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1. 

1.1 Antares 

are<~i~i:d for application and systei:\lrocessing. These:::G.ru s are connected via an 

::~;!i}:E:~~;~~ ~F~{1;~;g:~o~~e~ll!~}:c~~ l;:~~~ 
interface. Both CPU-Memory buses\@id the IPB ~:ii$if:~fis wide, and can transfer 
data at a maximum rate of 32 bits per l~le. Thevmll&f.§ of one of the CPUs in the 
system uses video RAMs to provide ~P.iii~nterf~gti:iitöiiithe video subsystem. Higher 
video rates can be provided by using r4\lltip~f,\j~lflf~', each driving a section of the 

screen. ·::::1:1:.il:/l:i!!:ll·1111:'.'.l·l·l.il!·!·li!i!!!f::::·· 

Antares (Figure 1.2) is a parallel lt®:li$:sor comprising 4 independent and 
identical 32-bit Processing Units (PUs) wlj~ph share an instruction cache and a data 
cache. An on-chip Memory Managemdfi Unit (MMU) performs virtual-to-real 
address translation, initiates and controls transfers between the CPU and local or 
remote memories, and handles inter-CPU messages. The MMU provides a flat 
(unsegmented) virtual address space of 1024 million words (4 gigabytes), and 
accommodates a real memory size of 64 million words. The instruction and data 
caches are identical: each has a capacity of 4096 bytes, organized as 64 lines of 16 
words (64 bytes). Antares caches are architecturally visible: instructions are 
provided to prefetch, create, flush, and invalidate cache lines. 

1 A minimum system with monochrome display can be constructed with a single Antares CPU. 
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Figure 1.2. Major Elements of the Antares CPU Chip 
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Fetch lnstructlon 

Pipeline 

lntroductlon 

;i 1lt~i,ll!llil~1 
)i[IF~gpte 1.3 shows a siniiiUtl;.gfü:piagram of an Antares PU. While all four PU s 

shat~.J~~foess to the same addfes§!!iii~ce, they are otherwise independent. Each PU 
has:::J:~fown program counter (~)~fänstruction pipelig~, registers, and arithmetic 
unitirnsp each PU is capable of eJtecuJing a different irt$.fn.iction stream. Each PU 

:~t~Ss~:~ ~~~:~!;~a~~~e;~;r~~l!f ;~:: ~1;2~:~~: 
hold data or addresses. Registers RO\;::;::;\ R3 are q§f.~i!i!Mßase registers in standard­
format base plus displacement mode 4-lessing~\i\l:~\:l:kister R4 is used as the link 
register for branch and link instrucdifis. .ßlJ.i~iMJ.t\t·e a small, register-oriented 
instruction set in which only load an~i!ii$.:iQrfii!i~öiWfictions access memory and in 
which most instructions execute in one qygtm:::::ißf.Badcast and semaphore operations 
are provided to coordinate activities execq~gj[pn different PU s. 

111trr 
1.2 Parallel Processlng 

The objectiye of the Antares design project is the development of a high­
performance, single-chip CPU. Given a technology which will provide over a half 
million transistors on a chip, how can this "real estate" best be exploited to achieve 
this objective? The primary ingredients of a recipe for a fast, general-purpose, 
CPU are "big cache, small cycle time", so a large part of the available real estate is 
allocated for an on-chip cache (Figure 1.4b ). To achieve a small cycle time, the 
processor (PU) implements a simple, general-purpose instruction set; also, for 
both cost and performance reasons~ an on-chip Memory Management Unit (MMU) 

Apple Computer Confldentlal 1·3 



Antares OvetV/ew 

- p M 
U M 

u 

CACHE - 2 k bytes 

··,v1~lli~~\~1tb. 

i:dlTl'.~~~;::c;!!~ll.le~~: :!'. foa:! :r~h~rio:~sth:°l:~~ 

(a) (b) (c) 

case··::,:·::::':r and appropriate facilitie~::~t,?.r coordinating p~@el execution, provides the 
potel}·g;~ for a substantial perfoniioo~e improvement i#,ii!MJ applications. No other 
alte~fiye off ers a potential perf otmAµce improveme}\t:iieylf:4 times ( 4X) that of the 

~~~!~~~~§~~~f ~~,~~~ill!~::::~l=~:::::: 
These modes are categorized using (w:li sqtfiii!:U:~fties) the taxonomy developed 

by Flynn (1972]. \:lll:///·j:·:i!/:j·:il:j·jj·l·i'.·i[··::li!i!li? 

SISD (single instruction stream, siij!il~rn~.fata stream). This mode is uni-, or 
serial, processing: only one PU execut"~i~iilfAntares typically altemates between 
intervals of serial and of parallel proce's'sing: a single PU initiates (and often 
participates in) a set of parallel computation activities, and later may accumulate the 
results of these activities. 

SIMD (single instruction stream, multiple data streams). This mode 
corresponds to the usual view of parallel processing: each PU executes the same 
operation on different data streams, as illustrated in Figure 1.5, or on different 
elements of the same data stream. Data access may be ordered or random. In 
ordered access, inter-PU coordination is implicit, as when each PU operates on 
every fourth element of a vector. In random access, explicit inter-PU coordination 
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,.;-:-:-:··· 

Y:·:.::::·::]::.::r' 

Antares CPU 

PUs 

PU o operams on A[:!:~'!llt~J[L 
PU 1 operates on A(65] - A[ti.$1MMP· 

or PU o operates on A[1], A[S}, .·'';WltU? 
PU 1 operates on A(2], A[6], etC'/?' 

·i'i!iii\j!ii!!!::::::r 

;!t~::2~~;!rL;~'.l~?~~~!!~fii:;~~~:~~:~ 
either with assembly code or by a co~~:ler. For exmnl~~~:::m:e Compiler may be able 

~F2~:~]f ;~;y;r;,~::. Qtöf IE~"i:e:~~~!~~~~~:~ 
As an example of SIMD mode e'-;gµgqgp'consider the common graphics 

transfonnation operation (used in scaling;,::![9tiß6n, and translation) which involves 
the 1x4 matrix multiplication '\:l!iil!!!i\j:f::: 

where 

tt~r: 
[x* y* z* w*] = [x y x w'] 

[x y x w] = original coordinate set, 

[x* y* z* w*] = transformed coordinate set, 
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Antares CPU 

and:thiff 
:::::::::::::::::: 

code for 
operation 4 

code for 
operation 3 

code for 
operation 2 

code for 
operation 1 

Tue ma~product can be written as .ijj;i. 
:}'.:·:·:::. 

x* = xc11 + yc21 
Y* = xc12 + yc22 + 
z* = xc13 + yc23 
w* = xc14 + 

assigned to compute x*, PU 1 to compuiif!i:)y':*, and so on. Each PU preloads its 
registers with the appropriate set of consfifu.ts and, after each nth transformation, 
each PU executes a cache prefetch instruction (Section 3) to prefetch the next line of 
coordinate data. · (Only one prefetch actually takes effect.) By careful scheduling of 
prefetch and computation operations, very high transformation rates can be realized. 

MISD (multiple instruction streams, single data streams). In this mode, each 
PU executes a different operation on the same data stream element; data is 
"pipelined" between PUs (Figure 1.6). For example, consider the computation of 

y = ax3 + bx2 + ex + d 
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which might be divided across PU s as follows. 

• PU 0: read x, compute = ex + d, store x, ex + d 
• PU 1: compute and s.t9.t~ x2, bx2 

3 .. :::::::::::::::::::::::„ 2 3 
• PU 2: compute x .Ji]f p(ji:::: ) , compute and store ax 

simulator, can use carefullyl~lfted, hand-coded MISD prdq~$.flg to achieve good 
performance. However, more\\:J.Qc>sely connected variations d~l\Ullfüform are useful 
in realizing improved (relative ü'.iMmiprocessing), if not optimac:::ßil~n:mance. For 
example, in processing a linear list, one PU might be assign;l\l\lttl buffer in 

indijp§pdent Statements. lt is ea~y:::tfa exploit this form;jjjQf parallel execution at the 
assetni:iY code level, and it is not:::~gqßifficult for the cq!npiler to generate MIMD 

E~l!\;~ei~t::~E~;:~1~tti!~~~i~il\\~~~:~!~f;!~~:! 
can be eased somewhat by the use of QQtnpiler dir~qf~~li~}tb identify program units 

which can be executed in parallel. ~11~ ß1~\lllil,tt''' 
parallel activity boundaries. A~fl.:r~:~l.t.!!;J:parallel execution of compiled 

code on Antares is not expected to cros~!:!it®.l~Pfe boundaries; execution will be 
serialized ( constrained to SIMD mode) ~~ljliP,f~gedure call and return points, so that 
the compiler will not have to maintain ri)y~~~ple stacks. lt is possible that certain 
exceptions may be made (e.g., independeijt~ non-recursive, leaf procedures ident­
ified by compiler directive ), and critical graphics system and operating system 
operations may be hand-coded to obtain maximum performance. No explicit 
support is provided for multi-tasking within an address space (i.e., "light-weight" 
processes). However, a user state task can execute in parallel with the kernel; an 
external interrupt will be assigned to an idle PU, if available, so that processing of 
the interrupt can be done while a user task continues in execution. 
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Antares CPU 

instructions for H---_.. 
statement z 

instructions for ~--""!I!' 
statement r 

instructions for:;: 
statement a 

PUs 

i~~~l!~lll\lf \1~~1:F!1rg11ulrt•.·.'.i,_,=:·',··,_ilu·::.·l.i• .. ··.:·',:•'.l_i·~".·.e·1'.:'!·o·:'.!s:.:·::·,:_,·.'"_ .. :,.,:_:'.:=·,:·=:·.=·.s,::M.. IMD Mod~e~~E~x:,,eycduoatt:oarnates on 
:::::::iiii::::::;:t'" ~ ::f::. 

; ;;t flll.l!~li ... 
}ii'_:::::\:, 

1.3 'l.larallellzatlon and Amdd:h:l's Law =:::·:::::=:=:== 

O~~(~f the highlights of the 1~-Spring Joint ~-ler Conference was a 
debate2 dn the subject "The Best Approach to LY:it:::lgffiputing Capability" in 
which proponents of parallel processöf$ (includiugili!l~i!i$.fötnick of Illiac IV fame) 
and fast uni-processors argued their rqlictive q~g~~lpf'that debate, Gene Amdahl 
[ 1967] pointed out that the performandii!ipf aß:YillH~ith two modes of operation, 
one high speed and one low speed, WI:: gf:iiiiOgmfüated by the low speed mode. 
These modes can correspond to vector i.htülüaF operation sequences on a vector 
computer, or parallel and serial sequend~jj!lQ.ij:iif parallel computer. This postulate 
has come be called "Amdahl's Law". A y~jfreadable and entertaining discussion 
of Amdahl's Law is presented by Worltori\[1981]. 

To illustrate, suppose that a workload executes in time T on a single Antares 
processor (Figure 1.8a). Assume that one-half of this workload can be parallelized 
to run on 4 PU s, so that execution of this part of the workload is speeded up by a 
factor of four; the execution time of the other half of the workload is unchanged 
(Figure 1.8b). The workload execution time reduces to 5T/8, which represents an 

2This came to be called "the great debate", and was one of the early skinnishes between the unis 
and the multis. 
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T 

4Xspeedup 

I 
( b) 

optimize perfonnance of key compone~t§:fü?some components will be coded in 
assembly language, and compiler directiJis· will be used to identify parallelizable 
code sections to the compiler. These methods will supplement the parallelization 
done implicitly„by the compiler. lmproved parallelization should be achieved as 
experience is gained in exploiting parallelism in software design and as compiler 
technology evolves. Thus, continuing gains in performance are expected over time. 
Note the improvement obtainable if the serial part of the workload of Figure 1.8 
could be speeded up by just a factor of two ..... . 
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2. 

2.1 1nstruct1on Set oesld::w::: 

diff~f~ptiates Antares from otfi~!!:a~,~SC processors, 4P. which all or almost all 
instiVitl,ons are 32 bits in length. \tl;~~ processors use\$,~yeral simple instructions 

i~~~~;;~:1:~::~:l:~:~l~~::::zat:~~~~i~:E~~r::. 
However, the reduced instruction den'.:f:~tY of the ~I~llliPf Ptessor indirectly affects 
performance by increasing the insttg~~ion ca.C.b.~Jill:s·s rate (or, equivalently, 
instruction bandwidth). Hennessy [19$$,] repgßi:ii!ll!llinchmark comparison of the 
Stanford MIPS processor and the MotQ~fpl~:l!ifi~Q~p::· the static code size for the 
MIPS processor was 40% greater thaniiiiitllltil!lf:§iPihe 68020, and the instruction 
bandwidth was 20% greater. (However~!iiilli!iiMIPS processor used only 1/4 as 
many cycles as the 68020.) Instruction d~i.f:~tY is of particular concem to Antares, 
since 4 PU s share the instruction cache\iahd these PU s will not necessarily be 
executing the same code. Analysis of static and dynamic instruction frequencies 
shows that ~ 3~„~·* instruction length is longer than necessary for many of the most 
frequent instructions. A significant improvement in instruction density can be 
achieved by using a 16-bit instruction length or by variable-length instructions (for 
example, the Fairchild Clipper has 16-, 32-, 48-, and 64-bit instructions). A 16-bit 

lReduced Instruction Set Computer: see, for example, Hennessy [1984], [1985], or Patterson 
[1985] 
2complex Instruction Set Computer . 
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standard instruction format was chosen for Antares because of the hardware cost 
and complexity of handling variable-length instructions. Antares does provide 
extended format load and store instructic>ns in base plus displacement addressing 
mode to reduce synthesis costs in certajµ·,li,gpressing situations. 

A short instruction Iengm::::f ormat restricts the length':qfmfm1ediates, displace -
ments, and direct addres·se.:~~\and requires careful instfQ«ugn. set design and 
encoding. The Antares instm.ction set may appear irre.g@.ll!:~':„because of its 
encoding and because displacerli~nt and immediate fields vary ilFli.ni.~„ according to 
their use. However, field sizes have been selected to best match ihl.lt.fülunction and 

~lf.'''~*~§i~~i~~~~~~ 
16f~l§,''.represent character chtt~tiP.ts (primarily used in loads or compares). A 
sotiiitcode-level study of "Ca~®," showed that 73t:pf its constants (including 

::~~:~~~;;;~;;t~;;:~~;,,~~;;;~;;; 
a procedure's callees may be stored ~!Ut that p~9119.re:j·s static local variables, or 
placed in a common directory and acql$sed Y.t~!i!:Ö.g@f addressing. This improves 
instruction stream density and facilitaif:§::~P~if:l!il~g. Similar arguments apply to 
the ( conditional) branch displacemen~l!!iv,IJ.Y.i.ii!!ii~:::± 256 instructions, to the data 
address displacement of 64 words5 fo#:!$!1l~~d-format base plus displacement 
addressing, and to other instruction set p~-eiers. To the greatest extent possible, 
instructions are designed so that high-freqiency operations can be executed with a 
single instruction: lower-frequency operations are synthesized by instruction 
sequences which, because of the short instruction length, tend to require relatively 
small ammints öf instruction space. 

3HP uses the tenn "precision" to describe the tightly-encoded functional architecture of the HP 
Spectrum line (Birnbaum and Worley [1985]). 

4see, for example, Hennessy et al [1982] 

5 A choice based on, among other factors, stack size frequency distributions 
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Registers 

Link Register 
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so Mask Register 

s 1 Remainder Register 

82 Product Register 

PU Number 

Trap Argument Register* 

Status Save Register* 

PC Save Queue* 
(FIFO pair) 

"\!IQ!ll~etus/Control Register** 

"\]M#.St'-m Counter (PC) 

PU (Local) Registers 

milllt?,fü .. words ( 4096 million byt~~), a collection 9$ii:!f~gisters, and a set of 

!:~:i:!Jl\i~ :;~r~~!~n~~i%1e8 c:~f li. :ra~:::~:.;llt:::nsp~~:~~e~~~ 
discussed in Section 5.) Each PU hi!":. a set of ~@Miiiitig1sters which, except for 
broadcast operations, can be accessediiQ.ply by tb~ti:\lmf~!::fuid there is a set of global 

re~;::s l:::e:s::e:f~ :~ :~JlP'.·•~:"2.1. There are 16 general-
purpose registers, RO-R15. All transfel!i!IQ:ltfuid to memory are performed by 
general register load and store instructi~l,!$.i~!i!ji!ij{bgisters RO-R3 can be used as base 
registers in standard-format base plus dispJ3,tement addressing; all 16 registers can 
be used as base registers in extended-forihat base plus displacement addressing. 
Register R4 is used as the link, or return address, register by jump and link 
instructions. · 

In addition to general registers, each PU has a set of special, control, and status 
registers. There are seven local special registers (SO-S3 and S7-S9) and eight 
global special registers. Special register contents can be read and, in certain cases, 
written, by Move Special instructions, which transfer data between general and 
special registers. Values also may be written to special registers as the result of 
executing other instructions. Access to some special registers is privileged, and can 
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be eff ected only in system state. A brief summary of the functions of the local 
special registers6 follows; for details, see the Antares Instruction Set Manual. 

• Mask Register (SO). This regi~t@r. is an implicit operand register of 
bit field manipulation instructions;<J~ti::~$.!::~~ with the field position and length 

• Trap Argument Regl$ter (S8). Certain trap oper~ti§@$.,„ such as a 

Two PCs (current and next) and two ~§tsave ~~mi~~fJ.i$"'are required because of the 

dela;~ ::~a::::::~::;::: Ji~~~= :::::: ::::tion. 
Figure 2.2 shows this register and i&in~mis'''. certain fields of interest in this 
overview. Mode bits control . various ~fpi:pls of PU operation, and are set and 
cleared by Set Mode and Clear Mode insl.lctions. Some mode bits may be modi -
fied by a PU operation; for example, execution of a trap instruction clears the user 
mode and trap enable bits. Antares can perfonn arithmetic on 8-, 16-, and 32-bit 
operands, ·so· the condition code field contains 4 carry bits as well as Zero, 
Negative, and Overflow bits. Flags bits are set during certain PU operations. The 
register count field is used to store the register count of a load/store multiple 

6special register lengths can vary according to function; the numbering of Special Registers may 
be revised to help decoding. 
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reg. 
count flags cond. codes mode bits 
~ I A \ 

1 : : : 1 : : 1 : : : : : : ... lii: : : i 11 : : : : 1 
31 

halt 

halt flag are discussed in Sectidff 4. The cluster number mode "1j~~iii~$.iiJ1~ed in direct 

Coqp~!t and Selection Registef.ij\:\i.t9:vide facilities fot)~ccumulating performance 
mea$.Q!res such as cache misses,\~Q.$.buctions executed.1~\and PU utilization. The 

addressing is in instruction-length units:::!iiiiiii:!ifative instruction address (displace -
ment) represents a half-word increment,\jld an absolute instruction address (PC 
contents or absolute jump address) is a hhlf-word memory address. Instructions 
are assumed bebe aligned on half-word boundaries. Data addresses are word 
addresses for load and store word instructions, byte addresses for load and store 
byte instructions. There are three data addressing modes: register, base plus 
displacement, and direct. 
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84 Test Register 

r-- 86[0) Semaphore Flag & 
86[11 Prefix Address Rags. 

81 o Evem:fQpµnter 1 

,.,::::::t:t:rn:::::m::::::::n:::::::·· ··::::::::::::!:i:::!:·!:::!::!t::::::. 

register addressi:~f \~~:::b::::~:fR:~i-~ woro illsttuc -
tion is the word address contaf'qed in bits 0-29 of the specified\~f.gfä~r: bits 30-31 
are ignored. The operand address of a load or store byte insttqq~!9n. is the byte 

:JIBtiii;;~f ii~~;;r~~,!~: 
to tlji:,:gbntents of the specifiecFl)l\register, and using .bits 0-29 of the result as the 
dat~:·:)!prd address. For standard,jjfgpnat instructions:~j!i:W.e displacement field is 6 
bits:'((lj.~placement value range 1~·@,):~::and the base regf~t~r must be RO, Rl, R2, or 
R3. I:Q..·~?Ctended format, the displa~ment field is 16 bi~~j!:(i§placement value range 

l-
6

~~~r::::s::;~~:::r~1c::s::; ~-f ~tore word insttuction 
is formed by concatenating the 8-bit di§p~acemeqtlifii~l.j!j~th the prefix address from 
special register S6[i], where i represeri~~j:,the Y.~P,l,jjj§i!lhe cluster number in the PU 
Status/Control Register of the PU e~l;µt~pgj!:i~i!Jfostruction (Figure 2.4). The 
displacement field provides bits 0-7 of:i!i~b~!!ii.~irJss, S6[i] provides bits 8-29, and 

bits 30-31 are ignored. \i'.:ll·:[·i)ii./!:i:.1.ll:iilllrr 

The prefix address defines the start o~!ii!!!~56-word memory region which can be 
accessed by load and store direct instrucdöns; this region is called direct address 
space. Separate direct address spaces are provided for user and system state, and 
both user and _system can redefine their direct address spaces as desired. The first 8 
locations of direct address space are semaphore locatiOns; semaphore operations 
are performed by load and store direct accesses to these locations (see Section 4.3). 
Semaphore flags are kept with the prefix address in an S6 register and, if desired, 
can be changed when the prefix address is changed. 
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Semaphore Flag & Prefix 
Address Register pair 

Clu~~e~~~·) 11 Ajlli'';!;lpreflx Address ~ 

29 

The lnstructlon Set 

nu~~~Hs represented by a singl,i]ijt:· The cluster numl;>er is assigned a value (0 or 
1) 6,y,j,::~he kemel via Clear Mod;~i!i!Jip.d Set Mode insttµctions; cluster number 
modißq~tion is a privileged oper;ti@n.. The cluster nul~r is forced to 0 when a 
PU iliitj~~es trap or interrupt procesl,Ut~, so the semaphgtililft~gs and prefix address 

~E:!:~:E~;~ :: :~~s~:r ~:~,~~o~:~~ii,--~:;~~heH:s:;;e~:~ 
Other addressing modes can be syntb.~sizaj:!)i.ji)ili:,ded: for example, base plus 

index addressing takes two instructiQg§ (~ii!i!i~wo''· cycles, but only 32 bits of instruction space ). iilll\!l\JIF 
The use of three different address tYi@.!!!(~t?'word, half-word (instruction), and 

byte- makes assembly-level progratntril.,g>of Antares more difficult than would 
be the case if all addresses were byte addte'sses. However, multiple address types 
have performance advantages relative to byte addressing, and it is expected that 
most Antares .programming will be done in a higher-level language; very few 
programmers will need tobe aware of the different address types. One reason 
multiple address types are used is to make the most efficient use possible of the 
relatively small (in conventional view) immediate fields of Antares instructions. 
For example, if only byte addressing was provided, the 8-bit immediate field of the 
Add Immediate instruction would give an immediate range of only 1-64 for word 
increments, and the 4-bit immediate field of the Subtract Immediate instruction 
would give an immediate range of only 1-4 for word decrements. A second reason 
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is the elimination of index shifting for operations on word arrays which is required 
if byte addressing only is provided (e.g., @A[i] = @A[O] + i<<2). 

data word format. The Antares dau.i word format is shown below. This 
format is the same as that of the Moto~9li)·§I~: Little Endian for bits, Big Endian 

for byres ::
6

us: ~e ternrinology o~;ilill~Q1ill~k 
0 

bytes 

2.4 lnstructlons 

0 

1 ·:::::::::::::::::~:::::::::::::::::: .. 
··::::::::~:i·!l!:l:·l!li!!ll:::::::.: .. 

source register(s) 
base/address register 

Dst destinati.on register 
Mask Mask register 

:R '<l::::::::·1::::: !:: ~~~Eed in R 
Imm · '\}\\. immediate o8d 

:-:.:::;:::::::::. 

: <::::::;,:„ * \:Wj::::t. 
·-:·:::;:::::::.. <·:::::::::::. 

3 

discussed in the preceding section. The:!!~tc.,:(Jglf.:::§601ean condition) sets a register 
to 1 if cc matches the current code and tqf:Q:j:Q.l,li*ise: it facilitates optimization of 
logical expressions and helps mitigate':f:li.:f:!!js'trictions on code reordering that 
condition codes usually impose. Antares P.l#kles byte arithmetic operations which 
operate concurrently on all four bytesfi!öf a word, and half-word arithmetic 
operations which operate concurrently on both half-words of a word (in addition to 
full-word aritlup~tic operations). A mode bit in the PU Status/Control Register 
determines if partial-word arithmetic operates on bytes or half-words. The 
condition codes in the PU Status/Control Register include four carry flags: 2 or 4 
of these may be set as the result of a partial-word arithmetic or compare instruction. 
The LDCP instruction is used to load carry flags, extended to the current operand 
width, into a general purpose register. Load and store multiple instructions are 
provided to help keep procedure call and return overhead low. (While the cost of 
synthesizing these operations is not high in cycles, it is in terms of cache space.) 
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REGISTER LOAD, STORE, AND MOVE INSTRUCTIONS 

Lee ->Dst load boolean on condition 
LD Imrn->Dst loadfüitnmediate 

- LDB @Base->Dst 
LDCP ->Dst 
L DM @Base->Dst 
LDW Dsp->Dst 
LDW 
LDW 
LDW 
MOV 
MOV 
MOV 
STB 
STM 
STW 
STW 
STW 
STW 

MU:b 
MÜClt 
NEG''/ 
SBCP 
SUB 
SUB 
SUBC 
SUBP 

ADPC 
Bec 
CMP 
CMP 
CMPP 
JMP 
JMP 
JMPL 
TSTF 
TSTM 

add register (bytes or halfwords with carri~)i~li~J? 
add register ( word) ·::;::--

Sr+ Imrn->Sr add immediate 
Srl+Sr2->Srf .. „„. . add register (word with carry) 

!~~fr~:::l \tj'Jilll~:~r:~=~.:~ordn~iliom carries) 

Srl *Sr2->Srl .l!!!l:t!lt. 
Srl*Sr2->Srl 
Sr->Dst 
Srl-Sr2->Srl 
Srl-Sr2->Srl 
Sr-Imrn->Sr 
Sr 1-Sr2->Srl 
Sr 1-Sr2->Srl 

TRANSFER AND COMPARif INSTRUCTIONS 

*+l+Sr->Sr 
*+Dsp 
Srl-Sr2 
Srl-Imrn 

·srl-Sr2 
*+Dsp 
@Sr 
@Sr 
Sr 
Imrn 

-:-:·:·:·:·:·:·:-:·:·:·:-:·:·:·· 

add·lt~Jfum counter 
brantlfon condition 
compare register ( word) 
compare immediate 
compare register (bytes or halfwords) 
jump relative 
jump absolute 
jump and link (retum address -> reg. 4) 
test field under Mask 
test mode bit number Imm 

Figure 2.5. Antares lnstruction Set 
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SHIFT, LOGICAL AND FIELD MANIPULATION INSTRUCTIONS 

AND 
ANDC 
CLRF 
DEP 
DSH 
EXTS 
EXTU 
INS 
MSK 
MSK 
NOT 
OR 
SETF 
SHL 
SHR 
XOR 

Srl&Sr2->Srl 
Srl&-,Sr2->Srl 
Sr->Sr 
Sr->Dst 
Sr2,Srl 
Sr->Dst 
Sr->Dst 
Sr->Dst 
lmml, Imm2 

Sr>>Amt->Sr 
Srl ASr2->Srl 

and 
m;i4:@mplement 

CACHE CONTROL INSTRUCTIONS .. ··· :·:·:-:·:-:·:-:-:-.·.· .. 

@Sr 
*+Dsp 

create data cache line 
flush data cache line 
invalidate data cache line 
invalidate instruction cache line 
invalidate all instruction cache lines 
prefetch data cache line 
prefetch instructio1u;~che line relative 

?fü'PJC @Sr · i·;'~~\~,f~~~~1\t~\~e aOOolure· 

2·10 

<:tJ!J.>C @Sr 
'V)Q,C @Sr 

CLRM 
INT 
ITLB 
RDTX 
RES 
RSM 
RTI 
SEND 
SETM 
STRT 
TRAP 
WAIT 

Imm 
PUmask 

@Base->Dst 
PUmask 
PUmask 

Sr->Dst of PUmask 
Imm 
@Base->* of PUmask 
Imm 
PÜinask 

t•~s:~) 
retuifüfiöm interrupt 
seai!i(Sr) to Dst of PUs specified by PUmask 
sedrtode bit number Imm 
start halted PUs specified by PUmask at (Base) 
trap 
halt, or wait for PUs specified by PUmask to halt 

Figure 2.5 (continued). Antares lnstruction Set 
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The address register of load multiple is incremented by the number of registers 
loaded, and the address register of store multiple is decremented by the number of 
register stored, to help in stack manipulatjpn. 

·.·.:.;·:-:· 

ADCP, ADDP, MULP, SBCP, and S:Ul11.ii:!~J::Structions operate on either byte or 

length, field position, and desl,oation register), which is beyÖ:'-~U~Y capacity of the 
16-bit instruction format. The-::'~k register (local Special Regf$.:t~t!iQ). is an implicit 
Operand of Antares bit field manipulation instructions: oncJ::::H::::j[~}§~t with the 
position andJ~Qg:tb::::9f. a field (by a MSK instruction), extract,<ins,h.,. and test 

Eif~~·~~~~~~~~~~~~~ 
key:J:f:#qtors in determining CPt.)\:plßormance. Antar~)~:::provides a set of instruc -

~::~~~;~~;~;;;;;~1;;:;;~1;;;;a~~;;l~ 
PU mask field of the broadcast instriltdion. Theieihtiltuctions are described in 
Section 4.2. Set, clear, and test mode\:~l~tructjqi!~[i[~p~f~te on the mode bits in the 
PU Status/COntrol Register. ITLB, Rrl;m, aµ4,lil@i>1nstructions are used to flush 
the cache and Translation Buffer in taii!J~l!t#.btng; these, and interrupt-related 

::tru~::~~:.::~:::~: s::::::o\''~:~ 
The Antares instruction execution pipeline has four stages: fetch (F), decode 

(D), execute (E), and store (S). Four different instructions can be in different 
stages of execution in any cycle. A fifth stage, called store 2 (S2), is used in 
executing load and store instructions. An Antares PU issues one instruction per 
cycle unless the pipeline is blocked by ~ cache miss, a cache bank conflict or a 
pipeline interlock 7 delay, a register wait condition ( e.g., wait for multiply result), or 

7 All Antares pipeline interlocks are hardware controlled (as opposed to, for example, the MIPS 
processors, which relies on the compiler to generate interlock-free code.) 
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execution of a synchronous multi-cycle instruction. In the absence of any of these 
conditions, most instructions execute at a rate of one instruction per cycle. While 
each instruction takes a minimum of four _cycles, three cycles are overlapped by the 
execution of other instructions. The nominal execution time of an instruction is 
defined as the number of non-overla.PPl:j:j~$f..les required for its execution in the 

:~::~;:::~~~E:::!;:~::::~::::::::~t•:~:~:;:::: 
instructions. Load instructions ''änd taken branch instructions reqyU.f,ij!:~o cycles to 
execute: the de§.tj.Q~µon register of the load is not available, ancftljl,i]?.r~ch is not 

~i'~"i~~;:§~~~;~:~~§~,?~;; 
foUqwY.ig instruction does refiri:I~ the destination r.~gister, it is delayed (via a 

;~~~~~~~i~~~~f ~};~~i~~;n:~Y{tf~~ 
shadow can be usefully filled, the eff dijU,ye exe('..yfJ.q#.jijfµhe of a branch instruction, 

take;u::e:
1 ::::~ti:: ::c~:~tructio!li~~~11!:es is given in the Antares 

Instruction Set Reference Manual. CacW~i[Uj$.iii~~lays are discussed in Section 3.4 

of this overview. '!
1
f j~lJ:Jji7 

8several studies have shown that the branch shadow can be filled with a useful instruction at least 
70 percent of the time: see, for example, Gross and Hennessy [1982]. 
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3. The Cache 

3.1 lntroductlon 

:*Pi~ section describes the desig~t!9f the Antares cacfl!):J~nd the timing of cache H 

meni(),,ßr transfers, discusses the r~t!Q.pale for various tjÄ9b~ design decisions, and 

3.2 Cache Organlzatlon 

total capacity of 4096 bytes, organizedi!i!a$:]!!6.~!UUhes of 16 words (64 bytes). All 
transfers between the CPU and memocy:jilii)!~n!iilihits of one line. The cache design 
is 4-way set associative: the 64 lines of ~!\il!Jie are grouped into 16 sets of 4 lines. 
Every memory line maps into one of thesiiiiiM> sets, as illustrated in Figure 3.1. For 
cache access purposes, a virtual word address divides into a word index, which 
specifies one of the 16 words in a line, a set index, which specifies one of the 16 
sets of 4 lines, · and a tag. When a line is stored in the cache, its address tag is 
stored in the tag store location which corresponds to that line. A set of flags also is 
stored with the tag, including LRU bits, a system/user bit, a valid bit, and a 
modified bit. 

1 Both are determined by technology; a key factor in determining cycle time is the cache access 
time. CPU cycle time frequently is determined by the taken branch path length, which includes a 
cache access for the branch target 
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r-;:::= set index 

lag 
1 

I ·),\, word index within line 

-----------...:...----22 

·.·:·.·.·.·.·:-.·.·.·.·:·.„· . 

. ·.;.· \:\::JBi:::_::_::::_:_:._:©t:_:,_':H::r~N::::::::::a: 
.„ ····:::···-:-:· 

l!,~li 7 
L .. ;~<:::~~~~'.'.~:::_::::=_:.:_.;;;'.:s,.'.:::,'.·:'._i .. ;;...::;,;;.:_,,;;.l_J_:::.L::;t:,,:,:,,1,.,-ag-s'---d-a-ta-/-in-s-tr_u_ct-io_n_li_n_e __ ..J 

:>tntmr 
<· .. ··::-:.::::: Figure 3J~:l:_::_::_::_:,_::.U.:._:_:.;_.,_::_' .. a.'.'. .... che Address MJh.::_'~ ... · ... i._ng 

.:::::::::::::. ir.:r:: 

the ~~~~==:=~~ ~:!!~!f l~ = :::i:tlii:~~eis'. ~~~:~~ 
instruction addressing is on half-worcUboundaries,:=:fiNht~g of both sequential and 
branch target instructions is done in \qnits of OA'-i:iil\V&td~) The tag (bits 8-29) is 
compared with the tags of the valid Iin~ in m~~iiiil~~:>:tf a match is found, then a 
cache hit has occurred. Bits 0-3 are uS!e.d to:::i.lil.e.t::lhe word be fetched or stored, 
the LRU bits are updated, and the moclißid:::Wtlil$i!i~t if the access is a store. If none 
of the valid tags in the set match the tag gif!Eli:P.l&rent access, a cache miss occurs. 
The LRU bits for the lines in the set are examfoed to determine which line is to be 
replaced. If the selected line is modifiedJ~~h it has to be written to memory. This 
operation is called a moveout. To reduce die time the requesting PU must wait, the 
line being moved out is placed in a moveout buffer, the missing line is read into the 
cache froni niemory (moved in) and the requestor activated, and the line in the 
moveout buffer then written to memory. If the line being replaced is not modified, 
the missing line simply is read into its cache location. In either case, the memory 
read is initiated by sending a line missing request to the MMU. 

Physically, each cache is organized as four banks of 256 words, as shown in 
Figure 3.2. A 5 x 4 crossbar switch connects the PU s and MMU to the cache 
memory banks, and a four-ported tag store permits simultaneous cache access from 
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bank o 

The Cache 

----MMU 
data 
bus 

balance between the cost of the crossb8;j\j~itqljj\jm.11\\\~is effect on cycle time, and the 

perf~:;::::~~y0::c: ::::n~:ltl\!!'~~n fue PU memory access rate, 
the number of active PUs, the cache mi'$$.fa~~ie, and memory addressing patterns. 
Consecutive words of a line reside in diff~t~nt cache banks: words 0, 4, 8, and 12 
reside in bank 0, words 1, 5, 9, and 13 reside in bank 1, and so on. In array 
operations,_ assigning each PU to operate on every fourth element of the array 
results in each PU accessing a different cache bank, substantially reducing bank 
conflict delays. 

3.3 Cache Design Decislons 

The overall size of the Antares cache was determined by the available chip "real 
estate", and its partitioning into separate instruction and data caches was determined 
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by bandwidth requirements. These partitions were chosen to be equal in size 
because this is believed to be the best division for small caches2, and because it was 
desired to make both caches identical to.reduce chip design effort. The physical 
division of each cache into four banks was%based on a trade between the cost of the 

large line size reduces the rtqmper of lines and reduces the':i!i19.vJ1t of tag storage 
required. At roughly a worcflp~r cache line, tag Storage rdP.ll;~u a substantial 
fraction of the cache real estate. ''''''Line utilization can be viewed a~)!]l!i!ip~oportion of 
words in a line ~.f~r.~nced during the time that line is in cache. Higfiiiill~:::µtilization 

~c~~~~~~~~~§~e~,(~~~~:~il!::u::::::: 
to reduce the probability that the four PQ1~, migg~i!:iiP:läte a reference pattern which 

wo:d ::: :~ ::s:!::ned to be J!,ll\1l!1
:mual addresses or wiili real 

addresses. In the latter case, address trä.rt$~1t~6n must be done on every memory 
reference either before or, in some cases~j:j~p?parallel with, the cache access. This 
adds some complexity to a single-processÖFdesign and can reduce performance by 
increasing cycle time (although the translation can be pipelined at the cost of 
additional complexity). In Antares, real addressing of the cache would require a 
translation mechanism capable of supporting four simultaneous translations, one 
for each PU. Consequently, the Antares cache is virtually addressed: address 
translation takes place on on miss processing, which substantially reduces the 
perfonnance demands on the translation mechanism. 

2oavidson [1987] concludes that the optimal instruction cache size is about 50 percent of total 
cache capacity for most capacities. 
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0 2 3 1 4 1 5 1 6 1 7 1 8 1 9 l 10 l 11 l 12 l 1 s l 14 1151 
oxz ... zo OXz ... zF 

(a) word ord~tdn line 

;;)jlJ.11,lljlltTuit, 

problem: multiple copies or:::;~ same real memory line may:):i.n~LPP in the same 
cache because of being referericed by different virtual addresseM(i~!i!~ponsequence 
of memory sharing). In Antares, synonym avoidance is left to softWilt Also, it is 

3.4 Cache Miss Timing 

occurs, and the missing line is moved i~!jjgmP,Fmemory; the MMU translates the 
virtual address of the line to a real addre$,i~iiiteads it from memory, and stores it in 
the cache. If this line replaces a modifie(Fiine, the latter must be moved out. To 
minimize the delay incurred by a PU on a miss, the modified line is written to a 
moveout buffer .(Figure 3.2), the missing line moved in, and the modified line then 
written to memory. Rotate andforward operations further reduce the PU's delay. 
The MMU initiates a line read from memory beginning with the word accessed on 
the miss, reads the remaining words in the line, and then wraps around to read the 
first part of the line, effectively rotating the line so that the referenced word is the 
first word read. For example, if an access to word 5 of a line results in a miss, 
word 5 is the first word read, as shown in Figure 3.3. When this word is read 
from memory, it is forwarded to the requesting PU at the same time it is stored in 
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the cache, so the PU can continue execution without waiting for the movein to 
complete. Subsequent accesses to that line, however, must wait for movein 
completion. 

The delay incurred by a PU as the r~~m~:iPf.. a cache miss depends on a variety of 
factors, including cache bank con~i:@~~:~::::lt,lhl .. busy delays, and translation (TB 

accessed word is loaded into ofri~~pred from a register in the foUgmpg cycle (which 
corresponds to the S2 Stage of die pipeline ); otherwise, a moveiili::~:~::~P,Jtiated. The 

meni.:P.JP.e arrives from memory. N~~i::µiat moveout buff:~~)oading is overlapped by 
the st~l,ip time for the movein ancCgfä;toes not affect th~iirf.questing PU; however, 
cache ·aQ,g~sses by other PU s will be'''~!gcked during thi.~iipifi.9fi. lt may be possible 
to implem~nt an access priority resol[ij1ion scheme wt:b.tlb.ifa~lill avoid the need for 

~:~~:~r:~::~ during moveout b17 loa~~i;lllil'll be detennined later in 

In cycle 2, the MMU translates th~Hl4dr.~$ii!!P.fH~he line being moved in via a 
Translation Buffer (TB) look-up. At ·1~ .. ,'=filiiiiP:~Hhis cycle, it initiates memory 
access for the first word to be moved in\iliiilß.t~Pi- which is not necessarily the 
first word of the line. The access time fdti'~tH~·rrst word is assumed to be equiv -
alent to 5 cycles; it depends on RAM chipj,i!Pcess time and the Antares cycle time. 
Subsequent words can be read without furiner delay. 

In cycle 8, word i is retumed and, simultaneously, stored in the cache and 
forwarded to the requesting PU (which resumes execution, having incurred a delay 
of 8 cycles). The remaining words of the lineare stored during cycles 9-23. The 
line is marked valid at the end of cycle 23 and is available for PU access in cycle 
24. Store requests for words of the line being moved in are made by the MMU; if 
access to a cache bank is requested in the same cycle by both the MMU and a PU, 
the PU is given priority. 
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movein (MI) request -> MMU 

modified line -> MO Butter 
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initiate RAM access 

forward word i to PU 

word i -> cache 

word i+ 1 -> cache 

word i-1 -> cache 

MO request -> MMU 

translate MO address 
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When the last word of the missing line has been stored, moveout processing is 
initiated. This is similar to movein processing: a moveout request is sent to the 
MMU, the address of the line being moved out is translated, RAM access initiated, 
and the contents of the MO buffer storeq;::~n}nemory, one word at a time. Note that 
no cache bank conflicts can occur dqd.pi,:;:~~~t transfer to memory, so the moveout 
should complete in 23 cycles. The MM!l:!l.~:::~1.§Y for the duration of a moveout; if 

~~~~;;~~~~·~~~~~;~~~:a~t~~~~i 
:ii:1~1!s:s ~~~~.!~,lfl: !:: :C~:f~':·c:!:A~!\ta~iff=~~es ~=~~~~ 
the effective miss penalty. '''G.~~ain overlap situations reduc~::::iti\Jor example, the 
actual delay caused by an itis:t,iction fetch miss for an instfi~~~@p which has a 
divide ahead of it in the pipeline. may be less than the nominal mis~:;;~~ty. 

~iitf.~1i~5~~~E~~~~1~lr~1~ 
operand word to be forwarded. Beq~\lse the PiPill~Fls blocked, the AD D and 
LDW which follow also are delayed;::!l1J.ie AD,li!i!~fittrlöcks in its E stage, and the 
LDW interlocks in its D stage. Wh~P< t~~:::::9!Plfhd word of the first LDW is 
returned, it completes execution. Wittiii!ifü~:i!!P!§ßhe now free, the ADD completes 
and the second LDW progresses to its':iimii!i~~lgff° where it issues a cache request. 
Because the line is still being moved in ~4.\!!~::fovalid, this instruction interlocks in 
its E stage until the line becomes valid a'.U,4,!:ifis operand word can be read from the 
cache, and so incurs a delay of 14 cycles. ''':Additional instructions between between 
the first and second LDWs would reduce this delay. 

If the page address of the missing line is not in the Translation Buffer, an 
additional delay of 8 cycles is incurred if the page table block address is contained 
in the Directory Buffer; if it is not, a 16-cycle delay is incurred (see Section 5.) 
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non-privileied 

CDC @Sr 
FDC @Sr 
IDC @Sr 
IIC @Sr 
IICA 
PDC 
PIC 
PIC 
UDC 

@Sr 
@Sr 
* +Dsp 
Sr 

VDC Sr 

privileied 

ITLB 
RDTX Sr->Dst 

create daqr~;i.che line in set addressed by Sr 
flush daW.C9~qQ.e line addressed by Sr if modified 

::::;::::::::::::::::::· 
·::::::~:;:~:~:}!~~ 

'''·'-:·:-:·:::·. 

.. :: ~~ ~j~~[~j~)[~~~ ~~~ ~~~j~j~;~~~::: .. 
. . ·::::::::::i::?:::::::::::::::::::::::::::::tt?\::,:: ... „ ··::::::::::!:!%!:\:\. 

3.silllt~~~~!~~!~ll~~dn:B Control Instruction summJl~ll\,J;f 
. ;iii·i:;fhe past, caches have .t11111J.~chite~turally invj§ible, partly because many 
archJ~'=Ftures were defined befori,j:j:9,iphes were routin~lk incorporated in designs. 
Whil~i!:.ithe cache miss rate and mt~'~fa;>enalty are key f~QJprs in determining CPU 

::[~~~f: ~::~~~~~1l~E~~lr2~;:~~~~::d: 
instructions for this purpose. Ther~]!Jso are.:::PHl~i:ged cache and Translation 
Buffer (TB) control instructions for usf:!!~y th~t~tff!i~::fo flushing the cache and TB 

on a task switch or a task termination. \!'lil.l:lli:::„:d!ii!!.':l:·il!/i/:!·1 .. -.~!!:i/!li!!!:?· 
Tue maximum instruction executiori'!Httt{b.f\ffie Antares CPU is one instruction 

per cycle (per PU); the actual executi:ilii!iti.t~:· depends primarily on cache miss 
delays, and to a lesser extent on cache b~U,}fonflict and pipeline interlock delays, 
and on the relative frequency of multi-cyele instructions. To illustrate, suppose the 
data cache miss ratio is 0.04 misses per access and the average number of data 
accesses per instruction is 0.5: the data cache miss rate, then, is 0.02 misses per 
instruction. If each miss causes a average delay of 11 cycles, then data cache 
misses add 0.22 cycles to the mean instruction execution time. Instruction cache 
misses add additional delay cycles (although instruction cache miss ratios usually 
are lower than data cache miss ratios because of the greater locality of instruction 
references ). 
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There are two ways to reduce the impact of cache misses on performance: 
reduce the miss rate, and reduce the miss penalty. The compact Antares instruction 
set helps reduce the instruction cache miss rate, and the 4-way set associative, füll 
LRU, cache design helps in miss rate.Ai;j4µction. Instructions are provided to 
invalidate cache lines: when it is knownii1b.it!i!~J:ine will not be used again, it can be 

Misses can be divided'lut&::~ßVo classes: demand missei!:~AP.~::Prefetch misses. A 
demand miss occurs whe'ii::::11:;. instruction fetch or and·::HP:looP fetch or store 
references a line not in the cac~m~:, demand miss timing was dis~P,~~!:9 earlier in this 
section. Antares provides inst:nletions to prefetch lines into the tialii~4 instruction 
caches; in executing one of these instructions, the PU sends the niel~G\address to 
the cache an~lJ;;:QPti~VJ.~§.Jetching and executing instructions. Whe~i[ii:u~hof these 

prefetch miss occurs while the MMU is\pg$~i!il~U'fa transfer, the prefetch request 

simply is discarded. \jijl[l~ij!~llli:/l)':./l/ll.!llJ?. 
An instruction is provided to flush (fof:Q~#the writing ot) a modified data cache 

line to memory. This instruction can be us&f to insure that memory shared between 
CPUs is updated properly. 

Much cütreiit~day software, such as that for the Motorola 68000, was not 
developed with a cache in mind, and frequently produces higher than necessary 
miss rates when executed on a later CPU which has a cache. Antares software 
designers have the opportunity to reduce miss rates through careful organization of 
code and data and through the use of invalidate and create line instructions, and to 
reduce the effective miss penalty by prefetching. 

Apple Computer Contldentlal 3-11 



Antares Overvlew 

3.6 Cache Flushlng 

Cache lines and TB page entries are tagged with their virtual addresses, so that 
lines and pages in one address space c~nhpt be distinguished from lines or pages 
with the same address in another addr:~§:i:~MF.,e. Consequently, in switching from 

instruction includes the virtüiJ::jljne address, valid bit, modifif,li!j~~~~. and system/user 
bit. The kemel uses this insttg:~tion to inspect the data cadiii!i!qgb,:tents, and uses 
other cache control instructionsHb flush and invalidate selecteC.I:i!lini.s~„ The kemel, 
then, can decide on the basis of state and address range what lin~:~:::m~~t.pe written 

~i~~Tf i!J:~~~~i~~~~1~~1~~~~; 
tim~::i:9~{24 cycles per modified/lin~', regardless of wh.~ther the flush operation is 
don'~::(.ljy hardware or done by soft\Vi.fe. This operatidf!:J.s easily parallelized, and 
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4. 

4.1 lntroduction 

daU\~\::·:'j:l,nterrupt instructions pedi:ft\\\3.. PU in system staty to interrupt other PUs, as 

:~it~~~~:u~:!s~:~~~~lt ~e:c~~~ ~scri,~~:adcast and semaphore 
4

•

2 i:~~~:::::~r~=~::; ex]t for an.tl1l!: is expected tobe an 
alternating sequence of serial (SISD) ::1,44 parMli~t\ttS:JMD or MIMD) activities in 
which a controlling PU initiating par~l,~l ~@4.~~tjj,k"on other PU s. Binding of a 
specific activity to a ,specific PU usu~~Yt~~~j:j@~W&one at compile time. Parallel 
activities executing on PU s other than t~~i!:§q~piling PU terminate by executing a 
halt instruction. The controlling PU can Wi.!~:[f6r these activities to complete before 
initiating a serial activity by executing a w@~:1nstruction. 

·:::::::-

address broadcasting. During serial execution, one PU is executing and 
the other are halted. To initiate execution of parallel activities, the controlling PU 
activates one or more waiting (target) PUs via the broadcast instructions 

or 
RSMPUmask resume execution at target's current PC 

STRT Ri, PUmask start execution at address contained in register 
Ri of the controlling PU 
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Broadcast instructions have a 4-bit field called the PUmask field: bits 0-3 of this 
field correspond to PU numbers 0-3. Broadcast instructions operate on all PUs 
whose PUmask bit is 1. The resume (RS~) instruction causes each target PU -
each PU specified by its PUmask field 4:".:'~tttresume execution at that PU's current 
Pro gram Counter (PC) address. Haltmf!lßYi[i[~sume execution immediately. If all 

SEND Ri_~ .. ?:ßi~. PUmask 

·::::::t:::::::::::::::i:::::::::::::::::::::::::::::]::t:::t:>::::; ... 

is e~lpted, the SEND instructio~·:]~l.pcks until all targ~.t PU s have halted and the 

·::-::::;:::::::. ·::-:;:::::::::::::: 
···:;::::::::::;:. <:}::}( 

WAIT PUmask \[:[i!iiiiji:: 

If the PUmask bit corresponding to ttii. nurn:tWtfiß::::the PU executing the wait 
instruction is set, the instruction unc~ti~ti9l!»i1[i:ii:~ts PU execution, and other 
PUmask bits are ignored; the PU rema!ni!!j).)ljJ.~Wff'until reactivated by a resume or 
start instruction or an interrupt. If the P:fl:M4iii!bh corresponding to the number of 
the PU executing the wait instruction is Q~~:i\l~:"pu waits until all the PU s specified 
by PUmask have halted, and then contimi!,k:execution. In this case, then, the wait 
instruction perf orms a join operation. · 

lf the PU's· register contents are no longer useful, the PU should set the 
"registers available" bit in its Status/Control Register (Figure 2.2) via a Set Mode 
instruction prior to halting to indicate that its registers do not have to be saved. In 
recognizing an external interrupt, the Antares interrupt mechanism tries to assign 
processing of the interrupt to a halted PU. The operating system kernel examines 
the "registers available" bit and skips register saving and restoring if that bit is set. 
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··················································.·················································· 
PU 0 : PU 1 ··················································.···················································: 

active ~ ~ halted ~ 

SEND 
SEND 
RSM 

WAIT 

SEND 
.i RSM 

·:,,.,.. JMP to eqwx::m~.nt : 
WAIT 

.·::::::::::::::::::::::::::::·:·:!:!:::!i.'!::!.:i.i~··il:::· ::::::::::::::::::::::::::::::::::::. -

·::::::::::!:~:~:!:}~:~:~:~:~::::·· 
,•:-:·.<·:-:·::~::::(/: 

to e~"qµte floating point add opetä1~gps and that, by cdnv@~tion, the floating point 
add et#h.Jation cooe expects its ope(~4s in registers o.,:IP.®l::l., anct returns its resuit 

~::t~~~:i:~2i~~~:!t:~~~iilll~jt~.E0~:1~::~~ 
holds the entry point address of the\\!ljßoatingfä_r&~l~?add emulation code. The 

ope;:d;n:::: :~::~::::~o: :~ilit?;:~it:~ P~U O~ executes send 1 

instructions to transmit the operands::jjjjj~gjjj:i!ßlJf. 1, and then executes a resume 
instruction to activate PU 1. PU 0 condnY.~s''in execution until it reaches a point 
where the result of the add is required an<l:i~fien halts by executing a wait instruction 
with the PUmask bit for PU 0 set. When PU 1 finishes its computation, it issues a 
send instruction to return its result to PU O; if PU 0 is not halted at this time, the 
send instructiori blocks until PU 0 does halt. After sending its result to PU 0, PU 1 
returns PU 0 to execution by executing a resume instruction. lt then prepares for 
the next add activity by jumping to its entry point and halting. 

1 In instruction fields in this example, a numeric field terminated by a 'B' indicates a binary 
number: e.g., 'OOlOB' represents 00102. 
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„ ........................... ·~ ............ 1 •••••••• 1 • •••• 1 •• 1 •• 1 • 1 1 • 1 • 1 1 1 • 1 •• „ 1 1 1 • 1 ••••••••• 1 • 1 ••••• 

: PU 0 : PU 1 : PU 2 : PU 3 
: •••• 1 •• 1 •• 1 •••••• 1 ••••••••• : 1 •••••••••• _ ••••••••••• -:· •••••••• 1 • .: ••••••••• 1.: •••• 1 •• 1 ••• _ •••••••• 1 •• 

: : : : : : 
: active : : : halted : : halted . . - - . -. . - - . -. . - - . -. . - - . -. . - - . -. . - - . -. . - - . -. . - - . -. . - . -. . - . -. . - . -. . - . -. . - . -
: LDW addr->Rl : : : . . . -
: STRT Rl,lllOB--:-+ : - active 
: JMP Rl : . . . . . . . . . . . . . . 

WAIT lllOB 
(h_alt) 
-

„:-:-:./t,:::::· +- : : WAIT lÜOB 
.':?\]/" PUs 1-3 : : (halt) 

. :. :-:.:·:·:::.:-:·:· ! : -
• · „„,.:.,.,.,.„, halted · · 

:;:: : :::::::::::: ~ m:ll!:lt. ~ 
···.· .. :·:::;::;-:-:-:·:<· : :::::{{\ : 

0

• ~::;~~~r~~~~1~:· :~=:~~~:: ~:~t:~:::~iil!: ;~ ·i~p~:~::t:~. ~ia 
semaphores, with the advantage that th~jiftoatiIJgj!pg~nt!:emulation activity would not 

need to know which PU invoked it. \,.1:111:1lltJ!if!j)!!:,·!ll.!l:.:ll:l·!llili!!!iiii!?' 
Figure 4.2 shows the initiation and t~min§h of an SIMD activity in which all 

four processors execute the same code. :::::fltgH$.Hiiate this activity, PU 0 executes a 
start instruction with bits set in the PurA4.$.~}fieid for PUs 1, 2, and 3; this starts 
these PU s executing at the specified addi~'~s. PU 0 starts its own execution of the 
activity via a jump instruction. 

While all PUs execute the same ccxie, their execution times for this activity may 
differ because of data differences and because they incur different delays, such as 
cache misses. All four PUs, on completing execution of this activity, execute the 
same wait instruction, WAIT lllOB. This causes PUs 1, 2, and 3 to halt, since their 
own PU number is specified in the PUmask field, and causes PU 0 to suspend 
execution until each of the other PU s has halted. Thus, synchronization at the end 
of this activity requires only a single instruction. 
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Figure 4.3. 

4.3 Semaphores 

PU Communlcatlon and Coordlnatlon 

output 

PUs, and to activate halted PU$~. Semaphore operations ar~\tjj~ja]:ilP communicate 
between and coordinate the actl\Jities of active PU s. i\j~l!f \\\t_ 

Antares .l®.Q/~tQf:f:Jprect-addressing instructions span a 256-wotq@fift.9t address 

~11~,~~!~ii~~lg~;~~~~~~~~~~!~1~ 
foti.n~t:f by concatenating the dil~~~ement field of th~~tJnstruction with the current 

::!\~:;~;~:~ ~:s~;:~~,,~:;;.~:~~11::::: !!~:~:;: 
by normafload and Store direct2 acce~i~s to these lq9l;tj~~:s:~· Associated with each 
of these locations is a fulVempty flagi!!J!. A stor~:::t9iili~l.ijlaphore location s stores a 
value in that location and sets the F fl~giii!o fuH?::::i~ll~ed that the F flag initially is 
set to empty. If F initially is set to full~[iljhe P.\illii~RUttng the store is blocked until 
F is set to empty. A load from semaph&ft l~ili9il~:i loads a register with the value 
from that location and sets F to empty, ·PIM~~ll/ihat F initially is set to full. If F 
initially is empty, the PU executing ib,;iiiilqad is blocked until F is set to füll. 
Semaphore flags also are contained in ·:s:§;!t'.·switching clusters changes both the 
current prefix address and the current serriäphore flag set. 

examples . . Semaphores are used to transmit data between executing PU s, to 
control access to data, and to control execution of "critical sections" of code. In the 
example of Figure 4.1, the.result of the floating point add operation performed by 
PU 1 could have been returned to PU 0 via a semaphore, saving an instruction in 

2While the contents of these locations may be read or written by register-addressing or base-plus­
displacement-addressing load/store instructions, only the direct-addressing instructions perform 
semaphore operations. 
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0 

queue link data poinM~r': D:::it. 

queue link 

queue link 

·=::::::::::::i!il::t::::::::1::::==-

:~~u'I ::,ock 
\~:/f\ 

'\j}? 

LDW s->Rl 
Rl:O 
*+5 

Rl->s 

get lock 
end of list? 

yes: unlock 
and exit 

no: update, 
unlock,and 
continue 

senl);iplj;pres are used as data\pJi~~;mns between pipeline stages, as illustrated in 
Fig9.f~:!:4.3. Here, each PU peffQUR$ a different oper~tion on an operand; sema -
pho{i:§:::are used both to transmitail,.between PUs and.!i:!P synchronize operations. 

~~~l[~~u~~nos:=!~:~P;:tt;:~r:~~:~1tn ~n ~t a;~::o=~ ~~~ 
read theFptevious value, the F flag d~i:§~maphore 0 w~l~!i:l!UFbe set to full, and the 
store insttuction will block. When =el.J. 1 does reaa:::tbat:A~alue (via a LDW 0->Ri 

~:;~~;~;~~~~;;f ;}~j~;;~;s;;;~;;;~; 
form of linked list (Figure 4.4(a)). Semapfiqrf.ts is used both to lock the queue and 
to hold the address of the next element in::i'-kfueue. When a PU is ready to operate 
on the next element, it executes the access:::sequence shown in Figure 4.4(b ). lf the 
queue is unlocked, the F bit associated with semaphore s will be set to full. When a 
PU executes the LDW instruction of the access sequence, the contents of semaphore 
location s are returned to the PU and the F bit is cleared, blocking access to the 
queue by other PUs and so locking it. The queue is unlocked when the PU 
executes a store to semaphore location s, either after recognizing that the end of the 
queue has been reached or after removing an element and advancing the queue head 
to the next element. 
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activity initiation via semaphores. Since semaphores can be used to 
pass addresses, as well as data, it may seem that the broadcast instructions are 
redundant. However, activity initiation::'.termination sequences based on sema -
phores typically require execution of Qf~jQ::!~~structions per PU, depending on the 
scheme used. This overhead impact~4llf:~D:~ce both directly and indirectly (by 

4.4 

The state of each PU is repfosented by two bits in the Gldq@fü$Jitus Register 
(Special Register,J.3.). Both bits are cleared if the PU is executing;~:;tQU~}:>f the two 

;?Ji\lt.~~lti~~~2~~~tltf ~~~IS 
the~?b.Us is set for all 4 PU s, ~:liiiWock situation is assumed to have occurred and 

3 Assuming an execution time of one cycle per instruction. 
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5. 

5.1 Address §pace Model 
. ·.·:·:::::;::::::::::::::::::::::;:;.·„ .. 

regioP.:i::~t the high end of the adCJt~I$. space is allocailJtfor the kemel, and the 

:~~:~4~~;~:: r:;~:l.is ;;~~,t~ ~~t~~;~~:iill::x~!;!~n°~;r~::. 
transfer control to an interrupt vector:ill.4.dress who&,f.j]jpl~ffs the start of the kemel 

regi:~ kerne! region is directly mapplpy lj.11~:,the first million words of 
real memory. The kemel region is not.~plg~4.!i~li!~bes not use Translation Buffer 
(TB) entries; this helps improve the \f:ll!f:~y~hess of a relatively small TB 1. 
Separate prefix addresses for user state )w.!9.Ji!:llystem state provide separate direct­
address space (and semaphores) for the\yipF and the kemel. Lines in this non­
pageable kemel region are cached in the ·s:füne way as pageable region lines. The 
actual amount of real me.mory allocated to the kerne! is detennined by its needs; the 
kemel, at system startup time, assigns the real memory it doesn't need in this 1-
MW region to allocatable page space. The operating system may use a pageable 
region, in addition to the hardware mapped kemel region; this region, however, is 
not specified by the hardware architecture. 

1 Antares resembles MIPS (the MIPS Computer Systems' RISC CPU) in this regard: see 
DeMoney et al [1986]. 
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1024MW 

:::::::::: 11::!~1~ 

page mapped 

oxoooooooo .... 1111!1111111111111111111!1! .... --.... 

5·2 

word address in page 

I \ 

1 01 BI LI :~1 
(1 Ob) (9b) (7b) ~ (4b) ....___....._____..______. 

\ 

l 
page table 
directory 

index 

l 
page table 
block index 

~ 
line index 

in page 
word index 

in line 

Figure 5.2. Virtual Address Format 
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In the case of clirect addressing, a virtual address is formed by concatenating the 
current prefix address with the instruction's displacement field. Tue current prefix 
address is obtained from one of the Spy.cial Register 6 pair, S6[0] or S6[1], as 
determined by the current cluster num~f:::i~!ting. When a trap or interrupt occurs, 
the current cluster number is set to Q~::::~i~t~~ffl.g S6[0]. The prefix address in this 
register typically is of the form Ox3mlii~:::wlit~. 'zzz' is an offset from the start of 

object sizes was tempting; "'h§}V~ver, it was decided that a pagi[:lmi~ small enough to 
be mapped one-to-one with oqJP.cts presented significant petf.§B.w.ice problems2. 
(Blau [1983] reports that the mein size of objects in the standard\Qlrk~Jey Smalltalk 
image is 32 bytes, with only 0.3 percent larger than 1024 bytei:~':lillllI~A~·ddition to 

::::::.:::::::::;:;'.;.1.i{?'' ··:::-

:{~\. 

done<Y,:$.~ng a two-level page table ':q~l.l~tructed and maintmned by the kernel. The 

~~t~!~~.th~!a!~ !:i!~~;a:~~!\t~~:: ;~ ~!-~:;~~ ~o~t=~;' ;: 
Page Table Directory Origin (PTDd)lilir~gister, on.~ill[Q~il!tije CPU special registers. 
This register is loaded via a Move Speql:l instruq~QP.iiJiw~en an address space switch 
occurs. Each directory entry representsjji~i:~12-11111:::$igment3 of the virtual address 
space: if no pages in a segment are alloi:t~ck(i!lij~y), a flag in the directory entry 
is set to invalid. The segment at the higftii~nq!jjq~i!the address space corresponds to 
the kernel region. If any page in a segm~n~lii~iil!fil6cated, the directory entry contains 
the starting address of a page table block'\§.fjjj$l2 entries, one entry for each page in 
the segment. A page table block entry coiijprises a set of flags, including an invalid 
bit, and a real address field. If a real page is bound to the virtual page represented 

2The VAX, with„a page size of 512 bytes, experiences very high TLB miss rates. Clark and Emer 
[1985] report TLB miss rates in the vicinity of 0.033 misses/instruction for a VAX 11/780 with a 
128-entry TLB (these rates however, represent operation in a multi-user environment; also, the 
split design of the VAX TLB results in a relatively high miss rate for its size). 

3 A segment is defined as the region in a virtual address space represented by a directory entry; it 
has no architectural definition beyond that 
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•••-------ttaazm=:rrrr-1:-=-„„.„„„ ... „„„ ... -----• .„„„„„„„„„„„-------
Page Table 
Directory 

(1024 words) 

<:e;::::::::::.P::ar10 Table Directory 
{PTDO) Register 

Directory 
entry address 

Directory entry 
{PTBO - Page Table 

Block Origin) 

Page Table block 
entry address 

.~ageTable 
block entry 

real line address 

·.· 

··:<-:·:·:-:-:·:· 

·-:-~{~~t~\ 
. : . ~; j;::::. 

flags 

01 BI LI:::::::::::: !lt 

BI 

flags real page address 

real page address LI 

Figure S.4. Virtual to Real Address Translation 
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by an entry, the invalid bit is not set and the entry provides the real page address 
together with access permission flags; the latter are forwarded to. the cache for 
inclusion in the cache line tag. lf either tg~ invalid bit in the directory entry or in the 
page table block entry is set, a page faU:lt\:\W~f:pupt is initiated by the MMU. 

done by hardware. This irti!P.~ng is done by simply disdi~i!\l.4he directory index 
part of the address and treaqfig the remainder of the addti,~~\(:\(1§ a real memory 
address. For a user region ad~s, the DI field is concatenatea::~i::Jhe contents of 

cond.i~~µation to avoid the need fdf:::i,4dition in the MMW~::\As a consequence of the 
latter;Htirectories must start on 1024.f:ivord address bourtdälies and blocks on 512-

space 

5.4 The MMU 

The steps in translation of a user regioq[h~Qi~hl address, and the MMU elements 
involved, are illustrated in Figure 5.5. \i!]!irn:>" 

When a cache miss occurs, the virtuaifü~ddress of the missing line is sent to the 
MMU. The MMU extracts the virtual page address and searches the Translation 
Buffer (TB) för· it. The TB is a small, fully associative4, cache which holds 
translations for the n most recent MMU page references. in the initial imple -
mentation of Antares, n is expected to be 16. A TB entry contains a virtual page 

4i.e., any virtual page address can map into any entry: in a set associative TB, a page entry can 
map only into a given set. 
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cache miss 

extract VPA 
--no--1 is VPA in TB? 

yes 

get RPA from TB 

. Iri~ai:ii.,f f:~,~~~·;Y entrl'' 
]rglJ))foemory: valid? 

yes 

:::'.[::[Q~t BOA from entry 
'<::::·:r~place DB entry 

form BEA 
read block entry 

from memory: valid? 

get RPA from entry 
replace TB entry 

form real line address 
read tln"e 

.:·:·: :-:.:·:·::::;:::::::::::. 

:::::::· 

Translation Buffer 
8-16 entries, fully associative 

ll{i!:~il~,, RPA F 

DHiiJq,ry Buffer 
4 enfriij~:~lf9.HY associative 

VPA -
RPA -
DEA 
BOA -
BEA 
TB 
DB 

ml,,ll'l 
Directory/Block 

& Entry Registers 

________ ..,,I 

notatlon 

virtual page address 
real page address 
directory entry address 
block origin address 
block entry address 
Translation Buffer 
Directory Entry Buff er 

Figure 5.5. Address Translation: MMU Operations and Elements 
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address, the corresponding real page address, and a set of flags which include flag 
bits from the page table block entry. If the virtual page address is found in the TB 
(a TB hit), the real page address is obtaiqed from the entry, the real address of the 
line is formed, and a line read requestßlnt40 (local or remote) memory. The TB 
entry is established as the MRU (moslfflg~~y,~used) entry, either by reordering TB 

5.4. The MMU has a sdtli:::A-entry buffer which hoia$:::::tb.e .. last four unique 
directory entry addresses arl~[\\tpe page table block origin ·j~·l§~S contained in 
these directory entries. A fol@+.!way comparator determines f'r:::tP.§.:::fürectory entry 
address is in this buffer: if it is, the page table block origin aillf:i~:Js obtained 

adcli~Qpal misses for the directocy'':ild:.page table block.'ph,s;s, substantially increas -
ing th~:::q,~che miss penalty. Cachirtgj[\~pe page table als.g:::wgpld have increased the 
comple~ly of the interface betwee1f::tb.~ caches and th~\\:M.f3tJ. For these reasons, 
the MMt.Y'is designed to read directorjt\[~d page ta~J,~j\~J.l~:::~ntries from memory as 
needed, using its own entry address äßi entry df:\t!::ill$fors. The small directory 
buffer significantly reduces the numilt: of m~l~tyjjjreads required for directory 
entries, so that the majority .of cache 'q@~se~:ml§!lbVitlso miss in the TB incur an 
added penalty of just the 8 cycles requir~gh9!\liqjl[t,ße page table block entry. 

When a directory entry is read from 1111[?~~ is checked to see if it is valid; if 
it is not, a page fault interrupt is generate4.~:::::\J.f::H1e entry is valid, it replaces the least 
recently used entry in the directory buffer~ilJY 

The block origin address obtained from the directory buff er or read from 
memory is ~oncatenated with the block index to form the block entry address, and 
the entry is read and checked. If invalid, a page fault interrupt is generated. Other -
wise,. the real page address from the entry is used to form the real line address and a 
read request is initiated for the line. A new TB entry is constructed and inserted in 
the TB in place of the least recently used entry. 

Page table directories and blocks reside in the kernel region but are accessed by 
the MMU using real memory addresses, not kernel region addresses. 
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5.5 Page Table Entry Format 

A Page Table Directory entry contains a valid bit and, for a valid entry, the real 
address of the first word of the Page T~pl~ Block associated with that entry. A 
Page Table Block entry comprises the f.qJ.lpWfqg fields. 

~~n~ ~ii~11~~\ii~e~ i ;:e actufil maxllnum 

6 

.d ~:; ;~!l1~!11ll:~l1Jlll'i:lli'jj,)i: ,.valid/invalid flag 

.,,::rnrn:t::::rn:\:~J>::" 
·::::;:;::~:~:(!\}~;:: 

-:·:-:<<·>::::: .... 

'.~JllJr 1 c34&Ple/non-cacheable,ßag (see Section 5.6) 

<H:l\ 1 inteiPi~on-write flag (s~~:·:l:~ction 5.6) 

"f:·::.:-:\3 
·.;-::/}:::. 

5.6 Non-Cacheable Pages 

Antares permits a page to be designateg!!as non-cacheable (by having the kernel 
set the appropriate tag bit in the page table entry for that page). When a load or 
store access is made to a word in a non-cacheable page, that word is transferred 
directly betwee·n· the designated register and local or remote memory. Non­
cacheable pages have two principle uses: memory-mapped 10, and inter-CPU 
messages, both of which involve bypassing the data cache. However, it is possible 
to bypass the instruction cache by declaring a code page non-cacheable, which is 
useful in debugging and testing. 

Processing of a load or store access to a non-cacheable page is much like miss 
processing. The cache, on receipt of the load or store request, searches its tag store 
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for the associated address and, when the address is not found, sends a movein 
request to the MMU, selects a line for replacement, and prepares to invalidate the 
selected line. Tue MMU performs addres.,§. translation in the usual way and obtains 
the page table entry for the page conta.Jp~qg,, the referenced word, either from the 
Translation Buffer (TB) or, in the ev~nt:i!ittiiiff..B miss, from the page table block. 

between CPUs. A page table entry tag bit can be set to specify ifii.ti!!lt~1~:m-cached 

~~11~1\\;i~~~~s~t~~~~{~~~ 
~-f ~ok=~~~=~=~ s:!:!~ll~;1;~~ :;~s~e~fy::iis:~e ~~g~s':~~c!:;~ 
into'::~\:\real address of one of the ·6tb.f.r CPUs in the sy$f~µi. This mapping is not 

:::~~f g:;~~e~~;;;~;:~~;o;::al~:;~~t::i::~ 
comparison to determine if an IPB tt~#,.sfer fall~t:Witlih.fan address range that is 

def:~:: e::::~: :!:b:::p:l:l•?::5:~:t~ual page in 

an address space of CPU i's into which tlli#!m~li~rites to send a message to CPU 
j is called the outbox page for CPU j. Th~~::!l\llöx page for CPU j maps into a real 
memory address in CPU /s memory calle4.i!i!$.~.Fznbox page; i's page table entry for 
this page has the system, non-cacheable,\~yid interrupt-on-write bits sets. CPU i 
sends a message to CPU j by writing a word containing the message operation code 
to word address ß*i in the outbox page for CPU j, where ß is an constant 
determined ·by the operating system. The MMU performs the address translation 
and initiates an IPB transfer with interrupt; the interrupt is presented to the 
receiving CPU after the message word has been stored in j's memory. j becomes 
disabled on recognition of the interrupt; j's kernel retrieves the message address 

5If the page is in local memory. Additional cycles will be required if the page is in remote 
memory and the access is effected via an IPB transfer; exact timing is yet to be determined. 
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a> outbox page 

[ CPV.L........ outbox page 
~ .. -::::::::::tt:/t:f?t:: :::::::::-· CPU 1 

~~11iii!l'tc!l'.P''.u;l~1~~~~ ~~tl'1\iljif ~!i1~ :Wf i?i i!~!U! ·.·.·.·.-.. „.„ .... ·.·.·.·.·. 

:}} \{ d#y':::·1\ 

CPU n 

<<>?: . \)füll::. 
< ;;~!I_! __ :_P:C_e_~__ ··:::-r;::::·;;::::.;. 

~ \}}}: 
·:{{:{. 
·=:::~:{{ 

CPU 1 
·'.;::::::;:>. 
:.::::;:;:::;: 

Figure 5.6. 

}{}~~ 

sends an acknowledgement to CPU i (in:::!,i,iil!il:lfüe same way any other message 
is sent). In this scheme, every CPU in ·:©.Jiil!nf:CPU system has n-1 outbox pages 
and 1 inbox page; every outbox for dgf.Jfj maps to the same real page in j's 
memory. ::\:::= 

If CPU i sends a message to CPU j and CPU j is disabled for interrupts, CPU 
j's MMU will peiform the write operation and queue the interrupt until the CPU 
enables interrupts and the message interrupt can be recognized. Only one message 
interrupt can be queued; if some other CPU, say CPU k, attempts to send a 
message to CPU j while CPU j has a queue message interrupt, CPU k's message 
will be rejected. This rejection is eff ected via a synchronous negative response to 
CPU k's IPB transfer; it blocks completion of the STW instruction which initiated 
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the message, and it cause a "message rejected" trap tobe generated on the PU 
which issued the STW instruction. 

The kerne! decides how to deal witß::::r~jected messages. In a small configu­
ration, it simply may reinitiate exepµ!~qn:\9f the STW instruction. In a !arge 
configuration, it may use some adaptJ.J\!~\li.9ftmw to determine an appropriate delay 
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6. 

s.1 Traps .~ng::::lR,~~,~rupts 

loc~lfäpecial registers with appropgi'e values and exeqµJing a pair of Return From 
Intefjµpt (RTI) instructions. (Twgi::B.r1 instructions ~j!j:peeded because there are 

;;~~~L~1~~~~:~::~1f =~zil\~;E:r:r~;~ 
tion, and always is processed by the PQi!:if hich ~gf:iJ.i~l?that instruction. Traps can 
be classified as system calls ( executio#.fä;>f a.)fBSilii!ihstruction) or as exceptions, 
which include page faults, access priviJ.!g!i!!!lgl,,Hons, arithmetic errors, illegal 
operation codes, and rejected inter-CPU 'if.llili~:: 

Interrupts usually are caused by e~ll~~J~xtemal to the CPU and may be 
processed by any PU, except for inter-PU!i!i~Hterrupts: generated by execution of an 
INT or RES (restart) instruction, which are ·processed by the PU(s) specified in the 
PUmask field of the INT or RES instruction. All other interrupts can be processed 
by any PU; · the (hardware) interrupt handler assigns processing of an interrupt to a 
halted PU whenever possible so that interrupt processing can be done concurrently 
with user/system task execution. An inter-CPU, or message, interrupt occurs when 
one CPU executes a store instruction which causes a word or a line to be written to 
a page marked "interrupt-on-write" mapped into the address space of another CPU 
(see Section 5.7). Antares provides a pair of Event Counters (global special 
registers S 10 and S 11) which, under control of the Event Selection Register (S 12), 
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INTERRUPTS 

Reset 
Machine Check 
Restart 
Power/Temp. 
Inter-PU (INT instr.) 
Inter-CPU (message) 
Event Counter Overflow* 
External 

TRAPS 

Arith. Overflow/Divide By O* 
::::Jllegal Operation/Taken Branch* 
:]]l)ata Access Violation 

iJ:::.[j:.·:.,i:::·:::.J.:··1'111!illi~~ ~~~:s:a::lation 
Mes:$.m::::ßeject 
Trap '\lij§~!t4P.tion 

~-----------------1 

,·:::::::::::tt:?t:t::::r· ·.'\l:::::::::llt. 

CM re usOO to accum:::~!~I~ o:::::::sS~~~''"pred,moveins, 
moveouts, TB misses, and PU busy cycles. An enable bit in tfü$.\S.VAPt Selection 
Register permi!~JP.lJn.terrupt to occur when one of the Event CouH~ir$.::::oyerflows. 

;;iltlt.l!Wli~~i~~~~;~~r~!~~~=~!~;Fu 
inte.pppt'enable flag (locateci>iq::::~lj,~ Interrupt Argument Register) is cleared, the 
cont~pt$ of the PU's Status/ConfrQ.Uß.egister are savedJp the Status Save Register, 
the St~tµs/Control Register is reser~:::~iearing the trap eniP.Je, user, duster number, 

;; :~~~:fäf~~Ii~:~~:.~1:1~~-~~::~Itl~f~ 
kernel's (software) interrupt handler di.tennine:i!l:iwJJ.itlier or not it needs to save 
additional state (e.g., register contents)':§}t exa.dl1~1.(ithe PU's "registers available" 
bit in the Status Save Register. Any ned.~t~~ij§~nation with other instances of 

ke~~t:::u:::pc:ro::::: ::ac:::litl}~i:::gle (CPU-wide) master enable 
flag (in the Interrupt Argument Register)::::1a individual PU enable flags (in each 
PU's Status/Control Register). The pos'Slble states of these two flags and the 
corresponding interpretations are shown in Figure 6.2. When an interrupt can be 
recognized (CPU ·enable flag set and a PU enable flag set for at least one PU), a PU 
is assigned to process the interrupt, the interrupt enable flag is cleared, and the trap 
enable flag of the selected PU is cleared. When a trap ( or an interrupt generated by 
an INT instruction) is recognized, only the PU's trap enable flag is cleared. Once 
cleared, interrupt and trap enable flags remain cleared until explicitly set. However, 
the Resetand Machine Check interrupts override the state of the interrupt and trap 
enable flags. lf an interrupt is presented while the CPU is disabled for interrupts, it 
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CPU enable PU enable interpretation 

PU can {~cognize an interrupt or a trap 1 

0 

1 

1 PU can recognize 

0 0 PU is disabled 

1 0 

·:::t:::::::::tx::::::}\:/ "\:l[i]!!1!!f\:: 

is held unill un:i::::~~'l:s ::~l=~ :::~:~~~-~i@re presentOO, 
the highest-nunibered interrupt is recognized when the CPU becdtfiil!j~pabled; the 

;::::::::::::::::::::{:::: 
'::::::::::<·::;:;:;::::::· 

6.2i!:[J!i·l•sk Swltchlng .. :::. 
-:::::::::::;:::::: :~[(\:: 

'fP.! kerne! executes a task swi19n!::( or, more precisely~H;m address space switch) 
by flÜ~füng and invalidating the cali~ij~, invalidating tl\f.:::0011 setting the address of 

::;:r~\~~:::~ ~::i:!~ ~lf;e~~:~l?:rn~~!uN:;s~~~ 
if necessary, and executing a ReturilMr;rom Inte.gp~!lj~~istruction. In a virtually­
addressed cache such as the Antares cii~e, lin9!j!jm::~~,:::cache are tagged with their 
virtual address; this does not suffice to:!~~m1~§i.!i!f.!i1ine in one address space from 
a line with the same address in anothe~li!M.~l~li:!~}fäce. (A similar situation exists 
for the TB.) There are two approaches tQ.!kJiag\vith this problem. 

First, information can be added to th~!!lll::l~he tag to uniquely identify the line: 
this information could take the form of:]~ti address space number (ASN) or the 
distinguishing part of the real line address (which substantially increases tag storage 
space ). While adding an ASN to the tag is less demanding in terms of tag storage, 
the MMU bec'i:>mes much more complicated. If addFess space B is active and a line 
from B replaces a modified line of address space A, the MMU has to retrieve the 
page tables of address space A in order to translate the virtual address of the 
modified line prior ·tO its moveout. 

Second, the cache can be emptied on an address space switch so that lines from 
different address spaces cannot be in the cache at the same time. This has two 
perf ormance costs: the direct cost of the cycles required to carry out the flush and 
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invalidate operation (including the time required to write modified lines to memory), 
and the indirect cost of discarding lines which, when the original address space is 
returned to execution, will have to be brought back in to the cache. 

Antares uses the second approacq;j:i!~li:::~ache is flushed on an address space 
switch. This approach is chosen for bi4.wltfä4nplicity and to minimize tag space. 

Later implementations of tq;\Antares architecture, with lafgjj);'~hes, probably 
will adopt a different approach lö this problem. The architecnJIJ\\\1,'-~pility is very 
low, so different should not present a compatibili@!!prgp~em. 

i~l1~l,]~,~;, 
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