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QUASI-FAIR ARBITRATION SCHEME WITH
DEFAULT OWNER SPEEDUP

FIELD OF THE INVENTION

The present invention relates to computer system
arbitration schemes, in particular, arbitration schemes
providing a fair allocation of system resources.

BACKGROUND OF THE INVENTION

Computer systems include a variety of processing
units, each seeking access to and control of system re-
sources. Strict priority allocation schemes preclude
lower priority units from obtaining necessary access.
Thus, there is a need for a priority allocation scheme
that avoids complete lock-out of, lower priority units.

BRIEF DESCRIPTION OF THE INVENTION

According to the present invention, when a device
‘A’ needs to use the bus to which it is connected, it
asserts its request signal and, during the same cycle,
looks for any other device’s request signal. If no other
device is requesting during the cycle, then device A

becomes the bus owner during the following cycle. If 25

another device ‘B’, asserts its request signal during the
same first cycle, then the requesting device with the
highest priority is bus owner during the following cy-
cle. The lower priority device will become bus owner

immediately following the higher priority device’s last 5

cycle as bus owner. The requesting device with the
highest priority always wins bus ownership.

During the final cycle of bus ownership, the bus
owner takes a “snapshot” of, i.e., ascertains and stores

the state of all the request signals belonging to the lower ;5

priority requesting devices, and will not reassert its
request signal until all of the requests that were noted by
the snapshot having been satisfied.

If during a device’s last cycle as owner, or during
subsequent cycles, device A requires another bus trans-
fer and no other device has requested the bus since it
originally gained bus access, then the owner becomes
the owner again by default and need not reassert its
request signal, thus allowing it access to the bus one
cycle sooner than if it were required to assert its request
signal prior to renewing its ownership of the bus.

The arbitration scheme is implemented by providing
identical arbitration apparatus disposed within each
device. Thus, the apparatus employed to implement the
arbitration scheme is distributed over all the devices,
and so the arbitration scheme is effectively decentral-
ized.

This technique provides multiple devices with equita-
ble access to a bus using a minimum of control signals,
while minimizing the cycles used for arbitration.

BRIEF DESCRIPTION OF THE DRAWING

These and other features of the present invention will
be better understood by reading the following detailed
description of the invention, taken together with the
drawing wherein

FIG. 1 is a block diagram of a computer system em-
bodiment of the present invention;

FIG. 2 is a block diagram of one embodiment of a bus
interface unit;

FIG. 3 is a block diagram of the interconnection of
one embodiment of the lock acquisition and bus arbitra-
tion blocks of the bus interface;

20

2

- FIG. 4 ig a schematic diagram having further detail of
_the lock.acquisition and requesting blocks 74 and 72 of

. » the ‘embodiment of FIGS. 1 and 2; and

FIG. § is further detail of the bus arbitration block 75

5 of the bus interface of the embodiment of FIGS. 1 and

2.
Further details of one embodiment of the present
invention are provided in the appendix, wherein:
Appendix I provides a processor bus interface specifi-

10 cation;

Appendix II provides a bus signal specification; and
Appendix III provides further structural description
of the processor-bus interface.

15 DETAILED DESCRIPTION OF THE

INVENTION

As shown in FIG. 1, the processors 52, 54, and 56 and
memory units 66 and 68 are devices connected to a bus
58 via interface elements 70, 71, 72, 73, 74, 75, 76, 77,
and 78 described in more detail with regard to bus sig-
nalling in APOLL-111XX, entitled MULTIPROCES-
SOR INTERLOCK, filed concurrently herewith and
incorporated by reference. Initially assume memory
unit 68 is a sole default owner of the bus.

All device on the bus 58 except the default owner
must request the bus prior to use. There is one bus re-
quest level on the backplane per device on the bus 58.
Devices are grouped into two classes. Class A devices
are awarded the bus in strict priority order i.e., the
highest class A device gets access to the bus. Class B
devices participate in fair arbitration and may also be
default bus owners. Processors 52, 54 and 56 are class B
devices.

Bus arbitration is decentralized arbitration is
achieved by the collective action of interface elements
70, 72, 74, 75, 76 and 78 disposed in each device on the
bus. Every device decides for itself whether it has won
access to the bus 58. Bus arbitration can be inhibited by

40 the assertion of an arb inhibit signal on leads 63. Only

the current owner of the bus may assert an arb__inhibit
signal. The current owner will do so if the intended bus
transfer requires multiple cycles.

If a class A device 68 requests the bus, it will assert

45 both its assigned request level 61 and the ARB_IN-

HIBIT_B 63 line on the bus. When a class B device
detects the assertion of ARB_INHIBIT_B in an active
bus arbitration cycle, it will defer to the class A device.

The class B devices, e.g., processors 52, 54, and 56,

50 are each assigned a fixed priority. Potential assignments

are 0 through 3, with 3 being the highest priority. The
assignment is used to determine which of the four class
B request parallel backplane signals this particular pro-
cessor is to use. The processor will drive its assigned

55 level, and defer to requesters at higher levels.

~ Fair arbitration is approximated whereby class B
devices do not reassert their request lines uncondition-
ally. Rather, a class B device will “snapshot”, i.e., read
and store all other lower priority class B request lines in

60 the final cycle of its bus ownership. The class B device

will then relinquish the bus and not reassert a request
line until all the snapshotted requests are, or are about to
be, satisfied. The class B device determines that the
other requesters have been serviced by observing the

65 current state of the other request lines. If a request line

is deasserted, service is underway or completed. If a
request line is still asserted, but arbitration is enabled
and that requesters will win, service is presumed.
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When the bus 58 is otherwise idle, the last successful
bidder among the class B requesters is also established
as the default bus owner. The default bus owner may
use the bus at the end of any cycle in which no other
request line was asserted. The default bus owner does
not have to assert its assigned request line. The default
status remains in effect until another class B device wins
the bus.

A class B device’s bus ownership may be suspended
by a class A device. If a class A device assumes control
of the bus, the class B device that was the former owner
waits for the bus to again become idle. The class B
device then reclaims bus ownership; i.e., the class B
device reassumes the ownership in the cycle following
one in which arbitration was permitted, but no request
line was asserted. If another class B device wins the bus
before the bus becomes idle, default bus ownership is
transferred to the winning device.

When a device first asserts a bus request line, it will
start a timer 70. If the timer elapses before the bus is
acquired, a bus acquisition timeout occurs. The bus
timeout duration is approximately 3.2 milliseconds. If a
timeout occurs, the system is assumed broken and a
clock (not shown) freeze request is made.

The timer 70 is not stopped until a request is con-
firmed to complete or fail, the timer will therefore ex-
pire if a device is continually busy. Broadcast transfers
will stop the timer regardless of the acknowledge line
state. The same timer 70 is reused for read data return
monitoring.

Shown in FIG. 2 are multiple competing local re-
questers: data cache 82 read, data cache write and in-
struction cache 84 read. Any number of data cache
writes, up to the limit of the write queue size, may be
posted and awaiting transfer on the bus. Only a single
read may be posted from each of the read request
sources: the data cache read and the instruction cache
read. In general, data cache read will be prioritized over
instruction cache read. In turn, instruction cache read
will be prioritized over data cache write. However, the
following exceptions exist:

if the write data queue is full, data cache write is
prioritized over instruction cache miss;

if a data cache miss collides in address with a previ-
ously queued write, data cache write is given priority
over both data and instruction cache miss;

if a write and unlock is queued, data cache write is
given priority over both data and instruction cache
miss;

if a data cache miss from an unencacheable memory
location is posted, data cache write is given priority
over both data and instruction cache miss;

if a data cache miss and lock is posted, data cache
write is given priority over both data and instruction
cache read:

if a data cache miss and unlock is posted, data cache
write is given priority over both data and instruction
cache read;

if a tb invalidate is queued in the write buffer, data
cache write is given priority over both instruction and
data cache miss.

A fourth source of request for the return of read data,
to itself, is given precedence over all other transmitters.

Subsequent requests from the data cache will be is-
sued no more often than every other bus cycle. This is
required to assure write order between processors, and
read-write order within one. Further details of system
bus protocol relating to the reject signal is provided in
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APOLL-113XX, entitled PIPELINE COMPUTER
SYSTEM HAVING WRITE ORDER PRESERVA-
TION, filed concurrently herewith and incorporated
herein by reference. The instruction cache miss request
is not restricted to every other cycle. In the cases of
load and lock, load and unlock, and store and unlock,
subsequent requests are not issued until a successful bus
acknowledge of the prior request is received.

With reference to FIGS. 1 and 2, the address/data
transfer unit 78 of a device 52, for example, accepts load
lock, load unlock and store unlock command from the
Memory Management Unit 86 (MMU) disposed within
the local request handling unit 73. When load lock com-
pletes successfully, that device 52 can be assured of
holding the bus lock until the device 52 explicitly re-
leases the lock or an error arises. Only one device at a
time may hold the bus lock and that, in turn, permits the
construction of critical code sections in a multiple pro-
cessor environment. Further details are provided in
APOLL-111XX, incorporated herein by reference.

The bus lock will be secured only when a load lock
data cache miss is successfully issued and acknowl-
edged on the bus. In more detail, first the data cache
miss which seeks the bus lock is posted. This request
will push ahead of itself all previously queued up writes.
When the lock request is next to be serviced, the current
state of the LOCK_HELD 64 and LOCK_RE-
QUEST 61 lines is examined. If LOCK_HELD lock is
already asserted by another device, the arbitration is
deferred. If the bus lock is available, arbitration is at-
tempted. If the bus lock signal is subsequently asserted
before the device gains access to the bus, the device will
withdraw from further arbitration. When the bus is
finally secured, and ARB_INHIBIT_A and AR-
B_INHIBIT_B and LOCK_HELD signals are simul-
taneously asserted. ARB_INHIBIT_A and ARB_IN-
HIBIT__B remain asserted for 3 cycles which is suffi-
cient time for all other bus interfaces to see the LOCK-
—HELD signal asserted and to withdraw from arbitra-
tion if they too plan to secure the bus lock. At the end
of 3 cycles, the locking device will also examine the
state of the acknowledge signals. If other than a success-
ful acknowledge is detected, the bus lock is immediately
released. If released, the LOCK_HELD signal is deas-
serted at the end of the cycle following the acknowl-
edge.

A device will release the bus lock when a load unlock
or a store unlock is successfully issued and acknowl-
edged. Alternatively, the lock is released upon an error
in the local processor. A local processor error is as-
sumed to result in a processor trap, and the signal trap
dispatch, which so indicates, is therefore used to uncon-
ditionally release the bus lock. In more detail, first the
data cache read or write which seeks to release the bus
lock is posted. This request will push ahead of itself all
previously queued up writes. At the end of 3 cycles, the
locking device will also examine the state of the ac-
knowledge signals. If other than a successful acknowl-
edge is detected, the bus LOCK_HELD 64 is retained.
Otherwise, the lock signal is deasserted at the end of the
cycle following the acknowledge.

If a lock request is met with REJECT signal 65, the
LOCK_REQUEST signal 62 and ARB_INHIBIT_A
and ARB_INHIBIT_B 63 are immediately released.
Similarly, if an unlock request is met with 2 REJECT
signal 65, the lock is retained if held.

Two successive bus address transfers may be issued
by a device in bus cycles spaced apart by only one NOP
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or foreign cycle. If the first request receives a busy
acknowledge, the acknowledge is received only after
the second request has been sent. In this case, the bus
REJECT signal on lead 65 is immediately asserted. The
REJECT signal is interpreted by a slave as nullifying
the already accepted request. This use of REJECT
assures that the order of transfers on the bus is retained.
This is particularly important when the second request
is a read for the same data that is being written by the
first request. When REJECT is asserted, the acknowl-
edge for the second request is ignored. When REJECT
is asserted, all transaction side effects, such as bus lock-
ing, do not take place.

It’s possible for the MMU of a device to request the
bus lock while the device is already in possession of the
bus lock. For this reason, a second load lock request
will be accepted. If two bus lock requests have been
accepted, two bus unlock requests will need to follow
before the lock will really be released. Thus, according
to one embodiment of the present invention, bus lock
requests are nested by two levels.

A timer 70 starts running when the bus lock is first
acquired. The timer 70 remains running so long as the
device holds the bus lock. If the timer expires before the
lock is released, a lock timeout trap is posted. The timer
duration is approximately 200 microseconds. If a time-
out trap occurs, a corresponding register (not shown)
indicates so. If a second lock setting request is processed
before a held lock is released, the timer is not reset. This
results in a somewhat shorter timeout for the second
request. If an unlock request is being transferred upon
the bus, the device refrains from bidding for a new lock
request for at least five cycles including the transferring
one. This delay assures that there will always be two
cycles of delay between the release of a lock and its
reacquisition by the same device.

A device will retry any request that receives a BUSY
acknowledge. The retry will continue until the bus
timeout expires. If an address transfer receives a BUSY
acknowledge, the request is marked as in retry. There
can be as many as three requests in retry at any one
time.

The use of REJECT in cooperation with the write
order assurance of the write queue, guarantees that the
write order of one device is always preserved as seen by
a second processor. This can permit alternate multipro-
cessor synchronization without the need for bus lock-
ing.

As shown in FIG. 3, the arbitration 75 and lock con-
trol blocks 72, 74, 76 of the bus interface 80 of the pro-
cessor 52 attach to both the system’s bus 58, and the
processor’s local request generation logic 73. A brief
glossary of the signals generated or received by the
local request generation logic follows:

NEED_LOCK is asserted to identify that the next
processor read to be serviced requires the acquisition of
a bus lock.

CONFIRM_LOCK_HELD is asserted to identify
that a processor “read and lock” which just took place
has been properly acknowledged on the bus. This signal
handles the situation that a bus operation may fail to
complete successfully even though arbitration succeeds.

RELEASE_ILOCK is asserted when the processor
wishes to abandon a bus lock. The processor chooses to
do so when a “read and unlock” or “write and unlock”
operation has been properly acknowledged on the bus.
The processor may also choose to do so if there has
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6

been a local error such as lock holding duration time-
out.

ARB_WIN is asserted by the bus arbitration logic 75
when the processor has been awarded the right to trans-
fer on the bus 58.

MYXFER is asserted by the address/data transfer
logic 78 when an address or data transfer is underway.

NEED_BUS is asserted by the processor when there
is a pending and unserviced processor read or write.

WILL._NEED_BUS is asserted by the processor
when there *will be” a pending read and unserviced
read or write in the next cycle. The advance warning of
the need for service permits the early assertion of a
bus_request signal.

MULTICYC_INHIBIT is asserted by the address-
/data transfer logic 78 when a request is underway that
requires the sustained and uninterrupted use of the bus.

Also as shown in FIG. 3, there are a number of bus
control signals involved in the locking bus and arbitra-
tion protocol. A glossary follows:

LOCK_ _REQUEST- (62) is asserted by a processor
when it wishes access to a bus lock and is not blocked
from acquiring the lock for fairness reasons.

LOCK_HELD- (64) i8 asserted by a processor when
it holds the bus lock.

BR3-, BR2-, BR1- and BRO- (61) are the four bus
request lines associated with four respective processors.
(A number other than four may also be chosen.)

ARB_INHIBIT _B- (63B) is asserted when the “B”
level bus requesters are to be inhibited from bidding for
the bus.

ARB_INHIBIT_A- (63A) is asserted when the “A”
level bus requesters are to be inhibited from bidding for
the bus.

The signal LOCK_ARB_ENAB is asserted and
driven by the lock acquisition and request block 200
(72,74,76) to the bus arbitration block 200 (75) to indi-
cate that a processor 52 request may proceed.

The lock arbitration and request block 200 is shown
in more detail in FIG. 4. There are four state elements:
250, 252, 254 and 256, which drive and interpret the bus
control signals LOCK_REQUEST- 62 and LOCK-
_HELD- 64. When a processor, or other device on the
bus requires a bus lock, it asserts the signal NEED__
LOCK. NEED_LOCK will cause the state element
280 to be set if not inhibited from doing so by state
element 252 via gate 258. If element 250 is set, gate 260
will drive the open collector signal LOCK_RE-
QUEST- 62 on the backplane. NEED_LOCK is as-
sumed to be deasserted when the processor has been
granted access to the bus so that the request is with-
drawn at the correct time. State element 252 inhibits the
assertion of LOCK_REQUEST- if this processor had
once held the bus lock during the duration of time when
LOCK_REQUEST- had been uninterruptively as-
serted, providing the basis for the fairness in the acquisi-
tion of the bus lock. LOCK_DEFER prevents this
processor from asserting the LOCK_REQUEST- sig-
nal, as well as preventing this processor from acquiring
the bus as described in the next paragraph. This LOCK-
—DEFER situation as recorded in element 252 is set
when the CONFIRM_LOCK_HELD signal is pres-
ented to gate 262. Gate 262 also sustains the LOCK-
—DEFER situation for the duration of the assertion by
this processor of LOCK_HELD by state element 254
or for the uninterrupted assertion of the external
LOCK_REQUEST- signal. The open collector signal
LOCK_HELD- 64 is driven by gate 264 whenever
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state element 254 is set. The state element 254 is set
when the processor is awarded the bus, i.e., ARB_WIN
is asserted, and the processor needs the bus lock, i.e.,
NEED_LOCK is asserted. Gate 266 determines this.
Gate 266 also sustains the lock holding until the
RELEASE_LOCK signal is presented by the proces-
sor. State element 256 is set whenever the bus is locked
for access by another processor. Gate 268 determines
this situation by noting that the LOCK_HELD- 64
signal is asserted, but the local lock holding state ele-
ment 254 is not set. When element 256 is set, a lock
requiring processor read cannot be allowed to proceed.
This determination is made by the combination of the
gates 270 and 272 and presented to the bus arbitration
logic in the signal LOCK_ARB_ENAB. LOCK_AR-
B_.ENAB is always set when the processor does not
need the bus lock, i.e, NEED_LOCK is deasserted.
Alternatively, LOCK_ARB_ENAB is set when the
bus is not locked, i.e., state element 256 is not set and
either of two conditions prevail according to gate 272.
The first condition is simply that this processor already
holds the bus lock, i.e., state element 254 is set. The
second condition is that there is no lock acquisition
fairness deference in effect, i.e., LOCK_DEFER
driven by state element 252 is not asserted.

The bus arbitration and request block is shown in
more detail in FIG. 5. For purposes of simplicity, this
block is drawn as if the processor was permanently
fixed at bus request level 3. In the actual implementa-
tion, additional logic is present to permit the processor
to request at any request level and can be provided
according to the detail of FIG. 5. Also, the current
implementation supports only 4 requesters, but there is
no fundamental restriction in this number and a greater
or lesser number may be accommodated. In the discus-
sion to follow, “B level requesters” and “processors (52,
54, 56)” are t0 be considered synonymous. However, in
other implementation that need not be so.

In FIG. 5, there are five state elements: 300, 302, 304,
306 and 308, which drive and interpret the five bus
request signals 61 BR3-, BR2-, BR1-, BRO and AR-
B_INHIBIT_B-. State element 300 is the bus request
flipflop. State elements 302, 304 and 306 snapshot, i.e.,
sample the state of the other processor bus request sig-
nals to be used in the fairness deference algorithm of this
processor. State element 308 reflects whether this pro-
cessor is the default owner of the bus.

Gates 320, 322, 324 and 326 determine if one of the
four processors may secure the bus in the next cycle.
BRO__WIN is asserted by gate 326 if all higher priority
requests (BR3, BR2 and BR1) are not asserted, and B
level request arbitration is not inhibited, i.e., ARB_IN-
HIBIT_.B is not asserted. Similarly, BRI_WIN is as-
serted by gate 324, BR2_WIN by gate 322, and BR3._
WIN by gate 320. The processor associated with re-
quest level three can only fail to win the bus if AR-
B_INHIBIT_B is asserted. ARB_INHIBIT_B- is
asserted on the bus, by this processor or others, for one
of two reasons. The first reason is that the current trans-
fer requires multiple uninterrupted bus cycles. In that
case, both ARB_INHIBIT_B- and ARB_IN-
HIBIT_A- are driven by the address/data transfer
block 78 to suspend all new arbitration for the bus. The
second reason is that an “A” level requester wishes
access to that bus. If any “A” level device requests the
bus, that device must also drive the signal ARB_IN-
HIBIT_.B- to suspend all “B” level device arbitration.
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In this manner, “A” level devices are assured total pri-
ority over “B” level devices.

The bus request flipflop 300 is set when the processor
wishes to use the bus, i.e, WILL_NEED_BUS is
asserted, and the processor has not just secured the use
of the bus, i.e., ARB_WIN is not asserted, and the
processor is not deferring to any of the other three
processors. This combination of events is determined by
gate 310. Once flipflop 300 is set, gate 312 uncondition-
ally drives the bus signal BR3- 50 that other processors
may decide arbitration as well. Bus request deference is
in effect if any of the three signals driven by gates 314,
316 or 318 are asserted. Conceptually, these gates are
asserted if the associated bus request signal is currently
asserted and the requestor will not be serviced next, or
if the associated bus request signal had been asserted
when this processor had last transferred on the bus and
there has been no service granted since that time. Spe-
cifically, gate 314, for example, will be asserted if BR2
is asserted and BR2 will not be granted the bus in the
next cycle, i.e., BR2_WIN is not asserted, and one of
two conditions prevail. The first condition is that the
current bus cycle is owned by this processor, i.e.,
MYXFER is asserted. The second is that the state ele-
ment 302 is set. The state element 302 is set if the condi-
tion of BR2 asserted and BR2_WIN not asserted was
true at the time of the last bus operation by this proces-
sor. This combination of conditions assures that a pro-
cessor will not reacquire the bus twice in succession,
thereby providing other bus requesters an opportunity
to acquire the bus.

State element 308, CURRENT_OWNER, is set
when this processor is the last one to transfer on the bus
and the element remains set until another “B” level
requester acquires the bus. Specifically, gate 328 will
allow the element to be set if it is already set or the
current transfer belongs to this processor (as decide by
gate 333) and no other processor will acquire the bus in
the next cycle. Other processors may not acquire the
bus either because ARB_INHIBIT_B is asserted or
because no other processor is requesting the bus. These
events are combined in gate 330, with gate 332 detect-
ing the absence of other “B” level requests.

Finally, ARB_WIN is asserted if this processor is
granted access to the bus in the next cycle. Gate 336
drives the signal if there is the lock acquisition and
request blocks 74 and 72 drive the LOCK_ARB_.
ENAB signal and the processor otherwise is awarded
the bus. This condition assures that a processor will not
get access to a locked bus if the processor also requires
lock acquisition. Gate 334 decides whether the proces-
sor is otherwise awarded the bus. The processor may be
so awarded for two reasons. In the first case, it is
awarded the bus if the bus is needed (NEED__BUYS), the
associated bus request line is asserted (BR3), and the bus
prioritization logic says there is no higher priority re-
quester (BR3_WIN). The second situation is the one of
default ownership. Again, the bus must be needed
(NEED__BUS), there must be no ARB_INHIBIT_B.
In effect, and this processor is the default owner as
already decided by gate 328. Gate 334 responds to all of
these events.

Modifications and substitutions of the present inven-
tion by one of ordinary skill in the art are considered to
be within the scope of the present invention, which not
to be limited except by the claims which follow.
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CHAPTER 1 OVERVIEW

1.1 Major Responsibilities

The AT CPU X-Bus Intarface, BIF, attaches the processor’s instruction and data caches to the system
backplane bus. The principal functions of the BIF unit are:

O to support the X-Bus reads necessary to fill the instruction and data caches.

© to queue and deliver processor stores to the X~BUS, isolating the CPU from X-8US write
latencies.

© to act as a bus watcher and ensure cache coherency in the face of external stores.

© to act as a clearing house for system communications to and from the CPU such as
interrupts.

O to maintain and chack CPU cache data parity.

in addition, the BIF provides much of the support logic for the self test of the CPU cache RAM’s,

1.2 " BIF Overall Block Diagram

The CPU's bus interface is composed principally of 3 gate arrays. The bus intarface logic aiso in-
cludes the instruction and data cache duplicate tag stores. the X-BUS interface transceivers, and
some supporting tristate drivers.

The address gate array, C8A. handles outgoing and inbound address transfers. QOutgoing address
transters occur for instruction and data cache read issue, and for data cache wrnite issue. Inbound
address transfers are required for cache entry invaligation caused by external writes, and for cache
miss filling. The CBA gate array aiso maintains the duplicate tag stores and handles all bus watching.
Finally, the CBA gate array accepts and forwards interrupt requests to the processor.

The data gate arrays, CBD’s, are identical. One is assigned responsibility for the transfer of even
bytes, and the second is assigned the transfer of odd data bytes. The CBD gate arrays queue and
forward write data, and return read data. The CBOD gate arrays check and maintain the cache parity.

The fallowing processor block diagram roughly illustrates this partition. A comprehensive bfock dia-
gram of the gate array logic alone can be found in Appendix C.
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1.3 Bus Interconnect

The CPU’s bus interface accepts and returns processor addresses from the PA, EASRC, PCSAC. and
VPN bus’'s. The BIF also accepts and returns data from the processor INST and DATA bus’s. The
X-Bus is the path to main msmory used by the BIF.

For a data cache read miss. the physical address is provided to the BIF by the MMU aver the PA bus.
The accgmpanying VPN is captured by the BIF directly from the EAVPN bus. When the cache fiil
begins, the cache index is supplied by the BIF to the EASRC bus over the PA bus. The memory data is
supplied directly to the cache DATA bus.

For an instruction cache read miss, the physical address is provided to the BIF by the MMU over the PA
bus. The accompanying VPN is captured by the BIF directly from the PCVPN bus. When the cache fill
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begins, the cache index is suppliad by the BIF to the PCSRC bus over the PA bus. The memory data is
supplied directly to the cache INST bus.

For a data cache write, the physical address is provided to the BIF by the MMU over the PA bus. The
accompanying VPN is captured by the BIF directly from the EAVPN bus. The store data has previously
been captured by the BIF directly from the DATA bus.

When an external write requires the purging of a local cache entry, the /nvalidate address is supplied
by the BIF to the MMU over the PA bus.

CHAPTER 2 XBUS INTERFACE

2.1 XBUS Arbitration

All X-Bus interfaces except the defauit owner must requaest the bus prior to use. There is one bus
request level on the backplane per X-Bus device. Devices are grouped into two classes. Class A
devices are awarded the bus in strict priority order. Class 8 devices participate in fair arbitration and
may also be default bus owners. CPU’'s are class B devices.

Bus arbitration is decentralized. Every bus interface decides for itself whether it has won access 1o the
X-Bus.

Bus arbitration can be inhibited by the assertion of the arb inhidbit backplane signai. Only the current
owner of the bus may assert ard inhibit. The current owner will do so if the intended bus transfer
requires muitiple cycles.

2.1.1 Class A Request Override

it a class A device requests the bus, it will assert both its assigned request level and the bus request
sum line on the bus. When the BIF detects the assertion of bus requast sum in an active bus arbitration
cycla. the BIF will defer to the class A device(s).

2.1.2 Class B/CPU Requesting

The class B devices, the four CPU's. also have a fixed priority assignment. Potential assignments are
‘0 through 3, with 3 baing the highest priority. The assignmant is scanned into the BIF and is used to
determine which of the four cl/ass B request parailel backplane signals this particular CPU is to use.
The CPU will drive its assigned lsvel, and defer to raquestors at higher leveis.

Fair arbitration is approximated by class B devicas agreeing not to reassert their requast linas on
demand. Rather, a class B device will snapshot all other lower priority class B request lines in the final
cycle of a bus ownership. The class B device will then relinquish the bus angd not reassert a request
line until all the snapshotted requasts are satisfied. The class B device determines the other reques-
tors have been serviced by observing the current state of the other request lines. If a request line is
deasserted, service is underway or compisted. If a request line is still asserted. but arbitration is
enabled and that requestor will win, service is presumed.

2.1.3 Defauit Ownership

When the bus is otherwise idle, the last successful bidder among the class B requestors is aiso estab-
lished as the default bus owner. * The defauit bus owner may use the bus at the end of any cycle in
which no other request line was asserted. The default bus owner does not have to assert its assigned
request line. The default remains in effect until another class B device wins the bus.

A class B device’s bus ownership may be “suspended” by a class A device. If a class A device
assumes control of the bus, the class B device that was the former awner waits for the bus to again
become idle. The class B devices then reclaims bus ownership; i. e., the class B device reassumes
the gwnership in the cycle following one in which arbitration was permitted, but no request line was
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asserted. If another class B device wins the bus before the bus becomes idle, defauit bus ownarship
is transferred.

2.1.4 Acquisition Timeout

When a BIF first asserts a bus request line, it will start a timer. if the timer elapses before the bus is
acquired, a bus acquisition timeout occurs. The bus timeout duration is approximately 3.2 millisec-
onds (16 bit counter). If a timeout occurs, the system is assumed broken and a clock freeze request
is made of the SCR. The internal BIF state is preserved insofar as possible.

The timer is not stopped untii either a NOACK or ACK acknowledge is received for the request address
transfer. The timer will therefore expire if a device is continually busy. Broadcast transfers, such as
TB invalidates will stop the timer regardliess of the acknowledge lins state.

The same timer is reused for read data return monitoring. See section 2.2.2.

2.1.5 Local Request Prioritization

Internal to the BIF are competing local requestors: data cache read, data cache write and instruction
cache read. In generai, data cache read will be prioritized over instruction cache read. In turn,
instruction cache read will be prioritized over data cache write. There are exceptions.

e if the write data queue is fuil, data cache write is prioritized over instruction cache miss.

e if a data cache miss collides in address with a previously queued write, data cache write
is given priority over both data and instruction cache miss.

e If a write to an unencacheable memory location is queued, data cache write is given priarity
over both data and instruction cache miss.

o if a write and uniock is queued, data cache write is given priority over both data and
instruction cache miss.

e If a data cache miss from an unencacheabie memory iocation is posted, data cache write is
given priority over both data and instruction cache miss.

e |f a data cache miss and lock is posted, data cache write is given priority over both data and
instruction cache read.

® if a data cache miss and unfock is posted, data cache writs is given priority over both data
and instruction cache read.

e if a tb invalidate is queued in the write buffer, data cache write is given priority over both
instruction and data cache miss.

A locally generated READ RESPONSE required for a 8IF CSR read is given precedence over all other
transmitters.

2.1.6 Subsequent Request Arbitration Delay

The BIF will issue subsequent requests from the data cache no more often than every other bus cycle.
This is required 10 assure write order between processors, and read-write order within ons. Tha
instruction cache miss request is not restricted to every other cycle. In the cases of /oad and lock,
load and uniock, and store and unfock, subsequent requests are not issued until a successful bus
acknowledge of the prior request is received.
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The BIF will issue subsequent requests from a CPU no more often than every other bus cycle. This is
raquired to assure write order. [t was an implemantation convenience to apply it generaily. In the
cases of load and lock, foad and uniock, and Sstore and uniock, subsequent requests are not issued
until a successful bus acknowledge of the prior request is received.

2.2 XBUS Reads

X-Bus reads are split into two parts: address transfer and data return. The BIF arbitrates for an
address transfer to initiate a data or instruction cache miss. The bus interface then awaits data return.
The BIF arbitrates for data return only when responding as a slave to a CSR read.

2.2.1 Read Initlating

When the BIF wins the bus, and decides that a read is the highest priority task, it will transfer the read
address and issue either a READ or a READ MULTIPLE command. It will issue a READ command if the
CPU request was less than or equal to 32 bits and was either unancacheable or wouid change the bus
lock status. The BIF will issue a READ MULTIPLE command otherwise.

if the request was a READ. the byte mask accompanying the address will decide the exact request
size.

If the request was a READ MULTIPLE. additional request information is provided in the address and
data fields. The information is summarized in the next figure. The WE field will always be Q1. The LL
field will be OO0 for a 64 bit read, Q1 for a data cache normal fill, 10 for an instruction cache fill and 11
for an extended data cache fill. The LONGWORD COUNT field will be unused in processor requests.

o
XBUS READ MULTIPLE

63 62 61 34 33 32
L | L | PHYSICAL ADDRESS wl e
3 08 07 00
- : Sl . c \ " | LONGWORD COUNT

LL WE

00 TRANSFER LENGTH = 2 LONGWORDS 00 USE LONGWORD COUNT, MODULD WRAP
0 TRANSFER LENGTH = 4 LONGWORDS 0 LENGTH SPECIFIED BY LL. MODULO WRAP
10  TRANSFER LENGTH = 8 LONGWORDS 10 USE LONGWORD COUNT

1 TRANSFER LENGTH = 16 LONGWORDS 11 LENGTH SPECIFIED BY LL

There can be muiltiple reads cutstanding on the X-Bus from a singie CPU. In such a case, returning
raad data is distinguished by the subid field. Subid = x0 is used for the data cacha. Subid = x1 is used
for the instruction cache.

The read address is sourced by the CBA gate array, but the virtual page offset within segment, or
VPN, is provided by the CBD cnes. When the read address is transferred, the CBA gate array cap-
tures the associated VPN for subsequent use during cache fill and DTS update.

2.2.1.1 Read Initiation Bypass
When a read MMU command is being decoded by the BIF and there are no previous internai requests
pending, the arriving PA will be forwarded immediately to the X-Bus outbound address register. If the

BIF is the defauilt bus owner, and no extarnal bus requests are pending, and intarnal request initiation
is not suspended for any reason, the read request will be initiated in the following bus cycle.

2.2.2 Read Data Return

After the BIF initiates a bus read, it waits for the return of read data. Several outcomes are possible:
data returns as expected, data returns but is in error, and data fails to return.
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The expected data return is either one {READ) or more (READ MULTIPLE) data transfers identified as
READ RESPONSE’s. The returning data will appear on the 64 bit bus aligned as if in mamory: byte 000,
if present, in bit positions 63:56 and so on. If muitiple READ RESPONSE cycles are expected, they will
either be immediately abutting or have intervening NOP’s. If there are intervening NOP's, there will
always be at least 2 such NOP's and arb inhibit will be asserted by the responder to prevent any
intervening unrelated bus operations.

It bad data is returned, the accompanying command code will be READ RESPONSE ERROR. This may
be caused by the detection of an uncorrectable ECC or parity error. it may also occur because of a
bus timeout or address error in the responding device. No further data will be returned subsequent to
a READ RESPONSE ERROR. A READ RESPONSE ERROR may occur in any cycle of a mutliple transfer
read return bus sequence.

The last possible outcome for a read is for the read data to fail to return. This can only happen in the
presence of a hardware failure.

2.2.3 Read Return Timedut .

The failure of read data to return is detected by the expiration of the BIF's bus timer while a read
request remains outstanding on the bus. This is the same timer used in bus acquisition timeout. As
mentioned in section 2.1.4, the timer is started when any request is posted. If arbitration succeeds
and a write or tb invalidate follows, the timer is stopped after receiving sither an ACK or a NQACK
acknoweldge. If arbitration succeeds and a read issue follows, the timer is continued. If the timer
then expires before the last read data returns, a read reaturn timseout occurs. If a timeout occurs, the
systemn is assumed broken and a clock freeze request is made of the SCR. The internal BIF state is
preserved insofar as possibie.

If two reads are concurrently outstanding, the timer is restarted when rsad data return completes for
each request. This may resuit in a somewhat longer timeout for the second read request.

it a secand request, whather read, write or tb invalidate is issued while a read is outstanding, the timer
is not stopped. This may resuit in a somewhat shorter bus acquisition timeout for these subsequent
requests that will expire coincidently with the read data return timeout.

2.24 Read Return Minimum Time

The READ RESPONSE for a READ or READ MULTIPLE command must be no sooner than the.first cycle
after the acknowledge cycie for the address transfer. This is also the minimum time possible within the
bus protocol except for default bus owners.

2.2.5 Read Return Acknowledge

The BIF will either successfully acknowledge, or arror acknowledge. a READ RESPONSE addressed to
it. if an error acknowledge is generated, the returning data will be forwarded as if correct to the data
or instruction caches. Error status will be recorded in the embedded scan state and a clock freeze of
the SCR will be requested.

2.3 XBUS Writes

When the BIF wins the bus, and decides that a write is the highest priority task, it will transfer the write
address and data. Either a WRITE or a WRITE MULTIPLE command is sent. The BIF will issue a WRITE
command if the data to transfer is iess than or equal to 32 bits. The BIF will issue a WRITE MULTIPLE
command if the data to transfer is 64 bits or morse.

If the request was a WRITE, the data accompanies the address and the associated byte mask decides
the exact request size. :

If the request was a WRITE MULTIPLE, the address and transfer direction are sent in the first cycle. Bit
32 is O if the address is ascending, and bit 32 is 1 if the address is descending. The second and
subsequent cycles transmit 64 bits of data accompanied by a WRITE DATA command. Note that ail
transfers begin and end on quadword boundaries.
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2.3.1 XBUS Write Muitiple Limit

The BIF will continually monitor its internal write address and data queue to dstermineg if the next write
data to transfer is an adjacent address quadword. If so, the write muitiple will be sustained. To
prevent excessive bus use by one processor, the BIF will stop a write muitiple arbitrarily at every 256
byte boundary (32 transfers). Write muitiple data will always be sent in immediately adjacent bus

cycles. .

No odd longword start, write muitiples will be generated by the BIF.

2.3.2 XBUS Initial Write Hold Off
The BIF will not attempt to transfer write data as scon as the raquest is posted. Rather, the 8IF wiil

deiay in anticipation that subseguent writes to adjacent addresses are likely. The request is finally
_posted only if one of the following conditions is true.

e if a second write t0 any address is queued.

e if the pending write was not encacheable.

e If the pending write would uniock the bus.

e |f there is a pending data cache miss, which collides in address with the pending write.

e |f there is a pending data cache miss that is unencacheable or would change the bus lock
status.

e if the frae running BIF counter overruns (safety measure).

e if the write is really a TB invalidate.

2.3.3 XBUS Write Monitoring
All X-Bus writes are monitored even if they are not diracted to. or originated by, the local BIF. The BIF
will determine if a copy of the data at the write address has besn iocaily cached. If so. the BIF will

schedule an invalidate of that cache entry. This relies upon the BIF maintaining duplicate tag stores
and is detailed in chapter 5.

23.4 XBUS Writes To BIF CSR's

When the BIF detacts a 32 bit write into its own register range, a WRITE MULTIPLE of 2 longwords is
substituted for a WRITE command.

235 XBUS Write Multiple Acknowledge

The acknowledge for the WRITE MULTIPLE command will be OK only when the siave can accept at least
the first 64 bits of data.

The acknowledge for the WRITE DATA command associated with a write muitiple will be busy if the
associated 84 bits of data cannot be accepted and must be retransmitted.

An error or no acknowiedge for a WRITE DATA commang will be interprated as a busy acknowiedge in
order to praserve state. It is presumed the acknowladge driver will freeze the clocks.
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2.4 XBUS Slave Response: CSR Access, Interrupt Posting

The BIF holds S operationally available registers: ERRADDR, BCTRL, ICTRL, PTIMER, and ISUM. The
registers ars detaited in chapter 7. Access to these registers is over the X-Bus. In addition, the BIF
posts interrupts to the local processor in response to bus writes.

The addresses to which the BIF responds as a slave device follow.

BIF REGISTER ADDRESSES

OCpp 0200: Interrupt Summary Register (ISUM)
O0pp 0208: Interrupt Control Register (ICTRL)

O0pp 0210: Bus Control Register (BCTRL)

O0pp 0218: Bus Error Address Register (ERRADDR)
0O0pp 0220: Process Timer (PROC_TIMER)

0C0pp 0100
- 00pp 013C: Interrupt Posting Addresses

PP = PROCESSOR NUMBER

24.1 XBUS Slave Response: CSR Read Return

The BIF will decode all incoming read requests. If the address matches one alotted to the interface, 32
" bits of read data will be returned. Tha data will be returned in bit positions 63 through 32.

The EIF will sometimes delay register read data response so that the read data will be returned no
sooner than the fourth cycle after the one that provided the read address. This is only necessary

when the BIiF is the defauit bus owner. .
The BIF will give a busy rasponse when a second X-Bus read request arrives for a register which has

an X-BUS read underway. Otherwise, all read requests will be accepted.

The BIF will give a no response when if the read raquest is for other than 32 bits.

2.4.2 XBUS Slave Response: CSR Write Accept, Interrupt Posting

The BIF will decods ali incoming write requests. If the address matches one-allotted to the interface,
the request will be acknowiedged.

If the address is one of the interrupt posting locations, a WRITE command is expected. The data and
byte mask are not interpreted.

if the address is one of the accessible CSR's, a WRITE MULTIPLE command is expected. A request
length of 1 or 2 longwords is expected with the data provided in bit positions 83 through 32 of the first
WRITE DATA command. This is necessary because of the positioning of the CSR registers in the CBA
iIC.

The BIF will give a busy acknowledge when an X-Bus write request of any type arrives for a register
which has an X-BUS read underway.

The BIF will give an error acknowledge when it detects a parity error in a write data. A WRITE MULTI-
PLE to an interrupt posting address, or a simple WRITE directed at a CSR will also generate an error
acknowladgement. In either case, embedded state will be set and a ciock freeze request to the SCR
generated.
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25 - XBUS TB Invalidates

The local processor can issue T8 invalidates for broadcast over the X-Bus. The BIF accepts, queues
and delivers to the X-Bus T8 invalidates as if they were writes.

2.5.1 XBUS TB Invalidate Issuing

The BIF will transmit TB invalidate requests accompanied by the comands INVAL TB SEL and INVALI-
DATE TB. If the former command is issued. the address fieid can be assumed to hold the virtuai page
address of the entry 10 be invalidated. The virtual page number, address bits 31 through 12, can be
found on the bus in bit positions 63 through 44.

No acknowiedge is expected or awaited upon the issue of a TB invalidate command.

63 44 32

X-BUS | 31 VIRTUAL PAGE NUMBER

The Virtua! Page Number is transferred on X-8US bits 63:44 during INVAL T8 SEL and INVALIDATE TB
commands.

2.5.2 XBUS TB Invalidate Accepting

The BIF will unconditionally accept all X-BUS TB invalidate requests and forward them to the MMU
through the invalidate queueing mechanism. Chapter 5 provides additional explanation.

2.6 XBUS Locking

The BIF accepts /oad /ock, /oad uniock and store uniock command from the MMU. When /oad iock
completes successfully, that CPU can be assured of holding the dus /ock until the CPU explicitly re-
leases the iock or an error arises. Only one CPU at a time may hold the bus lock and that, in turn,
permits the construction of critical code sections in a multiple processor environment.

Because the holding and release of the bus locks spans many bus cycles, a method for assuring
fairness among cpu's in acquiring the bus lock is also impiemented.

2.6.1 XBUS Lock Acquisition and Release

The BIF will secure the bus lock only when a /oad /lock data cache miss is successfully issued and
acknowiedged on the X_BUS. In more detail, first the data cache miss which seeks the bus lock is
posted. This request will push ahead of itself all previously queued up writes. When the lock request
is next to be serviced, the current states of the external bus /ock and /ock_request signals are exam-
ined. If fock is aiready asserted by another CPU, the arbitration is deferred. If arbitration is deferred
for this reason, the CPU will assert the /ock_request signal and await the deassertion of Jock. The
arbitration may aiso be deferred if this is the second acquisition of the bus iock by the same CPU
without an intervening deassertion of the lock request signal. This lock request deferral assures fair
accaess to the bus lock among all competitors. if the bus lock is available and there is no need for lock
raquest deferrence, arbitration is attempted. |f the bus J/ock signal is subsequently asserted before
the BIF gains access to the X-Bus, the BIF will withdraw from further arbitration and drive the /ock_re-
quest signal. When the bus is finaily secured, both the arbd inhidit and /ock signals are simuitaneousiy
asserted. Arb inhibit remains asserted for 3 cycles which is sufficient time for all other bus interfaces
to see the /ock signal asserted and to withdraw from arbitration if they too plan to securse the bus lock.

At the end of 3 cycles. the locking BIF will also examine the state of the acknowledge signals. If other
than a successful acknowledge is detected, the bus lock is immediately released. If released, the /ock
signal is deasserted at the end of the cycle following the acknowledge. in all cases. the bus Jock_rs-
quest signal is defeated in the first cycle after the /ock signal is generated.

The BIF will release the bus lock when a foad unfock or a store uniock is successfully issued and
acknowledged. Alternatively, the lock is released upon an error in the local procassor. A local proc-
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essor error is assumed to result in a processor trap, and the signal trap dispatch is therefore used to
unconditionally ralease the bus lock. In more detail, first the data cache read or write which seeks 1o
release the bus lock is posted. This request will push ahead of itself all previously queued up writes.
At the end of 3 cycles, the locking BIF will also examine the state of the acknowledge signais. If other
than a successful acknowledge is detectad, the bus lock is retained. Otherwise, the lock signal is
deasserted at the end of the cycle following the acknowledge.

if a lock request is REJECT’d by the BIF, the lock signal and ard inhibit are immeadiately released.
Similarly, if an unlock request is REJECT'd by the BIF, the lock is retained if heid. Section 2.8 de-
scribes the use of the signal REJECT.

2.6.2 XBUS Lock Nesting

It’s possible for the MMU to request the bus lock for PMAPE update while the BIF is aiready in posses-
sion of the bus lock. For this reason, a second /oad /ock request will be accepted. If two bus lock
requests have been accepted, two bus uniock requests will need to follow before the lock will really be
raleased. In effect, the BIF nests bus lock requests two levels.

2.6.3 XBUS Lock Duration Timeout

The Bif starts a timer when the bus lock is first acquired. The timer remains running so long as the BIF
holds the bus lock. if the timer expires before the lock is released, a lock timeout trap is posted. The
timer duration is approximately 200 microseconds (12 bit countaer).

if a timeout trap occurs. the BCTRL register indicates so. The BCTAL register is described in chapter
7.

If a second lock setting raquest is processed before a held lock is released, the timar is not reset.
This results in a somewhat shorter timeout for the second request.

If an unlock request is baeing transferred upon the X-Bus, the BIF refrains from arbitration for a new

lock request for at Ieast five cycles including the transferring ocne. This delay assures that there will
always be two cycles of delay betwaen the release of a lock and its reacquisition by the same BIF.

264 XBUS Data Consistency Under Lock

The BiF guarantees that once a lock has been acquired that all writes on the bus that preceded the
load lock transfer have successfully invalidated the cache. This is a natural outcome of an X-8us
READ command requiring at least 4 cycles before the READ RESPONSE command will be seen.

2.7 XBUS Request Retry

The BIF will retry any request that receives a BUSY acknowledge. The retry will continue until the bus
timeout expires.

If an address transfer receives a BUSY acknowledge, the request is marked as in retry. Thers can be

as many as three requests in retry at any one time. Retry requests receive no different priority treat-
ment than was outlined in section 2.1.5 other than foilowing retry hoidoff.

2.7.1 XBUS Retry Holdoff

It a request is in retry, it is not immaediately postad to the bus. The minimum request spacing for a
retry is § cycles: 3 to make the original transfer and await the acknawidge, 1 to mark the request as in
retry, and 1 to rearbitrate for the bus.

2.8 XBUS Reject

Two successive bus address transfers may be issued by same the BIF in bus cycles spacad apart by
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only one NOP or foreign cycle. If the first request receives a busy acknowiedge, the acknowladge is
received only after the second request has been sent. In this case. the bus REJECT signal is immedi-
ately asserted. The REJECT signal is interpreted by the slave as nuliifying the already accepted re-
quest. This use of REJECT assures that the order of transfers on the bus is retained. This is particu-
larly important when the second request is a read for the same data that is being written by the first
request.

when REJECT is assaerted, the acknowledge for the second request is ignored.

When REJECT is asserted, all transaction side effects such as bus locking, do not take place.

2.8.1 XBUS Write Order Assurance

The use of REJECT in cooperation with the write order assurance of the write queus, guarantees that
the write order of one CPU is always preserved as seen by a sgcond CPU. This can permit some forms
of muitiprocessor synchronization without the nesd for bus locking.

CHAPTER 3 | DATA CACHE INTERFACE

3.1 Data Cache Read Miss

Processor operand loads are usually satisfied by the data cache. A gata cache read miss occurs when
the data cache does not presently have the raquested item. A cache read miss alsc occurs when the
read request must be forwarded to the bus regardless of whather cached data is available. Typical of
this latter situation is a read from an I/O control register.

Cache miss processing is the joint responsibility of the BIF and the MMU. The BIF sources the fill
address and informs the MMU as the data RAM's are written.

3.1.1 MMU Request to the BIF

The read’s 30 bit physical address is’ provided by the MMU on the PA bus. The MMU command
accompanies the physicai address.

The read's virtual page offset within segment, VPN, bits will be presented in advance of the physical
address and command. Typically, the 7 bits are captured by the BIF from the external EA register
every cycle. if a read miss occurs, the physical address and command will then arrive in the following
cycle. if however, the PA bus is not available in this succeeding cycle, the MMU will assert the signal
MMU_HOLD_DOVPN. The BIF will hoid the captured data cache VPN. MMU_HOLD DVPN will be deas-
serted in the cycle in which the physical address and command are finaily sant to the BIF.

There are quite a few commands that apply to data cache miss. They are summarized ‘in the next
table.
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MEM_CMD{4:0]
00000 NOP 10000
00001 load.nolock.cache.16 10001
00010 . fatch K.cache ] 10010
00011 load.nolock.cache. 64 10011
00100 load.nolock.nocache. 1 10100
00101 load.nolock.nccache.2 10101
00110 load.nolock.nocache.4 10110
00111 load.nolock.nocache.8 10111
01000 load.lock.nocache. 1 11000
01001 load.lock.nocache.2 11001
01010 load.lock.nocache.4 11010
0101 load.lock.nocache.8 11011
01100 load.unlock.nocache.1 11100
0110 load.uniock.nocache.2 11101
01110 load.unlock.nocache.4 11110
0111 load.unlock.nocache.8 1min

3.1.2 Cacheable Data Read Miss

In the typical data cache miss, the MEM_CMD(4:0) field is sither 00001, LOAD.NOLOCK.CACHE. 18, or
the fieid is 00011, LOAD.NOLOCK.CACHE.64. The first command requests a cache fill of 16 bytes.
The second command fequests a cache fill of 64 bytes. This second command is issued only if the
cache miss is triggered by a 84 bit floating paint Ioad at an address boundary that is zero mod 64.

The address presented with the data is the IP's exact load address. Before forwarding to the X-Bus
address bit 3 must be unconditionally zeroced if a 16 byte fill. Address bits 5. 4 and 3 will naturally be
2erQ if a 64 byte fill. This is required by thae fill aigorithm which is natural order beginning at the nearast

lower byte boundary that is 0 modulo the fill size. The address mask bits must be forced to all ones
befare transferring on the X-Bus,

3.1.3 Unencacheable Data Read Miss

A load may reference data that is marked unencacheable.

Load data may be daclarad unencache-
able for one of the following reasons.

® The PMAPE's C bit is set in the virtual address mapping tabiss.
® The memory reference address is a physical one because virtual transiation is not enabled.
® The memory reference address is a physical one required for an MMU tabie walk.
® The memory reference address is a physical one caused by a /oad.physical instruction.
- ® The CPU's instruction is a Ioad;/ock. requiring access to the bus.

® The CPU's instruction is a /oad.unfock, requiring access to the bus.

The caching decision is made by the MMU and com

remaining data cache miss codes other than those
cacheable references.

municated in the MMU command field. All of the
just mentioned in the last section apply to unsen-

In an unencacheable data cache miss. only the requested data is returned. The address presented
with the MMU command is forwarded as is 10 the X-Bus, and the read mask iS appropriately con-

structed to reflect the request size. If the request is for an 8 byte quantity, a rsad muitiple of 2
longwords will rasuit,
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3.1.4 Load.Lock

The /oad.iock instruction requires access to the X-Bus to gain the bus lock. For this reason an unen-
cacheable data miss is deciared by the MMU. When the load.lock's data returns, the bus lock can be
assumed to be secured.

The MMU may issue. a second locking read raquest before a praviously acquired lock is released. The
MMU may do so while processing a secondary TB miss during a locked code sequencs. The BIF will
properly nest this second raguest.

3.1.5 Load.Unlock

The load.uniock instruction requires access to the X-Bus to release the bus lock. For this reason an
unencacheable data miss is deciared by the MMU. When the load.unlock’s data returns, the bus lock
can be assumed to be relsased.

This instruction may be issued sven when the bus lock is not held. This instruction will not releass a
bus lock not heid by this CPU.

3.1.6 Data Cache Read Data Return

Once the data cache miss read address is transferred across the bus, the BIF awaits read data re-
sponse. When the requested data finally returns, it is forwarded to the DATA(63:00) bus. The data is
then used by the IP, FP or MMU and is optionally stored in the cache. The cache updating is refered to
as filling.

3.1.6.1 Data Return Delay

Normally, returning read data is forwarded to the DATA bus in the cycle immediatsly following the data
transfer on the X-Bus. in some cases however, DATA bus forwarding is delayed one additional cycle.
The cases are summarized.

® The X-Bus data returns in the same cycle that the EASRC bus is being used to process an
invalidate. A data cache fill cannot take place in the next cycle because the EA will not
hold the proper fill address.

e The X-Bus data rsturns in a cycle immaediately after an instruction cache miss that required
delayed data forwarding. The immediately abutting X-8us data returns do not afford an
opportunity to remove the instruction cache miss's delay. The instruction cache fill may
collide in the use of the PC in the same manner as just described for EA's use during data
cache fiil.

e The data read request was unencacheable. In this case, the possible need to rotate the
returning read data requires an additional cycle of delay.

The data return delay is not visible to the MMU in handshake protocol.

3.1.6.2 Data Return Alignment

If the data read reaquest is unencacheatle. and is for one longword or less, and the longword address
is even, the returning read data will be duplicated on both halves of the cache data bus. This is
required by the MMU which can access only DATA(31:00). In all other cases. the returning data will be
aligned on the DATA bus as it appears on the X-BUS.
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3.1.6.3 Data Cache Fill Data Sourcing / MEM_RESP

If the data cache read miss is for a 16 or 64 byte fiil, the requestsd data is provided 8 bytes at a time
on the X-BUS. The data is then forwarded 8 bytes at a time to the DATA bus and written simultane-
ously with the data being accepted by the IP or FP.

The BIF will begin driving returning X-Bus data before X-Bus Read Response data has arrived. The BIF
will first drive the bus in the cycle after the data cache miss MEM_CMD has been driven by the MML.

Simultaneously with the DATA bus driving, the MEM_RESP(2:0) fieid is sourced by the MMU. Typi-
cally, code 001 will be driven. Codes 100 and 101 will be driven in the event of bus error. The data
cache filling is strictly slaved to the X-Bus timing and normally takes place in uninterrupted cycles.
See ECCU/ECCC below for the exceptions to this.

MEM_RESP[2:0] ~ Data Cache Miss

oo NOP

Qo1 Dcache Data Return
010 lcache Data Return
Q1Y ) -undefinedii

100 Load ECCU

101 Load No Response
LE10iL L FPetoh-BCCU

“13100 ) Fectehr No:Response:

3.1.6.4 Data Cache Fill Parity Sourcing

The returning data parity is regenerated while the data is on the DATA bus. If the request was a 16 or
64 byte fill, the parity is written into the data cache parity RAM's in the following cycle. Byte parity is
maintained in the data cache.

3.1.6.5 Data Cache Fill Address Sourcing / BIF_PAARB BIF_INVOP

If the data cache read miss is for a 16 or 64 byte fill, the fill index is sourced by the BIF on the PA bus.
The BIF requests this use of the PA bus one cycle in advance of the address transfer (two cycles in
advance of the DATA transfer) by asserting the BIF_PAARB(1:0) signals. BIF_PAARB = 01 raquests the
joint use of the PA bus and the EASRC bus in anticipation of data cachs fill. |f there are simuitaneous
instruction and data cache misses pasted, BIF_PAARB = 11 will be asserted. This raquests both the
PCSRC and EASRC bus's in case either raturns on the bus.

The BIF will begin requesting the PA bus before X-Bus Read Response data has arrived. Tha BIF will
first make an arbitration request on the PAARB signals in the X-Bus acknowiedge cycle for the miss
read address transfer.

BIF_PAARB[1:0]

00 NOP

01 Arbitrate for PA/EASRC : cache fill or invalidate

10

11 Arbitrate for PAJEA/PCSRC : cache fill or invalidate

The BIF sources the 13 bit fill index on PA(15:03) one cycle in advance of the DATA transfer. Simulta-
neously, the BIF requests the setting of the data cache tag’s 8 VALID bits in that next cycle by deas-
serting the BIF_INVOP([1:0] signals. BIF_INVOP = 00 implies setting the valid bits.
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000 0| NOP
001 1 | RESET VALID BITS
010 2 | Selective TB Invalidate
on 3 | Comprehensive TB invalidate
100 4 Fill
101 5 | Diagnostic Fill
110 6 | undefined
111 7 | undefined

3.1.6.6 Data Cache Fill: MMU Tracking

While the BIF sources both the data and fill addrass, the RAM strobes and tag contents are provided by
the MMU. The MMU does so in response to the BIF_PAARB and BIF_INVOP signais. The BIF sources
these signals without knowing about return data availability. The BIF informs the MMU that data has
been written only after the fact, by means of the MEM_RESP(2:0) signals.

The MMU gussses that the fill wiil be complete next cycie when the final fill entry index is on the PA bus
and there is no request on the BIF_PAARB signals. if for soma reason the fill doss not complets in this
cycle, both the MMU and 8IF backup and try again. The MMU recognizes this situation by observing
that the MEM_RESP field is 000 (NOP) in the cycle which shouid have been the last RAM data write.

3.1.7 Data Cache Read Miss Errors

Quite a few errors are possibie in the course of processing a data cache read miss. They are summa- -
rized in this section.

3.1.7.1 External Invalidate Collision

In the interval between the read address transfer on the X-Bus and the read data return, a write to the
returning data from another CPU is possible. The BIF watches for this situation and detects any write-
read collision on the same physical page. If a collision is detected. the BIF_INVOP signais are asserted
rather than deasserted in the cycle before the data cache writa. B8IF_INVOP = Q1 will reset the tag’s 8
valid bits.

BIF_INVOP[1:0]

00 NOP

01 Reset Data/inst Tag Valid Bits
10

1"

This write—-read collision detection applies only to an external write. A locally generated write will only
be issued on the X-Bus subsaquent to a data cache raad if the write was generated earlier in timas,
and tha write doas not conflict in address with the read.

3.1.7.2 Bus Acquisition Timeout

If the bus acquisition timer slapses befors the data cache read gains access to the bus. a hardware
failure is presumed. The BIF requests the clocks to stop and records this arror status in scan state.
The BIF continues to arbitrate for tha bus.

3.1.7.3 No Acknowledge

if the data cache miss address transtfar resuits in no bus acknowledge, a software failure is presumed.
The BIF records this error status in the BCTRL register and freezes the ERRADDR ragister. The BIF
returns a LOAD_NO_RESPONSE code, 101, on the MEM_RESP(2:0) signals.
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3.1.7.4 Error Acknowledge B

If the data cache miss address transfer resuits in an error bus acknowledge, a hardware failure is
presumed. The BIF records this error status in scan state. The BIF ctherwise acts as if it was a busy
acknowledge to preserve state.

3.1.7.5 Read Return Timeout

If the read return timer aiapses before the data cache read data completely returns, & hardware failure
is presumed. The BIF requests the clocks to stop and records this error in the scan state. The
continues to await read return data.

3.1.76 ECCU

A device error may prevent correct data return. The most common such error is a main memory
ECCU. This same situation will alsc occur when a secondary bus gets a read timeout.

When only incorrect data can be returned, a READ RESPONSE ERROR command will be returnedd on
the X-Bus. The BIF, in turn, will terminate the transfer. The MMU_RESP(2:0) code LOAD ECCU, 100,
will be sent to the MMU.

If the READ RESPONSE ERROR occurs as one response in a READ MULTIPLE, no further response data
will be accepted from the X-BUS. ‘ -

3.1.7.7 ECCC

A corractabie data error can occur upon access to main store. if this happens in an unencacheable
reference, it is not visible to the MMU. If this happens in a 16 or 64 byte fill, this may resuit in the
interpositioning of NOP's within the returning X-BUS read data. When a NOP interrupts this sequence,
there will always be at least 2 NOP's present.

When the NOP interrupts the fill saquence, incorrect data is written to the RAM's, The BIF then backs
up the fill addrass by eight bytes. awaits the corrected data, and rewritas the RAM location.

When the NOP arrives instead of the last 8 bytes of read return data, there is an additional complication
in that the BIF may have relinquished contro! of the PA bus. The MMU will recognize this situation and
hoid the processor stall. The BiF rearbitrates for the PA and EASRC buses. then sources the iast fiil
address and waits for corrected data. The need to arbitrate, then resupply the former fill address
raquires the two NOP's.

If a data returning X-Bus sequence is interrupted by NOP's, the responder will assert arb /nhibit to
prevent another party from gaining access t0 the bus. In consequence, the BIF does not have to be
prepared to handle external invalidates or instruction cache read data response during such an inter-
ruption.

3.2 Data Cache Invalidates

Data cache invalidates may ba posted from the BIF to the data cache. The overall sequencing of data
cache invalidate is described in chapter 5.

3.2.1 Data Cache Invalidate Address Sourcing / BIF_PAARB BIF_INVOP

The BIF provides only the invalidate index for the cache location to be purged. The address is trans-
ferred over the PA bus. The BIF requests this use of the bus one cycle in advance of the address
transfer (two cycles in advance of the tag invalidate) by asserting the BIF_PAARB(1:0) signais.
BIF_PAARB = 01 raquests the joint use of the PA bus and the EASRC bus. BIF_PAARB = 11 requests
the joint use of the PA bus, EASRC bus and PCSRC bus. This code is used if both caches are to be
invalidated.
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BIF_PAARB[1 :0]
00 NOP
01 Arbitrate for PA/EASRC : cache fill or invalidate
10 Arbitrate for PA/PCSRC : cache fill or invalidate
11 Arbitrate for PA/EA/PCSRC : cache fill or invalidate

The 13 bit invalidate index will be on PA(15:03) one cycle in advance of the tag RAM writa. Simuitane-
ously, the BIF requests the clearing of the data cache tag’s 8 VALID bits in that next cycle by asserting
the BIF_INVOP[1:0] signals. BIF_INVOP = Q1 will reset the tag's 8 valid bits.

BIF_INVOP[2:0]

000 0] NOP

001 1 RESET VALID BITS

010 2 | Selsctive TB Invalidate

011 3 | Comprehensive TB Invalidate
100 4 Fill

101 5 | Diagnostic Fill

110 6 | undsfined

111 7 | undsefined

3.3 Data Cache Writes

Processor store data is both written to the data cache and forwarded to the X-Bus. This write through
cache strategy requiraes the BIF to handle processor writes effactively.

Unlike reads. the CPU does not wait for a write requaest completion. The BIiF simply queues the write
data and address. This decouples the CPU from X-BUS acquisition latency.

3.3.1 MMU Request to the BIF

The write's 30 bit physical address is provided by the MMU on the PA bus. The MMU command
accompanias the physical address.

The write's virtual page offset within segmant, VPN, bits will be presented in advance of the physical
address and command. Typically, the 7 bits are captured by the BIF from the external EA register
evary cycle. If a write occurs, the physical address and command will then arrive in the following
cycle. If however. the PA bus is not available in this succeeding cycle. the MMU will assert the signal
MMU_HOLD_DVPN. The BIF will hold the captured data cache VPN. MMU_HOLD_DVPN will be deas-
serted in the cycle in which the physical address and command are finally sent to the BIF.

Properly aligned write data will aiso be presented in advance of the physical address and command.
Typically, the 64 bits are captured by the BIF from DATA bus directly every cycle. Again, the physical
address and command will arrive in the following cycle. If however, the PA bus is not available in this
succeeding cycle or a write buffer full stail is in effect, the MMU will deassert the signal
MMU_HDATA_LD. The BIF will hold the captured data. MMU_HDATA_LD will be reasserted in the cycle
in which the physical address and command ars finally sent to the BIF,

There are quite a few commands that apply to data cache write. They are summarized in the next
table.
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MEM_CMD[4:0]
00000Q NOP ' {10000 store.nolock.cache. 1
00001 4D DK, ca <] 10001 store.nolock.cache. 2
00010 10010 store.nolack.cache.4
00011 24 10011 store.nolock.cache.8
00100 110100 store.nolock.nocache. t
00101 10101 store.nolock.nocache. 2
00110 10110 store.nolock.nocache. 4
00111 110111 stars.nolock.nocache.8
01000 11000 T
01001 11001 4 e
01010 11010 mmu_store.uniock.nocache. 4
01011 11011
{01100 11100 | store.unlock.nocachs. !
01101 1110 store.unlock.nocache.2
01110 11110 store.unlock.nocache.4
01111 1111 store.unlock.nocache.8

3.3.2 Cacheable Data Store

in the typical data cache stare, the MEM_CMOD(4:0) field ranges from 10000 to 10011,
STORE.NOLOCK.CACHE.byte_count. The commands just indicate the store’s request size.

The address presented with the command is the IP’s exact store address.

Cacheable store data may be combined with previously issued cacheable store data to compose
larger X-Bus transactions. This write compaction is described in chapter 6.

3.3.3 Unencacheable Data Store

A store may also be declared unencacheable for one of the following reasons.

® The PMAPE’s C bit is set in the virtual address mapping tables.

® Tha memory reference address is a physical one because virtual transiation is not enabled.
e The memory reference address is a physical one required for an MMU tabie walk.

e The CPU's instruction is a store.uniock, requiring access to the bus.

The caching dscision is made by the MMU and communicated in the MMU command fieid. All of the
remaining data store command codes other than those just mentioned in the last section apply to
unancacheable references.

In an unencacheable data cache store, write compaction is not permitted. The address presented with
the MMU command is forwarded as is to the X-Bus, and the write mask is appropriately constructed to
reflect the exact request size. If the request is for an 8 byte quantity, a write muitiple of 2 longwords
will rasuit.

3.3.4 Storae.Unlock

The stors.unlock instruction will be handled no differently than any other unencacheable store except
that the bus lock may be released as a side-effect of the X-Bus request complstion.
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The IP will assume ths bus lock is releasad as soon as the write is queued.
The MMU may issue a second locking read request before a previously acquired lock is released. The

MMU may do so while processing a2 secondary TB miss during a lockead code sequance. The BIF wiil
property nest this second request and require two store.uniocks before releasing the bus.

MMU.STORE.UNLOCK differs from other store.unlock’s in that the write data will a/lways be provided in
the least significant 32 bits. When the longword store address is even, this requires a special write
rotation before the data may be presented to the X-Bus.

Thig instruction may be issued even when the bus lock is not heid. This instruction wiil not release a
bus lock not heid by this CPU.

3.3.5 Write Buffer Full

If the BIF is unable to accept much more store data, it will agsert the signal WBUF_FULL back to the
MMU in order to generate back pressura. The MMU interprets the assertion of this signal to mean that
it there is currently a store in its data cache access phase, that store data will be accepted but the
address will not. This will mean that the store must stall in its exception phase.

WBUF_FULL deserves more description than this.

3.3.6 Data Cache Write Errors

The few arrors that are possible in the course of processing a data cache write are summarized in this
section.

Because X-Bus writes are one way transters, device errors such as auxiliary bus timeouts, ECCC's
and ECCU's must be detected and recorded at the write’'s daestination.:

3.3.6.1 Bus Acquisition Timeout

If the bus acquisition timer elapses before the data cache write gains access to the bus, a hardware
failure is presumed. The BIF raquests the clocks to stop and records this error in scan state. The BIF
continues tc request the bus.

3.3.6.2 No Acknowiedge

If the data cache write address transfer resuits in no bus acknowledge, a software failure is presumaed.
The BIF records this error status in the BCTRL register and freezes the ERRADDR register. The write
request is forgotten.

3.3.6.3 Error Acknowledge

if the data cachs write address transfer resuits in an error bus acknowledge, a hardware failure is
presumed. The BIF records the error status in scan state, but otherwise treats tha the acknowledge as
a busy one to preserve state.

3.4 TB Invalidates

Trans/ation Buffer invalidates may be both posted by the MMU for forwarding to the X-Bus, or may be
relayed from the X-Bus by the BIF to the MMU. The precise sequencing of TB invalidates is described
in chaptar 5.
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3.4.1 Invalidates from the MMU

Similar to data cache writes, the CPU does not wait for a TB invalidate completion. The MMU relays
and the BIF queues the TB invalidate request.

There are both selective and comprehensive TB invalidates. There is one MMU_CMD(4:0) code for
each. Code 11000 is for a selective T8 invalidate, and a 20 bit virtual address is expected to accom-
pany it. The virtual address will be provided by the MMU on PA(01:00) || PA(29:12). The address wiil
be relayed to the X-Bus where it will appsear in the address bit positions 31 through 12. Code 11001
identifies a comprehensive TB invalidate. No address is required in this cass.

No VPN is associated with a TB invalidate,

No data is associated with a TB invalidate.

MEM_CMD{4:0] .

00000 NOP 10000

50007 e o VUV

00070 (6010}

%0017

00100 (10100 |

00101 K

00110

00T = RGN &
01000 11000 TB invalidate single
01001 11001 TB invalidate all
{01010 {11010 | roers sorennn
01011 A.

01100

01101

0110

01111 11111

3.4.2 Invalidates from the MMU: Write Buffer Full
TB invalidates, both selective and comprahensive will occupy a position in the write queue. Conse-

quently, they can rasuit in write buffer full stalls. If tha BIF is unable to accept another TB invalidate or
moare store data, the BIF will assert the signal WBUF_FULL as described in section 3.3.5.

3.4.3 invaildates from the MMU: Bus Errors

Only two errors are possible in transmitting a TB invalidate on the X-8us. Failure to secure the bus and
a parity error upon transmission.

3.4.3.1 Bus Acquisition Timeout

If the bus acguisition timer elapses before the TB invalidate gains access to the bus, a hardwars failure
is presumed. The BIF requests the clocks to stop and records this as a write error in the scan state.
The BIF continues to request the bus.
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3.4.3.2 Error Acknowledge

if the T8 invalidate transfer resuits in an error bus acknowledge. a hardware failure is presumed. The
BIF records this as a write error in the scan state. The BIF otherwise treats this acknowledge as a busy
one to preserve state.

3.4.4 Invalidates to the MMU

incoming TB invalidates are forwarded by the 8IF to the MMU. The forwarding follows the cache
invalidate pipeline as described in chapter 5.

Both selactive and comprehensive TB invalidates may be posted to the MMU. The BIF sources a 20 bit
virtual page number on the PA bus if a selactive TB invalidate is required. !f a comprehensive invalidate
is desired no address is required, but the BIF will arbitrate for and secure the PA bus nonetheless.

3.4.4.1 External Selective TB Invalidate Address Format

incoming TB invalidate addresses are right shifted before transfer across the PA bus. The virtual page
number bits 31 through 12 will be aligned on the PA bus in bit positions 22 through 3.

3.4.4.2 External TB Invalidate Address Sourcing / BIF_PAARB BIF_INVOP

The BIF uses the BIF_PAARB signals to request the PA bus to transfer the invalidate address. The BiF
will usuaily request the use only of PA and EASRC buses, BIF_PAARB = 01. If an instruction cache fill is
underway at the same time, BIF_PAARB = 11 will be driven. The decision as to whether to do an
instruction cache fill or TB invalidate can then be deferred one cycle.

BIF_PAARB[1:0]

00 NQOP

o1 Arbitrate for PA/EASRC : cache fill or invalidate

10 Arpitrate far PA/PCSRC : cache fill or invalidate

11 Arbitrate for PA/EA/PCSRC : cache fill or invaiidate

Either a selective TR invalidate or a comprehénsive’ T8 invalidate is réqueste& in the same cycle as the
PA bus use. If selective, the TB invalidate index will be on PA bus. The BIF requests the selective TB
invalidate by setting BIF_INVOP = 10. If a comprehensive TB invalidate is desired. the BIF sets SIF_IN-
VOP = 11.

BIF_INVOP[2:0]

000 0] NOP

001 1 | RESET VALID BITS

010 2 | Selective TB Invalidate

on 3 | Comprenensive TB Invalidate
100 4 Fill

101 5 | Diagnostic Fill

110 6 | undefined

111 7 | undsefined
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CHAPTER 4 ~ INSTRUCTION CACHE INTERFACE

4.1 Instruction Cache Read Miss

Processor instruction fetchas are usually satisfied by the instruction cache. An instruction cache read
miss occurs whan the data cache doas not pragently have the requested instruction.

in the main, instruction cache read miss processing paralieis that of data cache read miss. The major
differences resuit from the many fewer raquest within instruction cache miss.

4.1.1 MMU Request to the BIF

The fetch's 30 bit physical address is provided by the MMU on the PA bus. The MMU command
accompanies the physical address.

The read’'s virtual page offset within segment, VPN, bits will be presented in advance of the physical
address and command. Typicaily, the 7 bits are captured by the BIF from the external PC ragister
avery cycle. If an instruction cache miss cccurs. the earliest the physical address and command will
arrive is the following cycle. If hawever, the PA bus is not used or is otherwise unavailable in this
succeeding cycle, the MMU will assert the signal MMU_HOLD_IVPN. The BIF will hold the captured
instruction cache VPN. MMU_HOLD_IVPN will be deasserted in the cycle in which the physical address
and command are finally sent to the BIF.

There is only one command that applies to instruction cache miss.

MEM_CMD[4:0]

00000 NOP 10000
00001 10001
00010 fetch.nolock.cache.32 10010
00011 B ] 10011
00100 10100
00101 10101
00110 10110
00111 10111
01000 11000
01001 11001
01010 11010
01011 11011
01100 11100
01101 11101
01110 11110
01111 11111

All instruction cache misses are cacheable and 32 bytes in langth,

The address presented with the command is the IP’s exact fetch address. Before forwarding to the
X-Bus address bits 3 and 4 must be unconditionally zeroed. This is required by the fill algorithm which
is naturai order beginning at the nearest lower byte boundary that is @ modulo 32. The address mask
bits must be forced to ail ones before transfaerring on the X-Bus.
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4.1.2 Instruction Cache Read Data Return

Once the instruction cache miss read address is transferred across the X-Bus, the BIF awaits read
data response. When the requested data finally returns, it is forwarded to the INST(63:00) bus. The
instruction is then stored in the cache.

4.1.2.1 Instruction Return Delay

Normally, returning memory data is forwarded to the INST bus in the cycle immediately following the
data transfer on the X-Bus. In some cases however, INST bus forwarding is delayed one additional
cycle. The cases are summarized.

e The X~-Bus data returns in the same cycle that the PCSRC bus is being used to process an
invalidate. An instruction cache fill cannot take placs in the next cycie because the PC wil
not hoid the proper fill address.

e The X~Bus data returns in a cycle immadiately after a data cache miss that required an
ingertion delay. The immediately abutting data and instruction fill data responses on the
X-Bus does not afford an opportunity to remove the data cache miss's delay.

The data return delay is not visible 1o the MMU in handshake protocol.

4.1.2.2 Instruction Return Alignment

The instruction data is always aligned on the INST bus as it appsears on the X-8us.

4.1.2.3 Instruction Cache Fill Data Sourcing / MEM_RESP

The instruction cache data is provided 8 bytes at a tims on the X-Bus and is forwarded to the INST bus
8 bytes at a time. The instruction cache filling is strictly siaved to the X-Bus timing and normally takes
place in uninterrupted cycles. See ECCU/ECCC below for the exceptions to this.

The BIF will begin driving returning X-Bus data before X-Bus Read-Response data has arrived. The BIF
wiil first drive the INST bus in the cycle after the instruction cache miss MEM_CMD has been driven by
the MMU.

Simuitangousty with the INST bus driving, the MEM_RESP(2:0) field is sourcad by the MMU. Typically,
code 010 will be driven. Codes 110 and 111 wiii be driven in the event of bus error. The instruction
cache filling is strictly siaved to the X-Bus timing and normaily takes placs in uninterrupted cycles.
See ECCU/ECCC below for the exceptions to this.

MEM_RESP{[2:0] - Data Cache Miss

000 NOP
.00%: .} Ocache: Data: Betura: .

010 lcacne Data Return

Fetch ECCU
Fectch No Response
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4.1.2.4 Instruction Cache Fill Parity Sourcing

The returning instruction parity is regenerated while the data is on the INST bus. It is written into the
instruction cache parity RAM's in the following cycle. One bit of parity is maintained over all even
instruction bytes. and one over ail odd instruction bytes.

4.1.2.5 Instruction Cache Fill Address Sourcing / BIF_PAARB BIF_INVOP

The instruction cache fill index is sourced by the BIF on the PA bus. The BIF requests this use of the PA
bus one cycle in advance of the addrass transfer (two cycles in advance of the INST transter) by
. asserting the BIF_PAARB(1:0) signals. BIF_PAARB = 10 requasts the joint use of the PA bus and the
PCSRC bus. BIF_PAARB = 11 raquests the use of the EASRC bus in addition. This last code would be
used if instruction cache miss and data cache miss are concurrently underway on the X-Bus.

The BIF will begin requesting the PA bus before X-Bus Read Response data has arrived. The BIF wili

first make an arbitration request on the PAARB signais in the X-Bus acknowiedge cycle for the instruc-
tion miss read address transfer.

BIF_PAARB(1:0]

00 NOP

a1

10 Arbitrate for PA/PCSRC : cache fill or invalidate

11 Arbitrate for PA/EA/PCSRC : cache fill or invatidate

The BIF sources the 14 bit fill index on PA({29:16) one cyclae in advance of the INST transfer. Simulta-
neously, the BIF requests the setting of the instruction cache tag's VALID bit in that next cyclas by
deasserting the BIF_INVOP signals.

BIF_INVOP[1:0]
°]] NQOP
01
10
11

4.1.2.6 Instruction Cache Fill: MMU Tracking

While the BIF sources both the data and fili address. the RAM strabas and tag contents are provided by
the MMU. The MMU does so in response to the BIF_PAARB and BiF _INVOP signals. The BIF sources
these signals without knowing about return data availability. The BIF informs the MMU that data has
been written only after the fact, by means of the MEM_RESP(2:0) signals.

The MMU guesses that the fill will complets the next cycla when the final fill entry index is on the PA bus
and there is no request on the BIF_PAARB signals. If for some reason the fill does not complete in this
cycle, both the MMU and BIF backup and try again. The MMU recognizes this situation by observing
that the MEM_RESP fieid is 000 (NOP) in the cycle which should have been the last RAM data write.

4.1.3 Instruction Stream Writes

No attempt is made in hardware to interlock stores with instruction stream reads. If a program wishes
to update the instruction stream it must follow this sequence. :

e Execute the stors.

® Exacute a ioad.unlock. This assures that the stors has been accomplished on the X-Bus.
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® Wait for the invalidate pipeline to empty (5 instructions).

e Fetch the instruction.

4.1.4 Instruction Cache Read Miss Errors

The errors that are possibie in the course of processing an instruction cache read miss are summa-
rized in this section.

4.1.4.1 External Invalidate Collision

In tha interval between the read address transfer on the X-8us and the read data return, a write to the
returning data from another CPU is possible. The BIF watches for this situation and detects any write—
read collision on the same physical page. f a collision is detected. the BIF_iNVOP[1:0] signals are

asserted rather than deasserted in the cycle before the instruction cache write. BIF_INVOP = 01 will
reset the tag's valid bit. .

This potential cache invalidation will also apply to locally generated writes.

BIF_INVOP[1:0]

00 NOP

0} ] invalidate Instruction/Data Cache
10

11

4.1.4.2 Bus Acquisition Timeout

if the bus acquisition timer slapses bsfore the instruction cache read gains access to the bus. a

hardware failure is presumed. The BIF requests the clocks ta step and records this error status in the
scan state. The BIF continues to arbitrate for the bus.

4.1.4.3 No Acknowiedge

i i i ir knowledge, a software failure is
if the instruction cache miss address transfer resuits in no pus ac .
presumed. The BIF records this error status in the BCTRL register and freezes tpe ERRADDR register.
The BIF returns a FETCH_NO_RESPONSE code. 111, on the MEM_RESP(2:0) signais.

Any instruction fetch from a memory region that cannot support an X.-Busz_ READ MULTIPLE will result in
this error. An attempt to fetch from UTILITY board RAM will result in this error.

4.1.4.4 Error Acknowledge

If the instruction cache miss address transfer resuits in an error bus acknowledge. a hardwafe failure is
presumed. The BIF records this error status in the scan state. The BIF otherwise treats this acknow’-
edge as a busy one in order to preserve state. It’s expected that the source of the acknowiedge will
request a clock freeze.

4.1.4.5 Read Return Timeout

If the read return timer elapses before tha instruction cache read data completely returns, a haraware
failure is presumed. The BIF records this error status in the scan state. The BIF continues to await
read data return.

4146 ECCU

A device error may prevent correct data return. The most common such error is a main memory
ECCU. .
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When only incorract X-Bus data ‘can be returned. a READ RESPONSE ERROR command will be re-
turnad on the X-Bus. The BIF wiil terminate the transter. The MMU_RESP(2:0) code FETCH ECCU.
110, will be sent to the MMU. No further response data for the READ MULTIPLE will be accepted from
the X-BUS.

4.1.4.7 ECCC

A correctable data error can occur upon access to main store. !f this happens in an instruction cache
fill, this may resuit in the interpositioning of NOP's within the returning X-BUS read data. When a NOP
interrupts this sequence, there will aiways be at least 2 NOP's present.

When the NOP interrupts the fill sequencs, incorrect data is written to the RAM's. The BIF then backs
up the fill address by eight bytes, awaits the corrected data, and rewrites the RAM location.

When the NOP arrives instead of the last 8 bytes of read response data, there is an additional compli-
cation in that the BIF may have rsiinquished control of the PA bus. The MMU will recognize this
situation and hold the processor stall. The BIF rearbitrates for the PA and PCSRC buses. then sources
the last fill address and waits for corrected data. The need to arbitrate. then resupply the former fill
address requires the two NOP's.

If a data returning X-Bus sequence is interrupted by NOP's, the responder will assert ard inhibit 10
pravent another party from gaining access to the bus. In conseguence, the BIF does not have 10 bs
prapared to handle axternal invalidates or data read data response during such an interruption.

4.2 Instruction Cache Invalidates

Instruction cache invalidates may be posted from the BIF to the instruction cache. The averall se-
quencing of instruction cache invalidate is described in chapter 5.

4.2.1 Instruction Cache invalidate Address Sourcing / BIF_PAARB BIF_INVOP

The BIF provides only the invalidate index for the cache location to be purged. The address is trans-
farred over the PA bus. The BIF requests this use of the bus one cycle in advance of the address
transfer (two cycles in advance of the tag invaiidate) by asserting the BIF_PAARB(1:0) signals.
BIF_PAARB = 10 requests the joint use of the PA bus and the PCSRC bus. BIF_PAARB = 11 requests
the joint use of the PA bus, EASRC bus and PCSRC bus. This code is usad if both caches are to be
invatidated.

BIF_PAARB{1:0]

Q0 NOP

o1

10 Arbitrate for PA/PCSRC : cache fill or invalidate

11 Arbitrate for PA/EA/PCSRC : cache fill or invaiidate

The 14 bit invalidate index will be on PA(29:16) one cycle in advance of the tag RAM write. Simultans-
aqusly, the BIF requests the ciearing of the instruction cache tag’'s VALID bit in that next cycie by
asserting the BIF_INVOP signals. BIF_INVOP = 01 will reset the tag’'s valid bit.

BIF_INVOP[‘I 0]
00 NOP
01 Invalidate instruction/Data Cache

10
" .
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CHAPTER 5 INVALIDATE PIPELINE

5.1 Duplicate Tag Stores

The Duplicate Tag Store (DTS) is a copy of the CPU’s Instruction and Operand Cache Tag Stora used
to compare addresses being madified on the X-BUS against the contents of the cachss. If a match
between a location being maodified on the X-BUS and DTS entryis found then that entry is invalidated in
the corresponding cache. Performing this operation without the DTS would mean wasting many cycies
in the caches to compare the cache tags against X-BUS memory modity transactions.

The duplicate instruction tag store is known as DITS. The duplicate date or oparand tag store is
known as DOTS. >

5.1.1 DTS Addressing

The DTS are addressed as are the principal caches with virtual addresses. The X-BUS deals only with
physical addresses so that the virtual address of a transaction is formed by useing the 12 LSB’s of the
physical address which are the same as the 12 LSB's of the virtual address and concatenating them
with enough of the virtual address to index the cache. In the case of the CPU's 128kB instruction
cache 5 virtual bits are required. In the case of the CPU's 64kB data cache 4 virtual bits are required.
These bits accompany the physical address on the X-BUS.

DUPLICATE TAG STORE INDEX

. eV

a A\
BYTE ADDRESS WITHIN A PAGE
N

/ ‘ _ \

16 J15114 113 12| 11 1095765432!1‘0‘

\ A\ / /

N N SN

VIRTUAL ADDRESS PHYSICAL ADDRESS BYTE SELECT
(VPN) (NOT USED TO

INDEX DTS)

DUPLICATE TAG STORE ADDRESSING. Bits 16 through 3 are used to address the Duplicate Tag Stors.
Bits 16 through 12 are taken from the VPN of the X-8US transaction and bits 11 through 3 are taken
from the Physical Address. One less bit is required to address the Duplicate Operand Cache Store than
the Duplicate Instruction Cache Store. Only 13 bits are used to address the DOTS, bit 16 is tied to a
fixed vaiue.

DITS and DOTS ars commoniy addressed.

5.1.2 DTS Contents .

Each DTS emry contam

. o1 obit panty chsck bxt
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The physical tag is the 18 bit physical page number which along with a 12 bit byte index addresses 1
gigabyte (30 bits) of physical address space.

The parity bit is an odd parity check bit so that the sum of all the bits which are set in the physical tag,
the valid entry bit and the parity bit will be odd.

There is no explicit valid bit. In invalid entry will simply point to an unlikely memory location. O.

Example; .
physxcal tag = 000000000000000000
parity bit =1 - -
»
17§1641st1a|13f12]11|1ol9jat7|{e|{sta)3al2]1]o]P
\ /
\ e

PHYSICAL PAGE NUMBER
° PARITY CHECK BIT

DUPLICATE TAG STORE CONTENTS. The Duphcate Tag Stores contain an 18 bit physical pagse number
and a Panty Check 8it. .

5.2 DTS Functional Overview
Ouplicate Tag store operations can be divided into the folldwing catagories:

o OTS lookup

2 OTS hit

2 DTS allocate from processor write
2 DTS aliocate from read response

The DTS acts as an impertect filter for cache invalidates. Any time some other system device (includ-
ing another CPU) modifies a memory location the DTS is checked to see if that location is currently
resident in either of the CPU's caches. If it is present then a cache cycle is stolen from the cache that
contains that location and the entry in the cache as well as the entry in the DTS is invalidated. The DTS
may actually have labeled as valid entries which are not valid in the caches. The only effect this wil
have is to generate a ngedless cache invalidate cycls.

The OTS is updated in two separate situations just as the main caches are. The first is when the CPU
madifies a location by executing a STORE operation. The second is when a cacne miss is generated
and the data returns on the X-BUS.
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s <

E (=
T \

CACHE 4

BASIC DUPLICATE TAG STORE DATAPATHS. [_'_—_'I areas indicata off-chip logic

5.3 DTS Lookup

A joint lookup of the DITS and DQOTS is performed whenever the following transactions are detected on
the X-BUS:

O WRITE from another device
o WRITE MULT followed by WRITE DATA from another device

A lookup only of the DITS is performed whenever the following transactions are dstected on the X-
BUS:

o WRITE from this cpu
© WRITE MULT followed by WRITE DATA from this cpu

The DTS lookup is basically handled in three pipseiine stages. The stages are siaved to the operation of
the X-BUS.
77 COMMAND DECODE -
' DTS -ACCESS_ -
e TAG COMPARE . = -
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5.3.1 DTS Lookup: Write

In the first cycle after the X-BUS bus write transaction. the CMD field is decoded. If a WRITE operation
is decoded then the address to be used as a DTS index is loaded into the DTS INDEX vegister. The
following cycle the DITS is accessed in a read operation and the DOTS is optionally accessed. The

tags are compared as required to the physical page number. if the PPN and DTS tag match, a cache
entry invalidate and a DTS entry invvalidate are scheduled.

X-BUS
CMD DCD

DTS |

DTS LOOKUP PIPELINE SCHEDULE for WRITE or WRITE UNLOCK

CYCLE 1 A WRITE transaction on bus.
The transaction is loadad into the 8IF's X-BUS input registers.

CYCLE 2 The cormmand is decoded.
if it is a WRITE the DTS index reg is loaded from the physical address and the VPN,
The physical addrass is piped-forward for the tag compara(s ).

CYCLE 3 A DTS read access takes place, the tag is compared to the physical adoress.
If a match occurs a cache entry invalidate and a DTS entry invalidate
are scheduled.

5.3.2 DTS Lookup: Write Multipie

If the command is decoded and determined to be a WRITE MULTIPLE transaction then the address is
stared in the DTS index. Ouring the following cycie when the corresponding WRITE MULTIPLE DATA is
decoded the first lookup is opticnally done if the WRITE MULTIPLE began on an odd longword bound-
ary. Otherwise, the address is heid in the DTSINDEX. Thereafter, the DTSINDEX is loaded with its
former contents plus or minus 8 bytes. depending on whether the WRITE MULTIPLE was ascending or
descending, in anticipation of the next WRITE MULTIPLE DATA cycle.

1 2 3 4 s
x-guUs | WM | wo | wo

CMD DCD 58] WM | WD | wD

DTS Bt aed WD | WD | WD

DTS LOOKUP PIPELINE SCHEDULE for WRITE MULTIPLE with TWO DATA TRANSFER CYCLES
\

CYCLE 1 A WRITE MULTIPLE (WM) transaction on bus.
The transaction is loaded into the BIF's X-BUS input registars.
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CYCLE 2 The command is decoded.
If it is @ WRITE MULTIPLE the acddrass formed to index the DTS is
loaded into the DTSINDEX register.
At this time the first quadword of the WRITE MULTIPLE DATA is on the
X-8US(WD,).

CYCLE3 WRITE MULTIPLE DATA is decoded and the address in the DTSINDEX is
optionally incramented or decrementad by 4 bytes.
The optional odd longword, WDo, lookup occurs.
if a match occurs schpdule cache entry invalidate and DTS entry invalidate

CYCLE 4 A DTS read access takes place for Wb,, the tag is compared to the
physical adaress.
If a match occurs schedule cache antry invalidate and DTS entry invalidate

CYCLE 5 A DTS read access takes piace for WD,, the tag is compared to the
physical address.
if 8 mateh occurs schadule cache entry invaiidate and DTS entry invalidate

5.3.3 DTS Lookup Hit Processing

When a memory modify operation by another davice causes a hit in either DTS, or a locaily generated
write hits in the DITS, two avents are scheduied. The first is an invalidate of the entry or entries which
caused the hit in the main cache and the second is an invalidate of that entry or entrigs in the DTS in
order to maintain the OTS consistant with the main caches.

It usually takes six cycies for a WRITE modifying a memaory location which is also in the local caches to
proceed from the X-BUS to that entry being invalidated.

o transaction on X-BUS

o command decoded

¢ DTS accessed

o PA bus arbitration

o PA BUS/EASRC/PCSRC transfer
© cache tag write(s)

The DTS entry invaiidate is placed in a queue awaiting a fres DTS cycle.

Once a hit has been detected. the hitting index is ioaded into the address register of the cache corre-
sponding to the DTS in which it has hit. The cycie after the DTS lookup is used to compiete the
address compare and request use of the PA bus the following cycle. The PA bus will always be
available axcept when the DTS invalidate pipeline is pre—empted by a READ RESPONSE operation filling
a cache miss (discussed later). The cycie following PA arbitration the index is driven off the BIF ag-
dress chip and the drivers to either the PCSRC bus or the EASRC bus or both are enabled by the MMU.
An index hitting in the OITS makes it's way to the PC register while one hitting in the DOTS must be
loaded into the EA register. An index hitting in both the DITS and DOTS will be loaded into both EA and
PC ragisters.
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CPU BOARD MSI LOGIC BIF ADDRESS CHIP
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INSTRUCTION [
CACHE
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PASAC BU. INDEX
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CACHE INVALIDATE DATAPATHS (not all bus sources are shown)

2
x-gus| W.| W,
W

cvo oco gl Vol We
ots i - AR
PASRC ARB | st bt W W,
pasrc F ', v e I
CACHE ‘ VW,

DTS HIT WITH CACHE ENTRY INVALIDATE and DELAYED DTS ENTRY INVALIDATE.

CYCLE 1 A WRITE (W) transaction on bus.
The transaction is lpaded into the BIF's X-BUS input registers.

CYCLE 2 The command is decoded.
The physical addrass is piped forward for the tag compare.
The virtual index is loaded into the DTS index register.

CYCLE3 A read oparation is perforrned on the DTS.

CYCLE 4 The resuits of the tag compare are avaiiable.
Since there was a hit the PASARC bus is requested.
Tha DTS entry invalidate(s) are queued for sxecution when DTS is availabls.

CYCLE 5 The virtual indax of the location to be invalidated is passed via the
PASRC bus to the appropriate cache address register.

CYCLE 6 The cache entry causing the DTS hit is invalidated.
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5.4 DTS Allocate from Processor Writes

When the CPU modifies an operand cache iocation via a store instruction the DOTS must aiso bs
updated to reflect the cache's new stata. The update occurs after the transaction is placed on the
X-BUS. This avoids DTS conflicts by using the X-BUS as a synchronization point for DTS access. Only
one device can use the X-BUS at a time and that device had to arbitrate to obtain the bus. The only
OTS operations which arg not synchronized through the X-8BUS are the DTS entry invalidates and those
are lower priority than the rest.

5.4.1 DTS Allocate: Write

When the BiF address chip decodes a WRITE operation on the X~BUS that it has generated the follow-
ing cycies it will write the new tag intc the DOTS while doing a lockup into the DITS. The DITS lookup
procedure has been previously described. A hit occurs in the DITS at this point means that the proces-
sor is modifying a location that has been cached in the instruction cache. An instruction cache entry

invalidate and a DITS entry invalidate are scheduled. o
While the DTS write allocate is occurring the DTS index must be compared against all the indices in the

DTS entry invalidate queue that are scheduled to invalidate an entry in the DOTS. If any of the com-
pares succeed then that DTS entry invaiidate must itseif be invalidated. If the invalidate was sched-
uled for both the DITS and DOTS then it is retagged as being only for the DITS. In this way an old
pending DOTS entry invalidate won't destroy a recently aliocated entry.

5.4.2 DTS Allocate: Write Multiple
A WRITE MULTIPLE from the CPU will be treated just like a WRITE MULTIPLE from ancther device with

the only difference being that the DOTS is written into with the physical tag rather than read and
checked for tag match.

X-BUS
CMD DOCD ¢

DTS §

DTS ALLOCATE from PROCESSOR WRITE
CYCLE 1 Processor write is placed on X-BUS from WRITE BUFFER.
CYCLE 2 The write is decoded and aiso determined to be from the sar;ve CPU.
CYCLE 3 The DOTS is upgated with the new physical tag and the valid bit set
The DITS is checked for a tag compare and if a hit occurs the

instruction cache entry invalicate and DITS entry invalidate are
scheduled in the usual way.
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5.5 DTS Allocate from Read Response

The DTS is aiso written upon the return of a READ RESPONSE in reply to a READ MULTIPLE made by the
same CPU. When a cacheadle miss occurs in a cache a READ MULTIPLE request is sent to main
memory. Main memory returns the requestad data in the form of sccessive READ RESPONSE's.
Upon decoding the expected READ RESPONSE command the BIF sends the associated tag to the
awaiting cache and enters the tag into the DTS using the conventional DTS pipeline. No tag compari-
son is performed during this DTS cycle and only the DTS corresponding to the cache that missed is
updated.

DOTS

L

C
DECOQDE

k<4
o
lomm;n onl f
[s X <C¢]
[ &
N

DTS INDEX INCREMENTIDECREMENT DATAPATHS. [___] areas indicate off-chip logic.

Three sets of addresses must be storad and manipuiated in addressing the OTS. The DTS index
register aiready mentionad used in processing WRITE MULTIPLES, and two registers to hold the ag-
dresses associated with two passible psnding cache miss READ RESPONSES
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N+1 N+2 N+3

CMD DCD

oTS

READ MULTIPLE REQUEST and READ RESPONSE SCENARIO with DTS UPDATE.

CYCLE 1 A cache miss causes the 8IF to place a READ MULTIPLE request on
the X-BUS.

CYCLE 2 The command is decoded and is determined to be a self ganerated
READ MULTIPLE.
The VPN and physical eddress are stored in the appropriate pending
operation holding register depending on the X-8BUS SUBID signaling
whether it is an instruction or cperand cache miss.

CYCLE 3...N-1 The memory subsystem is procassing the READ MULTIPLE.

CYCLE N The memory subsystem placas the first of two READ RESPONSE
transactions on the X-8US.

CYCLE N+1 The second READ RESPONSE is'on the X-8US.
The first READ RESPONSE is decoded and the corresponding addrass
is loaded from the holding register to the DTS index. The holding
register is then lcaded with it's contents & 8 bytes dapending on the orgering
for that type of operation. (I-miss or D-miss).

CYCLE N+2 The first READ RESPONSE is updating the DTS.
The second AEAD RESPONSE is decoded and the contsnts of the
holding register are again transferred ta the DTS incex register ang the
holding register is stepped {4+ 8 bytes).

CYCLE N+3 The second READ RESPONSE upoates the OTS.
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CHAPTER 6 WRITE PIPELINE

6.1 Write Buffer Overview

The purpese of the write buffer is twofold. Firstly, it isolates the processor from memory and bus
latencies during stores and sacondly, it reduces overall bus traftic.

The write buffer isclates the processor from memory and bus latencies by offering a high bandwidth
fito queue for store operations. The processor can submit many back-to-back stores and continue
functioning while this queue is emptied through the X-Bus into memory as both become avaiiable.

The write buffer serves to reduce bus traffic by collapsing and grouping smail agjacent writes into large
single blocks which make better use of the X-Bus and main memory resources.

CACHE

ncw X

PROCESSOR

The WRITE BUFFER acts as a colfapsing fifo gusue for stores from the processor to the X-8US.

6.1.1 FIFO Organization

The write buffer is physically split across the CBA and CBD gate arrays. The CBA hoids the address
portion of the queue and the CBD holds the associated data. There is 64 bits of data associated with
every queue address.

The quseue is structured as a variable depth FIFQ. Entries are added to the bottom of the queaue and
removed from the top. The top of the queue is always at a fixed point. The bottom of the queue varies
depending on the current number of queue entries.

There are address comparators at every queua entry. These comparators are usad 1o decide whether
newly arriving write data may be merged with the current queue contents. This write compaction
reduces bus and memaory bandwidth requirements. The address comparator is aiso used to permit
reads to bypass writes. The address comparators indicate any read/write address collisions that would
forbid the bypass.
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—— ADDRESS QUEUE—

nwcw X

DATA
Bus

The WRITE BUFFER pipeline showing cata and addresses flowing from the processor to the X-BUS
sometimes by way of a fifo queue. The actual nurmber of stages in the queue is yet to be determined.

Queue entries are actuaily not unicaded until a successful X-Bus acknowledge is seen. Transmit
Bypass is used when a sacond or successive X-Bus write is initiated betore that first acknowledgs.
Transmit bypass picks the first untransmitted queue entry as the next address or data to send. The
transmit bypass is not shown in the figure.

6.2 Write Address/Data Staging

The processor store data is captured from the cache DATA bus during the store's access stage.
Typically, the address will fcllow in the next cycle on the PA bus. If the PA bus is not available in that
cycte, or there is a processor EVALID stall in effect, the data is held in place by the MMU deasserting
the MMU_HDATA _LD signal.

As in the prior figure, there are two inbound data staging registers and one address staging register
befora the write queue proper. One data staging register is to compensate for the eariy data arrival.
The second, and the address staging register, are to aliow the address comparisons to take place and
control the load enables in the queus. The address comparisons condition whether the store data may
be merged with data already present.

6.3 Write Queue Contents

In aduition to holding the cata. each CBD data qusue has a MSHALF_VALID and LSHALF_VALID flags.
The vaiid bits are used to determins whether there are any contents in the entry. LSHALF_VALID and
MSHALF_VALID are aiso used to control the output write rotation needed for a 32 bit or smaller write to
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an even longword address. There is a NOSWAP flag which defeats that output write rotation in the
case of the MMU which aiready rotates the data property. If MSHALF_VALID ang LSHALF_VALID are
both valid, during the address phase of a write multiple transfer, a "2" is sourced with corract parity

MS_VALID LS_VALID NO_SWAP

0 0 - EMPTY

1 0 0 EVEN LONG

1 0 1 EVEN LONG - MMU
0 1 - ODD LONG

1 1 - QUAD

in addition to holding the address, the CBA address queus holds 4 BYTE_VALID bits in addition to the
MSHALF _VALID and LSHALF_VALID flags. LSHALF_VALD is aimost address bit 2, and the four byte
valid bits correspond to the 4 bit byte mask required for a 32 bit bus write. The CBA sources these
onto the X-Bus during the address phase of a write or write multiple. There is no need for the
NO_SWAP bit.

MS_VALID LS_VALID BYTE_VALID

Q 0 —— EMPTY

1 0 8888 EVEN LONG
0 1 8ees ODD LONG
1 1 — QUAD

The CBA IC aiso has other flags that control internal arbitration and write compaction. Thers are
NOCACHE, UNLOCK, INVTLBALL, and INVTLBE flags associated with each address. Any of these flags’
being set inhibits write compaction and read around write. UNLOCK ‘also relsases the bus lock if the
nesting level is 0 and this CBA holds the lock. The invalidate TB flags force the selection of the TB
invalidate bus command.

6.4 Write Queue Loading

Unless the queue is full. processor stores are accepted and added t0 the queued data without stalling
the CPU. Typically, the store’'s data and address are added simuitaneousily to the bottom of the
address and data queues. The position of the queue's bottom is determined by the first queus entry
which is empty, measured from the queue’s top. The affiliated flags are set.

6.4.1 Load Merge

If cacheable store data is being added to the queua. and the last valid entry in the queue is also
cacheable and agrees in the quadword address. the load data may be merged into that entry. The
merging would logically OR the valid bits. The marging can always happen if the data to load is a
longword or quadword quantity. The merging may be permitted if the data to load is a byte or word in
length. The marging will be allowed if the queus entry is aiready a quadword. or if the marge rasuit will
not spill over into the second longword.

6.4.2 Write Buffer Full

When the iast entry in the write queue 1s occupied. and the inbound data address register is occupied
or about to be (MEM_CMD is requesting the use). the signal WBUF_FULL is sent to the MMU to prevent
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any fur.her stores from advancing. If thare is a store cunently in its cacii@ access stage cache, that
store’'s data will be caonwred and heid, st will freeza in ita EXC stage.

The signai WBUF_FULL will be deassertad when the write queue next advances. Note that there's
some magic here when a store is stuck with its MEM_CMD asserted.

6.5 Write Queue Unloading

The qusue entries are not uniocaded until the cycle after receiving a successful acknowledge for the
address or data transfer on the X-Bus. If retry is required, the address/data is then still available in the
write gqueuse.

Write addresses are always taken from the write address queue. Only reads will use the fast pass
address paths from the MMU. The fast pass paths ara for quick posting of read miss addresses in the
avent of defauit bus ownership.

6.5.1 Transmit Bypass

The address or data 10 send on the X-Bus is normally at the top of the queue. |f howaver, the top of
qusue has been transmittad but not acknowiedged. the next to top of queus would be used. During
write muitiples, queus data is being transmitted every cycie. Since the queue must be accessed the
cycle before the X-Bus transmission, and the queue unioad occurs in the third cycle after the X~Bus
transmission, 4 lavels of transmit data bypassing is required! The four leveis of bypassing aliow reach-
ing back ta the fifth quaue antry from the top. This is illustrated in the next figurs.

ACCESS D1 D2 |03 | D4 05

TRANSMIT =3 D2 | D3 {D4 TRANSMIT
PEND D1 |D2 D3 BYPASSING
ACK D1 | D2

UNLOAD D1

An additional level of transmit bypassing is provided in the address queue output delivery. This ailows
2 level of address /ock-a-head that permits an early detection of write muitiples. The write muitiple
gets ahead when the first X-Bus cycle transmits only an address, no data. This one cycle gap is
enough to let the address transmit bypass sneak ahead of the data by one cycle.

Transmit bypass requires a sent flag be associated with the top 3 data and top 4 address queue
entries. A queue entry is bypassed if it is already sent, or the gueuse siement in front of it is already
sent and there is a transfer on the bus now.

6.5.2 Transmit Retry

It a data or address X-Bus transfer receives an error or busy acknowledge, all queus element sent bits
are reset. The requests are retried. The REJECT signal may aiso be asserted.

6.5.3 Write Muitiple Collapse

If the 1ext address to send is for a quadword. a WRITE MULTIPLE command is sent. While the address
is being transmitted on the X-Bus. the next queue addressed is checked to see if it's also a quadword
and in an adjacent quadword.

The adjacency direction is suggestad by the write queue by exemining the lower order bits of the next
. two addresses to transmit.

Write multiples are arbitrarily broken up on 256 byte boundaries to prevent bus hogging.
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6.6 Read Around Write
if an instruction cache read is posted. the read is free to pass around previously queued up writes.

if a data cache read is posted, the read is free to pass around previously queued up writes only it the
address doesn’t collide with a pending write. The write queue detects this address collision apd
reports it to tha intarnal BIF arpitration logic. The read bypass is inhibited if there are read and write
side-effects as well, see chapter 2.

6.7 Write Parity

Parity for both address and data is regenerated just before X-Bus transmission.

CHAPTER 7 REGISTERS

7.1 Interrupt Posting

There are 18 intarrupt posting longword addresses to which the BIF responds as a destination. The
addresses are in subsequent longwords.

INTERRUPT POSTING ADDRESS 00pp 0100 to 00pp 013C

AN 00

DATA NOT INTERPRETED WRITE ONLY

PP = PROCESSOR SELECT NUMBER
00. 04, 08, 0C 10. 14, 18, 1C
20. 24, 28, 2C 30, 34, 38, 3C

Interrupts are always accepted by the processor to which they are directed. The intarrupt criginator
receives no acknowiedge. [n effect. storing to an interrupt posting address simply requests an inter-
rupt in the destination processor. There are 16 interrupt classes. The lower numbered interrupt
posting address corresponds to the lower numbered interrupt class.

7.2 Interrupt Control Register

Associated with each interrupting address in an AT processor are both an interrupt enable and an
interrupt pend flags. These 2 bits are available in the interrupt control register, ICTRL. The register
should be read and written only as a longword quantity.

INTERRUPT CONTROL (ICTRL) 00pp 0208
31 30 16 1§ 00
| IENAB[14:00] IPEND{15:00]
IENAB = INTERRUPT ENABLES FOR INTERRUPT CLASSES 0 TO 14 READ. WRITE ' TO XOR
IPEND = INTERRUPT REQUESTS FOR INTERRUPT CLASSES 0 TO 1§ READ ONLY

N.B.. INTERRUPT CLASS 15 IS ALWAYS ENABLED

PP = PROCESSOR SELECT NUMBER
00. 04, 08. 0C . 10, 14, 18, IC
20, 24, 28, 2C 30, 34, 38. 3C

The interrupt pend bit is set when a write to the associated interrupting address is detected. The
pended interrupt will be responded to when its specific interrupt enable bit is. set and there is no



4,979,099
103 104

comprehensive trap masking otherwise in effect. The highest priority enabied interrupt pend bit is
cleared automatically upon the processor reading the interrupt summary register. The corresponding
interrupt enable bit will also be cleared simuitanecusly.

The interrupt enable bits may be set and cieared directly by processor writes to the ICTRL register.
Storing to the ICTRL register loads the interrupt snable portion of the register with the XOR of the
current register contents and the store data. This permits the needed selective updates of register
contents. .

7.2.1 Non Maskable interrupt

interrupt level 15 cannot be masked.

7.3 Interrupt Summary Register

The interrupt summary register identifies the highest pricrity interrupt that is both pending and en-
abled. If no interrupt is pending. ISUM<4:0> will be zero. The register should be read only as a
longword quantity. '

INTERRUPT SUMMARY REGISTER (ISUM) Q0pp 0200
31 ' 05 04 03 00
C - s FE Y

ISUM = HIGHEST INTERRUPTING LEVEL . READ ONLY
l=1-> ENABLED INTERRUPT PENDING

N.B.. READING CLEARS IPEND(ISUM) AND IENAB(ISUM)

PP = PROCESSOR SELECT NUMBER
00. 04, 08, 0C 10. 14, 18, 1C
20. 24, 28, 2C 30. 34, 38. 3C

7.4 Bus Control Register

The bus control register permits operational code aceess to the DTS force hit and miss functions. In
addition, the BCTRL register captures overall state of any software recoverable error detected by the
BIF. The register shouid aiways be read and written only as a longword quantity.

The Hi and Ho bits force the duplicate instruction and data/operand tag stores to hit when a lookup for
an X-Bus write is in progress. The Mi and Mo bits force that lookup to miss. The operation when both
the force hit and force miss bits for the same duplicate tag store are set, is undefined.

The En and Ei bits are the trap enables for Bus write no response and bus /ock timeaout respectively.
When either trap i3 pending, whether enabied or not, the corresponding W or L bit will also be set. The
trap must be explicitly acknowledged in software by writing 0's to W and L. Setting W or L nonzero
while the associated trap is enabled. will trigger an IP trap. Breaking a lock by trap_disparch will not be
racarded as a lock timeout.
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BUS CONTROL REGISTER (BCTRL) 00pp 0210
31 30 29 28 27 28 25 06 05 .02 0t 00
H | Ho{ Vi | Md Ly ‘ S T NORESP | W L
H =1-> FORCE HIT, DITS READIWRITE
Ho=1-> FORCE HIT, OOTS READI/WRITE
M =1 -> FORCE MISS. OITS READIWRITE
Mo=1-> FORCE MISS. DOTS READIWRITE
En=1-> ENABLE BUS NO RESPONSE TRAP READI/WRITE
El 21> ENABLE LOCK TIMEOUT TRAP : READIWMITE
W st BUS WRITE NO RESPONSE TRAP PENDING READIWRITE
L o s1-> LOCK TIMEOUT TRAP PENDING READIWRITE
NORESP READIWRITE

0000 NO ADORESS CAPTURED

1--0 READ ADDRESS CAPTURED

-1-0 WRITE ADDRESS CAPTURED

--10 FETCH ADDRESS CAPTURED

1--1 READ ADDRESS CAPTURED. SUBSEQUENT NO RESPONSE
-1-1  WRITE ADDRESS CAPTURED. SUBSEQUENT NO RESPONSE
~-11  FETCH ADDRESS CAPTURED. SUBSEQUENT NO RESPONSE

PP = PROCESSOR SELECT NUMBER
Q0. 04, 08, OC 10, 14, 18, 1C
20, 24, 28. 2C 30, 34, 38, 3C

The NORESP fieid indicates what address has been captured in the ERRADDR register. This fieid will
usually be zero except after a no rasponse ack on the X-8us. When this field becomes non-zero.
whather by software action or because of no bus responsae. the ERRADDR register ceases to clock. f
mutlipie failures to respond have occurred, the LSB of the field will be set. The remaining bits and the
ERRADOR will raflact only the first failure. The lack of bus acknowiedge will resuit in either a write no
response trap from the BIF, or a trap from the MMU. The NORESP field should be zeroed by the trap
handter after the ERRADDR has been recovered.

7.5 Bus Error Address

The physical address of any read. write or {etch raquast that receives no bus acknoweldgs upon
transfer is captured in the bus error address ragister, ERRADDR. The register begins clocking again
only after software has ciearad the NORESP field of the BCTRL register. This field also associates the
ERRADDR register contents with the transfer type. The ERRADDR register format follows.
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BUS ERROR ADDRESS REGISTER (ERRADDR) 00pp 0218
31 30 29 02 01 00
| ADDRESS(29:02) o

READ ONLY

PP = PROCESSOR SELECT NUMBER
00, 04. 08. 0C 10, 14. 18, 1C
20,24, 28.2C 30, 34, 38. 3C

The captured error address may not correspond directly to the program requested address bacause
of cache fill address zercing, or write merging.

7.6 BIF Buried/Scan State

Buried state. state readable and writable under scan control only, is provided in the BIF. Some of the
state is needed for functional operation, e.g. the board id. Some of the state is used 1o selectively
disable various accelerators in the BIF. This (atter state is used for diagnostic assistance.

7.6.1 Board ID

There is a four bit board identifier field, BD_1D(3:0), in the scan ring. The fiald is used for siave
‘address decoding and read address source 1D. The lower two bits aiso decide which class 8 arbitra-
tion ievei the is IC is operating ‘on. :

This field is only in the CBA gate array.

7.6.2 Arbitration Level

There is a two bit arbitration levei field, ARB_LEVEL(1:0), in the scan ring. The field should be set to
the same value as BD_ID(1:0). It is usad to decide which class B arbitration level the i1s IC is operating
on in the CBD IC’s.

This field is in the CBD gate arrays.

7.6.3 Write Muitiple Inhibit

There is a one bit WRITE_MULTIPLE_INHIBIT bit in the scan ring. When set, the BIF will not generate
write muitiples other than quadwrites.

This field is only in the CBA gate array.

7.6.4 Write Merge (nhibit

There is a one bit WRITE_MERGE_INHIBIT bit in the scan ring. When set, the BIF will not generate write
multiplas other than quadwritaes.

This tield is only in the CBA gate array.
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7.6.5 Read Before Write Inhibit

There is a one bit READ_BEFORE_WRITE_INHIBIT bit in the scan ring. When set, the BIF wiil not permit
data cache reads to precede data cache writes.

This field is oniy in the CBA gare array.

7.6.6 Write Holdoft Inhibit

There is a one bit WRITE_HOLDOFF_INHIBIT bit in the scan ring. When set. the BIF will issue queued
writes as soon as possible.

This fieid is only in the CBA gatse array.

7.6.7 Instruction Cache Parity Inhibit

There is a one bit NO_ICACHE_PARITY bit in the scan ring. When set, the BIF wili never check instruc-
tion cache data parity.

This field is only in the CBD gate arrays.

7.6.8 Data Cache Parity Inhibit

There.is a one bit NO_DCACHE_PARITY bit in the scan ring. When set. the BiF will never chack data
cache data parity.

This field is only in the CBD gate arrays.

7.6.9 DTS Parity Inhibit

There is a one bit NO_DTS_PARITY bit in the scan ring. When set, the 8IF will never check parity in the
DITS or DOTS.

This field is only in the CBA gate array.

7.6.10 Force Parity Sense

There are two FORCE_PARITY(1:0) bits in the scan ring. When zero, the BIF will generate normal
parity. When nonzero, the BIF will force all output parity t0 1's or 0’s in the DITS, DOTS, instruction
and data caches. FORCE_PARITY = 10 generates 0's. FORCE_PARITY = 11 generates 1's.

This fieid is present in both the CBA and CBD gate arrays. The CBA field contrals simuitaneously both
the DITS and DOTS parity. The CBD fieid controls both the instruction cache data and data cache data
parity.

7.6.11 DTS Parity Error

There is a one bit DTS_PARITY_ERR bit in the scan ring. It's set when a OTS parity error is detected
and remains set until cleared under scan cantrol. When set, the BIF wiil requast the clocks to stop.
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This bit is only in the CBA gate .array.

7.6.12  Instruction Cache Parity Error

There is a one ait INST_PARITY_ERR bit in the scan ring. It's set when an instruction cache data parity
error is detected and remains set until cleared under scan control. When set, the BIF will request the
clocks to stop.

This bit is only in the CBD gate array.

7.6.13  Data Cache Parity Error

There is a one bit DATA_PARITY_ERR bit in the scan ring. it's set whan a data cache data parity error
is detected and remains set until cleared under scan control. When set. the BIF will request the clocks
to stop.

This bit is only in the CBD gate array.

7.68.14  X-BUS Overiap Control

There is a one bit ONE_ATATIME bit in the scan ring. When set, the BIF will not issue a second X-Bus
reference befors the last is fully complete. For a write. that means a successful ACK. For a read, that
means a successful read data return.

This field is onily in the CBA gate array.

7.6.15 Retry Backoff inhibit

There is a one bit NO_BACKOFF bit in the scan ring. When set, the BIF wiil reissue retry requests as
soon as possibie.

This field is only in the CBA gate array.

.7.6.18 Read Response Error

There is a READ_RESPONSE_ERROCR bit in the scan ring. It's set when the BIF accepts a READ RE-
SPONSE which triggers an error acknowledge. Typically, this wouid be a parity arror. The bit remains
set until cleared under scan control. When set, the BIF will request the ciocks to stop.

This fieid is only in the CBD gate arrays.

7.6.17 Arbitration Timeout

There is an ARB_TIMEOUT bit in the scan ring. It's set when the BIF's arbitration timer elapses before
acquiring the X-Bus. The bit remains set until cleared under scan control. When set. the BIF will
request the clocks to stop.

Thig field is only in the CBA gate array.
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7.6.18 Read Return Timeout

There is a READ_RETURN_TIMEOUT bit in the scan ring. It's set when the BIF's read return timer
slapses before an expected READ RESPONSE arrives. The bit remains set until cleared under scan
control. When set, the BIF will request the clocks to stop.

This field is only in the CBA gate array.

7.6.19 Error Acknowledge

There is an ERROR_ACKNOWLEDGE in the scan ring. It's set when the BIF receives an error ack-
nowledgement to an address transfar. It's also set when a no acknowledgs response to a data trans-
far cycle of a write muitiple occurs. The bit remains set until cleared under scan control. This bit does
not request clock stopping.

This fieid is onty in the CBA gate array.

7.6.20 DTS RAM Diagnostic Address Generation

There is a one bit OTS_DIAGADDR bit in the scan ring. When set, the BIF CBA will generats increasing
DTSINDEX aodrssses. These addressas are used for the selftest of the DTS and the primary cache
RAM’s. See chapter 9.

This bit is only in the CBA gate array.

7.6.21° DTS Diagnostic Data Generation Control

There is a one bit DTS_DATALD bit in the scan ring. it is used to controf the source of data for writing
and comparison during the DTS selftast. See chapter 9.

This bit is only in the CBA gate array.

7.6.22 DTS Diagnostic Data Writing Control

There is a one bit DTS_DIAGWE bit in the scan ring. When set, diagnostic data will be written into the
OTS RAM's every cycle. See chapter 9.

This bit is only in the CBA gate array.

7.6.23 DTS Diagnostic Error

There is a one bit DTS_TESTERR bit in the scan ring. It is set if there is a miscompare during the
seiftest of the DTS RAM's. See chapter 9.

This bit is oniy in the CBA gate array.

7.6.24  Cache Diagnostic Data Generation Control

There is a one bit CACHE_DATALD bit in the scan ring. It is used to controt the source of data for
writing and comparison during the cache data selftest. See chapter 9.
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This bit is in the CBD gate a}rays.

7.6.25 Cache Diagnostic Data Writing Control

There is a one bit CACHE_DIAGWE bit in the scan ring. When set, diagnostic data will be written into
the cache data RAM's every cycie. Ses chapter 9.

This bit is in the CBD gate arrays.

7.6.26 Cache Diagnostic Error

There is a one bit CACHE_TESTERR bit in the scan ring. It is set if there is a miscompare during the
selftest of the cache data and parity RAM's., See chapter 9.

This bit is in the CBD gate arrays.

7.7 IP Trapping
A three bit trap code is sent from the BIF to the IP. There are only five useful codes. BIF_ERROR is

sither a write bus no response acknowiedge or lock timeout. The BCTRL register must be read to
determine which.

BUS_TRAP_REQ(2:0)

000 NO REQUEST

001 BIF ERROR

010  INTERRUPT

011 BIF ERROR/INTERRUPT
t-=  NMI

Whenever the IP initiates a trap sequencs, the signal IP_TRAP_DISP will be asserted. The assertion of
this signat will unconditionally release the bus lock.
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CHAPTER 8 | CACHE PARITY

8.1 Instruction Cache Data Parity

The 8IF CBD IC’s maintain and check parity on the 64 bits of the instruction cache data RAM’s. There
is one parity bit over each 32 bits. INST_PARITY(0) holds parity cver all even bytes of the INST bus.
INST_PARITY(1) holds parity over ail odd bytes of the INST bus. This odd even division permits one bit
to be maintained per CBD gate array. .

0Odd parity is maintained, that is the sum of ail ones in the 32 bits of data plus the parity bit should be
odd.

INST_PARITY (1:0) are bidirectional. There is one 16KX4 RAM devoted to hoiding the parity. The parity
RAM is aiways accessed in the cycle after the instruction cache's data RAM's. The address is piped
forward unconditionally in external registars. The instruction parity is always good.

8.1.1 Instruction Parity Checking

The parity is aiways checked on the INST bus uniese the CBD gate array is driving it. Tha CBD gate
arrays drive it only during instruction cache miss. '

The parity is checked in the cycie of the instruction parity RAM access. It a parity error is detected, a
hardware fault is assumed. The CB8D gate array requests the SCR to hait the system clocks and
fre@zes error status in the embedded scan state.

8.1.2 Instruction Parity Generation

When instruction cache fill is underway. instruction parity is computed from the X-8us party. The 8
X-Bus parity bits are reduced to 2. These 2 parity bits are loaded into an outbound instruction party
register far sourcing onto INST_PARITY(1:0) the cycie after the instruction data. If the instruction
cache’'s data RAM's are being written, the parity RAM will be written unconditionally in the cycle to
follow.

Embedded state may force the INST_PARITY(1:0) bits to always be 1, or always be O.
Diagnostic RAM update, see chapter 9. mimics an extanded instruction cache fill. Parity will typicaily

be part of the diagnostic pattarn generation.

8.2 Data Cache Data Parity

The BIF CBD IC's maintain and check parity on the 64 bits of the data cache data RAM's. There is one
parity bit over each 8 bits. This is forced by the need to update bytes individually. DATA_IPARITY(Q)
provides parity over DATA(63:58). DATA_IPARITY(7) holds parity ovar DATA(07:00). Each CBD gate
array is responsible for 4 parity bits.

Odd parity is maintained, that is the sum of all ones in the 8 bits of data pius the parity bit should be
odd.
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There are 8 16KX1 RAM's devoted to holding the parity. The RAM's have separate data in and out
pins. Correspondingty, there are separate DATA_IPARITY (7:0) and DATA_OPARITY(7:0) signals. The
parity RAM’s are ailways accessed in the cycle after the data cache's data RAM's. The address is
piped forward unconditionally in external registers. The data parity is aiways good.

8.2.1 Parity Checking

The parity is checked on the DATA bus when the signal CHECK_DATA is asserted. This signai is
externaily derived from the RAM controls of the data cache. This signai should be asserted to the CBD
IC'sin the cycie after reading the data RAM’s whenever the RAM's are read. That shouid be most of
the time except during processor stores and data cache filling.

The parity is checked in the cycie of the data parity RAM's access using DATA_IPARITY(7:0). If a
parity error is detected. a hardware fault is assumed. The CBA gate array requests the SCR to hait the
system clocks and freezes error status in the embeadded scan state.

8.2.2 Parity Generation

Parity is aiways provided by the CBD. When a data cache fill is underway, data parity is passed directly
from the X-Bus parity. These 8 parity bits are loaded into an outbound instruction parity register for
sourcing onto DATA_OPARITY(7:0) the cycle after the data. Parity is aiso aiways being computed on
the DATA bus directly. When a cache data fill is not underway this parity is sourced onto the
DATA_OPARITY(7:0) instead. |f the data cache's data RAM’s are being written, the parity RAM's will
be written unconditionally in the cycie to follow.

E.mbadded state may force the DATA_OPARITY(7:0) bits to always be 1, or aiways be 0.
Oiagnostic RAM updats. see chapter 9. mimics an extended data cache fill. Parity will typically be part
of the diagnostic pattern generation.

8.2.3 Secondary TB Data Parity

The CBD IC's are unaware of whether a secondary TB look up, or a data cache read is underway in the
data cache.

8.3 Instruction Cache Dupiicate Tag Store Parity

The CBA IC maintains and checks parity an the 18 bits of the DITS' RAM's. There is one parity bit over
all 18 bits, OITS_PARITY.

Qdd parity is maintained. that is the sum of all ones in the 18 bits of data plus the parity bit should be
odd.

DITS_PARITY is bidirectional and is accessed in the same cycie as the tag contents. The DITS parity is
always good.

8.3.1 Parity Checking

The parity is aiways checked on the DITS_DATA(29:12) uniess the CBA gate array is sourcing it. The
CBA gate arrays does so only in association with the READ RESPONSE phases of an instruction cache
fil's READ MULTIPLE, or during a DITS entry invalidation cancailation.
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The parity is checked in the cycie aftar the RAM access. This may change if timing permits. If a
parity efror is detected, a hardware fault is assumed. The CBD gate array reguests the SCR to hait the
system ciocks and freezes error status in the embedded scan state.

8.3.2 Parity Generation

Two cycies after the READ RESPONSE to an instruction cache miss's READ MULTIPLE, the DITS is
being updated. The DITS is aiso updated during RAM diagnostic operation and during entry invalida-
tion. In all cases. parity is generated the cycle before the RAM write.

Embadded state may force the DITS_PARITY to always be 1, or always be 0.

8.4 Data Cache Duplicate Tag Store Parity

The CBA IC maintains and checks parity on the 18 bits of the DOTS' RAM's. There is one parity bit
over all 18 bits, DOTS_PARITY.

Qdd parity is maintained. that is the sum of all ones in the 18 bits of data plus the parity bit should be
odd.

DOTS_PARITY is bidirectional and is accessed in the same cycle as the tag contents. The DOTS parity
is always good.

8.4.1 Parity Checking _
The parity is aiways checked on the DOTS_DATA(29:12) unless the CBA gate array is sourcing it. The
CBA gate arrays does sSC only in association with the READ RESPONSE phases of a data cache fill's
READ MULTIPLE, during DOTS antry invaiidation cancaellation, or after a cacheabie local store.

The parity is checked in the cycle after the RAM access. This may change if timing permits. If a
parity error is detected. a hardware fault is assumed. The CBA gate array requests the SCR to hait the
system ciocks and freezes error status in the embedded scan state.

8.4.2 Parity Generation

Twa cycles after the READ RESPONSE to an cacheable data cache miss’'s READ MULTIPLE, the DQTS
is being updated. The DOTS is also updated during RAM diagnostic cperation and during entry invaii-
dation. Finally, the DOTS is updatad two cycles after a locally generated cacheable write is transfered
on the bus. In all cases, parity is generated the cycle before the RAM write.

Embedded state may force the DOTS_PARITY to always be 1, or aiways be O,
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CHAPTER 9 RAM SELFTEST

9.1 DTS RAM Diagnosis

The BIF CBA provides assistance for the accelerated and simuitaneous testing of both the DITS and
DOTS external RAM's and address logic. Four functions are provided that may operats at functional
clock speed.

e 18K entries may be set lo a fixed vaiue.
¢ 18K entrias may be read and compared against a fixed valuas.

® 16K entries may be set 10 an incrementing vaiue. A modulo 15 counter is used. Data is
replicated every 4 bits.

e 16K entries may be read and compared against an incrementing value. Data is replicated
every 4 bits.

The parity bits associated with these RAM’s may aisc be controlied. They may be jointly forced to 1.
jointly forced to O, or allowed to operate functionally. Ouring the read and compars mode, the
sirmilarly controlled parity is checked for. ‘

Only the CBA and the extarnal MSi should be clogked while in this test modse. The number of iocations-
to fill. or check, is 'decided by the burst count field in the SCR.

8.1.1 DTS Address Generation

Setting the OTS_DIAGADDR bit in the CBA scan path will cause an alternative DTS addrass source to be
used. The address will begin at the value scanned into the DTSINDEX register. The address will
increment through 14 bits with every functionai clock.

The address is sent to both DITS and DQTS concurrently.

9.1.2 DTS Data Generation

Clearing the DTS_DATALD bit in the CBA scan path will cause whatever vailue is loaded into the
DTSDATA register to be held for the duration of the RAM test. The generated parity is whatever was
scanned into the DTSDATA parity flops.

Setting the DTS_DATALD bit wiil cause tha DTSDATA register contents to increment every cycle. On
four bit boundaries, the data will increment 0,1, ... 14, then recycle. A count moduilus that was
relatively prime toc the RAM address was chosen. The generated parity will either be correct, or all
cnes or ail zeroes, depending on the state of force parity sense scan bits in the CBA, FORCE_PAR-
ITY(1:0). Code Q0 is normal, code 10 is force ail zerces and code 11 is force all ones.

9.1.3 DTS Data Writing

Setting the DTS_DIAGWE bits in the CBA scan path will cause the DTS data source be written every
cycte.
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9.1.4 DTS Data Comparison

Clearing the DTS_DIAGWE bit will cause the RAM data to be compared to the DTSDATA register every
cycle. The parity bits will be checked for as well as the data.

if a compare error is found, the scan bit OTS_TESTERR is set. Once set. the bit remains so until
cleared by scan. )

In functional operation. this bit will probably frequently be inadvertantly set.

9.2 Cache Data RAM Diagnosis

The BIF CBA provides assistance for the accalerated and simuitaneous testing of both the INST and
DATA RAM's and address logic. Four functions are provided that may operate at functional clock
speed.

o 16K entries may be set to a fixed value.
e 16K entries may be read and comparad against a fixed vaiue.

e 18K entries may be sat to an incremsenting value. A modulo 15 counter is used. Data is
replicated every 4 bits.

® 16K entries may be read and compared against an incrementing value. Data is replicated
avery 4 bits.

The parity bits associated with these RAM’s may aiso be controlled. They may bae jointly forced to 1.
jointty forced to 0, or allowed to operate functionally. DOuring the read and compare mode,. the
simitarty controlied parity is checked for.

Becausse the data cache is only one half the size of the instruction cache. The data cache testing with
incrementing data values will have to ba stopped after 8132 entries.

Only the CBA, CBD and the external MS! must bs clocked whila in this test mode. The MMU is likely to
be clocked as well. MMU buried scan state must be set to drive the PA bus onto both the EASRC and
PCSRC buses and to defeat the MMU's driving of the PA bus. MMU buried state must also force the
selecticn of the data half of the data cache's data store. The secondary TB half of the data cache’s
data store will be diagnosed by the MMU. MMU buried state must force the write enable generation in
the data cache RAM's when required. MMU buried state must prevent the MMU fram inadvertantly
sourcing the DATA or INST buses. The other IC's which touch these buses are assumed not to clock
and to be icaded with a state vector that will keep them from interfering with the RAM diagnostic test.
The number of RAM locations to fill, or check, is decided by the burst count field in the SCR.
L

9.2.1 Cache RAM Address Generation

The cachs RAM address wiil be derived from the DTSINDEX. Setting the DTS_DIAGADDR bit in the CBA
scan path will cause an alternative DTS address scurce 10 be used. The address will begin at the value
scanned into the OTSINDEX registar. The address will increment through 14 bits with every functionai
clock.

The address is sent to through the invaiidate address pipeline to both instruction and data caches.
This pipeline, on top of the extarnal EA and PC registers, makes it a little harder to configure the
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address generation. The first desired address should be scanned into INVXFER, the second to IN-
VARB, the third to DTSINDEX and the fourth and thereafter will be aigorithmicaily generated.

Setting the OTS_DIAGADDR bit in the CBA scan path will also cause the PA bus.to be sourced by the
CBA and the invaiidate sddress queue path to be chosen as CBA's internal the PA source.

8.2.2 Cache RAM Data Generation

Clearing the CACHE_DATALD bit in the CBD scan path will cause whatever vaiue is loadsd into the
XDATAIN register to be heid for the duration of the RAM test. The generated parity is whatever was
scanned into the XDATAIN 8 parity flops. '

Setting the CACHE_DATALD bit will cause the XDATAIN register contents to increment every cycta. On
four bit boundaries. the data will increment 0,1, ... 14, then recycie. A count modulus that was
reiatively prime to the RAM addrass was chosen. The generated parity will gither ba corract. or all
ones or ail zerces, depending on the state of force parity sense scan bits in the CBD, FORCE_PAR-
ITY(1:0). Code 00 is normai, code 10 is force ail zeroes and code 11 is force all ones.

9.2.3 Cache Data Writing

Setting the CACHE_DIAGWE bits in the CBD scan path will cause the cache data source to be driven
every cycie. and the cache data parity source to be driven every next cycle. It's expscted that
corrasponding state in the MMU will generate the write strobes.

The writing of the RAM parity one cycle after the RAM data will make the proper testing of the last RAM
parity location troublesome.

9.24 DTS Data Comparison

Clearing the CACHE_DIAGWE bit will cause the RAM data to be compared to the XDATAIN register
overy cycie. The parity bits will be checked for as weil as the data.

it a compare arror is found, the scan bit CACHE_TESTERR is set. Onca set. the bit remains so until
cleared by scan.

In functional operation. this bit will probably frequently be inadvertantly set.

9.3 Cache Tag RAM Dlagnosis

The BIF CBA cache RAM diagnostic address gsneration can be used for the cache tag RAM diagnosis.
The MMU is responsible for data sourcing and comparison.

9.4 Secondary TB Data RAM Dlagnosis

The BIF CBA cache RAM diagnostic address generation can be used for the secondary TB data RAM
diagnosis. The MMU is responsible for data sourcing and comparison.
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APPENDIX A PIN DEFINITION

A1 X-Bus Interface

This section describes the set of signals of the bus interface chips which actually are used to commu-
nicate on the X-Bus. A more detailed description of the X-Bus and its operation can be found in the
X-Bus AT Specification (KLINE 86}. The CPX_ prefix for the X-Bus signals denotss the CPU's
transceived X-Bus, rather than the backpiane.

CPX_DATA[63:0] CBA: 32 Io CBD: 32 io

The CPX_DATA bus is the transceived version of the X-Bu's muitiplexed address and data signais.
The CBA wiil drive and receive the most significant 32 bits of this bus for address information and CSR
access while the CBD’s will drive and receive the entire bus for data information. One data chip will
access all the even bytes of the bus and the other ail the odd bytes.

The CPX_DATA([63.62,1,0] signals also hold the 4 valid byte indications needed on the 32 bit read and
write commands. When CPX_DATA(63] is asserted, CPX_DATA([31:24] is to be read or written.

CPX_PARITY[7:0] CBA: 4ts_o CBD: 4 o

The CPX_PARITY bus will reflect the byte parity of the CPX_DATA bus where CPX_PARITY (0] is an odd
parity bit for CPX_DATA([63:56]. Parity will be maintained such that the sum of ail the bits that are set
in a byte pius the parity bit for that byte will equal an odd number. ( An ail zero byte will have a parity
bit of 1. ) Parity will be driven when the CPX_DATA bus is driven and checked by this interface when
addressed.

CPX_VPNIN[4:0] CBA: S io

The CPX_VPNIN bus receives the 5 least significant X-Bus VPN bits needed by the CBA for proper
indexing of the DTS and primary cachses.

When the CBA cbserves a write operation occuring on the bus. including one that it generated. it will
use a concatenation of CPX_VPNIN(4:0] and CPX_DATA[43:35] as an index into the Duplicate Instruc-
tion Tag Store (DITS) and CPX_VPNIN([3:0] and CPX_DATA[43:35] as an index into the Duplicate Oper-
and Tag Store (DOTS).

CPX_VPNOUTI[6:0] CBD: 4 out

The CPX_VPNOUT bus is driven by the two CBD gate arrays. Cne drives 3, the other 4 signals. The
CPX_VPNQUT bus is sourced during a BIF address transfer.

CPX_ID[3:0] CBA: 4 io

The CPX_ID bus is driven with the Board 1D when the CBA is using the X-Bus. CPX_ID is monitoraed to
detect a match with Board ID when a READ RESPONSE is decoded on the bus. A match signifies that
this CBA is the destination of the READ RESPONSE transfer.
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CPX_SUBID[0] CBA: 1o

The CPX_SUBID pin is used by the CBA to distinguish between a data cache and an instruction cache
READ RESPONSE when both requests are outstanding. The CBA aiso receives and returns this signal
during BIF CSR access.

CPX_CMD[4:0] CBA: 5 io

The CPX_CMD bus is driven and monitored to signal the type of bus cycle being parformed. See the
X-8us AT Specification for a detailed description of the bus operations.

The CBA will only generate and respond to a subset of the commands.

CBA_ACK[1:0] CBA: 2o CBD:2in

The CBA_ACK bus is driven and monitored by the CBA to signal and receiva the status of a bus
transaction. The CBA drives CBA_ACK only for a successful acknowledge, or non-parity related
transfer failure. The CBD monitors this signal only to make write queue unioading and arbitration
rgsuit decisions. The encodings are listad in the following table:

Code Response Description

11 ERROR Parity error or command raject on previous transmission

10 BUSY Destination device is not avaiiable to accept a command now
01 CMD ACCEPTED | Positive acknowledgement

00 NO RESPONSE No device has responded

Activity on the CBA_ACK bus alway refers to the bus cycle that occured two cycles eartier.

CBD_ACK([1:0] CBD: 2 out

The CBD_ACK bus is driven by the CBD's whan a parity error on received bus data is detected, and
this bus interface was the destination. The are two bus's on the board, CBDO_ACK(1:0) and
CBD1_ACK(1:0) logically or'd by the backplane drivers. ’

CPX_ARB_INHIBIT CBA: 1 io CBD: 1In

The CPX_ARB_INHIBIT signa! will be asserted by the CBA during alt but the last cycle of a multi-cycle
transaction for which it has ownership of the bus for. The CBA wili never attempt to use the X-8us the
cycie immediately following a cycle in which the ARB signal has been deasserted. The CBD monitors
this signal to deducs the arbitration resuit.

CPX_LOCKIN CBA: 1 in

The CPX_LOCKIN signal is received by the CBA. If the CBA has a READ operation pending which wants
the bus lock. it will not attempt to arbitrate for the bus until the CPX_LOCKIN signal is unasserted or if it
is the one that is asserting CPX_LOCKOUT.

CPX_LOCKOUT CBA: 1 out

The CPX_LOCKOUT signai is asserted by the CBA when it has conducted a READ bus cycle that
needed the bus lock. The CBA will keep CPX_LOCKOUT asserted until it complsetes either a READ or
WRITE operaton which reieases the bus lock, or a lock timeout occurs.
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CPX_AREQ CBA: 1In CBD: 1In

The CPX_AREQ signal is a transceived version of AREQ_SUM on the backpiane. This signal is asserted
if any of the ciass A davices. all of which are at a higher pricrity than a CPU, want the bus.

CPX_BREQ(3:0) CBA: 4 in CBD: 4 in

The CPX_BREQ signals are the transceived version of the class B requsest lines on the backplane. The
CBA will ba assigned one of these request leveis. The arbitration algorithm is described in section 2.1.
Both CBA and CBD monitor these signais to concurrently decide arbitration outcome.

CPX_MYREQ CBA: 1 out

The CPX_MYREQ signal is driven by the CBA when the X-Bus is required and not aiready held.

CPX_REJECTIN CBA: 1in

The CPX_REJECTIN signal will monitored by the CBA to determine if a CSR write or read should be
cancelled.

CPX_REJECTOUT CBA: 1 out

The CPX_REJECTOUT signal will be driven by the CBA the cycle immediately following one in which the
CBA was the bus master, when the effects of that last transaction are to be aborted.

DRIVEXA-
DRIVEXB-
DRIVEXC-
DRIVEXD-
MYACK- CBA: 5 out

These 5 signals enable tha X-Bus transceivers. The signals are sourced by the CBA.
A.2 MMU Interface

PA[29:0] CBA: 30 lo CBD: 3 in

The PA bus provide the physical address for all memory references made by the MMU. Physical
addresses are presented to the CBA for processor writes, table walking, read miss requests, all read/
write/fetch requests when the MMU is disabled, fetch miss requests, and for broadcasting TLB invaii-
dates. This bus is tristated when the CBA secures it for a data cache, instruction cache. or TLB
invalidate. In this case. the CBA drives the PA bus with the invalidate address which is then routed 10
the EASRC or the PCSRC bus via the invaiidate transceivers depending upon the type of invalidation

being requested. The CBD receives the 3 lower order pins to permit it to determine which bytes are
valid on a write.

PCVPN({6:0] CBD: 4 in

The 7 PCVPN signals are received by the CBD’s and forwarded to the CPX_VPNOUT for processor
reads and writes. One CBD handles 4 signais, the other 3.
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EAVPN[6:0] CBD: 4 in

The 7 EAVPN signais are received by the CBD's and forwarded to the CPX_VPNOUT for processor
reads and writes. One CBD handles 4 signals. the other 3. ’

MMU_CMD{4:0} CBA: 5 In CBD: 5 in

A memory request is initiated when the MMU by asserting the MMU_CMD{4:0] signais. The interpreta-
tion table is in chapter 3 and 4.

The CBA/CBD will aiways accept commangs from the MMU_CMOD bus unless WBUF_FULL is assertad.
The MMU_CMD bus, together withwPA (2:0), detarmine which bytes are affected if the operand size is
less than or equal to eight bytes.

BIF_PAARB(1:0] CBA: 2 out

For the interactions between the BIF and the MMU that require the use of the EASRC, PCSRC. or PA
busses. the BIF wiil assert BIF_ARB({1:0] to aquire control of the necessary buses. The encoding is
availabie in chapters 3 and 4.

BIF_INVOP[1:0] CBA: 2 out

Whan the BIF detects a write on the X-Bus that hits on the iocal processor’s cache it issues a cache
invalidate request by first arbitrating for the appropriate buses and in the following cycle, asserting
BIF_INVOP signals, which cause the MMU to ciear the valid bits in the identified caches or T8." The
encoding of BIF_INVOP(1:0] is available in chapters 3 and 4.

If the BIF datects that a write over the X-8us that collides with an outstanding cache fill request. which
is not in the DTS, it asserts the code for Cache Invalidate on the BIF_INVOP lines so that the subse-
quently returned data is allocated as invaiid in the appropriate cache.

MEM_RESP[2:0] CBA: 3 out

The CBA asserts MEM_RESF in response to a load or fetch MEM_CMD. MEM_RESP indicates the
disposition of the returning read data in the cache. The encoding is available inchapters 3 and 4.

HOLD_IVPN CBD: 1in
HOLD_IVPN is asserted whanever the (VPN is not immediatsely succeeded. in the next cycie by the PA

and the MEM_CMD. which is the case for icache misses that must wait for use of the PA/MEM_CMD
busses, for example.

HOLD_DVPN CBD: 1 in

HOLD_DVPN is asserted whenever the DVPN is not 'immediataly succeeded,. in the next cycle by the PA
ang the MEM_CMD, which is the case for write buffer fuil stalls, far exampie.

MMU HDATA_LD CBA: 1in CBD: 1In

The MMU assists the CBO in the load control of its input holding register to its write buffer. This signai
is asserted when tha MMU wishes to allow a previously transmitted data to be loaded into the writa
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buffer, and to free up the input hoiding register for another transaction. The CBA monitors this signal
as well,

WBUF_FULL CBA: 1 out

WBUF_FULL is asserted by CBA when it can only take one more write request before its write buffer
fills.,

A3 IP Interface

BUS_TRAP_REQ(2:0) CBA: 3 out |

BUS_TRAP_REQ is asserted to the IP when the CBA requests an external interrupt, non-maskable
extrernal interrupt or BIF related error such as lock timeout, or write no rasponsa.

TRAP_DISP CBA: 1 in

TRAP_DISP signais that tha IP is entering a trap seguence. The signal always releases the bus lock, if
held.

A4 Duplicate Tag Store interface

DTS_INDEX_SRC[16:03]  CBA: 14 out

The DTS_INDEX_SRC bus is used to load the external address register that's usad to jointly address
the duplicats instruction and data cache tag store rams.

DITS_DATA[29:12] CBA: 18 lo
The DITS_DATA bus is used to read and write the instruction cache duplicate tag store contents.
DITS_PARITY CBA: 1o

DITS_PARITY will contain parity information for the DITS.

DOTS_DATA[29:12] CBA: 18 lo
The DOTS_DATA bus is used to read and write the data cache duplicate tag store contents.
DOTS_PARITY CBA: 1 io

DOTS_PARITY will contain parity information for the DOTS.

DTS_CMND[1:0] CBA: 2 ocut

DTS_CMND indicates what functions, read or write, are to be performed on the duplicate tag stores.
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A.S Cache interface

- DATA[63:00] CBD: 32 Io

The 64 bit data cache data bus is directly recsived and driven by the CBD's. Each IC handles 4 bytes,
split even and odd.

DATA_IPARITY[7:0] CBD: 4 in
There are 8 data cache parity signais. There are separate input and output signals, reflecting the

external 16Kx1 RAM arganization. DATA_IPARITY are the 8 RAM outputs. The CBD will check data
cache data parity based on these. Again. there is an odd/even byte split.

DATA_OPARITY[7:0] CBD: 4 out

Thers are 8 data cache parity signals. There are separate input and output signais. refiecting the
external 16Kx1 RAM organization. DATA_OPARITY are the 8 RAM inputs. The CBD will generate and
source data cache data parity onto these. Again, there is an odd/even byte split.

CHECK_DATA CBD: 1 in

The CHECK_DATA signal is externaily derived and instructs the CBD IC's when to check data cache
parity.

INST[63:00] . CBD: 32 io

The 64 bit instruction cache data bus is directly received and driven by the CBD's. Each IC handies 4
bytes. split aven and odd.

INST_IPARITY[1:0] CBD: 1 io

There are 2 instruction cache data parity bits. One covers ail odd bytes. and one all even. The signals
are bidirectional. Instruction cache data parity is checked and generated by thae CBD's.

A.6 CBA-CBD Control

WBQ_CTL(2:0)] CBA: 3 out CBD: 3 in

A three bit code from the CBA instructs the CBD to transmit, load or load and merge write data.

NEXTREQ[1:0] CBA: 2 out CBD: 2 in

A two bit code from the CBA to the CBD informs the iatter of the resuits of tha internal arbitration; i.e.,
what goes next on the bus.

FILL_CTL[1:0] CBA: 2 out CBD: 2 in

A two bit code from the CBA to the CBD controls whether to drive the data or instruction cache data
bus.
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DUPMS CBA: 1 out CBD: 1in

The DUPMS signal from the CBA to the CBD instructs the latter to duplicate the more signifcant 32 bits
of data on the DATA([31:00] signais for the benefit of the MMU.

DELAYDATA CBA: 1 out CBD: 1in

The DELAYDATA signal from the CBA to the CBD causes the CBD to inject a one cycle delay in the
return of read data.

DEST_IS_ME CBA: 1 out - CBD: 1 in

The DEST_IS_ME signal from tha CBA to the CBD causes the CBD to drive its CBD_ACK bus in the next
cycle, to generate an error acknowledge, if there is a parity mismatch on currently heid X-Bus data.

A7 Misceilany

CLOCK_STOP- CBA: 1 od CBD: 1 od

Each IC in the system may cause the clock to freeze in the event of hardware error. CLOCK_STOP- is
an open drain signai assertad low to request a clock freeze of the SCR.

SCAN_CTRL[6:0] - . CBA:7 - . cBeD: 7
There are 7 scan path control signais: A, B, C, D, and E plus scan data in and scan data out.

CLOCK CBA: 4 in CBD: 4 in

There are 4 clock trees on each IC. Each tree requires a separate input pin.

VDD CBA: 18 CBD: 11
GND CBA: 36 CBD: 22
A8 Pin Count Summary

ALLOCATED PINS: CBA: 247 CBD: 198 .

SPARE PINS: CBA: 9 €8D: 10
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APPENDIX II

Chapter 2
X-Bus

2.1 Overview

The X-Bus is the medium used for communications between the eight (future systemns
based on this design may use up to twelve)} interconnecting processors, Memory systems,
and interfaces within the Series 10000 system. It is implemented using open-coliector driv-
-ers where signals are active low on the bus. Each device on the X~Bus uses it for all com-
munications (data transfers. requests for data transfers, interrupts. etc.) with other svstem
devices. The X-Bus suppors tightly coupled processors. bu: there is no reguirement that
the processors in the svstern be tightly coupled.

The X-~Bus 15 2 svnchronous bus that achieves 1ts performance by dividing ali bus transiers
into a set of one or more bus transactions. Each bus transacuon consists of the maxmum
amount of informauon that can be transferred within a single bus cycie. The bus cvcle 1s
defined by the CLOCK" sicnals. During a2 given bus cvcle there is enough time to pass an
address and/or data from one dewice 10 another. Devices are not allowec to hoic the bus
for memory access umes. The full bandwidth of the bus is available for transferrning infor-
mauon from device to device and is not impacted by a silow device on the bus.

The 64-bit wide X~Bus connects several heterogeneous and/or homogeneous processors.
memory sysiems, and interiaces withun the Series 10000 svstem. Each dewvice on the bus
uses the pus for all communicauons with other devices. The communications operauons
include data wansfers, reguests for data wransfers, interrupts, and TB invaiidate operations.

The X-Bus has a 64-bit wide data path with several devices connected 10 it. Each device
on the bus has a unique device ID. which 1s used as part of the address selecuon mecha-
nism dunng certain tvpes of commands. Any device on the bus mayv arpitrate for the bus,
become master on the bus, and send a command to any gther device on the bus.

These commands occupy the bus for a singie cvcle. although the command operauons mav
occupy the bus for several cvcles. WRITE transfers both address and data informauon
while READ transfers onlv address information. The dewvice recenving these commands re-
sponds with an acknowiedgment and completes the requested operation. During read op-
erauons. the recenving device gamns access 10 the X-Bus and imitiates a READ RESPONSE
command 1o the requesting device when the data is available. After the the READ or
READ MULT command initiation, and before the READ RESPONSE. the bus 15 available
for other bus transactions.
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2.2 Conventions

This section explains the X~Bus register conventions.

2.2.1 Data Formats

The basic data structures used are the byvte (8 bits), word (16 bits), long word (32 bits),
and the quad word (64 bits). The least significant bit of each of these data structures is bit

0. the most significant bit is bit N-1 {where N is the number of bits in the data structurel.
The most significant byvie in each structure is byvie 0, the least significant bvie 1s bvie M-I
(where M is the number of bytes in the data structure).

. 7 0
BYTE Brie O |
15 87 ¢
WORD Byte 0 Bvie l
k| 24 23 16 15 87 0
LONGWORD Byte O Bvte 1 Byte 2 Bvie 3
64 56 55 48 47 40 39 32
QUADWORD Byte O 8yte 1 Byte 2 Byte 3
3 24 23 16 15 8 7 0
Byte 4 .Byte 5 Byte & Byte 7

Figure 2-1. Data Formats

The parity on the X-Bus data fields is odd parity (i.e., the total number of onet in the
data field. inciuding s associated parity bit. equal an odd number where a one 1+ (rue
high) unless specified otherwise.

2.3 X-Bus Signal Definitions

Subsections 2.3.1 through 2.3.3.22 contain descripsions of the X-Bus signals.

NOTICE: An asterisk (*) after a signal name indicates that the signal is
active=low (true). States in this manual refer to the state of the
signal on the backplane> Most drivers/receivers inven the signai
so It is seen on the backpiane as Signal_Name*.
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2.3.1 X-Bus Address Path Signals

The X-Bus address path contains the following elements:

£l

o 25-bit Physical Address — ADR®(29:2)/DAT"(61:34)
e i-bit Valid Byte field — VALDBYT" (3:0)/DAT" (63.62.33.32)
s 7-bit Virtual Address Page Number — VPN*(6:0)

e _-pit Device ID — ID"(3:0)

2-bit Subdevice ID — SUBID*{1:0)

2.3.1.1 ADR*

The ADR" field is used to select a device on the X-Bus and to specify an offset within
that device's address space. The address contained in ADR"® is a 30-bit longword address
that is right justified in the field. Data elements that are only a portion of a 32-bit word
are specified via the VALDBYT" field. Writes on the X-Bus consist of a write address and
a 32-bit data transfer, or a write address followed by one or more 64-bit data transfers.
Reads may involve multipie 64-~bit data transfers or a single 32-bit transfer.

A WRITE MULT transfer must start and end on an even boundary. A READ MULT
wransfer may start and end on an odd boundary. A transfer that starts on a 32-bit bound-
ary, but not a 64-bit boundary, is indicated by ADR*{2) = | in a MULT transier. A
WRITE or READ MULT transfer. may end by writing only the most=-significant 32 bits of a
64—bll ‘word, if ,,,DR (”] NE and Lhe numbe of'-:ﬂ—bu »\ords Lo be 4ransferred-1s even. A
READ \dLLT Lransfer mav-onlv end.ths WAy

words_to be tran-aferred isTodd: ADR'V s~shared-with- the most- smmflcant bits of. tne, data -
path DAT"(63:321. The parity bits DATP(0:3) must be valid whenever the ADR* neid i
asserted.

.

1.3.1.2 Addressing

Except for commands such as READ RESPONSE and INVALIDATE. devices determine
whether a bus transaction is directed to it based on ADR(29:22). Devices such as memory
controllers, 1/O interfaces, and graphics controllers have a set of programmable registers.
accessible via the Diagnostic Bus (D_Bus), which determine the address range of messages
directed to it. Processor devices reside in the address range 0. If ADR(29:22) are zero.
devices must compare ADR(21:18) with their Device ID to determine if the (ransacuon is
directed to it. This is the mechanism [or addressing system level control and status regis-
ters, and processors. Memory controliers must respond to both an address range and an
ID-directed address. If the command for*the transaction is a READ RESPONSE. devices
must compare thewr [D with the ID field 1o determine if the transaction is for it.

General X~Bus Addressing

31 30 29 22 21 02 ¢1 00

Address Range . i Address Offset

Figure 2-2. General X-Bus Addressing
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Table 2-1. Address Space

Address Range Size Device
00,000,000 - 00,3FF.FFF 4 MB Conurol Registers
00,400,000 - 07.FFF.FFF 124 MB Reserved (Disk and Network Controliers)
08.000.000 - OF ,FFF.FFF 128 MB Service Processor
10,000,000 - 17.FFF.FFF 128 MB | Graphics Processor |
18,000,000 - 1F,FFF.FFF 128 MB | Graphics Processor 2
20,000,000 - 2F.FFF.FFF 256 MB Memory Controlier |
30.000,000 - 3F,FFF,FFF 256 MB Memory Controller 2
X-Bus Control Register Addressing
31 30 28 2 . 187

0z 01 o¢C

T

| 00 0°00 0 0 O Device D

Address Otfset

-

Figure I-3. X-Bus Control/Stasys Register Addressing

Table 2-2. Control Register Address Space

Device 1D CSR Range Device
0 000.000 - Q3F.FFF CPLU 0
040,000 - Q7F.FFF CPU 1|
M 080,000 - OBF.FFF CPU 2
3 0C0,000 - OFF,FFF CPU 3
B 100,000 - 13F,FFF Unused
S . 140.000 - 17F,FFF Graphics Processor |
6 180.000 - IBF.FFF Graphics Processor 2 |
7 1C0.000 ~ {FF,FFF Reserved {
s 200.000 - 23F.FFF Disk Controller 1 |
e 240.000 - 27F.FFF Disk Controller 2 !
A 2%0.000 - 2BF,FFF Newwork Controller i
B 20,000 - 2FF.FFF Service Processor *
C 300,000 - 33F,FFF Reserved
D 340.000 - 37F.FFF Memory Controller 1 1
£ 330,000 - 3BF,FFF Memory Controller 2 |
F 3C0.000 - 3FF,FFF Unused ‘

The Service Processor is assigned a device 1D of "B, but it does not

use the Specified CSR range.
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2.3.1.3 VALDBYT*

VALDBYT" is used oniy on READ or WRITE commands 10 indicate which bytes within
the 32-bit word addressed by ADR*® should be written or read. On a write operation.
VALDBYT" (3) = | indicates a write to bits 24 through 31 (most-significant bvte) of the
32-bit word. VALDBYT*®(0) = 1 indicates a write 1o bits 0 through 7 (least-significant
bvie) of the 32-bit word. On read operauons, VALDBYT®" has significance oniy wher .+
reading a location has some side effects (that is, reading a control register in an 1/0 device
controller. or causing a halfword or byte transfer on the VMEbus). One of the

VALDBYT® bits being set or not set does not determine whether the data for that parucu-
far locauon 1s placed on the X-Bus,

Because VALDBYT" v onhv significant when an acdress 1s on the N-Bus, 1t shares the
DAT" held with ADR® when ADR® 1s valid on the bus.

2.3.1.4 VPN® (Virtual Page Number)

VPN is used to maintain cache coherency among the various processors in the svstem.
ADR" represents a physical address. while the proggssor caches are virtually indexed. The
Virtual Page Number (VPN®) part of the virtual address 15 placed on the X-Bus along with
the physical address. This provides the information needed 10 1nvalidate entries in the
caches during a write over the X~-Bus. The cache logic monitors this field along with the
ADR*® and ID" fields to determine if there is a cache hit. If there is a cache hit, and it 15
caused by another device wriung nto that Tocauon. the cache logic has to invalidate or up-
date that location in its cache.

The logic that handles read data for caches must also pay attention to this field. Writes to
a location that has a read pending must flag the read so that it does not appear in the
cache as a valid entry. VPN® is actually bits 18 through 12 of the virtual address (the vir-
tial page number). Although the VPN® is used only during X-Bus write operauons. it 1s
permissable to place information in this field during all X-Bus operations.

The VPN* informauon is conveved to the [/O interfaces as part of the [/O mapping tables
setup, prior to the initiation of an 1/O transfer. If the new virtual-to-physical mapping is
not known when these tables are set up. the previous virtual mapping of the page is used
in the VPN*. This causes anv cache entries for the old mapping to be invaiidated winiie the
1/Q transfer is in progress. For cenain operatons (that i1s, the Service Processor modifving
a poruon of memory), the relevant VVPN* informauon is not known. Thereiore. memon
modification by the SP must be handled very carefully. All the processors must be brought
10 an :dle state before the SP can make ws transter. After the SP transter. all the caches
must be invaiidated.

2.3.1.5 D™

The ID* field has two main uses. During most commands it is used 10 1denulv the device
that 'has the bus. Duning the READ RESPONSE command 1t 1s used to denuty the device
that 1s (o recewve the data. Each device on tne X-Bus 1s assigned a umigue ID. wviz a De-
vice [D field. that 1s loaded at svstem inmiahizauon. Each device places its Device 1D inie
the ID field when w is accessing the X-Bus. K s, however, possible that another device
Device |D can be placed there under special circumstances {(that is. X=Bus diagnostic test-
ing). It mav also be possible for one device ta issue a read"request and direct the data to
another device by putung the other device's Device ID in the ID* field when issuing the
request. In this mode of operation. the other devide must be ready 10 accept the incoming
data.
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2.3.1.6 SUBID*

The SUBID" fieid 1s used to disunguish between two or more pending read operations
from a given device. Because read operations can take several cyvcles to compiete. a device
may issue several read operations before any data is returned. Depending on the impie-
mentauon of the memory controller, the data may not be returned in the order in which
the reads were initiated. Therefore, the initiating device assigns a unique SUBID" field 10
each read operation that 15 initiated. The slave device returns the SUBID" field when it re-
turns its data. The device uses this’field to identify which request the response is satisfving.
This mechanism is useful in the case of a processor board that has independent Instruction
and Data caches, where each could make its own read request 10 memory.

2.3.2 X-Bus Data Path Signals

The N-Bus data path contans the tollowing elements

& ~2-pyt Duta Path — DAT (A3

‘e >-pit Data Parivlield.— DATP*(7:0)

2.1 DAaT*

During commands such as READ or WRITE, DAT"(63:32) is used as the ADR" zath
During WRITE commands, DAT"(31:0} is used to transier the data that is (0 be writien.
During READ RESPONSE commands, DAT®(63:0) 1s used to transfer the data.

2.3.2.2 DATP™

The paruy bits DATP®(7:0) are associated with the DAT® bits 1n the following manner:

1y

DATP®*(0) is the parity bit used with DAT"(63:36)
e DATP*(1) is Lbe parity bitused with DAT™(53:48)
e DATP*(2) is the parity bit used with DAT®(47:40)
e DATP"(3) 15 the parny bit used with DAT™(539:32)
e DATP"/2) is the paritv bit used with DAT"(31:22)
®» DATP™(3) is the parity dit used with DAT (23:16:
o DATP*(6) is the paruy bit used with DAT*(13:%)

e DATP*(7) is the parity bit used with DAT®*(7:0).

Paritv bits should be valid for all bvtes in the transfer. regardless of whether the data wili
actually pe used.
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2.3.3 X-Bus Control Path Signals

The X-Bus control path contains the following elements:

® 3-pnt Command fleild — CMD* (<0

-

e I-bit Ackmowledge field — ACK®(1:0)

LY T

. [ni:tibi( Art;itrauon signal — [INH_ARB"*

e Bus Lock signal — LOCK® )
® X-Bus Lock Reguest — X_LOCK_REQ®
e [2 Bus Request lines — BUSREg‘(ll:O}
® Reject signal — REJ”

® Reset signal — RESET"®

e Eight Clock lines — CLOCK"(7:0)

¢ One Bus Request Summary line — BUSREQ_SUNM"

2.3.3.1 CM™MD*

The CMD* field is driven by the device that is master on the X-Bus during any given v
cle. Typical commands are READ. WRITE, READ RESPONSE. elc.

There are a set of commands that specifv a bus broadcast mode where one device may
send a command to ail other devices or some subset ol devices on the bus. I the o
most-significant bits of the command fieid are set. the command is a broadcast command
and all devices on the X-Bus accept the command. The bits in the ADR”" [ield couid be
used as a mask field 1o indicate that only a subset of the devices on the X-Bus can payv at- -
tenuon 1o the current broadcast command. The impiementauon of this [eature reguires the
foilowing special considerations:

& The acknowledge phase of the transfer must be inhibited.

® Each device that is capabie of recetving such a transfer must be able to uncondi-
tionally accept such a transfer,

The acknowledge phase must be inhibited 10 avoid unpredictable results if several devices
were trying (o acknowledge a transfer at the same ume. If a transfer that requires a posi-
tive action (that 1s, invahdaung a TB entry) is sent to a device, and the device is nol capa-
ble of accepting the wransler, sysiem damage may result because the masier device does not
get any indication that the transfer is not successful.



4,979,099
157 : 158

Table 2-3 shows the command codes used in the CMD*® f{ield.

Tubh 2=3.X=Bus Commuand Cude Descripuons
Code on :
Backplane . Command Description ) !
00000 WRITE Wnte a word of data to the desunauon device
01000 READ Inwiate a read operation on destination device, single word
o111t READ RESPONSE Return of longwordasas a result of a.prior READ operation
00111 WRITE DATA Data transfer associated with a WRITE MULT command
00100 WRITE MULT Initiate a write operation of one or more 32-bit longwords
01100 READ MULT [nittate a read operation on desunation dewvice, longwords
01110 READ RESP ERR Rewrn of lengword with an uncorrectable error
I lxxx broadcast command A command that is sent to all devices on the N-Bus |
11100 INVALIDATE TB Invalidate all TB entries (Broadcast)
11110 INVAL TB SEL Invalidate selected TB entry (Broadcast)
11111 NOP No Operation

2.3.3.2 ACK*

The ACK" field is driven in cycle N+2 by the slave device in cycle N. Typical responses
are ERROR. COMMAND ACCEPTED, BUSY, and NO RESPONSE. NO RESPONSE is
the response for a nonexustent device.

Tabie -4 lists the ACK"® fieid response codes.
Table 2-+4. ACK™ Field Response Codes
[ Code on
Backplane Command Description
00 ERROR Parnty error or command reject on previous
transmission
01 BUSY Destination device is not available to accept command
10 CMD* ACCEPTED Positive acknowledgement
11 NO RESPONSE No device has responded

Acknowledging BUSY signifies that the destination device is currently not able 0 accept
the transacuon but should be avaxlable to accept it-soon. Unfortunately. the length ol ume
that.a device is busv can: var\. from dewce 1o device. It is a funcuon of the command it is-

currently processing and' the amount of %-Bus traffic. The VMEbhus interface, for instance,
could be busy for several hundred milliseconds. depending on the recponse ume of the

V' MEbus device with which it is communicating.

.
Il a device receives a BUSY acknowiedgement to 4 given transacuon. it retries the transag-
uon.
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2.3:3.3 BUSREQ

One BUSREQ line is assigned to each device on the bus. Each device looks at the BUS-
REQ lines from the devices of higher priority on the bus. as well as its own. Each device is
piven a specific priority level. Whenever a device wants access to the bus, it assers us
BUSREQ line. During any cvcie in which the INH_ARB” line is not assented, each device
that requests the bus looks at all the BUSREQ lines of higher priority. If none are acuve. it
takes control of the X-Bus in the next cycle. When it takes control of the bus. the device
deassents its BUSREQ line and asserts INH_ARB® if it is going to hold onto the bus for
more than one cycle.

Devices such as memory controllers are the highest prioritv devices on the X-Bus because
it is important for them to empty their queues before further commands can be issued to
them. [/0 interface controllers are the next highest priority. thus preventing overrun con-
ditons in time-critical.devices. Protessors are lowest priority on the bus.

2.3.3.4 BUSREQ_SUM™ : ‘

The BUSREQ_SUM?" line represents the logical OR of the BUSREQs from the Class A
X-Bus devices. This means that the Class B devices do not have to look at ail 11 other
BUSREQs in the arbitration process. They oniv have to look at BUSREQ_SUN " and the
three other Class B BUSREQs. The Class A devices have o look at oniv seven other BLS-
REQs because thev have higher prniority than the Class B dewvices. The Class A devices gen-
erate BUSREQ_SUM"™ by dniving this line low {signal is asserted true low) whenever thev
assert their BUSREQ signal. BUSREQ_SUM?" is asserted whenever anv Class A devices re-
quest the X-Bus. ‘~

2.3.3.5 INH_ARB*

The Inhibit Arbitration (INH_ARB®) signal is asserted true low. It is pulled up on the
backplane so that its idle state is deasserted. The device that is master on the X-Bus mayv
assert the signal to ensure that it maintains mastership of the bus for additional cvcles. Ar-
bitration for mastership of the bus proceeds whenever the INH_ARB” line is deasserted.
The master holds this signal asserted for as long as it wants 10 hold the bus, typically not
more than a few cycles. If the device is only going 10 use the bus for a single cycle, it
should not assert INH_ARB*® at all so that bus arbitrauon may proceed in paraliel with s
transfer. - ’

2.3.3.6 LOCK*

system-wide resource whose ownership 1s enforced by the backplane bus protocoi. Tnstruc-
uons that reference memory can reguest the acgusition or release of the bus fock as par
ot the reference. \When one processor holds the bus lock. any auempt by another proges-
sor to”also acquire the bus lock results in the other processor sml'lmg. Noniocking memorn
operations by any processor are unalffected. The bus lock also plavs a cruciai role in assur-
ing program sequentality because that program’s behavior is visible to a second processcr.

The bus lock should be held for short ume duratichs only. Extended holding of the bus
lock may hinder muluprocessor performance. There is 2 umer maintained in the bus inter-
face to limit the durauon that a lock may be heid wo about 200 microseconds.

The processor’s bus interface is designed to implement a lock acguisition fairness algo-
rithm. The interface guarantees that every processor that requests the bus lock has an op-
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portuniy to secure it before any of the processors may reacquire the lock a second ume.

For this reason, the software does not require any minimum wait period between bus iock
acquisiuons that would otherwise be necessary to avoid lock starvation.

The bus lock can be acquired only by the load lock instrucuon. The lock is reieased uncer
program control by either a load uniock or a store uniock instruction. The pus lock s aiso
released in the hardware as a side effect of trap invocation. The bus lock mayv also pe ac-

quired and released in user mode. .

Only one processor can hold the bus lock at a given time. Thus, the lock prowides thz oa-
sis for mutual exclusion. Holding a bus lock stops other processors from seizing it. but does
not interiere with anv other memory svstem acuvity. In particuiar. bus locks de not siow
down erther DMA or noninteriocked processor reads and writes,

Securing 2 bus lock guarantees that all memory stares prior to the load lock insirucucn
have reached main memory. The load lock that flushes out any buffered writes guaranteszs
that interlocked code can assume all instructions prior (0 the interiocked seguence axe-
cuted without error. A second benefit of this 15 that the duraton of ume that a bus lock
must be held s shortened.

2.3.3.7 LOCK_REQ*

X~Bus lock request is used by a processor requesting a bus lock. This signai is held in the
lock protocol fairness arbitration scheme described in Subsecuon 2.3.3.6. Bus lock reguest

ensures that a processor requesting a bus lock gets it before the current bus lock owner re-
ceives a second one.

2.3.3.8REJ* - . LT T ST

The REJ® line 1 used to invalidate the thinsfer in the previous cvele. REJ™ in cvele N=-j 1
-used when a-processor wants 1o issue another: write operation beforem it recetves the ac-
knowledge from is previous write operauon (1t sull cannoi execute writes 1n consecutive ¢y«
ciesy. The processor actually issues the second write 1n the same cycle that It 1s recening
the acknowledge from the {irst write and then asseris or deasserts-the REJ® signal in the
cvcie that follows the second write. based on whether it recenved a busy or positive ack-
nowiedgement o the first write. 1} the fxr;x write was not accepted. the second write 18 ¢cane

celled. preserving write order: . - . .
»
CLK
A ]
Write 1 //4 Write2
ACK*® /X NACK1 X L Nack2 ]
REJ”

2

This write 1S cancelied by REJ.”

This write 1s cancelled by NACK1. . .

:

Figurc Z-<. Timing on Consecutive Writes from Samc Device with the First Wrice NACK oS
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2.3.3.9 RESET"

RESET" 1s a svnchronous signal that 1s used to inialize ail processors in the svstem. Using
this signal ensures that important machine state information is not destroved (that 1s. as
might happen if the memory refresh circuitry were arbitrarily reset while a refresh s in pro-
gressi. RESET" is held asserted at power-up ume 10 ensure that there are no tri-state
clashes on buses while interfaces are being initalized.

2.3.3.10 BUSRESET*

BUSRESET" is a synchronous sicnal that is used to clear a probiem on the X-Bus. A bus
monitor continualily checks the bus to make sure that the INH_ARB" line is not assered
for an abnormally long period of time: if this condition occurs, BUSRESET" is asserted 10
remove the condition. Devices must use this signal to reset as much logic as necessary o
remove an abnormal bus condition. BUSRESET" is asserted at power- up ume to ensure
that there are no tri-state clashes on Lhe bus whl]e interfaces are being initalized. =

2.3.3.11 CLOCK*

One CLOCK?" line goes to each device on the X-Bus. Each CLOCK" line carres u 30
dutly gycie signal that runs at the X-Bus trequency. All CLOCK" lines are arranged o
mimimize the skew between them at the device's backplane siot. The loads. routing, and
terminations on each device are carefully controlled so that each CLOCK® line see: ideni:-
cal loading. The CLOCK® signal is used as a reference input to the phase locked toop
PLL) on each d&vice. The PLL in conjunction with the SCR, generates a set of clocks
thal are smchronous and mn phase with the clocks on all other devices, and run at the rate
of the X-Bus.

2.3.3.12 ACLO

ACLO is a signal from the power controller that indicates the ac power is not within speci-
fications. On a power-up situation, this sigral will not be deasserted untii the stabuitty of
the power source is ensured. On a power-down situation. ACLO will be asserted at least

3 msec before dc power becomes out of specifications. On power-up. the RESET" and
BUS RESET signals are held asserted until ai least 200 msec after ACLO is deasserted.

2.3.3.13 SHUT_SW

SHUT_SW is sent from the system’s front panel to the SP on the Udlity board. The SP
sends SHUT_CMD to the power subsystem to shut down the system’s power.

2.3.3.14 SHUT_CMD

SHUT_CMD 1s sent from the SP to the power supply 1o iniuakize a power shut down se-
quence.

1.3.3.13 TEMP1

TEMP1 is sent to the power suppiv when the temperature sensing circuitrv senses that the
temperature at certain checkpoints has reached a dangerous level. This signals the power
supply to shut down. prevenung possible svstem damacge. :
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2.3.3.16 TO_SCR

TO_SCR is the line used to initialize communications {rom each N-Bus board o the SCR.

2.3.3.17 FM_SCR

FM_SCR is the line used to inttialize communications from the SCR to each X-Bus board.

2.3.3.18 REQ_OUT

REQ_OUT is the arburation line used by each X-Bus board to requést use of the N-Bus.

v

2.3.3.19 +12V

»  +12\' is the +12 volts ignal from the PSE to the X-Bus controllers.

2.3.3.20 -12V
- .
-12V is the -12 volts signal from the PSE 1o the X-Bus conurollers.

2.3.3.21 -5V

LraB

-3\ is the -3 volis signal from the PSE to the N-Bus controllers.

2.3.3.22 +5V

+5V is the +3 volis signal from the PSE to the X~Bus controllers.

2.4 X-Bus Arbitration
All X-Bus interfaces except the defauit owner must request the bus prior 10 use. There 1¢
_one bus request level on the bacLolane for each X-Bus device, Dewvices are grouped nto
wo classé< Class A deVices are auarded the bus in strict priority order. Class B devicas
participate in faig arbxtranorr and*mav also be defauit bus owners. CPUs are class B de-
vices.

. - ‘ . . :
Bus arbitration is decentralized. Every bus interface decides [or itself whether 11 has gained
access (o the X-Bus. Bus arbitration can be inhibited by asserting the ARB_INHIBIT back-
plane signal. Only the current owner of the bus may assert thus signal. The current owner

does so if the intended bus transfer requires multiple cvcles.
e}

2.4.1 Class A Request Override

To request the bus. a Class A device asserts both its assigned reguest level and the bus
request sum line on the bus. When the BIF detects the bus request sum assertion in an
active bus arbitration cycle, it defers to the class A device(s).
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2.4.2 Class B/CPU Requesting

The Class B devices, the four CPUs also have fixed prioritv assignments. Priority assign-
ments are 0 through 3, with 3 being the highest priority. The assienment is scanned into
the BIF and used 10 determine which of the {our Class B request paralle! backpiane signals
each CPU uses. The CPU drives its assigned level. and defers w0 requestors at higher jxv-

els.

Class B devices exercise fair arbitration. and don't reassert their request lines on demand.
Instead, Class B devices snapshot all other lower priority Class B request lines during the
final cvcle of a bus ownership. The Class B device then relinguishes the bus and doesn’t
reassert a request line unul all the snapshotted requests are satisfied. The class B devices
observe the current state of the other request lines 10 determine that the other requestors
have been serviced. When a request line is deasserted. service is underway or completed.
If a request line is still asserted. but arbitration is enabled. that requestor wins and service

resumes.

2.4.3 Default Ownership

When the bus is otherwise idle, the last successful bidder among the Class B requestors
remains as the default bus owner. The default bus owner may use the bus at the enc of
any cycie- durmn whxch no other request 1me-~ v s‘assenedr The defaul[ bus owner cocs

wins-the bus’.

A Class B device's bus ownership may be suspended by a Class A device. If a Class A de-
vice assumes control of the bus, the former Class B owner device waits for the bus to be-
come idle again belore reclaiming bus ownership (i.e., the Class B device reassumes owner-
ship in the cyvcle following one dunng which arbitrauon was permutted. but does not assert
us request line). If another Class B device wins the bus before it becomes 1dle. defauit bus

. ownership transfers 1o the latest Class B bus owner.” . .

2.4.3 Acquisition Timeout

When a BIF first asserts a bus request line, it szar?s. a umer. If the timer elapses before the
bus is acquired. a bus acquisition timeout occurs. The bus umeout duration is approsx-
mately 3.2 milliseconds (16-bit counter). If a timeout occurs, the system is assumed bro-
ken and a clock freeze request is made of the SCR. The internal BIF state is preserved as

much as possible. >

The umer is not stopped unul either a NOACK® or ACK® signal is received for the request
address transfer. The umer. therefore, expires if a device is continually busy. Broadcast
transfers. such as TB invalidates, stop the timer regardless of the acknowiedge line state.

2.4.5 Local Request Prioritization .

Three competing local requestors are ineernal ta the BIF. They inciude data cache read.
data cache write. and instruction cache read. Data cache read is prioritized over instruction
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cache read. In turn. instruction cache read is prioritized over data cache write. The [ollow-
ing list contains exceptions to these rules:

e If the write data queue is full. data cache write is prioritized over an instruction
cache miss.

e If a data cache miss collides in address with a previously queued write. date cache
write is given priority over both data and instruction cache miss.

e [{ a write to an unencacheable memory location is queued. data cache write is
given priority over both data and instruction cache misses.

e If a write and unlock is queued, data cache write is given priority over both data
and instruction cache misses.

e If a data cache miss from an unencacheable memory location is posted, data
cache write is given priority over both data and instruction cache misses.

e [If a data cache muss and lock is posted. data cache write 15 given priority over
both data and instruction cache reads. . '

§ iven priority. over

e If a tb invalidate is queued in the write buffer. data cache write 15 piven prioruy
over both instruction and data cache musses.

A iocally generated READ RESPONSE required for a BIF CSR read is given precedence
over all other transmitters. .

2.4.6 Subsequent Request Arbitration Delay

The BIF issues subsequent requesis from the data cache every other bus cycie (or later).
This assures write order between processors. and re3d-write order within one processor.
The instruction cache miss request is not resuicied to every other cvcle. For load and lock.
load and uniock. and store and unlock, subsequent requests are not issued unul a success-
ful bus acknowiedge of the prior request is received.

L
The BIF issues subsequent requests from a CPU every other bus cycie (or later;. This as-
sures write order. For load and lock, load and unlock, and store and unlock, subseguent
requests are not issued until a successful bus acknowiedge of the prior request is received.

A fair arbitration scheme is used among the processors, while a strict priority scheme si
used for other X-Bus devices and the processor group. The memory controllers always
have a higher priority than the processors. but one processor cannot lock out the other
processors because of héavy X~Bus requirements.

2.4.6.1 Implementing Fair Arbitration

Impiementating arbitration for the processor group is different from implementaung artira-
tion for the other X-Bus devices because of the need for “[air” arbitration and because of
the need to optimize their X-Bus access latency. Because the processors are both the iow-
est priority devices and the most frequent X~Bus users, thev are the default owners of the
bus.
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For purposes of implementing fair arbitrauon. bus request lines are divided into two
classes: A and B. An X-Bus device may onliy be in ane class. [ts relative prioruy posiuon
in that class is established by information which is scanned into the dewvice at system in-
itialization time.

2.4.6.2 Class A Request Override

To request the bus, a Class A device asserts both its assigned request level and the bus
request sum line on the bus. When the BIF detects the bus request sum assertion in an
active bus arbitration cycle, it defers to the class A device(s).

2.4.6.3 Class B/CPU Requesting

The Class B devices, the four CPUs also have fixed priority .assignments. Prionty assign-
ments_are 0 through 3, with 3 betng the highest priority. The assignment 1+ scanned into
the BIF and used 1o determine which of the four Class B request paralie! backplane sicnals
each CPU uses. The CPU drives us assigned level. and defers 10 requestors at higher lav-
els. .

- - - »
Class B devices exercise [air-afbitration. and don’t reassert their request lines on demand.
Instead. Class B dewvices snapshot ail other lower priority Class B request lines during the
final cvcle of a bus ownership. The Class B deviceythen relinquishes the bus and doesn’t
reassert a request line until all the snapshotted requests are satisfied. The class B devices
observe the current state of the other request lines (0 determine that the other requestors
have been serviced. When a request line 15 deasserted, service i1s underway or completeg.
If a request line is sull asserted. but arbitzation is enabled, that requestor wins and service

resumes.

2.4.6.4 Default Ownership

When the bus is otherwise idle, the last successful bidder among the Class B requestors
remains as the default bus owner. The default bus owner may use the bus at the end of
any cycie during which no other request line was asseried. The default bus owner does naot
have to assert its request line. The default remains in effect until another Class B dewice
.wins the bus.

A Class B device’s bus ownership may be suspended bv a Class A device. I[ a Class A de-
vice assumnes control of the bus. the former Class B owner device waus [or the bus 10 be-
come idle again before reciaiming bus ownership (1.e., the Class B device reassumes owner-
ship in the cycle [ollowing one during which arpuration was permitted. but does not assert
its request line). !f another Class B device wins the bus before 1t becomes 1dle, default bus
ownership transfers to the latest Class B bus owner.

2.5 Command Formats

Except for the NOP command. correct parity must be maintained on the DAT" fieid (in
some cases labeled ADR) at ail umes. The sample commands in the following subsections
are shown as being initiated by a device with an ID of 0x05 and a SUBID of 0x03.

NQOTE: All fields and notes in the following illustrations are shown in
backplane polarity .-
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2.5.1 Write
cMD . 1D VPN SUBID VALDBYT
4 0 3 0 5 0 10 3 b}
Virtual Adaress
00000 1010 ) 00 0000
a <—. - i “ ) -
* write bits 31 thru 24 :’J
write bits 23 thru 16
b ] write bits 15 thru 08
' write bits 07 thru 00
ADR
a 30 29 02 01 00
VALDBYT[3:2] Destination Address-(PA[29:2]) VALDBYT[1:0]
DAT
31 00
Data to Be written (DATA([31:0])
Figure 2-5. X-Bus WRITE Command Example
2.53.2 Read
cmbD D VPN SUBID VALDBYT
4 0 3 ] 6 0 10 3 0
Virtual Adaress
00001 1010 T 38:12) 00 0000
_| |
" Read Bits 31 thru 24 _J
Read Bits 23 thru 16
Read Bits 15 thru 08
Read Bits 07 thru 0C
ADR
31 30 29 02 01 00

VALDBYT[3:2]

Destination Address (PA{29:2])

VALDBYT(1:0]




4,979,099

| 175 176
2.5.3 Read Response -
“emp T~ iD VPN SUBID
4 0 3 o 6 0 1 0
01111 e Not Used B
ADR/DAT
83 32
Most Significant 32 Bits of Data
DAT
a1 00
Least Significant 32 Bits of Data
Figure 2-7. X-Bus READ RESPONSE Command Example
2.5.4 Write Data
cMD 1D . VPN SUBID
4 0 3 0 6 0 1 0
00111 1010 Vi 00
ADR/DAT
63 32
Most Significant 32 Bits of Data
DAT
31 00

- Least Significant 32 Bits of Data

2.5.5 Write Mulit

cmo b
4 0 a0

00100 1010

Figure 2-8. X-Bus WRITE DATA Command Example

VPN SuUBID

6 0 10
Virtual Address
(18:124 00

- .
- .
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ADR ' .
63 62 &1 34 33 32
Physical Address » 1o
DAT
31 1]

First 32 Bits of Data if Address is ar Oad Longword (32-Bit) Address

D Direction

1 Ascending

0 Decending

Figure 2-9. X-Bus WRITE MULT Command Example

2.5.6 Read Mult .

*

: cmMD .

VPN

. SuBID

10 = -
4 0 3 0 6 o} 10
O 1 1 O 0 . 1 O 1 0 . Viriual Adoress 0 0
- (18:12)
ADR
63 62 61 R 34 33 32
LjL Physical Address » wlE
DAT
6o

Longword Count

LL

11 TRANSFER LENGTH = 2 LONGWORDS
10 TRANSFER LENGTH = 4 LONGWORDS
01 TRANSFER LENGTH = 8 LONGWORDS
00 TRANSFER LENGTH = 16 LONGWORDS

E| COUNT ENABLE W| Address Wrap
1 Cournt in DATA([7:0] 1 No Wrap
*0 [ Count defined by LL 0 Medule Wrap

Figure 2-10. X-Bus-READ MULT Command Example

2.5.7 Read Response Error

CcMD 1D VPN SUBID
4 0 3 0 [ 0 1 0
Returned Returned
01110 as Sent Not Used as Sent
ADR/DAT
63

32
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DAT

RS

3
s

< X-Bus-BEAD: RESPONSE: Comr
The READ RESPONSE ERROR command is sent back to the requesting device in place of
a READ RESPONSE command when a condition’ arises during the read operation that pre-
vents it from being completed. The READ RESPONSE ERROR terminates the read operu-
tion The read operation is considered to be fulfilled and subsequent data in a READ
MULT opération is discarded.

2.5.8 Invalidate TB  _z » S

- T ’ -
CcMmD . ID VPN SUBID
4 0 3 0 § 0 1a 0
{11100 1010 ' Not Used Not Used
ADR
e
3 00

DAT

Figure 2-12. X—Bus-INVALIDA.TE_TB Command Format

2.5.9 Invalidate TB Sel

cMmD 1D VPN SUBID
4 ] 3 0 6 ] 1 0
11110 1010 Not Used Not Used
ADR
31
Virtual Address to be Invalidated
DAT

31 00

" Figure 2-13.. X-Bus INVALIDATE .TB'SEL Command
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/2.5.10 NOP i
CcMD T ID VPN suBID
K 0 3 o} 6 0 1 0
- - 3

11111 Not Used . Not Used Not Usecj
ADR

31 Qo

" Not.Used .

DAT e

)] oo

Not Used

Figure 2-14. X-Bus NOP Command Format

2.6 Write Sequences

The following subsections describe the transactions that take place during write and write

multiple bus transfers.

2.6.1 WRITE (Single 32-Bit Write)

A write sequence on the X~Bus consists of four phases: request. arbitrauon, transfer. and

acknowiedge. Some of these phases may happen in the same bus cycle. All mav be over-
lapped with some phases from ather transfers. During the request phase a device asserts its
BUSREQ line to indicate to all other devices that it wants (o gain access to the bus. If the
INH_ARB"® line is not asserted when a device asserts its BUSREQ line. the request and
arbitration phases occur in the same cycle. If higher priority devices are asserting their
BUSREQ lines, the arbitration phase may last for several cvcles. Once a device has as-
serted its BUSREQ line, the INH_ARB*® line is not asserted, and there are no higher prior-
ity BUSREQs asserted. the device owns the X-Bus in the next bus cvcle.
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CLK l
] l
BUSREQ
INH_ARB*

ADR

ACK

"/DATT/VALDBYT"
CMD"/ID*/SUBID"

S

. transmxssxon (Is che—command valxd" Is u addressed to lhxs dev:ce’.’.:;s the pamv cood"»—_
~_-the device. able:to accepl sich.a’ commai;d at this’ ume’ “fc:Y.F A this time “the master,

Figure 2-15. WRITE Timing
When the device gains ‘access to the bus, the transfer phase begins. For a WRITE, the
transfer phase lasts only one cycle. During this cycle the master device:

® Deasserts its BUSREQ signal'

¢ Does not assert the INH_ARB* signal

e Asserts the WRITE command on the CMD* signals

® Asserts its own device ID on the [D* signals

® Asserts a unique ID on SUBID®. This field is opiibnal and could be used o heip
steer error information returned from the slave device 1o the proper area withun
the master device.

®  Asserts the address to be written on ADR

e Assens the virtual page number of the address to be written on VPN

e Identfies the bvies 1o be written by asserting the valid bits within VALDBYT

e Assents the data to be written on DAT®(31:0)

In the cycle after the transfer phase, Lhe slave does some prehmmarv checking on the -

deassens all of. the signals that it assened in the u’ansfer phase In- the; nc.\u cvele, the mas-
ter and slave devices enter the acknowledce phase where the slave sends the master some

preliminary datwa regarding the status of the transfer, Since the slave may be busv progess-
ing the transfer request {or several bus cycles, it needs to have some buffering. or a wzv o
reiect a transfer request when busy. or both.

. s . . - » . . .
To insure that write order is preserved, it is illepal for a device to attempt writes in two
consecutive cycles. If a write were anempted in the cvcle following a write. there would not
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be any way to prevent it from executing before the previous write if the previous write re-
ceived a negative acknowledpement. A second write may be issued in the same cycle as the
acknowledgement from the {irst write is received idvthe REJ® sipnal is used to cancel the
second write (if the first write was not accepted). ‘

2.6.2 WRITE MULT (Multiple 32-Bit Writ_gl

Figure 2-16 shows the timing of the WRITE MULT command.

CLK

BUSREQ

INH_ARB"

ADR" D" 1SUBID" X:X
CMD" i lte write.
T -~ mult da L
ACK™ s ~ack. ack
. CEER {\ .. address data

Figure 2-16. WRITE MULT Command Timing

P ‘adhere 10 64—blt boundary alxgn n;'ihereaher WRITE MULT dlffers from WRITE in :
.~ that the VALDBYT sxgnals are’ xgnored in; WRITE MULT: (wmes of partia)’ “32 bu words T
are not allowed). If the transfer is a WRITE MULT, the sequence of X-Bus events is dil-
" ferent thander a WRITE transfer. The request and arbitrauon phases proceed in the same
fashlon as the WRITE sequence, but the transfer and acknouleogement phases proceed
) dxfferemlv During the first transfer cycle the master device:

® Deasserts its BUSREQ signal . *
® Asserts the INH_ARB® line

e  Asserts the WRITE MULT command on tl’le CMD* signals

®  Assers itslown device 1D on the ID* sipgnals

e Asserts a unique ID on SUBID”. This field is optional but couid help steer error
informauon from the slave deviceo the proper area within the master device.
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e Agserts the starting address to be wruten on’ ADR®
e Assents the virtual page number on VPN*
e Does not use the VALDBYT?" lines

®  Asserts the fxrst 32 bits of te transfer on DAT*(31:0) if the transfer does not start
on a 64-bit boundarv

During the next transfer cycle the master device:

o Asserts the WRITE DATA command on the CMD" signals
e Asserts the data to be transferred on DAT"(63:0}

e Leaves the other bus signals as they were set in the previous bus cycle. uniess this
cvcle contains the last data transfer. In this case. the INH_ARB" line is deas-
serted.

The slave device:

e Performs some preliminary checks on the transaction of the previous cvcle

e Sends an acknowledgment to the master during the next cycle, based on these
preliminary checks

This cycle is repeated until sufficient data has been transferred. The siave device responds
1o each transfer cycle with an acknowledgement two cycles afier the transfer cycle.

-2.6.3 Error Recovery-During Write

fiting: _ “fongword # Aot possible with- the WRITE-MULT. ‘command.
Darta is, ﬁtored and, chécked_ 10 memoryias. 32—bu _quanuties.: ,'When Swriting:a poruen:efa - - =
32-bit_ word the memory controller must first read, check! and correct the word that is
currently at that location. Then it merges the new-data with- the-old data. computes new
check™bits, and writes the new-data and check bits. If the check poruon of this eperation
detects an uncorrectable data error. continuing of the operation could destsoy data. In this
case. the write is inhibited.

2.6.4 Features

There are some restrictions on using the WRITE MU;LT command concerning the starting
address of the block 16 be written. The memory controller has more than one bank. The
WRITE MULT command cannot cross a bank boundary. If it does cross this boundary,
the memory controller may reject only part of the transfer because of a busy bank condi-
tion. This causes the entire transfer 1o be,retried. The retry operation then finds that the
other bank is busy, causing further retries. Since memory is managed on a virwal page ba-
sis. and virtual pages don't cross bank boundaries, ‘this restriction has minimal impact.

2.7 Read Sequences

2.7.1 READ and READ MULT

The READ and READ MUL'I" commands are very similar. The READ command involves
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a single 32-bit transfer, uses the VALDBYT" signals, and attaches significance 1o
ADR(2)*. READ MULT deals with transfers involving multiples of 32-bits, and does not
use the VALDBYT® signals. The remainder of this section focuses on the READ MULT
command.

The read sequence on the X-Bus is more complex than the write sequence. It is acrually
broken down into two distinct sequences: a read command sequence, and a read response
sequence. The read command sequence resembles the write sequence, except that the
DAT* and VPN" fields are not used. If the command is a READ MULT, a code specify-
ing the number of longwords to be transferred is placed in DAT"(7:0). After completing
the read command sequence, the master device gives up the bus to any requesting device.
Then the target device fetches the requested data. When the data is available, the device
that was the target of the read command initiates the read response sequence.

CLK
BUSREQ® . -
INH_ARB"
) »

ID*/SUBID" >< X X
cMD* Xread"'“ read X

responsexkrespons
DAT" X | § %( X
ACK* o, ck '

* d ta datcz

Figure 2-17. READ RESPONSE Command Timing

The read response sequence, initiated by the target of the read command sequence, pro-
ceeds as follows:

e The device executes the request and arbitration bus phases It then enters the
transfer phase.

e Deasserts its BUSREQ signal. The device may leave its BUSREQ asserted until the
beginning of the last transfer cycle.

e Aliows the INH_ARB” line to stay deasserted (i.e., does not assert the
INH_ARB"* signal) if the transfer is a single transfer. If this is a multiple transfer,
the INH_ARB" line must be asserted until the beginning of the last transfer.

e Asserts the READ RESPONSE command on the CMD"* signals.
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¢ - Asserts the device ID of the device that initiated the read command sequence on
the ID* signals.

At this point, the first cvcle of the transfer phase in the read response sequence is com-

plete. The transfer phase may continue if the read requested multiple transfers. In either
case. both devices enter an acknowledge phase and may, 1n {act, be simultaneousiv :n an
acknowledge and transfer pnase. There mus: be an acknowledge cvcie for each transfer

cvcie. The transfer and acknowledge phases conunue for as many cvcles as necessary 10

delfver the requested amount of data. _ . .

»

When the device being read is a memory controller, the device anticipates the avaiiability
of the data and requests access to the X-Bus before the data is actually ready. This mini-
mizes the access time for the requestng processor. In some situations, the data is available
at the beginning of the cvcle in which e data is 10 be transferred over the bus. This pre-
sents some probiems concerning what is (o be done about correctable and uncorrectablie
errors on the data that is being sent. This informauon is available at the end of the cvcie
in which the data is transferred. This is too late to stop the wransfer, but not oo late 10
assert the REJ® line in the next cycle. REJ" tells the destunation device to disregard the
data it has just received. This causes the destination device 10 ignore the last transaction
and go back to waiting for the read response (equivalent to executing a NOP command). If
the transfer is a multiple quad wdrd transfer (i.e., the response from a READ MULT com-
mand), only the transfer that was sent in the cvcle prior 10 activating REJ*® should be dis-
carded. If the memory controller needs to cancel two successive transfers, it must assen
the REJ" line for two consecutive cycles. '

If a correctabie error is detected while the memory controller is stll asserung the
INH_ARB" line. the pipelines in the memory controller are stalled. The corrected data s
also transmitted across the X-Bus, and then the pipelines are unstalled. If the error is not
detected unul the INH_ARB"® line has aiready been deasseried. it is 100 late [or the mem-
ory controller to hold onto the bus. so it must rearbitrate. Once the controller acguires the
bus again, it re~transfers the data, starting with the data that was corrected.

If an uncorrectable error was detected, the memory controller returns the data that was
read with a READ RESPONSE ERROR command and continues processing data in the
normal manner. The error address is saved in registers accessible via the X-Bus and the
scan interface.

2.7.3 Features

““cache fill operationsithe’cache migh

Read returns from the memory system have a high priority to minimize read latency ume
and to keep the memory queues as empty as possible. Since, in many cases, the processor
is stalled until the read data it requested is returned, the read process must be as efficient

v.zIn_addindn. the cache
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be delivered first in order 1o streamline the cache-to-IP interface. The memory controllers
support this function by allowing the requesting device to specify the starting quad word
address and the amoun: of data to be transierred. In addition 1o specifving the amount of »
.data’to be transferrec, the parameter for the number of quad words to be transferred is
also used to determine the staruing address of the block to be transferred (don't confuse
this with the starting address of the quad word to be transferred). For instance, if the
transfer size is two, the two quad words with ADR(3)* = 0 and 1 starting at the address
specified in ADR" are transferred. If.the transfer size is four, the four quad words with
ADR(3)* and ADR(4)* = (00, 01, 10 and 11} starting at the address specified in ADR”
are transferred. Figure 2-~18 shows the complete X-Bus timing cycle for the READ,
WRITE, and READ RESPONSE commands. '

INH_ARS " ‘

BUSREQ1

BUSREQ2

BUSREQm

VALDBYT" ! 2

. ] [ o [

m

CMD~ rdm | prmx wntaX me»(rea * read—x

i 2 data data res resp

. ack ack :ack ack ack ack

READ MULT, from Device 1 to memory READ RESPONSE, from memory to Device 1
WRITE MULT, from Device 2 to memory

Figure::3-18.°Com

characteristics of these instructions that distinguish them from other X-Bus commands and
the normal interrupt process.

*

First, these commands are broadcast commands, which means that they can be sent from
one processor to every other processor in the system during a single X-Bus cycle. This
characteristic means that the transaction does not receive an acknowiedpement. since the
acknowledgement from all the target processors would overlap.
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Processing these commands is time—critical. The processor limits the amount of bus trans-
actions that are executed using an old transiation mapging. The processor must alsqQ be
ready 10 accept a new INVALIDATE command immediately because there is no mecha-
nism for rejecting the command, and it is important that these commands do not get lost.
If a device receives toc many SELECTIVE INVALIDATE signals to process at once, it
goes into a catch-up mode, where it invalidates the whaole TB (It is assumed that invalidat-
ing the whole TB can be done faster than the selective invalidate. The device may also
raise an invalidate overrun condition).

Because the data that is affected by the INVALIDATE commands is shared among the
processors in the system, the INVALIDATE commands are issued under a bus lock. This
is done so that the invalidation of the TB doesn’t interrupt any in-progress interlocked op-
eration, leaving data in a half-modified state.

Even if the INVALIDATE commands took zero time to execute, there may be further ac-
cesses 10 pages that were previously mapped and unmapped because of the INVALIDATE
command. The processors write buffers still have ‘transactions pending which were based on
the previous mapping. Therefore, before an unmapped page is reused or written to disk,
the process managing the page must insure that all pending transactions at the time of the
invalidate have traversed the X-Bus interface. To accomplish this, the process issues an
interrupt to each relevant processor and waits for an interrupt acknowledge. The interrupt
acknowledge insures that all buffers are flushed before the interrupt acknowledge reache‘s
the X-Bus.

2.8.2 I/O Interrupts

If an interrupt is a device completion interrupt, the interrupted processor can't act on the
interrupc until the data transfer is complete. This is necessary because of the buffering pre-
sent between the I/0 bus interface and the X~Bus. If the channel for the interrupt is inde-
pendent of the data buffering, the interrupt could be processed before the dawa transfer is
complete. Since the interrupt is actually an X~Bus write operation, the interrupt foliows the
prior data transfers onto the X-Bus. If the interrupt path was separate from the data path,
the data could be synchronized at the time of the interrupt acknowledge cycle by requiring
that the write buffers be empued pnor to retummg data in response to the xmen-upt ac-
knowledge : il : ; : - -

e mterrupt acknowledge ‘cycle- generallygreaas

f\_;@_r‘l; auxlhary bus, interrogates the bus'to_find out whlch specxfxc de\nce caused r.he mtermpt
The interrupting device must know that the xmerrupt has not been serviced. It only clears
this, interrupt pending status upon an interrupt acknowledge response trom the interrupted
device. This interrupt acknowledge typically takes the form ol a read 104 spenific address
in the interrupter. The interrupter contains a2 X-Bus accessible regssier which 1s loaded b
a processor prior 10 any /O acuvity which specifies the address to be used by the inter-
rupter for addressing tnjergupt writes, I{ it must direct different types of interrupts to euher
diiferent interrupt flags or different devices on the X-Bus, the interrupter has mulupie in-

terrypt address registers.

2.9 Error Recovery

The primary goal of the error detection*3nd recovery is to insure that user data is not cor-
rupted as a result of abnormai conditions. The secondary goals are 1o maintain a high level
of availability and diagnosiblity in the system. This is especially important in a multiproces-
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sor system where quite a bit of system resources could be made unavailable if a processor
or memory bit malfunctions. A summary of the types of possible system related errors and

b 14
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the system response to those errors is shown in Table 2-5.

Table

2-5. Svstem Error and Responsc Summary

Type of Error

Action -

Bus aquisition timeout;

Read response timeout;

Error acknowiedgement paritv
error on data

No response acknowledgement:
Missing dewvice;

Parity error on address:

Lock tmeout

Powerfail

Read Response Error ECCU on
read operation Bus error on
VMEbusoperation;

No IRQ assented at IACK time
during YMEbusintrp

Bus error on YMEbuswrite
Abnormal Condition Detected

Sequential mode selected but
not all UVALID® bits are asserted

Parity. error on data_from 10 map:|

o response acknowledgement:
on X-bus read .

on X-bus write, compact off

on X-bus write (compact on)
or response 10 a requested read

Read Response Error on:
Requested read data

Preferched read data

An X-bus write attempted with
the Protect bit set in the I/O Map
Time Qut (-3msec) while waiting
to acquire X-bus or waiting for

a read response from a read or
read multiple command.

Data parity error on a read or
write command from X-bus

‘MP -~PERR.is- assened for the durauon of ‘ume than the

Freeze clocks: invoke Serv. Processor

Execute check (read); optionally invoke SP:
Fetch check (write)

Interrupt; gracefully terminate disk operauon
Execute check

VMEDbus interface posts interrupt
Gate Array/ Utility Board Action

UBERR"* asserted and cycle aborted, status bit is set in
register of U~bus master and a CPU interrupt is generated.

'to the CPU

UBERR" asserted and cycle aborted, status bit
is set in register of U-bus masier and a CPU interrupt is
generated.

UBERR" asserted and cvcle abored. status bit is set in
register of U~bus mastgr and a CPU mr.errum is
generated.

NRSP (one cycle) asserted.
This causes a status bit to be set and a CPU interrupt
generated.

iin
UBERR* asserted and cycle aborted, status bit is set in
register of U-bus master and a CPU xnterrupt is
generated.

Data is not loaded into the read buffer. If that data is
subsequently requested, it will again be fetched from
memory and then causes a UBERR" if it is still bad.

UBERR_‘ agserted and cycle aborted, status bit is set in the

‘register of U-bus master and a CPU interrupt is generated.

Clock Stop line is asserted

Clock Stop line is asserted
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Table 2-5. System Error and Response Summary - (Cont.)

Type of Error - T Action o
Error acknowiedgement Clock Stop line is asserted

Read Response received from the | Command is ignored and no acknowledgment is sent.
X-bus without a pendxng read
operation

An unsupported command is Command is ignored and no acknowledgment is sent.

received

The quidelines for error recovery are as follows:

e Errors that could be created by software are, in general, recoverable and, there-
fore, passed to the operating system for analysis and attempts at recovery.

® Errors that are caused by hardware failures bring the system to a halt as soon as

fatal fault inadverenty Gauses.loss. of dat

2.9.1 X-Bus errors .

Tiue {ollowing subsecuions describe the various typesof X-Bus errors

2.9.1.1 Timeouts

-

The svstem has umeout mechanisms that detect errant hardware and sofiware. These
timeout mechanisms notify the user that an abnormal condition has occurred. Timeouts are
serious and are reported to the Service Processomfor logping and/or further diagnosuc ac-
tion. There is a timeout mechanism in each X-Bus device which notifies that device if it s
unable to gain access to the bus or if it has not received a response from a rezd operation.

The timeout period is greater than 3 milliseconds. This is long enough that only a serious
system failure couid cause the umeout. The umeout sets a timeout flag in the dewvice's in-
terface status register and then causes the state of the N-Bus interface to be frozen until
the condition is cleared via the scan loop mechanism. BUS RESET®, or RESET". The
Service processor is made aware of this situaucn so that the system doesn't sumpiy lock up.
The Service Processor polls the interface st2tus register on each device to find the source
of the timeout.

2.9.1.2 Lock Timeouts

Lock umeout i1s handied via a umer locatec on eathh X-Bus device that can generate a bus
lock. The umer umes the durauon of 3 tus lock. If 2 lock has been neld for more than
200 microseconds. a2 iock timeout is generated. This lock timegutl reieases the bus lock and
penerates a trap to the processor (o incica:2 that the action has taken place. The lock
umeout period is less than the bus access tmeoutl period so that other devices on the X-
Bus, which are trving 10 acquire the bus lecit, don't trip thelr bus access umeout mecha-
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may generate lock umeout errors that are reaily bus access umeout errors. but that doesn’t
cause any serious problems because the recovery software is aware of this possibility.

2.9.1.3 Parity Errors

The parity error indicales that a serious system malfuncuon has occurred. This causes the
system tc stop before additional damage to data or system stale occurs. If an X-Bus device
detects a parity error on data that was sent 1o it, it sets a panty error flag in its interface
status register. It also responds with an error acknowiedgement, and then stops processing
transactions either 1o or from the X-Bus. The error acknowledgement causes similar ac-
tions in the sending device. The interface status regisiers can be read via the diagnosuc bus
scan loops. Neither interface participates in further X-Bus transactions unul the condition
s cleared v1a _the scan loop mechamsm.,or RESET". The Service. Processor 1s.made aware -
_of-the error.condition via the. _Diagnostic_Bus HALT. mgnél : :

B Ve, EN

2.9.1.4 No Response Acknowledgement

If a device receives a no response acknowledgement (i.e.. non-existent device) from z
trafdsaction, it may atlempt to recover. but the failure-is likely to be caused by a tatal prob-
lem. The no response mav be the result of an address parity error, trying Lo access a de-
vice that does not exisi. or undefined. unsupported commands on the X-Bus. [[ the re-
guesmng device 1s a processor, it wraps 0 an error recovery procedure that tries to discover
if the problem is related to hardware or software. 1f the problem is hardware related. the
processor lets the Service Processor resolve the problem. If the requesting device is not a
processor, it sets a no response flag in its status regisier and waits for the Service Processor
to let it proceed. » '

If a device is selected, such as a memory controller, and the address that is presented is
not a valid address within that controller, the device responds with a no response ack-
nowledgement that indicates the address=i$ not valid. This is preferable to the error ack-
nowledgement because there is a reasonable chance that this type of error is a software
error, not a hardware error, and possibly recoverable. Error acknowledgements are treated
as fatal and are used to indicate nonrecoverable hardware type error conditions.

2.9.2 Memory Errors

2.9.2.1 ECCU on Write

The only situation that generates an ECCU on a memory write is when an attempt 15 made
to write a portion of a2 32-bit word and the existing 32-bit word has two or more bis in
error. The write operation is terminated so that data is not destroved. An interrupt
(WRITE command) is sent 10 a prespecified X-Bus address. When the processor responds
10 this interrupt. it can read the address of the data which caused the ECCU. It can aiso
read the ID* and SUBID"® of the device that generated the failing write operatwon.

2.9.2.2 ECCU on Read

If an ECCU error i1s detected on a read operation. the read operation is treated as a nor-
mal read operation except that a READ RESPONSE ERROR command is returned with
the data instead of a READ RESPONSE command. The data that was obtained on the
read is returned uncorrected as the data portion of the transfer. If the error was not de-
tected until the bad data was sent out, the REJ® signal is asserted to cancel that transfer.
The data is resent using the READ RESPONSE ERROR command code.
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2.9.2.3 ECC on Read

If a correctable error is detected on a read operauon before the data is transferred. the
o _data is corrected and Lhen_.rsem 10 the - requesting devxce.»If-;he error: is 'noz dezecr.ed unur' By

cessed -by-el euher Lhe X-Bus: mterfaca Qr Lhe_dxah_-_:
nosuc processor via the scan ioops The information stays latched in this register until the

data is read out. This’ may cause mformauon about later errors 10 be discarded.

2.9.3 VMEDbus Errors -

- Most errors that occur on the VMEbus are signaled b~y asserting the VMEbus signal. BUS
ERROR. In"most cases, this signal is asserted by the slave in the VMEbus transaction. It
may also be asserted by the bus timer which is locajed on the system controller module.
The bus timer function is implemented on the VMEBUs interface and sets a bus timeout
flag whenever the VMEbusAS® (Address Strobe} is asseried for more than 100 microsec-
onds. Depending on an enable bit, setting this flag may also cause an interrupt to the de-
vice specified in the VMEbus interface’s mterrupt address register. There is also a bus er-
ror flag in the VMEDbus interface which i3 set when any BUS ERROR occurs on the
VMEbus. This flag also has an enable bit which allows generating an interrupt to the de-
vice specified in the interrupt address register. These flags are part of the VMEbus inter-
face's status register and are reset whenever the register is read. Whenever a BUS ERROR
occurs, the address that was on the VMEbus is recorded in a bus error status recister for
interrogation by an X-Bus device. This register locks up once an error has occurred and
does not record other error address:es ’umil it has been read.

2.9.3.1 Bus Error on Read

If an X-Bus device initiates a read operation on the VMEbus that results in a BUS ER-
ROR, the VMEbus interface does not respond 1o the read command with a READ RE-
SPONSE. Instead, it responds to the requesting device with a READ RESPONSE ERROR
command. The lower 32 bits of the returned data, DAT"(31:0) reflect whatever data was
on the VMEDbus data lines at the time BUS ERROR was asserted. To determine if the BUS
ERROR was the result of trying to access a nonexistent device, the requesting device must
look at the bus tumeout flag in the VMEDbus interface’s status register.

2.9.3.2 Bus Error on Write

1f an X-Bus device initiates a write operation on the VMEbus which resuits in a BUS ER-

ROR, the VMEbus interface sets a write bus error flag in its status register. It also sends an
interrupt to the X-Bus device specified in its interrupt address register. If the BUS ERROR
was a result of trying to access a nonexistant device, the bus timeout flag is also set.

2.9.3.3 Bus Error on Transfer not Initiated by an X~Bus Device

. If a BUS ERROR occurs while a. VMEbus device is active on the bus, it notifies the
: 'VMEb T 'merface of Lhe condmon' "a_._»the normal mterrupt mech n;s _s_;.-In some cases, . .
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2.9.3.4 No IRQ Asserted During IACK* Cycle

If the VMEbus interface has sent an interrupt 10 an X-Bus device and there is no IRQ

line frbm the VMEbus asseried when the X-Bus device responds with an IACK® cvele, the

VMEbus ihterface does not perform a VMEbus JACK* cycle. It also returns the status reg-

ister with a READ RESPONSE command and an interrupt dropped flag set in the status
”regis.tér. The processor tredts this <ondition as a spurious interrupt.

»

2.10 Physical Address Space -.

»

The X~Bus physical address space is 30 bits wide, or | gigabyte of physical memory and
device space. Table 2-6 shows how it is partitioned.

w3m
Table 2-6. X-Bus Physical Address Space

Address Device
00,000,000-00,3FF,FFF 4 MB, Processor Registers
00,400,000-07,FFF,FFF , |, 124 MB, Reserved
08,000,000-0F,FFF,FFE 128 MB, Service Processor
10,000,000-17,FFF,FFF 128 MB, Reserved
18,000,000-1F,FFF,FFF | _ 128 MB, Reserved
20,000,000-2F,FFF,FFF 256 MB, Memory No. 1
30,000,000-3F,FFF,FFF 256 MB, Memory No. 2

g3

Chapter 3

U-Bus Interface

This chapter describes the U-Bus and the U-Bus interface to the X-Bus.

3.1 Utility Bus (U-Bus) '

The LUtility board contains_several functional subsystems that are essential to the Series
10000 processing system. [t contains the VMEbus and PC AT compatibie bus interfaces,
power supply interface, conurol panel interface. the Serial Input/Output (SIO) line inter-
faces. umers, calendar, the Service Processor (SP), and the Diagnostic Bus (D-Bus) mter-
face. The svstem’'s clock generation circuitry is also located on the Utility board.
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The VMEbus and PC AT compatible bus interfaces. the SIQ line interfaces. umers. and
calendar are connected to the core system’s internal bus (X-Bus: mnterface via the Uuluy
board’s internal 32-~bit bus (U~Bus). The Service Processor (SP) and its associated mem-
ory are connected to the U-Bus, but are independent of it, allowing the SP 1o access the
D-Bus interface withowt interferring with the U~Bus operations. The /O map and the
VMEbus address modifier tables are also accessed through the U-Bus.

The Utility board's internal bus. the U~Bus, streamlines the X~Bus to VVMEbus interface.
since most of the high data rate transfers occur between these two functional units. This
architecture also simplifies the SP 10 U-Bus interface.

There are five interfaces that arbitrate for use of the U-Bus. These include the X-Bus in-
terface, the SIO interface, the SP interface, the VMEDbus interface. and the PC AT com-
patible bus interface. During normal system operation, the SP does not need access to the
:U-Bus;~However. the.SP.
{0 the:devices-on

Bus {or__dmcnosuc purpo.

e APPENDIX III

Chapter 12
CPU to X-Bus Interface

memory 15 loaded via.the U-=Bus. The SP must also haxe access .

12.1 Overview

The system's CPU X-Bus Interfaces(BIF) connects the processor’s instruction and data
caches 10 the system backplane bus. The principal functions of the BIF unit are:

® Support the X-Bus reads necessary to {ill the instruction and data caches.

® Queue and deliver processor stores to the X-Bus. isolating the CPU from X-Bus
write latencies.

® Act as a bus watcher and ensure cache coherency in the face of external stores.

® Act as a clearing house for system communications, such as interrupts, 1o and
from the CPU.

e Maintain and check CPU cache data parity.

Also, the BIF provides much of the suppornt logic for the self-test of the CPU cache
RAMs.

12.2 BIF Block Diagram

The BIF is composed of 3 gate arrays. The bus interface logic also includes the instruction
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and dar.a cache duplicate tag stores, the X- Bus interface transcewers and some supporting

'>_;_ISSUQS inbound addye_ss transfe ! 5 Ache lidat
nal writes. and for cache miss flllmc The CBA nale arrav also mamLam< the ducncate tag

stores and handles all bus watching. Finally,
terrupt requests to the processor-

the CBA gate arrav accepts and torwards in-

The two data gate arrays (CBDs} are idenucal. One transfers even bvies. and the other
transiers odd data bnes The CBD. gar.e arrays queue and forward wrne data. and rewrn
read data. Theé CBD gate arrays check and fhaintain the cache parity. Figure 12-1 shows

the processor block diagram and illustrates this partition.
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Figure 12-1. Bus Interface Overall Block Diagram
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12.3 B'us,In‘terconngct '

The BlF accepts and returns processor addresses from the PA, EASRC, PCSRC. and V' P\ )
bus registers. The BIF also accdpis and returns datwa {rom the processor I\ST-and DATA =
bus registers. It uses the.)\ ~-Buf as 45 path to main memory. Lo -
For a data cache read miss, the MMU gives the physical address 1o the BIF over the PA
bus. The accompanying VPN is captured by the BIF _slirecv.ly from the EAVPN bus. When
the cache fill begins, the BIF supplies the cache index to the EASRC bus over the PA bus.
The memory data is supplied directly to the cache DATA bus.

For an instruction cache read miss, the MMU provides the physical address to the BIF
over the PA bus. The BIF captures the accompanying VPN is captured directly from the
PCVPN bus. When the cache fill begins, the BIF supplies the cache index is suppiied to
the PCSRC bus over the PA bus. The memory data is supplied directly to the cache INST
bus.

For a data cache write, MMU provides the physical address to the BIF over the PA bus.
The BIF captures the accompanying VPN directly from the EAVPN bus. In this case, the
store data has previously been captured by the BIF directly from the DATA bus. When an
external write requires purging a local cache entry, the BIF supplies the invalidate address
to the MMU over the PA bus.

12.4 X-Bus Arbitration

All X~Bus interfaces except the default owner must request the bus prior to use. There is
one bus request level on the backplane for each X~-Bus device. Devices are grouped into
two classes. Class A devices are awarded the bus in strict priority order. Class B devices
participate in fair arbitration and may also be default bus owners. CPUs are class B de-
vices.

Bus arbitration is decentralized. Every bus interface decides for itself whether it has gained
access to the X-Bus. Bus arbitration can be inhibited by asserting the ARB_INHIBIT back-

plane signal. Only the current owner of the bus may assert this signal. The current owner
does so if the intended bus transfer requires muitiple cycles.

12.4.1 Class A Request Override

~...To request the bus. a Class A devxce assens both 1ts assngned request level and Lhe bus ..

12.4.2 Class B/CPU Requesting

The Class B devices. the four CPUs aiso have fixed pniorny assignments. Prioruy assign-
ments are O throurh 3. with 3 being the highest priority. The assignment 1s scanned nto
_lhg BIF and used to determine which of the four Class B reguest paralie] backpiane sicnals
each CPU uses.*The CPU drives its assigned level, and deles® to requestors at higher lev-

els. <
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Class B devices exercise fair arbitration, and do¥'t reassert their request lines on demand.
Instead, Class B devices snapshot all other lower priority Class B request lines during the

final cycle of a bus ownership. . The Class B device then relinquishes the bus and doesn't

reassert a request line unul all the snapshoued requests are satisfied. The class B devices

observe the current state of the other.raquest lines to determine that the other requestors
have been serviced. When a request line is deasserted. service is underway or completed.
If a request line is still asserted, but arbitration is enabied. that requestor wins and service
resumes.

12.4.3 Default Ownership

Wher. the bus is otherwise idle, the last successful bidder among the Class B requestors
remains s the default bus owner. The defauit bus owner may use the bus at the end of
any cycle during which neo other request line was asserted. The default bus owner does not
have . @sser its request line. The default remains in effect until another Class B dewvice
wins the Sus.

A Class B device’'s bus ownership may be suspended by a Class A device. If a Class A de-
vice assumes control of the bus. the former Class B owner device waits for the bus 1o be-
come idle again before reclaiming bus ownership (i.e.. the Class B device reassumes owner-
ship in the cycle following one during which arbiration was permitted. but does not assert
its request line). If another Class B device wins the bus before it becomes idie, default bus
ownership transfers to the latest Class B bus owner.

12.4.4 Acquisition Timeout

When a BIF first asserts a bus request line, it starts a umer. If the umer elapses before the
bus is acquired, a bus acquisition timeout occurs. The bus timeout duration is approx:-
mately 3.2 milliseconds (16-bit counter). }f a Uimeout occurs, the system ts assumed bro-
ken and a clock freeze request is made of the SCR. The internal BIF state is preserved as
mu:zh as possible. .
The umer is not stopped untii either a NOACK or”ACK signal is received for the request
‘address transfer: The timer: there_fp{e explres I a de\nce is* contmually busy. 'Broadcast
o i'transfers,w X st

Uch as. ‘I'B mvahdates. S(O%the time recardless*of theé. ac}.nowtedce 1

12.4.5 Local Request Prioritization

- Three competing local requestors are internal to the BIF. Thev include data cache read.
data cache write. and-instrucuon cache read. Data cache read 1< prioriuzed over insuructon
cache read. In wrn. instrucuon cache read 1s prionuzed over data cache wrie. The follow-

- ing list contains excepuons to these rules:
e ® If the write data queue is fuil. data cache wrne is pnonuzed over an instruction
cache muss. »

e If a data cache miss collides in address with a previously queued write, data cache
write is given priority over both data and instruction cache miss.

e If a write 10 an unencacheable memory location is queued, data cache write is
given priority over both data and instruction cache misses.
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e If a write and uniock is queued. data cache write is given priority over both data
and instruction cache misses.

e If a data cache miss from an unencacheable memory location is posted; data
cache write is given priority* over both data and instruction cache misses.

e If a data cache miss and lock is posted. data cache write is given priority over
both data and instruction cache réads.

e [f a data cache miss and unlock is posted. data cache write is given priority over
both data and instruction cache reads.

e If a b invalidate is queued in the write buffer, data cache write 15 given priority
over both instruction and data cache misses.

A locally generated READ RESPONSE required for a BIE.CSR read is given precedence
over all other wransmitters.

12.4.6 Subsequent Request Arbitration Delay

The BIF issues subsequent requests from the data cache every other bus cycle (or later).
This assures write order between processors, and read-write order within one processor.
The instruction cache miss request is not restricted to every other cycle. For load and lock.
load and uniock, and store and unlock, subsequent requests are not issued until a success-
ful bus acknowledge of the prior request is received.

: The BIF xssues subsequem requesm from a CPU ever) other bus cycle (or later) T'hxs as-

12.5 X-Bus Reads

X~-Bus reads are splitinto two pans: address transfer and data return. The BIF arbitrates
for an addwess transfer (o igiﬁale a dma or instruction cache miss. The bus interiace then
awaits data return. The BIF arbitrates for data return onl\ uhen responding as a slave to a
CSR read. - s
»
~
12.5.1 Read Initiating

When the BIF wins the bus and decxdes that a read is the highest priority task, it transfers
the read address and issues either a REAﬁ or 3 READ MULTIPLE command. It issues a
READ command if the CPU request is less than or equal to 32 bits, and was either unen-
cacheable would change the bus lock status. The BIF issues 2 READ MULTIPLE com-
mand otherwise.

If the request is a READ, the byte mask accompanying the address decides the exact re-
quest size.

1f the request is a READ MULTIPLE. additional request information is provided in the
address and data fields. The WD ﬁe!d is always 00. The following settings are used for the
LL field:
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00 f4-bit Read
01 Data Cache Normal Fill
10 Instruction Cache Fill
11 Extended Data Cache Fill

The LONGWORD COUNT field is always equal to 0000 0010.

X-Bus Read Muitiple

63 62 61 34 33 32

LiL Physical Address WIE

31 08 07 00
Longward Count

LL WE

00 Use Longword Count, Modulo Wrap
= .01 Length Specified by LL. Modulo Wrap.: -
'10 Use Longword Count-

00 Transfer. Length = 2 Longwords
.01 Transfer-Length = 4 Longwords -
10-Transfer, Length-‘ 8 Lfnqwords
: 6

There can be muitiple reads outstanding on the X-Bus from a single CPU. In such a case.
rev.urning read data is distinguished by the sub-1D field. Sub-ID = x0 is used for the data
cache. Subid = x1 is used for the instruction cache.

The read address is sourced by the CBA cate array. The CBD pate arravs provide the vir-
wal page offset within segment (WPN). When the read address 1s transferred, the CBA
gate array captures the associated VPN for subsequent use during cache fill and DTS up-

date.
Y
~

12.5.1.1 Read Initiation Bypass

When a read MMU command is being decoded by the BIF and there are no previous in-

ternal requests pending, the arriving PA is xmmedxately forwarded to the X-Bus outbound

address register. If the BIF is the default bus owner, no external bus requests are pending.
and internal request initiation is not suspended for any reason, the read request is initiated
in the following bus cycle.

12.5.2 Read Data Return

After the BIF initiates a bus read, it waits for the rewurn of read data. Several outcomes
are possible: data returns as expected, data returns in error, and data fails to return.

The expected data return is either one (READ) or more (READ MULTIPLE) data trans-
fers identified as READ RESPONSEs. The returning' data appears on the 64-bit bus
aligned as if in memory. Byte 000, if present, is in bit positicns 6€3:56, and so on. If mulu-
ple READ RESPONSE cycles are expected, they are either immediately abutting or have
intervening NOPs. If there are intervening NOPs, there is always at least 2 such NOPs, and
ARB INHIBIT is asserted by the responder to prevent any intervening unrelated bus opera-
tions.
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If bad data is returned, the accompanying command code is READ RESPONSE ERROR.
This may be caused by detecting an uncorrectable ECC or parity error. It may also occur
because of a bus timeout or address error in the responding device. No further data is re-
turned subsequent 1o a READ RESPONSE ERROR. A READ RESPONSE ERROR may
occur in any cvcle of a mutliple transfer read return bus sequence.

The last possible outcome for a read is for the read data to fail to return. This can only
happen in the presence of a.hardware failure.

12.5.3 Read Return Timeout

A0l ter: :
euher an ACI\ or a '\O-\Cl\ acknoueldce It arburatxon succeed= “and . a read lssue fullous

the timer is conunued. Il the umer then expires before the last read daw returns,  read
b ' retarn tumeout occurs. If a umeout occurs. the svstem 1s assumed proken ana u clockh

treeze request 1s made 1o the SCR. The internui BIF state is preserved as muci, a- possi-

bie. * .

» - . - - -
- .

If two reads are concurrently outstanding. the umer is restaned when read data return
completes for each request. This results in a somewhat longer umeout for the second read
request. »

If a second request (read. write, or TB invalidate) is issued while a read is outstanding, the
timer is not stopped. This results in a shorter bus acquisition timeout for these subseguent
requests that expires coincidenty with the read data return timeout.

2.5.4 Read Return Minimum Time

The READ RESPONSE for a READ or READ MULTIPLE command must occur no
sooner than the first cycle after the acknowledge cycle for the address transfer. This is also
the minimum ume possibie within jhe bus protocol (except for defauit bus owners:.

12.53.5 Read Return Acknowledge ‘ -

The BIF either successfully acknowledges. or error acknowledges. a READ RESPONSE
addressed to it. If it error acknowiedges, 1t forwards the returning data as if correc: to the
data or instruction caches. The BIF records the error status in the embedded scan siate
and requests a clock freeze of the SCR.

12.6 X-Bus Writes

When the BIF wins the bus and decides that a write is the highest priority task. 1 transfers
the write address and data, and sends a WRITE or a WRITE MULTIPLE command. The

BIF issues a WRITE command if the data to be transferred is less than or equal 10 32 bus.
The BIF issues a WRITE MULTIPLE command if the data to be transferred 15 64 bits or

more. »

If the request is a WRITE, the data accompanies the address. The associated byte mask
decide- the exact request size.
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lf the requesx is a WRITE MULTIPLE. the address and transfer direction are sent in the

532 :s 0 1( Lhe address IS -ascendmg, and:b't{.’» 9

"1 if- the address~15 descend-~...

12.6.1 X-Bus Write Multiple Limit

The BIF conunually monnors its internal wrie address and data queue to determune 1if the
next write data to be transferred ts an adjacent address quadword. If so. 1t sustains the
write muitiple. To prévent excessive bus use by one processor, the BIF stogs a wTite mulu-
ple arburarily at every 256 byte bbund'a'ry (32 transiers). Write muluple data is always sent
in immediately adjacent bus cycles. '

The BIF does not generate odd longword start write multiples.

12.6.2 X-Bus Initial Write Hold Off

The BIF does not attempt 1o transfer .writé data as soon as the request is posted. Rather. it
delays the transfer, anticipating that subseguent writes to adjacent addresses are likely. The
request is finally posted only if one of the following conditions is true:

If a second write to any address is queued.
If the pending write was not encacheable.
»

If the pending write would unlock the bus.

I[ there is a pending data cache miss, which collides in address with the pending
write.

If there 1s a pending data cache muss that is unencacheable or would change the
bus lock status.

if the free running BIF counter overruns (safety measure).

If the write is really a TB invalidate.

12.6.3 X~-Bus Write Monitoring

All X-Bus writes are monitored even if they are not directed to. or originated by, the locai
BIF. The BIF determines if a copy of the data at the write address has been locally
cached. If so, the BIF schedules an invalidaie of that cache entry. The BIF maintains du-
plicate tag stores.

12.6.4 X-Bus Writes To BIF CSRs

When the BIF detects a 32-bit wTite into its own regzster range. it subsumtes a WRI'I'E

- -+ ~“MULTIPLE ‘of 2 longwords for-a WRITE- command: Terimaet T R it T

12.6.5 X-Bus Write Multiple Acknowledge .

)

The acknowledge for the WRITE MULTIPLE commana 1s correct only when the siave can
accept at least the first 64 buts of data. The acknowledge for the WRITE DATA command
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associated with a write n_mhiple is busy if the associated 64 bits of data cannol be accepted
and must be retrapsmitted.

An error or no acknowiedge for a WRITE DATA command is interpreted as a busy ac-
knowledge 10 preserve state. When this is encoum'érgd the acknowledge driver freezes the
clocks.

12.7 X-Bus Slave Response: CSR Aécess, Interrupt Posting

The BIF holds 4 operationally available registers: ERRADDR, BUS_CSR, ICTRL and
[SUM. These registers can be accessed over the X-Bus. In addition. the BIF posts inter-
rupts to the local processor in respanse 10 bus writes. The following addresses are those to
which the BIF responds as a slave device:

00pp 0200 Interrupt Sum;na;y Register (ISUM)
QOpp 0208 Interrupt Control Register (ICTRL)
00pp 0210 Bus Control Register (BUSI_CTRL)

00pp 0218 Bus Error Address Register (ERRADDR)
00pp 0220 Process Timer (PROC_TIMER)

00pp 0100 - 00pp 013C Interrupt Posting Addresses

NOTE: pp = Processor number

12.7.1 X-Bus Slave Response: CSR Read Return

The BIF decodes all incoming read requests. If the address matches one allotted to the
interface, it returns 32 bits of read data. The data is returned in bit positions 63 through
32. The BIF sometimes delays register read data response so that the read dara is returned
no sooner than the fourth cycle after the one that provided the read address. This is only
necessary when the BIF is the default bus owner.

‘~::The BIF gwes -a- busy;response when a second X-Bus read rcquest amves for a register -~

-~ ~The-BIF gives-a-no response’ .wﬁen__ :mg;ggd .;eqnesr:_g_s:‘ f ,or,anyfhm g:br.he;—; t_han . 3212115 I

12.7.2 X-Bus Slave Response: CSR Write Accept, Interrupt Posting

The BIF decodes all incomuing write requests and. if the address maiches one alloued to

the interface. acknowiedges the request.

If the address 1s one of the iftegrupt posunc locauons. a WRITE command s expecred In .
this case, the data and byte mask are not interpreted.

If the address is one of the accessible CSRs, a WRITE MULTIPLE command is expected.
A request length of 1 or 2 longwords is expected with the data provided in bit positions 63
through 32 of the first WRITE DATA command. This is necessary because of the position-
ing of the CSR registers in the CBA IC.

i
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The BIF pives a busy acknowledge when an X-Bus write request of any type arrives for a
register which has an N-Bus read underway.

The BIF gives an error acknowledge when it detects a parity error in a write data. A
WRITE MULTIPLE to an interrupt posting address, or a simple WRITE directed at a CSR
also generates an error acknowledgement. In either case, embedded state is set and a
clock freeze request to the SCR generated.

12.8 X-Bus TB Invalidates

The local processor can issue TB invalidates for broadcast over the X~Bus. The BIF ac-
cepts, queues and delivers to the X-Bus TB invalidates as if thev were writes.

12.8.1 X-Bus TB Invalidate Issuing
The BIF transmits TB invalidate requests accompanied by the comands INVAL TB SEL
and INVALIDATE TB. If the former command is issued. the address field holds the wir-
tual page address of the entry to be invalidated. The virtual page number, address bits 31
through 12, can be found on the bus in bit positions 63 through 44.

No acknowledge is expected or awaited when a TB invalidate command is issued.

83 44 32

.12.8.2 I\ Bus TB_Invalidate Acceplmg
- - - o . - [ - 8 3
The BIF uncondmonalh accepu all X~ Bus 'T'B m\alxdate requests and torwaras them to
the MMU- throucts the szhdm\sgzxu:mz mechams\’n

.
- - * - re

-~

12.9 X-Bus Locking
)

- The BIF accepts load lock, load unlock and store unlock command from the MMU.
When load lock completes successfully, that CPU can hold the bus lock until the CPU ex-
plicitly releases the lock, or an error arises. Only one CPU al a time may hold the bus
lock. That. in murn, permits the construction of critical code sections in a multiple proces-
sor environment..

12.9.1 X-Bus Lock Acquisition and Release

The BIF secures the bus lock only when a load lock data cache miss is successfully issued
and acknowledged on the X_BUS. In more detail, first the data cache miss which seeks
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the bus lock is posted. This request pushes all previously queued writes ahead of itself.
When the lock request is next to be serviced, the current state of the external bus lock
signal is examined. If lock is already asserted by another CPU, the arbitration is deferred.
If the bus lock is available, arbitration i§ auempted. If the bus lock signal is subsequently

« assened before the BIF gains access to the X~Bus, the BIF withdraws from further arbitra-
tion. When the bus is finally secured, the arb inhibit and lock signals are simultaneousiy
asserted. ARB INHIBIT remains asserted for 3 cvcles. This is sufficient time for all other
bus interfaces to see the lock signal asserted and withdraw from arbitration if they too plan
to secure the bus lock. At the end of 3 cycles, the locking BIF also examines the state of
the acknowledge signals. If other than a successful acknowledge is detected, the bus lock is
immediately released. If released, the lock signal is deasserted at the end of the cycle fol-
lowing the acknowledge.

The BIF releases the bus lock when a load unlock or a store unlock is successtully issued
and acknowledged. Alernatively, the lock is reléased upon an error in the local processor.
A local proceksor error results in a processor trap. The signal trap dispatch is, therefore,
used to uncondidonally release the bus lock. In more detail, the data cache read or write
which seeks to release the bus lock is posted. This request pushes all previously queued
writes ahead of itself. At the end of 3 cycles, the locking BIF examines the state of the
acknowledge signals. If other than a successful acknowledge is detected, the bus lock is
retained. Otherwise, the lock signal is deasserted at the end of the cycle following the ac-
knowledge.

12.9.2 X-Bus Lock Nesting

The MMU can request the bus lock for PMAPE update while the BIF posesses tne bus
lock. For this reason. a secompd load lockereguest can be accepted. If two bus lock requests
have been actepted, two bus unidck requests need to follow befare the lock 1s actually re-
leased. In effect. the BIF nests bus lock requests two levels.

une

12.9.3 X-Bus Lock Duration Timeout
»
The BIF starts a timer when the bus lock is first acquired. The timer remains running as
long as the BIF holds the bus lock. If the timer expires before the lock is released, a lock
timeout trap is posted The timer duration is approximately 200 microseconds (12-bit
counter). ‘ : .

The BUS_CSR register indicates when a limeout trab occurs. If a second lock seting re-
quest is processed before a held lock is reieased, the timer is not reset. This results in a
shorter timeout for the second request. If an unlock request is being transferred upon the
X-Bus, the BIF does not arbitrate for a new lock request for at least five cycles, including
the transferring one. This delay assures that there are always be two cvcles of delay be-
tween the release of a lock and its jeacquisition by the same BIF.

12.9.4 X-Bus Datz; Consistency Under Lock .

The BIF guarantees that. once 2 lock has been acquired. all writes on the bus that pre-
ceded the load lock transfer have successfuily invalidated the cache. This 1s a natural out-
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come of an X~-Bus READ command requiring at least 4 cvcies before the READ RE-
SPONSE command is seen.

12.10 X-Bus Request Retry

The BIF retries any request that receives a BUSY acknowledge. The retry conunues until
the bus timeout expires.

If an address transfer receives a BUSY acknowledge, the request is marked as in retry.
There can be as many as three requests in retry al any one time. Retry requests receive no
different priority treatment, other than following retry holdoff.

12.10.1 X-Bus Retry Holdoff

If a request is in retry, it is not necessarily posxed to.the bus xmmednate!v _The retry inter-
val is a random function, over 2 .bound:that ge _emcally:mcreases 0 a: maxxmum spread
“Tof 1.6 mlcroseconds “The. f'uncuon s detived: from:the” free mnnmg BIF coumer If mulu-
ple requests are in. reu'y at_once,: they share the_holdofT. timing.i L T emoT L e
The minimum request spacing for an immediate retry is 5 cycles. Three cvcles make lhe
original transfer and await the acknowldge. One cvcle mark< the request as in rewry. The

last c¢vcle rearbitrates for the bus.

e . » -

12.1-1‘ X-Bus Reject -

d
o
L e

Two successive bus address transfers may be issued™y same the BIF in bus cycles spaced
apart by only one NOP or foreign cycle. If the first request receives a busy acknowledee.

the acknowledge is received only after the second request has been sent. In this case, the
bus REJECT signal is immediately asserted. The REJECT signal is interpreted by the slave
as nullifying the already accepted requesitjsing REJECT retains the order of transfers on
the bus. This is important when the second request is a read for the same data that is be-
ing written by the first request.

When REJECT is asserted, the acknowledge for the second request is ignored. When RE-
JECT is asserted, all transaction side effects such as bus locking, do not take place.

» »

12.11.1 X-Bus Write Order Assurance

Using REJECT in cooperation with the write order assurance of the write queue, guaran-
tees that the write order of one CPU is always preserved, as seen by a second CPU. This
permits some forms of multiprocessor synchronization, without needing bus locking.
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.- Chapter 13

- rF 4

* Bus Interface Registers

13.1 Interrupt Posting
There are 16 interrupt posting longword addresses to which the BIF responds as a desuna-

tion. The addresses are in subsequent longwords.

Interrupt Posting Address (Write Only) ' 0Cpp 0100 to 00pp 013C

31 [sls}

Data Not Interpreted

PP = Processor Select Number
00. 04, 08, CC 10, 14, 18, 1C
20, 24, 28, 2C 30, 34, 38, 3C

Figure 15-!. [nterrupt Posting Address Register

Interrupts are always accepted by the processor to which they are directed. The interrupt
originator receives no acknowledge. In effect, storing to an interrupt posting address simply
requests an interrupt in the desiination processor. There are 16 interrupt classes. The lower
numbered interrupt posting address corresponds to the lower numbered interrupt class.

»

13.2 Interrupt Control Register =

Associated with each interrupting address in a processor are both an interrupt enabie and
an interrupt pend f(lags. These 2 bits are available in the interrupt control regisier, IN-
TCTL. The register should be read and written only as a longword quantity.

»
- .

" interrupt Control (INTCTL) (Read/Write) 0000 1208
31 30 16 15 00
J IENAB[14:00] . IPEND (15:00]

IENAB = Interrupt enabies for Interrupt Classes O to 14 (Read, Write 1 to XOR)
IPEND = Interrupt Requests for Interrupt Classes 0 to 15 {Read Only)

Interrupt Class 15 is Always Enabied

Figure. 13-2. Intérrupt Control Register
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The interrupt pend bit is set when a write to the associated interrupting address is de-

" tected. The pended interrupt causes a response’ when its specific interrupt enable bit is set
and there is no comprehensive trap masking in effect. The highest priority enabled inter-
rupt pend bit is cleared automatically when the processor reads the interrupt summary reg-
ister. The corresponding interrupt enable bit is also cleared simultaneousiy.

The interrupt enable bits may be set and cleared directly by processor writes to the IN-
TCTL register. Storing to the INTCTL register loads the interrupt enable portion of the
register with the XOR of the current register contents and the store data. This permits the
needed selective updates of register contents.

13.2.1 Non Maskable Interrupt

Interrupt level 15 cannot be masked.

13.3 Interrup"rSummar}' Register : -

- The interrupt summary register identifies the highe'sfpnomy interrupt that is both pending
and enabled. ‘I no'Interrupt is pending. 1ISUM<43:0> is set to zero. The register should be
read onlv as a longword quantity.

Interrupt Summary Register (ISUM) (Read Only) » - 0000 1200

31 - 05 04 03 00
: ' S ' 11| 1suMm

ISUM = Highest interrupting Level Read Only
| = 1 — Enabled Interrupt Pending

Reading Clears IPEND (ISUM) and IENAB (ISUM) in the INTCTL Register

Figure 13-3. Interrupt Summary Register

13.4 Bus Control/Status Register

The Bus Control/Status Register (BUS_CSR) permits'operational code access to the DTS

force hit and miss funcuons. The BUS_CSR also captures the overall state of any sofiware
recoverable error detected by the BIF. The register should always be read and written only
as a longword guantity. ’

The HI and HO bits force the duplicate instruction and data/operand tag stores to hit when
a lookup for an X-Bus write is in progress. The MI and MO bits force that lookup 10 miss.
The operation, during which both the force hit and force miss bits for the same d.uplicaxe
tag store are set, is undefined.

The En and El bits are the trap enables for bus write no response and bus lock timeout
respectively. When either trap is pending, whether enabled or not, the corresponding W or
L bit is also be set. The trap must be explicitly acknowledged in software by writing a 0
into both W and L. Setting W or L nonzero while the associated trap is enabled, triggers
an IP trap. Breaking a lock by trap_dispatch is not recorded as a lock timeout.
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Bus, Control/Status Register {Read/Write) 03090
31 30 20 28 27 26 25 24, 0 22 0 18 17 16 1§ 05 02 03 oc
I i )
(7 |Ho|M |Mo|E E:| C NORESP WL 1] suw
Hl = Force Hit. DITS * Reaa/Write
HO = 1 — Fbrce Hit. DOTS Read'Write
Ml = Force Miss, DITS « ReearWrite
MO = 1 — Force Miss, DOTS Read/Write
EN = 1 — Enable Bus No Response Trap Reaq/Write
EL = 1 — Enable Lock Timeout Trap Read/Write
C =1 -— Enable Process Timer Counting .
W =1 — Bus Write N0 Response Trap Pending Reag/Write
L =1 — Lock Timeout Trap Pending ' Reag/Write
I, ISUM - Copy of the ISUM Register Reag Oniy
NQRESP
0000 No Address Captured D - Write 1 1o XOR :
1-=0 Read Address Captured e e (€.9-. to clear status)
~-1=0 Write Address Captured v
--10 Fetch Address Captured

Read Address Captured. Subsequent No Re§bonse
Write Address.Captured, Subsequent No Response
Fetch Address Captured, Subsequent No»Respons'e

Figure [3-4. Bus Control/Status Register

The NORESP field indicates what address has been captured in the ERRADDR register.
This fieid is usually zero, except after a no response ack on the X-Bus. When this field
becomes non-zero, whether by software acuon or because 1t doesn’t recewve a bus re-
sponse, the ERRADDR register ceases 1o clock. If mutlipie failures 10 respond have oc-
curred, the LSB of the field is set. The remaining bits and the ERRADDR reflect oniv the
first failure. The lack of bus acknowliedge results in either a write no response trap from
the BIF, or a trap from the MMU. The NORESP field is zeroed by the trap handler aker
the ERRADDR has been recovered.

13.5 Bus Error Address

Bus Error Address Register (ERRADOR)

31 30 28

The physical address of any read. write or fetch request that receives no bus acknoweidge
upon. transfer 1s~qaptuf0d m the bus grror address register. ERRADDR. The regisierebegins

" clocking again-only afier the software has*cleared the NORESP field of the BUS_CSR. This

field aiso-associdtes the ERRADDPR register cofitents with lhe-transfer type.

{Read Qniy) 0000 1218

02 01 00

ERRCR ADORESS [29:02]

Figure 13-5. Bus Error Address Register
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The capuwured error address may not correspond directly to the program regquested address
because of cache fill address zercing, or write merging.

PROCESS TIMER (PROC_TIMER) (Read/Write) 000 1220
sy 17 16 00
Counts up, and interrupts on overfiow into Bit 16. Bit 0 = 4 mics —

Figure [3-6. Process Timer Register

13.6 BIF Bt'xried/Scan State

* Buried state, state readable, and wruable under scan control only, are provided in.the BIF.
+ Some of the swate is needed for funcuonal operation (that is, the board ID:. Some of the
e state is used to selectively disable various accelerators in the BIF. This latter state is used

for diagnostic assistance.

* 13.6.1 Board ID

There is a four-bit board identifier field. BD_ID (3:0}, in the scan ring. The field is used
for slave address decoding and read address source ID. The lower two bits also decide on
which Class B arbitration level the is 1C is operating. This field is only in the CBA gate
array.

13.6.2 Arbitration Level
There is a two-bit arbitraton level field, ARB_LEVEL (1:0), in the scan ring. The field

should be set to the same value as BD_ID (1:0). It is used to decide on which Class B
arbitration level the IC is operating. This field is in the CBD gate arrays.

13.6.3 Write Multiple Inhibit

There is a one-bit WRITE_MULTIPLE_INHIBIT bit in the scan rinp. When set. the BIF
does not generate write multiples other than quadwrites. This field is onily in the CBA gate
" array.

13.6.4 Write Merge Inhibit

There is a2 one~-bit WRITE_MERGE_INHIBIT bit in the scan ring. When set. the BIF does
not generate write multiples other than quadwrites. This field is only in the CBA gate ar-
rav.
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13.6.5 Read Before Write Inhibit

There is a one~bit READ_ “BEFORE_WRITE_INHIBIT bit in the scan ring. When set, the
BIF does not permit data cache reads to precede data cache writes. This field is only in
the CBA gate array.

©13.6:6 Write Holdoff Inhib

13.6.7 Instruction Cache Parity Inhibit

- There i a one-bit NO_ICACHE_PARITY bit in the scan ring. When se(. the BIF never
checks instruction cache data parity. THis field is onlv in the CBD gate arrays.

.13.6.8 Data Cache Parity Inhibit

There is a one-bit NO_DCACHE_PARITY bit in the scan ring. When set, the BIF never
checks data cache data parity. This field is only in ™e CBD gate arrays.

13.6.9 DTS Parity Inhibit

There is a one-bit NO_DTS_PARITY bit in the scan ring. When set, the BIF never checks
parity in the DITS or DOTS. This field is only in the. CBA gate array.

13.6.10 Force Parity Sense

There are two FORCE_PARITY (1:0) bits in the scan ring. When zero, the BIF generates
normal parity. When nonzero, the BIF forces all output parity 1o Ones or Zeros in the
DITS, DOTS, and the instruction and data caches. FORCE_PARITY = 10 generates Zeros.
FORCE_PARITY = 11 generates Ones.

This field is present in both the CBA and CBD gate arrays. The CBA field controls simul-
taneously both the DITS and DOTS parity. The CBD field controls both the instruction
cache data and data cache data parity.

13.6.11 DTS Parity Error
There is a one-bit DTS_PARITY_ERR bit in the scan ring. Ii's set when a DTS parity er-
ror is detected and remains set until cleared under scan control. When set, the BIF signals
the clocks to stop. This bit is only in the CBA gate array.

13.6.12 Instruction Cache Parity Error
There is a one-bit INST_PARITY_ERR bit in the scan ring. It's set when an instruction

cache data parity error is detected and remains set until cleared under scan control. When
set, the BIF signals the clocks to stop. This bit is only in the CBD gate array.
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13.6.13 Data Cache Parity Errqr o

-

P ‘_ty rror is detecr.ed and remams se: unnl cleared under scan contro[ A'When set

13.6.14 X-BUS Overlap Control

’
There 15 a one-bit ONE_ATATIME bit in the scan ring. When set. the BIF does not 1ssue
a second X-Bus reference betore the last i1s fullv complete. For a wnie, this means a suc-
cessful ACK. For a read. thit means a successful read data return. This [ield 15 oniy in the

CBA gate array.

~

13.6.15 Retry Backoff Inhibit

»

There is a one-bit NO_BACKOFF bit in the scan ring. When set. the BIF reissues retry
requests as soon as possible. This field is only in the CBA gate array.

ehor
13.6.16 Read Response Error

There is a READ_RESPONSE_ERROR bit in the scan ring. It's set when the BIF accepts 2
READ RESPONSE which triggers an error acknowledge. Typically, this would be a parity
error. The bit remains set until cleared under scan control. When set, the BIF signais the
clocks to stop. This field is only in the CBD gate arravs.

13.6.17 Arbitration Timeout

-

There 1s an ARB_TIMEOUT bit in the scan ring. It's set when the BIF's arbitrauon umer
elapses before acquiring the X-Bus. The bit remains set until cleared under scan centrol.
When set, the BIF signals the clocks to stop. This field is only in the CBA gate array.

13.6.18 Read Return Timeout

There is a READ_RETURN_TIMEOLUT bit in the scan ning. It's set when the BIF's read
return limer elapses before an expected READ RESPONSE arrives. The bit remains set
until cleared under scan control. When set. the BIF signals the clocks 1o stop. This field is
only in the CBA gate array.

13.6.19 Error Acknowledge

There is an ERROR_ACKNOWLEDGE in the scan ring. It's set when the BIF receives an
error acknowledgement 10 an address transfer. It's also set when a no acknowledge re-
sponse to a data transfer cycle of a write multiple occurs. The bit remains set until cleared
under scan control. This bit does not request clock stopping. This field is only in tne CBA
gate array.

13.6.20 DTS RAM Diagnostic Address Generation

There 15 2 one-bit DTS_DIAGADDR bit in the scan ning. When set. the BIF CBA gener-
ates increasing DTSINDEX adé&resses. These addresses are used for the DTS and primary
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cache RAM selftests. This bit is onlv in the CBA gate arrayv.
nd »

13.6.21 DTS Diagnostié Data Generation Control

There is a one-bit DTS_DATALD bit in the scanwing. It is used to controi the source of
data for writing and comparison during the DTS selftest. This bit is only in the CBA gate
array.

13.6.22 DTS Diagnostic Data Writing Control

There 1s a one-bit DTS_DIAGWE bit in the scan ring. When set, diagnostic data is written
into the DTS RAMSs during every cycle. This bit is only in the CBA gate array.

13.6.23 DTS Diagnostic Error

There is a one-bit DTS_TESTERR bit in the scan ring. It is set if there is a2 miscompare
during the DTS RAM selftest. This bit is only in the CBA gate array.

13.6.24 Cache Diagnostic Data Generation Control
There is a one-bit CACHE_DATALD bit in the scan ring. It is used to control the source

of data for wriung and comparing during the cache data selftest. This bit is in the CBD
gate arrays.

13.6.25 Cache Diagnostic Data Writing Control

There is a one~bit CACHE_DIAGWE bit in the scan ring. When set, diagnostuc data is
written into the cache data RAMs during every cycie. This bit is in the CBD gate arravs.

13.6.26 Cache Diagnostic Error

There is a one~bit CACHE_TESTERR bit in the scan ring. It is set if there is a2 miscom-
pare during the selftest of the cache data and parity RAMSs. This bit is in the CBD gate
arrays.

13.7 IP Trapping

A three-but trap code 1s sgnt from the BIF to the 1P, There are pniv five useful codes de-
rived from these three bits. BIF_ERROR is enher a write bus no response acknowledge or
lock timeout. The BUS_CSR must be read to determine which is the case.

TRAP _REQ{2:0 vo‘
000 No Regquest
001 BIF Error
010 Interrupt . Y
011 BIF Error/Interrupt

1-—- NMI
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Whenever the IP initiates a wap sequence, the signal [P_TRAP_DISP is asserted. Asserting
this signal unconditionally releases the bus lock.

. : Chapter 14

Invalidate Pipeline

—

14.1 Duplicate Tag Stores

The Duplicate Tag Store (DTS) is a,copy of the CPU’s Instruction and Operand Cache

Tae Store which is used' to compare addresses being modified on the X-Bus against the

contents of the caches. If 2 match between a locauon being modified on the X-Bus and
DTS enury is found, that entry is invalidated in the corresponding cache. Performing this
operation without the DTS wastes many cycles in the caches to compare the cacne tags

against X-Bus memory modifv transactions.

The duplicate instruction tag siore is referred 1o as DITS. The duplicate date or operand
tag store 1s referred 1o as DOTS.

14.1.1 DTS Addressing

()

The DTS is the principal caches with virtual addresses. The X-Bus deals only with physical
addresses. The virtual address of a transaction is formed by using the 12 LSBs of the
physical address that are the same as the 12 LSBs of the virtual address and concatenaung
them with enough of the virtual address to index the cache. For the CPU’s 12§ KB in-
struction cache, 5 virtual bits are required. For the CPU's 64 KB data cache. 4 virual bigs
are required. These bits accompany the physical address on the X-Bus.

Duplicate Tag Store Index
N ) SN e

/ A\
Byte Adaress Within 2 Page

/ WA

[T6[15]14[13]12][11]10]9 6] 7]6]5]4]32]1]0

T €A S 7 OO N RO NN P NP L

O 3 :
Virtual Address Physical Address Byte Select
(VPN) (Not Used to
N Ingex DTS)

Figure 14-1. Duplicarc Tug Storc Addressing
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Duplicate Tag Store Addressing —— Bits 16 through 3 are used 1o address the Duplicate Tag
Store. Bits 16 through 12 are taken from the VPN of the X~Bus transaction. Bits 11
through 3 are taken from the physical address. One less bit is required to address the Du-
plicate Operand Cache Store than the Duphcale Instruction Cache Sicre. Only 13 bits are
used to address the DOTS (Bit 16 is tied to a fixed value).

DITS and DOTS are commoniy addresséd.

14.1.2 DTS Contents

Each DTS emry contains two fields: an 18-bit physical tag and a 1-bit parity check bit.
These fields are shown in Figure 14-2.

The physical 1ag is the 18-bit physical page number which; along with a 12-bit index, ad-
dresses 1 gigabyte (30 bits) of physical address space. The parity bit is an odd parity check
bit.

There is no explicit valid bit. In invalid entry points to an unlikely memory location (0).

Example:
physical tag = 000000000000000000
* ‘ parity bit = 1
17]s|1s]1af13|i2]1ifols e 7 e]s]alalafilo]r]
\ a
. AR ..., Plysical Page Number

Parity Check Bit
»

Figure 14=2. Duplicate Tag Store Conrenus

Duplicate Tag Store Contents -- The Duphcate Tag Stores contain an 15-bit physical page
number and a parity check bit. -

14.2 DTS Functional Overview

Duplicate Tag Store operations can be divided into the following catagories:

& DTS lookup
e DTS hnt
e DTS allocate from processor write

e DTS allocate from read response

The DTS acts as an imperfect filter for cache invalidates. Any time some other system de-
vice (including another CPU) modifies a memory location, the DTS is checked to see if
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that location is currently resident in either of the CPU’s caches. If it is present. a cache
cycle is stolen from the cache that contains that locauon. The entry in the cache and the
entry in the DTS are invalidated. The DTS mav actwually have labelled entries. which are
not valid in the caches, as valid. This generates a needless cache invalidate cvcle.

The DTS is updated in two separate situations, similiar 10 the main caches. The first is
when the CPU modifies a location by executing a STORE operation. The second is when a
cache miss is generated and the data returns on the X-Bus.

‘ e ]
- » - A _/;b_
‘A X-Bus
DITS — —
- ~u ls fist .
) DOTS .GC . N
HIT é}f— DOTS
M
Q
CT’ »
24
CACHE
L <

CMD c
pecope € ' Q

("] Shaded areas indicate

off-chip logic

DTS INVALIDATE QUEUE

Figure 14-3. Basic Duplicare Tag Store Data Paths

14.3 DTS Lookup

A joint lookup of the DITS and DOTS is performed whenever the following transactions
are detected on the X-Bus: .

e WRITE from another device
s WRITE MULT followed by WRITE DATA from another device

A lookup only of the DITS is performed whenever the following transactions are detected
. on the X-Bus: '

ATA-from'this‘CPU "
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The DTS lookup 15 basically handled in three pipeline siages. The following stages are
siaved to the operauon of the X-Bus:

’
PR Y

<. e COMDMAND DECODE

® DTS ACCESS .

< s

e TAG COMPARE

14.3.1 DTS Lookup: Write

The CMD field is decoded during the first cvcle after the X-Bus bus write wansacuon. If a
WRITE operation is decoded. the address,lo be used as a DTS index is loaded into the
DTS INDEX register. During the next C\cle the DITS is accessed in a read operation. The
DOTS is optionally accessed. The tags are compared. as required, to the phvsical page
numbper. If the PPN and DTS tag match, a cache entry invalidate and a DTS enury in-
vvalidate are scheduled.

1 2 3
X-Bus | WR | "
CMD DCOD WR
TS|~ . WR

Figure [4-4. DTS Lookup Pipeline Schedule for WRITE ar WRITE UNLOCK

Cycle 1 A WRITE transaction on bus. The transaction is loaded into the BIF's
X-Bus input registers.

Cycle 2 The command is decoded. If it is 3 WRITE, the DTS index register is
ioaded from the physical address and the VPN. The physical address
is piped forward for the tag compare(s).

Cycle 3 A DTS read access takes place. The tag is compared to the physical
address. If a match occurs, a cache emtry invalidate and a DTS entry
invalidate are scheduled.

14.3.2 DTS Lookup: Write Multiple

e I( Lhe command is decoded and -determined to be a.~WRITE MULTIPLE transacuon,’ lhe e
LT "'"""address §"stored"in the-DTS “index: - Durpg oy followmg ‘cycle,“when the correspondmg
WR!TE MULTIPLE DATA is decoded the fert lookup 1§ opnonau) done if the. WRITE
MULTIPLE began on an’odd lonnword boundar)" Otherwise. the address is held in the
DTSINDEX. Thereafier. the DTSINDEX is loaded with its lormer contents, pilus or minus
S bwvtes (dependmc on whether the WRITE MULTIPLE uava\:endmc or descencding!.
anucipaung the next WRITE MULTIPLE DATA cvcle.. - -

- ]

. _ . - -
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"X-Bus | WM | WD | WO} i . N
CMD DCD wo | wo,
DTS wo | WD | WD,

-
Figure 14-5. DTS Lookup Pipeline Schedule for WRITE MULT
with Two Data Transfer Cycles

Cycle 1 A WRITE MULTIPLE (WM) transaction on bus. The transaction is
loaded into the BIF's X-Bus input registers.

The command®is decoded. If it is a WRITE MULTIPLE, the address
used to index the DTS is loaded into the DTSINDEX register. At this
time, the first quadword of the WRITE MULTIPLE DATA is on the
X-Bus (WD1). - .

[ ]

Cycle

Cycle 3 WRITE MULTIPLE DATA is decoded. and the address in the
DTSINDEX is optionally incremented or decremented by 4 bytes. The
optional odd longword (WDo) lookup occurs. If a match occurs, cache
entry invalidate and DTS enury are scheduled.

Cvcle 4 A DTS read access takes place for WD1. The tag is compared 10 the
physical address. If a matwch occurs, .cache enury invaiidate and DTS
entry are scheduled.

Cycle 5 A DTS read access takes place for WD2. The tag is compared to the
physical address. If a match occurs cache entry invalidate and DTS
entry are scheduled.

14.3.3 DTS Lookup Hit Processing

~

When a memory modifv operation by another device causes a hit in either DTS, or ¢ lo-
cally penerated write hns in the DITS. two events are scheduled. The event invahdates the
entry (or entries) which caused the hit in the main cache. The second event invalidates the
entry (or entrres) in the DTS to make it consistant with the main caches. When modifving
.a memorv logauon that is also in the local caches, it usually takes six cvcies for a WRITE
to proceed from the X-Bus 1o that entry being invalidated.

»
® Transaction on X-Bus

¢ (Command decoded

& DTS accessed : R
e PA bus arbitration

e PA BUS/EASRC/PCSRC transfer
® (Cache tag write(s)

The DTS enury invalidate is placed’in a queue awaiting a free DTS cvcle. Once a hit has
been deilected. the hiting index is loaded into the address register of the cache corre-
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sponding to the DTS that contains the hit. During the following cycle, the DTS lookup is
used to compiete the address compare. It requests use of the PA bus dunng the following
cvecle. The PA bus is always available except when the DTS invalidate pipeline is pre-
empted by 3 READ RESPONSE operation filling a cache muss (discussed later). The cvzie
following PA arburauon of the index is driven off the BIF address chip. and MMU enables
the drivers to either the PCSRC bus or the EASRC bus (or both). An index hutuing 1n the
DITS makes it's way to the PC register while one hitine in the DOTS must be lcaded into
the EA register. An index hitting in both the DITS and DOTS is loaded into both EA and
PC registers.

CPU Board MSI Logic  BIF Address Chip
g PCSRC
Instruction c Bus <}_
Cache

. PASRC

Bus 0TS
———4‘ index

'

Operand
Cache -

T 'Fl'gﬁré 14=6. Cache fni‘}iliddié~pcii6bdﬂi}'"(ﬁbi‘}&'ilvv»>bii;"sBd}‘ces"a;c" shown) -

Apollo Preliminary and Confidential

X-Bus | w w

_CR/.D DCD

DTS

PASRC ARB | .|

pASRC |

CACHE

Figurc 14-7. DTS Hit With Cache Eniry Invalidate and Delaved Dts Entry Invaiidaic

Cycle 1 A WRITE (W) transaction on bus. The transaction is loaded into the
BIF’s X~Bus input registers.

Cycle 2 The command is deccded. The physical address is piped forward for

the tag compare. The virnual index is loaded into the DTS index regis-

ter. .

Cyc]ej A read operation is performed on the DTS.
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Cycle 4 The results of the tag compare are available. Since there was a hit, the
PASRC bus is requested. The DTS enury invalidate(s) are queued for
execution when DTS is available.

Cycle 5 The virual index of the location to be invalidated is passed via the
PASRC bus to the appropriate cache address register.

Cycle 6 The cache entry causing the DTS hit is invalidated.

14.4 DTS Allocate from Processor Writes

When the CPU modifies an operand cache location via a store instruction, the DOTS must
also be updated to reflect the ‘cache’s new state. The update occurs after the transacdon is
placed on the X-Bus. This avoids DTS conflicts by using the X-Bus as a synchronization
point for DTS access. Only one device can use the X-Bus at a time and that device has to
arbitrate_ to -obtain the bus. The oniyr DTS ©operations.that are not synchronized through the
,X-Bus are, Jhe DTS entry mahdates: Thgy_are-lower_pnomv Lhan the other.DTS “opera<’ 2
dons:

Apcilo Preliminary and Confidential

14.4.1 DTS Allocate: Write

A

The BIF address chup decodes a WRITE operation it has generated-on the XN-Bus. It
writes the new tag into the DOTS while doing a lookup into the DITS during the foliowing
cycles. A hit occuning in the DITS at this point indicates that the processor is modiving 2
location that has been cached in the instruction cache. An instruction cache entry invali-
date and a DITS entry invalidate are scheduled.

While the DTS wmite allocate occurs, the DTS indgx must be compared against every index
in the DTS entry invalidate queue that is scheduled to invalidate an entry in the DOTS. If
any of the compares succeed, that DTS entryv invalidate must be invalidated. If the invali-
date was scheduled for both the DITS and DOTS, it is retagged as being only for the
DITS. In this way, an old pending DOT/’S__emry invalidate won't destroy a recently allo-
cated entry.

14.4.2 DTS Allocate: Write Multiple

A WRITE MULTIPLE from the CPU is treated just like a WRITE MULTIPLE from an-
other device. The only difference is that the DOTS is written into with the phvsical wag.
rather than read and checked for fag match.

t 2 3
X-Bus | PW
CMD DCD PW
OTS PW

- Figure [%-8. DTS Allocate From Processor Write
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Cycle 1 Processor write is placed on X-Bus from WRITE BUFFER.
Cycle 2 The write is decoded and also determined to be from the same CPU.
Cycle 3 The DOTS is updated with the new physical tag and the valid bit is

set. The DITS is checked for a tag compare and, if a hit occurs, the
instruction cache entry invalidate and DITS entry invalidate are sched-
uled in the usual way. "

Apolio Preliminary and Confidential

14.5 DTS Allocate from Read Response | : -

The DTS is also written when 3 READ RESPONSE returns in reply 1o a READ MULTI-
PLE made by the same CPU. When a cacheable miss-octurs in a cache. a READ MULTI-
PLE request is sent 10 main memary. Main memory returns the requested data in the fosm
of successive READ RESPONSEs. Upon decoding the expected READ RESPOXNSE com-
mand. the BIF sends the associated tag 10 the waiting cache and enters the tag intg the
DTS using the conventional DTS pipeline. No tag domparison is performed during this DTS
cycle. and only the DTS corresponding to the cache that missed is updated.

P
<

=
p
) Bus
N

DITS

s .

@ »mD 0D ~(thmI 0D ~rc% 1g
(o] .
A

Command M ‘
Decode o)
[:] Shaded areas indicate off-chip logic.

Figure 14-9. DTS Index Increment/Decrement Darapaths

Three sets of addresses must be stored and manipulated when addressing the DTS. The
DTS index register is used when processing WRITE MULTIPLES. Two other registers are
used to hold Lhe addresqes assocmted with two possxble pendmg cache mxss READ RE-
SPONSESs. ... . S e
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1 2 3 N-1 N N+#1 N+2 N+3
RM ' RR | RR_|

. 1 2
RM AR | AR,

- N ° r T )
' o o . j . ] BRy| B8R,

Figurc 14-10. READ MULTIPLE Request
and READ RESPONSE Scenario with DTS Upagate

A cache miss causes the BIF to place a READ MULTIPLE request on
the X-Bus. ‘

The command is decoded and determined to be a self-generated
READ MULTIPLE. The VPN and physical address are stored in the
appropriate pending operation hoiding register. Which pending opera-
tion holding register depends on the X-Bus SUBID signaling whether it
is an instruction or operand cache miss. *

The memory subsystem is processing the READ MULTIPLE.

The memory subsvstem places the first of two READ RESPONSE
transactions on the X-Bus.

The second READ RESPONSE is on the X-Bus. The first READ RE-
SPOXNSE is decoded and the corresponding address is loaded from the
holding register to the DTS index. The holding regisier is then loaded

with its contents £ & bytes, depending on the ordering for that type of
operaton. (I-miss or D-miss).

The first READ RESPONSE is updating the DTS. The second READ
RESPONSE is decoded. the contents of the holding register are again
transferred to the DTS index register, and the holding register is
stepped (£ 8 bytes).

The second READ RESPONSE updates the DTS.

&8
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Cliapter 15

'Write Pipeline

15.1 Write Buffer Overview

The write buffer serves two purposes.’ First, it isolates the processor from memory and bus
latencies during stores. Second, it reduces overall bus traffic. ’

The write buffer isolates the processor from memory and bus latencies by offering a high
bandwidth FIFO queue for store operations. The processor can submit many back-to-back
stores and continue functioning while this queue i» empued, through the X-Bus. into mem-
ory as both become available.

The write buifer serves to reduce bus traffic by collapsing and grouping small. adiacent
writes into large single blocks which make better use of the X-Bus and main memory re-
sources. .

Write Buffer
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153.1.1 FIFO Organization

The wrue buffer 1s physically split across the CBA and CBD gate arravs. The CBA hoids
the address poruon of the queue and the CBD holds the associated data. There are 6+
data bits associated with every queue address.

-
-
»

“Tﬁe‘au;ue Lis-structured as a ¢atiable depth FIFO. Enfiries are added to the botwom of the
queue and removed from the top. The top of the gqueue is always at a fixed point. The
bottom of the queue vanes depending on the currsm number of queue entries.

There are address comparators at every queue entry. These comparators are used to de-
cide whether newly arriving write data may be merged with the current queue contents.
This write compaction reduces bus and memory bandwidth requirements. The address com-
parator is also used to permit reads to byPass writes. The address comparators indicate any
read/write address collisions that would prevent the bypass.

BA f——— Address Queue ————

Bus r
N EN P G B §
> D D
X

» 0
NPOE
-rwZ

=z —

orws
DOO» X

B
o) j————— Data Queue i u
%ata D_ ‘1‘ . S
us :
— g —L)}L) g —L;h> g —)Lh» : —
B B B D
»] D D
2 1 0 T
D > D DA

Figure 15-2. Write Buffer Pipeline

The WRITE BUFFER pipeline shows data and addresses flowing from the processor to the
X-BUS, sometimes by way of a FIFO queue.
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15.2 Write Address/Data Staging

The processor store data is captured from the cache DATA bus during the store’s access
stage. Typically, the address follows 10 the next cvcle on the PA bus. If the PA bus is not
available’ mn that cvcle' or,there is a processor "EVALID stall in €[£Kc1, the data ® held in
place by the MMU d'éasserung the MMU _HDATFA_ _L:B signial.” < <A+

There are two inbound_ data sraging registers and oNewaddress staging regisier before the
write queue proper. (See Figure 15-2.) One data staging register is used 10 compensate for
the early data arrival. The other data staging regisier, and the address staging register, are
used 10 allow the address comparisons to take place and control the load enables in the
queue. The address comparisons determine whether the store data may be merged with
data already present.

15.3 Write Queue Contents

In addition to holding the data. each €BD data queue has a MSHALF_VALID and
LSHALF_VALID flag. The valid bits are used 1o determine whether there are any con-
tents in the entry. LSHALF_VALID and MSHALF_VALID are also used to control the
output write rotation needed for a 32-bit (or smaller) write 1o an even longword address.
There is a NOSWAP flag that defeats the output write rotation in case the MMU has al-
ready rotated the data properly. If MSHALF_VALID and LSHALF_VALID are both
valid, a “2" is sourced with correct parity during the address phase of a write multiple
transfer.

Table 15-1. MS_VALID, LS_VALID, NO_SWAP Decoding

MS_VALID | LS_VALID| NO_SWAP

0 0 - Empty

1 0 0 Even Long

1 0 0 Even Long - MMU
0 1 - Odd Long

1 1 - Quad

In addition to holding the address, the CBA address queue holds 4 BYTE_VALID bits and
Lhe MSHALF VALIDA and LSHALF ':\’AIs.ID'ﬂags SHALFLVAIID xs almosz Vaddress bu
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Table 15-2. MS_VALID. LS_VALID, BYTE_VALID Decoding

MS_VALID | LS_VALID| BYTE_VALID

P

0 0 — Emgty ‘
1 0 BBBB Even Long

. 0 1 BBBB Odd Long
1 1 —— Quad

The CBA IC also has other flags that control internal arbitration and write compaction.
There are NOCACHE, UNLQOCK, INVTLBALL, and INVTLBE flags associated with each
address. Any of these flags being set inhibits write compaction and read around write. UN-
LOCK releases the bus lock if the nesting level is 0 and this CBA holds the lock. The in-
validate TB flags force the selection of the TB invalidate bus command.

15.4 Write Queue Loading

Unless the queue is full, processor stores are accepted and added to the queued data with-
out stalling the CPU. Typically, the store’s data and address are added simuitaneously to

~the bouom of the address and data queues. The position of the queue’s bottom is deter-
mined by the first empty queue entry (measured from the queue’s top). The affiliated flags
are set.

13.4.1 Load DMerge

If cacheable store data is being added to the queue, and the last valid entry in the queue
is alsc cacheable and agrees in the quadword address, the load data is mercged into that
entry. The merging logically ORs the valid bits. The merging happens if the data to load is
‘a longword or quadword quantity. The merging is permitted if the data to load is a bvie
(or word) in length. The merging is allowed if the queue entry is already a quadword. or if
the merge result does not spill over into the second longword.

15.4.2 Write Buffer Full

When the last entry in the write queue is occupied, and the inbound data address register

is occupied or about to be occupied (MEM_CMD is requesting the use), the signal
WBUF_FULL is sent to the MMU to prevent any further stores from advancing. If there

is a store currently in its cache access stage cache, that store’s data is captured and held,
but freezes in its EXC stage. The signal WBUF_FULL is deasserted the next.time the write -
queue -advances. ‘ ' o
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13.5 Write Queue Unloading ' .

The queue entries are unioaded during the cvcle afier recenang a successtul acknowiedge
for the address or data transfer on the N-Bus. M retrv s required. the address:data is still
available in the wTite queue. .

Write addresses are always taken from the write address queue. Only reads use the fast
pass address paths.from the MMU. The fast pass Paus are for quick posung of read miss
addresses in the event of default bus ownership.

15.3.1 Transmit Bypass : e

ot
th

5.3 Write Multiple Callapse R

The address or data to send on the X-Bus is normallv at the top of the queue. I, how-
ever, the top entry in the queue has been transmitted but not acknowledged. the next-to-
top entry in the queue is used. During write multiples, queue data is being transmitued
every cycle. Since the queue must be accessed during the cycle before the X-Bus transmis-
sion, and the queue unioad occurs in the third cycle after the X-Bus transmission. 4 levels
of transmit data bypassing are required. The four levels of bypassing aliow reaching back 1o
the fifth queue entry from the top. This is shown in Figure 15-3.

ACCESS Bi1| 02| D3 | D4 | D5

. TRANSMIT D1 | D2 | 03 | D4
PEND D1 | D2 | D3

ACK D1 | D2

UNLOAD D1

Figure 15-3. Transmit Bypassing

An additonal level of transmit bypassing is provided in the address queue output delivery.
This allows a level of address look-ahead that enables early detection of write multples.
The write multiple gets ahead when the first X-Bus cycle transmits only an address (no
data). This one cycle gap is enough to let the address transmit bypass pass ahead of the
data by one cycle.

Transmit bypass requires a SENT flag associated with the top 3 data and top 4 address
queue entries. A queue enury is bypassed if it is already sent, or the queue element in
front of it is already sent and there is another transfer on the bus at the time.

.3.2 Transmit Retry

If a dawa or address X-Bus transfer receives an error or husy acknowledge. all queue ele-

ment sent bits are reset. The requests are retried. The REJECT sxgr;al mayv also be as-
serted.

L . - .

-

If the next address to send is for a quadword. a WRITE MULTIPLE command is sent.
While the address is being transmitted on the X-Bus, the next queue addressed i1s checked
to see if it's also a quadword, and in an adjacent quadword.
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The adiacency direction is determined byxhe write queue when it examines the lower or-
der bits of the next two addresses Lo transmit.

Write multiples are arbitrarily broken up on 256-byte boundaries o prevent any device
from holding the bus for extended periods of time.

15.6 Read Around Write

If an instruction cache read is posted. the read can pass around previously queued writes.
If a data cache read is posted, the read can pass around previously queued writes only if
the address doesn’t collide with a pending write. The write queue detects this address colli-
sion and reports it to the internal BIF arbitration logic.

15.7 Write Parity

Parity for both address and data is regenerated just before X-Bus transmission.

&
- Chapter 16

*~ Data Cache Interface

Ere g

This chapter describes the CPU to X-Bus data cache interface.

16.1 Data Cache Read Miss T

Processor operand loads are usually satisfied by the data cache. A data cache read miss
occurs when the data cache does not have the.requested item. A cache read miss also oc-
curs when the read request must be forwarded to the bus regardless of whether cached
data is available. Typical of this latter situation is a read from an 1/O control register.

Cache miss processing is the joint responsibility of the BIF and the MMU. The BIF
sources the fill address and informs the MMU as the data RAMs are written.

16.1.1 MMU Request to the BIF

The MMU provides the read’s 30-bit physical address on the PA bus. The MMU com-
mand accompanies the physical address. ‘

The read’s virual page offset within segment (VPN) bits are presented before the physical
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address and command. Typically, the BIF captures the 7 bits from the external EA register
during every cycle. If a read miss occurs, the physical address and command arrive in the
following cycle. If, however, the PA bus is not available in the following cycle, the MMU
asserts the signal MMU_HOLD_DVPN. The BIF holds the caprured data cache VPN.
MMU_HOLD_DVPN is deassered during the cycle in which Lhe physical address and
 command are finally sent to the 3IF. .
The commands that appl\ to data cache miss are summ1nzed n Table 16-1. The shaded
areas do not appiy to read misses.

* * Taf:h' lo-i. Data Cache Read Atiss Command Codcs
- . . o
_ MEMTMD(4:0] |, . . -
) 00008 | NOP 10000 | store.nolock.cache.
00001 load.nolock.cache. 16 10001 | store.nolock.cache.2 '
00010 fetch.nolock.cache.32 10010 store.nolock.cache.4
00011 load.nolock.cache.64 10011 store.nolock.cache. 8
00100 load.nolock.nocache. 1 10100 store.nolock.nocache. 1
00101 load.nolock.nocache.l 10101 store.nolock.nocache.2 ’
00110 load.nolock.nocache. 4 10110 store.nolock.nocache. 4
00111 load.nolock.nocache.8 10111 store.nolock.nocache.8
01000 load.lock.nocache. ) 11000 TB invalidate single
01001 | load.lock.nocache.2 11001 | TB invalidate all
01010 . load.lock.nocache. 4 11010 mmu_store.unlock.nocache. 4
01011 load.lock.nocache.8 11011 unassigned
01100 load.unlock.nocache. 11100 store.unlock.nocache. 1
01101 load.unlock.nocache.2 11101 store.uniock.nocache.2
01110 load.unlock.nocache. 4 11110 store.unlock.nocache. 4
01111 {oad.unlock.nocache. 8 J 11111 store.unlock.nocache. 8

16.1.2 Cacheable Data Read Miss

In the typical data cache miss, the MEM_CMD(4:0) field is either 00001,
LOAD.NOLOCK.CACHE.16, or the field is 00011, LOAD.NOLOCK.CACHE.6§4. The first
command requests a cache fill of 16 bytes. The second command requests a cache fill of
64 bytes. This second command is issued only if the cache miss is triggered by a 64-bi
floating—-point load at an address boundary that is zero modulo 64.

The address presented with the data is the IP's exact load address. Before forwarding to
the X-Bus address. bn. 3 must be uncondmonally zeroed ona 16—byte nu. Address bus 3.
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16.1.3 Unencacheable Data Read Miss -
- A load may reference data that is marked ﬁnencacheabl; Load data may he declared un-
encacheable for any of the {ollowing reasons:

e The PMAPE's C bit i.s;sm in*the virtual address mapping tables.

o The memory reference address is a physical one because virtual transtation is not

abled.
en [ ~ L

e The memory reference address is a physical one required for an MMU table walk.

® The memory reference address is a physical one caused by a load.physicai instruc-
. s
ton. ;

e The CPU's instruction is a load.lock, requi’ring access to the bus.

e The CPU's instruction is a load.unlock, requiring access to the bus.

The caching decision is made by the MMU and communicated within the MMU command
field. All of the remaining data cache‘miss codes (other than those just mentioned in the
last section) apply to unencacheable references.

In an unencacheable data cache miss, only the requested data is returned. The address
presented with the MMU command is forwarded, as is. to the X-Bus. The read mask is
appropriately consuucted to reflect the request size. If the request is for an §-bwvie quan-
tity, a read muiltiple of 2 longwords is the result.

16.1.4 Load.Lock

The load.lock instruction requires access to the X-Bus 1o gain the bus lock. For this rea-
son an unencacheable data miss is declared by the MMU. When the load.lock’s data re-
turns, the bus lock is secure.

The MMU may issue a second locking read request before a previously acquired lock is
released. The MMU may do so while processing a secondary TB miss dunng a locked
code sequence. The BIF properly nests the second request.

16.1.5 Load.Unlock

The load.unlock instruction requires access to the X-Bus to release the bus lock. For this
‘reason, Lhe MMU declares an unencacheable data miss. When the load. uniock’s data re-.
- ‘ Jock’is releascd Thxs “instrid 1on ay:be: xssued*ev_en when Lhe,bus lock i
“not-held: This:instruction:will not-releas, 16ck Tiot held by this :CPU: AR AT

A s S

16.1.6 Data Cache Read Data Return

Once the data cache miss read address 1s transferred across the bus. the BIF awaits read

data response. When the requested data returns. 1t 1s torwarded to the DATA(e3:001 bus

The data is then used by the 1P, FP or MMU and 1+ opuonally stored in the cacne The
. cache updaung 1s referred to as filling.

-, - -
» : -
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16.1.6.1 Data Return Delay .

Normalily, returning read data is forwarded to the DATA bus in the cyvcle immediateiv fol-
lowing the data transfer on the X-Bus. DATA bus forwarding 1s delaved for one additional
cvcle in the following cases:
: -
® The X-Bus data returns in the same cvcle that the EASRC bus is being used to
process an invalidate. A data cache fill cannot take piace in the next cvcle be-
cause the EA doesn’t hold the proper fill address.

® The X~Bus data returns in a cvcle immediately after an instruction cache miss that
requires delayed data forwarding. The immediately abutting X-Bus data rewrns do
not allow removal of the instrucuon cache miss delay.. The instruction cache fill
may collide when using the PC in the same manner as just described for EA’s use
dunng data cache fill. .

® The data read request was unencacheable. In this case. the possible need to.rotate
the returning read data requires an additional cycle of delav.

The data rewurn delay is not visibie to the MMU in handshake protocol.

16.1.6.2 Data Return Alignment

{f the data read request is unencacheable, is for one longword or less. and the longword
address is even, the returning read data is duplicated on both halves of the cache data bus.
This is required by the MMU which can access only DATA(31:00). In all other cases, the
returning data is aligned on the DATA bus as it appears on the X-Bus.

16.1.6.3 Data Cache Fill Data Sourcing / MEM_RESP

1f the data cache read miss is for a 16~ or 64-byte fill, the requested data is provided. 8
bytes at a time, on the X-Bus. The data is then forwarded, 8§ bytes at a time, 10 the
DATA bus and written simultaneously with the IP or FP accepting the data.

The BIF begins to drive returning X-Bus data before X-Bus Read Response data has ar-
rxved ~The BIF first dnves :the’ bus-in. :he cvde __afle the, data cache-'mxssA MEM CMD has.«-

S;mullaneoush “with the DATA bus drmnc. lhe M'\1L sources the \1EM RESP("’ 0) [ueld‘
Tvypically, code 001 is driven. Codes_180-and 101 are driven in the event of bus error.
The dawx cache filling 1s strictly slaved to the X-Bus uming and normally takes place 1n
unmnterrupted cycles. See the ECCU/ECCC subsections for the exceptions 1o this rule,

-

‘e .Tabic 16-2. MEM_RESP(2:0] Ficld Codés; Dara Tache Fill ..

L 3

MEM_RESP(2:0] - Data Cache Miss

000 NO

001 Dcache Data Return
010

011 =

100 Load ECCU

101 Load No Response
119

111
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16.1.6.4 Data Cache Fill Parity Sourcing

The returning data parity is regenerated while the data is on the DATA bus. If the request
is a 16— or 64-bvte fill, the parity is written into the data cache parity RAMs during the
following cycle. Byte parity is maintained in the data cache.

16.1.6.5 Data Cache Fill Address Sourcing / BIF_PAARB BIF_INVOP

If the data cache read miss is for a 16- or 64-byte fill, the fill index is sourced by the BIF
on the PA bus. The BIF requests the use of the PA bus one cycle before the address
transfer (two cycles before the DATA transfer) by asserting the BIF_PAARB(1:0) signals.
BIF_PAARB = 01 requests the joint use of the PA bus and the EASRC bus in antcipation
of data cache fill. If there are simultaneous instruction and data cache misses posted,
BIF_PAARB = 11 is asserted. This requests both the PCSRC and EASRC buses. in case
either returns on the bus.

The BIF begins requesting the PA bus before X-Bus Read Response data has arrived. The
BIF first makes an arbitration request on the PAARB signals in the X-Bus acknowiedge
cycle for the miss read address transfer.

“The BIF_PAARB codes are summarized in Table 16-3.

* " Table 16-3. EIF_P.-\A!\;BIJ:O,’ Arburation Codes. Dara Cache Fill

»

BIF_PAARB(1:0} . .

.

s loo | ~oe
01 Arbitrate for PA/EASRC : cache fill or invalidate

10 » .

11 Arbttrate for PA/EA/PCSRC : cache fill or invalidate

The BIF sources the 13-bit fill index on PA(15:03) one cycle before the DATA transfer.
Simultaneously, the BIF requests setting th¥ data cache tag's 8 VALID bits in that next
cvcie by deasserting the BIF_INVOP([2:0] signals. BIF_INVOP = 00 implies setung the
valid bits. Table 16-4 lists a summary of the BIF_INVOL[2:0] bit codes.

Table 16-4. BIF_INVOP[2:0] Field Codes, Data Cache Fill

BIF_INVOP[2:0] »

000 = 0| NOP

001 * 1 | RESET VALID BITS

010 2 | Selecuve TB Invalidate

011 3 | Comprehensive TB Invalidate
100 4 | Fill

101 5 | Diagnostic Fill

110 6 | undefined

111 7 | undefined
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16.1.6.6 Data Cache Fill: MMU Tracking

While the BIF sources both the data and fill address, the MMU provides the RAM strobes
and tag contents. The MMU does so in response to the BIF_PAARB and BIF_INVOP
signals. The BIF sources these signals without knowing about return data availability. The
BIF informs the MMU that data has been written by using the MEM_RESP(2:0) signals.

) ,'I‘he MMU assumes that the fzil is complete by:the next cycle when the fmal f1l1 entry m-

16.1.7 Data Cache Read Miss Lrrors
“Many errors are possible while processing a data cache read miss. They are summarized In
this secuon. :

16.1.7.1 External Invalidate Coflisian. , o +

In the interval between the read address transfer on the X-Bus and the read data rewrn. 2
write to the returning data from another CPU is pessibie. The BIF watches for this situ-
ation and detects any .write-read collision on the sarfde physical page. If a collision is de-
tected, the BIF_INVOP signals are asserted. rather than deasserted, in the cvcle before the

data cache write. BIF_INVOP = 01 resets the tag's 8 valid bits.

Table 16-5. B!F_[NVOL[I:'@? Codes, External Invalidate Collision

BIF_INVOP(1:0]

00 NOP

01 Reset Data/inst Tag Valid Bits
10 - '

11 -

This write-read collision detection applies only to an external write. A locally generated
write is only issued on the X-Bus subsequent to a data cache read, if the write was gener-
ated earlier and does not conflict with the read address.

16.1.7.2 Bus Acquisition Timeout

The bus acquisition timer elapsing before the data cache read gains access 1o the bus.
indicates a hardware failure. The BIF requests the clocks to stop and records this error
status in scan state. The BIF continues to arbiwrate for the bus.

16.1.7.3 No Acknowledge

A data cache miss address transfer that results in no bus acknowledge indicates a software
failure. The BIF records this error status in the BCTRL register and freezes the ERRADDR
register. The BIF returns a LOAD_NO_RESPONSE code, 101, on the MEM_RESP(2:0)
signals.
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16.1.7.4 Error Acknowiedge

A dpwa cache miss address transfer that results in an error bus acknowledee, ndicates a
hardware failure. The BIF records this error status in scan state. Otherwise. the BIF acis
as if it 1s a busv acknowledge 10 preserve siate.

E]
v

16.1.7.5 Read Return Timeout

The read rewrn timer elapsing before the data €ache read data completely returns. indi-
cates a hardware failure. The BIF requests the cl8cks to stop, and records this error in the
scan state. It continues 10 await read return data.

16.1.7.6 ECCU s

A device error may prevent correct data return. The most common such error 18 a mamn
memory ECCU. This same situauon also occurs when a secondary bus receives a read
timeout.

When only incorrect data can be returned. a READ RESPONSE ERROR command is re-
turned on the X-Bus. The BIF, in turn, terminates the transfer. The MMU_RESP(2:0)
code LOAD ECCLU, 100, is sent to the MMU.

Once the READ RESPONSE ERROR occurs as one response in a READ MULTIPLE. no
further response data can be accepted {rom the X-Bus.

16.1.7.7 ECCC

A correctable data error ¢an occur upon access to main store. [f this happens in an unen-
cacheable reference. it is not visible to the MMU. If this happens in a 16~ or 64-bwvte fill.
it may result in the interpositioning of NOPs within the rewrning X-Bus read data. When a
NOP interrupts this sequence, there are always be at least' 2 NOPs present.

When the NOP interrupts the fill sequence, the BIF writes incorrect data to the RAMs.
The BIF then backs up the fill address by eight bwtes, awaits the corrected data, and re-
writes the RAM location.

When the NOP arrives instead of the last 8 bytes of read return data, there is an addi-
tiorial complication: the BIF may have relinquished conurol of the PA bus. The MMU rec-
ognizes this situation and holds the processor stall. The BIF rearbitrates for the PA and
EASRC buses, sources the last fill address, and waits for corrected data. The BIF needs
tec NOPs 1o arbitrate and then resupply the former fill address.

e I a data’ rezurmng X=Bus’ sequence is mterrupled b\ .’\OPs the responder assens ARB
«»VINHIBIT to i'cvent anonher devxce Ero gaxmn
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- - 16.2 Data Cache Invalidates™> _ ’

Data cache invalidaies may be posted from the BIF 10 the data cache.

" 16.2.1 Data Cache Invalidate Address Sourcing / BIF_PAARB BIF_INVOP.. o,

The BIF provides only the invalidate index for the cache location to be purgeé?. The ac-
dress is transferred over the PA bus. The BIF recvets the use of the bus one cvcle before
the address transfer (two cycler nefore the tag invni:date) by asserting the
BIF_PAARB(1:0) signals. BIF_rAARB = (1 reque s the joint use of the P bus and the
EASRC bus. BIF_PAARB = 11 requests the joint use of the PA bus, EASRC bus, and
PCSRC bus. The BIF uses this code to irfvalidate both caches.

Table 16-6. BIF_PAARB([1:0] Field Codes, Daia Cachc Invalidare Address Sourcing

BIF_PAARB(1:0]

00 | NOP , -

01 Arbitrate for PA/EASRC : cache fill or invalidate

10 Arbitrate for PA/PCSRC : cache fiil or invalidate

11 Arbitrate for PA/EA/PCSRC : cache fill or invalidate

The 13-bit invalidate index is on PA(15:03) one cvcle before the tag RAM write. Simuita-
neously, the BIF requests clearing the data cache tag’s 8 VALID bits in that next cycle by

asserting the BIF_INVOP(1:0] signals. BIF_INVOP = 01 resets the tag’s 8 valid bits.

Table 16~7. BIF_INVOP[2:0] Field Codes, Data Cache Invalidate Addres: Sourcing

BIF_INVOP{2:0]

000 0| NOP

0ot 1 | RESET VALID BITS

010 2 | Selective. TB Invalidate

011 3 | Comprehznsive TB Invalidate
4 | Fill

16.3 Data Cache Writes

-
The BIF wrtites processor store data 1o the data cache and forwards it to the N-Bus. This
white~through-cache strategy requires the BIF 10 handle _pmce;sg?ﬁ‘ﬁ'a‘es eftectively.

. . ) -

Unlike reads, the CPU does not wait for a wTite request completion. The BIF simply
queues the write data and address. This decouples the CPU from X-Bus acquisiuon la-
tency. .
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16.3.1 MMU Request to the BIF

The MMU provides the write's 30-bit pHVsical address on the PA bus. The MMU com-
mand accompanies the physical address.

The write's virtual page offset within segment (VPN) bits, are presented before the physical
address and command. Typically, the BIF captures the 7 bits from the external EA register
during every cvcle. If a write occurs, the physical address and command arrive during the
following cycle. 1f. however, the PA bus is not available in this succeeding cycle. the MMU
asserts the signal MMU_HOLD_ DVPN. The BIF holds the captured data cache VPN.
MMU_HOLD_DVPN is deasserted during the cycle in wh:ch the physical address and

- command are finally sent to the BIF.

Properly alipned write data is also presented before the physical address and command.
Typically, the 64 bits are captured by the BIF directly from the DATA bus during ever:
cycle. Again. the physical address and command arrive in the following cycie. If. however.
the PA bus is not available in this succeeding cycle, or a write buffer full stall is in effect.
the MMU deassents the sigcnal MMU_HDATA_LD. The BIF holds the captured data.
MMU_HDATA_LD are reasserted during the cycle in which the physical address and
command are finally sent to the BIF.

There are many commands that apply to data cache write. They are :ummanzed in the
Table 16-&. The shaded aress ol the table do not.apph.

) Tabic 16G-&. MEM_CMD{4:0) Codces. Daia Cache Writes
e T T
MEM_CMD(4:0] - ..
00000 NQP 10000 sxore.nolock.caghe. 1
00001 load.nolock.cache. 16 MNog! store.nolock.cache.2
00010 fetch.nolock.cache.32 10010 store.nolock.cache. 4
00011 load.nolock.cache.64 10011 store.nolock.cache.§
00100 load.nolock.nocache.1 == . 10100 store.nolock.nocache. !
00101 load.nolock.nocache.2 10101 store.nolock.nacache.2
00110 load.nolock.nocache. 4 10110 store.nolock.nocache.4
00111 load.nolock.nocache.8 10111 store.nolock.nocache. 8
01000 load.lack.nocache. 1 11000 | TB invalidate single
01001 | load.loék.nocache'2 11001 | TB invalidate all
01010 load.lock.nocache. 4 11010 mmu_storé.unlock.nocac'ne.4
01011 load.lock.nocache.§ - 11011 unassigned
01100 load.unlock.nocache.1 11100 store.unlock.nocache. 1
01101 load.unlock.nocache.2 11101 store.unlock.nacache.2
01110 load.unlock.nocache.4 11110 store.unlock.nocache. 4
01111 Joad.unlock.nocache.? 11111 store.unlock.nocache.§
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16.3.2 Cacheable Data Store

In the typical data cache store. the MEM_CMD(4:0) field ranges from 10000 10 10011,
STORE.NOLOCK.CACHE.byte_count. The commands just indicate the store’s request
size. The address presented with the command is the IP’s exact store address. Cacheable
store data may be combined with previously issued cacheable store data to compose larger
X-Bus transactions. :

16.3.3 Unencacheable Data Store

A siore mav alsu be declared unencacheabie for one o! the following reasons.
’

e The PMAPE's C bit 1s set in the virtual address mapping tables

e, The memory reference address s a physical one. Virtual translaten,isn’t enabled.

. -~ A

ot e The memory reference address is a physical one required for an MMU table walk.

® The CPU's instructuion is a store.unlock, yequiring access 10 the bus.
q e

The MMU makes the caching decision and communicates it in the MMU command field.
All of the remaining data store command codes (other than those previously mentioned)
apply to unencacheable references. Write compaction is not permitted duning an unen-
cacheable data cache store. The MAU forwards the address presented with the MMU
command. as is, (o the X-Bus. The write mask is appropriately constructed to reflect the
exact request size. If the request is for an 8-byte quanuty. a write multiple of 2 longwords
results.

16.3.4 STORE.UNLOCK

The STORE.UNLOCK insiruction 1s handled no differently than any other unencacheable
store except that the bus lock may be released as a side-effect of the X~Bus reguest com-
pletion. The IP assumes the bus lock is released as soon as the write is queued.

The MMU may tssue a second locking read request before a previously acquired lock s
released. The MMU may do so while processing a secondary TB miss during a locked
code sequence. The BIF properiy nests this second request and requires two siore.unlocks
before reieasing the bus.

MMU.STORE.UNLOCK differs from other store.uniocks in that the write data will alwavs
be provided in the least significant 32 bits. The longword store address., when it 1s even,
requires a special write rotation before the data may be presented to the X-Bus. This in-
struction may be issued even when the bus lock is not held. This instruction does not re-
lease a bus lock not held by this CPU.

16.3.5 YWrite Buffer Full

When the BIF can’t accept much more store data. it assens the signalt WBUF_FULL to
the MMU 10 generate back pressure. The MMU interprets this signal to mean that if there
is currently a store in its data cache access phase, that siore data can be accepted bur the
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16.3.6 Data Cache Write Errors

Because N-Bus writes are one way transfers.
ECCC's and ECCLU’s must be detected and recorded at the write's desttnation. The few
errors that are gosslbie in the course of prucessing a data cache write are summarized in

this section.

—

R
- . 3

16.3.6.1 Bus Acquisition Timeout

The bus acquisition timer elapsing before the data cache write gains access to the bus, indi-
cates a hardware failure. The BIF requests the clocks to stop and records this error in scan

state. The BIF continues to request the bus.

16.3.6.2 No Acknowledge

The data cache write address transfer resulting in no bus acknowledge, indicates a software
failure. The BIF records this error status in the BCTRL register and freezes the ERRADDR

repister. The write request is ignored.

16.3.6.3 Error Acknowledge

=

294

device errors such as auxiliary bus umeouts.

b ]

]

The data cache write address transfer resulting in an error bus acknowledge, indicates a
hardware failure. The BIF records the error status in scan state, but otherwise treats the
the acknowledpe as a busy one to preserve state.

16..4 TB Invalidates

Translation Buffer Invalidates mav be both posted by the MMU for forwarding 10 the N-

Bus. or relaved from the N-Bus,

Cea

-
-

16.4.1 Invalidates from the NIMU

by the BIF, 10 the MAMLU.

»

.-

-

EE .

Similar 10 data cache writes. the CPU does not wait for a TB invalidaie compleuon. The
MMU relavs and the BIF queues the TB invalidate request. There are both seiective and

comprehensive TB invalidaies. There is one MMU_CMND(4:0) code for each. Code 11000

indicates a selective TB invalidate. A 20~ bn virtual address is expected to accompany it

The MMU provides the virtual address on PA(OI 00) || PA(29:12). The address is relaved

to the X-Bus where it appears in the address bit positions 31 through 12. Code 11001
identifies a comprehensive TB invalidate. No address is required in this case. No VPN s
associated with a TB invaiidate. No data is associated with a TB invalidate.

Table 16-9. MEM_CMD[4:0) Codes, TB Invalidates

MEM_CMD (4:0]

store.nolock.cache. 1

00000 | NOP 10000 I
00001 load.nolock.cache. 16 10001 swore.nolock.cache.2 i
00010 fetch.nolock.cache. 32 10010 store.nolock.cache.4 t
00011 load.nolock. cache__?i_ L IOQII store.nolock.cache.§ }
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00100 load.nolock.nocache.1 10100 store.nolock.nocache. 1
00101 load.nolock.nocache.2 10101 store.nolock.nocache.2
00110 load.nolock.nocache. 4 10110 store.nolock.nocache. 4
00111 load.nolock.nocache. 8 10111 store.nolock.nocache.8
01000 load.lock.nocache.1 11000 TB invalidate single
01001 load.lock.nocache.2 11001 TB invalidate all ,
01010 load.lock.nocache. 4 11010 mmu_store.unlock.nocache.4
01011 load.lock.nocache.8 11011 unassigned
01100 load.unlock.nocache. 1 11100 | store.uniock.nocache.1
01101 load.unlock.nocache.2 11101 store.unlock.nocache.2
“01110-% | - load.unlock-nocache 4 11105 Store unlockinocache: 4
Jo3d. unlock’nocééﬂ.: 11 ‘st_ore‘u_nlofckﬂcztache"s

- 16.4.2 Invalidates from the MMU: Write Buffer Full

TB invalidates. both seleclive and comprehensive, occupy a position -in the write queue.
Consequently. they can resuit in write buffer full stalis. 1f the BIF iy unable w0 accem an-
other TB invalidate or more store data. the BIF assents the WBUF_FULL sicnal.

. - —
- -
- . .
-

16.4.3 Invalidates from the MMU: Bus Errors

-

Only wwo errors are possible in transmitting a TB xpvahdate on the k Bus: failure 1o secure
»
- the bus, and a parity error upon transmission.

16.4.3.1 Bus Acquisition Timeout

The bus acquisition timer elapsing before the TB invalidate pains access to the bus. indi-
cates a hardware {ailure. The BIF requests the clocks to stop and records this as a write
error in the scan state. The BIF continues to request the bus.

16.4.3.2 Error Acknowledge

The TB invalidate transfer resuiting m an error bus acknowledge, indicates a hardware faxl-
ure. The BIF records this as a write error in the scan state. The BIF otherwise treats this
acknowledge as a busy one to preserve state.

16.4.4 Invalidates to the MMU

The BIF forwards incoming TB invalidates 10 the MMU. The forwarding follows the cache
invalidate pipeline. Both selective and comprehensive TB invalidates may be posted 10 the
MMU. The BIF sources a 20-bit virtual page number on the PA bus when a selective TB
invalidate is required. If a comprehensive invalidate is desired, no address is required. The
BIF arbitrates for, and secures, the PA bus. .

16.4.4.1 External Selective TB Invalidate Address Format

Incoming TB invalidate addresses are right shifted before being sent across the PA bus.
The VPN bits 31 through 12 are aligned on the PA bus in bit positions 22 through 3.
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16.4.4.2 External TB Invalidate Address Sourcing / BIF_PAARB BIF_INVOP

The BIF uses the BIF_PAARB signals (0 request the PA bus to transfer the invahdate ad-
dress. The BIF usually request the use of PA and EASRC buse:. BIF_PAARE = a1, Il an
instruction cache fill 1s underway at the same ume. BIF_PAARB = 11 v anivern The decr-
sion 1o do an instrucuon cache fill or TB invalidawe 1+ then deferred one ¢vele

™ -
-

r . ’ - e
Table 16-10. BIF_PAARB([]:0} Codcs, External TB Invalidate Address Sourcing

BIF_PAARB(1:0] b
00 NOP
01 Arbitrate for PA/EASRC : cache fill or invalidate ;
10 Arbitrate for PATPCSRC : cache fill or invalidate t
11 Arbitrate for PA/EA/PCSRC : cache {ill or invalhidate :

Either a selective TB invalidate or a comprehensive TB invalidate is requested in the same
cvcle as the PA bus use. If selective, the TB invalidate index is on PA bus. The BIF re-
quests the selective TB invalidate by Setting BIF_INVOP = 10. If a comprehensive TB in-
validate is desired, the BIF sets BIF_INVOP = 11.

Table 16-11. BIF_INVOP(2:0] Codes, External TB [nvalidate Address Sourcing

BIF_INVOP(2:0]

000 0 NOP

001 1 | RESET VALID BITS

t2

010 Selective TB Invalidate

011 3 | Comprehensive TB Invalidate

100 4 | Fill

101 5 | Diagnostic Fill

110 6 | undefined

111 7 | undefined
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Chapter 17

Instruction Cache

17.1 Instruction Cache Read Miss

Processor instruction fetches are usually satisfied by the instruction cache. An instruction
cache read miss occurs when the data cache does not presently contain the reguested in-
struction.

In the main, inswuction cache read miss processing parallels that of data cache read miss.
The major differences resuit because there are fewer requests within instruction cache miss.

17.1.1 MMU Request to the BIF

The MMU provides the fetch's 30-bit physical address on the PA bus. The MMU com-
mand accompanies the physical address.

The read’s virtual page offset within segment (VPN) bits are presented before the physical
address and command. Typically, the BIF captures the 7 bits from the external PC regisier
during every cycle. If an instruction cache miss occurs, the earliest the physical address
and command can arrive is the following cycle. If, however, the PA bus is not used or is
otherwise unavailable in this succeeding cycle, the MMU assert the MMU _HOLD_IVPN
signal. The BIF holds the captured instruction cache VPN. MMU_HOLD _IVPN is deas-
serted during the cvcle in which the physical address and command are finally sent to the
BIF.

There is only one command that applies to instruction cache miss.

Table 171 MEM_CMD{4:0j Codes. Instrucuon Cache Miss

*

MEM_CMD[4:0]

| 000Q0 NOP e . e, ™. 110000 store.nolock.cache. |
’ ',‘-"00”0'01. load.nolock.cache.16 = 4 10001 store.nolock.cache.2
00010 fetch.nolock.cache.32 10010 store.nolock.cache.4
00011 load.nolock.cache.64 18011 store.nolock.cache.§
00100 load.nolock.nocache. 1 10100 store.nolock.nocache. !
00101 load.nolock.nocache.2 10101 store.nolock.nocache.2
00110 load.noiock.nocache. 4 10110 store.nolock.nocache. 4
00111 load.nolock.nocache.8 10111 store.nolock.nocache.§
01000 load.lock.nocache. 1 11000 TB invalidate singie
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01001 load.lock.nocache.2 11001 TB invalidate all
01010 load.lock.nocache. 4 11010 mmu_store.unlock.nocache. 4
01011 load.lock.nocache.8 11011 | unassigned
01100 load.unlock.nocache. 1 11100 store.undock.nocache. 1
01101 load.unlock.nocache.2 11101 store.unlock.nocache.2
01110 load.unlock.nocache. 4 11110 store.uniock.nocache. 4
01111 load.unlock.nocache.8 11111 store.unlock.nocache.§

All instructon cache misses are cacheabie and 32 bytes long.

The address presented with the command is the IP's exact feich address. Before forward-
ing to the X-Bus. address bits 3 and 4 must be unconditionally zeroed. This is required by
the fill algorithm. which is natural order beginning at the nearest lower bvte boundary that
1s 0 modulo 32. The address mask bits must be forced o all ones before transferring on
the X-Bus.

17.1.2 Instruction Cache Read Data Return

-

Once the instruction cache miss read address is transferred across the X-Bus, the BIF
awaits read data response. When the requested data finally returns, it is forwarded to the
INST(63:00) bus. The instrucuon is then stored in the cache.

17.1.2.1 Instruction Re;u-rn Delay

\orr‘nalh. relurnlnc memory data is forwarded to the INST bus during the cvele immed:-
.mel\ tolfowing the data sransfer on the.X-Bus. In some cases. however. [NST bus forward-
ing 1s delaved one additional cvcle. The following cases summarize this.

- ® - .

- v +
. .® The )\ Bus data returns during the same cycle that the PCSRC bus is bemc used

o process an invalidate. An instruction cache fill cannot take place in the next °
cycle because the PC will not hold the proper fill address.

® The X~Bus data returns in a cvcle immedizﬁely after a data cache miss that re-
quired an insertion delay. The immediately abutiing data and instruction fill data
responses on the X-Bus don't allow for removing the data cache miss’'s delav.

The data return delay is not visible to th& MMU in handshake protocol.

17.1.2.2 Instruction Return Alignment

The instruction data is always aligned on the INST bus as it appears on the X-Bus. See
the ECCU/ECCC section for the exceptions.

17.1.2.3 Instruction Cache Fill Data Sourcing / MEM _RESP

The instruction cache darta is provided; & bytes. at a time, on the X- Bus, and is forwarded
to the INST bus. The instruction cache filling is stricuy slaved to the X-Bus uming and
normally takes place in uninterrupted cycles. The BIF begins driving returning X-Bus data
before X~Bus Read Response data has arrived. The BIF first drives the INST bus during
the cycle after the instruction cache miss MEM_CMD has been driven by the MMU.
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The MEM_RESP(2:0) field is sourced by the MMU a1 the same time as the BIF drives
the INST bus. Typically, code 010 is driven. Codes 110 and 111 are driven in the event of
a bus error. The instruction cache filling is strictly slaved to the X-Bus timing and normally
takes place in uninterrupted cycles. See the ECCU/ECCC section for the exceptions.

Tablc 17-2. MEM_RESP[2:0] Codecs, Insiruction Cache Fill Data Sourcing

. MEM_RESP(2:0] - Data Cache Miss

. 000 NOP *

001 | Dcache Pawa Return ..
e 1 010 lcache Data Return -

011 undefined
100 Load ECSU
101 Load No Response
110 ., Fetch ECCU
111 ° i <Pectch No Response

17.1.2.4 Instruction Cache Fill Parity Sourcing

The returning instruction parity is regenerated while the data is on the INST bus. It is writ-
ten into the instruction cache parity RAMs during the following cycle. One bit of paruy is
maintained over all even instruction bytes, and one over all odd instruction bytes.

s

17.1.2.5 Instruction Cache Fill Address Sourcing / BIF_PAARB BIF_INVOP

The BIF sources the instruction cache fill index on the PA bus. The BIF requesis the PA
bus ane cycle before the address transfer (two cycles before the INST transier) by asserung
the BIF_PAARB(1:0) signals. BIF_PAARB = 10 requests the joint use of the PA bus and
the PCSRC bus. BIF_PAARB = 11 requests the use of the EASRC bus. BIF_PAARB = i1
1s only used if instruction cache miss and data cache miss are concurrentiv underwayv on
the X-Bus.

The BIF begins requesting the PA bus before X~Bus Read Response data has arrived. The
BIF first makes an arbitration request on the PAARB signals during the X-Bus acknowl-
edge cycle for the instruction miss read address transfer.

Table 17-3. BIF_PAARB[1:0] Codes, Instruction Cache Fiil Address Sourcing
BIF_PAARB(1:0]

00 NOP
01 -

Arbitrate frorr PA(PCSRC 1 cache fill or. invalidate .
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The BIF sources the 14-bit fill index on PA(29:16) one cvcie hefore the INST transier.
Simuhaneousl\ the BIF auempts tp set the instruction cache tag's \' ALID l-m during that
next C\\.Ie by deassening the BIF_INVOP signals.

Table 17=+. BIF_INVOP[1:0] Codes. Instruction Cache Fill Address Sourcing

"« BIF_INVOP|(1:0]
00 NOP
o1 .| - »

ot

10 -

11 -

17.1.2.6 Instruction Cache Fill: MMU Tracking

While the BIF sources both the data and f{ill address, the MMU provides both the RAM
strobes and tag contents. The MMU does so in response to the BIF_PAARB and BIF_IN-
VOP signals. The BIF sources these signals without knowing about rerurn data availability.
The BIF informs the MMU that d&ta’has been written after the fact, via the
MEM_RESP(2:0) signals.

The MMU assumes that the fill completes during the next cvcle when the final fill entry
index is on the PA bus and there is no request on the BIF_PAARB signals. If. for some
reason. the fill does not complete during this cvcle, both the MMU and BIF backup and
try again. The MMU recognizes this situation because the MEM_RESP field is 000 (NOP)
during the cycle which should have been the last RAM data write.

17.1.3 Instruction Stream Writes

The hardware makes no attempt to interlock stores with instruction stream reads. If a pro-
gram wishes 10 update the instruction stream it must foliow the following sequence:

s Execute the store.
e Execute a load.unlock. This assures that the store has completed on the X-Bus.
e Wait for the invalidate pipeline to empty (5 instructions).

o Fetch the instruction.

17.1.4.1 External Invalidate Collision .

In the jnterval between the read address wransfer on the X-Bus and the read data return. a
write to the rewurning data from another CPU can occur. The BIF watches far this situ-
auon and detects anv write-read collisions on the same physical page. If a collision 1s de-
tected, the BIF_INV OP(I 0] smaalx ar<*assened. rather than deasserted. during the cxcie
before the instruction cache unu: BXF I\\’OP 01 resets the tag's valid bit. This po.ten-
“tial cache-inv alidation also ‘applies 10 locally generated wTites. .

o
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Table 17-5. BIF_INVOP[1:0] Codes. Emernal Invalidare Collision

BIF_INVOP(1:0]

00 NOP - >

01 Invalidate Instrucuon/Data Cache
10 -

11 -

17.1.4.2 Bus Acquisitioﬁ Timeout

The bus acguisition timer elapsing before the instruction cache read gains access to the
bus. indicates a hardware failure. The BIF requests the clocks to stop and records this er-
ror status in the scan state. The BIF continues to arbitrate for the bus.

17.1.4.3 No Acknowledge

The instruction cache miss address transfer resulting in no bus acknowledge, indicates a
software failure. The BIF records this error status in the BCTRL register and freezes the
ERRADDR register. The BIF returns a FETCH_NO_RESPONSE code, 111. on the
MEM_RESP(2:0) signals.

Any instruction fetch from a memory region that cannot support an X~Bus READ MULTI-
PLE results in this error. An attempt to feich from UTILITY board RAM resuits in this
error.

17.1.4.4 Error Acknowledge

The instruction cache miss address transfer resulting in an error bus acknowledge, indicates
a hardware failure. The BIF records this error status in the scan sitate. The BIF otherwise
The source. of th

treats this acknowledge as a busy one (o

cknowledge = |

17.1.4.5 Read Return Timeout

The read return timer eiapsing before the instrucuon cache read data completeds-returns.
indicates a hardware failure. The BIF records this error siatus in the scan state. The BIF
conunues to await read data return.

-
- -

17.1.4.6 ECCU

A device error may prevent correct daia return. The most common such error is a main
memory ECCU. - | s :

When only incorrect X~Bus data can be returned. a READ RESPONSE ERROR command
is returned on the X-Bus. The BIF terminates the transfer and sends the
MMU_RESP(2:0) code FETCH ECCU {(T10) to the MMU. No further response daia for
the READ MULTIPLE are accepted from the X-Bus.
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17.1.4.7 ECCC

A correctable data error can occur upon access to main store. If this happens during an
instruction cache {ill, this may resul} in, the interpositioning of NOPs within the returning
X-Bus read data. When a NOP interrupts this sequence, there are always at least 2 NOPs.
present.

When 'Lhe NOP interrupts the fill sequence, incorrect data is written to the RAMs. The
BIF then backs up the fill address by eight bytes, awaits the corrected data. and rewrites
the RAM location.

When the NOP arrives, instead of the last 8 bytes of read response data, there is an addi-
tional complication: the BIF may have relinquished control of the PA bus. The MMU rec-
ogflizes this situation and holds the processor stall. The BIF rearbitrates for the PA and
PCSRC buses. It then sources the last fill address and waits for corrected data. Two NOPs
are required to arbitrate and resupply the former fill address.

If a data returning X-Bus sequence is interrupted by NOPs, the responder asserts ARB
INHIBIT to prevent another party from gaining access to the bus. The BIF does not have
to be prepared to handle external invalidates or data read data response during such an
interruption.

17.2 Instruction Cache Invalidates

Instruction cache nvalidates mayv be posted from the BIF 10 the instruction cache.

- . LI
17.2.1 Instruction Cache Invalidat€.Atdress Sourcing / BIF_PAARB BIF_INVOP

The BIF provides only the invalidate index for the cache location to be purged. The BIF
requests use of the bus one cycle before the addre¥s transfer (two ‘cycies before the 1ag
invalidate) by asserting the BIF_PAARB(1:0) signals. BIF_PAARB = 10 requests the joint
use of the PA bus and the PCSRC bus. BIF_PAARB = 11 requests the joint use of the PA
bus, EASRC bus and PCSRC bus. This code is used if both caches are 10 be invalidated.
: e
Table 17-6. BIF_PAARB/!1:0]. Instruction Cache Invalidate Address Sourcing

BIF_PAARB(1:0]

00 | Nop

01 - v

10 Arbitrate for PA/PCSRC : cache fill or invalidate
11 Arbitrate for PA/EA/PCSRC : cache fill or invalidate

The 14-bit invalidate index is on PA(29:16) one cvcle before the tag RAM wtite. Simuita-
neously, the BIF clears the instruction cache tag's VALID bnt during that next cycle by
asserung the BIF_INVOP signals. BIF_INVOP = 01 resets the tag's valid bu. -
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Table 17-7. BIF_INVOP(!:0], Instruction Cache Invalidate Address Sourcing

BIF_INVOP[1:0]

00 NOP

01 Invalidate Insuucuon/Data Cache
10 -

11 -

Chapter 18-

- Cache Parity

18.1 Instruction Cache Data Parity

The BIF CBD ICs maintain and chteck parity on the 64 bits of the instruction cache data
RAMs. There is one parity bit covering each 32 bits. INST_PARITY(0) holds parity over
all even bytes of the INST bus. INST_PARITY(1) holds parity over all odd bytes of the
INST bus. The odd/even division maintains one bit per CBD gate array.

Odd parity is maintained (the sum of all ones in the 32 bits of data plus the parity bit
should be odd).

INST_PARITY(1:0) are bidirectional bits. There is one 16K x 4 RAM devoted 10 holding
the parity. The parity RAM is always accessed during the cycle after the instruction cach;‘s
data RAMs are accessed. The address is piped forward unconditionally in external regis-
ters. The instruction parity is always good. v )

18.1.1 Instruction Parity Checking

Parity on the INST bus is always checked, unless the CBD gate array is driving it. The
CBD gate arrays drive it only during instruction cache miss.

Parity is checked during the instruction parity RAM access cycle. Detecting a parity error,
indicates a hardware fault. The CBD gate array signals the SCR to halt the system clocks,
and freezes error stawus in the embedded scan state.
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18.1.2 Instruction Parity Generation

When instruction cache fill is underway, instruction parity is computed from the X-Bus

paru_('. The & X-Bus panty bits are reduced to 2. These I parnyv bits are loaded into an

outbound instruction parity register for sourcing onto INST_PARITY(1:0) during the cvcle

after the instruction data. If the instrucuon cache's data RAMs are being written, the par-

ity RAM .is written uncortitionally duning the following cycle. Embedded smte. may forge
- the INST_ PARI‘PY(I 0) bits to a#ways be 1, or always be 0.

Diagnosdc RAM update mimics an extended instrycuon cache fill., Parity typicaliy s part of
the diagnostic pattern generation.

18.2 Data Cache Data Parity s

The BIF CBD ICs matntain and check parity on the 64 bits of the data cache daia RAMs.
There 1s one panty bit covering each 8 bits. This is necessitated because the bytes must be
updated individually. DATA_IPARITY(0) provides parity over DATA(63:58).
DATA_IPARITY(7) holds parity over DATA(07:00). Each CBD gate array is responsible
for 4 parity bits.
Odd parity is maintained (the sum of all ones in the § bits of data pius the parity bnt

~ should be odd). ‘ -

There are 8 16K x | RAMSs used to hold the parity status. The RAMs have separate data
in and data out pins. There are separate DATA_IPARITY(7:0) and
DATA_OPARITY(7:0) signals. The panty RAMs are always accessed during the cvcle fol-
lowing the data cache’s data RAM access. The address is piped forward unconditicnally in
external registers. The data parity is always good.

18.2.1 Parity Checking

The parity is checked on the DATA bus when the signal CHECK_DATA is asserted. This
signal is externally derived from the RAM controls of the data cache. This signal is as-
serted to the CBD ICs during the cvcle after the data RAMs are read. The RAMs are read
most of the time, except during processor stores and data cache filling.

The parity is checked using DATA_IPARITY(7:0) during the cvcle in which the data par-
ity RAMs are accessed. Detecting a panty error indicates a hardware fault. The CBA gate
array signals the SCR 1o halt'the system clocks and freezes error status in the embedded -
scan siate.

18.2.2 Parity Generation
Parity is always provided by the CBD. When a data cache fill is underway, data parity is
passed direcily from the X-Bus panty. These & paruy bis are loaded 1nto an outbound
instrucuon parity register for sourcing onto DATA_OPARITY(7:0) dunng the cycle afier

e the data is sent. Parity is also alwavs beipng computed on the DATA bus directiv. When a

e w>®. e cache data {ill is not in progress. this parity is sourced onto the 'DATA_OPARITY(T:Q). I

the data cache’'s-data RAMs are being written, the parity RAMs are written unconditionaliv

during the next cycle. '
. ) .
Embedded state may force the DATA_OPARITY(7:0) bits to always be 1, or always be 0.

-~



REST AVALL ABLE COPY

4,979,099
315 316
Diagnostic RAM update emulates an extended data cache fill. Parity is wpically pant of the
diagnostic pattern generation. : =

18.2.3 Secondary TB Data Parity

The CBD ICs are unaware of whether a secondary TB look-up, or a data cache read is
underway in the data cache.

18.3 Instruction Cache Duplicate Tag Store Parity

The CBA IC maintains and chgcks parity on the 18 bits of the .RAMs in the DITS. There
is one parity bit (DITS_PARITY) covering all 18 bits. Odd parity is maintained (the sum
of alt ones in the 18 bits of data plus the parity bit is odd).

DITS_PARITY is bidirectional and accessed during the same cycle as the tag contents. The
DITS parity is always good.

18.3.1 Parity Checking

The parity is always checked on the DITS_DATA(29:12), unless the CBA pate array is
sourcing it. The CBA gate arrays does so together with the READ RESPONSE phases of
an instructon cache fill's READ MULTIPLE, or during a DITS entry invalidation cancella-
uon.

The parity is checked during the cycle following the RAM access. Detecting a parity error
indicates a hardware fault. The CBD gzte array signals the SCR to halt the system clocks
and freezes error status in the embedded scan state.

18.3.2 Parity Generation

The DITS is updated dunng the two cv cles following the READ RESPONSE (0 an insiruc-
uon cache miss's READ MULTIPLE. The DITS i aiso updated dunng RAM diagnosuc
operation and dunng entry invalidauon. In all cases. parity 1s generated duning the cveis
before the RAM write.

- -

. . e
Embedded state may~force the BITS_PARITY to always be 1. or always be 0. )

he Y

18.4 Data Cache Duplicate Tag Store Parity

The CBA IC maintains and checks parity on the 18 bits of the DOTS RAMs. There 15 one
parity bit (DOTS_PARITY) covering all 18 bits.

Odd parity is maintained (the sum of all ones in the 18 bits of data, plus the parity bit. 1s
odd).

DOTS_PARITY is bidirectional and is accessed duringthe same cycle as the tag contents.
The DOTS parity is always good.
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18.4.1 Parity Chec_king

318

The parity is always checked on the DOTS_DATA(29:12), unless the CBA gate array 1s
sourcing it. The CBA gate arravs does so together with the READ RESPONSE phases of a
data cache fill's READ MULTIPLE, during DOTS enuy invalidation canceilation, or afer

a cacheable local store.

The parity is checked during the cycle following the RAM access. Detecung a parity error
indicates a hardware fault. The CBA gate array signals the SCR to halt the svsiem clocks
and freezes error status in the embedded scan state.

18.4.2 Parity Generation

The DOTS is updaid during the two cycles following the READ RESPONSE to an cache-
able data cache miss’'s READ MULTIPLE. The DOTS is also updated during RAM diag-
nostic operation and during entry invalidation. Finally, the DOTS is updated during the two
cycles after a locally generated cacheable write is transferred on the bus. In all cases. par-
ity is generated during the cycle before a RAM write.

Embedded state may force the DOTS_PARITY to always be [, or always be 0.

What is claimed is:
1. A method of bus arbitration for providing bus
ownership to a plurality of devices connected to a bus,
comprising the steps of:
assigning to each device a bus ownership class and a
priority, wherein a higher class device preempts
any lower class device, irrespective of priority;

generating a bus request signal from a first device
during a cycle;

generating a bus request signal from a second device

during said cycle;

granting ownership of said bus to a higher class de-

vice, or if said first and second devices are of the
same ownership class, to a higher priority device,
during said cycle;

storing, only if said higher priority device is of said

lower class, a snapshot signal representative of all
bus request signals from each lower class device
other than said higher priority device, during the
higher priority device’s last cycle of bus owner-
ship; and

granting ownership of said bus to each lower class

device represented by said snapshot signal at the
conclusion of the last cycle of said higher priority
device’s bus ownership while preventing genera-
tion of a bus request signals from said higher prior-
ity device until each lower class device represented
by said snapshot signal has received and completed
ownership of the bus.

2. The method of claim 1 wherein each step of grant-
ing ownership of said bus to a device further includes
the step of generating at least one signal operative to
inhibit the generation of BUS REQUEST signals from
devices other than the device that receives a grant of
bus ownership, when said ownership has a duration of
multiple cycles.

3. The method of claim 1 further including the step of
granting default ownership to the last owner of said bus
when there is no other requester.

4. The method of claim 1, wherein ownership granted
to a lower class device can be suspended at any time by
any higher class device.

.
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5. Apparatus for arbitration of bus ownership among
a plurality of access requesting devices having differing
levels of bus ownership class and priority, wherein a
higher class device preempts any lower class device,
irrespective of priority, comprising:
means for providing, during a cycle, a first device bus
request signal;

means for providing, during said cycle, a second
device bus request signal;

means for granting, during said cycle, ownership of
said bus to a higher class device, or if said first and
second devices are of the same class, to a higher
priority device;

means for storing, only if said higher priority device
is of said lower class, a snapshot signal representing
all the bus request signals of each lower class de-
vice other than said higher priority device, at the
last cycle of bus ownership of said higher priority
device;

means for granting ownership of said bus to each
lower class device represented by said snapshot
signal at the conclusion of said higher priority de-
vice’s last cycle of bus ownership; and

means for preventing generation of a subsequent bus
request signal from said higher priority device until
each lower class device represented by said snap-
shot signai has received and completed ownership
of said bus.

6. The apparatus of claim § wherein said higher prior-
ity device includes means for generating at least one
signal operative to inhibit the generation of bus request
signals from other devices while said higher priority
device has bus ownership.

7. The apparatus of claim 5 further including means
for granting default ownership to the requesting device
to which ownership was lastly granted when there is no
other requester.

8. The apparatus of claim 5, wherein ownership
granted to a lower class device can be suspended at any
time by any higher class device.

] * * * *
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ttis certified that error appears in the abave-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 2, line 26, "device" should read --devices--.

Column 2, line 35, "decentralized arbitration" should read
--decentralized; arbitration--.

Column 3, line 47, "write and unlock" should read --write and
unlock--.

Column 3, line 50, "miss from an unencacheable" should read
--miss from an unencacheable.

Column 3, line 53, "miss and lock" should read -miss and
lock--.

Column 3, line 56, "miss and unlock" should read --miss and

unlock--.

Column 3, 1line 59, "tb invalidate" should read --tb

invalidate--.

Column 4, line 6, "load and lock, load and unlock, and store
and unlock," should read --load and lock, load and unlock, and
store and unlock,--.

Column 4, line 10, "accepts load" should read --accepts
load--.
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Column 4, line 11, "lock, load unlock and store unlock" should
read --lock, load and store unlock--.

Column 4, line 13, "load lock" should read --load lock--.

Column 4, line 21, "load lock" should read --load lock--.

Column 4, line 28, "LOCK-HELD lock" should read
-<LOCK-HELD 64--.
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--LOCK-HELD 64 signals--.
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Column 4, line 47, "load unlock" should read --load unlock--.

Column 4, line 48, "store unlock" should read --store
unlock--.




UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4,979,099 Page 3 of 3

DATED : December 18, 1990
INVENTOR(S) : Andrew Milia and Richard G. Bahr

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:
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dispatch, --.
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