end of a line in a regular 
expression. For example: 

fileS matches the string in line a, but not line b because, in 
line b, file is not followed by an end-of-line marker. 

(a) Print this file 
(b) This file is permanent 

6-16 Editing a Pad 



Single Character Wildcard (?) 

A question mark (?) matches any single character except a newline 
character. The only exception to this is when the question mark 
appears inside a character class (see "Strings and Character 
Classes"), in which case it represents the question mark character 
itself. For example: 

?OLD??? matches the strings in lines a and b, but not line c 
because, in line c the letters "OLD" are alone on the line: 

(a) HOLDING 
(b) FOLDERS 
(c) OLD 

Expression Wildcard (*) 

An asterisk (*) following a regular expression matches zero or more 
occurrences of that expression. The only exception to this is when 
the * appears inside a character class (see the" Strings and Charac­
ter Classes" section), in which case it represents the asterisk char­
acter itself. Matching zero or more occurrences of some pattern is 
called a closure. An expression used in a closure will never match a 
newline character. Here are some examples: 

a*b matches the strings b, ab, aab, etc. 

%a?*b matches any string that begins with a and ends with 
b, and that is also the first string in the line. Any number of 
other characters can come between a and b. 

Strings and Character Classes 

A string of characters enclosed in square brackets, [string], is a 
character class. This pattern matches anyone character in the 
string but no others. Note that the other regular expression charac­
ters % $ ? * lose their special meaning inside square brackets, and 
simply represent themselves. For example: 

[sam] matches the single character s, a, or m. (If you want 
to match the word sam, omit the square brackets.) 

Editing a Pad 6-17 



A string enclosed in square brackets whose first character is a tilde 
[",string] matches any single character that does not appear in the 
string. If a tilde ("') is not the first character in the string, it simply 
matches the tilde character itself. For example: 

["",sam] matches any single character except s, a, or m. 

Within a character class, you can specify anyone of a range of let­
ters or digits by indicating the beginning and ending characters 
separated by a hyphen (-). For example: 

[A-Z] matches any single uppercase letter in the range A 
through Z. 

[a-z] matches any single lowercase letter in the range a 
through z. 

[0-9) matches any single digit in the range 0 through 9. 

The range can be a subset of the letters or digits. However, the first 
and last characters in the range must be of the same type: upper­
case letter, lowercase letter, or digit. For example, [a-D) and [3-8) 
are valid expressions. [A-9) is invalid. 

Note that a hyphen (-) has a special meaning inside square brack­
ets. If you want to include the literal hyphen character in the class, 
it must be either the first or last character in the class (so that it 
does not appear to separate two range-marking characters), or you 
can precede the hyphen with the escape character @ (see the @ 
description below). 

The right bracket ( ] ) also has special meaning inside a character 
class; it closes the class descriptor list. If you want to include the 
right bracket in the class, precede it with the escape character @ 
(see the @ description below). For example: 

[a-d] matches any single occurrence of a, b, c, or d. 

%[A-Z] matches any uppercase letter that is also the first 
character on the line. 

5-[1-9] [0-9)* matches any of the page numbers in this 
chapter. 

6-18 Editing a Pad 



Escape (@) 

[OA-Z] matches any string containing a zero or an upper­
case letter. 

[-a-zO-9] matches any uppercase letter or punctuation 
mark (Le., no lowercase letter or digit). 

The at sign (@) is an escape character. Characters preceded by the 
@ character have special meaning in regular expressions, as indi­
cated in the following list: 

@n matches a newline character. 

@t matches a tab character. In a regular expression, @t 
matches only tab characters that have been inserted with 
@t. 

@f matches a form feed character. 

In addition, you can use the escape character inside a character 
class to specify literal occurrences of a hyphen (-) or a right 
bracket (]). You may also use the @ character to specify a literal 
occurrence of the other special characters used in regular expres­
sions: % $ ? * @. For example: 

[A-Z@-@]] matches any uppercase letter, a hyphen, or a 
right bracket. 

@?@* matches a question mark followed by an asterisk, 
rather than zero or more occurrences of any character (? *). 

Text Pattern Matching with {expr} 

You can "tag" parts of a regular expression to help rearrange pieces 
of a matched string. The DM remembers a text pattern surrounded 
by braces {expr} so that you can refer to it with @n, where n is a 
single digit referring to the string remembered by the nth pair of 
braces, e.g., 

s/{???}{?*}/@~1/ 

Editing a Pad 6-19 



The s command is the DM command for substituting strings of text 
(see "Substituting All Occurrences of a String"). This example of 
the s command moves a 3-character sequence from the beginning 
of a line to the end of the line. ??? matches the first three charac­
ters of the line, and ?* matches the rest of the line. The @2 expres­
sion refers to the string ?* inside the second pair of braces, and @1 
refers to the string ??? inside the first pair of braces. For example: 

so/{?}{?}/@2@l/ 

The so command is also a DM command for substituting strings of 
text, but it only substitutes the first occurrence of the first pattern 
on a line (see" Substituting the First Occurrence of a String"). This 
example of the so command transposes two characters beginning 
with the one under the cursor. This can be a handy key definition if 
you often type ie for ei, etc. 

Searching for Text 

The search operations shown in Table 6-5 locate strings of charac­
ters in a pad. You describe the string pattern using regular expres­
sions (see the previous section). 

6-20 Editing a Pad 



Table 6-5. Commands for Searching for Text 

Task DM Command Predefined Key 

Search forward for string Istringl None 

Search backward for \string\ None 
string 

Repeat last forward II CTRLlN 
search 

Repeat last backward \\ CTRLlP 
search 

Cancel search or any abrt CTRLlX 
action involving the 
echo command 

Set case comparison for sc [-on] [-off] None 
search 

To search forward from the current cursor pOSItiOn, enclose the 
regular expression in slashes as follows: 

Istringl 

To search backward from the current cursor position, enclose the 
regular expression in backslashes as follows: 

\string\ 

A search operation moves the cursor to the first character in the 
pattern specified by string. If necessary, the pad moves under the 
window to display the matching string. If the search fails, the cursor 
position does not change, and the DM displays the message "No 
match" in its output window. 

Searches do not wrap around the end or beginning of the file. 
Therefore, to search an entire pad, position the cursor at the begin­
ning of the pad. 

Editing a Pad 6-21 



By default, searches are not case-sensitive. This means, for exam­
ple, that /mary/ will locate mary, MARY, and even maRy. To 
perform a case-sensitive search, use the sc (set case) command. 

A search is not syntactically a command; it's a positioning opera­
tion. One way to specify a point in a pad is by matching a regular 
expression. This means that the search operation is really a posi­
tioning action followed by a null command. Consequently, you 
should not think of search operations as operating on a text range, 
but rather searching from the initial cursor position to the end (or 
beginning) of the file in order to properly position the cursor. 

If the OM scans more than 100 lines in a search operation, it dis­
plays a "Searching for /string/ ... " message in its output window. 
Then it polls for keystrokes every 10 lines it processes. At this 
point, you may: 

• Wait for the OM to complete the operation. 

• Cancel the search by typing CTRLlX, or by pressing a key 
that has been defined to invoke the abrt (abort) or sq 
(search quit) command (see "Cancelling a Search Opera­
tion"). 

• Use the keyboard; it works as it normally does. You can 
type into any pad except the one being searched. You can 
specify any OM command except another search or substi­
tute command. The OM executes these commands when it 
completes the search. You can type input to another shell 
or program (if it was previously waiting for input). The 
process executes these commands when the OM finishes 
the search. 

Repeating a Search Operation 

To repeat the last search forward, specify the / / command or type 
the CTRL/N ("next occurrence") sequence. 

To repeat the last search backward, specify the \ \ command or 
type the CTRLlP ("previous occurrence") sequence. 

The OM saves the most recent search instruction, so you may re­
peat it even if you have specified other (non-searching) commands 
since then. 

6-22 Editing a Pad 



Canceling a Search Operation 

To cancel the current search operation, type CTRL/X. The 
CTRLlX sequence invokes the abrt (abort) command. Since you 
cannot type DM commands for the pad being searched, you must 
use CTRLlX or define a key to invoke the abrt command (see 
"Defining Keys" in Chapter 4). 

The DM command sq (search quit) also cancels a search opera­
tion. As with the abrt command, you must define a key to invoke 
sq during a search. 

When you type CTRLlX or press a key defined to invoke abrt or 
sq, the DM displays the message "Search aborted" in its output 
window. 

Setting Case Comparison 

As we said earlier, a search operation is not case sensitive by de­
fault. In a case-insensitive search, upper- and lowercase letters are 
equivalent. In a case-sensitive search, the characters must match in 
case (that is, Imaryl will not locate IMARY/). 

To set case comparison for a search, specify the sc (set case) com­
mand in the following format: 

sc [-on I -off] 

The -on option specifies a case-sensitive search, and the -off op­
tion specifies a case-insensitive search. The sc command without 
options toggles the current case comparison setting. 

Substituting Text 

The commands shown in Table 6-6 allow you to search a pad or 
part of a pad for a text string, and to replace the string with a new 
string. 

Editing a Pad 6-23 



Before specifying a substitute command, use the dr (define region) 
command or <MARK> to define the range of text in which you 
want the substitution to occur (see the "Defining a Range of Text" 
section earlier in this chapter). If you do not define a range, the 
substitution occurs from the current cursor position to the end of 
the line. 

Unlike searches, which ignore case unless told otherwise, all substi­
tutions are case-sensitive. You cannot make a substitution case-in­
sensitive. 

Table 6-6. Commands for Substituting Text 

Task DM Command Predefined 
Key 

Substitute string2 for s/string1/string2 None 
all occurences of string1 
in a defined range 

Substitute string2 for the so/string1/string2 None 
first occurence of string1 
in each line of a defined 
range 

Change case of each case [-s] [-u] [-1] None 
letter in a defined range 

If the DM scans more than 100 lines while processing a substitute 
command, it displays a "Substitute in progress ... " message in its 
output window. Then it polls for keystrokes every 10 lines it proc­
esses. At this point, you may: 

• Wait for the DM to complete the substitute operation. 

• Type into any pad except the one where the substitution is 
occurring. You can specify any DM command except an­
other search or substitute command. The DM executes 
these commands when it completes the substitution. 

6-24 Editing a Pad 



Substituting All Occurrences of a String 

To replace all occurrences of a text string with a new text string, 
specify the s (substitute) command in the following format: 

s[[l[ string]]]/string2/] 

The string] argument specifies the string to be replaced. Use a 
regular expression to describe string]. If you supply the first delim­
iter (I) but omit string] (that is, sllstring2/), string] defaults to the 
string used in the last search operation. If you also omit the delimit­
er (that is, slstring2/) , then string] defaults to the string used in the 
last substitute operation. 

The string2 argument specifies a literal replacement string (not a 
regular expression). If you supply string], then string2 is required. 

You can use an ampersand (&) to instruct the s command to use 
string] as part of string2. For example: 

s/Toml & Smithl 

This command replaces all occurrences of Tom with Tom Smith 
over the defined range of text. 

The s command does not move the cursor or the pad, but does 
update the pad when the substitution is complete. 

Substituting the First Occurrence of a String 

The so (substitute once) command is like the s (substitute) com­
mand except that so replaces only the first occurrence of a string in 
each line of a defined range of text. Specify the so command in the 
following format: 

so[[/[ stringlJ]/string21] 

Editing a Pad 6-25 



The string] argument specifies the string to be replaced. Use a 
regular expression to describe string]. If you supply the first delim­
iter (I) but omit string] (that is, sol/string2/) , string] defaults to the 
string used in the last search operation. If you also omit the delimit­
er (that is, so/string2/), then string] defaults to the string used in 
the last substitute operation. 

The string2 argument specifies a literal replacement string (not a 
regular expression). If you supply string], then string2 is required. 

You can use an ampersand (&) to instruct the so command to use 
string] as part of string2. For example: 

so/Tom/ & Smith/ 

This command replaces the first occurrence of Tom with Tom 
Smith in each line of the defined range of text. 

The so command does not move the cursor or the pad, but does 
update the pad when the substitution is complete. 

Changing the Case of Letters 

To change the case of letters in a defined range of text, specify the 
case command in the following format: 

case [-s] [-u] [-1] 

The -s option swaps all uppercase letters for lowercase and all 
lowercase letters -for uppercase. The -u option changes all letters in 
the defined range to uppercase, and -1 changes all letters to lower­
case. The case command without options swaps all uppercase let­
ters for lowercase and all lowercase letters for uppercase. 

Undoing Previous Commands 

To undo the most recent DM command you entered, use the undo 
command. You can also undo the previous command by pressing 
<UNDO>. 

6-26 Editing a Pad 



NOTE: The undo command only applies to OM 
operations. not shell commands. 

The undo command works by compiling a history of OM operations 
in input and edit pads in reverse chronological order. It reverses the 
effect of the most recent OM command you specified. Successive 
undo commands reverse OM commands further back in history. 

To compile its history of activities. the OM uses undo buffers (one 
per edit pad and one per input pad). The undo buffers are circular 
lists that. when full. eliminate the oldest entries to make room for 
new ones. 

The OM groups entries together in sets. For example. an s (substi­
tute) command may change five lines. While the OM considers this 
to be five entries. the five entries are grouped into a single set so 
that one undo will change all five lines back to their original state. 
When a buffer becomes full. the OM erases the oldest set of en­
tries. This means that undo will never partially undo an operation; 
it will either completely undo the operation or do nothing. 

An undo buffer for an edit pad can hold up to 1024 entries. An 
undo buffer for an input pad can hold up to 128 entries. 

Updating an Edit File 

To update a file that you are currently editing. specify the pw (pad 
write) command. This command is valid for edit pads only. It re­
quires no arguments or options. 

The first time you specify pw during an editing session. the OM 
writes the contents of the edit pad to the file that is being edited. 
without closing the edit pad. The OM writes the previous contents 
of the file to a file with the same name and the added suffix .bak. 
Subsequent pw or wc (window close) commands rewrite the new 
file and leave the .bak version unchanged. (For more about the we 
command. see "Closing Pads and Windows" in Chapter 5.) 

Editing a Pad 6-27 



The pw command is similar to we with two exceptions: 

• The pw command leaves the edit pad open so that you can 
continue editing the file. 

• The pw command writes the new version of the file even if 
other windows are viewing the edit pad. 

If, for example, you want to try compiling a program you are edit­
ing, pw will prove to be useful. If you decide to make additional 
changes to the program, you can just go back to the edit pad and 
continue editing, since updates made by pw leave the edit pad open 
and active. 

You can also update an edit file by pressing <SAVE> (see the 
"Closing Pads and Windows" section in Chapter 5). 

----88----

6-28 Editing a Pad 



Chapter 7 

Introduction to Shell Usage 

The BSD enironment supports several types of shells, including the 
Bourne shell, C shell, and Korn shell. Although each shell provides 
for 110 redirection, pipes, shell scripts, and wildcards, the imple­
mentation of these features frequently varies. This chapter high­
lights the important differences between shells, alerting you to shell 
characteristics that, while similar on the surface, may produce 
somewhat different results. Chapters 8, 9, and 10 provide in-depth 
information about the C, Bourne, and Korn shells, respectively. 

Opening a Default UNIX Shell 

The Bourne shell is the default UNIX shell in the BSD environ­
ment. If your system administrator has not specified a log-in shell 
for your account, you will see a Bourne shell when you log in. 
However, since the C shell is the preferred UNIX shell in the BSD 
environment, you may have a C shell appear instead. Use chsh 
(change shell) to change your log-in shell (see Chapter 3 for fur­
ther information on this procedure). 

You may arrange to have the DM (Display Manager) open a UNIX 
shell whenever any user logs in to the node, or only when you log in 
to the node. If you want every user to get a UNIX shell when they 
log in to a node, specify one of the UNIX environments (BSD or 
SysV) in the /etc/environ file. The /etc/environ file establishes the 

Introduction to Shell Usage 7-1 



log-in shell and default SYSTYPE for the node. Chapter 3 de­
scribes, in detail, how the system determines which shell to run 
when you log in. 

If you would like to get a UNIX shell only when you log in to the 
node, specify one of the UNIX environments in the file ",I. environ 
and set the desired shell using the chsh (change shell) command. 
The file ",I. environ has the same format as the tetc/environ file 
(see Chapter 3 for further details). 

The default BSD Bourne and Korn shell prompt is a dollar sign ($) 
followed by a space. The default C shell prompt is a percent sign 
(%) followed by a space. Any of these prompts can be changed 
from within the shell. 

Opening Additional UNIX Shells 

In addition to the shells created at login, you may need to create 
(and remove) other shells while you are logged in. If you press 
(shifted) <SHELL>, your log-in shell will be run in a new pad. 

NOTE: You can change your default shell by us­
ing the chsh (change shell) command. 
See Chapter 3 for further information. 

As an alternative to using <SHELL>, you can simply tell the DM to 
create a process and run a shell in it. To create a process that runs 
a Bourne shell, press <CMD> and enter the DM command 

Command: cp Ibin/sh 

To create a process that runs a C shell, press <CMD> and enter the 
DM command 

Command: cp Ibin/csh 

The Display Manager creates the specified shell process in a win­
dow with a transcript pad and input pad. The SYSTYPE set at login 
determines which Ibin is used. You may also specify IsysS.3/bin to 
force creation of a shell with the given SYSTYPE of sysS.3. 

7-2 Introduction to Shell Usage 



Shell Start-Up Files 

When you log in, the DM runs Isys/dm/login sh, which executes 
one of the UNIX shells as a log-in shell. This shell looks for a 
command file in your home directory. If the file exists, the shell 
executes it to set up its initial environment. Each of the three UNIX 
shells has its own command file that it executes when you log in. 

You can create additional command files that are executed when­
ever you start a new shell process. For example, the C shell (that 
is, Ibin/csh) looks for two files when you log in: a file named .cshrc 
and then a file named .Iogin. It executes the .Iogin file only when 
you log in. It executes the .cshrc file whenever you create a new 
shell. 

The Bourne shell (/bin/sh) and Korn shell (/bin/ksh) look for a 
file named . profile when you log in. The environment variable 
ENV determines whether the Bourne and Korn shell run a start-up 
file for every new shell. If you define ENV, the Bourne and Korn 
shells take its value as the name of a start-up script to execute. 
The . profile file may assign a value to ENV and that script will be 
run after .profile has finished. 

Table 7-1 lists the names of the different shell start-up files. By 
convention, the script name . kshrc is used for the Korn shell and 
.shrc for the Bourne shell. 

Table 7-1. Shell Start-Up Files 

Shell At Login New Shell 

Ibin/csh ,..".1. login ,..".I.cshrc 

Ibin/ksh ,..".1. profile $ENV 

Ibin/sh ,..".1. profile $ENV 

We have added the following option to the UNIX shells 

-Dvariable = value 

Introduction to Shell Usage 7-3 



This option allows you to define a variable, then use the value of 
that variable to do special processing at shell startup. For example, 
you can use this option in your <SHELL> key definition to run the 
...... I.shrc script whenever you create a Bourne shell: 

kd ISs cp Ibin/sh -DENV= ...... I.shrc ke 

This example sets the value of the ENV variable to ...... I.shrc, then 
passes that value to the shell's environment. The Bourne shell then 
uses ...... I.shrc as a start-up script, and attempts to execute it. We 
assume you have already created a file named ...... I.shrc, which con­
tains shell commands. Refer to chapters 8, 9, and 10 for informa­
tion about creating shell scripts for the C, Bourne, and Korn shells. 

It may be useful to have more than one script to which ENV may 
point. For new pads, you may want ENV= ...... I.shrc.pad specified. 
This script is the first thing to be run in the new pad and may print 
text to the pad. At the end of the script, you may want to either 
unset ENV or set it to another pathname. Since each time a new 
subshell is created (to run a shell script, for example) the ENV is 
checked, you may want something other than your new pad script 
to be run. 

Using a Terminal 

To access Domain/OS via a tty device (terminal), on either a hard­
wired or phone line connection to an Apollo node's SIO (Serial 
Input Output) line, you use a different procedure for creating a 
UNIX shell. 

As described in Chapter 3, the init program reads the file /etc/ttys 
as part of system startup. The letc/ttys file contains a list of "termi­
nallines" (including tty devices) and the program to run for each 
"terminal line". The letc/ttys file usually contains a line invoking 
the letc/getty program to initialize tty devices. The letc/getty pro­
gram determines the terminal characteristics, and lets users log in. 

When you log in, letc/getty reads your username and executes the 
Ibin/login command. 

7-4 Introduction to Shell Usage 



When you log in on a tty line, the initial shell that appears is deter­
mined by the log-in shell field of your account registry. If your 
registry account doesn't specify a shell, login executes the default 
shell for the node which you are logging in to. The values for SYS­
TYPE and shell are determined in exactly the same manner as for 
the DM. 

NOTE: Be aware that Domain/OS serial line ar­
chitecture sometimes causes unpredict­
able results if you attempt to use a termi­
nal that doesn't expect eight-bit charac­
ters. 

When the login program is used to start a UNIX shell on a tty line, 
it binds various functions (signals) to control characters as noted in 
Table 7-2. You can change these characters using the tset (termi­
nal-dependent initialization) or stty (set terminal options) com­
mands. For more information about these commands, see the BSD 
Command Reference. 

Table 7-2. Control Characters Defined in a UNIX Shell 

Function Control Character 

erase <DELETE> 
kill CTRLlU 
interrupt CTRLlC 
suspend CTRLlZ 
eof CTRLlD 
quit CTRL/\ 

The last close of the tty line causes the node's serial 110 hardware 
to drop the DTR (Data Terminal Ready) signal. This causes most 
modems to hang up the phone. For more concerning tty line char­
acteristics, see the tset command in the BSD Command Reference. 

Introduction to Shell Usage 7-5 



Search Path 

Chapter 2 describes environment variables and multiple version 
support. The search path for shells is modified by the SYSTYPE 
environment variable. Each shell has a built-in command search 
path. The exact path depends on the shell. UNIX shells look for 
commands in the following places, in this specific order: 

1. current directory 

2. lusr/ucb 

3. Ibin 

4. lusr/bin 

5. lusr/apollo/bin 

You can change the default search path in any of our UNIX shells 
by setting the shell variable called PATH (or path, for C shell us­
ers). See Chapters 8, 9, and 10 for further detail. 

Shell Program Execution 

A shell script is a text file that contains a series of UNIX com­
mands. You can specify which shell (C, Bourne, or Korn) is to 
interpret and execute a shell program by starting the first line of 
each shell script with the character sequence #! followed by the 
pathname of the desired shell, as shown here: 

#!/bin/sh 

#!/bin/csh 

#!/bin/ksh 

Specifies a Bourne shell script. In this case, 
the Bourne shell used is the one found in 
I$SYSTYPE/bin. If you need to be more 
specific, you may say: 

#! Isys5.3/bin/sh Specifies a sysS.3 
Bourne shell. 

Specifies a C shell script. 

Specifies a Korn shell script. 

7-6 Introduction to Shell Usage 



The following shows how this line is used in a Bourne shell script: 

#!/bin/sh 
# 
for i do 

case 

esac 
done 

The shell interpreter directive #! must appear as the first line of the 
file in order to be interpreted correctly (remember that this infor­
mation is case-sensitive), and it must comprise the first two charac­
ters of the line. Any amount of white space may appear between 
the exclamation point and shell pathname. 

The C shell invokes Ibin/sh (the Bourne shell) to interpret shell 
scripts when there is no explicit #! shell designation. In other shells, 
a script with no shell specification line is interpreted (with unpre­
dictable results) by the shell in which it was invoked. 

Wildcards 

Every shell has its own metacharacters (wildcards). Chapters 8, 9, 
and 10 detail the wildcard-handling mechanisms of the C, Bourne, 
and Korn shells. Differences among the various ,UNIX shells can be 
important considerations. 

All UNIX shells perform some type of wildcard expansion, and 
UNIX commands expect a command line that has already been 
expanded by the shell. 

NOTE: If you are using both the BSD and the 
Aegis environments, be aware that Aegis 
shell commands perform wildcard expan­
sion with rules that differ from those used 
by UNIX shells. For this reason, use of 
commands found in Icom is not recom­
mended from UNIX shells. 

-------88-------

Introduction to Shell Usage 7-7 





Chapter 8 

Using the C Shell 

The primary purpose of any shell is to translate command lines 
typed at a terminal into useful work, something the shell usually 
accomplishes by invoking another program. The C shell (/bin/csh) 
is one of several shells available to users of the BSD environment. 

This chapter introduces the more commonly-used features of the C 
shell. We recommend that you try all the examples shown, to de­
velop a variety of experiences with the C shell. The csh (C shell) 
documentation in the BSD Command Reference provides a full de­
scription of all features of this shell. Appendix E also provides a 
summary of valid C shell metacharacters. 

Using the C Shell 8-1 



Starting the Shell 

To start a C shell on an Apollo node, log in and type the OM 
command 

Command: cp Ibin/csh 

In this command line, Ibin resolves to 1$(SYSTYPE)/bin. 

The OM opens a window and runs the C shell in it. With the csh 
command, you may supply the coordinates where the OM will lo­
cate the upper left and lower right corners of the window. You may 
even give the process a name, as in this line: 

Command: (O,200)dr; (540,600)cp Ibin/csh -n c_shell 

This command line opens up a small window near the left side of 
the screen and displays the name c_shell in the window legend. 

The Basic Notion of Commands 

A shell acts primarily as a medium through which you invoke other 
programs. While the shell has a set of built-in functions that it per­
forms directly, most commands to the shell cause execution of pro­
grams that reside elsewhere (are not part of the shell). 

A command consists of a word or words that the shell interprets as 
a command name followed by optional arguments. Thus, the com­
mand 

% mail kate 

consists of a command name (mail), followed by an argument 
(kate). The shell looks through the directories in its search path 
for an executable file named mail. 

8-2 Using the C Shell 



The rest of the words on the command line are assumed to be 
arguments and are passed to the command when it is executed. In 
this case, we specified the argument kate which mail interprets as 
the name of a user to whom mail is to be sent. In normal usage, you 
might invoke mail as follows: 

% mail kate 
Is there a meeting today? And is it at 1:00? 
bob 
*** EOF *** 
EOT 
% 

Here we typed a message to send to kate and ended this message 
with a CTRLlD, which sent an end-of-file (EOF) to the mail pro­
gram. 

The mail program, in turn, echoed EOT (end-of-transmission), 
transmitted the message to kate, and exited. The shell, noticing 
that mail was finished, prompted for input by displaying a percent 
sign (%), which indicated its readiness for further orders. 

This is the essential pattern of all interactions with BSD software via 
the C shell. You type a complete command, and the shell executes 
it. When command execution completes, the shell prompts for a 
new command. If you run, for example, the vi (visual display edi­
tor) editor for an hour, the shell waits for you to finish editing, and 
then prompts you for further orders. 

Flag Arguments 

While many arguments to commands specify objects such as file­
names, some arguments invoke optional capabilities of the com­
mand. By convention, such arguments begin with a dash (-). Thus, 
the following command produces a list of the files in the current 
working directory: 

% Is 

Using the C Shell 8-3 



The Is command has many options, including -s, the size option. If 
you include -s on a Is (list directory) command line, 

% Is -s 

Is lists the size of each file in blocks of 1024 bytes. Refer to the 
BSD Command Reference for available options for each command. 

Output to Files 

Commands that normally read input or write output on the screen 
can optionally be told to get their input from a file or to send their 
output to a file. Suppose you wish to save the current date in a file 
called now. This command 

% date 

prints the current date on the transcript pad of the shell into which 
date (print date) was typed, because the screen (transcript pad) is 
the default standard output, and date always prints the date on the 
standard output. 

The shell lets you redirect the standard output of a command 
through a notation using the greater-than (» meta character and 
the name of the file where output is to be placed. 

Thus, the command 

% date> now 

runs the date (print the date) command and redirects the standard 
output to a file called now rather than to the default standard out­
put (the screen). The current date and time are written to the file 
now. No output appears on the screen. It is important to know that 
date is unaware that its output is going to a file rather than to the 
screen. The shell performs this redirection before the command 
begins executing. 

The file now need not have existed before the date command 
above was executed; the shell would have created the file (in the 
current working directory) if it did not exist. 

8-4 Using the C Shell 



NOTE: If you redirect standard output into an 
existing file, that file is overwritten unless 
the shell variable nocIobber has been set. 
See the discussion of noclobber later in 
this chapter. 

Input From Files Using Pipelines 

The standard input of a command can be redirected so that it is 
taken from a file, instead of the keyboard (default standard input). 
This is often unnecessary, since most commands read from a file 
whose name is given as an argument. You could use this 

% sort < data 

to run to run the sort (sort or merge files) command with standard 
input, where the command normally reads its input, from the file 
data. But, it is easier and just as legal to type this 

% sort data 

letting the sort command open the file data and sort it. 

NOTE: If you merely type the sort command 
without an argument, lines are sorted 
from its standard input, the keyboard. 
Since you are not redirecting the stan­
dard input, the program sorts lines as you 
type them on the terminal, until you type 
a CTRLlD to indicate an end-of-file. 

Another useful feature of the C shell is its ability to connect the 
standard output of one command to the standard input of another 
using a mechanism known as a pipeline. For instance, the following 
command line 

% Is-s 

normally produces a list of the files in the current directory and lists 
the size of each file in blocks of 1024 characters. 

Using the C Shell 8-5 



To help determine which of your files is largest, you may want to 
have the list sorted by size rather than by name. Although Is has no 
such option, you can pipe the output of Is (list directory) to the sort 
command and use some of sort's options to get a list of files sorted 
in size order. 

The -0 option of sort specifies a numeric sort rather than an alpha­
betic sort. Thus, 

% Is -s 1 sort -0 

tells the C shell to run the Is command with the -s option, and then 
pipe the resulting output to the sort command run with the -0 (nu­
meric sort) option. The output of this combination of commands is 
a list of files sorted by size, with the smallest file first. You could 
then use the -r reverse sort option and the head (give first few 
lines) command combined with the previous command, as follows: 

% Is -s 1 sort -or 1 head -5 

This sequence takes a list of files sorted alphabetically, each with 
the size in blocks, and pipes this list to the standard input of sort. 
The sort command, in turn, sorts the list numerically in reverse 
order (largest first). The sorted list is piped to the command head 
which then displays the first five lines of the list, giving you names 
and sizes of the five largest files in the current directory. 

Commands separated by pipe (I) characters are connected together 
by the shell. The standard output of the command to the left of the 
pipe is connected to the standard input of the command to the right 
of the pipe. The leftmost command in a pipeline normally takes its 
standard input from the keyboard. The rightmost places its stan­
dard output on the screen. 

Metacharacters in The C Shell 

The C shell uses a number of characters to perform special func­
tions. In general, many characters that are neither letters nor digits 
have special meaning to the shell. Since these special characters 
may also be used literally, the shell provides a means of quoting that 
lets you strip these metacharacters of any special meaning. 

8-6 Using the C Shell 



Metacharacters normally have effect only when the shell is reading 
input. You needn't worry about placing shell metacharacters in a 
letter you are sending via mail, or when supplying text or data to 
some other program. Note that the shell is only reading input when 
it is displaying its prompt. 

Filenames 

Many commands need the names of files as arguments. Domain/OS 
pathnames consist of a number of components separated from each 
other by the slash (I). Each component except the last names a 
directory in which the next component resides, in effect specifying 
the path of directories to follow to reach the file. 

Thus, the pathname lusr/apollo/bin/systype specifies a file in the 
directory lusr/apollo/bin. Within this directory the file named is 
systype, a program that examines binaries for SYSTYPE flags. A 
pathname that begins with a slash is said to be an absolute path­
name, since it is specified from the absolute top of the node's direc­
tory hierarchy. 

NOTE: A node's directory hierarchy begins one 
level below the network root, or "double 
slash" (/I) directory, so a truly "abso­
lute" pathname must always begin with 
two slashes followed by the name of the 
node's entry directory as in the following: 
Ilice/usr/apollo/bin/systype. 

When the shell sees a pathname that does not begin with a slash, it 
assumes that it should start looking in the current working direc­
tory. When you log in, the working directory is set to your home 
directory. From there, you can move to (and work in) other direc­
tories by using the cd command. Pathnames not beginning with a 
slash are said to be relative to the working directory since they are 
found by starting in the working directory and descending to lower 
levels of directories for each component of the pathname. If the 
pathname contains no slashes, the shell assumes that the path name 
is the name of a file contained in the current working directory. 
Absolute pathnames, by contrast, are unrelated to the working di­
rectory. 

Using the C Shell 8-7 



Most filenames consist of a number of alphanumeric characters and 
periods. While all characters except a slash (I) and null may appear 
in UNIX filenames, it is inconvenient to have most non-alphabetic 
characters in filenames, since many of them have special meaning 
to the shell. The period or dot (.), while not a C shell metacharac­
ter, is often used to separate the extension of a filename from the 
base of the name. Thus 

prog.c prog.o prog.errs prog.output 

are four related files. Their names share a common base portion 
(that part of the name which is left when a trailing period and fol­
lowing characters that are not periods are stripped off). The file 
prog.c might be the source for a C program, the file prog.o the 
corresponding object file, the file prog.errs the errors resulting 
from a compilation of the program and the file prog.output the 
output of the program itself. 

To refer to all four of these files in a command, use the notation: 

prog.* 

The shell expands prog. * into a list of names that begin with prog. 
before the command to which it is an argument is executed. The 
asterisk (*) here matches any sequence (including the empty se­
quence) of characters in a filename, except a leading dot (.). The 
names that match are alphabetically sorted and placed in the argu­
ment list of the command. Thus, 

% echo prog. * 

echoes the names 

prog.c prog.errs prog.o prog.output 

Note that the names are in sorted order here, and a different order 
than we list them above. The echo (echo arguments) command 
receives four words as arguments, even though only one argument is 
supplied to the shell. The shell generates the four words by filename 
expansion of the one input word. 

8-8 Using the C Shell 



The C shell also expands other characters. The question mark (?) 
matches any single character in a filename, except a leading dot C.). 
Thus, 

echo? ?? ??? 

echoes a line of filenames; first those with 1-character names, then 
those with 2-character names, and finally those with 3-character 
names. The filenames of each length are sorted independently (i.e., 
the output to the screen is a list of 1-character filenames, followed 
by a list of 2-character filenames, followed by a list of 3-character 
filenames) . 

The shell also matches any single character from a sequence of 
characters delimited by brackets. Thus, 

prog. [co] 

matches both prog.c and prog.o. You can also place two charac­
ters around a dash (-) in this notation to denote a range. Thus, to 
troer five chapters of a book that exists in the files chap.1, chap.2 
and so on, type the command line 

% troff chap. [1-5] 

which would pass the names 

chap.1 chap.2 chap.3 chap.4 chap.S 

to troff for processing. The above notation is equivalent to 

chap. [12345] 

NOTE: If a list of argument words to a command 
(an argument list) contains filename ex­
pansion syntax, and if this filename ex­
pansion syntax fails to match any existing 
filenames, then the shell considers this to 
be an error and prints the diagnostic mes­
sage "No match" and does not execute 
the command. 

Using the C Shell 8-9 



Files beginning with a period (.) are treated specially. This prevents 
accidental matching of the filenames "." and " .. " in the working 
directory, where they have special meaning to the system. It also 
prevents matching of other files such as .cshrc which are not nor­
mally visible in a directory listing. (We discuss .cshrc in a later 
section.) 

Another filename expansion mechanism gives access to the path­
name of the home directory of other users. Normally, this notation 
consists of a tilde (-) followed by a user's login name. For in­
stance, the word -kate maps to the absolute pathname of user 
kate's home directory, as shown here: 

% cd -kate 
% pwd 
//ice/kate 

A special case of this notation consists of a tilde alone, which ex­
pands to the pathname of your home directory. For example, the 
command 

% Is -a -

lists all the files in your home directory. Likewise, the command 

% cp thatfile -

expands to 

% cp thatfile your _home_directorylthatfile 

The shell also has a mechanism that uses left and right brace char­
acters ({ }) for abbreviating a set of words that have common parts 
but can't be abbreviated by other mechanisms because they are not 
files (or are files that, while created by the program being invoked, 
do not exist yet). This mechanism is described in a later section. 

8-10 Using the C Shell 



Quotation 

We have already described a number of the metacharacters used by 
the shell. These metacharacters pose a problem in that we cannot 
use them directly as parts of words. Thus, the command 

% echo • 

does not echo the asterisk (*). It either echoes a sorted list of all 
filenames in the current working directory, or prints the message 
"No match" if no files exist in the working directory. 

The recommended mechanism for placing a character with special 
meaning to the shell in an argument word to a command is to en­
close it in single quotes ('), as in the following example: 

% echo '.' 

One special character, the exclamation point (I), is used by the 
history mechanism of the shell and cannot be escaped by the nor­
mal means of placing it within single quotes. The exclamation point 
and the single quote should be preceded by a single backslash (\) 
to escape their special meaning. Thus, 

% echo \'\! 

prints 

, ! 

These two mechanisms let you include any printing character in an 
argument to a shell command. They can be combined, as in 

% echo \".' 

which prints '. since the first backslash escaped the first single 
quote and the asterisk was enclosed in single quotes. 

Using the C Shell 8-11 



Terminating Commands 

When you are executing a command and the shell is waiting for it to 
complete, there are several ways you can force it to stop executing. 
For instance, if you type the following the system prints a list of all 
users on the system: 

% cat /etc/passwd 

This is likely to continue for several minutes unless you stop it. You 
can send an interrupt signal to the cat (catenate and print) com­
mand by typing CTRLlC. 

Since cat doesn't try to avoid or to otherwise handle this signal, the 
interrupt terminates cat. The shell notices its termination and 
prompts you again. If you hit interrupt again, the shell repeats its 
prompt since it is designed to effectively ignore interrupt signals. 

Many programs terminate when they get an end-of-file from their 
standard input. The mail program in an earlier example terminated 
when it received a CTRLlD (which generates an end-of-file) from 
the standard input. The C shell normally terminates when it re­
ceives an end-of-file. When this happens, the messages 

% *** EOF *** 
logout 
*** Pad Closed *** 

are left on the transcript pad and the window is closed. Since this 
means that typing CTRL/D one too many times can accidentally log 
you out of a window, the shell has a mechanism for preventing this. 
This ignoreeof option is discussed in the next section. 

If a command has its standard input redirected to come from a file, 
it normally terminates when it reaches the end of this file. If you 
execute the following command line, 

% mail kate < prepared. text 

8-12 Using the C Shell 



the mail command terminates when it sees the EOF at the end of 
the file prepared. text from which it is getting input. Another way 
to accomplish the same thing is to type 

% cat prepared. text I mail kate 

since the cat command then writes the text through the pipe to the 
standard input of the mail (send and receive mail) command. 
When the cat command completes. it terminates. closing down the 
pipeline. and the mail command receives an end-of-file from cat 
and terminates. You can also stop these commands by typing 
CTRLlC. 

If you write or run programs that are not fully debugged. it may be 
necessary to stop them somewhat ungracefully. This can be done by 
typing CTRLI\. which sends a quit signal. 

Commands running in the background ignore interrupt and quit 
signals. To kill them. use the kill (terminate process) command. 

Starting, Exiting, and Modifying the C Shell 

This section includes information on starting the C shell and arrang­
ing for it to set certain variables to convenient values every time you 
log in. 

Opening a C Shell When You Log In 

The Bourne shell is the default UNIX shell in the BSD environ­
ment. Chapter 3 describes how the system determines which shell 
to run when you log in. You may arrange to have the system open 
a C shell as your log-in shell by specifying /bin/csh in the shell field 
of your registry account. using the chsh (change shell) command. 

When you log in to an Apollo node. the DM looks in several places 
for information about what windows to open and what processes to 
start. It normally opens a default shell. then looks for the file 

your _home _directory/user _data/startup _ dm . display _type 

Using the C Shell 8-13 



The display_type argument matches the type of display in use (for 
example, 1280bw). If you include a command line such as the fol­
lowing: 

(O,200)dr; (540,600) cp Ibin/csh 

in your startup_dm file, the OM automatically opens a C shell 
when you log in. 

You may also define a key or function key to open a C shell. The 
following OM command defines the shifted L5 key (L5 is labeled 
<SHELL» so that when you press SHIFTI <SHELL>, a C shell is 
opened: 

kd ISs cp Ibin/csh ke 

NOTE: By default, <SHELL> starts up a new pad 
with your log-in shell, so if it is csh, you 
don't need to do the above. 

Log-In and Log-Out Scripts 

When you log in, the C shell sets the working directory to your 
home directory and begins reading commands from a file .cshrc in 
this directory. Every C shell reads from this file. In addition, you 
may create a file called .Iogin in your home directory that the C 
shell reads (after it reads .cshrc) if it is started as a log-in shell. 
Neither of these files is required. If neither exists, the shell uses its 
own defaults. As an example of a .cshrc file, consider the follow­
ing: 

set history=lO 
set path = (. ~/bin /usr/ucb /bin /usr/bin /usr/apollo/bin) 
set noclobber 
set ignoreeof 
set inprocess 
alias cd 'cd \!* Is' 

8-14 Using the C Shell 



This file begins with a series of set commands that the shelI inter­
prets directly. These particular set commands establish the follow­
ing conditions in the C shelI: 

• The shell maintains a "history list" of the last 10 com­
mands. 

• The shell searches for a command in the following places, 
in this order: 

1. . (current directory) 

2. home_directory/bin 

3. /usr/ucb 

4. /bin 

5. /usr/bin 

6. /usr/apollo/bin 

• The variable noclobber is set, forcing the shell to notify 
you whenever you redirect output into a file that already 
exists. 

NOTE: You may override noclobber if it is set by 
using the >1 syntax. For example, to 
overwrite the contents of a file named 
now with the current date, you can do so 
even if noclobber is set. Typing the com­
mand line date >! now does it. The >! 
combination is a special meta syntax indi­
cating that clobbering the file is allowed. 
Note that the space between the excla­
mation point and the now is critical here, 
as !now is an invocation of the history 
mechanism, and has a totalIy different 
effect. 

• The variable ignoreeof is set. The shell does not terminate 
(close the window or, if you are using a terminal, log you 
off) when it receives an end-of-file from standard input. 

Using the C Shell 8-15 



/ 

The next two commands are alias commands that, in effect, re­
name command sequences. Here, the command cd is alia sed to 
change to the specified directory, then list its contents. And, since 
the variable ignoreeof is set, the string "10" is defined as having the 
alias logout, allowing the closing up of the shell window with a mini­
mum of typing. 

Shell Variables 

The shell maintains a number of variables. In the .cshrc file shown 
in the previous section, the variable history was set to a value of 
10. In fact, each shell variable has as its value an array of zero or 
more strings. The set command assigns values to variables. Set has 
several forms, the most useful of which is 

set name=value 

Shell variables let you store values that can then be made available, 
via the substitution mechanism, to commands. The shell variables 
most commonly referenced are, however, those to which the shell 
itself refers. By changing the values of these variables, you can di­
rectly affect the behavior of the shell. 

One of the most important variables is path. It contains a sequence 
of directory names where the shell searches for commands. If you 
execute the set command with no arguments, the shell displays the 
values of all variables currently set. 

The shell examines each directory in the specified path and deter­
mines what commands are contained there. Except for the current 
directory, which the shell treats specially, this means that if com­
mands are added to a directory in your search path after you have 
started the shell, they are not necessarily found by the shell. 

To use a command that has been added in this manner, specify the 
rehash command. This command causes the shell to recompute its 
internal table of command locations, so that it finds the newly 
added command. Since the shell has to look in the current direc­
tory for each command, placing rehash at the end of the path 
specification works equally well and reduces overhead. 

8-16 Using the C Shell 



Other useful built-in variables are home, which has your home di­
rectory, and cwd, which contains your current working directory. 
The ignoreeof variable is one of several variables only examined by 
the shell to see if it is set or unset (it can have a value, but its value 
is not examined by the shell). Thus, to set this variable, type: 

set ignoreeof 

To unset it, type the following: 

unset ignoreeof 

The variable noclobber is another such Boolean variable. 

History 

The shell can maintain a history list into which it places the words 
of previous commands. This history mechanism lets you reuse com­
mands or words from them in forming new ones. Use this mecha­
nism to repeat commands or to correct minor typing mistakes in 
them. The following example shows how the C shell's history 
mechanism is typically used. 

Using the C Shell 8-17 



% cat bug.e 
mainO 
{ 

printf ("hello) ; 
} 
% ee !$ 
ee bug.e 
"bug.e", line 4:newline in string or char constant 
"bug.e", line 5: syntax error 
% ex !$ 
ex bug.e 
"bug.e" 
4s/);1" & 
printf("hello") ; 
wq 
"bug.e" 
% !e 
ee bug.e 
% a.out 
hello% !e 
ex bug.e 
ex bug.e 
4s/lo/lo\ \0 
printf("hello\n"); 
wq 
"bug.e" 
% !e -0 bug 
ee bug.e -0 bug 
% size a. out bug 
a.out: 2784+364+1028 = 4176b = Ox1050b 
bug: 2784+364+1028 4176b = Ox1050b 
% Is -I !* 
Is -1 a.out bug 
-rwxr-xr-x 1 kate eng 3932 Dec 19 09:41 a.out 
-rwxr-xr-x 1 kate eng 3932 Dec 19 09:42 bug 
% bug 
hello 
% num bug.e I spp 
spp: Command not found. 
% ~spp~ssp 
num bug.e I ssp 
1 main 0 
2 { 
3 printf("hello\n"); 
4 } 
% !! I prf 
num bug.e I ssp I prf 

8-18 Using the C Shell 



This example shows a very simple C program with some bugs. To 
begin, we use cat to print the file bug.e onto the screen. Then, we 
attempt to run the C compiler, ee, referring to the file again as !$, 
which is an invocation of the history mechanism that means "use 
the last argument to the previous command." The exclamation 
point is the metacharacter that invokes the history mechanism and 
the dollar sign stands for the last (most recent) argument read by 
the shell. The shell echoes the command, as it would have been 
typed without using the history mechanism, and then executes it. 

Since the compilation yielded error diagnostics, we invoke the line 
editor, ex to fix the bug. Then the file is recompiled, this time 
referring to the ec command simply as !c. The notation !x tells the 
shell to repeat the most recently submitted command that begins 
with character x. If specificity is necessary (for example, if other 
commands starting with c had been used recently), we can invoke 
the history mechanism by typing !ce. If further caution is needed, 
the form !ce:p prints the last command that started with ce, without 
executing it so you can see what it would run. This command is 
entered into the history list as the previous command. 

After this recompilation, a run of the resulting a.out file reveals 
that a bug still exists, so we reinvoke the editor, and then the C 
compiler. This time, we add the -0 bug switch to the ec command 
line, telling the compiler to place the resultant binary in the file bug 
rather than a.out. In general, the history mechanisms may be used 
anywhere in the formation of new commands, and other characters 
may be placed before and after the substituted commands. 

We then run the size command to see how large the object files 
were, and then an Is -I command with the same argument list, de­
noted by the argument list \'*. Finally, we run the bug program to 
see that its output was indeed correct. 

To make a numbered listing of the program we run the num pro­
gram on the file bug.e. To eliminate multiple blank lines in the 
output, we run it through the filter ssp, but misspell it as spp. To 
correct this, we use a shell substitute, placing the old text and new 
text between circumflex C) characters. This is similar to the substi­
tute command in the editor. We then repeat the same command 
with !!, but send its output to the line printer. 

Using the C Shell 8-19 



Aliases 

NOTE: On Apollo nodes, <AGAIN> is often de­
fined to copy all text between the cursor 
position and the next EOL into the "next 
input window." In fact, the DM's cut­
and-paste facilities may be more effective 
than the history mechanism in certain 
situations. 

You can repeat a command from the history list by other means. 
The history command prints out a number of previous commands 
accompanied by the numbers with which they can be referenced. 
You can also refer to a previous command by searching for a string 
that appeared in it. See csh in the BSD Command Reference for a 
complete description of these mechanisms. 

The shell has an alias mechanism that helps in transforming input 
commands. It can be used to simplify the commands you type, to 
supply default arguments to commands, or to do transformations on 
commands and their arguments. The alias mechanism is similar to a 
macro facility. Some of the features obtained by aliasing can also be 
obtained using shell command files, but these take place in another 
instance of the shell and cannot directly affect the current shell's 
environment or involve commands such as cd (change directory), 
which must be done in the current shell. For example, if you'd like 
the command Is (list directory) to always show sizes of files (i.e, do 
-s), use the following alias: 

% alias Is Is -s 

Or, you can create a "new" command called dir that does the same 
thing, by typing 

% alias dir Is -s 

Thus, the alias mechanism can be used to provide short names for 
commands, to supply default arguments, and to define new short 
commands in terms of other commands. You can also define aliases 
that contain multiple commands or pipelines, showing where the 
arguments to the original command are to be substituted using the 
facilities of the history mechanism. For example, the alias for cd in 
our .cshrc example shown earlier in this chapter, 

8-20 Using the C Shell 



% alias cd 'cd \!* ;Is' 

causes the shell to automatically do an Is after every cd. We enclose 
the entire alias definition in single quotes (') to prevent most substi­
tutions from occurring and to prevent the semi-colon (;) from be­
ing recognized as a metacharacter. The exclamation point (!) here 
is escaped with a backslash (\) to prevent it from being interpreted 
when the alias command is typed in. The '\1*' here substitutes the 
entire argument list to the pre-aliasing cd command, without giving 
an error message if no arguments are supplied. The semi-colon is 
used to indicate that one command is to be done first, followed by 
the next. Similarly, the definition 

% alias whois 'grep \!A /etc/passwd' 

defines a command which looks up its first argument in the pass­
word file. 

NOTE: The C shell reads the .cshrc file each 
time it is invoked. If you put many com­
mands there, shells tend to start slowly. 
We recommend that you limit the num­
ber of aliases in this file. Ten aliases 
cause no perceived delay. Fifty aliases 
cause a noticeable delay in starting up 
shells, and make the system seem slug­
gish when you execute commands from 
within the editor and other programs. 

More Redirection Using » and >& 

In addition to the standard output, commands also have a diagnos­
tic output (or "error output") that is normally directed to the 
screen even when the standard output is redirected to a file or a 
pipe. If you need to redirect the diagnostic output to the same place 
as you redirect standard output (e.g., if you want to redirect the 
output of a long-running command into a file and need to have a 
record of any error diagnostics produced while the command was 
running), use the notation 

command >& file 

Using the C Shell 8-21 



The >& here tells the shell to route both the diagnostic output and 
the standard output into file. Similarly, you can give the command 

command 1& prf 

to route both standard and diagnostic output through the pipe to 
the lusr/apollo/bin/prf print spooler. 

You can use this notation when noclobber is set and file already 
exists: 

command >&! file 

Finally, it is possible to use the following form to place output at the 
end of an existing file: 

command » file 

If noclobber is set, an error results if file does not exist; otherwise, 
the shell creates file if it doesn't exist. A form such as the following 
one can be used if it's necessary to override noclobber's error mes­
sage: 

command »! file 

Background, Foreground, and Suspended Jobs 

When one or more commands are connected via pipes or as a se­
quence of commands separated by semicolons, the shell creates a 
single job consisting of all commands so connected. A single com­
m"and without pipes or semicolons is, of course, the simplest job. 
Usually, every line typed to the shell creates a job. 

If you type the ampersand (&) metacharacter at the end of a com­
mand line, the job generated by that command line is started as a 
background job. Thus, the shell does not wait for it to complete but 
immediately prompts and is ready for another command. The job 
runs "in the background" at the same time that normal jobs, called 
foreground jobs, continue to be read and executed by the shell one 
at a time. 

8-22 Using the C Shell 



Thus, the following command line runs the du (summarize disk 
usage) program, which reports on the disk usage of your working 
directory (as well as any directories below it), puts the output into 
the file usage, and returns immediately with a prompt for the next 
command without waiting for du to finish: 

% du > usage & 

The du program continues executing in the background until fin­
ished, and the shell continues accepting input from you. When a 
background job terminates, the shell types a message before the 
next prompt, telling you that the job is completed. In the following 
example, the du job finishes sometime during the execution of the 
mail command. Its completion is reported just before the prompt 
after the mail job is finished. 

% du > usage & 
[1] 503 
% mail kate 
How can I tell when a background job is finished? 
bob 
*** EOF *** 
EOT 
[1] - Done du > usage 

% 

If the job hadn't terminated normally, you might have gotten a 
message such as "Killed". To have terminations of background jobs 
reported at the time they occur (possibly interrupting the output of 
other foreground jobs), set the notify variable. If you had done this 
for the previous example, the "Done" message might have ap­
peared in the middle of the message to kate. Background jobs are 
unaffected by any signals from the keyboard (e.g., stop, interrupt, 
quit). 

Information about all running jobs is re€orded in a table maintained 
by the C shell. In this table, the shell stores the names, arguments, 
and process numbers of all commands in the job. It also notes the 
working directory in which the job was started. Each job in the 
table is either running in the foreground with the shell waiting for it 
to terminate, running in the background, or suspended. 

Using the C Shell 8-23 



Only one job can be running in the foreground. Simultaneously, 
several jobs can be either running in the background or suspended. 
As each job is started, it is given a Job number. This number is 
used in conjunction with the commands below to suspend or kill the 
job. The job number assigned to a job remains the same until the 
job terminates, at which time the job number is available for reuse. 

When a job is started in the background, the shell displays the job's 
number, as well as the process numbers of all its (top level) com­
mands. This job, for example, runs the Is program with the -5 op­
tion, and pipes this output into the sort program with the -n option, 
which puts its output into the file usage: 

% Is -5 I sort -n > usage & 
[2] 65 66 
% 

Since an ampersand appears at the end of the line, these two pro­
grams start together as a background job. After starting the job, the 
shell prints the job number (e.g., 2) in brackets followed by the 
job's process numbers, then prompts for a new command. 

To suspend a foreground job, send a stop signal (CTRLlZ) to the 
shell process currently running in the foreground. To suspend a 
background job, use the stop command. When jobs are suspended, 
they merely stop any further progress until started again, either in 
the foreground or the backgound. The shell notices when a job 
stops and reports this fact, much like it reports the termination of 
background jobs. For foreground jobs, this looks like 

% du > usage 
CTRL/Z 
Stopped 
% 

The shell displays the "Stopped" message when it notices that a job 
(in this case, the du program) has stopped. When you use the stop 
command on a background job, the shell prints a slightly different 
message: 

8-24 Using the C Shell 



% sort usage & 
[1] 23 
% stop %1 
[1] + Stopped (signal) sort usage 

% 

Suspending foreground jobs can be very useful when you need to 
temporarily change what you are doing (execute other commands) 
and then return to the suspended job. Also, foreground jobs can be 
suspended, then continued as background jobs using the bg com­
mand, allowing you to continue other work and stop waiting for the 
foreground job to finish. In this sequence, we start du in the fore­
ground, stop it before it finishes, then continue it in the back­
ground: 

% du > usage 
CTRLlZ 
Stopped 
% bg 
[1] du > usage & 

% 

All job control commands can take an argument that identifies a 
particular job. All job name arguments must begin with a percent 
(%), since some of the job control commands also accept process 
numbers. To get the numbers of all running or suspended proc­
esses, use the jobs command. 

The default job (when no argument is given) is called the current 
job and is identified by a plus sign (+) in the output of the jobs 
command. When only one job is stopped or running in the back­
ground, it is always the current job. No argument is needed in this 
case. If you stop a job running in the foreground, it becomes the 
current job and the existing current job becomes the previous job, 
identified by a dash (-) in the output of jobs. When the current job 
terminates, the previous job becomes the current job. 

When given, the argument to jobs is one of the following: 

%- the previous job 

%n where n is the job number 

Using the C Shell 8-25 



%pre! 

%?string 

where pre! is some unique prefix of the 
command name and arguments of one of 
the jobs 

where string is a string found in only one 
of the command lines that set up a job. 

The jobs command lists the table of jobs, giving the job number, 
commands, and status ("Stopped" or "Running") of each back­
ground or suspended job. With the -I option, the process numbers 
are also given. 

% du > usage & 
[1] 33 

% Is -s I sort -n > myfile & 
[2] 34 

% mail ers 
CTRLlZ 
Stopped 
% jobs 
[1] - Running du > usage 
[2] Running Is -s I sort -n > myfile 
[3] + Stopped mail ers 

% fg %Is 
Is -s I sort -n > myfile 
% more myfile 

The fg moves a job into the foreground. If the job is suspended, it 
is restarted. If the job is already running in the background, it con­
tinues to run, but becomes the foreground job; consequently, it can 
accept signals or input from the terminal. In the above example, we 
use fg to change the Is job from the background to the foreground 
since we want to wait for it to finish before looking at its output file. 

The bg command runs a suspended job in the background. It is 
usually used after stopping the currently running foreground job 
with the stop signal. The combination of the stop signal and the bg 
command changes a foreground job to a background job. The stop 
command suspends a background job. 

The kill command terminates a background or suspended job im­
mediately. In addition to jobs, kill may be given process numbers 
as arguments. Thus, in the example above, the running du com­
mand can be terminated as shown here: 

8-26 Using the C Shell 



% kill %1 
[1] Terminated du > usage 
% 

The notify command (not the variable mentioned earlier) indicates 
that the termination of a specific job should be reported at the time 
it finishes, instead of waiting for the next prompt. 

If a job running in the background tries to read input from the 
terminal, it is automatically stopped. When such a job is then run in 
the foreground, input can be given to the job. If desired, the job 
can be run in the background again until it requests input again. 
This is illustrated in the following sequence where the s (substitute) 
command in the text editor might take a long time: 

% ex bigfile 
"bigfile" 
1, $s/thisword/thatwordl 
CTRLlZ 
Stopped 
% bg 
[1] ex bigfile & 

% 
. . . some foreground commands . 

[1] Stopped (tty input) ex bigfile 
% fg 
ex bigfile 
wq 
"bigfile" 
% 

After we issue the s command, we stop the ex job with CTRLlZ. 
and then put it in the background using bg. Some time later when 
the s command is finished, ex tries to read another command and 
is stopped because jobs in the background cannot read from the 
terminal. The fg command returns the ex job to the foreground 
where it can once again accept commands from the terminal. 

NOTE: The jobs command only prints jobs 
started in the currently executing shell. It 
knows nothing about background jobs 
started in other shells. Use ps to find out 
about background jobs not started in the 
current shell. 

Using the C Shell 8-27 



Working Directories 

The shell is always in a particular working directory. The "change 
directory" command, cd, changes the working directory of the 
shell. It's useful to make a directory for each project you work on, 
then place all files related to that project in that directory. The 
"make directory" command, mkdir, creates a new directory. The 
"print working directory" command, pwd, reports the absolute 
pathname of the working directory of the shell, i.e., the directory in 
which you are located. Thus, in this example, we create the direc­
tory newdocs and then move to it: 

% pwd 
//ice/kate 
% mkdir newdocs 
% cd newdocs 
% pwd 
//ice/kate/newdocs 
% 

No matter where you move to in a directory hierarchy, you can 
return to your home directory by typing the cd command with no 
arguments: 

% cd 

The name .. ("dot dot") always means the directory above the cur­
rent one. Thus, 

% cd .. 

changes the shell's working directory to the parent of (the directory 
immediately above) the current directory. The name can be used in 
any pathname; thus, 

% cd . .Iprograms 

moves you to the directory programs contained in the directory 
above the current one. If you have several directories for different 
projects under your home directory, this shorthand notation makes 
it easier to switch between them. 

8-28 Using the C Shell 



The shell always remembers the pathname of its current working 
directory in the variable cwd. The shell can also be requested to 
remember the previous directory when you change to a new work­
ing directory. If the "push directory" command. pushd. is Qsed in 
place of the cd command. the shell saves the name of the current 
working directory on a directory stack before changing to the new 
one. You can see this list at any time by typing the "directories" 
command dirs. 

% pushd newpaper/references 
/newpaper/references ~ 
% pushd lusr/lib/tmac 
/usr/lib/tmac ~/newpaper/references 
% dirs 
/usr/lib/tmac ~/newpaper/references & 
% popd 
~/newpaper/references 
% popd 

% 

The list is printed in a horizontal line. reading left to right. with a 
tilde as shorthand for your home directory. The directory stack is 
printed whenever more than one entry is on it and it has changed. 
It is also printed by a dirs command. which is usually faster and 
more informative than pwd. since it shows the current working di­
rectory as well as any other directories remembered in the stack. 

The pushd command with no argument alternates the current di­
rectory with the first directory in the list. The "pop directory" com­
mand. popd. used without an argument. returns you to the direc­
tory you were in prior to the current one. discarding the previous 
current directory from the stack (forgetting it). 

Typing popd several times in a series takes you backward through 
the directories you had been in (changed to) via the pushd com­
mand. Other options to pushd and popd manipulate the contents 
of the directory stack and change to directories not at the top of the 
stack. See csh in the BSD Command Reference for details. 

Using the C Shell 8-29 



Since the shell remembers the working directory in which each job 
was started, it warns you when it thinks you might be restarting a 
foreground job that has a different working directory than the cur­
rent working directory of the shell. Thus, if you start a background 
job, change the shell's working directory, then bring a background 
job into the foreground, the shell warns you that the working direc­
tory of the currently running foreground job is different from that 
of the shell. 

% dirs -I 
//ice/kate 
% cd myproject 
% dirs 
/myproject 
% ex prog.c 
"prog.c" 
CTRLlZ 
Stopped 
% cd .. 
% Is 
myproject 
textfile 
% fg 
ex prog.c 

This way the shell warns you of an implied change of working direc­
tory, even though no cd commanp was issued. In our example, the 
ex job is still in Ilice/kate/myproject even though the shell changes 
to Ilice/kate/. A similar warning is given when such a foreground 
job terminates or is suspended (using the stop signal) since a return 
to the shell implies a change of working directory. 

% fg 
ex prog.c 
. . . after some editing 
q 
working dir is now: 
% 

These messages are sometimes confusing if you use programs that 
change their own working directories, since the shell assumes that a 
job stays in the same directory where it started. The -I option of 
jobs types the working directory of suspended or background jobs 
when it is different from the current working directory of the shell. 

8'-30 Using the C Shell 



Useful Built-In Commands 

The alias command is used to assign new aliases and to show exist­
ing aliases. With no arguments, it prints a list of the current aliases. 
With a single argument, such as 

% alias Is 

alias shows the current alias for that argument (i. e., Is). 

The echo command prints its arguments. It is often used in shell 
scripts or as an interactive command to see what filename expan­
sions produce. 

The history command shows the contents of the history list. The 
numbers given with the history events help to reference previous 
events that are difficult to reference using the contextual mecha­
nisms introduced above. Also, a shell variable called prompt tells 
the C shell to use a specific character or string as the prompt. Thus, 
if you type 

% set prompt='\! % ' 

the shell prepends the number of the current command in the his­
tory list to the percent sign. Note that the exclamation point had to 
be escaped here even within single quotes ('). 

The exit command can be used to terminate a shell in which ig­
noreeof is set. 

The rehash command causes the shell to recompute a table of 
command locations. You must use rehash if a command is added 
to a directory in the current shell's search path. If a command isn't 
in the search path when the hash table is computed, the shell won't 
know that it exists. 

The repeat command can be used to repeat a command several 
times. Thus, to make five copies of the file one in the file five, you 
could do this: 

% repeat 5 cat one » five 

Using the C Shell 8-31 



The setenv command can be used to set variables in the C shell 
environment. Thus, 

setenv TERM vt100 

sets the value of the environment variable TERM to vt100. To 
print out the environment, use setenv as shown here (the setenv 
command, with no arguments, prints out the current values): 

% setenv 
USER=kate 
LOGNAME=kate 
PROJECT=none 
ORGANIZATION=doc 
NODEID=1054 
PATH=://ice/kate/bin:/usr/ucb:/bin:usr/bin 
SYSTYPE=bsd4.3 
TERM=apollo_1280bw 
NODETYPE=DN3000 
TZ=EST5EDT 
HOME=//ice/kate 

The source command forces the current shell to read commands 
from a file. Thus, use 

source .cshrc 

after making a change to the .cshrc file to have the change take 
effect immediately. The unalias command cancels aliases. 

The unset command removes shell variables, and unsetenv re­
moves environment variables. 

Shell Control Structures and Shell Scripts 

This section describes how to place commands in special files (shell 
scripts) that invoke shells for reading and executing commands. 

8-32 Using the C Shell 



Invocation and the argv Variable 

To run a C shell script, you may type 

% csh scriptname args 

The scriptname argument is the name of the file containing a group 
of csh commands and args denotes a a sequence of optional argu­
ments. The shell places these arguments in the variable argv and 
then begins to read commands from the script. These arguments 
placed in argv are made available as if they were ordinary shell 
variables. If you make the file scriptname executable by typing 

% chmod 755 scriptname 

or by typing 

% chmod +x scriptname 

or even 

% chad +x scriptname 

and place the line 

#!lbin/csh 

as the first line of the file scriptname, a C shell is automatically 
invoked to execute scriptname when you type 

scriptname 

In general, you should always start a shell script with a line of the 
the form 

#!shell 

Using the C Shell 8-33 



The shell argument is the name of the shell that is to execute the 
script. Common shells are: 

Ibin/csh the C shell 

Ibin/sh the Bourne shell 

Ibin/ksh the Korn shell 

If the file does not begin with the #! notation, the shell in which you 
invoked the script tries to execute it, with unpredictable results. 

Variable Substitution 

After each input line is broken into words and history substitutions 
are made, the input line is parsed into distinct commands. Before 
each command is executed, the shell does variable substitution on 
these words. Variable substitution is keyed by the dollar sign ($), 
and is a procedure by which the shell replaces the names of vari­
ables by their values. Thus, 

echo $argv 

when placed in a command script causes the current value of the 
variable argv to be echoed to the output of the shell script. It is an 
error for argv to be unset at this point. 

The C shell provides a number of notations for accessing compo­
nents and attributes of variables. The notation $?name expands to 
1 if name is set and to 0 otherwise. It is the fundamental mecha­
nism used for checking whether particular variables have been as­
signed values. All other forms of reference to undefined variables 
cause errors. 

The notation $#name expands to the number of elements in the 
variable name. To illustrate this, consider the following: 

8-34 Using the C Shell 



% set argv=(a b c) 
% echo $?argv 
1 
% echo $#argv 
3 
% unset argv 
% echo $?argv 
o 
% echo $#argv 
Undefined variable: argv. 
% 

It is also possible to access the components of a variable that has 
several values. Thus, $argv[1] gives the first component of argv (in 
the example above a). Similarly, $argv[$#argv] gives c, and 
$argv[1-2] gives a b. Other notations useful in shell scripts are $n 
(where n is an integer) as a shorthand for $argv[n] the nth parame­
ter and $* which is a shorthand for $argv. 

The form $$ expands to the process number of the current shell. 
This process number is unique on the node, and can be used in 
generation of unique temporary filenames. The form $< is replaced 
by the next line of input read from the shell's standard input (not 
the script it is reading). This is useful for writing shell scripts that 
are interactive, reading commands from the terminal, or even writ­
ing a shell script that acts as a filter, reading lines from its input file. 
Thus, the sequence 

#!/bin/csh -f 
# 
echo -n 'yes or no?' 
set a=($<) 

writes out the prompt "yes or no?" without a newline and then 
reads the answer into the variable a. In this case, $#a is 0 if either a 
blank line or end-of-file (CTRLlD) is typed. The form $argv[n] 
yields an error if n is not in the range l-$#argv while $n never 
yields an out-of-range subscript error. It is never an error to give a 
subrange of the form n-. 

Using the C Shell 8-35 



Expressions 

It's important to be able to evaluate expressions in the shell based 
on the values of variables. All the arithmetic operations of Care 
available in the shell with the same precedence that they have in C. 
In particular, the operations == and 1= compare strings and the 
operators && and II implement the boolean and/or operations. The 
special operators =- and 1- are similar to == and 1= except that 
the string on the right side can have pattern matching characters 
(e.g., ., ?, or [ ]), and the test is whether the string on the left 
matches the pattern on the right. 

The shell also allows file inquiries of the form 

-? filename 

where the question mark is replaced by a number of single charac­
ters. For instance, the expression primitive 

-e filename 

tells whether the file filename exists. Other primitives test for read, 
write, and execute access to the file, whether it is a directory, or has 
non-zero length. You can test whether a command terminates nor­
mally, by a primitive of the form 

{ command} 

which returns true (i.e., 1) if the command succeeds (exits nor­
mally with exit status 0), or 0 if the command terminates abnor­
mally or with exit status nonzero. If you need more detailed infor­
mation about the execution status of a command, execute it, then 
examine the $status variable. 

NOTE: Since $status is set by every command, 
you must save a particular command's 
$status if you can't examine it immedi­
ately following the command's execution. 

8-36 Using the C Shell 



A Sample Shell Script 

The following shell script, called copyc, uses the C shell's expres­
sion mechanism and some of its control structures: 

#!/bin/csh -f 
# copyc copies those C programs in the 
# specified list to the directory ~backup if 
# they differ from the files already in ~backup 
# 
set noglob 
foreach i ($argv) 

if ($i !~ *.c) continue 
# not a .c file so do nothing 
if (! -r ~backup/$i:t) then 

echo $i:t not in backup ... not cp\'ed 
continue 
end if 

cmp -s $i ~backup/$i:t # to set $status 
if ($status != 0) then 

echo new backup of $i 
cp $i ~backup/$i:t 
endif 

end 

First, we specify that this is a Ibin/csh script. The -f option pre­
vents the user's .cshrc file from being read. This is recommended 
for all scripts, not only because it makes them faster, but also be­
cause it prevents interference from unexpected aliases or settings of 
a particular user. 

This script uses the foreach command, which causes the shell to 
execute the commands between the foreach and the matching end 
for each of the values given between the left and right parentheses 
with the named variable (Le., i set to successive values in the list). 

Within this loop, you may use the command break to stop execut­
ing the loop and continue to prematurely terminate one iteration 
and begin the next. After the foreach loop the iteration variable (i 
in this case) has the value it was assigned at the last iteration. 

Using the C Shell 8-37 



Here, we set the variable noglob to prevent filename expansion of 
the members of argv. This is recommended if the arguments to a 
shell script are filenames that have already been expanded or if 
arguments may contain filename expansion metacharacters. You 
can also quote each use of a dollar sign variable expansion, though 
this is rather tedious. 

The other control construct used here is a statement of the form 

if ( expression ) then 
command 

endif 

The placement of the these keywords is not flexible. The following 
two formats are unacceptable to the C shell: 

#this won't work 
if ( expression ) 
then 

command 

end if 

#nor will this 
if ( expression ) then command endif 

The shell does have another form of the if statement: 

if ( expression ) command 

For the sake of appearance, this can be written with an escaped 
newline: 

if ( expression ) \ 
command 

The command must not involve a pipe (I), ampersand (&), or 
semi-colon (;). It must not be another control command. In the 
second form, the final backslash (\) must immediately precede the 
end-of-line. 

8-38 Using the C Shell 



The more general if statements above also admit a sequence of 
else-if pairs followed by a single else and an endif, as shown here: 

if ( expression ) then 
commands 

else if (expression) then 
commands 

else 
commands 

endif 

Another important mechanism used in shell scripts is the colon (:) 
modifier. We can use the modifier :r here to extract a root of a 
filename, or :e to extract the extension. Thus, if the variable i has 
the value /mnt/foo. bar, then 

% echo $i $i:r $i:e 
/mnt/foo.bar /mnt/foo bar 

shows how the :r modifier strips off the trailing. bar and the the :e 
modifier leaves only the bar. Other modifiers take off the last com­
ponent of a pathname and leave the head :h, or all but the last 
component of a pathname and leave the tail : t. (These modifiers 
are fully described under csh in the BSD Command Reference.) 
You can also use the command substitution mechanism, described 
in the next major section, to perform modifications on strings. 

The C shell allows only one colon modifier on a dollar sign substitu­
tion. Thus, the -following doesn't produce the results that one would 
otherwise expect: 

% echo $i $i:h:t 
/a/b/e /a/b:t 

Finally. we note that the pound sign (#) lexically introduces a shell 
comment in shell scripts (but not from the terminal). All subse­
quent characters on the input line after a pound sign are discarded 
by the shell. This character can be quoted using a single quote (') 
or backslash (\) to place it in an argument word. 

Using the C Shell 8-39 



Other Control Structures 

The shell also has control structures while and switch similar to 
those of C. These take the forms 

while ( expression ) 
commands 

end 

and 

switch ( word ) 
case strl: 

commands 
breaksw 

case strn: 
commands 
breaksw 

default: 
commands 
breaksw 

endsw 

NOTE: The C shell uses breaksw to exit from a 
switch, while break exits a while or 
foreach loop. A common mistake in C 
shell scripts is the use of break rather 
than breaksw in switches. 

Finally, csh allows a goto statement, with labels that look the same 
as they do in C: 

loop: 
commands 
goto loop 

8-40 Using the C Shell 



Supplying Input to Commands 

By default, commands run from shell scripts receive the standard 
input of the shell that is running the script. This allows shell scripts 
to participate in pipelines, but mandates extra notation for com­
mands that are to take in-line data. 

Thus, we need a metanotation for supplying in-line data to com­
mands in shell scripts. As an example, consider this script that runs 
the editor to delete leading blanks from the lines in each argument 
file: 

#l/bin/csh -f 
# deblank, a script to remove leading blanks 
foreach i ($argv) 

% 

ed - $i « 'EOF' 
1,$s/"[ 1*// 
w 
q 
'EOF' 

end 

The « 'EOF' notation means that the standard input for the ed 
command is to come from the text in the shell script file up to the 
next line consisting of exactly 'EOF' itself. The fact that the EOF is 
quoted causes the shell to forego variable substitution on the inter­
vening lines. In general, if any part of the word following the "«" 
that the shell uses to terminate the text to be given to the command 
is quoted, then variable substitutions are not performed. In this 
case, since we used the form "1, $" in our editor script, we needed 
to ensure that this dollar sign did not trigger a substitution. We 
could also have ensured this by preceding the dollar sign here with 
a backslash, as in the following line, but quoting the EOF termina­
tor is a more reliable way of achieving the same result. 

1,\$5/"[ ]*11 

NOTE: Although it is good practice to indent 
your scripts to show blocks of commands, 
leading spaces and tabs are copied inside 
"«"s, so they cannot be indented with­
out consequences. 

Using the C Shell 8-41 



Catching Interrupts 

If your shell script creates temporary files, you may wish to catch 
interruptions of the shell script so that you can clean up these files. 
To do this, use 

onintr label 

The label argument is a label in the program. If an interrupt is 
received, the shell does a goto label. You can then remove the 
temporary files and use exit (built in to the shell) to exit the shell 
script. To exit with a nonzero status, status 1, type the following: 

exit(1) 

Additional Options 

Other features of the shell are useful to writers of shell procedures. 
The verbose and echo options and the related -v and -x command 
line options can help trace the actions of the shell. The -n option 
causes the shell to read commands but not to execute them, some­
thing which may be useful during debugging. 

The double quote (") mechanism allows only some of the expan­
sion mechanisms discussed thus far to occur on the quoted string, 
and serves to make this string into a single word as a single quote (') 
does. 

Other Shell Features 

The C shell features discussed in this section are less commonly 
used. In particular circumstances, it may be necessary to know the 
exact nature and order of different substitutions performed by the 
shell. The precise meaning of certain combinations of quotations is 
also important at times. Furthermore, the shell has many command 
line option flags mostly used in the writing of UNIX programs, and 
debugging of shell scripts. See csh in the BSD Command Reference 
for more information. 

8-42 Using the C Shell 



Loops at the Tenninal and Variables as Vectors 

Occasionally, the foreach control structure may be used at a termi­
nal to aid in performing a number of similar commands. For in­
stance, to count the number of files in several directories (dirl, 
dir2, and dir3) that had the characters. TS or .EQ at the beginning 
of a line, you can use several command lines: 

% grep -c 'A\.TSI.EQ' dirl 
3 
% grep -c 'A\.TSI.EQ' dir2 
5 
% grep -c 'A\.TSI.EQ' dir3 
6 

or you can use foreach to do this more easily: 

% foreach i (dirl dir2 dirJ) 
? grep -c 'A\.TSI.EQ' $i 
? end 
3 
5 
6 
% 

Here, the shell prompts for input with a question mark (?) when 
reading the body of the loop. Variables containing lists of filenames 
or other words are also useful in loops. You can, for example, do 
the following: 

% set a=('ls') 
% echo $a 
esh.n esh.rm 
% Is 
esh.n 
esh.rm 
% echo $#a 
2 
% 

The set command here gave the a variable a list of all the filenames 
'in the current directory as value. You can then iterate these names 
to perform any chosen function. 

Using the C Shell 8-43 



The output of a command within backquotes (') is converted by the 
shell to a list of words. You can also place the backquoted string 
within double quotes to take each (nonempty) line as a component 
of the variable; preventing the lines from being split into words at 
blanks and tabs. A modifier :x can be used later to expand each 
component of the variable into another variable splitting it into 
separate words at embedded blanks and tabs. 

Braces { ... } in Argument Expansion 

Another form of filename expansion involves the brace characters 
({ }), which specify that the delimited strings separated by a comma 
(,) are to be consecutively substituted into the containing characters 
and the results expanded left to right. Thus, 

A{strl,str2, ... strn}B 

expands to: 

AstrlB Astr2B ... AstrnB 

This expansion occurs before the other filename expansions, and 
may be applied recursively (nested). The results of each expanded 
string are sorted separately, left to right order being preserved. The 
resulting filenames need not exist if no other expansion mecha­
nisms are used. This means that this mechanism can be used to 
generate arguments that are not filenames, but have common parts. 
For example, 

% mkdir ,...,/{hdrs,retrofit,csh} 

makes subdirectories hdrs, retrofit, and csh in your home direc­
tory. This is most useful when the common prefix is longer than 
shown in the following example: 

chown root lusrl {ucbl {ex,edit} ,libl {ex??* ,how_ex}} 

8-44 Using the C Shell 



Command Substitution 

A command enclosed in backquotes (') is replaced, just before file­
names are expanded, by the output from that command. You may 
type the following to save the current directory in the variable pwd: 

% set pwd='pwd' 

You may type this line to run the editor ex, supplying as arguments 
filenames ending in .c and that contain the string TRACE: 

% ex 'grep -1 TRACE *.c' 

NOTE: Command expansion also occurs in input 
redirected with double right angle brack­
ets «<) and within double quoted (") 
notations. See the BSD Command Refer­
ence for details. 

Using the C Shell 8-45 





Chapter 9 

Using the Bourne Shell 

The Bourne shell (named for its author, S. R. Bourne) is a language 
that provides a programmable interface to the SysV environment. 
Its features include control-flow primitives, parameter passing, vari­
ables, and string substitution. Constructs such as case, iC-then­
else, and Cor are supported, as is 2-way communication between 
the shell and commands. String-valued parameters (Le., filenames 
or flags) may be passed to a command. Also, commands set a re­
turn code that may be used to determine flow of control. The stan­
dard output from a command may also serve as shell input. 

The Bourne shell can modify the environment in which commands 
run. Input and output can be redirected to files, and processes that 
communicate through pipes can be invoked. Commands are found 
by searching directories in the file system in a user-defined se­
quence. Commands can be read either from the keyboard, or from 
a file, which allows command scripts to be stored for later use. 

The first part of this chapter covers most of the everyday require­
ments of shell users. Later, we describe those features of the shell 
primarily intended for use within shell scripts, including control­
flow primitives and string-valued variables provided by the shell. 
Knowing another programming language might help you understand 
this better. Finally, we describe the more advanced features of the 
shell. Appendix C contains a summary of Bourne shell grammar; 
Appendix 0 summarizes valid Bourne shell metacharacters and re­
served words. 

Using the Bourne Shell 9-1 



Simple Commands 

Simple commands consist of one or more words separated by 
blanks. The first word is the name of the command to be executed; 
any remaining words are passed as arguments to the command. For 
example, 

$ who 

is a command that prints the names of everybody currently logged 
in to a node in the network. The command 

$ Is -I 

prints a list of files in the current directory. The -I argument tells 
the Is (list directory) command to give a long listing of the directory 
(Le., print status information, size, and the creation date of each 
file) . 

Background Commands 

When the Bourne shell executes a command, it normally runs it 
from within the shell process, waits for it to finish, then prompts for 
more input. You may also have the shell run a command and then 
accept additional input before the command finishes. Thus, 

$ cc pgm.c & 

calls the C compiler to compile the file pgm.c. The trailing amper­
sand (&) is an operator that instructs the shell not to wait for the 
command to finish. To help you keep track of such a process, the 
shell reports its process number following its creation. Use the ps 
(process status) command to get a list of currently active processes. 

9-2 Using the Bourne Shell 



Input/Output Redirection 

Most commands produce output on the standard output (normally, 
the transcript pad of the window in which the Bourne shell is run­
ning). 

This output may be redirected to a file by writing, for example, 

$ Is -I > file 

The shell interprets the notation > file and does not pass it as an 
argument to the Is (list directory) command. If file doesn't exist, 
the shell creates it; otherwise, the original contents of file are used. 
Then the output from Is is put in file. You may also append output 
to a file by using this notation: 

$ Is -I » file 

Here too, file is created if it does not already exist; however, if it 
does, the output will be added to the end of file. 

The standard input of a command may be taken from a file instead 
of the node by writing, for example, 

$ wc < file 

The command wc (word count) reads its standard input (in this 
case, redirected from fi/e) and prints the number of characters. 
words, and lines found. If only the number of lines is required. then 
this could be used: 

$ wc -I < file 

Using the Bourne Shell 9-3 



Pipelines and Filters 

The standard output of one command may be connected to the 
standard input of another by using the "pipe" operator (I), as in 

$ Is -I 1 wc 

Two commands connected in this way constitute a "pipeline" and 
the overall effect is the same as 

$ Is -I > file; wc < file 

except that no file is used. Instead, the two processes are connected 
by a pipe and are run in parallel. Pipes are unidirectional, and syn­
chronization is achieved by halting wc when there is nothing to read 
and halting Is when the pipe is full. 

Many UNIX commands are called "filters." A filter is a command 
that reads its standard input, transforms it in some way, and prints 
the result as output. One such filter, the grep (search a file for a 
pattern) command, selects from its input those lines that contain 
some specified string. Thus, 

$ Is 1 grep old 

prints those lines, if any, of the output from Is that contain the 
string old. Another useful filter is the sort (sort or merge files) 
command, which can be used, for example, to print an alphabeti­
cally sorted list of users logged-in. The command line for doing this 
would be as follows: 

$ who 1 sort 

A pipeline may consist of more than two commands. For example, 

$ Is 1 grep old 1 wc -I 

prints the number of filenames in the current directory containing 
the string old. 

9-4 Using the Bourne Shell 



Generating Filenames 

Many commands accept filenames as arguments. For example, this 
prints information relating to the file main.c: 

$ Is -I main.c 

The shell provides a means of generating a list of filenames that 
match a pattern; for example, 

$ Is -I *.c 

generates, as arguments to Is, all filenames in the current directory 
that end in .c. In this context, the asterisk is a metacharacter "pat­
tern" that matches any string including the null string. In general, 
patterns are specified as follows: 

* 

? 

[ ... ] 

Matches any string of characters including 
the null string, but not a leading dot (.). 

Matches any single character. 

Matches anyone of the enclosed characters. 

A pair of characters separated by a dash (-) matches any character 
lexically between the pair. For example, consider the following: 

[a-z]* Matches all names in the current directory 
beginning with one of the letters a through z. 

lusr/tom/no/? Matches all one-character names in the 
directory lusr/tom/no. If no filename matches 
the pattern, then the pattern is passed, 
unchanged, as an argument. 

This expansion of metacharacters to pathnames is called globbing. 
Globbing is useful both to save typing and to select names according 
to some pattern. It may also be used to find files. For example, 

$ echo lusr/fred/* 1* . bin 

Using the Bourne Shell 9-5 



finds and prints the names of all files of the form file. bin in sub-di­
rectories of lusr/fred. The eclto (echo arguments) command sim­
ply prints its arguments, separated by blanks. Using this last feature 
can be time-consuming, requiring, in this case, a scan of all sub-di­
rectories of lusr/fred. 

There is one exception to the general rules given for patterns. The 
dot (.) at the start of a filename must be explicitly matched. There­
fore, 

$ eclto * 
echoes all filenames in the current directory not beginning with a 
dot. This echoes all those filenames beginning with a dot: 

$ eclto .• 

It avoids inadvertent matching of the names "." and " .. " which 
mean "the current directory" and "the parent directory," respec­
tively. (Notice that, by default, the Is (list directory) command sup­
presses listing of information for the files "." and " .. ".) Filenames 
starting with "." are also used to hide from common use start-up 
and other files which are normally ignored. 

Quotation 

As we have mentioned, characters that have a special meaning to 
the shell are called metacharacters. A complete list of Bourne shell 
metacharacters appears in Appendix D, but some of the more com­
mon ones are shown in Table 9-1. 

9-6 Using the Bourne Shell 



Table 9-1. Some Common Bourne Shell Metacharacters 

Character Description 

< Redirects input 

> Redirects output 

* Matches any set of characters 

? Matches any single character 

& Designates a background command 

I Designates a pipe 

A character preceded by a backslash (\) is said to be "quoted"or 
"escaped" and loses any special meaning it may otherwise have 
had. Since the backslash is elided, echo, used as shown, returns the 
following strings 

$ echo \? 
? 
$ echo \\ 
\ 

To allow long strings to be continued over more than one line, the 
shell ignores the sequence \newline. The backslash is convenient 
for quoting single characters. When more than one character needs 
quoting, we recommend the easier method of enclosing the string 
between single quotes. For example, 

$ echo xx'****'xx 
xx****xx 

The quoted string may not contain the single quote character ('), 
but it may contain newlines, which are preserved. We recommend 
this simple quoting for casual use. A third quoting mechanism, 
which uses double quotes to prevent interpretation of some, but not 
all, metacharacters is discussed in another section. 

Using the Bourne Shell 9-7 



Prompting 

The shell issues a prompt when it is ready for more input. The 
default Bourne shell prompt is a dollar sign ($) followed by a space. 
The prompt may be changed. For example, to set the prompt to the 
string "yesdear ", type this: 

$ PS1="yesdear " 

If a newline is typed and further input is needed, the shell issues the 
secondary prompt, a greater-than symbol (» followed by a space. 
If this happens unexpectedly, type an interrupt to return the main 
shell prompt. You may also change this prompt. 

For example, 

$ PS2=" moredear " 

sets the prompt to the string "moredear ". 

Starting the Bourne Shell 

When you log in to a Domain node, the DM (Display Manager) 
looks in several places for information about what windows to open 
and what processes to start (see Chapter 3 for more detailed infor­
mation). It normally opens a specified shell, then looks for the file: 

"",/user _data/startup _ dm.display _type 

The display _type argument matches the type of display in use (for 
example, 1280bw). If you include a command line" such as: 

(O,200)dr; (540,600)cp /bsd4.3/bin/sh -n bourne_shell 

in your startup_dm file, the DM automatically opens a BSD4.3 
Bourne shell when you log in. Since we included the -n option, the 
process is named bourne_shell. 

9-8 Using the Bourne Shell 



You may also define a key or function key to open a Bourne shell. 
This OM command defines the shifted LS key (labeled <SHELL» 
so that pressing SHIFT/<SHELL> opens a Bourne shell: 

kd ISs cp Ibin/sh ke 

When you log in, the shell sets the working directory to your home 
directory and begins reading commands from a file named . profile 
before reading commands from the node's keyboard or any other 
file. Every Bourne shell you start as a log-in shell reads from this 
file. 

The environment variable ENV determines whether the Bourne 
shell runs a start-up file for every new shell. If you define ENV, the 
Bourne shell takes it value as the name of a start-up script to exe­
cute. The .profile file may assign a value to ENV and that script 
will be run after .profile is finished. See "Shell Start-Up Files" in 
Chapter 7 for further information. 

Shell Scripts 

The shell may be used to read and execute commands contained in 
a file, for example, 

$ sh file [argument ... J 

starts a new shell which reads commands from file. Such a file is 
called a shell script. Arguments may be supplied with the call and 
are referred to infi/e using the positional parameters $1, $2, ... $9. 
For example, if the file wg contains 

who I grep $1 

then the following command line 

$ sh wg fred 

is equivalent to 

Using the Bourne Shell 9-9 



$ who I grep fred 

Files have three independent attributes: read, write, and execute. 
You can use chmod (change mode) or chad (change ACL) to 
make a file executable. For example, 

$ chmod +x wg 

ensures that the file wg has execute status. Following this, the com­
mand 

$ wg fred 

is equivalent to 

$ sh wg fred 

This allows programs and shell scripts be used interchangeably. Be­
sides providing names for positional parameters, the number of 
positional parameters in the call is available as $#. The name of the 
file being executed is available as $0. 

A special shell variable $* is used to substitute for all positional 
parameters except $0. Typically, this is used to access the whole list 
of arguments, as in the following shell script named list_links, 
which simply prep ends some arguments to those already given: 

#!/bin/sh 
# list_links - command to list links 
Is -8 $* 

Control Flow Using for Statements 

shell scripts are frequently used to loop through the arguments ($1, 
$2, ... ) executing commands once for each argument. For exam­
ple, consider the following program that searches a file of corporate 
phone numbers containing lines of the form 

9-10 Using the Bourne Shell 



tony 8756 
bob 9934 
sherry 4368 

richard 5335 

If this file is called lusr/lib/telnos, then the text of the shell script 
tel is 

#!/bin/sh 
for i 
do 

grep $i /usr/lib/telnos; 
done 

This command line prints those lines in lusr/lib/telnos that contain 
the string sherry 

$ tel sherry 

while this prints those lines containing sherry followed by those for 
richard: 

$ tel sherry richard 

The for loop notation of the shell has the general form 

for name in wI w2 
do 

command-list 
done 

A command-list is a sequence of one or more simple commands 
separated by a newline or semicolon. Furthermore, the shell only 
recognizes reserved words like do and done when they follow a 
newline or semicolon. The shell variable name is set to the words 
wI w 2 ... in turn each time the command-list following do is exe­
cuted. If in wI w2 ... is omitted, then the loop is executed once for 
each positional parameter; that is, in $ * is assumed. 

Using the Bourne Shell 9-11 



Another example of the use of the for loop is the create command 
whose text is 

#!/bin/sh 
for i 
do 

> $1; 
done 

The command line 

$ create alpha beta 

ensures that two empty files alpha and beta exist and are empty. 
The notation > file may be used on its own to create or clear the 
contents of a file. Notice also that a semicolon (or newline) is re­
quired before done. 

Control Flow Using case Statements 

The Bourne shell's case statement provides a multiway branching 
mechanism. For example, the following is an append command: 

#!/bin/sh 
case $# in 

1) cat » $1 ;; 
2) cat» $2 <$1 " 
*) echo 'usage: append [ from] to' 

esac 

When called with one argument as in 

append file 

$# is the string 1 and the standard input is copied onto the end of 
file using the cat command. 

9-12 Using the Bourne Shell 



When called with two arguments as in 

append file 1 file2 

the contents of file 1 are appended to file2. If the number of argu­
ments supplied to append is other than 1 or 2, then a message is 
printed indicating proper usage. 

The general form of the case command is 

case word in 
pattern) command-list;; 

esac 

The shell attempts to match word with each pattern in the order in 
which the patterns appear. If a match is found, then the associated 
command-list is executed and execution of the case is complete. 
Since a single asterisk (.) is the pattern that matches any string, it 
can be used for the default case. 

NOTE: The shell doesn't check to see that only 
one pattern matches the case argument. 
The first match found by the shell defines 
the set of commands to be executed. 

In this example, the commands following the second asterisk (*) 
are never executed. 

#!jbinjsh 
case $# in 

*) 
*) 

esac 

The case construction may also be used to distinguish between dif­
ferent forms of an argument. The following example is a fragment 
of a cc (C compiler) command: 

Using the Bourne Shell 9-13 



#!/bin/sh 
for i 
do 

case $i in 
-[ocs]) 

esac 
done 

-*) echo 'unknown flag $i' ;; 
*.c) /lib/cO $i .. , " 
*) echo 'unexpected argument $i' 

To allow the same commands to be associated with more than one 
pattern, the case command provides for alternative patterns sepa­
rated by a pipe character (I). Thus, 

case $i in 
-xl-y) 

esac 

is equivalent to 

case $i in 
-[xy]) 

esac 

The usual quoting conventions apply, so that 

case $i in 
\?) 

matches a question mark (7). 

Here Documents 

The shell script tel, illustrated previously, uses the file lusrllib/tel­
nos to supply the data for grep. Alternatively, this data may be 
included within the shell script as a "here document." For exam­
ple, 

9-14 Using the Bourne Shell 



#!/bin/sh 
for i 
do 

grep $i « 

richard 5335 
sherry 4368 

done 

In this case, the shell takes the lines between «I and 1 as the stan­
dard input for grep. The exclamation point (I) is arbitrary. The 
here document is terminated by a line that consists of the character 
(or string) following the lesser-than characters «<). 

Parameters are substituted in the document before it is made avail­
able to one command as illustrated by the following script called 
edg: 

#!/bin/sh 
ed $3 « % 
g/$1/s//$2/g 
w 
% 

The call 

$ edg string] string2 file 

is then equivalent to the ed commands 

ed file « % 
g/stringl/s//string2/g 
w 
% 

and changes all occurrences of string] in file to string2. To prevent 
substitution, use a backslash (\) to quote the special dollar sign 
character ($) as in 

Using the Bourne Shell 9-15 



$ ed $3 « EOF 
l,\$s/$1/$2/g 
w 
EOF 

This version of edg is equivalent to the first except that ed prints a 
question mark if no occurrences of the string $1 appear. You can 
entirely prevent substitution within a here document by quoting the 
terminating string. For example, 

grep $i « \EOF 

EOF 

The document is presented without modification to grep. If pa­
rameter substitution is not required in a here document, this latter 
form is more efficient. 

Shell Variables 

The shell provides string-valued variables. Variable names begin 
with a letter and consist of letters, digits, and underscores. You can 
use the set command to examine all currently set variables. 

Variables may be given values by writing, for example, 

user=fred box=mOOO acct=mhOOOO 

assigns values to the variables user, box, and acct. A variable may 
be set to the null string. The following line sets the variable null to 
the null string: 

null= 

The value of a variable is obtained by preceding its name with a 
dollar sign ($). For example, the following line echoes fred: 

$ echo $user 

9-16 Using the Bourne Shell 



Variables may be used interactively to provide abbreviations for fre­
quently used strings. For example, this moves (using the mv com­
mand) the file pgm from the current directory to the directory 
lusr/fred/bin: 

$ b=/usr/fred/bin 
$ mv pgm $b 

A more general notation is available for parameter (or variable) 
substitution, as in 

$ echo ${user} 

which is equivalent to 

$ echo $user 

and is used when the parameter name is followed by a letter or 
digit. For example, 

$ tmp=/tmp/ps 
$ ps a > ${tmp}a 

directs the output of ps to the file Itmp/psa, whereas this causes the 
value of the variable tmpa to be substituted: 

$ ps a > $tmpa 

Except for $?, which is set after every command, the Bourne shell 
sets these variables when invoked: 

$? The exit status (decimal string return code) of the most­
recently-executed command. Most commands return a 
zero if they execute successfully, and a nonzero status oth­
erwise. Testing the value of return codes is dealt with later 
under if and while commands. 

$# The number of positional parameters (in decimal). This is 
used, for example, in the append command to check the 
number of parameters. 

Using the Bourne Shell 9-17 



$$ The process number of this shell (in decimal). Since proc­
ess numbers are unique among all existing processes on 
the same node, this string is frequently used to generate 
unique temporary filenames. For example, 

$ ps a > /tmp/ps$$ 

$ rm Itmp/ps$$ 

$! The decimal process number of the last process run in the 
background. 

$- The current shell flags, such as -x and -v. 

Some variables have special meaning to the shell; avoid their use 
elsewhere. 

$MAIL 

$HOME 

$PATH 

When used interactively, the shell looks at the 
file specified by this variable before it issues a 
prompt. If the specified file has been modified 
since last examined, the shell prints the mes­
sage "you have mail" before prompting for the 
next command. This variable is typically set in 
the file .profile in your home directory, e.g., 
MAIL=/usr/mail/name, where name is your 
user ID. 

The user's log-in or home directory. This is 
the default argument for the cd command. 

A list of directories that contain commands. 
Each time a command is executed by the 
shell, a list of directories is searched for an 
executable file of that name. $PATH consists 
of directory names separated by colons (:), 
for example, 

$ PATH=:/usr/fred/bin:/bin:/usr/bin 

specifies that the current directory (the null 
string before the first colon), /usr/fred/bin, 
/bin and /usr/bin are to be searched in that 
order. 

9-18 Using the Bourne Shell 



$PSI 

$PS2 

$IFS 

$ENV 

$SHELL 

$SYSTYPE 

The test Command 

Thus, individual users can have "private" 
commands that are accessible independently 
of the current directory. If the command 
name contains a slash (I), this directory 
search is not used. The shell makes a single 
attempt to execute the command. 

The primary shell prompt string; by default, 
a dollar sign ($). 

The shell prompt when further input is 
needed; by default, a greater-than character 
(». 

The set of characters used by blank interpre­
tation. 

The pathname of a shell start-up script to 
execute whenever you start a new shell. 

When the shell is invoked, it scans the envi­
ronment for this name (in this case, /bin/sh). 

The environment as set by "systype". 

The test (evaluate condition) command has a number of uses in 
shell programs. For example, 

$ test -f name 

returns zero exit status if name exists and nonzero exit status other­
wise. In general, test evaluates a predicate and returns the result as 
its exit status. Some of the more frequ~nt1y used test arguments are 
given here. See test for a complete specification. 

test s true if s is a non null string 

test -f name true if name is a file that exists 

test -r name true if name is a readable file 

test -w name true if name is a writable file 

Using the Bourne Shell 9-19 



test -d name true if name is a directory that exists 

test -L name true if name is a soft link 

NOTE: In determining whether an object is a soft 
link, test -d name also returns true if 
name is a soft link that points to a direc­
tory. Furthermore, test -f name returns 
true if name is a soft link that points to a 
file. If name is a soft link that points to a 
nonexistent object, then test -f name re­
turns false while test -L name returns 
true. 

Control Flow Using while Statements 

The actions of the for loop and the case branch are determined by 
data available to the shell. A while or until loop and an if-then­
else branch are also provided. The actions of while, until, and 
if-then-else are determined by the exit status returned by com­
mands. A while loop has the general form 

while command-list 
do 

loop-command-list 
done 

The value tested by the while command is the exit status of the last 
simple command following while. Each time around the loop, com­
mand-list is executed. If a zero exit status is returned, then com­
mand-list is executed; otherwise, the loop terminates. Thus, 

#!/bin/sh 
while test $1 
do ... 

shift 
done 

is equivalent to the following: 

9-20 Using the Bourne Shell 



#!/bin/sh 
for i 
do ... 
done 

.. 

Shift is a shell command that renames the positional parameters 
$2. $3 •... as $1. $2 •... and loses $1 (that is. it shifts them to the 
left) . 

You can also use the while/until locp to make the shell wait until 
an external event occurs. before running commands. An until loop 
reverses the termination condition. For example. this does a loop 
every five minutes until file exists (presumably another process cre­
ates the file): 

#!/bin/sh 
until test -f file 
do 

sleep 300; 
done 
commands 

Control Flow Using if Statements 

The Bourne shell also provides a general conditional branch of the 
following form. which tests the value returned by the last simple 
command following if: 

if command-list 
then 

command-list 
else 

command-list 
fi 

The if command may be used along with the test' (evaluate condi­
tion) command to test for the existence of a file as in the following 

Using the Bourne Shell 9-21 



if test -f file 
then 

process file 
else 

do something else 
fi 

A multiple test if command of the form 

if .•. 
then .. . 
else if .. . 
then .. . 
else if .. . 

fi 
fi 
fi 

may be written using an extension of the if notation as 

if ... 
then .. . 
elif .. . 
then .. . 
elif .. . 

fi 

The following shows the touch command, which changes the "last 
modified" time for a list of files. The command may be used along 
with make to force recompilation of a list of files. 

9-22 Using the Bourne Shell 



#l/bin/sh 
flag= 
for i 
do 

case $i in 
-c) flag=N " 
*) if test -f $i 
then 

touch $i 
elif 

test $flag 
then 

echo file \'$i\' does not exist 
else 

done 

fi 
esac 

>$i 

The -c flag in this command forces subsequent files to be created if 
they don't already exist. Otherwise, an error message would be 
printed. The shell variable flag is set to a nonnull string if the -c 
argument is found. The "touch" updates the last modified time of a 
file to be the current time. 

The sequence 

if command] 
then command2 
fi 

rna y be written as 

command] &&, command2 

Conversely, the following sequence 

command] II command2 

executes command2 only if command] fails. In each case, the value 
returned is that of the last simple command executed. 

Using the Bourne Shell 9-::23 



Command Grouping 

Commands may be grouped in one of the following two ways: 

{ command-list ; } 
( command-list ) 

In the first example, command-list is simply executed; the second 
executes command-list as a separate process. For example, this 
command line executes rm junk in the directory x without chang­
ing the current directory of the invoking shell: 

$ (cd x; rm Junk) 

The following commands have the same effect, but they leave the 
invoking shell in the directory x: 

$ cd x; rm Junk 

Debugging Shell Scripts 

The shell provides two tracing mechanisms to help when debugging 
shell scripts. The first is invoked within the script as 

$ set -v 

(-v for verbose), causing lines of the script to be printed as they are 
read. This helps isolate syntax errors. Invoke it without modifying 
the script by specifying 

$ sh -v proc 

where proc is the name of the shell script. This flag may be used 
along with the -n flag, which prevents execution of subsequent 
commands. 

NOTE: Using set -n renders a node's keyboard 
useless until you type an end-of-file 
(EOF). 

9-24 Using the Bourne Shell 



The command set -x produces an execution trace. Following pa­
rameter substitution, each command is printed as it is executed. 
Both flags may be turned off by typing 

$ set -

and the current setting of the shell flags is available as 

$-

Keyword Parameters 

Shell variables may be given values by assignment or when a com­
mand is invoked. If a command is preceded by statements of the 
form name=va!ue, the assignment is done. The value of name in the 
invoking shell isn't affected. For example, this executes command 
with user set to fred: 

user=fred command 

The -k flag causes arguments of the form name=value to be inter­
preted in this way anywhere in the argument list. Such names are 
sometimes called keyword parameters. If any arguments remain, 
they are passed to the command. 

You may also use the set command to set positional parameters 
from within a script. For example, 

$ set - * 

sets $1 to the first filename in the current directory, $2 to the next, 
and so on. The dash (-) ensures correct treatment when the first 
filename begins with a dash. 

Using the Bourne Shell 9-25 



Parameter Transmission 

When a shell script is invoked, both positional and keyword pa­
rameters may be supplied with the call. Keyword parameters are 
also made available implicitly to a shell script by specifying in ad­
vance that such parameters are to be exported. Thus, 

$ export user box 

marks the variables user and box for export. When a shell script is 
invoked, all exportable variables are copied for use within the in­
voked script. Modification of such variables within the script does­
n't affect the values in the invoking shell. A shell script may not 
usually modify the state of its caller without an explicit request on 
the part of the caller. Shared file descriptors are an exception to 
this rule. 

NOTE: Any new process created that takes its 
context from the process in which a vari­
able was defined and exported will recog­
nize the new variable. Processes already 
created (or those created later) that 
don't take their context from the process 
where the variable was defined won't ap­
ply the variable. 

Names whose values are intended to remain constant may be de­
clared readonly. The form of this command is the same as that of 
the export command: 

readonly name ... 

Subsequent attempts to set readonly variables are illegal. 

Parameter Substitution 

In the BSD version of /bin/sh, the null string replaces any unset 
shell parameter. For example, if the variable d is not set, the fol­
lowing command echoes nothing: 

$ echo $d 

9-26 Using the Bourne Shell 



A default string may be given as in the following 

$ echo ${d-.} 

which echoes the value of the variable d if it is set and a dot (.) oth­
erwise. The default string is evaluated using the usual quoting con­
ventions so that 

$ echo ${d-'*'} 

echoes an asterisk (*) if the variable d is not set. Similarly, 

$ echo ${d-$l} 

echoes the value of d if it is set and the value (if any) of S1 other­
wise. A variable may be assigned a default value using the notation 

$ echo ${d=.} 

which substitutes the same string as 

$ echo ${d-.} 

and if d were not previously set then it is set to the string".". (The 
notation S{ ... = ... } is not available for positional parameters.) If 
there is no sensible default, then the notation 

$ echo ${d?message} 

echoes the value of the variable d if it has one; otherwise, the shell 
prints message and abandons the shell script. If message is absent, 
then a standard message is printed. A shell script that requires some 
parameters to be set might start as follows: 

#! Ibin/sh 
: ${user?} ${acct?} ${bin?} 

Using the Bourne Shell 9-27 



The colon (:) is a command that is built in to the shell and does 
nothing once its arguments have been evaluated. If any of the vari­
ables user. acct. or bin are not set. the shell abandons execution of 
the script. 

Command Substitution 

The standard output from a command can be substituted in a way 
similar to that allowed for parameters. The command pwd prints on 
its standard output the name of the current directory. For example. 
if the current directory is usrltred/bin. then the command 

$ d='pwd' 

is equivalent to 

$ d=/usr/fred/bin, 

The shell takes the entire string between opening single quotes 
(grave accents. • ...• ) as the command to be executed and replaces it 
with the output from the command. The command is written using 
the usual quoting conventions except that a grave accent (.) must 
be escaped with a backslash (\). For example. 

$ Is 'echo "$1"' 

is equivalent to 

$ Is $1 

Command substitution occurs in all contexts where parameter sub­
stitution occurs (including here documents). and the treatment of 
the resulting text is the same in both cases. This mechanism allows 
string processing commands to be used within shell scripts. An ex­
ample of such a command is basename. which removes a specified 
suffix from a string. For example. the following command line 
prints the string main: 

$ basename main.c .c 

9-28 Using the. Bourne Shell 



Its use is illustrated by the following fragment from a cc command 
that sets B to the part of $A with the suffix .c stripped: 

case $A in 

*.c) B='basename $A .c' 

esac 

For example, the following sets the variable i to the names of files 
in time order, most recent first: 

for i in 'Is -t'; 
do 

This prints the date 

set 'date'; echo $6 $2 $3, $4 

in output of the following format: 

1984 Dec 14, 23:59:59 

Evaluation and Quoting 

The shell is a macro processor that provides parameter substitution, 
command substitution and filename generation for the arguments to 
commands. This section discusses the order in which these evalu­
ations occur and the effects of the various quoting mechanisms. 

Commands are parsed initially according to the grammar given in 
the summary of Bourne shell grammar in Appendix C. Before a 
command is executed, the following substitutions occur: 

• parameter substitution (for example, $user). 

• command substitution (for example, 'pwd '). Only one 
evaluation occurs, so that if, for example, the value of the 
variable X is the string $y, then the following echoes $y: 

$ echo $X 

Using the Bourne Shell 9-29 



Following these substitutions, the resulting characters are broken 
into nonblank words. Thus, "blanks" are the characters of the 
string $IFS. By default, this string consists of blank, tab and 
newline. The null string isn't regarded as a word unless quoted, for 
example, 

$ echo " 

passes on the null string as the first argument to echo, whereas 

$ echo $null 

calls echo with no arguments if the variable null is not set or set to 
the null string. 

Each word is then scanned for the file pattern characters *, ? and 
[ ... ] and an alphabetical list of filenames is generated to replace the 
word. Each such filename is a separate argument. 

The evaluations just described also occur in the list of words associ­
ated with a for loop. Only substitution occurs in the word used for a 
case branch. 

In addition to the quoting mechanisms described earlier using back­
slash (\) and the ' ... ' string, a third quoting mechanism is provided 
using double quotes. Within double quotes, parameter and com­
mand substitutions occur but filename generation and the interpre­
tation of blanks does not. The following characters have a special 
meaning within double quotes and may be quoted using a backslash 
(\): 

$ 

\ 

parameter substitution 
command substitution 
ends the quoted string 
quotes the special characters $ , " \ 

For example, this passes the value of the variable x as a single 
argument to echo: 

$ echo "$x" 

9-30 Using the Bourne Shell 



Similarly. the following 

$ echo "$*" 

passes the positional parameters as a single argument and is equal to 

$ echo "$1 $2 ... " 

The notation $@ is the same as $* except when it is quoted. 

$ echo "$@" 

passes the positional parameters. unevaluated. to echo and is 
equivalent to the following 

$ echo "$1" "$2" ... 

Table 9-2 gives. for each quoting mechanism. the shell 
metacharacters that are evaluated. In this table, 

• "t" shows a sequence used as a terminator. 

• "y" shows a sequence in which a metacharacter is inter­
preted. 

• "n" shows a sequence in which a metacharacter is not in­
terpreted. 

Table 9-2. Evaluation of Bourne Shell Metacharacters by 
Quoting Mechanisms 

Quoting Mechanism Metacharacters Evaluated 

• \ $ * • " 
, 

• n n n n n t 

" Y Y n Y t n 

Using the Bourne Shell 9-31 



Among other things, this table shows that the sequence \$ is not 
interpreted (is passed as a literal $), the sequence \' can be used to 
terminate a string, and the sequence "$ preserves the meta-mean­
ing of the dollar sign ($). Where more than one evaluation of a 
string is required, the built-in command eval may be used. For 
example, if the variable X has the value $y, and if y has the value 
pqr, then this echoes the string pqr: 

$ eval echo $X 

In general, eval evaluates its arguments (as do all commands) and 
treats the result as input to the shell. The input is read and the 
resulting command(s) executed. Thus, 

$ wg='eval who I grep' 
$ $wg fred 

is equivalent to 

$ who I grep fred 

Here, eval is required since there is no interpretation of 
metacharacters, such as a pipe character (/)' following substitution. 

Error Handling 

How errors detected by the shell are treated depends on the type of 
error and whether the shell is being used interactively. An interac­
tive shell is one whose input and output are connected to a node as 
determined by gtty (get terminal state). A shell invoked with the -i 
flag is also interactive. Execution of a command may fail because: 

• Input/output redirection won't work (for example, a file 
doesn't exist or can't be created). 

• The command itself doesn't exist or cannot be executed. 

• The command terminates abnormally. 

• The command terminates normally but returns a nonzero 
exit status. 

9-32 Using the Bourne Shell 



In every case, the shell goes on to execute the next command. Ex­
cept in the last case, the shell prints an error message. All remain­
ing errors cause the shell to exit from a command script. An inter­
active shell returns to read another command from the node's key­
board. Such errors include the following: 

• Syntax errors (for example. if ... then ... done). 

• A signal such as interrupt. The shell waits for the current 
command, if any, to finish execution and then either exits 
or returns to the node. 

• Failure of any of the built-in commands such as cd. 

The shell flag -e causes the shell to terminate if any error is de­
tected. Many of the UNIX signals used by BSD software are de­
scribed in Table 9-3. The signals in this list of potential interest to 
shell programs are 1, 2, 3, 14, and 15. For a complete list, see 
signal in the BSD Programmer's Reference. 

Table 9-3. UNIX Signals Commonly Used by 
BSD Software 

Signal Number Description 

1 Hangup 
2 Interrupt 
3* Quit 
4* Illegal instruction 
5* Trace trap 
6* lOT instruction 
7* EMT instruction 
8* Floating point exception 
9 Kill 
10* Bus error 
11* Segmentation violation 
12* Bad argument to system call 
13 Write on a pipe with no one to read it 
14 Alarm clock 
15 Software termination (from kill) 
16 Domain/OS fault with no UNIX 

equivalent 

Using the Bourne Shell 9-33 



Fault Handling 

Shell scripts normally terminate when an interrupt is received from 
the node. The trap command is required for necessary clean-up 
activity (for example, removal of temporary files). For example, 
this line sets a trap for signal 2 (interrupt): 

trap 'rm /tmp/ps$$; exit' 2 

If this signal is received, it executes the commands 

rm /tmp/ps$$; exit 

Exit is another built-in command that terminates execution of a 
shell script. It is required to keep the shell from resuming execution 
of the script at the place where it was interrupted, once the trap has 
been taken. 

UNIX signals can be ignored (never sent to the process); caught, 
allowing the process to decide what action to take; or left to cause 
process termination with no further action. If a signal is ignored on 
entry to a shell script, for example, by being invoked in the back­
ground, then trap commands (and the signal) are ignored. This 
modified version of touch shows the use of trap in removing a file: 

#!/bin/sh 
flag= 
trap 'rm -f junk$$; exit' 1 2 3 15 
for i 
do case $i in 

-c) flag=N " 
*) if test -f $i 

then 
touch $1 

elif 
test $flag 

then 
echo file \'$i\' does not exist 

else 

fi 
esac 

done 

>$i 

9-34 Using the Bourne Shell 



The trap command appears before the creation of the temporary 
file; otherwise. the process could die without removing the file. 
Since there is no signal O. it is used by the shell to indicate the 
commands to be executed on exit from the shell script. 

A script may elect to ignore signals by specifying the null string as 
the argument to trap. The following fragment. taken from the 
nohup command. 

trap " 1 2 3 15 

causes hangup, interrupt, quit, and kill signals to be ignored by the 
script and by invoked commands. Traps may be reset by saying 

trap 2 3 

which resets the traps for signals 2 and 3 to their default values. A 
list of the current values of traps may be obtained by writing 

trap 

The shell script called scan (below) illustrates trap usage where 
there is no exit in the trap command. The shell script scan takes 
each directory in the current directory, prompts with its name, and 
then executes commands typed at the node until an end of file or 
an interrupt is received. Interrupts are ignored while executing the 
requested commands, but cause termination when scan is waiting 
for input. 

#!/bin/sh 
d='pwd' 
for i in * 
do 

if test -d $d/$i 
then cd $d/$i 

while echo "$i:" 
trap exit 2 
read x 

do trap : 2; eval $x; 
done 
fi 

done 

Using the Bourne Shell 9-35 



The read command is a built-in command that reads one line from 
the standard input and places the result in the variable x. The com­
mand returns a nonzero exit status if an end-of-file is read or an 
interrupt is received. 

Command Execution 

To run a command other than a built-in command, the shell first 
creates a new program level in the shell process. The execution 
environment for the command includes input, output, and the 
states of signals, and is established before the command is exe­
cuted. A built-in command exec creates a new program level in the 
shell process. For example, a simple version of the nohup com­
mand looks like this: 

trap 1 2 3 15 
exec $* 

The trap command turns off the signals specified so they are ig­
nored by subsequently created commands; exec runs the specified 
command as a new program level in the shell process itself. 

Most forms of input/output redirection have already been de­
scribed. In all of the following examples, word is only subject to 
parameter and command substitution. No filename generation or 
blank interpretation takes place; thus, 

echo ... > *.c 

writes its output into a file whose name is * .c. Input output specifi­
cations are evaluated left to right as they appear in the command. 

> file 

» file 

< file 

The standard output (file descriptor 1) is sent 
to file, which is created if it doesn't already 
exist. 

The standard output is sent to file. If the file 
exists, output is added to the end; otherwise, 
the file is created. 

The standard input (file descriptor 0) is taken 
from the file. 

9-36 Using the Bourne Shell 



« file 

>&digit 

<&digit 

<&-

>&-

The standard input is taken from the lines of 
shell input that follow up to but not including a 
line consisting only ofJile. If file is quoted, no 
interpretation of the document occurs. If file 
isn't quoted, parameter and command substi­
tution occur and a backslash (\) is used to 
quote the characters \ $ • and the first char­
acter of word. In the latter case, \newline is 
ignored (c. f. quoted strings). 

The file descriptor digit is duplicated using 
the system call dup (duplicate a descriptor), 
and the result is used as standard output. 

The standard input is duplicated from file 
descriptor digit. 

The standard input is closed. 

The standard output is closed. 

If any of the above are preceded by a digit, the file descriptor cre­
ated is that specified by the digit instead of the default 0 or 1. For 
example, this runs command with error output (file descriptor 2) 
redirected to file: 

command ... 2> file 

and this runs command with its standard output and message output 
merged: 

command .,. 2>&1 

The environment for a command run in the background such as 

$ Iist .... c I Ipr & 

is modified in two ways. First, the default standard input for such a 
command is the empty file !dev/null. This prevents two parallel 
processes (the shell and the command) from trying to read the 
same input (a rather chaotic situation). 

Using the Bourne Shell 9-37 



For example, the following allows both the editor and the shell to 
read from the same input at the same time: 

$ ed file & 

The environment of a background command is further modified by 
turning off the quit and interrupt signals so that they are ignored by 
the command. Thus, by convention, a signal set to 1 (ignored) is 
never changed, even for a short time. Note also that the shell com­
mand trap has no effect on an ignored signal. 

-------88-------

9-38 Using the Bourne Shell 



Chapter 10 

Using the Kom Shell 

The Korn shell, ksh, is a suitable for the Bourne shell and the C 
shell. It offers new features, better performance, and is upwardly 
compatible with the Bourne shell. It also provides many of the addi­
tional interactive features of the C shell. Most of the known bugs of 
the Bourne shell have been eliminated. Furthermore, ksh provides 
an enhanced programming environment so that users can write me­
dium-sized programming tasks at the shell level without serious per­
formance penalties. In most cases, scripts written for the Bourne 
shell can run without change under ksh. 

The description of features in this chapter assumes that you are 
already familiar with the Bourne shell. If you do not have a solid 
understanding of how the Bourne shell works, please read Chapter 
9. For further information on how to use the Korn shell, see ksh 
(Korn shell) in the BSD Command Reference. 

Starting the Korn Shell 

To start a Korn shell on an Apollo node after you've logged in, 
type the DM command 

Command: cp Ibin/ksh 

Using the Korn Shell 10-1 



In the case of the line above. Ibin resolves to IS (SYSTYPE)/bin. 
See Chapters 2 and 3 for more information about the SYSTYPE 
environment variable. 

The DM opens a window and runs the Korn shell in it. With the 
ksh command. you may supply the coordinates where the DM will 
locate the upper left and lower right comers of, the window. You 
may even give the process a name. as in this line: 

Command: (0.200)dr; (540.600)cp Ibin/ksh 

This command line opens up a small window near the left side of 
the screen. 

Opening a Kom Shell When You Log In 

The Bourne shell is the default UNIX shell in the BSD environ­
ment. Chapter 3 describes how the system determines which shell 
to run when you log in. You may arrange to have the system open 
a Korn sqell as your log-in shell by specifying Ibin/ksh in the shell 
field of your registry account. using the chsh (change shell) com­
mand. 

When you log in to an Apollo node. the DM (Display Manager) 
looks in several places for information about what windows to open 
and what processes to start (see Chapter 3 for more detailed infor­
mation). It normally opens a specified log-in shell. then looks for 
the file 

The display_type argument matches the type of display in use (e.g .• 
1280bw). If you include a command line such as 

(0.200)dr; (540,600) cp Ibsd4.3/bin/ksh 

in your startup_dm file. the DM automatically opens a BSD ver­
sion of the Korn shell when you log in. 

10-2 Using the Korn Shell 



The log-in shell sets the working directory to your home directory 
and begins reading commands from the file named . profile in this 
directory. The log-in shell assumes that any file called .profile in 
your home directory contains commands. and reads it first. before 
reading commands from the terminal or any other file. Every Korn 
shell you start as a log-in shell reads from this file. 

You may also define a key or function key to open a Korn shell. 
The following DM command defines the shifted L5 key (labeled 
<SHELL» so that pressing SHIFT/<SHELL> opens a Korn shell: 

kd 15s cp Ibin/ksh ke 

By default. <SHELL> starts up a new pad with your log-in shell. so 
if it is ksh. you don't need to do the above procedure. 

Shell Variables 

The ability to define and use variables to store and retrieve values is 
an important feature in most programming languages. The Korn 
shell has variables with identifiers that follow the same rules as the 
Bourne shell. Since all variables have string representations. there is 
no need to specify the type of each variable in the shell. 

In the Korn shell. each variable can have one or more attributes 
that control the internal representation of the variable. the way the 
variable is printed. and its access or scope. Two of the attributes. 
readonly and export. are available in the Bourne shell. The type­
set built-in command of ksh assigns attributes to variables. The 
complete list of attributes can be found under ksh in the BSD Com­
mand Reference. The unset built-in command of the ksh removes 
values and attributes of parameters. 

Whenever a value is assigned to a variable. the value is transformed 
according to the attributes of the variable. Changing the attribute of 
a variable can change its value. There are three attributes for field 
justification. as might be needed for formatting a report. 

For each of these attributes. the first time an assignment is made to 
the variable. its size is remembered. Each assignment causes justifi­
cation of the field. truncating if necessary. Assignment to fixed 

Using the Korn Shell 10-3 



sized variables provides a simple way to generate a substring consist­
ing of a fixed number of characters from the beginning or end of a 
string. 

The attributes -u and -I, are used for uppercase and lowercase 
formatting respectively. Since it makes no sense to have both attrib­
utes on simultaneously, turning on either of these attributes turns 
the other off. The following script provides an example of the use of 
shell variables with attributes. This script reads a file of lines each 
consisting of five fields separated by a colon (:) and prints fields 4 
and 2 in uppercase in columns 1-15, left justified, and columns 
20-25 right-justified respectively. 

typeset -Lu 
typeset -Ru 
IFS=: 
set -f 
while read 
do print -r 
done 

f4=123456789012345 
f2=123456 

-r fl f2 f3 f4 f5 
"$f4 $f2" 

# 15 character left justified 
# 6 character right justified 

# skip file name generation 
# read line, split into fields 
# print fields 4 and 2 

The integer attribute, -i, causes the variable to be internally repre­
sented as an integer. The first assignment to an integer variable 
determines the output base (see the following paragraphs). This 
base will be used whenever the variable is printed. Assignment to 
integer typed variables result in arithmetic evaluation, as described 
below, of the right hand side. 

The Korn shell allows 1-dimensional arrays in addition to simple 
variables. Any variable can become an array by referring to it with a 
subscript. All elements of an array need not exist. Subscripts for 
arrays must ev~luate to an integer between 0 and 127, otherwise an 
error results. Evaluation of subscripts is described in the next sec­
tion. Attributes apply to the whole array. 

Assignments to array variables are made with the typeset built-in 
command. Referencing of subscripted variables requires a dollar 
sign ($), but also requires braces around the array element name. 
The braces are needed to avoid conflicts with the file name genera­
tion mechanism. The form of any array element reference is: 

$ {name [subscript]} 

10-4 Using the Korn Shell 



A subscript value of asterisk (*) or at sign (@) can be used to gen­
erate all elements of an array. as they are used for expansion of 
positional parameters. 

A few additional operations are available on shell variables. A 

$ {#name} 

is the length in bytes of $name. For an array variable. the following 
gives the number of elements in the array: 

$ {#name [ *]} 

There are two parameter substitution modifiers that have been 
added to strip off leading and trailing substrings during parameter 
substitution. The pound sign (#) modifier strips off from the left. 
and the percent sign (%) modifier strips off from the right. For 
example. if the shell variable i has value file.c. then the expression 

${i%.c} 

has value file. The substring built-in command has been added to 
ksh to enable the user to generate a substring of a given string. This 
built-in allows the user to specify an expression to be deleted from 
the left and right ends of the string. The resulting substring is 
printed out. Command substitution can be used to assign the output 
of substring to a shell variable. 

Arithmetic Evaluation 

The built-in command. let. provides the ability to do integer arith­
metic. All arithmetic evaluations are performed using long arithme­
tic. Arithmetic constants are written as 

base#number 

The base argument is a decimal integer between 2 and 36; number 
is any positive integer. Base ten is used if no base is specified. 

Using the Korn Shell 10-5 



Arithmetic expressions are made from constants, variables, and one 
or more of the 14 operators listed in the manual page. Operators 
are evaluated in order of precedence. Parentheses may be used for 
grouping. A variable does not have to have an integer attribute to 
be used within an arithmetic expression. The name of the variable 
is replaced by its value within an arithmetic expression. The state­
ment 

let x=x+l 

can be used to increment a variable x. Note that there is no space 
before or after the plus (+) and equal (=) operators. This is because 
each argument to let is an expression to evaluate. The last expres­
sion determines the value returned by let. If the last expression 
evaluates to a nonzero value, the let returns true. Otherwise, let 
returns false. 

Note that many of the arithmetic operators have special meaning to 
the shell and must be quoted. Since this can be burdensome, an 
alternate form of arithmetic evaluation syntax has been provided. 
For any command that begins with double left parentheses, all the 
characters until the matching double right parentheses are treated 
as a quoted arithmetic expression. The double parentheses usually 
avoids incompatibility with the Bourne shell's use of parentheses for 
grouping a set of commands to be run in a subshell. Expressions 
inside double parentheses can contain blanks and special characters 
without quoting. More precisely, 

« ... » 
is equivalent to 

let" ... " 

The following script prints the first n lines of its standard input onto 
its standard output, where n is supplied as an argument or is 20 if 
omitted: 

typeset -i n=${1-20} 
while read -r line && « (n=n-l»=O » 
do print -r - "$line" 
done 

10-6 Using the Korn Shell 

# set n 
# at most n lines 



Functions and Command Aliasing 

Two new mechanisms help create pseudo-commands (things that 
look like commands, but do not always create a process). The first 
technique is called command name aliasing. 

As a command is being read, the command name is checked 
against a list of alias names. If it is found, the name is replaced by 
the text associated with the alias and then rescanned. The text of 
an alias is not checked for aliases, so recursive definitions are not 
allowed. 

Aliases are defined with the alias built-in command. The form of 
an alias command is: 

alias name=value 

Except for the first character, which must be printable, the alias 
name must be a valid identifier. The replacement text, value, can 
contain any valid shell script, including metacharacters such as pipe 
symbols and input/output redirection. Aliases can be used to rede­
fine built-in commands so that the alias 

alias test=.Itest 

can be used to look for test in your current working directory 
rather than using the built-in test command. Keywords such as for 
and while cannot be changed by aliasing. The command alias, 
without arguments, generates a list of aliases and corresponding 
texts. The unalias command removes the name and text of an 
alias. 

Aliases are used to save typing and to improve readability of scripts. 
For example, the alias 

alias integer='typeset -i' 

allows integer the variables i and j to be declared and initialized 
with the command integer 

Using the Korn Shell 10-7 



i=O J=1 

One frequent use of aliases is to alias a command name to the full 
pathname of the program. This eliminates the path search but re­
quires knowledge of where that program will be stored. To reduce 
the amount of path searching. tracked aliases have been intro­
duced. A tracked alias is not given a value. Its value is defined at 
the first reference by a path-search as the full pathname equivalent 
of the name. and remains defined until the PATH variable is 
changed. Programs found in directories that do not begin with a 
slash (I) that occur earlier in the path-search than the value of the 
tracked alias. take precedence over tracked aliases. 

Tracked aliases provide an alternative to the csh (C shell) com­
mand hashing facility. Tracked aliases do not require time for in­
itialization and allow for new commands to be introduced without 
the need for rehashing. An option to the shell allows all command 
names that are valid alias names to become tracked aliases. 

Functions are more general than aliases but also more costly. Func­
tions definitions are of the form 

function name 
{ 

any shell script 
} 

The function is invoked by writing name and optionally following it 
with arguments. Positional parameters are saved before each func­
tion call and restored when completed. Functions are executed in 
the current shell environment and can share named variables with 
the calling program. The return built-in can be used to cause the 
function to return to the statement following the point of invoca­
tion. 

By default. variables are inherited by the function and shared by 
the calling program. However. environment substitutions preceding 
the function call apply only to the scope of the function call. Also. 
variables defined with the typeset. built-in command are local to 
the function in which they are declared. Thus. for the function de­
fined as follows 

10-8 Using the Korn Shell 



function name 
{ 

} 

typeset -i x=10 
let z=x+y 
print $z 

and invoked as 

y=13 name 

x and yare local variables with respect to the function name while z 
is global. 

Alias and function names are never directly carried across separate 
invocations of ksh, but can be passed down to subshells. The -x 
flag is used with alias to carry aliases to subshells while the -fx flags 
of typeset are used to do the same for functions. 

Several UNIX commands can be alia sed to ksh built-in commands. 
Some of these are automatically set each time the shell is invoked. 
About 20 frequently used UNIX commands are also set as tracked 
aliases. Each user can create a file for aliases and functions. 

The location of an alias command can be important since aliases 
are only processed when a command is read. A .procedure is read 
all at once (unlike profiles, read a command at a time) so that 
aliases defined there won't affect commands within this script. 

A name is checked to see if it is a built-in command before check­
ing to see if it is a function. To write a function to replace a built-in 
command you must define a function with a different name and 
alias the built-in name to this function. For example, to write a cd 
function which changes the directory and prints out the directory 
name, you can write the following: 

alias cd= cd 
function - cd 
{ -

if 'cd' "S@" 
then echo SPWD 
fi 

} 

Using the Korn Shell 10-9 



The single quotes around cd within the function prevents alias sub­
stitution. The PWD variable is described below. The combination 
of aliases and functions can be used to do things that can't be done 
with either of these separately. For example, the function and ali­
ases defined as 

function _from # i=start to finish [ by incr] 
{ 

} 

typeset var=${l%%=*} 
integer incr=${S-l} $1 
while « $var <= $3 » 

do _repeat 
let $var=$var+incr 

done 

alias repeat='function _repeat {' from='}; _from' 

allow you to write loops such as the following with the expected 
behavior: 

repeat 
any script command 

from j=1 to 13 by 3 

You should put aliases and functions that are to be available for all 
shell invocations into your ksh startup file. By setting and exporting 
the environment variable, ENV, to the name of this file, the aliases 
and functions are defined each time ksh is invoked. The value of 
the ENV variable undergoes macro and command substitution prior 
to its use. Since the ENV file is not invoked automatically for a log 
in shell, you must include the following lines in your . profile file: 

ENV=,.."I. kshrc 
eval $ENV 

See Chapter 7 for further information on the ENV environment 
variable. 

10-10 Using the Korn Shell 



Input and Output 

An extended 110 capability enhances the use of the shell as a pro­
gramming language. The Bourne shell has a built-in command 
(read) for reading lines from file descriptor 0, but does not have 
any internal output mechanism. As a result, the echo command has 
been used to produce output for a shell procedure. This is ineffi­
cient and restrictive. 

For example, you cannot read in a line from a terminal and echo 
the line exactly as is. In the Bourne shell, the read built-in com­
mand cannot be used to read lines that end in a backslash (\), and 
the echo (echo arguments) command will treat certain sequences as 
control sequences. In addition, you can never have more than one 
file open at any time for reading. 

The Korn shell has options on the read command to specify the file 
descriptor for the input. The exec built-in command can be used to 
open and close file streams. The -r option allows a backslash (\) at 
the end of an input line to be treated as a regular character rather 
than the line continuation character. The first argument of the read 
command can be followed by a question mark (?) and a prompt to 
produce a prompt at the terminal before the read. If the input is not 
from a terminal device then the prompt is not issued. 

The ksh built-in command, print, outputs characters to the termi­
nal or to a file. You you can specify the file descriptor number as an 
option to the command. Ordinarily, the arguments to this command 
are processed the same as for echo. However, the -r flag can be 
used to output the arguments without any special meaning. The -n 
flag can be used here to suppress the trailing newline that is ordi­
narily appended. 

To improve performance of existing shell programs, an alias for 
echo is defined by the shell when it is invoked. For the BSD ver­
sion, the alias is 

alias echo='print -' 

where the dash (-) signifies that there are no more options. 

Using the Korn Shell 10-11 



The shell is frequently used as a programming language for interac­
tive dialogues. The select statement has been added to the language 
to make it easier to present menu selection alternatives to the user 
and evaluate the reply. The list of alternatives is numbered and put 
in columns. A user-settable prompt, PS3, is issued and if the an­
swer is a number corresponding to one of the alternatives, the select 
loop variable is set to this value. In any case, the REPLY variable 
stores the user-entered reply. 

Re-entering Commands 

An interactive shell saves the commands you type at your node in a 
file. If the variable HISTFILE is set to the name of a file to which 
you have write access, then the commands are stored in this history 
file. Otherwise, the file 

$HOME/.history 

is checked for write access, and if this fails, an unnamed file holds 
the history lines. This file is truncated if this is a top level shell. The 
number of commands accessible to you is determined by the value 
of the HISTSIZE variable at the time the shell is invoked. The 
default value is 64. 

A command may consist of one or more lines since a compound 
command is considered one command. If an exclamation point (I) 
is placed within the primary prompt string, it is replaced by the 
command number each time the prompt is given. Whenever the file 
is named, all shells that use this file share access to the same his­
tory. 

A built-in command, fc (fix command), lists and/or edits any of 
these saved commands. The command can always be specified with 
a range of one or more commands. The range can be specified by 
giving the command number, relative or absolute, or by giving the 
first character or characters of the command. The -I option speci­
fies listing of previous commands. When given without specifying 
the range, the last 16 commands are listed, each preceded by the 
command number. 

10-12 Using the Korn Shell 



If the listing option is not selected, then the range of commands 
specified, or the last command if no range is given, is passed to an 
editor program before being re-executed by ksh. The editor to be 
used may be specified with the -e option, followed by the editor 
name. If this option is not specified, the value of the shell variable 
FCEDIT is used as the name of the editor, providing that this vari­
able has non-null value. If this variable is not set, or is null, and 
you have not selected the -e option, Ibin/ed is used. When editing 
is complete, the edited text automatically becomes the input for 
ksh. As this text is read by ksh, it is echoed onto your node. 

Using a dash (-) in place of an editor name bypasses the editing 
and simply re-executes the command. Here, you can specify only a 
single command as the range, and then add an optional argument 
of the form 

old=new 

This requests a simple string substitution prior to evaluation. A con­
venient alias, 

alias r='fc -e -' 

has been predefined so that the single keystroke r can be used to 
re-execute the previous command, and the key-stroke sequence 

r abc=def c 

can be used to re-execute the last command that starts with the 
letter c with the first occurrence of the string abc replaced with the 
string def. Typing 

r c > file 

re-executes the most recent command starting with the letter c, 
with standard output redirected to file. 

Using the Korn Shell 10-13 



In-line Editing 

The Korn shell offers options that let you edit parts of the current 
command line before submitting the command. The in-line edit 
options make the command line into a single line screen edit win­
dow. 

When the command is longer than the width of the terminal, only a 
portion of the command is visible. Moving within the line automati­
cally makes that portion visible. Editing can be performed on this 
window until the return key is pressed. The editing modes have 
commands that access the history file in which previous commands 
are saved. You can copy any of the most recent HISTSIZE com­
mands from this file into the input edit window. You can locate 
commands by searching or by position. 

The in-line editing options do not use the termcap database. They 
work on most standard terminals. They only require that the back­
space character moves the cursor left and the space character over­
writes the current character on the screen. 

You have a choice of editor options. You can open a DM edit win­
dow in your current pad by setting the value of the FCEDIT vari­
able to pad, and unsetting the VISUAL and EDITOR variables. In 
VT100 windows or on dialup lines, you can select the emacs, 
gmacs, or vi option by turning on the corresponding option of the 
set command. If the value of the EDITOR or VISUAL variables 
ends with any of these suffixes, the corresponding options are 
turned on. A large subset of each of each of these editors features 
are available within the shell. Additional functions, such as file 
name completion, are also available. 

In the emacs or gmacs mode, you position the cursor to the point 
needing correction and insert, delete, or replace characters as 
needed. The only difference between these two modes is the mean­
ing of the command CTRLIT. Control keys and escape sequences 
are used for cursor positioning and control functions. The available 
editing functions are listed in the manual page. 

The vi (visual display editor) editing mode starts in insert mode and 
enters control mode when you type <ESC>. A <RETURN>. which 
submits the current command for processing, can be entered from 
either mode. The cursor can be anywhere on the line. A subset of 

10-14 Using the Korn Shell 



commonly used vi commands are available. The k and j command 
that normally move up and down by one line, move up and down 
one command in the history file, copying the command at into the 
input edit window. 

For efficiency, the node is kept in canonical mode until an <ESC> 
is typed. On some terminals, and on earlier versions of UNIX oper­
ating systems, this doesn't work correctly. The viraw option of the 
set command, which always uses raw or cbreak mode, must be used 
in this case. 

Job Control 

The job control feature lets you stop and restart programs, and to 
move programs to and from the foreground and the background. 

An interactive shell associates a job with each pipeline typed in 
from the terminal and assigns them a small integer number called 
the job number. If the job is run asynchronously, the job number is 
printed at your node. At any given time, only one job owns the 
node, i.e., keyboard signals are only sent to the processes in one 
job. 

When ksh creates a foreground job, it gives it ownership of the 
node. If you are running a job and wish to stop it, you hit CTRLlZ, 
which sends a stop signal to all processes in the current job. The 
shell is notified the processes have stopped and takes back control 
of the node. 

Commands to continue programs in the foreground and back­
ground are available. There are also several ways to refer to jobs. A 
percent sign (%) introduces a job name. You can refer to jobs by 
name or number as described in the manual page. The built-in 
command bg allows you to continue a job in the background, while 
the built-in command fg allows you to continue a job in the fore­
ground even though you may have started it in the background. 

A job being run in the background stops if it tries to read from the 
node. It is also possible to stop background jobs that try to write on 
the node by setting terminal options appropriately. 

Using the Korn Shell 10-15 



A built-in command, jobs, that lists the status of all running and 
stopped jobs. In addition, you are notified of the change of state of 
any background jobs just before each prompt. When you try to 
leave the shell while jobs are stopped or running, you receive a 
message from ksb. If you ignore this message and try to leave again, 
all stopped processes are terminated. 

A built-in version of kill makes it possible to use job numbers as 
targets for signals. Signals can be selected by number or name. The 
name of the signal is the name found in the lusr/include/signal.b 
include file with the prefix SIG removed. The list of valid signal 
names can be generated with the -1 flag of kill. 

Miscellaneous 

The Kom shell has several additional features to enhance function­
ality and performance. This section lists most of these features. 

Tilde Substitution 

The tilde (I'J) character at the beginning of a word has special 
meaning to ksb. If the characters after the tilde up to a slash (I) or 
the end of a parameter match a user login name in the letc/passwd 
file, then the tilde and the name are replaced by that user's login 
directory. If no match is found, the original word is unchanged. 

A tilde by itself, or in front of a slash, is replaced by the value of 
the HOME parameter. A tilde followed by a plus (+) or minus (-) 
sign is replaced by the value of the parameter PWD and OLDPWD 
respectively. Tilde substitution takes place when the script is read, 
not while it is executed. 

Built-in 110 Redirection 

All built-in commands can be redirected. 

10-16 Using the Korn Shell 



Added Options 

Several options have been added to the shell and all options have 
names that can be used in place of flags for setting and resetting 
options. The following command lists current option settings: 

set -0 

The -f option or noglob disables filename generation. It can be 
applied at invocation or as an option to the set command. 

The option ignoreeof can be used in a top-level shell to prevent 
CTRLlD from logging you out. You must type "exit" to log out. 

The -h or trackall option causes all commands whose name is a 
valid alias name to become a tracked alias. 

The job monitor option causes a report to be printed when each 
background job completes. It is automatically enabled on Apollo 
nodes. 

The bgnice option causes background jobs to run at lower priority. 

Previous Directory 

The Korn shell remembers your last directory in the variable 
OLDPWD. The cd built-in command can be given, followed by a 
dash (-), to return to the previous directory. Note that, if you do 
this two times in a row, you return to the starting directory, not the 
second previous directory. A directory stack can be implemented 
with shell internals by using an array and writing shell functions to 
push and pop directories from the stack. 

Additional Variables and Parameters 

Several new parameters have special meaning to ksh. The variable 
PWD holds the current working directory of the shell. The com­
mand, pwd, is aliased to print the following for better response: 

- $PWD 

Using the Korn Shell 10-17 



The variable OLDPWD holds the previous working directory of the 
shell. 

The variable FCEDIT is used by the fc built-in described above. 
The variables VISUAL and EDITOR are used for determining the 
edit modes as described above. 

NOTE: Since editing in OM transcript pads is 
done in cooked mode, it is awkward to 
use the ksh built-in command line edit­
ing. A good solution to the problem is to 
set FCEDIT=pad and unset the VISUAL 
and EDITOR variables. 

The variable ENV defines the startup file for non-login ksh invoca­
tions. On Apollo systems. variables may be set on the command 
line. This is encouraged for opening new pads. For example, 

Command: cp Ibin/ksh -DENV=,.."I.kshrc.pad 

will run the start-up script .kshrc.pad from the user's home direc­
tory in the new pad. 

The variables HISTSIZE and HISTFILE control the size and loca­
tion of the file containing commands entered at a terminal. 

The parameter MAILPATH is a colon (:) separated list of file­
names to be checked for changes periodically. You are notified be­
fore the next prompt. Each of the names in this list can be followed 
by a question mark (?) and a prompt to be given when a change has 
been detected in the file. The prompt is evaluated for macro and 
command substitution. The parameter MAILCHECK specifies the 
minimal interval in seconds before the system checks for new mail. 

The variable RANDOM produces a random number each time it is 
referenced. Assignment to this variable sets the seed for the ran­
dom number generator. 

The parameter PPID generates the parent process id of the shell. 

The value of the parameter represented by an underscore ( _ ) is 
the last argument of the previous command. 

10-18 Using the Korn Shell 



The parameter SECONDS represents the number of seconds since 
shell invocation is returned. If given a value. then the value re­
turned upon reference will be the assigned value plus the number of 
seconds since the assignment. 

The parameter TMOUT can be set to be the number of seconds 
that the shell will wait for input before exiting. 

The COLS variable can be used to adjust the width of the edit 
window for the in-line edit modes. 

Modified Variables 

The input field separator parameter. IFS. has meaning for the read 
built-in. for the set built-in. and while expanding for and select 
lists. In all other instances it is ignored. 

Timing Commands 

A keyword time has been added to replace the time command. Any 
function. command or pipeline can be preceded by this keyword to 
obtain information about the elapsed. user and system times. Since 
I/O redirection binds to the command. not to time. parenthesis 
should be used to redirect the timing information which is normally 
printed on file descriptor 2. 

Command Substitution 

Command substitution in the Bourne shell suffers from some com­
plicated quoting rules. It is hard to write a sed pattern which con­
tains backslashes within command substitution. Putting the pattern 
in single quotes is not very helpful. 

The Korn shell leaves the Bourne shell command substitution alone 
and adds a newer and easier to use command substitution syntax. 
All characters between a $ ( and a matching ) are evaluated as a 
command. The dollar sign means "value .:>f" and the parentheses 
denote a command. 

Using the Korn Shell 10-19 



The command itself can contain quoted strings even if the substitu­
tion occurs within double quotes. Nesting is also legal. You can use 
unbalanced parentheses within the command, providing that they 
are quoted. The special command substitution of the form $(cat 
file) can be replaced by $« file), which is faster because no sepa­
rate process is created. 

Whence 

The addition of aliases, functions, and more built-ins has made it 
substantially more difficult to know what a given command word 
really means. A built-in command, whence, when used with the -v 
option, has been provided to answer this question. A line is printed 
for each argument to whence, telling what would happen if this 
argument were used as a command name. It reports on keywords, 
aliases, built-ins, and functions. If the command is none of the 
above, it follows the path search rules and prints the full pathname, 
if any; otherwise, it prints an error message. 

Added Traps 

All traps can be given by name in the Korn shell. The names of 
traps corresponding to signals are the same as the signal name with 
the SIG prefix removed. The trap 0 is named EXIT and a new trap 
named ERR has been added. This trap is invoked whenever the 
shell would exit if the -e flag were set. 

Additional Test Operators 

The operators -ot and -nt can compare the modification times of 
two files to see which file is older than or newer than the other. The 
operator -ef checks to see if two files have the same device and 
i-node number, i. e., a link to the same file. 

No Special Meaning for Circumflex C) 

The Bourne shell uses a circumflex e) as an archaic synonym for 
the pipe character (I). The circumflex is not a special character to 
the Korn Shell. 

10-20 Using the Korn Shell 



Performance 

The Korn shell executes many scripts faster than other Bourne 
shells. One major reason is that many of the functions provided by 
the echo and expr commands are built-in. The time to execute a 
built-in function is one or two orders of magnitude faster than per­
forming a fork and execute of the shell. Command substitution of 
built-ins is performed without creating another process, and often 
without even creating a temporary file. 

Another reason for improved performance is that all 110 is buff­
ered. Output buffers are flushed only when required. Several of the 
internal algorithms have been changed so that the number of sub­
routine calls has been substantially reduced. The Korn shell uses 
hash tables for variables. Scripts that rely heavily on referencing 
variables execute faster. More processing is performed while read­
ing the script so that execution time is saved while running loops. 

Scripts that do little internal processing and create many processes 
run a little slower because the time to fork ksh is slower than for the 
Bourne shell. 

Sample Korn Shell Script 

An example of a ksh script is shown below. This program is a vari­
ant of the grep (search file for pattern) program. Pattern matching 
for this version of grep means shell patterns consisting of question 
mark (?), asterisk (*), and left and right brackets ([ )). 

The first half examines option flags. Note that all options except -b 
have been implemented. The second half goes through each line of 
each file to look for a pattern match. 

This program does not serve as a replacement for grep, only an 
illustration of the programming power of ksh. Note that no auxiliary 
processes are spawned by this script. It was written and debugged in 
under two hours. While performance is acceptable for small pro­
grams, this program runs at only one-tenth the speed of grep for 
large files. 

Using the Korn Shell 10-21 



# SHELL VERSION OF GREP 
vf1ag= xf1ag= cf1ag= 1f1ag= nf1ag= 
set -f 
whi1e{{1» # look for grep options 
do case" $1" in 

-v*) vflag=l; ; 
-x*) xflag=l; ; 
-c*) cflag=l; ; 
-1*) 1flag=1; ; 
-n*) nflag=l; ; 
-b*) print'b option not supported';; 
-e*) shift;expr="Sl";; 
-f*) shift;expr'<$';; 
-*) print SO: 'unknown flag' ;exit 2;; 
*) if test "$expr" = '! 

then expr="sl" ;shift 
fi 
test "$xf1ag" I I expr="*S{expr}*" 
break; ; 

esac 
shift 

done 
noprint=Svf1agScf1agS1f1ag # 
integer n=O c=o tc=O nargs=S# 
for i in "SO" 
do if ({nargs<=l» 

then fname=" 
else fname="Si": 
fi 
test "Si" && exec 0< Si 
while read -r line 
do let n=n+1 

case"$line" in 

# next argument 

don't print if these flags set 
# initialize counters 
# go thru the files 

# open file if necessary 
# read in a line 

# line matches pattern Sexpr) 
if 
then 
fi 

test "Snoprint .. = .... 
print -r "Sfname${nflag:+Sn: }Sline" 

let c=c+1 ;; 
*) # not a match 

if 
then 
fi; ; 

test "Svf1ag" 
print -r "SfnameS{nflag:+Sn: }Sline" 

esac 
done 
if test "$lflag" && ({c» 
then print - $i 
fi 
let tc=tc+c n=O c=o 
done 
test "Scflag" && print Stc # print count if cflag is set 
let tc # set the exit value 

--------88--------

10-22 Using the Korn Shell 



Chapter 11 

Managing Files 

In Chapter 1, we looked at how the system organizes objects (files, 
directories, and links) in a structure called a naming tree. This 
chapter describes how to use shell commands to manage these ob­
jects on your system. Shell commands let you move around the 
system naming tree and create, rename, copy, move, print, delete, 
and compare objects. 

Since all of the commands described in this chapter require you to 
specify pathnames, you should understand the rules for path names 
described in Chapter 1. Commands that use the shell command line 
parser also allow you to perform operations on groups of objects, 
and therefore accept one or more pathname wildcards. Many of 
the examples in this chapter show you how to use pathname 
wildcards in specific operations. For a complete description of the 
pathname wildcards you can use with shell commands, refer to the 
shell chapters (Chapters 8, 9, and 10). 

Keep in mind that this chapter describes the basic functions of the 
commands you use to manage objects. For a complete description 
of a particular command and all of its options, refer to the BSD 
Command Reference. 

Managing Files 11-1 



Moving Around the Naming Tree 

Most of the commands described in this chapter require you to use 
pathnames to specify locations in the naming tree where you want 
particular operations performed. Often, you will specify pathnames 
that use the current working directory. To move around the naming 
tree, you need to know how to change your working directory. 

The working directory is where the system begins its search for ob­
jects when you omit the object's full pathname. At log-in, the DM 
and any log-in shell sets your initial working directory to the home 
directory designated in your user account (see Chapter 3). Each 
subsequent process that you create uses the working directory of its 
parent process as its working directory. 

To display the name of a process's current working directory, spec­
ify the pwd (print working directory) command as follows: 

% pwd 

To change a process's working directory to another directory, spec­
ify the cd (change directory) command in the following format: 

% cd dir 

The dir argument specifies the pathname of the directory you want 
to use as the working directory. For example: 

% cd IImy_node/owner/forms 

sets the working directory for the current process to forms. Once 
set, any time you omit the full pathname of an object, the system 
starts its search at the directory forms by default. 

Crea ting Files 

To create normal text files, you may use one of the UNIX text 
editors, such as vi (visual display editor) or ex (text editor). or you 

11-2 Managing Files 



may specify the DM command ce (create edit) along with the path­
name of the file you want to create. The BSD Command Reference 
and UNIX Text Processing describes how to use the UNIX text 
editors. This section describes how to use the DM to create files. 

By default, <EDIT> invokes the ce command. The ce command 
directs the DM to create the file and open an edit pad and window 
for the file on the display. Using the DM editor, you can edit the 
file, then save its contents by pressing <EXIT>. When you save the 
file, the system stores it at the location in the naming tree specified 
by the file's pathname. Refer to the "Creating Pads and Windows" 
section in Chapter 4 for a description of how to use the ce com­
mand to create and edit files. 

The following example creates a file named memo in the directory 
/user, and opens the file for editing: 

Command: ce IInode/user/memo 

The previous example uses an absolute pathname to specify the 
name of the new file. When you use a pathname that assumes the 
current working directory, the system uses the working directory of 
the current process. (The last process to perform an operation be­
fore you specified the ce command is the current process.) 

The following example creates a file named memo in the current 
working directory: 

Command: ce memo 

The command in this example specifies the filename memo. Since 
the pathname does not specify an explicit directory location, the 
system uses the current process's working directory to determine 
where to create the new file. If the current process's working direc­
tory is IInode/user, then the system will create the new file with the 
pathname //node/user/memo. 

When you run multiple shell processes, you typically move between 
processes, often changing the current working directory. As a re­
sult, you may find it difficult to keep track of the current working 
directory. In situations where you run multiple processes, you may 
want to specify absolute pathnames to avoid creating files at an un­
intended location. 

Managing Files 11-3 



When you create a file, the system assigns the file a set of default 
ACLs by copying the initial file ACL from the file's parent direc­
tory. After you create a file you can change its ACLs with the chacl 
(change ACL) or dbad (Domain/Dialogue-based ACL editor) 
command. Chapter 14 explains ACLs and shows how to use these 
commands. 

Copying Files 

When you copy a file, you create a copy of the file at another loca­
tion in the naming tree. To copy a file or group of files, use the cp 
(copy) command in the following format: 

% cp [options] source target 

The source argument specifies the pathname of the file you want to 
copy, and target specifies the path name of the naming tree location 
where you want the copy created. The rules for pathnames de­
scribed in Chapter 1 apply to both command arguments. 

The cp command always creates a copy of the source file at the 
location specified by the target. For example: 

creates a copy of the source file memo in the directory user_I. In 
this example, since the target specifies the pathname of a file, cp 
assigns the copy the name specified by the target, new_memo. 

If the target specifies the pathname of a directory, cp creates a copy 
of the source file in the target directory (the current working direc­
tory if you omit the target) and assigns the copy the filename of the 
source file. For example, the following command line 

% cp memo /user_l 

copies the file memo from the current working directory to the tar­
get directory user_I. Because cp assigns the copy the name of the 
source file, the new file has the pathname /user_lImemo. 

11-4 Managing Files 



By default, the system assigns the target file the default file protec­
tions of its parent directory (see Chapter 12). So. in the previous 
example, the system assigns the target file the default file protec­
tions of the directory user_1. 

Moving or Renaming Files 

When you move a file, you relocate the file in the naming tree. 
This may involve simply changing the file's name. or may result in 
the file being copied to another location and the original being de­
leted. The latter happens when moving files between physical disks. 

To move a file or group of files from one location in the naming 
tree to another, use the mv (move) command in the format: 

mv [options] source target 

The source argument specifies the pathname of the file you want to 
move and target specifies the path name of the file's new location in 
the naming tree. The rules for pathnames described in Chapter 1 
apply to both arguments. 

The following command moves the file floorplan: 

% mv /designerlfloorplan /builder/plans/cape 

In this example, the target specifies the pathname for a nonexistent 
file named cape. The mv command moves the file floorplan from 
the directory designer to the directory builder/plans and names 
the file cape. 

If the target pathname specifies a directory, mv moves the source 
file into the target directory. For example. the following command 
moves the file floorplan into the directory builder: 

% mv /designer/f1oorplan /builder 

In this example. since no target filename was specified. the file re­
tains the name of the source file (floorplan). 

Managing Files 11-5 



Printing Files 

The standard command for printing files is Ipr (off-line printer), 
which takes arguments in the format 

Ipr [options] [file ... ] 

The file argument indicates which file(s) are to be printed. 

To send output to a specific printer, use the -P option followed 
immediately by the printer name. For example, to print the file 
gyre on the printer named spin, type the command 

% Ipr -Pspin gyre 

Notice that there is no space between the -P flag and the name of 
the printer. If -P is not specified, Ipr will use the default printer for 
your site. You can also set your own default printer by setting the 
PRINTER environment variable. 

The Ipr command copies files into the /usr/spool directory, where 
they remain until printed by a daemon process. To examine the 
status of printing jobs waiting in this queue, use the Ipq (spool 
queue examination program) command in the following format: 

Ipq [options] [users] 

The most commonly used option is -P, which is followed by the 
name of a printer (as with Ipr). This option causes Ipq to report 
only on jobs associated with the specified printer. If no options are 
given, Ipq reports on jobs queued to the default printer. 

You may also restrict Ipq to reporting jobs owned by specific users. 
To do this, include the name(s) of the desired user(s) at the end of 
the command line. For instance, to inquire about the status of all 
jobs owned by users barbara and pat awaiting printing on spin, 
you would enter the command line 

% Ipq -Pspin barbara pat 

11-6 Managing Files 



For more information on Ipq (and for a discussion of Iprm, which 
removes jobs from the queue), see the entries in the BSD Com­
mand Reference. 

Using the prc Command 

An alternative to using lpr is the prf (print file) command. To print 
one or more files, use the prf command in the following format: 

prf (file ... ] [options] 

The file argument specifies the name of the file you want to print. 
The following command uses shell wildcards to print any file in the 
current working directory that begins with file and ends with a one­
digit number: 

This command, for example, prints file_2 and file_8 but not file_a 
or file_b. 

To indicate which printer to print the file(s) on, use the -pr[inter] 
option followed by the name of the printer. The example below 
prints the file sales_plan on the printer named spin: 

% prf salesylan -pr spin 

After you enter such a command line, prf will normally respond by 
displaying a message like the following: 

//node/owner/salesylan queued for printing at site 
//print_site. 

If you normally use a printer connected to your node, your queue 
file is named Isys/print/queue. If a remote node controls the print­
ers that you use by default, then Isys/print is a link that your sys­
tem administrator creates to point to the Isys/print directory on the 
remote node. This link causes prf to queue files to the Isys/printl 
queue directory on the remote node by default. (Chapter 13 de­
scribes links in more detail.) 

Managing Files 11-7 



You can queue a file to the /sys/print/queue directory on another 
node by specifying the -s[ite] option along with the name of the 
node's entry directory. For example, 

% prf sales_plan -s IIboston 

queues sales_plan to the /sys/printlqueue directory on the remote 
node boston. 

To find out the names of printers available to you, use the 
-list_printers option in the following manner: 

The line above lists the names of all printers located at your local 
print site (Le., the one to which your /sys/print points). To deter­
mine the names of printers available at a different site, specify the 
following command line, where site is the name of a known print 
site: 

% prf -list_printers IIsite 

Options may also be specified in a configuration file. (Creating such 
a file saves you the work of entering the same options each time you 
use prf.) For information on creating a configuration file, or for 
general information on prf and its command options, refer to the 
BSD Command Reference entry for prf. 

Using the Print Menu Interface 

The prf command also has an option for displaying a special print 
menu interface. This menu allows you to specify print arguments 
and select various options without having to type them on the com­
mand line. 'the print menu interface is useful when you routinely 
specify several print options for each file you print. By using the 
menu interface, you can select all of the options once, and print 
several files without respecifying the options for each file you print. 

11-8 Managing Files 



To print files using the print menu interface, specify the -dia 
option: 

% prf -dia 

As shown in Figure 11-1, this command creates a special window 
pane at the top of the shell process window. An arrow cursor ap­
pears in the upper left corner of the menu. 

I Quit II information II control IIsheli commands I 
EJIAI. to print: IP;inter: 

I Print 
A 

Job Properties 

g text 
char specs copies 

o bitmap 
columns for whom 

o other 
margins 

spool node 

o filters 
headers 

carriage notify 

word wrap banner 

Figure 11-1. The Print Menu 

The triangular cursor below the "File to print:" prompt indicates 
that characters typed at the keyboard will appear in this field. To 
print the file sales_plan in your working directory, first you must 
type its name followed by <RETURN>: 

IFiI. to print: 
[sales_plan ..... 

Figure 11-2. Specifying a Filename on the Print Menu 

Managing Files 11-9 



Note the square brackets which enclose the filename as you type. 
When present, these show that you've not yet pressed <RETURN>. 

If you want to print a file from a directory other than the working 
directory, enter a full pathname like //node/owner/janJeport. 

To select a different field, move the arrow cursor to the menu item 
you want to select and press <F1> or the left mouse button (M1). 
To display help information about an item, position the cursor over 
the item and press <HELP> or the right mouse button. 

Most of the other items in the menu display submenus when you se­
lect them. These submenus allow you to select or specify additional 
print information. Table 11-1 describes the submenus for the shell 
commands menu item. 

Table 11-1. Shell Commands Submenu Items 

Item Description 

shell 
Passes control to a temporary shell. 
When you select shell, a shell 
prompt appears in the process input 
window. To return control to the 
print menu, exit the shell. 

set/inq working dir Displays the name of the working 
directory. To change the working 
directory, enter a new directory 
pathname in the field. 

Use submenus in the same way you use the main menu: either se­
lect an item, or type the requested information. When you finish 
with a submenu, move the arrow cursor out of the submenu box, 
and it will close. The value you entered will remain in effect until 
you change it again, or until you exit the program. 

When you're satisfied with the selections you've made in the print 
menu, you can print the file by selecting Print with <Fl> or the left 
mouse button. A message similar to the following appears on the 
transcript pad: 

11-10 Managing Files 



//node/owner/sales-plan queued for printing at site 
//print_site. 

After you print a file, the menu remains on the screen, enabling 
you to print additional files. To print another file using the same se­
lections, specify a new filename and select Print; the print menu 
uses the submenu selections you already made. To exit the pro­
gram, select Quit. 

Most of the selections in the print menu perform the same print 
functions as options on the command line. For more information 
on a specific menu or submenu item, refer to the description of its 
related prf command option in the BSD Command Reference. 

Displaying File Attributes 

To display a file's attributes, such as its mode, number of links, 
owner, size in bytes, and time of last modification, use the Is (list 
directory) command in the following format: 

Is -I name 

The name argument specifies the pathname of the file or directory, 
and -I specifies that you want the attributes mentioned above dis­
played. 

The following command line 

% Is -I //node/user/memo 

displays attribute information in long format for the file memo, as 
shown here: 

-rwxrwxrwx 1 bob 660 Aug 3 16:58 memo ->//mad/doc 

Note that the link resolution is also displayed for the file, showing 
that memo is linked to IImad/doc. For further details, see the BSD 
Command Reference. 

Managing Files 11-11 



Removing Files 

To remove one or more files, use the rm (remove file) command in 
the following format: 

rm [options] file 

The file argument specifies the pathname of the file you want to 
delete. If you specify multiple pathnames to delete multiple files, 
separate each pathname with a space. 

The following command deletes the files my_plan and report from 
the current working directory: 

You can also use pathname wildcards to delete related groups of 
files. For example: 

% rm *.bak 

The . bak expression causes rm to delete all of the files in the cur­
rent working directory that end in . bak. For further details, see the 
BSD Command Reference. 

Copying the Display to a File 

You can copy the image of your current display to a file using the 
cpscr (copy screen) command in the following format: 

cpscr [-i] pathname 

The path name argument specifies the pathname of the file to which 
you want to copy the display image. The -i option directs cpscr to 
store the file in reverse video (black on white or white on black de­
pending on the current display setting). 

11-12 Managing Files 



To create a GPR bitmap file. use the cpscr command in the follow­
ing format: 

cpscr -b pathname 

The -b option directs cpscr to create a gpr bitmap file (color 
screens are copied into a GPR bitmap file by default). To print a 
file that contains a screen image. use the prf command with the 
-plot option. . 

Comparing ASCII Files 

To identify differences between ASCII text files. use the diff (show 
file differences) command in the following format: 

diff [options] file 1 file2 

The file 1 and file 2 arguments specify the pathnames of the files to 
be compared; diff reports all differences in the files. If you specify 
a dash (-) in place of one of the file pathnames. diff compares the 
source with text from standard input. 

The diff command in Figure 11-3 compares the contents of the file 
speech.bak to the contents of speech. The lines from filel are 
marked with a less than sign «). while the lines from file2 are 
marked with a greater-than character (». The diff command 
prints the line numbers. and letters identifying the types of changes 
necessary to make the files identical. If file2 is a directory. it looks 
for a file with the same name as filel in that directory. For further 
details. see the BSD Command Reference. 

Managing Files 11-13 



Figure 11-3. Comparing Two ASCII Files 

----88---

11-14 Managing Files 



Chapter 12 

Managing Directories 

Directories are the naming tree components that contain other ob­
jects. Table 12-1 summarizes the commands for managing directo­
ries. 

Table 12-1. Commands jor Managing Directories 

Task Shell Command 

Create a directory mkdir dir 

Move or rename a directory mv source target 

Copy a directory tree cp -r source target 

Compare directory trees diff source target 

Display contents of a directory Is [dir] 

Delete a directory rmdir dir 

Delete a directory tree rm -r dir 

Managing Drectories 12-1 



Creating Directories 

Each directory that you create is actually a subdirectory of its par­
ent directory (the directory above it in the naming tree). To create 
a directory, specify the mkdir (make directory) command in the 
following format: 

% mkdir dir 

The dir argument specifies the pathname of the directory you want 
to create. If you specify multiple pathnames to create multiple di­
rectories, separate each pathname with a space. The following com­
mand creates a directory named reports: 

% mkdir fownerfreports 

The mkdir command creates the directory reports as a subdirec­
tory of the parent directory fowner. The new directory, reports, 
also receives an initial set of file permissions from those of the par­
ent directory (fowner). You can change the file protection mode of 
reports with the chmod (change mode) or the chacl (change ACL) 
command. Chapter 14 explains file protection modes and describes 
how to use the chmod command. 

Renaming Directories 

To change the name of a directory, use the mv (move) command 
in the following format: 

% mv [options] source target 

The source argument specifies the pathname of the directory you 
want to rename, and target specifies the new name of the directory. 
For example, the following command line changes the name of the 
directory reports to progress:: 

% mv fownerfreports progress 

1~-2 Managing Directories 



changes the name of the directory reports to progress. Notice that 
the target argument applies to the rightmost component (reports) 
of the source argument. You cannot use mv to change the name of 
a directory embedded in a pathname. Also note that you cannot 
move directories across filesystems. 

Copying Directory Trees 

A directory and all of the objects it contains is called a directory 
tree. A directory tree represents the part of a naming tree that 
extends from a specific directory through all its files, subdirectories, 
and links as shown in Figure 12-1. 

Figure 12-1. Sample Directory Tree 

To copy a directory tree to another location, use the cp (copy) 
command with the -r option in the following format: 

% cp -r source target 

The source argument specifies the pathname of the directory you 
want to copy and target specifies the pathname of the naming tree 
location where you want the copy created. The rules for pathnames 
described in Chapter 1 apply to both command arguments. 

Managing Drectories 12-3 



Figure 12-2 illustrates how the cp -r command in the following 
example copies a directory tree. 

% cp -r reports IIboston/user_lIprog 

Figure 12-2. Copying a Directory Tree 

The cp -r command copies the directory tree reports and names 
the copy prog. The copy is placed in the directory user_1. The -r 
option follows soft links, and will copy the destination of the link. 
If you are copying a directory that contains soft links, use the com­
mand cp -rs. The -s option says to copy the link text, not the 
link's destination. The -p option preserves file modes during the 
copy; -P preserves all the Access Control Lists (ACLs). 

Comparing Directory Trees 

To compare the contents of one directory to another, use the diff 
(differential file and directory comparator) command in the follow­
ing format: 

% diff [options] source target 

12-4 Managing Directories 



The diff command compares all of the objects in the source direc­
tory against all the objects in the target directory, reporting on: 

• Any objects that appear in both the source and target but 
whose contents are different. 

• Any objects that appear in the source but not in the target. 
If the target contains objects that do not appear in the 
source, diff ignores the differences. 

The -r option causes diff to operate recursively; if there are direc­
tories with the same name, they are compared in the same way. 

Displaying Directory Information 

To list the contents of a directory and give information about ob­
jects contained within the directory, use the Is (list directory) com­
mand as follows: 

% Is [options] [dir] 

The dir argument specifies the pathname of the directory, and op­
tions specifies the types of information you want Is to report about 
the objects it lists. If you omit the dir argument, Is lists the contents 
of the current working directory. 

The folowing command line lists the contents of the directory pro­
gress_reports. The -I option directs Is to list in long format, i.e., to 
include the protection mode, number of links, owner name, size in 
bytes, and time of last modification for each file. If a file is a sym­
bolic link, the pathname of the linked-to file is printed preceded by 
"->". Files with a plus sign (+) after their protection have extended 
ACL entries; see Isacl (list ACL) in the BSD Command Reference. 

% Is -I towner/progress_reports 
total 18 
-rwxrwxrwx+ 1 fred 1904 Aug 13 16:09 august. 87 
-rwxrwxrwx+ 1 fred 2947 Dec 19 15:24 december. 86 
-rwxrwxrwx 1 fred 1471 Feb 18 14:08 feb.87 
1rwxrwxrwx 1 fred 1744 Aug 15 16:44 group -> //node/ann/gp 
-rwxrwxrwx 1 fred 1908 Jul 10 13:22 july.87 
-rwxrwxrwx 1 fred 2526 Jun 15 16:47 june.87 
-rwxrwxrwx 1 fred 1777 May 12 13:28 may.87 
lrwxrwxrwx 1 fred 2003 Sep 23 14:13 ytd -> //node/ann/yr 

Managing Drectories 12-5 



Removing Directory Trees 

To remove directory trees containing files, use the rm (remove di­
rectory or file) command in the following format: 

% rm -r dir ... 

The rm -r command line attempts to remove the specified direc­
tory and all of the objects it contains. For example, the following 
command removes the directory tree shown in Figure 12-3: 

% rm -r reports 

Figure 12-3. Removing a Directory Tree 

The command in the previous example removes the directory tree 
starting at the directory reports in the current working directory. 

NOTE: If an entry was the last link to the file, 
the file is destroyed. Removing a file re­
quires write permission in its directory, 
but neither read nor write permission on 
the file itself. 

12-6 Managing Directories 



To remove empty directory trees (i. e., those containing no files), 
use the rmdir (remove directory) command in the following for­
mat: 

% rmdir dir". 

The dir argument specifies the pathname of the directory you want 
to remove. 

----88----

Managing Drectories 12-7 





Chapter 13 

Managing Links 

As you use the system, you may find that many of the files and 
directories that you access frequently have unusually long path­
names. You can eliminate the inconvenience of typing a lengthy 
pathname by creating a shorthand name for the object, called a 
link. 

There are two kinds of links: hard links and soft links. A soft link 
is a special object that contains the name of another object. Thus, 
when you specify a soft link as a pathname or part of a pathname, 
the system substitutes the pathname that the link contains (the reso­
lution name) for the name of the link. A hard link is another entry 
in the naming tree for the same file on disk. Table 13-1 summa­
rizes the commands used to manage links. 

Table 13-1. Commands for Managing Links 

Task Shell Command 

Create a link In [-s] source target 

Rename a link mv source target 

Copy a soft link cp -s source target 

Remove a link rm link name 

Managing Links 13-1 



Creating Links 

To create a link, specify the In (create link) command in the fol­
lowing format: 

% In [option] source target 

The source argument specifies the pathname of the link, and target 
specifies the pathname of the object to which the link points. The 
rules for pathnames described in Chapter 1 apply to both argu­
ments. 

The In command creates both hard and soft links to files. By de­
fault, In makes hard links that are indistinguishable from the origi­
nal directory entry. Any changes to a file are effective regardless of 
the name used to reference the file. Hard links do no span file 
systems and may not refer to directories. 

You must use the -s option to In create a soft (or symbolic) link, 
that is, a link containing the name of the file to which it is linked. 
Soft links may span file systems and may refer to directories. 

The following command creates a soft link: 

% In -s lowner/april/progressJeports reports 

The command in this example creates a link named reports in the 
process's current working directory. The link contains the path­
name for the subdirectory progress_reports. 

Renaming Links 

To change the name of a link, use the mv (move or rename file) 
command in the following format: 

% mv [options] source target 

13-2 Managing Links 



The source argument specifies the pathname of the link you want to 
rename, and target specifies the new name of the link. For exam­
ple. the command: 

% mv reports progress 

changes the name of the link reports, in the current working direc­
tory, to progress. 

Copying Soft Links 

Copying links is basically the same as copying files; when you copy a 
link, you create a copy of the link in another location in the naming 
tree. To copy a soft link, use the cp (copy) command in this for­
mat: 

% cp -s source target 

The source argument specifies the pathname of the link you want to 
copy, and target specifies the naming tree location where you want 
the copy created. The rules for pathnames described in Chapter 1 
apply to both command arguments. 

The cp -s command always creates a copy of the source link at the 
location specified by the target. For example: 

% cp -s reports luser_lIstatus 

creates a copy of the source link reports in the directory user_I. 
And, since the target specifies the pathname of a link, cp assigns 
the copy the name specified by the target, status. 

If the target specifies the pathname of a directory, cp creates a copy 
of the source link in the target directory (the current working direc­
tory if you omit the target) and assigns the copy the name of the 
source link. For example: 

% cp -s reports luser_l 

Managing Links 13-3 



copies the link reports from the current directory to the target di­
rectory user_I. Because cp assigns the copy the name of the source 
link, the new link has the pathname luser_1/reports. 

Removing Links 

To remove one or more links, use the rm (remove file or directory) 
command in this format: 

The link_name argument specifies the pathname of the link you 
want to remove. If you specify multiple pathnames to remove multi­
ple links, separate each pathname with a space. 

The following command removes the link reports from the current 
working directory: 

% rm reports 

-------88-------

13-4 Managing Links 



Chapter 14 

Controlling Access to Files 
and Directories 

Domain/OS lets you protect your files and directories from un­
authorized use, as each file and directory in the system has a pro­
tection mode that defines: 

• Who can use the object 

• What operations these users can perform on the object 

Protection. modes can, for example, authorize some users to read 
the file, and permit others to change it. Domain/OS software pro­
vides the standard UNIX object protection scheme, as well as an 
important extension called an Access Control List (ACL). ACLs 
provide more comprehensive protection (i.e., more types of permis­
sions) than do standard UNIX system permissions. This chapter 
describes both forms of protection. 

Using Standard UNIX Object Protections 

Under standard UNIX protection mechanisms, an object's permis­
sions should appear as some form of the set rwxrwxrwx. Each r 
represents read permission, each w write permission, and each x 
execute permission. 

Controlling Access to Files and Directories 14-1 



The first set of rwx describes the permissions granted to the owner 
of the object (usually, the user ID of the person who created the 
object). The next set shows group permission. allowing the creator 
of the file to restrict access to the object to a group. The final set 
shows permission of others (excluding object owner and group). 

Listing File Permissions 

The Is (list directory) command. executed with the -I option. shows 
the permissions set (modes) for any given object. (This option pro­
duces a "long listing" that also shows other attributes of the object. 
such as size in bytes and date of last modification. However. we will 
only concern ourselves with the display of object permissions here.) 

For example. to determine the protection modes for a file named 
report. type the following line: 

% Is -I report 

Assuming that the object were a file with completely open permis­
sions (Le .• owner. group. and others had read. write. and execute 
rights). the output might be as follows: 

-rwxrwxrwx 1 john eng 941 Aug 2 14:48 reports 

If the file were protected with an Access Control List that added 
permissions for additional users. groups. and organizations. the out­
put would contain a plus sign after the standard permissions. as 
follows: 

-rwxrwxrwx+ 1 john eng 941 Aug 2 14:48 reports 

You can use the Isacl (list ACL) command to list the ACL entries 
for an object. ACLs are discussed in detail later in this chapter. 

If reports were a directory. the output would be similar. except for 
the "d" before the listing of access rights: 

drwxrwxrwx 1 john eng 5941 Aug 2 14:48 reports 

14-2 Controlling Access to Files and Directories 



If reports were a link, you would see an "I" at the beginning of the 
access list: 

lrwxrwxrwx 1 john eng 941 Aug 2 14:48 reports -> fino/reports 

For more information on listing permissions, see Is in the BSD 
Command Reference. 

Changing Access Rights 

To change permissions on an object that you own, use either the 
chmod (change mode) command or the chad (change ACL) com­
mand. You may change permissions according to absolute mode 
(using an octal number) or symbolic mode (using one or more al­
phabetic characters). 

As a brief example of how these commands are used, suppose that 
you want to change the permissions of a file that is currently 
readable, writable, and executable by all users on your network. 
You want to ensure that only you, the file owner, have complete 
access permissions. You also want to grant only read rights to your 
project group and all others. The following command line, where 
reports is the file whose permissions are being changed, shows how 
to make the change using the chmod command in symbolic mode: 

% chmod u=rwx,go=r reports 

You may use chad in the following manner to perform the same 
task (the additional permission p indicates that you may change 
permissions) : 

% chad u=prwx,go=r reports 

This command line shows the same change done using chmod in 
absolute mode: 

% chmod 744 myfile 

For more information about specific modes to use for changing file 
permissions, see chmod and chad in the BSD Command Refer­
ence. 

Controlling Access to Files and Directories 14-3 



Using Access Control Lists (ACLs) 

The ACL for each file and directory contains one or more ACL 
entries. An entry describes the operations a user or set of users can 
perform on the object. For a file, the ACL can also contain an 
indicator that it belongs to a protected subsystem. 

Each ACL entry consists of two elements: a subject identifier 
(SID) specification and a set of access rights. Figure 14-1 shows 
the elements that make up an ACL entry. 

SID Specification 
I 

Access Rights 
I 

I 
user. group. organization right1 right2 right3 ... 

Figure 14-1. Structure of an ACL Entry 

The SID specification identifies a specific user or group of users. 
The access rights define what operations that user or group can 
perform on the object. Let's take a closer look at these two ele­
ments to see how the system uses them to control access to an ob­
ject. 

The Subject Identifier (SID) 

As described earlier, the system associates each user process with a 
SID that identifies the owner of the process. Like the SID specifica­
tion in an ACL entry, the SID assigned to a user process has the 
following format: 

user.group.organization 

14-4 Controlling Access to Files and Directories 



The SID consists of three fields: user, group, and organization (ab­
breviated ugo). When you log in, the system gathers SID informa­
tion for your account. Then, each time you create a process, the 
system assigns the same SID to it to identify you as the owner. 

When a user requests access to a file or directory, the system 
checks the object's ACL. Specifically, the system searches for an 
ACL entry whose SID matches the SID of the user's process. If the 
system doesn't find a match, it denies the user access to the object. 
If the system does find a match, it grants the user the set of rights 
specified by the ACL entry. (The "Access Rights" section describes 
the meaning of the various access rights.) 

Figure 14-2 shows a set of two ACL entries for a file. 

SID Specification 
I 

joe.%.eng 

%.%.eng 

Access Rights 
I 

prwxk 

-r---

Figure 14-2. Sample ACL Entries 

The percent signs (%) that appear in the different fields of the SID 
specification are wildcards. Wildcards match any name in the net­
work within a specific SID field. For example, the SID for the sec­
ond ACL entry in Figure 14-2 (%. %.eng) contains wildcards in the 
user and group fields. These wildcards match any name in the cor­
responding fields of a user's process SID. As a result, the ACL 
entry for %. %.eng matches any process SID with the organization 
name eng. 

When a user process requests access to an object, the system starts 
its search for a matching SID at the most specific SID specification 
and continues searching toward the most general. As soon as the 
system finds a specification that matches the process's SID, it stops 
the search and grants the rights listed in that ACL entry. 

Controlling Access to Files and Directories 14-5 



For example, the SID specification for the first ACL entry in Figure 
14-2 (joe. %.eng) is more specific than that of the second entry 
(joe is a specific user in the organization eng). Suppose a process 
with the SID joe.bridge.eng tries to access the object. In this case, 
the SIDs for both ACL entries match the process SID. However, 
since the system matched the more specific SID (joe. %.eng) first, it 
grants the process the associated rights (prwxk). 

When you create a process, the system assigns an SID consisting of 
a username (owner), a group and an organization. The ACL en­
tries for the owner, group and organization are called the required 
ACL entries. Each object in the system has a set of required ACL 
entries specifying rights for an owner, a group, an organization, and 
all others (world). The required ACL entries provide the standard 
UNIX protection modes, and add the p and k permissions to the 
standard rwx set. The p (protect) specifies rights to change an ob­
ject's permissions; k (keep), prevents the file from being removed 
or having its name changed. For directories, x (execute/search) 
allows a directory to be searched for subordinate objects. These 
protection rights are indistinguishable from standard UNIX protec­
tions. 

You can also create extended ACL entries for an object. An ex­
tended ACL entry allows you to extend access rights to other users, 
groups, and organizations. Figure 14-3 shows an object with re­
quired and extended ACLs. 

SID Specification Access Rights 

I I 
joe. %. % prwxk 

Required ACL { %.bridge.% -r-x-
Entries %. %. none [ignored] 

%.%.% 

Extended ACL { jill. %. % prwxk 

Entries %. backup. % -r---

Figure 14-3. Sample Extended ACL Entries 

14-6 Controlling Access to Files and Directories 



Access Rights 

Access rights specify what operations, such as read, write, and exe­
cute, a user process can perform on a particular file or directory. 
Table 14-1 lists the access rights for files and directories. 

For example, the following ACL entry for a file grants the specified 
set of access rights to all users: 

%.%.% -rwx-

In this example, the rwx specification indicates that the file has 
read (r), write (w), and execute (x) rights. Notice the hyphens that 
surround rwx rights. 

When you list the ACL entries for an object (see the "Displaying 
ACLs" section) the system displays the hyphens to represent access 
rights that are not valid (denied) for the entry. In the previous ex­
ample, the entry denies p and k rights (represented by hyphens) 
and grants r, w, and x rights. 

As you'll see later in this chapter, you can also deny certain users 
any access to an object. For example: 

%.bridge.eng 
%.%.eng 

prwxk 

This ACL denies every user in the eng group access to the file, 
except those working on the bridge project. 

As shown in Table 14-1, the types of access for directories are 
different than those for files. 

Controlling Access to Files and Directories 14-7 



Table 14-1. Access Rights for Files and Directories 

Access Abbrev. Meaning for Meaning for 
Right Directories Files 

Protect p Change the object's ACLs. 

Keep k Prevent deletion or changing of name. 

Read r List entries. Read file contents. 

Write w Add, change, or Write to the file. 
delete entnes. 

Execute/ x Allow direct0d' Execute object 
Search to be searche file. 

for subordinate 
objects. 

NOTE: To remove a directory tree, you need write rights to 
any object being removed. If objects are protected 
with keep rights, you must have protect rights to the 
object as well. 

Searching Directories and Removing Objects 

To access an object, you must have appropriate rights to both the 
object and its parent directory. To access an object, its parent must 
grant you search (x) rights. To remove an object, its parent must 
grant you write (w) rights. Consider the following example: 

% Is lownerlreports 

In order to list the contents of reports, you must have search rights 
to its parent directory lowner, as well as read rights to reports. 
Similarly, to remove the subdirectory reports, you need write rights 
to both lowner and reports. 

If reports contains additional objects, you need write rights to re­
ports to remove them. Therefore, to remove a directory tree, you 
must have write rights to the parent directory and all of its subdirec­
tories except the subdirectories at the very bottom of the tree. 

14-8 Controlling Access to Files and Directories 



.. Managing ACLs 

By default, the system assigns an ACL to every file or directory that 
you create. (The "Initial ACLs" section describes how the system 
assigns ACLs to objects.) You can list, change, and copy an ob­
ject's ACL using the following shell commands: 

• lsacl (list ACLs) 

• cpacl (copy ACLs) 

• chacl (change ACLs) 

• dbacl (dialog-based ACL editor) 

Displaying ACLs 

To display an object's ACL, use the Isacl (list ACL) command in 
the following format: 

lsacl name ... 

The name argument specifies the pathname of the object whose 
ACL you want to list. For example: 

% lsacl lownerlreport 

This command lists the ACL entries for the file report. Figure 14-4 
shows a sample display produced by this command. 

jill.%.% 

%.bridge.% 

%.%.none 

%.%.% 

prwx­

-rwx-

[Ignore] 

Figure 14-4. Sample ACL Display 

Controlling Access to Files and Directories 14-9 



Changing ACLs 

You can change an object's ACL using either the chad (change 
ACL) command or the dbad (dialog-based ACL editor) com­
mand. These commands let you add, change, and remove ACL 
entries. You can also use them to change a directory's initial ACLs. 
(The "Changing Initial ACLs" section describes how to use these 
commands in this manner). 

You can change the ACLs of several objects either by specifying 
multiple pathnames (separating each pathname with a space) or by 
using pathname wildcards. 

This simplest form of the chad command is as follows: 

chad SID<operator><rights> name ... 

The SID argument is the user, group, and organization to which the 
rights apply; operator is one of + (add to existing rights), - (re­
move from existing rights), or = (assign absolute rights); rights are 
one or more letters identifying types of access for directories and 
files; and name is the pathname of a file or directory. The chad 
command also has options that allow you to change initial directory 
and file ACLs, and inheritence rights. 

This section describes how to use the chad command to change 
ACLs. For a complete description of chad, see the BSD Com­
mand Reference. Table 14-2 summarizes the commands used to 
change ACLs. 

14-10 Controlling Access to Files and Directories 



Table 14-2. Summary of Commands for Changing ACLs 

Task Command 

Display an object's ACL lsad name 

Set an ACL entry· chad SID=rights name 

Add rights to an ACL entry· chad SID+rights name 

Remove rights from an chad SID-rights name 
ACL entry· 

Remove an ACL entry chad - D ugo name 

Set the required entry for 
owner (u) 

chad u=rights name 

Set the required entry for 
group (g) 

chad g=rights name 

Set the required entry for chad z=rights name 
organization (z) 

Set the required entry for 
world (0) 

chad o=rights name 

Ignore all required entries chad a=I 

• If entry doesn't exist, it will be added. 

NOTE: Each object must have the required en­
tries of user, group, and organization. 
However, it is sometimes useful to have 
these rights specified, but not used for 
rights checking. This may be done by us­
ing the special case mode, I (ignore). 
The ignore mode is only valid for the 
required entries, owner (u), group (g), 
and organization (z). 

Controlling Access to Files and Directories 14-11 



Rules to Specify ACL Entries 

Most of the chad commands described in this section require you 
to specify SID and access right information. For example, to add an 
ACL entry, you must specify an SID and a set of access rights. 
Before you attempt to use chad commands, you should understand 
the rules for specifying SIDs and access rights. 

When you specify an SID, you can use the percent sign (%) 
wildcard character in each field to match any name in the corre­
sponding field of a process SID. For example, the following SID 
matches any process SID in the system with the username joe: 

joe.%.% 

When you specify a SID that uses % wildcards, you may omit trail­
ing % wildcards and the periods that separate them. For example, 
the following SID specifications are the same: 

joe.%.% 
joe.% 
joe 

Table 14-1 lists the access rights that you can specify for files and 
directories. To specify access rights individually, use the one-letter 
abbreviations listed therein. For example: 

% chad joe+rw report 

LT 
access rights 

The command in this example specifies the read (r) and write (w) 
access rights for the file report. 

To deny rights (grant no rights) for an entry, specify an equal sign 
(=) without any access rights as follows: 

% chad joe= report 

LT 
no access rights 

14-12 Controlling Access to Files and Directories 



You can also use any of the special class names in Table 14-3 to 
specify a set of required rights. For example: 

% chad ugz=prx report 
y 

required rights abbreviations 

The ugz abbreviation in this example specifies the required user, 
group, and organization rights. 

NOTE: The chad command will not allow you to 
perform an operation that restricts every­
one from changing an ACL. At least one 
user must have the protect (p) rights to 
change the ACL. 

Table 14-3. Abbreviations for Required Rights 

Name Meaning 

u Required user entry 

g Required group entry 

z Required organization entry 

0 Required other (world) entry 

a All of the required entries 

Setting ACL Entries 

To set an entry (SID and rights) in an ACL, use the = operator in 
the following format: 

chad SlD=rights name 

Controlling Access to Files and Directories 14-13 



The SID argument specifies the SID for which to set rights. The = 
operator directs chad to add the specified SID and access rights to 
the ACL if it didn't exist. For example: 

% chad %.%.man=prwxk report 

The command in this example adds a new ACL entry to the ACL 
for the file report, if necessary. The new entry grants full access 
(prwxk) to anyone in the organization named man. 

Changing Entry Rights 

To change the access rights for an SID, use the + or - operator in 
the following format: 

chad SID+rights name 
or 
chad SID-rights name 

The SID argument specifies the SID for which you want to add or 
subtract rights. 

For example, suppose the file report has the following ACL entry 
granting full rights: 

%.%.man prwxk 

The following command changes the access rights for %. %. man to 
read (r) access: 

% chad %.%.man-pwxk report 

As a result, the new ACL entry now looks like this: 

%. %. man -r---

14-14 Controlling Access to Files and Directories 



Addin2 Entry Rights 

To add access rights to an existing ACL entry. use the + operator in 
the following format: 

chad SID+rights name 

The SID argument specifies the SID for which you want to add 
rights. creating an entry if necessary. 

For example. suppose the file report has the following ACL entry 
granting full rights: 

%.%.man -r---

The following command adds write (w) and execute (x) rights to 
the current access rights for %. %.man. 

% chad %.%.man+wx report 

As a result. the ACL entry now looks like this: 

%.%.man -rwx-

Removing ACL Entries 

To remove an entry (SID and rights) from an ACL. use the -D 
option in the following format: 

chad -D SID name 

The SID argument specifies the SID for the entry you want to re­
move. For example: 

% chad -D %. %.man. % lowner/report 

This command removes the entry %.%.man from the ACL for the 
file towner/report. 

Controlling Access to Files and Directories 14-15 



Copying ACLs 

To copy an ACL from one object to another, use the cpacl (copy 
access control list) command in the following format: 

cpacl source destination ... 

The source argument specifies the pathname of the object whose 
ACL you want to copy. The destination argument specifies the 
pathname of the object to which you want the ACL copied. 

The following command copies the ACLs from the directory 
lowner to the directories luser_1 and luser_2: 

% cpacl lowner luser_1 luser 2 

Initial ACLs 

Whenever you create a new file or directory, the system assigns it a 
default ACL by copying a special ACL, called an initial ACL, from 
the parent directory. Each directory, in addition to its own ACL, 
has two initial ACLs: an initial file ACL for new files, and an in­
itial directory ACL for new directories. 

For example, if you create a file named report in the directory 
owner, the system assigns report the initial file ACL of the direc­
tory owner. If you create a subdirectory in owner, the system as­
signs the new subdirectory owner's initial directory ACL. New sub­
directories also receive a set of initial ACLs that match the parent 
directory's initial ACLs. In this example, the new subdirectory also 
receives owner's initial ACLs. Figure 14-5 shows how the system 
assigns initial ACLs to files and directories. 

14-16 Controlling Access to Files and Directories 



Parent Directory 

ACL 

Subdirectory File 

Figure 14-5. Initial ACLs for Files and Directories 

Table 14-4 summarizes the commands used to change and copy 
initial ACLs. 

Table 14-4. Summary of Commands for Changing 
and Copying Initial ACLs 

Task Command 

Change initial directory ACL chacl -d command 

Change initial file ACL chacl -f command 

Copy both initial ACLs cpac1 -df source destination 

Copy initial directory ACL cpacl -d source destination 

Copy initial file ACL cpacl -f source destination 

Display initial directory ACL Isacl -d name 

Display initial file ACL Isacl -f name 

Controlling Access to Files and Directories 14-17 



Displaying Initial ACLs 

You can display a directory's or file's initial ACLs with the Isacl 
command. 

To display the initial directory ACL, use lsacl with the -d option in 
the following format: 

lsacl -d dir 

The -d option directs lsacl to display the initial directory ACLs, 
and dir specifies the pathname of the directory whose initial ACLs 
you wish to display. For example: 

% lsacl -d lowDer 

The command in this example displays the initial directory ACL for 
the directory lowDer. 

To display the initial file ACL, use lsacl with the -f option in the 
following format: 

lsacl -f dir 

The -f option directs lsacl to display the initial file ACLs, and dir 
specifies the pathname of the file whose initial ACLs you wish to 
display. The following example displays the initial file ACL for the 
file report: 

% lsacl -f report 

Changing Initial ACLs 

You can change a directory's initial ACLs with the chacl command. 

To change the initial directory ACL, use chacl with the -d option 
in the following format: 

chacl -d command dir 

14-18 Controlling Access to Files and Directories 



The -d option directs chad to change initial directory ACLs, and 
command specifies one of the ACL changing commands described 
in the "Changing ACLs" section discussed earlier. 

To set the rights for an SID in the initial directory ACL for towner, 
use the = operator as follows: 

% chad -d %. %.eng=rwx towner 

The following example uses the -d option to take away write (w) 
rights from the entry in the previous example: 

% chad -d %.%.eng-w towner 

To change the initial file ACL, use the chad command with the -f 
option in the following format: 

chad -f command dir 

The -f option directs chad to change initial file ACLs, and com­
mand specifies one of the ACL changing commands described in 
the "Changing ACLs" section discussed earlier. 

Copying Initial ACLs 

You can copy a directory's initial ACLs using the cpad command 
in the following format: 

cpad option source destination 

The option argument specifies one of the options listed in Table 
14-5. The source argument specifies the pathname of the object 
whose initial ACL you want to copy. The destination argument 
specifies the pathname of the object to which you want the initial 
ACL copied. 

Controlling Access to Files and Directories 14-19 



Table 14-5. Options for Copying Initial ACLs 

Option Description 

-df Copies both the initial file and initial directory 
ACLs from the source to the destination. 

-d Copies the initial directory ACL from the source 
to the destination. 

-f Copies the initial file ACL from the source to the 
destination. 

-t Copies the ACLs from the source to the inital file 
and initial directory ACLs on the destination. 

-i Copies the initial file or initial directory ACL to 
the ACL on the destination. 

The command in the following example uses the -df options to 
copy the inital file and directory ACLs from the directory lowner to 
the directory luser_L 

% cpacl -df lowner luser_1 

To copy only the initial file ACL, use the -f option as shown in the 
following example: 

% cpacl -f lowner luser_1 

For a complete description of how to use the cpacl command to 
copy initial ACLs, see. the BSD Command Reference. 

----88----

14-20 Controlling Access to Files and Directories 



Appendix A 

Initial Directory and File Structure 

The following illustrations show how the system organizes the soft­
ware that we supply with your node: 

• Figure A-l shows the contents of the node entry directory 
(I) 

• Figure A-2 shows the files and directories in the system 
software directory (/sys) 

• Figure A-3 shows the files and directories in the Display 
Manager directory (/sys/dm) 

• Figure A-4 shows the network management directory 
(lsys/net) 

Initial Directory and File Structure A-I 



bsd4.3 Root of the BSD Boot shell 
fllesystem commands 

bin Shell commands Release notes and 
update procedures 

usr General purpose 
directory 

Install Installation scripts 

lib System libraries 
On-line system 
tests 

sys Miscellaneous 
system software 

etc System flies. 
maintenance. and 
administrative utilities 

dev Peripheral device 
1/0 descriptions 

sau?* Stand-alone utilities 

sys5.3 

Figure A-i. The Node Entry Directory ( I ) and Subdirectories 

A-2 Initial Directory and File Structure 



help 

Ins 

System help 
files 

User insert 
files 

node_data [.xx] Per node 
read/write 
data files 

print Flies in 
printer 
queue 

sysdev Serial I/O 
files 

Color 
system 
microcode 

peb_mlcrocode Performance 

env 

board micro­
code 

Shell environ­
ment boot­
strap 

Figure A-2. The System Software Directory (lsys) 

Initial Directory and File Structure A-\3 



The Display 
Manager 

std_keys Standard keys 
std_keys. basic 
std_keys.unlx 
std_keys.mn 
std_keys2 
std_keys3 
std_keys3 [a-g) 

Login start­
up flies 

Figure A-3. The Display Manager Directory (lsys/dm) 

A-4 Initial Directory and File Structure 



List of the diskless nodes that can use i\ 
this node as a partner. 

netboot Diskless node bootstrap program 
(used by netman) 

netman Diskless node management program 

An example of a diskless -,1st file 

Figure A-4. The Network Management Directory (/sys/net) 

Initial Directory and File Structure A-5 





Appendix B 

Summary of 
Predefined Standard 

and UNIX Key 
Definitions 

This appendix summarizes the predefined standard and UNIX key 
definitions read during DM startup. These are found in the files 
/sys/dm/std_keys.basic and /sys/dm/std_keys.unix. This appen­
dix also includes special operating considerations for the Domain 
Multinational keyboards. Figure B-1 shows the key names for the 
Multinational keyboard keypad. 

Summary of Predefined Standard and UNIX Key Definitions B-1 



Table B-1. Controlling the Cursor 

Task DM Command Predefined Key 

Move left one character al +- (LA) 

Move right one character ar -+ (LC) 

Move up one line au t (L8) 

Move down one line ad ! (LE) 

Set arrow key scale factors as xy None 

Move to the beginning of line tl I+- (L4) 

Move to end of line tr -+I (L6) 

Move to top line in window 
tt SHIFT/ (] 

(LOS) 

Move to bottom line in window tb SHIFT/ [] 
(LFS) 

Move to window borders twb [ I, r, t, b] None 

Move to the beginning of ad; tl CTRLlK 
next line 

Tab left thl CTRLI<TAB> 

Tab right th SHIFT /<T AB> 

Set tabs ts [nJ, n2 ... ] None 

Move to OM input pad tdm <CMO>(L5) 

Move to next window on screen tn <NEXTWNDW> 
(LB) 

Move to previous window tlw CTRLI"" 

Move to next window in which ti None 
input is enabled 

B-2 Summary of Predefined Standard and UNIX Key Definitions 



Table B-2. Creating Processes 

Task DM Command Predefined Key 

Create new process, pads, cp command None 
and windows 

Create new process without cpo command 
None 

pads or windows 

Create a server process cps command None 

Table B-3. Controlling Processes 

Task DM Command Predefined Key 

Quit a process dq -c 9010003 CTRL/\ 

Interrupt a running process dq -I CTRLlC 

Stop or blast a process dq [-sl-b] None 

Suspend execution of a dq -c 120028 CTRLlZ 
process 

Resume execution of a de None 
suspended process 

Table B-4. Creating Pads and Windows 

Task DM Command Predefined Key 

Create an edit pad and ce file <EDIT> 
window (R4) 

Create a read-only window cv file 
<READ> 

(R3) 

Create a copy of an existing cc None 
pad and window 

Summary of Predefined Standard and UNIX Key Definitions B-3 



Table B-S. Closing Pads and Windows 

Task DM Command Predefined Key 

Close window and pad; pWjwe-q <EXIT> 
update file (RS) 
Close window and pad; no we -q <ABORT> update 

(RSS) 

Close (delete) a window we [-ql-f] None 

Table B-6. Managing Windows 

Task DM Command Predefined Key 

Change window size wg None 

Change window size with wge <GROW> (LA3) 
rubberbanding 

Move a window wm None 

Move a window with wme <MOVE> (LA3S) 
rubberbanding 

Set scroll mode ws [-onl-off] None 

Set autohold mode wa [-onl-off] None 

Scroll and autoholf waj ws CTRLlA 
mode 

Set hold mode wh <HOLD> (R6) 

wh -on CTRL/S 

wh -off CTRLlQ 

Define position of wdf [n] None 
default window n 

Acknowledge alarm aa None 

Acknowledge alarm and ap None 
pop window 

B-4 Summary of Predefined Standard and UNIX Key Definitions 



Table B-7. Moving Pads 

Task DM Command Predefined Key 

Move top of pad into pt None 
window 

Move cursor to first pti tti tI CTRL!T 
character in pad 

Move bottom of pad into pb None 
window 

Move cursor to last pbi tbi tr CTRLlB 
character in pad 

Move pad n pages pp [-]n [1][TI 
(LD, LF) 

Move pad n lines 
pv [-]n SHIFT! t 

(LSS) 

SHIFT! ~ 
(LES) 

Move pad n characters ph [-]n BEl 
(L7, L9) 

Save transcript pad in a file pn None 

Summary of Predefined Standard and UNIX Key Definitions B-5 



Table B-8. Controlling Window Groups and Icons 

Task DM Command Predefined Key 

Create or add to a wgra grp_name [entry_name] None 
window group 

Remove a window wgrr grp_name [entry_name] None 
from window group 

Make windows wi entry_name None 
invisible 

~hange windows to icon [entry_name] [options] SHIFT I<POP> 
Icons 

Set icon positioning idf None 
and offset 

Display list of win- cpb group_name None 
dows in group 

Table B-9. Setting .Edit Modes 

Task DM Command Predefined Key 

Set read/write mode ro [-onl-off) SHIFT I<AGAIN> 

Set insert/overstrike ei [-onl-off) <INS> mode 
(LtS) 

B-6 Summary of Predefined Standard and UNIX Key Definitions 



Table B-lO. Inserting Characters 

Task DM Command Predefined Key 

Insert string at cursor es 'string' Default DM operation 

Insert newline character en <RETURN> 

Insert tab character None <TAB> 

Insert raw (noecho er nn None 
character) 

Insert a new line after tr; en; tl <FI> 
current line 
Insert end-of-file mark eef CTRLlD 

Table B-11. Deleting Text 

Task DM Command Predefined 
Key 

Delete ed <CHAR DEI> 
character (L3) at cursor 

Delete ee <BACK SPACE> 
character 
before 
cursor 

Delete word dr; / [,.", a-zO-9 I $_] /xd <F6> 

Delete dr;\[,.", @@t@@n]\;\[ @@t@@n]\; CTRL/W 
previous 
word 

ar;xd 

Delete from es ";ee;dr;tr <F7> 
cursor to xd;tl;tr (L3A) 
end of line 

Delete from dr;tl;xd CTRLlU 
cursor to 
beginning of 
line 

Delete entire cms;tl;xd <LINE DEI> 
line (L2) 

Summary of Predefined Standard and UNIX Key Definitions B-7 



Table B-12. Copying, Cutting, and Pasting Text 

Task DM Command Predefined Key 

Copy text to a xc [name I -f file] [-r] <COpy> 
paste buffer (LlA) 
or file 

Cut (delete) text xd [name I -f file] [-r] <CUT> 
and write it to (LlAS) 
a paste buffer or 
file 

Paste (write) text xp [name I -f file 1 [-r] <PASTE> 
from a paste (L2A) 
buffer or file 
into a pad 

Table B-13. Commands for Searching for Text 

Task DM Command Predefined Key 

Search forward for string Istringl None 

Search backward for string \string\ None 

Repeat last forward search /I CTRLlN 

Repeat last backward search \\ CTRLlP 

Cancel search or any action abrt CTRLlX 
involving the echo command 

Set case comparison for sc [-on] [-off] None 
search 

B-8 Summary of Predefined Standard and UN1X Key Definitions 



Table B-14. Commands for Substituting Text 

Task DM Command Predefined Key 

Substitute string2 for all sl stringll string21 None 
occurrences of stringl 
in a defined range 

Substitute string2 for solstringllstring21 None 
the first occurrence of 
stringl in each line of 
a defined range 

Change case of each case [-s] [-u] [-I] None 
letter in a defined 
range 

Operating Considerations for Multinational Keyboards 

The Domain Multinational keyboard is a Low-Profile Model II 
keyboard adapted to international standards. Because of the differ­
ences between the North American keyboard and the International 
keyboard, there are certain operating considerations that you 
should note. These operating considerations are described in the 
following sections. 

Arrangement of Multinational Keyboard Keys 

The Multinational keyboard has seven additional keys that impose 
a slightly different overall arrangement, as well as some different 
key labels. 

The Multinational keyboard keypad has more keys than the Low­
Profile Model II keypad. Figure B-1 shows the names and loca­
tions of the numeric keypad keys on the Multinational keyboard. 

Summary of Predefined Standard and UNIX Key Definitions B-9 



Figure B-1. Multinational Keyboard Numeric Keypad 

Key Interpretation During Service Mode 

The Mnemonic Debugger (MD) begins executing as soon as you 
power on your node. The MD reads the program responsible for 
booting your node, loads it, and transfers control to it. Ordinarily, 
this is the only function of the MD (aside from performing the auto­
matic fix from a power failure). However, if a node needs to be 
serviced, the MD is used instead of the normal operating mode. 

System administrators must be aware that the MD expects the stan­
dard Domain keyboard shown in Figure 4-3. National characters, 
therefore, may not be valid. This discrepancy currently affects the 
French keyboard where the Q key and the A key positions are 
transposed in comparison to the Domain North American key­
board. Because of the difference in these key positions, typing ex 
domain_os on a French keyboard in Service Mode (which calls the 
Mnemonic Debugger) sends ex domqin_os to the system. To cor­
rect this, you must press the Q key instead of the A key when start­
ing the OS on such a node. 

B-IO Summary of Predefined Standard and UNIX Key Definitions 



Appendix C 

Summary of Bourne Shell Grammar 

The following is a summary of Bourne shell grammar described in 
Chapter 9 of this manual. 

item: word 
input-output 
name = value 

simple-command: item 
simple-command item 

command: simple-command 
( command-list ) 
{ command-list } 
for name do command-list done 
for name in word ... do command-list done 
while command-list do command-list done 
until command-list do command-list done 
case word in case-part ... esac 
if command-list then command-list else-part fi 

pipeline: command 
pipeline I command 

Summary of Bourne Shell Grammar C-l 



andor: pipeline 
andor && pipeline 
andor II pipeline 

command-list: andor 
command-list ; 
command-list & 
command-list ; andor 
command-list & andor 

input-output: > file 
<file 
» word 
« word 

file: word 
& digit 
&-

case-part: pattern) command-list ;; 

pattern: word 
pattern I word 

else-part: elif command-list then command-list else-part 
else command-list 
empty 

empty: 

word: a sequence of non-blank characters 

name: a sequence of letters, digits, or underscores starting 
with a letter 

digit: 0 1 2 3 4 5 6 7 8 9 

C .... 1;· Summary of Bourne Shell Grammar 



Appendix D 

Summary of Bourne 
Shell Metacharacters and 

Reserved Words 

The following is a summary of Bourne shell metacharacters and 
reserved words as described in Chapter 9 of this manual. 

Summary of Bourne Shell Metacharacters/Reserved Words D-l 



Syntactic 

Patterns 

&& 

II 

" 
& 

() 

< 

« 

> 

» 

* 
? 

[ ... ] 

Substitution 

${ ... } 

Pipe symbol 

'andf' symbol 

'orf' symbol 

Command separator 

Case delimiter 

Background commands 

Command grouping 

Input redirection 

Input from a here document 

Output creation 

Output append 

Match any character(s) including none 

Match any single character 

Match any of the enclosed characters 

Substitute shell variable 

Substitute command output 

D-'-2 Summary of Bourne Shell Metacharacters/Reserved Words 



Quoting 

\ 

" 

Reserved Words 

• if 

• then 

• else 

• elif 

• fi 

• case 

• in 

• esac 

• for 

• while 

• until 

• do 

• done 

• {} 

Quote the next character 

Quote the enclosed characters except for ' 

Quote the enclosed characters except for 
$ , \ " 

Summary of Bourne Shell Metacharacters/Reserved Words D-3 





Appendix E 

Summary of C Shell Metacharacters 

The following is a summary of C Shell metacharacters as described 
in Chapter 8 of this manual. Many of these characters also have 
special meaning in expressions. See the information on csh (C 
shell) in the BSD Command Reference for a complete list. 

Summary of C Shell Metacharacters E-l 



Syntactic 

Filename 

Quotation 

Separates commands to be executed sequentially 

Separates commands in a pipeline 

( ) Brackets expressions and variable values 

& Follows commands to be executed in background 

I Separates components of a file's pathname 

? 

* 

[ ] 

Separates root parts of a filename from extensions 

Expansion character matching any single character 
except a leading dot (.) 

Expansion character matching any sequence of 
characters except a leading dot (.) 

Expansion sequence matching any single character 
from a set 

Used at the beginning of a filename to indicate home 
directories 

{ } Specifies groups of arguments with common parts 

\ Prevents metameaning of following single character 

Prevents metameaning of a group of characters 

Like a single quote ('), but allows variable and 
command expansion 

E-2 Summary of C Shell Metacharacters 



Input/Output 

< Indicates redirected input 

> Indicates redirected output 

« Reads shell input up to a specified line 

» Places output at the end of an existing file 

>& Routes both diagnostic output and the standard output 
into a specified file 

»& Places diagnostic and standard output at the end of an 
existing file 

>! Overrides the noclobber variable 

Expansion/Substitution 

$ Indicates variable substitution 

Indicates history substitution 

Precedes substitution modifiers 

t U sed in special forms of history substitution 

Indicates command substitution 

Miscellaneous 

# Begins shell comment 

% Prefixes job name specifications 

Summary of C Shell Metacharacters E-3 





Appendix F 

Composing European 
Characters 

This appendix describes how to create and display European char­
acters that don't ordinarily appear on Apollo keyboards, and how 
to switch between European and ASCII characters on Multinational 
keyboards. 

The Compose Function 

The default Apollo character set is the ISO 8-bit character set (In­
ternational Standards Organization 8859/1), commonly known as 
Latin-1. This set includes the characters necessary to support West­
ern European languages. 

European characters do not appear on the standard North Ameri­
can keyboard, and only a subset appear on the various models of 
the Multinational keyboards. However, you can use the compose 
function to enter and display any character in the Latin-1 set that 
does not appear on your keyboard. 

Composing European Characters F-l 



To enable the compose function, you must either run the kbm 
command or edit your workstation's start-up file. (See Chapter 3 to 
determine which start-up file goes with your node type.) If you 
decide to edit your start-up file, you'll see the following line in that 
file: 

'cps lusr/apollo/bin/kbm -c fS 

To turn on the compose function, simply delete the comment char­
acter (#) from the line. By default, the command sets <FS> to be 
the compose key, but you can substitute another keyname on the 
line if you prefer. 

To compose, press <FS> (or your user-defined compose key), fol­
lowed by the two characters that make up your chosen character. 
For example, if you want to create an e with a circumflex accent, 
type the following: 

<F5> e A 

The character appears after you have pressed all three keys. See 
the section "Character Compose Sequences" for a list of the se­
quences you must type to compose each Latin-l character. 

The compose function only works if you have a Latin-1 based font 
loaded on your node. We supply each node with a large group of 
fonts that are based on Latin-1. Those fonts include: 

• Courier family 

• din_f7xll 

• fSx9 

• f7x13, f7xl3.b 

• Helvetica family 

• Legend family 

• Std family 

• Times family 

You should be aware, however, that many software packages use 
their own fonts, and those fonts mayor may not include the Euro­
pean Latin-1 characters. 

F-2 Composing European Characters 



If you enter a valid key sequence, but the font currently loaded 
doesn't include the Latin-l character, the system displays a blank. 
If you later load a font that does have the Latin-l character and 
open the file again, the correct character appears. 

European Characters and the Multinational Keyboard 

You can always use the <FS> method to compose national charac­
ters on Multinational keyboards. However, those keyboards also 
include keys that have both national characters and regular ASCII 
characters engraved on them. By default, the ASCII characters ap­
pear on the screen when you press keys with double engravings. 
You can use ALT mode, however, to tell the system that you want 
the national characters to appear. 

If you hold <AL T> while pressing any key which is marked with 
both ASCII and national characters, you will toggle that individual 
key between the ASCII and national character. For example, if you 
are typing ASCII and then press <AL T> and a double-engraved 
key, the keyboard will produce the national character on that key. 

The SHIFT/<AL T> key combination toggles the entire keyboard 
between producing ASCII characters and national characters. That 
is, if you are typing ASCII and then press SHIFT/<AL T>, the key­
board will only produce national characters until you press 
SHIFT/<AL T> again. 

Printing Latin-l Characters 

The print server can process Latin-l characters correctly, so in 
most cases, what you see on the screen will match the output from 
your printer. However, if you have a printer that uses a daisy wheel 
or other mechanical impact device, you might have to replace the 
current printer font with one that incluces the Latin-l characters. 
Similarly, you might have to load a language-specific PROM for a 
dot-matrix printer in order to generate the same characters on pa­
per that you see on-screen. 

If your printer font does not include a Latin-l character that is in 
your file, the system simply prints a space. 

Composing European Characters F-3 



Restrictions on Using Latin-l Characters 

You may use Latin-l characters in any edit pad or DM input win­
dow. Likewise, they are acceptable in SysV, Bourne, and, Korn 
shells, and in the Aegis leom shell. However, Latin-l characters 
are not legal in all parts of the system. For example, the BSD shells 
do not support them for input or output. 

For more details on the conditions under which you can and cannot 
use Latin-l characters, see the release notes for the current system 
software release that you are using. 

Character Compose Sequences 

The following chart shows what two characters you must type to 
compose each individual Latin-l character. 

Table F-l. Compose Sequences for Latin-l Characters 

Keystrokes Character Name 

<sp><sp> No break space (NBSP) 
II Inverted exclamation mark 
cl ¢ Cent sign 
L- £ Pound sign 
XO Il Currency sign 
Y- ¥ Yen sign 

II I Broken bar 
SO § Section sign 
"u Diaeresis 
co @ Copyright sign 
a Il Feminine ordinal indicator -
« « Left angle quotation mark 

., NOT sign 
Soft hyphen 

RO CI> Registered trade mark sign 
Macron 

OA 0 Ring above, degree sign 
+- ± Plus-minus sign 

F-4 Composing European Characters 



2A 2 Superscript two 
3A 3 Superscript three 
" Acute accent 
lu J.L Micro sign 
PI 1[ Paragraph sign, pilgrow sign 

Middle dot 
Cedilla 

r Superscript one 
0_ 2 Masculine ordinal indicator 
» » Right angle quotation mark 
14 1,4 Vulgar fraction one quarter 
12 1/2 Vulgar fraction one half 
34 3,4 Vulgar fraction three quarters 
?? l Inverted question mark 

A' A Capital letter A with grave accent 
A' A Capital letter A with acute accent 
AA A Capital letter A with circumflex 
A- A Capital letter A with tilde 
A" A Capital letter A with diaeresis 
A* A Capital letter A with a ring above 
AE 1E Capital diphthong AE 
C, <; Capital letter C with cedilla 
E' E Capital letter E with grave accent 
E' E Capital letter E with acute accent 
EA :B Capital letter E with circumflex 
E" E Capital letter E with diaeresis 
I' t Capital letter I with grave accent 
I' t Capital letter I with acute accent 
r I Capital letter I with circumflex accent 
I" I Capital letter I with diaeresis 

D- f) Capital icelandic letter ETH 
N- N Capital letter N with tilde 
0' 0 Capitol letter 0 with grave accent 
0' 6 Capital letter 0 ~th acute accent 
OA 0 Capital letter 0 with circumflex 
0- 0 Capital letter 0 with tilde 
0" 0 Capital letter 0 with diaeresis 
xx X Multiplication sign 

Composing European Characters F-5 



0/ 0 Capital letter 0 with oblique stroke 
U' U Capital letter U wigh grave accent 
U' U Capital letter U with acute accent 

U A D Capital letter U with circumflex 
U" D Capital letter U with diaeresis 
Y' y Capital letter Y with acute accent 
TH I> Capital icelandic letter THORN 
ss B Small German letter sharp s 

a' a Small letter A with grave accent 
a' li Small letter A with acute accent 
aA 11 Small letter A with circumflex accent 

a - a Small letter A with tilde 
a" a Small letter A with diaeresis 
a* A Small letter A with a ring above 
ae re Small diphthong AE 
c, c;: Small letter C with cedilla 
e' e Small letter E with a grave accent 
e' e Small letter E with acute accent 
eA e Small letter E with circumflex accent 
e" e Small letter E with diaeresis 
i' Small letter I with grave accent 
i' Small letter I with acute accent 
iA Small letter I with circumflex accent 
i" i Small letter I with diaeresis 

d- o Small icelandic letter ETH 
n - fi Small letter N with tilde 
0' 0 Small letter 0 with grave accent 
0' 0 Small letter 0 with acute accent 
OA 6 Small letter 0 with circumflex accent 
0 - 6 Small letter 0 with tilde 
0" 0 Small letter 0 witth diaeresis 

Division sign 
0/ {3 Small letter 0 with oblique stroke 
u' U Small letter U with grave accent 
u' II Small letter U with acute accent 
u A U Small letter U with circumflex accent 
u" ii Small letter U with diaeresis 
y' y Small letter Y with acute accent 

F-6 Composing European Characters 



th 
y" 

p 
y 

Small icelandic letter THORN 
Small letter Y with diaeresis 

When creating symbols composed of two alphabetic characters, you 
can type those characters in uppercase or lowercase, but not both. 
For example, either of the following: 

<F5> 
x 
o 

<F5> 
X 
a 

generates the currency symbol (0), but if you mix the case of the 
letters, the symbol does not appear. 

You must press <FS> (or your user-defined compose key) every 
time you want to create a character that does not appear on your 
keyboard. 

Composing European Characters F-7 





Glossary 

Access rights 

These rights list the users who have access to objects in the net­
work, and specify permissions (Le., read, write, and execute) that 
each individual user has for accessing specific objects. 

Alarm window 

The Display Manager alarm window appears near the bottom of 
your screen. It displays a small pair of bells when a process displays 
a message in an output window hidden by an overlapping window. 

Argument 

See Command argument. 

Background process 

A noninteractive process that runs immune to quit and interrupt 
signals issued from your node. In this mode, a shell doesn't wait for 
a command to terminate before it prompts you for another com­
mand. This lets you start a task and then go on to another task 
while the system continues with the initial one. (See also Process.) 

C language 

A general purpose programming language used to generate pro­
grams and operating systems. 

Glossary GL-l 



Command 

An instruction that you give a program; the name of an executable 
file that is a compiled program. 

Command argument 

A command option or the name of the object upon which the com­
mand acts. Command arguments follow commands on the same 
line, although not all commands require an argument. (See also 
Command option.) 

Command list 

A sequence of one or more simple commands separated or termi­
nated by a newline or a semicolon. 

Command option 

Information you provide on a command line to indicate the type of 
action you want the command to take. (See also Default.) 

Control character 
A special invisible character that controls some portion of the input 
and output of the programs run on a node. (See also Control key 
sequence.) 

Control key sequence 

A keystroke combination «CTRL> followed by another key) used 
as a shorthand way of specifying commands. To enter a control key 
sequence, hold <CTRL> down while pressing another key. 

Current directory ( . ) 

Cursor 

Default 

The location, within the hierarchical naming tree, of the directory 
that you are working in at a given time. Entering the UNIX com­
mand pwd (print working directory) prints the name of your cur­
rent directory. (See also Working directory.) 

The small, blinking box initially displayed in the screen's lower left 
corner. The cursor marks your current typing position on the screen 
and indicates which pad receives your input. 

Most programs give you a choice of one or more options. If you 
don't specify an option, the program automatically assigns one. This 
automatic option is called the default. (See also Command option.) 

GL"':2 Glossary 



Directory 

Disk 

A special type of object that contains information about the objects 
beneath it in the naming tree. Basically, it is a file that stores names 
and links to files. (See also File.) 

A thin, record-shaped magnetic plate, or a collection of such 
plates, used for storing data. The system uses heads (similar to 
heads in tape recorders) to read and write data on concentric disk 
tracks. The disk spins rapidly, and the heads can read or write data 
on any disk track during one disk revolution. 

Diskless node 

A node that has no disk for storage, and therefore uses the disk of 
another node. (See also Node and Disk.) 

Display Manager (DM) 

The program that executes commands that start and stop processes, 
and commands that open, close, move, or modify windows and 
pads. 

DM alarm window 

See Alarm window. 

DM environment variables 

Values set by either the system or the user to determine how the 
Display Manager handles processes started at login or during com­
mand execution. 

DM function keys 

Single keys that invoke DM commands. 

DM input window 

The window where you type DM commands (contains the "Com­
mand: " prompt). 

DM output window 

The window that displays output messages from DM commands. 

Glossary GL-3 



Domain/OS 

EOF 

File 

Filter 

The operating system that resides on a high-speed communications 
network connecting two or more Apollo nodes. Each node can use 
the data, programs, and devices of other network nodes. Each 
node contains main memory, and may have its own disk, or share 
one with another node. 

The End-Of-File character is used to terminate a shell and close 
the pad in which the shell was running. It is generated by pressing 
CTRLlD. 

The basic named unit of data stored on disk. A file can contain a 
memo, manual, program, or picture. (See also Directory.) 

A command that reads its input, performs a user-specified task, 
and prints the result as output. 

Foreground 

A mode of program execution when a shell waits for a command to 
terminate before prompting for another. 

Full pathname 

The pathname of a specific file starting from the network root di­
rectory. (See also Network root directory and Pathname.) 

Function keys 

See DM function keys. 

Globbing 

The expansion of metacharacters to pathnames. This practice is 
useful as an abbreviated method of finding and selecting file names 
according to a specified pattern. 

Group Identification Number (GID) 

A unique number assigned to one or more logins that is used to 

identify groups of related users. 

GL....,4 Glossary 



Hard link 

A link that points directly to an object (file). 

Here document 

A command procedure of the form command « eo/string which 
causes a shell to read subsequent lines as standard input to the 
command until a line is read consisting of only the eo/string. Any 
arbitrary string can be used for the eo/string. 

Home directory 

Your initial working directory. Your user account specifies the 
name of your home directory. 

Initial working directory 

The working directory of the first user process created after you log 
in. 

Input pad 

A pad that accepts commands typed at your keyboard. 

Input window 

The window that displays a program's prompt and any commands 
typed. 

Insert mode 

Kernel 

This mode lets you change text displayed in windows by reposition­
ing the cursor and inserting characters. The rest of the line moves 
right as you insert additional characters. 

The resident operating system that controls your node's resources 
and assigns them to active processes. 

Keyword parameter 

Link 

An argument to a command procedure which has the form 
name=value command argJ arg2 . .. and lets shell variables be as­
signed values when a shell script is called. (See also Shell script.) 

A special type of object that points from one place in the naming 
tree to another. (See also Hard link and Soft link.) 

Glossary GL-S 



Link text 

The name of the object contained in a symbolic link to show what is 
being linked. When you use a link name as a pathname or as part 
of a pathname, UNIX shells substitute the link text for the link 
name. (See also Soft link.) 

Logging in 

Initially signing on to the system so that you may begin to use it. 
This creates your first user process. 

Main memory 

The node's primary storage area. It stores the instruction that the 
node is executing, as well as the data it is manipulating. 

Memory 

Any device that can store information. 

Metacharacter 

Mode 

Name 

See Shell meta character . 

The UNIX protection for an object. An absolute mode is an octal 
number used in conjunction with the UNIX chmod (change mode) 
command to change permissions of files. 

A character string associated with a file, directory, or link. A name 
can include various alphanumeric characters, but never a slash (/) 
or null character. Remember that certain characters may have spe­
cial meaning to a shell and must be escaped if they are used. 

Naming tree 

A hierarchical tree structure that organizes network objects. 

Network 

Two or more nodes sharing information. 

Network root directory 

The top directory in the network. Each node has a copy of the 
network root directory. 

GL-6 Glossary 



Node 

A network computer. Each node in the SysV environment can use 
the data, programs, and devices of other network nodes. Each 
node contains main memory, and has its own disk, or shares one 
with another node. (See also Diskless node.) We frequently use 
"terminal" interchangeably with node (or, usually, "the node's key­
board"). 

Node entry directory 

Object 

A subdirectory of the network root directory. The top directory on 
each node. Diskless nodes share the node entry directory of their 
disked partner node. (See also Network root directory.) 

Any file, directory, or link in the network. 

Operating system 

Option 

A program that supervises the execution of other programs on your 
node. 

See Command option. 

Output window 

Pad 

The window that displays a process's response to your command. 

A temporary, unnamed file that holds the information displayed in 
a window. A window can display an entire pad, or show only part of 
the pad. (See also Window.) 

Parent directory ( .. ) 

The directory one level above your current working directory. 

Partial pathname 

The path name between the current working directory and a specific 
file. (See also Pathname.) 

Partner node 

A node that shares its disk with a diskless node. (See also Diskless 
node.) 

Glossary GL-7 



Password 

The string you enter at the "Password:" prompt upon logging in. As 
you type your password, the system displays dots ( ... ) instead of 
the letters in your password. (See also User account.) 

Pathname 

Pipe 

Pipeline 

A series of names separated by slashes that describe the path of the 
operating system in getting from some starting point in the network 
to a destination object. Pathnames begin with the starting point's 
name, and include every directory name between the starting point 
and the destination object. A path name ends with the destination 
object's name. (See also Full pathname and Partial pathname.) 

A simple way to connect the output of one program to the input of 
another program, so that each program runs as a sequence of proc­
esses. 

A series of filters separated by a pipe (I) character. The output of 
each filter becomes the input of the next filter in the line. The last 
filter in the line writes to its standard input. (See also Filter.) 

Print Server 

Process 

A process that oversees the printing of files submitted to the print 
queue. It need only run from the node connected to the print de­
vice(s). 

A program that is in some state of execution; the execution of a 
computing environment including contents of memory, register val­
ues, name of the current directory, status of open files, information 
recorded at login time, and other such data. 

Program 

Software that can be executed by a user. 

Process input window 

Window in which you type commands after being prompted. 

Process output window 

GL-8 Glossary 



Prompt 

The large window immediately above the process input window. 
This window displays commands, along with a shell's response to 
them. 

A message or symbol displayed by the system to let you know that it 
is ready for your input. 

Regular expression 

A string specifier that can help you find occurrences of variables, 
expressions, or terms in programs and documents. Shell regular ex­
pressions are specified by allowing certain characters special mean­
ing to a shell. 

Root directory 

See Network root directory. 

Screen 

See Transcript pad. 

Search path 

The route that a shell takes in searching through various directories 
for command files. A default search path exists for the BSD shells. 
You may add other directories of executable files which a shell then 
looks through on its way to finding a particular command name. 

Secondary prompt 

Shell 

A notification to the user that the command typed in response to 
the primary prompt is incomplete. 

A command-line interpreter program used to invoke utility pro­
grams. 

Shell command 

An instruction you give the system to execute a utility program. 
(See also Shell script.) 

Shell metacharacter 

Any character that has special meaning to a shell. Asterisks, ques­
tion marks, and ampersands are a few examples. 

Glossary GL-9 



Shell script 

A file that you create that contains one or more shell commands. A 
script lets you execute a sequence of commands by entering a single 
command (the script name). (See also Shell command.) 

Soft link 

A link that points to link text or the pathname of an object (file). 
(See also Link.) 

Software 

Programs, such as shells and the DM, that allow you to perform 
various tasks. 

Standard input 

The standard input of a command is sent to an open file which is 
normally connected to the keyboard. An argument to a shell of the 
form < file opens the specified file as the standard input, thus redi­
recting input to come from the file named instead of the keyboard. 
(See also Pipe.) 

Standard output 

Output produced by most commands is sent to an open file which is 
normally connected to the printer or screen. This output may be 
redirected by an argument to a shell of the form> file to open the 
specified file as the standard output. (See also Pipe.) 

Start-up script 

A file that sets up the initial operating environment on your node. 
This file is also known as a "boot script". 

Symbolic link 

See Soft link. 

System administrator 

The person responsible for system maintenance at your site. The 
account named root is the administrative account. 

SYSTYPE 

A DM environment variable that shows the UNIX system version 
currently in use. Valid SYSTYPES are sysS.3 and bsd4.3. (See 
also DM environment variable.) 

GL-10 Glossary 



Super-user 

See System administrator. 

Terminal 

See Node. 

Transcript pad 

A transcript pad contains a record of your interaction with a proc­
ess. The process output window provides a view of its transcript 
pad. The term "screen" found in some of our documentation also 
refers to the transcript pad of the window in which a shell is run­
ning. 

User account 

User ID 

Utilities 

The system administrator defines a user account for every person 
authorized to use the system. Each user account contains the name 
the computer uses to identify the person (user ID), and the per­
son's password. User accounts also contain project and organization 
names, helping the system determine who can use the system, and 
what resources they can use. (See also User ID and Password.) 

The name the computer uses to identify you. Your system adminis­
trator assigns you your user ID. Enter your user ID during the log­
in procedure when the system displays the log-in prompt. (See also 
User account.) 

Programs provided with the operating system to perform frequently 
required tasks, such as printing a file or displaying the contents of a 
directory. (See also Command.) 

Variable 

A name that represents a string value. Variables normally set only 
on a command line are called parameters. Other variables are sim­
ply names to which the user or a shell may assign string values. 

Wildcards 

Special characters that you may use to represent one or more path­
names. (See also Shell metacharacter.) 

Glossary GL-ll 



Window 

Openings on the screen for viewing information stored in the sys­
tem. Display management software lets you create several different 
windows on the screen. Each window is a separate computing envi­
ronment in which you may execute programs, edit text, or read 
text. Move the windows on your screen, change their size and 
shape, and overlap or shuffle them as you might papers on your 
desk. (See also Pads.) 

Window legend 

The area of a window that displays window status information. For 
example, the window legend of an edit window contains such infor­
mation as the pathname of the file you're editing, the letter I if the 
window is in insert mode, and the number of the line at the top of 
the window. (See also Insert mode.) 

Working directory 

The default directory in which a process creates or searches for 
objects. (See also Current directory.) 

GL-12 Glossary 



Index 

Symbols are listed at the beginning of the index. Entries in color indicate 
task-oriented information. 

Symbols 

[ ] (brackets), 6-17 

] (right bracket), 6-18 

$ (dollar sign), 6-16 

% (percent), 14-5 

@ (at sign), 6-18, 6-19 

- (hyphen), 6-18 

• (asterisk), 6-17 

/ (slash), 1-7, 6-21 

/ / (double slashes), 1-7 

,..... (tilde), 1-10, 6-18, 10-16 

? (question mark), 6-17 

A 

aa (acknowledge alarm) com­
mand, 5-26 

ABORT key, 5-16 

abrt (abort) command, 5-20, 
6-22 

absolute pathname, 1-7 

access rights, 14-7 

ACL (access control list), 
14-1,14-9, 14-19 
adding entry rights to, 14-15 
changing, 14-10 
changing entries for, 14-14 
copying, 14-16 
deleting entries from, 14-15 
displaying, 14-9 
extended entries, 14-6 
initial, 14-16, 2-12 
required entries, 14-6 
rules for specifying entries, 

14-12 
setting entries, 14-13 
structure of, 14-4 

alarms, DM, 5-26 

alias built-in command, 10-7 

aliases, 8-16, 8-20 

ap (alarm pop) command, 5-26 

argv variable, 8-33, 8-34 

ASCII characters, 6-16 

Index 1 



ASCII files, comparing, 11-13 

B 

BACKSPACE key, 6-7 

background processing, 9-2 

backslash character (\), 6-21 

.bak files, 6-27 

boot volume, 1-3 

booting, 3-2 

Bourne Shell, environment vari­
ables in, 2-7 

c 
case command, 6-26 

case comparisons, 6-23 

cc (create copy) command, 5-11 

ce (create edit pad) command, 
5-11,11-3 

chacl (change ACL) comand, 
11-4,12-2,14-10,14-18 to 
14-19 

changing passwords, 3-20 

character class, 6-17 

CHAR DEL key, 6-7 

chmod (change permissions) com­
mand, 12-2 

class names, 14-13 

cmdf (command file) command, 
3-18 

command name aliasing, 10-7 

command search path, 7-6, 8-15 

compose function, 4-12 

2 Index 

control key sequences, 4-9 

copying 
display images, 6-13 
text, 6-10, 6-11 

COpy key, 6-13 

cp (copy) command, 13-3 

cp (create process) command, 
5-6 

cp -r (copy directory trees) com­
mand, 12-3 

cpacl (copy ACL) command, 
14-9, 14-19 

cpb (create paste buffer) com­
mand, 5-22, 5-36 to 5-37 

cpo (create process only) com­
mand,5-7 

cps (create process server) com­
mand,5-8 

cpscr (copy screen) command, 
11-12 . 

C shell built-in commands, 8-31 

.cshrc file, 7-3, 8-14 

ctnode (catalog node) command, 
1-5 

cursor control, 5-2 to 5-4 

CUT key, 6-14 

cutting text, 6-10, 6-13 

cv (create view) command, 4-9, 
5-11 

cwd variable, 8-17 

D 

daemons, 3-4, 3-11, 5-4, 5-8 

dbacl (DomainlDialogue-based 
ACL editor), 14-9,14-10 



default paste buffer, 6-11 

default shell, changing, 3-21 

defining 
keys, 4-15 
points and regions, 4-5 
ranges of text, 6-8 

deleting 
characters, 6-7 
lines, 6-8 
text, 6-6 
words, 6-7 

dialup lines, 3-22 

diff (show file differences) com­
mand, 11-13 

directories 
commands for managing, 12-1 
comparing, 12-4 
copying, 12-3 
creating, 12-2 
displaying information about, 

12-5 
home, 1-9, 1-10 
network root, 1-4 
node entry, 1-4 
parent, 1-12 
removing, 12-6 
renaming, 12-2 
working, 1-9 

directory trees, 12-3 

diskless node, 1-3, 3-5, 3-11 

Display Manager (DM), 1-3, 3-6, 
3-12, 4-1 
alarms, 5-26 
command scripts, 4-20 
commands 
format of, 4-3 
invoking interactively, 4-2 
special characters, 4-4 
start-up script, 3-19 

Domain Server Processor (DSP) , 
3-22 

dr (define region) command, 
5-15, 6-8 

DSP (Domain Server Processor), 
3-22 

E 
eeho (text echo) command, 6-9 

ed (edit) command, 6-7, 6-15 

edfont (edit font) command, 
5-35 

EDIT key, 5-13, 11-3 

edit modes, 6-2 

EDITOR variable, 10-14 

edit pad and window, creating, 
5-13 

edit pad modes, 6-2 

eef (edit end-of-file) command, 
6-6 

ei (edit insert) command, 5-24, 
6-4 

en (edit newline) command, 6-5 

,...,/.environ file , 7-2 

environment variables 
inheritance of, 2-6 to 2-7 
SYSTYPE, 2-10 

ENV variable, 7-3, 9-9 

EOF (end-of-file) mark, 6-6 

es (edit string) command, 6-5 

escape character (@), 6-18 

fete/environ, 3-4, 7-1 

/etc/init, 3-4 

/etc/passwd file, editing, 2-12 

Index 3 



fetc/ttys. 7-4 

evaluating conditions in shells. 
9-19 

European characters. defining. 
4-12 

EXIT key. 5-6. 5-17 

extended ACL entries. 14-6 

ex (text editor) command. 11-2 

F 

F6 function key. 6-7 

F7 function key. 6-8 

fc built-in command. 10-12 

FCEDIT variable. 10-14 

file protection. 2-12 

files 
comparing ASCII. 11-13 
copying. 11-4 
copying displays to. 11-12 
creating. 11-2 
displaying attributes. 11-11 
moving, 11-5 
printing, 11-6 
renaming, 11-5 

filters. 9-4 

G 

glbd server (NCS). 3-5. 3-12 

grep (pattern search) command. 
6-15 

GROW key. 5-19 

4 Index 

H 
hard link. 13-1 

here documents. 9-14 

HISTFILE variable. 10-12 

history variable. 8-16. 8-17 

HISTSIZE variable, 10-12 

HOLD key. 5-24 

home directory. 1-9. 1-10 
changing. 3-21 

home directory, setting, 2-12 

home variable. 8-17 

horizontal offset. in windows. 6-2 

I 
icon command. 5-34 

icons. 5-30 to 5-31. 5-33 to 
5-34 

idf (icon default) command. 5-36 

ignoreeof variable. 8-15 

init process. 3-4 

initial ACLs 
changing, 14-18 
copying. 14-19 
displaying, 14-18 
for new directories. 14-16 
for new files. 14-16 

initial default ACLs. 2-12 

insert mode. 5-23. 6-3 
inserting 

EOF marks. 6-6 
newline characters. 6-5 
new lines following the current 

line, 6-5 
raw (noecho) characters. 6-4 
text strings, 6-5 



INS key. 6-4 

interactive shells. 9-32 

J 
job control. 8-25.10-15 

job numbers. 8-24 

K 

key definitions 
deleting. 4-18 
displaying. 4-19 
UNIX. 2-4 to 2-5 

key naming. 4-13 to 4-14 

keyboard 
defining. 4-10. 4-15 to 4-16 
definition files. 4-12 
low-profile. 4-10 
multinational. 4-10.4-12 

.kshrc file. 7-3 

L 

Latin-1 character set. creating 
and displaying. 4-12 

Low-Profile keyboards. interna­
tional. 4-12. B-8 

let built-in command. 10-5 

line numbers. in window legends. 
6-2 

links 
copying. 13-3 
creating. 13-2 
removing. 13-4 
renaming. 13-2 
variant. 2-9 

lIbd server (NCS). 3-5. 3-12 

In (create link) command. 13-2 

.login file. 7-3. 8-14 

log-in sheIl. 3-18 to 3-19 

log-in start-up script. 3-16 to 
3-17 

login 
over a dialup line. 3-22 
verification. 2-12 

login program. 7-4 

low-profile keyboards. key defini­
tions. 4-10 

Ipq (spool queue examination 
program) command. 11-6 

Ipr (off-line print) command. 
11-6 

Is (list) command. 11-11 

Isacl (list/display ACL) command. 
14-9. 14-18 

M 
MARK key. 5-15. 5-19. 6-8. 

6-9 

mbx_helper. 5-8 

mkdir (create directory) com­
mand. 12-2 

Mnemonic Debugger (MD). 3-4. 
3-10 

mouse keys. 4-7. 4-9 

MOVE key. 5-20 

Multinational Keyboards. operat­
ing considerations. B-8 

Multinational keyboards. key defi­
nitions. 4-10 

mv (movelrename) command. 
11-5. 12-2. 13-2 

Index 5 



N 

naming server helper (ns_helper), 
1-5 

naming tree, 1-4, 11-2 

netboot program, 3-10 

netman program, 3-5, 3-10, 
3-11, 3-13 

network partner, 1-3 

network root directory, 1-4 

noclobber variable, 8-15, 8-22 

node 
cataloging, 1-5 
diskless, 1-3, 3-5, 3-8, 3-11 

node entry directory, 1-4 

notify variable, 8-23 

ns_helper (naming server helper), 
1-5 

o 
offset specification, 5-35 

overstrike mode, 6-3 

ownership, files and directories, 
2-12 

p 

pads 
closing, 5 -16 
copying, 5-15 
creating, 5-10 
deleting, 5-16 
moving under windows, 5-26 

to 5-27 
scrolling horizontally, 5-29 to 

5-30 

6 Index 

scrolling vertically, 5-28 

parent directory, 1-12 

password, changing, 3-20 

paste buffers, 6-8, 6-10 

pasting text, 6-10, 6-14 

PASTE key, 6-8, 6-15 

path variable, 8-16 

pathname, absolute, 1-7 

pathnames, 1-6 

pb (pad bottom) command, 5-27 

percent sign (%), 6-16 

pipes, 9-4 

pn (pad name) command, 5-30 

point pairs, 5-11 

points, defining, 4-5 

POP key, 5-22 

pp (pad page) command, 5-28 

prf (print file) command, 6-13, 
11-7 

print menu interface, 11-8 

process window 
legend, 5-23 
modes, changing, 5-22 

processes 
controlling, 5-8 
creating, 5-4 
stopping, 5-9 
suspending/resuming, 5 -1 0 

.profile file, 7-3, 9-9, 10-3 

programs, stopping, 5-9 

PROM, 3-4, 3-10 

protected subsystems, 14-4 

protection modes, UNIX,14-1 

pt (pad top) command, 5-27 



pv (pad line) command, 5-29 

pw (pad write) command, 5-17, 
6-3, 6-27 

pwd (display working directory) 
command, 11-2 

Q 
queuing a file for printing, 11-8 

R 

ranges of letters or digits, 6-17 

rc scripts, 3-4, 3-11 

READ key, 5-14 

read-only mode, 6-3 

read-only pad and window, creat­
ing, 5-14 

regions, defining, 4-2, 4-5, 5-15, 
5-25 

regular expressions, 6-15 

required ACL entries, 14-6 

required rights abbreviations, 
14-13 

rm (remove) command, 12-7, 
13-4 

rm -r (remove directory trees) 
command, 12-6 

ro (read-only) command, 6-3 

s 
SAVE key, 6-28 

s (substitute) command, 6-20 

sc (set case) command, 6-16 

search operations 
canceling, 6-23 
repeating, 6-22 

searching for text, 6-20 

sed (stream editor) command, 
6-15 

server processes, 
rgyd, 2-12 
starting, 3-4 to 3-7, 3-11 to 

3-13 

Server Process Manager (SPM) , 
3-6, 3-12 

server programs, 5-4 

setting variables in a C shell, 8-16 

shell, definition of, 1-3 

SHELL key, 5-6 

shell metacharacters, 7-7 

shell scripts, 7-6, 8-33, 9-24, 
10-21 

shell start-up files, 7-3 

shells, stopping, 5-6 

SHIFT key, 5-29 

.shrc file, 7-3 

SID (subject identifier), 5-4, 
14-4 
rules for specifying, 14-12 

so (substitute once) command, 
6-20 

soft link, 13-1 

sq (search quit) command, 6-22 

start-up procedure 
for disked nodes, 3-2 
for diskless nodes, 3-8 to 

3-11 

std_keys.unix key definitions file, 
2-4 to 2-5 

strings, 6-17 to 6-18, 6-23, 6-25 

Index 7 



subject identifier (SID), 5-4, 
14-4 

substituting text, 6-23 to 6-26 

substring built-in command, 
10-5 

sysboot program, 3-4 

/sys/dm/login_sh, 7-3 

/sys/print, 11-7 

SYSTYPE environment variable, 
2-10 

T 

tI (to left) command, 6-5 

traps, in the Korn shell, 10-20 

tty devices, 7-4 

typeset built-in command, 10-3 

u 
undo command, 6-26 

UNDO key, 6-26 

UNIX key definitions, 2-4 to 2-5 

unset built-in command, 10-3 

updating edit files, 6-27 

user_data subdirectory, 4-16 

username, changing, 3-22 

/usr/apollo, 2-2 to 2-3 

v 
variant links, 2-9 

vi (visual display editor) com­
mand, 11-2 

,t8 Index. 

VISUAL variable, 10-14 

w 
wa (windowautohold) command, 

5-25 

wc (window close) command, 
5-16, 6-27 

wdf (window default) command, 
5-25 

wg (window grow) command, 
5-11 

wge (window grow echo) com­
mand,5-18 

wgra (window group add) com­
mand, 5-31 

wgrr (window group remove) 
command, 5-32 

wh (window hold) command, 
5-24 

whence built-in command, 10-20 

wi (window invisible) command, 
5-33 

wildcards, 7-7 

window groups, 5-30 to 5-31 

window-movement commands, 
5-11, 5-20 

windows 
changing size, 5-18 to 5-19 
closing, 5 -16 
controlling process modes for, 

5-22 
copying, 5-15 
creating, 5-10 
defining boundaries for, 5-11 
deleting, 5-16 
managing, 5-17 to 5-18 
moving, 5-20 
paste buffers for, 5 - 3 7 



pushing/popping, 5-21 

wm (window move) command, 
5-11 

wme (window move echo) com­
mand,5-20 

working directory, 1-9 
changing, 11-2 

working directory, displaying, 
11-2 

wp (window pop) command, 5-21 
to 5-22 

write mode, 6-3 

ws (window scroll) command, 
5-24 

x 
xc (copy text) command, 6-11 

xd (cut text) command, 6-11, 
6-13 

xi (copy image) command, 6-13 

xp (paste) command, 6-8, 6-11, 
6-14 

Index ' 9 





Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of view. 

Document Title: Using Your BSD Environment 
, Order No.: 011020-AOO 

Date of Publication: July, 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ___________ _ 
__ System maintenance person 
__ System Administrator 
__ Manager/Professional 

Technical Professional 

Student 
Novice 
Other 

How often do you use the Apollo system? ____________ _ 

What additional information would you like the manual to include? __ _ 

Please list any errors, omissions, or problem areas in the manual by page, 
I section, figure, etc. _____________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



fold 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

fold 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of vi.ew. 

Document Title: Using Your BSD Environment 
Order No.: Ol1020-AOO 
Date of Publication: July, 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ____________ _ 
__ System maintenance person 
__ System Administrator 
__ Manager/Professional 

Technical Professional 

Student 
Novice 
Other 

How often do you use the Apollo system? ____________ _ 

What additional information would you like the manual to include? __ _ 

Please list any errors, omissions, or problem areas in the manual by page, 
section, figure, etc. ______________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



fold 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

fold 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of view. 

Document Title: Using Your BSD Environment 
Order No.: 011020-AOO 
Date of Publication: July, 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ____________ _ 
__ System maintenance person 
__ System Administrator 
__ Manager/Professional 

Technical Professional 

Student 
Novice 
Other 

How often do you use the Apollo system? ____________ _ 

What additional information would you like the manual to include? __ _ 

Please list any errors, omissions, or problem areas in the manual by page, 
section, figure, etc. ______________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



fold 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

fold 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



Reader's Response 

Please take a few minutes to send us the information we need to revise and 
improve our manuals from your point of view. 

Document Title: Using Your BSD Environment 
Order No.: 011020-AOO 
Date of Publication: July, 1988 

What type of user are you? 
__ System programmer; language 
__ Applications programmer; language ____________ _ 
__ System maintenance person 
__ System Administrator 
__ Manager/Professional 

Technical Professional 

Student 
Novice 
Other 

How often do you use the Apollo system? ____________ _ 

What additional information would you like the manual to include? __ _ 

Please list any errors, omissions, or problem areas in the manual by page, 
section, figure, etc. ______________________ _ 

Your Name 
Date 

Organization 

Street Address 

City State 
Zip 

No postage necessary if mailed in the U.S. 



fold 

BUSINESS REPL V MAIL 
FIRST CLASS PERMIT NO. 78 CHELMSFORD. MA 01824 

POSTAGE WILL BE PAID BY ADDRESSEE 

APOLLO COMPUTER INC. 
Technical Publications 
P.O. Box 451 
Chelmsford, MA 01824 

fold 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

1 
II 
I: 
.I 
I 
f 



o 
""0 o 
o 


