Reference
Manual

January 1978

- Reference Manual

APPLE II
Reference Manual

January 1978

APPLE Computer Inc.
10260 Bandley Dr.
Cupertino, CA
95014

APPLE @I Reference Manual
TABLE OF CONTENTS

A. GETTING STARTED WITH YOUR

APPLE Il ...
1. Unpacking
Warranty Registration Card
Check for Shipping Damage
PowerUpccooviii. ...
APPLE |l Speaks Several Languages .

APPLE Integer BASIC
Running Your First

N O AN

and Second Programs

8. Running 16K Startrek
9. Loading a Program Tape
10. Breakout and Color Demos Tapes . .

11. Breakout and Color
Demos Program Listings

12. How to Play Startrek
13. Loading HIRES Demo Tape
B. APPLE Il INTEGER BASIC...........
1. BASIC Commands................
BASIC Operators
BASIC Functions

Special Control and Editing
Table A — Graphics Colors
Special Controls and Features.....
BASIC Error Messages............
9. Simplified Memory Map
10. Data Read/Save Subroutines
11. Simple Tone Subroutines

12. High Resolution Graphics
Subroutines and Listings

O NGO A ODN

.............

15

13. Additional BASIC Program
Examples

a. Rod’s Color Pattern (4K).......
Pong 4K)
Color Sketch 4K)
Mastermind 8K)
Biorhythm {(4K)
Dragon Maze (4K)

C. APPLE Il FIRMWARE
1. System Monitor Commands
2. Control and Editing Characters....
3. Special Controls and Features
4

. Annotated Monitor and
Dis-assembler Listing

-~ ® o 00T

5. Binary Floating Point Package.....
6. Sweet 16 Interpreter Listing
7.65020p Codes
D. APPLE Il HARDWARE

1. Getting Started with Your
APPLE Il Board..................

APPLE Il Switching Power Supply .
Interfacing with the Home TV
Simple Serial Qutput.............

interfacing the APPLE —
Signals, Loading, Pin
Connections....................

o s~ N

6. Memory —
Options, Expansion, Map,
Address ...,

7. System Timing
8. Schematics......................

GETTING STARTED WITH YOUR APPLE II

Unpacking

Don't throw away the packing material. Save it for the unlikely
event that you may need to return your Apple II for warrantee repair.
If you bought an Apple II Board only, see hardware section in this
manual on how to get started. You should have received the following:

1. Apple II system including mother printed circuit board
with specified amount of RAM memory and 8K of ROM memory,
switching power supply, keyboard, and case assembly.

2. Accessories Box including the following:

a. This manual including warranty card.

b. Pair of Game Paddies

c. A.C. Power Cord

d. Cassette tape with "Breakout"on one side
and "Color Demos" on the other side.

e. Cassette recorder interface cable (miniature
phone jack type)

3. If you purchased a 16K or larger system, your accessory
box should also contain:
a. 16K Startrek game cassette with High Resolution
Graphics Demo ("HIRES") on the flipside.
b. Applesoft Floating Point Basic Language Cassette
with an example program on the other side.
c. Applesoft reference manual

4. In addition other items such as a vinyl carrying case
or hobby board peripherial may have been included if
specifically ordered as "extras".

Notify your dealer or Apple Computer, Inc. immediately if you are
missing any items.

Warranty Registration Card

Fill this card out immediately and completely and mail to Apple in
order to register for one year warranty and to be placed on

owners club mailing 1ist. Your Apple II's serial number is located
on the bottom near the rear edge. You model number is:

A2SPOMMX
MM is the amount of memory you purchased. For Example:

A2S0p08X
is an 8K Byte Apple II system.

Check for Damage

Inspect the outside case of your Apple for shipping damage. Gently
Tift up on the top rear of the 1id of the case to release the 1id
snaps and remove the 1id. Inspect the inside. Nothing should be
Toose and rattling around. Gently press down on each integrated
circuit to make sure that each is still firmly seated in its
socket. Plug in your game paddles into the Apple II board at the
socket marked "GAME I/0" at location J14. See hardware section of
this manual for additional detail. The white dot on the connector
should be face forward. Be careful as this connector is fragile.
Replace the Tid and press on the back top of it to re-snap it into
place.

Power Up

First, make sure that the power ON/OFF switch on the rear power
supply panel on your Apple II is in the "OFF" position. Connect
the A.C. power cord to the Apple and to a 3 wire 120 volt A.C.
outlet. Make sure that you connect the third wire to ground if
you have only a two conductor house wiring system. This ground
is for your safety if there is an internal failure in the Apple
power supply, minimizes the chance of static damage to the Apple,
and minimizes RFI problems.

Connect a cable from the video output jack on the back of the Apple
to a TV set with a direct video input jack. This type of set is
commonly called a "Monitor". If your set does not have a direct
video input, it is possible to modify your existing set. Write for
Apple's AppTlication note on this. Optionally you may connect the
Apple to the antenna terminals of your TV if you use a modulator.
See additional details in the hardware section of this manual under
"Interfacing with the Home TV".

Now turn on the power switch on the back of the Apple. The indicator
Tight (it's not a switch) on the keyboard should now be ON. If

not, check A.C. connections. Press and release the "Reset" button

on the keyboard. The following should happen: the Apple's internal
speaker should beep, an asterisk ("*") prompt character should appear
at the lower Teft hand corner of your TV, and a flashing white square
should appear just to the right of the asterisk. The rest of the

TV screen will be made up of radom text characters (typically question marks).

If the Apple beeps and garbage appears but you cannot see an "*" and the
cursor, the horizontal or vertical height settings on the TV need to be
adjusted. Now depress and release the "ESC" key, then hold down the
"SHIFT" key while depressing and releasing the P key. This should

clear your TV screen to all black. Now depress and release the "RESET"
key again. The "*" prompt character and the cursor should return to

the Tower left of your TV screen.

Apple Speaks Several Languages

The prompt character indicates which language your Apple is currently
in. The current prompt character, an asterisk ("*"), indicates that
you are in the "Monitor" language, a powerful machine level language
for advanced programmers. Details of this language are in the
"Firmware" section of this manual.

Apple Integer BASIC

Apple also contains a high Tevel English oriented language called
Integer BASIC, permanently in its ROM memory. To switch to this
language hold down the "CTRL" key while depressing and releasing the
"B" key. This is called a control-B function and is similiar to

the use of the shift key in that it indicates a different function
to the Apple. Control key functions are not displayed on your

TV screen but the Apple still gets the message. Now depress and
release the "RETURN" key to tell Apple that you have finished typing
a line on the keyboard. A right facing arrow (">") called a caret
will now appear as the prompt character to indicate that Apple is
now in its Interger BASIC language mode.

Running Your First and Second Program

Read through the next three sections that include:

1. Loading a BASIC program Tape
2. Breakout Game Tape
3. Color Demo Tape

Then load and run each program tape. Additional information on
Apple II's interger BASIC is in the next section of this manual.

Running 16K Startrek

If you have 16K Bytes or larger memory in your Apple, you will also
receive a "STARTREK" game tape. Load this program just as you did
the previous two, but before you "RUN" it, type in "HIMEM: 16384"
to set exactly where in memory this program is to run.

LOADING A PROGRAM TAPE

INTRODUCTION

This section describes a procedure for Toading BASIC programs
successfully into the Apple II. The process of loading a program is divided
into three section; System Checkout, Loading a Tape and What to do when
you have Loading Problems. They are discussed below.

When loading a tape, the Apple II needs a signal of about 2 1/2 to 5
volts peak-to-peak. Commonly, this signal is obtained from the "Monitor"
or "earphone" output jack on the tape recorder. Inside most tape recorders,
this signal is derived from the tape recorder's speaker. One can take
advantage of this fact when setting the volume levels. Using an Apple
Computer pre-recorded tape, and with all cables disconnected, play the tape
and adjust the volume to a Toud but un-distorted level. You will find that
this volume setting will be quite close to the optimum setting.

Some tape recorders (mostly those intended for use with hi-fi sets)
do not have an "earphone" or high-level "monitor" output. These machines
have outputs labeled "1ine output" for connection to the power amplifier.
The signal Tevels at these outputs are too low for the Apple II in most cases.

Cassette tape recorders in the $4@ - $50 range generally have ALC
(Automatic Level Control) for recording from the microphone input. This feature
is useful since the user doesn't have to set any volume controls to obtain
a good recording. If you are using a recorder which must be adjusted, it
will have a level meter or a Tittle Tight to warn of excessive recording levels.
Set the recording level to just below the level meter's maximum, or to just a
dim indication on the Tevel lamp. Listen to the recorded tape after you've
saved a program to ensure that the recording is "loud and clear".

Apple Computer has found that an occasional tape recorder will not function
properly when both Input and Output cables are plugged in at the same time.
This problem has been traced to a ground loop in the tape recorder itself which
prevents making a good recording when saving a program. The easiest solution
is to unplug the "monitor" output when recording. This ground Toop does not
influence the system when loading a pre-recorded tape.

Tape recorder head alignment is the most common source of tape recorder
problems. If the playback head is skewed, then high frequency information
on pre-recorded tapes is lost and all sorts of errors will result. To confirm
that head alignment is the problem, write a short program in BASIC. >10 END
is sufficient. Then save this program. And then rewind and load the program.
If you can accomplish this easily but cannot load pre-recorded tapes, then
head alignment problems are indicated.

Apple Computer pre-recorded tapes are made on the highest quality professional
duplicating machines, and these tapes may be used by the service technician to
align the tape recorder's heads. The frequency response of the tape recorder
should be fairly good; the 6 KHz tone should be not more than 3 db down from
a 1 KHz tone, and a 9 KHz tone should be no more than 9 db down. Note that
recordings you have made yourself with mis-aligned heads may not not play
properly with the heads properly aligned. If you made a recording with a
skewed record head, then the tiny magnetic fields on the tape will be skewed as
well, thus playing back properly only when the skew on the tape exactly matches
the skew of the tape recorder's heads. If you have saved valuable programs with
a skewed tape recorder, then borrow another tape recorder, Toad the programs with
the old tape recorder into the Apple, then save them on the borrowed machine.
Then have your tape recorder properly aligned.

Listening to the tape can help solve other problems as well. Flaws in the
tape, excessive speed variations, and distortion can be detected this way.
Saving a program several times in a row is good insurance against tape flaws.
One thing to listen for is a good clean tone lasting for at least 3 1/2 seconds
is needed by the computer to "set up" for proper loading. The Apple puts out
this tone for anout 1¢ seconds when saving a program, so you normally have
6 1/2 seconds of leeway. If the playback volume is too high, you may pick up tape
noise before getting to the set-up tone. Try a lower playback volume.

SYSTEM CHECKOUT

A quick check of the Apple II computer system will help you spot any
problems that might be due to improperly placed or missing connections between
the Apple II, the cassette interface, the Video display, and the game
paddles. This checkout procedure takes just a few seconds to perform and
is a good way of insuring that everything is properly connected before the
power is turned on.

After the Apple II system has been powered up and the video display
presents a random matrix of question marks or other text characters the

POWER TO APPLE - check that the AC power cord is plugged
into an appropriate wall socket, which includes a "true"
ground and is connected to the Apple II.

CASSETTE INTERFACE - check that at least one cassette
cable double ended with miniature phone tip jacks is
connected between the Apple II cassette Input port and
the tape recorder's MONITOR plug socket.

VIDEO DISPLAY INTERFACE -

a) for a video monitor - check that a cable connects
the monitor to the Apple's video output port.
b) for a standard television - check that an adapter

(RF modulator) is plugged into the Apple II (either
in the video output (K 14) or the video auxillary
socket (J148), and that a cable runs between the
television and the Adapter's output socket.

GAME PADDLE INTERFACE - if paddles are to be used, check
that they are connected into the Game I/0 connector (J14)
on the right-hand side of the Apple II mainboard.

POWER ON - flip on the power switch in back of the Apple II,

the "power" indicator on the keyboard will Tight. Also
make sure the video monitor (or TV set) is turned on.

following procedure can be followed to load a BASIC program tape:

1.

Hit the RESET key.

An asterick, "*" should appear on the lefthand side

of the screen below the random text pattern. A flashing
white cursor will appear to the right of the asterick.

Hold down the CTRL key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
A right facing arrow should appear on the lefthand side
of the screen with a flashing cursor next to it. If it
doesn't, repeat steps 1 and 2.

Type in the word "LOAD" on the keyboard. You should see
the word in between the right facing arrow and the
flashing cursor. Do not depress the "RETURN" key yet.

Insert the program cassette into the tape recorder and
rewind it.

If not already set, adjust the Volume control to 5@-70%
maximum. If present, adjust the Tone control to 8@-100%
maximum.

6. Start the tape recorder in "PLAY" mode and now depress
the "RETURN" key on the Apple II.

7. The cursor will disappear and Apple II will beep in a
few seconds when it finds the beginning of the program.
If an error message is flashed on the screen, proceed
through the steps listed in the Tape Problem section
of this paper.

8. A second beep will sound and the flashing cursor will
reappear after the program has been successfully loaded
into the computer.

9. Stop the tape recorder. You may want to rewind the program
tape at this time.

10. Type in the word "RUN" and depress the "RETURN" key.

The steps in loading a program have been completed and if everying has
gone satisfactorily the program will be operating now.

LOADING PROBLEMS

Occasionally, while attempting to load a BASIC program Apple II
beeps and a memory full error is written on the screen. At this time
you might wonder what is wrong with the computer, with the program tape,
or with the cassette recorder. Stop. This is the time when you need
to take a moment and checkout the system rather than haphazardly attempt-
ing to resolve the loading problem. Thoughtful action taken here will
speed in a program's entry. If you were able to successfully turn on the
computer, reset it, and place it into BASIC then the Apple II 1is probably
operating correctly. Before describing a procedure for resolving this
Toading problem, a discussion of what a memory full error is in order.

The memory full error displayed upon loading a program indicates that
not enough (RAM) memory workspace is available to contain the incoming data.
How does the computer know this? Information contained in the beginning of
the program tape declares the record length of the program. The computer
reads this data first and checks it with the amount of free memory., If
adequate workspace is available program loading continues. If not, the
computer beeps to indicate a problem, displays a memory full error statement,
stops the loading procedure, and returns command of the system to the key-
board. Several reasons emerge as the cause of this problem.

Memory Size too Small

Attempting to Toad a 16K program into a 4K Apple II will generate this
kind of error message. It is called loading too large of a program. The
solution is straight forward: only load appropriately sized programs into
suitably sized systems.

Another possible reason for an error message is that the memory pointers
which indicate the bounds of available memory have been preset to a smaller
capacity. This could have happened through previous usage of the "HIMEN :"
and "LOMEN :" statements. The solution is to reset the pointers by sC (CTRL B)
command. Hold the CTRL key down, depress and release the B key, then depress
the RETURN key and release the CTRL key. This will reset the system to max-

imum capacity.

Cassette Recorder Inadjustment

If the Volume and Tone controls on the cassette recorder are not
properly set a memory full error can occur. The solution is to adjust
the Volume to 5p-7@% maximum and the Tone (if it exists) to 80-19p%
maximum.*

A second common recorder problem is skewed head azimuth. When
the tape head is not exactly perpendicular to the edges of the magnetic
tape some of the high frequency data on tape can be skipped. This causes
missing bits in the data sent to the computer. Since the first data read
is record length an error here could cause a memory full error to be
generated because the length of the record is inaccurate. The solution:
adjust tape head azimuth. It is recommended that a competent technician
at a local stereo shop perform this operation.
Often times new cassette recorders will not need this adjustment.

*Apple Computer Inc. has tested many types of cassette recorders and so far
the Panasonic RQ-3@9 DS (less than $4p.P@) has an excellent track record
for program loading.

Tape Problems
A memory full error can result from unintentional noise existing in

a program tape. This can be the result of a program tape starting on its
header which sometimes causes a glitch going from a nonmagnetic to magnetic
recording surface and is interpreted by the computer as the record length.
Or, the program tape can be defective due to false erasure, imperfections

in the tape, or physical damage. The solution is to take a moment and

listen to the tape. If any imperfections are heard then replacement of the
tape is called for. Listening to the tape assures that you know what a
"good" program tape sounds like. If you have any questions about this please
contact your Tocal dealer or Apple for assistance.

If noise or a glitch is heard at the beginning of a tape advance the
tape to the start of the program and re-Load the tape.

Dealing with the Loading Problem

With the understanding of what a memory full error is an efficient way
of dealing with program tape loading problems is to perform the following
procedure:

1. Check the program tape for its memory requirements.
Be sure that you have a Targe enough system.

2. Before loading a program reset the memory pointers
with the B. (control B) command.

3. In special cases have the tape head azimuth
checked and adjusted.

4. Check the program tape by listening to it.
a) Replace it if it is defective, or
b) start it at the beginning of the program.
5. Then re-LOAD the program tape into the Apple II.
In most cases if the preceeding is followed a good tape load will result.

UNSOLVED PROBLEMS

If you are having any unsolved loading problems, contact your
nearest local dealer or Apple Computer Inc.

BREAKOUT GAME TAPE

PROGRAM DESCRIPTION

Breakout is a color graphics game for the Apple II computer. The object of
the game is to "knock-out' all 160 colored bricks from the playing field by
hitting them with the bouncing ball. You direct the ball by hitting it with
a paddle on the left side of the screen. You control the paddle with one of
the Apple's Game Paddle controllers. But watch out: you can only miss the
ball five times.

There are eight columns of bricks. As you penetrate through the wall the
point value of the bricks increases. A perfect game is 720 points; after
five balls have been played the computer will display your score and a
rating such as "Very Good". "Terrible!", etc. After ten hits of the ball,
its speed with double, making the game more difficult. If you break through
to the back wall, the ball will rebound back and forth, racking up points.

Breakout is a challenging game that tests your concentration, dexterity,
and skill.

REQUIREMENTS

This program will fit into a 4K or greater system.
BASIC is the programming language used.

PLAYING BREAKOUT

1. Load Breakout game following instructions in the "Loading
a BASIC Program from Tape" section of this manual.

2. Enter your name and depress RETURN key.

3 If you want standard BREAKOUT colors type in Y or Yes
and hit RETURN. The game will then begin.

4, If the answer to the previous questions was N or No
then the available colors will be displayed. The
player will be asked to choose colors, represented by a
number from @ to 15, for background, even bricks, odd
bricks, paddle and ball colors. After these have been
chosen the game will begin.

10

5. At the end of the game you will be asked if they
want to play again. A Y or Yes response will start
another game. A N or No will exit from the program.

NOTE: A game paddle (156k ohm potentiometer) must be connected
to PDL (@) of the Game I/0 connector for this game.

COLOR DEMO TAPE

PROGRAM DESCRIPTION

COLOR DEMO demonstrates some of the Apple II video graphics
capabilities. In it are ten examples: Lines, Cross, Weaving,
Tunnel, Circle, Spiral, Tones, Spring, Hyperbola, and Color Bars.
These examples produce various combinations of visual patterns
in fifteen colors on a monitor or television screen. For example,
Spiral combines colorgraphics with tones to produce some amusing
patterns. Tones illustrates various sounds that you can produce
with the two inch Apple speaker. These examples also demonstrate
how the paddle inputs (PDL(X)) can be used to control the audio
and visual displays. Ideas from this program can be incorporated
into other programs with a 1ittle modification.

REQUIREMENTS

4K or greater Apple II system, color monitor or television,
and paddles are needed to use this program. BASIC is the pro-
gramming language used.

11

BREAKOUT GAME
PROGRAM LISTING

PROCPAM LISTING

12

COLOR DEMO PROGRAM

e

[
i

LISTI

NG

PRCGRAM LISTI

13

I e B e S R AFPLE I1 STARTREK VERSION R R e e e e

THIS IS A SHORT DESCKIFTION OF HOW TO FLAY STARTREK DN THE
APFLE COMPUTER.,

THE UNIVERSE IS MADE UF OF 64 QUADRANTS IN AN 8 BY 8 MATRIX.
THE QUADRANT IN WHICH YOU °®THE ENTERFRISE * ARE, IS IN WHITE,
AND} A BLOW UF OF THAT QUADRANT IS FOUND IN THE LOWER LEFT

CORNER . YOUR SFACE SHIF STATUS IS FOUND IN A TAELE TO
THE RIGHT SIDE OF THE QUADRANT ELOW UF.
THIS IS A SEARCH AND' IESTROY MISSION. THE OBJECT 1S TO LONG-RANGE

SENSE FOR INFORMATION AS TO WHERE KLINGONS (K) ARE» MOVE TO THAT QUADRANT»
AND' DESTROY.
NUMEERS DISFLAYED FOR EACH QUADRANT DENOTE!

OF STARS IN THE ONES FLACE

* OF BASES IN THE TENS FLACE

OF KLINGONS IN THE HUNDREDIS FLACE

AT ANY TIME DURING THE GAME, FOR INSTANCE REFORE ONE TOTALLY

RUNS OUT OF ENERGYr OR NEEDS TO REGENERATE ALL SYSTEMS, ONE MOVES T0 &
QUADRANT WHICH INCLUDES A EBASE, IONS NEXT TO THAT HASE (H) AT WHICH TIME
THE BASE SELF-DESTRUCTS AND' THE ENTERFRISE (E) HAS ALL SYSTEMS *Go*
AGAIN.

TO FLAY?
1. THE COMMANDS CAN RE ORTAINED RY TYFING A *0* (ZERO) AND RETURN.
THEY ARE?

1. PROPULSIORN 2. REGENERATE

3. LONG RANGE SENSORS 4. FHASERS

5. FHOTON TORPEDOES 6. GALAXY RECORD
7. COMFUTER 8. FROUERE

9. SHIELD ENERGY 10.DAMAGE REFORT

11.L0AD' FHOTON TOKRFEDNOES
2. THE COMANI'S ARE INVOKED RY TYFING THE NUMEBER REFERING TO THEM

FOLLOWED EY A *RETURN®.

A. IF RESFONSE IS 1 THE COMFUTER WILL ASK WARF OR ION ANI
EXFECTS *W* IF ONE WANTS TO TRAVEL IN THE GALAXY
BETWEEN QUADRANTS AND AN *I* 1F ONE WANTS ONLY
INTERNAL QUANRANT TRAVEL.
DURATION OK WARF FACTUR IS THE NUMRER OF SFACES DK
QUADRANTS THE ENTERFRISE WILL MOVE.
COURSE IS COMFASS REAINING 1IN DEGREES FOR THE DESI-—
RED DESTINATION,

k. A 2 REGENERATES THE ENERGY AT THE EXFENSE OF TIME.

C. A 3 GIVES THE CONTENTS OF THE IMMEDIATE ADJACENT QUADRANTS.
THE GALAXY IS WRAF-AROUNL' 1N ALL DIRECTIONS.

T. 4 FIRES FHASERS AT THE EXFENSE OF AVAILARLE ENERGY.

E. 5 INITIATES A SET OF QUESTIONS FOR TORFEDO FIRING.
THEY CAN BE FIRED' AUTOMATICALLY IF THEY HAVE
BEEN LOCKED ON TARGET WHILE IN THE COMFUTER
MODE, OR MAY BE FIRED MANUALLY IF THE TRAGECTORY ANGLE
IS KNOWN. .

F. 6» 8 AND' 10 ALL GIVE INFORMATION AROUT THE STATUS OF THE SHIP
AND ITS ENVIRONMENT,

G. 9 SETS THE SHIELD ENERGY/AVAILABLE ENERGY RATIO.

H. 11 ASKS FOR INFORMATION ON LOAL'ING AND UNLOAD'ING OF
FHOTON TORPEDOES AT THE ESFENSE OF AVAILAELE ENERGY.

THE ANSWER SHOULLr BE A SIGNEL NUMBER. FOR EXAMFLE

+5 OR -2,
I. 7 ENTERS A COMFPUTER WHICH WILL RESFOND TO THE FOLLOWING
INSTRUCTIONS:
1. COMPUTE COURSE 2+ LOCK PMHASERS
3. LOCK PHOTON TORFEDOES
4. LOCK COURSE . 5. COMPUTE TREJECTORY
6. STATUS 7. RETURN TO COMAND MODE

IN THE FIRST FIVE ONE WILL HAVE TO GIVE COORLINATES.
COORDINATES ARE GIVEN IN MATHMATICAL NOTATION WITH
THE EXCEPTION THAT THE "Y*® VALUE IS GIVEN FIRST.

AN EXAMPLE WOULD BE °"Y,X*

COURSE OR TRAJECTORY:

ot T SR S 90

Qimmm = d = e O

-
<

TeTe~e=e=e=e~e— THIS EXPLANATION WAS WRITTEN BY ELWOOD —s—,~(momymqmymy~
NOT RESFONSIELE FOR
ERRORS

14

LOADING THE HI-RES DEMO TAPE

PROCEDURE

1. Power up system - turn the AC power switch in the back
of the Apple II on. You should see a random matrix of
question marks and other text characters. If you don't,
consult the operator's manual for system checkout pro-
cedures.

2. Hit the RESET key. On the left hand side of the screen
you should see an asterisk and a flashing cursor next to
it below the text matrix.

3. Insert the HI-RES demo tape into the cassette and rewind
it. Check Volume (5@-70%) and Tone (80-100%) settings.

4. Type in "CP@.FFFR" on the Apple II keyboard. This is the
address range of the high resolution machine Tanguage sub-
program. It extends from $C@P@ to $FFF. The R tells the
computer to read in the data. Do not depress the "RETURN"
key yet.

5. Start the tape recorder in playback mode and depress the
"RETURN" key. The flashing cursor disappears.

6. A beep will sound after the program has been read in.
STOP the tape recorder. Do not rewind the program tape yet.

7. Hold down the "CTRL" key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
You should see a right facing arrow and a flashing cursor.
The BC command places the Apple into BASIC initializing
the memory pointers.

8. Type in "LOAD", restart the tape recorder in playback mode
and hit the "RETURN" key. The flashing cursor disappears.
This begins the loading of the BASIC subprogram of the
HI-RES demo tape.

9. A beep will sound to indicate the program is being loaded.

15

10.

11.

12.

A second beep will sound, and the right facing arrow
will reappear with the flashing cursor. STOP the
tape recorder. Rewind the tape.

Type in "HIMEM:8192" and hit the "RETURN" key. This
sets up memory for high resolution graphics.

Type in "RUN" and hit the "RETURN" key. The screen

should clear and momentarily a HI-RES demo menu table
should appear. The loading sequence is now completed.

SUMMARY OF HI-RES DEMO TAPE LOADING

1. RESET
2. Type in C@@.FFFR
3. Start tape recorder, hit RETURN

4. Asterick or flashing cursor reappear
BC (CTRL B) into BASIC

5. Type in "LOAD", hit RETURN

6. BASIC prompt (7) and flashing cursor
reappear. Type in "HIMEN:8192", hit
RETURN

7. Type in "RUN", hit RETURN

8. STOP tape recorder, rewind tape.

16

APPLE Il INTEGER BASIC

e e T Gy
w N = oo

© N Ok~ N~

BASIC Commands

BASIC Operators

BASIC Functions

BASIC Statements

Special Control and Editing
Table A — Graphics Colors
Special Controls and Features
BASIC Error Messages
Simplified Memory Map

Data Read/Save Subroutines

. Simple Tone Subroutines
. High Resolution Graphics
. Additional BASIC Program Examples

BASIC COMMANDS

Commands are executed immediately; they do not require line numbers.Most Statements
(see Basic Statements Section) may also be used as commands. Remember to press
Return key after each command so that Apple knows that you have finished that

line. Multiple commands (as opposed to statements) on same Tine separated by

a" : " are NOT allowed. '

COMMAND NAME

AUTO num Sets automatic 1ine numbering mode. Starts at line
number nwm and increments line numbers by 10. To
exit AUTO mode, type a control X*, then type the
letters "MAN" and press the return key.

AUTO numl, num2 Same as above execpt increments 1line numbers by
number nwn2.

CLR Clears current BASIC variables; undimensions arrays.
Program is unchanged.

CON ' Continues program execution after a stop from a
control C*. Does not change variables.

DEL num1 Deletes Tine number numi.

DEL nwnl, numsz Deletes program from line number#uml through line

number num2.

DSP var Sets debug mode that will display variable var every-

o time that it is changed along with the Tine number
that caused the change. (NOTE: RUN command clears
DSP mode so that DSP command is effective only if
program is continued by a CON orGOTO command.)

HIMEM: expr Sets highest memory location for use by BASIC at
location specified by expressionexpin decimal.
HIMEM: may not be increased without destroying program.
HIMEM: 1ds automatically set at maximum RAM memory when
BASIC is entered by a control B*.

GOTO0 expr Causes immediate jump to Tine number specified by
expression expr.

GR Sets mixed color graphics display mode. Clears screen
to black. Resets scrolling window. Displays 40x40
squares in 15 colors on top of screen and 4 lines of text

at bottom.

LIST Lists entire program on screen.

LIST nwn1 Lists program Tine number wnumi.

LIST wnum1, num2 Lists program line numberwnumi through 1ine number
numa.

18

LOAD expr.
LOMEM: expr
HAN

NEW

NO DSP wvar
NO TRACE
RUN

RUN expr
SAVE

TEXT

TRACE

Reads (Loads) a BASIC program from cassette tape.

Start tape recorder before hitting return key. Two
beeps and a ">" indicate a good load. "ERR" or "MEM"
FULL ERR" message indicates a bad tape or poor recorder
performance.

Similar to HIMEM: except sets lowest memory location
available to BASIC. Automatically set at 2048 when
BASIC is entered with a control B*. Moving LOMEM:
destroys current variable values.

Clears AUTO 1line numbering mode to all manual line
numbering after a control C* or control X*.

Clears (Scratches) current BASIC program.
Clears DSP mode for variable var.
Clears TRACE mode.

Clears variables to zero, undimensions all arrays and
executes program starting at lowest statement line
number.

Clears variables and executes program starting at line
number specified by expression expr.

Stores (saves) a BASIC program on a cassette tape.
Start tape recorder in record mode prior to hitting
return key.

Sets all text mode. Screen is formated to display
alpha-numeric characters on 24 lines of 4f characters
each. TEXT resets scrolling window to maximum.

Sets debug mode that displays line number of each
statement as it is executed.

Control characters such as control X or control C are
typed by holding down the CTRL key while typing the
specified letter. This is similiar to how one holds

down the shift key to type capital Tetters. Control
characters are NOT displayed on the screen but are
accepted by the computer. For example, type several
control G's. We will also use a superscript C to indicate
a control character as in XC.

19

BASIC Operators

Symbol Sample Statement

Prefix Operators

() 19 X= 4*(5 + X)
+ 20 X= 1+4*5
- 30 ALPHA =
-(BETA +2)
NOT 4¢ IF A NOT B THEN
200

Arithmetic Operators

4 60 Y = X3
* 70 LET DOTS=A*B*N2
/ 80 PRINT GAMMA/S
MOD 90 X = 12 MOD 7
100 X = X MOD(Y+2)
+ 1MgP=L+G
- 120 XY4 = H-D

= 13@ HEIGHT=15
149 LET SIZE=7%*5
150 A(8) =2

155 ALPHA$ = "PLEASE"

Explanation

Expressions within parenthesis ()
are always evaluated first.

Optional; +1 times following expression.
Negation of following expression.
Logical Negation of following expression;

P if expression is true (non-zero), 1
if expression is false (zero).

Exponentiate as in X3. NOTE: 4 is

shifted letter N.

Multiplication. NOTE: Implied multi-
plication such as (2 + 3)(4) is not
allowed thus N2 in example is a variable
not N * 2,

Divide

Modulo: Remainder after division of
first expression by second expression.

Add
Substract

Assignment operator; assigns a value to
a variable. LET is optional

Relational and Logical Operators

The numeric values used in logical evaluation are "true" if non-zero,
"false" if zero.

Sample Statement

Symbol Explanation

= 160 IF D=E Expression "equals" expression.

THEN 500
= 176 IF A$(1,1)= String variable "equals' string variable.
"Y" THEN 500
or < > 180 IF ALPHA #X*Y Expression "does not equal" expression.
THEN 509
190 IF AS$ # "NO" String variable "does not equal" string
THEN 5@0 varjable. NOTE: If strings are not
the same length, they are considered
un-equal. < > not allowed with strings.
> 209 IF A>B Expression "is greater than" expression.

THEN GO TO 50

< 210 IF A+1<B-5 Expression "is less than" expression.
THEN 10@
>= 22¢ IF A>=B Expression "is greater than or equal to"
THEN 100 expression.
<= 230 IF A+1<=B-6 Expression "is less than or equal to"
THEN 200 expression.
AND 24¢ IF A>B AND Expression 1 "and" expression 2 must

OR

C<D THEN 2¢¢

25¢ IF ALPHA OR
BETA+1 THEN 200

21

both be "true" for statements to be true.

If either expression 1 or expression 2
is "true", statement is "true".

BASIC FUNCTIONS

Functions return a numeric result.

parenthesis signs.
FUNCTION NAME

ABS (expr)
ASC (strd)

LEN (strd)

PpL (expr)

PEEK (expr)

RND (expr)

SCRN (expr],
exprs)

SGN (expr)

30@ PRINT

310/ PRINT
320 PRINT
339 PRINT
335 PRINT

340 PRINT

35@ PRINT

360 PRINT

37@ PRINT

380 PRINT

39p PRINT

ABS(X)

They may be used as expressions or as part
of expressions. PRINT is used for examples only, other statements may
be used. Expressions following function name must be enclosed between two

ASC("BACK")

ASC(B$)
ASC(BS$(4
ASC(BS(Y
LEN(B$)

PDL(X)

PEEK(X)

RND(X)

j

4))
)

SCRN (X1,Y1)

SGN(X)

22

Gives absolute value of the expressionexpr.

Gives decimal ASCII value of designated
string variable str$. If more than one
character is in designated string or
sub-string, it gives decimal ASCII

value of first character.

Gives current length of designated
string variable str$;i.e., number of
characters.

Gives number between @ and 255 corres-
ponding to paddle position on game paddle
number designated by expression expr and must
be legal paddle (f,1,2,0or 3) or else 255 is
returned.

Gives the decimal value of number stored
of decimal memory location specified by

expression expr. For MEMORY locations

above 32676, use negative number; i.e.,

HEX location FFF@ is -16

Gives random number between ¢ and
(expression expr -1) if expression expr

is positive; if minus, it gives random
number between @ and (expression expr +1).

Gives color (number between @ and 15) of
screen at horizontal location designated

by expression expr? and vertical

location designated by expression expra

Range of expression exprl is § to 39. Range
of expression expr2 is @ to.39 if in standar
mixed colorgraphics display mode as set by
GR command or 0 to 47 if in all color mode
set by POKE -163p4 ,p: POKE - 16302,0.

Gives sian (not sine) of expression expr
i.e., -1 if expressionexpr is negative, zero
zero and +1 ifexpr is positive.

BASIC STATEMENTS

Each BASIC statement must have a 1ine number between @ and 32767.

Variable

names must start with an alpha character and may be any number of alpha-

numeric characters up to 102.
of the following words: AND, AT, MOD, OR, STEP, or THEN.
not begin with the letters END, LET, or REM.
with a § (dollar sign).

Variable names may not contain buried any

Variable names may
String variables names must end

Muitiple statements may appear under the same line number

if separated by a : (colon) as long as the total number of characters in the line
(including spaces) is less than approximately 15@ characters

Most statements may also be used as commands.

by RUN or GOTO commands.

NAME
CALL expr
COLOR=expr

DIM varl (expril)
str$ (expr2)
var2 (expr3)

DSPvar

19 CALL-936

3¢ COLOR=12

50 DIM A(29),B(1P)
60 DIM B$(39)
70 DIM C (2)

ITleqal:

80 DIM A(39)

Legal:

85 DIM C(1909)

Legal:
90 DSP AX: DSP L
I1leqal:
1p9 DSP AX,B
102 DSP ABS
104 DSP A(5)
Legal:

195 A=A(5): DSP A

23

BASIC statements are executed

Causes execution of a machine Tevel
language subroutine at decimal memory
location specified by expression expr
Locations above 32767 are specified using
negative numbers; i.e., location in
example 16 is hexidecimal number $FC53

In standard resolution color (GR)

graphics mode, this command sets screen

TV color to value in expression expr

in the range @ to 15 as described in

Table A. Actually expressionexpr may be
in the range @ to 255 without error message
since it is implemented as if it were
expressionexpr MOD 16.

The DIM statement causes APPLE II to
reserve memory for the specified variables. .
For number arrays APPLE reserves
approximately 2 times exprbytes of memory
limited by available memory. For string
arrays -stré- (expr) must be in the range of
1 to 255. Last defined variable may be
redimensioned at any time; thus, example
in Tine is illegal but 85 is allowed.

Sets debug mode that DSP variable wvar each
time it changes and the line number where the
change occured.

NAME
END

FOR var=

21 T0expr2
S%EPexpr3xp

GOSUB carpr

GOTO expr

HLIN expri,
expr2ATexpr3

Note:

EXAMPLE

119 END

119 FOR L=p to 39
129 FOR X=Y1 TO Y3
13 FOR I=39 TO 1

150 GOSUB 129 *J2

149 GOSUB 509

16p GOTO 209

170 GOTO ALPHA+199

189 GR
190 GR: POKE -163p2, Q

2pP HLIN 9,39 AT 2
219 HLIN Z,7+6 AT I

HLIN @, 19 AT @ is a horizontal line at the top of the screen
extending from left corner to center of screen and HLIN 20,39 AT
39 is a horizontal line at the bottom of the screen extending from

center to right corner.

24

DESCRIPTION

Stops program execution. Sends carriage
return and "> " BASIC prompt) to screen.

Begins FOR...NEXT loop, initializes
variable var to value of expression expri
then increments it by amount in expression
expr 3each time the corresponding "NEXT"
statement is encountered, until value of
expression expr 2is reached. If STEP expr3
is omitted, a STEP of +1 is assumed. Negativg¢
numbers are allowed.

Causes branch to BASIC subroutine starting
at legal line number specified by expression
expr Subroutines may be nested up to

16 levels.

Causes immediate jump to legal line
number specified by expression expr.

Sets mixed standard resolution color
graphics mode. Initializes COLOR = §
(Black) for top 4Px4P of screen and sets
scrolling window to lines 21 through 24
by 49 characters for four 1lines of text
at bottom of screen. Example 199 sets
all color mode (4Px48 field) with no text
at bottom of screen.

In standard resolution color graphics mode.
this command draws a horizontal line of a
predefined color (set by COLOR=) starting

at horizontal position defined by expression
exprl and ending at position exprg at
vertical position defined by expression
expr3 .exprl andexprg must be in the range
of @ to 39 and expri < = expr2 . exprsd

be in the range of @ to 39 (or @ to 47 if not
in mixed mode).

220 IF A>B THEN
PRINT A

230 IF X=p THEN C=1

240 IF A#1Q THEN

IF expressio
THEN statement

GOSUB 2¢9
250 IF A$(1,1)# »y"
THEN 109
I[1legal:
260 IF L>5 THEN 5@:
ELSE 60
Leqgal:
270 IF L>5 THEN 59
GO TO 69

INPUT vari,

280 INPUT X,Y,Z(3)
varsd, strs

290 INPUT "AMT",
DLLR

309 INPUT "Y or N?",

IN# expr 319 IN# 6
320 IN# Y+2
330 IN# O
LET 349 LET X=5
LIST numi, 35@ IF X >6 THEN
numéa LIST 5P
NEXT vari, 360 NEXT I
vars 379 NEXT J,K
NO DSP var 38p NO DSP I
NO TRACE 399 NO TRACE

A$

25

If expression is true (non-zero) then
execute statement, if false do not
execute statement, I1f statement

is an expression, then a GOTO expr

type of statement is assumed to be implied.
The "ELSE" in example 268 is illegal but
may be implemented as shown in example 270.

Enters data into memory from I1/0

device. If number input is expected,
APPLE wil output "?"; if string input is
expected no "?" will be outputed. Multiple
numeric inputs to same statement may be
separated by a comma or a carriage return.
String inputs must be separated by a
carriage return only. One pair of " " may
be used immediately after INPUT to output
prompting text enclosed within the quotation
marks to the screen.

Transfers source of data for subsequent
INPUT statements to peripheral 1/0 slot
(1-7) as specified as by expression expr.
STot @ is not addressable from BASIC.
IN#@ (Example 33p) is used to return data
source from peripherial 1/0 to keyboard
connector.
Assignment operator. "LET" is optional
Causes program from line number nwnl

through Tine number num2 to be d1sp1ayed
on screen.

Increments corresponding "FOR" variable

and loops back to statement following
"FOR" until variable exceeds limit.

Turns-off DSP debug mode for variable

Turns-off TRACE debug mode

PLOT expri, expr2 4PP PLOT 15, 25 In standard resolution color

' 409 PLT XV,YV graphics, this command plots a small
square of a predefined color (set
by COLOR=) at horizontal location
specified by expression exprl in
range @ to 39 and vertical location
specified by expressionexpr2 in range
@ to 39 (or @ to 47 if in all graphics
mode) NOTE: PLOT @ @ is upper left
and PLOT 39, 39 (or PLOT 39, 47) is
Tower right corner.

POKE expri, expr2 429 POKE 20, 40 Stores decimal number defined by
430 POKE 7*256, expression expr2 in range of §
XMOD255 255 at decimal memory location

specified by expression expri
Locations above 32767 are specified
by negative numbers.

poP 449 POP "POPS" nested GOSUB return stack
address by one.

PRINT varl, var, str$ 450 PRINT L1 Outputéxdata specified by variable
46p PRINT L1, X2 var or string variable stré starting
470 PRINT "AMT=";DX at current cursor location. If there
48p PRINT A$;BS; is not trailing "," or ";" (Ex 450)
499 PRINT a carriage return will be generated.

492 PRINT "HELLO" Commas (Ex. 46@) outputs data in 5

494 PRINT 2+3 left justified columns. Semi-colon
(Ex. 47@) inhibits pnrint of any spaces.
Text imbedded in " " will be printed
and may appear multiple times.

PR# expr 500 PR# 7 Like IN#, transfers output to I/0
slot defined by expression expr PR#
@ is video output not 1/0 slot @.

REM 510 REM REMARK No action. A1l characters after REM
are treated as a remark until terminated
by a carriage return.

RETURN 52@ RETURN Causes branch to statement following
. 530 IFX= 5 THEN last GOSUB; i.e., RETURN ends a
RETURN subroutine. Do not confuse "RETURN"

statement with Return key on keyboard.

26

TAB eapr

TEXT

TRACE

VLIN exprl, expr2
AT expr3

VTAB expr

530 TAB 24

540 TAB 1+24

550 IF A#B THEN
TAB 20

550 TEXT
560 TEXT: CALL-936

570 TRACE
580 TFN > 32090
THEN TRACE

590 VLIN P, 39AT15
600 VLIN Z,Z+6ATY

610 VTAB 18
629 VTAB Z+2

27

Moves cursor to absolute horizontal
position specified by expression

expr in the range of 1 to 4@. Position
is left to right

Sets all text mode. Resets
scrolling window to 24 Tines by 4§
characters. Example 560 also clears
screen and homes cursor to upper left
corner

Sets debug mode that displays each
line number as it is executed.

Similar to HLIN except draws vertical
line starting at expr7 and ending at
expr2 at horizontal position expr3.

Similar to TAB. Moves cursor to
absolute vertical position specified
by expressionexpr in the range 1 to
24. VTAB 1 is top line on screen;
VTAB24 is bottom.

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as GC. They
are obtained by holding down the CTRL key while typing thg specigied letter.
Control characters are NOT displaved on the TV screen. B~ and C~ must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dg. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, UC moves to
cursor to right and copies text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Appie prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays 1ine number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by "*"),
control C and a carraige return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)

Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied
keyboards have special key "<" on right side of keyboard
that provides this functions without using control button.

Control J Issues Tine feed only

Control V Compliment to HC. Forward spaces cursor and copies over
written characters. Apple keyboards have "»>" key on
right side which also performs this function.

Control X Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

28

CHARACTER DESCRIPTION OF ACTION

AE Move cursor to right

BE Move cursor to left

CE Move cursor down

DE Move cursor up

EE Clear text from cursor to end of line

FE Clear text from cursor to end of page

@E Home cursor to top of page, clear text to end
of page.

Table A: APPLE II COLORS AS SET BY COLOR =

Note: Colors may vary depending on TV tint (hue) setting and may .also
be changed by adjusting trimmer capacitor C3 on APPLE II P.C. Board.
@ = Black 8 = Brown
1 - Magenta 9 = Orange
2 = Dark Blue 10 = Grey
3 = Light Purple 11 = Pink
4 = Dark Green 12 = Green
5 = Grey 13 = Yellow
6 = Medium Blue 14 = Blue/Green -
7 = Light Blue 15 = White

29

Special Controls and Features

Hex

BASIC Example

Display Mode Controls

€50
CP51
Cp52
CP53
Ca54

CP55
CP56
Ca57

19 POKE -163p4.p
20 POKE -16303.9
30 POKE -163p2,0
49 POKE -16301.p
50 POKE -16300,p

60 POKE -16299,p
70 POKE -16298,0
80 POKE -16297,¢

TEXT Mode Controls

pp2p

pp21

pp22

pp23

pp24

po25

pp32

FC58
FC42

99 POKE 32,L1

109 POKE 33,W1

119 POKE 34,T1

120 POKE 35,B1

130 CH=PEEK(36)
149 POKE 36,CH
150 TAB(CH+1)

160 CV=PEEK(37)
179 POKE 37,CV
180 VTAB(CV+1)

199 POKE 50,127
2pp POKE 50,255

219 CALL -936
22 CALL -958

30

Description

Set color graphics mode
Set text mode
Clear mixed graphics

Set mixed graphics (4 lines text)

Clear display Page 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by L1 in
range of @ to 39.

Set window width to amount specified
by YW1l. L1+WI<4@. Wi>p

Set window top to 1ine specified
by T1 in range of @ to 23

Set window bottom to line specified
by Bl in the range of @ to 23. B1>TI

Read/set cusor horizontal position

in the range of @ to 39. If using

TAB, you must add "1" to cusor position
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor
vertical position in the range 9 to
23.

Set inverse flag if 127 (Ex. 19¢)
Set normal flag if 255(Ex. 209)

(@) Home cusor, clear screen

(FE) Clear from cusor to end of page

Hex
FCOC
FC66
FC79

BASIC Example

23p CALL -868
249 CALL -922
259 CALL -912

Miscellaneous

Cp3p

Cpop

Co1p

cpel

Cp62
Cp63
CP58
CP59
CP5A
Cps5B
CpsC
Cp5D
CP5E
CPSF

360 X=PEEK(-16336)
365 POKE -16336,0

370 X=PEEK(-16384)
38p POKE -16368,0
399 X=PEEK(16287)

4pp X=PEEK(-16286)
419 X=PEEK(-16285)
42p POKE -16296,0
43p POKE -16295,0
449 POKE -16294,0
45@ POKE -16293,9
460 POKE -16292,9
479 POKE -16291,0
48p POKE -16290,0
499 POKE -16289,0

31

Description

(Eg) Clear from cusor to end of line

(JC) Line feed

Scroll up text one line

Toggle speaker

Read keyboard; if X>127 then key was

pressed.

Clear keyboard strobe - always after

reading keyboard.

Read PDL(@) push button switch.

X>127 then switch is "on".

Read PDL(1) push button switch.

Read PDL(2) push button switch.

Clear Game I/0 ANP output
Set Game I/0 ANP output
Clear Game I/0 AN1 output
Set Game I/0 AM1 output
Clear Game I/0 AN2 output
Set Game I/0 AN2 output
Clear Game I/0 AN3 output
Set Game I/0 AN3 output

If

* Kk

*kk

kkk

Yk

*k%k

*kk

*kk

*kk

*kk

*x%k

Tdkekk

*k*k

APPLE T1T BASIC ERROR MESSAGES

SYNTAX ERR
> 32767 ERR

> 255 ERR

BAD BRANCH ERR

BAD RETURN ERR

BAD NEXT ERR

16 GOSUBS ERR

16 FORS ERR

NO END ERR
MEM FULL ERR

TOO LONG ERR

DIM ERR

*** RANGE ERR

*** STR OVFL ERR

**% STRING ERR

RETYPE LINE

Results from a syntactic or typing error.

A value entered or calculated was less than
-32767 or greater than 32767.

A value restricted to the range ¢ to 255 was
outside that range.

Results from an attempt to branch to a non-
existant line number.

Results from an attempt to execute more RETURNs
than previously executed GOSUBs.

Results from an attempt to execute a NEXT state-
ment for which there was not a corresponding

FOR statement.

Results from more than 16 nested GOSUBs.

Results from more than 16 nested FOR loops.

The last statement executed was not an END.

The memory needed for the program has exceeded
the memory size allotted.

Results from more than 12 nested parentheses or
more than 128 characters in input line.

Results from an attempt to DIMension a string
array which has been previously dimensioned.

An array was larger than the DIMensioned
value or smaller than 1 or HLIN,VLIN,
PLOT, TAB, or VTAB arguments are out of
range.

The number of characters assigned to a string
exceeded the DIMensioned value for that string.

Results from an attempt to execute an illegal
string operation.

Results from illegal data being typed in response
to an INPUT statement. This message also requests
that the illegal item be retyped.

32

Simplified Memory Map

FFFF

EQQQ

DPRP
Cong

XX

1)

e o e -

64K Monitor and BASIC Routines in ROM

56K Future enhancement or user supplied

PROMS

52K
48K

Peripheral 1/0

VNN

XX — — — e User specified RAM memory size

User Workspace

v

(LOMEM:)
2K Screen Memory
1K

'}

/N

Internal Workspace

33

READ/SAVE DATA SUBROUTINE

INTRODUCTION

Valuable data can be generated on the Apple II computer and sometimes
it is useful to have a software routine that will allow making a permanent
record of this information. This paper discusses a simple subroutine that
serves this purpose.

Before discussing the Read/Save routines a rudimentary knowledge of
how variables are mapped into memory is needed.

Numeric variables are mapped into memory with four attributes. Appearing
in order sequentually are the Variable Name, the Display Byte, the Next Variable
Address, and the Data of the Variable. Diagramatically this is represented as:

VN DSP NVA DATA(Q) DATA(1) DATA(N)
1 h'l h2 hn+]

VARIABLE NAME - up to 100 characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to @1 when

DSP set in BASIC initiates a process
that displays this variable with the
1ine number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - hexadecimal equivalent of
numeric information, represented
in pairs of bytes, low order byte
first.

34

String variables are formatted a bit differently than numeric ones.
These variables have one extra attribute - a string terminator which desig-
nates the end of a string. A string variable is formatted as follows:

VN DSP NVA DATA(Q) DATA(1), ... DATA(n) ST
1 h1 h2 hnst

VARIABLE NAME - up to 1P@ characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to @1 when
DSP set in BASIC, initiates a process
that displays this variable with the
Tine number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - ASCII equivalents with high
order bit set.

STRING TERMINATOR (ST) - none high
order bit set character indicating
END of string.

There are two parts of any BASIC program represented in memory. One is
the location of the variables used for the program, and the other is the actual
BASIC program statements. As it turns out, the mapping of these within memory
is a straightforward process. Program statements are placed into memory starting
at the top of RAM memory* unless manually shifted by the "HIMEM:" command, and
are pushed down as each new (numerically larger) line numbered statement is
entered into the system. Figure la illustrates this process diagramatically.
Variables on the other hand are mapped into memory starting at the lowest position
of RAM memory - hex $80@ (2@48) unless manually shifted by the "LOMEM :" command.
They are laid down from there (see Figure 1b) and continue until all the variables
have been mapped into memory or until they collide with the program statements.

In the event of the latter case a memory full error will be generated

*Top of RAM memory is a function of the amount of memory.
16384 will be the value of "HIMEM:" for a 16K system.

35

The computer keeps track of the amount of memory used for the variable
table and program statements. By placing the end memory location of each into
$CC-CD(204-205) and $CA-CB(2@3-204), respectively. These are the BASIC
memory program pointers and their values can be found by using the statements
in Figure 2. CM defined in Figure 1 as the location of the end of the variable
tape is equal to the number resulting from statement a of Figure 2. PP, the
program pointer, is equal to the value resulting from statement 2b. These
statements (Figure 2) can then be used on any Apple II computer to find the
limits of the program and variable table.

FINDING THE VARIABLE TABLE FROM BASIC

First, power up the Apple II, reset it, and use the CTRL B (control B)
command to place the system into BASIC initializing the memory pointers. Using
the statements from Figure 2 it is found that for a 16K Apple II CM is equal to
2048 and PP is equal to 16384. These also happen to be the values of LOMEN and
HIMEN: But this is expected because upon using the B¢ command both memory
pointers are initialized indicating no program statements and no variables.

To illustrate what a variable table looks T1ike in Apple Il memory suppose
we want to assign the numeric variable A ($C1 is the ASCII equivalent of a with
the high order bit set) the value of -1 (FF FF in hex) and then examine the
memory contents. The steps in this process are outlined in example I. Variable A
is defined as equal to -1 (step 1). Then for convenience another variable - B -
is defined as equal to @ (step 2). Now that the variable table has been defined
use of statement 2a indicates that CM is equal to 2p6@ (step 3). LOMEN has not
been readjusted so it is equal to 2048. Therefore the variable table resides in
memory from 2048 ($8p@ hex) to 2@6@ ($8pC). Depressing the "RESET" key places
the Apple II into the monitor mode (step 4).

We are now ready to examine the memory contents of the variable table.
Since the variable table resides from $80@ hex to $89C hex typing in "8p@.8pC"
and then depressing the "RETURN" key (step 5) will 1list the memory contents of
this range. Figure 3 lists the contents with each memory location labelled.
Examining these contents we see that Cl1 is equal to the variable name and is the
memory equivalent of "A" and that FF FF is the equivalent of -1. From this, since
the variable name is at the beginning of the table and the data is at the end, the
variable table representation of A extends from $8¢9 to $805. We have then found

36

the memory range of where the variable A is mapped into memory. The reason for

this will become clear in the next section.

READ/SAVE ROUTINE

The READ/SAVE subroutine has three parts. The first section (1ines §-10)
defines variable A and transfers control to the main program. Lines 20 through
26 represents the Write data to tape routine and lines 3p-38 represent the Read
data from tape subroutine. Both READ and SAVE routines are executable by the
BASIC "GOSUB X" (where X is 2@ for write and 3¢ is for read) command. And as
Tisted these routines can be directly incorporated into almost any BASIC program
for read and saving a variable table. The limitation of these routines is that
the whole part of a variable table is processed so it is necessary to maintain
exactly the dimension statements for the variables used.

The variables used in this subroutine are defined as follows:

A = record Tength, must be the first variable defined

CM= the value obtained from statement a of figure 2

LM= is equal to the value of "LOMEM:"

Nominally 2048

SAVING A DATA TABLE

The first step in a hard copy routine is to place the desired data onto
tape. This is accomplished by determining the length of the variable table and
setting A equal to it. Next within the main program when it is time to write the
data a GOSUB2@ statement will execute the write to tape process. Record length,
variable A, is written to tape first (line 22) followed by the desired data
(1Tine 24). When this process is completed control is returned to the main program.

READING A DATA TABLE

The second step is to read the data from tape. When it is time a GOSUB3Q
statement will initiate the read process. First, the record length is read in
and checked to see if enough memory is available (1line 32-34). If exactly the
same dimension statements are used it is almost guaranteed that there will be
enough memory available. After this the variable table is read in (line 34) and
control is then returned to the main program (1ine 36). If not enough memory
is available then an error is generated and control is returned to the main pro-
gram (line 38)

37

EXAMPLE OF READ/SAVE USAGE
The Read/Save routines may be incorporated directly into a main program.

To illustrate this a test program is Tisted in example 2. This program dimensions
a variable array of twenty by one, fills the array with numbers, writes the data
table to tape, and then reads the data from tape listing the data on the video
display. To get a feeling for how to use these routines enter this program and
explore how the Read/Save routines work.

CONCLUSION
Reading and Saving data in the format of a variable table is a relatively

straight forward process with the Read/Save subroutine listed in figure 4. This
routine will increase the flexibility of the Apple II by providing a permanent
record of the data generated within a program. This program can be reprocessed.
The Read/Save routines are a valuable addition to any data processing program.

38

Unused
Memory P1 Py P3 ... Pp2 Pn-1 Pn]

4 /'(1 "

LOMEN: CM End of PP beginning HIMEM
$8pp Variable of Max System
| Table Program Size |
b a
Variable Data BASIC Program
Figure 1

a) PRINT PEEK(204) + PEEK(2p5)*256 ~ PP

b) PRINT PEEK(2@2) + PEEK(2@3)*256 ~ CM

Figure 2

80 801 802 8p3 8P4 895 8p6 8P7 898 8F9 B8PA S8PB 8AC
1 o9 (bE (JS F[FE 2 pp (DE ﬂg pp 00

VAR DSP NVA DATA VAR DSP NVA DATA
NAM T NAM
R 1 . 1
> 7
Figure 3

$80P.8pC rewritten with labelling

39

READ/SAVE PROGRAM

10

20

22

24

26

30

32

34

36

38

A=p

GOTO 199

PRINT "REWIND TAPE THEN
START TAPE RECORDER":
IgPUT "THEN HIT RETURN",
B

A=CM-LM: POKE 60@,4:
POKE 61,8: POKE 62,5:
POKE 63,8: CALL -3p7

POKE 6@,LM MOD 256:
POKE 61, LM/256:
POKE 62, CM MOD 256:
POKE 63, CM/256:
CALL -3@7

PRINT "DATA TABLE SAVED":
RETURN

PRINT "REWIND THE TAPE
THEN START TAPE RECORDER":
IgPUT “AND HIT RETURN",

B

POKE 60,4: POKE 61,8:
POKE 62,5: POKE 63,8:
CALL -259

IF A<p THEN 38: P=LM+A:
IF P>HM THEN 38: CM=P:
POKE 6@, LM MOD 256:

POKE 61, LM/256: POKE 62,

CM MOD 256: POKE 63, CM/256:

CALL -259

PRINT "DATA READ IN":
RETURN

PRINT "#***TO0 MUCH DATA
BASE***": RETURN

FIGURE 4b

COMMENTS

This must be the first statement in the
program. It is initially @, but if data
is to be saved, it will equal the length
of the data base.

This statement moves command to the main
program.

Lines 20-26 are the write data to tape
subroutine.

Writing data table to tape

Returning control to main program.

Lines 30-38 are the READ data from tape
subroutine.

Checking the record length (A) for memory
requirements if everything is satisfactory
the data is READ in.

Returning control to main program.

NOTE: CM, LM and A must be defined within the main program.

40

1 >A=1
>

2 >B=p
>

3 >PRINT PEEK (204) + PEEK

(205) * 256
computer responds with=
2069
4 >
*
5 *8pp.8pC

Computer responds with:
ps@p- C1 PP 86 @8 FF FF C2 99
p8@8 @C @8 PP 90 9P

41

Define variable A=-1, then hit RETURN

Define variable B=@, then hit RETURN

Use statement 2a to find the end of
the VARIABLE TABLE

Hit the RESET key, Apple moves into
Monitor mode.

Type in VARIABLE TABLE RANGE and HIT
the RETURN KEY.

Example 1

Example 2

et

el

ot g
i =
. Lad
= [+ P
Joorum. L ~] -
¥ - et
s & S
i b

42

A SIMPLE TONE SUBROUTINE

INTRODUCTION

Computers can perform marvelous feats of mathematical computation
at well beyond the speed capable of most human minds. They are fast,
cold and accurate; man on the other hand is slower, has emotion, and makes
errors. These differences create problems when the two interact with one
another. So to reduce this problem humanizing of the computer is needed.
Humanizing means incorporating within the computer procedures that aid in
a program's usage. One such technique is the addition of a tone subroutine.
This paper discusses the incorporation and usage of a tone subroutine within
the Apple II computer.

Tone Generation

To generate tones in a computer three things are needed: a speaker,
a circuit to drive the speaker, and a means of triggering the circuit. As it
happens the Apple II computer was designed with a two-inch speaker and an
efficient speaker driving circuit. Control of the speaker is accomplished
through software.

Toggling the speaker is a simple process, a mere PEEK - 16336 ($Cp3p)
in BASIC statement will perform this operation. This does not, however,
produce tones, it only emits clicks. Generation of tones is the goal, so
describing frequency and duration is needed. This is accomplished by toggling
the speaker at regular intervals for a fixed period of time. Figure 1 lists
a machine language routine that satisfies these requirements.

Machine Language Program

This machine language program resides in page @ of memory from $p2 (2)
to $14 (2p). $pP (@) is used to store the relative period (P) between
toggling of the speaker and $@1 (P1) is used as the memory location for the
value of relative duration (D). Both P and D can range in value from $p9 (9)
to $FF (255). After the values for frequency and duration are placed into
memory a CALLZ statement from BASIC will activate this routine. The speaker
is toggled with the machine language statement residing at $#2 and then a

43

delay in time equal to the value in $@@ occurs. This process is repeated until
the tone has lasted a relative period of time equal to the duration (value in $@1)
and then this program is exited (statement $14).

Basic Program

The purpose of the machine Tanguage routine is to generate tones controllable
from BASIC as the program dictates. Figure 2 lists the appropriate statement that
will deposit the machine language routine into memory. They are in the form of
a subroutine and can be activated by a GOSUB 3200@ statement. It is only necessary
to use this statement once at the beginning of a program. After that the machine
language program will remain in memory unless a later part of the main program
modifies the first 2@ locations of page 0.

After the GOSUB 320@P has placed the machine language program into memory
it may be activated by the statement in Figure 3. This statement is also in the
form of a GOSUB because it can be used repetitively in a program. Once the fre-
quency and duration have been defined by setting P and D equal to a value between
@ and 255 a GOSUB 25 statement is used to initiate the generation of a tone. The
values of P and D are placed into $00 and $#1 and the CALL2 command activates the
machine language program that toggles the speaker. After the tone has ended
control is returned to the main program.

The statements in Figures 2 and 3 can be directly incorporated into BASIC
programs to provide for the generation of tones. Once added to a program an
infinite variety of tone combinations can be produced. For example, tones can
be used to prompt, indicate an error in entering or answering questions, and
supplement video displays on the Apple II computer system.

Since the computer operates at a faster rate than man does, prompting can
be used to indicate when the computer expects data to be entered. Tones can be
generated at just about any time for any reason in a program. The programmer's
imagination can guide the placement of these tones.

CONCLUSION

The incorporation of tones through the routines discussed in this paper
will aid in the humanizing of software used in the Apple computer. These routines
can also help in transforming a dull program into a lively one. They are relatively
easy to use and are a valuable addition to any program.

44

FIGURE 1. Machine Language Program
adapted from a program by P. Lutas.

FIGURE 2. BASIC "POKES"

FIGURE 3. GOSUB

45

High-Resolution Operating Subroutines

These subroutines were created to make programming for
High-Resolution Graphics easier, for both BASIC and machine.
language programs. These subroutines occupy 757 bytes of memory
and are available on either cassette tape or Read-Only Memory

(ROM). This note describes use and care of these subroutines.

There are seven subroutines in this package, With these,
a8 programmer can initialize High-Resolution mode, clear the screen,
plot a point, draw a line, or draw and animate a predefined shape.
on the screen. There are also some other general-purpose

subroutines to shorten and simplify programming,

BASIC programssean accéss these subroutines by use of ,the
CALL statement, and can pass information by using the POKE state-
ment. There are special entry points for most of the subroutines
that will perform the same functions as the original subroutines
vithout modifying any BASIC pointers or registers. For machine
language programming, a JSR to the appropriate subroutine address

will perform the same function as a BASIC CALL.

In the following subroutine descriptions, all addresses
given will be in decimal. The hexadecimal substitutes will
be preceded by a dollar sign (3). All entry points given are
for the cassette tape subroutines, which .l1oad into addresses
cos toIFFF (hex). Equivalent addresses for the ROM subroutines

will be in italic type face.
46

High-Resolution Operating Subroutines

INIT Initializes High-Resolution Graphics mode.

From BASIC: CALL 3972 (or CALL -12288)

From machine language: JSR $CPP (or JSR $DggF)

This subroutine sets High-Resolution Graphics mode with a
28¢ x 169 matrix of dots in the top portion of the screen and
four lines of text in the bottom portion of the screen. INIT

also clears the screen.

CLEAR Clears the screen.
From BASIC: CALL 3886 (or CALL -12274)

From machine language: JSR $CPE (or JSR $DJJE)

This subroutine clears the High-Resdlution screen without

resetting the High-Resdlution Graphics mode.

PLOT Plots a point on the screen.

From BASIC: CALL 378¢ (or CALL -11588)

From machine language: JSR $C7C (or JSR $Dg7C)

This subroutine plots a single point on the screen., The
X and Y coodinates of the point are passed in locations 898,
891, and 882 from BASIC, or in the A, X, and Y registers from

machine language. The Y (vertical) coordinate can be from §
47 ‘

High-Resloution Operating Subroutines

PLOT (continued)

(top of screen) to 1569 (bottom of screen) and is passed in

location 882 or the A-register; but the X (horizontal) coordinate
can range from P (left side of screen) to 279 (right side of screen)
and must be split between locations 8P (X MOD 256) and B8fI

(X/256) .0or, from machine language, between registers X (X LO)

and Y (X HI). The color of the point to be plotted must be set

in location 812 ($32C). Four colors are possible: §# is BLACK,

85 ($55) is GREEN, 178 ($AA) is VIOLET, and 255 ($FF) is WHITE.

POSN Positions a point on the screen.
From BASIC: CALL 3761 (or CALL -11598]

From machine language: JSR $C26 (or JSR $DJ26)

This subroutine does all calculations for a PLOT, but does
not plot a point (it leaves the screen unchanged). This is useful
vhen used in conjumction with LINE or SHAPE (described later).

To use this subroutine, set up the X and Y coordinates just the =

same as for PLOT. The color in location 812 ($32€) is ignored.

LINE Draw a line on the screen.

48

High-Resolution Operating Routines

LINE Draws a line on the screen.

From BASIC: CALL 3786 (or CALL -11574)

From machine language: JSR $C95 (or JSR £DF95)

This subroutine draws a line from the last point PLOTted
or POSN'ed to the point specified. One endpoint is the last point
PLOTted or POSN'ed; the other endpoint is passed in the same manner
as for a PLOT or POSN. The color of the line is set in location
812 ($32C)., After the line is drawn, the new endpoint becomes the

base endpoint for the next line drawn.

SHAPE Draws a predefined shape on the screen.
From BASIC: CALL 3895 (or CALL -11555)

From machine language: JSR $DBC (or JSR $D1BC)

This subroutine draws a predefined shape on the screen at
the point previously PLOTted or POSN'ed. The shape is defined
by a table.of vectors in memory. (How to create a vector table
will be described later). The starting address of this table
should be passed in locations 804 and 805 from BASIC .or in“the
Y and X registers from machine language. The color of the shape
should be passed in location 28 ($1C).

There are two special variables that are used only with shapes:

the scaling factor and the rotation factor. The scaling factor

determines the relative size of the shape. A scaling factor of

49

High-nesolution Operating Subroutines

SHAPE (continued)

1 will cause the shape to be drawn true size, while a scaling
factor of 2 will draw the shape double size, etc. The scaling
factor is passed in location 896 from BASIC or $32F from machine
language. The rotation factor specifies one of 64 possible angles
of rotation for the shape. A rotation factor of @ will cause the
shape to be drawn right-side up, where a rotation factor if 16
will draw the shape rotated 90° clockwise, etc, The rotation
factor is passed in location 8p7 foom BASIC of in the A-register

from machine language,

The table of vectors which defines the shape to be drawn is
a series of bytes stored in memory. Each byte is divided into
three sections, and each section specifies whether or not to plot
a point and also 2 direction to move (up, down, left, or right).
The SHAPE subroutine steps through the vector table byte by byte,
and then through each byte section by section. When it reaches
a pp byte, it is finished.

The three sections are arranged in a byte like this:
op= $& Move T

T 6 |S 'a 13 2| v V@ .

0 s R 2N}]
0(PAJ ° ¢ 0 t o - ¥
\/NW 1]
Sechaa 3 Scchen L Section | L <

Each bit pair DD specifies a direction to move, and the two bits
P specify whether or mot to plot a point before moving. Notice
that the last section (most significant bits) does not have a P

field, so it can only be a move without plotting. The SHAPE

50

High-Resolution Operating Subroutines

SHAPE (continued)

subroutine processes the sections from right to left (least
significant bit to most significant bit). IF THE REMAINING SECTIONS
OF THE BYTE ARE ZERO, THEN THEY ARE IGNORED. Thus, the byte

cannot end with sections of §§ (move up without plotting).

Here is an example of how to create a vector table:

Suppose we want to draw a shape like this: o° ‘e

L4 o
L4 »
e @ o

First, draw it on graph paper, one dot per square, Then decide
where to start drawing the shape. Let's start this one in the center,

Next, we must draw a path through each point in the shape, using

only 90° angles on the turnsz "'EEE}
o} 3 ;1

i IS

Next, re-draw the shape as a series of vectors, each one moving

one place up, down, left, or right, and dis;inguish the vectors that

fard . o :
plot a point before moving: :
Y .
tim o
O o~ |

Now "unwrap" those vectors and write ‘them in a straight 1line,

\Ltéé"r’?’r’?r-?ﬂ?-)*)\b&ﬁo&é-(*

Now draw a table like the one in Figure 1. For each vector in -the
line, figure the bit code and place it in the next available section
in the table., If it will not fit or is a ¢p at .the end of a byte,

then skip that section and go on to the next. When you have finished
51

High-Resolution Operating Subroutines

SHAPE (continued)

coding all vectors, check your work to make sure it is accurate.
Then make another table (as in figure 2) and re-copy the coded
vectors from the first table. Then decode the vector information
into a series of hexadecimal bytes, using the hexidecimal code
table.in figure 3. This series of hexidecimal bytes is your shape
definition table, which you can now put into the Apple II's memory

and use to draw that shape on the screem.

52

NZ [o
4 -
2 \ J
- 0
- OwpdmgenuourherToyuouwl
, O A ST N
T o 38-= 88 J
Al 0l O ®veg —==~—o_ o \ﬂ v o\o\olo.\o\o.\0|ol
H €T5Y ©T»y ¢ o U 9000--7=-0900-=—-
& r 4 ¥
= S rtw_ </
L] 1 oY% £\
& <y w ¢ =P
Y Y v 35 £33
) <HIEETTSST | 9o 5P
Nw Py e PrOY ._m.qm =0 .
3 v ~ « NissQundurg ©
' -00~=00~0 , "
» Clre Q000 o ==0 ot
C O\.Ol\\.l..l\o \OO‘IIOOI\O '
Q v CLsr"0000===0| «
+ ©@-00~00—=00 \ Jo=0=—=c-==0¢
J A== Q00Q0~-=00 ? B-00—-0p0—00 v
i - lle\lll\.lOI-OOo ?
- ol ,) “ 000—~0009Q00 0O »
“ v 0 oL cf,ooOOooo!ooo -
Q. (F
¢ Qe g =NV NY N ND v
£
V)

TNOisvi

T R R e

54

ROD'S COLOR PATTERN

PROGRAM DESCRIPTION

ROD'S COLOR PATTERN is a simple but eloquent program. It generates a
continuous flow of colored mosaic-like patterns in a 4@ high by 4@ wide
block matrix. Many of the patterns generated by this program are pleasing
to the eye and will dazzle the mind for minutes at a time.

REQUIREMENTS
4K or greater Apple II system with a color video display.
BASIC is the programming language used.

PROGRAM LISTING

55

PONG

PROGRAM LISTING

[

18

56

COLOR SKETCH

PROGRAM DESCRIPTION

Color Sketch is a little program that transforms the Apple II into an
artist's easel, the screen into a sketch pad. The user as an artist

has a 49 high by 4@ wide (1609 blocks) sketching pad to fill with a
rainbow of fifteen colors. Placement of colors is determined by
controlling paddle inputs; one for the horizontal and the other for

the vertical. Colors are selected by depressing a Tetter from A through
P on the keyboard.

An enormous number of distinct pictures can be drawn on the sketch pad
and this program will provide many hours of visual entertainment.

REQUIREMENTS .
This program will fit into a 4K system in the BASIC mode.

57

SKETCH

COLOR

PROGRAM LISTING

i
-t

58

MASTERMIND PROGRAM

PROGRAM DESCRIPTION

MASTERMIND is a game of strategy that matches your wits against Apple's.

The object of the game is to choose correctly which 5 colored bars have

been secretly chosen by the computer. Eight different colors are possible
for each bar - Red (R), Yellow (Y), Violet (V), Orange (0), White (W), and
Black (B). A color may be used more than once. Guesses for a turn are

made by selecting a color for each of the five hidden bars. After hitting
the RETURN key Apple will indicate the correctness of the turn. Each white
square to the right of your turn indicates a correctly colored and positioned
bar. Each grey square acknowledges a correctly colored but improperly posi-
tioned bar. No squares indicate you're way off. '

Test your skill and challenge the Apple II to a game of MASTERMIND.

REQUIREMENTS
8K or greater Apple II computer system.
BASIC is the programming language.

59

MASTERMIND

PROGRAM LISTING

o

60

BIORHYTHM PROGRAM

PROGRAM DESCRIPTION

This program plots three Biorhythm functions: Physical (P), Emotional (E),
and Mental (M) or intellectual. A1l three functions are plotted in the
color graphics display mode.

Biorhythm theory states that aspects of the mind run in cycles. A brief
description of the three cycles follows:

Physical

The Physical Biorhythm takes 23 days to complete and is an indirect indicator
of the physical state of the individual. It covers physical well-being, basic
bodily functions, strength, coordination, and resistance to disease.

Emotional
The Emotional Biorhythm takes 28 days to complete. It indirectly indicates
the level of sensitivity, mental health, mood, and creativity.

Mental

The mental cycle takes 33 days to complete and indirectly indicates the level
of alertness, logic and analytic functions of the individual, and mental recep-
tivity.

Biorhythms

Biorhythms are thought to affect behavior. When they cross a "baseline" the
functions change phase - become unstable - and this causes Critical Days. These
days are, according to the theory, our weakest and most vulnerable times. Acci-
dents, catching colds, and bodily harm may occur on physically critical days.
Depression, quarrels, and frustration are most Tikely on emotionally critical
days. Finally, slowness of the mind, resistance to new situations and unclear
thinking are 1ikely on mentally critical days. '

REQUIREMENTS
This program fits into a 4K or greater system.
BASIC 1is the programming language used.

61

BIORHYTHM

PROGRAM LISTING

62

DRAGON MAZE PROGRAM

PROGRAM DESCRIPTION

DRAGON MAZE is a game that will test your skill and memory. A maze is
constructed on the video screen. You watch carefully as it is completed.
After it is finished the maze is hidden as if the 1lights were turned out.
The object of the game is to get out of the maze before the dragon eats
you. A reddish-brown square indicates your position and a purple square
represents the dragon's?' You move by hitting a letter on the keyboard;

U for up, D for down, R for right, and L for left. As you advance so
does the dragon. The scent of humans drives the dragon crazy; when he is
enraged he breaks through walls to get at you. DRAGON MAZE is not a game
for the weak at heart. Try it if you dare to attempt out-smarting the
dragon.

REQUIREMENTS

8K or greater Apple II computer system.
BASIC is the programming language.

* Color tints may vary depending upon video monitor or television adjustments.

63

DRAGON MAZE

PROGRAM LISTING:

b}
oo

64

cont.

DRAGON MAZE

[roxd

Q=

o
[

65

DRAGON MAZE cont.

Form

66

NOoO O AL A

APPLE Il FIRMWARE

System Monitor Commands

Control and Editing Characters

Special Controls and Features

Annotated Monitor and Dis-assembler Listing
Binary Floating Point Package

Sweet 16 Interpreter Listing

6502 Op Codes

67

System Monitor Commands

Apple II contains a powerful machine level monitor for use by the advanced
programmer. To enter the monitor either press RESET button on keyboard or
CALL-151 (Hex FF65) from Basic. Apple II will respond with an "*" (asterisk)

prompt character on the TV display. This action will not kill current BASIC
"adrs" is a

program which may be re-entered by a C¢ (control C). NOTE:

four digit hexidecimal number and "data" is a two digit hexidecimal number.
Remember to press "return" button at the end of each Tine.

Command Format Example
Examine Memory

adrs *C@F2
adrs1.adrs?2 *1024.1048
(return) * (return)
.adrs2 * . 496

Change Memory

adrs:data *A256:EF 20 43
data data

:data data *:Fg A2 12
data

Move Memory

adrsl<adrs2.
adrs3Mm

*100<BQ1@.B41gM

Verify Memory

adrsl<adrs?2. *1pp<BP10.B41QV

adrs3V

68

Description

Examines (displays) single memory
location of (adrs)

Examines (displays) range of memory
from (adrs1) thru (adrs2)

Examines (displays) next 8 memory
locations.

Examines (displays) memory from current
location through location (adrs2)

Deposits data into memory starting at
location (adrs).

Deposits data into memory starting
after (adrs) last used for deposits.

Copy the data now in the memory range
from (adrs2) to (adrs3) into memory
locations starting at (adrsl).

Verify that block of data in memory
range from (adrs2) to (adrs3) exactly
matches data block starting at memory
Jocation (adrsl) and displays
differences if any.

Command Format Example Description

Cassette I/0

adrs1.adrs2R *300.4FFR Reads cassette data into specified
memory (adrs) range. Record length
must be same as memory range or an
error will occur.

adrs1.adrs2W *800.9FFW Writes onto cassette data from speci-
fied memory (adrs) range.

Display
I *] Set inverse video mode. (Black characters
on white background?
N *N Set normal video mode. (White characters

on black background)

Dis-assembler

adrsL *C8ddL Decodes 2@ instructions starting at
memory (adrs) into 6502 assembly
nmenonic code.

L *L Decodes next 20 instructions starting
at current memory address.

Mini-assembler

(Turn-on) *F666G Turns-on mini-assembler. Prompt
character is now a "!" (exclamation
point).

$(monitor 1$C8aoL Executes any monitor command from mini-

command) assembler then returns control to mini-

assembler. Note that many monitor
commands change current memory address
reference so that it is good practice
to retype desired address reference
upon return to mini-assembler.

adrs: (6502 :CO1Q:STA 23FF Assembles a mnemonic 6592 instruction
MNEMONIC into machine codes. If error, machine
instruction) will refuse instruction, sound bell,
and reprint line with up arrow under
error,

69

Command Format Example

(space) (6502 ! STA PIFF
mnemonic
instruction)

(TURN-OFF) ! (Reset Button)

Monitor Program Execution and Debugging

adrsG *3006
adrsT *800T
adrsS *C@50S
(Control E) *gC
(Control Y) #yC
Note 1:

Description

Assembles instruction into next
available memory location. (Note
space between "!" and instruction)

Exits mini-assembler and returns
to system monitor.

Runs machine Tevel program starting
at memory (adrs).

Traces a program starting at memory
location (adrs) and continues trace

until hitting a breakpoint. Break
occurs on instruction @¢ (BRK), and
returns control to system monitor.

Opens 6502 status registers (see note 1).

Single steps through program beginning
at memory location (adrs). Type a
letter S for each additional step

that you want displayed. Opens 6502
status registers (see Note 1).

Displays 65@2 status registers and
opens them for modification (see Note 1).

Executes user specified machine
language subroutine starting at
memory location (3F8).

6502 status registers are open if they are last line displayed on screen.
To change them type ":" then "data" for each register.

Y=00 P=32 S=F2
Changes A register only
Changes A, X, and Y registers

Example: A =3C X = FF
*: FF
*:FF #0 33

To change S register, you must first retype data for A, X, Y and P.

Hexidecimal Arithmetic

datal+data? *78+34

datal-data? *AE-34

70

Performs hexidecimal sum of datal
plus dataZ2.

Performs hexidecimal difference of
datal minus dataZ2.

Command Format Example Description

Set Input/Qutput Ports

(X) (Control P) *5pC Sets printer output to I/0 slot
number (X). (see Note 2 below)

(X) (Control K) #KC Sets keyboard input to I/0 slot
number (X). (see Note 2 below)

Note 2:

Only slots 1 through 7 are addressable in this mode. Address @ (Ex: gpC

or QKC) resets ports to internal video display and keyboard. These commands
will not work unless Apple II interfaces are plugged into specificed I/0
slot.

Multiple Commands

*100L 490G AFFT Multiple monitor commands may be
given on same line if separated by
a "space".

* LLL Single letter commands may be

repeated without spaces.

71

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as GC. They
are obtained by holding down the CTRL key while typing the specigied letter.
Control characters are NOT displaved on the TV screen. B~ and C~ must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dg. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, UC moves to
cursor to right and copies text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays 1ine number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by "*"),
control C and a carraige return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)

Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied
keyboards have special key "<«" on right side of keyboard
that provides this functions without using control button.

Control J Issues 1line feed only

Control V Compliment to HC. Forward spaces cursor and copies over
written characters. Apple keyboards have "+" key on
right side which also performs this function.

Control X Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

72

4

SPECIAL CONTROL AND EDITING CHARACTERS

(continued)

CHARACTER DESCRIPTION OF ACTION

1

AE Move cursor to right

BE Move cursor to left

CE Move cursor down

DE Move cursor up

EE Clear text from cursor to end of line

FE Clear text from cursor to end of page

@E Home cursor to top of page, clear text to end

of page.

73

Special Controls and Features

Hex

BASIC Example

Display Mode Controls

CP50
Co51
Cp52
cp53
c54

CP55
CP56
Cps7

19 POKE
2§ POKE
30 POKE
49 POKE
50 POKE
6@ POKE
79 POKE
80 POKE

TEXT Mode Controls

pp2p

pp21

pp22

pp23

pp24

pp25

pp32

FC58
FC42

16304,
16303,
16302,
-16301,9
-16300,0

-16299,p
-16298.p
-16297.p

99 POKE 32,L1

19p POKE

119 POKE

120 POKE

139 CH=PE
140 POKE

33,W1

34,M

35,81

EK(36)
36,CH

150 TAB(CH+1)

169 CV=PE
170 POKE
189 VTAB(

199 POKE
209 POKE

219 CALL
229 CALL

EK(37)
37,CvV
CV+1)

50,127
50,255

-936
-958

Description

Set color graphics mode

Set text mode

Clear mixed graphics

Set mixed graphics (4 lines text)

Clear display Page 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by L1 in
range of § to 39.

Set window width to amount specified
by Wl. L1+W1<49. W1>P

Set window top to 1line specified
by T1 in range of § to 23

Set window bottom to Tine specified
by B1 in the range of § to 23. BI>T1

Read/set cusor horizontal position

in the range of P to 39. If using

TAB, you must add "1" to cusor position
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor
vertical position in the range @ to
23.

Set- inverse flag if 127 (Ex. 19p)
Set normal flag if 255(Ex. 2¢p)

(@) Home cusor, clear screen

(Fg) Clear from cusor to end of page

74

Hex BASIC Example Description

Fcoc 23p CALL -868 (Eg) Clear from cusor to end of line
FC66 249 CALL -922 (3%) Line feed
FC79 250 CALL -912 Scroll up text one line
Miscellaneous
cP3p 360 X=PEEK(-16336) Toggle speaker
365 POKE -16336,P
Copp 37P X=PEEK(-16384 Read keyboard; if X>127 then key was
pressed.
cop 380 POKE -16368,0 Clear keyboard strobe - always after
reading keyboard.
Cp61 399 X=PEEK(16287) Read PDL(@) push button switch. If
X>127 then switch is "on".
cp62 4pP X=PEEK(-16286) Read PDL(1) push button switch.
Cp63 41p X=PEEK(-16285 Read PDL(2) push button switch.
CP58 42¢ POKE -16296,0 Clear Game I/0 AN@ output
CP59 43P POKE -16295,0 Set Game I1/0 ANP output
CP5A 449 POKE -16294,9 Clear Game I/0 AN1 output
CP5B 4509 POKE -16293,0 Set Game I1/0 AN1 output
Cp5C 469 POKE -16292,0 Clear Game I/0 AN2 output
CP5D 479 POKE -16291,0 Set Game I/0 AN2 output
CA5E 489 POKE -16290,9 Clear Game I/0 AN3 output
CPSF 499 POKE -16289,0 Set Game I/0 AN3 output

75

hhhkhkhkhkhhkhkhkhhkhkhhkhhkhxhkhhhhkdk

APPLE II
SYSTEM MONITOR

COPYRIGHT 1977 BY
APPLE COMPUTER, INC.

ALL RIGHTS RESERVED

S. WOZNIAX
A. BAUM

* % % * X ¥ ¥ X % ¥ ¥

*
Ak h kR kAR KRR R KRR KA RN AR
TITLE “APPLE II SYSTEM MONITGR®
LOCO EPZ $00
LOC1 EPZ $01
WNDLFT EPZ $20
WNOWDTH EPZ S21

*
*
*
*
*
*
*
*
*
*
*
*
*

WNDTOP EPZ S22
WNDBRTM EPZ S23
cH Epz $24
cv EPZ $25
GBASL EPZ $26
GBASH EPZ $27
BASL EPZ S28
BASH EPZ $29
BAS2L EPZ S2A
BAS2H EPZ S$2B
B2 EPZ S$2C
LMNEM EPZ 32C
RTNL EP7 S$2C
v2 EPZ $2D
RMNEM EPZ $2D
RTNH EPZ S$S2D
MASK EPZ $2F

CHKSUM EPZ S2E
FORMAT EPZ $2E
LASTIN EPZ S2F

LENGTH EPZ S2F
SIGN EPZ S2F
COLOR EPZ $30
MODE EPZ S31

INVFLG EPZ $32
PROMPT EPZ $33

YSAV EPZ $34¢
YSAV1 EPZ $35
CSWL EPZ $36
CSWH EPZ $37
KSWL EPZ $38
KSWH EPZ $39
PCL EPZ $3A
PCH EPZ $3P
XQT EPZ $3C
alL EP7 $3C
31/ EPZ $3D
AZL EPZ S3E
A2H EPZ $3F
A3L EPZ S40
A3H EP7 $41
A4L EPZ $42
A4H EPZ $43
ASL EPZ $44
ASH EPZ $45

76

F800:
F801:
F802:
F805:
F806:
F808:
F80A:
F80C:
F80E:
F810:
F812:
F814:
F816:
F818:
F819:
F81C:
F81E:
F820:
Fg21:
F824:
F826:
F828:
F829:
F82C:
F82D:
F82F:
F831:
F832:
F834:
F836:
F838:

FB3A:
F83C:
F83E:
F840:
F843:
F844:
F846:
F847:
FB848:
F849:
Fg848:
r84D:
F84F:
F850:
F852¢
F&54:
F856:

4A
08
20
28
a9
90

69

85
Bl
45
25
51
91

20
C4
BO
c8
20
90
69
48
20
68
C5
20
60
AQ
DO
AQ
84

A0
A9
85
20
88
10
60
48
4A
29
09
85
68
29
90
69
85

47

oF
02
EOQ

-

o
26
30
2B
26
26

00
2C
11

0E
Fé
01

GO

2D
F5

2F
02
27
2D

27
00
30
28

Fé

03
04
27
18
02
iF
26

F§

F8

F£8

F8

F§

ACC
XPRG
YREG
STATUS
SPNT
RWNDL
FNDH
ACL
ACH
XTNOL
X'THIDH
AUXT
AUXH
PICK
I
USHADR
RAN S
IFDLOC
ICADR
X3p
KRDSTRR
TAPEOUT
SPKR
TXICLR
TATSET
MIXCLR
MIXSET
LOWSCR
HISCR
LORES
HRIRES
TAPEIN
PADOLY
PTRIG
BASIC
BASIC2

PLOT

RTMASY
PLOT1

HLINE
HLINE1

VLINEZ
VLINE

RTS1
CLPSCFR

CLRTOP
CLRsC2
*

CLRSC3

GBASCALC

GBCALC

EFZ
EPZ
EPZ
EPZ
FEZ
EB7
EPZ
EPZ
FP?2
EPZ
RPZ
ERZ
EP7
EPZ
EOU
EQU
ENU
EQU
B
EQ

EQU
ECU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EOU
EQU
EGU
EQU
EQU
EQU
EQU
ORG
LSR
PHP
JSR
PLP
LDA
BCC
ADC
3TA
Lba
EOP
AND
EOR
STA
RTS
JSR
CcPY
BCS
INY
J3R
B8CC
ADC
PHA
JSR
PLA
CMP
BCC
RTS
LDY
eNE
LDY
STY

FOR

Loy
LDA
STa
JSR
DEY
3PL
RTS
PHA
ISR
aND
ORA
STA
PL2
AND
2CcC
ADC
STA

§45
$46
$47
s48
$49
e4r
SAF
553
<51
$52
$53
§54
$5%
$95
$6200
SO3FE
S03FR
SU3FF
$CC0O0
$CN00
SCO10
<C020
SC030
§CO50
$C051
£C052
$C053
3C054
SC055
2C056
$C0S57
$CO060
$C064
$C070
SE000
SE003
SF800
A

GBASCALC

#SOF
RTMASK
$SEQO

MASK
(GBASL) , ¥
COLOR
MASK
(GRASL) , Y
{GBASL) , Y

PLOT
H2
RIS1

PLOT1
HLINEL
4501

PLOT

v2
VLINEZ

#S2F
CLRSC2
#8527

v2

VLINE CAL
#827

S0

COLOR
VLINE

CLR=C3

A
#503
$4s04
GOASH

#3518
C2aCALC
STF
GRASL

77

ROM START ANDRESS
Y~COORD/2

SAVE LS8 IN CARRY

CALC BASE ADR IN GBASL,H
RESTORE LSR FROM CARRY
MASK SOF IF EVEN

MASK $F0 IF ODD

DATA

XUR COLOR

AND MASK
XOR DATA
TO DATA

PLOT SOUARE
DONE?
YES, RETURN
NO, INCR INDEX (X-COORD)
PLOT NEXT SOUARE
ALWAYS TAKEN
NEXT Y-COORD
SEVE ON S2TACK
PLOT SOUARE

DONE?
NO, LOOP.

“AX Y, FULL SCRN CLR
ALWAYS TAKEN

MARX Y, TOP SCRW CLR

STORF AS ROTTOC* COCRD

LS .
RIGHTMCST X-COORD (COLUMN)
TOP CUOPRD FOR VLINE CALLS
CL.EAR COLOR (BLACK)

CRAYW VLINE

NEXT LEFTMOST X¥=COORD
LOCP USNTIL DONE,

FOR INPUT 00Q0DEFGH

CEIERATE GBASH=00CCN1FG

AND GPASL=HOEDFUO0

F858:
F859:
F85A;:
F85C:
FB5E:
F85F:
F861:
F862:
FBG64:
F866:
FBO6E:
F869:
F86A:
F86B:
F86C:
F86E:
F870:
F871:
F872:
FE

F87
£87
F87
F87i

@
~d
. e

Ci O oo

o
©
~J
nm oo

Fg87
F87
F87f:
Fgel:
FEB2:
F884:
FER6:
F889:
FEBC:
F88E:
F88F:
F8Y9G:
FB92:
FEG3:
F895:
#897:
F89Y9:
£893:
F&9C:
F890:
F8A0:
F8A3:
FEAS:
FBAT:
F8A9:
F3AA:
F8AD:
FH8AF:

 ee ¢ sa ae ee es

F8E1l:
F8b3:
F834:
F8B6:
F8837:
F8B8:
F8BA:
F8BC:
F8BE:
F8BF:
F8C1:
F8C2:
F8C3:
F8CS5:
F8C6:
F8C8:
F8C9:
F8CA:
F8CC:
F8CD:
F8DO0:
F8D3:
F8D4:
F8D6:
F8D9:
F8DB:
F8DE:
F8EO:
FBE1l:
FBE3:
FBES:

0a
0a
05
85
60
AS
13
69
25
85
0A
0A
0A
0A
05
85
60
44
08
20
Bl
28
90
43
4
4
4
29
60
a6
a4
20
20
Al
AB
4
90
(R
20

Cco .

144
29
4n
AA

20
DO
A0
A9
AL
BD
85

85
93
29
AR
98
Ad
EO
FO
4A
90
4A
4
09
88
DO

88
DO
60
FF
20
48
Bl
20
A2
20
C4
c8
90
A2
co

26
26

30

03
OF
36

30
30

-
i

26
04

3a
3B
26
ag
3A

039

LX)
2E
03

2F
8F
03
8A
oe

08

20

FA

F2

FF
82

3A
DA
01
4A
2F

Fl
03
04

FY

Fo
F9

3]
Fé

F9

FF
F8

FD
F9

NXTCOL

SETCOL

SCEN

SCRrRN2

RTMSKZ

INSDS]

ERP

GETLTFMT

MNNDX1

MNNDX2

MNNDX3

INSTDSP

PRNTOP

PRNTBL

ASE
ASE
ORA
STA
RTS
LDA
CLC
ARC
AND
STA
ASL
ASL
ASL
ASL
ORA
STA
RTS
LSR
PHP
JSR
LDA
PLP
RCC
LSR
LSR
LSR
LER
AND
RTS
LDX
LDY
JSR
JSR
LCA
TAY
LSR
RCC
ROR
8CSs
CMP
FEO
ANE:
Lsw
TAX
LDA
J3SPR
ANE
LCY
LDA
TAX
LA
STA
AND

STA
TYA
AND
TAX
TYA
LDY
CPX
BEQ
LSR
BCC
LSR
LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS
DFB
JSR
PHA
LDa
JSR
LDX
JSR
CPY
INY
BCC
LDX
CrPY

A
A

GRASL
GRASL

COLOR INCFEHEST COLOR 2Y 3

4803
#S07
COLOR
A rOTH HaLF PYTES OF COLOP EQUAL
A

A

A

COLOR

COLOR

Vi
jaa}
-

yol

COLOR=17*A MOD 16

) READ SCPEEN Y-COORD/2
SAVE LSB (CAFRY)
GEASCALC CALC BASE ADLRESS
(GEASL) ,Y GET RYTE
RESTORE LS¥ FrOM CARRY
RYMSK? IF EVEN, U3t LO H

A
a

A SHIFT HIGH 4ALF BYTE DOWN
A

ESOF 4ASK 4=-RITS

PCL PRINT PCI, [

pCF

PRYX2

PRALMK FOLLOWED 2Y A PLANK
(ECL,%) CET OF CORD

A FYZN/0ND TEAT
IEVEY

A 1T 1 TEST

gRp A¥XXNX11 IUVALID CF

1eny

2CR OPCODE $5% INVALIR

#57 IASE RITS

A LSR INTO CARFY FOR L/ TRST
FMT1,% GET FORMAT [NRTY RYTE

SCRN2 R/L H=DYPE ON8 CARPY

GETFIT

$S80 SUPSTITUTE S$H0 FOR INVALID OPS
450 3P PRINT FOPY¥AT INDEX TO 0

FaT2,X INDEX INTO PRINT FORMAT TABLE
FORMAT SAVE FOR ADR FIELD FORMATTING

£S03 MASK FOR 2-RIT LENCGTH
(P=1 RYT®, 1=2 8YTE, 2=3 2YTE)
LENGTH
CeCOLE
#S8F MASX FOR 1XXX1010 TEST
SAVF IT
OPCODE TO A AGAIN
#3803
#S8A
MNMDX3
A

MNEDX3 FORM INDEX INTO MNEMONIC TABLE
A

A 1) 1XXX1010=>00101XXX

£520 2) XXXYYY01=>00111XXX
3) XXXYYY10=>00110XXX

MNNDX2 . 4) XXXYY100=>00100XXX

5) XXXXX000=>000XXXXX

MNNDX1

$FF,SFF, SFF

INSDS1 GEN FMT, LEN BYTES
SAVE MNEMONIC TABLE INDEX
(PCL) ,Y
PRBYTF
#501 PRINT 2 BLANKS
PRBL2
LENGTH PRINT INST (1-3 BYTES)
IN A 12 CHR FIELD
PRNTOP
#3503 CHAR COUNT FOR MNEMONIC PRINT
$#504

78

F8E7: 90 F2 BCC PRNTEL

F8E9: 68 PLA RECOVER MNEMONIC INDEX

FBEA: A8 TAY

F8EB: B9 CO F9 LDA MNEML,Y

FBEE: 85 2C STA LMNEM FETCH 3-CHAR MNEMONIC

F8F0: B9 00 FA LDA MNEMR,Y (PACKED IN 2-BYTES)

F8F3: B5 2D STA RMNEM

F8F5: A9 00 PRMN1 LDA #S00

F8F7: A0 05 LDY #S05

F8F9: 06 2D PRMN2 ASL RMNEM SHIFT 5 BITS OF

F8FB: 26 2C ROL LMNEM CHARACTER INTO A

F8FD: 2A ROL A (CLEARS CARRY)

FS8FE: 88 DEY

F8FF: DO F8 BNE PRMN2

F901: 69 BF ADC #S$BF ADD "?" OFFSET

F903: 20 ED FD JSR COUT OUTPUT A CHAR OF MNEM

F906: CA DEX

F907: DO EC BNE PRMN1

F909: 20 48 F9 JSR PRBLNK OUTPUT 3 BLANKS

F90C: A4 2F LDY LENGTH

F90E: A2 06 LDX #S06 CNT FOR 6 FORMAT BITS

F910: EO 03 PRADR1 CPX #S03

F912: FO 1C BEQ PRADR5 IF X=3 THEN ADDR.

F914: 06 2E PRADR2 ASL FORMAT

F916: 90 OE BCC PRADR3

F918: BD B3 F9 LDA CHAR1-1,X

F91B: 20 ED FD JSR COUT

F91E: BD B9 F9 LDA CHAR2-1,X

F921: FO 03 BEQ PRADR3

F923: 20 ED FD JSR COUT

F926: CA PRADR3 DEX

F927: DO E7 BNE PRADR1

F929: 60 RTS

F92A: 88 PRADR4 DEY

F92B: 30 E7 8MI PRADR2

F92D: 20 DA ED JSK PRRYTE

F930: A5 2E PRADRS LDA FORMAT

F932: C9 EE CMP #SES8 HANDLE REL ADR MODE

F934: Bl 3A LDA (PCL),Y SPECIAL (PRINT TARGET,

F936: 90 F2 BCC PRADR4 NOT OFFSET)

F938: 20 56 F9 RELADR JSR PCADJ3

F93B: AA TAX PCL,PCH+OFFSET+1 TO A,Y

F93C: EB8 INX

F93D: DO 01 BNE PRNTYX +1 TO Y,X

F93F: C8 INY

F940: 98 PRNTYX TYA

F941: 20 DA FD PRNTAX JSR PRBYTE OUTBUT TARGET ADR

F944: 8A PRNTX XA OF BRANCH AND RETURN

F945: 4C DA FD JMP PRBYTE

F948: A2 03 PRBLNK LDX #$03 BLANK COUNT

F94A: A9 A0 PRBL2 LDA #SA0 LOAD A SPACE

F94C: 20 ED FD PRBL3 JSR COUT OUTPUT A BLANK

F94F: CA DEX

F950: DO F8 BNE PRBL2 LOOP UNTIL COUNT=0

F952: 60 RTS

F953: 38 PCADJ SEC 0=1-3YTE,1=2-BYTE,

F954: AS 2F PCADJ?2 LDA LENGTH 2=3-BYTE

F956: A4 3B PCADJ3 LDY PCH

F958: AA TAX TEST DISPLACEMENT SIGN

F959: 10 01 BPL PCADJ4 (FOR REL BRANCH)

F958: 88 DEY EXTEND NEG BY DECR PCH

F95C: 65 3A PCADJ 4 ADC PCL

F95E: 90 01 BCC RTS2 PCL+LENGTH (OR DISPL)+1 TO A

F960: C8 INY CARRY INTO Y (PCH)

F961: 60 RTS2 RTS
* FMT1 BYTES: XXXXXXY0 INSTRS
* IF Y=0 THEN LEFT HALF BYTE
* IF Y=1 THEN RIGHT HALF BYTE
* (X=INDEX)

F962: 04 20 54

F965: 30 OD FMT1 DFB $04,$20,$54,$30,$0D

F967: 80 04 90

F96A: 03 22 DFB $80,$04,$90,503,$22

F96C: 54 33 0D

F96F: 80 04 DFB $54,$33,$0D,$80,504

F971: 90 04 20

F974: 54 33 DFBE $90,504,$20,554,5$33

F976: 0D 80 04

F979: 90 04 DFR $0D,$80,$14,$90,504

F97B: 20 54 3B

F97E: OD 80 DFR $20,$54,$38,$0D,580

F980: 04 90 00

F983: 22 44 ~DFB $04,$90,$00,522,544

F985: 33 0D C8

F988: 44 00 DFB $33,$0D,SC8,544,500

79

F98A: 11 22 44

F98D: 33 0D DFB $11,522,$44,$33,$0D
F98F: C8 44 A9
F992: 01 22 DFB $C8,544,$A9,501,8$22
F994: 44 33 0D
F997: 80 04 DFB $44,5$33,$0D,$80,504
F999: 90 01 22 _
F99C: 44 33 DFB $90,501,$22,544,533
F99E: OD 80 04
F9Al: 90 DFB $0D,$80,504,$90
F9A2: 26 31 87
F9A5: 9A DFB $26,$31,3P7,$9A ZZXXXY0l INSTR'S
F9A6: 00 FMT2 DFB $00 ERR
F9a7: 21 DFB $21 IMM
F9A8: 81 DFB $81 Z-PAGE
F9A9: 82 DFR $82 ABS
F9AA: 00 DFB $00 IMPLIED
F9AB: 00 DFB $00 ACCUMULATOR
F9AC: 59 DFB $59 (ZPAG,X)
F9AD: 4D DFB $4D (ZPAG),Y
F9AE: 91 DFE $91 ZPAG, X
F9AF: 92 DFB $92 ABS, X
FIBO: 8€ DFE $86 ABS,Y
F9B1: 4A DFB $4A (ARS)
F9B2: 85 DFB $85 ZPAG, Y
F9B3: 9D DFB $9D RELATIVE
F9B4: AC A9 AC
A3 AB A4

CHARL ASC ",),#(s"
F9BA: D9 00 D8
F9BD: A4 A4 00 CHAR2 DFB $D9,$00,5$D8,%A4,544,500

*CHAR2: "¥",0,"X$5",0

* MNEML IS OF FORM:

* (A) XXXXX000

* (B) XXXYY100

* (C) 1XXX1010

* (D) XXXYYY10

* (E) XXXYYYO1

* (X=INDEX)
F9CO: 1C 8A 1C
F9C3: 23 5D 8B MNEML DFB $1C,S$8A,S$1C,$23,$5D,$88
F9C6: 1B Al 9D
F9C9: BA 1D 23 DFB $1B,$A1,$9D,$84,51D,$23
F9CC: 9D 8B 1D
FOCF: Al 00 29 DFB $9D,$88,$1D,SA1,$00,$29
F9D2: 19 AE 69
F9DS: A8 19 23 DFB $19,$AE,$69,$A8,519,$23
F9D8: 24 53 1B
F9DB: 23 24 53 DFB $24,$53,51B,523,$24,$53
F9DE: 19 Al DFE $19,$A1 (A) FORMAT ABOVE
F9EO: 00 1A 5B
F9E3: 5B A5 69 DFE $00,$1A,$5B,$58, 545,569
F9E6: 24 24 DFE $24,S24 (B) FORMAT
F9E8: AE AE A8
F9EB: AD 29 00 DFE AE,SAE,SAB,S$AD,$29,500
F9EE: 7C 00 DF8 $7C,S00 (C) FORMAT
F9F0: 15 9C 6D
F9F3: 9C A5 69 DFB §$15,$9C,$6D,59C,$A5,569
F9F6: 29 53 DFE $29,$53 (D) FORMAT
F9F8: 84 13 34
F9FB: 11 A5 69 DFB $84,513,$34,$11,$A5,5$69
F9FE: 23 A0 DFB $23,$SA0 (E) FORMAT
FAGO: D8 62 5A
FAO3: 48 26 62 MNEMR DFB $D8,$62,$5A,548,$26,562
FAO6: 94 88 54
FAOS: 44 C8 54 DFR $94,$88,$54,544,3C8,554
FAOC: 68 44 EB
FAOF: 94 00 B4 DFR $68,$44,SEE,$94,500,5B4
FAl2: 08 84 74
FA15: B4 28 6E DFB $08,$84,$74,SB4,$28,$6E
FAl8: 74 F4 CC
FA1B: 4A 72 F2 DFE $74,$F4,$CC,544,872,5F2
FAlE: A4 8A DFB $A4,$8A (A) FORMAT
FA20: 00 AA A2
FA23: A2 74 74 DFB $00,5$3A,SA2,$A2,$74,574
FA26: 74 72 DFB $74,$72 (B) FORMAT
FA28: 44 68 B2
FA2B: 32 B2 00 DFB $44,568,$R2,$32,$B2,500
FA2E: 22 00 DFB $22,500 (C) FORMAT
FA30: 1A 1A 26
FA33: 26 72 72 DFBE S$1A,$1A,326,526,872,5$72
FA36: 88 C8 DFB $86,$C8 (D) FORMAT
FA38: C4 CA 26 ‘
FA3B: 48 44 44 DFB S$C4,3CA,S26,546,544,544
FA3E: A2 C8 DFB $A2,$C8 (E) FORMAT

80

FA40: FF FF FF DFR S$FF,SFF,SFF

FA43: 20 DO F8 STEP JSR INSTDSP DISASSEMBLE ONE INST
FA46: 68 PLA AT (PCL,B)

FA47: 85 2C STA RTNL ADJUST TO USER

FA49: 68 PLA STACK. SAVE

FA4A: 85 2D STA RTNH RTN ADR.

FA4C: A2 08 LDX #S08 v

FA4E: BD 10 FB XQINIT LDA INITSL-1,X INIT XEQ AREA

FAS1: 95 3C STA XQT,X

FAS3: CA DEX

FAS54: DO F8 BNE XQINIT

FAS6: Al 3A LDA (PCL,X) USER OPCODE BYTE

FAS8: F0 42 BEQ XRRK SPECIAL IF BREAK

FASA: A4 2F LDY LENGTH LEN FROM DISASSEMBLY
FAS5G: C9 20 CMP #$20

FASE: F0 59 REQ XJSR HANDLE JSR, PTS, JMP,
FA60: C9 60 CMP 4560 JMP (), RTI SPECIAL
FA62: FO 45 BEQ XRTS

FA64: C9 4C CMP #$4C

FA66: FO 5C BEQ AJWP

FA68: C9 6C CMP #56C

FAG6A: FO 59 BEQ XJMPAT

FA6C: C9 40 CMP #540

FAGE: FO 35 3EQ XRTI

FA70: 29 1F AND 4S1F

FA72: 49 14 EOR #514

FA74: C9 04 CMP #S04 COPY USER INST TO XFO AREA
FA76: FO 02 BEQ XQ2 WITH TRAILING NOPS
FA78: Bl 3A X01 LDA (PCL),Y CHANGE REL BRANCH
FA7A: 99 3C 00 XQ2 STA XQTNZ,Y DISP TO 4 FOR

FATD: 88 DEY JMP TO BRANCH OR

FA7E: 10 F8 BPL XQl NBRANCH FROM XEQ.
FA80: 20 3F FF JSR RESTORE RESTORE USER REG CONTENTS.
FA83: 4C 3C 00 JMP XQTNZ XEQ USER OP FROM RAM
FAB6: 85 45 IRQ STA ACC (RETURN TO NBRANCH)
FA88: 68 PLA

FA89: 48 PHA **TRQ HANDLER

FABA: 0OA ASL A

FA8B: 0A ASL A

FABC: O0A ASL A

FA8SD: 30 03 BMI BREAK TEST FOR BREAK

FA8F: 6C FE 03 J¥P (IRNLOC) USER ROUTINE VECTOR IN RAM
FA92: 28 BREAK PLP

FA93: 20 4C FF JSR SAVl1 SAVE REG'S ON BREAK
FA96: 68 PLA INCLUDING PC

FA97: 85 3A STA PCL

FA99: 68 PLA

FA9A: 85 3B STA PCH

FA9C: 20 82 F8 XBRK JSR INSDS1 PRINT USER PC.

FA9F: 20 DA FA JSR RGDSP1 AND REG'S

FAA2: 4C 65 FF JMP MON GO TO MONITOR

FAAS: 18 XRTI CLC

FAA6: 68 PLA SIMULATE RTI BY EXPECTING
FAA7: 85 48 STA STATUS STATUS FROM STACK, THEN RTS
FAA9: 68 XRTS PLA RTS SIMULATION

FAAA: 85 3A STA PCL EXTRACT PC FROM STACK
FAAC: 68 PLA AND UPDATE PC BY 1 (LEN=0)
FAAD: 85 3B PCINC2 STA PCH

FAAF: A5 2F PCINC3 LDA LENGTH UPDATE PC BY LEN

FABl: 20 56 F9 JSR PCADJ3

FAB4: 84 3B STY PCH

FAB6: 18 CLC

FAB7: 90 14 BCC NEWPCL

FAB9: 18 XJSR CLC

FABA: 20 54 F9 JSR PCADJ?2 UPDATE PC AND PUSH
FABD: AA TAX ONTO STACK FOR

FABE: 98 TYA JSR SIMULATFE

FABF: 48 PHA

FACO: 8A TXA

FACl: 48 PHA

FAC2: A0 02 LDY #$02

FAC4: 18 XJIMP CLC

FACS5: Bl 3A XJMPAT LDA (PCL),Y

FAC7: AA TAX LOAD PC FOR Jup,

FAC8: 88 DEY (J4P) SIMULATE.

FAC9: Bl 3A LDA (PCL),Y

FACB: 86 3B STX PCH

FACD: 85 3A NEWPCL STA PCL

FACF: BO F3 BCS XJMP

FADl: A5 2D RTNJIMYP LDA RTNH

FAD3: 48 PHA

FAD4: AS 2C LDA RTNL

FAD6: 48 PHA

FAD7: 20 BE FD REGDSP JSR CROUT DISPLAY USER REG

FADA: A9 45 RGDSP1 LDA #ACC CONTENTS WITH

FADC: 85 40 STA A3L LABELS

81

FADE: A9 00 LDA 4ACC/256

FAEQ: 85 41 STA A3H

FAE2: A2 FB LDX #SFB

FAE4: A9 AQ RDSP1 LDA #$A0

FAE6: 20 ED FD JSR COUT

FAE9: BD 1lE FA LDA RTBL-SFB,X

FAEC: 20 ED FD JSR COUT

FAEF: A9 BD LDA #$3D

FAF1l: 20 ED FD JSR COuT

FAF4: BS5 4A LDA ACC+5,X

FAF6: 20 DA FD JSR PRBYTE

FAF9: ES8 INX

FAFA: 30 ES8 BMI RDSPl

FAFC: 60 RTS

FAFD: 18 BRANCH CLC BRRANCH TAKEN,
FAFE: AQ0 01 LDY #$01 ADD LEN+2 TO PC
FB0O: Bl 3A LDA (PCL),Y

FB02: 20 56 F9 JSR PCADJ3

FB0OS5: 85 3A STA PCL

FBO7: 98 TYA

FB08: 38 SEC

FB09: BO A2 BCS PCINC2

FBOB: 20 4A FF NBRNCH JSR SAVE NORMAL RETURN AFTER
FBOE: 38 SEC XEQ USER OF

FBOF: BO 9E RCS PCINC3 GO UPDATE PC
FBl1l: EA INITBL NOP

FBl2: EA NOP DUMMY FILL FOR
FB13: 4C 0B FB JMP NRRNCH XEQ AREA

FBl6: 4C FD FA JMP BRANCH

FB19: Cl RTBL DFR $C1

FBlA: D8 DFB S$SD8

FB1B: D9 DFE $D9

FB1C: DO DFe $DO

FB1D: D3 DFB $D3

FBlE: AD 70 CO PREAD LDA PTPIG TRIGGER PADDLES
FB21l: AO 00 LDY #S00 INIT COUNT

FB23: EA NOP COMPENSATE FOR 1ST COUNT
FB24: EA NOP

FB25: BD 64 CO PREAD2 LDA PADDLO,X COUNT Y=-REG EVERY
FB28: 10 04 BPL RTS2D 12 USEC

FB2A: C8 INY

FB2B: DO F8 BNE PREAD2 EXIT AT 255 MAX
FB2D: 88 DEY

FB2E: 60 RTS2D RTS

FB2F: A9 00 INIT LDA #S00 CLR STATUS FOR DERUG
FB31l: 85 48 3TA STATUS SOFTWARE

FB33: AD 56 CO LDA2 LORES

FB36: AD 54 CO LDA LOWSCR INIT VIDEO HMODE
FB39: AD 51 CO0 SETTXT LDA TXTSET SET FOR TEXT MODE
FB3C: A9 00 LDA #S00 FULL SCREEN WINDOW
FB3E: FO OR REQ SETWND

FB40: AD 50 CO0 SETGR LDA TXTCLR SET FOR GRAPHICS MODE
FB43: AD 53 CO LDA MIXSET LOWER 4 LINES AS
FB46: 20 36 F8 J3R CLPRTOP TEXT WINDOW
FB49: A9 14 LDA 4514

FB4B: 85 22 SETWND STA WNDTOP SET FOR 40 COL WINDOW
FB4D: A9 00 LDA 4#S00 TOP IN A-REG,
FB4F: 85 20 STA WNDLFT BTTM AT LINE 24
FB51: A9 28 LDA #$28

FB853: 85 21 STA WNDWOTH

FB55: A9 18 LDA #S1%

FB57: 85 23 STA WNDRTM VTAR TO ROW 23
FB59: A9 17 LDA #$17

FB5B: 85 25 TABV 5TA CV VTABS TO ROW IN A~REG
FB5D: 4C 22 FC J4p VTAR

FB60: 20 A4 FR MULPH JSr #MDL ABRS VAL OF AC AUX
FB63: A0 10 MUL LDY #8$1¢0 INDEX FOR 16 RITS
FB65: A5 50 MUL2 LDA ACL ACX = AUX + XTND
FB67: 4A LSR A TO AC, XTND
FB68: 90 0OC RCC MUL4 IF NO CARRY,
FB6A: 18 CLC WO PARTIAL PROD.
FB6B: A2 FE LDX #SFE

FB6D: BS 54 “OL3 LDA XTWDL42,X ADD MPLCND (AUX)
FB6F: 75 56 ADC AUXL+2,X TO PARTIAL PROD
FB71: 95 54 STA XTHDL+2,X (XTND) .
FB73: E8 INX

FB74: DO F7 BNE “UL3

FB76: A2 03 MyLa LUK #S03

FR78: 76 MULS DFB #5876

FB79: 50 DFR #S50

FR7A: CA DEX

FR7B: 10 FE 3PL MDLS

FE7D: 88 DEY

FB7E: DO E5 BNE MUL2

FB8O: 60 RTS

82

FBR81:
FB84:
FB&6:
FB88§:
FBBA:
FB8C:
FBBE:
FB8F:
FB91:
FB93:
FB94:
FB96:
FB98:
FBR9A:
F39C:
FBY9E:
FBAO:
FBAL:
FBA3:
FBA4:
FBAG6:
FBAS:
FBAA:
FBAD:
FBAF:
FBB1:
FBB3:
FBB4:
FBBS5:
FBB7:
FBB9:
FBBA:
FBBC:
FBBE
FBCO:
FBC1:
FBC2:
FBC3:
FBC5:
FBC7:
FBCY9:
FBCA:
FBCC:
FBCE:
FBDO:
FBD2:
FBD3:
FBD4:
FBD6:
FBRDB:
FBDY:
FBDB:
FBDD:
FBDF:
FREZ2:
FRE4:
FBEG6:
FBE9:
FBEC:
FBED:
FBEF:
FBFO:
F3F2:
FBF4:
FBF6:
FBF8:
FBFA:
FBFC:
FBFD:
FBFF:
FCOl:
FCO2:
FCO04:
FCO06:
FCO08:
FCOA:
FCOC:
FCOE:
FC10:
FC1l2:
FCl4:
FCl6:
FCl18:
FClA:
FC1C:

20
aQ
06
26
26
26
38
A5
35
AA
A5
ES
90
86
85
E6
88
Do
60
AQ
84
A2
20
A2
B5
10
38
98
F5
95
98
F5
95
E6
60
48
4A
29
09
85
68
29
90
69
85
0A
OA
05
85
60
Cc9
Do
A9
20
AQ
A9
20
AD
88
Do
60
A4
91
E6
AS
Cc5
BO
60
Cc9
BO
AB
10
c9
FO
c9
FO
c9
Do
Ccé
10
A5
85
Ccé
A5
C5

A4
10
50
51
52
53

52
54

53
55
06
52
53
50

E3

00
2F
54
AF
50
01
oD

00
00

01

01
2F

03

04
29

18
02
7F

28

28
28

87
12
40
A8
co
0cC
Ag
30

F5

24
28
24
24
21
66

a0
EF

EC
8D
54
8A
5A
88
Cco
24
E8
21
24
24
22
25

FB

FB

FC

FC
Cco

DIVPHY
DIV
DIV2

DIV3

MD1

uD2

MD3

MDRTS
BASCALC

3SCLC2

BELL1

BELL2

RTS2?
SYTOANV

ADVANCE

PTS3
VILOOUT

Up

JSR
LCY
ASL
ROL
ROL
ROL
SEC
LDA
sec
TAX
LDA
52C
BCC
STX
STA
INC
DEY
BNE
RTS
LDY
STY
LDX
JSR
LDX
LDA
BPL
SEC
TYA
SBC
STA
TYA
SBC
STA
INC
RTS
PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS
Ccup
BNE
LDA
J3R
LDy
LDA
JSR
LDA
DEY
SNE
RTS
LDY
STA
e
LDA
cMp
ECS
RTS
CHMP
BCS
TAY
3PL
CcMp
BEQD
C¥P
BEQ
cMp
BNE
DEC
BPL
LDA
STA
DEC
LDA
CMP

MGl
$810
AC
ACH
XTNDL
XTNDH

XTNDL
AUXL

X105
AUXH
DIV3
XTNDL
XTHDH
ACL

DIVZ

£S00
SIGN
#AUXL
MD2
#ACL
LOC1,X
MDRTS

LOCO, X
LOCO,X

LOC1,X

LOC1,X
SIGH

A
#S03

#504
BASH

$518
BSCLC2
#STF
BASL

A

A

BASL
RASL

#3887
RTS2E
£s40
WAIT
#sco
#50C
WAIT
SPKR

PELL2

ci
(BEASL) ,Y
CH
CH
WNDWDTH
CR

#SA0
STOADV

STOADV
#S8D
CR
$58A
LF
#8588
BELL1
cH
RTS3
WNDWDTH
CcH

aRS VAL OF AC, AUX.
INDEY FOR 16 BITS

YTND/AUX
TO AC.

MOD TO XTND.

PRS VAL OF AC, AUX
WITH RESULT SIGN
IN LSB OF SIGN,

X SPECIFIES AC OR AUX

COMPL SPECIFIED REG
IF NEG.

CALC BASE ADR IN BASL,H
FOR GIVEN LINE NO.
0<=LINE NO.<=517

ARG=000ABCDE, GENERATE
BASH=0P00001CD

AND
PASL=EABAROOO

BELL CHA®R? (CNTRL-G)
NG, RETURN
DELAY .01 SECONDS

TOGGLE SPEAKER AT
1 K4z FOR .1 SEC.

CURSER # INDEX TO Y-REG
STOR CHAR IN LINE
INCREMENT CURSER H INDEX
(MOVE RIGET)
BREYOND WINDOW WIDTH?
YES P TO WFXT LINE
§0,RETURN
CONTROL CHAR?
NQ,OUTPUT IT,
INVERSE VIDEO?
YES, OUTPUT IT.
CR?
YES.
LINE FEED?
IF SO, DO IT.

BACK SPACE? (CNTRL-H)
MO, CHECK FOR RELL.
DECREMENT CURSER H INDEX
IF POS, OK. ELSE MOVE UP

SET CH TO WNDWDTH=-1

(RIGHTMOST SCREEN POS)
CURSZER V INDEX

FClE: BO OB BCS RTS4 IF TOP LINE THEN PETURN

FC20: C6 25 DEC CV DFCR CURSER V-INDEX
FC22: A5 25 VTAB LDA CV GET CURSER V-INDEX

FC24: 20 C1 FB VTARBZ JSR PASCALC CENERATE BASE ADDR

FC27: 65 20 ADC WNDLFT ADD WINDOW LEFT INDEX
FC29: 85 28 STA SASL TO BASL

FC2B: 60 RTS4 RTS

FC2C: 49 CO ESC1 EOR #$CO ESC?

FC2E: FO 28 BFD HOME IF SO, DO HOME AND CLEAR
FC30: 69 FD ADC #S$FD ESC-A OR B8 CHECK

FC32: 90 CO BCC ADVANCF A, ADVANCE

FC34: FO DA BEQ BS 8, BACKSPACE

FC36: 69 FD ADC #SFD ESC-C OR D CHECK

FC38: 90 2C acC LF C,DOWN

FC3A: FO DE BED UP D, GO UP

FC3C: 69 FD ADC #SFD ESC-E OF F CHECK

FC3E: 90 5C BCC CLREOL F, CLEAR TO END OF LINE
FC40: DO E9 BNE RTS4 NOT F, RETURN

FC42: A4 24 CLKEOP LDY CH CURSOR H TO Y INDEX

FC44: A5 25 LDA CV CURSOR V TO A-REGISTER
FC46: 48 CLEOP1 pHA SAVE CURRENT LINE ON STK
FC47: 20 24 FC JSR VTABR? CALC PRASE ADDRFSS

FC4A: 20 9E FC JSR CLEOL?Z CLFAR TO EOL, SET CARRY
FC4D: AO0 00 LDY #$00 CLEAR F™% M H INDEX=0 FOR REST
FC4F: 68 PLA INCRE#FNT CURRENT LINE
FC50: 69 00 ADC #S00 (CARRY IS SET)

FC52: C5 23 CMP @NDRTH DOWE TO BOTTOM OF WINDOW?
FC54: 90 FO 8CC CLEOP1 NC, KEEP CLEAPING LINES
FC56: BO CA BCS VTAR YES, TAB TO CURRENT LINE
FC58: A5 22 HOME LDA TFINDTOP INIT CURSOR V

FC5A: 85 25 sTA CV AND H-INDICES

FC5C: A0 0O LDY #S00

FCSE: 84 24 STY CH THEN CLEAR TO END OF PAGE
FC60: FO E4 BEO CLLOP1

FC62: A9 00 CR LDA 4500 CURSOR TO LEFT OF INDFX
FC64: 85 24 STA CH (PET CURSOR H=0)

FC66: E6 25 LF INC CV INCR CURSOP V(DOWN 1 LINE)
FC68: A5 25 LDA CV

FC6A: C5 23 CMP 4NDPTHM OFF SCREFN?

FC6C: 90 B6 BCC VTARZ NO, SET BASE ADDR

FC6E: Cb 25 DEC CV DECR CURSOR V(BACK TO 30TTOM LINK)
FC70: AS 22 SCROLL LDA WNDTOP START AT TOP OF SCRL WNDW
FC72: 48 PHA

FC73: 20 24 FC JSR VTARZ GENERATE BASE ADDRESS
FC76: A5 28 SCRL1 LDA BASL COPY BASL,H

FC78: 85 2A STA BAS2L TO BAS2L,H

FC7A: A5 29 LDA BASH

FC7C: 85 2B STA BAS2H

FC7E: A4 21 LDY WNDWDTH INIT Y TO RIGHTMOST INDEX
FC80: 88 DEY OF SCROLLING WINDOW

FC81l: 68 PLA

FC82: 69 01 ADC #501 INCR LINE NUMRER

FC84: C5 23 CMP WNDRTHM DONE?

FC86: BO 0D BCS SCRL3 YES, FINISH

FC88: 48 PHA

FC89: 20 24 FC JSR VTABZ FORM BASL,H (BASE ADDR)
FC8C: Bl 28 SCRL2 LDA (BASL),Y MOVE A CHR UP ON LINE
FC8E: 91 2A STA (BAS2L),Y

FC90: 88 DEY NEXT CHAR OF LINE

FC91: 10 F9 BPL SCRL2

FC93: 30 E1 BMI SCRLI NEXT LINE

FC95: A0 00 SCRL3 LDY #$00 CLEAR BOTTOM LINE

FC97: 20 9E FC JSR CLEOLZ GET RASE ADDR FOR BOTTOM LINE
FC9A: BO 86 3CS VTAR CARRY IS SET

FC9C: A4 24 CLREQCL LDY CH CURSOR 4 INDEX

FCO9E: A9 AC CLEOLZ LDA #SAQ

FCAO: 91 28 CLEOL?2 STA {RASL),Y STORE BLANKS FROM 'HERE'
FCA2: C8 INY TO END OF LINES (WNDWDTH)
FCA3: C4 21 CPY WHNDWPTH

FCAS: 90 FY RCC CLEOL2

FCA7: 60 RTS

FCA8: 38 WAT'T SEC

FCA9: 48 WAIT2 PHA

FCAA: E9 01} WAIT3 SRC #501

FCAC: DO FC BNE WAIT3 1.0204 USEC .

FCAE: 68 PLA (13+42712%A+512%A%A)

FCAF: E9 01 SBC #501

FCBl: DO F6 BNE WAIT2

FCB3: 60 °Ts

FCB4: E6 42 NXTA4 INC A4L INCR 2-FYTE A4

FCB6: DO 02 BNE NXTAlL AND Al

FCBB: E6 43 INC A4H

FCBA: A5 3C NXTAY LbA AlL INCP 2-BYTF Al.

FCBC: C5 38 CMP A2L

FCBE: A5 3D LDA AlH AND COVPARE 10 A2

84

FCCO:
FCC2:
FCCa:
FCC6:
FCC8:
FCC9:
FCCR:
FCCE:
FCDO:
FCD2:
FCD4:
FCD6:
FCD9:
FCDA:
FCDB:
FCDC:
FCDE:
FCEOQ:
FCE2:
FCE3:
FCES:
FCEB8:
FCEA:
FCEB:
FCEC:
FCEE:
FCEF:
FCF2:
FCF3:
FCF4:
FCF6:
FCF7:
FCF9:
FCFA:
FCFD:
FCFE:
FDO1:
FDO3:
FDO05S:
FDO7:
FDO9:
FDOB:
FDOC:
FDOE:
FD10:
FD11:
£D13:
FD15:
FD17:
FD18:
FD1B:
FD1D:
FD1F:
FD21:
FD24:
FD26:
FD28:
FD2B:
FD2E:
FD2F:
FD32:
FD35:
FD38:
FD3A:
FD3C:
FD3D:
FD3F:
FD40:
FD42:
FD44:
FD47:
FD4A:
FD4B:
FD4D:
FD50:
FD52:
FD54:
FD56:
FD58:
FD5A:
FD5C:
FDS5SF:
FD60:
FD62:
FD64:

ES
E6
DO
E6
60
A0
20
Do
69
EO
AQ
20
c8
Cc8
83
Do
90
Al
88
Do
AC
AQ
CA
60
A2
48
20
68
2A
AQ
CA
Do
60
20

AD
45
10
45
85
co
60
A4
Bl
48
29
09
91
68
6C
E6
DO
E6
2C
10
91
AD
2C
60
20
20
20
Cc9
FO
60
AS
48
A9
85
BD
20
68
85
BD
c9
FO
c9
FO
EQ
90
20
E8
DO
A9
20

3F
3C
02
3p

43
LB
F9
FE
F5
21
DB

FD
32

FD
20
2C

08

FA

34

F5

3F
40
28

38
4E
02
4F
00
F5
28
00
10

ocC
2C
0cC
9B
F3

32

FF
32
00
ED

32

88
1D
98
0A
F8
03
3A

13
DC
ED

FC

FC

Co.

FC

FC
co

00

Co
co

FD
vC
FD

02
FD

02

FF

FD

RTS48
HEADK

WRBIT

ZEPDLY

ONEDLY

WRTAPE

RDRYTE
RDBYT?2

RD2BIT
RDPIT

RDKEY

KEYIN

KEYIN2

ESC

RDCHAR

NOTCR

NOTCR1

CANCEL

38C
INC
BNE
INC
RTS
LRy
JSR
aNE
ADC
2CSs
LDY
JSR
INY
INY
DEY
8NE
RCC
LDY
DEY
BNE
LDY
LDY
DEX
RTS
LDX
PHA
JSP
PLA
ROL
LDY
DEX
BNE
RTS
JSR
DEY
LDA
EOR
2PL
EOR
STA
CPY
RTS
LDY
LDa
PHA
AND
ORA
STA
PLA
Jup
e
BNE
INC
3IT
EPL
STA
LDA
BIT
RTS
JSR
JaR
Jse
Cinp
QEQ
RTS
LDA
PHA
LDA
STA
LDA
JSR
PLA
STA
LDA
cMp
BEC
cMp
BEQ
CPX
BCC
JSR
INX
BNE
LDA
JSR

A2h

AlL (CARPY SET IF >=)
RTS34R

AlH

tS4n VRITE A*256 'LONG 1!
ZERDLY HALF CYCLES

HEADFP (650 USEC EACH)
#SFR

AEADR THEN A 'SPORT 0°
4€21 (400 USEC)

ZERDLY WRITE TWO HALF CYCLES
OF 250 USEC ('0')
OR 500 USEC ('C"')

ZERDLY
WRTAPE Y IS COUNT FOR
$$32 TIMING LOOP
ONEDLY
TAPEOUT
§s2C
4508 8 BITS TO READ
READ TWO TRANSITIONS
RD2BIT (FIND EDGE)
A NEXT 8IT
£53A COUNT FOR SAMPLES
RDBYT 2
|DRIT
DECR Y UNTIL
TAPEIN TAPF. TRANSITION
LASTIN
RDBIT
LASTIN
LASTIN
#SR0 SET CARRY ON Y-PREG.
CH
(PASL) ,Y SET SCREEN TO FLASH
$S3p
4S540
(EASL),Y
(KSWL) GO TO USER KEY-IN
ENDL
KEYIN2 INCR RND NUMBER
RNDH
KAD KEY DOWN?
KEYIil LOOP
(3ASL) ,Y REPLACFK FLASHING SCRFEM
K2D CET KEYCODE
KRDSTRR CLR KFY STRORE
PDKRY GET XFYCODE
E3C1 HANDLE £SC FUNC.
RNKEY READ KPY
#5913 £SC?
£3C YEE, DON'T RETURN
INVFLG
$SFF
INVPLG ECHO USER LINE
IN,X NON INVERSE
couT
INVFLG
i, X
4368 CHECK FOR EDIT KEYS
BCK3PC 8S, CTRL-X.
$s9¢e
CANCEL
4SF8 MARGIN?
NOTCR1
RELL YES, SOUND PELL
ANDVANCE INPUT INDEX
NXTCHAR
#SDC BACKSLASH AFTER CANCELLED LINE
cour

85

FD67:
FD6A:
FD6C:
FD6F:
FD71:
FD72:
FD74:
FD75:
FD78:
FD7A:
FD7C:
FD7E:
FD80:
FD82:
FDB4:
FD87:
FD89:
FDBB:
FD8E:
FD90:
FD92:
FD94:
FD96:
FD99:
FD9C:
FDYE:
FDAO:
FDA3:
FDAS:
FDAT7:
FDAS:
FDAR:
FDAD:
FDAF:
FDB1:
FDB3:
FDB6:
FDB8:
FDBB:
FDBD:
FDCO:
FDC3:
FDC5:
FDC6:
FDC7:
FDCY:
FDCA:
FDCB:
FDCD:
FDCF:
FDD1:
FDD3:
FDD4:
FDD6:
FDD9:
FDDA:
FDCB:
FDDC:
FDDD:
FDDE:
FDDF:
FDE2:
FDE3:
FDE5S:
FDE7:
FDE9:
FDEB:
FDED:
FDFO:
FDF2:
FDF4:
FDF6:
FDF8:
FDF9:
FDFC:
FDFD:
FDFF:
FEQO:
FEO02:
FEO4:
FEO05:
FEO07:
FE09:
FEOB:
FEOD:

20
AS
20
A2
8A
FO
ca
20
C9
Do
Bl
C9
90
29
9D
Cc9
Do
20
AS
DO
A4
A6
20
20
AQ
A9
4C
A5
09
85
AS
85
A5

29
Do
20
A9
20
Bl
20
20
90
60
4A
90
4
4A
A5
90
49
65
48
A9
20

48
43
43
4A
4A
20
68
29
09
c9
90
69
6C
C9

25
84
48
20
68
A4
60
Cé6
FO
CA
DO
Cc9
DO
85
AS

8E
33
ED
01

E5

OF
BO
BA
02
06
36
AQ
02
32
35

FD
35

34
9F

16
BA
BB
31
3E

FD

FD

FD

02

FC

FD
F9

FD

£D
FD

FD

3

FD

FD

00

FB

GETLNZ
GETLN

BECKSPC

NXTCUAR

CAPTST

ADDINP

CROOUT

PRAL

PRYX2

XAMB

MOCACHK

XAM
DATAQUT

RTSAC
XAMPH

ADD

PRBYTE

PRHEX

PRHEXZ

cour

courl

couTz

8Ll

BLANK

STOR

JSR
LDA
JSR
LDX
TXA
BEQ
DEX
JSR
CMp
BNE
LDA
Cwp
BCC
AND
STA
CMP
BNE
ISR
LDA
BNE
LDY
LD¥
JSR
JSP
LDY
LDA
J%P
LbA
ORA
STA
LDA
STA
Lba
AND
BNE
JSR
LEA
ISR
LDA
ISR
JSR
BCC
RTS
LSR
3CC
LSR
LSR
LDA
BCC
EOR
ADC
PHA
LDA
JSR
PLA
PHA
LSR
LSR
LSP
LSR
JSK
PLA
AND
ORA
CMP
BCC
ADC
JuP
cMP
BCC
AND
STY
PHA
JSR
PLA
LDY
RIS
DEC
BEQ
DEX
BNE

BNE
STA
Lba

CROUT
PROMPT
couT
4501

GETLNZ

RDCHAR
$#PICK
CAPTST
(BASL),Y
#SEO
ADDINP
#SDF
IN,X
£$8D
NOTCR
CLREOL
#S8D
couT
AlH

AlL
CROUT
PRJITYX
$500
$$AD
cour
alL
¥S07
A2L

AlH

A2H

alL
4507
DATAOUT
PRAL
#SA0
cour
(AlL) ,Y
PREYTE
NXTAL
MODRCHK

A
XAM
A

A
AZL
ADD
4SFF
AlL

#$3D
couT

A
A
A
[
PRHEXZ

$S0F
#SRO
#$BA
couT
#506
(CS¥L)
#SA0
COUTZ
INVFLG
YSAV1

VIDOUT
Ysavl

Ysav
XAM8

SETMDZ
$SBA
XAMPM
MODE
a2L

86

OUTPUT CR

OUTPUT PROMPT CHAR
INIT iNPUT INDEX
WILL PACKSPACE TO ©

USE SCREEN CHAR
FOR CTRL-U

CONVERT TO CAPS

ADD TO INPUT BUF

CLR TO FOL IF CR

PRINT CrR,Al IN HEX

PRIUT '~

SET TO FINISH AT
MO e=7

OUTPUT BLANK
OUTPUT RYTE IN HEX

CHECK IF TIME TO,

PRINT ADDR

DETERMINE IF MON
MODE IS XAM
ADD, OR SUB

SUR: FORM 2'S COMPLEMENT

PRINT ‘'=', THEN RESULT

FRINT BYTE AS 2 HEX
DIGITS, DESTROYS A-REG

PRINT HEX DIG IN A-REG
LSB'S

VECTOR TO USER OUTPUT ROUTINE

DON'T OUTPUT CTRL'S INVERSE
MASK WITH INVERS®E FLAG
SAV Y-REG
SAV A~PEG
OUTPUT A-REG AS ASCII
RESTORE A-REG
AND Y-REG
THEN RETURN

BRLANK TO MON
AFTER BLANK
DATA STORE MODE?
NO, XAM, ADD OR SUB
KEEP IN STORE MODE

FEOF: 91 40 STA (A3L),Y STORE AS LOW BYTE AS (A3)

FE1l: E6 40 INC A3L

FE13: DO 02 BNE RTSS INCR A3, RETURH
FE15: E6 41 I18C A3H

FE17: 60 RTS5 RTS

FE18: A4 34 SETMORE LDY Y3AV SAVE COWVERTED ‘*:', '+',
FElA: B9 FF 01 LDA IN-1,Y '—1, '.' AS MODE,
FE1D: 85 31 SETMDZ STA MODF

FE1F: 60 RTS

FE20: A2 01 LY LDX #S01

FE22: B5 3E LT2 LDA A2L,X COPY A2 (2 BYTES) TO
FE24: 95 42 STA A4L,X A4 AND AS

FE26: 95 44 STA ASL,X

FE28: CA DEX

FE29: 10 F7 BPL LT2

FE2B: 60 RTS

FE2C: Bl 3C MOVE LDA (AlL),Y MOVE (Al TO A2) TO
FE2E: 91 42 STA (A4L),Y (ra)

FE30: 20 R4 FC JSR NXTA4

FE33: 90 F7 BCC MOVE

FE35: 60 RTS

FE36: Bl 3C VE? LDA (ALL),Y VERIFY (Al TO A2) WITH
FE38: D1 42 CMP (A4L),Y (ad)

FE3A: FO 1C REQ VFYCR

FE3C: 20 92 FD J3F PRAL

FE3F: Bl 3C LbA (AlL),Y

FE41: 20 DA FD J5R BRIYTE

FE44: A9 A0 LDA ¥SAQ

FE46: 20 ED FD JSR COUT

FE49: A9 AB LDh #SA8

FE4B: 20 ED FD JSR COUT

FE4E: Bl 42 LDA (A4L),Y

FE50: 20 DA FD J3% PRBYTE

FE53: A9 A9 LDA 4829

FE55: 20 ED FD J38 COUT

FE58: 20 B4 FC VFYOK JSR NXTA4

FESB: 90 D9 3CC VEY

FESD: 60 RTS

FESE: 20 75 FE LIST JSP AlPC "VE Al (2 BYTES) TO
FE61: A9 14 LDA #S14 PC IF SPEC'D AND
FE63: 48 LIST?2 PilA NPISSENELE 20 INSTRS
FE64: 20 DO F8 JSR I4STD3P

FE67: 20 53 F9 J3R PCACJ ADJUST PC EACH INSTR
FEG6A: 85 3A STA PCL

FE6C: 84 38 STY PpCH

FEG6E: 68 PLA

FE6F: 38 SEC

FE70: E9 01 SBC 4501 NEXT OF 20 INSTRS
FE72: DU EF BNE LIST2

FE74: 6U RTS

FE75: 8A AlPC TXA IF USER SPEC'D ADR
FE76: FO 07 FEQ AlPCRTS COPY FROM Al TO PC
FE78: B5 3C AlPCLP LKA A1L,X

FE7A: 95 3A STA PCL,X

FE7C: CA DEX

FL7D: 10 F9 £PL A1PCLP

FE7F: 60 A1PCRTS RYS

FE80: A0 3F SETINV LDY #S3F SET FOR INVERSE VID
FE82: DO 02 BNE SETIFLG VIA COUT1

FE84: AO FF SETNORM LDY ¥SFF SET FOR NORMAL VID
FE86: 84 32 SETIFLG STY INVFLG

FE88: 60 RTS

FE89: A9 00 SETKBD LDA #500 SIMULATE PORT #0 INPUT
FE8B: £5 3E INPORT STA A2L SPECIFIED (KEYIN ROUTINE)
FE8D: A2 38 INPRT LDX #KSWL

FESF: A0 1B LDY #KEYIN

FE91: DO 08 BNE IOPRT

FE93: A9 00 SETVID LDA #500 SIVULATE PORT #0 OUTPUT
FE95: 85 3E OUTPCRT 3TA A2L SPECIFIED (COUT1 ROUTINE)
FE97: A2 36 OUTPRT LDX #CS¥L

FES9: A0 FO LDY #COUT1

FE9B: AS 3E I0PRT LDA A2L SET RAM IN/OUT VECTORS
FE9D: 29 OF AND #30F

FESF: FO 06 BFQ IOPRTL

FEAl: 09 CO ORPA #IOADR/256

FEA3: A0 00 LDY #S00

FEA5: FO 02 PEQ ICPRTZ

FEA7: A9 FD I0PRT] LDA #COUTL/256

FEA9: 94 00 10PRT2 STY LOCO,X

FEAB: 95 01 STA LOCI,X

FEAD: 60 PTS

FEAE: EA JOE

FEAF: EA NOP

FEBO: 4C 00 E0 XRASIC J1P RASIC TO RASIC WITH 3CRATCH

FEB3: 4C 03 E0O BASCONT JMP BASIC2 CONTINUE BASIC

87

FEB6:
FEB9:
FEBC:
FEBF:
FEC2:
FECA4:
FEC7:
FECA:
FECD:
FECF:
FED2:
FED4:
FED6:
FEDS8:
FED9:
FEDB:
FEDE:
FEEl:
FEE3:
FEE4:
FEEG6:
FEES:
FEEB:
FEED:
FEEF:
FEFO:
FEF3:
FEF5:
FEF6:
FEF9:
FEFA:
FEFB:
FEFD:
FFOO:
FF02:
FF05:
FFO07:
FFOA:
FFOC:
FFOF:
FF1ll:
FFl4:
FF16:
FF19:
FF1B:
FF1D:
FF1F:
FF22:
Fr24:
FF26:
FF29:
FF2B:
FF2D:
FF2F:
FF32:
FF34:
FF37:
FF3A:
FF3C:
FF3F:
FF4l:
FF42:
FF44:
FF46:
FF48:
FF49:
FF4A:
FF4C:
FF4E:
FF50:
FF51:
FF52:
FF54:
FF55:
FF57:
FF58:
FF59:
FF5C:
FFS5F:
FF62:
FF65:
FF66:
FF69:
FF6B:
FF6D:

20
20
6C
4C
Ccé
20
4C
4aC
A9
20
AQ
A2
41
48
Al
20
20
AO
68
90
a0
20
FO
a2
0A
20
DO
60
20
68
68
DO
20
AS
20
85
20
AQ
20
BO
20
a0
20
81
45
85
20
AQ
90
20
C5
FO
AS
20
A9
20

A9
4C
A5
48
A5
Ab
A4
28
60
85
86
84
08
68
85
BA
86
D8
60
20
20
20
20
D8
20
A9
85
20

75
3F
3A
D7
34
75
43
F8
40
c9
27
00
3C

3C
ED
BA
1D

EE
22
ED
40
i0

D6
FA

6C
FA
16
c9
2E
FA
24
FD
F9
FD
38
EC
3C
2E
2E
3A
35
FO
EC
2E
oD
C5
ED
D2
ED
ED
87
ED
48

45
46
47

45
46
47

48
49
84

2F
93

‘89

3A
AA
33
67

FE
FC

FE

FC

FE

FC

FC

FC

FC

FC
FC

FC

FC

FD
FD

FD

FE
FB
FE
FE

FF

FD

GO

RTG2Z
TPACE
STEPZ

USPF
WRITE

WR1

WRBYTE
WRBYT2

CRMON

READ

RD2

RD3

RELL

RESTORE

RESTR1

SAVE
SAV1

FESET

MO

MONZ

A1pC ADR TO PC IF SPEC'D
RESTORE RESTORE META PEGS
(PCL) CO TO USER SUBR
RECGDSP TC REG DISPLAY

YSAV

AlpC ADR TO PC IF SPEC'D
STEP TAKE ONE STEP
USEADR TO USP SUBR AT USRADR
#5440

HEADR WRITE 10~SFC HEADER
4827

#$00

(AlL,X)

(ALL, %)
WRRYTE
NXTAL
2810

WRBIT
WRZYT?2
3L1 HANDLE CR AS PLANK
THEN POP STACK
AND RTN TO MON
MONZ
RDZBIT FIND TAPEIN EDGE
#S16

HEADR DEIAY 3.5 SECONDS
CHKSUM INIT CHKSUM=S$FF
RL2BIT FIMD TAPEIN EDGE

#524 LOOK FCR SYNC 2IT

RDBIT (SHORT 0)

RD2 LOOP UNTIL FOUND

RDBIT SKIP SECOND SYNC H-CYCLE
#$38 INDEX FOR 0/1 TEST

REBYTE READ A BRYTFE
(A1L,X) STORE AT (Al)

CHKSUmM

CHKSUM™ UPDATE RUNNING CHKSUM

NXTAL INCR Al, COMPARE TO A2

#$35 COMPENSATE 0/1 INDEX

RD3 LOOP URTIL DONE

RODYTE REAT CHXSUY B3YTE

CHRSUM

arLL GOCD, SOUND BRELL AND RETUBRN

#5C5

cour PRINT “ERR", THEN RBELL

¥SD2

couTt

CcouT

£S57 OUTPUT PTLL AND RETURN

cour

STATUS RESTORE 6502 PEG CONTEMNTS
Usen 2Y DEPUG SOFTAHAPE

ACC

XREG

YREG

ACC SAVE 6502 REG COMNTENTS

XREG

YREC

3TATUS

SPRT

SETNORY® SP SCREEN 10DE

INIT AND INIT XBD/SCREEN
SETVID AS I/0 DEV'S
SETKBD

MUST SET HEX MODE!
BELL
#SAA '*!' PROYPT FOR MON
PROMPT

GETLNZ READ A LINE

88

FF70: 20 C7 FF JSR Z40DE CLEAR MON MODE, SCAN IDX
FF73: 20 A7 FF NXTITM JSR GETNUM GET ITEM, NON-HEX
FF76: 84 34 STY YSAV CHAR IN A-REG
FF78: A0 17 LDY #§17 X-REG=0 IF NO HEX INPUT
FF7A: 88 CHRSKCH DEY

FF7B: 30 E8 B¥I MOW NOT FOUND, GO TO MON
FF7D: D9 CC FF CMP CHRTEL,Y FIND CMND CHAR IN TEL
FFB80: DO F8 8NE CHRSRCH

FF82: 20 BE FF JSR TOSU8 FOUND, CALL CCRRESPONDING
FF85: A4 34 LDY YSAV SUBROUTINE

FF87: 4C 73 FF JMP WXTITM

FF8A: A2 03 DIC LDX #803

FF8C: OA ASL A

FF8D: 0A ASL A GOT HEX DIC,

FF8E: OA ASL A SHIFT INTO A2
FF8F: OA ASL A

FF90: OA NXTBIT ASL, A

FF91: 26 3E ROL A2L

FF93: 26 3F ROL A2EF

FF95: CA DEX LEAVE X=$FF IF DIG
FF96: 10 F8 BPL NXTRIT

FF98: A5 31 HNXTEAS LDA MODE

FF9A: DO 06 RNE NXTFS2 IF MODFE IS Z7ZRO
FF9C: BS 3F LDA A28H,X THEN COPY A2 TO
FF9E: 95 3D STR A1R,X Al AND A3

FFAQ: 95 41 STA A3R,%

FFA2: EB NXTR52 INX

FFA3: FO F3 EEQ WXT2AS

FFAS: DO 06 INE RAXTCOR

FFA7: A2 00 GE U~ LNX #S0OC CLEAR A2

FFAY9: 86 3E STX AZL

FFAB: 86 3F STZ A2E

FFAD: BY 00 02 NX'TCHP LA IW,Y GET CHAR

FF30: C8 Iny

FFB1: 49 B0 EOR §830

FFB3: C9 0A CME 4S50A

FF35: 90 D3 2CC ©oIG IF HEX DIG, THEN
FFB7: 69 88 ADC #S&§

FFB9: C9 FA CMP #5FA

FFB33: B0 CD BCE OIC

FFBD: 60 R1S

FFEE: A9 FE LOLUY LDA &C0/256 PUSY dIGH-ORDER
FFCO: 48 PHA SURR ARR OW SrK
FFCl: B9 E3 FF LA <URTHRL,Y PUSY 1O« ORDER
FFC4: 48 PHA SUb.. ADR DN STK
FFEC5: A5 31 LOA MODE

FFC7: A0 00 ZHONE Ly LS00 CLP ™MODF, CLT YOD®
FFCY9: ¢4 31 S1Y “ODE TO M=REC

FFCB: 60 % TS 20 TO SURR VIA RTS
FFCC: BC CHRTRL DFP. 33C F("CTRL=-C")

FFCDh: B2 DFR SR2 F("CTRL-Y")

FFCE: BE DFB 33 F("CTRL~F")

FFCF: ED DFR SED F(*r*)

FFDO: EF NDFR SEF F("V")

FFD1: C4 NFS SC4 F("CTRL~-K")

FFD2: EC DPR SKC F(“3")

FFD3: A9 DFE SAY F(*CTPL~P")

FFL4: BB DEFE 8ag F("CTRL=-2")

FFD5: A6 DFE $AH £ ("

FFDG: A4 DEFE SA4 F("+")

FFD7: U6 DEE 06 F('H") (P=EX-OP $B0+$89)
FFDB: 95 DE2 $95 F("<")

FFND9: 07 PFB $07 F("N")

FFDA: 02 DFR $02 F("I")

FFDB: 05 DFE S05 F("L")

FFDC: FO DF2 S$FO (W)

FFDD: 00 DFB $00 F("G")

FFDE: EB DFR SE8 F("R")

FEDF: 93 NER 593 F(":*")

FFEO: A7 DFE $SA7 F(".")

FFEl: Cé6 DFE SCE F("CR™)

FFE2: 99 DFR $99 F (BLANK)

FFE3: B2 SURTEL NFR #BASCONT=-1

FFE4: C9 DFY #USK~1

FFES: BE DFe #RFGZ-1

FFE6: C1l CEB #TRACE-1

FFE7: 35 DF3 #VFY-1

FFE8: 8C DFR #INPRT=-1

FFE9: C3 DFE #STEPZ-1

FFFA: 906 DF? #0OUTPRT~1

FFEB: AF DFE #XPASIC~1

FFEC: 17 DFR #SETMODE-1

FFED: 17 DFP #3FETMODE-1

FFEE: 2B DFB #MOVE~-1l

FFEF: 1F NE3 #LT=-1

89

FFFO:
FFF1:
FFF2:
FFF3:
FEF4:
FFF5:
FFFE:
FFF7:
FFF&:
FFFI:
FFrFA:
FFFB:
FEEC:
FEFD:
FFFE:
FEEFE:

83
r
5D
CcC
BS
FC
17
17
F5
03
FR
03
59
FE
56

N

ra

XOTNG

OFB
DFR
DFB
DFR
DFB
DFE
DFR
DFB
DFR
DFB
DFR
DFR
DFB
DFB
DFB
DFB
EQU

§SETHCRM=-1
#SETINV-1

$LIST-1

$VRITE=-1

4GO-1

4READ-1

#SETMODE-1
#SETMOPE~1

#CRMON=-1

#BLANK=-1

ENMI NMI VECTOR
#NMI/256

#RESET RESET VECTOR
#RESET/256

#IRC IRO V3(TOR
#IRQ/256

$3C

90

F500:
F502:
F503:
F505:
F507:
F509:
F50B:
F50C:
F50D:
FS0E:
FS0F:
F511:
F513:
F515:
F516:

EY
43
Do
A4
Ab
DO
88
CA
8A
18
ES
85
10

Cc8
98

14
3F

3E
01

3A
3E
01

dokdkdk ko kokokodokodkodkodk ok kokkokokkkok

APPLE-II
MINI-ASSEMBLER

COPYRIGHT 1977 PY
APPLE COMPUTER INC.

ALL RIGHTS RESEFVED

S. WOZNIAK
A. 3AUM

* Ok % X O % A %X % % #

*
kAR RARRAKRKAR KRR KA KX A K&K

* Ok X Rk H X % % H ¥ *

TITLE “APPLE~II MINI-ASSEMBLER"

FORMAT EPZ $2F
LENGTH EPZ S2F
MODE EPZ $31
PROMPT EPZ $33
YSAV EPZ $34
L EPZ $35
ECL EPZ S3A
pCH EPZ S32
AlH EPZ $3D
a2L Pz $3F
A28 EPZ S3F
A4L P2 $42
A4 EPZ $43
FMT EPZ S44
I ENU 5200
INSDSZ EQU SPBER
INSTD3P EOU SF6DO0
PR3L2 EOU SEY4A
PCADJ EOU SF953
CHARY EOU $P9B4
CHAR2 EQU SF92A
AL ENU $FYCO
MNE AP EQCU SFAOO
CuRsyp 20U SPC1A
CETLNZ EOU SFDGT
couT ECU SFDED
3L1 EQU SFEQD
AlPCLP FOU SFETSE
FELL EQU SFF3A
GETNUH EQU SPFAT
TOSU2 A0 $FFEF
Z:/0DE EOU SFFCT
CHRTIL £00 SFRCC
ORG $E500
REL 3pC #sel
LSP A
GAL LFR3
LY A2
Ly A2L
BNE REL2
DEY
REL2 DEX
TXA
CLC
38C PCL
STA A2L
BPL PEL3
INY
REL3 TYA

91

Is PuT COMPATIELE
1T RELATIVE “"ODE?
V0.

ROURLE DFCREST T

FORM ADDR-PC-2

F517:
F519:
F51B:
F51D:
F520:
F522:
F523:
F525:
F528:
F528:
F52E:
F531:
F533:
F535:
F538:
F53B:
F53D:
F540:
F542:
F544:
F545:
F547:
F54A:
F54C:
F54E:
F550:
F552:
F554:
F556:
F559:
F55C:
F55E:
F561:
F562:
F565:
F567:
F569:
F56C:
F56E:
F570:
F572:
F574:
F576:
F578:
F57A:
F57C:
F57E:
F580:
F582:
F584:
F586:
F588:
F589:
FS58A:
F58D:
F58F:
F592:
F595:
F597:
F599:
F59C:
F59F:
F5A2:
F5a4:
F5A6:
FS5A7:
F5A9:
FSAB:
F5AC:
F5AF:
F5B1:
F5B3:
F584:
F5B6:
F5B9:
F5BB:
F5BD:
F5CO0:
F5C1:
F5C3:
F5C5:
F5C7:
F5C8:
F5C9:
F5CB:

ES5
Do
Ad
B9
91

10
20
20
20
20

85
4C
20
a4
20
84
Al
88
30
D9

bo

Cco
DO

AS

Ccé
20

AS
20
AA
BD
C5
DO
BD
C5
Do
A5
A4

FO
c5
FO
cé
Do
E6
Cé
FO
A4
98

20
A9
20
20

85
20
20
AD
C9
FO
cs8
Cc9
FO
88
20
C9
Do
8A
FO
20
AS
85
20
0A
E9
ceo
90
0A
0Aa
A2
0A

3B
6B
2F
3D
3Aa

F8
1A
1A
DO
53
3B
3Aa
95
8B
34
A7
34
17

4B
cC

F8

ES8
31
00
34
00
95
3D
8E

00
42
13
Cco

43
0C
44
2E
9D
88
2E
9F
3D
DC
44
35
D6
34

4A
DE
ED
3A
Al
33
67
Cc7
00
AQ
13

00

FC

FC
F8

F9
F5
FF

FF

FF

FE

F8

FA

F9

F9
FD
FF

FD
FF

02

FF

FE

Fé6

ERR3
FINDOP
FNDOP2

FAKEMON3

FAKEMON

FAKEMON2

TRYNEXT

NREL

NEXTOP

ERR
ERR2

RESETZ
NXTLINE

ERR4

SPACE

NXTMN
NXTM

NXTM2

SBC
BNE
LDY
LDA
STA
DEY
BPL
JSR
JSR
JSR
JSR
STY
STA
Jvp
JSR
LDY
JSR
STY
LDY
DEY
BMI
CMP
BNE
CPY
BNE
LDA
LDY
DEC
JSR
JMp
LDA
JSR
TAX
LDA
CMP
BNE
LDA
CMP
BNE
Lpa
LDY
CPY
BEQ
CMP
BEQ
DEC
BNE
INC
DEC
BEQ
LDY
TYA
TAX
JSR
LDA
JSR
JSR
LDA
STA
JSR
JSR
LDA
cMp
BE0
INY
CMP
BEQ
DEY
JSR
cup
BN
TXA
BEQ
JSR
LDA
STA
JSR
ASL
SEC
CMP
BCC
ASL
ASL
LDX
ASL

pCH
ERR
LENGTH
AlH,Y
(PCL) , Y

FNDOP2
CURSUP
CURSUP
INSTDSP
PCADJ
pCH

PCL
NXTLINE
TOSUB
YSAV
GETNUM
YSAV
#8517

RESETZ
CHRTBL, Y

FAXEMON2

$S15
FAKEMON3
MODE

#50

YSAV

BL1
NXTLINFE
AlH
INSDS2

MNEMR , X
AL
NEXTOP
MNEML , X
A4H

NEXTOP
FMT
FORMAT
#$9D
REL
FORMAT
FINDOP
AlH
TRYNEXT
FMT

L
TRYNEXT
YSAV

PRBL2
#SDE
couT
BELL
$SA1
PROMPT
GETLNZ
ZMODE
IN

#SA0
SPACE

#5A4
FAKEMON

GETNUM
#593
IRR2

ERR2
AlPCLP
483
AlH
GETNSP
A

4$$BE
#5C2
ERR2

A

A
$54
A

92

ERROR IF >1-BYTE BRANCH

MOVE INST TO (PC)

RESTORE CURSOR
TYPE FORMATTED LINE

UPLATE PC

GET NEXT LINE

GO TO DELIM HANDLER
RESTORE Y-INDEX

READ PARAM

SAVE Y-INDEX

INIT DELIMITER INDEX
CHECK NEXT DELIM

ERR IF UNRECOGNIZED DELIM
COMPARE WITH DELIM TABLE
NO MATCH

MATCH, IS IT CR?

NO, HANDLE IT IN MONITOR

HANDLE CR OUTSIDE MONITOR

GET TRIAL OPCODE
GET FMT+LENGTH FOR OPCODE

GET LOWER MNEMONIC BYTE
MATCH?

NO, TRY NEXT OPCODE

GET UPPER MNEMONIC BYTE
MATCH?

NO, TRY NEXT OPCODE.

GET TRIAL FORMAT
TRIAL FORMAT RELATIVE?
YES.

SAME FORMAT?

YES.

NO, TRY NEXT OPCODE

NO MORE, TRY WITH LEN=2
WAS L=2 ALREADY?

NO.

YES, UNRECOGNIZED INST.

PRINT ~ UNDER LAST READ
CHAR TO INDICATE ERROR

POSITION.

(NN
INITIALIZE PROMPT
GET LINE,
INIT SCREEN STUFF
GET CHAR

ASCII BLANK?
YES

ASCII 'S$' IN COL 1?
YES, SIMULATE MONITOR
NO, BACKUP A CHAR

GET A NUMRER

':' TERMINATOR?

NO, ERR.

NO ADR PRECEDING COLON.
MOVE ADR TO PCL, PCH.
COUNT OF CHARS IN MNEMONIC

CET FIRST MNEM CHAR.
SUBTRACT OFFSET
LEGAL CHAR?

NO.
COMPRESS-LEFT JUSTIFY

DO 5 TRIPLE WORD SHIFTS

F5CC:
F5CE:
F5DO0:
FS5D1:
F5D3:
FS5D5:
F5D7:
F5D9:
F5DB:
F5DE:
FSEO:
F5E3:
F5E5:
FSEB:
FSEB:
F5ED:
FSFQ:
F5F2:
F5F4:
F5F6:
FSFg:
F5F9:
FSFA:
F5FC:
F5FE:
F600:
F603:
F605:
F607:
F608:
F60A:
Fo0C:
F60D:
F60F:
F6l0:
F612:
F614:
F615:
F616:
F618:
F61A:
F61C:
F61E:
F620:
F622:
F624:
F626:
F629:
F62B:
F62D:
F62F:
F631:
F634:
F637:
F638:
F63A:
F63C:

F666:

26
26
ca
10
Cé
FO
10
A2
20
84
DD
bo
20
oD
FQ
BD
0
Cc9
FO
A4
18
8R
26
EO
Do
20
AS
FO
E8
86
A2
88
86
CA
10
AS
0Aa
0A
05
Cc9
B0
A6
FO
09

84
B9
c9
FO

DO
4C

B9
cs8

c9
FO
60

4C

42
43

F8
3D
F4
E4
05
34
34
34

34
oD
BA
07
A4
03
34

35
20
06
35
02

80
44

34

00
BB
04
8D
80
5C
00

AQ
F8

92

Fé

F9

Fé
F9

F9

02

F5
02

F5

FOoPM1
FORM 2

FORM3
FOEM4
FORMS

FORMb

FORA47T

FORMS8

FORM9
GETNSP

MINASH

ROL
ROL
DEX
SPL
DEC
BEQ
BRPL
LDX
JSR
STY
cme
RNE
JSR
Cmp
5E0
LDA
CED
Cip
BEOQ
LCY
CLC
CEY
ROL
CEX
BNE
JSR
LDoA
BEQ
INX
STX
LnX
DEY
STX
DEX
3PL
LDA
ASL
ASL
ORA
CMP
RCS
LDX
BEQ
ORA
STA
STY
LbA
cMp
BEQ
Ccup
BNE
JMP
LDA
INY
cMp
BEQ
RTS
ORG
JMP

A4L
A4d

NXTM2
AlH
NXTM2
NXTMN
#S5
GETNSP
YSAV
CHARI, X
FORM3
GETNSP
CHARZ,X
TORMS
CAR2,X
FORE4
£S5 4
FOpPHA
YSAV

FaT
#S3
FORM7T
GETNUM
A28
FORi6

L
#S3

AlH

FORM2
FmT

A

A

L
#520
FORMB
L

FORMS
#$80
FMT
YSAV
IN,Y
#3588
FORM9
#58D
ERF4
TRYNEXT
IN,Y

#SA0
GETNSP

$F666
RESET?Z

93

DONF WITH 3 CHARS?
YES, RUT DO 1 MORE SHIFT
NO

5 CHARS IN ADDR MODE

GPT FIRST CHAR OF ADDR

FIRST CHAR MATCH PATTERN?
NO

YES, GET SECOND CHAR
“ATCHES SECOND HALF?

YES

NO, IS SECOND HALF ZERO?
YES,

NG,SFCOMD HALF OPTIONAIL?
YES.

CLEAR BIT-NO MATCH
RACK UP 1 CHAR

FORM FORMAT BYTE

TIME TO CHECK FOR ADDR.
NO

YES

HIGH-ORDER BYTE ZERO
NO, INCR FOR 2-BYTE
STORF LENGTH

RELOAD FORMAT INDEX
PACKUP A CHAR

SAVE INDE¥X

DONE WITH FORMAT CHECK?
NO.

Y¥sS, PUT LENGTH

IN LOW BITS

ADD '$' IF NONZERO LENGTH
AND DOW'T ALREADY HAVE IT

GET NEXT NONBLANK

‘' START OF COMMENT?
YES

CARRIAGE RETURN?

NO, ERR.

GET WEXT NON BLANK CHAR

hhkhhkkkrkhhhhhhhkrkk k¥

* *
* APPLE-I1 FLOATING *
* POINT ROUTINES *
* *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER INC, *
* *
* ALL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* *

KhkkhRkAkhhh Rk kR hkhkkkkhkk
TITLE "FLOATING POINT ROUTINES"

SIGN EPZ SF3

X2 EPZ SF4

M2 EPZ SF5S

X1 FPZ S$F8

M1 EPZ $F9Y

B EPZ SFC

GVLOC EQU S3F5

ORG $F425

F425: 18 ADD CLC CLEAR CARRY.
F426: A2 02 IDX #$2 INDFX FOR 3-RYTF ADD.
F428: B5 F9 ADU1 LDA M1,X
F42a: 75 F5 ADC M2,X ADD A BSYTE OF MANTZ2 TO MANTIL.
F42C: 95 F9 STA M1,X
F428: CA 2oFEY ISDEX TO WNEXT MORE SICNIF. BYTE.
F42F: 10 F7 BPL ADD1 LOOP UNTIL DONE.
F431: 60 RTS RETURKN
F432: 06 F3 MD1 ASL SIGN CLEAR LSE OF SIGN.
F434: 20 37 F4 JSK BR3AT AR5 VAL OF M1, THEN SWAP WITH M2
F437: 24 F9 ARSWAP BIT 1 MANT1 NEGATIVE?
F439: 10 05 GPL ARSwWAPL NO, SUAP @ITH MANT2 AND RETURN,
F43B: 20 A4 F4 JSR FCGwPL YES, COUMPLEMENT IT.
F43E: E6 F3 INC SIGW 13C™ SICN, COMPLEMENTING LSP.
F440: 386 ADSvAPL sSeC SET CARRY FOR RETURN TO MUL/DIV.
F441: A2 (4 SYAP LDX 4254 INCEX FOR 4=-RBRYTE SWAP,
£443: 94 FB SWAP1 STY E-1,%
F445: RS5 F7 LDA X1-1,X SWAP A BYTE GF EXP/MANT1 WITH
F447: B4 F3 Loy x2-1,X EXP/MANTZ AND LEAVE A COPY OF
F449: 94 F7 STY X¥1-1,X MANT1 IN £ (3 3YTPES). FE+3 USED
F448: 95 F3 3TA ¥2-1,X
F44D: CA DE¥ ADVANCE INMDEX TO NEXT BYTE,
F44E: DO F3 BNE SWAPL LOOP UNTIL ODONE,
F450: 60U RTS PETURH
F451: A9 gE FLOAT LDA #cfE INIT ©XP1 TO 14,
F453: 65 F8 sSTA X1 THEN WORMALIZE TO FLOAT.
F455: A5 F¢ NoPMl Loa Ml HIGH=ORDER MANT] BYTE.
F457: C9 CO CiP #SCO UPPER TWO EBITS UWEOUAL?
F459: 30 GC B3I RTS1 YES, RETURN wITH MANT1 NORMALIZFD
F453: C6 Fd DEC X1 DECREMENT TXP1,
F450: U6 t'P ASL 1142
F45F: 26 Fa RCL #1141 SHIFT ~AWT1 (3 RYTES) LEFT.
F461: 26 F9 RCL M1
F463: A5 F8 NORM Lna X1 EXP1 ZERO?
F465: D0 EE BNE NWOR™M1 NO, CONTINUE NORMALIZING.
F467: 60 RTS1 PTS RETURN.
F468: 20 A4 F4 FSUB JSR FCOIMPL CMPL MANT1,CLEARS CARRY UNLESS 0O
F46B: 20 7B F4 SKPALGN JSR ALGNSWP RIGHT SHIFT MANT1 OR SWAP WITH
F46E: A5 F4 FATD LA X2
F470: C5 F8 cvp X° COMPARE FXPl WITH EXP2.
F472: DO F7 BNE SWPALGN IF #,5WAP ADDENDS OP ALIGN MANTS.
F474: 20 25 F4 JSR ADD ADT ALIGHED MANTISSAS,
F477: 50 EA ADDEND BVC NOR™M NO OVERFLOW, NOPMALIZE RESULT.
F479: 70 05 BVS RTLOG OV: SHIFT #1 RIGHT, CARRY INTO SIGK

94

F47B: 90 C4 ALGNSwP BCC SwWAP SWAP IF CARRY CLEAR,

* FLSE SHIFT RIGHT ARITH.
F47D: A5 F9 RTAPR Loa 1 SICN OF MANT1 INTO CARRY FOR
F47F: OA ASL A RIGHT ARITH SHIFT.
F480: E6 F8 RTLOC e ¥l INCR X1 TO aDJUST FOR RIGHET SHIFT
F482: FO 75 FEEZ OVFL FEXP1 OUT OF RANGE.
F484: A2 FA RTLOG1 LOX 4SFA INDEX FOR 6:PYTE RIGHT SHIFT.
F486: 76 FF ROR1 ROR E+3,X
F488: E8 INX MEX'L RYTE OF SHIFT.
F483: DO FB BNE ROR1 LOOP UNTIL ODONFR,
F48B: 60 ETS RETURN,
F48C: 20 32 F4 FMUL JSr MD1 ABS VAL OF MANT1, MANT2.
F48F: 65 F8 ADC X1 ADLC FXPl TO EXP2 FOR PRODUCT EXP
F491: 20 E2 F4 JSK VD2 CHECK PROD. TXP AND PREP. FOR MUL
F494: 18 CcLC CLEAR CARRY FOR FIRST BIT.
F495: 20 84 F4 “UL1 JSR RTLOGL M1 AND B RIGHT (PROD AND MPLIEP)
F498: 90 03 3CC ruLz IF CARRY CLEAR, SKIP PARTIAL PROD
F49a: 20 25 F4 JSR ADD ADD MWOLTIPLICAND TO PRODUCT.
F49D: &8 MUL2 CEY NEXT "UL ITERATION,
F49E: 10 F5 epL. MUL1 LOOP UNTIL DONFE.
F4A0: 46 F3 DEND LSR S5ICN TEST SIGN LS3.
F4A2: 90 EF NOPVX PCC WCR¥ IF EVEM,NORMALIZE PROD,ELSE COMP
F4A4: 38 FCOMPL SEC SET CARRY FOR SUBTRACT.
F435: A2 03 LDX 483 INDEX FOR 3-2YTE SURTRACT.
F4A7: A% 00 CoO4PL1 LDA &S0 CLEAP A,
F4A9: F5 F8 SBC X1,X SUBTRACT PYTE OF EXPl.
F4aB: 95 F3 5TA X1,X RESTORE IT.
F4AD: CA DEX. MEXT AORE SIGNIFICANT RYTE.
F4AE: DO F7 BNE COmPL] LOOP UNTIL DONE,
F4B0: FO0 C5 BEQ ADDEND NORMALIZE (OR SHIFT RT IF OVFL).
F482: 20 32 F4 FDIV J3r #D1 TAKE ABS VAL OF MANT1, MANT2.
F4B85: ES F8 SRC X1 SURTRACT EXPl FROM EXP2,
F4R7: 20 E2 F4 J3R MD2 SAVE AS QUOTIENT EXP.
F42a: 38 DIV1 SEC SET CARRY FOR SUBTRACT.
F4BB: a2 02 LDY #$2 INDEX FOR 3-FYTE SUBTRACTION.
F4BD: BS5 F5 DIV2 LDA M2,X%
F43F: F5 FC s8C E,X SUBTRACT A BYTE OF E FROM MANT2.
F4ACl: 48 PHA SAVE ON STACK.
F4C2: CA DEX NEXT MORF SIGNIFICANT BYTE.
F4C3: 10 FR 8PL. PIV2 LOOP UNTII DONE.
F4C5: A2 FD LDX 4SFD INDEX FOR 3-RYTE CONDITIONAL MOVE
F4C7: 68 DIV3 PLA PULL BYTF OF DIFFERENCE OFF STACK
F4C8: 90 02 BCC DIV4 IF M2<FE THEN DON'T RESTORE M2.
F4CA: 95 F8 STA M243,X
F4CC: E8 DIV4 INX NEXT LESS SIGNIFICANT RYTE.
F4CD: DO F8 BNE DIV3 LOOP UNTIL DONE.
F4CF: 26 FB ROL M1+2
F4D1l: 26 FA ROL M1+l ROLL OQUOTIENT LEFT,CARRY INTO LSB
F4D3: 26 F9 ROL M1
F4D5: 06 F7 ASL M2+42
F4D7: 26 F6 ROL M2+1 SHIFT DIVIDEND LEFT.
F4D9: 26 F5 RCOL M2
F4DB: BO 1C BCS OVFL OVFL IS DUE TO UNNORMED DIVISOR
F4DD: 88 DEY NEXT DIVIDE ITERATION.
F4DE: DO DA BNE DIV1 LOOP UNTIL DONE 23 ITERATIONS.
F4EO: FO BE BREOQ MDFND NORM. QUOTIENT AND CORRECT SIGN.
F4E2: 86 FB MD2 STX M1+2
F4E4: 86 FA STX M1+l CLEAR MANT1 (3 BYTES) FOR MUL/DIV.
F4E6: 86 F9 STX #1
F4E8: BO 0D 8CS OVCHK IF CALC. SET CARRY,CHECK FOR OVFL
F4EA: 30 04 3MI MD3 IF NEG THEM NO UNDERFLOW.
F4EC: 68 PLA POP OWE RETURN LEVEL.
F4ED: 68 PLA
F4EE: 90 B2 BRCC NORMX CLFAR X1 AND RETURN.
F4F0: 49 80 MD3 EOR #$80 COMPLEMENT SIGN SIT OF EXPONENT.
F4F2: 85 F8 STA X1 STORE IT.
F4F4: A0 17 LDY #S817 COUNT 24 ¥UL/23 BRIV ITERATIONS
F4F6: 60 RTS RETURN,
F4F7: 10 F7 OVCHK BPL D3 IF POSITIVE EXF THEN NO OVFL.
F4F9: 4C F5 03 OVFL JMP OVLOC

ORG SFo3D

F63D: 20 7D F4 FIX1 JSR RTAR
F640: A5 F8 FIX LDA X1
F642: 10 13 BPL UMDFL
F644: C9 BE CMP #5848
F646: DO F5 CNF FIX1
F648: 24 F9 317 M1
F64A: 10 0A BPL FIXPRIS
F64C: AS FB LDA M1+2
F64E: FO Oo BFQ FIXRTS
F650: E6 FA INC M1+l
F652: DO 02 BNE FIXRTS
F654: E6 F9 INC M1
F656: 60 FIXRTS RTS
F657: A9 00 UNDFL LDA #S0
F659: 85 F9 sTA Ml
F658: 85 FA S5TA M1+l
F65D: 60 RTS

95

F689:
F68C:
F68D:
F68F:
F690:
F692:
F695:
F698:
F69A:
F69C:
F69E:
F6A0:
F6Al:
F6A3:
F6A5:
F6AT:
F6AS8:
F6A9:
F6AA:
FB6AC:
FOAE:
F6BO:
F6B1:
F6B2:
F6383:
F684:
F6B7:
F6BH:
F6B9:
F6BE:
Fo3D:
FGEF:
FeC2:
F6C3:
F6C5:
F6Co6:
£F6C7
F6C8:
F6C9:
F6CC:
F6CF:

20
68
85
68
85
20
4C
E6
DO
E6
A9
48
AQ
Bl
29
0a
AA
4R
51
£o
&6
4A
4A
4A
A8
B9
48
60
E6
Do
E6
BD
48
A5
44
60
68
68
20
6C
Bl

4A
1E

1F
98
92
1E
62

1F

F7

GO
1E
OF

1E
0B
1D

El

1E
0z
1F
F4

1D

3F
1E
1F

FF

Fé
Fé

Fé

FF
00

XX S22 222222 a2 R
*

* APPLE~-II PSEULO
MACHINE INTERPRETER

»*

COPYRIGHT 1977
APPLE COMPUTER INC

ALL RIGHTS RESERVED

* % % * ¥ % ¥ ¥ ¥ *

&. WOZNIAK

* ok ok ¥ * ¥ X *

*
khkkhkkhkkkkhkhkhRhhhxkkhhkkx

TITLE *SWEETl6 INKTERPRETER"

ROL EPZ $0
ROH EPZ Sl
R144d LPZ $1D
R15L EPZ $1E
R15H EPZ ! 1F
S16PAG EQU SF7
SAVE LQU SFF4A

RESTORE EQU SFF3F
ORG $FoE9

Su16 J3K SAVE

PLA

STA RI15L

PLA

STA Fl5®
swlee JSP S116C

JYP SW16%
SW16C INC R1SL

BAE S116D

INC R154
S916D LDA #$16PAG

PHA

LRY #30

LDA (R15L),Y

AND #SF

ASL A

TAX

LS8 A

BOR (R15L),Y

REQ TORR

STX R14W

LSR A

LSR A

LSR A

ray

PRESERVE 6502 REG CONTENTS

INIT SYEET16 PC
FROM RETURN
ANDRESS
INTERPRET AVD EXECUTE
OKE SWEET16 INSTR.

INCP SUPET16 PC FOR FETCH

PUSH ON STACK FOR PTS

FETCH INSTR

MASK RFG SPECIFICATION
DOURLE FOR 2-RPYTE REGISTERS
TO X=REG FOR INDEXING

NOY HAVE CPCODE

IF Z5RO THEN NON=-REG OP
INDICATE'PRIOP EESULT PEG'
OPCOCE*2 TC LSP'S

TO Y=-REC FOR INDEXING

LDA CPTBL-2,Y LOW=-0ORDFR ADR RYTE

PHA
PTS
TO3R INC R15L
ANE LORR2
ING R15H
TCRE2 LA RRTRL,X
BHA
DA RleH
LSE &
FiS
RTHZ PLA
ELA

JSR RE3TURE
J¥mP (P15L)
SETZ LDA (R15L),Y

96

ONTC STACK
GO0 REG-0P ROUTINE

INCR PC

LOW-ORDFR ADP LCYTF

ONT(STACK FOR KON=RFG OP
'PRIOR RESOLT PEG® INDEX
PREPARE CARRY FOR RC, BNC.
GCTO WON=-REG OP ROUTINE
EQP RETURW ADPRESS

RESTORF 6502 REG COWNTENTS
RETURN TC 6502 CCDE VIA PC
HIGH=-ORDER BYTE OF CONSTAJT

Fépl: 95 01 STA ROH,X

F6D3: 88 DEY
F6D4: Bl 1E LDA (R15L),Y LOW-ORDFR BYTE OF CONSTANT
F6D6: 95 00 STA ROL,X
F6D8: 98 TYA Y-REG CONTAINS 1
F6D9: 38 SEC
F6DA: 65 1E ADC F15L ADD 2 TO PC
F6DC: 85 1E STA R15T,
F6DE: 90 02 BCC SET2
F6E0: E6 1F INC R15Y

FGE2: 60 SET2 RTS
F6E3: 02 OPTRL DFE SET-1 (1X)

654: F9 RRTRL DFE RIN=1 (0)
F6E5: 04 DFR LD-1 (2X)
F6E6: 9D DFP &r-1 (1)
F6E7: 0D DFR ST-1 (3%)
F6E8: 9E DFR RNC-1 (2)

F6EY: 25 DFB LDAT-1 (4X)

F6EA: AF DFe 8C-1 (3)

F6EB: 16 DFR STAT-1 (5X)

F6EC: B2 DFB8 Bp-1 (4)

F6ED: 47 DFR LDDAT-1 (6X)

F6EE: B9 DFE BM-1 (5)

F6EF: 51 DFB STDAT-1 (7X)

F6F0: CO DFE ngz-1 (6)

F6Fl: 2F DFR POP-1 (8%)

FoF2: C9 DFB aN7-1 (7

F6F3: 5B DFR STPAT-1 (9X)

F6F4: D2 DFE BM1-1 (8)

F6F5: 85 DFB ADD-1 (AX)

F6F6: DD DFB B8uml-1 (9)

F6F7: 6E DFE SU3-1 (BX)

F6F8: 05 DFE B8K~1 (A)

F6F9: 33 DFE PCPD-1 (CX)

F6FA: ES8 DFB FRS-1 (8)

F6FB: 70 DFB CPR-1 (DX)

F6FC: 93 DFB 35S-1 (C)

F6FD: 1E DFB INR=1 (EX)

F6FE: E7 DFB NUL-1 (D)

F6FF: 65 DFB DCR-1 (FX)

F700: E7 DFB NUL-1 (E)

F701: E7 DFB NUL-1 (UNUSED)

F702: E7 DFP NUL=-1 (F)

F703: 10 CA SET BPL SETZ ALWAYS TAKEN

F705: BS 00 LD LDA ROL,X

BK EQU *-1

F707: 85 00 STA ROL .

F709: BS5 01 LDA ROH,X MOVE RX TO RO

F70B: 85 01 STA ROH

F70D: 60 RTS

F70E: A5 00 ST LDA ROL

F710: 95 00 STA ROL,X MOVE RO TO RX

F712: A5 01 LDA ROH

F714: 95 01 STA ROH,X

F716: 60 RTS

F717: AS 00 STAT LDA ROL

F719: 81 00 STAT2 STA (ROL,X) STORE BYTE INDIRECT
F71B: A0 00 LDY #S0

F71D: 84 1D STAT3 STY R14H INDICATE RO IS RESULT REG
F71F: F6 00 INR INC ROL,X

F721: DO 02 3NE INR2 INCR RX

F723: Fé 01 INC ROH,X

F725: 60 INR2 RTS

F726: Al 00 LDAT LDA (ROL,X) LOAD INDIRECT (RX)
F728: 85 00 STA ROL 10 RO

F72A: AQ 00 LDY #S0
F72C: 84 01 STY ROH ZERO HIGH-ORDER RO RYTE
F72E: FO ED BEN STAT3 ALWAYS TAKEN
F730: A0 00 POP LDY 4S0 HIGH ORNDER BYTE = 0
F732: FO 06 BEQ POP2 ALWAYS TAKEN
F734: 20 66 F7 POPD JSR DCR DECR RX

£737: Al 00 LDA (ROL,X) POP HIGH-ORDER BYTE @RX
F739: A8 TAY SAVE IN Y-REG

F73A: 20 66 F7 POP2 JSR DCP DECE RX

F73D: Al 00 LDA (ROL,X) LOW-ORDER BYTE
F73F: 85 00 STA ROL TO RO
F741: 84 0l STY ROU
F743: A0 00 POP3 LDY #S0 INDICATE RO AS LAST RSLT REG
F745: 84 1D STY R14H
F747: 60 RTS
F748: 20 26 F7 LDDAT JSR LDAT LOW-ORNDER BYTE TO RO, INCR RX
F74B: Al 00 LDA (ROL,X) HIGH-ORDER BYTE TO RO
F74D: 85 01 STA ROHY
F74F: 4C 1F F7 J¥P INR INCR R¥
F752: 20 17 F7 STDAT JSR STAT STORE IWDIRFCT LOW-ORDER

97

F755: AS 01 LDA ROH RYTE AND INCR RX., THFN

F757: 81 00 STA (ROL,X) STORF HIGH-ORDER RYTE.
F759: 4C 1F F7 JMp INR INCR RY AND RETURN
F75C: 20 66 F7 S3TPAT J3R DCF DECR FX

F75F: A5 00 LDA ROL

F761: 81 00 ST4 (ROL,X) STORE RO LOVW RBYTF @RYX
F763: 4C 43 F7 JYMP POP3 1INDICATE RO AS LAST RSLT REG
F766: B5 00 ocR LDA ROL,X

F768: DO 02 PNE DCR2 NDECR PRX

F76A: D6 01 DEC ROH,X

F76C: D6 00 NCR2 DEC ROL,X

F76E: 60 RTS

F76F: AQ0 00 301 LDY #SQ RESULT TO RO

F771: 38 CPR SEC NOTE Y-REG = 13*2 FOR CPR
F772: A5 00 Lba ROL

F774: F5 00 S8C ROL,X

F776: 99 00 00 STA ROL,Y RO=-RX TO RY

F779: A5 01 LDA ROH

F77B: F5 01 SBC ROH,X

F77D: 99 01 00 3082 STA ROH,Y

F780: 98 TYA LAST RESULT REG*2

F781: 69 00 ADC #5350 CARRY TO LSRR

F783: 85 1D STA R14H

F785: 60 RTS

F786: AS 00 ADD LDA ROL

F788: 75 00 ADC ROL,X

F78A: 85 00 STA ROL RO+RX TO RO

F78C: A5 01 LDA ROH

F78E: 75 01 ADC ROH,X

F790: A0 00 LDY #5350 RO FOR RESULT

F792: F0O E9 BEQ SUR2 FINISH ADD

F794: AS 1E BS LDA RI15L NOTE X-REG IS 12*21)
F796: 20 19 F7 JSR STAT2 PUSH LOW PC BRYTE VIA R12
F799: AS 1F LDA R15H

F79B: 20 19 F7 JSR §TAT2 PUSH HIGH-ORDER PC BYTE
F79E: 18 BR CLC

F79F: BO OE BNC BCS BuC2 NO CAPRPRY TEST

F7Al: Bl 1E BR1 LDA (R150),Y DISPLACRMENT BYTE

F7A3: 10 01 3PL RR2

F7A5: 88 DEY

F7A6: 65 1E 8R2 ADC R15L ADD TO PC

F7a8: 85 1E STA R15L

F7AA: 98 TYA

F7AB: 65 1F ADC R15H

F7AD: 85 1F STA R15H

F7AF: 60 8NC2 RTS

F7B0: BO EC B5C BCS SR

F7B2: 60 RTS

F7B3: OA 3p ASL A LOUELE RESULT-PEG INDEX
F7B4: AA TAX TO X-REG FOR INDEXING
F7B5: BS 01 LbA ROH,N TEST FOR PLUS

FIBZ: 10 £8 BPL BPRl RRANCH IF SO

F7B9: 60 RTS

F7BA: 0A 31 ASI, A DOURLF RESULT-EEC INDEX
F7B2: AA TAX

F7BC: BS5 01 Lba ROH,X TEST FOR MINUS

F7BE: 30 E1 BMI RR1

F7C0: 60 RTS

F7Cl: 0A B2 ASL A DOURLE RESULT-REG INDEX
F7C2Z: AA TAX

F7C3: BS 00 LEA ROL,X TEST FOR ZERO

F7C5: 15 01 OF4 ROH,X (BOTH RYTES)

F7C7: FO D8 REQ 3E1 RRANCH IF SO

F7C9: 60 TS

F7CA: 0A Py, ASL A DOURLE RESULT=REC THDEX
F7CB: AA TAX

F7CC: B5 00 LDA ROL,X TEST FOR NOWZERD

F7CE: 15 01 ORA ROH,X (BOTH BYTES)

F7D0: DO CF BNE BR1 BRANCH IF SO

F7D2: 60 . RTS

F7D3: 0A BM1 ASL A DOUBLE RESULT-REG INDEX
F7D4: AA TAX

F7D5: B5 00 LDA ROL,X CHECK BOTH BYTES

F7D7: 35 01 AND ROH,X FOR $FF (MINUS 1)

F7D9: 49 FF EOR #SFF

F7DB: FO C4 . BEQ 8R1 BRANCH IF 50

F7DD: 60 RTS

F7IDE: 0A BNM1 ASL A DOUBLE RESULT-REG INDEX
F7DF: AA TAX

F7E0: B5 00 LbA ROL,X

F7E2: 35 01 AND ROH,X CHECK BOTH BYTES FOR NO SFF
F7E4: 49 FF EOR #SFF

F7E6: DO B9 BNE BPR1 RRANCH IF NOT MINUS 1
F7E8: 60 NUL RTS

F7E9: A2 18 RS LDX #8518 12*2 FOR R12 AS STK POINTER

F7EB:
F7EE:
F7F0:
FIF2:
F7F5S:
FIF7:

F7F9:
F7FA:

20
Al
85
20
Al
85
60
4C

66 F7
00
1F
66 F7
00

1E
C7 Fé6 RTN

JSR
LDA
STA
JSR
LDA
STA
RTS
JvP

DCR
(ROL, X)
R1SH
DCR
(ROL, X)
R15L

RTNZ

99

DECR STACK POINTER
POP HIGH RETURN ADR TO PC

SAME FOR LOW-ORDER BYTE

6502 MICROPROCESSOR INSTRUCTIONS

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS

cLc
CLD
CLI
cLv
cmpP
CPX
CPY
DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

Add Memory to Accumulator with
Carry

“AND” Memory with Accumulator
Shift Left One Bit (Memory or
Accumulatorn)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decima! Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

“Exclusive-Or" Memory with
Accumulator

Increment Memory by One
Increment Index X by One
increment Index Y by One

Jump to New Location
Jump to New Location Saving
Return Address

100

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Load Accumulator with Memory
Load Index X with Memory
Load index Y with Memory
Shift Right one Bit (Memory or
Accumuiator)

No Operation
“OR” Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Puli Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right tMemory or
Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transter Index Y to Accumulator

I<ti==x >+ | covozx>

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumulator

Index Registers
Memory

Borrow

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive Or
Transfer From Stack
Transfer To Stack
Transfer To

Transtfer To

Logical OR

Program Counter
Program Counter High
Program Counter Low
Operand

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION

o TeTe el o o]

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY

OR ACCUMULATOR)

Inoohone

oGy

FIGURE 3.

I nnonnnnn)

NOTE 1: BIT — TEST BITS

Bit 6 and 7 are transferred to the status register. If the
result of A A M is zero then Z=1, otherwise Z=0.

Immediate Addressing Mode

PROGRAMMING MODEL

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

s BN B I e B
<

9
L Jo ;_Jo L o Llo Lo

PCH PCL PROGRAM COUNTER
7
[0] s STACK POINTER
7 0
[N[v]B]o]i]Z]c] PROCESSOR STATUS REGISTER, "P"
CARRY
ZERO

INTERRUPT DISABLE
DECIMAL MOCE
BREAK COMMAND
OVERFLOW
NEGATIVE

101

| Buias AQ DINSBW 3q DUUED DURLAOD NHE ¥ I JION

SN A Y IO UPSE Ayl i IS8 SNIMIS JYi O PIHISURE 28 £ DuR », M | JON

0+ 7 ISWay0 | W uaw

auo Aq
———N 1 88 A3Q paidw) A~ 1L—A A X3pur juawaLdag
A3l
3uo AqQ
A I vl X3a paduw X—1—X X X3pui Juawaiza(g
X30
€ | 30 X'13dg 030 | X'amnjosqy
€ | 39 Jadp 930 ainjosqy
b4 9d x'13dQ 930 | xabeq osa7 auo Aq
AN 2 99 Jadg 930 abeq 0197 N~—Il—N Asowaw Juawaids(g
J30
€ 20 1adg AdD anjosqy
Z ¥0 12dQ AdD abed 0137 A Xapu|
———AAA 2 02 sadQ# AdD epaww| W—A pue Asowaw asedwo)
Add
€ 3 JadQ XdO ainjosqy
Z ¥3 19do Xd2 abed 0197 X xaput
—— AAN P4 03 1300# XdD ajeIpawwy N—X pue Asowaw 3sedwo?)
XdJ
4 10 | A'(ied0) dWO | A'(10astpuy)
4 13 (x'42dQ) dWO {X'wanpu)
€ 60 A'1edg dND A'ainosqy
€ aa X'12dg dWO X'3njosqy
€ ad Jado dWO anjosqy
Z S0 X'19dg dWO | X ‘abed 0187
P4 (%) 18dg dWD abeg 0137 10}B[NWNIJE
———AAN 4 69 13do# dND ajeipaw| wW—Vv pue Arowaw 3sedwo)
dil
||||| 0 i 84 AT patiduwy A~0 Bey moysano Jeal)
A1)
——0-——— L] o8 na panduy I~0
)
—-—0- 3 8@ ad paliduwy =90 apow |ewIdap ses|y
an
——0~— 8 8i 19 paijdw) -0 Gey) A1sed seay
3N
llllll z oL 13d0 SAS aAlB(aY | L=A UO Youesg 135 MOJJJ3A0 UO Youelg
SA8
AOIDZN |suidg) apog wio4 PO vofidasag
‘Ssy smeg 4. ON do abenBueq fu)ssappy - uopesadg AweN
XIH Alquiassy

S3AO0O0 NOILONYLSNI

————— 2z 0 13dg JA8 aane(ay | 0=A uo youeig | Jeajd mojuano uo youelg
Jnd
$dt2+0d
wdnuR)

PR P t 00 R paijdwi padiog yeaig 83104
) bLL
|||||| 2 ol 13do 149 aAnejay | 0=N uo yaueig snyd ynsas uo youeig
144
|||||| b4 0d 13d0 3ING annelay | 0=z uo ysueig | 0132 JOu JNSas YO YIuRIg
‘ INg
|||||| F 0 13d0 INg aAnejay | (=N uo youesg [snunw ynsas uo youeig
(LT
. € x Jadp .11g aqniosqy A=W J01g|NWNJJ. Ylim
W—-AN | 2 |z 1do L1 abed 0137 {'N= ‘N 'WVV Asowaw uy sHQ 1531
119
|||||| z 04 13dQ D38 aAnejay | 1=Z uo youerg 0492 J|NSaJ UO Yauelg
038
|||||| P 08 12d0 S08 aAle|ay | 1= uo yaueig 195 ALid uo youeig
SJ8
|||||| 3 06 13d0 928 aAneay | 0=9 uo yaueig Jeapd Aued uo youelg
208

€ 3l X'JadQ 1SV X'81nj0sqy

€ 30 Jadg 1SV ainjosqy

1 9 X'1adg 19y | X-abed 0137
2 90 13dQ 1SV abed 0497 (1018|NWNIIY 10 AIOWaK)
—— AN 3 Vo0 v ISV | Jojeinwnddy | (| ainbi 83g) g U0 Yat Jys
sv

4 1% A'(sedg) ONV A'(103spug)

1 ¥4 (x'49d0) QNV (X'100.tpU1)

€ 6¢ AJsd0 ANV Aapiosqy

€ | @ X130 ONV | XaInjosqy

€ a 18d0 NV a1njosqy

4 SE X'43d0 QNV | X'abed 0iaz
2 P74 13d0 QNY abeq 0197 loiejnwnaoe
——prr e | & 180y ONV | aleipeww V—HAVY unm Aowaur ONY..
any

Z tL A'(13d0) oQv A(10211pug)

4 19 (x'13d0) Qv (X" 103s1pu)

€ 6L A'18dg JQv A'3INj0sqy

£ a X'13dg o0V | Xx'anjosqy

€ a9 1adg 00V ainjosqy

4 SL X'18dg Qv | x'abed 03z
z 59 jadg Qv abed 0132 K113 ylim 10jBjMUNIde
N==PAN [4 69 lad0s 0Qv Aepaww] | V- J-N-Y 01 Aiowaw ppy
Jay

AQIIZN |seiig | 3pog wio4 9o uondpiaseq
‘Boy snieig 4. | ON 40 sfenfueny Buissaippy uojieradg qwey
X3H Ajquiassy

102

€ . X'13d0 HoY X'anjosqy

€ 39 13d0 4oy 3)njosqy

e 9L X'13d0 4Oy | x'abeq 0137
P 9 Jadg Yoo afieqd 0137 (1018)NWNIIE 10 Asowaw)
———AAN 1 v9 V HOY | J0lejnwnddy | (¢ anbi4 3ag) Wb 11q auo ajejoy
Hod

€ 3 X'13dg 104 X'ainjosqy

€ Br4 12do 104 an|osqy

4 9€ X'1ad0 104 | X'abed osa7
2 [:¥4 1300 104 abey 0137 (103e|nNwnade 10 Asowaw)
——/NIN 1 ve ¥ 04 | J0ie|nwnady | (g 8nbiy aag) H31 11q auo 3jejoy
104
HIBIS Wol)
YIBIS woi4 L 74 d1d patdw td snieis 105s3304d |jng
did
HOBIS WoY)
———=AN I 89 vd patjdwy v Jojejnwinade fing
Vid
39.1S U
|||||| L 80 dHd payduwt $d SnJels 105s3201d ysng
dHd
AJBIS UO
llllll 1 o VHd paiduy by J0JBINWNITR ySNg
VHd

4 18 A'(42d0) vHO A'(1384puy)

4 10 (x'13dQ) vdO (x"19211pup)

£ 6i A'ledo w0 A'3IMjosqy

€ a X'18d0 v40 X' ainfosqy

£ a0 18dg vHO AN[osqy

Z Si X'i8d0 wHo | X'abed oiaz
2 S0 J13d0 vHO abeq oiaz Jolgjnwnooe
——pr Lz o0 13d0# vHO | arepawwy V=HAY nm Alowaw Ho.,
LLLY
|||||| L vl dON paydw) | uonesadg oN uolesado oN
dON

€ 35 X100 Y¥S7 X'3injosqy

€ B4 43do Y$1 3in|0sqy

4 95 X'18d0 ys1 | x'abed 0187
4 of 13dQ ¥s1 afieq 013z (Jo3e|nwnage 10 Alowaw)
==/ N0 3 014 V 4S7 | J0lejnwnady | (1 ainbiy aag) 11q au0 Wb 1S
4s1

AOIJDZN [saikg| apo] wiog apo uojd1s083Q
‘Bay smmig .d.. | ON 40 afenfiuey Buyssasppy uonesadg ey
X3H Alquassy

€ 08 x'sedg AQY X 9Injosqy
€ v Jdg AQ niosqy
4 va X'48dQ AQ1 | x'abed 0197
2 vy sdg AN abeq 0137 Alowaw yim
———=/N 4 ov 1ado# AQY aelpawwy AN A X3pul peot
A1
€ | 38 A43dQ XQ1 | AInjosqy
€ | 3 1ado x0 ajnjosqy
4 98 A3d0 X(1 | A'abeq 0saz
4 9V 13d0 Xa1 afied 0197 AKowaw yum
———= AN 4 v 12do# Xa1 aeipawul XN X Xapul peoy
X|m
4 3:] A'tisdp} @1 A'(103atpuy)
2 v | (xuedp) v@1 | (x'1oaupu))
€ 69 A'18d0 Va1 | A'Injosqy
£ ag X'4edg va1 | x'@anjosqy
€ av 18do vQ1 3Injosqy
4 | x'18d0 va1 | x'afeq ose7
2z oY 1940 va1 abed 0197 Klowaw ypm
YN Z 6V 1ado# va1 3)eIpaWW| VN 101B|NWNIJE Peo]
val
HJd=- (2+3d)
19d=— (1+3d) ssaippe uinjas buines
iiiiii £ 02 13dg Hsr 3njosqy ‘$2+0d u01je30| Mau 0} dwnp
usr
£ 29 (19d0) dWr 10041puf | HOd = (2+9d)
\\\\\\ € o4 18d0 dWr anjosqy | 19d= (1+2d) uojeac| mau o} dwnr
dWr
N i 80 ANI pajdwy A== L+ A 3u0 Aq A xapui Juawaidu|
ANI
1 83 XNI patjduw; X=—1 + X | 3uo Aq X xepur jJuawaiou
XNI
€ 34 X'1360 ONI X'an|osqy
€ 33 18dQ ONI Anjosqy
4 9J x'1adg JNI | X'abed o187 auo £q
e AN 4 93 13dg ONI abed 0137 W= 1+WN Alowaw juawaiay]
: INI
c 3] A'(1380) Y03 A'(Wautpuy)
4 Ly (x'13d0) 403 (X"19310pup)
: € 65 A'd3d0 H03 A'anjosqy
; [as X'13d0 Y03 X'81n0sqy
: €| o 1adg 403 ainjosqy |
; Z 5 X'ad0 403 | Xx'abed 097 !
: 2 Sy 13d0 403 abeg 0197 | 101BNWNJJR YlIM
2 6 13do# 403 Aeipaww) | v—NAY Asousau JQ-3AISN|OX3,,
! 403
AQIIZN |soikg; 9po) wiog apow i uopdyiasag
‘Boy smieig 4. | ON d0 afienduey Buissesppy . uonesedg aweN
X34 hquassy m

S3Ad00 NOILONYHLSNI

103

X Xapui o}

10}gINwnode 0}

A l 86 VAL payjduw VA A X3pul 13jsues|
VAL
13ui0d yae)S
——— | 6 SX1 paiduw S+ X 0} X Xapw Jajsue)
SX1
j Joie|nwnade 0}
———=/MN v8 vX1 panduw V=X X Xapul s3jsued
VX1

AOIJIZN ([saihg| apog uloy poy uofid}iasag

‘Osy simS 4. | ON | dO afienbuey Bujssa.ppy uojjesadg ey
X3H K|quassy

S3A0D NOILONYLSNI

———— AN It ve XSt parjdw| X=S J31u10d %IBIS Jajsuely
XS1i
A Xapu| 0}
——— AN 1 'l AVL paidusy A=Y J0}B{NWNJJ. 13jSUBL]
AVl
X xaput 0}
—— e AN i VY XV1 paljdwy XV Jojeinwindde 19jsuel)
XVl
€ 8 sado ALS aNn|0sqy
4 6 X'18d0 ALS | X'abed 0187
|||||| F4] 13dQ ALS abeg 0137 W A | Azowauw ui A x3apul 31015
ALS
€ 38 JadQ X1S ain|osqy
4 96 A'43dp XiS | A‘abeq oiaz
|||||| 4 98 13d0 X1S abed 0137 W= X | Atowaw ui X xapul 3i01S
X1$
e 16 A'(12d0) vis A'(13a11pun)
e 18 (x'13dQ) viS (X'13841puy)
€ | 66 Asedo VIS | A'ainjosqy
€ a6 x'18do vIS [X'anjosqy
€ as Jadg V1S 3njosqy
4 G6 X'1adg v1§ | X'abeq 0137 Alowaw ul
llllll 2z s8 18dp V1S abeg 0137 N=—VY 161BINWNJJE 3101
VisS
snels
— 3 8. 13S patjduy =1 3|qestp 18Nt 13§
138
-l 8 E] a3s paijdu (e § 3pow jewtdap 1ag
a3s
- 3 8E 23S patjduw) =1 Geyj Auied jag
38
4 [E] A'(18d0) 0gs A'(1231ipuy)
4 13 (x'18d0) 2gs (X"19841puy)
€ | 64 Auedg 0gS | Aanjosqy
€ | ad X'1edg 08S | X'anjosqy
£ a3 1ad0 08S aqn|osqy
2 | &4 x'1adp 08s | x'abed 0137
Z] 1300 28S abeq 0137 M0110G YlIM J0jBjnWNII.
A AAA 4 63 1ado# 28S sepow|{ Y=-3-W-V woyy Alowaw 12eAgNg
J88
|||||| i SiH paydwy {0d=— 1+9d '§d auNN0IQNS WOJ} uINjaYy
Si4
%IBiS Woi4 i oy] paijdw +0d4d 1dnaiaul wouy uinlay
i 114
AQIJZN [sakg| 8po] wio4 apow _ uayidiiasag
‘Oay smels 4. | ON 40 abenbuey Bujyssaippy uopesadg | aweN
X3H Ajquiassy |

104

dON — 44
X ‘ainjosqy — ON| —~ 34
X ‘8injosqy — 0gs — g4

dON — 04
dON — g4
dON — v4
A ‘@njosay — 59$ — 64
g3s — 84
dON — 24

X ‘abed 0197 — ON| — 94
X 'abed 0187 — 0gS — ¢4

dON — vd
dON — ¢4
dON — 24
A '09811pU) — 08S — 14
038 — 04
dON — 43

aInosqy — ONJI — 33
anosqy — 09s — a3
aAnjosqy — xdOd — 03

dON — 83
dON — v3
aIpBWW] — OGS — 63
XNI — g3
dON — 23

a6ed 0i87 — ONI — 93
abeg o197 — 0gs — g3
afeg 0187 — xd3 — t3
dON — €3

dON — 23

X "13sIpU) — 08s — 13
INBIP3IWW| — Xd0 — 03
dON — 4a

X ‘ainiesay — 93a — 30
X ‘ainjosay — dwd— aa
dON— Oa

dON — 8a

d4ON— vQ
A ‘@injosqy — dWo — 6Q
a0 —ea
dON — /a0

X ‘abed o1az — 930 — 9q
X ‘abed 0187 — dWO — sQ

dON — $Q
dON — €0
dON —2Q
A ‘aoaaipuny — dno — ta
3N8 — 0Q
dON — 40

ainjosqy — 930 — 30
aInjosqy — dWd— ao
aInjosqy — AdO— 990

dON— 80
X3Q— vO
eIpsww] — dWO — 60
ANI — 8D
dON — 2D

abeq ose7 — 030 — 90
abed 0197 — dND — 5O
abed 0187 — AdD — pD
dON — €2

dON — 20

(X 19a1pun — dWO — 1D
ABIPIWW] — AdD — 0D
dON — 48

A ‘anjosqy — xa1 — 39
X ‘ainjosay — yg1— ag
X ‘@Injosqy — AQ1— 08

dON — 88
XSl —va
A 'anosay — vQ1 — eg
A0 — g8
dON — .8

A ‘ebed 0197 — xq1 — 98
X 'abed 0187 — va71 — 68
X ‘abed 0137 — AQ7 — pg

dON — €8
dON — 28
A ‘Go34ipup) — vgl —.8
§08 — 08
dON — 3v

8INjosqy — xa1 — 3v
anjosqy — qv
aNosSqY — AQ7 — IOV

dON — gv
XVLl— vy
sjglpaww) — yvgl — 6y
AVL — 8v
dON — (v

abed 0197 — xQ1 — 9v
abed oiaz — vQg1 — v
8bed 017 — AQ1 — p¥
dON — eV

seipawW] — xQ1 — 2v
(X 19221pUp — va1 — 1y
slepaww| — AQ1 — oV

dON — 46
dON — 36
X ‘8wyosay — viS — Q6
dON — 06
dON — 86
SX1 — V6
A '@INjosqy — v1S — 66
VAL — 86
dON — /6

A ‘abed 0187 — x1S — 96
X ‘abed 0197 — y1S — Gg
X ‘968d 0197 — ALS — ¥6

dON — €6
dON — 26
Aaosnpu — vis — 16
008 — 06
dON — 48

Nosqy — xS — 38
Nosay — vis — Qg8

S3AO0D NOILVYH3IdO X3IH

anosqy — ALS — 08

dON — 88
X1l — v8
dON — 68
A3Q —e8
dON — /8

abeg 0s97 — XIS — 98
abeq 0497 — v¥iS — 68
abed 0102 — A1S—~ $8

4ON — €8
dON — 28
(X Wanpu)) — ¥iS — 18
dON — 08
dON — 44

dON X '81n0sqQy — HOY — 32
dON X ‘sinjosay — 2Qv — QL

dON — D!

dON — a.

dON — V2L

A ‘@injosqy — OQVv — 6.
138 — 8L

dON — UL

X ‘abed 0187 — HOY — 9L
X ‘abed 0187 — 0Qv — $¢

dON — vL
dON — €L
dON — 2L
A ‘(98aipu) — oAV — 12
SA8 — 0L
dON — 49

anosqy — oY — 39
anjosqy — oav — g9
3ilpul — JWNF — 09
dON — 89

101B[NWNJ0Y — HOY — V9
aepaww] — Ogvy — 69
Vid — g9

dON — L9

abad 0197 — WO — 99
abed 0Ja7 — DAV — 59

dON — ¥9
dON — €9
dON — 29
(X ‘1Panpup — 0QY — 19
Siy — 09
dON — 4§

X '#ntosqy — WS — 3§

X ‘@njosqy — 4O3 — as

dON — OS

dON — 8¢

dON — v§

A '8InosqQy —HO3I — 6%
Mo — 88

dON — S

X ‘abed 087 — 4g1 — 95
X ‘abed 0197 — HO3 — S§

dON — 5
dON — €5
dON — 2§
A ‘@931puUl) HOI — 1§
OA8 — 0§
dON — 4t

anjosqy — HS1 — 3y
einjosqy — HO3 — af
anosqy — diNr — OF
dON — v

JOIBINWNIOY — WS — Vi
slepawiu) — HO3 — 6
VHd — 8¢

dON — v

abey 0187 — YS1 — 9%
abed 0iaz — HO3 — Sy

dON — b

dON — &v

dON — 2Zp

(X 1081pul) — 4O — Iy
. 14 —or

dON — 4€

X ‘2injosqy’ — 104 — 3¢
X '3njosqy — ANV — A€

dON — D¢
dON — 8¢
dON — vE
A ‘@INjosqy — gNV — 6¢
038 — 8¢
dON — /€

X ‘abed 0182 — 104 — g¢
X '8bed 0197 — NV — G¢

dON — vE
dON —¢¢
dON —2¢
A (02itpup — ONVY — LE
ing — 0t
dON — 42

AN0SqQY — 10H — 32
ainosqy — GNVY — Q2
enjosqy — (19 — 92
dON — 82

JOIBINWNIOY — J0H — V2
alvIpaww — ANV — 62
did —82

dON — 12

abey o167 — 10H — 92
ebed 0197 — ANV — SZ
obed o107 — Li1g — ¥2

dON — €2
dON — 22
(X '10811pUl) — ANV — 12
Hsr — 02
dON — 4t

X ‘anjosqy — ISy — 31
X ‘@injosqy — yHO — Qi

dON — 01
dON — g1
dON — Vi
A '9INjOsqQy — YHO — 6L
0710 — 81
dON — /1

X ‘obed 0107 — ISV — 9t
X ‘abed 0187 — YHO — Gi

dON — ¥t
d4ON — €L
dON — 2t
A ‘G081ipu)) — YHO — LI
48 — 0t
dON — 40

njosqy — I1sv — 30
8Injosqy — yHO — Q0
dON — 00

dON — 80

J01BINUINDDY — ISY — Yo
epaww — yHO — 60
dHd — 80

dON — 10

abed 0107 — 1Sy — 90
abed 0187 — vHO — S0

dON — »0
dON — €0
dON — 20
(X "108JIpul — YHO —~ 1O
X489 — 00

105

o s~

52

APPLE || HARDWARE

Getting Started with Your APPLE Il Board
APPLE 1l Switching Power Supply
Interfacing with the Home TV

Simple Serial Output

Interfacing the APPLE —
Signals, Loading, Pin Connections

Memory —
Options, Expansion, Map, Address

. System Timing
. Schematics

106

GETTING STARTED WITH YNUR APPLE Il BOARD

INTRODUCTION

ITEMS YOU WILL NEED:

Your APPLE II board comes completely assembled and thoroughly tested.
You should have received the following:

a. 1 ea. APPLE II P.C. Board complete with
specified RAM memory.

b. 1 ea. d.c. power connector with cable.
c. 1 ea. 2" speaker with cable.
d. 1 ea. Preliminary Manual

e. 1lea. Demonstration cassette tapes. (For 4K: 1 cassette (2 proarams):
16K or greater: 3 cassettes.

f. 2 ea. 16 pin headers plugged into locations A7
and J14.

In addition you will need:

g. A color TV set (or B & W) equipped with a direct
video input connector for best performance or a com-
mercially available RF modulator such as a "Pixi-verter"
Higher channel (7-13) modulators generally provide
?ettﬁr system performance than lower channel modulators
2-6).

tm

h. The following power supplies (NOTE: current ratings
do not include any capacity for peripheral boards.):

1. +12 Volts with the following current capacity:
a. For 4K or 16K systems - 35@0mA.
b. For 8K, 20pK or 32K - 550QmA.
c. For 12K, 24K, 36K or 48K - 850mA.

2. +5 Volts at 1.6 amps

3. -5 Volts at TgmA.

4. OPTIONAL: If -12 Volts is required by your keyboard.
(If using an APPLE II supplied keyboard, you will
need -12V at 5QmA.)

107

An audio cassette recorder such as a Panasonic model
RQ-309 DS which is used to load and save programs.

An ASCII encoded keyboard equipped with a "reset"
switch.

Cable for the following:
1. Keyboard to APPLE IT P.C.B.
2. Video out 75 ohm cable to TV or modulator

3. Cassette to APPLE II P.C.B. (1 or 2)

Ontionally you may desire:

1.

m

Game paddles or pots with cables to APPLE II Game I/0
connector. (Several demo programs use PDL(0) and
"Pong" also uses PDL(1).

Case to hold all the above

Final Assembly Steps

1.

Using detailed information on pin functions in hardware
section of manual, connect power supplies to d.c. cable
assembly. Use both ground wires to miminize resistance.
With cable assembly disconnected from APPLE II mother
board, turn on power supplies and verify voltages on
connector pins. Improper supply connections such as re-
verse polarity can severely damage your APPLE II.

Connect keyboard to APPLE II by unplugging leader in
location A7 and wiring keyboard cable to it, then plug
back into APPLE II P.C.B.

Plug in speaker cable.

Optionally connect one or two game paddles using leader
supplied in socket located at J14.

Connect video cable.

Connect cable from cassette monitor output to APPLE II
cassette input.

Check to see that APPLE II board is not contacting any
conducting surface.

With power supplies turned off, plug in power connector
to mother board then recheck all cableing.

108

POYER UP

1. Turn power on. If power supplies overload, immediately turn off
and recheck power cable wiring. Verify operating supply voltages
are within +3% of nominal value.

2. You should now have random video display. If not check video
level pot on mother board, full clockwise is maximum video out-
put. Also check video cables for opens and shorts. Check
modulator if you are usina one.

3. Press reset button. Speaker should beep and a "*" prompt
character with a blinking cursor should appear in Tower
left on screen.

4. Press "esc" button, release and type a "@" (shift-P) to
clear screen.. You may now try "Monitor" commands if you
wish. See details in "Monitor" software section.

RUNNING BASIC

1. Turn power on; press reset button; type "control B" and press
return button. A ">" prompt character should appear on screen
indicating that you are now in BASIC.

2. Load one of the supplied demonstration cassettes into recorder.
Set recorder level to approximately 5 and start recorder. Type
"LOAD" and return. First beep indicates that APPLE II has found
beginning of program; second indicates end of program followed
by ">" character on screen. If error occurs on Toading, try a
different demo tape or try changing cassette volume level.

3. Type RUN and carriage return to execute demonstraticn program. -

Listings of these are included in the last section of this
manual.

109

THE APPLE II SWITCHING POWER SUPPLY

Switching power supplies generally have both advantages and peculiarities
not generally found in conventional power supplies. The Apple II user
is urged to review this section.

Your Apple II is equipped with an AC line
voltage filter and a three wire AC line cord.
It is important to make sure that the third
wire is returned to earth ground. Use a con-
tinuity checker or ochmmeter to ensure that
the third wire is actually returned to earth.
Continuity should be checked for between the
power supply case and an available water pipe
for example. The line filter, which is of a
type approved by domestic (U.L. CSA) and
international (VDE) agencies must be returned
to earth to function properly and to avoid
potential shock hazards.

The APPLE II power supply is of the "flyback" switching type. 1In
this system, the AC Tine is rectified directly, "chopped up" by a high
frequency oscillator and coupled through a small transformer to the
diodes, filters, etc., and results in four low voltage DC supplies to
run APPLE II. The transformer isolates the DC supplies from the line
and is provided with several shields to prevent "hash" from being
coupled into the logic or peripherals. In the "flyback" system, the
energy transferred through from the AC line side to DC supply side is
stored in the transformer's inductance on one-half of the operating
cycle, then transferred to the output filter capacitors on the second
half of the operating cycle. Similar systems are used in TV sets to
provide horizontal deflection and the high voltages to run the CRT.

Regulation of the DC voltages is accomplished by controlling the
frequency at which the converter operates; the greater the output power
needed, the lower the frequency of the converter. If the converter is
overloaded, the operating frequency will drop into the audible range
with squeels and squawks warning the user that something is wrong.

A11 DC outputs are regulated at the same time and one of the four
outputs (the +5 volt supply) is compared to a reference voltage with
the difference error fed to a feedback Toop to assist the oscillator
in running at the needed frequency. Since all DC outputs are regulated
together, their voltages will reflect to some extent unequal loadings.

110

For example; if the +5 supply is loaded very heavily, then all
other supply voltages will increase in voltage slightly; conversely,
very 1ight loading on the +5 supply and heavy loading on the +12
supply will cause both it and the others to sag Tightly. If precision
reference voltages are needed for peripheral applications, they should
be provided for in the peripheral design.

In general, the APPLE II design is conservative with respect to
component ratings and operating termperatures. An over-voltage crowbar
shutdown system and an auxilliary control feedback loop are provided
to ensure that even very unlikely failure modes will not cause damage to
the APPLE II computer system. The over-voltage protection references to
the DC output voltages only. The AC line voltage input must be within
the specified Timits, i.e., 107V to 132V.

Under no circumstances, should more
than 140 VAC be applied to the input
of the power supply. Permanent damage
will result.

Since the output voltages are controlled by changing the operating
frequency of the converter, and since that frequency has an upper limit
determined by the switching speed of power transistors, there then must
be a minimum load on the supply; the Apple II board with minimum memory
(4K) is well above that minimum load. However, with the board discon-
nected, there is no load on the supply, and the internal over-voltage
protection circuitry causes the supply to turn off. A 9 watt load
distributed roughly 50-50 between the +5 and +12 supply is the nominal
minimum load.

Nominal Toad current ratios are: The +12V supply Tload is % that of the +5V.
The - 5V supply load is 1/1p that of the +5V.
The -12V supply Tload is 1/1p that of the +5V.

The supply voltages are +5.9 + 0.15 volts, +11.8 + P.5 volts, -12.¢ + 1V,
-5.2 + 0.5 volts. The tolerances are greatly reduced when the loads are
close to nominal.

The Apple II power supply will power the Apple II board and all present
and forthcoming plug-in cards, we recommend the use of Tow power TTL, CMOS,
etc. so that the total power drawn is within the thermal Timits of the entire
system. In particular, the user should keep the total power drawn by any
one card to less than 1.5 watts, and the total current drawn by all the cards
together within the following limits:

+ 12V - use no more than 250 mA
+ 5V - use no more than 500 mA
- 5V - use no more than 200 mA
- 12V - use no more than 200 mA

The power supply is allowed to run indefinetly under short circuit
or open circuit conditions.

CAUTION: There are dangerous high
voltages inside the power supply
case. Much of the internal circuitry
is NOT isolated from the power Tline,
and special equipment is needed for /-
service. NO REPAIR BY THE USER IS //
ALLOWED. /

111

NOTES ON INTERFACING WITH THE HOME TV

Accessories are available to aid the user in connecting the Apple II
system to a home color TV with a minimum of trouble. These units are called
"RF Modulators" and they generate a radio frequency signal corresponding to
the carrier of one or two of the lower VHF television bands; 61.25 MHz
(channel 3) or 67.25 MHz (channel 4). This RF signal is then modulated with
the composite video signal generated by the Apple II.

Users report success with the following RF modulators:

the "PixieVerter" (a kit)
ATV Research

13th and Broadway

Dakota City, Nebraska 68731

the "TvV-1" (a kit)
UHF Associates

6037 Haviland Ave.
Whittier, CA 90601

the "Sup-r-Mod" by (assembled & fested)
M&R Enterprises

P.0. Box 1011

Sunnyvale, CA 94088

the RF Modulator (a P.C. board)
Electronics Systems

P.0. Box 212°

Burlingame, CA 94010

Most of the above are available through local computer stores.

The Apple II owner who wishes to use one of these RF Modulators should
read the following notes carefully.

A11 these modulators have a free running transistor oscillator. The
M&R Enterprises unit is pre-tuned to Channel 4. The PixieVerter and the
TV-1 have tuning by means of a jumper on the P.C. board and a small trimmer
capacitor. All these units have a residual FM which may cause trouble if
the TV set in use has a IF pass band with excessive ripple. The unit from
M&R has the least residual FM.

A1l the units except the M&R unit are kits to be built and tuned by
the ~ustomer. A1l the kits are incomplete to some extent. The unit from
Electronics Systems is just a printed circuit board with assembly instructions.
The kits from UHF Associates and ATV do not have an RF cable or a shielded
box or a balun transformer, or an antenna switch. The M&R unit is complete.

Some cautions are in order. The Apple II, by virtue of its color qraphics
capability, operates the TV set in a linear mode rather than the 108% contrast
mode satisfactory for displaying text. For this reason, radio freguency inter-
ference (RFI) generated by a computer (or peripherals) will beat with the

112

carrier of the RF modulator to produce faint spurious background patterns
(called "worms") This RFI "trash" must be of quite a Tow level if worms

are to be prevented. In fact, these spurious beats must be 40 to 50db

below the signal level to reduce worms to an acceptable level. When it is
remembered that only 2 to 6 mV (across 3909) js presented to the VHF input
of the TV set, then stray RFI getting into the TV must be less than 50uv

to obtain a clean picture. Therefore we recommend that a good, co-ax

cable be used to carry the signal from any modulator to the TV set, such

as RG/59u (with copper shield), Belden #8241 or an equivalent miniature

type such as Belden #8218. We also recommend that the RF modulator be
enclosed in a tight metal box (an unpainted die cast aluminum box such as
Pomona #2428). Even with these precautions, some trouble may be encountered
with worms, and can be greatly helped by threading the coax cable conn-
ecting the modulator to the TV set repeatedly through a Ferrite toroid core.
Apple Computer supplies these cores in a kit, along with a 4 circuit
connector/cable assembly to match the auxilliary video connector found on
the Apple II board. This kit has order number A2MP1PX. The M&R "Sup-r-Mod"
is supplied with a coax cable and toroids.

Any computer containing fast switching logic and high frequency clocks
will radiate some radio frequency energy. Apple Il is equipped with a
good 1ine filter and many other precautions have been taken to minimize
radiated energy. The user is urged not to connect "antennas" to this
computer; wires strung about carrying clocks and/data will act as antennas,
and subsequent radiated energy may prove to be a nuisance.

Another caution concerns possible long term effects on the TV picture
tube. Most home TV sets have "Brightness" and "Contrast" controls with a
very wide range of adjustment. When an un-changing picture is displayed
with high brightness for a long period ,a faint discoloration of the
TV CRT may occur as an inverse pattern observable with the TV set
turned off. This condition may be avoided by keeping the “Brightness"
turned down slightly and "Contrast" moderate.

113

A SIMPLE SERIAL OUTPUT

The Apple II is equipped with a 16 pin DIP socket most frequently
used to connect potentiometers, switches, etc. to the computer for
paddle control and other game applications. This socket, Tocated at
J-14, has outputs available as well. With an appropriate machine
language program, these output Tines may be used to serialize data in
a format suitable for a teletype. A suitable interface circuit must
be built since the outputs are merely LSTTL and won't run a teletype
without help. Several interface circuits are discussed below and the
user may pick the one best suited to his needs.

The ASR - 33 Teletype

The ASR - 33 Teletype of recent vintage has a transistor circuit
to drive its solenoids. This circuit is quite easy to interface to,
since it is provided with its own power supply. (Figure la) It can
be set up for a 20mA current loop and interfaced as follows (whether
or not the teletype is strapped for full duplex or half duplex oper-
ation):

a) The yellow wire and purple wire should both go to
terminal 9 of Terminal Strip X. If the purple wire
is going to terminal 8, then remove it and relocate
it at terminal 9. This is necessary to change from
the 60mA current loop to the 20mA current Toop.

b) Above Terminal Strip X is a connector socket identi-
fied as "2". Pin 8 is the input line + or high; Pin
7 is the input line - or low. This connector mates
with a Molex receptacle model 1375 #(3-09-2151 or
#03-09-2153. Recommended terminals are Molex #02-(9-
2136. An alternate connection method is via spade lugs
to Terminal Strip X, terminal 7 (the + input line) and
6 (the - input line).

¢) The following circuit can be built on a 16 pin DIP
component carrier and then plugged into the Apple's
16 pin socket found at J-14: (The junction of the
3.3k resistor and the transistor base lead is float-
ing). Pins 16 and 9 are used as tie points as they
are unconnected on the Apple board. (Figure la).

114

The "RS - 232 Interface"

For this interface to be legitimate, it is necessary to twice invert
the signal appearing at J-14 pin 15 and have it swing more than 5 volts
both above and below ground. The following circuit does that but requires
that both +12 and -12 supplies be used. (Figure 2) Snipping off pins
on the DIP-component carrier will allow the spare terminals to be used for
tie points. The output ground connects to pin 7 of the DB-25 connector.
The signal output connects to pin 3 of the DB-25 connector. The "protective"
ground wire normally found on pin 1 of the DB-25 connector may be connected
to the Apple's base plate if desired. Placing a #4 lug under one of the
four power supply mounting screws is perhaps the simplest method. The +12
volt supply is easily found on the auxiliary Video connector (see Figure S-11
or Figure 7 of the manual). The -12 volt supply may be found at pin 33 of
the peripheral connectors (see Figure 4) or at the power supply connector
(see Figure 5 of the manual).

A Serial Out Machine Center Language Program

Once the appropriate circuit has been selected and constructed a machine
language program is needed to drive the circuit. Figure 3 Tists such a tele-
type output machine language routine. It can be used in conjunction with an
Integer BASIC program that doesn't require page $3@@ hex of memory. This
program resides in memory from $37@ to $3E9. Columns three and four of the
Tisting show the op-code used. To enter this program into the Apple II the
following procedure is followed:

Entering Machine Language Program

1. Power up Apple II

2. Depress and release the "RESET" key. An asterick
and flashing cursor should appear on the left hand
side of the screen below the random text matrix.

3. Now type in the data from columns one, two and three
for each line from $370 to @3E9. For example, type in
"370: A9 82" and then depress and release the "RETURN"
key. Then repeat this procedure for the data at $372
and on until you complete entering the program.

Executing this Program

1. From BASIC a CALL 88p ($37@) will start the execution of
this program. It will use the teletype or suitable 8§
column printer as the primary output device.

115

2. PR#P will inactivate the printer transfering control
back to the Video monitor as the primary output device.

3. In Monitor mode $37@G activates the printer and hitting
the "RESET" key exits the program.

Saving the Machine Language Program

After the machine language program has been entered and checked for
accuracy it should, for convenience, be saved on tape - that is unless
you prefer to enter it by keyboard every time you want to use it.

The way it is saved is as follows:

1. Insert a blank program cassette into the tape

recorder and rewind it.

2. Hit the "RESET" key. The system should move
into Monitor mode. An asterick "*" and flash-
ing cursor should appear on the left-hand side
of the screen.

3. Type in "370.03E9W 370.Q3E9W".

4. Start the tape recorder in record mode and depress
the "RETURN" key.

5. When the program has been written to tape, the asterick
and flashing cursor will reappear.

The Program

After entering, checking and saving the program perform the following
procedure to get a feeling of how the program is used:
1. BC (control B) into BASIC

2. Turn the teletype (printer on)

3. Type in the following

10 CALL 88p

15 PRINT "ABCD...XYZP1123456789"
20 PR#P

25 END

4. Type in RUN and hit the "RETURN" key. The
text in line 15 should be printed on the
teletype and control is returned to the key-
board and Video monitor.

116

Line 10 activates the teletype machine routine and all "PRINT" state-
ments following it will be printed to the teletype until a PR#Q statement is
encountered. Then the text in line 15 will appear on the teletype's output.
Line 2@ deactivates the printer and the program ends on line 25.

Conclusion

With the circuits and machine language program described in this paper
the user may develop a relatively simple serial output interface to an ASR-33
or RS-232 compatible printers. This circuit can be activated through BASIC
or monitor modes. And is a valuable addition to any users program library.

117

+5v

2N3906 (OR EQUIV.)

-+

C X XD outeut 1o TELETYRE
(PN 15).
T RESISTORS ARE [/4 WATT CARBON

FIGURE 1 ASR-33

+12 (JUMPERED TO +12 SUPPLY)

2N3906

470N

2N3904 OQUTPUT (+)

OUTPUT (-}

PiN 15
J-i4

J-i4
=12 (JUMPERED TO -i2 SUPPLY)

FIGURE 2 RS-232

118

TZELETYPL DRIVER ROUTINES

1 TITLE °*TELETYPZ DRIVER ROJTINEZS®

2 ok ok ok ok ok ok ok ok ROK R K KK Kk K Rk KOk KR K

3 * *

4 * TTYDRIVJVZR: *

5 * TELETYPEZ QUJTPJT *

6 * ROJTINE FOR 72 *

7 * COLJMN PRINT WITH %

g * 8ASIC LIST *

9 * *

10 * COPYRIGHT 1977 BY: *

11 * APPLE COMPUTER INC. *

12 * 117187717 *

13 * *

14 * R. WIGGINTON *

15 * S« WOZINIAK *

16 * *

17 sk ko 3k K ok Ak 3k ok ok ok ok ok ok ok K ok ok ok ok ok K

18 WNDWDTH EQU 321 3FOR APPLE-I1

19 CH EQU 324 3CURSOR HORIZ.

20 CSwL EQU 336 3 CHAR. 0OUJUT SWITCH

21 YSAVE EQY 3778

22 COLCNT EQU 37F8 3COLUMN COUNT LOC.

23 MARK EQU $C058

24 SPACE EQJ $CO0S59

25 WAIT EQJ 3IFCAS8

26 ORG $370
*x*WARNING: OPERAND OVERFLOW IN LINE 27
0370: A9 82 27 TTINIT: LDA #TTOUT
0372: 85 36 28 STA CSVWL 3JPOINT TO TTY ROUTINES
0374: A9 03 29 LDA #TTOUT/2556 JHIGH BYTE
0376: 85 37 30 STA CSWL+!
0378: A9 48 31 LDA #72 3SET WINDOW WIDTH
037A: g5 21 32 STA WNDWDTH 3TO NUMBER COLUMNS ONY
037C: AS 24 33 LDA CH
037 : 8D F8 07 34 STA COLCNT JWHERE WE ARE NOW.
038t: 60 35 RTS
0382: 48 356 TTOUT: PHA 3SAVE TWICE
0383: 48 37 PHA 3ON STACK.
0384: AD F8 07 38 TTOUT2: LDA COLCNT ;CHEZCK FOR A TAB.
0387: C5 24 39 CMr C(CH
0389: 68 40 PLA $RESTORE QUTPIJT CHAR.
038A: BO 03 41 B8CS TESTCTRL 31F C SET, NO TA3
038C: 48 42 PHA
038D: A9 A0 43 LDA #3A0 3PRINT A SPACE.,
038F: 2C CO 03 44 TESTCTRL: BIT RTSI 3TRICK TO DETERMINZ
03%92: FO 03 45 BEQ PRNTIT 31F CONTROL CHAR.
0394: EE F8 07 46 INC COLCNT $sIF NOT, ADD ONE TO CHE
0397: 20 Ct! 03 47 PRNTIT: JSR DOCHAR 3PRINT THE CHAR ON TTY
039A: 68 48 PLA s RESTORE CHAR
039B: 48 49 PHA ;AND PUT BACK ON STACK
039C: 90 E6 50 3CC TTOUTZ2 ;DO MORE SPACZS FOR Ta
039E: 49 0D 51 EOR #30D 3CHECK FOR CAR RET.,
03A0: 0A 52 ASL A JELIM PARITY
03Al: DO 0D 53 BNE FINISH 31IF NOT CR, DONE.

FIGURE 3a

119

3:42 P«Me.o

03A3:
03A6:
03A8:
03AB:
03AD:
0380:
03B3:
0335
03B7:
038B9:
0383:
038D:
033F:
03CO0:

03C1:
03C4a:
03C5:
03C7:
03C38:
03C9:
03C3:
03CE:
03DO0:
03D3:
03D5:
03D6:
03D8:
03D9:
03D3:
03DC:
03DE:
03EO0:
03E1l:
Q03E2:
03E3:
Q03ES:
03E8:
03E9:

8D
A9
20
A9
20
AD
FO
ES
E9
90
69
85
68
60

8C
08
AQ
18
48
BO
AD
90
AD
A9
48
A9
4A
90
68
E9
DO
68
6A
88
DO
AC
23
60

1171871977

F8 07
8A
cl 03
58
A8 FC
F8 07
08
21
F7
04
lF
24

78 07
08
05
59 CO
03
58 CO
D7
20

FD

E3
78 07

54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17
78
79
80
81
82
83
84
85
36
37
88
89
90
91

92

TELETYPE DRIVER R0OUTINES

STA COLCNT
LDA #38A
JSR DOCHAR
LDA #3573
JSR WAIT
FINISH: LDA COLCNT
BEQ SETCH
SBC WNDWDTH
SBC #5F7
3CC RETURN
ADC #31F
SETCH: STA CH
RETURN: PLA
RTS1: RTS
* HERE IS THEZ TELETYPE PRINT
DOCHAR: STY YSsAvz
PHP
LDY #3083
CLC
TTOUT3: PHA
3CS MARKOUT
LDA SPAC=
3CC TTOUTA4
MARKOUT : LDA MARK
TTOUTA4 LDA #%D7
DLY PHA
LDA #320
DLY?2: LSRR A
BCC DLY?Z2
pLA
S3C #301
3NE DLYI
PLA
ROR A
DEY
BNE TTOUT3
LDY YSAvVz
pLP
RTS
ERRORS

kkkkkkxkSUCCESSFUL ASSZMBLY:

FIGURE 3b

120

PAGZ: 2
$CLEAR COLUMN COUNT
$NOW DO LINE FEED

3200MSEC DELAY FOR LIB
JCHECK IF IN MARGIN
3FOR CR, RESET CH

51F S0, CARRY SzT.

JADJYJST CH

JRETURN TO CALLZR
A CHARACTER ROUTINZ:

SAVE STATUS.,

It 3ITS ¢l START, 3 R
3J3EGIN WITH SPACE (STR
3SAVE A REG AND SZIT FOA

.
2
(3
»

3SEIND A SPACZ

JSEND A MARK
sDELAY 9.031 MSZC FOR
3110 BAUD

SNEXT BIT (STOP BITS R
LOOP 11l 3ITS.

JRESTORE Y-RZGe.
3RESTORE STATUS
SRETHIRN

CROSS-REFERNCE: TELETYPE DRIVER ROUTINES

CH 0024 0033 0039 0065
COLCNT 07F8 0034 0038 0046 00S4 0059
CSwL 0035 0028 0030
DLY1 03D5 0085
DLY2 03D8 0082
DOCHAR 03C1 0047 0056
FINISH 0380 0053
MARK cos8 0077
MARKOUT 03D0 0074
PRNTIT 0397 0045
RETURN 03BF 0063
RTS1 03C0 0044
SETCH 038D 0060
SPACE €059 0075
TESTCTRL O038F 0041
TTINIT 0370
TTOUT 0382 0027 0029
TTOUT2 0384 0050
TTOUT3 03C8 0089
TTOUT4 03D3 0076
VAIT FCAS8 0058
WNDWDTH 0021 0032 0061
YSAVE 0778 0069 0090
ILE:

FIGURE 3c

121

INTERFACING THE APPLE

This section defines the connections by which external devices are
attached to the APPLE II board. Included are pin diagrams, signal
descriptions, loading constraints and other useful information.

TABLE OF CONTENTS

1. CONNECTOR LOCATION DIAGRAM

2. CASSETTE DATA JACKS (2 EACH)

3. GAME I/O CONNECTOR

4. KEYBOARD CONNECTOR

5. PERIPHERAL CONNECTORS (8 EACH)
6. POWER CONNECTOR

7. SPEAKER CONNECTOR

8. VIDEO OUTPUT JACK

9. AUXILIARY VIDEQ OUTPUT CONNECTOR

122

Figure TA APPLE II Board-Complete View

T T - I L A g L P AR

1

T A R e I AR 0 00 L

— '~

MPSA

m

N

.

ey

ety

i
{

.

L H TR R

R

by

L) - - .
B S
5 :

IR RRHANER]

L8 R LA

? Al

al - im]

ol :
l K3 - - oF Ik
ORI SO 2 A "
—

.‘§‘15

s
.

f

m’ﬂ.-ll'lﬂﬁ.ll‘.l.'.'l'lll:

N [J I T S s 7

123

Figure 1B Connector Location Detail

POWER
CONNECTOR

KEYBOARD
CONNECTOR

APPLE 1 PC BOARD
TOP VIEW

PERIPHERALS

CASSETTE DATA IN

.

CASSETTE DATA OUT

- < VIDEO OUTPUT
0 1 2 3 4 5 6 7
o} (e} o o O (o} o O Y
Ki2 K13 |,
AUXILIARY
[E===]<-— VIDEO OUTPUT
J14B CONNECTOR
a
<
o
|
g
i« Y
@ GAME 1/0
S CONNECTOR
S
< o o o o o o o o .
@ Ji14
2 J2 J4 J5 J6 Ja Jo Jn J12 T
|
| |
. L
B SPEAKER
ga | CONNECTOR
A7 -
[
< ©
v~ Q
A |
O
. T
1 4 5 6 7 8 9 10 1 12 1314 =5

CONNECTOR LOCATIONS

Front Edge of PC Board

124

CASSETTE JACKS

A convenient means for interfacing an inexpensive audio cassette
tape recorder to the APPLE II is provided by these two standard
(3.5mm) miniature phone jacks located at the back of the APPLE II
board.

CASSETTE DATA IN JACK: Designed for connection to the "EARPHONE"
or "MONITOR" output found on most audio cassette tape recorders.
ViN=1Vpp (nominal), ZIN=]2K Ohms. Located at K12 as illustrated in
Figure 1.

CASSETTE DATA OUT JACK: Designed for connection to the "MIC" or
"MICROPHONE" 1input found on most audio cassette tape recorders.
=25 mV into 1Q9Q Ohms, Z.,,.=10@ Ohms. Located at K13 as illustrated

V =
iRUFigure 1. ouT

GAME 1/0 CONNECTOR

The Game I/0 Connector provides a means for connecting paddle controls,
lights and switches to the APPLE II for use in controlling video games,
etc. It is a 16 pin IC socket located at J14 and is illustrated in
Figure 1 and 2.

Figure 2 GAME 1/0 CONNECTOR

P
(Front éggevg?NPC Board

+5V 1)° 16 N.C.

SwWo 2 75 ANO

Sw1 3 14 AN1

Sw2 4 13 AN2

C040STB 5§ 72 AN3
PDLO 6 11 PDL3
PDL2 7 10 PDL1

GND 8 9 NC.

LOCATION J14

125

SIGNAL DESCRIPTIONS FOR GAME I/0

AN@-AN3: 8 addresses (C@58-CQ5F) are assigned to selectively
"SET" or "CLEAR" these four "ANNUNCIATOR" outputs.

Envisioned to control indicator lights, each is a
74LSxx series TTL output and must be buffered if used

to drive lamps.

CQ4Q STB: A utility strobe output. Will go Tow during f, of a
read or write cycle to addresses CQ4Q-CQAF. This is

a 74LSxx series TTL output.

GND: System circuit ground. 0 Volt line from power supply.

ﬂg: No connection.

.) .) . ble

PDL@-PDL3: Paddle control innuts. Reauires a @-150K ohm varia
g resistance and +5Y for each paddle. Internal 198 ohm
resistors are provided in series with external pot to
prevent excess current if pot goes completely to zero

ohms.

SWE-SW2: Switch inputs. Testable by reading from addresses
C@61-CP63 (or CP69-CE6B). These are uncommitted
74LSxx series inputs.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be Tess than 100mA.

KEYBOARD CONNECTOR

This connector provides the means for connecting as ASCII keyboard
to the APPLE II board. It is a 16 pin IC socket Tocated at A7 and is

illustrated in Figures 1 and 3.

Figure 3 KEYBOARD CONNECTOR
TOP VIEW

(Front Edge of PC Board)
+5v 1 |® 16 N.C.
STROBE 2 15 —12V
RESET 3 14 N.C.
N.C. 4 13 B2
B6 5 12 B1
B5 6 11 B4
B7 7 10 B3
GND 8 9 NC.
LOCATION A7

126

SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

B1-B7: 7 bit ASCII data from keyboard, positive logic (high level=
"1"), TTL logic levels expected.

GND: System circuit ground. @ Volt Tine from power supply.
NC: No connection.
RESET: System reset input. Requires switch closure to ground.

STROBE: Strobe output from keyboard. The APPLE II recognizes the
positive going edge of the incoming strobe.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than T1QQmA.

-12V: Negative 12-Volt supply. Keyboard should draw less than
50mA.

PERIPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the
APPLE II board provide a convenient means of connecting expansion
hardware and peripheral devices to the APPLE II I/0 Bus. These are
Winchester #2HW25CP-111 (or equivalent) 5@ pin card edge connectors
with pins on .19" centers. Location and pin outs are illustrated in
Figures 1 and 4.

SIGNAL DESCRIPTION FOR PERIPHERAL 1/0

AB-A15: 16 bit system address bus. Addresses are set up by the

6502 within 306nS after the beginning of @,. These lines
will drive up to a total of 16 standard TTL loads.

DEVICE SELECT: Sixteen addresses are set aside for each peripheral
connector. A read or write to such an address will
send pin 41 on the selected connector low during ﬂz
(5@9nS). Each will drive 4 standard TTL loads.

DB-D7: 8 bit system data bus. During a write cycle data is
set up by the 6502 less than 3P@nS after the beginning
of @,. During a read cycle the 6502 expects data to
be r%ady no less than 19PnS before the end of ﬂz.
These lines will drive up to a total of 8 total“low
power schottky TTL Toads.

127

DMA:

DMA IN:

DMA OUT:

= I
2| |=2
| |o

INT OUT:

1/0 SELECT

IRQ:

Direct Memory Access control output. This Tine has a
3K Ohm pullup to +5V and should be driven with an
open collector output.

Direct Memory Access daisy chain input from higher
priority peripheral devices. Will present no more
than 4 standard TTL loads to the driving device.

Direct Memory Access daisy chain output to lower
priority peripheral devices. This line will drive
4 standard TTL loads.

System circuit ground. @ Volt 1ine from power supply.

Inhibit Line. When a device pulls this line low, all
ROM's on board are disabled (Hex addressed DP@@ through
FFFF). This Tine has a 3K Ohm pullup to +5V and

should be driven with an open collector output.

Interrupt daisy chain input from higher priority peri-
pheral devices. Will present no more than 4 standard
TTL loads to the driving device.

Interrupt daisy chain output to lower priority peri-
pheral devices. This line will drive 4 standard TTL
loads.

: 256 addresses are set aside for each peripheral connector

(see address map in "MEMORY" section). A read or write
of such an address will send pin 1 on the selected
connector low during Qz (500nS). This line will drive
4 standard TTL loads.

[/0 STROBE: Pin 20 on all peripheral connectors will go low during

@, of a read or write to any address C8@@-CFFF. This
1?ne will drive a total of 4 standard TTL loads.

Interrupt request 1ine to the 65p2. This Tine has a
3K Ohm pullup to +5V and should be driven with an open
collector output. It is active Tow.

No connection.

Ngn Maskable Interrupt request line to the 6502. This
Tine has a 3K Ohm pullup to +5V and should be driven with
an open collector output. It is active low.

A !MHz (nonsymmetrical) general purpose timing signal. Will
drive up to a total of 16 standard TTL Joads.

"Reqdy" Tine to the 65@2. This line should change only
during @., and when Tow will halt the microprocessor at
the next 'READ cycle. This line has a 3K Ohm pullup to

+5V and should be driven with an open collector output.

Reset line from "RESET" key on keyboard. Active Tow. Will
drive 2 MOS loads per Peripheral Connector.

128

+12V:

-12V:

READ/WRITE Tine from 6502. When high indicates that a read
cycle is in progress, and when low that a write cycle is

in progress. This line will drive up to a total of 16
standard TTL loads.

The function of this 1ine will be described in a later
document.

Microprocessor phase f clock. Will drive up to a total of
16 standard TTL Toads.

Phase 1 clock, complement of ﬂo. Will drive up to a total
of 16 standard TTL loads.

Seven MHz high frequency clock. Will drive up to a total
of 16 standard TTL loads.

Positive 12-Volt supply.
Possitive 5-Volt supply
Negative 5-Volt supply.
Negative 12-Volt supply.

POWER CONNECTOR

The four voltages required by the APPLE II are supp!ied viq this
AMP #9—35@28-1?6 pin connector. See location and pin out in Figures

1 and 5.

PIN DESCRIPTION

(2 pins) system circuit ground. @ Volt line from power
supply.

Positive 12-Volt 1ine from power supply.
Positive 5-Volt Tine from power supply.
Negative 5-Volt 1ine from power supply.

Negative 5-Volt line from power supply.

129

Figure 4 PERIPHERAL CONNECTORS
(EIGHT OF EACH)

TOP VIEW
PINOUT (Back Edge of PC Board)

&

—

GND 26 :FE 25 +5V
DMAIN 27 |3 24 DMAOUT
INTIN 28 (] ;22 23 INT OUT

NMI 290 | (9| 22 DMA

JRQ 30 |d B2l 27 RDY

RES 37 |J 3| 20 /O STROBE

iINA 32|cd B3] 79 NeC

-12v 33 |d B3| 18 R/W

-5V 34| F| 17 A5

NC. 35|cd B3l 16 A1s

™ 36 |CdiEa| 15 A3

Q3 37|53 14 A2

o1 38 ||| 13 A1

USER1 39 [3|Ea] 12 A10

20 40|31 17 A9

DEVICE SELECT 471 |03 53| 10 A3
07 2|0 B9 a7

D6 43|d 3|8 as

D5 44|Cd |7 as

D4 45| 316 A4

D3 46| 3|5 A3

D2 47| @] 4 A2

D1 48] EI| 3 AT

Do 49| B3] 2 Ao
+12v 50| B| 7 /O SELECT

—

—)
(Toward Front Edge of PC Board)
LOCATIONS J2 TO J12

Figure 5 POWER CONNECTOR

TOP VIEW
PINOUT (Toward Right Side of PC Board)
i, I——
5 6
(BLUE/WHITE WIRE) —12V e e -5V (BLUE WIRE)
3 4
(ORANGE WIRE) +5V @ © j +12V (ORANGE/WHITE WIRE)
A2
(BLACK WIRE) GND ™ @ @ GND (BLACK WIRE)
mn
LOCATION K1

130

SPEAKER CONNECTOR

This is a MOLEX KK 19 series connector with two .25" square pins on
.1@" centers. See location and pin out in Figures 1 and 6.

SIGNAL DESCRIPTION FOR SPEAKER

+5V: System +5 Volts
SPKR: Output line to speaker. Will deliver about .5 watt into
8 Ohms.
Figure 6
SPEAKER CONNECTOR
. PINOUT
> X
5 ° %
(3]
2 Eic
LJ S
(523
+ O
[=aa]
o
~ O
LCa b—ip

Right Edge of PC 3oard

LOCATION B14A

VIDEO OUTPUT JACK

This standard RCA phono jack located at the back edge of the APPLE II
P.C. board will supply NTSC compatible, EIA standard, positive composite
video to an external video monitor.

A video level control near the connector allows the output level to be
adjusted from @ to 1 Volt (peak) into an external 75 OHM load.

Additional tint (hue) range is provided by an adjustable trimmer capacitor.

See locations illustrated in Figure 1.

131

AUXILIARY VIDEQ OUTPUT CONNECTOR

This is a MOLEX KK 1@ series connector with four .25" square pins
on .1P" centers. It provides composite video and two power supply
voltages. Video out on this connector is not adjustable by the on
board 200 Ohm trim pot. See Figures 1 and 7.

SIGNAL DESCRIPTION

GND: System circuit ground. @ Volt line from power supply.

VIDEO: NTSC compatible positive composite VIDEO. DC coupled
' emitter follower output (not short circuit protected).
SYNC TIP is @ Volts, black level is about .75 Volts, and
white Tevel is about 2.§ Volts into 47¢ Ohms. Output level
is non-adjustable.

+12V: +12 Vo1t Tine from power supply.

-5V: -5 Volt Tine from power supply.

Figure 7 AUXILIARY VIDEO OUTPUT CONNECTOR

PINOUT

+12V
-5V
VIDEO
GND

EIGIE

Back Edge of PC Board

Right Edge of PC Board

LOCATION J14B

132

INSTALLING YOUR OWN RAM

THE POSSIBILITIES

The APPLE II computer is designed to use dynamic RAM chips organized
as 4096 x 1 bit, or 16384 x 1 bit called "4K" and "16K" RAMs
respectively. These must be used in sets of 8 to match the system
data bus (which is 8 bits wide) and are organized into rows of 8.
Thus, each row may contain either 4096 (4K) or 16384 (16K) locations
of Random Access Memory depending upon whether 4K or 16K chips are
used. If all three rows on the APPLE II board are filled with 4K
RAM chips, then 12288 (12K) memory locations will be available for
storing programs or data, and if all three rows contain 16K RAM
chips then 49152 (commonly called 48K) locations of RAM memory will
exist on board!

RESTRICTIONS

It is quite possible to have the three rows of RAM sockets filled with
any combination of 4K RAMs, 16K RAMs or empty as long as certain rules
are followed:

1. A1l sockets in a row must have the same type (4K or 16K)
RAMs .

2. There MUST be RAM assigned to the zero block of addresses.

ASSIGNING RAM

The APPLE II has 48K addresses available for assignment of RAM memory.
Since RAM can be installed in increments as small as 4K, a means of
selecting which address range each row of memory chips will respond
to has been provided by the inclusion of three MEMORY SELECT sockets
on board.

Figure 8

MEMORY SELECT SOCKETS

TOP VIEW

PINOUT
(0000-0FFF) 4K “0” BLOCK 1 [14 RAMROWC
(1000-1FFF) 4K “1” BLOCK 2 13 RAMROWD
(2000-2FFF) 4K “2” BLOCK 3 12 RAMROWE
(3000-3FFF) 4K “3" BLOCK 4 11 NC.
(4000-4FFF) 4K “4” BLOCK 5 70 16K “0” BLOCK (0000-3FFF)
(5000-5FFF) 4K “5” BLOCK 6 9 16K “4” BLOCK (4000-7FFF)
(8000-8FFF) 4K “§” BLOCK 7 8 16K “8” BLOCK (8000-BFFF)

LOCATIONS D1, E1, F1

133

MEMORY

TABLE OF CONTENTS

1. INTRODUCTION
2. INSTALLING YOUR OWN RAM

w

MEMORY SELECT SOCKETS
MEMORY MAP BY 4K BLOCKS
5. DETAILED MAP OF ASSIGNED ADDRESSES

INTRODUCTION

APPLE II 1is supplied completely tested with the specified amount of
RAM memory and correct memory select jumpers. There are five different
sets of standard memory jumper blocks:

1. 4K 4K 4K BASIC
2. 4K 4K 4K HIRES
3. 16K 4K 4K

4. 16K 16K 4K

5. 16K 16K 16K

A set of three each of one of the above is supplied with the board.
Type 1 is supplied with 4K or 8K systems. Both type 1 and 2 are
supplied with 12K systems. Type 1 is a contiguous memory range for
maximum BASIC program size. Type 2 is non-contiguous and allows 8K
dedicated to HIRES screen memory with approximately 2K of user BASIC
space. Type 3 is supplied with 16K, 20K and 24K systems. Type 4
with 30K and 36K systems and type 5 with 48K systems.

Additional memory may easily be added just by plugging into sockets
along with correct memory jumper blocks.

The 6502 microprocessor generates a 16 bit address, which allows

65536 (commonly called 65K) different memory locations to be specified.
For convenience we represent each 16 bit (binary) address as a 4-digit
hexadecimal number. !lexadecimal notation (hex) is explained in the
Monitor section of this manual.

In the APPLE II, certain address ranges have been assigned to RAM

memory, ROM memory, the 1/0 bus, and hardware functions. The memory
and address maps give the details.

134

MEMORY SELECT SOCKETS

The Tocation and pin out for memory select sockets are illustrated
in Figures 1 and 8.

HOW TO USE

There are three MEMORY SELECT sockets, located at D1, E1 and F1
respectively. RAM memory is assigned to various address ranges by
inserting jumper wires as described below. A1l three MEMORY SELECT
sockets MUST be jumpered identically! The easiest way to do this
is to use Apple supplied memory blocks.

Let us Tearnby example:

If you have plugged 16K RAMs into row "C" (the sockets located at
C3-C1@ on the board), and you want them to occupy the first 16K of
addresses starting at @0@@, jumper pin 14 to pin 19 on all three
MEMORY SELECT sockets (thereby assigning row "C" to the PP@@-3FFF
range of memory).

If in addition you have inserted 4K RAMs into rows "D" and "E", and

you want them each to occupy the first 4K addresses starting at 4999
and 5pPP respectively, jumper pin 13 to pin 5 (thereby assigning row
"D" to the 4PPP-4FFF range of memory), and jumper pin 12 to pin 6
(thereby assigning row "E" to the 5@PP-5FFF range of memory). Remember
to jumper all three MEMORY SELECT sockets the same.

Now you have a large contiguous range of addresses filled with RAM
memory. This is the 24K addresses from @P@@@-5FFF.

By following the above examples you should be able to assign each
row of RAM to any address range allowed on the MEMORY SELECT sockets.
Remember that to do this properly you must know three things:

1. Which rows have RAM installed?

2. MWhich address ranges do you want them to
occupy?

3. Jumper all three MEMORY SELECT sockets the
same.

If you are not sure think carefully, essentially all the necessary
information is given above.

135

secondary page.

LOMEM to location

0800.

Memory Address Allocations in 4K Bytes
0000 text and color graphics 8000
display pages, 6502 stack,
pointers, etc.
1000 9000
2000 high res graphics display Ac0o
primary page
"
3000 " BOOO
"
”
"
cooo addresses dedicated to
4000 high res, graphicse display
secondary page hnrdwaxe functions
n
n
"
5000 " D000 ROM sosket DO: spare
n
" ROM socket D8: spare
n
n
8000 E000 ROM soﬁket EO: BASIC
ROM socket E8: BASIC
"
7000 F000 ROM socket FO: BASIC
utility
ROM socket F8: monitor
Memory Map Pages @ to BFF
HEX USED
ADDRESS(ES) | BY USED FOR COMMENTS
PAGE ZERO
0000-001F UTILITY register area for '"'sweet 186"
16 bit firmware processor.
0020-004D MONITOR
O04E-004F MONITOR holds & 16 bit number that
is randomized with each key
entry.
0050-0055 UTILITY integer multiply and divide
work space.
0055-00FF BASIC
OOFO- OOFF UTILITY floating point work space.
PAGE ONE
0100-01FF 6502 subroutine return stack.
PAGE TWO
0200-02FF character input buffer.
PAGE THREE
03F8 MONITOR Yc (control Y) will cause
a JSR to this location.
O3FB NMI's are vectored to this
location.
0O3FE-O3FF IRQ's are vectored to the
address pointed to by these
locations,
0400-07FF DISPLAY text or color graphics
primary page.
0800-~-OBFF DISPLAY text or color graphics BASIC initializes

136

I/0 and ROM Address Detail

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

CO0X Keyboard input. Keyboard strobe appears in bit
7. ASCII data from keyboard
appears in the 7 lower bits.

C01X Clear keyboard strobe.

Cco2X Toggle cassette output.

C03X Toggle speaker output.

C04Xx "C040 STB" Output strobe to Game I/0
connector.

C050 Set graphics mode

C051 " text "

C052 Set bottom 4 lines graphics

C053 1" 1t T 1" text

C054 Display primary page

C055 " secondary page

C056 Set high res. graphics

C057 " color "

C058 Clear "ANQ" Annunciator 0 output to
Game I/0O connector.

C059 Set "

CO5A Clear "AN1" Annunciator 1 output to
Game I/0O connector.

CO5B Set "

C05C Clear "AN2" Annunciator 2 output to
Game I/0 connector.

CO5D Set "

COSE Clear "AN3" Annunciator 3 output to
Game I/O connector.

CO5F Set "

137

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

C060/8 Cassette input State of '"Cassette Data In"
appears in bit 7.

input on

C061/9 "Swin State of Switch 1 ~\ Game
I1/0 connector appears in bit 7.

C062/A "Swa" State of Switch 2 input on
Game I/0 connector appears
in bit 7.

C063/B "SW3" State of Switch 3 input on
Game I/0 connector appears
in bit 7.

co64/C Paddle O timer output State of timer output for
Paddle O appears in bit 7.

C065/D " 1 " " State of timer output for
Paddle 1 appears in bit 7.

CO066/E " 2 " " State of timer output for
Paddle 2 appears in bit 7.

Co67/F " 3 " " State of timer output for
Paddle 3 appears in bit 7.

CO7X "PDL STB" 1 Triggers paddle timers
during ¢2.

C08X DEVICE SELECT O Pin 41 on the selected
Peripheral Connector goes

C0o9X " 1 low during ¢2.

COAX " 2

COBX " 3

CoCx " 4

CODX " 5

COEX " 6

COFX " 7

C10X " 8 Expansion connectors,

C11Xx " 9 "

Cc12X " A "

138

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS
C13X DEVICE SELECT B "
C14X " C "
C15X " D "
C1leX v E "
C17X " F "
C1xXX I/0 SELECT 1 Pin 1 on the selected
Peripheral Connector goes
C2XX " 2 low during ¢2.
C3XX " 3 NOTES:
1. Peripheral Connector
C4XX " 4 0 does not get this
signal.
CoXX "’ 5 2. T/O SELECT 1 uses the
e
C7XX " 7
C8XX " 8, I/O STROBE | Expansion connectors.
C9xXX " 9, "
CAXX " A, "
CBXX " B, "
CCXX " C, "
CDXX " D, "
CEXX " E, "
CFXX " F, "
DOOO-D7FF | ROM socket DO Spare.
D80O-DFFF " " D8 Spare.
EOOO-E7FF " " EO BASIC.
E800-EFFF " " E8 BASIC.
FOOO-F7FF " " FoO 1K of BASIC, 1K of utility.
F800-FFFF " " F8 Monitor.

139

SYSTEM TIMING

SIGNAL DESCRIPTIONS

14M: Master oscillator output, 14.318 MHz +/- 35 ppm. A1l other
timing signals are derived from this one.

M: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency used by video circuitry, 3.5390 MHz.

Do Phase ¢ clock to microprocessor, 1.923 MHz nominal.

P Microprocessor phase 1 clock, complement of @,, 1.023 'i#iz
nominal.

P, Same as P,. Included here because the 6502 hardware and

programming manuals use the designation @, instead of 9.

Q3: A general purpose timing signal which occurs at the same
rate as the microprocessor clocks but is nonsymmetrical.

MICROPROCESSOR OPERATIONS

ADDRESS: The address from the microprocessor changes during 9,,
and js stable about 300nS after the start of §,.

DATA WRITE: During a write cycle, data from the microprocessor
appears on the data bus during @,, and is stable about
300UnS after the start of f,.

DATA READ: During a read cycle, the microprocessor will expect

data to appear on the data bus no less than 100nS prior
to the end of 0,.

SYSTEM TIMING DIAGRAM

TIMING CIRCUITRY

BLOCK DIAGRAM TIMING RELATIONSHIPS
MASTER
OSCILLATOR Gwy [TUTUUHUUUUrdyyyououanuuye
—
mnve < 1T LT Lo
CIRCUITRY
—coworrery | | [[L | L f LI L1 1
———(30) 1] l |

—CD | I | I
02 [| [
—ce T I I

140

REFERENCE SYNC — SYNG OUT BUS —1 VIDEO
OSCILLATOR COUNTER 1 GENERATOR I"3"COMPOSITE VIDEO OUT
SYSTEM — e — -
TIMING HPE
FIG. 53 FIG. S4 — » AUXILIARY VIDEO OUT
J FIG. S-11
TIMING BUS — — TIMING BUS
T I 111
(<~— DATABUS —
(LTI I 1)
) (ADDRESS BUS —»)
&)
iy | 1|
A — o
BUS (~— el 5] |w
DRIVERS] . 8K-12K 3 ol |8 POWER IN
Hpp . — 1 ROM o o +12V
T MEMORY 2 g g TO ALL SECTIONS | * 120
—] BAsIC a| al & ~5v
s] SvSrem 24 anD
—~ ADDRESS BUS — N
MONITOR | ol |5
(RN <| [a
1 _DATAOUT ~— | i g5 <
2
[0s)
2 1t
3| |}
4K/16K J 8 DECODED
» — | BAM — PERIPHERAL
JE SELECT U PERIPHERAL CONNECTORS
—— 2 —1 110 —
) P<— k_ - -
< = =
} [FIG. S-6) T —\
)
RAM T FIG. S-9
| | | row !
SELECT w t »
= |8 2
=3 1} @ o
L 4K - 48K 3l lo > 2
—| RAM <| |8 o w s
DATA N MEMORY JEl G 2 o 3
——-—\‘— — of |2 o <
FIG. S-2 l_ N8 g S z }
@ _ I 8 <
=) 2] Ol |<
@ FIG. 5-8 2| 1=
© 3 |
t £ 5
= ESI\DARESS o ON-BOARD
= N-BOA
@ ol |- 1| ADDRES 9 | on 4% GAME 1/0
@ > \ —
£ a RAM n \ 4 CASSETTE IN
a 4 ADDRESS [’ ;
8| \——1 mux [— \L # CASSETTE OUT
< —
—] T T 4 KEYBOARD
\ — -— ADDRESS DECODE -—
FIG. S-7 FIG. S-10 » SPEAKER
L J
_ -— DATA OUT
\.
_ ~— DMA BUS

FIGURE S-1 APPLE Il SYSTEM DIAGRAM

141

+5V

8T97 Te
_ (PINS 1 & 15 TRISTATE)
11 412 9 Vee — 4 =
2 {ADO) T ﬁ AQ iRQ e IRQ) 30
5 14 10 L—vvw-—»
3 (AD1 Y At 39k FROM
“tE . . i NI D 29 > PERIPHERAL 1/O's
4 {AD2)> s A2 l RAD1 SEE FIG. S-9
QE 10 12 2 3.3K
5 CAD3) Hsj A3 RDY "y {RDY) 21
7 [13 L’VW——-)
6 4 Ad ..
@ H4 aEs |0 3.3K @ 37 FROM KEYBOARD AND
9 410 14 RAO1 PERIPHERAL 1/Q's
7 (AD5 - poo E AS SEE FIG. 59 & S-11
11 12 15 33 3 14 33K 3
8 {AD6) A6 Do , {DAD) 49
H3 E H11
s (AD7 > H37 g L s 2
SYSTEM 5}4 17 32 3 4
ADDRESS { 10 (ADS > e A8 ot — (DA
BUS
342 18 2
11 (ADS) A9
H3 ﬁ MPU o 13 Ja12
10
12 {(AD10> H:N 194 ag 8502 D2 1o (DAz» 4
14
15 EBTD——H<S P2 an
3 a2 22 30 13112
14 (AD12) — A A12 03 1t @A %6 | rasTATE
3 2 23 14 SYSTEM
15 {AD13 s ﬁ A13 DATA
29 6 7 BUS
16 CAD14)> n E At4 D4 H11 DAd) 45
5
17 CAD15 A1S
28 s 7
D5 DA5 » 44
18 {R/W) R/wW H10
\ 5
27 10 319
FROM PERIPHERAL 1/0's 06 , {DA6) 43
SEE FIG S-9 Hio N
2
26
®0 o7 DA7) 42
40 J
FROM REFERENCE @1
OSCILLATOR AND TIMING S0 Vss Vss
SEE FIG. S-3 28[FIE (PINS 1 & 15 TRISTATE)
10 C14 L
9
= 7
2 D
s (D>
(Casy
a7 (a3
AVAILABLE ON SYSTEM TIMING
38 50 PIN PERIPHERAL)
1/0 CONNECTOR
as (USER 1
20 (/O SEL NOT AVAILABLE ON Moy
50 PIN PERIPHERAL
18 y /0 CONNECTOR | (GOLOR REF

FIGURE S-2 MPU AND SYSTEM BUS

142

ONINIL W3LSAS ANV HOLVTHOSO ION3H3IIH €-S IHNOIY

<

Hom_

< €4

iy
=]

[+

L000LX
2D B8S2YNZ

ZHN BLE'YI

[Te]

434 HO10D

T

(vr1)

98SY.

J ¥y

3dH

¥-S 'Ol o
INNOD ONAS
Wou

Ly-%Y
AS+ As+
AclL +
ZHN ¥4
‘O'N = = =
:ﬂw g Ml NH = 1
20 aND aND v3 % ﬁ
o2)) - s m._. 1d 9t
o1 [2t 4 OND 10 A
A 1D _ @) qgl | 3d Ciol pym
B & W gsisTpL | o o
ee (T y——————of e ’ i N
o (WL > oo 20 z WL e~ zr| £° 2T
WL 1) Gl Zt 6 20 Z €
98SvZ 1 J)28) ia o7 T
3 £ v Omtw§ Las+) 78 od |5
b
: CIED—] BNTE 2 |-
or {0 H— < o 18 o €D 6 o 9 4y J\mo
1]} €l L vi [9
#H "0 o0A v6107 zig SvH 00 td f21)
8 0l 2Va
é i °) z 02S1vL
§ 1408 AS+

wl oy o~

143

CLOCK IN
FROM

SYSTEM {LDPS >

+5V

l1s

SYNC OUT

SOFT 5

Vee
CEP Qo

CET
D14 @
CLR

Q2
PO

P1 Q3
74L5161

P2

P3

cL PE
TC GND

D14-14) HO
D14-13) H1
D14-12) H2

’ (D14-11) H3

0

"I
+5V B
Trs 10 |7

Vce CET CEP
CLR PE

P2 D13 Q2

PO Qo
74L5161
P1 Q1

Q3

cL P3
TC GND

; j°£

E Ha
= H5
o VA

°I
+5V -
T16 10 |7

Veg CET CEP
) Qo

P2 D12 Q

P3 Q
74LS161

CLR Q3

P1

cL PE
TC GND

G v
2, G ve

2 | (D12:12) Vo

g
-5V -
TIS 10 |7

SOFT 5 4

TIME
FIG. 3-3

Vec CET CEP
PO P

py D11 T1C

P2 Qo
741.S161
CLR Qt

P3 Q2

cL Q3
GND

L

144

FIGURE S-4 SYNC COUNTER

N
-

[}
-

g
-

w
~

©
-

N
-

@©
~

=3
-

AHOW3N NOH S-S 3HNDId
(v/1)
80SvL
. Gl =
) N——mav) o
< (ELav) st
«——21aVv) »1
{11av) et
T . ﬁlwlTa 8
8 9 € z 1 sd #d .
= ¢4 WOH4 6'S '9id
T aNo €3 v v 84 23 13 XNW O/1 1I83d
il ow_ 519313 dIHO 2 o GrED) S,
ANO £59 139 8E1SIL zid
I .
o |5—<0Lav) z ad @z ez vz sz 9z
gl?l d 6v % b £l 2 1 o1 6 ‘
QII sa W I Bavy or as+ 1 Y Y 1 1. Y Y«
—<av) 1
v 6 !
7
{vay—— va ov (Gav) 1z)oz| 1efoz] 1zfoe| 12|oz]| reloe] r2f 02 m
H 8 xMe ¢ : "
(V@—;{ ta WOH &V [(sav) ¢ oal{saltoallsal] |oa}]sd :
a91€6 :
D—] 2 £V 1||‘v (Eav) s - - - . - > : s ‘014 335
G ollo o] 0 <3 B K°] — SNE W3LSAS
@a— 10 v |—Gav) » zllztlzllzllz]lz “
1
o S PO pa Oy m
6 . ov m|a z 11d 64 84 94 G4 €4 m
A '
va— m
AG+ AVHHVY AHOW3IW WOY m
]
4

7iv13da 1NONId WOY

145

10373S WVH X9L/XY 9-S JHNOIA

GR))

SVO b)
SVO M9l D M. F.H
8 aNo e3 .
8 2] 0S [@
v R 1 B — 0® > or
6 = ea | {erav) s
2 mwmu‘n_:ﬂ — 72 {eiav) v
s BT esiswe |F 2 14 338
gs o [3 MOH Wvy (21-1d 5 e 19 +0 40 4WWH HIHLO HO4 £°S D14 33S »
sv0 ¢ a mod Wvd (el-1d = 14 B Ll y EH
. ano 3
O Mod Wvd (Pi-13 — o e_;f 2
:— N - - 71 Pz @) PO1
SO Mv/9V M9t 6 SH Bmm#m)
7 3 8 aNoS RE
3¢ e3 o 210 -
3 7) | oz P b €1-21Q) OA
————0
5 0 7 R (8418) S3HH
omd |§ 8 ’ vz 9—
| wadwor | s L _ AG+
ML/ v a Z4 @
gs o [3 mod vy (2113 = = ; m £7] ol
|w|\(.~ a MOYd Wvd (E1-13 €1 13 Z Jz N»O 20A 8 € aNg 3 OM_—_
2 mou wvd (F1-i3 ” ; o ol . o
L) oA
Fow £ . o B au
73S 30HNOS Ny dord il
8 GNO Q3 B3 2z s
0
8 £ o1 1 Lsesve
v 9 m¥ o0 |
6
O 8 (74
S i [} Zi
01-S 'OId 0 mWww‘n_:ﬁ flAII l-of 6€1STML v
01 4 Z
304HNOS V1Va O/l — 39 Wy - € Z 80SZ
Q4UvO8-NO ' € 2= 9 a w
S1-28 '98 Ol Zalo" 1 1a 3 9 v b 5152
9-2v rA' 2 149 8 O v
35 "y 9 ; et vl [I3 2p |2 o0p
-] T E‘— E@
‘ON AS+ AS+

S1-E14) aax

{M/H > 81

146

+5V
40
14_|2 Ivs
\ S0 S1 Vce
“D" SOURCES ARE Ho Gra1d)—— 1
FROM SYNC COUNT)
FIG. S-4 2 13a E13 N
H1 (D741 2 za |- (E13-7) A2
13
6| 74Ls153
10a
7 (ADS p——2] 11a Py A5
294 1o
11
8 .—-—)—- b
(ADS) Ea Eb GND
+5V 1 15 |8
T‘lﬁ -
. Vee v
o GED————w s | : +5v
e o E14 e
SCREEN 4] a3 X H2 i2a
ADDRESS | V3 M 7405283 {Apy—]
RESS) (©11-13) : co 1. + CAD2)D " Ll]
SYNC =0 120 Za (E12-7) A1
82
COUNT | va B4 5 -—>—— LEL
FIG. 54 e . < |s s} 74Ls153
s s B3 =1 10a
kHS >0 2] .4 s (ADA p—>2] 112 2 |2 (E12-9) A4
SOFT 5] 1 cafi—ne. vz
GND 11
_LB Ea Eb GND
= 1 15 |8
o GO iy
14 j2 16
4| SO St V¢
+5V vo (D12-1 12a
[o e e
. vee v (D12-11 L2 P za F—E11-7) A0
HiRES (B11.6)—————>———'S 13
FIG. S-11 3 ct2* 10 I3b74LS153
FIG. S-4 7418257
FIG. S s . 10 p
[____.__.__ 10b 2b 10b
C11 11 1b
PAGE 2 (F146 >o2—2, 1 BID—"L, & ow
FIG. §-10 GND 75 |8
741504 1

(1/6)

0a
E
115 8

* SEE FIG. S-6 FOR OTHER HALF OF C12

FIGURE S-7 RAM ADDRESS MUX

1

B

7

ke

T0

RAM
ADDRESS
LINES

FiG. S-8

FROM 4K/16K SELECT

FIG. $-6
.
- N
ROW C ROW C ROW D ROW D ROWE ROWE
CAS CS/A6 CAS CS/A6 CAS CS/A6

Fa9) Ene) GEd) E@13) E12) (Er12)

y

- 15 13 15 13 15 13
2 2 2
49 {DA0)——
C3 Ram D3 gam E3 Ram 1] s
14 14 4 BS
5 115 13' 5 Ls 13L) 115 13] as H2 DLO)
48 (DAt
<A C4 mam D4 mam E4 Rpam 13§ pa 2
14 14 14 Q4 DL1
, s 3] , s 3] . s 9] 7418174
47 (DA2 >
A2 €5 ay . D5 cay : E5 o o, al 55
1
, s 13| , [1s 3l , lis 13l az ¥ DL3
46 (DA3
RAM & C6 ram . D6 pam E6 Ram 61 02
DATA T4 14 14 CLOCK LATCHED
IN] 15 13' [15 13 [[15 13[[9 RAM
45 (DA4 > 2 2 Z s
14 14 14 3 B8
) l15 13| ,]75 ’3L) I75 13 a3 H2 DL4
44 (DA5
D cs8 RAM 08 RAM EB RAM 13 D4
l] 14] l 14 |] 14 Q4 12 DL5
15 13 15 13 15 13
7415174
3 @re— co 1 e s ar 2 ble
RAM > RAM RAM 44 b
74 14
, 15 13L , l1s 73[5 |15 i3] a2 DL7
42 (DA7 7
14 14 14 CLOCK
3
r RAS
A0 10
RAM PINOUT DETAIL
FROM A2 12
ROM | gy A2 12 svetdve oo by
ADDRESS 2 — T
MUX o FROM SYSTEM—— Dt CAS |— DECODED BY ROW
FIG. S-7 DATABUS 3l ® bo M- 7o LATCHES
A5 5 >
—as %% F-oecopepsyrow
12V 5] A54K/16KA2 12
-5V —1 as RAM) 12EN
GND 16
= 1
18 (R 13 hs;/AM:i 12V <2 voo vee P <5V
28 w1)2 ST Rw
AAS 4

FIGURE S-8 4K TO 48K RAM MEMORY WITH DATA LATCH

148

31907 TOHINOD ANV LNONId HO1J33NNOD O/1 IViHIHdIHId 6-S 3UNDId

3SN 0L MOH NO 310N 'ddv 33S

H3dwnr
IVNOILJO
qQ O Ly3sn
e oLay
oy <oiavy
6aV
AGH4 8aQVv
) 5-S Ol4
2lH WOH4d T S1-2i4) 300030 WO
F18YNI 0/ — > AL+ . o e ; . ol bl WOU4
? % aNo €3 eV 2v 7 g3 13 01-S Dig
0Z Jo——>—1>{S1-2IH) S-€14 OL
(av)— =) 8ELSIPL ZIH ol
avy—; <D 318YN3 O/ on
Eav)>— 5—<Eva) "1z 9z sz vz £z ez iz _
elll é Z 6 01 L 2t £l 7 AG+
g St
N T o S T B B e e e S __
)
9av)>— v LdNEHIINI T _ . .)) _ e
6 ¢ Z¢H WOYd w
<8av) o1 75— 37gvN3 A3g 1 ON | 8z 8z 82 8 8z 82 82
' [34 £z [x4 {4 o4 [x4 [X4 [X4
.@ - ,ln‘ov e ZHWI “ , o Z-S 'oI4 338
| S v € 2 1 0
? ==—<Ly3sn " o/ o/l o/l o o/ on on o/l SNg W3LSAS
5 €l 8c “HIN LON 22 V34 22 2 /2 2 y24
[
? Uﬂg ZHWe 2 vz e vz e vz e vz
! cir P 6r er or ar vr cr
EaD— oL ZHINL " ‘
al N NIVHO >m..<o it i TS it T3 1 it T3
94 st YING
GLav—; e NS Bl e N e e Ll EumRECt ULt e
? > et
. _ 6 0l ! 2 £t sl SLQ
ON =% % Al_wl 4z 9z 5z vZ €z zz 1z 0z,
v
ﬂﬁmv@la i @@ g|ane 378VN3 A3Q S
Ay o€ BELSTHL TH
o] ST
1N0 ASIVa NI ASIVA oA il ey Al &2
1dNyY3IN ez LdNHUYILNI 9t ! z £ 9|
1NO ASIVA VNG e LQY)
| T AS
As+ e 55 OGND <eav)
sav
M3IIA JOL yav

VL3d YHOLO3INNOD O/1

149

sng
viva
WILSAS
J1visidHL

0/1advoga-NO 01 -S 3HNOId

= = = .
veia L] 2
wove 4 £1VSAN bIENI 0z U d MHI@
gdivigs O VO e on_ —o [E] >
HIMVILS —of ev nlg
WHO8-.%2 2 o
sy ey D%M L o BEISIWL
ved W o v .wlg
AG+ " —O) Zid
FUIN] o
. o oz M —<uay
T g
= M—i N_ ww S | ! §-S 'OId UV13a 338
anNog 1a 10 1]
001 ca
) sy |2 vLSWL B) N ERD Y
1no viva . eI L 9 W ERD;
31138Sv0 Wei-6ly 8 20 10 [
Zi NG HM “Ie @av
HIXITHLINN NI ViVa aav [~ eeiswe
viva ® 143d ev |———<6av)
bt 311355v0 & o an TP
ot
L i ., vh—@@®o
= = n L7}
H _
g @; M_u Sw P 66 'O14 Uv13Q 338
CEEED ANDIZ' ano 2 cavyr
21a
auls v/SI0L
q01 [113: J6) 8 ﬂfa € e3 €3 m"g
az S 6] H mo <z
2 S (920 z v ﬂT@m “ 3 12 o—Cav)
L52S¥ 16282 2z 4
ez 2ol [7]% Suis &l : &9 9 f—Ceav)
4 I0A ! - 0z €
L oy () YIH 2 [St 8 '@
e KLY =1 @ B o " ; zm ,Nme#&(¢ G
+1°2 o01 va v INC3IWVD S| v s o 4 : 942 etd T
2 3 onf— ENIED \ HIDOIHL 10d ' ‘Az oo nj
Il S ' 1 8
% 9-2v O'N . ; 5 74 20A ﬂv>m»
[m& 13S wvd {9} 6] 8 = vj el ¢ : =
L 2 2200 00t ZMS IMS OMS : 3 Lv
ot {3 1 €0 T —dews eisfs H D! ano 1=
an l—(€1a ‘ u;urﬁ £ed NV I : e 0N for> AS
(Evay—A oz . 2200 Ny 92
7 za D04 F—> AS+ 1 i S 13408
wseswe Oz 01 : o NNOD & ' o sz B
GD——A ez (20 Oigi . oy 2|41, Y [" o o F+—Eav)
¥ oo 8 O N = HINL Los ONY | ; 5 "eszswe G
Gvay—— rz out | Ia “ A o L7 QMM,O OT W] Yo H°S 94 JAON SAHH (L ¥4~ ez NE
Wy
“ o8 1% o8 O Slad = oy on o 395 013 239vd @VID~ o 2 v E~—Gav)
@v—] 2 R @ = e 0L o w7 s ol o xiw @iz |1 (o)
6 ot 01d T QiA s a Coav)
ano 2oa {51 tas3w ano| T W—1 0104 N9 03AIM) S0 1xa1 (vt)] 0z &
hy WvH WOH4 7] o2y ON & oL +
= 8 Sh Yiva (ND
8 [H
AS: IOV | oSS R | | 300030 SS3HaAY
_ GHVOBAI _

150

+5v

16 74LS02
7 plaleiy s 74LS11
Gamy> cL2 Ve SYSTEM e
FROM 5 TIME 11812
SYSTEM 36 (TM cu FIG. 8-3 =72 __COLOR
e &EFS A I e BURST
FIG. 53 g
24 . A3
crom | va@ETD-H A Ve o c 5 (B13-13
15 5 5 Ci3-6) TO C12-14
coung (8 " 02 ol° 4 @ 4K/ 16K
13)—18 As o) £ . SELECT
LN ;| 74188 FrOM | M o e
DLO At 04 F SYNC 3 741551 :
2513 12 COUNT 2,
DL 45 Criam 95 [e FIG. S-4 7)
19 GEN 7
) »s v2 (O11-14
20 2], 74[715 et L1
FROM @—1r P LERENL S B0t
LATCHED | DL4 A8 1 2 DT Bt
Diﬁ,': % o H B GND 74586 V3
FIG. 58 FRE 4|3 |8 i N 74508 74",?32
) 74L508 = === Iy e
oz B B13
OL6 11 HOR BLANKING
13
741502
14y
: X
= RS-1K
o}
+5V g I
AWF = >
0w T’S > 5 50 479-E 27uH
FROM [ve @izi3 2lios A5 vee = = F
COUNT | Ho (B1a-14)—1H 100 TaLsas?
FIG. S-4 S 10 I‘C
1
EoNDZA ZC 10A 1A 18 100 7D 28 s Is
15 8 |4 9 2 (3 |6 [13]7 lrz a3 o2
FROM ADD ires 1l Li A as [
DECODER F14 F1a-7 = 01
FiG. s0 MODE \GI=) " A0
FROM cP
SYSTEM < 5|, 74194
TIME LD194 v bﬂ 50
- 1
F1G. 53 cP 11{9 7Trs 10 Q0 Q1 Q
. Lo 3) oo SOOSL St 14 |15 l o RE-27K
11 - AA
OL1)—{01 B4 ok] pyry asms _I e -8V -5V w12y
16 .
0274LS194Q 13 4] s Vac H?'.'.Z"OK AR
6 AUXILIARY
FROM GND Jos A? R7-1.5K VIDEO
LATCHED l I g[_ l 0 F1) K JACK
RAM cp 10
DATA 3 - 3 5, 748151) 1148
FIG. S8 D4 0 Sk | oo 4 PIN MOLEX
5 y— o Be -1:1] | 22-03-2041
5
GLe o27aLs194 |, 2 wiE—2lo of— i COMPOSITE
OL7 D3) 810 200 = VIDEO
Vce GND 74L574 POT ouT
% 18 s 18 ma 4 = K14
i = = [¢])} RCA TYPE
+5V PHONE JACK
B13 4 A1 6 RES
FROM (TEXT 12 B11-6
ADDRRESS | MODE 7] Do—Hoo cof—Hos as{P—oo aof N ENABLE
DECODERF14 MIX B5 B8 B8 74808 TO H1, C12
FIG. 5-10 | MODE 741802 4 4K/ 16K
74LS 74LS 74L8 SELECT
FROMSYNG | V2 174 174 174 FIG. 56
COUNT | v¢ @i 74Lsm o Tg C]9
(Rl 9
FROM SYSTEM TIME (RAS)
FIG. S-3
FIGURE S-11 VIDEQ GENERATOR

151

.’apple computer inc.

10260 BANDLEY DRIVE
CUPERTINO, CALIFORNIA 85014 U.S.A.
TELEPHONE (4081 996-1010

