United States Patent (9
Mageau et al.

(11] Patent Number: 4,994,962
(4s] Date of Patent: Feb. 19, 1991

(54]
(73]

(73]

[21]
(22]
(s1]
(52]
(58]
[56]

VARIABLE LENGTH CACHE FILL

Inventors: Paul Mageau, Townsend, Mass.;
John S. Yates, Nashua, N.H.

Assignee: Apollo Computer Inc,, Chelmsford,
Mass.

Appl. No.: 264,260

Filed: Oct. 28, 1988

Int. C15 ... SO GO6F 13/00

US. CL ot 364/200; 364/243;

364/243.4; 364/243.41
Field of Search ... 364/200 MS File, 900 MS File
References Cited
U.S. PATENT DOCUMENTS

4,189,770 2/1980 Gannon et al.ccoovrenne. 364/200
4,315,312 2/1982 Schmidt
4,503,501 3/1985 Coulson et al.

4,603,380 7/1986 Eastonetal.cocconiiennne 364/200
4,654,782 3/1987 Bannai et al. 3647200
4,780,808 10/1988 Morenocoeeiereveeinnn. 3647200

Primary Examiner—David Y. Eng
Attorney, Agent, or Firm—Weingarten, Schurgin,
Gagnebin & Hayes

[57] ABSTRACT

A method and apparatus for selectively filling a cache
memory with a variable number of data words in re-
sponse to the size and type of data transfer requested by
the processor associated with the cache. According to
the present invention a cache fill of either 16 or 64 bytes
are provided. If there is a cache miss and an 8 byte word
data transfer as requested, the larger fill is provided,
similarly, if the 8 byte word data transfer is not re-
quested, the shorter block of data is provided, resulting
in enhanced performance over a fixed length cache fill.

4,586,130 4/1986 Buttsetal.ocerivcnrnns 364/200 10 Claims, 1 Drawing Sheet
100 CACHE MANAGEMENT FUNCTION [svs 8us
T~ ADDRESS PMYSICAL ADDRESS 1
VIRTUAL " JRANSATION "o
| yad
02 ADDRESS T s 120
- ACHE COMPARE us
PROCESSOR DATA CacH _LosIc MEMORY
12~ pATA l——CACHE MISS
06 nr
ol HSAT ey :/c:on SM_BLOCK RES b
TYEE v VECTOR_OP NEMORY |SM.BLOCK RED
108 P -
R/W/NOP <8, 4 BYTES _ TYPICAL DYNAMIC PREFETCH CIRCUIT ILLUSTRATION

4,994,962

Sheet 1 of 1

Feb. 19, 1991

U.S. Patent

AHOW3INW

/H]

g

NOILYHLSAT Y LINDYID HOL3J3Hd JIWVYNAQ IVIIdAL S31A8 b ‘8> dON/M/Y
1 _o_oo._ zo_w_w%mWo) \\mmw"m]
93UMI0NB O] 153NDIY e
| = 3ONIYIITY |
93U ¥0018 WS | AHOWIW dO"HOLD3A umoromm> =~ _.4 CETN
_
L1l 901/ en| 4°
SSIN IHIVI—] viva { ~2I|
H0SS3004d
19071 2
St INVANOD}e u:om|_§<of _.lM - |
Noﬁ gsamagvy] ¥
ol IVNLYIA
NOILVISNVHL " 27914
L] $S3¥0AV 1VIISAHd ss3yaav
T~ oo

sne m>m.\

NOILONNS LN3IW3IOUNYWN IHOVO

AHOW3IW NIVIW WOM 4

S314A8 9 QvOl

JHOVD (KOUL) NI
(Qv3Y) 3LIHYM

Nw\

99/

AHOW3IW NIVIN AO¥4
S31A8 +9 avol

3HOVI NI
{ovL)

86

S31A8 80P
03y J8vd

&

25—

3HOVI OLNI (Qv3H) 3LINM

IHOVD (WOHJ) NI
(Qv3d) 3L1HM

9s /Ow

4,994,962

1
VARIABLE LENGTH CACHE FILL

FIELD OF THE INVENTION

The present invention relates to high speed computer
processors, in particular, to computer processors having
cache data and instruction stores.

BACKGROUND OF THE INVENTION

Choosing the parameters of a cache fill strategy that
will deliver good performance requires knowledge of
cache access patterns.

Long cache fills have the advantage that actual bus
bandwidth rises towards the theoretical peak as read
size increases. But once the read size exceeds the bus
width satisfying the read requires multiple bus cycles
and thus may increase cache miss tendency.

If the code is making long sequential sweeps through
one or more data structures that are contiguous in mem-
ory (e.g., the sort of code that benefits most directly
from a “vectorizing” compiler and vector hardware)
then typically a long cache fill will be desirable. The
extremely high locality of the stream of data references
means that there is a commensurately high probability
that the additional data read during a long cache fill will
actually be used. Finally, because the performance of
such *“vector” applications is frequently a direct func-
tion of memory bandwidth the improved bus utilization
transiates into increased application speed.

When there is more randomness in the stream of data
references a long cache fill may actnally degrade per-
formance. There are at least two reasons for this. Be-
cause of the lower probability that the additional data
will ever be used the larger number of bus cycles neces-
sary to complete a long cache fill may actually lead to
an increased average memory load latency. The larger
fill size also decreases the number of replaceable cache
lines and may therefore hurt performance by increased
thrashing in the use of those lines. In other words, it
increases the probability that the process of servicing
one cache miss will expunge from the cache the con-
tents of some other line that would have taken a hit in
the near future. When such behavior becomes espe-
cially severe it is termed “thrashing in the cache™.

Thus, a conflict exists in providing a system which
services the rather predictable needs of well behaved
“vector” applications and the chaotic needs of more
general computations.

SUMMARY OF THE INVENTION

According to the present invention, two distinct
cache fill sequences of 16 bytes and 64 bytes are pro-
vided and chosen according to the size and address
alignment of the data requested by the associated pro-
cessor. No data is transferred from main memory if
there is a cache hit. If there is a cache miss, and either a
quadword is not requested or a quadword not aligned to
a multiple of 64 bytes is requested, a shorter block of 16
bytes is transferred from main memory. If there is a
cache miss and a quadword is requested, a longer block
of 64 bytes is transferred to the cache from main mem-
ory, in this context, a quadword is 8 bytes.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the present invention will
be better understood by reading the following detailed

10

—

5

20

25

30

45

50

55

60

65

2

description, taken together with the Drawings,
wherein:

FIG. 1 is a flow chart showing the operation of one
embodiment of the present invention; and

FIG. 2 is a block diagram of one embodiment of the
present invention operable according to the flow chart
of FIG. 1.

To keep the mechanics of cache management simple,
cache lines must adhere to the same natural (or other)
word alignment strategy as all other aspects of the ar-
chitecture as defined in co-pending, commonly assigned
U.S. patent application Ser. No. 07/255,105 entitled
METHOD AND APPARATUS FOR CONCUR-
RENT DISPATCH OF INSTRUCTIONS TO MUL-
TIPLE FUNCTIONAL UNITS, filed Oct. 7, 1988,
incorporated by reference.

In recognition of the fact that opcode space is a pre-
cious commodity and of the desirability of making the
presence of a variable length cache fill mechanism to-
tally transparent to a compiler or an assembly language
programmer, the method and apparatus according to
the present invention, when a cache miss occurs

chooses an appropriate fill size.

DETAILED DESCRIPTION OF THE
INVENTION

According to the operation of one embodiment 100 of
FIG. 2 illustrated in the flow chart 50 of FIG. 1, when
the processor 102 requests a data read or write 52 into
cache 104, the vector reference detection logic 106
responds to the type 107 (e. g., read, write, no-op) and
data size 108 signals which indicates (54) if a 4 or 8 byte
transaction is requested by the processor 102,

If the data is in the cache 104 as indicated by a cache
hit (56, 58) provided by a positive tag comparison 110,
the transaction between the processor 102 and cache
104 proceeds (60, 62) without data transfer from the
main memory 120.

Referring to FIG. 1, if the tag of the processor 102
requested data was not found (56, 58) by the tag com-
pare logic, and if the size of the processor requested
data is 4 bytes, then a block of 16 bytes is loaded 66 into
the cache from main memory 120.

As can be seen in FIG. 1, if the processor requested
data is not in the cache 104 as indicated by the tag com-
pare logic 110, the vector reference logic determines
(64) if the requested data address 112 is 64 byte aligned
(aligned to an integer multiple of 64 bytes,) if so, then 64
bytes of data is transferred (68) from main memory 120
to the cache 104. If the processor requested data is not
in the cache and if the requested data address is not a
memory address aligned (i.e. corresponding) to an inte-
ger multiple of 64 bytes, then only a 16-byte data block
is loaded from memory into cache. Registers 111, 113,
115 and 117 provide temporary storage of the com-
mand, address and data signals.

Two properties of the above-described system archi-
tecture and process according to the present invention
are particularly significant for several reasons. First the
architecture may be viewed as incorporating “an ad-
dress formation and sequencing unit, and an executed
unit”. This structure and the availability of both integer
and floating point operations in the execute unit means
that there is an obvious strategy for decomposing vec-
tor primitives. This strategy will work independent of
the type of data being processed. Second the present
architecture provides selective 8 byte transfers to and
from an even/odd pair of floating point registers. Since,

4,994,962

3

as mentioned above, vector loops tend to be limited by
the rate at which operands can be made available from
and results returned to memory using these 8 byte loads
and stores to move two 4 byte data (2 single precision
floating point values or 2 long word integers) in a single 5
cycle makes an enormous difference in the performance
of loops operating on vectors of 4 byte objects. Thus on
the system architecture according to the present inven-
tion, there is a very high probability that any ‘“‘vector-
like” loop will be implemented in terms of 8-byte loads

0

and stores.

Finally, since it is typically only vector loops that
would benefit from long cache fill sequences and since
the vast majority of all such loops process memory in
ascending order we wanted to recognize the possibility
for a long fill only when a cache miss occurred on an
address corresponding to the beginning of a long cache
line. This avoids excessive false triggering of the long
fill in more general code while still permitting it under
exactly those conditions when it will do the most good.
Thus the present invention of providing a long fill for
a cache miss that occurs while performing an 8 byte
load from a long line (64 byte) boundary provides sig-
nificant improvement over a single length cache fill.

The scope of the present invention further includes

—
w

2

o

25

an implementation which would support vector access

to descending locations. This would be done by en-
abling a long fill during a cache miss on an 8 byte load
from the first 8 bytes or the 8 bytes of a 64 byte line.

Details of related bus structure and methods are pro-
vided in co-pending, commonly assigned U.S. patent
application Ser. No. 07/263,711 entitled A QUASI-

FAIR ARBITRATION SCHEME WITH DE-
FAULT OWNER SPEEDUP, filed Oct. 25, 1988 and

35
incorporated by reference; details of related tag struc-

ture and methods are provided in APOLL-I5XX, enti-
tled DUPLICATE TAG STORE PURGE QUEUE,
filed concurrently herewith and also incorporated by
reference. Moreover, modifications and substitution of 4
the above disclosed invention are within the scope of
the present invention, which is not limited except by the

claims which follow.

What is claimed is:

1. A method of selectively receiving and storing data
blocks of selected lengths of data from a main memory,
into a cache memory said method comprising the steps

45

of:

requesting a transfer of data between a processor and
a cache memory, the data having a corresponding
indicia and at least one of a first and a second
length;

determining if said indicia corresponding to the data
to be transferred indicates the presence of the data
in said cache;

determining if a virtual address transferred with the
data corresponds to a physical main memory loca-
tion that is an integer multiple of a given number of
bytes, if said data is not present in said cache;

selectively transferring from said main memory to
said cache a data block of one of a third and a
fourth length in response to determining if said
virtual address transferred with the data corre-
sponds to a physical main memory location that is
an integer multiple of said given number of bytes, 65
wherein

said second length is greater than said first length,

said fourth length is greater than said third length,

50

55

60

4

said third length is a higher multiple of said second

length, and

said data block of said fourth length is transferred into

said cache memory if data of said second length is
requested and if said virtual address transferred
with the data corresponds to a physical main mem-
ory location that is an integer multiple of said given
number of bytes.

2. The method of claim 1,

wherein said first and second length comprise up to 4

bytes and 8 bytes, respectively, and

said third and fourth length comprise 16 and 64 bytes,

respectively.

3. The method of claim 1, further including the step
of

transferring from said main memory data having said

third length if said first length of data is requested
and is not present in said cache.

4. Apparatus for selectively loading data to a cache
memory from an associated main memory, comprising

computer means for requesting a selected length data

transfer with said cache said selected length data
transfer being one of a first and a second number of
bytes;

means for determining the presence of said selected

length data in said cache;

means for determining if a virtual address transferred

with the data corresponds to a physical main mem-
ory location that is an integer multiple of a given
number of bytes;

means for selectively transferring a data block from

said associated main memory to said cache if said
selected length data is not in said cache, said data
block being transferred to said cache having one of
a third and a fourth length, wherein

said second length is greater than said first length,

said fourth length is greater than said third length,

said third length is a higher multiple of said second
length,

said fourth length of data is selectively transferred if

said second length is requested and is not present in
said cache and if said virtuai address transferred
with the data corresponds to a physical main mem-
ory location that is an integer multiple of said given
number of bytes.

5. The apparatus of claim 4, wherein said first, sec-
ond, third and fourth lengths comprise 4, 8, 16 and 64
bytes respectively and said given number of bytes is 64.

6. Apparatus for selectively receiving and storing
from a main memory into a cache memory, data of at
least one of a first block size and a second block size,
said apparatus comprising:

means for requesting a transfer of data between a

processor and a cache memory, the requested data
being of one of a first data length and a second data
length;

means for determining that the requested data is of

said first data length;

means for determining that the requested data is of

said second data length;

means for determining that the data of said first data

length and alternatively of said second data iength
does not reside in said cache memory;

longfill means for determining that a first address

transferred with the data of said second data length
is an integer multiple of a number of bytes of said
second block size;

4,994,962

5

means for loading from main memory into cache
memory a data block of said first block size in
response to said means for determining that the
requested data is of said first data length and alter-
natively in response to said means for determining
that the requested data is of said second data length
and in response to said longfill means; and

means for loading from main memory into cache
memory a data block of said second block size in
response to said means for determining that the

20

25

30

35

45

50

55

65

6

requested data is of said second data length and in
response to said longfill means.
7. The apparatus of claim 6 wherein said first data
length is equal to four bytes.
8. The apparatus of claim 6 wherein said second data
length is equal to eight bytes.
9. The apparatus of claim 6 wherein said first block
size equals 16 bytes.
10. The apparatus of claim 6 wherein said second

block size equals 64 bytes.
] * »] *

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4 994,962

DATED * February 19, 1991
INVENTOR(S) : Paul Mageau, John S. Yates

{t is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 3, line 32, "No. 07/263,711" should read --No.
07/262,574-~;

Column 3, line 36, delete "APOLL-115XX" insert therefore =—CO-

pending, commonly assigned U.S. Patent Application Serial No.
07/263,711--.

Signed and Sealed this
Ninth Day of February, 1993

Attest:

STEPHEN G. KUNIN

" Attesting Oﬁ‘icer Acting Commissioner of Patents and Trademarks

