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1. Introduction

1.1 Antares

a multiprocessor comprising several Antares
ssigned to graphics processing, while others

interface. Both CPU-Memory buses ts wide, and can transfer

data at a maximum rate of 32 bits per f one of the CPUs in the
system uses video RAMs to provide e video subsystem. Higher
video rates can be provided by using nuilt 5, each driving a section of the
screen.

Antares (Figure 1.2) is a parallel or comprising 4 independent and
identical 32-bit Processing Units (PUs) ;h share an instruction cache and a data

address translatlon initiates and controls transfers between the CPU and local or
remote memories, and handles inter-CPU messages. The MMU provides a flat
(unsegmented) virtual address space of 1024 million words (4 gigabytes), and
accommodates a real memory size of 64 million words. The instruction and data
caches are identical: each has a capacity of 4096 bytes, organized as 64 lines of 16
words (64 bytes). Antares caches are architecturally visible: instructions are
provided to prefetch, create, flush, and invalidate cache lines.

1A minimum system with monochrome display can be constructed with a single Antares CPU.
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MEMORY . . MEMORY

PROCESSOR BUS (IPB!

Id Multiprocessor System

local inter-processor
memory bus

Figure 1.2. Major Elements of the Antares CPU Chip

1-2 Apple Computer Confidential



Introduction
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INSTRUCTION CACHE

Instruction

_Store | pieline

Fetch Decode

General MULT. DIV.

Registers

Ll 1
e

LILILL

DATA CACHE
S

wn program counter (
each PU is capable of e

uction stream. Each PU
R15), a private set of

hold data or addresses. Registers RO
format base plus displacement mode
register for branch and link instructi
instruction set in which only load an
which most instructions execute in one
are provided to coordinate activities execli

gister R4 is used as the link
a small, register-oriented
ctions access memory and in
dcast and semaphore operations
n different PUs.

1.2 Parallel Processing

The objective of the Antares design project is the development of a high-
performance, single-chip CPU. Given a technology which will provide over a half
million transistors on a chip, how can this "real estate" best be exploited to achieve
this objective? The primary ingredients of a recipe for a fast, general-purpose,
CPU are "big cache, small cycle time", so a large part of the available real estate is
allocated for an on-chip cache (Figure 1.4b). To achieve a small cycle time, the
processor (PU) implements a simple, general-purpose instruction set; also, for
both cost and performance reasons, an on-chip Memory Management Unit (MMU)
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chip with
500,000+
ransistors

CACHE - 2K bytes

lications. Similarly, adding a graphics
gment for only part of the system's workload.

- and appropriate faciliti
potential for a substantial perfo:
alte e offers a potential perfo

essor; even if the avers
alternative offers a comparable acro
Antares software development is to red

Antares programs can execute in
These modes are categorized using (
by Flynn [1972].

SISD (single instruction stream, si
serial, processing: only one PU execu
intervals of serial and of parallel proc
participates in) a set of parallel computation activities, and later may accumulate the
results of these activities.

‘modes of parallel execution.
ies) the taxonomy developed

data stream). This mode is uni-, or
Antares typically alternates between

SIMD (single instruction stream, multiple data streams). This mode
corresponds to the usual view of parallel processing: each PU executes the same
operation on different data streams, as illustrated in Figure 1.5, or on different
elements of the same data stream. Data access may be ordered or random. In
ordered access, inter-PU coordination is implicit, as when each PU operates on
every fourth element of a vector. In random access, explicit inter-PU coordination
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Antares CPU

HEEEEEEEE AR

PU 0 operates on A[1] - A[t
PU 1 operates on A[65] - A
or PU 0 operates on A[1], A[5}, .
PU 1 operates on A[2], A[6], e

MD Mode Execution

list or take work from a
.maphore mechanism,
barallelism to exploit,

currently on a links

either with assembly code or by a co
to "unwind" a loop which operates
operating on every 4th array element. j ance is easily obtained, since
all PUs are doing the same work.

As an example of SIMD mode e
transformation operation (used in scalin
the 1 x 4 matrix multiplication

onsider the common graphics
tion, and translation) which involves

[x* y* z* w*] = [x ¥y xw] X | e11 c12 c13 c14 |
| e21 ©c22 c23 c24 |
| e31 ©c32 ¢33 c44 |
| c41 ©c42 ©c43 c44 |

where

[x y x w] = original coordinate set,

[x* y* z* wx] = transformed coordinate set,
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Antares CPU
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»’V result

code for NN
operation 4
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code for
operation 3
WAL TLTLESS SIS IS SSS
code for
operation 2

N NN

code for
operation 1

RN

u\\\\\\\\

Instruction cache

each PU operates on a
element and passes it to tf
next PU

MISD Mode Execution

ormation. (For any

34 are fixed (pre-compute
/ ntobeOor1.)

articular transformation, s

The matrix product can be written as

x* = xcq1 + ycz1 +
y* = xci12 + yec22 +°
z* = xc13 + yca3 +
w* = xc14 + yco24 +

In a parallel (SIMD mode) implemen ‘of this transformation, PU O can be
assigned to compute x*, PU 1 to compu , and so on. Each PU preloads its
registers with the appropriate set of constants and, after each nth transformation,
each PU executes a cache prefetch instruction (Section 3) to prefetch the next line of
coordinate data.  (Only one prefetch actually takes effect.) By careful scheduling of
prefetch and computation operations, very high transformation rates can be realized.

MISD (multiple instruction streams, single data streams). In this mode, each
PU executes a different operation on the same data stream element; data is
"pipelined" between PUs (Figure 1.6). For example, consider the computation of

y = ax3 + bx? + cx + d
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which might be divided across PUs as follows.

e PU 0: read x, compute = ecx + d,storex,cx + d
« PU 1. compute and x2, bx2
+ PU 2: compute x3 2) , compute and store ax3

ts to form y and store y

emaphores: for example, one
PU 1, another to transmit x2

IJ execution times so a
a Smalltalk byte co

and it is not trivial to b
Interpretive programs,

iler to generate MIMD
rmine independence
d to obtain optimal
dependence problem

e boundaries; execution will be
ure call and return points, so that

code on Antares is not expected to cro
serialized (constrained to SIMD mode) a
the compiler will not have to maintain iple stacks. It is possible that certain
exceptions may be made (e.g., independent, non-recursive, leaf procedures ident-
ified by compiler directive), and critical graphics system and operating system
operatlons may be hand-coded to obtain maximum performance. No explicit
support is provided for multi-tasking within an address space (i.e., "light-weight"
processes). However, a user state task can execute in parallel with the kernel; an
external interrupt will be assigned to an idle PU, if available, so that processing of
the interrupt can be done while a user task continues in execution.

Apple Computer Confidential 1-7



Antares Ovetview

Antares CPU
7
? instructions for .
7] statement z Z's data
“ Z
? instructions f é
% stru S Tor % r's data
,::5 statementr ¥4
aj////////:'//f////g A A
instructions for [ 'sd
statementg [ g's data

instructions for;
statement a

AT ELTTTETSTTETELTSS

\&\\\\\\\\\\\‘(\

each PU operates on
different data

MIMD Mode Execution

er Conference was a
puting Capability" in
otnick of Illiac IV fame)
\ that debate, Gene Amdahl
th two modes of operation,
nated by the low speed mode.
peration sequences on a vector

[1967] pointed out that the performan 5
one high speed and one low speed,
These modes can correspond to vector
computer, or parallel and serial sequen parallel computer. This postulate
has come be called "Amdahl's Law". A very readable and entertaining discussion
of Amdahl's Law is presented by Worlton'{1981].

To illustrate, suppose that a workload executes in time T on a single Antares
processor (Figure 1.8a). Assume that one-half of this workload can be parallelized
to run on 4 PUs, so that execution of this part of the workload is speeded up by a
factor of four; the execution time of the other half of the workload is unchanged
(Figure 1.8b). The workload execution time reduces to 5T/8, which represents an

2This came to be called "the great debate”, and was one of the early skirmishes between the unis
and the multis.
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overall im ) y 1.6X. (If execution of the paralleliz-
e overall improvement still would be les

y X-MP as well as for An

 Parallel processing can be'
workload can be parallelized,
system, for example, the perfo

€d via parallelization of
the graphics pipeline is crucial i i i

phics requirements.

Initial versions of Antares softwar ely on explicit parallelization to
optimize performance of key compone some components will be coded in
assembly language, and compiler direct will be used to identify parallelizable
code sections to the compiler. These methods will supplement the parallelization
done implicitly by the compiler. Improved parallelization should be achieved as
experience is gained in exploiting parallelism in software design and as compiler
technology evolves. Thus, continuing gains in performance are expected over time.
Note the improvement obtainable if the serial part of the workload of Figure 1.8

could be speeded up by just a factor of two ......
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2. The Instructi

2.1 Instruction Set Desig

The Antares. Pl Tepresents a form of RISC1 architecture: s a small,
register-orien tructi
access I ructions execute in one cycle. These chaz
nd execution control, help reduce cycle
ith caches and MMU, on a single chip.

ares, almost all insti'u:
iates Antares from ot in which all or almost all

. direct performance
cycles in both cases.
@cessor indirectly affects
s rate (or, equivalently,
senchmark comparison of the
the static code size for the
the 68020, and the instruction
IPS processor used only 1/4 as

Stanford MIPS processor and the M
MIPS processor was 40% greater than
bandwidth was 20% greater. (Howev
many cycles as the 68020.) Instruction is of particular concern to Antares,
since 4 PUs share the instruction cache:gnd these PUs will not necessarily be
executing the same code. Analysis of static and dynamic instruction frequencies
shows that a 32-bit instruction length is longer than necessary for many of the most
frequent instructions. A significant improvement in instruction density can be
achieved by using a 16-bit instruction length or by variable-length instructions (for
example, the Fairchild Clipper has 16-, 32-, 48-, and 64-bit instructions). A 16-bit

1Reduced Instruction Set Computer: see, for example, Hennessy [1984], [1985], or Patterson
[1985] ‘
2Complex Instruction Set Computer
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Antares Overview

standard instruction format was chosen for Antares because of the hardware cost
and complexity of handling variable-length instructions. Antares does provide
extended format load and store instructions in base plus displacement addressing
mode to reduce synthesis costs in certain addressing situations.

ction format, and for the choice of
 synthesis of higher-level opera -
ithmetic instructions (unfeasible

A second and related motive for
a number of Antares instructions, i:
tions. Rather than directly provi

basic instruction which wi i se and other specialized
operations.
imediates, displace -
set design and

th according to
functlon and

encoding and because displacemient and immediate fields vary in
their use. However field sizes have been selected to best match

ing an

ctions

(subt that
abou range

ge proportion of the immediates in the range
ts (primarily used in loads or compares) A

s g Similar arguments apply to
+ 256 instructions, to the data
d-format base plus displacement

instruction stream density and facilita
the (conditional) branch displacement
address displacement of 64 words> fo
addressing, and to other instruction set p ers. To the greatest extent possible,
instructions are designed so that high-freqiiéncy operations can be executed with a
single instruction: lower-frequency operations are synthesized by instruction
sequences which, because of the short instruction length, tend to require relatively
small amounts of instruction space.

3HP uses the term "precision” to describe the tightly-encoded functional architecture of the HP
Spectrum line (Birnbaum and Worley [19851).

4See, for example, Hennessy et al [1982]
5 A choice based on, among other factors, stack size frequency distributions
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The Instruction Set

| RO _ S0 Mask Register
B R1 Base _ S1 Remainder Register
| Re Registers _ s2 Product Register
R3 PU Number
R4 Link Register Trap Argument Register*
| R5 Status Save Register*
| _Re PC Save Queue* _
R7 (FIFO pair)
" Re tus/Control Register**
[ R i
—
R10
R11
— R12 Special,
| R13
— Ri4 *privileged
s e o

.1. PU (Local) Registers

isters which, except for
d there is a set of global

broadcast operations, can be accesse
registers which are accessed by all P

registers in standard-format base plus dis ment addressing; all 16 registers can
be used as base registers in extended-format base plus displacement addressing.
Register R4 is used as the link, or return address, register by jump and link
instructions. - -

In addition to general registers, each PU has a set of special, control, and status
registers. There are seven local special registers (S0-S3 and S7-S9) and eight
global special registers. Special register contents can be read and, in certain cases,
written, by Move Special instructions, which transfer data between general and
special registers. Values also may be written to special registers as the result of
executing other instructions. Access to some special registers is privileged, and can
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Antares Overview

be effected only in system state. A brief summary of the functions of the local
special registers follows; for details, see the Antares Instruction Set Manual.

* Mask Register (S0). This register is an implicit operand register of
bit field manipulation 1nstruct10ns_° 4t 1s set with the field position and length
by the mask (MSK) instruction.

* Remainder Register (S1 truction stores the remain -

der in this register.

* Product Register (S iplicati 32 b1t numbers prod -
uces a 64-bit product; ;i

¢« PU Number (S3
register.

is a FIFO register pair. On the transfer
r trap, the contents of the current Program

s/Control Register
next PCs from the
PC Save Queue. :

Two PCs (current and next) and two
delayed branch instruction execution i

are required because of the
ussed later in this section).

U status and control information.
“certain fields of interest in this

The PU Status/Control Register co;
Figure 2.2 shows this register and id
overview. Mode bits control various s of PU operation, and are set and
cleared by Set Mode and Clear Mode instructions. Some mode bits may be modi -
fied by a PU operation; for example, execution of a trap instruction clears the user
mode and trap enable bits. Antares can perform arithmetic on 8-, 16-, and 32-bit
operands, so the condition code field contains 4 carry bits as well as Zero,
Negative, and Overflow bits. Flags bits are set during certain PU operations. The
register count field is used to store the register count of a load/store multiple

6Special register lengths can vary according to function; the numbering of Special Registers may
be revised to help decoding.
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reg.
count flags -  cond. codes mode bits
PN A A

g ) L 4 Y

rrrruri

1.1 L1 il

I— 0
trap enable

ser/system

available

halt ﬂag are dlSCllSSCd in Secti n 4. The cluster number mode
d is described later on.

iscussed in Section 4.3; the Prefix Address is
described later in thls section). The Event

and Selection Register:
s such as cache misses, i d PU utilization. The
i ach PU (user/system,
n deadlock detection
ument accompanying
0. Register contains the

ber of the CPU.

2.3 Addressing and Addressin

Instruction and data addresses in A;
addressing is in instruction-length units: ive instruction address (displace -
ment) represents a half-word increment an absolute instruction address (PC
contents or absolute jump address) is a half-word memory address. Instructions
are assumed be be aligned on half-word boundaries. Data addresses are word
addresses for load and store word instructions, byte addresses for load and store
byte instructions. There are three data addressing modes: register, base plus
displacement, and direct. ‘

re 32 bits in length. Instruction
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S4 Test Register

| _S6[0]  Semaphore Flag &
se[1] Prefix Address Regs.

tion is the word address contained in bits 0-29 of the specifie
are ignored. The operand address of a load or store byte ins

dressing. The operand address of a‘load or
dding the displacement field of the instruction
egister, and using bits 0-29 of the result as the

ntents of the specified
d address. For stand

T store word instruction
the prefix address from
e cluster number in the PU
nstruction (Figure 2.4). The
, S6[i] provides bits 8-29, and

direct addressing. The operan
is formed by concatenating the 8-bit
special register S6[i], where i repres
Status/Control Register of the PU exegg
displacement field provides bits 0-7 o
bits 30-31 are ignored.

The prefix address defines the start of -word memory region which can be
accessed by load and store direct instructions; this region is called direct address
space. Separate direct address spaces are provided for user and system state, and
both user and system can redefine their direct address spaces as desired. The first 8
locations of direct address space are semaphore locations; semaphore operations
are performed by load and store direct accesses to these locations (see Section 4.3).
Semaphore flags are kept with the prefix address in an S6 register and, if desired,
can be changed when the prefix address is changed.
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Semaphore Flag & Prefix
Address Register pair

2refix Address I-—]

Cluster No.

displacement field

PU Status/Contro from instruction

word address in

in the initial implementation of Antares, this
The cluster number is assigned a value (0 or

ber is forced to 0 when a
lags and prefix address
S6[0]. However, the
ccess the user's direct
address space.

Other addressing modes can be sy
index addressing takes two instruct
instruction space).

The use of three different address t
byte — makes assembly-level programming of Antares more difficult than would
be the case if all addresses were byte addresses. However, multiple address types
have performance advantages relative to byte addressing, and it is expected that
most Antares programming will be done in a higher-level language; very few
programmers will need to be aware of the different address types. One reason
multiple address types are used is to make the most efficient use possible of the
relatively small (in conventional view) immediate fields of Antares instructions.
For example, if only byte addressing was provided, the 8-bit immediate field of the
Add Immediate instruction would give an immediate range of only 1-64 for word
increments, and the 4-bit immediate field of the Subtract Immediate instruction
would give an immediate range of only 1-4 for word decrements. A second reason

ed: for example, base plus
ycles, but only 32 bits of

word, half-word (instruction), and
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Antares Overview

is the elimination of index shifting for operations on word arrays which is required
if byte addressing only is provided (e.g., @A[i] = @A[0] + i<<2).

data word format. The Antares data word format is shown below. This
format is the same as that of the Motorola 68000: Little Endian for bits, Big Endian
for bytes (to use the terminology of .

bits 31

bytes 0

Bit O is the least signific;
data or the sign bit for sign
arithmetic mode specified.)

2.4 Instructions

source register(s)
base/address register
destination register

Mask reglster

Reference Manual; only certain featur

d'and store instructions was
lean condition) sets a register
ise: it facilitates optimization of
trictions on code reordering that

Operation of most of the gener:
discussed in the preceding section. Th
to 1 if cc matches the current code and t
logical expressions and helps mitigate
condition codes usually impose. Antares provides byte arithmetic operations which
operate concurrently on all four bytes:of a word, and half-word arithmetic
operations which operate concurrently on both half-words of a word (in addition to
full-word arithmetic operations). A mode bit in the PU Status/Control Register
determines if partial-word arithmetic operates on bytes or half-words. The
condition codes in the PU Status/Control Register include four carry flags: 2 or 4
of these may be set as the result of a partial-word arithmetic or compare instruction.
The LDCP instruction is used to load carry flags, extended to the current operand
width, into a general purpose register. Load and store multiple instructions are
provided to help keep procedure call and return overhead low. (While the cost of
synthesizing these operations is not high in cycles, it is in terms of cache space.)
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REGISTER LOAD, STORE, AND MOVE INSTRUCTIONS

Lcc
LD

- LDB
LDCP
LDM
LDW
LDW
LDW
LDW
MOV
MOV
MOV
STB
STM
STW
STW
STW

->Dst load boolean on condition
Imm->Dst
@Base->Dst
->Dst
@Base->Dst
Dsp->Dst
@Base->Dst
@Base+Dsp->Dst placement)
@Base+Dsp->Dst;: ded displacement)
Sr->Dst
Sp->Dst move register: specia eneral
Sr->Sp move register: gener ial
Sr->@Base store byte & increment :
Sr->@Base store multiple registers Sr
Sr->Dsp store word (direct)
Sr->@Base store word (register)

store word (base + displacement)

Sr->@Base+Dsp

store word (base + extended displace

HMETIC INSTRUCTIONS

add register (bytes or halfwords with carries

: add register (word)
Sr+Imm->Sr add immediate
Sr1+4Sr2->Sr! add register (word with carry)
Sr14S8r2->Srl i
Sr->Dst
Sr1/Sr2->Srl
4k, Sr1*Sr2->Sr1
ULR, Sr1*Sr2->Srl
NEG Sr->Dst
SBCP  Srl-Sr2->Srl
SUB Sr1-Sr2->Srl
SUB . Sr-Imm->Sr
SUBC  Sr1-Sr2->Srl
SUBP  Sri-Sr2->Sril gt (bytes or halfwords: carries = 1)
TRANSFER AND INSTRUCTIONS
ADPC  *+1+Sr->Sr add pregram counter
Bec *4+Dsp branch on condition
CMP Sr1-Sr2 compare register (word)
CMP Sr1-Imm compare immediate
" CMPP  Sr1-Sr2 compare register (bytes or halfwords)
JMP *+Dsp jump relative
JMP @Sr jump absolute
JMPL @Sr jump and link (return address -> reg. 4)
TSTF Sr test field under Mask
TSTM Imm test mode bit number Imm

Figure 2.5. Antares Instruction Set
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SHIFT, LOGICAL AND FIELD MANIPULATION INSTRUCTIONS

AND  Sr1&Sr2->Sri and
ANDC Sr1&—Sr2->Srl

CLRF Sr->Sr

DEP  Sr->Dst

DSH  Sr2,Srl1 ;

EXTS Sr->Dst der (Mask) & sign extend
EXTU Sr->Dst

INS Sr->Dst

MSK Imml, Imm2 gth Imm2 at Imm1
MSK  Sr, Imm th Imm at (Sr)

NOT  ~Sr->Dst
OR Sr1iSr2->Sr

SETF Sr->Sr set field under (Mask)

SHL  Sr<<Amt->Sr shift left logical
SHR  Sr>>Amt->Sr shift right logical
XOR  SrlASr2->Srl exclusive or

CACHE CONTROL INSTRUCTIONS

create data cache line
flush data cache line
invalidate data cache line
invalidate instruction cache line
invalidate all instruction cache lines
prefetch data cache line .
prefetch instructi che line relative
he line absolute

Ccb

BROADCAST AND €O NS

CLRM Imm

INT PUmask ied by PUmask

ITLB alida

RDTX @Base->Dst read dat g of line indexed by (Base)
RES PUmask pecified by PUmask

RSM  PUmask ted PUs specified by PUmask

RTI

SEND Sr->Dst of PUmask 1d (Sr) to Dst of PUs specified by PUmask
SETM Imm set mode bit number Imm

STRT @Base->* of PUmask start halted PUs specified by PUmask at (Base)
TRAP Imm trap

WAIT PUmask halt, or wait for PUs specified by PUmask to halt

Figure 2.5 (continued). Antares Instruction Set
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The address register of load multiple is incremented by the number of registers
loaded, and the address register of store multiple is decremented by the number of
register stored, to help in stack manipulation.

ADCP, ADDP, MULP, SBCP, and
half-word operands, depending on th
mode bit; other arithmetic instru
and divide instructions execut
issued in the cycle following i
and execution continues u
multiply or divide. At tk
_ register blocks until the n

structions operate on either byte or
ing of the partial-word arithmetic
n full-word operands. Multiply

ivide, and instruction issue
ad the result register of the

or divide operation cory

An operation such as fi
length, field position, and d )
16-bit instruction format. The Mask register (local Special Regi
operand of Antares bit field manipulation instructions: once:
position and a field (by a MSK instruction), extract, " and test

neously to one, two, or three other
PUmask field of the broadcast instri

nstructions are used to flush
; these, and interrupt-related

The Antares instruction execution pipeline has four stages: fetch (F), decode
(D), execute (E), and store (S). Four different instructions can be in different
stages of execution in any cycle. A fifth stage, called store 2 (S2), is used in
executing load and store instructions. An Antares PU issues one instruction per
cycle unless the pipeline is blocked by a cache miss, a cache bank conflict or a
pipeline interlock? delay, a register wait condition (e.g., wait for multiply result), or

7All Antares pipeline interlocks are hardware controlled (as opposed to, for example, the MIPS
processors, which relies on the compiler to generate interlock-free code.)
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execution of a synchronous multi-cycle instruction. In the absence of any of these
conditions, most instructions execute at a rate of one instruction per cycle. While
each instruction takes a minimum of four cycles, three cycles are overlapped by the
execution of other instructions. The al execution time of an instruction is
defined as the number of non-overla es required for its execution in the
absence of delays.

Most Antares instruction !
exceptions include load and s ple i ns, load and branch instruc -
tions, and the multiply and i and store multiple are the
only synchronous multi ions take one cycle for
each register loaded ivide are multi-cycle
instructions, they are asyn i
and subsequent cycles can

execute: the d
effected, ungil

fective execution time is one cycle. (If the
the destination register, it is delayed (via a

n location is called a
fow of a branch, a NOP
branch. When the branch
e of a branch instruction,

his instructio
be done in th

not the branch is taken:
branch shadow: If no useful work8
(e.g., MOVE 0->0) instruction shoul
shadow can be usefully filled, the eff
taken or not taken, is one cycle.

times is given in the Antares
elays are discussed in Section 3.4

Further information on instruction &,
Instruction Set Reference Manual. Cac
of this overview.

8Several studies have shown that the branch shadow can be filled with a useful instruction at least
70 percent of the time: see, for example, Gross and Hennessy [1982].
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3. The Cache

3.1 Introduction

f 8K bytes — occupying about 2/3 of “th
n-chip cache. However, a cache capac

of the Antares cache and the timing of cache «
ale for various design decisions, and
ontrol of the cag

section describes the des
transfers, discusses the ra
he instructions provided

3.2 Cache Organization

To provide sufficient instruction an
independent instruction and data cache
total capacity of 4096 bytes, organiz
transfers between the CPU and memo:
is 4-way set associative: the 64 lines o he are grouped into 16 sets of 4 lines.
Every memory line maps into one of thes sets, as illustrated in Figure 3.1. For
cache access purposes, a virtual word address divides into a word index, which
specifies one of the 16 words in a line, a set index, which specifies one of the 16
sets of 4 lines, and a tag. When a line is stored in the cache, its address tag is
stored in the tag store location which corresponds to that line. A set of flags also is
stored with the tag, including LRU bits, a system/user bit, a valid bit, and a
modified bit.

, Antares has separate and
ches are identical: each has a
s of 16 words (64 bytes). All
lits of one line. The cache design

1Both are determined by technology; a key factor in determining cycle time is the cache access
time. CPU cycle time frequently is determined by the taken branch path length, which includes a
cache access for the branch target.
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set index
word index within line

tag
22

word address

4 lines

data/instruction line

) memory, bits 47 of
the 16 sets. (Although
instruction addressing is on half-wor
branch target instructions is done in
compared with the tags of the valid
cache hit has occurred. Bits 0-3 are us
the LRU bits are updated, and the modify
of the valid tags in the set match the tag
The LRU bits for the lines in the set are ned to determine which line is to be
replaced. If the selected line is modified, then it has to be written to memory. This
operation is called a moveout. To reduce the time the requesting PU must wait, the
line being moved out is placed in a moveout buffer, the missing line is read into the
cache from miemory (moved in) and the requestor activated, and the line in the
moveout buffer then written to memory. If the line being replaced is not modified,
the missing line simply is read into its cache location. In either case, the memory
read is initiated by sending a line missing request to the MMU.

e word be fetched or stored,
st if the access is a store. If none
ent access, a cache miss occurs.

Physically, each cache is organized as four banks of 256 words, as shown in
Figure 3.2. A 5 x 4 crossbar switch connects the PUs and MMU to the cache
memory banks, and a four-ported tag store permits simultaneous cache access from
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16-word moveout buffer l’__

I T 1

data
bus

transfer uses a different
n a cycle, one request is
a request, PUs have
rity is determined by

bandwidth required by multiple PUs. nto four banks represents a
balance between the cost of the crossb. i
performance penalty of bank conflict dek;

Delays caused by cache bank confli yénd on the PU memory access rate,
the number of active PUs, the cache mi e, and memory addressing patterns.
Consecutive words of a line reside in différent cache banks: words 0, 4, 8, and 12
reside in bank 0, words 1, 5, 9, and 13 reside in bank 1, and so on. In array
operations, assigning each PU to operate on every fourth element of the array
results in each PU accessing a different cache bank, substantially reducing bank
conflict delays.

3.3 Cache Design Decisions

The overall size of the Antares cache was determined by the available chip "real
estate", and its partitioning into separate instruction and data caches was determined
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by bandwidth requirements. These partitions were chosen to be equal in size
because this is believed to be the best division for small caches2, and because it was
desired to make both caches identical to reduce chip design effort. The physical
division of each cache into four banks sed on a trade between the cost of the
required crossbar switch and the perfor penalty of bank conflicts.

The cache design is store-to; store-through, for performance
reasons. Only lines in the data i

utilization, and miss proce
large line size reduces the
required. At roughly a word p ]
fraction of the cache real estate. Line utilization can be viewed 3
words in a line referenced during the time that line is in cache. Hi
is easier to ach

ntares, s is expected to
‘3 maximum bandwidth
ng. ancing these various
factors resulted in the choice of 64 byt

A set size of 4 was chosen over a _
to reduce the probability that the four ight rate a reference pattern which
would cause set thrashing. :

A cache can be designed to be acc th virtual addresses or with real
addresses. In the latter case, address tr n must be done on every memory
reference either before or, in some cases; in‘parallel with, the cache access. This
adds some complexity to a single-processor design and can reduce performance by
increasing cycle time (although the translation can be pipelined at the cost of
additional complexity). In Antares, real addressing of the cache would require a
translation mechanism capable of supporting four simultaneous translations, one
for each PU. Consequently, the Antares cache is virtually addressed: address
translation takes place on on miss processing, which substantially reduces the

performance demands on the translation mechanism.

2Davidson [1987] concludes that the optimal instruction cache size is about 50 percent of total
cache capacity for most capacities.
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0Xz...z0 L 0Xz...zF

last

in the same
consequence

quired for memory-mappe 10. ore instruction refer -
sord in a non-cached page :
memory by the MMU. Reference

3.4 Cache Miss Timing

When a PU accesses a word belongi
occurs, and the missing line is moved i memory; the MMU translates the
virtual address of the line to a real addres§; reads it from memory, and stores it in
the cache. If this line replaces a modified line, the latter must be moved out. To
minimize the delay incurred by a PU on a miss, the modified line is written to a
moveout buffer (Figure 3.2), the missing line moved in, and the modified line then
written to memory. Rotate and forward operations further reduce the PU's delay.
The MMU initiates a line read from memory beginning with the word accessed on
the miss, reads the remaining words in the line, and then wraps around to read the
first part of the line, effectively rotating the line so that the referenced word is the
first word read. For example, if an access to word 5 of a line results in a miss,
word 5 is the first word read, as shown in Figure 3.3. When this word is read
from memory, it is forwarded to the requesting PU at the same time it is stored in

ine not in the cache, a cache miss
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the cache, so the PU can continue execution without waiting for the movein to
complete. Subsequent accesses to that line, however, must wait for movein
completion.

The delay incurred by a PU as the re:
factors, including cache bank confli
miss) delays. The timing involv
miss and no delays, is shown in:
that this processing is initiated

if a cache miss depends on a variety of

] busy delays, and translation (TB
5. processing, assuming a demand

; iscussed below. It is assumed

fa load or store access to the

corresponds to the S2 stage of the pipeline); otherwise, a mové
requesting PU is interlocked in its S stage.

eout buffer loading are 2
ince this operation mus

d. It may be possible
11 avoid the need for

ent an access priority res
blocking PU access during moveout
the design process.

e line being moved in via a
this cycle, it initiates memory
‘1 — which is not necessarily the

In cycle 2, the MMU translates the
Translation Buffer (TB) look-up. At the
access for the first word to be moved in
first word of the line. The access time f irst word is assumed to be equiv -
alent to 5 cycles; it depends on RAM ch ess time and the Antares cycle time.
Subsequent words can be read without further delay.

In cycle 8, word i is returned and, simultaneously, stored in the cache and
forwarded to the requesting PU (which resumes execution, having incurred a delay
of 8 cycles). The remaining words of the line are stored during cycles 9-23. The
line is marked valid at the end of cycle 23 and is available for PU access in cycle
24. Store requests for words of the line being moved in are made by the MMU; if
access to a cache bank is requested in the same cycle by both the MMU and a PU,
the PU is given priority.
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detect line missing

movein (Ml) request -> MMU
modified line -> MO Buffer
translate Ml address

jenusppuo) saindwo) ayddy

initiate RAM access
forward word ito PU
word i -> cache

word i+1 -> cache

word i-1 -> cache

MO request -> MMU
translate MO address
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Antares Overview

When the last word of the missing line has been stored, moveout processing is
initiated. This is similar to movein processing: a moveout request is sent to the
MMU, the address of the line being moved out is translated, RAM access initiated,
and the contents of the MO buffer stored:in.memory, one word at a time. Note that
no cache bank conflicts can occur d transfer to memory, so the moveout
should complete in 23 cycles. The for the duration of a moveout; if
either an instruction cache or a da scurs during this time, the request-

In the absence of MMU
instruction which causes a ¢ e miss i ' of 8 cycles. This delay is

misses increase
-for example, the
which has a

sometimes is less than, the
the effective miss penalty.

and interlocks in the S stage of th
operand word to be forwarded. B is blocked, the ADD and
LDW which follow also are delayed; the AD ocks in its E stage, and the
LDW interlocks in its D stage. Wh word of the first LDW is
returned, it completes execution. Wit e now free, the ADD completes
and the second LDW progresses to it here it issues a cache request.
Because the line is still being moved in nvalid, this instruction interlocks in
its E stage until the line becomes valid and its operand word can be read from the
cache, and so incurs a delay of 14 cycles. “Additional instructions between between
the first and second LDWs would reduce this delay.

If the ﬁag'éf address of the missing line is not in the Translation Buffer, an
additional delay of 8 cycles is incurred if the page table block address is contained
in the Directory Buffer; if itis not, a 16-cycle delay is incurred (see Section 5.)
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Antares Overview

non-privileged
CDC @Sr
FDC @Sr
IDC @St he line addressed by Sr
IIC @Sr cache line addressed by Sr
IICA i 1§ tion cache lines
PDC @Sr ) e addressed by Sr
PIC @Sr line addressed by Sr
PIC *+Dsp line addressed by *+Dsp
UDC Sr >ssed by Sr (flush &
VDC Sr nark data cache line ad Sr unmodified

rivil

ITLB alidate translation buffer
RDTX Sr->Dst read tag of data cache line indexed

and TB Control Instruction Summary |

e past, caches have be

isible, partly because many
tures were deﬁned bef €

 incorporated in designs.
in determining CPU
over the cache. The
‘and other software can
{'provides nine user-state
d cache and Translation
Buffer (TB) control 1nstrucnons foru kin flushing the cache and TB
on a task switch or a task termination.

The maximum instruction execution he Antares CPU is one instruction
per cycle (per PU); the actual executi depends primarily on cache miss
delays, and to a lesser extent on cache b. onflict and pipeline interlock delays,
and on the relative frequency of multi-cycle instructions. To illustrate, suppose the
data cache miss ratio is 0.04 misses per access and the average number of data
accesses per instruction is 0.5: the data cache miss rate, then, is 0.02 misses per
instruction. If each miss causes a average delay of 11 cycles, then data cache
misses add 0.22 cycles to the mean instruction execution time. Instruction cache
misses add additional delay cycles (although instruction cache miss ratios usually
are lower than data cache miss ratios because of the greater locality of instruction

references).
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The Cache

There are two ways to reduce the impact of cache misses on performance:
reduce the miss rate, and reduce the miss penalty. The compact Antares instruction
set helps reduce the instruction cache miss rate, and the 4-way set associative, full
LRU, cache design helps in miss rate reduction. Instructions are provided to
invalidate cache lines: when it is kno ine will not be used again, it can be
marked invalid and least recently use save displacing another line which
may be referenced again. Modifi are no longer of use (e.g., lines
popped from the stack) can be this reduces memory traffic
delays and helps reduce the m
written, a create data cach
original contents of that li

Misses can be divide
demand miss occurs when
references a line not in the ca
section. Antares provides instructions to prefetch lines into the ¢
caches; in executing one of these instructions, the PU sends the m
the cache and s fetching and executing instructions. When
t in the cache, a prefetch miss occurs. V
essmg for this miss, it may be posmble

o classes: demand misse
instruction fetch or and

becomes LDW-PIC-
n tries to move the

which can be moved ahead of the L
potential reduction of one cycle in the

2quests are not queued. If a
a transfer, the prefetch request

To minimize hardware complexit
prefetch miss occurs while the MMU is;
simply is discarded.

: the writing of) a modified data cache
to insure that memory shared between

An instruction is provided to flush (for
line to memory. This instruction can be us
CPUs is updated properly.

Much current-day software, such as that for the Motorola 68000, was not
developed with a cache in mind, and frequently produces higher than necessary
miss rates when executed on a later CPU which has a cache. Antares software
designers have the opportunity to reduce miss rates through careful organization of
code and data and through the use of invalidate and create line instructions, and to
reduce the effective miss penalty by prefetching.

Apple Computer Confidential 3-11



Antares Overview

3.6 Cache Flushing

Cache lines and TB page entries are tagged with their virtual addresses, so that
lines and pages in one address space canngt be distinguished from lines or pages
with the same address in another addr: e. Consequently, in switching from
one address space to another (see S e kernel must flush the cache and
the TB Flushing the 1nstruct10n ca 'B requires only simple invalidate

operations. Flushing the data ca since modified data cache
lines have to be written to mg¢ trol and reduce memory
traffic, Antares does no
instruction (RDTX) is pr

a "flush data cac
ead the tag assoc
ecified by number, O -
ine address, valid bit, modifie

tag read by this
, and system/user
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4. PU Commun

4.1 Introduction

ctions permit one PU to broadcast data s and
ther PUs, and. let a PU wait for one or

o interrupt other PUs, as

terrupt instructions pe
i broadcast and semaphore

n preparing for a task switch.:
instructions; interrupts are discus

s CPU is expected to be an
MD or MIMD) activities in -
8 on other PUs. Binding of a
one at compile time. Parallel
ling PU terminate by executing a
r these activities to complete before
struction.

which a controlling PU initiating paral
specific activity to a specific PU usual
activities executing on PUs other than t
halt instruction. The controlling PU can
initiating a serial activity by executing a wi

address broadcasting. During serial execution, one PU is executing and
the other are halted. To initiate execution of parallel activities, the controlling PU
activates one or more waiting (target) PUs via the broadcast instructions

RSM PUmask resume execution at target's current PC
or
STRT Ri, PUmask start execution at address contained in register
Ri of the controlling PU
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Broadcast instructions have a 4-bit field called the PUmask field: bits 0-3 of this
field correspond to PU numbers 0-3. Broadcast instructions operate on all PUs
whose PUmask bit is 1. The resume (RSM) instruction causes each target PU —
each PU specified by its PUmask field — sume execution at that PU's current
Program Counter (PC) address. Hal sume execution immediately. If all
target PUs are not halted at the tin instruction is executed, the RSM
instruction blocks; execution on SM instruction continues only
when all target PUs have halt,
similar to the resume instrug;
address specified by the con

Since the controlli i t PL) havc halted, a start
instruction cannot be us ‘

data broadcasting. Th
more target PUs via the broadc

SEND Ri->Rj, PUmask  store value in register Ri of the congrolling PU into
register Rj of target PU

in causes the contents of a register of the
: ach of the target PUs specified by PUnw

WAIT PUmask

If the PUmask bit corresponding to | he PU executing the wait
instruction is set, the instruction unc i
PUmask bits are ignored; the PU rem :
start instruction or an interrupt. If the P t corresponding to the number of
the PU executing the wait instruction is ¢ PU waits until all the PUs specified
by PUmask have halted, and then continues execution. In this case, then, the wait
instruction performs a join operation.

d until reactivated by a resume or

If the PU's register contents are no longer useful, the PU should set the
"registers available” bit in its Status/Control Register (Figure 2.2) via a Set Mode
instruction prior to halting to indicate that its registers do not have to be saved. In
recognizing an external interrupt, the Antares interrupt mechanism tries to assign
processing of the interrupt to a halted PU. The operating systcm kernel examines
the "registers available" bit and skips register saving and restoring if that bit is set.
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.....................................................................................................

.......................................................................................................

hafted

active

SEND R10->R0, 0010B
SEND R11->R1, 0010
RSM  0010B

WAIT

g

-------------------------------------------

shown here begins with PU 0 executir
holds the entry point address of the
operands of the add are contained in re 111 of PU 0.

ctivity, PU 0 executes send!l
"1, and then executes a resume

To initiate parallel execution of
instructions to transmit the operands
instruction to activate PU 1. PU 0 con n execution until it reaches a point
where the result of the add is required and:then halts by executing a wait instruction
with the PUmask bit for PU 0 set. When PU 1 finishes its computation, it issues a
send instruction to return its result to PU 0; if PU 0 is not halted at this time, the
send instruction blocks until PU 0 does halt. After sending its result to PU 0, PU 1
returns PU 0 to execution by executing a resume instruction. It then prepares for
the next add activity by jumping to its entry point and halting.

1In instruction fields in this example, a numeric field terminated by a 'B' indicates a binary
number: e.g., '0010B’ represents 0010,.
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L PUO L PUT PU 2 PU 3

: active : I halted > halted
LDW addr->R1 : :
STRT R1,1110B —» active : j active :
JMP Rl : : :

1110B

: WAIT

IIIlIllIIll!llIlllllll9
£

PUs 1-3 :
halted :

need to know which PU invoked it.

Figure 4.2 shows the initiation and te;
four processors execute the same code.
start instruction with bits set in the PU.
these PUs executing at the specified ad
activity via a jump instruction.

of an SIMD activity in which all
iate this activity, PU 0 executes a
t#field for PUs 1, 2, and 3; this starts
s. PU O starts its own execution of the

While all PUs execute the same code, their execution times for this activity may
differ because of data differences and because they incur different delays, such as
cache misses. All four PUs, on completing execution of this activity, execute the
same wait instruction, WAIT 1110B. This causes PUs 1, 2, and 3 to halt, since their
own PU number is specified in the PUmask field, and causes PU O to suspend
execution until each of the other PUs has halted. Thus, synchronization at the end
of this activity requires only a single instruction.
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input output

Figure 4.3. Sem

semaphore 0

semaphore 2

4.3 Semaphores

 Broadcast instruction

Semaphore operations are communicate
ies of active PUs.

between and coordinate the ac

Antares load/store dlrect-addressmg instructions span a 256-w ct address
space address are called the prefix address. urrent
prefix ne of the Special Register 6 pair, S6[0} 6[13;
the Status/Control Register determines whic mber

0] is used in system state and S6[1] is used in
d accessed by a load/store direct instruction is

T is used. Gen'
. The address of

of these locations is a full/empty fla
value in that location and sets the F fl
set to empty. If F initially is set to fu
F is set to empty. A load from semaphg;
from that location and sets F to empty,
initially is empty, the PU executing iad is blocked until F is set to full.
Semaphore flags also are contained in 'switching clusters changes both the
current prefix address and the current semiphore flag set.

s loads a register with the value
at F initially is set to full. If F

examples. .Semaphores are used to transmit data between executing PUs, to
control access to data, and to control execution of "critical sections" of code. In the
example of Figure 4.1, the result of the floating point add operation performed by
PU 1 could have been returned to PU 0 via a semaphore, saving an instruction in

2While the contents of these locations may be read or written by register-addressing or base-plus-
displacement-addressing load/store instructions, only the direct-addressing instructions perform
semaphore operations.
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— queuse link

LDW s->R1 get lock
CMP RI1:0 end of list?

queus link

Rl->s yes: unlock
exit and exit

queuse link

: V no: update,
semap ; > “unlock, and
continue

(b) acce

Data Locking Via a Semaphore

GIvVIty terminal

: ence. In MISD — pipelined — execution,
ores are used as da

rms between pipeline stages, as illustrated in
a different operation on an operand; sema -

t value (via a LDW-0->Ri
, PU 0's store completes,

ccess to data. Suppose all four
queue of work maintained in the
s is used both to lock the queue and

Semaphores also are used as lock
PUs are executing in SIMD mode, oper:
form of linked list (Figure 4.4(a)). Semap
to hold the address of the next element i eue. When a PU is ready to operate
on the next element, it executes the access:sequence shown in Figure 4.4(b). If the
queue is unlocked, the F bit associated with semaphore s will be set to full. When a
PU executes the LDW instruction of the access sequence, the contents of semaphore
location s are returned to the PU and the F bit is cleared, blocking access to the
queue by other PUs and so locking it. The queue is unlocked when the PU
executes a store to semaphore location s, either after recognizing that the end of the
queue has been reached or after removing an element and advancing the queue head
to the next element.
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activity initiation via semaphores. Since semaphores can be used to
pass addresses, as well as data, it may seem that the broadcast instructions are
redundant. However, activity initiation-termination sequences based on sema -
phores typically require execution of 6:1Q:instructions per PU, depending on the
scheme used. This overhead impacts; ance both directly and indirectly (by
increasing code space). For exam equence of 30 instructions can be
divided into two independent ag nstructions each. If the cost of
parallelizing these activities is stions, the performance gain3 is
only 30/23 = 1.3X; if the. dditional instructions, the
performance gain is 1.75X,: arallelization overhead
or, equivalently, acco tion than is achievable
through semaphores aloi

The state of each PU is represented by two bits in the Glo
13) Both bits are cleared if the PU is executin

tatus Register
: of the two

3Assuming an execution time of one cycle per instruction.
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5. Address Tra

5.1 Address Space Model

t the high end of the addres: i for the kernel, and the
1g 1023-MW region is allc
system other than the kernel. Trap , e exception of reset,
transfer control to an interrupt vector. s the start of the kernel
region. :

&, .to the first million words of
does not use Translation Buffer
eness of a relatively small TB1,

The kernel region is directly mapp
real memory. The kernel region is no
(TB) entries; this helps improve the’
Separate prefix addresses for user state ystem state provide separate direct-
address space (and semaphores) for th and the kernel. Lines in this non-
pageable kernel region are cached in the $dime way as pageable region lines. The
actual amount of real memory allocated to the kernel is determined by its needs; the
kernel, at system startup time, assigns the real memory it doesn’t need in this 1-
MW region to allocatable page space. The operating system may use a pageable
region, in addition to the hardware mapped kernel region; this region, however, is
not specified by the hardware architecture. '

1 Antares resembles MIPS (the MIPS Computer Systems' RISC CPU) in this regard: see
DeMoney et al [1986].
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1024MW

OX3FFFFFFF

0X3FF00000

1-64 MW

1023M! page mapped

to OXOOOFFFFF

>

0X00000000

| 0X00000000

corresponding line into the cache.

virtual page address word address in page

A A
N A Y
20 19 , 11 10 0
DI Bl L Wl
(10b) (9b) (7b) . (4b)
. ' A A
Y
page table page table line index word index
directory block index in page in line

index

Figure 5.2. Virtual Address Format
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In the case of direct addressing, a virtual address is formed by concatenating the
current prefix address with the instruction's displacement field. The current prefix
address is obtained from one of the Special Register 6 pair, S6[0] or S6[1], as
determined by the current cluster numbeér setting. When a trap or interrupt occurs,
the current cluster number is set to Q;. ing S6[0]. The prefix address in this
register typically is of the form Ox 'zzz' is an offset from the start of
the kernel region to the start of ore and directly-addresssable
locations.

The page size in Antare
small enough to provide ages in a minimum real
memory configuration & tble Translation Buffer
miss rates. Selection of a
object sizes was tempting; h
be mapped one-to-one with
(Blau [1983] reports that the m
image is 32 bytes, with only 0.3 percent larger than 1024 bytes
Translauon performance implications, a small page st eans large

dress to a real p
structed and mai

address by the MMU is
ned by the kernel. The
evel is a directory of
tory is contained in the
CPU special registers.
n an address space switch
gment3 of the virtual address
) a flag in the directory entry
ithe address space corresponds to

Page Table Directory Origin (PTD
This register is loaded via a Move Sp

space: if no pages in a segment are all
is set to invalid. The segment at the h
the kernel region. If any page in a segme: ltocated, the directory entry contains
the starting address of a page table block of 512 entries, one entry for each page in
the segment. A page table block entry comprises a set of flags, including an invalid
bit, and a real address field. If a real page is bound to the virtual page represented

2The VAX, with a page size of 512 bytes, experiences very high TLB miss rates. Clark and Emer
[1985] report TLB miss rates in the vicinity of 0.033 misses/instruction for a VAX 11/780 with a
128-entry TLB (these rates however, represent operation in a multi-user environment; also, the
split design of the VAX TLB results in a relatively high miss rate for its size).

3A segment is defined as the region in a virtual address space represented by a directory entry; it
has no architectural definition beyond that.
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Page Table
Directory
(1024 words)

virtual add
Bl

DI

in (PTDO) Register

Directory
entry address

Directory entry
(PTBO = Page Table flags
Block Origin)

Page Table block
entry address

~ Page Table
block entry flags real page address
real line address real page address LI I

Figure 5.4. Virtual to Real Address Translation
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by an entry, the invalid bit is not set and the entry provides the real page address
together with access permission flags; the latter are forwarded to the cache for
inclusion in the cache line tag. If either the invalid bit in the directory entry or in the
page table block entry is set, a page fault interrupt is initiated by the MMU.

The real page address in a page ntry is the concatenation of a CPU

mory connected to that CPU The

The steps in mappihg
Figure 5.4. First, the

¢ directory index
s a real memory
e contents of

part of the address and tre 1
address. For a user region ad

this is
rm the
real

5.4 The MMU

The translation of a virtual address t
The steps in translation of a user regio
involved, are illustrated in Figure 5.5.

ddress is performed by the MMU.
ial address, and the MMU elements

When a cache miss occurs, the virtual address of the missing line is sent to the
MMU. The MMU extracts the virtual page address and searches the Translation
Buffer (TB) for it. The TB is a small, fully associative4, cache which holds
translations for the n most recent MMU page references. in the initial imple -
mentation of Antares, n is expected to be 16. A TB entry contains a virtual page

4j e., any virtual page address can map into any entry: in a set associative TB, a page entry can
map only into a given set.
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cache miss

Y

extract VPA

Translation Buffer

. . 8-16 entries, fully associative
no |is VPAin TB? —————
yes
get RPA from TB
update TB
form real line address.
read line
y associative

ifectory entry
emory: valid?

- Directory/Block
Address & Entry Registers

) — —

no.

et BOA from entry

read block entry
from memory: valid?

—

page fauit

—

notation

VPA - virtual page address
get RPA from entry RPA - real page address
replace TB entry DEA - directory entry address
form real line address BOA - block origin address
read line BEA - block entry address
TB - Translation Buffer
A DB - Directory Entry Buffer

Figure 5.5. Address Translation: MMU Operations and Elements
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address, the corresponding real page address, and a set of flags which include flag
bits from the page table block entry. If the virtual page address is found in the TB
(a TB hit), the real page address is obtained from the entry, the real address of the
line is formed, and a line read request to (local or remote) memory. The TB
entry is established as the MRU (m sed) entry, either by reordering TB
entries (there is ample time to do th for the data transfer to begin) or
by setting appropriate flag bits. s small, it should provide good
performance because of its fu tion and the relatively large
Antares page size, and becau ernel addresses.

If the virtual page ad i :MMU forms the address
of the directory entry b 1
register with the directo
5.4. The MMU has a s

as shown in Figure
last four unique
es contained in

‘segment
nt, and there may be several data segments in
dressing, etc.). If these lines did not tend to

S, substantially increas -
puld have increased the

the MMU is designed to read directo
needed, using its own entry address
ads required for directory
“also miss in the TB incur an
1e page table block entry.

entries, so that the majority of cache i
added penalty of just the 8 cycles requir

, it is checked to see if it is valid; if
the entry is valid, it replaces the least

When a directory entry is read from
it is not, a page fault interrupt is generated
recently used entry in the directory buffer:

The block origin address obtained from the directory buffer or read from
memory is concatenated with the block index to form the block entry address, and
the entry is read and checked. If invalid, a page fault interrupt is generated. Other -
wise, the real page address from the entry is used to form the real line address and a
read request is initiated for the line. A new TB entry is constructed and inserted in
the TB in place of the least recently used entry.

Page table directories and blocks reside in the kernel region but are accessed by
the MMU using real memory addresses, not kernel region addresses.
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5.5 Page Table Entry Format

A Page Table Directory entry contains a valid bit and, for a valid entry, the real
address of the first word of the Page Table Block associated with that entry. A

ingle Antares CPU will
igabytes spanned by an
hese bits can be re-

mething less than
bit page address, so son
igned if necessary.

e (CPU) number; node nuni
system components in ad
as the NuBus

valid/invalid flag
‘ead only/read write permission flag

may be assign
CPUs, such

m/user flag (protects system pages from user

cac tgle/non—cacheablc ag (see Section 5.6)

The positions of these fields within the one-w ¢ Table Block entry will be

defined later.

5.6 Non-Cacheable Pages

Antares permits a page to be designate non-cacheable (by having the kernel
set the appropriate tag bit in the page table entry for that page). When a load or
store access is made to a word in a non-cacheable page, that word is transferred
directly between the designated register and local or remote memory. Non-
cacheable pages have two principle uses: memory-mapped 10, and inter-CPU
messages, both of which involve bypassing the data cache. However, it is possible
to bypass the instruction cache by declaring a code page non-cacheable, which is
useful in debugging and testing.

Processing of a load or store access to a non-cacheable page is much like miss
processing. The cache, on receipt of the load or store request, searches its tag store
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for the associated address and, when the address is not found, sends a movein
request to the MMU, selects a line for replacement, and prepares to invalidate the
selected line. The MMU performs address translation in the usual way and obtains
the page table entry for the page contai he referenced word, either from the
Translation Buffer (TB) or, in the eveg TB miss, from the page table block.
and, on recognizing that the page
idation of the line selected for
e nominal execution time?
les, if the page address is

is non-cacheable, signals the ¢
replacement, and initiates a one;

contained in the TB, and ei
not the Page Table Direct

5.7 Inter-CPU Messa

Non-cacheable pages providé the basic mechanism for tran: ng messages
between CPUs. A page table entry tag bit can be set to specify on-cached
store to a : to be accompamed by an interrupt (va if the

ple, comprise the » virtual pages immediately
U, then, has a set of system pages which are

to all its address spacé
al address of one of the
the hardware architecture

igure 5.6. The virtual page in
tes to send a message to CPU
x page for CPU j maps into a real

As an example, a possible mapping i
an address space of CPU i's into which t
Jj is called the outbox page for CPU j. Th
memory address in CPU j's memory call box page; i's page table entry for
this page has the system, non-cacheable, and interrupt-on-write bits sets. CPU i
sends a message to CPU j by writing a word containing the message operation code
to word address B*i in the outbox page for CPU j, where B is an constant
determined by the operating system. The MMU performs the address translation
and initiates an IPB transfer with interrupt; the interrupt is presented to the
receiving CPU after the message word has been stored in j's memory. j becomes
disabled on recognition of the interrupt; j's kernel retrieves the message address

SIf the page is in local memory. Additional cycles will be required if the page is in remote
memory and the access is effected via an IPB transfer; exact timing is yet to be determined.
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outbox page
CPU1

outbox page /
CPU j outbox page
CPU 1

CPU n

system space

utbox page
CPU 1

user
space

CPU i

Figure 5.6. An O ing Scheme

e message from the inbox, and
e same way any other message
PU system has n—1 outbox pages
J maps to the same real page in j's

from the Interrupt Argument Register,
sends an acknowledgement to CPU i (i
is sent). In this scheme, every CPU in:
and 1 inbox page; every outbox for
memory.

If CPU i sends a message to CPU j and CPU j is disabled for interrupts, CPU
j's MMU will perform the write operation and queue the interrupt until the CPU
enables interrupts and the message interrupt can be recognized. Only one message
interrupt can be queued; if some other CPU, say CPU &, attempts to send a
message to CPU j while CPU j has a queue message interrupt, CPU k's message
will be rejected. This rejection is effected via a synchronous negative response to
CPU k's IPB transfer; it blocks completion of the STW instruction which initiated
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the message, and it cause a "message rejected” trap to be generated on the PU
which issued the STW instruction.

jected messages. In a small configu-
of the STW instruction. In a large
m to determine an appropriate delay
made, and perhaps reschedule

The kernel decides how to deal wi
ration, it simply may reinitiate exe
configuration, it may use some adap
before another attempt to send a
the executing task if the delay is;
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6. Traps, Inter Switching

6.1 Traps and Interrupts

nterrupts and traps are
of a particular instruc -
that instruction. Traps can
instruction) or as exceptions,
ons, arithmetic errors, illegal

be class1fied as system calls (execution f
which include page faults, access priviig
operation codes, and rejected inter-CPU

Interrupts usually are caused by e external to the CPU and may be
processed by any PU, except for inter-PU. interrupts generated by execution of an
INT or RES (restart) instruction, which are processed by the PU(s) specified in the
PUmask field of the INT or RES instruction. All other interrupts can be processed
by any PU; the (hardware) interrupt handler assigns processing of an interrupt to a
halted PU whenever possible so that interrupt processing can be done concurrently
with user/system task execution. An inter-CPU, or message, interrupt occurs when
one CPU executes a store instruction which causes a word or a line to be written to
a page marked "interrupt-on-write" mapped into the address space of another CPU
(see Section 5.7). Antares provides a pair of Event Counters (global special
registers S10 and S11) which, under control of the Event Selection Register (512),
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INTERRUPTS TRAPS
Reset Arith. Overflow/Divide By 0*
Machine Check legal Operation/Taken Branch*
Restart ata Access Violation
Power/Temp. ruction Access Violation

Inter-PU  (INT instr.)
Inter-CPU (message)
Event Counter Overflow*
External

-

individually enabled tra

g is initiated as follows For certai

C Save Queue, and
. traps and interrupts
, where N is the trap

except machine reset, this is word a
or interrupt number (0-31). (Machi
kernel's (software) interrupt handler
additional state (e.g., register contents)
bit in the Status Save Register. Any ne
kernel execution can be done via semaplx

her or not it needs to save
ithe PU's "registers available"
dination with other instances of

Interrupt/trap processing is controll a single (CPU-wide) master enable
flag (in the Interrupt Argument Register) and individual PU enable flags (in each
PU's Status/Control Register). The possible states of these two flags and the
corresponding interpretations are shown in Figure 6.2. When an interrupt can be
recognized (CPU enable flag set and a PU enable flag set for at least one PU), a PU
is assigned to process the interrupt, the interrupt enable flag is cleared, and the trap
enable flag of the selected PU is cleared. When a trap (or an interrupt generated by
an INT instruction) is recognized, only the PU's trap enable flag is cleared. Once
cleared, interrupt and trap enable flags remain cleared until explicitly set. However,
the Reset and Machine Check interrupts override the state of the interrupt and trap
enable flags. If an interrupt is presented while the CPU is disabled for interrupts, it
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CPU enable | PU enable interpretation
1 1 PU can recognize an interrupt or a trap
0 1 CPU i led for interrupts; PU can recognize

interrupts; PU is disabled

setting the address of
ie PTDO & Node No.
oring general registers

if necessary, and executing a Retu
addressed cache such as the Antares ca
virtual address; this does not suffice to
a line with the same address in anothe
for the TB.) There are two approaches

First, information can be added to t ¢ache tag to uniquely identify the line:
this information could take the form of an address space number (ASN) or the
distinguishing part of the real line address (which substantially increases tag storage
space). While adding an ASN to the tag is less demanding in terms of tag storage,
the MMU becomes much more complicated. If address space B is active and a line
from B replaces a modified line of address space A, the MMU has to retrieve the
page tables of address space A in order to translate the virtual address of the
modified line prior to its moveout.

Second, the cache can be emptied on an address space switch so that lines from
different address spaces cannot be in the cache at the same time. This has two
performance costs: the direct cost of the cycles required to carry out the flush and
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invalidate operation (including the time required to write modified lines to memory),
and the indirect cost of discarding lines which, when the original address space is
returned to execution, will have to be brought back in to the cache.

Antares uses the second approac
switch. This approach is chosen for h;
Because of the small cache size
flushing is not expected to be sey
back without flushing (A —
address space A remaining in
be small, so that flushing d
a task switch. Cache
Translation Buffer (ITLI
Translation Buffer.

ache is flushed on an address space
implicity and to minimize tag space.
esign, the performance penalty of
om address space A to B and
2 A), the number of lines of

‘was described in Sé&
ction clears the Dire uffer as well as the

Later implementations of th .
will adopt a different approach to this problem. The architectura}
low, so different implementations should not present a compatibili
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