United States Patent 9
Lathrop

4,857,901
Aug. 15, 1989

Patent Number:
Date of Patent:

(1]
[45]

[54] DISPLAY CONTROLLER UTILIZING
"~ ATTRIBUTE BITS

[75] Inventor: Olin G. Lathrop, Groton, Mass.

[73] Assignee: Apolio Computer, Inc., Chelmsford,
Mass.

[21] Appl. No.: 77,161

[22] Filed: Jul, 24, 1987

[51] Imt. CL* .. G0YG 1/16

[52] US.CL 340/703; 340/799

[58] Field of Search 340/703, 701, 798, 799,

340/721, 747
[56] References Cited

U.S. PATENT DOCUMENTS

4,016,544 4/1977 Morita et al.cccvrearcnersenes 340/703
4,303,986 12/1981 Lansn. ... 340/703
4,484,187 11/1984 Brown et al. 340/703
4,509,043 4/1985 Mossaides ... 340/703
4,574,277 3/1986 Krause et al. ... 340/703
4,672,368 6/1987 Williamsccccrevmrerecvererrererne 340/703

OTHER PUBLICATIONS
Entwisle, Jeffrey, “An Image Processing Approach to

Computer Graphics”, presented at the Conference on
Computer Graphics and Interactive Techniques, Jul.
15-17, 1974.

Primary Examiner—David K. Moore
Assistant Examiner—Alvin Oberley
Attorney, Agent, or Firm—Lahive & Cockfield

[57] ABSTRACT

A processing system for controlling a computer graph-
ics display stores and processes bit-mapped digital pixel
values to generate color display signals. The system
incorporates memory elements for storing control val-
ues for each pixel, in association with color values for
each pixel. Processing modules responsive to the per-
pixel control and color values generate color display
signals. Embedding per-pixel control information in the
bitmap in association with per-pixel color information
enables each pixel to independently control the opera-
tion of the processing modules on that pixel.

12 Claims, 3 Drawing Sheets

2 < /'36' _ :
"" <7 o oo SIS 4
sitnap o | _6__ - Aourine z% Py
CONTROL +
ook A Tl [s [T
IKOEXES ARD > ‘Ji
INTERPRETATION | "8 ™| parw sELECT 20024 UDe
HOOE
INDEXES b
g | wrereremnion | 2
1280 41024 X 52 |——»| HO0E LOOKYP

TABLE

34"\ lr7

US. Patent Aug. 15, 1989 Sheet 1 of 3 4,857,901

/0

12 13 A . i
L > > ColoR —»‘—m
BITHAP PLANE- (768) , f
oF ROUTING DISPLAY
color [P\ wuripLexor T LOOKOP “—" T | TERMINAL
IWOEXES %‘/f f 4
s
) SELECT) 240> 4
; 77
/'/5
DISPLAY
i FIG. 1
(PRIOR ART)

/' ZZ f Z J /_ 25
3 27
BITHAP 7 PLANE- COLOR 2
“““ UL (R58) 28
OF COLORS L00KUP ‘;‘ >
g HULTIPLEXOR
IWOEXES e > TABLES 9
" & | parw seter —P‘—> s

INTERPRETATION y VIDEO
NOOES
1280 % 1024 ¥ 56 J
2z FIG. 2
32 35 36
foo > pane- o coor 7 37
BITHAP OF g | AOUTING 1 (Rs8)

L/ < LooKip
______ 3 wer TABLES
IHOEXES AKD 3
INTERPRETATION |8) parw serer| 0| on i o4 —— oS —

HOOE

y

N
INDEXES £7
g | mrerererarion 4
1280 X1024 ¥ 52 =23\ " wopr 100kup

J9-"1847 G F] G p 3

US. Patent Aug. 15, 1989 Sheet 2 of 3 4,857,901

LUT 6ANK BovBLE PIXEL HODE
(LUT ORIGIN X 256) BUFFER | (PLANE HOLTIPLEXING)
SELECT SELECTION

! [J I

PIXEL HODE SELECTION:

8-8IT FALSE COLOR

G-8IT FALSE COLOR; 4 OVERLAYS
0-8IT FALSE COLOR; 2 OVERLAYS
24- 81T REAL COLOR

23 BIT REAL COLOR ; 1 OVERLAY
12-8IT REAL COLOR

HIXED HOOE ; 4 OVERLAYS
CONSTANT COLOR (FOR CURSORS)

FlG. 4

DoAY

Aug. 15, 1989 Sheet 3 of 3 4,857,901

U.S. Patent

<G oOrd

(w0477, NOILISOd AVTEIN0 S1 §0700)

y0700 §05507 19807

79757 Z# 474408 /# 471408
onIvg 474 oNINg K734 | | owyovg nrg y, %@ y s0100 35707 || 40709 35704
| I# o# | /% a# | I
a7¢ | 074 || #7749\ 47749 |\ 019 | nig
#7448 # §74408 H YT 1# 87408 14874908 ||, 14474908
a74 N7749 oy g a7y NI749 g
28 ¥34408 28 434418 cry3/1n8 14471408 14474408 8434408
a7y K7749 ng 774 N7749 nm
el z|71/ 2n 474908 /8 474908
VAR AV AV $114 8 K07 S118 & Ko7
r /4 Gk 474408 1# 474708
106 | M8 Y0109 ISTHS || 40700 7S THS
28 431408 /4 874408
Y0700 8704 || H0700 75TV
o ~1¢ 2f-6F #2-1F 9/-£2 20-5/ 00-40
a7y K779 ng 774 #7749 ng

YTENIN WV Id dVHL18

SAVTYING & J00K 07XIH =9

40707 . W34, b/8/¢ ' §

AVIEIN07 ¥0702 Wiy ¥

40707 W38 £

SAV 74740 ¢
40700 IS4 118-01 -2

SAVTEN0 ¢ §0700 FSTVS 2/

oo sivd 0
JO0K

4,857,901

1

DISPLAY CONTROLLER UTILIZING ATTRIBUTE
BITS

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of
digital computers, and, in particular, relates to appara-
tus for controlling computer graphics displays.

Multiprocessing graphics workstations known in the
art have the capability to run several applications or
display different images concurrently. Such multipro-
cessing graphics workstations typically employ bitmap
planes with per-screen control information, rather than
color information, as a general mechanism to support
per-screen video display mode specification. Display
modes include selecting false color or real color, or
using particular sections of a color lookup table.

The high cost of bitmap memory and the difficulty in
achieving very fast memory cycle times in physicaily
large RAM arrays has limited the resolution and plane
count provided by bitmaps. “False color” configura-
tions having four, eight or twelve planes have become a
popular compromise between the cost of deep bitmaps
and the desire for realistic colors. In a false color mode,
all three red, green and blue (RGB) lookup tables
(LUTs) receive data values from the same planes. In a
real color mode, three sets of planes are used, with each
set routed to a single LUT.

Recently, as RAM densities have soared, bitmap
resolution and plane count have increased. 1-MByte and
4-Mbyte Video RAMs will continue this trend. Color
lookup tables have also grown as static RAM density
improves. Greater resolution has allowed engineering
graphics workstations to usefully display multiple im-
ages or contexts on the same screen, and additional
planes and larger lookup tables have presented the op-
portunity to interpret the bitmap in a variety of ways. A
deficiency associated with per-screen display mode
specification, typical of conventional graphics display
systems, however, is that the entire screen is typicaily
interpreted using one display mode.

Typically, a twenty-four plane configuration work-
station must run real color, false color, and even mono-
chrome- graphics applications, some of which double-
buffer images or reload color lookup tables. Since the
display must be reconfigured or the lookup table aitered
for each, these applications cannot share the screen in
conventional graphics display systems. Such whole-
screen reconfiguration conflicts with the capability of
multiprocessing workstations to use windows to share
the screen among applications.

There is thus a conflict between the paradigm in
multiprocessing workstations wherein the screen is
composed of windows or images belonging to several
independent contexts and the single screen-wide display
interpretation mode such windows must share in con-
ventional graphics systems.

If such mode information could be associated with
windows or pixels rather than the whole screen, each
application or image could define modes independently,
and applications could share the screen more effec-
tively.

If pixels can select by which “configuration” they are
interpreted, then different windows can be displayed as
needed without conflicts. For example, the pixels in one
window could be marked as “twenty-four plane real
color”, whereas another window could be “eight-plane
false color”. Moreover, pixels in one window could be

5

—

5

45

50

60

65

2

marked for a “fast clear mode” so as to reduce the time
required to clear a window. The screen-wide display
mode could be replaced by per-pixel display mode spec-
ification. Although commonly such specification will
vary on a per-window basis, per-rectangle sub-win-
dows, per-object, and even per-pixel variation would
also be useful.

It is thus an object of the invention to provide an
improved computer graphics display controller system.

It is a further object of the invention to provide a
computer graphics display controller system which
allows for flexible configuration of an image memory.

It is another object of the invention to provide a
computer graphics display controller system in which
the mode or configuration by which pixels are inter-
preted can be flexibly varied across a display screen.

It is a further object of the invention to provide a
computer graphics display controller system which
supports a per-pixel display mode specification.

It is yet another object of the invention to provide a
computer graphics display controller system which
allows faster dynamic displays by reducing the time
required for clearing a new buffer.

SUMMARY OF THE INVENTION

The invention achieves the above objects by provid-
ing a system for embedding per pixel control informa-
tion in the bitmap in addition to the color information,
so that each pixel can control its own interpretation by
the video-generating hardware, said hardware includ-
ing a plane multiplexor. The invention discloses a digital
processing system for controlling a computer graphics
display, wherein the system stores and processes digital
picture element (pixel) values corresponding to each of
a plurality of display pixels. The system includes storage
elements for storing first control values in association
with the digital pixel values, and control elements, in
communication with the storage elements, and respon-
sive to the first control values, for controlling process-
ing performed by the system.

The invention further provides attribute or display
mode lookup table apparatus, in association with the
storage elements, and including an array of memory
locations addressable by the first control values. When
addressed by the first control values, the attribute
lookup table apparatus provides corresponding second
control values which control processing performed by
the system. Processing performed by the system is thus
specified by control values associated with each pixel.

The invention includes apparatus for modifying a
variety of display characteristics by plane multiplexing,
responsive to control information associated with each
pixel. Modifiable display functions include false color
and real color mode selection and control. In false color
mode, the same planes are routed to all three red, green
and blue (RGB) lookup tables. Conversely, in real color
mode, three sets of planes are routed separately, each
set to a single color lookup table (LUT).

The invention also provides elements for variation of
color lookup table origin, responsive to per-pixel con-
trol information, and in an embodiment having in-
creased color lookup table size, several applications can
share different areas within the same table.

The invention also provides apparatus for selecting a
number of bitmap source planes, responsive to per-pixel
control information, including selection of eight, ten,

4,857,901

3

twelve or more planes of false color, or twelve or
twenty-four plane real color.

The invention further provides elements for double
buffer selection which can be made per-window; appli-
cations can switch buffers independently of each other,
and singly-buffered applications need not write their
images into more than one buffer.

The invention also includes apparatus for interpreting
selected image planes as overlays, responsive to per-
pixel control information. Applications which do not
use overlays can disregard such selected image planes
or use them in other ways. The invention also discloses
elements, responsive to per-pixel control information,
for forcing constant color, as for cursors, markers, and
grids, which often are configured to occlude the under-
lying image without corrupting it.

The invention further includes apparatus responsive
to per-pixel control information, for executing functions
which include image filtering, highlighting for “overb-
right” and *“blink” modes, validity or fast clear modes
for substituting background color if a pixel is designated
invalid, clipping during drawing, and leveling. Leveling
utilizes a linear equation of the form I=mx+b, for
offsetting black level and executing a contrast multiply.

The invention will next be described in connection
with certain illustrated embodiments. However, it
should be clear that various changes, modifications and
additions can be made by those skilled in the art without
departing from the scope of the invention as defined in
the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects
of the invention, reference should be made to the fol-
lowing detailed description and the accompanying
drawings in which:

FIG. 1 is a block diagram of a prior art computer
graphics display controller system;

FIG. 2 is a block diagram of a computer graphics
display controller system according to the invention;

FIG. 3 is a block diagram of another embodiment of
a controller system according to the invention;

FIG. 4 is a block diagram illustrating the bits of a
multi-bit mode word; and

FIG. § is a block diagram illustrating bitmap plane
multiplexing configuration utilized in a preferred em-
bodiment of the invention.

DESCRIPTION OF ILLUSTRATED
EMBODIMENTS

FIG. 1 is a block diagram of a prior art computer
graphics display controller system 10, which includes
bitmap 12, plane-routing multiplexor (MUX) 13, display
mode select logic 15, color lookup tables (LUTs) 14,
digital to analog converters (DACs) 16-18, and monitor
19. The bitmap 12 of color indexes is typically provided
by a random access memory (RAM) which stores color
indexes in an array of addressable locations. Moreover,
bitmap 12 may be structured in a multiplane memory
configuration known in the art. The information con-
tained in the bitmap corresponds to picture elements
(Pixels) on monitor 19, in a manner well known in the
art. In a conventional display controller system, the
bitmap stores values corresponding to red, green and
blue (RGB) video signals.

Bitmap 12 transmits color index signals to plane-rout-
ing multiplexor 13, which selects from among memory
planes in bitmap 12, responsive to signals received from

20

25

30

40

45

50

60

65

4

display mode select logic 15. Digital values stored in
selected plages are then transmitted to color (RGB)
lookup tables (LUTs) collectively indicated by refer-
ence numeral 14. Color LUTs 14 can be provided by a
plurality of RAMs, or by different sets of memory loca-
tions within a single RAM structure, as known in the
art. Thus, in the illustrated system, digital pixel values
are not routed directly to the DACs 16-18, but are
instead used as an index into the color LUTs 14. The
digital value of the indexed color LUT entry is then
converted to an analog value used to control intensity
or color on the monitor 19, in a manner known in the
art.
The display mode logic 15 indicated in FIG. 1 is a
static system, i.e., its output is based on the digital values
transmitted by flipflops. Moreover, the conventional
bitmap 12 of color indexes does not store display mode
control values in association with each pixel value. The
conventional structure illustrated in FIG. 1 thus re-
quires that pixel values for the entire display screen be
interpreted according to a single display mode. As dis-
cussed above, this single-mode-per-screen selection
conflicts with the capability of multiprocessing work-
stations to provide multiple windows per screen. In
particular, using the conventional system, all windows
sharing a monitor screen would also have to share the
same display mode.

Because rectangular windows represent very regular
patterns in a bitmap, it is possible to make use of such
regularity in generating pixel interpretation modes as
the pixel values are transmitted out to become video. A
wide variety of machines can be envisioned which gen-
erate programmable display mode information in syn-
chrony with each window’s video.

However, there is no inherent upper limit as to the
number of windows or sub-windows which might exist
on a screen, nor is there any limit to how frequently the
mode may change on any one scanline of a raster dis-
play. Indeed, windows can be stacked up, offset by only
a single pixel each, so the mode must be able to change
at pixel rates. Without limits on frequency and complex-
ity, the problem of generating window display mode
information grows to equal that of emitting pixel colors.

Accordingly, the general approach utilized in the
invention is to associate interpretation modes with the
pixels themselves. Storing such mode information in
additional planes, in association with the pixel informa-
tion, delivers it in synchrony with the pixel color infor-
mation to the video generating hardware without any
constraints as to window number, position, shape, or
size. Indeed, objects other than windows can have dif-
ferentiating interpretation modes, so as, for example, to
highlight a real-color object by displaying it from a
different, independently alterable color lookup table.

The invention, an embodiment of which is illustrated
as system 20 in FIG. 2, overcomes the deficiencies of
conventional display controller systems by embedding
per-pixel control information in the bitmap 22. The
bitmap 22 is thus a bitmap of color indexes and interpre-
tation modes. By storing a field of interpretation mode
bits together with each color index in the bitmap 22,
each pixel can control its own interpretation by video-
generating hardware, including plane-routing control
logic 24, RGB color lookup tables (LUTs) 26, and
DACs 27-29.

Referring to FIG. 2, in one embodiment of the inven-
tion, multiplane bitmap 22 is of dimensions
1280 X 1024 X 56 bits. In such an embodiment, eight bit

4,857,901

5

red, green and blue color index signals are transmitted
by bitmap 22 to plane-routing control logic 24. Addi-
tional RGB signals from bitmap 22 to control logic 24 in
double-buffered mode are indicated in FIG. 2 by dashed
lines.

Double buffering, as known in the art, involves stor-
ing images in two sets of planes, so that one image can
be displayed on the monitor while another image is
drawn. Double buffering permits much smoother
screen motion, and crisper screen update, since only
completed images are displayed.
~ Bitmap 22 also transmits to plane-routing control

logic 24 path selection or interpretation mode signals.
The mode signals are, in this embodiment of the inven-
tion, eight bit signals representative of eight bit mode or
attribute values stored in bitmap 22 in association with
each pixel value.

Plane-routing control logic 24 contains multiplexing
elements, responsive to the eight bit path selection sig-
nals, for selecting from among plural bitmap planes.
The operation of such multiplexing elements is known
in the art. Digital values stored in selected memory
planes in bitmap 22 are then transmitted to color LUTs
26. These values are converted to analog values by
DACs 27-29, and are used as video signals capable of
driving a video monitor. _

The per-pixel multiplexing provided by the system
20, illustrated in FIG. 2, can be utilized for a variety of
functions. In one embodiment of the invention, which
supports applications wherein some display windows
require a real color display mode and other windows
require false color display, attribute bits stored in bit-
map 22 are utilized to specify different true color/false
color modes for each window.

False color involves using an n-bit color index which
selects between 27 independent colors, with the same
n-bit index sent to all three RGB LUTs. Real color
involves using three color indexes, sent separately to the
RGB LUTs. ,

Similarly, in an embodiment wherein RGB LUT size
is increased to accommodate several display applica-
tions, mode bits are utilized to specify different RGB
LUT origins. Mode bits can also be used to select the
number of bitmap source planes. In one embodiment of
the invention, mode bits are utilized to select between
combinations of eight or ten planes of false color, and
between combinations of twelve or twenty-four planes
of real color.

While the embodiment of the invention illustrated in
FIG. 2 achieves significant advantages in flexibility of
display mode specification and image memory usage,
implementation of the simple multiplexing variations
described above requires eight planes of pixel attributes,
a 33% increase in bitmap size over a conventional bit-
map having twenty-four RGB bits.

One solution to this increase in size is to use indirec-
tion, as illustrated in FIG. 3. If the bitmap control
planes hold an index into a table of attributes, rather
than the attributes themselves, then an attribute’s infor-
mation is not limited by the number of bitmap planes;
only the number of uniquely specified sets of attributes
is limited. Thus, four planes could select among sixteen
~ attributes which could be eight bits or more each. The
capability to support sixteen attributes means that six-
teen different windows or classes of windows, each
displayed in a different way, could share the screen.
FIG. 3 illustrates a preferred embodiment of the inven-
tion which utilizes such mode indexes.

20

25

30

35

40

45

50

35

65

6

Referring to FIG. 3, display controller system -30
utilizes a bitmap 32 of color indexes and interpretation
mode indexes. The illustrated bitmap element 32 is of
dimensions 1280 1024 X 52 bits. Bitmap 32 transmits
eight-bit RGB signals to plane-routing control logic 35,
and transmits four-bit mode index signals to interpreta-
tion mode lookup table 34. Additional RGB signals
from bitmap 32 to control logic 35 in double-buffered
mode are indicated in FIG. 3 by dashed lines. In this
embodiment, interpretation mode table 34 is of dimen-
sions 16X 7 bits. Interpretation mode table 34, addressed
by the mode index signals from bitmap 32, transmits to
plane-routing control logic 35 a seven bit path selection
signal. Plane-routing control logic 35 utilizes the path
selection signal to select from among bitmap planes,
using multiplexing circuitry known in the art, and ad-
dresses color LUTs 36. Digital RGB pixel values from
LUTs 36 are converted to analog values by DACs
37-39, and used as RGB video signals to drive a moni-
tor.

There is thus one level of indirection in specifying
each pixel’s display mode. Just as the bitmap contains
color indexes into the color LUT, rather than actual
color values, so does each pixel’s four bit attribute index
specify which of sixteen attributes to use, rather than
the attribute itself. This permits modifying the attributes
associated with many pixels, by simply modifying one
set of attribute bits.

Additionally, by using a pixel display mode LUT 34,
the interpretation of the pixel values can take several
forms. Instead of hard-wiring one or two modes, the
interpretation is variable on a per-pixel basis, allowing
different windows to be displayed in different modes. In
particular, the sixteen values specified by the four-bit
interpretation mode or attribute index signals each se-
lect one of sixteen attribute fields stored in interpreta-
tion mode LUT 34. The per-pixel interpretation mode
field can thus select one of sixteen ways of processing
the RGB bits associated with each pixel in the planes of
bitmap 32.

Moreover, because cursor characteristics can also be
encoded in these attributes, cursor activity and drawing
activity do not affect each other, and thus the RGB
image need not be corrupted by the cursor.

In a preferred embodiment of the invention, there are
eight pixel display modes, supporting a variety of false
color v. real color, double buffering, and overlay com-
binations. These combinations are illustrated in FIG. 5.
Overlays are a separate image which is displayed “in
front of’or overlaying the normal image. When an
overlay has a non-zero value, it forces the correspond-
ing pixels to the overlay’s color. When an overlay has a
zero value, the underlying image is seen. Overlays are
useful for annotating the underlying image. By main-
taining such annotations on planes separate from the
planes storing the normal image, the normal image is
not corrupted, and the annotation can be edited,
scrolled and otherwise processed independently.

In a further preferred embodiment of the invention,
each interpretation mode or attribute is specified by a
seven bit field, as illustrated in FIG. 4. The seven bit
field illustrated in FIG. 4 is stored in the bitmap 22 in
the embodiment illustrated in FIG. 2, or in the interpre-
tation mode table 34 in the embodiment illustrated in
FIG. 3. The seven bits are used to specify a color
lookup table origin, double buffer on/off selection, and
plane multiplexing. The multiplexing values are used to
combine and route data stored in the bitmap color mode

7

planes to addresses for the color lookup tables 36,
which in a preferred embodiment are 2K X 24 bits.

Thus, the four-bit mode or attribute index values
from bitmap 32 each select one of sixteen attributes,
each of which in turn specifies the method by which
bitmap planes or cursor color are assembled as a color
LUT index for a given pixel. The atiribute indexes are
preferably updated whenever the cursor moves or the
window configuration changes.

The seven bit field illustrated in FIG. 4 includes three
LUT Bank bits, one Double Buffer Select bit, and three
Pixel Mode or plane muitiplexing selection bits. The
three color bits that make up the LUT BANK provide
the upper three color LUT index bits for pixel display.
The Double Buffer Select bit selects which of two buff-
ers is to be displayed for double-buffered windows.

The three Pixel Mode or plane multiplexing selection
bits specify eight ways of selecting and combining bit-
map planes to produce a color LUT index. In a pre-
ferred embodiment of the invention, those eight config-
urations are defined as illustrated in FIG. 5. FIG. §
illustrates combinations of bits from 48 planes, num-
bered zero through 47, in bitmap 32. The “Ov” and “0”
bits are overlay bits, and the “C” bits are color bits.

The eight configurations are eight-bit false color,
eight-bit false color with four overlays, ten-bit false
color with two overlays, twenty-four bit real color,
twenty-three bit real color with one overlay, twenty-
four bit real color, referred to as “four/four/four real
color”, mixed mode with four overlays, and constant
color.

Software code utilized in conjunction with the dis-
play modes according to the invention is set forth in
Appendix 1, incorporated herein.

In a preferred practice of the invention, a “fast clear”
system is provided for rapidly clearing selected win-
dows or an entire screen. This fast clear system can be
implemented in either the “direct environment” of the
embodiment illustrated in FIG. 2, or in the “indirect
environment” of the embodiment illustrated in FIG. 3.

Thus, in a further preferred embodiment of the sys-
tem iflustrated in FIG. 3, supporting eight utility planes,
each pixel can have these attribute bits stored in inter-
pretation mode LUT 34:

#bits Attribute

3 EITHER: Upper LUT bits or
Cursor color

1 Cursor enable

1 Double Buffer select if
fast clear disabled

2 Valid bits for each
buffer for fast clear
mode

1 Fast clear enable

Z refers to Z-coordinate or depth information.

The “Double Buffer Select” bit selects which of two
possible eight- to twentyfour-plane images is displayed
on the screen. “Fast Clear Enable” and “Pixel Valid”
attribute bits are provided in association with each
pixel. In accordance with the invention, pixels with Fast
Clear enabled can be bulk-reset to a background color
by being marked as invalid. Drawing operations set the
affected pixels as valid. The “Pixel Valid” bits are un-
conditionally set and reset, but are ignored if “Fast
Clear Enable”is off.

Fast clear in the embodiment illustrated in FIG. 3
requires two additional bits in the mode or attribute

4,857,901

25

45

50

55

65

8

index field stored in bitmap 32, and for each window
class, an additional bit in the attribute or mode field
stored in mode LUT 34. A “Valid Bit”for each pixel is
required for each of the two buffers used when double
buffering. Fast clear then makes use of the “Double
Buffer Select” bit in the attribute field, and requires an
additional “Fast Clear Enable” bit in the attribute field
for each window class.

When fast clear is used in the indirect environment,
the “Fast Clear Enable” bit is set in the windows which
are selected for fast clear treatment. Then the “Pixel
Valid” bits are cleared using either a full screen clear
operation or a window clear operation for the buffer
which is selected by a respective “Valid Bit” for draw-
ing.

The “Buffer Select” bit shown in FIG. 4 is used by
the video generating hardware to determine which
buffer to display. This allows double buffering pixel by
pixel, which is useful in double buffering individual
windows. If “Fast Clear Enable” is “on” then the video
generating hardware disregards the “Buffer Select” bit,
and the determination of which buffer to display is
made from a pre-programmed one bit register in plane-
routing logic 35. For each buffer, the “Buffer Cleared”
bit causes the video hardware to display preset values
instead of the value in image memory. A Z compare
mechanism, known in the art, is used to sample the
“Fast Clear” bit and the appropriate “Buffer Cleared”
bit to emulate reading a preprogrammed value from the
Z buffer.

When a window is operating in “Fast Clear” mode,
all the “Fast Clear Enable” bits are set to “on” for this
window, and “off” for the rest of the screen. To swap
buffers for this window, one register in the video sec-
tion, or control logic 35, is reprogrammed.

If two of the utility plane atiribute bits for each pixel
are allocated to represent “Pixel Valid” for each buffer,
and the system substitutes a background color for the
RGB value of every invalid pixel, then a window or
sub-window can be implicitly cleared by clearing the
“Pixel Valid” bits. In a preferred embodiment of the
invention, drawing operations set this bit; Z-buffered
drawing reads the bit to determine whether the Z value
is valid, and then sets the bit.

Because the “Pixel Valid” bits can be cleared quickly,
the window is quickly cleared, because the display
video will show the background color. Z-compares,
known in the art, are forced to enable writing,

Since the above-described mechanism can be gated
by another “Fast Clear Enable” utility plane which has
bits asserted only in the window of interest, a fast clear
of all the valid bits, inside and outside the window, will
have an effect only on the window pixels. A preferred
embodiment of the invention executes fast clear of an
entire plane utilizing VRAMs via a serial port. This
eliminates the problem of serial write operations not
being limitable to window boundaries.

Thus, to clear a buffer, the appropriate “Buffer
Cleared” bit is set for the entire screen. In accordance
with the invention, the “Fast Clear Enable” bit is gated
with the “Buffer Cleared” bit so that the “Buffer
Cleared” bit only affects the desired window. More-
over, any write operations to the buffer always turn the
corresponding “Buffer Cleared” bit “off” for each pixel
that is written.

In a system according to the invention, a buffer can
be cleared much faster than with conventional systems

4,857,901
9 - 10
because the appropriate “Buffer Cleared” bit can be set regions.
for the entire screen without regard to the window
boundaries.
These “Pixel Valid” and “Fast Clear Enable” bits are,
in a preferred embodiment of the invention, imple- 5

A fast clear as described above does not invert the
“Double-Buffering Select” bit, because that bit would
have to be inverted only within the window of interest.

mented with video RAMs (VRAMS), which can be Instead, in order to avoid double buffering pixels other

gang-cleared, as known in the art, by writing to mem-
ory through shift registers which form a part of the
VRAMs. This permits swapping buffers and clearing
the non-displayed buffer in a small fraction of a frame 10

time. In a conventional system, assuming 12.5 nanosec- 1t will thus be seen that the invention efﬁciently at-
onds write time per pixel, clearing the entire screen tains the objects set forth above. In particular, the in-
would require 1280X1024X12.5 nanoseconds=0.98 vention provides an improved computer graphics dis-
frame times (assuming 60 Hz refresh speed). The fast play controller system having a wide range of flexible
clear feature leaves about twice as much time available 15 display modes controllable by control information
to writing the next image when executing real time stored in association with each pixel. It will be under-
(30Hz) animation. . . stood that changes may be made in the above construc-

In summary, the fast clear feature of the invention tion and in the foregoing sequences of operation with-
utilizes the ability to set entire planes to fixed values out departing from the scope of the invention. It is
very quickly to indicate state over a region that is stati- 20 accordingly intended that all matter contained in the
cally flagged. “Fast Clear Enable” flags the region, and above description or shown in the accompanying draw-
“Buffer Cleared” bits indicate the state. “Fast Clear ings be interpreted as illustrative rather than in a limit-
Enable” is preferably n bits wide, to define 27 display ing sense.

Appendix \i - - atg_s$get_rgb.pas

" . :
Subroutine ATG_$&kn. . .38~ (X,¥,RGB)

$-ET_RC-8 i
Return the 24 bit RGB value that would go to the D/A converters
for a given pixel coordinate. X and Y are the coordinate of the
pixel. RGB is returned as 4 bytes. The first byte is not used.
The next 3 bytes are red, green, and blue in that order.

This subroutine takes into account the attribute bits, and simulates
the various pixel modes and the look up tables.

LR 2 T N TR I N R

module atg_$get_xrgb;
define atg_$get_rgb;
$include '/olin_dsee/atg/atg2.ins.pas';

var
attr: integerl6; {attribute bits value at this pixel}
rlut, glut, blut: integerl6; {red, green, blue lut index values}
class: wind_class_type; {window class descriptor]}
mode: integerl6; . {pixel mode with double buffer bit in LSB}
bank: integerl6; {look up table bank mask}
ov_mask: integerl6; [overlay bits aligned at the 1lsb}
pixel: “atg_$pixel type; {pointer to this pixel in bitmap]
status: status_$t; {error code}
lut_adr: atg_$lut_adr_ type; {composite LUT adr for watch LUT adr feature}
dac_val: atg_$argb_pixel type; {DAC data for watch DAC value feature}

procedure étg_Sget_rgb;

label
cursor, do_lut;

—

t*tt**ttt**t**t*t***t****************t********tt***t***********tt*******

»

Internal subroutine CHECK_OVERLAYS (N)

Check for any overlay plane bits being turned on. N is the number of overlay
bits in OV_MASK. The highest priority overlay bit is in the 1lsb of OV_MASK.

Any unused high bits of OV_MASK should be set to zero. The value in OV_MASK

is trashed. :

If none of the overlay plane bits are found to be turned on (=1), then
CHECK_OVERLAYS just returns. Otherwise, RLUT, GLUT, and BLUT are set to the
appropriate values for the overlay plane found, and a jump is taken to
the label DO_LUT in the main subroutine.

® % % % % % X % A A % %

than those in the window being cleared, the video hard-
ware uses a “Mode Flop” bit as the “Double Buffer
Select” for the selected window, detecting the selected
window pixels by their “Fast Clear Enable” plane bits.

{

s

11
}
procedure check_overlays (
in n: integerl6);
var

i: integerl6;

label
found_overlay;

begin

4,857,901
12

{number of overlay planes}

{current overlay plane number}

 rcRuen
if ov_mask = 0 then ;.‘d;aqck“(e

for i := 0 to n-1 do begin
if (ov_mask & 1) <> 0 then
goto found overlay;
ov_mask := rshft(ov_mask,1l);
end;
return;

found_overlay:
rlut := lshft(class.lut_bank & 7,4)
rlut := rlut ! i;
glut := rlut;
blut := riut;
goto do_lut;
end;

{

{all overlay bits ot% ?}

{once for each overlay plane}

{this overlay plane bit is turned on ?}

{we found an ON overlay plane bit}

{shift next overlay plane bit into position}
{back and check this new overlay plane bit}
{did find any overlay bits on}

{found highest priority overlay bit that was on]
128; {block number based on lut bank number}
{merge in offset within overlay block}

{copy lut index to other colors}

{lut indicies completely set, do look up}

AR AR TR R R A A AR A A R A A A AR AR A AR R A A A A R AR AN A AL R RN AR AR R AR AR

*

* Body of main routine.
]
begin
pixel := addr(bitmap{y,x]):
attr := pixel” . attr;
class := wind_class{attr];
mode := lshft{class.pix mode & 15,1)
case mode of

Mode 0, buffer 1.
8 bit pseudo color.

O w % % M

begin

rlut := pixel” .blul;
glut := rlut;

blut := rlut;

end;

Mode 0, buffer 2.
8 bit pseudo color.

o % %

begin

rlut := pixel”.grnl;
glut := rlut;

blut := rlut:;

end;

Mode 1, buffer 1.

[SECIE T Bl

begin
ov_mask := rshft(pixel”.grnl,4);
check_overlays (4);
rlut := pixel” .blul;
glut := rlut;
blut := rlut;
end;

*

Mode 1, buffer 2.

*

{make pointer to this pixel}

{get attribute index]

{get the window class in use for this pixel]}

! (class.dbl_buf & 1); {mode with dbl buf bit}
{8 pixel modes, each with buffer select option}

{all lut indices to same value (false color)}

{all lut indices to same value (false color)}

8 bit pseudo color with double buffered 4 bit overlay planes.

{get 4 overlay planes)
{check overlay planes}

8 bit pseudo color with double buffered 4 bit overlay planes.

w

[SR B

Ul % %

O~ % * ™

~N e ¥ R

0 — % * ™

4,857,901

13 14
begin
ov_mask := pixel”.grnl & 15; {get 4 overlay planes}
check_overlays (4);: {check overlay planes)

riut := pixel”.grnl;
glut := rlut;
blut := rlut;

end;
Mode 2, buffer 1.
8 bit pseudo color with 16 bit overlays.
begin
ov_mask := lshft(pixel”.grnl,8) {assemble overlay bits)
! pixel”.redl;
check_overlays (16); {check 16 overlay planes])

rlut := pixel”.blul;
glut := rlut;
blut := rlut;

end;
Mode 2, buffer 2.
8 bit pseudo color with 16 bit overlays.
begin
ov_mask := lshft(pixel”.grn2,8) {assemble overlay bits)
t pixel”.red2;
check_overlays (16); {check 16 overlay planes}

rlut := pixel”.blu2;
glut := rlut;

blut := rlut;

end;

Mode 3, buffer 1.
10 bit pseudo color with 2 overlay plane.

begin

ov_mask := rshft(pixel”.blul,4) & 3;

check_overlays (2);

rlut := (rshft(class.lut_bank,8) & 16#400) {top bit comes from lut bank field}
t (lshft(pixel”.blul,2) & 16#0300) [next two bits of lut bank)
! pixel” .grnl; {lut index within bank]

glut := rlut;

blut := rlut;

goto do_lut;] [LUT indieies all set]

end;

Mode 3, buffer 2.
10 bit pseudo color with 2 overlay plane.

begin

ov_mask := pixel”.blul & 3;

check_overlays (2); :‘ -

rlut := (rshft(class.lut_bank,8) & 16#400) {top bit comes from lut bank field}
! (lshft(pixel”.blul,6) & 1640300) {[next two bits of lut bank}
! pixel”.redl; {lut index within bank}

glut := rlut;

blut := rlut;

goto do_lut; [{LUT indicies all set}
end;
Mode 4, buffer 1.
24 bit real color.
begin
rlut := pixel” .redl;
glut := pixel”.grnl;

blut := pixel”.blul;
end;

4,857,901
15 16

{

* Mode 4, buffer 2. e
* 24 bit real color.
}

9

: begin

rlut := pixel” .red2;
glut := pixel”.grn2;
blut := pixel”.blu2;

end;
{
* Mode 5, buffer 1.
* 23 bit real color with 1 overlay plane.
}
10: begin

ov_mask := pixel”.blul & 1;

check_overlays (1);

rlut := pixel” .redl;

glut := pixel”.grnl;

blut := pixel”.blul & 8#376; {mask off low bit of blue)
end;

{
x Mode 5, buffer 2

* 23 bit real color with 1 overlay plane.
1

1

1: begin

ov_mask := pixel”.blu2 & 1;

check_overlays (1);

rlut := pixel”.red2;

glut := pixel”.grn2;

blut := pixel™.blu2 & 8#376; {mask off low bit of blue}
end;

{

* Mode 6, buffer 1.
b 12 bit real color.
]

1

2: begin

rlut := (pixel”.redl & 16#0F0) ! (rshft(pixel”.redl,4) & 16#0F);
glut := (pixel”.grnl & 16#0F0) ! (rshft(pixel‘.grnl,4) & 16#0F);
blut := (pixel”.blul-_ -464#088y ! (rshft(pixel”.blul,4) +~T6¥TF);

end; '
[CP %3?0F0)) q/’lbikoﬁl}
* Mode 6, buffer 2. '
* 12 bit real color.
}
13: begin
rlut := (lshft(pixel”.redl,4) & 16#0F0) ! (pixel™.redl & 16#0F);
glut := (lshft(pixel”.grnl,4) & 16%#0F0) ! (pixel™.grnl & 16#0F);
blut := (lshft(pixel™.blul,4) & 16#0F0) ! (pixel”.blul & 16#0F);
end; .
{
* Mode 7, buffer 1.
* 12 bit real color with 12 bits of overlay.
}
14: begin
ov_mask := (rshft(pixel”.blul,4) & 16#00F)
! (pixel”.grnl & 16#0F0)
! (lshft(pixel”.redl,4) & 16#0F00);
check_overlays (12);
rlut := (lshft(pixel”.redl,4) & 16#0F0) ! (pixel~.redl & 16#0F);
glut := (lshft(pixel”.grnl,4) & 16#0F0) ! (pixel”.grnl & 16#0F);
blut := (lshft(pixel™.blul,4) & 16#0F0) ! (pixel™.blul & 1640F);
end;
(
* Mode 7, buffer 2.
* 12 bit real color with 12 bits of overlay.
}
15: begin

ov_mask := (rshft(pixel”.blu2,4) & 16%00F)
| (pixel”.grn2 & 16#0F0)

4,857,901
17 18
! (lshft(pixel”.red2,4) & 16#0F00); ’

check_overlays (12);
rlut := (lshft(pixel”.red2,4) & 16#0F0) ! (pixel”.red2 & 1640F);

glut := (lshft(pixel”.grn2,4) & 16#0F0) ! (pixel”.grn2 & 16#0F);
blut := (lshft(pixel”.blu2,4) & 16#0F0) ! (pixel” .blu2 & 16#0F);
end;

{
* Mode 8, buffer 1. :

x 8 bit double buffered pseudo color with 8 bit single buffered overlay.
}

1

6: begin

ov_mask := pixel”.grnl;
check_overlays (8):
rlut := pixel”.blul;
glut := rlut;

blut := rlut;

end;

{
* Mode 8, buffer 2.

* 8 bit double buffered pseudo color with 8 bit single buffered overlay.
}

1

7: begin

ov_mask := pixel”.grnl;

check_overlays (8);: _ ,
rlut := pixel”.redl;-. .’ -
glut := rlut;

blut := rlut;

end;

Mode 9.
Cursor color. The high 8 bits of the LUT index come from the

. CURSOR ORIGIN register, and the low 3 bits come from the LUT BANK
field in the window class descriptor. ’

* * R A

}
18: goto cursor;
19:
cursor: begin
rlut := (cursor_origin & 16407F8) ! (class.lut_bank & 7);
glut := rlut;
blut rlut;
goto do_lut;
end;

otherwise {unrecognized pixel mode, complain about it}
status.all := atg_$unimp pix_mode;
atg_$error (status, 'Uniplemented pixel display mode. ');

return;
end; {done with all the pixel modes}
{
I XS 222 22222 222222 2 R X222 2822222222 i XX e L Y222 222 RS2 S 22222 2
*
* The low 8 bits of RLUT, GLUT, and BLUT have been set. Add on the bank select
* bits and index into the look up tables to find the real color.
}
bank := lshft(class.lut_bank & 7,8); [position 3 bit lut bank field}
rlut := (rlut & 255) ! bank; {merge bank onto indicies}
glut := (glut & 255) ! bank;

blut := (blut & 255) ! bank;

{
* RLUT, GLUT, and BLUT are the final look up table index values. Now use them
* into the LUT to get the real color.

}

do_lut: {jump here from cursor colors}
if lut_adr_proc <> nil then begin {somebody wants to watch all LUT addresses ?}
lut_adr.unused := 0; {clear unused bits)
lut_adr.bank := rshft(rlut,8); {grab bank field from red LUT address}

lut_adr.red := riut & 255; {offset into bank for each color}

4,857,901

19
lut_adr.grn := glut & 255;
lut_adr.blu := blut & 255;
lut_adr_proc” (x,y,lut_adr);
end;

rgb.alpha := 255;
rgb.red := ord(red_lut[rlut]);
rgb.grn := ord(grn_lut[glut]);
rgb.blu := ord(blu_lut([blut]);
if dac_val_proc <> nil then begin
dac_val.all := 0;
dac_val.red := rgb.red;

dac_val.grn := xgb. ap rﬁb .gl‘l\/)'
dac_val.blu := rgb.blu;
dac_val_proc~ (x,y,dac_val);
end; ’

end;

It is also to be understood that the following claims
are intended to cover all the generic and specific fea-
tures of the invention as described herein, and all state-
ments of the scope of the invention which, as a matter of
language, might be said to fall therebetween.

Having described the invention, what is claimed as
new and secured by letters patent is:

1. In a system for controlling a computer graphics
display, wherein said system stores and processes digital
pixel values corresponding to respective display pixels,
said system including a color component lookup table
element having an array of memory locations for stor-
ing digital color component values, the color compo-
nent lookup table element being addressable by selected
multiple-bit digital index values, the improvement com-
prising

storage means for storing first control values in asso-

ciation with each digital pixel value, -
display mode lookup table means, including an array
of memory locations, the display mode lookup
table being addressable by said first control values,
for generating second control values correspond-
ing to respective pixels, and
control means, in communication with said display
mode lookup table means and said storage means,
for generating the muitiple-bit digital index values
in response to a combination of said second control
values and said digital pixel values.
2. In a system according to claim 1, the further im-
provement wherein said control means includes means,
responsive to said second control values, for writing
said pixel values into said color component lookup table
element.
3. In a system according to claim 1, the further im-
provement wherein said control means includes means,
responsive to said second control values, for addressing
the color component lookup table element with selected
multiple-bit digital index values, wherein selected bits of
said multiple-bit digital index values include said pixel
values.
4. In a system according to claim 1, the further im-
provement
wherein said storage means includes a plurality of
memory locations organized into plural memory
planes associated with given display areas, and

wherein said control means includes means, respon-
sive to said second control values, for designating a
set of memory planes associated with each of said
given display areas, and for selecting relative prior-
ity of said memory planes associated with a given
display area.

25

30

35

45

50

55

60

65

20

{tell user of this LUT address}

{set alpha value to max opaque}
{index into LUTs to find real color}

{somebody wants to watch all DAC color values ?)
{init all bits to zero}
{fill in 24 bit DAC color)

1

{tell user of this DAC value}

5. In a system according to claim 1, the further im-
provement wherein said pixel values are represented by
multiple bit data words, bit positions in said data words
corresponding to selected pixel characteristics, and
wherein said control means includes means, responsive
to said second control values, for selecting pixel charac-
teristics corresponding to bit positions in said data
words.

6. In a system according to claim 1, the further im-
provement comprising

memory means, including first and second memory

buffers, for storing digital pixel values in said first
and second memory buffers, and

wherein said control means includes display control

means for controlling the display in response to
values stored in a selected one of said first and
second memory buffers, said display control means

includes buffer selecting means for selecting, in
response to said second control values, one of said
first and second memory buffers.

7. In a system according to claim 1, the further im-
provement wherein said storage means includes means
for storing an override control value representative of
an override color, and wherein said control means in-
cludes means, responsive to said override value, for
generating an override color output.

8. In a system according to claim 1, the further im-
provement wherein said system provides plural display
windows, wherein said storage means includes means
for storing a validity indicator associated with a given
window, and wherein said control means includes
means, responsive to said validity indicator, for substi-
tuting pixel values representative of a predetermined
state for pixel values associated with pixels correspond-
ing to said window.

9. In a system according to claim 1, the further im-
provement wherein said storage means contains means
for storing, in association with a given pixel, a third
control value, said third control value designating, as
time variant, other values stored with said given pixel,
and wherein said control means includes means, respon-
sive to said second control values, for varying said other
values stored with said given pixel.

10. In a system according to claim 1, the further im-
provement

wherein said storage means includes means for stor-

ing display area control values, said display area

control values designating selected display areas

for predetermined drawing processing, and
wherein said control means includes means, respon-

4,857,901

21

sive to said display area control values and said
second control values, for masking off selected
pixel values.

11. In a system according to claim 1, the further im-

provement 5

wherein said storage means includes means for stor-
ing arithmetic process control values indicative of
selected arithmetic operations to be executed on
pixel values corresponding to selected display ar- -
eas, and

wherein said control means includes means, respon-
sive to said arithmetic process control values and
said second control values, for enabling execution
of said selected arithmetic operations on said pixel
values corresponding to said selected display areas. 15

10

20

25

30

45

50

55

60

65

22

12, In a system according to claim 4, the further im-
provemefit wherein

said memory planes include a set of overlay memory
planes, said overlay memory planes being arithmet-
ically combinable in accordance with selected
overlay plane encodings,

said storage means includes means for storing overlay
control values indicative of selected overlay plane
encodings, and

said control means includes means, responsive to said
overlay control values and said second control
values, for arithmetically combining selected ones
of said overlay memory planes.

* x 0k Xk 3k

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION
PATENTNO. : 4,857,901
DATED : August 15, 1989
INVENTOR(S) : Lathrop, et al

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Title page, item [19] should read as follows:
—-Lathrop et al--

Item [75] should read as follows:

--0lin G. Lathrop, Groton;
Douglas A. Voorhies, Framingham;
David B. Kirk, Concord,

all of Mass. --

Signed and Sealed this
Sixth Day of August, 1991

Atresr:

HARRY F. MANBECK, JR.

Antesting Officer

Commissioner of Patents and Trademarks

