Apple II Reference Manual

January 1978

APPLE II Reference Manual

January 1978

APPLE II Reference Manual TABLE OF CONTENTS

	GETTING STARTED WITH YOUR APPLE II	. 1	13. Additional BASIC Program Examples	55
	1. Unpacking	. 1		55
	2. Warranty Registration Card	. 1	b. Pong (4K)	56
	3. Check for Shipping Damage	. 2	c. Color Sketch (4K)	57
	4. Power Up	. 2	d. Mastermind (8K)	59
!	5. APPLE II Speaks Several Languages	. 3	e. Biorhythm (4K)	61
(6. APPLE Integer BASIC	. 3		63
	 Running Your First and Second Programs	. 3	1. System Monitor Commands	67 68
	9. Loading a Program Tape		•	72
	D. Breakout and Color Demos Tapes		3. Special Controls and Features	74
	Breakout and Color Demos Program Listings	12	_	76
12	2. How to Play Startrek	14		94
13	3. Loading HIRES Demo Tape	15		96
B. /	APPLE II INTEGER BASIC	17		00
-	I. BASIC Commands	18	AFFLE II HARDWARE	06
2	2. BASIC Operators	19		07
3	B. BASIC Functions	22		10
4	BASIC Statements	23	-	12
5	5. Special Control and Editing	28		14
6	6. Table A — Graphics Colors	29	5. Interfacing the APPLE —	
7	7. Special Controls and Features	30	Signals, Loading, Pin	
8	B. BASIC Error Messages	32	Connections 12	22
9	D. Simplified Memory Map	33	6. Memory —	
10	Data Read/Save Subroutines	34	Options, Expansion, Map, Address	33
11	. Simple Tone Subroutines	43	7. System Timing 14	
12	2. High Resolution Graphics Subroutines and Listings	46		41

GETTING STARTED WITH YOUR APPLE II

Unpacking

Don't throw away the packing material. Save it for the unlikely event that you may need to return your Apple II for warrantee repair. If you bought an Apple II Board only, see hardware section in this manual on how to get started. You should have received the following:

- 1. Apple II system including mother printed circuit board with specified amount of RAM memory and 8K of ROM memory, switching power supply, keyboard, and case assembly.
- 2. Accessories Box including the following:
 - a. This manual including warranty card.
 - b. Pair of Game Paddles
 - c. A.C. Power Cord
 - d. Cassette tape with "Breakout"on one side and "Color Demos" on the other side.
 - e. Cassette recorder interface cable (miniature phone jack type)
- 3. If you purchased a 16K or larger system, your accessory box should also contain:
 - a. 16K Startrek game cassette with High Resolution Graphics Demo ("HIRES") on the flipside.
 - b. Applesoft Floating Point Basic Language Cassette with an example program on the other side.
 - c. Applesoft reference manual
- 4. In addition other items such as a vinyl carrying case or hobby board peripherial may have been included if specifically ordered as "extras".

Notify your dealer or Apple Computer, Inc. immediately if you are missing any items.

Warranty Registration Card

Fill this card out immediately and completely and mail to Apple in order to register for one year warranty and to be placed on owners club mailing list. Your Apple II's serial number is located on the bottom near the rear edge. You model number is:

A2SOOMMX

MM is the amount of memory you purchased. For Example:

A2S0008X

is an 8K Byte Apple II system.

Check for Damage

Inspect the outside case of your Apple for shipping damage. Gently lift up on the top rear of the lid of the case to release the lid snaps and remove the lid. Inspect the inside. Nothing should be loose and rattling around. Gently press down on each integrated circuit to make sure that each is still firmly seated in its socket. Plug in your game paddles into the Apple II board at the socket marked "GAME I/O" at location J14. See hardware section of this manual for additional detail. The white dot on the connector should be face forward. Be careful as this connector is fragile. Replace the lid and press on the back top of it to re-snap it into place.

Power Up

First, make sure that the power ON/OFF switch on the rear power supply panel on your Apple II is in the "OFF" position. Connect the A.C. power cord to the Apple and to a 3 wire 120 volt A.C. outlet. Make sure that you connect the third wire to ground if you have only a two conductor house wiring system. This ground is for your safety if there is an internal failure in the Apple power supply, minimizes the chance of static damage to the Apple, and minimizes RFI problems.

Connect a cable from the video output jack on the back of the Apple to a TV set with a direct video input jack. This type of set is commonly called a "Monitor". If your set does not have a direct video input, it is possible to modify your existing set. Write for Apple's Application note on this. Optionally you may connect the Apple to the antenna terminals of your TV if you use a modulator. See additional details in the hardware section of this manual under "Interfacing with the Home TV".

Now turn on the power switch on the back of the Apple. The indicator light (it's not a switch) on the keyboard should now be ON. If not, check A.C. connections. Press and release the "Reset" button on the keyboard. The following should happen: the Apple's internal speaker should beep, an asterisk ("*") prompt character should appear at the lower left hand corner of your TV, and a flashing white square should appear just to the right of the asterisk. The rest of the TV screen will be made up of radom text characters (typically question marks).

If the Apple beeps and garbage appears but you cannot see an "*" and the cursor, the horizontal or vertical height settings on the TV need to be adjusted. Now depress and release the "ESC" key, then hold down the "SHIFT" key while depressing and releasing the P key. This should clear your TV screen to all black. Now depress and release the "RESET" key again. The "*" prompt character and the cursor should return to the lower left of your TV screen.

Apple Speaks Several Languages

The prompt character indicates which language your Apple is currently in. The current prompt character, an asterisk ("*"), indicates that you are in the "Monitor" language, a powerful machine level language for advanced programmers. Details of this language are in the "Firmware" section of this manual.

Apple Integer BASIC

Apple also contains a high level English oriented language called Integer BASIC, permanently in its ROM memory. To switch to this language hold down the "CTRL" key while depressing and releasing the "B" key. This is called a control-B function and is similiar to the use of the shift key in that it indicates a different function to the Apple. Control key functions are not displayed on your TV screen but the Apple still gets the message. Now depress and release the "RETURN" key to tell Apple that you have finished typing a line on the keyboard. A right facing arrow (">") called a caret will now appear as the prompt character to indicate that Apple is now in its Interger BASIC language mode.

Running Your First and Second Program

Read through the next three sections that include:

- 1. Loading a BASIC program Tape
- 2. Breakout Game Tape
- 3. Color Demo Tape

Then load and run each program tape. Additional information on Apple II's interger BASIC is in the next section of this manual.

Running 16K Startrek

If you have 16K Bytes or larger memory in your Apple, you will also receive a "STARTREK" game tape. Load this program just as you did the previous two, but <u>before</u> you "RUN" it, type in "HIMEM: 16384" to set exactly where in memory this program is to run.

LOADING A PROGRAM TAPE

INTRODUCTION

This section describes a procedure for loading BASIC programs successfully into the Apple II. The process of loading a program is divided into three section; System Checkout, Loading a Tape and What to do when you have Loading Problems. They are discussed below.

When loading a tape, the Apple II needs a signal of about 2 1/2 to 5 volts peak-to-peak. Commonly, this signal is obtained from the "Monitor" or "earphone" output jack on the tape recorder. Inside most tape recorders, this signal is derived from the tape recorder's speaker. One can take advantage of this fact when setting the volume levels. Using an Apple Computer pre-recorded tape, and with all cables disconnected, play the tape and adjust the volume to a loud but un-distorted level. You will find that this volume setting will be quite close to the optimum setting.

Some tape recorders (mostly those intended for use with hi-fi sets) do not have an "earphone" or high-level "monitor" output. These machines have outputs labeled "line output" for connection to the power amplifier. The signal levels at these outputs are too low for the Apple II in most cases.

Cassette tape recorders in the \$40 - \$50 range generally have ALC (Automatic Level Control) for recording from the microphone input. This feature is useful since the user doesn't have to set any volume controls to obtain a good recording. If you are using a recorder which must be adjusted, it will have a level meter or a little light to warn of excessive recording levels. Set the recording level to just below the level meter's maximum, or to just a dim indication on the level lamp. Listen to the recorded tape after you've saved a program to ensure that the recording is "loud and clear".

Apple Computer has found that an occasional tape recorder will not function properly when both Input and Output cables are plugged in at the same time. This problem has been traced to a ground loop in the tape recorder itself which prevents making a good recording when saving a program. The easiest solution is to unplug the "monitor" output when recording. This ground loop does not influence the system when loading a pre-recorded tape.

Tape recorder head alignment is the most common source of tape recorder problems. If the playback head is skewed, then high frequency information on pre-recorded tapes is lost and all sorts of errors will result. To confirm that head alignment is the problem, write a short program in BASIC. >10 END is sufficient. Then save this program. And then rewind and load the program. If you can accomplish this easily but cannot load pre-recorded tapes, then head alignment problems are indicated.

Apple Computer pre-recorded tapes are made on the highest quality professional duplicating machines, and these tapes may be used by the service technician to align the tape recorder's heads. The frequency response of the tape recorder should be fairly good; the 6 KHz tone should be not more than 3 db down from a 1 KHz tone, and a 9 KHz tone should be no more than 9 db down. Note that recordings you have made yourself with mis-aligned heads may not not play properly with the heads properly aligned. If you made a recording with a skewed record head, then the tiny magnetic fields on the tape will be skewed as well, thus playing back properly only when the skew on the tape exactly matches the skew of the tape recorder's heads. If you have saved valuable programs with a skewed tape recorder, then borrow another tape recorder, load the programs with the old tape recorder into the Apple, then save them on the borrowed machine. Then have your tape recorder properly aligned.

Listening to the tape can help solve other problems as well. Flaws in the tape, excessive speed variations, and distortion can be detected this way. Saving a program several times in a row is good insurance against tape flaws. One thing to listen for is a good clean tone lasting for at least 3 1/2 seconds is needed by the computer to "set up" for proper loading. The Apple puts out this tone for anout 10 seconds when saving a program, so you normally have 6 1/2 seconds of leeway. If the playback volume is too high, you may pick up tape noise before getting to the set-up tone. Try a lower playback volume.

SYSTEM CHECKOUT

A quick check of the Apple II computer system will help you spot any problems that might be due to improperly placed or missing connections between the Apple II, the cassette interface, the Video display, and the game paddles. This checkout procedure takes just a few seconds to perform and is a good way of insuring that everything is properly connected before the power is turned on.

- 1. POWER TO APPLE check that the AC power cord is plugged into an appropriate wall socket, which includes a "true" ground and is connected to the Apple II.
- CASSETTE INTERFACE check that at least one cassette cable double ended with miniature phone tip jacks is connected between the Apple II cassette Input port and the tape recorder's MONITOR plug socket.
- 3. VIDEO DISPLAY INTERFACE
 - a) for a video monitor check that a cable connects the monitor to the Apple's video output port.
 - b) for a standard television check that an adapter (RF modulator) is plugged into the Apple II (either in the video output (K 14) or the video auxillary socket (J148), and that a cable runs between the television and the Adapter's output socket.
- 4. GAME PADDLE INTERFACE if paddles are to be used, check that they are connected into the Game I/O connector (J14) on the right-hand side of the Apple II mainboard.
- 5. POWER ON flip on the power switch in back of the Apple II, the "power" indicator on the keyboard will light. Also make sure the video monitor (or TV set) is turned on.

After the Apple II system has been powered up and the video display presents a random matrix of question marks or other text characters the following procedure can be followed to load a BASIC program tape:

- 1. Hit the RESET key.
 An asterick, "*", should appear on the lefthand side
 of the screen below the random text pattern. A flashing
 white cursor will appear to the right of the asterick.
- 2. Hold down the CTRL key, depress and release the B key, then depress the "RETURN" key and release the "CTRL" key. A right facing arrow should appear on the lefthand side of the screen with a flashing cursor next to it. If it doesn't, repeat steps 1 and 2.
- 3. Type in the word "LOAD" on the keyboard. You should see the word in between the right facing arrow and the flashing cursor. Do not depress the "RETURN" key yet.
- 4. Insert the program cassette into the tape recorder and rewind it.
- 5. If not already set, adjust the Volume control to 50-70% maximum. If present, adjust the Tone control to 80-100% maximum.

- 6. Start the tape recorder in "PLAY" mode and now depress the "RETURN" key on the Apple II.
- 7. The cursor will disappear and Apple II will beep in a few seconds when it finds the beginning of the program. If an error message is flashed on the screen, proceed through the steps listed in the Tape Problem section of this paper.
- 8. A second beep will sound and the flashing cursor will reappear after the program has been successfully loaded into the computer.
- 9. Stop the tape recorder. You may want to rewind the program tape at this time.
- 10. Type in the word "RUN" and depress the "RETURN" key.

The steps in loading a program have been completed and if everying has gone satisfactorily the program will be operating now.

LOADING PROBLEMS

Occasionally, while attempting to load a BASIC program Apple II beeps and a memory full error is written on the screen. At this time you might wonder what is wrong with the computer, with the program tape, or with the cassette recorder. Stop. This is the time when you need to take a moment and checkout the system rather than haphazardly attempting to resolve the loading problem. Thoughtful action taken here will speed in a program's entry. If you were able to successfully turn on the computer, reset it, and place it into BASIC then the Apple II is probably operating correctly. Before describing a procedure for resolving this loading problem, a discussion of what a memory full error is in order.

The memory full error displayed upon loading a program indicates that not enough (RAM) memory workspace is available to contain the incoming data. How does the computer know this? Information contained in the beginning of the program tape declares the record length of the program. The computer reads this data first and checks it with the amount of free memory. If adequate workspace is available program loading continues. If not, the computer beeps to indicate a problem, displays a memory full error statement, stops the loading procedure, and returns command of the system to the keyboard. Several reasons emerge as the cause of this problem.

Memory Size too Small

Attempting to load a 16K program into a 4K Apple II will generate this kind of error message. It is called loading too large of a program. The solution is straight forward: only load appropriately sized programs into suitably sized systems.

Another possible reason for an error message is that the memory pointers which indicate the bounds of available memory have been preset to a smaller capacity. This could have happened through previous usage of the "HIMEN:" and "LOMEN:" statements. The solution is to reset the pointers by B^{C} (CTRL B) command. Hold the CTRL key down, depress and release the B key, then depress the RETURN key and release the CTRL key. This will reset the system to maximum capacity.

Cassette Recorder Inadjustment

If the Volume and Tone controls on the cassette recorder are not properly set a memory full error can occur. The solution is to adjust the Volume to 50-70% maximum and the Tone (if it exists) to 80-100% maximum.*

A second common recorder problem is skewed head azimuth. When the tape head is not exactly perpendicular to the edges of the magnetic tape some of the high frequency data on tape can be skipped. This causes missing bits in the data sent to the computer. Since the first data read is record length an error here could cause a memory full error to be generated because the length of the record is inaccurate. The solution: adjust tape head azimuth. It is recommended that a competent technician at a local stereo shop perform this operation.

Often times new cassette recorders will not need this adjustment.

^{*}Apple Computer Inc. has tested many types of cassette recorders and so far the Panasonic RQ-309 DS (less than \$40.00) has an excellent track record for program loading.

Tape Problems

A memory full error can result from unintentional noise existing in a program tape. This can be the result of a program tape starting on its header which sometimes causes a glitch going from a nonmagnetic to magnetic recording surface and is interpreted by the computer as the record length. Or, the program tape can be defective due to false erasure, imperfections in the tape, or physical damage. The solution is to take a moment and listen to the tape. If any imperfections are heard then replacement of the tape is called for. Listening to the tape assures that you know what a "good" program tape sounds like. If you have any questions about this please contact your local dealer or Apple for assistance.

If noise or a glitch is heard at the beginning of a tape advance the tape to the start of the program and re-Load the tape.

Dealing with the Loading Problem

With the understanding of what a memory full error is an efficient way of dealing with program tape loading problems is to perform the following procedure:

- 1. Check the program tape for its memory requirements. Be sure that you have a large enough system.
- 2. Before loading a program reset the memory pointers with the $B_{\rm C}$ (control B) command.
- 3. In special cases have the tape head azimuth checked and adjusted.
- 4. Check the program tape by listening to it.
 - a) Replace it if it is defective, or
 - b) start it at the beginning of the program.
- 5. Then re-LOAD the program tape into the Apple II.

In most cases if the preceeding is followed a good tape load will result. UNSOLVED PROBLEMS

If you are having any unsolved loading problems, contact your nearest local dealer or Apple Computer Inc.

BREAKOUT GAME TAPE

PROGRAM DESCRIPTION

Breakout is a color graphics game for the Apple II computer. The object of the game is to "knock-out' all 160 colored bricks from the playing field by hitting them with the bouncing ball. You direct the ball by hitting it with a paddle on the left side of the screen. You control the paddle with one of the Apple's Game Paddle controllers. But watch out: you can only miss the ball five times!

There are eight columns of bricks. As you penetrate through the wall the point value of the bricks increases. A perfect game is 720 points; after five balls have been played the computer will display your score and a rating such as "Very Good". "Terrible!", etc. After ten hits of the ball, its speed with double, making the game more difficult. If you break through to the back wall, the ball will rebound back and forth, racking up points.

Breakout is a challenging game that tests your concentration, dexterity, and skill.

REQUIREMENTS

This program will fit into a 4K or greater system. BASIC is the programming language used.

PLAYING BREAKOUT

- 1. Load Breakout game following instructions in the "Loading a BASIC Program from Tape" section of this manual.
- 2. Enter your name and depress RETURN key.
- 3. If you want standard BREAKOUT colors type in Y or Yes and hit RETURN. The game will then begin.
- 4. If the answer to the previous questions was N or No then the available colors will be displayed. The player will be asked to choose colors, represented by a number from Ø to 15, for background, even bricks, odd bricks, paddle and ball colors. After these have been chosen the game will begin.

5. At the end of the game you will be asked if they want to play again. A Y or Yes response will start another game. A N or No will exit from the program.

NOTE: A game paddle (150k ohm potentiometer) must be connected to PDL (0) of the Game 1/0 connector for this game.

COLOR DEMO TAPE

PROGRAM DESCRIPTION

COLOR DEMO demonstrates some of the Apple II video graphics capabilities. In it are ten examples: Lines, Cross, Weaving, Tunnel, Circle, Spiral, Tones, Spring, Hyperbola, and Color Bars. These examples produce various combinations of visual patterns in fifteen colors on a monitor or television screen. For example, Spiral combines colorgraphics with tones to produce some amusing patterns. Tones illustrates various sounds that you can produce with the two inch Apple speaker. These examples also demonstrate how the paddle inputs (PDL(X)) can be used to control the audio and visual displays. Ideas from this program can be incorporated into other programs with a little modification.

REQUIREMENTS

4K or greater Apple II system, color monitor or television, and paddles are needed to use this program. BASIC is the programming language used.

BREAKOUT GAME PROGRAM LISTING

PROGRAM LISTING

- 5 GOTO 15
- 10 Q=(POL (0)-20)/6: IF Q(0 THEN Q=0: IF Q>=34 THEN Q=34: COLOR= D: VLIN Q.Q+5 AT 0: COLOR=A: IF P)Q THEN 175; IF Q THEN VLIN 0.0-1 AT 0:P=Q: RETURN
- 15 DIN A\$(15).8\$(10):A=1:B=13: C=9:D=6:E=15: TEXT : CALL -936: VTAB 4: TAB 10: PRINT "*** BREAKOUT ***": PRINT
- 20 PRINT " OBJECT IS TO DESTROY ALL BRICKS": PRINT : INPUT "HI, WHAT'S YOUR NAME? ",A\$
- 25 PRINT "STANDARD COLORS ":A\$:: INPUT " Y/N? ".8\$: GR : CALL -936: IF B\$(1,1)#"N" THEN 40 : FOR I=0 TO 39: COLOR=1/2* (1(32): VLIN 0,39 AT I
- 30 NEXT I: POKE 34,20: PRINT : PRINT : PRINT : FOR I=8 TO 15: YTAB 21+I MOD 2: TAB I+ I+1: PRINT I: NEXT I: POKE 34.22: YTAB 24: PRINT : PRINT "BACKGROUND":
- 35 GOSUB 95:A=E: PRINT "EVEN BRICK" ' :: GOSUB 95:B=E: PRINT "ODD BRIC K":: GOSUB 95:C=E: PRINT "PADDLE ";: GOSUB 95:D=E: PRINT "BALL" :: GOSUB 95
- 40 POKE 34.20: COLOR=A: FOR 1= 0 TO 39: YLIN 0.39 AT I: WEXT 1: FOR 1=20 TO 34 STEP 2: TAB I+1: PRINT I/2-9:: COLOR=8: YLIN 0.39 AT 1: COLOR=C: FOR J=1 MOD 4 TO 39 STEP 4

- 45 YLIN J,J+1 AT I: NEXT J,I: TAB 5: PRINT "SCORE = 0": PRINT : PRINT : POKE 34.21:5=0:P= S:L=S:X=19:Y=19:L=6
- 50 COLOR=A: PLOT.X.Y/3:X=19:Y= RND (120):4=-1:4= RND (5)-2:L=L-1: IF L<1 THEH 120: TAB 6: IF L>1 THEN PRINT L;" BALLS L EFT"
- 55 IF L=1 THEN PRINT "LAST BALL, " 110 IF 5<720 THEN 80 :A\$: PRINT : FOR I=1 TO 180 : 605UB 10: NEXT l:N=1:N=0
- 60 J=Y+₩: IF J>=0 AND J<120 THEN 65:W=-W:J=Y: FOR [=1 TO 6:K= PEEK (-16336): NEXT [
- 65 I=X+V: IF I(0 THEN 180: GOSUB 170: COLOR=A:K=J/3: IF I/39 130 PRINT "LOUSY.": 60TO 165 THEN 75: IF SCRN(I,K)=A THEN 85: IF I THEN 100:N=H+1:V=(N)5)+1:W=(K-P)+2-5:M=1
-)+ PEEK (-16336)- PEEK (-16336)+ PEEK (-16336): GOTO 85
- 75 FOR I=1 TO 6:M= PEEK (-16336
- 88 V=-V
- 85 PLOT X;Y/3: COLOR=E: PLOT I; K:X=1:Y=J: G0T0 60
- 90 PRINT "INVALID. REENTER";
- 95 INPUT * COLOR (@ TO 15)*,E: IF E(0 OR E)15 THEN 90: RETURN

- 100 IF M THEN V= ABS (V): VLIN K/2*2.K/2*2+1 AT I:S=S+I/2-9: VTAB 21: TAB 13: PRINT S
- 105 Q= PEEK (-16336)- PEEK (-16336)+ PEEK (-16366)- PEEK (-16336)+ PEEK (-16336)- PEEK (-16336)+ PEEK (-16336)- PEEK (-16336)+ PEEK (-16336)- PEEK (-16336
- 115 PRINT "COMGRATULATIONS, ";A\$;" YOU WIN!": GOTO 165
- 120 PRINT "YOUR SCORE OF ";5;" IS " :: GOTO 125+(5/180)*****5
- 125 PRINT "TERRIBLE!": GOTO 165
- 135 PRINT "POOR.": GOTO 165
- 140 PRINT "FAIR.": GOTO 165
- 145 PRINT "GOOD.": GOTO 165
- - 160 PRINT "WEARLY PERFECT."
 - 165 PRINT "ANOTHER GAME ":A\$:" (Y/N) ";: INPUT A\$: IF A\$(1,1)="Y" THEN 25: TEXT : CALL -936: VTAB 10: TAB 10: PRIHT "GAME OV ER": END
 - 170 Q=(PDL (0)-20)/6: [F Q**(0 THE**N Q=0: IF Q>=34 THEN Q=34: COLOR= D: YLIN Q.Q+5 AT 0: COLOR=A: IF P/Q THEN 175: IF Q THEN VLIN 0,Q-1 AT 0:P=Q: RETURN
 - 175 IF P=Q THEN RETURN : IF Q#34 THEN VLIN Q+6,39 AT 0:P=Q: RETURN
 - 180 FOR I=1 TO 80:Q= PEEK (-16336): NFXT I: 60T0 50

COLOR DEMO PROGRAM LISTING

PROGRAM LISTING

- 10 DIM C(4): POKE 2,173: POKE 3,48: POKE 4,192: POKE 5,165 : POKE 6.0: POKE 7.32: POKE 8,168: POKE 9.252: POKE 10. 165: POKE 11.1: POKE 12.208
- 20 POKE 13,4: POKE 14,198: POKE 15,24: POKE 16,240: POKE 17 ,5: POKE 18,198: POKE 19,1: POKE 20,76: POKE 21,2: POKE 22.0: POKE 23.96
- 30 TEXT : CALL -936: VTAB 4: TAB 8: PRINT "4K COLOR DEMOS": PRINT : PRINT "1 LINES": PRINT "2 CROS 5": PRINT "3 WEAVING"
- 46 PRINT "4 TUNNEL": PRINT "5 CIRCL E": PRINT "6 SPIRAL **": PRINT "7 TONES ** ": PRINT "8 SPRING"
- 50 PRINT "9 HYPERBOLA": PRINT "10 COLOR BARS": PRINT : PRINT "** NEEDS POL(0) CONNECTED" : PRINT
- 60 PRINT "HIT ANY KEY FOR NEW DEMO" :Z=0: PRINT : INPUT *WHICH DEMO # ".I: GR : IF I>0 AND I<11 THEN GOTO 188+1: GOTO 30
- 70 IMPUT "WHICH DEMO WOULD YOU ! IKF ",I: GR : IF I AND IK20 THEN GOTO 100*1: GOTO 30
- 100 I=1+I MOD 79:J=I+(1)39)*(79 -I-I): GOSUB 2000: GOSUB 10000 : GOTO 100
- 200 I=I+I MOD 39:J=I: GOSUB 2000 :J=39-1: GOSUB 2000: GOSUB 19000: GOTO 200

- 300 J=J+1:J=J MOD 22+1: FOR I=1 TO 1295: COLOR=I MOD J+7: PLOT (2*I) MOD 37,(3*I) MOD 35: MEXT I: GOSUB 10000: GOTO 300
- 400 FOR I=1 TO 4:C(I)= RND (16) : MEXT I
- 410 FOR I=3 TO 1 STEP -1:C(I+1) =C(I): NEXT I:C(I)= RND (16): FOR I=1 TO 5: FOR J=1 TO
- 420 COLOR=C(J):L=J*5+14+1:K=39-L: HLIN K,L AT K: VLIN K.L AT L: HLIN K,L AT L: VLIN K.L AT K: NEXT J.I: GOSUB 10000: GOTO 410
- 586 Z=26: GOTO 900
- 600 COLOR= RMD (16); FOR I=0 TO 18 STEP 2:J=39-I: HLIN I,J AT I: GOSUB 640: VLIN I.J AT J: GOSUB 640
- 610 HLIN I+2,J AT J: GOSUB 640: VLIN I+2.J AT I+2: 60508 648 : NEXT I
- 620 COLOR= RND (16): FOR I=18 TO 0 STEP -2:J=39-I: VLIH I+2. J AT I+2: GOSUB 640: HLIN I+ 2,J AT J: GOSUB 640
- 630 YLIN I,J AT J: 605UB 640: HLIN 1000 CALL -936 I,J AT I: GOSUB 640: NEXT I: GOSUB 10000: GOTO 600
- 640 K=I+7:L=K*K*5+K*26+70:L=32767 /L*(PDL (0)/10): POKE 0.K: POKE 1,L MOD 256: POKE 24, L/256+1: CALL 2: RETURN

- 700 I= RND (30)+3:J=I*I*5+I*26+ 70:K=32767/J*(PDL (0)/10): POKE 0,1: POKE 1.K MOD 256 : POKE 24,(K)255)+1: CALL 2 : GOSUB 10000: GOTO 700
- 800 X=3:A=1000:P=A:L=20:W=4:Y=A :J=1: COLOR=6: HLIN 0.39 AT 4: COLOR=9: GOSUB 880: COLOR= 12: YLIN 5.K-2 AT X
- 810 N=2*A-P-A/W: COLOR=0: GOSU8 888: VLIN 5,39 AT X:X=X+1: IF X<39 THEN 820:X=3: VLIN 5,39 AT 1: VLIN 5.39 AT 2
- 820 P=A:A=H:Y=A/100: COLOR=12: GOSUB 886: COLOR=9: VLIN 5.M-2 AT X: COLOR=15: PLOT X-2.M: FOR I=0 TO J: NEXT I: GOSUB 10000 : GOTO 810
- 880 M=L-Y:L1=M-1:L2=M+1: VLIN L1. L2 AT X-1: VLIN L1.L2 AT X: VLIN LI,L2 AT X+1: RETURN
- 900 I=1+1 MOD 15: FOR Y=A TO 39 : FOR X=0 TO 39: COLOR=I+(ARS (20-X)-Z)*(ABS (20-Y)-Z)/25 : PLOT X,Y: NEXT X.Y: GOSUB 10000: GOTO 900
- 1010 J=1+J MOD 32: COLOR=J/2: VETM 0.39 AT 3+J: VTAB 21+(J/2) MAD 2: TAB 3+J: IF J MOD 2 THEN PRINT J/2:: GOSUB 19999: GOTO 1010
 - 2000 COLOR= RND (16): HLIN 9.39 AT J: COLOR= RND (16): VLIN 0. 39 AT J: RETURN
- 10000 IF PEEK (-16384)/128 THEN RETURN : POKE -16368.0; POP : GOTO 30

```
APPLE II STARTREK VERSION
                                                                                                                                                        -.-.-.-.-.-.-.-.-
                         THIS IS A SHORT DESCRIPTION OF HOW TO PLAY STARTREK ON THE
APPLE COMPUTER.
      THE UNIVERSE IS MADE UP OF 64 QUADRANTS IN AN 8 BY 8 MATRIX. THE QUADRANT IN WHICH YOU "THE ENTERPRISE " ARE, IS IN WHITE, AND A BLOW UP OF THAT QUADRANT IS FOUND IN THE LOWER LEFT
                                 YOUR SPACE SHIP STATUS IS FOUND IN A TABLE TO
THE RIGHT SIDE OF THE QUADRANT BLOW UP.

THIS IS A SEARCH AND DESTROY MISSION. THE OBJECT IS TO LONG-RANGE SENSE FOR INFORMATION AS TO WHERE KLINGONS (K) ARE, MOVE TO THAT QUADRANT,
AND DESTROY.
                     NUMBERS DISPLAYED FOR EACH QUADRANT DENOTE:
              NUMBERS DISPLATED FOR EACH QUADRANT DENDIE:

# OF STARS IN THE ONES PLACE

# OF RASES IN THE TENS PLACE

# OF KLINGONS IN THE HUNDREDS PLACE

AT ANY TIME DURING THE GAME, FOR INSTANCE BEFORE ONE TOTALLY
RUNS OUT OF ENERGY, OR NEEDS TO REGENERATE ALL SYSTEMS, ONE MOVES TO A QUADRANT WHICH INCLUDES A PASE, IONS NEXT TO THAT BASE (B) AT WHICH TIME
THE BASE SELF-DESTRUCTS AND THE ENTERPRISE (E) HAS ALL SYSTEMS "GO"
     TO PLAY:
  1. THE COMMANDS CAN BE OBTAINED BY TYPING A "O" (ZERO) AND RETURN.
     THEY ARE:
                                                1. PROPULSION
                                                                                                                       2. REGENERATE
                                                3. LONG RANGE SENSORS
                                                                                                                   4. PHASERS
                                                                                                                      6. GALAXY RECORD
8. PROBE
                                               5. PHOTON TORPEDOES
                                               7. COMPUTER
  9. SHIELD ENERGY 10.DAMAGE REPORT 11.LOAD PHOTON TORPEDOES
2. THE COMANDS ARE INVOKED BY TYPING THE NUMBER REFERING TO THEM
                                               9. SHIELD ENERGY
                      COMANDS ARE INVOKED BY TYPING THE NUMBER REFERING TO THEM FOLLOWED BY A "RETURN".

A. IF RESPONSE IS 1 THE COMPUTER WILL ASK WARP OR ION AND EXPECTS "W" IF ONE WANTS TO TRAVEL IN THE GALAXY BETWEEN QUADRANTS AND AN "I" IF ONE WANTS ONLY INTERNAL QUADRANT TRAVEL.

DURATION OR WARP FACTOR IS THE NUMBER OF SPACES OR QUADRANTS THE ENTERPRISE WILL MOVE.

COURSE IS COMPASS READING IN DEGREES FOR THE DESIPER OF THE
                                              RED DESTINATION.
                      B. A 2 REGENERATES THE ENERGY AT THE EXPENSE OF TIME.
C. A 3 GIVES THE CONTENTS OF THE IMMEDIATE ADJACENT QUADRANTS.
THE GALAXY IS WRAP-AROUND IN ALL DIRECTIONS.
B. 4 FIRES PHASERS AT THE EXPENSE OF AVAILABLE ENERGY.
                  E. 5 INITIATES A SET OF QUESTIONS FOR TORPEDO FIRING.
THEY CAN BE FIRED AUTOMATICALLY IF THEY HAVE
BEEN LOCKED ON TARGET WHILE IN THE COMPUTER
MODE, OR MAY BE FIRED MANUALLY IF THE TRAGECTORY ANGLE
                  IS KNOWN.

F. 6, 8 AND 10 ALL GIVE INFORMATION ABOUT THE STATUS OF THE SHIP AND ITS ENVIRONMENT.
                   G. 9 SETS THE SHIELD ENERGY/AVAILABLE ENERGY RATIO.
                  H. 11 ASKS FOR INFORMATION ON LOADING AND UNLOADING OF PHOTON TORPEDOES AT THE ESPENSE OF AVAILABLE ENERGY.
                                                                  THE ANSWER SHOULD BE A SIGNED NUMBER. FOR EXAMPLE
                                                                   +5 OR -2
                   1. 7 ENTERS A COMPUTER WHICH WILL RESPOND TO THE FOLLOWING
                                          INSTRUCTIONS:
                                                                 1. COMPUTE COURSE 2
3. LOCK PHOTON TORPEDOES
4. LOCK COURSE 5
                                                                                                                                         2. LOCK PHASERS
                                                                                                                                     5. COMPUTE TREJECTORY
7. RETURN TO COMAND MODE
                                                                  6. STATUS
                                         IN THE FIRST FIVE ONE WILL HAVE TO GIVE COORDINATES.
COORDINATES ARE GIVEN IN MATHMATICAL NOTATION WITH
THE EXCEPTION THAT THE "Y" VALUE IS GIVEN FIRST.
AN EXAMPLE WOULD BE "Y,X"
                                         COURSE OR TRAJECTORY:
                                         270------90
```

180

LOADING THE HI-RES DEMO TAPE

PROCEDURE

- Power up system turn the AC power switch in the back of the Apple II on. You should see a random matrix of question marks and other text characters. If you don't, consult the operator's manual for system checkout procedures.
- 2. Hit the RESET key. On the left hand side of the screen you should see an asterisk and a flashing cursor next to it below the text matrix.
- 3. Insert the HI-RES demo tape into the cassette and rewind it. Check Volume (50-70%) and Tone (80-100%) settings.
- 4. Type in "CØØ.FFFR" on the Apple II keyboard. This is the address range of the high resolution machine language subprogram. It extends from \$CØØ to \$FFF. The R tells the computer to read in the data. Do not depress the "RETURN" key yet.
- 5. Start the tape recorder in playback mode and depress the "RETURN" key. The flashing cursor disappears.
- 6. A beep will sound after the program has been read in.
 STOP the tape recorder. Do not rewind the program tape yet.
- 7. Hold down the "CTRL" key, depress and release the B key, then depress the "RETURN" key and release the "CTRL" key. You should see a right facing arrow and a flashing cursor. The B^C command places the Apple into BASIC initializing the memory pointers.
- 8. Type in "LOAD", restart the tape recorder in playback mode and hit the "RETURN" key. The flashing cursor disappears. This begins the loading of the BASIC subprogram of the HI-RES demo tape.
- 9. A beep will sound to indicate the program is being loaded.

- 10. A second beep will sound, and the right facing arrow will reappear with the flashing cursor. STOP the tape recorder. Rewind the tape.
- 11. Type in "HIMEM:8192" and hit the "RETURN" key. This sets up memory for high resolution graphics.
- 12. Type in "RUN" and hit the "RETURN" key. The screen should clear and momentarily a HI-RES demo menu table should appear. The loading sequence is now completed.

SUMMARY OF HI-RES DEMO TAPE LOADING

- 1. RESET
- 2. Type in CØØ.FFFR
- 3. Start tape recorder, hit RETURN
- 4. Asterick or flashing cursor reappear BC (CTRL B) into BASIC
- 5. Type in "LOAD", hit RETURN
- 6. BASIC prompt (7) and flashing cursor reappear. Type in "HIMEN:8192", hit RETURN
- 7. Type in "RUN", hit RETURN
- 8. STOP tape recorder, rewind tape.

APPLE II INTEGER BASIC

- 1. BASIC Commands
- 2. BASIC Operators
- 3. BASIC Functions
- 4. BASIC Statements
- 5. Special Control and Editing
- 6. Table A Graphics Colors
- 7. Special Controls and Features
- 8. BASIC Error Messages
- 9. Simplified Memory Map
- 10. Data Read/Save Subroutines
- 11. Simple Tone Subroutines
- 12. High Resolution Graphics
- 13. Additional BASIC Program Examples

BASIC COMMANDS

Commands are executed immediately; they do not require line numbers.Most Statements (see Basic Statements Section) may also be used as commands. Remember to press Return key after each command so that Apple knows that you have finished that line. Multiple commands (as opposed to statements) on same line separated by a ": " are NOT allowed.

COMMAND NAME

AUTO num Sets automatic line numbering mode. Starts at line

number num and increments line numbers by 10. To exit AUTO mode, type a control X^* , then type the

letters "MAN" and press the return key.

AUTO num1, num2 Same as above execpt increments line numbers by

number num2.

CLR Clears current BASIC variables; undimensions arrays.

Program is unchanged.

CON Continues program execution after a stop from a

control C*. Does not change variables.

DEL num1 Deletes line number num1.

DEL num1, num2 Deletes program from line number num1 through line

number num2.

DSP var Sets debug mode that will display variable var every-

time that it is changed along with the line number that caused the change. (NOTE: RUN command clears DSP mode so that DSP command is effective only if program is continued by a CON or GOTO command.)

HIMEM: expr Sets highest memory location for use by BASIC at

location specified by expression exprin decimal.

HIMEM: may not be increased without destroying program. HIMEM: is automatically set at maximum RAM memory when

BASIC is entered by a control B*.

GOTO *expr* Causes immediate jump to line number specified by

expression expr.

GR Sets mixed color graphics display mode. Clears screen

to black. Resets scrolling window. Displays 40x40

squares in 15 colors on top of screen and 4 lines of text

at bottom.

LIST Lists entire program on screen.

LIST num1 Lists program line number num1.

LIST num1, num2 Lists program line number num1 through line number

num2.

LOAD expr.

Reads (Loads) a BASIC program from cassette tape. Start tape recorder before hitting return key. Two beeps and a ">" indicate a good load. "ERR" or "MEM" FULL ERR" message indicates a bad tape or poor recorder performance.

LOMEM: expr

Similar to HIMEM: except sets lowest memory location available to BASIC. Automatically set at 2048 when BASIC is entered with a control B*. Moving LOMEM: destroys current variable values.

MAN

Clears AUTO line numbering mode to all manual line numbering after a control C* or control X*.

NEW

Clears (Scratches) current BASIC program.

NO DSP var

Clears DSP mode for variable var.

NO TRACE

Clears TRACE mode.

RUN

Clears variables to zero, undimensions all arrays and executes program starting at lowest statement line number.

RUN expr

Clears variables and executes program starting at line number specified by expression expr.

SAVE

Stores (saves) a BASIC program on a cassette tape. Start tape recorder in record mode prior to hitting return key.

TEXT

Sets all text mode. Screen is formated to display alpha-numeric characters on 24 lines of 40 characters each. TEXT resets scrolling window to maximum.

TRACE

Sets debug mode that displays line number of each statement as it is executed.

Control characters such as control X or control C are typed by holding down the CTRL key while typing the specified letter. This is similiar to how one holds down the shift key to type capital letters. Control characters are NOT displayed on the screen but are accepted by the computer. For example, type several control G's. We will also use a superscript C to indicate a control character as in X^{C} .

BASIC Operators

Symbol	Sample Statement	Explanation
Prefix 0	perators	
()	1Ø X= 4*(5 + X)	Expressions within parenthesis () are always evaluated first.
+	20 X= 1+4*5	Optional; +1 times following expression.
-	30 ALPHA = -(BETA +2)	Negation of following expression.
NOT	4Ø IF A NOT B THEN 2ØØ	Logical Negation of following expression; Ø if expression is true (non-zero), lif expression is false (zero).
Arithmet	ic Operators	
†	6 Ø Y = X↑3	Exponentiate as in X^3 . NOTE: \uparrow is shifted letter N.
*	70 LET DOTS=A*B*N2	Multiplication. NOTE: Implied multiplication such as $(2 + 3)(4)$ is not allowed thus N2 in example is a variable not N * 2.
/	8/0 PRINT GAMMA/S	Divide
MOD	90 X = 12 MOD 7 100 X = X MOD(Y+2)	Modulo: Remainder after division of first expression by second expression.
+	110 P = L + G	Add
-	12Ø XY4 = H-D	Substract
=	13Ø HEIGHT=15 14Ø LET SIZE=7*5 15Ø A(8) = 2 155 ALPHA\$ = "PLEASE"	Assignment operator; assigns a value to a variable. LET is optional

Relational and Logical Operators

The numeric values used in logical evaluation are "true" if non-zero, "false" if zero.

Symbol	Sample Statement	Explanation
=	160 IF D = E THEN 500	Expression "equals" expression.
=	170 IF A\$(1,1)= "Y" THEN 500	String variable "equals" string variable.
# or < >	18Ø IF ALPHA #X*Y THEN 5ØØ	Expression "does not equal" expression.
#	190 IF A\$ # "NO" THEN 500	String variable "does not equal" string variable. NOTE: If strings are not the same length, they are considered un-equal. <> not allowed with strings.
>	200 IF A>B THEN GO TO 50	Expression "is greater than" expression.
<	210 IF A+1 <b-5 THEN 100</b-5 	Expression "is less than" expression.
>=	22Ø IF A>=B THEN 1ØØ	Expression "is greater than or equal to" expression.
<=	23Ø IF A+1<=B-6 THEN 2ØØ	Expression "is less than or equal to" expression.
AND	24Ø IF A>B AND C <d 2øø<="" td="" then=""><td>Expression 1 "and" expression 2 must both be "true" for statements to be true.</td></d>	Expression 1 "and" expression 2 must both be "true" for statements to be true.
OR	25Ø IF ALPHA OR BETA+1 THEN 2ØØ	If either expression 1 or expression 2 is "true", statement is "true".

BASIC FUNCTIONS

Functions return a numeric result. They may be used as expressions or as part of expressions. PRINT is used for examples only, other statements may be used. Expressions following function name must be enclosed between two parenthesis signs.
FUNCTION NAME

ABS (expr)	3ØØ	PRINT	ABS(X)	Gives absolute value of the expression expr.
ASC (str\$)	32Ø 33Ø	PRINT PRINT	ASC("BACK") ASC(B\$) ASC(B\$(4,4)) ASC(B\$(Y))	Gives decimal ASCII value of designated string variable str\$. If more than one character is in designated string or sub-string, it gives decimal ASCII value of first character.
LEN (str\$)	34Ø	PRINT	LEN(B\$)	Gives current length of designated string variable $str $$; i.e., number of characters.
PDL (expr)	35Ø	PRINT	PDL(X)	Gives number between Ø and 255 corres- ponding to paddle position on game paddle number designated by expression <i>expir</i> and must be legal paddle (Ø,1,2,or 3) or else 255 is returned.
PEEK (expr)	36Ø	PRINT	PEEK(X)	Gives the decimal value of number stored of decimal memory location specified by expression $expr$. For MEMORY locations above 32676, use negative number; i.e., HEX location FFFØ is -16
RND (expr)	37Ø	PRINT	RND(X)	Gives random number between \emptyset and (expression $expr$ -1) if expression $expr$ is positive; if minus, it gives random number between \emptyset and (expression $expr$ +1).
SCRN(expr1, expr2)	380	PRINT	SCRN (X1,Y1)	Gives color (number between \emptyset and 15) of screen at horizontal location designated by expression $expr1$ and vertical location designated by expression $expr2$ Range of expression $expr1$ is \emptyset to 39. Range of expression $expr2$ is \emptyset to 39 if in standar mixed colorgraphics display mode as set by GR command or \emptyset to 47 if in all color mode set by POKE -163 \emptyset 4, \emptyset : POKE - 163 \emptyset 2, \emptyset .
SGN (expr)	39 / 0	PRINT	SGN(X)	Gives sign (not sine) of expression $expr$ i.e., -1 if expression $expr$ is negative, zero zero and +1 if $expr$ is positive.

BASIC STATEMENTS

Each BASIC statement must have a line number between \emptyset and 32767. Variable names must start with an alpha character and may be any number of alphanumeric characters up to 100. Variable names may not contain buried any of the following words: AND, AT, MOD, OR, STEP, or THEN. Variable names may not begin with the letters END, LET, or REM. String variables names must end with a \$ (dollar sign). Multiple statements may appear under the same line number if separated by a : (colon) as long as the total number of characters in the line (including spaces) is less than approximately 150 characters Most statements may also be used as commands. BASIC statements are executed by RUN or GOTO commands.

NAME

CALL expr 10 CALL-936

Causes execution of a machine level language subroutine at <u>decimal</u> memory location specified by expression *expr* Locations above 32767 are specified using negative numbers; i.e., location in example 10 is hexidecimal number \$FC53

COLOR = expr 30 COLOR = 12

In standard resolution color (GR) graphics mode, this command sets screen TV color to value in expression expr in the range Ø to 15 as described in Table A. Actually expression expr may be in the range Ø to 255 without error message since it is implemented as if it were expression expr MOD 16.

DIM var1 (expr1) 50 DIM A(20),B(10)
str\$ (expr2) 60 DIM B\$(30)
var2 (expr3) 70 DIM C (2)
Illegal:
80 DIM A(30)
Legal:
85 DIM C(1000)

The DIM statement causes APPLE II to reserve memory for the specified variables. For number arrays APPLE reserves approximately 2 times expr bytes of memory limited by available memory. For string arrays -str\$-(expr) must be in the range of 1 to 255. Last defined variable may be redimensioned at any time; thus, example in line is illegal but 85 is allowed.

DSPvar

Legal:
90 DSP AX: DSP L
Illegal:
100 DSP AX,B
102 DSP AB\$
104 DSP A(5)
Legal:

105 A = A(5): DSP A

Sets debug mode that DSP variable var each time it changes and the line number where the change occured.

NAME	EXAMPLE	DESCRIPTION
END	110 END	Stops program execution. Sends carriage return and "> " BASIC prompt) to screen.
FOR var= expr1 TOexpr2 STEPexpr3	110 FOR L=0 to 39 120 FOR X=Y1 TO Y3 130 FOR I=39 TO 1 150 GOSUB 100 *J2	Begins FORNEXT loop, initializes variable var to value of expression $expr1$ then increments it by amount in expression $expr3$ each time the corresponding "NEXT" statement is encountered, until value of expression $expr2$ is reached. If STEP $expr3$ is omitted, a STEP of +1 is assumed. Negative numbers are allowed.
GOSUE expr	140 GOSUB 500	Causes branch to BASIC subroutine starting at legal line number specified by expression $expr$ Subroutines may be nested up to 16 levels.
GOTO expr	16Ø GOTO 2ØØ 17Ø GOTO ALPHA+1ØØ	Causes immediate jump to legal line number specified by expression $expr$.
<u>GR</u>	180 GR 190 GR: POKE -16302,0	Sets mixed standard resolution color graphics mode. Initializes COLOR = \emptyset (Black) for top $4\emptyset \times 4\emptyset$ of screen and sets scrolling window to lines 21 through 24 by $4\emptyset$ characters for four lines of text at bottom of screen. Example $19\emptyset$ sets all color mode ($4\emptyset \times 4\emptyset$ field) with no text at bottom of screen.
HLIN expr1, expr2ATexpr3	200 HLIN 0,39 AT 20 210 HLIN Z,Z+6 AT I	In standard resolution color graphics mode, this command draws a horizontal line of a predefined color (set by COLOR=) starting at horizontal position defined by expression $expr1$ and ending at position $expr2$ at vertical position defined by expression $expr3$. $expr1$ and $expr2$ must be in the range of Ø to 39 and $expr1$ < $expr2$. $expr3$ be in the range of Ø to 39 (or Ø to 47 if not in mixed mode).
Note:	extending from left corne	izontal line at the top of the screen er to center of screen and HLIN 20,39 AT at the bottom of the screen extending from

<u>IF</u> expressi <u>THEN</u> statem		If expression is true (non-zero) then execute statement; if false do not execute statement. If statement is an expression, then a GOTO expr type of statement is assumed to be implied. The "ELSE" in example 260 is illegal but may be implemented as shown in example 270.
INPUT var1, var2, str	28Ø INPUT X,Y,Z(3) \$ 29Ø INPUT "AMT", DLLR 3ØØ INPUT "Y or N?", A\$	Enters data into memory from I/O device. If number input is expected, APPLE wil output "?"; if string input is expected no "?" will be outputed. Multiple numeric inputs to same statement may be separated by a comma or a carriage return. String inputs must be separated by a carriage return only. One pair of " " may be used immediately after INPUT to output prompting text enclosed within the quotation marks to the screen.
<u>IN#</u> expr	31Ø IN# 6 32Ø IN# Y+2 33Ø IN# O	Transfers source of data for subsequent INPUT statements to peripheral I/O slot (1-7) as specified as by expression $expr$. Slot \emptyset is not addressable from BASIC. IN# \emptyset (Example 33 \emptyset) is used to return data source from peripherial I/O to keyboard connector.
LET	34Ø LET X=5	Assignment operator. "LET" is optional
LIST num1, num2	35Ø IF X > 6 THEN LIST 5Ø	Causes program from line number $num1$ through line number $num2$ to be displayed on screen.
NEXT var1,	36Ø NEXT I 37Ø NEXT J,K	Increments corresponding "FOR" variable and loops back to statement following "FOR" until variable exceeds limit.
NO DSP var	38Ø NO DSP I	Turns-off DSP debug mode for variable
NO TRACE	39Ø NO TRACE	Turns-off TRACE debug mode

PLOT, expr1, expr2	400 PLOT 15, 25 400 PLT XV,YV	In standard resolution color graphics, this command plots a small square of a predefined color (set by COLOR=) at horizontal location specified by expression <code>expr1</code> in range Ø to 39 and vertical location specified by expression <code>expr2</code> in range Ø to 39 (or Ø to 47 if in all graphics mode) NOTE: PLOT Ø Ø is upper left and PLOT 39, 39 (or PLOT 39, 47) is lower right corner.
POKE expr1, expr2	420 POKE 20, 40 430 POKE 7*256, XMOD255	Stores <u>decimal</u> number defined by expression $expr2$ in range of \emptyset 255 at <u>decimal</u> memory location specified by expression $expr1$ Locations above 32767 are specified by negative numbers.
POP	44Ø POP	"POPS" nested GOSUB return stack address by one.
PRINT var1, var, str\$	450 PRINT L1 460 PRINT L1, X2 470 PRINT "AMT=";DX 480 PRINT A\$;B\$; 490 PRINT 492 PRINT "HELLO" 494 PRINT 2+3	Outputs data specified by variable var or string variable str\$ starting at current cursor location. If there is not trailing "," or ";" (Ex 450) a carriage return will be generated. Commas (Ex. 460) outputs data in 5 left justified columns. Semi-colon (Ex. 470) inhibits print of any spaces. Text imbedded in " " will be printed and may appear multiple times.
PR# expr	500 PR# 7	Like IN#, transfers output to I/O slot defined by expression $expr$ PR# Ø is video output not I/O slot Ø.
<u>REM</u>	510 REM REMARK	No action. All characters after REM are treated as a remark until terminated by a carriage return.
RETURN	52Ø RETURN 53Ø IFX= 5 THEN RETURN	Causes branch to statement following last GOSUB; i.e., RETURN ends a subroutine. Do not confuse "RETURN" statement with Return key on keyboard.

TAB expr	53Ø TAB 24 54Ø TAB I+24 55Ø IF A#B THEN TAB 2Ø	Moves cursor to absolute horizontal position specified by expression expr in the range of 1 to 40. Position is left to right
TEXT	55Ø TEXT 56Ø TEXT: CALL-936	Sets all text mode. Resets scrolling window to 24 lines by 40 characters. Example 560 also clears screen and homes cursor to upper left corner
TRACE	57Ø TRACE 580 IFN > 32ØØØ THEN TRACE	Sets debug mode that displays each line number as it is executed.
VLIN expr1, expr2 AT expr3	59Ø VLIN Ø, 39AT15 6ØØ VLIN Z,Z+6ATY	Similar to HLIN except draws vertical line starting at $expr1$ and ending at $expr2$ at horizontal position $expr3$.
VTAB expr	61Ø VTAB 18 62Ø VTAB Z+2	Similar to TAB. Moves cursor to absolute vertical position specified by expression <i>expr</i> in the range 1 to 24. VTAB 1 is top line on screen; VTAB24 is bottom.

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as G^{C} . They are obtained by holding down the CTRL key while typing the specified letter. Control characters are NOT displayed on the TV screen. B^{C} and C^{C} must be followed by a carriage return. Screen editing characters are indicated by a sub-scripted "E" such as D_{E} . They are obtained by pressing and releasing the ESC key then typing specified letter. Edit characters send information only to display screen and does not send data to memory. For example, U^{C} moves to cursor to right and copies text while A_{E} moves cursor to right but does not copy text.

CHARACTER	DESCRIPTION OF ACTION
RESET key	Immediately interrupts any program execution and resets computer. Also sets all text mode with scrolling window at maximum. Control is transferred to System Monitor and Apple prompts with a "*" (asterisk) and a bell. Hitting RESET key does NOT destroy existing BASIC or machine language program.
Control B	If in System Monitor (as indicated by a "*"), a control B and a carriage return will transfer control to BASIC, scratching (killing) any existing BASIC program and set HIMEM: to maximum installed user memory and LOMEM: to 2048.
Control C	If in BASIC, halts program and displays line number where stop occurred*. Program may be continued with a CON command. If in System Monitor, (as indicated by "*"), control C and a carraige return will enter BASIC without killing current program.
Control G	Sounds bell (beeps speaker)
Control H	Backspaces cursor and deletes any overwritten characters from computer but not from screen. Apply supplied keyboards have special key "←" on right side of keyboard that provides this functions without using control button.
Control J	Issues line feed only
Control V	Compliment to H^C . Forward spaces cursor and copies over written characters. Apple keyboards have " \rightarrow " key on right side which also performs this function.
Control X	Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have

to hit carriage return key after typing control C.

CHARACTER

DESCRIPTION OF ACTION

A _E	Move cursor to right
B _E	Move cursor to left
c_{E}	Move cursor down
D_E	Move cursor up
E _E	Clear text from cursor to end of line
F _E	Clear text from cursor to end of page
[@] E	Home cursor to top of page, clear text to end of page.

Table A: APPLE II COLORS AS SET BY COLOR =

Note:

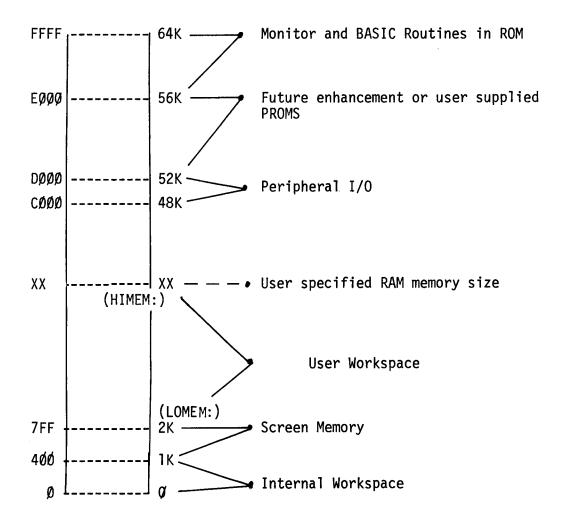
Colors may vary depending on TV tint (hue) setting and may also be changed by adjusting trimmer capacitor C3 on APPLE II P.C. Board.

8 = Brown
9 = Orange
1Ø = Grey
11 = Pink
12 = Green
13 = Yellow
14 = Blue/Green
15 = White

Special Controls and Features

<u>Hex</u>	BASIC Example	Description
Display Mo	ode Controls	
CØ50 CØ51 CØ52 CØ53 CØ54	10 POKE -16304,0 20 POKE -16303,0 30 POKE -16302,0 40 POKE -16301,0 50 POKE -16300,0	Set color graphics mode Set text mode Clear mixed graphics Set mixed graphics (4 lines text) Clear display Page 2 (BASIC commands use Page 1 only)
CØ55 CØ56 CØ57	6Ø POKE -16299,Ø 7Ø POKE -16298,Ø 8Ø POKE -16297,Ø	Set display to Page 2 (alternate) Clear HIRES graphics mode Set HIRES graphics mode
TEXT Mode	Controls	
ØØ2Ø	9Ø POKE 32,L1	Set left side of scrolling window to location specified by Ll in range of Ø to 39.
ØØ21	100 POKE 33,W1	Set window width to amount specified by Wl. Ll+Wl<4Ø. Wl>Ø
ØØ22	11Ø POKE 34,T1	Set window top to line specified by Tl in range of Ø to 23
ØØ23	12Ø POKE 35,B1	Set window bottom to line specified by Bl in the range of Ø to 23. Bl>Tl
ØØ24 `	13Ø CH=PEEK(36) 14Ø POKE 36,CH 15Ø TAB(CH+1)	Read/set cusor horizontal position in the range of Ø to 39. If using TAB, you must add "1" to cusor position read value; Ex. 140 and 150 perform identical function.
ØØ25	16Ø CV=PEEK(37) 17Ø POKE 37,CV 18Ø VTAB(CV+1)	Similar to above. Read/set cusor vertical position in the range Ø to 23.
ØØ32	190 POKE 50,127 200 POKE 50,255	Set inverse flag if 127 (Ex. 190) Set normal flag if 255(Ex. 200)
FC58	21Ø CALL -936	(@E) Home cusor, clear screen
FC42	22Ø CALL -958	(F_{E}) Clear from cusor to end of page

<u>Hex</u>	BASIC Example	<u>Description</u>
FC9C	23Ø CALL -868	(E_{E}) Clear from cusor to end of line
FC66	24Ø CALL -922	(J^{C}) Line feed
FC7Ø	25Ø CALL -912	Scroll up text one line


Miscellaneous

CØ3Ø	36Ø X=PEEK(-16336) 365 POKE -16336,Ø	Toggle speaker
CØØØ	37Ø X=PEEK(-16384)	Read keyboard; if X>127 then key was pressed.
CØ1Ø	38Ø POKE -16368,Ø	Clear keyboard strobe - always after reading keyboard.
CØ61	39Ø X=PEEK(16287)	Read PDL(\emptyset) push button switch. If X>127 then switch is "on".
CØ62	400 X=PEEK(-16286)	Read PDL(1) push button switch.
CØ63	41Ø X=PEEK(-16285)	Read PDL(2) push button switch.
CØ58	42Ø POKE -16296,Ø	Clear Game I/O ANØ output
CØ59	43Ø POKE -16295,Ø	Set Game I/O ANØ output
CØ5A	44Ø POKE -16294,Ø	Clear Game I/O ANl output
CØ5B	45Ø POKE -16293,Ø	Set Game I/O ANI output
CØ5C	46Ø POKE -16292,Ø	Clear Game I/O AN2 output
CØ5D	47Ø POKE -16291,Ø	Set Game I/O AN2 output
CØ5E	48Ø POKE -16290,Ø	Clear Game I/O AN3 output
CØ5F	49Ø POKE -16289,Ø	Set Game I/O AN3 output

APPLE II BASIC ERROR MESSAGES

*** SYNTAX ERR	Results from a syntactic or typing error.
*** > 32767 ERR	A value entered or calculated was less than -32767 or greater than 32767.
*** > 255 ERR	A value restricted to the range \emptyset to 255 was outside that range.
*** BAD BRANCH ERR	Results from an attempt to branch to a non-existant line number.
*** BAD RETURN ERR	Results from an attempt to execute more RETURNs than previously executed GOSUBs.
*** BAD NEXT ERR	Results from an attempt to execute a NEXT state- ment for which there was not a corresponding FOR statement.
*** 16 GOSUBS ERR	Results from more than 16 nested GOSUBs.
*** 16 FORS ERR	Results from more than 16 nested FOR loops.
*** NO END ERR	The last statement executed was not an END.
*** MEM FULL ERR	The memory needed for the program has exceeded the memory size allotted.
*** TOO LONG ERR	Results from more than 12 nested parentheses or more than 128 characters in input line.
*** DIM ERR	Results from an attempt to DIMension a string array which has been previously dimensioned.
*** RANGE ERR	An array was larger than the DIMensioned value or smaller than 1 or HLIN, VLIN, PLOT, TAB, or VTAB arguments are out of range.
*** STR OVFL ERR	The number of characters assigned to a string exceeded the DIMensioned value for that string.
*** STRING ERR	Results from an attempt to execute an illegal string operation.
RETYPE LINE	Results from illegal data being typed in response to an INPUT statement. This message also requests that the illegal item be retyped.

Simplified Memory Map

READ/SAVE DATA SUBROUTINE

INTRODUCTION

Valuable data can be generated on the Apple II computer and sometimes it is useful to have a software routine that will allow making a permanent record of this information. This paper discusses a simple subroutine that serves this purpose.

Before discussing the Read/Save routines a rudimentary knowledge of how variables are mapped into memory is needed.

Numeric variables are mapped into memory with four attributes. Appearing in order sequentually are the Variable Name, the Display Byte, the Next Variable Address, and the Data of the Variable. Diagramatically this is represented as:

VN	DSP	NVA	DATA(Ø)	DATA(1)	DATA(N)
1			hl	h ₂	h _{n+} 1

VARIABLE NAME - up to 100 characters represented in memory as ASCII equivalents with the high order bit set.

DSP (DISPLAY) BYTE - set to Ø1 when DSP set in BASIC initiates a process that displays this variable with the line number every time it is changed within a program.

NVA (NEXT VARIABLE ADDRESS) - two bytes (first low order, the second high order) indicating the memory location of the next variable.

DATA - hexadecimal equivalent of numeric information, represented in pairs of bytes, low order byte first. String variables are formatted a bit differently than numeric ones. These variables have one extra attribute - a string terminator which designates the end of a string. A string variable is formatted as follows:

VN	DSP	NVA	DATA(Ø)	DATA(1),	DATA(n)	ST
7			hŢ	h ₂	հ _{ո+} լ	

VARIABLE NAME - up to 100 characters represented in memory as ASCII equivalents with the high order bit set.

DSP (DISPLAY) BYTE - set to Øl when DSP set in BASIC, initiates a process that displays this variable with the line number every time it is changed within a program.

NVA (NEXT VARIABLE ADDRESS) - two bytes (first low order, the second high order) indicating the memory location of the next variable.

DATA - ASCII equivalents with high order bit set.

STRING TERMINATOR (ST) - none high order bit set character indicating END of string.

There are two parts of any BASIC program represented in memory. One is the location of the variables used for the program, and the other is the actual BASIC program statements. As it turns out, the mapping of these within memory is a straightforward process. Program statements are placed into memory starting at the top of RAM memory* unless manually shifted by the "HIMEM:" command, and are pushed down as each new (numerically larger) line numbered statement is entered into the system. Figure la illustrates this process diagramatically. Variables on the other hand are mapped into memory starting at the lowest position of RAM memory - hex \$800 (2048) unless manually shifted by the "LOMEM:" command. They are laid down from there (see Figure 1b) and continue until all the variables have been mapped into memory or until they collide with the program statements. In the event of the latter case a memory full error will be generated

^{*}Top of RAM memory is a function of the amount of memory. 16384 will be the value of "HIMEM:" for a 16K system.

The computer keeps track of the amount of memory used for the variable table and program statements. By placing the end memory location of each into CC-CD(204-205) and CA-CB(203-204), respectively. These are the BASIC memory program pointers and their values can be found by using the statements in Figure 2. CM defined in Figure 1 as the location of the end of the variable tape is equal to the number resulting from statement a of Figure 2. PP, the program pointer, is equal to the value resulting from statement 2b. These statements (Figure 2) can then be used on any Apple II computer to find the limits of the program and variable table.

FINDING THE VARIABLE TABLE FROM BASIC

First, power up the Apple II, reset it, and use the CTRL B (control B) command to place the system into BASIC initializing the memory pointers. Using the statements from Figure 2 it is found that for a 16K Apple II CM is equal to 20/48 and PP is equal to 16/384. These also happen to be the values of LOMEN and HIMEN: But this is expected because upon using the B^C command both memory pointers are initialized indicating no program statements and no variables.

To illustrate what a variable table looks like in Apple II memory suppose we want to assign the numeric variable A (\$Cl is the ASCII equivalent of a with the high order bit set) the value of -1 (FF FF in hex) and then examine the memory contents. The steps in this process are outlined in example I. Variable A is defined as equal to -1 (step 1). Then for convenience another variable - B - is defined as equal to 0 (step 2). Now that the variable table has been defined use of statement 2a indicates that CM is equal to 2060 (step 3). LOMEN has not been readjusted so it is equal to 2048. Therefore the variable table resides in memory from 2048 (\$800 hex) to 2060 (\$80C). Depressing the "RESET" key places the Apple II into the monitor mode (step 4).

We are now ready to examine the memory contents of the variable table. Since the variable table resides from \$800 hex to \$800 hex typing in "800.800" and then depressing the "RETURN" key (step 5) will list the memory contents of this range. Figure 3 lists the contents with each memory location labelled. Examining these contents we see that Cl is equal to the variable name and is the memory equivalent of "A" and that FF FF is the equivalent of -1. From this, since the variable name is at the beginning of the table and the data is at the end, the variable table representation of A extends from \$800 to \$805. We have then found

the memory range of where the variable A is mapped into memory. The reason for this will become clear in the next section.

READ/SAVE ROUTINE

The READ/SAVE subroutine has three parts. The first section (lines \emptyset -10) defines variable A and transfers control to the main program. Lines 20 through 26 represents the Write data to tape routine and lines 30-38 represent the Read data from tape subroutine. Both READ and SAVE routines are executable by the BASIC "GOSUB X" (where X is 20 for write and 30 is for read) command. And as listed these routines can be directly incorporated into almost any BASIC program for read and saving a variable table. The limitation of these routines is that the whole part of a variable table is processed so it is necessary to maintain exactly the dimension statements for the variables used.

The variables used in this subroutine are defined as follows:

A = record length, must be the first variable defined

CM= the value obtained from statement a of figure 2

LM= is equal to the value of "LOMEM:" Nominally 2048

SAVING A DATA TABLE

The first step in a hard copy routine is to place the desired data onto tape. This is accomplished by determining the length of the variable table and setting A equal to it. Next within the main program when it is time to write the data a GOSUB2Ø statement will execute the write to tape process. Record length, variable A, is written to tape first (line 22) followed by the desired data (line 24). When this process is completed control is returned to the main program.

READING A DATA TABLE

The second step is to read the data from tape. When it is time a GOSUB3Ø statement will initiate the read process. First, the record length is read in and checked to see if enough memory is available (line 32-34). If exactly the same dimension statements are used it is almost guaranteed that there will be enough memory available. After this the variable table is read in (line 34) and control is then returned to the main program (line 36). If not enough memory is available then an error is generated and control is returned to the main program (line 38)

EXAMPLE OF READ/SAVE USAGE

The Read/Save routines may be incorporated directly into a main program. To illustrate this a test program is listed in example 2. This program dimensions a variable array of twenty by one, fills the array with numbers, writes the data table to tape, and then reads the data from tape listing the data on the video display. To get a feeling for how to use these routines enter this program and explore how the Read/Save routines work.

CONCLUSION

Reading and Saving data in the format of a variable table is a relatively straight forward process with the Read/Save subroutine listed in figure 4. This routine will increase the flexibility of the Apple II by providing a permanent record of the data generated within a program. This program can be reprocessed. The Read/Save routines are a valuable addition to any data processing program.

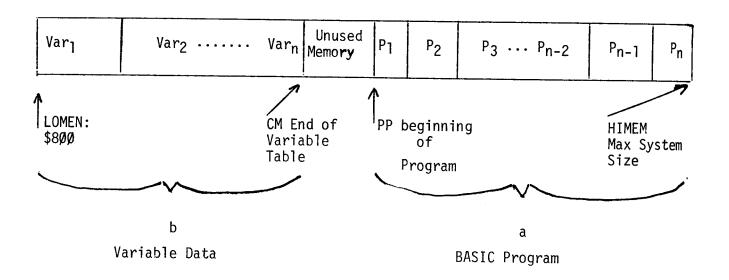


Figure 1

- a) PRINT PEEK(204) + PEEK(205)*256 \rightarrow PP
- b) PRINT PEEK(202) + PEEK(203)*256 \rightarrow CM

Figure 2

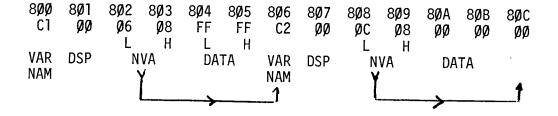


Figure 3 \$800.80C rewritten with labelling

READ/SAVE PROGRAM

COMMENTS

Ø A=Ø

This must be the first statement in the program. It is initially \emptyset , but if data is to be saved, it will equal the length of the data base.

10 GOTO 1ØØ

This statement moves command to the main program.

20 PRINT "REWIND TAPE THEN START TAPE RECORDER": INPUT "THEN HIT RETURN", B\$

Lines 20-26 are the write data to tape subroutine.

22 A=CM-LM: POKE 60,4: POKE 61,8: POKE 62,5: POKE 63,8: CALL -307

24 POKE 60,LM MOD 256: POKE 61, LM/256: POKE 62, CM MOD 256: POKE 63, CM/256: CALL -307 Writing data table to tape

26 PRINT "DATA TABLE SAVED": RETURN

Returning control to main program.

30 PRINT "REWIND THE TAPE THEN START TAPE RECORDER": INPUT "AND HIT RETURN", B\$

Lines 30-38 are the READ data from tape subroutine.

32 POKE 60,4: POKE 61,8: POKE 62,5: POKE 63,8: CALL -259

34 IF A<Ø THEN 38: P=LM+A: IF P>HM THEN 38: CM=P: POKE 6Ø, LM MOD 256: POKE 61, LM/256: POKE 62, CM MOD 256: POKE 63, CM/256: CALL -259 Checking the record length (A) for memory requirements if everything is satisfactory the data is READ in.

36 PRINT "DATA READ IN": RETURN

38 PRINT "***TOO MUCH DATA BASE***": RETURN

Returning control to main program.

NOTE: CM, LM and A must be defined within the main program.

1	>A=1 >	Define variable A=-1, then hit RETURN
2	>B=Ø >	Define variable B=Ø, then hit RETURN
3	>PRINT PEEK (204) + PEEK (205) * 256	Use statement 2a to find the end of the VARIABLE TABLE
	computer responds with= 2Ø6Ø	
4	> *	Hit the RESET key, Apple moves into Monitor mode.
5	*8ØØ.8ØC	Type in VARIABLE TABLE RANGE and HIT the RETURN KEY.

Computer responds with: 0800- C1 00 86 08 FF FF C2 00 0808 0C 08 00 00 00

Example 1

)LIST 110 PRINT "20 NUMBERS GENERATED" 0 A=0 10 GOTO 100 120 PRINT "NOW WE ARE GOING TO SAVE 20 REM WRITE DATA TO TAPE ROUTINE THE DATA": PRINT "WHEN YOU ARE R 22 A=CM-LM: POKE 60,4: POKE 61 EADY START THE RECORDER IN RECOR ,8: POKE 62,5: POKE 63,8: CALL P MODE": INPUT "AND HIT RETURN" -307 ,A\$ 24 POKE 60,LM MOD 256: POKE 61 130 CALL -936: PRINT "NOW WRITING DA ,LM/256: POKE 62,CM MOD 256 TA TO TAPE": GOSUB 20 : POKE 63,CN/256: CALL -307 135 PRINT "NOW THE DATA IS SAVED" 26 RETURN 140 PRINT "NOW WE ARE GOING TO CLEAR 30 REM READ DATA SUBROUTINE THE X(20) TABLE AND READ THE DA 32 POKE 60.4: POKE 61.8: POKE TA FROM TAPE" 62,5: POKE 63,8: CALL -259 150 FOR I=1 TO 20:X(I)=0: PRINT 34 IF A(0 THEN 38:P=LM+A: IF P) "X(";I;")= ";X(I): NEXT I HM THEN 38:CM=P: POKE 60,LM MOD 160 PRINT "NOW START TAPE RECORDER" 256: POKE 61,LM/256: POKE 62 : INPUT "AND THEN HIT RETURN" ,CM MOD 256: POKE 63,CM/256 Ĥŧ, : CALL -259 165 PRINT "A ",A 36 RETURN 170 GOSUB 30 38 PRINT **** TOO MUCH DATA BASE ** 180 PRINT "ALL THE DATA READ IN" **: END 100 DIM A\$(1),X(20) 190 FOR I=1 TO 20: PRINT "X(":I: 105 FOR I=1 TO 20:X(I)=I: NEXT ")= ";X(I): NEXT I 195 PRINT "THIS IS THE END" 108 LM=2048: CM=2106: A=58: HM=16383 200 END

A SIMPLE TONE SUBROUTINE

INTRODUCTION

Computers can perform marvelous feats of mathematical computation at well beyond the speed capable of most human minds. They are fast, cold and accurate; man on the other hand is slower, has emotion, and makes errors. These differences create problems when the two interact with one another. So to reduce this problem humanizing of the computer is needed. Humanizing means incorporating within the computer procedures that aid in a program's usage. One such technique is the addition of a tone subroutine. This paper discusses the incorporation and usage of a tone subroutine within the Apple II computer.

Tone Generation

To generate tones in a computer three things are needed: a speaker, a circuit to drive the speaker, and a means of triggering the circuit. As it happens the Apple II computer was designed with a two-inch speaker and an efficient speaker driving circuit. Control of the speaker is accomplished through software.

Toggling the speaker is a simple process, a mere PEEK - 16336 (\$CØ3Ø) in BASIC statement will perform this operation. This does not, however, produce tones, it only emits clicks. Generation of tones is the goal, so describing frequency and duration is needed. This is accomplished by toggling the speaker at regular intervals for a fixed period of time. Figure 1 lists a machine language routine that satisfies these requirements.

Machine Language Program

This machine language program resides in page \emptyset of memory from $\$\emptyset2$ (2) to \$14 (2 \emptyset). $\$\emptyset\emptyset$ ($\emptyset\emptyset$) is used to store the relative period (P) between toggling of the speaker and $\$\emptyset1$ ($\emptyset1$) is used as the memory location for the value of relative duration (D). Both P and D can range in value from $\$\emptyset\emptyset$ (\emptyset) to \$FF (255). After the values for frequency and duration are placed into memory a CALL2 statement from BASIC will activate this routine. The speaker is toggled with the machine language statement residing at $\$\emptyset2$ and then a

delay in time equal to the value in $\$\emptyset\emptyset$ occurs. This process is repeated until the tone has lasted a relative period of time equal to the duration (value in $\$\emptyset$ 1) and then this program is exited (statement \$14).

Basic Program

The purpose of the machine language routine is to generate tones controllable from BASIC as the program dictates. Figure 2 lists the appropriate statement that will deposit the machine language routine into memory. They are in the form of a subroutine and can be activated by a GOSUB 32000 statement. It is only necessary to use this statement once at the beginning of a program. After that the machine language program will remain in memory unless a later part of the main program modifies the first 20 locations of page 0.

After the GOSUB 32000 has placed the machine language program into memory it may be activated by the statement in Figure 3. This statement is also in the form of a GOSUB because it can be used repetitively in a program. Once the frequency and duration have been defined by setting P and D equal to a value between 0 and 255 a GOSUB 25 statement is used to initiate the generation of a tone. The values of P and D are placed into \$00 and \$01 and the CALL2 command activates the machine language program that toggles the speaker. After the tone has ended control is returned to the main program.

The statements in Figures 2 and 3 can be directly incorporated into BASIC programs to provide for the generation of tones. Once added to a program an infinite variety of tone combinations can be produced. For example, tones can be used to prompt, indicate an error in entering or answering questions, and supplement video displays on the Apple II computer system.

Since the computer operates at a faster rate than man does, prompting can be used to indicate when the computer expects data to be entered. Tones can be generated at just about any time for any reason in a program. The programmer's imagination can guide the placement of these tones.

CONCLUSION

The incorporation of tones through the routines discussed in this paper will aid in the humanizing of software used in the Apple computer. These routines can also help in transforming a dull program into a lively one. They are relatively easy to use and are a valuable addition to any program.

0000-	FF			???	
0001-	FF			777	
9002-	AD	30	CØ	LDA	\$C030
0005-	88			DEY	
0006-	DØ	04		BNE	\$000C
0008-	06	01		DEC	\$01
000A-	FØ	08		BEQ	\$0014
000C-	CA			DEX	
000D-	DØ	F6		BNE	\$0005
000F-	Ĥ6	00		LDX	\$00
0011-	4C	02	00	JMP	\$0002
0014-	60			RTS	

FIGURE 1. Machine Language Program adapted from a program by P. Lutas.

32000 POKE 2,173: POKE 3,48: POKE
4,192: POKE 5,136: POKE 6,208
: POKE 7,4: POKE 8,198: POKE
9,1: POKE 10,240

32005 POKE 11,8: POKL 12,202: POKE
13,208: POKE 14,246: POKE 15
,166: POKE 16,0: POKE 17,76
: POKE 18,2: POKE 19,0: POKE
20,96: RETURN

FIGURE 2. BASIC "POKES"

25 POKE 0,P: POKE 1,D: CALL 2: RETURN

FIGURE 3. GOSUB

These subroutines were created to make programming for High-Resolution Graphics easier, for both BASIC and machine language programs. These subroutines occupy 757 bytes of memory and are available on either cassette tape or Read-Only Memory (ROM). This note describes use and care of these subroutines.

There are seven subroutines in this package. With these, a programmer can initialize High-Resolution mode, clear the screen, plot a point, draw a line, or draw and animate a predefined shape. on the screen. There are also some other general-purpose subroutines to shorten and simplify programming.

BASIC programs scan access these subroutines by use of the CALL statement, and can pass information by using the POKE statement. There are special entry points for most of the subroutines that will perform the same functions as the original subroutines without modifying any BASIC pointers or registers. For machine language programming, a JSR to the appropriate subroutine address will perform the same function as a BASIC CALL.

In the following subroutine descriptions, all addresses given will be in decimal. The hexadecimal substitutes will be preceded by a dollar sign (\$). All entry points given are for the cassette tape subroutines, which load into addresses CFF to FFF (hex). Equivalent addresses for the ROM subroutines will be in italic type face.

INIT Initializes High-Resolution Graphics mode.

From BASIC: CALL 3972 (or CALL -12288)

From machine language: JSR \$C\$\$ (or JSR \$D\$\$\$\$)

This subroutine sets High-Resolution Graphics mode with a 280 x 160 matrix of dots in the top portion of the screen and four lines of text in the bottom portion of the screen. INIT also clears the screen.

CLEAR Clears the screen.

From BASIC: CALL 3086 (or CALL -12274)

From machine language: JSR \$CØE (or JSR \$DØØE)

This subroutine clears the High-Resolution screen without resetting the High-Resolution Graphics mode.

PLOT Plots a point on the screen.

From BASIC: CALL 378\$ (or CALL -11588)

From machine language: JSR \$C7C (or JSR \$D\$7C)

This subroutine plots a single point on the screen. The X and Y coodinates of the point are passed in locations 898, 801, and 802 from BASIC, or in the A, X, and Y registers from machine language. The Y (vertical) coordinate can be from \$\beta\$

PLOT (continued)

(top of screen) to 159 (bottom of screen) and is passed in location 802 or the A-register; but the X (horizontal) coordinate can range from Ø (left side of screen) to 279 (right side of screen) and must be split between locations 800 (X MOD 256) and 801 (X/256).or, from machine language, between registers X (X LO) and Y (X HI). The color of the point to be plotted must be set in location 812 (\$32C). Four colors are possible: Ø is BLACK, 85 (\$55) is GREEN, 170 (\$AA) is VIOLET, and 255 (\$FF) is WHITE.

POSN Positions a point on the screen.

From BASIC: CALL 3761 (or CALL -11599]

From machine language: JSR \$C26 (or JSR \$D\$\textit{26})

This subroutine does all calculations for a PLOT, but does not plot a point (it leaves the screen unchanged). This is useful when used in conjumction with LINE or SHAPE (described later).

To use this subroutine, set up the X and Y coordinates just the same as for PLOT. The color in location 812 (\$326) is ignored.

LINE Draw a line on the screen.

LINE Draws a line on the screen.

From BASIC: CALL 3786 (or CALL -11574)

From machine language: JSR \$C95 (or JSR \$DØ95)

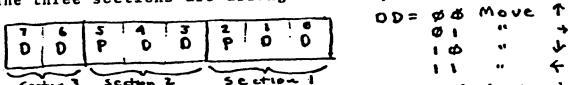
This subroutine draws a line from the last point PLOTted or POSN'ed to the point specified. One endpoint is the last point PLOTted or POSN'ed; the other endpoint is passed in the same manner as for a PLOT or POSN. The color of the line is set in location 812 (\$32C). After the line is drawn, the new endpoint becomes the base endpoint for the next line drawn.

SHAPE Draws a predefined shape on the screen.

From BASIC: CALL 38#5 (or CALL -11555)

From machine language: JSR \$DBC (or JSR \$D1BC)

This subroutine draws a predefined shape on the screen at the point previously PLOTted or POSN'ed. The shape is defined by a table of vectors in memory. (How to create a vector table will be described later). The starting address of this table should be passed in locations 804 and 805 from BASIC or in the Y and X registers from machine language. The color of the shape should be passed in location 28 (\$1C).


There are two special variables that are used only with shapes: the scaling factor and the rotation factor. The scaling factor determines the relative size of the shape. A scaling factor of

SHAPE (continued)

factor of 2 will draw the shape double size, etc. The scaling factor is passed in location 806 from BASIC or \$32F from machine language. The rotation factor specifies one of 64 possible angles of rotation for the shape. A rotation factor of 0 will cause the shape to be drawn right-side up, where a rotation factor if 16 will draw the shape rotated 90° clockwise, etc. The rotation factor is passed in location 807 from BASIC of in the A-register from machine language.

The table of vectors which defines the shape to be drawn is a series of bytes stored in memory. Each byte is divided into three sections, and each section specifies whether or not to plot a point and also a direction to move (up, down, left, or right). The SHAPE subroutine steps through the vector table byte by byte, and then through each byte section by section. When it reaches a \$\beta\$ byte, it is finished.

The three sections are arranged in a byte like this:

Each bit pair DD specifies a direction to move, and the two bits P specify whether or not to plot a point before moving. Notice that the last section (most significant bits) does not have a P field, so it can only be a move without plotting. The SHAPE

SHAPE (continued)

subroutine processes the sections from right to left (least significant bit to most significant bit). IF THE REMAINING SECTIONS OF THE BYTE ARE ZERO, THEN THEY ARE IGNORED. Thus, the byte cannot end with sections of \$\psi\$ (move up without plotting).

Here is an example of how to create a vector table:

Suppose we want to draw a shape like this:

First, draw it on graph paper, one dot per square. Then decide where to start drawing the shape. Let's start this one in the center. Next, we must draw a path through each point in the shape, using only 90° angles on the turns:

Next, re-draw the shape as a series of vectors, each one moving one place up, down, left, or right, and distinguish the vectors that plot a point before moving:

Now "unwrap" those vectors and write them in a straight line.

ししゃ ひとり しょう しゅう しゅり りゃく

Now draw a table like the one in Figure 1. For each vector in the line, figure the bit code and place it in the next available section in the table. If it will not fit or is a \$\mathcal{g}\$ at the end of a byte, then skip that section and go on to the next. When you have finished

SHAPE (continued)

coding all vectors, check your work to make sure it is accurate. Then make another table (as in figure 2) and re-copy the coded vectors from the first table. Then decode the vector information into a series of hexadecimal bytes, using the hexidecimal code table in figure 3. This series of hexadecimal bytes is your shape definition table, which you can now put into the Apple II's memory and use to draw that shape on the screen.

Shape vectors: JUHHASST>++++

	_	_	~	- A START	C	ODES		
012345678	01	B 0 1 00 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0	A 0 1 Ø 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0	C B A STARTE WHO TO	イナシナ てつるち	000 001 010 010 100 110 110	05	Ø Ø I Ø I I
P	00	000	000	Empty:				•
	F	19016	1.	This vector can a plot vector or a Move	· C			

	CIBI	A		Hex-becomel Codes
Ø	10001100		<u>l</u> 2	
1	0.01111	1 1	3 F	0000 7 0
2	001000	00	Z Ø	000171
3	011001	00	6 4	001072
9	001011	01	2 D	001173
5	000101	01	15	010079
6	601101	10	36	010175
7	1000111	10	IE	011076
ė	100000	1111	Ø 7	011177
9	000000	00	ØØ+ Enti;	1000 78
•			denotes end of vector tabl	k.1001 -> 9
2	gore	2 _		1010 7 A
•	. J			1011 7 B
				110070
				1101 70
				1110 7 E
				-> F

PREM HIRES DEMO-BASIC LISTING

XLIST

- 1 INIT=3072:CLEAR=3086:POSN=3761 :PLOT=3780:LINE=3786:SHAPE= 3805:FIND=3667:SINTBL=3840 5 DIN X(10),Y(10)
- 10 TEXT : CALL -936: VTAB 4: TAB
 10: PRINT "*** 16K APPLE II ***"
 : PRINT " *** HIGH RESOLUTION G
 RAPHICS DEMOS ***": PRINT
- 15 PRINT "1 RANDON LINE DRAW AT BAS

 IC SPEED": PRINT "2 RANDON SHAPE

 PROJECTED INTO CORNER"
- 20 PRINT "3 CHRIS' NAD FOLLY":
 PRINT "4 RANDOM SHAPE SPIRALING
 INTO POINT": PRINT "5 SPIROGRAP
 H"
- 25 PRINT "6 HI-RES DONUT": PRINT
 "7 RANDOM WAVE FORM": PRINT
 "8 SUN OF TWO SINE WAVES"
- 30 PRINT: PRINT "HIT ANY KEY FOR N
 EW DEMO": PRINT "TYPE 'CONTROL C
 '; RETURN BUTTON THEN TYPE 'T
 EXT AND RETURN BUTTON TO STOP"
- 50 PRINT : INPUT "WHICH DENO # DO Y
 OU WANT ",X1
- 90 IF XI(1 OR X1)8 THEN 10: CALL INIT: GOTO 100*X1
- 100 CALL INIT: X=40: Y=X: GOSUB 2000 : POKE 812.255: CALL PLOT
- 110 X= RND (280):Y= RND (160): GOSUB 2000: CALL LINE: IF NOT RND (300) THEN POKE 23,(PEEK (28)+ RND (3)+1) MOD 4+85: GOSUB · 3000: GOTO 110
- 200 GOSUB 1000:X= RND (2)*279:Y=

 RND (2)*159: CALL PLOT: FOR

 J=1 TO 30: FOR I=1 TO R: POKE

 800,X(I) MOD 256: POKE 801,

 X(I)>255: POKE 802,Y(I): CALL

 LIME

- 530 IF RND (500)(C THEN POKE 28 , RND (4)*85:Y=Y+YDIR*B: IF Y>=0 AND Y<160 THEN 510:YDIR= -YDIR:Y=-Y: IF Y<0 THEN Y=Y+ 318: GOSUB 3000: GOTO 510
- 600 POKE -16302,0: POKE 760,5: POKE 769,0: POKE 800,140: POKE 801 ,0: POKE 802,0: POKE 804,0: POKE 805,3: POKE 812,255: CALL POSN
- 610 FOR R=0 TO 4160: POKE 807,R MOD 64: POKE 806,2+6* NOT (R NOD 65): CALL SHAPE: HEXT R: GOSUB 3000: GOTO 610
- 700 J= RND (10)+ RND (10):K= RND (33)+ RND (31)+ RND (60):L= RND (9)/8: PRINT "FREQ#1= " ;J;" FREQ#2= ";K
- 710 SOSUB 4000; GOSUB 3000; GOTO 700
- 800 INPUT "REL FREQ #1=",J: INPUT
 "REL FREQ #2=",K: INPUT "MODE (0
 =SOLID, 1=POINTS)",L
- 810 GOSUB 4000: GOSUB 3000: GOTO 806
- 1000 CALL CLERR: POKE 812, RND (
 3)*85+85:R= RND (3)+2+ RND
 (2): FOR I=1 TO R:X(I)= RND
 (160):Y(I)= RND (160): NEXT
 I
- 1010 X=X(1):Y=Y(1): GOSUB 2000: RETURN 2000 POKE 800,X MOD 256: POKE 801 .X>255: POKE 802,Y: RETURN
- 3000 IF PEEK (-16384)(128 THEM RETURN : POKE -16368,0: POP : GOTO 10
- 4000 CALL INIT: POKE 812,255:A=0
 :B=0: FOR 1=0 TO 279:A=(A+J)
 MOD 256:B=(B+K) MOD 256:Y=
 (PEEK (SINTBL+A)+ PEEK (SINTBL+B))*5/16
- 4010 POKE 800,I NOD 256: POKE 801 ,1>255: POKE 802,Y: CALL LINE-6*(NOT I OR L): NEXT I: RETURN

- 210 X(I)=(X(I)-X)*9/10+X;Y(I)=(Y(I)-Y)*9/10+Y; HEXT I,J: GOSUB 3000: GOTO 200
- 396 CALL INIT: X= RND (24)*19+20 :Y= RND (14)*10+20: POKE 812 , RND (3)*85+85: GOSUB 2000 : CALL PLOT
- 310 IF RND (1000)(1 THEN 300: IF NOT RND (200) THEN POKE 28, RND (4)*85
- 320 X1=X+(RND (3)-1)*25:Y1=Y+(
 RND (3)-1)*15: IF X1(0 OR
 X1)279 OR Y1(0 OR Y1)159 THEN
 320
- 330 X=X1:Y=Y1: GOSUB 2000: CALL LINE: GOSUB 3000: GOTO 310
- 400 GOSUB 1000: POKE 812, RND (3)*85+85: CALL PLOT
- 410 FOR J=1 TO 25: FOR I=1 TO R:

 POKE 800,X(1) MOD 255: POKE

 801,X)255: POKE 802,Y(1): CALL
 LINE
 - 420 X=(X(I)-80+(Y(I)-80)/8)*9/10 +80:Y(I)=(Y(I)-80-(X(I)-80) /8)*9/10+80:X(I)=X: NEXT I, J: GOSUB 3000: GOTO 400
 - 500 CALL INIT: POKE 800,0: CALL PLOT:X=0:Y=0:XDIR=1:YDIR=1: 8=5:8=3:C=8
 - 518 POKE 800,0: POKE 801,0: POKE 802,Y: CALL LINE: POKE 800, (279-X) MOD 256: POKE 801,X(24: POKE 802,159: CALL LINE: POKE 800,23: POKE 801,1: POKE 802,159-Y: CALL LINE
- 515 IF RND (500) THEN 520:A=1+ RND (13):B=2+ RND (8):C=4+ RND (7)
- 520 POKE 800,X MOD 256: POKE 801 ,X>255: POKE 802,0: CALL LINE: X=X+XDIR*A: IF X>=0 AND X<280 THEN 530:XDIR=-XDIR:X=-X: IF X<0 THEN X=X+558

ROD'S COLOR PATTERN

PROGRAM DESCRIPTION

ROD'S COLOR PATTERN is a simple but eloquent program. It generates a continuous flow of colored mosaic-like patterns in a 40 high by 40 wide block matrix. Many of the patterns generated by this program are pleasing to the eye and will dazzle the mind for minutes at a time.

REQUIREMENTS

4K or greater Apple II system with a color video display. BASIC is the programming language used.

PROGRAM LISTING

```
100 GR

105 FOR W=3 TO 50

110 FOR I=1 TO 19

115 FOR J=0 TO 19

120 K=1+J

130 COLOR=J*3/(I+3)+I*W/12

135 PLOT I,K: PLOT K,I: PLOT 40

-I,40-K

136 PLOT 46-K,40-I: PLOT K,40-I:

PLOT 40-I,K: PLOT I,40-K: PLOT 40-K,I

140 NEXT J,I

145 NEXT W: GOTO 105
```

- 16 REM 7/7/77
- 15 REM PADDLE SWITCHES CONTROL PADDLE SIZE AFTER A MISS OR DURING A HIT
- 20 GR
- 25 DIM P(3): DIM HP\$(10)
- 30 A=38:0=1:C=-1
- 35 COLOR=13: HLIN 1,38 AT 0: HLIN 140 IF X-0 THEN VYO= AB5 (V) 1,38 AT 39
- 48 CALL -936: VTAB 23: INPUT "HAMDB ALL OR PONG ? ".HP\$
- PS: IF PS(1 OR PS)6 THEN 45 :5=PS-1
- 50 CALL -936
- 55 IF HP\$(1)#"H" THEN 205
- 60 H=1: COLOR=13: VLIN-0.39 AT 39: GOTO 205
- 65 FOR X=A TO B STEP C
- 70 Y=YY+V: IF Y)1 AND Y(38 THEN THEH Y=38
- 75 V=-V: FOR T=1 TO 5:M= PEEK 185 VTAB 23: TAB 7: PRINT SL;: TAB 260 PRINT "": END (-16336): NEXT T
- 80 IF X=C OR X=39+C THEN 85: COLOR= 0: PLOT X-C,YY: COLOR=15: PLOT
- 85 YY=Y: IF X MOD 2≈0 THEN GOSUB 235: **MEXT** X
- 99 GOSUB 235
- 95 IF SCRN(X,Y+V*(Y+V(40 AND Y+ ¥>-1))=0 THEN 165
- 100 FOR T=1 TO 10:N= PEEK (-16336): MEXT T
- 105 IF H AND C>0 THEN 130
- 110 PP=P(X/38)
- 115 IF Y=PP THEN V=3: IF Y=PP+1 THEN V=2: IF Y=PP+2 THEN V= 1

- 5 REM PONG BY WENDELL BITTER 120 IF Y=PP+3 THEN Y=-1: IF Y=PP+ 235 IF H THEN 245:P(1)=((PDL (4 THEN V=-2: IF Y=PP+5 THEN ¥=-3
 - 125 IF S=0 THEN V=3- RND (7)
 - 130 COLOR=0: PLOT X-C.Y
 - (V) AND X=0) THEN V=4- RND (9)
 - 145 A=39-A:B=39-B:C=-C
 - 150 IF PEEK (~16286))127 AND S# 245 P(0)=((PDL (0)-24)*20)/145 5 THEN S=S+1
- 45 INPUT "PADDLE SIZE (1-6) ", 155 IF PEEK (-16287))127 AND S# 0 THEN 5=5-1
 - 160 GOTO 65
 - 165 COLOR=0: PLOT X-C,Y
 - 170 COLOR=15: PLOT X,Y+V*(Y+V)-1 AND Y+V(40) 175 FOR T=1 TO 75:N= PEEK (-16336
 -)+ PEEK (-16336)- PEEK (-16336 255 COLOR=0: IF P(0))P(2) THEN): NEXT T
 - THEN SL=SL+1
 - 33: PRINT SR
 - 190 COLOR=0: PLOT X-C,Y
 - 195 IF SL=15 OR SR=15 THEN 260
 - 200 COLOR=0: PLOT X,Y+V*(Y+V>-1 AND Y+VY(40)
 - 205 FOR T=1 TO 75: IF T MOD 5#0 THEN 210: IF PEEK (-16286))127 AND S#5 THEN S=S+1: IF PEEK (-16287))127 AND 5#0 THEN 5=5-1
 - 210 GOSUB 235: NEXT T
 - 215 YY=P(0): IF X=0 THEN YY=P(1)
 - 220 IF H THEN YY= RND (37)+1
 - 225 V=1- RND (3)
 - 230 6070 65

- 1)-24)*20)/115: IF P(1)=P(3) THEN 245: IF P(1)(0 THEN P(1)=0: IF P(1)+S>39 THEN P(1)=39-5
- 135 IF (H AND C>0) OR (VYO= ABS 240 COLOR=6: VLIN P(1),P(1)+S AT 39: COLOR=0: IF P(1)>P(3) THEN VLIN 0.P(1)-1 AT 39: IF P(1)(P(3) THEN VLIN P(1)+5+1.39 AT 39:P(3)=P(1)
 - : IF P(0)(0 THEN P(0)=0: IF P(0)=P(2) THEN RETURN : IF P(0)+S>39 THEN P(0)=39-5
 - 250 COLOR=6: VLIN P(0),P(0)+5 AT 0: COLOR=0: IF P(0)>P(2) THEN VLIH 0,P(0)-1 AT 0: IF P(0) (P(2) THEN VLIN P(0)+S+1.39 AT 0
- VLIN 0,P(0)-1 AT 0: IF P(0) 88: IF Y(1 THEN Y=1: IF Y)38 188 IF X=8 THEN SR=SR+1: IF X=39 (P(2) THEN VLIN P(0)+5+1,39 AT 0:P(2)=P(0): RETURN

 - 265 END

COLOR SKETCH

PROGRAM DESCRIPTION

Color Sketch is a little program that transforms the Apple II into an artist's easel, the screen into a sketch pad. The user as an artist has a 40 high by 40 wide (1600 blocks) sketching pad to fill with a rainbow of fifteen colors. Placement of colors is determined by controlling paddle inputs; one for the horizontal and the other for the vertical. Colors are selected by depressing a letter from \underline{A} through P on the keyboard.

An enormous number of distinct pictures can be drawn on the sketch pad and this program will provide many hours of visual entertainment.

REQUIREMENTS

This program will fit into a 4K system in the BASIC mode.

PROGRAM LISTING: COLOR SKETCH

- 5 POKE 2,173: POKE 3,48: POKE 4,192: POKE 5,165: POKE 6,0 : POKE 7,32: POKE 8,168: POKE 9,252: POKE 10,165: POKE 11,1: POKE 12,268: POKE 13,4
- 10 POKE 14,198: POKE 15,24: POKE 16,248: POKE 17,5: POKE 18, 198: POKE 19,1: POKE 20,76: POKE 21,2: POKE 22,0: ₱OKE 23,96
- 15 DIM B\$(40): TEXT : CALL -936 : 60TO 90
- 20 CALL -936: GOTO 98
- 25 A= LEN(B\$): FOR Z=1 TO A: GOSUB 65: PRINT B\$(Z,Z);: NEXT Z: GOSUB 70: RETURN
- 35 B\$="COLOR SKETCH": RETURN
- 40 B\$="COPYRIGHT APPLE COMPUTER 197 7": RETURN
- 45 B\$="THIS PROGRAM ALLOWS YOU TO "
 : RETURN
- 50 B\$="SKETCH COLORED FIGURES IN"
 : RETURN
- 55 B#="LOW RESOLUTION GRAPHICS WITH PADDLES": RETURN
- 60 KK=20:TON=20: GOSUB 85: RETURN
- 65 KK=10:TON=10: GOSUB 85: RETURN
- 70 KK=20:TON=50: GOSUB 85:KK=30 :TON=90: GOSUB 85: RETURN
- 75 KK=20:TON=20: GOSUB 85: RETURN
- 80 KK=8:TON=250: GOSUB 85:KK=9 :TON=250: GOSUB 85: RETURN

- 85 POKE 1,TON MOD 256: POKE 24 ,TOH/256+1: POKE 0,KK: CALL 2: RETURN
- 90 GOSUB 30: GOSUB 25: PRINT:
 TAB 13: GOSUB 35: GOSUB 25
 : PRINT: GOSUB 30: GOSUB 25
 : PRINT: TAB 5: GOSUB 40: GOSUB
 25: PRINT: GOSUB 30: GOSUB
 25
- 95 PRINT : GOSUB 70: GOSUB 45:
 GOSUB 25: PRINT : GOSUB 50
 : GOSUB 25: PRINT : GOSUB 55
 : GOSUB 25: PRINT
- 100 PRINT : PRINT : GOSUB 70: INPUT
 "WHEN READY HIT RETURN",B\$
- AS GR
- 110 B\$="ABCDEFGHIJKLMHOP": CALL -936
- 115 FOR Z=0 TO 15: COLOR=Z: PLOT Z*2+4,39: YTAB 21: GOSUB 75 : TAB Z*2+5: PRINT B\$(Z+1,Z+ 1);: GOSUB 75: NEXT Z: TAB
- 120 VTAB 22:B\$="TYPE A LETTER TO CH ANGE COLOR.": GOSUB 25: PRINT :B\$="TYPE SPACE BAR TO STOP PLOT .": GOSUB 25: PRINT
- 125 Y= PDL (1)*38/255; X= PDL (0)*39/255; VTAB 24: TAB 1: PRINT "CURSOR POSITION: X=";X;" Y=" :Y:" "::
- 130 IF PEEK (-16384)>127 THEN 145
 : IF X1=X AND Y1=Y THEN 125
 : COLOR=C2: PLOT X1,Y1: IF
 NOT FLAG THEN 135: COLOR=C:
 PLOT X,Y

- 135 C2= SCRN(X,Y):C3=15: IF C2= 15 THEN C3=5: COLOR=C3: PLOT X,Y:X1=X:Y1=Y
- 140 GOTO 125
- 145 IF PEEK (-16384)#160 THEN 155 :FLAG=0: POKE -16368,0: POKE 34,20: COLOR=0: HLIN 0,39 AT 39: CALL -936
- 150 PRINT :B\$="CONTINUE OR STOP" : VTAB 24: GOSUB 25: INPUT " (C/S) ",B\$: IF B\$(1,1)="C" THEN 110: PRINT "END": END
- 155 FLAG=1:C= PEEK (-16384)-193 : POKE -16368,0: GOTO 125

MASTERMIND PROGRAM

PROGRAM DESCRIPTION

MASTERMIND is a game of strategy that matches your wits against Apple's. The object of the game is to choose correctly which 5 colored bars have been secretly chosen by the computer. Eight different colors are possible for each bar - Red (R), Yellow (Y), Violet (V), Orange (O), White (W), and Black (B). A color may be used more than once. Guesses for a turn are made by selecting a color for each of the five hidden bars. After hitting the RETURN key Apple will indicate the correctness of the turn. Each white square to the right of your turn indicates a correctly colored and positioned bar. Each grey square acknowledges a correctly colored but improperly positioned bar. No squares indicate you're way off.

Test your skill and challenge the Apple II to a game of MASTERMIND.

REQUIREMENTS

8K or greater Apple II computer system. BASIC is the programming language.

PROGRAM LISTING: MASTERMIND

- @ REM GAME OF MASTERNIND 8-25-77
 WOZ (APPLE COMPUTER)
- 10 DIM A(6),C(8),D(5),X(8),X\$(
 8):X(1)=2:X(2)=12:X(3)=1:X(
 4)=13:X(5)=3:X(6)=9:X(7)=15
 :X(8)=5:X\$="BGRYYOWX"
- 20 TEXT : CALL -936: PRINT "

WELCO

ME TO THE GAME OF MASTERMIND!

YOUR OBJECT IS TO GUESS 5 COLOR S (WHICH"

- 30 PRINT "I WILL MAKE UP) IN THE MI NIMUM NUMBER OF GUESSES. THER E ARE EIGHT DIFFERENT COLORS TO CHOSE FROM."
- 40 PRINT "
- FEWER THAN 7 GUESSES--EXC

 ELLENT": PRINT " 7 TO 9 GUESSE

 S----GOOD": PRINT " 10 TO 14 G

 UESSES----AVERAGE"
 - 50 PRINT "MORE THAN 14 GUESSES--POOR
- ": CALL -384: TAB 7: PRINT
 "HIT ANY KEY TO BEGIN PLAY"
 - 180 CALL -380: IF PEEK (-16384)

 <132 THEN 100: POKE -16368,

 0: GR : PRINT : FOR I=1 TO

 8:C(I)= RND (8)+1: COLOR=X(
 I): HLIN I*4-2,I*4 AT 39: PRINT

 " ";X*(I,I);: HEXT I
- 110 TRY-0: PRINT : PRINT " LETTER

 KEYS FOR COLOR CHANGE": PRINT

 ARROW KEYS FOR ADVANCE AND BA

 CK": PRINT " HIT RETURN TO ACC

 EPT GUESS #":

- 200 Y=TRY*2 MOD 36+1:TRY=TRY+1:
 TAB 32: PRINT TRY;: COLOR=
 0: HLIN 0,39 AT Y:FLASH=1: FOR
 N=1 TO 5:A(N)=8: GOSUB 1000
 : NEXT N:N=1
 - 300 FOR WAIT=1 TO 10:KEY= PEEK
 (-16384): IF KEY<132 THEN 310
 : POKE -16368,0:FLASH=1: FOR
 I=1 TO 8: IF KEY<>> ASC(X\$(I))
) THEN NEXT I: IF I=9 THEN
 310:A(H)=I:KEY=149
 - 310 GOSUB 1000: IF KEY=141 THEN
 400: IF KEY=136 AND N/1 OR
 KEY=149 AND N/6 THEN N=N+KEY/
 5-28: HEXT WAIT:FLASH=1-FLASH:
 GOTO 300
 - 400 COLOR=15:M=0: FOR I=1 TO 5:
 D(I)=C(I):J=I: GOSUB 2000: NEXT
 I: IF M=5 THEN 500: COLOR=5
 : FOR J=1 TO 5: FOR I=1 TO
 5: GOSUB 2000: NEXT I,J: GOTO
 200
 - 500 PRINT : PRINT "
 - YOU GOT IT IN "
 - ;TRY;" TRIES (";: IF TRY(7 THEN PRINT "EXCELLENT";: IF TRY) 6 AND TRY(10 THEN PRINT "GOOD"
- 510 IF TRY>9 AND TRY<15 THEN PRINT
 "AVERAGE";: IF TRY>14 THEN
 PRINT "POOR";: PRINT ")": CALL
 -384: TAB 5: PRINT "HIT ANY KEY
 TO PLAY AGAIN": GOTO 100
- 1000 IF N=6 THEN RETURN : COLOR=
 X(A(N))*FLASH: HLIN N*4-2,N*
 4 AT Y: RETURN
- 2000 IF A(I)<>D(J) THEN RETURN; M-M+1: PLOT 21+M+M,Y: PRINT ""::A(I)=0:D(J)=9: RETURN

3000 REM CALL -384 SETS INVERSE VID
3010 REM CALL -380 SETS NORMAL VID
3020 REM PEEK(-16384) IS KBD (ASCII)
(IF > 127 THEN STROBE SET)
3030 REM POKE-16368 CLRS KBD STROBE
3040 REM CALL-936 CLEARS SCREEN AND
TABS CURSOR TO UPPER LEFT.
3050 REM IN 310, KEY/5-28= -1 OR +1
(ARROW KEY=136 OR 149 ASCII)
4000 REM STMTS 10-50 INTRO
4010 REM STMTS 100-110 NEW SETUP
4020 REM STMTS 100-110 NEW SETUP

4030 REN STNTS 300-310 USER INPUT

4040 REM STAT 400 GUESS EVAL

4060 REM SUBR 1000 COLOR LINE

4070 REM SUBR 2000 MATCH TEST

4056 REM STHTS 500-510 WIN

BIORHYTHM PROGRAM

PROGRAM DESCRIPTION

This program plots three Biorhythm functions: Physical (P), Emotional (E), and Mental (M) or intellectual. All three functions are plotted in the color graphics display mode.

Biorhythm theory states that aspects of the mind run in cycles. A brief description of the three cycles follows:

Physical

The Physical Biorhythm takes 23 days to complete and is an indirect indicator of the physical state of the individual. It covers physical well-being, basic bodily functions, strength, coordination, and resistance to disease.

Emotional

The Emotional Biorhythm takes 28 days to complete. It indirectly indicates the level of sensitivity, mental health, mood, and creativity.

Menta1

The mental cycle takes 33 days to complete and indirectly indicates the level of alertness, logic and analytic functions of the individual, and mental receptivity.

Biorhythms

Biorhythms are thought to affect behavior. When they cross a "baseline" the functions change phase - become unstable - and this causes Critical Days. These days are, according to the theory, our weakest and most vulnerable times. Accidents, catching colds, and bodily harm may occur on physically critical days. Depression, quarrels, and frustration are most likely on emotionally critical days. Finally, slowness of the mind, resistance to new situations and unclear thinking are likely on mentally critical days.

REQUIREMENTS

This program fits into a 4K or greater system. BASIC is the programming language used.

PROGRAM LISTING: BIORHYTHM

- 5 POKE 2,173: POKE 3,48: POKE 4,192: POKE 5,165: POKE 6,8 : POKE 7,32: POKE 8,168: POKE 9,252: POKE 10,165: POKE 11 ,1: POKE 12,208: POKE 13,4
- 10 POKE 14,198: POKE 15,24: POKE 16,240: POKE 17,5: POKE 18, 198: POKE 19,1: POKE 20,76: POKE 21,2: POKE 22,0: POKE 23,96.
- 15 GOTO 85
- 20 TT=3: GOSUB 30: RETURN
- 30 KK=8:TON=500: GOSUB 45: RETURN
- 35 KK=8:TOH=250: GOS08 45: RETURN
- 40 KK=8:TON=250: GOSUB 45:KK=9 :TON=250: GOSUB 45: RETURN
- 45 POKE 1,TON MOD 256: POKE 24 ,TON/256+1: POKE 0,KK: CALL 2: RETURN
- 50 A=(19-(P*B(I)/100))*(P*100(C(I))*(P*100)C(I))*(P*100(= 3*C(I))*((P*100-C(I))/100*B(I)/100)
- 55 R=A+(P*100)3*C(I))*(38-((P* 100-3*C(I))/100*B(I)/100)): R=39*(A)39)+A*(A(40): RETURN
- 60 KK=0:TM=500: GOSUB 70:KK=9: TM=250: GOSUB 70: RETURN
- 65 KK=7:TM=10: GOSUB 70: RETURN

- 70 POKE 1,TM NOD 256: POKE 24, TM/256+1: POKE 0,KK; CALL 2 : RETURN
- 75 GOSUB 60: INPUT "DATE (M,D,Y) "
 .M,D,Y:Y=Y+(Y(100)*1900
- 80 A=Y-(M(3):N=Y MOD 58*365-Y/ 58*82+A/4-A/400+M*31-M/12-M/ 7-M/5-3*(N)2)+D: IF N(0 THEN N=N+21252: RETURN
- 85 DIM N\$(10),B\$(3),B(3),C(3), BV(3):B(1)=348:B(2)=286:B(3)=242:C(1)=575:C(2)=700:C(3)=825:BV(1)=23:BV(2)=28
- 90 BV(3)=33: TEXT : CALL -936:
 POKE 34,20: GOSUB 20: GOSUB 25: GOSUB 20: PRINT : TAB 10
 : PRINT "APPLE II BIORHYTHM (4K)
 ": TAB 15: PRINT
- 95 GOSUB 25: TAB 5: PRINT "COPYRIGH
 I 1977 APPLE COMPUTER INC."
 : POKE 34,24: VTAB 24
- 100 GOSUB 60: INPUT "NAME ",N\$:

 VTAB 22: PRINT N\$: VTAB 24

 : PRINT "BIRTH ";: GOSUB 75

 : VTAB 22: TAB 21: PRINT "BIRTH

 DATE ";M;",";D;",";Y: VTAB

 24:N1=N: CALL -868
- 105 PRINT "FORECAST ";; GOSUB 75
 :N=N-N1: IF N<0 THEN N=N+21252
 : YTAB 23: TAB 18: PRINT "FORECA
 ST DATE ";M;",";D;",";Y: YTAB
 24: CALL -868

- 110 J=1: GR : POKE 34,23: FOR X=
 18 TO 20: COLOR=3: HLIN 0,31
 AT X: NEXT X: HLIN 1,3 AT
 3: HLIN 1,3 AT 37: VLIN 2,4
 AT 2: VTAB 21
- 115 FOR Y=1 TO 31 STEP 3: PRINT
 Y;: IF Y<10 THEN PRINT " ";
 : PRINT " ";: NEXT Y: PRINT
 " P E N": VTAB 24
- 120 YTAB 23: PRINT "DAYS LIVED "
 ;N: FOR I=1 TO 3: COLOR=1*(
 I=1)+6*(I=2)+8*(I=3): VLIN
 0.39 AT 33+1+1: YTAB 24
- 125 FOR X=0 TO 31:P=(N MOD BV(I) +X) MOD BV(I): GOSUB 50: PLOT X,A: GOSUB 65: NEXT X: NEXT I
- 130 PRINT: INPUT "ANOTHER PLOT (Y/N
) ",B\$: IF B\$(1,1)="Y" THEN
 90: END

62

DRAGON MAZE PROGRAM

PROGRAM DESCRIPTION

DRAGON MAZE is a game that will test your skill and memory. A maze is constructed on the video screen. You watch carefully as it is completed. After it is finished the maze is hidden as if the lights were turned out. The object of the game is to get out of the maze before the dragon eats you. A reddish-brown square indicates your position and a purple square represents the dragon's.* You move by hitting a letter on the keyboard; U for up, D for down, R for right, and L for left. As you advance so does the dragon. The scent of humans drives the dragon crazy; when he is enraged he breaks through walls to get at you. DRAGON MAZE is not a game for the weak at heart. Try it if you dare to attempt out-smarting the dragon.

REQUIREMENTS

8K or greater Apple II computer system. BASIC is the programming language.

^{*} Color tints may vary depending upon video monitor or television adjustments.

PROGRAM LISTING: DRAGON MAZE

2 PRINT "WELCOME TO THE DRAGON'S M AZE!" 21 PRINT "THE FACT THAT THE DRAGON 3 PRINT "YOU MAY WATCH WHILE I BUI CAN'T GET" 1110 DR= RND (4) 1120 GOTO 1138+18*DR 4 PRINT "BUT WHEN IT'S COMPLETE, I 22 PRINT "THROUGH IT!)" 1120 GOTO 1138+18*DR 4 PRINT "BUT WHEN IT'S COMPLETE, I 23 PRINT 'LL ERASE" 38 DIM A\$(3) 1130 IF NOT R THEN 1110:M(K)=M(K) 'LL ERASE" 5 PRINT "THE PICTURE. THEN YOU'LL ONLY SEE THE WALLS AS YOU BUMP I HOTO THEM." 100 GR: COLOR=15 6 PRINT "TO MOVE, YOU HIT 'R' FOR RIGHT," 7 PRINT "L' FOR LEFT, 'U' FOR UP, AND" 110 FOR I=0 TO 39 STEP 3: VLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT RETURN!" 1 PRINT 120 COLOR=6 1150 IF NOT L THEN 1110:M(K-1)=M(K) PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 110 FOR I=1 TO 169:T(I)=8: NEXT 1160 IF NOT U THEN 1110:M(K-13)= 1160 IF NOT U THEN 1110:M(K-13)=
3 PRINT "YOU MAY WRTCH WHILE I BUI
LD A MAZE," 22 PRINT "THROUGH IT!)" 1120 GOTO 1130+10*DR 4 PRINT "BUT WHEN IT'S COMPLETE, I 23 PRINT 1130 IF HOT R THEN 1110:M(K)=M(K) 1140 IF HOT R THEN 1110:M(K)=M(K) 1150 IF HOT R THEN 1110:M(K)=M(K) 1150 IF HOT R THEN 1110:M(K)=M(K) 1150 IF HOT R THEN 1110:M(K)=M(K) 1151 IT HIS YLIN 3*Y-2,3*Y-1 AT 3*(X-1) 1152 PRINT "THE PICTURE. THEN YOU'LL 90 PRINT "TYPE 'GO' TO BEGIN " 1135 YLIN 3*Y-2,3*Y-1 AT 3*(X-1) 1136 GOTO 1035 1136 GOTO 1035 1136 GOTO 1035 1140 IF HOT D THEN 1110:M(K)=M(K) 1140 IF HOT D THEN 1110:M(K)=M(K) 1141 IF HOT D THEN 1110:M(K)=M(K) 1143 HLIN 3*X-2,3*X-1 AT 3*(Y-1) 1144 IF HOT D THEN 1110:M(K)=M(K) 1145 HLIN 3*X-2,3*X-1 AT 3*(Y-1) 1146 GOTO 1035 1146 GOTO 1035 1146 GOTO 1035 1158 IF HOT L THEN 1110:M(K-1)=M(1159 PRINT "THE OBJECT IS FOR YOU (TH 120 COLOR=0 1155 YLIN 3*Y-2,3*Y-1 AT 3*X 1156 GOTO 1035
4 PRINT "BUT WHEN IT'S COMPLETE, I 23 PRINT 1130 IF HOT R THEN 1110:M(K)=M(K) "LL ERASE" 89 DIN A\$(3) +1:X=X+1 5 PRINT "THE PICTURE. THEN YOU'LL 90 PRINT "TYPE 'GO' TO BEGIN " 1135 YLIN 3*Y-2,3*Y-1 AT 3*(X-1) ONLY SEE THE WALLS AS YOU BUMP I :: INPUT A\$ NTO THEM." 100 GR : COLOR=15 1136 GOTO 1035 6 PRINT "TO NOVE, YOU HIT 'R' FOR 105 CALL -936: PRINT "DRAGON MAZE" 1140 IF HOT D THEN 1110:M(K)=M(K) RIGHT," ;: TAB (25): PRINT "GARY J. SHAN +10:Y=Y+1 7 PRINT "'L' FOR LEFT, 'U' FOR UP, NON" 1145 HLIN 3*X-2,3*X-1 AT 3*(Y-1) AND" : 110 FOR I=0 TO 39 STEP 3: VLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT 0,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1035 RETURN!" I 1150 IF NOT L THEN 1110:M(K-1)=M(9 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 IN M(169),T(169) 1156 GOTO 1035
"LL ERASE" 89 DIM A\$(3) +1:X=X+1 5 PRINT "THE PICTURE. THEN YOU'LL 90 PRINT "TYPE 'GO' TO BEGIN " 1135 VLIN 3+Y-2,3+Y-1 AT 3+(X-1) ONLY SEE THE WALLS AS YOU BUMP I ;: INPUT A\$ NTO THEM." 100 GR : COLOR=15 1136 GOTO 1035 6 PRINT "TO MOVE, YOU HIT 'R' FOR 105 CALL -936: PRINT "DRAGON MAZE" 1140 IF NOT D THEN 1110:M(K)=M(K) RIGHT," ;: TAB (25): PRINT "GARY J. SHAN +10:Y=Y+1 7 PRINT "'L' FOR LEFT, 'U' FOR UP, NON" 1145 HLIN 3+X-2,3+X-1 AT 3*(Y-1) AND" 110 FOR I=0 TO 39 STEP 3: VLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT 0,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1035 RETURN!" I 1150 IF NOT L THEN 1110:M(K-1)=M(9 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 1155 VLIN 3+Y-2,3+Y-1 AT 3+X E GREEN DOT" 1000 DIN M(169),T(169)
5 PRINT "THE PICTURE. THEN YOU'LL 90 PRINT "TYPE 'GO' TO BEGIN " 1135 VLIN 3*Y-2,3*Y-1 AT 3*(X-1) ONLY SEE THE WALLS AS YOU BUMP I
ONLY SEE THE WALLS AS YOU BUMP I ;: INPUT A\$ NTO THEM." 100 GR : COLOR=15 1136 GOTO 1035 6 PRINT "TO MOVE, YOU HIT 'R' FOR 105 CALL -936: PRINT "DRAGON MAZE" 1140 IF NOT D THEN 1110:M(K)=M(K) RIGHT," ;: TAB (25): PRINT "GARY J. SHAN +10!Y=Y+1 7 PRINT "'L' FOR LEFT, 'U' FOR UP, NON" 1145 HLIN 3*X-2,3*X-1 AT 3*(Y-1) AND" 110 FOR I=0 TO 39 STEP 3: VLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT 0,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1035 RETURN!" I 1150 IF NOT L THEN 1110:M(K-1)=M(9 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 1155 VLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1000 DIN M(169),T(169)
NTO THEM." 180 GR : COLOR=15 6 PRINT "TO MOVE, YOU HIT 'R' FOR 105 CALL -936: PRINT "DRAGON MAZE" 1140 IF NOT D THEN 1110:M(K)=M(K) RIGHT," 7 PRINT "'L' FOR LEFT, 'U' FOR UP, AND" 110 FOR I=0 TO 39 STEP 3: VLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT 8 PRINT "'D' FOR DOWN. DO NOT HIT 9 PRINT 120 COLOR=0 120 COLOR=0 130 S=1000 1155 VLIN 3*Y-2,3*Y-1 AT 3*X 1160 DIN M(169),T(169) 1156 GOTO 1035
6 PRINT "TO MOVE, YOU HIT 'R' FOR 105 CALL -936: PRINT "DRAGON MAZE" 1140 IF NOT D THEN 1110:M(K)=M(K) RIGHT," ;: TAB (25): PRINT "GARY J. SHAN +10:Y=Y+1 7 PRINT "'L' FOR LEFT, 'U' FOR UP, NON" 1145 HLIN 3*X-2,3*X-1 AT 3*(Y-1) AND" 110 FOR I=0 TO 39 STEP 3: VLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT 0,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1035 RETURN!" I 1150 IF NOT L THEN 1110:M(K-1)=M(9 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 1155 VLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1000 DIN M(169),T(169) 1156 GOTO 1035
RIGHT," 7 PRINT "'L' FOR LEFT, 'U' FOR UP, NON" 1145 HLIN 3*X-2,3*X-1 AT 3*(Y-1) AND" 8 PRINT "'D' FOR DOWN. DO NOT HIT 9 PRINT 128 COLOR=0 128 COLOR=0 139 STEP 3: VLIN 128 COLOR=0 155 VLIN 3*Y-2,3*Y-1 AT 3*X 156 GOTO 1835 157 VLIN 3*Y-2,3*Y-1 AT 3*X 158 FOR YOU (TH 159 DIN M(169),T(169) 1156 GOTO 1835
7 PRINT "'L' FOR LEFT, 'U' FOR UP, NON" 1145 HLIN 3*X-2,3*X-1 AT 3*(Y-1) AND" 110 FOR I=0 TO 39 STEP 3: VLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT 0,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1835 RETURN!" I 1150 IF NOT L THEN 1110:M(K-1)=M(9 PRINT 1140 OBJECT IS FOR YOU (TH 130 S=1600 1155 VLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1600 DIN M(169),T(169) 1156 GOTO 1835
AND" 110 FOR I=0 TO 39 STEP 3: YLIN 8 PRINT "'D' FOR DOWN. DO NOT HIT 0,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1035 RETURN!" I 1150 IF NOT L THEN 1110:M(K-1)=M(9 PRINT 1140 OBJECT IS FOR YOU (TH 130 S=1000 1155 YLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1000 DIN M(169),T(169) 1156 GOTO 1035
8 PRINT "'D' FOR DOWN. DO NOT HIT 6,39 AT I: HLIN 0,39 AT I: NEXT 1146 GOTO 1835 RETURN!" I 1150 IF NOT L THEN 1110:M(K-1)=M(9 PRINT 120 COLOR=0 K-1)-1:X=X-1 10 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 1155 VLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1000 DIN M(169),T(169) 1156 GOTO 1835
RETURN!" I 1150 IF NOT L THEN 1110:N(K-1)=M(9 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 1155 VLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1000 DIN M(169),T(169) 1156 GOTO 1035
9 PRINT 120 COLOR=0 K-1)-1:X=X-1 10 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 1155 VLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1000 DIN M(169),T(169) 1156 GOTO 1035
10 PRINT "THE OBJECT IS FOR YOU (TH 130 S=1000 1155 VLIN 3*Y-2,3*Y-1 AT 3*X E GREEN DOT" 1000 DIN N(169),T(169) 1156 GOTO 1035
E GREEN DOT" 1000 DIN M(169),T(169) 1156 GOTO 1035
RIGHT SIDE" M(K-13)-10:Y=Y-1
12 PRINT "BEFORE THE DRAGON (THE RE 1010 FOR I=1 TO 169:M(I)=11: NEXT 1165 HLIN 3*X-2,3*X-1 AT 3*Y: GOTO
D DOT) ERTS" I 1835
13 PRINT "YOU." 1030 X= RND (13)+1:Y= RND (13)+1 1170 X= RND (13)+1:Y= RND (13)+1
14 PRINT "BEWARE!!!!!!! SOMETIMES :C=169
THE DRAGON" 1035 IF C=1 THEN 1200 1180 IF M(X+13*(Y-1))>0 THEN 1170
15 PRINT "GETS REAL MAD, AND CLIMBS 1940 R=0:D=0:L=0:U=0:K=X+13*(Y-1
OVER A WALL."): M(K)=- ABS (M(K)):C=C-1 1190 C=C+1: GOTO 1035
16 PRINT "BUT MOST OF THE TIME, HE 1050 IF X=13 THEN 1060:R=M(K+1)> 1200 GOSUB 5000: PRINT "THE MAZE IS R
CAN'T GO OVER" 6 EADY"
17 PRINT "AND HAS TO GO AROUND." 1060 IF Y=13 THEN 1070:D=M(K+13) 1205 GR : COLOR=15
>0 1210 YLIN 0,39 AT 0: VLIN 0,39 AT
18 PRINT 1070 IF X=1 THEN 1080:L=M(K-1)>6 39: HLIN 0,39 AT 0: HLIN 0,
19 PRINT *(HINT: YOU CAN OFTEN TELL 39 AT 39
WHERE A WALL" 1080 IF Y=1 THEN 1090:U-M(K-13)> 1220 X=1:Y= RND (13)+1: COLOR=8:
0 PLOT 3*X-2,3*Y-2

DRAGON MAZE cont.

1225 HX=3*X-2:HY=3*Y-2	2520 GOTO 2020	3000 FF 1000 TURN TALL TO 1000 TURN
	3000 DX=0:DY=-1	
1240 COLOR=0: VLIN 3*WY-2,3*WY-1		7058
AT 39	2010 11 W/V+13+/(_C/)/IA (UEV #CDA	
1250 SX=13:SY=WY	3020 GOTO 2020	7150
1260 QX=3*5X-2:QY=3*5Y-2		7005 IF SX=13 THEN 7050: IF T(SX+
1270 RD=1	3510 IF M(X+13*(Y-1))/10 THEN 4306	13*(5Y-1))>9 THEN 7010: IF
1500 K= PEEK (-16384): IF K(128 THEW	0010 1: MARIUM 177/16 INCH 4000	
1500	3520 GOTO 2020	7050
	4000 GOSUB 5000	7010 DX=1:DY=0
1515 QQ=K: GOSUB 7000:K=QQ		7020 COLOR=0
1516 IF SX=X AND SY=Y THEN 8000		7022 RX=3*SX+2:RY=3*SY-2
1520 IF K= ASC("R") THEN 2000	4930 GOTO 1500	DA DA DA DA DA DA DA DA DA DA
1530 IF K= ASC("L") THEN 2500		7024 COLOR=0
1540 IF K= ASC("U") THEN 3000		7025 FOR K=0 TO 1: FOR L=0 TO 1:
1550 IF K= ASC("D") THEN 3500		
1560 GOSUB 5000: GOTO 1500	The second secon	RD: FOR K=8 TO 1: FOR L=8 TO
	4130 GOTO 1500	1: PLOT RX+K,RY+L: WEXT L,K:
2010 IF N(X+13*(Y-1)) MOD 10 THEN		OX=RX:QY=RY
4000	4210 COLOR=15	7030 NEXT I
2020 FX=3*X-2:FY=3*Y-2: FOR I=1 TO		
3		7848 T(SX+13*(SY-1))=T(SX+13*(SY-
2038 FX=FX+DX:FY=FY+DY	4239 GOTO 1598	1))+1
2040 COLOR=0	toon casus mana	7845 RETURN
2060 FOR K=0 TO 1: FOR L=0 TO 1:	4310 COLOR=15	7050 IF SY=13 THEN 7100: IF T(SX+
	4320 HLIN 3*(X-1),3*X AT 3*Y	
8: FOR K=0 TO 1: FOR L=0 TO		M(SX+13*(SY-1))/18 THEN 7100
	5000 S=S-1: FOR I=1 TO 20:A= PEEK	11/20/10/10/11/7/10 IIILN 1100
	(-16336)+ PEEK (-16336)+ PEEK	7060 DX=0:DY=1: GOTO 7020
2110 NEXT I	(-16336)+ PEEK (-16336); NEXT	7100 IF SX=1 THEN 7150; IF T(SX+
2115 X=X+DX:Y=Y+DY	I: RETURN	13*(5Y-1))>9 THEN 7110: IF
2116 IF X=13 AND Y=WY THEN 6000°	6000 PRINT "YOU WIN!"	M(SX+13*(SY-1)-1) NOD 10 THEN
2120 GOTO 1500	6010 GOSUR 5000: GOSUB 5000: GOSUB	7150
2500 DX=-1:DY=0	5000	1 400
2510 IF M(X+13*(Y-1)-1) MOD 10 THEN	6020 PRINT "SCORE=";S+3	
4100	6030 END	

DRAGON MAZE cont.

 \rangle

```
7110 DX=-1:DY=0: GOTO 7020
7150 IF SY=1 THEN 7005: IF T(SX+
13*(SY-1))>9 THEN 7160: IF
M(SX+13*(SY-1)-13)/10 THEN
7005
7160 DX=0:DY=-1: GOTO 7020
8000 GOSUB 5000: GOSUB 5000: GOSUB
5000: GOSUB 5000: PRINT "THE DRA
GON GOT YOU!"
```

APPLE II FIRMWARE

- 1. System Monitor Commands
- 2. Control and Editing Characters
- 3. Special Controls and Features
- 4. Annotated Monitor and Dis-assembler Listing
- 5. Binary Floating Point Package
- 6. Sweet 16 Interpreter Listing
- 7. 6502 Op Codes

System Monitor Commands

Apple II contains a powerful machine level monitor for use by the advanced programmer. To enter the monitor either press RESET button on keyboard or CALL-151 (Hex FF65) from Basic. Apple II will respond with an "*" (asterisk) prompt character on the TV display. This action will not kill current BASIC program which may be re-entered by a $C^{\rm C}$ (control C). NOTE: "adrs" is a four digit hexidecimal number and "data" is a two digit hexidecimal number. Remember to press "return" button at the end of each line.

Command Format	Example	Description
Examine Memory		
adrs	*CØF2	Examines (displays) single memory location of (adrs)
adrs1.adrs2	*1024.1048	Examines (displays) range of memory from (adrs1) thru (adrs2)
(return)	* (return)	Examines (displays) next 8 memory locations.
.adrs2	*.4096	Examines (displays) memory from current location through location (adrs2)
Change Memory		
adrs:data data data	*A256:EF 2Ø 43	Deposits data into memory starting at location (adrs).
:data data data	*:FØ A2 12	Deposits data into memory starting after (adrs) last used for deposits.
Move Memory		
adrs1 <adrs2. adrs3M</adrs2. 	*199<8919.8419M	Copy the data now in the memory range from (adrs2) to (adrs3) into memory locations starting at (adrs1).
Verify Memory		
adrs1 <adrs2. adrs3V</adrs2. 	*100 <b010.b410v< td=""><td>Verify that block of data in memory range from (adrs2) to (adrs3) exactly matches data block starting at memory location (adrs1) and displays differences if any.</td></b010.b410v<>	Verify that block of data in memory range from (adrs2) to (adrs3) exactly matches data block starting at memory location (adrs1) and displays differences if any.

Command Format	Example	Description
Cassette I/O		
adrs1.adrs2R	*3ØØ.4FFR	Reads cassette data into specified memory (adrs) range. Record length must be same as memory range or an error will occur.
adrs1.adrs2W	*8ØØ.9FFW	Writes onto cassette data from specified memory (adrs) range.
Display		
I	*I	Set inverse video mode. (Black characters on white background)
N	*N	Set normal video mode. (White characters on black background)
Dis-assembler		
adrsL	*C8ØØL	Decodes 20 instructions starting at memory (adrs) into 6502 assembly nmenonic code.
L	*L	Decodes next 20 instructions starting at current memory address.
Mini-assembler		
(Turn-on)	*F666G	Turns-on mini-assembler. Prompt character is now a "!" (exclamation point).
\$(monitor command)	:\$C8ØØL	Executes any monitor command from miniassembler then returns control to miniassembler. Note that many monitor commands change current memory address reference so that it is good practice to retype desired address reference upon return to mini-assembler.
adrs:(65 0 2 MNEMONIC instruction)	:C010:STA 23FF	Assembles a mnemonic 6592 instruction into machine codes. If error, machine will refuse instruction, sound bell, and reprint line with up arrow under error.

Command Format	<pre>Example</pre>	Description
(space) (65Ø2 mnemonic instruction)	! STA Ø1FF	Assembles instruction into next available memory location. (Note space between "!" and instruction)
(TURN-OFF)	: (Reset Button)	Exits mini-assembler and returns to system monitor.

Monitor Program Execution and Debugging

adrsG	*3 00 G	Runs machine level program starting at memory (adrs).
adrsT	*8 00 T	Traces a program starting at memory location (adrs) and continues trace until hitting a breakpoint. Break occurs on instruction ØØ (BRK), and returns control to system monitor. Opens 6502 status registers (see note 1).
adrsS	*CØ5ØS	Single steps through program beginning at memory location (adrs). Type a letter S for each additional step that you want displayed. Opens 6502 status registers (see Note 1).
(Control E)	*EC	Displays 6502 status registers and opens them for modification (see Note 1).
(Control Y)	*γ ^C	Executes user specified machine language subroutine starting at memory location (3F8).

Note 1:

6502 status registers are open if they are last line displayed on screen. To change them type ":" then "data" for each register.

Example: A = 3C X = FF $Y = \emptyset\emptyset$ P = 32 S = F2*: FF
Changes A register only
*:FF $\emptyset\emptyset$ 33
Changes A, X, and Y registers

To change S register, you must first retype data for A, X, Y and P.

Hexidecimal Arithmetic

datal+data2	*78+34	Performs hexidecimal plus data2.	sum of datal
datal-data2	*AE-34	Performs hexidecimal datal minus data2.	difference of

Command Format	Example	Description
----------------	---------	-------------

Set Input/Output Ports

(X) (Cont	rol P)	*5P ^C	Sets printer number (X).		
			number (X).	(see Note	2 below)

(X) (Control K) *2K^C Sets keyboard input to I/O slot number (X). (see Note 2 below)

Note 2:

Only slots 1 through 7 are addressable in this mode. Address Ø (Ex: ØpC or ØK^{C}) resets ports to internal video display and keyboard. These commands will not work unless Apple II interfaces are plugged into specificed I/O slot.

Multiple Commands

*199L 499G AFFT Multiple monitor commands may be given on same line if separated by a "space".

*LLLL Single letter commands may be repeated without spaces.

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as G^{C} . They are obtained by holding down the CTRL key while typing the specified letter. Control characters are NOT displayed on the TV screen. B and C must be followed by a carriage return. Screen editing characters are indicated by a sub-scripted "E" such as D_{E} . They are obtained by pressing and releasing the ESC key then typing specified letter. Edit characters send information only to display screen and does not send data to memory. For example, U^{C} moves to cursor to right and copies text while A_{E} moves cursor to right but does not copy text.

CHA	RAC	TER

Control B

Control C

DESCRIPTION OF ACTION

RESET key

Immediately interrupts any program execution and resets computer. Also sets all text mode with scrolling window at maximum. Control is transferred to System Monitor and Apple prompts with a "*" (asterisk) and a bell. Hitting RESET key does NOT destroy existing BASIC or machine language program.

If in System Monitor (as indicated by a "*"), a control B and a carriage return will transfer control to BASIC, scratching (killing) any existing BASIC program and set HIMEM: to maximum installed user memory and LOMEM: to 2048.

If in BASIC, halts program and displays line number where stop occurred*. Program may be continued with a CON command. If in System Monitor, (as indicated by "*"), control C and a carraige return will enter BASIC without killing current program.

Control G Sounds bell (beeps speaker)

Control H

Backspaces cursor and deletes any overwritten characters from computer but not from screen. Apply supplied keyboards have special key "+" on right side of keyboard that provides this functions without using control button.

Control J Issues line feed only

Control V Compliment to H^C. Forward spaces cursor and copies over written characters. Apple keyboards have "→" key on right side which also performs this function.

Control X Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have to hit carriage return key after typing control C.

SPECIAL CONTROL AND EDITING CHARACTERS (continued)

CHARACTER	DESCRIPTION OF ACTION
	·
A _E	Move cursor to right
B _E	Move cursor to left
c _E	Move cursor down
D _E	Move cursor up
EE	Clear text from cursor to end of line
FE	Clear text from cursor to end of page
₆ E	Home cursor to top of page, clear text to end of page.

Special Controls and Features

Hex	BASIC Example	Description					
Display Mode Controls							
CØ50 CØ51 CØ52 CØ53 CØ54 CØ55 CØ56 CØ57	10 POKE -16304,0 20 POKE -16303,0 30 POKE -16302,0 40 POKE -16301,0 50 POKE -16300,0 60 POKE -16299,0 70 POKE -16298,0 80 POKE -16297,0	Set color graphics mode Set text mode Clear mixed graphics Set mixed graphics (4 lines text) Clear display Page 2 (BASIC commands use Page 1 only) Set display to Page 2 (alternate) Clear HIRES graphics mode Set HIRES graphics mode					
TEXT Mode	Controls						
ØØ2Ø	9Ø POKE 32,L1	Set left side of scrolling window to location specified by Ll in range of Ø to 39.					
ØØ21	100 POKE 33,W1	Set window width to amount specified by W1. L1+W1<40. W1>0					
ØØ22	110 POKE 34,T1	Set window top to line specified by Tl in range of Ø to 23					
ØØ23	12Ø POKE 35,B1	Set window bottom to line specified by Bl in the range of Ø to 23. Bl>Tl					
ØØ24	130 CH=PEEK(36) 140 POKE 36,CH 150 TAB(CH+1)	Read/set cusor horizontal position in the range of Ø to 39. If using TAB, you must add "1" to cusor position read value; Ex. 140 and 150 perform identical function.					
ØØ25	16Ø CV=PEEK(37) 17Ø POKE 37,CV 18Ø VTAB(CV+1)	Similar to above. Read/set cusor vertical position in the range Ø to 23.					
ØØ32	190 POKE 50,127 200 POKE 50,255	Set inverse flag if 127 (Ex. 190) Set normal flag if 255(Ex. 200)					
FC58	21Ø CALL -936	(@E) Home cusor, clear screen					
FC42	22Ø CALL -958	(F _E) Clear from cusor to end of page					

<u>Hex</u>	BASIC Example	<u>Description</u>
FC9C	23Ø CALL -868	(E _E) Clear from cusor to end of line
FC66	24Ø CALL -922	(J ^C) Line feed
FC7Ø	25Ø CALL -912	Scroll up text one line

Miscellaneous

CØ3Ø	36Ø X=PEEK(-16336) 365 POKE -16336,Ø	Toggle speaker
СФФФ	37Ø X=PEEK(-16384	Read keyboard; if X>127 then key was pressed.
CØIØ	38Ø POKE -16368,Ø	Clear keyboard strobe - always after reading keyboard.
CØ61	39Ø X=PEEK(16287)	Read PDL(\emptyset) push button switch. If X>127 then switch is "on".
CØ62	400 X=PEEK(-16286)	Read PDL(1) push button switch.
CØ63	41Ø X=PEEK(-16285	Read PDL(2) push button switch.
CØ58	420 POKE -16296,0	Clear Game I/O ANØ output
CØ59	43Ø POKE -16295,Ø	Set Game I/O ANØ output
CØ5A	440 POKE -16294,0	Clear Game I/O ANI output
CØ5B	45Ø POKE -16293,Ø	Set Game I/O AN1 output
CØ5C	46Ø POKE -16292,Ø	Clear Game I/O AN2 output
CØ5D	47Ø POKE -16291,Ø	Set Game I/O AN2 output
CØ5E	48Ø POKE -16290,Ø	Clear Game I/O AN3 output
CØ5F	49Ø POKE -16289,Ø	Set Game I/O AN3 output

)

```
APPLE II
       SYSTEM MONITOR
      COPYRIGHT 1977 BY
     APPLE COMPUTER, INC.
     ALL RIGHTS RESERVED
         S. WOZNIAK
          A. BAUM
          TITLE
                            "APPLE II SYSTEM MONITOR"
           EPZ $00
LOC 0
LOCI
           EPZ
               $01
WNDLFT
           EPZ
                $20
HTOVONW
           EPZ
                $21
WNDTOP
           EPZ
                $22
WNDBTM
           EPZ
                $23
CH
           EPZ
                $24
CV
           EPZ
                $25
GBASL
           EPZ
                $26
GBASH
           EPZ
BASL
           EPZ
                $28
BASH
           EPZ
                $29
BAS2L
           EPZ
                $2A
BAS2H
           EPZ
                $2B
H2
           EPZ
                $2C
LMNEM
           EPZ
                $2C
RTNL
           EP%
                $2C
V2
           EPZ
                $2D
RMNEM
           EP2
                $2D
RTNH
           EPZ
                $2D
MASK
           EPZ
                $2E
CHKSUM
           EPZ
                S2E
FORMAT
          EPZ
                $2E
LASTIN
          EPZ
                $2F
LENGTH
          EPZ
                $2F
          EPZ
SIGN
                $2F
COLOR
          EPZ
                $30
MODE
          EPZ
                $31
INVFLG
          EPZ
               $32
PROMPT
          EPZ
               $33
$34
          EPZ
YSAV
YSAVl
          EPZ $35
CSWL
          EPZ
               $36
CSWH
          EPZ
                $37
KSWL
          EPZ
               $38
          EPZ
KSWH
               $39
PCL
          EPZ
               $3A
PCH
               $3P
          EPZ
XQT
          EPZ
               $3C
AlL
          EP3
               $3C
AlH
          EPZ
               $3D
A2L
          EPZ
               $3E
A2H
          EPZ
               $3F
A3L
          EPZ
               $40
A3H
          EPZ
               $41
               $42
A4L
          EPZ
A 4 H
          EPZ
               $43
               $44
$45
          EPZ
A5L
```

```
XPEG
                                EPZ
                                     $46
$47
                                EPZ
                    YREG
                    STATUS
                                EPZ
                                     548
                    SPNT
                                FPZ
                                      $49
                    RNDL
                                EPZ
                                      94F
                                EPZ
                                     SAF
                    PNDH
                    ACL
                                      $50
                               EPZ
                                     $51
                                EP7
                    ACH
                                     $52
                    TUNLY
                               EPZ
                    XTHDE
                                RPZ
                                     $53
                    AUXT.
                                EPZ
                                     $54
                    AUXB
                                EP7
                                     $55
                    PICK
                                EPZ
                                     $95
                    ΙN
                                EOU
                                     $0200
                    USRADR
                               EOU
                                     S03F8
                    ИМI
                               EQU
                                     $03FB
                    IFOLOC
                               EQU
                                     SU3FE
                    ICADR
                               EQU
                                     $C000
                               EQU
EQU
                                     $C000
                    KBD
                    KBDSTRE
                                     $C010
                               EÇU
                    TAPFOUT
                                     SC020
                    SPKR
                               EQU
                                     SC 0-30
                    TXTCLR
                                EQU
                                     $C050
                    TXTSET
                               EQU
                                     SC051
                    MIXCLE
                               EQU
                                     $C052
                               EÇU
                    MIXSET
                                     $C053
                                     3C054
                    LOWSCR
                               ĐÒU
                    HISCR
                               SOU
                                     SC055
                    LORES
                               EOU
                                     SC056
                    HIRES
                               EQU
                                     $C057
                                     $C060
                    TAPEIN
                               EÇU
                    PADOLO
                               EQU
                                     $C064
                    PTRIG
                               EQU
                                     $C070
                    BASIC
                               EQU
                                     SE000
                    BASIC2
                               EQU
                                     $E003
                               ORG
                                     $F800
                                                ROM START ADDRESS
F800: 4A
                   PLOT
                               LSR
                                     Α
                                                Y-COORD/2
F801: 08
                               PHP
                                                SAVE LSB IN CARRY
F802: 20 47 F8
                                     GBASCALC CALC BASE ADR IN GBASL, H
                               JSR
F805: 28
                               PLP
                                                RESTORE LSB FROM CARRY
F806: A9 OF
                               LDA
                                     #SOF
                                                MASK SOF IF EVEN
F808: 90 02
                               BCC
                                     RTMASK
F80A: 69 E0
                                               MASK $FO IF ODD
                               ADC
                                     #$E0
F80C: 85 2E
F80E: B1 26
                   RIMASK
                               STA
                                     MASK
                                     (GBASL),Y DATA
                   PLOT1
                               LDA
                                                XOR COLOR
F810: 45
F812: 25
          30
                               EOR
                                     COLOR
                               AND
                                     MASK
F814: 51 26
                               EOR
                                     (GBASL),Y
                                                    XOR DATA
F816: 91 26
                               STA
                                     (GBASL),Y
                                                     TO DATA
F818: 60
                               RTS
F819: 20 00 F8
                   HLINE
                               JSR
                                     PLOT
                                               PLOT SQUARE
F81C: C4 2C
                                               DONE?
                               CPY
                   HLINE1
                                     Н2
F81E: B0 11
                                     RTS1
                                                YES, RETURN
                               BCS
F820: C8
                               INY
                                               NO, INCR INDEX (X-COORD)
F821: 20 0E F8
F824: 90 F6
                                               PLOT NEXT SOUARE
                               JSR
                                     PLOT 1
                               BCC
                                     HLINE1
                                               ALWAYS TAKEN
                                               NEXT Y-COORD
F826: 69 01
                   VLINEZ
                               ADC
                                     #$01
F828: 48
F829: 20 00 F8
                   VLINE
                               PHA
                                               SAVE ON STACK
                               JSP
                                     PLOT
                                                PLOT SQUARE
F82C: 68
                               PLA
F82D: C5
                               CMP
                                     V2
                                               DONE?
F82F: 90 F5
                               BCC
                                     VLINEZ
                                                NO, LOOP.
F831: 60
                   RTS1
                               RTS
F832: A0 2F
                                               MAX Y, FULL SCRN CLR
ALWAYS TAKEN
MAX Y, TOP SCRN CLR
                   CLRSCR
                               LDY
                                     #$2F
F834: D0 02
                                     CLRSC2
                               PME
F836: A0 27
                   CLRTOP
                               LDY
                                     #$27
F838: 84 2D
                                               STORE AS BOTTOM COORD
                   CLRSC2
                               STY
                                     V2
                                FOR VLINE CALLS
F83A: A0 27
                                     #$27
                                               RIGHTMOST X-COORD (COLUMN)
                               LDY
F83C: A9 00
F83E: 85 30
                   CLRSC3
                               LDA
                                     #$0
                                               TOP COORD FOR VLINE CALLS
                               STA
                                     COLOR
                                               CLEAR COLOR (BLACK)
F840: 20 28 F8
                               JSR
                                     VLINE
                                               CRAW VLINE
F843: 88
                               DEY
                                               NEXT LEFTMOST X-COORD
F844: 10 F6
                                     CLRSC3
                                               LOOP UNTIL DONE.
                               SPL
F846: 60
                               RTS
F847: 48
F848: 4A
                   GBASCALC
                              PHA
                                               FOR INPUT 000DEFGH
                               LSR
F849: 29 03
                              AND
                                    #$03
F84B: 09 04
                              OPA
                                    #$04
                                                 GENERATE GBASH=000001FG
F84D: 85
          27
                              STA
                                    GBASH
F84F: 68
                              \mathsf{PLV}
                                               AND GRASL=HOEDE000
F850: 29 18
F852: 90 02
                              AND
                                    #$18
                              SCC
                                    CRCALC
F854: 69 7F
                              ADC
                                    #$7F
F856: 85 26
                  GECALC
                              STA
                                    GRASL
```

ACC

EPZ

\$45

```
F858: 0A
                            ASL
                                  A
 F859: 04
                            ASL
                                  GBASL
                            ORA
 F85A: 05 26
 F85C: 85 26
                            STA
                                 GRASE
F85E: 60
                            RTS
                                            INCREMENT COLOR BY 3
F85F: A5 30
                 NXTCOL
                            LDA
                                 COLOR
 F861: 13
                            C\Gamma C
F862: 69 03
                            ADC
                                  #503
 F864: 29 OF
                 SETCOL
                            AND
                                  #807
                                            SETS COLOR=17*A MOD 16
 F866: 85 30
                            STA
                                  COLOR
                                            FOTH HALF PYTES OF COLOR EQUAL
 F868: 0A
                            ASL
                            AST.
 F869: 0A
 F86A: 0A
                            ASL
                                  Α
F86B: 0A
                            ASL
F86C: 05 30
                            ORA
                                  COLOR
                            STA
                                 COLOR
 F86E: 85 30
F870: 60
                            RTS
                                            READ SCREEN Y-COORD/2
 F871: 4A
                 SCFN
                            LSR
                                            SAVE LSB (CAFRY)
F872: 08
                            PHP
                                 GEASCALC CALC BASE ADDRESS
          47 F8
F873: 20
                            JSR
                                  (GEASL),Y GET BYTE
F876: B1
F878: 28
                            LDA
          26
                                            RESTORE LSP FROM CARRY
                            PLP
F879: 90 04
                 SCRN2
                                 RTMSK7
                                           IF EVEN, USE LO H
                            BCC
F87B: 4A
                            LSR
                            LSR
F87C: 4A
                                           SHIFT HIGH HALF BYTE DOWN
F87D: 4A
                            LSR
                                 Δ
F87E: 44
                            LSR
F87F: 29 OF
                                  #$0F
                                           MASK 4-811S
                 RIMSKZ
                            AND
                            RTS
F881: 60
F882: A6
                 IMSDS1
                            LDX
                                 PCL
PCF
                                           PRINT PCL.
F884: A4
          3B
                            LDY
F886: 20 96 FD
                                 PRYX2
                            JSP
F889: 20 48 F9
F88C: Al 3A
                                            FOLLOWED BY A BLANK
                            JSR
                                 PRELNK
                                 (PCL,X)
                                           GET OF CODE
                            LDA
£88E: A8
                 INSDS2
                            Τ٩Υ
                                           EVEN/ODD TEST
                            LSR
F88F: 4A
                                 IEVEN
                            BCC
£890: 90 09
                                           BIT 1 TEST
F892: 61
                            ROR
                            BCS
                                 PPP
                                           XXXXXX11 INVALID OF
F893: B0 10
F895: C9 A2
                            CMP
                                 #SA2
F897: F0 0C
                            REO
                                 REE
                                           OPCODE S89 INVALID
                                            MASK CITS
F899: 29 87
                                 #$87
                            AND
                 IEVEN
                            LSR
                                           LSB INTO CARRY FOR L/P TEST
F893: 4A
                            TAX
F89C: AA
F89D: BG 62 F9
F8AO: 20 79 F8
                                 FMT1,X
                                           GET FORMAT INCEX BYTE
                            LDA
                            JSR
                                 SCRN2
                                           R/L H-BYTE ON CARRY
                            SNE
                                 GETFIIT
F8A3: D0 04
                                           SUPSTITUTE $80 FOR INVALID OPS
F8A5: A0 80
                 ERP
                            LDY
                                 #580
                                           SET PRINT FORMAT INDEX TO 0
£8A7: A9 00
                            LDA
                                 #$0
F8A9: AA
                 GETEMT
                            TAX
                                 EMT2,X
                                           INDEX INTO PRINT FORMAT TABLE
F8AA: BD A6 F9
                            LUA
F8AD: 85 2E
                            STA
                                 FORMAT
                                           SAVE FOR ADR FIELD FORMATTING
                                 #$03
                                           MASK FOR 2-BIT LENGTH
                            AND
F8AF: 29 03
                                 (P=1 BYTE, l=2 BYTE, 2=3 BYTE)
                            STA
                                 LENGTH
F8E1: 85
                                           CPCODE
F8B3: 98
                            TYA
F834: 29 8F
                            AND
                                 #$8F
                                           MASK FOR 1XXX1010 TEST
                            TAX
                                           SAVF IT
F8B6: AA
                                           OPCODE TO A AGAIN
                            TYA
F8B7: 98
                                 #$03
                            T.DY
F8B8: A0 03
F8BA: E0 8A
                            CPX
                                 #$8A
F8BC: F0 08
                            BEO
                                 MNNDX3
F8BE: 4A
F8BF: 90 08
                 MNNDX1
                            LSR
                                 MNNDX3
                                           FORM INDEX INTO MNEMONIC TABLE
                            BCC
                            LSR
F8C1: 4A
                                             1) 1XXX1010=>00101XXX
                            LSP
F8C2: 4A
                 MNNDX2
                                 Д
F8C3: 09 20
                            ORA
                                 #$20
                                             2) XXXYYY01=>00111XXX
                                           3) XXXYYY10=>00110XXX
F8C5: 88
                            DEY
F8C6: D0 FA
                            BNE
                                 MNNDX2
                                              4) XXXYY100=>00100XXX
F8C8: C8
                            INY
                                           5) XXXXX000=>000XXXXX
F8C9: 88
                 MNNDX3
                            DEY
                                 MNNDX1
F8CA: D0 F2
                            BNE
F8CC: 60
                            RTS
F8CD: FF FF FF
                            DFB
                                 SFF, SFF, SFF
F8D0: 20 82 F8 INSTDSP
                                           GEN FMT, LEN BYTES
                            JSR
                                 INSDS1
F8D3: 48
                                           SAVE MNEMONIC TABLE INDEX
                            PHA
F8D4: B1 3A
                PRNTOP
                                 (PCL),Y
                            LDA
F8D6: 20 DA FD
                            JSR
                                 PRBYTE
F8D9: A2 01
                            LDX
                                 #$01
                                           PRINT 2 BLANKS
F8DB: 20 4A F9 PRNTBL
                                 PRBL2
                            JSR
                                           PRINT INST (1-3 BYTES)
F8DE: C4 2F
                           CPY
                                 LENGTH
F8E0: C8
                            INY
                                           IN A 12 CHR FIELD
                                 PRNTOP
F8E1: 90 F1
                           BCC
                           LDX
                                 #$03
                                           CHAR COUNT FOR MNEMONIC PRINT
F8E3: A2
         03
F8E5: C0 04
                           CPY
                                 #$04
```

```
F8E7: 90 F2
                            BCC
                                 PRNTBL
                                           RECOVER MNEMONIC INDEX
                            PLA
F8E9: 68
                            TAY
F8EA: A8
F8EB: B9 C0 F9
                                  MNEML, Y
                            LDA
                            STA
                                 LMNEM
                                           FETCH 3-CHAR MNEMONIC
F8EE: 85 2C
F8F0: B9 00 FA
                                 MNEMR, Y
                                              (PACKED IN 2-BYTES)
                            LDA
F8F3: 85 2D
                            STA
                                  RMNEM
F8F5: A9 00
                 PRMN1
                            LDA
                                  #$00
F8F7: A0 05
                            LDY
                                  #$05
                                           SHIFT 5 BITS OF
F8F9: 06 2D
                 PRMN2
                            ASL
                                 RMNEM
                                             CHARACTER INTO A
F8FB: 26 2C
                            ROL
                                 LMNEM
                                                (CLEARS CARRY)
F8FD: 2A
                            ROL
F8FE: 88
                            DEY
                            BNE
F8FF: D0 F8
                                 PRMN2
                                           ADD "?" OFFSET
                            ADC
                                 #SBF
F901: 69 BF
                                           OUTPUT A CHAR OF MNEM
F903: 20 ED FD
                            JSR
                                 COUT
F906: CA
                            DEX
F907: D0 EC
                            BNE
                                 PRMN1
                                 PRBLNK
                                           OUTPUT 3 BLANKS
F909: 20 48 F9
                            JSR
                            LDY
                                 LENGTH
F90C: A4 2F
                                           CNT FOR 6 FORMAT BITS
F90E: A2 06
                            LDX
                                 #$06
F910: E0 03
                 PRADR1
                            CPX
                                 #$03
                                 PRADR5
                                           IF X=3 THEN ADDR.
F912: F0 1C
                            BEQ
                                 FORMAT
F914: 06 2E
                 PRADR2
                            ASL
                            BCC
                                 PRADR3
F916: 90 0E
F918: BD B3 F9
                            LDA
                                 CHAR1-1,X
F91B: 20 ED FD
                            JSR
                                 COUT
F91E: BD B9 F9
                            LDA
                                 CHAR2-1,X
F921: F0 03
                            BEO
                                 PRADR3
F923: 20 ED
             FD
                            JSR
                                 COUT
F926: CA
                 PRADR3
                            DEX
                            BNE
F927: D0 E7
                                 PRADR1
F929: 60
                            RTS
F92A: 88
                 PRADR4
                            DEY
F92B: 30 E7
                            BMI
                                 PRADR 2
F92D: 20 DA FD
                                 PRRYTE
                            JSR
                 PRADR 5
F930: A5 2E
                            LDA
                                 FORMAT
F932: C9 E8
                            CMP
                                 #$E8
                                           HANDLE REL ADR MODE
F934: Bl 3A
                                 (PCL),Y
                                           SPECIAL (PRINT TARGET,
                            LDA
                                             NOT OFFSET)
F936: 90 F2
                            BCC
                                 PRADR4
F938: 20 56 F9 RELADR
                            JSR
                                 PCADJ3
                                           PCL, PCH+OFFSET+1 TO A, Y
F93B: AA
                            TAX
F93C: E8
                            INX
                                           +1 TO Y, X
F93D: D0 01
                            BNE
                                 PRNTYX
F93F: C8
                            INY
F940: 98
                 PRN'TYX
                            TYA
F941: 20 DA FD
                                 PRBYTE
                                           OUTPUT TARGET ADR
                PRNTAX
                            JSR
F944: 8A
                                           OF BRANCH AND RETURN
                 PRNTX
                            TXA
                                 PRBYTE
F945: 4C DA FD
                            JMP
F948: A2 03
                 PRBLNK
                            LDX
                                 #$03
                                           BLANK COUNT
F94A: A9 A0
                 PRBL2
                            LDA
                                 #$A0
                                           LOAD A SPACE
F94C: 20 ED FD
                                 COUT
                                           OUTPUT A BLANK
                PRBL3
                            JSR
F94F: CA
F950: D0 F8
                           DEX
                                 PRBL2
                                           LOOP UNTIL COUNT=0
                            BNE
F952: 60
                            RTS
                                           0 = 1 - 3 \text{ YTE}, 1 = 2 - 8 \text{ YTE},
F953: 38
                 PCADJ
                            SEC
F954: A5
                 PCADJ2
                                 LENGTH
                                             2=3-BYTE
                            LDA
F956: A4 3B
                 PCADJ3
                            LDY
                                 PCH
F958: AA
F959: 10
                                           TEST DISPLACEMENT SIGN
                            TAX
         01
                            BPL.
                                 PCADJ4
                                             (FOR REL BRANCH)
F95B: 88
                                           EXTEND NEG BY DECR PCH
                            DEY
F95C: 65
                 PCADJ4
                            ADC
                                 PCL
F95E: 90 01
                            BCC
                                 RTS 2
                                           PCL+LENGTH (OR DISPL) +1 TO A
F960: C8
                            INY
                                           CARRY INTO Y (PCH)
                 RTS 2
                            RTS
F961: 60
                             FMT1 BYTES:
                                                   XXXXXXYO INSTRS
                                                   THEN LEFT HALF BYTE
                             IF Y=0
                                                   THEN RIGHT HALF BYTE
                             IF Y=1
                                                         (X=INDEX)
F962: 04 20 54
F965: 30 0D
                           DFB $04,$20,$54,$30,$0D
                 FMT1
F967: 80 04
F96A: 03 22
                           DFB
                                 $80,$04,$90,$03,$22
F96C: 54
F96F: 80 04
                            DFB
                                 $54,$33,$0D,$80,$04
F971: 90 04
             20
F974: 54 33
                           DFB
                                 $90,$04,$20,$54,$33
F976: 0D 80
             04
F979: 90 04
                           DFB
                                 SOD, $80, $14, $90, $04
F97B: 20 54
             3B
F97E: 0D 80
                           DFB
                                 $20,$54,$3B,$0D,$80
F980: 04 90
             0.0
F983: 22 44
F985: 33 0D
                           DFB $04,$90,$00,$22,$44
             C8
F988: 44 00
                           DFB $33,$0D,$C8,$44,$00
```

```
F98A: 11 22 44
F98D: 33 0D
                            DFB $11,822,$44,$33,$0D
F98F: C8 44 A9
F992: 01 22
                            DFB $C8,$44,$A9,$01,$22
F994: 44 33 0D
F997: 80 04
                            DFB $44,$33,$0D,$80,$04
F999: 90 01 22
F99C: 44 33
                            DFB $90,$01,$22,$44,$33
F99E: 0D 80 04
                                 $0D,$80,$04,$90
                            DFB
F9A1: 90
F9A2: 26 31 87
F9A5: 9A
                            DFB
                                 $26,$31,$87,$9A ZZXXXY01 INSTR'S
                                 $00
F9A6: 00
F9A7: 21
                 FMT2
                            DFB
                                          ERR
                            DFB
                                 $21
                                           IMM
F9A8: 81
                            DFB
                                 $81
                                           Z-PAGE
F9A9: 82
                            DFP
                                           ABS
F9AA: 00
                            DFB
                                 $00
                                           IMPLIED
F9AB: 00
                            DFB
                                 $00
                                           ACCUMULATOR
F9AC: 59
                            DFB
                                 $59
                                           (ZPAG,X)
F9AD: 4D
                            DFB
                                 $4D
                                           (ZPAG),Y
F9AE: 91
                            DFB
                                 $91
                                           ZPAG,X
F9AF: 92
                                           ABS,X
                            DFB
                                 $92
F9B0: 86
                            DFB
                                 $86
                                           ABS, Y
F9B1: 4A
                           DFB
                                 $4A
                                           (ABS)
F9B2: 85
                           DFB
                                 $85
                                           ZPAG.Y
F9B3: 9D
                           DFB
                                 $9D
                                           RELATIVE
F9B4: AC A9 AC
       A3 A8 A4
                 CHARL
                           ASC ",),#($"
F9BA: D9 00 D8
                           DFB SD9, $00, $D8, $A4, $A4, $00 "Y", 0, "X$$", 0
F9BD: A4 A4 00 CHAR2
                 *CHAR2:
                           MNEML
                                          IS OF FORM:
                                XXXXX000
                            (A)
                                 XXXYY100
                            (B)
                            (C)
                                 1XXX1010
                            (D)
                                 XXXYYY10
                            (E)
                                 XXXYYY01
                                 (X=INDEX)
F9C0: 1C 8A 1C
F9C3: 23 5D 8B MNEML
                           DFB $1C,$8A,$1C,$23,$5D,$8B
F9C6: 1B A1 9D
F9C9: 8A 1D 23
                           DFB $1B,$A1,$9D,$8A,$1D,$23
F9CC: 9D 8B 1D
F9CF: Al 00 29
                           DFB $9D,$8B,$1D,$A1,$00,$29
F9D2: 19 AE
F9D5: A8 19 23
                           DFB $19,$AE,$69,$A8,$19,$23
F9D8: 24 53 1B
F9DB: 23 24
             53
                           DFB $24,$53,$1B,$23,$24,$53
F9DE: 19 Al
                           DFB $19,$A1 (A) FORMAT ABOVE
F9E0: 00 1A 5B
F9E3: 5B A5 69
                           DFB $00,$1A,$5B,$5B,$A5,$69
F9E6: 24 24
                           DFB $24.$24
                                         (B) FORMAT
F9E8: AE AE A8
F9EB: AD 29 00
F9EE: 7C 00
                           DEB
                                $AE,$AE,$A8,$AD,$29,$00
                           DFB $7C,$00 (C) FORMAT
F9F0: 15 9C 6D
F9F3: 9C A5 69
                           DFB
                                $15,$9C,$6D,$9C,$A5,$69
F9F6: 29 53
                           DFE
                                $29,$53 (D) FORMAT
F9F8: 84 13 34
F9FB: 11 A5 69
F9FE: 23 A0
                                $84,$13,$34,$11,$A5,$69
                           DFB
                                $23,$A0 (E) FORMAT
FA00: D8 62 5A
FA03: 48 26 62 MNEMR
                           DFB $D8,$62,$5A,$48,$26,$62
FA06: 94 88 54
FA09: 44 C8 54
                           DFP $94,$88,$54,$44,$C8,$54
FAOC: 68 44 E8
FAOF: 94 00 B4
                           DFB $68,$44,$E8,$94,$00,$B4
FA12: 08 84 74
FA15: B4 28 6E
                           DFB $08,$84,$74,$B4,$28,$6E
FA18: 74 F4 CC
FA1B: 4A 72 F2
                           DFB $74,$F4,$CC,$4A,$72,$F2
FALE: A4 8A
                           DFB $A4,$8A (A) FORMAT
FA20: 00 AA A2
                           DFB $00,$AA,$A2,$A2,$74,$74
FA23: A2 74 74
                                $74,$72 (B) FORMAT
FA26: 74 72
                           DFB
FA28: 44 68 B2
FA2B: 32 B2 00
                           DFB
                                $44,$68,$B2,$32,$B2,$00
                               $22,$00 (C) FORMAT
FA2E: 22 00
                          DFB
FA30: 1A 1A 26
FA33: 26 72 72
                           DFB $1A,$1A,$26,$26,$72,$72
FA36: 88 C8
                          DFB $88,$C8 (D) FORMAT
FA38: C4 CA 26
FA3B: 48 44 44
                          DFB $C4,$CA,$26,$48,$44,$44
                          DFB $A2,$C8 (E) FORMAT
FA3E: A2 C8
```

```
FA40: FF FF FF
                             DFB
                                   SFF, SFF, SFF
 FA43: 20 DO F8 STEP
                             JSR
                                  INSTOSP DISASSEMBLE ONE INST
                                            AT (PCL, H)
 FA46: 68
FA47: 85 2C
                             PLA
                                             ADJUST TO USER
                             STA
                                   RTNL
 FA49: 68
                             PLA
                                            STACK, SAVE
 FA4A: 85
                             STA
                                   RTNH
                                               RTN ADR.
 FA4C: A2 08
                             LDX
                                   #$08
 FA4E: BD 10 FB XQINIT
                                  INITSL-1, X INIT XEO AREA
                             LDA
 FA51: 95 3C
                             STA
                                  XOT,X
 FA53: CA
                             DEX
 FA54: D0 F8
                                  XCINIT
                             BNE
                                   (PCL,X)
 FA56: Al 3A
                             LDA
                                            USER OPCODE BYTE
 FA58: FO 42
                                   XBRK
                                            SPECIAL IF BREAK
                             BEQ
 FA5A: A4 2F
                             LDY
                                  LENGTH
                                            LEN FROM DISASSEMBLY
                             CMP
                                  #$20
 FA50: C9 20
                                            HANDLE JSR, PTS, JMP,
 FA5E: F0 59
                             BEO
                                  XJSR
                             CMP
                                              JMP ( ), RTI SPECIAL
 FA60: C9 60
                                  #$60
 FA62: F0
                             BEQ
                                  XRTS
 FA64: C9 4C
                             CMP
                                  #$4C
 FA66: F0 5C
                             BEC
                                  XJMP
 FA68: C9 6C
                             CMP
                                  #56C
 FA6A: FO 59
                             BEO
                                  XJMPAT
 FA6C: C9 40
                             CMP
                                  #S40
                             3E0
                                  XRTI
 FA6E: FO 35
 FA70: 29
                             AND
                                  #$1F
 FA72: 49 14
                             EOR
                                  #S14
 FA74: C9 04
                             CMP
                                  #S04
                                            COPY USER INST TO XEO AREA
 FA76: FO 02
                             BEQ
                                  XQ2
                                              WITH TRAILING NOPS
 FA78: B1 3A
                                  (PCL),Y
                  XOL
                             LDA
                                            CHANGE REL BRANCH
FA7A: 99 3C 00 XQ2
FA7D: 88
                             STA
                                  XQTNZ,Y
                                            DISP TO 4 FOR JMP TO BRANCH OR
                             DEY
 FA7E: 10 F8
                            BPI.
                                  XO1
                                              NBRANCH FROM XEQ.
FA80: 20 3F FF
                             JSR
                                  RESTORE
                                            RESTORE USER REG CONTENTS.
 FA83: 4C 3C 00
                                            XEQ USER OP FROM RAM
                             JMP
                                  XQTNZ
FA86: 85 45
                  IRQ
                             STA
                                                (RETURN TO NBRANCH)
                                  ACC
FA88: 68
FA89: 48
                            PLA
                             PHA
                                            **IRO HANDLER
FA8A: OA
                            ASL
                                  Α
FA8B: 0A
                            ASL
FASC: OA
                            ASL
                                  BREAK
FA8D: 30 03
                            BMI
                                            TEST FOR BREAK
FA8F: 6C FE 03
                                  (IROLOC) USER ROUTINE VECTOR IN RAM
                            JMP
FA92: 28
                 BREAK
                            PLP
FA93: 20 4C FF
                            JSR
                                  SAVI
                                            SAVE REG'S ON BREAK
FA96: 68
                            PI.A
                                            INCLUDING PC
FA97: 85 3A
                            STA
                                  PCL
FA99: 68
                            PLA
FA9A: 85 3B
                            STA
                                  PCH
FA9C: 20 82 F8 XBRK
                            JSR
                                  INSDS1
                                            PRINT USER PC.
FA9F: 20 DA FA
                                             AND REG'S
                            JSR
                                  RGDSP1
FAA2: 4C 65 FF
FAA5: 18
                            JMP
                                  MON
                                            GO TO MONITOR
                 XRTI
                            CLC
FAA6: 68
                            PLA
                                           SIMULATE RTI BY EXPECTING
FAA7: 85 48
                            STA
                                 STATUS
                                              STATUS FROM STACK, THEN RTS
FAA9: 68
                 XRTS
                                            RTS SIMULATION
                            PLA
FAAA: 85 3A
                                 PCL
                            STA
                                              EXTRACT PC FROM STACK
FAAC: 68
                            PLA
                                           AND UPDATE PC BY 1 (LEN=0)
FAAD: 85 3B
                 PCINC2
                            STA
                                 PCH
FAAF: A5 2F
                 PCINC3
                                 LENGTH
                                           UPDATE PC BY LEN
                            LDA
                                 PCADJ3
FAB1: 20 56 F9
                            JSR
FAB4: 84 3B
                            STY
                                 PCH
FAB6: 18
                            CLC
FAB7: 90 14
                            BCC
                                 NEWPCL
FAB9: 18
                 XJSR
                            CLC
FABA: 20 54 F9
                            JSR
                                 PCADJ2
                                           UPDATE PC AND PUSH
FABD: AA
                            TAX
                                           ONTO STACK FOR
FABE: 98
                                           JSR SIMULATE
                            TYA
FABF: 48
                            PHA
FACO: 8A
                            TXA
FAC1: 48
                            PHA
FAC2: A0 02
                            LDY
                                 #$02
FAC4: 18
FAC5: B1 3A
                 XJMP
                            CLC
                 XJMPAT
                            LDA
                                 (PCL),Y
FAC7: AA
                                           LOAD PC FOR JMP,
                            TAX
FAC8: 88
                            DEY
                                           (JMP) SIMULATE.
FAC9: Bl
                            LDA
                                 (PCL),Y
FACB: 86 3B
                            STX
                                 PCH
FACD: 85 3A
                NEWPOL
                            STA
                                 PCI.
FACF: BO F3
                           BCS
                                 XJMP
FAD1: A5 2D
                RTNJAP
                           LDA
                                 RTNH
FAD3: 48
                           PHA
FAD4: A5 2C
                                 RTNL
                           LDA
FAD6: 48
                           PHA
FAD7: 20 8E FD REGDSP
                           JSR
                                 CROUT
                                           DISPLAY USER REG
FADA: A9 45
                RGDSP1
                           LDA
                                 #ACC
                                             CONTENTS WITH
FADC: 85 40
                           STA
                                 A3L
                                             LABELS
```

```
FADE: A9 00
                             LDA
                                  #ACC/256
FAE0: 85 41
                             STA
                                  A3H
FAE2: A2 FB
                             LDX
                                  #$FB
FAE4: A9 A0
FAE6: 20 ED FD
                 RDSP1
                             LDA
                                  #$A0
                             JSR
                                  COUT
FAE9: BD 1E FA
                             LDA
                                  RTBL-SFB.X
FAEC: 20 ED FD
                             JSR
                                  COUT
FAEF: A9 BD
                             LDA
                                  #$BD
FAF1: 20 ED FD
                             JSR
                                  COUT
                             LDA
                                  ACC+5.X
FAF4: B5 4A
                                  PRBYTE
                             JSR
FAF6: 20 DA FD
                             INX
FAF9: E8
                             BMI
                                  RDSP1
FAFA: 30 E8
FAFC: 60
FAFD: 18
                             RTS
                 BRANCH
                             CLC
                                            BRANCH TAKEN,
                                               ADD LEN+2 TO PC
FAFE: A0 01 FB00: B1 3A
                             LDY
                                   #$01
                             LDA
                                   (PCL),Y
                             JSR
                                  PCADJ3
FB02: 20 56 F9
FB05: 85
         3A
                             STA
                                  PCL
FB07: 98
                             TYA
FB08: 38
                             SEC
FB09: B0 A2
                             BCS
                                  PCINC2
FBOB: 20 4A FF NBRNCH FBOE: 38
                             JSR
                                            NORMAL RETURN AFTER
                                  SAVE
                                            XEQ USER OF
                             SEC
                                  PCINC3
FBOF: BO 9E
                             BCS
                                            GO UPDATE PC
FB11: EA
                 INITBL
                             NOP
                             NOP
                                            DUMMY FILL FOR
FB12: EA
FB13: 4C
FB16: 4C
                             JMP
                                  NBRNCH
                                               XEO AREA
          OB FB
                             JMP
                                  BRANCH
          FD FA
                 RTBL
                             DFB
                                  SC1
FB19: C1
FB1A: D8
                             DFB
                                  SD8
FB1B: D9
                             DFB
                                  SD9
FB1C: D0
                             DFR
                                  $D0
FB1D: D3
                             DFB
                                  $D3
                                            TRIGGER PADDLES
FBlE: AD
          70 CO PREAD
                             LDA
                                  PTPIG
                            LDY
                                  #$00
                                            INIT COUNT
FB21: A0 00
                                            COMPENSATE FOR 1ST COUNT
                            NOP
FB23: EA
                             NOP
FB24: EA
FB25: BD 64 CO PREAD2
                             LDA
                                  PADDLO, X COUNT Y-REG EVERY
                            BPL
                                              12 USEC
FB28: 10 04
                                  RTS 2D
FB2A: C8
                            INY
                                  PREAD2
                                              EXIT AT 255 MAX
                            BNE
FB2B: D0 F8
FB2D: 88
                            DEY
FB2E: 60
                 RTS2D
                            RTS
FB2F: A9 00
                 INIT
                            LDA
                                  #$00
                                            CLR STATUS FOR DEBUG
                            STA
                                  STATUS
                                              SOFTWARE
FB31: 85 48
FB33: AD 56 C0
                             LDA
                                  LORES
FB36: AD 54 CO
                                            INIT VIDEO MODE
                                  LOWSCR
                            LDA
                                            SET FOR TEXT MODE
FB39: AD 51 CO SETTXT
                            LDA
                                  TXTSET
                                              FULL SCREEN WINDOW
FB3C: A9 00
                            LDA
                                  #$00
                            BEQ
                                  SETWND
FB3E: FO OB
FB40: AD 50 CO SETGR FB43: AD 53 CO
                                            SET FOR GRAPHICS MODE
                            LDA
                                  TXTCLR
                                              LOWER 4 LINES AS
                            LDA
                                  MIXSET
                                              TEXT WINDOW
FB46: 20 36 F8
                            JSR
                                  CLETOP
FB49: A9 14
                            LDA
                                  #$14
FB4B: 85 22
                 SETWND
                            STA
                                  WNDTOP
                                            SET FOR 40 COL WINDOW
FB4D: A9 00
                            LDA
                                  #$00
                                              TOP IN A-REG,
                            STA
                                  WNDLFT
                                              BTTM AT LINE 24
FB4F: 85 20
                            LDA
                                  #$28
FB51: A9
                            STA
                                  WNDWOTH
FB53: 85 21
FB55: A9 18
                            LDA
                                  #$18
FB57: 85 23
                            STA
                                  WNDBTM
                                              VTAP TO ROW 23
FB59: A9 17
                            LDA
                                  #$17
                                            VTABS TO ROW IN A-REG
                            STA
                                  CV
FB5B: 85 25
FB5D: 4C 22 FC
                 TABV
                            JMP
                                  VTAB
FB60: 20 A4 FB MULPM
                            JSR
                                            ABS VAL OF AC AUX
                                  MDI
                                            INDEX FOR 16 BITS
FB63: A0 10
                 MUL
                            LDY
                                  #$10
                                            ACX * AUX + XTND
FB65: A5 50
                 MUL2
                            LDA
                                  ACL
                                              TO AC, XTND
FB67: 4A
                            LSR
                                            IF NO CARRY,
FB68: 90 0C
                            BCC
                                  MUL4
                            CLC
                                            NO PARTIAL PROD.
FB6A: 18
                            LDX
                                  #SFE
FB6B: A2 FE
                                 XTNDL+2,X ADD MPLCND (AUX)
AUXL+2,X TO PARTIAL PROD
FB6D: B5 54
                 MUL3
                            LDA
FB6F: 75
                            ADC
FB71: 95 54
                            STA
                                  XTNDL+2,X
                                                  (XTND).
FB73: E8
FB74: D0 F7
                            INX
                            BNE
                                  MUL3
                            LDX
                                  #$03
                 MUL4
FB76: A2 03
FB78: 76
                 MUL5
                            DFB
                                  #$76
FB79: 50
                            DEB
                                  #$50
FR7A: CA
                            DEX
                            BPL
                                  MUL5
FP7B: 10 FP
FB7D: 88
                            DEY
FB7E: DO E5
                            BNE
                                  MUL2
FB80: 60
                            RTS
```

```
ARS VAL OF AC, AUX.
                             JSR
                                   MDI
FB81: 20 A4 FB DIVPM
                                             INDEX FOR 16 BITS
                                  #$10
FB84: A0 10
                  DIV
                             LDY
                             ASL
                                   ACL
                  DIV2
FB86: 06 50
                                   ACH
                             ROL
FB88: 26 51
                                  XTNDL
                                             YTMD/AUX
                             ROL
FB8A: 26 52
                                  HCINTX
                                               TO AC.
                             ROL
FB8C: 26 53
                             SEC
FB8E: 38
FB8F: A5 52
                             LDA
                                  XTNOL
                                             MOD TO KIND.
                             SEC
                                   AUXL
FB91: E5 54
                             TAX
FB93: AA
                             LDA
                                   ROMTX
FB94: A5 53
                                   HXIIA
                             SBC
FB96: E5
FB98: 90 06
                             BCC
                                   DIV3
FB9A: 86 52
                             STX
                                  XTNDL
                             STA
                                   XTNDH
FB9C: 85 53
                             INC
                                   ACL
FB9E: E6 50
                  DIV3
                             DEY
FBA0: 88
                             BNE
                                  DIV2
FBA1: DO E3
FBA3: 60
FBA4: A0 00
                             RTS
                                   #$00
                                             FBS VAL OF AC, AUX
                  MD1
                             LDY
                                               WITH RESULT SIGN
                                   SIGN
                             STY
FBA6: 84 2F
                                               IN LSB OF SIGN.
FBA8: A2 54
                             LDX
                                   #AIIXT.
                                   MD2
                             JSR
FBAA: 20 AF FE
FBAD: A2 50
                             LDX
                                   #ACL
                                   LOC1,X
                  MD2
                             LDA
                                             X SPECIFIES AC OR AUX
FBAF: B5 01
                             BPL
                                   MDRTS
FBB1: 10 0D
FBB3: 38
                             SEC
FBB4: 98
                  MD3
                             TYA
                                  LOC0,X
                                             COMPL SPECIFIED REG
FBB5: F5 00
                             SBC
                             STA
                                   LOC0,X
                                               IF NEG.
FBB7: 95 00
                             TYA
FBB9: 98
                                   LOC1,X
FBBA: F5 01
                             SBC
                             STA
FBBC: 95 01
FBBE: E6 2F
                                   LOC1,X
                             INC
                                   SIGN
                  MDRTS
FBC0: 60
                                             CALC BASE ADR IN BASL, H
                             PHA
FBC1: 48
                  BASCALC
                                               FOR GIVEN LINE NO.
                             LSR
FBC2: 4A
                                               0<=LINE NO.<=$17
                             AND
                                   #$03
FBC3: 29 03
                                             ARG=000ABCDE, GENERATE
FBC5: 09 04
FBC7: 85 29
                             ORA
                                   #$04
                                               BASH=000001CD
                             STA
                                   BASH
                                             AND
                             PLA
FBC9: 68
                             AND
                                   #$18
                                               PASL=EABAB000
FBCA: 29
                             BCC
                                   BSCLC2
FBCC: 90 02
                             ADC
                                   #$7F
FBCE: 69 7F
FBD0: 85 28
                  BSCLC2
                             STA
                                   BASL
FBD2: 0A
                             ASL
                             ASL
FBD3: 0A
FBD4: 05 28
                             ORA
                                   BASE
                             STA
                                   BASL
FBD6: 85
          28
                             RTS
FBD8: 60
                                             BELL CHAR? (CNTRL-G)
                                   #$87
                  BELL1
                             CMP
FBD9: C9 87
                                               NO, RETURN
FBDB: D0 12
                             BNE
                                  RTS 2B
                                             DELAY .01 SECONDS
                             LDA
                                   #$40
FBDD: A9 40
                             JSR
                                   WAIT
FBDF: 20 A8 FC
FRE2: A0 C0
                             LDY
                                   #SC0
                                             TOGGLE SPEAKER AT
                  BELL2
                             LDA
                                   #$0C
FBE4: A9 0C
                                               1 KHZ FOR .1 SEC.
                             JSR
                                   WAIT
FBE6: 20 A8 FC
FBE9: AD 30 CO
                             T.DA
                                   SPKR
FBEC: 88
                             DEY
                             BNE
                                  BELL2
FBED: DO F5
                  RTS28
                             RTS
FBEF: 60
                                             CURSER H INDEX TO Y-REG
                             LDY
                                   Cit
                  STOADV
FBF0: A4 24
                                   (BASL), Y STOR CHAR IN LINE
FBF2: 91 28
                             STA
                                             INCREMENT CURSER H INDEX
FBF4: E6 24
                  ADVANCE
                             INC
                                  CH
FBF6: A5 24
                             LDA
                                  CH
                                               (MOVE RIGHT)
                                             BEYOND WINDOW WIDTH?
YES 'P TO NEXT LINE
                             CMP
                                   WNDWDTH
FBF8: C5 21
                             BCS
                                   CR
FBFA: B0 66
                                             NO, RETURN
                  PTS3
                             RTS
FBFC: 60
                                             CONTROL CHAR?
NO, OUTPUT IT.
                  TUOGIV
                             CMP
                                   4540
FBFD: C9 A0
FBFF: B0 EF
                             BCS
                                   STOADV
                                             INVERSE VIDEO?
                             TAY
FC01: A8
                             3PL
                                   STOADV
                                               YES, OUTPUT IT.
FC02: 10 EC
                                             CR?
                             CMP
FC04: C9 8D
                                   #$80
                                               YES.
FC06: F0 5A
                             BEO
                                  CR
                                             LINE FEED?
FC08: C9 8A
FC0A: F0 5A
                             CMP
                                   #$8A
                             BEQ
                                               IF SO, DO IT.
                             CMP
                                   #$$8
                                             BACK SPACE? (CNTRL-H)
FCOC: C9 88
                                               NO, CHECK FOR BELL.
FCOE: DO C9
                             BNE
                                  BELL1
                                             DECREMENT CURSER H INDEX
FC10: C6 24
                  es
                             DEC
                                   CH
                                             IF POS, OK. ELSE MOVE UP
FC12: 10 E8
                             BPL
                                   RTS 3
                                             SET CH TO WNDWDTH-1
                             LDA
                                   MNDGDTH
FC14: A5 21
FC16: 85 24
FC18: C6 24
                             STA
                                  CH
                                             (RIGHTMOST SCREEN POS)
                                  CH
                             DEC
                                             CURSER V INDEX
                  UP
                             LDA
                                   WNDTOP
FC1A: A5 22
FC1C: C5 25
                             CMP
                                  CV
```

```
FC1E: B0 OB
                             BCS
                                   RTS 4
                                             IF TOP LINE THEN PETURN
 FC20: C6 25
                             DEC
                                   CV
                                             DECR CURSER V-INDEX
 FC22: A5 25
                  VTAB
                                   СV
                                             GET CURSER V-INDEX
                             LDA
 FC24: 20 C1 FB
                  VTABZ
                             JSR
                                   PASCALC
                                             CENERATE BASE ADDR
                                   WNDLFT
                                             ADD WINDOW LEFT INDEX
FC27: 65 20
                             ADC
                                             TO BAST.
 FC29: 85 28
                             STA
                                   BASL
                  RTS4
FC2B: 60
                             PTS
 FC2C: 49 CO
                  ESC1
                             EOR
                                   #$C0
                                             ESC?
 FC2E: F0 28
                             BEO
                                   HOME
                                               IF SO, DO HOME AND CLEAR
FC30: 69 FD
                             ADC
                                   #SFD
                                             ESC-A OR B CHECK
                                               A, ADVANCE
B, BACKSPACE
                             BCC
FC32: 90 C0
                                   ADVANCE
FC34: FO DA
                             BEC
                                   BS
                                             ESC-C OR D CHECK
FC36: 69 FD
                             ADC
                                   #SFD
FC38: 90
                             3CC
                                               C, DOWN
          2C
                                   LF
FC3A: FO DE
                             BEO
                                               D, GO UP
FC3C: 69 FD
                             ADC
                                   #$FD
                                             ESC-E OR F CHECK
                                               E, CLEAR TO END OF LINE
FC3E: 90 5C
                             BCC
                                  CLREOL
                                            NOT F, RETURN
CURSOR H TO Y INDEX
FC40: D0 E9
                             BNE
                                  RTS 4
                  CLREOP
FC42: A4 24
                             LDY
                                  CH
                                             CURSOR V TO A-REGISTER
FC44: A5 25
                             LDA
                                  CV
                                             SAVE CURRENT LINE ON STK
FC46: 48
                  CLEOP1
                             PHA
                                             CALC BASE ADDRESS
FC47: 20 24 FC
                             JSR
                                   VTAB7
                                            CLEAR TO EOL, SET CARRY
CLEAR FOOM H INDEX=0 FOR REST
FC4A: 20 9E FC
                             JSR
                                  CLEOLZ
FC4D: A0 00
                             LDY
                                   #$00
                                             INCREMENT CURRENT LINE
FC4F: 68
                             PLA
FC50: 69 00
                             ADC
                                   #$00
                                             (CARRY IS SET)
FC52: C5 23
                             CMP
                                   WNDSTM
                                             DONE TO BOTTOM OF WINDOW?
FC54: 90 F0
                             BCC
                                  CLEOP1
                                               NO, KEEP CLEAPING LINES
                                            YES, TAB TO CUPRENT LINE INIT CURSOR V
FC56: B0 CA
                             PCS
                                  VTAR
                  HOME
FC58: A5 22
                             LDA
                                  MNDTOP
FC5A: 85 25
                             STA
                                  CV
                                               AND H-INDICES
FC5C: A0 00
                             LDY
                                  #$00
FC5E: 84 24
                             STY
                                  CH
                                            THEN CLEAR TO END OF PAGE
                                  CLEOP1
FC60: F0 E4
                             BEO
FC62: A9 00
                  CR
                             LDA
                                  #$00
                                            CURSOR TO LEFT OF INDEX
                                             (PET CURSOR H=0)
FC64: 85 24
                             STA
                                  CH
FC66: E6 25
                                  CV
                                            INCR CURSOP V(DOWN 1 LINE)
                  LF
                             INC
FC68: A5
                             LDA
                                  CV
FC6A: C5 23
                             CMP
                                  MTRGNE
                                            OFF SCREFM?
FC6C: 90 B6
                             BCC
                                  VTABZ
                                              NO, SET BASE ADDR
                                            DECR CURSOR V (BACK TO BOTTOM LINE)
FC6E: C6 25
                             DEC
                                  CV
FC70: A5 22
                  SCROLL
                             LDA
                                  WNDTOP
                                            START AT TOP OF SCRL WNDW
                             PHA
FC72: 48
FC73: 20 24 FC
                             JSR
                                  VTARZ
                                            GENERATE BASE ADDRESS
FC76: A5 28
                  SCRL1
                             LDA
                                  BASL
                                            COPY BASL, H
FC78: 85 2A
                             STA
                                  BAS2L
                                              TO BAS2L, H
FC7A: A5 29
                             LDA
                                  BASH
FC7C: 85 2B
                             STA
                                  BAS2H
FC7E: A4 21
                                  WNDWDTH INIT Y TO RIGHTMOST INDEX
                             LDY
FC80: 88
                             DEY
                                            OF SCROLLING WINDOW
FC81: 68
                             PLA
FC82: 69 01
                             ADC
                                  #501
                                            INCR LINE NUMBER
                                  MTSQNW
                                            DONE?
FC84: C5
          23
                             CMP
FC86: B0 0D
                             BCS
                                  SCRL3
                                              YES, FINISH
FC88: 48
                             PHA
                                            FORM BASL, H (BASE ADDR)
FC89: 20 24 FC
                             JSP.
                                  VTABZ
                                  (BASL), Y MOVE A CHR UP ON LINE
                 SCRL2
FC8C: B1 28
                             LDA
FC8E: 91 2A
                             STA
                                  (BAS2L),Y
FC90: 88
                             DEY
                                            NEXT CHAR OF LINE
FC91: 10 F9
FC93: 30 E1
                             BPL
                                  SCRL2
                            BMI
                                  SCRLI
                                            NEXT LINE
                                            CLEAR BOTTOM LINE
FC95: A0 00
                 SCRL3
                             LDY
                                  #$00
FC97: 20 9E FC
                             JSR
                                  CLEOLZ
                                            GET BASE ADDR FOR BOTTOM LINE
FC9A: B0 86
                            3CS
                                  VTAR
                                            CARRY IS SET
FC9C: A4 24
                 CLREOL
                             LDY
                                  CH
                                            CURSOR H INDEX
FC9E: A9 A0
                                  # $A0
                 CLEOLZ
                             LDA
FCA0: 91 28
                 CLEOL2
                            STA
                                  (RASL), Y STORE BLANKS FROM 'HERE'
FCA2: C8
                            INY
                                            TO END OF LINES (WNDWDTH)
FCA3: C4 21
FCA5: 90 F9
                                  RECEDEN
                            CPY
                            BCC
                                  CLEOL2
FCA7: 60
                            RTS
FCA8: 38
                 WAIT
                            SEC
FCA9: 48
                 WAIT2
                            PHA
FCAA: E9 01
                 WAITS
                            SEC
                                  #$01
                                            1.0204 USEC
FCAC: DO FC
                            BNE
                                  WAIT3
FCAE: 68
                                            (13+2712*A+512*A*A)
                            PLA
FCAF: E9
                            SBC
                                  #S01
FCB1: D0 F6
                            BNE
                                  WAIT2
                            PTS
FCB3: 60
FCB4: E6 42
                 NXTA4
                            INC
                                            INCR 2-PYTE A4
                                  A4L
FCB6: D0 02
                            PME
                                  NXTA1
                                              AND A1
FCB8: E6 43
                            INC
                                 A 4 H
                            LDA
                                  AlL
FCBA: A5 3C
                 NXTA1
                                            INCP 2-BYTE A1.
FCBC: C5 3E
FCBE: A5 3D
                            CMP
                                  A2L
                            LDA
                                  AlH
                                              AND COMPARE TO A2
```

```
FCCO: E5 3F
                              SBC
                                    A2h
 FCC2: E6 3C
                              INC
                                                (CARPY SET IF >=)
                                    ALL
 FCC4: D0 02
                              BNE
                                    RTS4B
 FCC6: E6 3D
                              INC
                                    A1H
                   RTS48
 FCC8: 60
                              RTS
 FCC9: A0 48
                                    #$42
                                              WRITE A*256 'LONG 1'
                   HEADR
                              LDY
 FCCB: 20 DB FC
                              JSR
                                    ZERDLY
                                                HALF CYCLES
 FCCE: DO F9
                              SNE
                                    HEADP
                                                (650 USEC EACH )
 FCD0: 69 FE
                              ADC
                                    #SFE
 FCD2: P0 F5
                              BCS
                                              THEN A 'SHORT O'
                                   HEADR
 FCD4: A0 21
                              LDY
                                    #$21
                                                (400 USEC)
 FCD6: 20 DB FC
                   WRBIT
                                    ZERDLY
                                              WRITE TWO HALF CYCLES
                              JSR
                                              OF 250 USEC ('0')
OR 500 USEC ('0')
 FCD9: C8
                              INY
 FCDA: C8
                              TNY
 FCDB: 88
                   ZERDLY
                              DEY
 FCDC: D0 FD
                              BNE
                                    ZERDLY
 FCDE: 90 05
                              BCC
                                   WRTAPE
                                             Y IS COUNT FOR
 FCE0: A0 32
                              LDY
                                    #$32
                                                TIMING LOOP
 FCE2: 88
                   ONEDLY
                              DEY
 FCE3: DO FD
                              ENE
                                   ONEDLY
 FCE5: AC 20 CO WRTAPE
                              LDY
                                   TAPEOUT
 FCE8: A0 2C
                              LDY
                                   #$2C
 FCEA: CA
                              DEX
 FCEB: 60
                              RTS
 FCEC: A2 08
FCEE: 48
                                              8 BITS TO READ
                   RDBYTE
                              LDX
                                   #$08
                                             READ TWO TRANSITIONS
                   RDBYT 2
                              PHA
 FCEF: 20 FA FC
                              JSP
                                   RD2BIT
                                                (FIND EDGE)
 FCF2: 68
                              PLA
                                             NEXT BIT
 FCF3: 2A
                              ROL
 FCF4: A0 3A
                                   #$3A
                              LDY
                                             COUNT FOR SAMPLES
 FCF6: CA
FCF7: D0 F5
                              DEX
                              BNE
                                   RDBYT2
 FCF9: 60
                              RTS
 FCFA: 20 FD FC FCFD: 88
                   RD2BIT
                              JSR
                                   RDSIT
                   RDPII
                              DEY
                                             DECR Y UNTIL
 FCFE: AD 60 CO
                                   TAPEIN
                                               TAPE TRANSITION
                              LDA
 FD01: 45 2F
                              EOR
                                   LASPIN
 FD03: 10 F8
                              SPL
                                   RDBIT
 FD05: 45 2F
                              EOR
                                   LASTIN
 FD07: 85 2F
                              STA
                                   LASTIN
 FD09: C0 80
                             CPY
                                   #S80
                                             SET CARRY ON Y-REG.
 FD0B: 60
                              RTS
 FD0C: A4 24
                  RDKEY
                             LDY
 FD0E: B1 28
                              LDA.
                                   (PASL), Y SET SCREEN TO FLASH
 FD10: 48
                             PHA
 FD11: 29 3F
                             AND
                                   #$3F
 FD13: 09 40
                             ORA
                                   #$40
FD15: 91 28
                             STA
                                   (FASL),Y
FD17: 68
                             PLA
 FD18: 6C 38 00
                                   (KSWL)
                                             GO TO USER KEY-IN
                             JMP
 FD1P: E6 4E
                  KEYIN
                             INC
                                   PNDL
                                             INCR RND NUMBER
FD1D: D0 02
                             BNE
                                   KEYIM2
FD1F: E6 4F
                             INC
                                   RNDH
FD21: 2C 00 C0
                 KEYIN2
                                   KBD
                                             KEY DOWN?
                             BIT
FD24: 10 F5
FD26: 91 28
                             BPL
                                   KEYIM
                                              LOOP
                                   (BASL), Y REPLACE FLASHING SCREEN
                             STA
FD28: AD 00 C0
                             LDA
                                   KBD
                                             CET KEYCODE
FD2B: 2C 10 CO
                             вит
                                   KEDSTER
                                            CLR KEY STROBE
FD2E: 60
                             RTS
FD2F: 20 OC FD
                  ESC
                             JSR
                                  PDKEY
                                             GET KEYCODE
FD32: 20 2C FC FD35: 20 0C FD
                             JSR
                                              HANDLE ESC FUNC.
                                  ESC1
                  PDCHAR
                             JSP
                                  ROKEY
                                             READ KEY
FD38: C9 9B
                             CMP
                                  #$95
                                             ESC?
FD3A: F0 F3
                             BEO
                                              YES, DON'T RETURN
                                  FSC
FD3C: 60
FD3D: A5 32
                             RTS
                  NOTER
                                  INVFLG
                             LDA
FD3F: 48
                             PHA
FD40: A9 FF
                                   #SFF
                             LDA
FD42: 85 32
                                  INVFLG
                             STA
                                            ECHO USER LINE
FD44: BD 00 02
                             LDA
                                  IN.X
                                              NON INVERSE
FD47: 20 ED FD
                             JSR
                                  COUT
FD4A: 68
                             PLA
FD4B: 85 32
FD4D: BD 00 02
                             STA
                                  INVFLG
                             LDA
                                  IN,X
FD50: C9 88
                                            CHECK FOR EDIT KEYS
                             CMP
                                  #$88
FD52: F0 1D
                                              BS, CTRL-X.
                             PEC
                                  BCKSPC
FD54: C9 98
                             CMP
                                  #$98
FD56: FO 0A
                                  CANCEL
                             BEO
FD58: E0 F8
                                  #$F8
                                            MARGIN?
                             CPX
FD5A: 90 03
                                  NOTCR1
                             BCC
FD5C: 20 3A FF
                            JSR
                                  BELL
                                              YES, SOUND PELL
FD5F: E8
                 NOTCR1
                                            ADVANCE INPUT INDEX
                            TNX
FD60: D0 13
                                  NXTCHAR
                            BNE
FD62: A9 DC
                 CANCEL
                            LDA
                                  #$DC
                                            BACKSLASH AFTER CANCELLED LINE
FD64: 20 ED FD
                                  COUT
                            JSR
```

```
FD67: 20 8E FD GETLNZ
                              JSR
                                   CROUT
                                             OUTPUT CF
FD6A: A5 33
                  GETLN
                              LDA
                                   PROMPT
FD6C: 20 ED FD
FD6F: A2 01
                                             OUTPUT PROMPT CHAP
                              JSR
                                   COUT
                                             INIT INPUT INDEX
WILL PACKSPACE TO 0
                              LDX
                                   #S01
FD71: 8A
                  BCKSPC
                              TXA
 FD72: F0 F3
                              BEQ
                                   GETLNZ
FD74: CA
                              DEX
FD75: 20 35 FD
                  NXTCJAF
                              JSP
                                   PDCHAR
 FD78: C9
                              CMP
                                   #PICK
                                             USE SCREEN CHAR
 FD7A: D0 02
                              BNE
                                   CAPTST
                                               FOR CTRL-U
 FD7C: B1 28
                              LDA
                                   (BASL),Y
FD7E: C9 E0
                  CAPTST
                              CMP
                                   #$E0
 FD80: 90 02
                              BCC
                                   ADDINP
                                             CONVERT TO CAPS
FD82: 29 DF
                              AND
                                   #$DF
FD84: 9D 00 02
                  ADDINP
                             STA
                                             ADD TO INPUT BUF
                                   IN,X
 FD87: C9 8D
                              CMP
                                   #$8D
FD89: D0 B2
                             BNE
                                   NOTCE
FD8B: 20 9C FC
                             JSR
                                   CEREOL
                                             CLR TO EOL IF CR
FD8E: A9 8D
                  CROUT
                             LDA
                                   #$8D
 FD90: D0 5B
                             BNE
                                   COUT
 FD92: A4 3D
                             T.DY
                                   AIH
                                             PRINT CR.AL IN HEX
                  PPA1
 FD94: A6
          3C
                             LDX
                                   A 1 I.
 FD96: 20 8E FD
                  PRYX2
                                   CROUT
                             JSR
 FD99: 20 40 F9
                             JSR
                                   PR/1TAX
 FD9C: A0 00
                             LDY
                                   #$00
 FD9E: A9 AD
                             LDA
                                   #$AD
                                             PRIUT '-'
FDAO: 4C ED FD
                             JMP
                                   COUT
 FDA3: A5 3C
                  XAM8
                             LDA
                                   AlL
                                   #$07
                                             SET TO FINISH AT
 FDA5: 09 07
                             ORA
 FDA7: 85 3E
                             STA
                                   A2L
                                               MOD 8=7
 FDA9: A5
          3D
                             LDA
                                   A1H
FDAB: 85 3F
                             STA
                                   A2H
FDAD: A5 3C
                  MODSCHK
                             LDA
                                   A 1 L
FDAF: 29 07
                             AND
                                   #$07
FDB1: D0 03
                             BNE
                                   DATAOUT
FDB3: 20 92 FD
                  XAM
                             JSR
                                   PRA1
                  DATAOUT
FDB6: A9 A0
                             LDA
                                   #$A0
FDB8: 20 ED FD
                                             OUTPUT BLANK
                             JSR
                                   COUT
FDBB: B1 3C
                             LDA
                                   (A1L), Y
                                             OUTPUT BYTE IN HEX
FDBD: 20 DA FD
                             JSR
                                   PRBYTE
FDC0: 20 BA FC
                             JSR
                                   NXTAl
FDC3: 90 E8 FDC5: 60
                             BCC
                                             CHECK IF TIME TO,
                                   MODROHX
                  RTS4C
                                             PRINT ADDR
                             RTS
FDC6: 4A
                             LSR
                                             DETERMINE IF MON
                  XAMPM
                                   Α
FDC7: 90 EA FDC9: 4A
                             BCC
                                   XAM
                                               MODE IS XAM
                             LSR
                                   Α
                                               ADD, OR SUB
FDCA: 4A
                             LSR
FDCB: A5 3E
                             LDA
                                  421
FDCD: 90 02
                             BCC
                                  ADD
                                   #SFF
                                             SUB: FORM 2'S COMPLEMENT
FDCF: 49 FF
                             EOR
FDD1: 65 3C
                             ADC
                  ADD
                                  AlL
FDD3: 48
                             PHA
FDD4: A9 BD
                                   #$3D
                             LDA
                                            PRINT '=', THEN RESULT
FDD6: 20 ED FD
                             JSR
                                  COUT
FDD9: 68
                             PLA
                  PRBYTE
                                            TRINT BYTE AS 2 HEX
FDDA: 48
                             PHA
FDDB: 4A
                             LSR
                                               DIGITS, DESTROYS A-REG
FDDC: 4A
                             LSR
                                  Α
FDDD: 4A
                             LSP
                                  Ą
FDDE: 4A
FDDF: 20 E5 FD
                             LSR
                                  PRHEXZ
                             JSR
                             PLA
FDE2: 68
FDE3: 29 OF
                 PRHEX
                             AND
                                  #$0F
                                            PRINT HEX DIG IN A-REG
FDE5: 09 B0
                             ORA
                                  #$B0
                                               LSB'S
                  PRHEXZ
FDE7: C9 BA
                             CMP
                                  #$BA
FDE9: 90 02
                             BCC
                                  COUT
FDEB: 69 06
                             ADC
                                  #$06
FDED: 6C 36 00 COUT
                                            VECTOR TO USER OUTPUT ROUTINE
                             JMP
                                   (CSWL)
FDF0: C9 A0
                 COUTI
                             CMP
                                  #$A0
FDF2: 90 02
                                  COUTZ
                                            DON'T OUTPUT CTRL'S INVERSE
                             BCC
                                            MASK WITH INVERSE FLAG
FDF4: 25 32
                            AND
                                  INVFLG
                                            SAV Y-REG
SAV A-REG
FDF6: 84 35
                 COUTZ
                            STY
                                  YSAV1
                             PHA
FDF8: 48
                                  VIDOUT
                                            OUTPUT A-REG AS ASCII
FDF9: 20 FD FB
                            JSR
FDFC: 68
                                            RESTORE A-REG
                            PLA
FDFD: A4 35
                            LDY
                                  YSAV1
                                              AND Y-REG
FDFF: 60
                            RTS
                                            THEN RETURN
FE00: C6 34
                 BLl
                            DEC
                                  YSAV
FE02: F0 9F
                                  XAM8
                            BEO
                                            BLANK TO MON
FE04: CA
                 BLANK
                            DEX
FE05: D0 16
                            BNE
                                  SETMDZ
                                            AFTER BLANK
                                            DATA STORE MODE?
FE07: C9 BA
                            CMP
                                  #$BA
                                              NO, XAM, ADD OR SUB
FE09: DO BB
                            BNE
                                  XAMPM
                                            KEEP IN STORE MODE
FEOB: 85 31
FEOD: A5 3E
                 STOR
                            STA
                                  MODE
                            LDA
                                  A2L
```

```
(A3L), Y STORE AS LOW BYTE AS (A3)
FEOF: 91 40
                            STA
FE11: E6 40
                             INC
                                  A3L
FE13: D0 02
                             BNE
                                  RTS 5
                                            INCR 43. RETURN
FE15: E6 41
                             INC
                                  A3H
FE17: 60
                             RTS
                  RTS 5
                                            SAVE CONVERTED ':', '+',
FE18: A4 34
                  SETMODE
                             LDY
                                  YSAV
FE1A: B9 FF 01
                                  IN-1,Y
                                              '-', '.' AS MODE.
                             LDA
FE1D: 85 31
                                  MODE
                  SETMDZ
                             STA
FE1F: 60
                             RTS
FE20: A2 01
                                  #SO1
                  Lľ
                             LDX
                            LDA
FE22: B5 3E
                 LT2
                                  A2L,X
                                            COPY A2 (2 BYTES) TO
FE24: 95 42
                             STA
                                  A4L,X
                                              A4 AND A5
FE26: 95 44
                             STA
                                  A5L,X
FE28: CA
FE29: 10 F7
                             DEX
                                  LT2
                             BPL
FE2B: 60
                             RTS
                 MOVE
FE2C: B1 3C
                             LDA
                                  (A1L),Y
                                            MOVE (Al TO A2) TO
                                             (A4)
FE2E: 91 42
                             STA
                                  (A4L),Y
FE30: 20 B4 FC
                                  NXTA4
                             JSR
FE33: 90 F7
                             BCC
                                  MOVE
FE35: 60
                             RTS
                                  (AlL), Y VERIFY (A1 TO A2) WITH
FE36: B1 3C
                 VFY
                            LDA
FE38: D1 42
                            CMP
                                  (A4L),Y
                                              (A4)
FE3A: FO 1C
                             BEQ
                                  VFYOK
FE3C: 20 92 FD
                            JSR
                                  PRA1
FE3F: B1 3C
                            LDA
                                  (AlL),Y
FE41: 20 DA FD
                                  PRRYTE
                             JSR
FE44: A9 A0
                                  #SAG
                            LDA
FE46: 20 ED FD
                            JSR
                                  COUT
FE49: A9 A8
                             LDA
                                  #SA8
FE4B: 20 ED FD
                             JSR
                                  COUT
FE4E: B1 42
                            LDA
                                  (A4L).Y
FE50: 20 DA FD
                             JSF
                                  PREYTE
FE53: A9 A9
                            LDA
                                  #$A9
FE55: 20 ED FD FE58: 20 B4 FC
                            JSR
                                  COUT
                 VEYOK
                            JSR
                                  NXTA4
FE5B: 90 D9
                            BCC
                                  VEY
FE5D: 60
                            RTS
FE5E: 20 75 FE
                                            TOVE A1 (2 BYTES) TO
                LIST
                            JSR
                                  AlPC
FE61: A9 14
                                             PC IF SPEC'D AND
                            LDA
                                  #$14
FE63: 48
                 LIST2
                            PHA
                                            DISSEMBLE 20 INSTRS
FE64: 20 D0 F8
                            JSR
                                  INSTESP
FE67: 20 53 F9
                            JSP
                                  PCADJ
                                            ADJUST PC EACH INSTR
FE6A: 85 3A
FE6C: 84 3B
                            STA
                                 PCI.
                            STY
                                  PCH
FE6E: 68
                            PLA
FE6F: 38
FE70: E9 01
                            SEC
                            SBC
                                  #$01
                                           NEXT OF 20 INSTRS
FE72: DO EF
                            BNE
                                 LIST2
FE74: 60
                            RTS
FE75: 8A
                                           IF USER SPEC'D ADR
                 Alpc
                            TXA
FE76: FO 07
                            EEC
                                 Alperts
                                             COPY FROM A1 TO PC
FE78: B5 3C
                 AlPCLP
                            LDA
                                 AlL,X
FE7A: 95 3A
                            STA
                                 PCL,X
FE7C: CA
                            DEX
FE7D: 10 F9
                            FPL
                                 AlPCLP
FE7F: 60
                 Alperts
                            RTS
FE80: A0 3F
                 SETINV
                            LDY
                                 #$3F
                                           SET FOR INVERSE VID
FE82: D0 02
                            BNE
                                 SETIFLG
                                             VIA COUT1
FE84: A0 FF
                 SETNORM
                                           SET FOR NORMAL VID
                            LDY
                                 #SFF
FE86: 84 32
                 SETIFLG
                            STY
                                 INVFLG
FE88: 60
                            RTS
FE89: A9 00
                 SETKBD
                            LDA
                                 #$00
                                           SIMULATE PORT #0 INPUT
FE8B: 85 3E
                 INPORT
                                 A2L
                                             SPECIFIED (KEYIN ROUTINE)
                            STA
FE8D: A2 38
                 INPRT
                            LDX
                                 #KSWL
FE8F: A0 1B
                            LDY
                                 #KEYIN
FE91: D0 08
                            BNE
                                 IOPRT
FE93: A9 00
                 SETVID
                            LDA
                                           SIMULATE PORT #0 OUTPUT
                                 #$00
FE95: 85 3E
                                             SPECIFIED (COUT1 POUTINE)
                 OUTPORT
                            STA
                                 A2L
FE97: A2 36
                 OUTPRT
                            LDX
                                 #CSWL
FE99: A0 F0
                            LDY
                                 #COUT1
                                           SET RAM IN/OUT VECTORS
                 TOPRT
FE9B: A5 3E
                            LDA
                                 A 2 L
FE9D: 29 OF
                            AND
                                 #$0F
FE9F: F0 06
                            SEC
                                 IOPRT1
                            ORA
FEA1: 09 CO
                                 #IOADR/256
FEA3: A0 00
                            LDY
                                  #$00
FEA5: F0 02
                            PEQ
                                 ICPRT2
                 IOPRT1
                                 #COUT1/256
                            LDA
FEA7: A9 FD
FEA9: 94 00
                 IOPRT2
                            STY
                                 LOC0,X
FEAB: 95 01
                            STA
                                 LOC1,X
FEAD: 60
                            PTS
FEAE: EA
                            NOP
                            NOP
FEAF: EA
FEBO: 4C 00 EO XPASIC
                            JMP
                                 BASIC
                                           TO PASIC WITH SCRATCH
FEB3: 4C 03 EU BASCONT
                                 BASIC2
                                           CONTINUE BASIC
                            JMP
```

```
FEB6: 20 75 FE
                 GO
                              JSR
                                  Alpc
                                             ADR TO PC IF SPEC'D
 FEB9: 20 3F FF
                              JSR
                                   RESTOPE
                                             RESTORE META PEGS
 FEBC: 6C
           3A 00
                              JMP
                                   (PCL)
                                             GO TO USER SUBR
 FEBF: 4C D7 FA
                   REGZ
                              JMP
                                   REGDSP
                                             TO REG DISPLAY
 FEC2: C6 34
FEC4: 20 75 FE
                  TRACE
                              DEC
                                   YSAV
                                             ADR TO PC IF SPEC'D
                  STEPZ
                              JSP
                                   AlPC
 FEC7: 4C 43 FA
                              JMP
                                   STEP
                                             TAKE ONE STEP
 FECA: 4C F8 03
                  USP
                              JMP
                                   USRADR
                                             TO USP SUBR AT USRADR
 FECD: A9 40
                  WRITE
                              LDA
                                   #$40
 FECF: 20 C9 FC
                             JSR
                                   HEADR
                                             WRITE 10-SEC HEADER
 FED2: A0 27
                             LDY
                                   #$27
                  WR I
 FED4: A2 00
                             LDX
                                   #$00
 FED6: 41 3C
                             EOP
                                   (AlL,X)
 FED8: 48
                             PHA
 FED9: Al 3C
                             LDA
                                   (AlL,X)
 FEDB: 20 ED FE
                             JSR
                                   WRRYTE
 FEDE: 20 BA FC
                             JSR.
                                   NXTAL
 FEE1: A0 1D
                             LDY
                                   #$1D
 FEE3: 68
                             FLA
 FEE4: 90 EE
                             BCC
                                   WRI
 FEE6: A0 22
                             LDY
                                   #$22
 FEE8: 20 ED FE
                             JSR
                                   MERYTE
 FEEB: FO 40
                             BEC
                                   BELL
 FEED: A2 10
                  WRBYTE
                             LDX
                                   #$10
 FEEF: OA
                  WRBYT2
                             ASL
 FEF0: 20 D6 FC
                             JSR
                                   WRBIT
 FEF3: DO FA
                             BNE
                                   WRBYT2
 FEF5: 60
                             RTS
 FEF6: 20 00 FE CRMON FEF9: 68
                             JSR
                                             HANDLE CR AS PLANK
                                   BLL
                                             THEN POP STACK
                             PI.A
 FEFA: 68
                             PLA
                                             AND RTN TO MON
 FEFB: DO 6C
                             BNE
                                   MONZ
 FEFD: 20 FA FC
                  READ
                             JSR
                                   RD2BIT
                                             FIND TAPEIN EDGE
 FF00: A9 16
                             LDA
                                   #$16
 FF02: 20 C9
              FC
                                             DHIAY 3.5 SECONDS
                             JSR
                                  HEADR
                                             INIT CHKSUM=$FF
 FF05: 85 2E
                             STA
                                   CHKSUM
FF07: 20 FA FC
                             JSR
                                  RD2BIT
                                            FIND TAPEIN EDGE
 FF0A: A0 24
                                             LOOK FOR SYNC PIT
                  RD2
                             LDY
                                   #$24
FF0C: 20 FD
              FC
                                               (SHORT 0)
                             JSR
                                  RDBIT
FFOF: BO F9
                                               LOOP UNTIL FOUND
                             BCS
                                  RD2
                                            SKIP SECOND SYNC H-CYCLE
FF11: 20 FD FC
                             JSR
                                  RUBIT
                                            INDEX FOR 0/1 TEST
FF14: A0 3B
                             LDY
                                  #$3B
              FC
FF16: 20 EC
                  RD3
                             JSR
                                  RDBYTE
                                            READ A BYTE
FF19: 81 3C
                             STA
                                   (AlL,X)
                                            STORE AT (A1)
FF1B: 45
                             EOR
                                  CHKSUM
FF1D: 85 2E
                                            UPDATE RUNNING CHKSUM
                             STA
                                  CHKSUM
FF1F: 20 BA FC FF22: A0 35
                                            INCR A1, COMPARE TO A2
                             JSR
                                  NXTA1
                             LDY
                                  #$35
                                            COMPENSATE 0/1 INDEX
FF24: 90 F0
                             PCC
                                  RD3
                                            LOOP UNTIL DONE
                                  RDDYTE
FF26: 20 EC FC
                             JSR
                                            READ CHKSUM BYTE
FF29: C5 2E
                             CMP
                                  CHKSUM
FF2B: F0 0D
                             BEO
                                  BELL
                                            GOOD, SOUND BELL AND RETURN
FF2D: A9 C5
FF2F: 20 ED FD
                  PRERR
                             LDA
                                  #SC5
                                            PRINT "ERR", THEN BELL
                             JSR
                                  COUT
FF32: A9 D2
                             LDA
                                  #SD2
FF34: 20 ED FD FF37: 20 ED FD
                             JSR
                                  COUT
                             JSR
                                  COUT
FF3A: A9 87
                 BELL
                             LDA
                                            OUTPUT BELL AND RETURN
                                  #S87
FF3C: 4C ED FD
                             JAP
                                  COUT
FF3F: A5 48
                 RESTORE
                                  STATUS
                                            RESTORE 6502 REG CONTENTS
                             LDA
FF41: 48
                             PHA
                                            USED BY DERUG SOFTWAPE
FF42: A5 45
                             LOA
                                  ACC
FF44: A6 46
                  RESTR1
                            LDX
                                  XREG
FF46: A4 47
                            LDY
                                  YREG
FF48: 28
                            PLP
FF49: 60
                            RTS
FF4A: 85 45
                                            SAVE 6502 REG CONTENTS
                 SAVE
                            STA
                                  ACC
FF4C: 86 46
                 SAVI
                            STX
                                  XREG
FF4E: 84 47
                            STY
                                  YREG
FF50: 08
                            PHP
FF51: 68
FF52: 85
                            PI.A
         48
                            STA
                                  STATUS
FF54: BA
                            TSX
FF55: 86 49
                            STX
                                  SPNT
FF57: D8
                            CLO
FF58: 60
                            PTS
FF59: 20 84 FE
                                           SET SCREEN TODE
                 PESET
                            JER
                                 SETNORM
FF5C: 20 2F FB
                                             AND INIT KBD/SCREEN
                            JSR
                                  INIT
FF5F: 20 93 FE
                            JSR
                                 SETVID
                                              AS I/O DEV'S
FF62: 20 89 FE
                            JSR
                                  SETKBD
FF65: D8
                 MON
                            CLD
                                            MUST SET HEX MODE!
FF66: 20 3A FF
                            JSR
                                 BELL
FF69: A9 AA
                 MONZ
                            LDA
                                  #SAA
                                            '*' PROMPT FOR MON
FF6B: 85 33
                                  PROMPT
                            STA
FF6D: 20 67 FD
                            JSR
                                 GETLNZ
                                           READ A LINE
```

```
FF70: 20 C7 FF
FF73: 20 A7 FF
                              JSR
                                    ZMODE
                                              CLEAR MON MODE, SCAN IDX
                  NXTITM
                                    GETNUM
                                              GET ITEM, NON-HEX
                              JSR
FF76: 84 34
                                                CHAR IN A-REG
                              STY
                                    YSAV
                                                 X-REG=0 IF NO HEX INPUT
FF78: A0 17
                              LDY
                                    #$17
FF7A: 88
FF7B: 30 E8
                   CHRSRCH
                              DEY
                                    MON
                                              NOT FOUND, GO TO MON
                              BMI
                              CMP
                                    CHRTBL,Y FIND CMND CHAR IN TEL
FF7D: D9 CC FF
                                    CHRSRCH
FF80: D0 F8
                              BNE
                                              FOUND, CALL CORRESPONDING
FF82: 20 BE FF
                              JSR
                                    TOSUB
FF85: A4 34
FF87: 4C 73 FF
                              LDY
                                                SUBROUTINE
                                    YSAV
                                    NXTITM
                              JMP.
                              LDX
FF8A: A2 03
                   DIC
                                    #$03
                              ASL
FF8C: OA
FF8D: 0A
                              ASL
                                              GOT HEX DIG,
FF8E: OA
                              ASL
                                    A
                                                SHIFT INTO A2
FF8F: 0A
                              ASL
                                    Ą
                  NXTEIT
FF90: 0A
                              ASL
FF91: 26 3E
                              ROL
                                    A2L
FF93: 26 3F
                              POL
                                    A2H
                                              LEAVE X=SFF IF DIG
FF95: CA
                              DEX
FF96: 10 F8
                                    NXTBIT
                              BPL
FF98: A5 31
FF9A: D0 06
                  NXTEAS
                              LDA
                                    MODE
                                              IF MODE IS ZERO
                                    NXTES2
                              PNE
FF9C: B5 3F
                              LDA
                                   A2H,X
                                                THEN COPY A2 TO
FF9E: 95 3D
FFAO: 95 41
                              STA
                                                A1 AND A3
                                    AlP,X
                              STA
                                    ЛЗН, X
                  NXTBS2
FFA2: E8
                              INX
FFA3: F0 F3
                              BEC
                                    NXTRAS
FFA5: D0 06
                              BNE
                                    NXTCHR
FFA7: A2 00
                  GETNUM
                              \mathbf{L}\mathbf{D}\mathbf{X}
                                    #$0C
                                              CLEAP A2
FFA9: 86 3E
                              STX
                                    A2L
FFAB: 86 3F
                              STX
                                    4.2 F
FFAD: B9 00 02 NXTCHP
                                   \text{IW,} Y
                                              GET CHAR
                              LDA
FF80: C8
FF81: 49 80
                              INY
                              EOR
                                    4880
FFB3: C9 0A
                              CMP
                                   #$0A
FFB5: 90 D3
FFB7: 69 88
                              3CC
                                              IF HEX DIG, THEN
                                   OIG
                              ADC
                                    #$88
FFB9: C9 FA
                              CMP
                                   #SFA
                              BCS
FFBB: BO CD
                                   DIC
FFBD: 60
                              RTS
FFBE: A9 FE
                                             PUSH HIGH-OFDER
                  TOSUE
                             LDA
                                   #CO/256
                              PHA
                                              SUBP ADR ON STK
FFC0: 48
FFC1: B9 E3 FF
                                   SUPTEL,Y PUSS LOW ORDER
                              LDA
FFC4: 48
                              PHA
                                              SUBL ADR ON STK
FFC5: A5 31
                             AGJ
                                   MODE
FFC7: A0 00
                  ZMODE
                              LDY
                                    #$00
                                              CLP MODE, CLD MODE
FFC9: 64 31
                                               TO A-REG
                             STY
                                   MODE
FFCB: 60
                                              GO TO SUBR VIA PTS
                              RTS
FFCC: BC
                  CHRTRL
                             DFP
                                   $3C
                                              F ("CTRL-C")
                                              F ("CTRL-Y")
FFCD: B2
                              DFB
                                   $82
FFCE: BE
                             DFB
                                              F("CTRL-E")
                                   SBE
                                              F("T")
FFCF: ED
                              DEB
                                   SED
FFDO: EF
                                   SEF
                              DFP
                                              F("CTRL-K")
FFD1: C4
                              DES
                                   SC4
                                              F("S")
FFD2: EC
                             DEB
                                   SEC
                                              F("CTPL-P")
FFD3: A9
                             OFB
                                   $49
FFD4: BB
                                              F ("CTRL-B")
                             DFB
                                   833
FFD5: A6
                             DEB
                                   SA6
                                              F("+")
FFD6: A4
                             DFE
                                   SAC
                                              F("M") (F=EX-OP $80+$89)
FFD7: 06
                             DFB
                                   $06
                                             F("<")
                                   $95
FFD8: 95
                             DFB
FFD9: 07
                             DEB
                                   $07
                                             F("I")
F("L")
FFDA: 02
                             DER
                                   502
FFDB: 05
                             DFF
                                   $65
FFDC: F0
                                              F ("W")
                             OFF
                                   SFO
                                             F("G")
F("R")
F(":")
FFDD: 00
                             DFB
                                   $00
FFDE: EB
                             DFB
                                   SE6
FFDF: 93
                             DEB
                                   $93
FFEO: A7
                             DFE
                                   $A7
FFE1: C6
                                              F ("CR")
                             DES
                                   $C6
FFE2: 99
                             DFB
                                   $99
                                              F(BLANK)
FFE3: B2
                 SURTEL
                             DFB
                                   #BASCONT-1
FFE4: C9
                             DFS
                                   #USR-1
FFE5: BE
                             DFE
                                   #REGZ-1
FFE6: C1
                             DFB
                                   #TRACE-1
FFE7: 35
                             DFB
                                   #VFY-1
FFE8: 8C
                             DEP
                                   #INPRT-1
FFE9: C3
                             DFB
                                   #STEPZ-1
FFFA: 96
                             DFB
                                   #OUTPRT-1
FFEB: AF
                             DFB
                                   #XPASIC-1
FFEC: 17
                             DFB
                                   #SETMODE-1
FFED: 17
                             DFP
                                   #SETMODE-1
FFEE: 2B
                             DFB
                                   *MOVE-1
FFEF: 1F
                                   #LT-1
                             DES
```

```
FFF0: 83
FFF1: 7F
                                     DFB #SETNORM-1
                                     DFB #SETINV-1
FFF2: 5D
FFF3: CC
FFF4: F5
                                     DFB #LIST-1
DFB #WRITE-1
                                     DFB
                                           #GO-1
FFF5: FC
FFF6: 17
FFF7: 17
                                           #READ-1
#SETMODE-1
#SETMODE-1
                                     DFB
                                     DFB
                                     DFB
FFF8: F5
                                     DFB
                                            #CRMON-1
FFF9: 03
FFFA: FB
                                            #BLANK-1
                                     DFB
                                                         NMI VECTOR
                                     DFB
                                            #NMI
                                            #NMI/256
#RESET RESET VECTOR
#PESET/256
FFFB: 03
FFFC: 59
FFFD: FF
                                     DFB
                                    DFB
DFB
FFFE: 86
                                            #IRQ IRO V3CTOR
                                    DFB
FFFF: FA
                                           #IRQ/256
                                    DFB
                      XOTNI
                                           $3C
                                    EQU
```

```
APPLE-II
                      MINI-ASSEMBLER
                  * COPYRIGHT 1977 FY
                  * APPLE COMPUTER INC.
                  * ALL RIGHTS RESEPVED *
                        S. WOZNIAK
                         A. BAUM
                  TITLE "APPLE-II MINI-ASSEMBLER"
                            EPZ $2E
EPZ $2F
                  FORMAT
                  LENGTH
                  MODE
                             EPZ
                                  $31
                                  $33
$34
                  PROMPT
                             EPZ
                  YSAV
                             EPZ
                             EPZ
                                  $35
                  ŗ,
                  PCL
                                  $3A
                             EPZ
                  PCH.
                             EPZ
                                  $38
                  Alfi
                             EPZ
                                  $30
                                  $3E
$3F
                             CPZ
                  42L
                             EPZ
                 A 2 E
                             EPZ
                                  $42
                  A 4 L
                  A4H
                             EPZ
                                  $43
                  FΜT
                             EPZ
                                  $44
                                  $200
                  IN
                             003
                             EOU
                  INSDS 2
                                  $F88E
                  INSTOSE
                             ΒŅŪ
                                  $F800
                             nos
                  PR3L2
                                  $F94A
                  PCADJ
                             EQU
                                  SF953
                  CHAR1
                             EOU
                                  $F984
                             EQU
                                  SF9FA
                 CHAR2
                                  $F9C0
$FA00
                 MARKL
                             EOU
                 MNEAP
                             ECU
                             aQU SEC1A
                 CUESUP
                  GETLNZ
                             BOO
                                  $FD67
                  COUT
                             ECG
                                  SEDED
                 BL1
                             EQU
                                  SEE00
                 AIPCLP
                             EQU
                                  SFE78
                             EQU
                 SELL
                                  SFF34
                                  SFFA7
                 GETNUM
                             EQU
                                  $FFPF
$FFC7
                 TOSUB
                             EQU
                 ZPODE
                             EOU
                            BOU $FFCC
                 CHRIGL
                            ORG
SDC
                                 $5500
                                  #$81
F500: E9 81
                                            IS FMT COMPATIBLE
                 REL
                                            WITH RELATIVE MODE?
                            LSP
                                  λ.
F502: 4A
F503: D0 14
F505: A4 3F
                             DAE
                                  LFR3
                                             NO.
                            LDY A2.1
F507: A6 3E
                            PDX
                                  A.2 L
                                            DOUBLE DECREMENT
F509: D0 01
                            BNE
                                  REL2
F50B: 88
                            DFY
F50C: CA
                 REL2
                            DEX
F50D: 8A
                            TXA
F50E: 18
                            CLC
                                            FORM ADDR-PC-2
F50F: E5 3A
                            SBC
                                  PCL
F511: 85 3E
F513: 10 01
                            STA
                                  A2L
                            BPL
                                  PEL3
F515: C8
                            INY
F516: 98
                 REL3
                            TYA
```

```
F517: E5 3B
                               SBC
                                     PCH
 F519: D0 6B
                    ERR3
                               BNE
                                     ERR
                                                ERROR IF >1-BYTE BRANCH
 F51B: A4 2F
F51D: B9 3D 00
                               LDY
                    FINDOP
                                     LENGTH
                    FNDOP2
                               LDA
                                     AlH,Y
                                                MOVE INST TO (PC)
 F520: 91 3A
                               STA
                                     (PCL),Y
 F522: 88
                               DEY
 F523: 10 F8
                               BPL
                                     FNDOP2
 F525: 20 1A FC
                               JSR
                                     CURSUP
 F528: 20 1A FC F52B: 20 D0 F8
                               JSP
                                     CURSUP
                                                RESTORE CURSOR
                               JSR
                                     INSTDSP
                                               TYPE FORMATTED LINE
 F52E: 20 53 F9
                               JSR
                                     PCADJ
                                                UPDATE PC
 F531: 84 3B
                               STY
                                     PCH
 F533: 85 3A
                               STA
                                     PCL
 F535: 4C 95 F5
                               JWP
                                     NXTLINE
                                               GET NEXT LINE
 F538: 20 BE FF
                   FAKEMON3
                               JSR
                                     TOSUB
                                               GO TO DELIM HANDLER
 F53B: A4 34
                               LDY
                                     YSAV
                                               RESTORE Y-INDEX
 F53D: 20 A7 FF
                    FAKEMON
                               JSR
                                     GETNUM
                                               READ PARAM
 F540: 84
                                               SAVE Y-INDEX
INIT DELIMITER INDEX
                               STY
                                     YSAV
 F542: A0 17
                               LDY
                                     #$17
 F544: 88
                    FAKEMON2
                               DEY
                                               CHECK NEXT DELIM
                                     RESETZ ERR IF UNRECOGNIZED DELIM CHRTBL, Y COMPARE WITH DELIM TABLE
 F545: 30 4B
F547: D9 CC FF
                               BMI
                               CMP
 F54A: D0 F8
                               BNE
                                     FAKEMON2 NO MATCH
 F54C:
                                     #$15 MATCH, IS IT CR?
FAKEMON3 NO, HANDLE IT IN MONITOR
        C0
                               CPY
 F54E: D0 E8
                               BNE
 F550: A5 31
                               LDA
                                     MODE
 F552: A0 00
                               LDY
                                     #$0
 F554: C6 34
                               DEC
                                     YSAV
 F556: 20 00 FE
                               JSR
                                     BL1
                                               HANDLE CR OUTSIDE MONITOR
 F559: 4C 95 F5
                               JMP
                                    NXTLINE
 F55C: A5 3D
                   TRYNEXT
                               LDA
                                               GET TRIAL OPCODE
                                    AlH
 F55E: 20 8E F8
                               JSR
                                    INSDS 2
                                               GET FMT+LENGTH FOR OPCODE
 F561: AA
                               TAX
 F562: BD 00 FA
                               LDA
                                    MNEMR,X
                                               GET LOWER MNEMONIC BYTE
 F565: C5 42
                               CMP
                                    A4L
                                               MATCH?
 F567: D0 13
                                               NO, TRY NEXT OPCODE
GET UPPER MNEMONIC BYTE
                               BNE
                                    NEXTOP
 F569: BD C0 F9
                               LDA
                                    MNEML, X
 F56C: C5 43
                               CMP
                                    A4H
                                               MATCH?
 F56E: D0 0C
F570: A5 44
                               BNE
                                    NEXTOP
                                               NO, TRY NEXT OPCODE.
                               LDA
                                    FMT
                                               GET TRIAL FORMAT
 F572: A4 2E
                               LDY
                                    FORMAT
 F574: C0
                               CPY
                                    #$9D
                                               TRIAL FORMAT RELATIVE?
 F576: F0 88
                               BEQ
                                               YES.
 F578: C5 2E
                   NREL
                              CMP
                                    FORMAT
                                               SAME FORMAT?
 F57A: F0 9F
                                               YES.
                               BEO
                                    FINDOP
 F57C: C6 3D
                   NEXTOP
                               DEC
                                    AlH
                                               NO, TRY NEXT OPCODE
 F57E: D0 DC
                               BNE
                                    TRYNEXT
                                               NO MORE, TRY WITH LEN=2 WAS L=2 ALREADY?
 F580: E6 44
                               INC
                                    FMT
 F582: C6 35
                               DEC
F584: F0 D6
                               BEQ
                                    TRYNEXT
                                               NO.
 F586: A4 34
                   ERR
                               LDY
                                    YSAV
                                               YES, UNRECOGNIZED INST.
 F588: 98
                   ERR2
                               TYA
F589: AA
                               TAX
F58A: 20 4A F9
                               JSR
                                    PRBL2
                                               PRINT " UNDER LAST READ
F58D: A9 DE
                               LDA
                                    #$DE
                                               CHAR TO INDICATE ERROR
F58F: 20 ED FD
                              JSR
                                    COUT
                                               POSITION.
F592: 20
          3A
                   RESETZ
                               JSR
                                    BELL
F595: A9 A1
                   NXTLINE
                              LDA
                                               111
                                    #SA1
F597: 85 33
                              STA
                                    PROMPT
                                               INITIALIZE PROMPT
F599: 20 67
F59C: 20 C7
                              JSR
                                    GETLNZ
                                               GET LINE.
              FF
                              JSR
                                    ZMODE
                                               INIT SCREEN STUFF
F59F: AD 00
              02
                              LDA
                                    IN
                                               GET CHAR
F5A2: C9 A0
                              CMP
                                    #SAO
                                               ASCII BLANK?
F5A4: F0
                              BEO
                                    SPACE
                                               YES
F5A6: C8
                              INY
F5A7: C9 A4
F5A9: F0 92
                                               ASCII '$' IN COL 1?
                              CMP
                              BEQ
                                    FAKEMON
                                              YES, SIMULATE MONITOR
F5AB: 88
                              DEY
                                              NO, BACKUP A CHAR
F5AC: 20 A7 FF
                              JSR
                                    GETNUM
                                              GET A NUMBER
':' TERMINATOR?
F5AF: C9 93
                                    #$93
                              CMP
F5B1: D0 D5
                  ERR4
                              BNI
                                    ERR2
                                              NO, ERR.
F5B3: 8A
                              TXA
F5B4: F0 D2
                              BEO
                                    ERR2
                                              NO ADR PRECEDING COLON.
F5B6: 20 78 FE
                                    AlPCLP
                                              MOVE ADR TO PCL, PCH.
                              JSR
F5B9: A9 03
                                              COUNT OF CHARS IN MNEMONIC
                  SPACE
                              LDA
                                    #$3
F5BB: 85 3D
                              STA
                                   A1H
F5BD: 20 34 F6
                  NXTMN
                              JSR
                                    GETNSP
                                              CET FIRST MNEM CHAR.
F5C0: 0A
F5C1: E9 BE
                  NXTM
                              ASL
                              SEC
                                    #SBE
                                              SUBTRACT OFFSET
F5C3: C9 C2
                              CMP
                                    #$C2
                                              LEGAL CHAR?
F5C5: 90 C1
                              BCC
                                   ERR2
                                              NO.
F5C7: 0A
                              ASL
                                              COMPRESS-LEFT JUSTIFY
                                   Α
F5C8: 0A
                              ASL.
F5C9: A2 04
                              LDX
                                   #$4
F5CB: 0A
                  NXTM 2
                              ASL
                                              DO 5 TRIPLE WORD SHIFTS
```

```
F5CC: 26 42
                               ROL
                                    A4L
F5CE: 26 43
F5D0: CA
                               ROL
                                    A49
                               DEX
F5D1: 10 F8
                                    NXTM2
                               SPL
                                               DONE WITH 3 CHARS?
YES, BUT DO 1 MORE SHIFT
F5D3: C6 3D
F5D5: F0 F4
                               DEC
                                    AlH
                                    NXTM 2
                              BEO
F5D7: 10 E4
                              BPL
                                    NXTMN
                                               NO
F5D9: A2 05
F5DB: 20 34 F6
                                               5 CHARS IN ADDR MODE
                   FORM1
                              LDX
                                    #$5
                               JSR
                                    GETHSP
                                               GET FIRST CHAR OF ADDR
                   FORM 2
F5DE: 84 34
                              STY
                                    YSAV
F5E0: DD B4 F9
                              CMP
                                    CHAR1,X
                                               FIRST CHAR MATCH PATTERN?
F5E3: D0 13
                              RNE
                                    FOR413
                                               NO
F5E5: 20 34 F6
                              JSR
                                    GETNSP
                                               YES, GET SECOND CHAR
                                    CHAR2,X
F5E8: DD DA F9
                                               MATCHES SECOND HALF?
                               CMP
F5EB: F0 0D
                               BEO
                                    ₽ORM5
                                               YES
F5ED: BD BA F9
                              L·Dλ
                                    CdAR2,X
                                               NO, IS SECOND HALF ZERO?
F5F0: F0 07
F5F2: C9 A4
                              BEÓ
                                    FORM 4
                              CMP
                                    # S A 4
                                               NO, SECOND HALF OPTIONAL?
F5F4: F0 03
                               BEO
                                    FOPM4
                                               YES.
F5F6: A4 34
                              LCY
                                    YSAV
F5F8: 18
                   FORM3
                              CLC
                                               CLEAR BIT-NO MATCH
F5F9: 88
                   FORM 4
                              DEY
                                               BACK UP 1 CHAR
F5FA: 26 44
F5FC: E0 03
                   FORM5
                              ROL
                                    F \otimes T
                                               FORM FORMAT BYTE
                              CPX
                                    #$3
                                               TIME TO CHECK FOR ADDR.
F5FE: D0 0D
                              BNE
                                    FORM 7
                                               NO
F600: 20 A7
                              JSR
                                    GETNUM!
                                               YES
F603: A5 3F
                              LDA
                                    A28
F605: F0 01
                              BEO
                                    FORM6
                                               HIGH-ORDER BYTE ZERO
F607: E8
F608: 86 35
                                               NO, INCR FOR 2-BYTE STORE LENGTH
                              INX
                   FORM 6
                              STX
                                    ۲,
F60A: A2 03
                                               RELOAD FORMAT INDEX
                              LDX
                                    #$3
                                               PACKUP A CHAR
F60C: 88
                              DEY
F60D: 86 3D
                                               SAVE INDEX
                  FOR47
                              STX
                                    AlH
F60F: CA
                              DEX
                                               DONE WITH FORMAT CHECK?
                                              NO.
YES, PUT LENGTH
F610: 10 C9
F612: A5 44
                              BPL
                                    FORM 2
                              LDA
                                    PMT
F614: 0A
                              ASL
                                    Α
                                               IN LOW BITS
F615: 0A
                              ASL
                                    A
F616: 05 35
                              ORA
F618: C9 20
                                    #$20
                              CMP
F61A: B0 06
F61C: A6 35
                                              ADD '$' IF NONZERO LENGTH
                              RCS
                                    FORM8
                              LDX
                                              AND DON'T ALREADY HAVE IT
F61E: F0 02
                              BEQ
                                    FORM 8
F620: 09 80
                              ORA
                                    #$80
F622: 85 44
                  FORM8
                              STA
                                    FMT
F624: 84 34
                              STY
                                    YSAV
F626: B9 00 02
                                              GET NEXT NONBLANK
';' START OF COMMENT?
                              LDA
                                    IN,Y
F629: C9 BB
                                    #SRR
                              CMP
F62B: F0 04
                              BEO
                                    FORM9
                                              YES
F62D: C9 8D
                              CMP
                                    #$8D
                                              CARRIAGE RETURN?
F62F: D0 80
                              BNE
                                    ERP4
                                              NO, ERP.
F631: 4C 5C F5 FORM9
                              JMP
                                   TRYNEXT
F634: B9 00 02 GETNSP F637: C8
                              LDA
                                   IN,Y
                              INY
F638: C9 A0
                              CMP
                                    #SAO
                                              GET NEXT NON BLANK CHAR
F63A: F0 F8
                              BEQ
                                   GETNSP
F63C: 60
                              RTS
                              ORG
                                    SF666
F666: 4C 92 F5 MINASM
                              JMP
                                   RESETZ
```

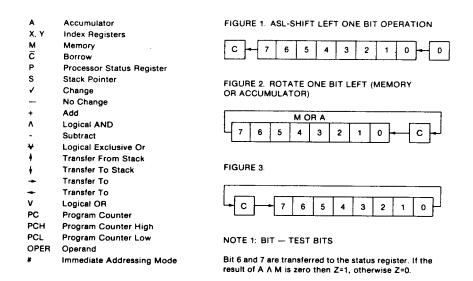
```
APPLE-II FLOATING
                        POINT ROUTINES
                       COPYRIGHT 1977 BY
                   * APPLE COMPUTER INC.
                    * ALL RIGHTS RESERVED *
                          S. WOZNIAK
                    TITLE "FLOATING POINT POUTINES"
                   SIGN
                               EPZ
                                    $F3
                   Х2
                               EPZ
                                    $F4
                   М2
                               EPZ
                                     $F5
                   х1
                               FPZ
                                    $F8
                   М1
                               EPZ
                                     $F9
                   P
                               EPZ
                                    $FC
                   OVLOC
                               EOU.
                                    $3F5
                               ORG
                                    SF425
F425: 18
                   ADD
                               CLC
                                               CLEAR CARRY.
F426: A2 02
                                               INDEX FOR 3-SYTE ADD.
                               LDX
                                    #$2
F428: B5 F9
                   ADDI
                               LDA
                                    M1,X
F42A:
       75 F5
                                               ADD A SYTE OF MANT2 TO MANT1.
                               ADC
                                    M2,X
F42C: 95 F9
                              STA
                                    M1,X
F42E: CA
                              DEY.
                                               INDEX TO NEXT MORE SIGNIF. BYTE.
F42F: 10 F7
                              BPL
                                    ADD1
                                               LOOP UNTIL DONE.
F431: 60
                              RTS
                                               RETURN
F432: 06 F3
F434: 20 37 F4
                   MD1
                              ASL
                                    SIGN
                                               CLEAR LSB OF SIGN.
                              JSR
                                    ABSZAP
                                               ABS VAL OF MI, THEN SWAP WITH M2
F437: 24 F9
                   ABSWAP
                                    41
                                               MANT1 NEGATIVE?
                              BIT
                                              NO, SUAP WITH MANT2 AND RETURN.
F439: 10 05
                                    ABSWAP1
                              BPL
                                              NO, SHAP WITH MANTZ AND RETURN.
YES, COMPLEMENT IT.
INCH SIGH, COMPLEMENTING LSB.
SET CARPY FOR RETURN TO MUL/DIV.
INDEX FOR 4-BYTE SWAP.
F43B: 20 A4 F4
                              JSR
                                    FCO@PL
F43E: E6 F3
                              TNC
                                    SIGN
F440: 38
                   ADS#AP1
                              SEC
F441: A2 04
                   SMAP
                              LDX
                                    454
F443: 94 FB
                   SWAP1
                              STY
                                    E-1,X
                                    x_{1-1}, x
F445: B5 F7
                                              SWAP A BYTE OF EXP/MANT1 WITH
                              LDA
                                               EXP/MANT2 AND LEAVE A COPY OF
F447: B4 F3
                                    X2-1,X
                              LDY
F449: 94 F7
                              STY
                                    X1-1,X
                                              MANTI IN E (3 BYTES). E+3 USED
F44B: 95 F3
                              STA
                                    X2-1,X
F44D: CA
                              DEX
                                              ADVANCE INDEX TO NEXT BYTE.
F44E: D0 F3
                              BNE
                                   SWAPI
                                              LOOP UNTIL DONE.
F450: 60
F451: A9 8E
                              RTS
                                              PETURN
                                    #58E
                                              INIT EXPL TO 14,
                  FLOAT
                              LDA
F453: 85 F8
                              STA
                                    ۲1
                                              THEN NORMALIZE TO FLOAT.
F455: A5 F9
F457: C9 C0
                  NOPMI
                                              HIGH-ORDER MANTI BYTE.
                              LOA
                                   Ml
                              CMP
                                    #$C0
                                              UPPER TWO BITS UNEQUAL?
£459: 30 0C
                              IMS
                                   RTSl
                                              YES, RETURN WITH MANTI NORMALIZED
F45B: C6 F8
F45D: 06 FB
                              DEC
                                              DECREMENT EXPl.
                                   х1
                                   #1+2
                              ASL
F45F: 26 FA
                              ROL
                                   M1+1
                                              SHIFT MANTI (3 BYTES) LEFT.
F461: 26 F9
                              RCL
                                   Ml
F463: A5 F8
                  NORM
                                              EXPl ZERO?
                              LDA
                                   X1
F465: D0 EE
                                              NO. CONTINUE NORMALIZING.
                              BNE
                                   NORM1
F467: 60
F468: 20 A4 F4
                  RTS 1
                              PTS
                                              RETURN.
                                   FCOMPL.
                                              CMPL MANTI, CLEARS CARRY UNLESS 0
                  FSUB
                              JSR
F46B: 20 7B F4
                  SWPALGN
                              JSR
                                   ALGNSWP
                                              RIGHT SHIFT MANTI OR SWAP WITH
F46E: A5 F4
                  FADD
                              LDA
                                   X2
X
F470: C5 F8
                              CMP
                                              COMPARE EXPL WITH EXP2.
F472: D0 F7
                              BME
                                   SEPALGN
                                              IF #,SWAP ADDENDS OF ALIGN MANTS.
F474: 20 25 F4
                              JSR
                                   ADD
                                              ADD ALIGNED MANTISSAS.
F477: 50 EA
                  ADDEND
                              BVC
                                   NORM
                                              NO OVERFLOW, NORMALIZE RESULT.
F479: 70 05
                              BVS
                                   RTLOG
                                              OV: SHIFT MI RIGHT, CARRY INTO SIGN
```

```
ALGNSWP
                                             SWAP IF CARRY CLEAR,
F47B: 90 C4
                             BCC
                           ELSE SHIFT RIGHT ARITH.
F47D: A5 F9
                  RTAP
                             LDA
                                   \times 1
                                             SICN OF MANTI INTO CARRY FOR
F47F: 0A
                             ASL
                                             RIGHT ARITH SHIFT.
                                             INCR X1 TO ADJUST FOR RIGHT SHIFT
F480: E6 F8
                  STLOC
                              INC
                                   Х1
                                             EXPL OUT OF RANGE.
                             PEC
                                   OVEL
F482: F0 75
                                             INDEX FOR 6: PYTE RIGHT SHIFT.
F484: A2 FA
F486: 76 FF
                  RTLOG1
                                   #SFA
                             T.DX
                             ROR
                                   E+3.X
                  ROB 1
                                             MEXT BYTE OF SHIFT.
F488: E8
                             INX
                                             LOOP UNTIL DONE.
F489: D0 FB
                             BNE
                                   ROR1
F48B: 60
                             RTS
                                             RETURN.
                                             ABS VAL OF MANT1, MANT2.
F48C: 20 32 F4
                  FMUL
                             JSR
                                   MD1
F48F: 65 F8
F491: 20 E2 F4
                                             ADD EXPL TO EXPL FOR PRODUCT EXP
                             ADC
                                   Х1
                                             CHECK PROD. EXP AND PREP. FOR MUL
                             JSR
                                             CLEAR CARRY FOR FIRST BIT.
F494: 18
                             CLC
                                             M1 AND E RIGHT (PROD AND MPLIEP) IF CARRY CLEAR, SKIP PARTIAL PROD
F495: 20 84 F4
                  401.1
                             JSR
                                   RTLOGI
F498: 90 03
                             SCC
                                   PUL2
F49A: 20 25 F4
                             JSP
                                   ADD
                                             ADD MULTIPLICAND TO PRODUCT.
                                             NEXT MUL ITERATION.
F49D: 88
                  MUL2
                             DEY
F49E: 10 F5
                                             LOOP UNTIL DONE.
                             PPL
                                   MULI
                                             TEST SIGN LSB.
F4A0: 46 F3
                  MDEND
                             LSR
                                   SIGN
                             PCC
                                             IF EVEN, NORMALIZE PROD, ELSE COMP
F4A2: 90 EF
                  NOPMX
                                   NORM
F4A4: 38
                             SEC
                                             SET CARRY FOR SUBTRACT.
                  FCOMPL
F4A5: A2 03
                             LDX
                                   #53
                                             INDEX FOR 3-BYTE SUBTRACT.
F4A7: A9 00
                  COMPLI
                             LDA
                                   #$0
                                             CLEAP A.
F4A9: F5 F8
                             SBC
                                   X1,X
                                             SUBTRACT PYTE OF EXPL.
F4AB: 95 F8
                             STA
                                             RESTORE IT.
                                   X1,X
                                             NEXT MORE SIGNIFICANT BYTE. LOOP UNTIL DONE.
F4AD: CA
F4AE: D0 F7
                             DEX
                                   COMPLI
                             BNE
F4B0: F0 C5
                             BEQ
                                   ADDEND
                                             NOPMALIZE (OR SHIFT RT IF OVFL).
F4B2: 20 32 F4
                                             TAKE ABS VAL OF MANTI, MANT2.
                             JSP
                                   MD1
                  FDIV
                                             SUPTRACT EXPL FROM EXP2.
F485: E5 F8
                             SBC
                                   Хl
                                             SAVE AS QUOTIENT EXP.
                             JSR
F487: 20 E2 F4
                                   MD2
F4BA: 38
                  DIVI
                             SEC
                                             SET CARRY FOR SUBTRACT
                                             INDEX FOR 3-PYTE SUBTRACTION.
F4BB: A2 02
                             LDX
                                   #$2
                                   M2,X
F4BD: B5 F5
                  DIV2
                             LDA
F4BF: F5 FC
F4Cl: 48
                             SBC
                                             SUBTRACT A BYTE OF E FROM MANT2.
                                   E \cdot X
                                             SAVE ON STACK.
                             PHA
F4C2: CA
                             DEX
                                             NEXT MORE SIGNIFICANT BYTE.
                             BPL
F4C3: 10 F8
                                   DIV2
                                             LOOP UNTIL DONE.
                                             INDEX FOR 3-BYTE CONDITIONAL MOVE
F4C5: A2 FD
                             LDX
                                   #$FD
                                             PULL BYTE OF DIFFERENCE OFF STACK
F4C7: 68
                  DIV3
                             PLA
F4C8: 90 02
                             BCC
                                   DIV4
                                             IF M2<E THEN DON'T RESTORE M2.
F4CA: 95 F8
                                   M2+3,X
                             STA
                                             NEXT LESS SIGNIFICANT BYTE.
F4CC: E8
                  DIV4
                             TNX
F4CD: D0 F8
                             BNE
                                   DIV3
                                             LOOP UNTIL DONE.
F4CF: 26 FB
                             ROL
                                   M1+2
                                             FOLL OUOTIENT LEFT, CARRY INTO LSB
F4D1: 26 FA
                             ROL
                                  M1+1
F4D3: 26 F9
                             ROL
                                  M 1
F4D5: 06 F7
                                   M2+2
                             ASL
F4D7: 26 F6
                                            SHIFT DIVIDEND LEFT.
                             DOL.
                                  M2 + 1
F4D9: 26 F5
                             ROL
                                  М2
F4DB: B0 1C
                                  OVEL.
                                            OVFL IS DUE TO UNNORMED DIVISOR
                             BCS
F4DD: 88
                             DEY
                                             NEXT DIVIDE ITERATION.
                                             LOOP UNTIL DONE 23 ITERATIONS. NORM. QUOTIENT AND CORRECT SIGN.
F4DE: DO DA
                             BNE
                                   DIVI
F4E0: F0 BE
                             BEQ
                                  MDFND
F4E2: 86 FB
                  MD2
                             STX
                                  M1+2
F4E4: 86 FA
                                  M1+1
                                            CLEAR MANTI (3 BYTES) FOR MUL/DIV.
                             STX
F4E6: 86 F9
                                  61
                             STX
                                            IF CALC. SET CARRY, CHECK FOR OVFL
F4E8: B0 0D
                                  OVCHK
                             BCS
F4EA: 30 04
                             BMI
                                  MD3
                                            IF NEG THEN NO UNDERFLOW.
                                            POP ONE RETURN LEVEL.
F4EC: 68
                             PLA
F4ED: 68
                             PLA
F4EE: 90 B2
                                            CLEAR X1 AND RETURN.
                                  NORMX
                             BCC
F4F0: 49 80
                 MD3
                                            COMPLEMENT SIGN BIT OF EXPONENT.
                             EOR
                                  #$80
F4F2: 85 F8
                             STA
                                  X 1
                                            STORE IT.
                                  #$17
F4F4: A0 17
                             \Gamma DX
                                            COUNT 24 MUL/23 DIV ITERATIONS
F4F6: 60
                             RTS
                                            RETURN.
F4F7: 10 F7
                 OVCHK
                             BPL
                                            IF POSITIVE EXP THEN NO OVEL.
F4F9: 4C F5 03 OVFL
                             JMP
                                  OVLOC
                             ORG
                                  $F63D
F63D: 20 7D F4 FIX1
                             JSR
                                  RITAR
F640: A5 F8
                             LD\Lambda
                 FIX
F642: 10 13
                             2PL
                                  UNDEL
F644: C9 8E
                             CMP
                                  #$8E
F646: D0 F5
                             ONE
                                  FIX1
F648: 24 F9
                            BIT
                                  14 1
F64A: 10 0A
                            BPL
                                  FIXPTS
F64C: A5 FB
                            LDA
                                  M1 + 2
F64E: F0 06
                            BEQ
                                  FIXRTS
F650: E6 FA
                            INC
                                  M1+1
F652: D0 02
F654: E6 F9
                            BNE
                                  FIXRES
                            INC
                                  M1
F656: 60
                 FIXRTS
                            RTS
F657: A9 00
                 UNDFL
                            LDA
                                  #$0
F659: 85 F9
                            STA
                                  M1
F658: 85 FA
                            STA
                                  111+1
F65D: 60
                            RTS
```

SWAP

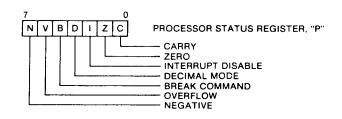
```
APPLE-II PSEUDO
                    MACHINE INTERPRETER *
                      COPYRIGHT 1977
                  * APPLE COMPUTER INC
                  * ALL RIGHTS RESERVED *
                        S. WOZNIAK
                   TITLE "SWEET16 INTERPRETER"
                  ROL
                             EPZ $0
                  ROH
                             EPZ
                  R14d
                             EPZ
                                  $10
                  R15L
                             EP2
                                  $1E
                  R15H
                             EPZ
                                  : 1F
                  S16PAG
                             EQU
                                  SF7
                  SAVE
                             EQU
                                  SFF4A
                  RESTORE
                             EQU
                                  $FF3F
                             ORG
                                            PRESERVE 6502 REG CONTENTS
                             JSR
                                  SAVE
F689: 20 4A FF SW16
F68C: 68
F68D: 85 1E
                             PLA
                                  R15L
                                            INIT SWEET16 PC
                             STA
F68F: 68
                             PLA
                                             FROM RETURN
F690: 85 1F
F692: 20 98 F6
                                  F159
                                               ADDRESS
                             STA
                                             INTERPRET AND EXECUTE
                 SW16B
                             JSP
                                  SW16C
F695: 4C 92 F6
                                             ONE SWEET16 INSTR.
                             JMP
                                  SW169
F698: E6 1E
                  SW16C
                             INC
                                  R15L
                                            INCP SWEET16 PC FOR FETCH
F69A: D0 02
                             BNE
                                  S@16D
                                 R159
F69C: E6 1F
                             INC
F69E: A9 F7
F6A0: 48
                 S@16D
                             LDA
                                  #S16PAG
                             PHA
                                             PUSH ON STACK FOR PTS
                             LDY
                                  #80
F6A1: A0 00
                                  (R15L),Y FETCH INSTR
#SF MASK REG SPECIFICATION
F643: B1 1E
                             LDA
F6A5: 29 OF
                             AND
                                  #SF
                                            DOUBLE FOR 2-BYTE REGISTERS
F6A7: 0A
                             ASL
                                  Α
                                             TO X-REG FOR INDEXING
F6A8: AA
F6A9: 4A
                             TAX
                             LSR
                                  (R15L),Y NOW HAVE OPCODE
F6AA: 51 1E
                             EOR
                                            IF ZERO THEN NON-REG OP INDICATE' PRIOP RESULT PEG'
F6AC: F0 OB
                             BEQ
                                  TOER
F6AE: 86 1D
                             STX
                                  R14#
F6B0: 4A
                             LSR
                                  Α
F6B1: 4A
F6B2: 4A
                                            OPCODE*2 TO LSP'S
                             LSR
                                  Α
                            LSR
                             TAY
                                            TO Y-REG FOR INDEXING
F6B3: A8
                                  CPTBL-2, Y LOW-ORDER ADR BYTE
F684: B9 E1 F6
                             LDA
                                            ONTO STACK
F6B7: 48
                             PHA
                                            GOTO REG-OP POUTINE
F6B8: 60
                             PTS
                                  815L
F689: E6 1E
                 1'03P
                             INC
F6BB: D0 02
                             SNE
                                  PORR2
                                            INCR PC
                                  R15H
F63D: E6 1F
                            TNC
F6EF: BD E4 F6 TC382
F6C2: 48
                                            LOW-ORDER ADE EYTE
                             LOA
                                  SETSE, X
                             PHA
                                             ONTO STACK FOR NON-REG OF
                                            'PRIOR RESULT PEG' INDEX
                                  R14H
F6C3: A5 1D
                            LDA
                                            PREPARE CARRY FOR BC. BNC.
F6C5: 44
                             LSF
                                  4
                                            GCTO NON-PEG OP POUTINE
F6C6: 60
                            FTS
F6C7: 68
                 RTNZ
                             PLA
                                            FOR RETURN ADDRESS
F6C8: 68
F6C9: 20 3F FF
                             FLA
                            JSR
                                  RESTORE RESTORE 6502 REG CONTENTS
                                            RETURN TO 6502 CODE VIA PC
                            JMP
                                  (P15L)
F6CC: 6C 1E 00
                                  (R15L), Y HIGH-ORDER BYTE OF CONSTANT
                 SETZ
                            LDA
F6CF: B1 1F
```

```
STA
                                   ROH,X
 F6D1: 95 01
 F6D3: 88
                              DEY
                                    (R15L), Y LOW-ORDER BYTE OF CONSTANT
                              LDA
 F6D4: B1 1E
 F6D6: 95 00
                              STA
                                    ROL,X
                                              Y-REG CONTAINS 1
 F6D8: 98
                              ΤYΑ
                              SEC
 F6D9: 38
                              ADC
                                    ₽15L
                                              ADD 2 TO PC
 F6DA: 65 1E
 F6DC: 85 1E
                              STA
                                    R151.
F6DE: 90 02
F6E0: E6 1F
                              BCC
                                    SET 2
                              INC
                                    R15H
                  SET2
                              RTS
 F6E2: 60
                              DEP
                                               (1X)
                  OPTRE
 F6E3: 02
                  BRIBL
                                    RIN-1
                                               (0)
                              DFE
  654: F9
                                    LD-1
 F6E5: 04
                              DFB
                                              (2X)
 F6E6: 9D
                              DFP
                                    3R-1
 F6E7: 0D
                              DER
                                    ST-1
                                               (3X)
                              DFB
                                    BMC-1
                                              (2)
F6E8: 9E
                              DFB
                                    LDAT-1
                                               (4X)
F6E9: 25
F6EA: AF
                                    BC-1
                                               (3)
                              DEB
                                    STAT-1
                                               (5X)
F6EB: 16
 F6EC: B2
                              DFB
                                    RP-1
                                    LDDAT-1
                                              (6X)
 F6ED: 47
                              DFB
 F6EE: B9
                              DFP
                                    BM-1
                                               (5)
                              DFB
                                    STDAT-1
                                              (7X)
F6EF: 51
                              DFB
                                    BZ-1
                                               (6)
F6F0: C0
                                    POP-1
                                              (8X)
                              DFP
F6F1: 2F
 F6F2: C9
                              DFB
                                    3N2 - 1
                                              (7)
(9X)
                                    STPAT-1
F6F3: 5B
                              DFB
                              DFB
                                    BM1-1
                                               (8)
F6F4: D2
                              DFB
                                    ADD-1
                                               (AX)
 F6F5: 85
 F6F6: DD
                              DFB
                                    3NM1-1
                                              (9)
                              DFB
                                    SU3-1
                                              (BX)
F6F7: 6E
 F6F8: 05
                              DFB
                                    9K-1
                                               (A)
 F6F9: 33
                              DFB
                                    POPD-1
                                               (CX)
                              DFB
                                    PS-1
                                              (B)
 F6FA: E8
                                    CPR-1
                                              (DX)
 F6FB: 70
                              DFB
                              DFB
                                    3S-1
                                              (C)
 F6FC: 93
                                    INR-1
                                              (EX)
                              DFB
F6FD: 1E
 F6FE: E7
                              DEB
                                    NUL-1
                                               (D)
F6FF: 65
                              DFB
                                    DCR-1
                                              (FX)
 F700: E7
                              DFB
                                    NUL-1
                                              (E)
                              DFB
                                              (UNUSED)
                                    NUL-1
F701: E7
F702: E7
                              DFB
                                    NUL-1
                                              ALWAYS TAKEN
F703: 10 CA
                  SET
                              BPL
                                   SETZ
F705: B5 00
                   LD
                              LDA
                                    ROL,X
                   BK
                              EQU
                                    *-1
F707: 85 00
                              STA
                                    ROL
F709: B5 01
                                    ROH,X
                                              MOVE RX TO RO
                              LDA
F70B: 85 01
                              STA
                                    ROH
F70D: 60
                              RTS
F70E: A5 00
F710: 95 00
                  ST
                              LDA
                                    ROL
                                              MOVE RO TO RX
                              STA
                                   ROL,X
F712: A5 01
                              LDA
                                   ROH
F714: 95 01
                              STA
                                    ROH, X
F716: 60
                              RTS
F717: A5 00
                  STAT
                              LDA
                                   ROL
F719: 81 00
F71B: A0 00
                  STAT2
                              STA
                                    (ROL,X)
                                              STORE BYTE INDIRECT
                              LDY
                                    #$0
F71D: 84 1D
                  STAT3
                              STY
                                   R14H
                                              INDICATE RO IS RESULT REG
F71F: F6 00
                              INC
                                   ROL,X
                  INR
F721: D0 02
                                   INR2
                              SNE
                                              INCR RX
F723: F6 01
                              INC
                                   ROH,X
F725: 60
F726: A1 00
                  INR2
                              RTS
                  LDAT
                              LDA
                                   (ROL,X)
                                              LOAD INDIRECT (RX)
F728: 85 00
                              STA
                                   RUL
                                              10 R0
F72A: A0 00
F72C: 84 01
                              LDY
                                   #$0
                              STY
                                   ROH
                                              ZERO HIGH-ORDER RO BYTE
F72E: F0 ED
                             BEO
                                   STAT3
                                              ALWAYS TAKEN
F730: A0 00
F732: F0 06
                                              HIGH ORDER BYTE = 0
                  POP
                             LDY
                                   #$0
                                   POP2
                             BEO
                                              ALWAYS TAKEN
F734: 20 66 F7 POPD
                             JSR
                                   DCR
                                              DECR RX
F737: A1 00
                                              POP HIGH-ORDER BYTE @RX
                             LDA
                                   (ROL,X)
F739: A8
                             TAY
                                              SAVE IN Y-REG
F73A: 20 66 F7
                 POP2
                             JSR
                                   DCP
                                              DECR RX
F73D: A1 00
                             LDA
                                   (ROL,X)
                                              LOW-ORDER BYTE
F73F: 85 00
                             STA
                                   ROL
                                              TO RO
F741: 84 01
                             STY
                                   ROH
F743: A0 00
                  POP3
                             LDY
                                              INDICATE RO AS LAST RSLT REG
                                   #$0
R14H
F745: 84 1D
                             STY
F747: 60
                             RTS
F748: 20 26 F7
F74B: A1 00
                 LDDAT
                             JSR
                                   LDAT
                                              LOW-ORDER BYTE TO RO, INCR RX
                             LDA
                                   (ROL,X)
                                             HIGH-ORDER BYTE TO RO
F74D: 85 01
                                   ROH
                             STA
F74F: 4C 1F F7
F752: 20 17 F7
                             JMP
                                   INR
                                              INCR RX
                 STDAT
                                             STORE INDIRECT LOW-ORDER
                             JSR
                                   STAT
```


```
F755: A5 01
                                                BYTE AND INCR RX. THEN
                                LDA
                                     ROB
 F757: 81 00
F759: 4C 1F F7
                                STA
                                     (ROL,X)
                                               STORE HIGH-ORDER BYTE.
                                JMP
                                     INR
                                                INCR RX AND RETURN
 F75C: 20 66 F7
                    STPAT
                                JSR
                                     DCF
                                                DECR EX
 F75F: A5 00
                               LDA
                                     ROL.
 F761: 81 00
                               STA
                                     (ROL,X)
                                               STORE PO LOW BYTE ORX
 F763: 4C 43 F7
                                JMP
                                     POP3
                                               INDICATE RO AS LAST RSLT REG
 F766: B5 00
F768: D0 02
                    DCR
                               LDA
                                     ROL, X
                               PNE
                                     DCR2
                                               DECR PX
  F76A: D6 01
                               DEC
                                     ROH.X
 F76C: D6 00
                    DCR2
                               DEC
                                     ROL,X
  F76E: 60
 F76F: A0 00
                    SUB
                               LDY
                                     #50
                                               RESULT TO RO
 F771: 38
F772: A5 00
                               SEC
                    CPR
                                               NOTE Y-REG = 13*2 FOR CPR
                               LDA
                                     ROL
 F774: F5 00
                               SBC
                                     ROL,X
 F776: 99 00
F779: A5 01
               00
                               STA
                                     ROL,Y
                                               RO-RX TO RY
                               LDA
                                     ROH
 F77B: F5 01
                                     ROH,X
                               SBC
 F77D: 99 01 00
                   SUB2
                               STA
                                     ROH, Y
 F780: 98
                               TYA
                                               LAST RESULT REG*2
 F781: 69 00
                               ADC
                                     #$0
                                               CARRY TO LSB
 F783: 85 1D
F785: 60
                               STA
                                     R14H
                               RTS
 F786: A5 00
                   ADD
                               LDA
                                     ROL
 F788: 75
                               ADC
                                     ROL,X
 F78A: 85 00
                               STA
                                               R0+RX TO R0
                                     ROL
 F78C: A5 01
                               LDA
                                     ROH
 F78E: 75 01
F790: A0 00
                               ADC
                                     ROH,X
                               LDY
                                     #$0
                                               RO FOR RESULT
 F792: F0 E9
                               BEO
                                    SUB 2
                                               FINISH ADD
 F794: A5 1E
                   BS
                               LDA
                                    R15L
                                               NOTE X-REG IS 12*2!
 F796: 20 19 F7
                                               PUSH LOW PC BYTE VIA R12
                               JSR
                                    STAT2
 F799: A5 1F
                               LDA
                                    R15H
 F79B: 20 19 F7
F79E: 18
                               JSR
                                    STAT 2
                                               PUSH HIGH-ORDER PC BYTE
                   ΒR
                               CLC
 F79F: B0 0E
                   BNC
                              BCS
                                    BNC 2
                                               NO CAPRY TEST
 F7A1: B1
                   BRI
                               LDA
                                     (R15L),Y DISPLACEMENT BYTE
 F7A3: 10 01
                               SPL
                                    BR2
 F7A5: 88
                               DEY
 F7A6: 65 1E
F7A8: 85 1E
                   BR2
                              ADC
                                    R15L
                                               ADD TO PC
                               STA
                                    R15L
 F7AA: 98
                              TYA
 F7AB: 65 1F
                              ADC
                                    R 1 5H
 F7AD: 85 1F
                              STA
                                    R15H
 F7AF: 60
                   BNC 2
                              RTS
 F7B0: B0 EC
F7B2: 60
                               BCS
                   ВC
                                    SR
                              RTS
 F7B3: 0A
                   BP
                                              LOUELE RESULT-REG INDEX
                              ASL
                                    3
 F784: AA
                              TAX
                                              TO X-REG FOR INDEXING TEST FOR PLUS
                                    ROH,X
 F7B5: B5 01
                              LDA
 F7B7: 10 E8
                              BPL
                                    881
                                              BRANCH IF SO
F7B9: 60
                              RTS
 F7BA: 0A
                  311
                              A$L
                                              DOUBLE RESULT-REG INDEX
 F7B2: AA
                              TAX
F7BC: B5 01
                              LDA
BMI
                                    X,50A
                                              TEST FOR MINUS
 F7BE: 30 E1
                                    BR1
F7C0: 60
                              RTS
F7C1: 0A
F7C2: AA
                  BZ
                              ASL
                                              DOUBLE RESULT-REG INDEX
                              TAX
F7C3: B5 00
                                    ROL,X
                              LDA
                                              TUST FOR ZERO
F7C5: 15 01
F7C7: F0 D8
                              OFA
                                    ROH,X
                                               (BOTH PYTES)
                              BEO
                                    3E1
                                              PRANCH IF SO
F7C9: 60
                              RTS
F7CA: 0A
                  PNZ
                              4S L
                                              DOUBLE RESULT-REG INDEX
F7CB: AA
                              TAX
F7CC: B5 00
                                    ROL,X
                              LDA
                                              TEST FOR NONZERO
F7CE: 15 01
                              ORA
                                    ROH,X
                                              (BOTH BYTES)
F7D0: D0 CF
                              BNE
                                    BR1
                                              BRANCH IF SO
F7D2: 60
                              RTS
F7D3: 0A
                  BMl
                              ASL
                                              DOUBLE RESULT-REG INDEX
F7D4: AA
                              TAX
F7D5: B5 00
                              LDA
                                    ROL, X
                                              CHECK BOTH BYTES
F7D7: 35 01 F7D9: 49 FF
                              AND
                                   ROH, X
                                              FOR $FF (MINUS 1)
                              EOR
                                    #$FF
F7DB: F0 C4
                             BEQ
                                   BR1
                                              BRANCH IF SO
F7DD: 60
                             RTS
F7DE: OA
                  BNM1
                             ASL
                                              DOUBLE RESULT-REG INDEX
F7DF: AA
                             T'AX
F7E0: B5 00
                             LDA
                                   ROL, X
F7E2: 35 01
                             AND
                                   ROH,X
                                              CHECK BOTH BYTES FOR NO SFF
F7E4: 49 FF
                             EOR
                                   #$FF
F7E6: D0 B9
                             BNE
                                   BP1
                                             BRANCH IF NOT MINUS 1
F7E8: 60
                  NUL
                             RTS
F7E9: A2 18
                  RS
                             LDX
                                   #$18
                                             12*2 FOR R12 AS STK POINTER
```

										TO P	,C
85	1F			STA	R15H						
		F7		JSR LDA	DCR (ROL,X)	SAME	FOR	LOW-ORI	DER	BYTE	
85	1 E			STA	R15L						
	c 7	D.C	D. 1911	RTS	D.M.L.B.						
	A1 85 20 A1 85 60	A1 00 85 1F 20 66 A1 00 85 1E 60	85 1E 60	A1 00 85 1F 20 66 F7 A1 00 85 1E	A1 00 LDA 85 1F STA 20 66 F7 JSR A1 00 LDA 85 1E STA 60 RTS	A1 00 LDA (R0L,X) 85 1F STA R15H 20 66 F7 JSR DCR A1 00 LDA (R0L,X) 85 1E STA R15L 60 RTS	A1 00 LDA (R0L,X) POP 8 85 1F STA R15H 20 66 F7 JSR DCR SAME A1 00 LDA (R0L,X) 85 1E STA R15L 60 RTS	A1 00 LDA (R0L,X) POP HIGH 85 1F STA R15H 20 66 F7 JSR DCR SAME FOR A1 00 LDA (R0L,X) 85 1E STA R15L 60 RTS	A1 00 LDA (R0L,X) POP HIGH RETURN 85 1F STA R15H 20 66 F7 JSR DCR SAME FOR LOW-ORI A1 00 LDA (R0L,X) 85 1E STA R15L 60 RTS	A1 00 LDA (R0L,X) POP HIGH RETURN ADE 85 1F STA R15H 20 66 F7 JSR DCR SAME FOR LOW-ORDER A1 00 LDA (R0L,X) 85 1E STA R15L 60 RTS	A1 00 LDA (R0L,X) POP HIGH RETURN ADR TO F 85 1F STA R15H 20 66 F7 JSR DCR SAME FOR LOW-ORDER BYTE A1 00 LDA (R0L,X) 85 1E STA R15L 60 RTS


6502 MICROPROCESSOR INSTRUCTIONS


ADC	Add Memory to Accumulator with	LDA	Load Accumulator with Memory
AND	Carry	LDX	Load Index X with Memory
ASL	"AND" Memory with Accumulator Shift Left One Bit (Memory or	LDY	Load Index Y with Memory
ASE	Accumulator)	LSR	Shift Right one Bit (Memory or
			Accumulator)
BCC	Branch on Carry Clear	NOP	No Operation
BCS	Branch on Carry Set	ORA	"OR" Memory with Accumulator
BEQ	Branch on Result Zero	PHA	Push Accumulator on Stack
BIT	Test Bits in Memory with	PHP	Push Processor Status on Stack
	Accumulator	PLA	Pull Accumulator from Stack
BMI	Branch on Result Minus	PLP	Pull Processor Status from Stack
BNE	Branch on Result not Zero		
BPL	Branch on Result Plus	ROL	Rotate One Bit Left (Memory or
BRK	Force Break		Accumulator)
BVC	Branch on Overflow Clear	ROR	Rotate One Bit Right (Memory or
BVS	Branch on Overflow Set	D.T.	Accumulator)
CLC	Clear Carry Flag	RTI	Return from Interrupt
CLD	Clear Decimal Mode	RTS	Return from Subroutine
CLI	Clear Interrupt Disable Bit	SBC	Subtract Memory from Accumulator
CLV	Clear Overflow Flag		with Borrow
CMP	Compare Memory and Accumulator	SEC	Set Carry Flag
CPX	Compare Memory and Index X	SED	Set Decimal Mode
CPY	Compare Memory and Index Y	SEI	Set Interrupt Disable Status
DEC	Decrement Memory by One	STA	Store Accumulator in Memory
DEX	Decrement Index X by One	STX	Store Index X in Memory
DEY	Decrement Index Y by One	STY	Store Index Y in Memory
EOR	"Exclusive-Or" Memory with	TAX	Transfer Accumulator to Index X
	Accumulator	TAY	Transfer Accumulator to Index Y
INC	Increment Memory by One	TSX	Transfer Stack Pointer to Index X
INX	Increment Index X by One	TXA	Transfer Index X to Accumulator
INY	increment Index Y by One	TXS	Transfer Index X to Stack Pointer
JMP	Jump to New Location	TYA	Transfer Index Y to Accumulator
JSR	Jump to New Location Saving		
3011	Return Address		

THE FOLLOWING NOTATION APPLIES TO THIS SUMMARY:

PROGRAMMING MODEL

INSTRUCTION CODES

"P" Status Reg. N Z C I D V

No. Bytes

A P 을

Assembly Language Form

> Addressing Mode

Operation ·

Name Description 2

BVS Oper

Branch on V=1 | Relative

Branch on overflow set

CLC Clear carry flag

3

--0---

8

CLC

Implied

O ↑ 0 ----0-

8

CLD

Implied

8

딩

Implied

100

Clear decimal mode

88

Implied

> ↑

CLV Clear overflow flag ₩ — W

Compare memory and accumulator

CMP

Name Description	Operation	Addressing Mode	Assembly Language Form	TEX Code	No. Bytes	"P" Status Reg. N Z C I D V
ADC Add memory to accumulator with carry	A-M-CA.C	Immediate Zero Page Zero Page.X	- 11	888	222	>>>>
		Absolute X Absolute.X Absolute.Y (indirect.X)	ADC Oper,X ADC Oper,X ADC (Oper,X) ADC (Oper,X) ADC (Oper,X)	8682C		
AND "AND" memory with accumulator	A	Immediate Zero Page Zero Page.X Absolute Absolute.X Absolute.Y (Indirect.X)	#	22882882	00000000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ASL Shiff left one bit (Memory or Accumulator)	(See Figure 1)	Accumulator Zero Page Zero Page.X Absolute Absolute.X	ASL A ASL Oper ASL Oper.X ASL Oper ASL Oper.X	88584	-0066	^^^
BCC Branch on carry clear	Branch on C=0	Relative	BCC Oper	8	2	
BCS Branch on carry set	Branch on C=1	Relative	BCS Oper	98	2	
BEQ Branch on result zero	Branch on Z=1	Relative	BEQ Oper	5	2	
BIT Test bits in memory with accumulator	A A M. M7 - N. M6 - V	Zero Page Absolute	BIT* Oper BIT* Oper	% %	3.8	M ₇ /M ₆
BMI Branch on result minus	Branch on N=1	Relative	BMI Oper	8	2	
BNE Branch on result not zero	Branch on Z=0	Relative	BNE Oper	8	2	
BPL Branch on result plus	Branch on N=0	Relative	BPL oper	10	2	
BRK Force Break	Forced Interrupt PC+2 + P +	Implied	BRK*	06	-	
BVC Branch on overflow clear	Branch on V=0	Relative	BVC Oper	ક્ષ	2	

····///

226

828

#Oper Oper Oper

\$ & &

Immediate Zero Page Absolute

Y — M

Compare memory and index Y

~~^^

8888

DEC Oper DEC Oper.X DEC Oper DEC Oper.X

Zero Page Zero Page.X Absolute Absolute,X

M-1+M

DEC Decrement memory by one

--///

228

閉解的

CPX #0per CPX 0per CPX 0per

Immediate Zero Page Absolute

¥ | ×

CPX Compare memory and index X

~~~/^/

22868825

CMP #Oper CMP Oper,X CMP Oper,X CMP Oper,X CMP Oper,X CMP (Oper,X)

Immediate
Zero Page
Zero Page
Zero Page. X
Absolute
Absolute.Y
(Indirect.X)

; 1 [ ]

88

DEY

Implied

 $\gamma - 1 \rightarrow \gamma$ 

DEY
Decrement index Y
by one

--/>

5

DEX

Implied

x - 1 - x

**DEX**Decrement index X
by one

Note 2 A BRK command cannot be masked by setting!
There 2 A BRK command cannot be masked by setting!
Then 2 Let otherwise 2 - 0

## INSTRUCTION CODES

|       | Operation                                | Addressing<br>Mode                                                                               | Assembly<br>Language<br>Form                                                                            | bly age                                                        | HEX<br>OP<br>Code                                                    | No.<br>Bytes | "P" Status Reg.<br>N Z C I D V         |
|-------|------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------|----------------------------------------|
| •     | A V M A                                  | Immediate Zero Page Zero Page.X Absolute Absolute.X Absolute.Y (Indirect.X) (Indirect.Y)         | EOR #Oper<br>EOR Oper<br>EOR Oper<br>EOR Oper<br>EOR Oper<br>EOR (Oper<br>EOR (Oper                     | fOper<br>Oper.X<br>Oper.X<br>Oper.X<br>Oper.Y<br>(Oper.X)      | 84 55 G G 8 14 25<br>24 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 | 00000000     |                                        |
|       | M + 1 → M                                | Zero Page<br>Zero Page,X<br>Absolute<br>Absolute,X                                               | INC Oper<br>INC Oper.X<br>INC Oper<br>INC Oper,X                                                        | × ×                                                            | 882                                                                  | 2266         | >>                                     |
| ×     | +1+X                                     | !mplied                                                                                          | XN                                                                                                      |                                                                | 83                                                                   | +            | ^^                                     |
| >-    | <del>+</del> +                           | Implied                                                                                          | Ν̈́                                                                                                     |                                                                | 8                                                                    | -            | ^/                                     |
| 2.5   | (PC+1) → PCL<br>(PC+2) → PCH             | Absolute<br>Indirect                                                                             | JMP Oper<br>JMP (Oper)                                                                                  | er)                                                            | 58                                                                   | ოო           |                                        |
| ع ع ع | PC+2 + .<br>(PC+1) - PCL<br>(PC+2) - PCH | Absolute                                                                                         | JSR Oper                                                                                                | _                                                              | 8                                                                    | m            |                                        |
| 2     | <b>∀</b>                                 | Immediate<br>Zero Page.<br>Zero Page.X<br>Absolute.X<br>Absolute.X<br>Absolute.Y<br>(Indirect.X) | LDA #Oper<br>LDA Oper-<br>LDA Oper-<br>LDA Oper-<br>LDA Oper-<br>LDA (Oper-<br>LDA (Oper-<br>LDA (Oper- | 40per<br>Oper, X<br>Oper, X<br>Oper, Y<br>Oper, Y<br>(Oper, X) | A5<br>A5<br>A0<br>B0<br>B1<br>A1                                     | 00000000     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| 2     | ×                                        | Immediate<br>Zero Page<br>Zero Page.Y<br>Absolute<br>Absolute                                    | LDX #0per<br>LDX Oper<br>LDX Oper,<br>LDX Oper,<br>LDX Oper                                             | fOper<br>Oper, Y<br>Oper, Y<br>Oper, Y                         | A2<br>A6<br>A6<br>B6<br>B6                                           | 22266        | ·^                                     |
|       | ) <del> </del> +                         | Immediate<br>Zero Page<br>Zero Page,X<br>Absolute<br>Absolute                                    | LDY #Oper<br>LDY Oper<br>LDY Oper<br>LDY Oper<br>LDY Oper                                               | 40per<br>Oper,X<br>Oper,X<br>Oper                              | 8C A 8                                                               | 00000        | ·^                                     |

| Name<br>Description                             | Operation      | Addressing<br>Mode                                                            | Language                                                                  | 6 g           | No.<br>Bytes | "P" Status Reg.<br>N Z C I D V |
|-------------------------------------------------|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|--------------|--------------------------------|
| LSR                                             |                |                                                                               |                                                                           |               |              | in the second                  |
| Shift right one bit<br>(memory or accumulator)  | (See Figure 1) | Accumulator<br>Zero Page<br>Zero Page,X<br>Absolute<br>Absolute,X             | LSR A<br>LSR Oper<br>LSR Oper,X<br>LSR Oper<br>LSR Oper,X                 | <b>4484</b> R | - 2266       | >>0                            |
| NOP                                             |                |                                                                               |                                                                           |               |              |                                |
| No operation                                    | No Operation   | Implied                                                                       | NOP                                                                       | Æ             | -            | -                              |
| ORA                                             |                |                                                                               |                                                                           |               |              |                                |
| "OR" memory with accumulator                    | A V M + A      | Immediate Zero Page.X Zero Page.X Absolute Absolute.X Absolute.Y (Indirect.X) | ORA #Oper<br>ORA Oper<br>ORA Oper<br>ORA Oper<br>ORA Oper,X<br>ORA Oper,Y | 8828552       | NN00000      | <b>&gt;</b>                    |
| PHA                                             |                | (monacr), r                                                                   | una (uper), r                                                             | =             | 7            |                                |
| Push accumulator<br>on stack                    | ¥ 4            | Implied                                                                       | РНА                                                                       | 48            | -            |                                |
| PHP                                             |                |                                                                               |                                                                           |               |              |                                |
| Push processor status<br>on stack               | ÷              | Implied                                                                       | РНР                                                                       | 8             | -            |                                |
| PLA                                             |                |                                                                               |                                                                           |               |              |                                |
| Pull accumulator<br>from stack                  | <del>+</del> × | Implied                                                                       | PLA                                                                       | 8             | -            | ·>>                            |
| PLP                                             |                |                                                                               |                                                                           |               |              |                                |
| Pull processor status<br>from stack             | <u>.</u>       | Implied                                                                       | 7.1                                                                       | 88            | -            | From Stack                     |
| ROL                                             |                |                                                                               |                                                                           |               |              |                                |
| Rotate one bit left<br>(memory or accumulator)  | (See Figure 2) | Accumulator<br>Zero Page<br>Zero Page,X<br>Absolute<br>Absolute,X             | ROL A<br>ROL Oper<br>ROL Oper,X<br>ROL Oper<br>ROL Oper                   | <b>388</b> 25 | -0000        |                                |
| ROR                                             |                |                                                                               |                                                                           |               |              |                                |
| Rotate one bit right<br>(memory or accumulator) | (See Figure 3) | Accumulator<br>Zero Page<br>Zero Page.X<br>Absolute                           | ROR A<br>ROR Oper<br>ROR Oper,X<br>ROR Oper                               | 2888          | -228         | · · · · · › ›                  |

## INSTRUCTION CODES

|                                |                              |                            | _                                                                                             |                       |                         | ·····                                  |                                                                                             | <b>T</b>                             | · · · · · · · · · · · · · · · · · · · |                                     | ·                                    |                                       |
|--------------------------------|------------------------------|----------------------------|-----------------------------------------------------------------------------------------------|-----------------------|-------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|
| "P" Status Reg.<br>N Z C I D V | From Stack                   |                            | \^^^                                                                                          | 1                     |                         |                                        |                                                                                             |                                      |                                       | //                                  | ^^                                   | />                                    |
| No.<br>Bytes                   | -                            | 1                          | 22288822                                                                                      | 1                     |                         | ŀ                                      | 2288822                                                                                     | 200                                  | 325                                   | -                                   | -                                    | -                                     |
| HEX<br>OP<br>Code              | 40                           |                            | 888896871                                                                                     | 88                    | F8                      | 8/2                                    | 8888826                                                                                     | 888                                  | 22.8                                  | ¥¥                                  | A8                                   | BA                                    |
| Assembly<br>Language<br>Form   | RTI                          | RTS                        | SBC #Oper<br>SBC Oper.X<br>SBC Oper.X<br>SBC Oper.X<br>SBC Oper.X<br>SBC Oper.X<br>SBC Oper.X | SEC                   | SED                     | SEI                                    | STA Oper<br>STA Oper X<br>STA Oper STA Oper X<br>STA Oper Y<br>STA (Oper X)<br>STA (Oper X) | STX Oper<br>STX Oper,Y<br>STX Oper   | STY Oper<br>STY Oper,X<br>STY Oper    | TAX                                 | TAY                                  | TSX                                   |
| Addressing<br>Mode             | Implied                      | Implied                    | Immediate<br>Zero Page<br>Zero Page.X<br>Absolute<br>Absolute.X<br>Absolute.X<br>(Indirect.X) | Implied               | Implied                 | Implied                                | Zero Page<br>Zero Page.X<br>Absolute<br>Absolute.X<br>Absolute.Y<br>(Indirect.X)            | Zero Page<br>Zero Page,Y<br>Absolute | Zero Page<br>Zero Page,X<br>Absolute  | Implied                             | Implied                              | Implied                               |
| Operation                      | P + PC +                     | PC+, PC+1 →PC Implied      | A · M · G + A                                                                                 | 1 <b>+</b> C          | 1+0                     | <u> </u>                               | A M                                                                                         | W ×                                  | W → ,                                 | A X                                 | A Y                                  | S + X                                 |
| Name<br>Description            | RTI<br>Return from interrupt | RTS Return from subroutine | Subtract memory from accumulator with borrow                                                  | SEC<br>Set carry flag | SED<br>Set decimal mode | SEI<br>Set interrupt disable<br>status | STA Store accumulator in memory                                                             | Store index X in memory              | Store index Y in memory               | TAX Transfer accumulator to index X | TAY  Transfer accumulator to index Y | TSX Transfer stack pointer to index X |

| Name<br>Description               | Operation         | Addressing<br>Mode | Assembly<br>Language<br>Form | 다.<br>다. | No.<br>Bytes | No. "P" Status Reg.<br>Bytes N Z C i D V |
|-----------------------------------|-------------------|--------------------|------------------------------|----------|--------------|------------------------------------------|
| TXA                               |                   |                    |                              |          |              |                                          |
| Transfer index X to accumulator   | <b>∀</b> ×        | Implied            | TXA                          | ₩        | -            | <u>&gt;</u> >                            |
| TXS                               |                   |                    |                              |          |              |                                          |
| Transfer index X to stack pointer | \$ <del>+</del> × | Implied            | TXS                          | 8        | -            |                                          |
| TYA                               |                   |                    |                              |          |              |                                          |
| Transfer index Y                  | <b>∀ + ∀</b>      | Implied            | TYA                          | 86       | -            | ·//                                      |

# HEX OPERATION CODES

| 00 - BRK                 | 2F - NOP                | 5E LSR Absolute, X         | 8D - STA - Absolute     |                          |                         |
|--------------------------|-------------------------|----------------------------|-------------------------|--------------------------|-------------------------|
| 01 - ORA - (Indirect, X) | 30 - BMI                | 2                          |                         |                          | DB - NOP                |
| aON ≃ 20                 |                         |                            |                         | B5 — LDA — Zero Page, X  | DC - NOP                |
|                          |                         | l                          |                         | B6 — LDX — Zero Page, Y  | DO - CMP - Appoints v   |
| ı                        | 32 - NOP                | 61 - ADC - (Indirect, X)   | 90 - BCC                | B7 - NOP                 | A STORY - ADSOIDLE A    |
| 1                        | 33 - NOP                | 62 - NOP                   | 91 - STA - (Indirect) Y | - 1                      | DE - DEC - Absolute, X  |
| 05 - ORA - Zero Page     | 34 - NOP                | 63 - NOP                   | 92 - NOP                |                          |                         |
| 06 ASL Zero Page         | 35 - AND - Zero Page, X | 64 - NOP                   | 1                       | DA TEX                   | ı                       |
| 07 NOP                   | 36 - ROL - Zero Page, X | 1                          | ١                       | 19X                      | 1                       |
| 08 - PHP                 | 1                       | -                          |                         | BB NOP                   | E2 - NOP                |
| 09 - OBA - Immediate     | ł                       |                            | ı                       | BC — LDY — Absolute. X   | E3 - NOP                |
| ١                        | 2 4                     | i                          | 1                       | BD - LDA - Absolute, X   | E4 - CPX - Zero Page    |
| ١                        | ı                       | i                          | I                       |                          | E5 - SBC - Zero Page    |
|                          | SA - NOF                | 69 - ADC - Immediate       | 1                       | BF — NOP                 | F6 - INC - Zero Bano    |
| ı                        | 3B - NOP                | 6A - ROR - Accumulator     | 99 - STA - Absolute, Y  | C0 — CPY — Immediate     | - 1                     |
| 1                        | 3C - NOP                | 6B - NOP                   | 9A TXS                  | C1 — CMP — (Indirect X)  | ١.                      |
| 1                        | 3D - AND - Absolute, X  | 6C - JMP - Indirect        | 9B — NOP                | C2 — NOP                 |                         |
| 0F - NOP                 | 3E - ROL - Absolute, X  | 6D - ADC - Absolute        | 9C - NOP                |                          | ES — SBC — Immediate    |
| 10 — 8원                  | 3F - NOP                |                            | 9D - STA - Absolute x   |                          | EA - NOP                |
| 11 - ORA - (Indirect), Y | 40 - RTI                | ١                          | aCN — a6                | ı                        | EB - NOP                |
| 12 - NOP                 | 41 - EOR - (Indirect X) |                            | ION - JB                |                          | EC — CPX — Absolute     |
| 13 - NOP                 | 42 - NOP                |                            |                         | 1                        | ED — SBC — Absolute     |
| ١                        |                         | ļ                          | ١                       | C7 — NOP                 | EE - INC - Absolute     |
|                          | ı                       | 1                          | 1                       | C8 — INY                 | EF - NOP                |
| 1                        | ı                       | 73 — NOP                   | A2 — LDX — Immediate    | C9 — CMP — Immediate     | FO - BEO                |
| 1                        | 45 — EOR — Zero Page    | 74 - NOP                   | A3 — NOP                | CA - DEX                 |                         |
| ı                        | 46 - LSR - Zero Page    | 75 - ADC - Zero Page, X    | A4 — LDY — Zero Page    | CB - NOP                 | 1                       |
| 18 - CLC                 | 47 NOP                  | 76 - ROR - Zero Page, X    | A5 - LDA - Zero Page    | CC — CPV — Absolute      | ļ                       |
| 19 ORA Absolute, Y       | 48 - PHA                | 1                          | A6 — LDX — Zero Page    |                          |                         |
| 1A - NOP                 | 49 - EOR - Immediate    | 1                          | - 1                     | CD CMT - Absolute        |                         |
| ļ                        | - (                     | 1                          |                         | CE - DEC - Absolute      | F5 - SBC - Zero Page, X |
|                          |                         |                            | 1                       | CF - NOP                 | F6 — INC — Zero Page, X |
| 100 0                    | NOV - OF                |                            | A9 LDA Immediate        | DO - BNE                 | F7 - NOP                |
| ı                        | i                       | 7B NOP                     | AA — TAX                | D1 — CMP — (Indirect), Y | FR - SED                |
| 1                        | 1                       | 7C - NOP                   | AB - NOP                | D2 - NOP                 |                         |
| ı                        | 1                       | 7D - ADC - Absolute, X NOP | AC LDY Absolute         | D3 - NOP                 |                         |
| ł                        |                         | 7E — ROR — Absolute, X NOP | AD - Absolute           | D4 - NOP                 |                         |
| ļ                        | 50 - BVC                | 7F — NOP                   | AE LDX Absolute         | - 1                      |                         |
| I                        | 51 - EOR (Indirect), Y  | 80 - NOP                   | AF - NOP                | İ                        | NOT OF                  |
| 1                        | 52 - NOP                | 81 - STA - (Indirect, X)   | B0 BCS                  | 2 2                      | FU SBC Absolute, X      |
| 24 - BIT - Zero Page     | 53 - NOP                | 1                          | B1 - LÔA - (Indirect) V |                          |                         |
| 25 — AND — Zero Page     | NOP - NOP               |                            | B2 NOP                  | DO - CMB Absolute &      | FF - NOP                |
| 26 - ROL - Zero Page     | 55 - FOR - Zero Page X  | ļ                          | B3 - NOP                | DA MOR - Absolute, 1     |                         |
| 27 NOP                   | 1                       | 1                          |                         | 1                        |                         |
| 28 - PLP                 | 1                       |                            |                         |                          |                         |
| 29 - AND - Immediate     | 58 - CLI                |                            |                         |                          |                         |
| 2A - BOt - Accumulator   | ı                       |                            |                         |                          |                         |
|                          |                         | l                          |                         |                          |                         |
| FON I GO                 | 1                       |                            |                         |                          |                         |
| 2C — BII — Absolute      | 58 - NOP                | 8A — TXA                   |                         |                          |                         |
| 1                        | 1                       | 8B - NOP                   |                         |                          |                         |
| 2E — ROL — Absolute      | 5D — EOR — Absolute, X  | 8C — STY — Absolute        |                         |                          |                         |

# APPLE II HARDWARE

- 1. Getting Started with Your APPLE II Board
- 2. APPLE II Switching Power Supply
- 3. Interfacing with the Home TV
- 4. Simple Serial Output
- 5. Interfacing the APPLE Signals, Loading, Pin Connections
- 6. Memory Options, Expansion, Map, Address
- 7. System Timing
- 8. Schematics

# GETTING STARTED WITH YOUR APPLE II BOARD

# INTRODUCTION

# ITEMS YOU WILL NEED:

Your APPLE II board comes completely assembled and thoroughly tested. You should have received the following:

- a. 1 ea. APPLE II P.C. Board complete with specified RAM memory.
- b. lea. d.c. power connector with cable.
- c. 1 ea. 2" speaker with cable.
- d. 1 ea. Preliminary Manual
- e. 1 ea. Demonstration cassette tapes. (For 4K: 1 cassette (2 programs); 16K or greater: 3 cassettes.
- f. 2 ea. 16 pin headers plugged into locations A7 and J14.

# In addition you will need:

- g. A color TV set (or B & W) equipped with a direct video input connector for best performance or a commercially available RF modulator such as a "Pixi-verter" tm Higher channel (7-13) modulators generally provide better system performance than lower channel modulators (2-6).
- The following power supplies (NOTE: current ratings do not include any capacity for peripheral boards.):
  - 1. +12 Volts with the following current capacity:
    - a. For 4K or 16K systems 350mA.
    - b. For 8K, 20K or 32K 550mA.
    - c. For 12K, 24K, 36K or 48K 850mA.
  - 2. +5 Volts at 1.6 amps
  - 3. -5 Volts at 10mA.
  - 4. OPTIONAL: If -12 Volts is required by your keyboard. (If using an APPLE II supplied keyboard, you will need -12V at 50mA.)

- i. An audio cassette recorder such as a Panasonic model RQ-309 DS which is used to load and save programs.
- j. An ASCII encoded keyboard equipped with a "reset" switch.
- k. Cable for the following:
  - 1. Keyboard to APPLE II P.C.B.
  - 2. Video out 75 ohm cable to TV or modulator
  - 3. Cassette to APPLE II P.C.B. (1 or 2)

# Optionally you may desire:

- Game paddles or pots with cables to APPLE II Game I/O connector. (Several demo programs use PDL(O) and "Pong" also uses PDL(1).
- m. Case to hold all the above

# Final Assembly Steps

- 1. Using detailed information on pin functions in hardware section of manual, connect power supplies to d.c. cable assembly. Use both ground wires to miminize resistance. With cable assembly disconnected from APPLE II mother board, turn on power supplies and verify voltages on connector pins. Improper supply connections such as reverse polarity can severely damage your APPLE II.
- Connect keyboard to APPLE II by unplugging leader in location A7 and wiring keyboard cable to it, then plug back into APPLE II P.C.B.
- 3. Plug in speaker cable.
- 4. Optionally connect one or two game paddles using leader supplied in socket located at J14.
- 5. Connect video cable.
- Connect cable from cassette monitor output to APPLE II cassette input.
- 7. Check to see that APPLE II board is not contacting any conducting surface.
- 8. With power supplies turned off, plug in power connector to mother board then recheck all cableing.

# POWER UP

- 1. Turn power on. If power supplies overload, immediately turn off and recheck power cable wiring. Verify operating supply voltages are within +3% of nominal value.
- 2. You should now have random video display. If not check video level pot on mother board, full clockwise is maximum video output. Also check video cables for opens and shorts. Check modulator if you are using one.
- 3. Press reset button. Speaker should beep and a "\*" prompt character with a blinking cursor should appear in lower left on screen.
- 4. Press "esc" button, release and type a "@" (shift-P) to clear screen. You may now try "Monitor" commands if you wish. See details in "Monitor" software section.

# RUNNING BASIC

- Turn power on; press reset button; type "control B" and press return button. A ">" prompt character should appear on screen indicating that you are now in BASIC.
- 2. Load one of the supplied demonstration cassettes into recorder. Set recorder level to approximately 5 and start recorder. Type "LOAD" and return. First beep indicates that APPLE II has found beginning of program; second indicates end of program followed by ">" character on screen. If error occurs on loading, try a different demo tape or try changing cassette volume level.
- Type RUN and carriage return to execute demonstration program.
   Listings of these are included in the last section of this
   manual.

### THE APPLE II SWITCHING POWER SUPPLY

Switching power supplies generally have both advantages and peculiarities not generally found in conventional power supplies. The Apple II user is urged to review this section.

Your Apple II is equipped with an AC line voltage filter and a three wire AC line cord. It is important to make sure that the third wire is returned to earth ground. Use a continuity checker or ohmmeter to ensure that the third wire is actually returned to earth. Continuity should be checked for between the power supply case and an available water pipe for example. The line filter, which is of a type approved by domestic (U.L. CSA) and international (VDE) agencies must be returned to earth to function properly and to avoid potential shock hazards.

The APPLE II power supply is of the "flyback" switching type. In this system, the AC line is rectified directly, "chopped up" by a high frequency oscillator and coupled through a small transformer to the diodes, filters, etc., and results in four low voltage DC supplies to run APPLE II. The transformer isolates the DC supplies from the line and is provided with several shields to prevent "hash" from being coupled into the logic or peripherals. In the "flyback" system, the energy transferred through from the AC line side to DC supply side is stored in the transformer's inductance on one-half of the operating cycle, then transferred to the output filter capacitors on the second half of the operating cycle. Similar systems are used in TV sets to provide horizontal deflection and the high voltages to run the CRT.

Regulation of the DC voltages is accomplished by controlling the frequency at which the converter operates; the greater the output power needed, the lower the frequency of the converter. If the converter is overloaded, the operating frequency will drop into the audible range with squeels and squawks warning the user that something is wrong.

All DC outputs are regulated at the same time and one of the four outputs (the +5 volt supply) is compared to a reference voltage with the difference error fed to a feedback loop to assist the oscillator in running at the needed frequency. Since all DC outputs are regulated together, their voltages will reflect to some extent unequal loadings.

For example; if the +5 supply is loaded very heavily, then all other supply voltages will increase in voltage slightly; conversely, very light loading on the +5 supply and heavy loading on the +12 supply will cause both it and the others to sag lightly. If precision reference voltages are needed for peripheral applications, they should be provided for in the peripheral design.

In general, the APPLE II design is conservative with respect to component ratings and operating termperatures. An over-voltage crowbar shutdown system and an auxilliary control feedback loop are provided to ensure that even very unlikely failure modes will not cause damage to the APPLE II computer system. The over-voltage protection references to the DC output voltages only. The AC line voltage input must be within the specified limits, i.e., 197V to 132V.

Under no circumstances, should more than 140 VAC be applied to the input of the power supply. Permanent damage will result.

Since the output voltages are controlled by changing the operating frequency of the converter, and since that frequency has an upper limit determined by the switching speed of power transistors, there then must be a minimum load on the supply; the Apple II board with minimum memory (4K) is well above that minimum load. However, with the board disconnected, there is no load on the supply, and the internal over-voltage protection circuitry causes the supply to turn off. A 9 watt load distributed roughly 50-50 between the +5 and +12 supply is the nominal minimum load.

Nominal load current ratios are: The +12V supply load is  $\frac{1}{2}$  that of the +5V. The -5V supply load is  $\frac{1}{10}$  that of the +5V. The -12V supply load is  $\frac{1}{10}$  that of the +5V.

The supply voltages are  $+5.0 \pm 0.15$  volts,  $+11.8 \pm 0.5$  volts,  $-12.0 \pm 10$ ,  $-5.2 \pm 0.5$  volts. The tolerances are greatly reduced when the loads are close to nominal.

The Apple II power supply will power the Apple II board and all present and forthcoming plug-in cards, we recommend the use of low power TTL, CMOS, etc. so that the total power drawn is within the thermal limits of the entire system. In particular, the user should keep the total power drawn by any one card to less than 1.5 watts, and the total current drawn by all the cards together within the following limits:

+ 12V - use no more than 250 mA + 5V - use no more than 500 mA - 5V - use no more than 200 mA - 12V - use no more than 200 mA

The power supply is allowed to run indefinetly under short circuit or open circuit conditions.

CAUTION: There are dangerous high voltages inside the power supply case. Much of the internal circuitry is NOT isolated from the power line, and special equipment is needed for service. NO REPAIR BY THE USER IS ALLOWED.

### NOTES ON INTERFACING WITH THE HOME TV

Accessories are available to aid the user in connecting the Apple II system to a home color TV with a minimum of trouble. These units are called "RF Modulators" and they generate a radio frequency signal corresponding to the carrier of one or two of the lower VHF television bands; 61.25 MHz (channel 3) or 67.25 MHz (channel 4). This RF signal is then modulated with the composite video signal generated by the Apple II.

Users report success with the following RF modulators:

the "PixieVerter" (a kit) ATV Research 13th and Broadway Dakota City, Nebraska 68731

the "TV-1" (a kit) UHF Associates 6037 Haviland Ave. Whittier, CA 90601

the "Sup-r-Mod" by (assembled & tested)
M&R Enterprises
P.O. Box 1011
Sunnyvale, CA 94088

the RF Modulator (a P.C. board) Electronics Systems P.O. Box 212<sup>-</sup> Burlingame, CA 94010

Most of the above are available through local computer stores.

The Apple II owner who wishes to use one of these RF Modulators should read the following notes carefully.

All these modulators have a free running transistor oscillator. The M&R Enterprises unit is pre-tuned to Channel 4. The PixieVerter and the TV-1 have tuning by means of a jumper on the P.C. board and a small trimmer capacitor. All these units have a residual FM which may cause trouble if the TV set in use has a IF pass band with excessive ripple. The unit from M&R has the least residual FM.

All the units except the M&R unit are kits to be built and tuned by the customer. All the kits are incomplete to some extent. The unit from Electronics Systems is just a printed circuit board with assembly instructions. The kits from UHF Associates and ATV do not have an RF cable or a shielded box or a balun transformer, or an antenna switch. The M&R unit is complete.

Some cautions are in order. The Apple II, by virtue of its color graphics capability, operates the TV set in a linear mode rather than the 100% contrast mode satisfactory for displaying text. For this reason, radio frequency interference (RFI) generated by a computer (or peripherals) will beat with the

carrier of the RF modulator to produce faint spurious background patterns (called "worms") This RFI "trash" must be of quite a low level if worms are to be prevented. In fact, these spurious beats must be 40 to 50db below the signal level to reduce worms to an acceptable level. When it is remembered that only 2 to 6 mV (across  $300\Omega$ ) is presented to the VHF input of the TV set, then stray RFI getting into the TV must be less than  $50\mu V$ to obtain a clean picture. Therefore we recommend that a good, co-ax cable be used to carry the signal from any modulator to the TV set, such as RG/59u (with copper shield), Belden #8241 or an equivalent miniature type such as Belden #8218. We also recommend that the RF modulator be enclosed in a tight metal box (an unpainted die cast aluminum box such as Pomona #2428). Even with these precautions, some trouble may be encountered with worms, and can be greatly helped by threading the coax cable connecting the modulator to the TV set repeatedly through a Ferrite toroid core. Apple Computer supplies these cores in a kit, along with a 4 circuit connector/cable assembly to match the auxilliary video connector found on the Apple II board. This kit has order number A2MØ1ØX. The M&R "Sup-r-Mod" is supplied with a coax cable and toroids.

Any computer containing fast switching logic and high frequency clocks will radiate some radio frequency energy. Apple II is equipped with a good line filter and many other precautions have been taken to minimize radiated energy. The user is urged not to connect "antennas" to this computer; wires strung about carrying clocks and/data will act as antennas, and subsequent radiated energy may prove to be a nuisance.

Another caution concerns possible long term effects on the TV picture tube. Most home TV sets have "Brightness" and "Contrast" controls with a very wide range of adjustment. When an un-changing picture is displayed with high brightness for a long period ,a faint discoloration of the TV CRT may occur as an inverse pattern observable with the TV set turned off. This condition may be avoided by keeping the "Brightness" turned down slightly and "Contrast" moderate.

### A SIMPLE SERIAL OUTPUT

The Apple II is equipped with a 16 pin DIP socket most frequently used to connect potentiometers, switches, etc. to the computer for paddle control and other game applications. This socket, located at J-14, has outputs available as well. With an appropriate machine language program, these output lines may be used to serialize data in a format suitable for a teletype. A suitable interface circuit must be built since the outputs are merely LSTTL and won't run a teletype without help. Several interface circuits are discussed below and the user may pick the one best suited to his needs.

# The ASR - 33 Teletype

The ASR - 33 Teletype of recent vintage has a transistor circuit to drive its solenoids. This circuit is quite easy to interface to, since it is provided with its own power supply. (Figure la) It can be set up for a 20mA current loop and interfaced as follows (whether or not the teletype is strapped for full duplex or half duplex operation):

- a) The yellow wire and purple wire should both go to terminal 9 of Terminal Strip X. If the purple wire is going to terminal 8, then remove it and relocate it at terminal 9. This is necessary to change from the 60mA current loop to the 20mA current loop.
- b) Above Terminal Strip X is a connector socket identified as "2". Pin 8 is the input line + or high; Pin 7 is the input line or low. This connector mates with a Molex receptacle model 1375 #03-09-2151 or #03-09-2153. Recommended terminals are Molex #02-09-2136. An alternate connection method is via spade lugs to Terminal Strip X, terminal 7 (the + input line) and 6 (the input line).
- c) The following circuit can be built on a 16 pin DIP component carrier and then plugged into the Apple's 16 pin socket found at J-14: (The junction of the 3.3k resistor and the transistor base lead is floating). Pins 16 and 9 are used as tie points as they are unconnected on the Apple board. (Figure 1a).

The "RS - 232 Interface"

For this interface to be legitimate, it is necessary to twice invert the signal appearing at J-14 pin 15 and have it swing more than 5 volts both above and below ground. The following circuit does that but requires that both +12 and -12 supplies be used. (Figure 2) Snipping off pins on the DIP-component carrier will allow the spare terminals to be used for tie points. The output ground connects to pin 7 of the DB-25 connector. The signal output connects to pin 3 of the DB-25 connector. The "protective" ground wire normally found on pin 1 of the DB-25 connector may be connected to the Apple's base plate if desired. Placing a #4 lug under one of the four power supply mounting screws is perhaps the simplest method. The +12 volt supply is easily found on the auxiliary Video connector (see Figure S-11 or Figure 7 of the manual). The -12 volt supply may be found at pin 33 of the peripheral connectors (see Figure 4) or at the power supply connector (see Figure 5 of the manual).

# A Serial Out Machine Center Language Program

Once the appropriate circuit has been selected and constructed a machine language program is needed to drive the circuit. Figure 3 lists such a teletype output machine language routine. It can be used in conjunction with an Integer BASIC program that doesn't require page \$300 hex of memory. This program resides in memory from \$370 to \$3E9. Columns three and four of the listing show the op-code used. To enter this program into the Apple II the following procedure is followed:

# Entering Machine Language Program

- 1. Power up Apple II
- 2. Depress and release the "RESET" key. An asterick and flashing cursor should appear on the left hand side of the screen below the random text matrix.
- 3. Now type in the data from columns one, two and three for each line from \$370 to 03E9. For example, type in "370: A9 82" and then depress and release the "RETURN" key. Then repeat this procedure for the data at \$372 and on until you complete entering the program.

# Executing this Program

1. From BASIC a CALL 880 (\$370) will start the execution of this program. It will use the teletype or suitable 80 column printer as the primary output device.

- 2. PR#Ø will inactivate the printer transfering control back to the Video monitor as the primary output device.
- 3. In Monitor mode \$37ØG activates the printer and hitting the "RESET" key exits the program.

Saving the Machine Language Program

After the machine language program has been entered and checked for accuracy it should, for convenience, be saved on tape - that is unless you prefer to enter it by keyboard every time you want to use it.

The way it is saved is as follows:

- 1. Insert a blank program cassette into the tape recorder and rewind it.
- 2. Hit the "RESET" key. The system should move into Monitor mode. An asterick "\*" and flashing cursor should appear on the left-hand side of the screen.
- 3. Type in "370.03E9W 370.03E9W".
- 4. Start the tape recorder in record mode and depress the "RETURN" key.
- 5. When the program has been written to tape, the asterick and flashing cursor will reappear.

# The Program

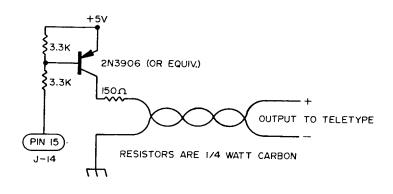
After entering, checking and saving the program perform the following procedure to get a feeling of how the program is used:

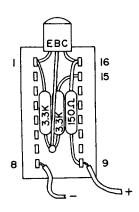
- 1. B<sup>C</sup> (control B) into BASIC
- 2. Turn the teletype (printer on)
- 3. Type in the following

10 CALL 88Ø

15 PRINT "ABCD...XYZØ1123456789"

20 PR#Ø


25 END


4. Type in RUN and hit the "RETURN" key. The text in line 15 should be printed on the teletype and control is returned to the keyboard and Video monitor.

Line 10 activates the teletype machine routine and all "PRINT" statements following it will be printed to the teletype until a PR#0 statement is encountered. Then the text in line 15 will appear on the teletype's output. Line 20 deactivates the printer and the program ends on line 25.

# Conclusion

With the circuits and machine language program described in this paper the user may develop a relatively simple serial output interface to an ASR-33 or RS-232 compatible printers. This circuit can be activated through BASIC or monitor modes. And is a valuable addition to any users program library.





(a) (b) FIGURE 1 ASR-33

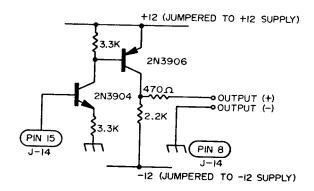



FIGURE 2 RS-232

PAGE: 1

# 3:42 P.M., 11/18/1977

```
TITLE 'TELETYPE DRIVER ROUTINES'
                 1
                 2
                      ***********
                 3
                              TTYDRIVER:
                                                 *
                 4
                            TELETYPE OUTPUT
                                                 *
                 5
                            ROUTINE FOR 72
                 6
                            COLUMN PRINT WITH
                 7
                 8
                            BASIC LIST
                 9
                          COPYRIGHT 1977 BY:
                 10
                          APPLE COMPUTER INC.
                 11
                              11/18/77
                 12
                 13
                             R. WIGGINTON
                 14
                             S. WOZNIAK
                 15
                 16
                      ********
                 17
                                                       ;FOR APPLE-II
                      WNDWDTH
                                  EQU
                                        $21
                 18
                                                       ; CURSOR HORIZ.
                                        $24
                                  EQU
                 19
                      CH
                                                       ; CHAR. OUT SWITCH
                                  EQU
                                        $36
                 20
                      CSWL
                                  Edn
                      YSAVE
                                        $778
                 21
                                                       ;COLUMN COUNT LOC.
                                  EQU
                                        37F8
                 22
                      COLCNT
                                  EQU
                                        $C058
                 23
                      MARK
                                  EQU
                                        $C059
                      SPACE
                 24
                                        $FCA8
                                   E 37
                 25
                      WAIT
                                   ORG
                                        $370
                 26
***WARNING: OPERAND OVERFLOW IN LINE 27
                                        #TTOUT
                      TTINIT:
                                   LDA
       A9 82
                 27
0370:
                                                       ; POINT TO TTY ROUTINES
                                   STA
                                        CSWL
       85 36
                 28
0372:
                                        #TT0UT/256
                                                       ;HIGH BYTE
                 29
                                   LDA
       A9 03
0374:
                                   STA
                                        CSWL+1
                 30
       85 37
0376:
                                                       ; SET WINDOW WIDTH
                                   LDA
                                        #72
                 31
0378:
       A9 48
                                                       ;TO NUMBER COLUMNS ONY
                                        UNDWDTH
                                   STA
       85 21
                 32
037A:
                                   LDA
                                        CH
       A5 24
                 33
037C:
                                                       ; WHERE WE ARE NOW.
                                        COLCNT
                                   STA
       8D F8 07 34
037E:
                                   RTS
                 35
0381:
       60
                                                       ; SAVE TWICE
                                   PHA
                       TTOUT:
       48
                 36
0382:
                                                       JON STACK.
                                   PHA
                 37
       48
0383:
                                                       ;CHECK FOR A TAB.
                                        COLCNT
       AD F8 07 38
                       TTOUT2:
                                   LDA
0384:
                                   CMP
                                        CH
                 39
       C5 24
0387:
                                                       ; RESTORE OUTPUT CHAR.
                                   PLA
0389:
       68
                 40
                                                       ; IF C SET, NO TAB
                                        TESTCTRL
                                   BCS
       BO 03
                 41
038A:
                                   PHA
                 42
       48
038C:
                                                       ;PRINT A SPACE.
                                   LDA
                                         #3A0
                 43
       A9 A0
038D:
                                                       TRICK TO DETERMINE
                                   TIE
                                         RTS1
                       TESTCTRL:
       2C CO 03 44
038F:
                                                       ; IF CONTROL CHAR.
                                        PRNTIT
                                   BEQ
       FO 03
                 45
0392:
                                                       ; IF NOT, ADD ONE TO CE
                                         COLCNT
       EE F8 07 46
                                   INC
0394:
                                                       ; PRINT THE CHAR ON TTY
                       PRNTIT:
                                   JSR
                                         DOCHAR
       20 C1 03 47
0397:
                                                       :RESTORE CHAR
                                   PLA
                  48
039A:
       68
                                                       ; AND PUT BACK ON STACK
                                   PHA
                  49
039B:
       48
                                                       ; DO MORE SPACES FOR TA
                                   BCC
                                         TTOUT2
                 50
0390:
        90 E6
                                                       JCHECK FOR CAR RET.
                                         #30D
        49 OD
                                   EOR
                 51
039E:
                                                       JELIM PARITY
                                   ASL
                  52
                                         Α
03A0:
        0A
                                                       ; IF NOT CR, DONE.
                                         FINISH
                                   BNE
                  53
03A1:
        DO OD
```

FIGURE 3a

### TELETYPE DRIVER ROUTINES PAGE: 2 3:42 P.M., 11/18/1977 CLEAR COLUMN COUNT STA COLCNT 8D F8 07 54 03A3: ; NOW DO LINE FEED LDA #38A A9 8A 55 03A6: JSR DOCHAR 20 C1 03 56 03A8: LDA #\$58 57 03AB: A9 58 ;200MSEC DELAY FOR LIB **WAIT** JSR 03AD: 20 A8 FC 58 CHECK IF IN MARGIN LDA COLCNT AD F8 07 59 FINISH: 0380: FOR CR. RESET CH BEQ SETCH FO 08 60 03B3: ; IF SO, CARRY SET. SBC HTGWGWW 03B5: E5 21 61 SBC #5F7 03B7: E9 F7 62 RETURN BCC 03B9: 90 04 63 ;ADJUST CH ADC #\$1F 03BB: 69 1F 64 STA CH 65 SETCH: 03BD: 85 24 PLA RETURN: 03BF: 66 68 RETURN TO CALLER RTS1: RTS 67 0300: 60 \* HERE IS THE TELETYPE PRINT A CHARACTER ROUTINE: 03C1: 8C 78 07 69 DOCHAR: STY YSAVE ; SAVE STATUS. 70 PHP 0304: 08 ; IL BITS (I START, 8 R LDY 03C5: A0 0B 71 #\$0B ; BEGIN WITH SPACE (STE CLC 72 0307: 18 ; SAVE A REG AND SET FOL PHA 03C8: 48 **73** TTOUT3: 03C9: B0 05 74 BCS MARKOUT LDA SPACE ;SEND A SPACE 03CB: AD 59 CO 75 03CE: 90 03 BCC TTOUT4 76 03D0: AD 58 CO 77 MARKOUT: LDA MARK ; SEND A MARK ;DELAY 9.091 MSEC FOR TTOUT4: LDA #\$D7 03D3: A9 D7 78 PHA ;110 BAUD 79 DLY1: 03D5: 48 LDA #\$20 A9 20 80 03D6: LSR 03D8: 4A 81 DLY2: Α 82 BCC DLY3 03D9: 90 FD PLA 03DB: 68 83 03DC: E9 01 SBC #501 84 03DE: D0 F5 85 BNE DLYI 03E0: 68 36 PLA

ROR

DEY

BNE

 $\mathsf{PLP}$ 

RTS

TTOUT3

LDY YSAVE

;NEXT BIT (STOP BITS E

LOOP II BITS.

; RETURN

; RESTORE Y-REG.

; RESTORE STATUS

FIGURE 3b

37

88

89

91

92

\*\*\*\*\*\*\*SUCCESSFUL ASSEMBLY: NO ERRORS

03E1:

03E2:

6A 88

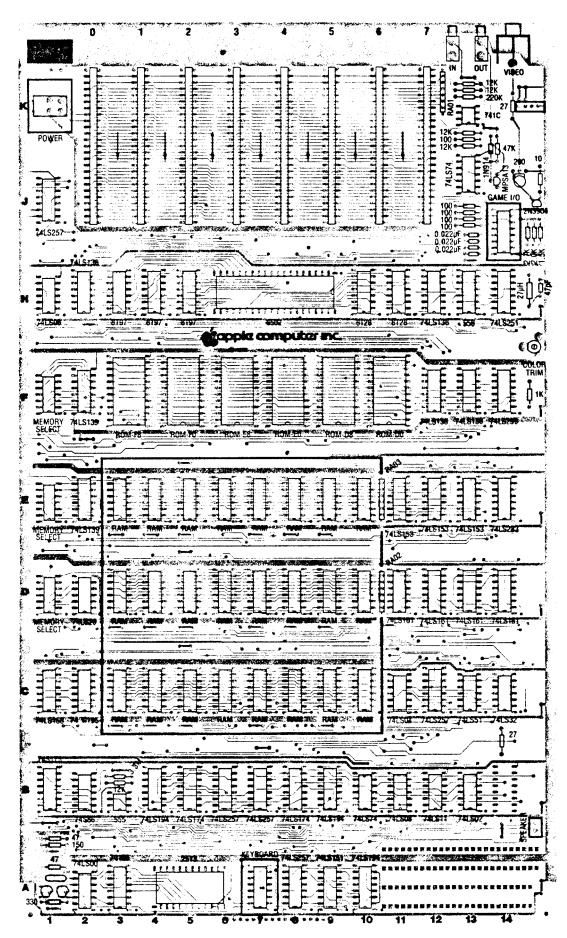
03E5: AC 78 07 90

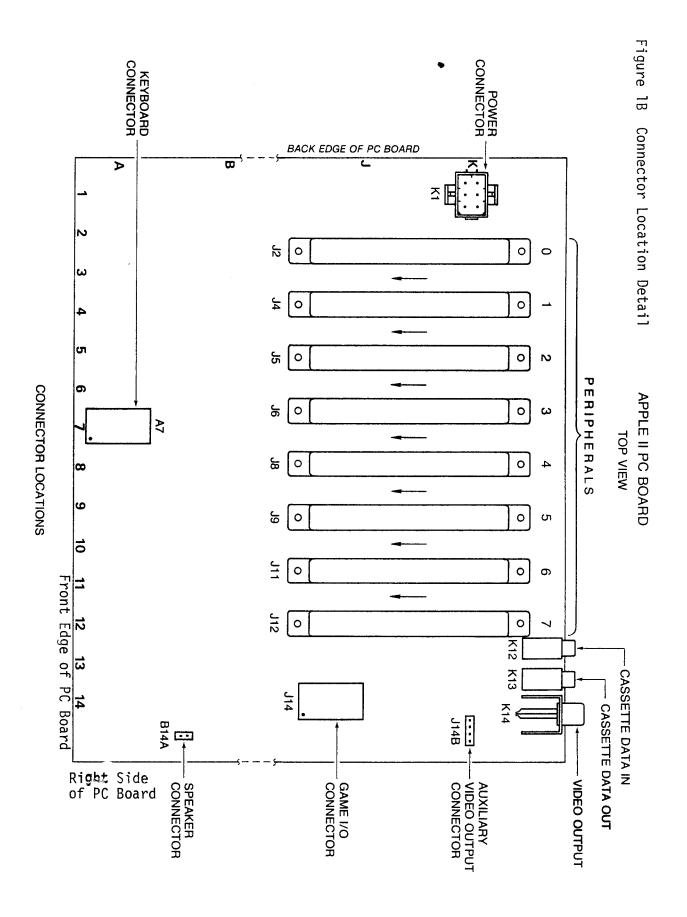
03E3: D0 E3

03E8: 28

03E9: 60

| CROSS-REFERNCE: |      | TELETY | E DRI | IVER | ROUTIN | IES  |
|-----------------|------|--------|-------|------|--------|------|
| CH              | 0024 | 0033   | 0039  | 0065 |        |      |
| COLCNT          | 07F8 | 0034   | 0038  | 0046 | 0054   | 0059 |
| CSWL            | 0036 | 0028   | 0030  |      |        |      |
| DLYI            | 03D5 | 0085   |       |      |        |      |
| DLY2            | 03D8 | 0082   |       |      |        |      |
| DOCHAR          | 0301 | 0047   | 0056  |      |        |      |
| FINISH          | 0380 | 0053   |       |      |        |      |
| MARK            | C058 | 0077   |       |      |        |      |
| MARKOUT         | 03D0 | 0074   |       |      |        |      |
| PRNTIT          | 0397 | 0045   |       |      |        |      |
| RETURN          | 03BF | 0063   |       |      |        |      |
| RTSI            | 0300 | 0044   |       |      |        |      |
| SETCH           | 03BD | 0060   |       |      |        |      |
| SPACE           | C059 | 0075   |       |      |        |      |
| TESTCTRL        | 038F | 0041   |       |      |        |      |
| TTINIT          | 0370 |        |       |      |        |      |
| TTOUT           | 0382 | 0027   | 0029  |      |        |      |
| STUOTT          | 0384 | 0050   |       |      |        |      |
| TTOUT3          | 0308 | 0089   |       |      |        |      |
| TTOUT4          | 03D3 | 0076   |       |      |        |      |
| WAIT            | FCA8 | 0058   |       |      |        |      |
| WNDWDTH         | 0021 | 0032   | 0061  |      |        |      |
| YSAVE           | 0778 | 0069   | 0090  |      |        |      |
| ILE:            |      |        |       |      |        |      |


FIGURE 3c


# INTERFACING THE APPLE

This section defines the connections by which external devices are attached to the APPLE II board. Included are pin diagrams, signal descriptions, loading constraints and other useful information.

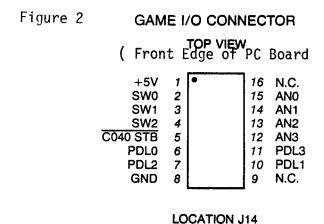
# TABLE OF CONTENTS

- 1. CONNECTOR LOCATION DIAGRAM
- 2. CASSETTE DATA JACKS (2 EACH)
- 3. GAME I/O CONNECTOR
- 4. KEYBOARD CONNECTOR
- 5. PERIPHERAL CONNECTORS (8 EACH)
- 6. POWER CONNECTOR
- 7. SPEAKER CONNECTOR
- 8. VIDEO OUTPUT JACK
- 9. AUXILIARY VIDEO OUTPUT CONNECTOR





### CASSETTE JACKS


A convenient means for interfacing an inexpensive audio cassette tape recorder to the APPLE II is provided by these two standard (3.5mm) miniature phone jacks located at the back of the APPLE II board.

CASSETTE DATA IN JACK: Designed for connection to the "EARPHONE" or "MONITOR" output found on most audio cassette tape recorders.  $V_{IN}=1$ Vpp (nominal),  $Z_{IN}=1$ 2K Ohms. Located at K12 as illustrated in Figure 1.

CASSETTE DATA OUT JACK: Designed for connection to the "MIC" or "MICROPHONE" input found on most audio cassette tape recorders.  $V_{OUT}$ =25 mV into 100 Ohms,  $Z_{OUT}$ =100 Ohms. Located at K13 as illustrated in Figure 1.

# GAME I/O CONNECTOR

The Game I/O Connector provides a means for connecting paddle controls, lights and switches to the APPLE II for use in controlling video games, etc. It is a 16 pin IC socket located at J14 and is illustrated in Figure 1 and 2.



# SIGNAL DESCRIPTIONS FOR GAME I/O

ANQ-AN3: 8 addresses (CØ58-CØ5F) are assigned to selectively

"SET" or "CLEAR" these four "ANNUNCIATOR" outputs. Envisioned to control indicator lights, each is a 74LSxx series TTL output and must be buffered if used

to drive lamps.

 $\overline{\text{CØ4Ø} \text{STB}}$ : A utility strobe output. Will go low during  $\mathcal{D}_2$  of a

read or write cycle to addresses CQ4Q-CQ4F. This is

a 74LSxx series TTL output.

GND: System circuit ground. O Volt line from power supply.

NC: No connection.

PDLØ-PDL3: Paddle control inputs. Requires a Ø-15ØK ohm variable

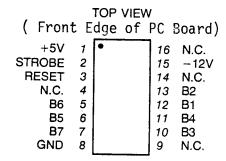
resistance and +5V for each paddle. Internal 100 ohm resistors are provided in series with external pot to prevent excess current if pot goes completely to zero

ohms.

SWØ-SW2: Switch inputs. Testable by reading from addresses

CØ61-CØ63 (or CØ69-CØ6B). These are uncommitted

74LSxx series inputs.


+5V: Positive 5-Volt supply. To avoid burning out the connector

pin, current drain MUST be less than 100mA.

# KEYBOARD CONNECTOR

This connector provides the means for connecting as ASCII keyboard to the APPLE II board. It is a 16 pin IC socket located at A7 and is illustrated in Figures 1 and 3.

Figure 3 KEYBOARD CONNECTOR



**LOCATION A7** 

# SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

B1-B7: 7 bit ASCII data from keyboard, positive logic (high level=

"l"), TTL logic levels expected.

GND: System circuit ground. # Volt line from power supply.

NC: No connection.

RESET: System reset input. Requires switch closure to ground.

STROBE: Strobe output from keyboard. The APPLE II recognizes the

positive going edge of the incoming strobe.

+5V: Positive 5-Volt supply. To avoid burning out the connector

pin, current drain MUST be less than 100mA.

-12V: Negative 12-Volt supply. Keyboard should draw less than

50mA.

# PERIPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the APPLE II board provide a convenient means of connecting expansion hardware and peripheral devices to the APPLE II I/O Bus. These are Winchester #2HW25CØ-111 (or equivalent) 50 pin card edge connectors with pins on .10" centers. Location and pin outs are illustrated in Figures 1 and 4.

# SIGNAL DESCRIPTION FOR PERIPHERAL I/O

AØ-A15: 16 bit system address bus. Addresses are set up by the 6502 within 300nS after the beginning of  $\emptyset_1$ . These lines

will drive up to a total of 16 standard TTL loads.

DEVICE SELECT: Sixteen addresses are set aside for each peripheral connector. A read or write to such an address will send pin 41 on the selected connector low during  $\emptyset_2$  (500nS). Each will drive 4 standard TTL loads.

8 bit system data bus. During a write cycle data is set up by the 6502 less than 300nS after the beginning of  $\emptyset_2$ . During a read cycle the 6502 expects data to be ready no less than 100nS before the end of  $\emptyset_2$ . These lines will drive up to a total of 8 total low power schottky TTL loads.

DMA: Direct Memory Access control output. This line has a

3K Ohm pullup to +5V and should be driven with an

open collector output.

DMA IN: Direct Memory Access daisy chain input from higher

priority peripheral devices. Will present no more than 4 standard TTL loads to the driving device.

DMA OUT: Direct Memory Access daisy chain output to lower

priority peripheral devices. This line will drive

4 standard TTL loads.

GND: System circuit ground. Ø Volt line from power supply.

INH: Inhibit Line. When a device pulls this line low, all

ROM's on board are disabled (Hex addressed DØØØ through FFFF). This line has a 3K Ohm pullup to +5V and

should be driven with an open collector output.

INT IN: Interrupt daisy chain input from higher priority peri-

pheral devices. Will present no more than 4 standard

TTL loads to the driving device.

INT OUT: Interrupt daisy chain output to lower priority peri-

pheral devices. This line will drive 4 standard TTL

loads.

I/O SELECT: 256 addresses are set aside for each peripheral connector

(see address map in "MEMORY" section). A read or write of such an address will send pin 1 on the selected

connector low during  $\emptyset_2$  (500nS). This line will drive

4 standard TTL loads.

I/O STROBE: Pin 20 on all peripheral connectors will go low during

 $\emptyset_2$  of a read or write to any address C8 $\emptyset\emptyset$ -CFFF. This

19ne will drive a total of 4 standard TTL loads.

IRQ: Interrupt request line to the 6502. This line has a

3K Ohm pullup to +5V and should be driven with an open

collector output. It is active low.

NC: No connection.

NMI: Non Maskable Interrupt request line to the 6502. This line has a 3K Ohm pullup to +5V and should be driven with

an open collector output. It is active low.

 $Q_3$ : A 1MHz (nonsymmetrical) general purpose timing signal. Will

drive up to a total of 16 standard TTL loads.

RDY: "Ready" line to the 6502. This line should change only

during  $\emptyset_1$ , and when low will halt the microprocessor at the next READ cycle. This line has a 3K Ohm pullup to

+5V and should be driven with an open collector output.

RES: Reset line from "RESET" key on keyboard. Active low. Will

drive 2 MOS loads per Peripheral Connector.

 $\overline{R/W}$ : READ/WRITE line from 65/02. When high indicates that a read cycle is in progress, and when low that a write cycle is in progress. This line will drive up to a total of 16 standard TTL loads.

USER 1: The function of this line will be described in a later document.

 $\underline{\emptyset}_0$ : Microprocessor phase (/ clock. Will drive up to a total of 16 standard TTL loads.

 $\underline{\emptyset_1}$ : Phase 1 clock, complement of  $\underline{\emptyset_0}$ . Will drive up to a total of 16 standard TTL loads.

7M: Seven MHz high frequency clock. Will drive up to a total of 16 standard TTL loads.

+12V: Positive 12-Volt supply.

+5V: Possitive 5-Volt supply

-5V: Negative 5-Volt supply.

-12V: Negative 12-Volt supply.

# POWER CONNECTOR

The four voltages required by the APPLE II are supplied via this AMP #9-35028-1,6 pin connector. See location and pin out in Figures 1 and 5.

# PIN DESCRIPTION

GND: (2 pins) system circuit ground. ∅ Volt line from power supply.

+12V: Positive 12-Volt line from power supply.

+5V: Positive 5-Volt line from power supply.

-5V: Negative 5-Volt line from power supply.

-12V: Negative 5-Volt line from power supply.

Figure 4 PERIPHERAL CONNECTORS (EIGHT OF EACH)

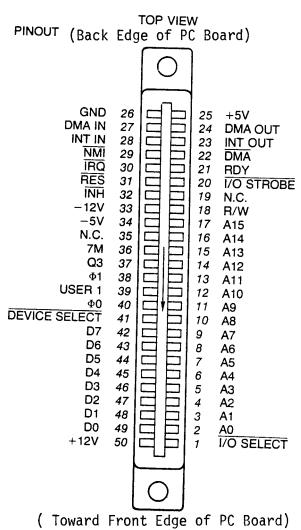


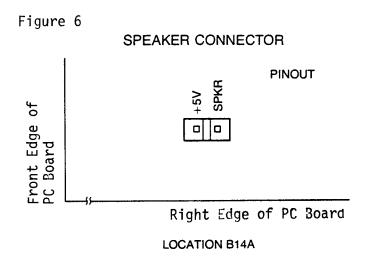

Figure 5 **POWER CONNECTOR TOP VIEW PINOUT** ( Toward Right Side of PC Board) (BLUE/WHITE WIRE) -12V 0 -5V (BLUE WIRE) (ORANGE WIRE) +5V 0 +12V (ORANGE/WHITE WIRE) 2 (BLACK WIRE) GND 0 GND (BLACK WIRE) LOCATION K1

LOCATIONS J2 TO J12

# SPEAKER CONNECTOR

This is a MOLEX KK 100 series connector with two .25" square pins on .10" centers. See location and pin out in Figures 1 and 6.

# SIGNAL DESCRIPTION FOR SPEAKER


+5V:

System +5 Volts

SPKR:

Output line to speaker. Will deliver about .5 watt into

8 Ohms.



# VIDEO OUTPUT JACK

This standard RCA phono jack located at the back edge of the APPLE II P.C. board will supply NTSC compatible, EIA standard, positive composite video to an external video monitor.

A video level control near the connector allows the output level to be adjusted from  $\emptyset$  to 1 Volt (peak) into an external 75 OHM load.

Additional tint (hue) range is provided by an adjustable trimmer capacitor.

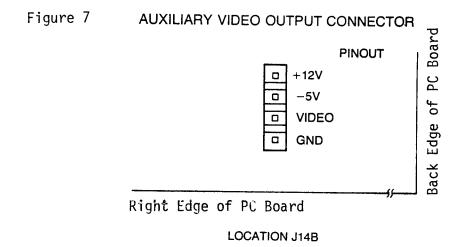
See locations illustrated in Figure 1.

# AUXILIARY VIDEO OUTPUT CONNECTOR

This is a MOLEX KK 100 series connector with four .25" square pins on .10" centers. It provides composite video and two power supply voltages. Video out on this connector is not adjustable by the on board 200 0 hm trim pot. See Figures 1 and 7.

# SIGNAL DESCRIPTION

GND: System circuit ground. Ø Volt line from power supply.


<u>VIDEO</u>: NTSC compatible positive composite VIDEO. DC coupled emitter follower output (not short circuit protected).

SYNC TIP is Ø Volts, black level is about .75 Volts, and white level is about 2.0 Volts into 470 Ohms. Output level

is non-adjustable.

+12V: +12 Volt line from power supply.

-5V: -5 Volt line from power supply.



# INSTALLING YOUR OWN RAM

### THE POSSIBILITIES

The APPLE II computer is designed to use dynamic RAM chips organized as 4096 x 1 bit, or 16384 x 1 bit called "4K" and "16K" RAMs respectively. These must be used in sets of 8 to match the system data bus (which is 8 bits wide) and are organized into rows of 8. Thus, each row may contain either 4096 (4K) or 16384 (16K) locations of Random Access Memory depending upon whether 4K or 16K chips are used. If all three rows on the APPLE II board are filled with 4K RAM chips, then 12288 (12K) memory locations will be available for storing programs or data, and if all three rows contain 16K RAM chips then 49152 (commonly called 48K) locations of RAM memory will exist on board!

# RESTRICTIONS

It is quite possible to have the three rows of RAM sockets filled with any combination of 4K RAMs, 16K RAMs or empty as long as certain rules are followed:

- 1. All sockets in a row must have the same type (4K or 16K) RAMs.
- 2. There MUST be RAM assigned to the zero block of addresses.

# ASSIGNING RAM

The APPLE II has 48K addresses available for assignment of RAM memory. Since RAM can be installed in increments as small as 4K, a means of selecting which address range each row of memory chips will respond to has been provided by the inclusion of three MEMORY SELECT sockets on board.

```
Figure 8
                MEMORY SELECT SOCKETS
                          TOP VIEW
PINOUT
(0000-0FFF) 4K "0" BLOCK 1
                                    14
                                        RAM ROW C
(1000-1FFF) 4K "1" BLOCK 2
                                        RAM ROW D
                                    13
(2000-2FFF) 4K "2" BLOCK
                                    12
                                       RAM ROW E
(3000-3FFF) 4K "3" BLOCK
                        4
                                    11
                                       N.C.
(4000-4FFF) 4K "4" BLOCK
                        5
                                        16K "0" BLOCK (0000-3FFF)
(5000-5FFF) 4K "5" BLOCK
                        6
                                    9
                                        16K "4" BLOCK (4000-7FFF)
(8000-8FFF) 4K "8" BLOCK
                                    8
                                        16K "8" BLOCK (8000-BFFF)
```

LOCATIONS D1, E1, F1

# MEMORY

# TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. INSTALLING YOUR OWN RAM
- 3. MEMORY SELECT SOCKETS
- 4. MEMORY MAP BY 4K BLOCKS
- 5. DETAILED MAP OF ASSIGNED ADDRESSES

### INTRODUCTION

APPLE II is supplied completely tested with the specified amount of RAM memory and correct memory select jumpers. There are five different sets of standard memory jumper blocks:

- 1. 4K 4K 4K BASIC
- 2. 4K 4K 4K HIRES
- 3. 16K 4K 4K
- 4. 16K 16K 4K
- 5. 16K 16K 16K

A set of three each of one of the above is supplied with the board. Type 1 is supplied with 4K or 8K systems. Both type 1 and 2 are supplied with 12K systems. Type 1 is a contiguous memory range for maximum BASIC program size. Type 2 is non-contiguous and allows 8K dedicated to HIRES screen memory with approximately 2K of user BASIC space. Type 3 is supplied with 16K, 20K and 24K systems. Type 4 with 30K and 36K systems and type 5 with 48K systems.

Additional memory may easily be added just by plugging into sockets along with correct memory jumper blocks.

The 6502 microprocessor generates a 16 bit address, which allows 65536 (commonly called 65K) different memory locations to be specified. For convenience we represent each 16 bit (binary) address as a 4-digit hexadecimal number. Hexadecimal notation (hex) is explained in the Monitor section of this manual.

In the APPLE II, certain address ranges have been assigned to RAM memory, ROM memory, the I/O bus, and hardware functions. The memory and address maps give the details.

# MEMORY SELECT SOCKETS

The location and pin out for memory select sockets are illustrated in Figures 1 and 8.

# HOW TO USE

There are three MEMORY SELECT sockets, located at D1, E1 and F1 respectively. RAM memory is assigned to various address ranges by inserting jumper wires as described below. All three MEMORY SELECT sockets MUST be jumpered identically! The easiest way to do this is to use Apple supplied memory blocks.

Let us learn by example:

If you have plugged 16K RAMs into row "C" (the sockets located at C3-C10 on the board), and you want them to occupy the first 16K of addresses starting at 0000, jumper pin 14 to pin 10 on all three MEMORY SELECT sockets (thereby assigning row "C" to the 0000-3FFF range of memory).

If in addition you have inserted 4K RAMs into rows "D" and "E", and you want them each to occupy the first 4K addresses starting at 4000 and 5000 respectively, jumper pin 13 to pin 5 (thereby assigning row "D" to the 4000-4FFF range of memory), and jumper pin 12 to pin 6 (thereby assigning row "E" to the 5000-5FFF range of memory). Remember to jumper all three MEMORY SELECT sockets the same.

Now you have a large contiguous range of addresses filled with RAM memory. This is the 24K addresses from 000-5FFF.

By following the above examples you should be able to assign each row of RAM to any address range allowed on the MEMORY SELECT sockets. Remember that to do this properly you must know three things:

- 1. Which rows have RAM installed?
- 2. Which address ranges do you want them to occupy?
- Jumper all three MEMORY SELECT sockets the same!

If you are not sure think carefully, essentially all the necessary information is given above.

# Memory Address Allocations in 4K Bytes

| 0000 | text and color graphics<br>display pages, 6502 stack,<br>pointers, etc. | 8000 |                                            |
|------|-------------------------------------------------------------------------|------|--------------------------------------------|
| 1000 |                                                                         | 9000 |                                            |
| 2000 | high res graphics display<br>primary page                               | A000 |                                            |
| 3000 | " " " " " " " " " " " " " " " " " " "                                   | B000 |                                            |
| 4000 | high res. graphics display<br>secondary page                            | C000 | addresses dedicated to hardware functions  |
| 5000 | "                                                                       | D000 | ROM socket DO: spare ROM socket D8: spare  |
| 6000 | "                                                                       | E000 | ROM socket EO: BASIC                       |
| 7000 | _                                                                       | F000 | ROM socket E8: BASIC  ROM socket F0: BASIC |
|      |                                                                         |      | ROM socket F8: monitor                     |

# Memory Map Pages Ø to BFF

| HEX                    | USED    | <u> </u>                                                         |                                                 |
|------------------------|---------|------------------------------------------------------------------|-------------------------------------------------|
| ADDRESS(ES)            | BY      | USED FOR                                                         | COMMENTS                                        |
| PAGE ZERO<br>0000-001F | UTILITY | register area for "sweet 16"<br>16 bit firmware processor.       |                                                 |
| 0020-004D              | MONITOR |                                                                  |                                                 |
| 004E-004F              | MONITOR | holds a 16 bit number that is randomized with each key entry.    |                                                 |
| 0050-0055              | UTILITY | integer multiply and divide work space.                          |                                                 |
| 0055-00 <b>FF</b>      | BASIC   |                                                                  |                                                 |
| 00F0- 00FF             | UTILITY | floating point work space.                                       |                                                 |
| PAGE ONE<br>0100-01FF  | 6502    | subroutine return stack.                                         |                                                 |
| PAGE TWO<br>0200-02FF  |         | character input buffer.                                          |                                                 |
| PAGE THREE<br>03F8     | MONITOR | Y (control Y) will cause<br>a <sup>c</sup> JSR to this location. |                                                 |
| 03 <b>FB</b>           |         | NMI's are vectored to this location.                             |                                                 |
| 03FE-03FF              |         | IRQ's are vectored to the address pointed to by these locations. |                                                 |
| 0400-07 <b>FF</b>      | DISPLAY | text or color graphics primary page.                             |                                                 |
| 0800-0B <b>FF</b>      | DISPLAY | text or color graphics secondary page.                           | BASIC initializes<br>LONEM to location<br>0800. |

| HEX     | ASSIGNED FUNCTION           | COMMENTS                                                                               |  |
|---------|-----------------------------|----------------------------------------------------------------------------------------|--|
| ADDRESS | ASSIGNED FUNCTION           | COMMENTS                                                                               |  |
| COOX    | Keyboard input.             | Keyboard strobe appears in bi 7. ASCII data from keyboard appears in the 7 lower bits. |  |
| C01X    | Clear keyboard strobe.      |                                                                                        |  |
| C02X    | Toggle cassette output.     |                                                                                        |  |
| созх    | Toggle speaker output.      |                                                                                        |  |
| CO4X    | ''C040 STB''                | Output strobe to Game I/O connector.                                                   |  |
| C050    | Set graphics mode           |                                                                                        |  |
| C051    | " text "                    |                                                                                        |  |
| C052    | Set bottom 4 lines graphics |                                                                                        |  |
| C053    | " " " text                  |                                                                                        |  |
| C054    | Display primary page        |                                                                                        |  |
| C055    | " secondary page            |                                                                                        |  |
| C056    | Set high res. graphics      |                                                                                        |  |
| C057    | " color "                   |                                                                                        |  |
| C058    | Clear "ANO"                 | Annunciator 0 output to                                                                |  |
| C059    | Set "                       | Game I/O connector.                                                                    |  |
| CO5A    | Clear "AN1"                 | Annunciator 1 output to                                                                |  |
| C05B    | Set "                       | Game I/O connector.                                                                    |  |
| C05C    | Clear "AN2"                 | Annunciator 2 output to                                                                |  |
| C05D    | Set "                       | Game I/O connector.                                                                    |  |
| C05E    | Clear "AN3"                 | Annunciator 3 output to Game I/O connector.                                            |  |
| C05F    | Set "                       |                                                                                        |  |
|         |                             |                                                                                        |  |

| HEX<br>ADDRESS | ASSIGNED FUNCTION     | COMMENTS                                              |  |
|----------------|-----------------------|-------------------------------------------------------|--|
|                |                       | State of "Cassette Data In" appears in bit 7.         |  |
| C060/8         | Cassette input        |                                                       |  |
| C061/9         | "SW1"                 | input on State of Switch 1 \( \shcap \) Game          |  |
|                |                       | I/O connector appears in bit 7.                       |  |
| C062/A         | "SW2"                 | State of Switch 2 input on Game I/O connector appears |  |
|                |                       | in bit 7.                                             |  |
| C063/B         | "SW3"                 | State of Switch 3 input on                            |  |
|                |                       | Game I/O connector appears in bit 7.                  |  |
| C064/C         | Paddle O timer output | State of timer output for                             |  |
|                |                       | Paddle 0 appears in bit 7.                            |  |
| C065/D         | " 1 " "               | State of timer output for Paddle 1 appears in bit 7.  |  |
| C066/E         | '' 2 '' ''            |                                                       |  |
| C000/E         | 2                     | State of timer output for Paddle 2 appears in bit 7.  |  |
| C067/F         | '' 3 '' ''            | State of timer output for                             |  |
|                |                       | Paddle 3 appears in bit 7.                            |  |
| C07X           | "PDL STB"             | Triggers paddle timers during $\phi_2$ .              |  |
| C08X           | DEVICE SELECT 0       | Pin 41 on the selected                                |  |
| C09X           | " 1                   | Peripheral Connector goes low during $\phi_2$ .       |  |
| COAX           | '' 2                  | 2.                                                    |  |
| COBX           | " 3                   |                                                       |  |
|                |                       |                                                       |  |
| COCX           | #                     |                                                       |  |
| CODX           | '' 5                  |                                                       |  |
| COEX           | '' 6                  |                                                       |  |
| COFX           | " 7                   |                                                       |  |
| C10X           | " 8                   | Expansion connectors,                                 |  |
| C11X           | '' 9                  | 11                                                    |  |
| C12X           | '' A                  | "                                                     |  |
|                |                       |                                                       |  |

| HEX<br>ADDRESS | ASSIGNED FUNCTION |    |            | COMMENTS                                        |
|----------------|-------------------|----|------------|-------------------------------------------------|
| C13X           | DEVICE SELECT     | В  |            | 11                                              |
| C14X           | ,,                | С  |            | 11                                              |
| C15X           | ,,                | D  |            | **                                              |
| C16X           | ,,                | E  |            | "                                               |
| C17X           | ,,                | F  |            | 11                                              |
| C1XX           | I/O SELECT        | 1  |            | Pin 1 on the selected                           |
| C2XX           | 11                | 2  |            | Peripheral Connector goes low during $\phi_2$ . |
| СЗХХ           | ***               | 3  |            | NOTES:                                          |
| C4XX           | 11                | 4  |            | 1. Peripheral Connector 0 does not get this     |
| C5XX           | 11                | 5  |            | signal.  2. I/O SELECT 1 uses the               |
| C6XX           | ††                | 6  |            | same addresses as<br>DEVICE SELECT 8-F.         |
| C7XX           | 11                | 7  |            |                                                 |
| C8XX           | 11                | 8, | I/O STROBE | Expansion connectors.                           |
| СЭХХ           | tt                | 9, | 11         |                                                 |
| CAXX           | ††                | Α, | 11         |                                                 |
| СВХХ           | 11                | В, | 11         |                                                 |
| CCXX           | 11                | C, | 11         |                                                 |
| CDXX           | "                 | D, | 11         |                                                 |
| CEXX           | 11                | Ε, | 11         | ·                                               |
| CFXX           | **                | F, | **         |                                                 |
| D000-D7FF      | ROM socket DO     |    | :          | Spare.                                          |
| D800-DFFF      | " " D8            |    |            | Spare.                                          |
| E000-E7FF      | '' '' EO          |    |            | BASIC.                                          |
| E800-EFFF      | '' '' E8          |    |            | BASIC.                                          |
| F000-F7FF      | " " FO            |    |            | 1K of BASIC, 1K of utility.                     |
| F800-FFFF      | '' '' F8          |    |            | Monitor.                                        |

### SYSTEM TIMING

# SIGNAL DESCRIPTIONS

14M: Master oscillator output, 14.318 MHz +/- 35 ppm. All other

timing signals are derived from this one.

7M: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency used by video circuitry, 3.580 MHz.

 $\emptyset_0$ : Phase  $\emptyset$  clock to microprocessor, 1.023 MHz nominal.

 $\emptyset_1$ : Microprocessor phase 1 clock, complement of  $\emptyset_0$ , 1.023 EHz

nominal.

programming manuals use the designation  $\emptyset_2$  instead of  $\emptyset_0$ .

Q3: A general purpose timing signal which occurs at the same

rate as the microprocessor clocks but is nonsymmetrical.

# MICROPROCESSOR OPERATIONS

ADDRESS: The address from the microprocessor changes during  $\emptyset_1$ ,

and is stable about 300nS after the start of  $\emptyset_1$ .

DATA WRITE: During a write cycle, data from the microprocessor

appears on the data bus during  $\emptyset_2$ , and is stable about

300nS after the start of  $\emptyset_2$ .

DATA READ: During a read cycle, the microprocessor will expect

data to appear on the data bus no less than 100nS prior

to the end of  $\emptyset_2$ .

# SYSTEM TIMING DIAGRAM

# TIMING CIRCUITRY BLOCK DIAGRAM TIMING RELATIONSHIPS MASTER OSCILLATOR TIMING CIRCUITRY COLOR REF 40 41 42 43

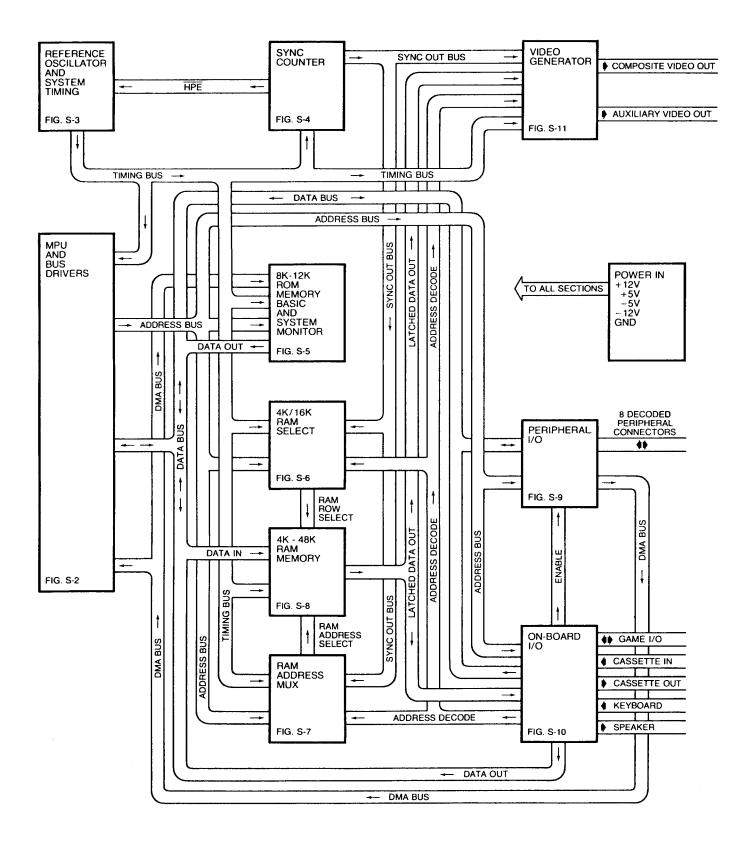



FIGURE S-1 APPLE II SYSTEM DIAGRAM

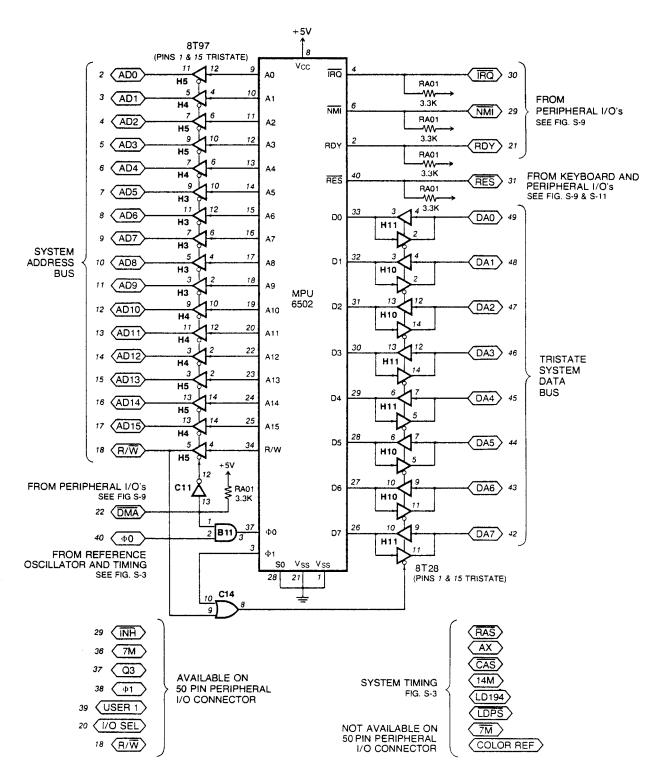



FIGURE S-2 MPU AND SYSTEM BUS

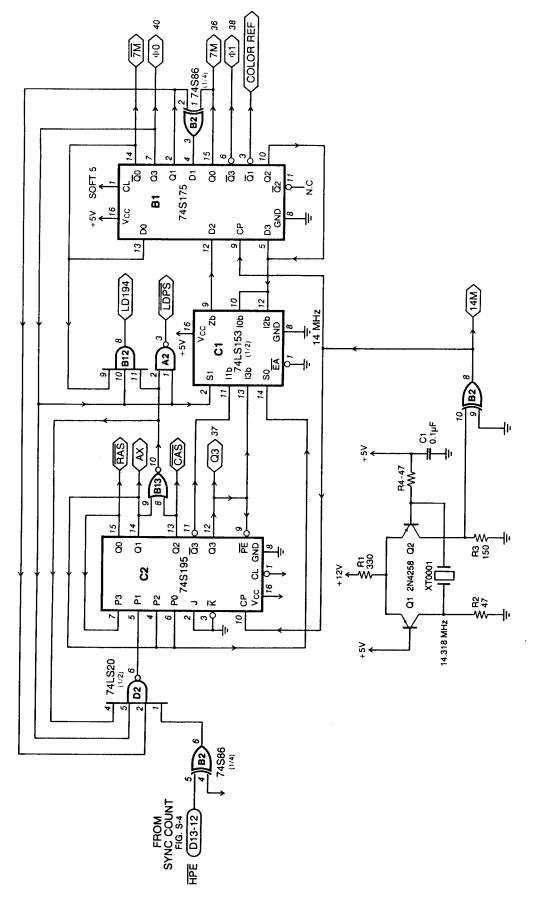



FIGURE S-3 REFERENCE OSCILLATOR AND SYSTEM TIMING

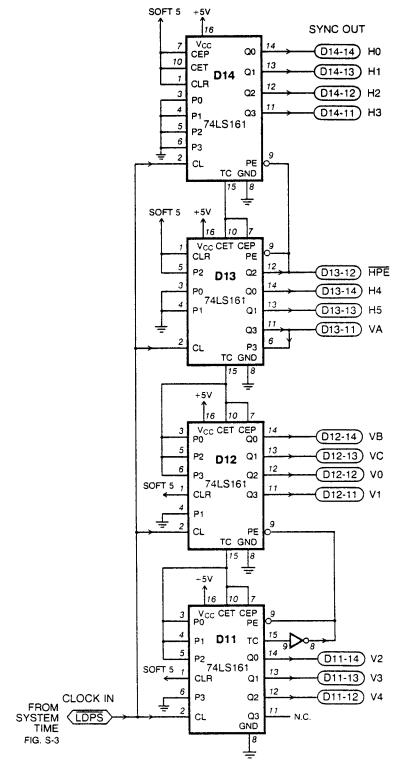



FIGURE S-4 SYNC COUNTER

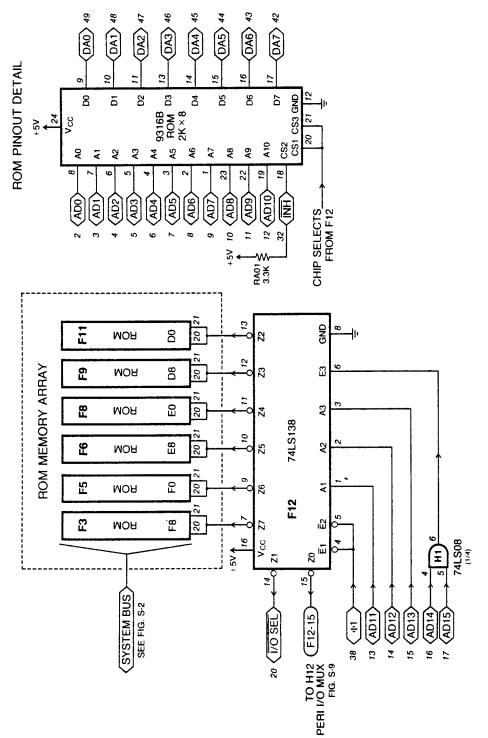
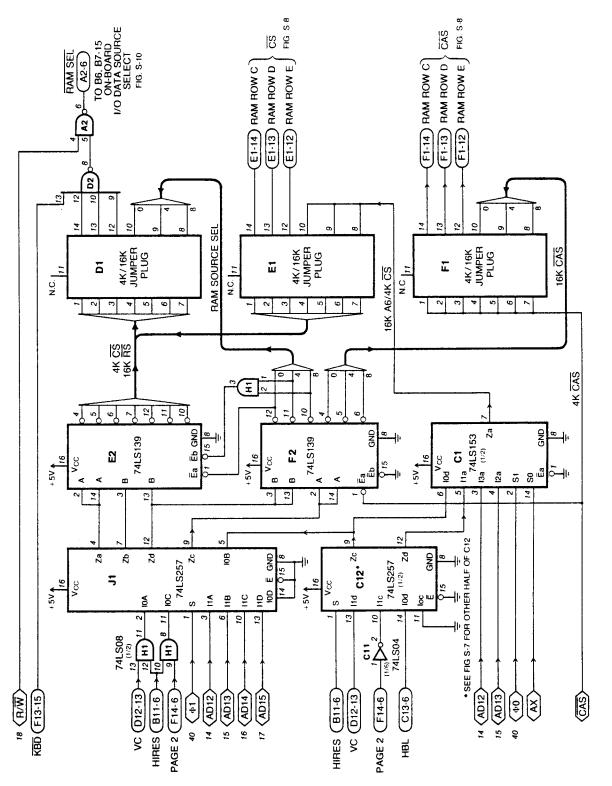




FIGURE S-5 ROM MEMORY



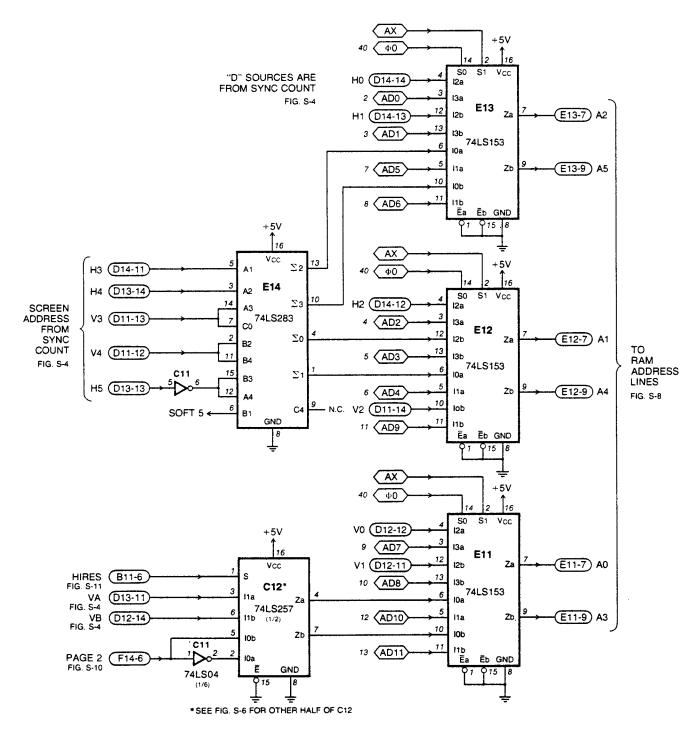



FIGURE S-7 RAM ADDRESS MUX

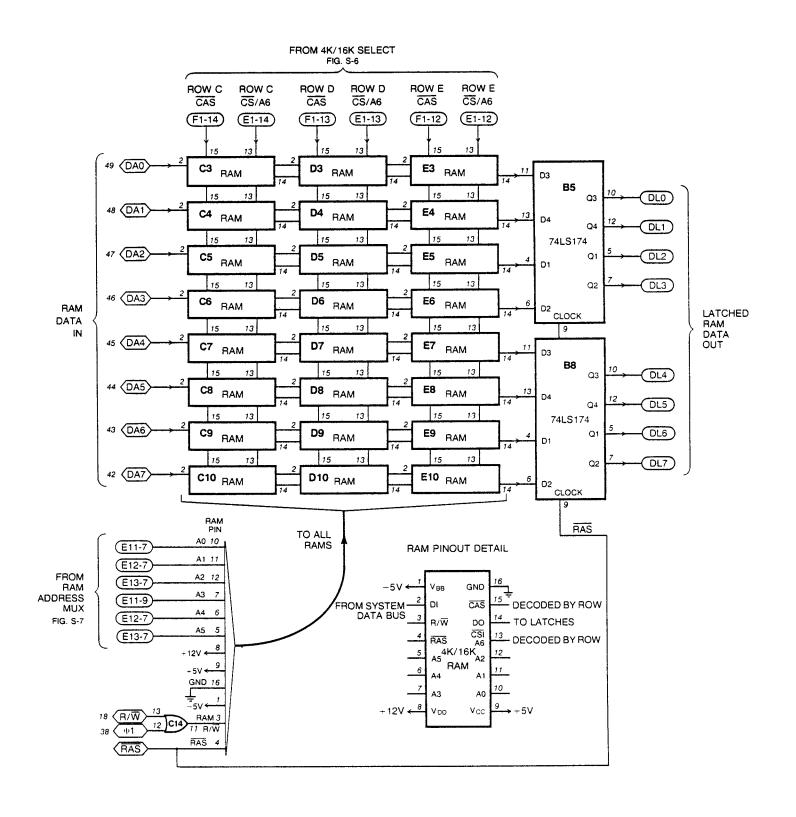
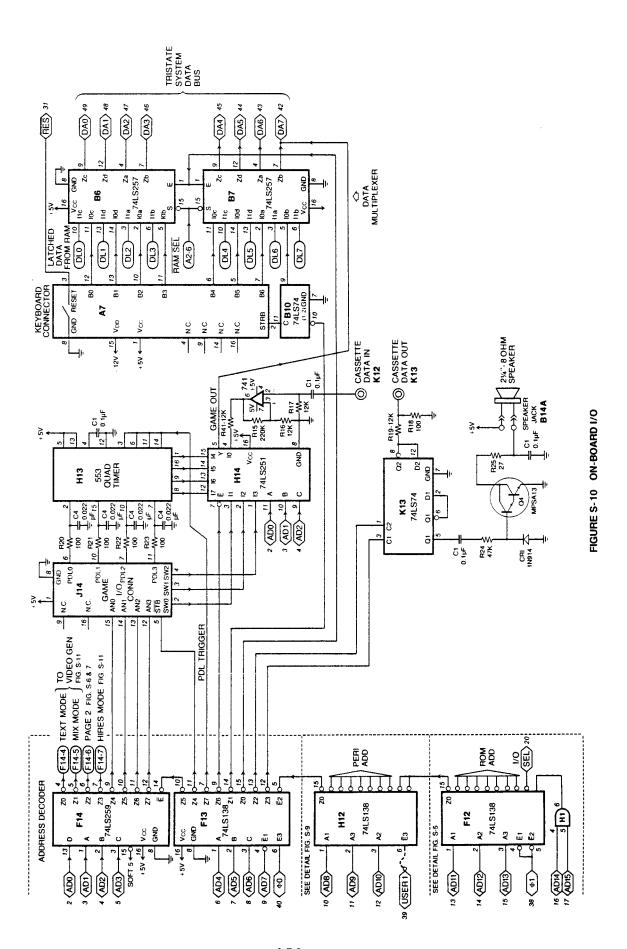




FIGURE S-8 4K TO 48K RAM MEMORY WITH DATA LATCH

FIGURE S-9 PERIPHERIAL I/O CONNECTOR PINOUT AND CONTROL LOGIC



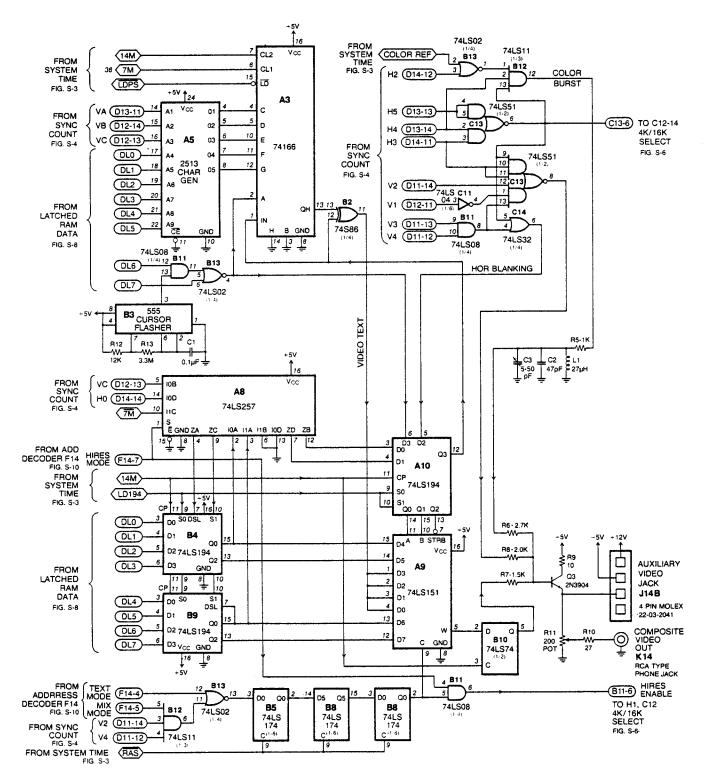



FIGURE S-11 VIDEO GENERATOR



10260 BANDLEY DRIVE CUPERTINO, CALIFORNIA 95014 U.S.A. TELEPHONE (408) 996-1010