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Project Goals

» Develop display subsystem which supports real-
time animation of bit-map images, 3-D models,
and cartoons.

« Support a 2-1/2D compositing model with as
much generality as possible.

 Provide architecture which allows for individual

displayed objects to be stored and handled
independently.

* Incorporate within the compositing model
mechanisms to reduce the spatial complexity of
objects in both storage space and drawing speed.

» Keep the display model simple.
 Support color resolution up to 24 bits/pixel.

« Provide easy interface for special-purpose
hardware to drive display subsystem.

 Have low-cost version.

« Maintain compatibility with existing and
forthcoming Mac software.

» Support QuickDraw primitives wherever possible.

» Provide for future expandability.
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Frame Buffer Bit Map Organization

The RAM Layout The Resulting Display
(bit maps are stored corresponding (the only possible display for
to their position on the screen) that RAM organization)
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QuickScan Bit Map Organization
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QuickScan I Estimated
- Performance

(no frame buffer back-end):

Windows:

Number of Arbitrary Rectangular Windows
Displayable Simuitaneously by QuickScan |

35y 33 32 31

I Regions On-Chip
Regions Loaded

1. 2 4 8 12 24
Bits Per Pixel

Polygons:

About 870 flat-shaded, convex polygons
with 640x480 @ 67 Hz refresh.
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QuickScan II Estimated
Performance

(double-buffered frame buffer back-end):

Windows:
Effectively unlimited number in real-time.

Polygons:

Number of Flat-shaded Randomly Placed Squares
in 1/15th Second

1,000,000 I

[
100,000 P""ﬁi

\o \‘
. \ ..' .
10,000 \o\ .LOQ" QuickScan i
— “O- CRAY X-MP/1
1,000 & . e — S
' — O | '™ RIS 2400 Turbo
100 -\
]
10 ' * ' ' ' -
5 10 20 50 100 150 250

Length of Edge of Square
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Outside Development

o Silicon Design Labs

 Approx. 300 mil per side, <100 pins

1.5 micron double-metal CMOS
process with dynamic cell
characterization, probably Motorola

14 months to packaged prototypes

e 2 chips per system
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Internal Hardware
Development

» The Dispatcher

~» The QuickScan NuBus Card
» ObjectBus
 Polygonal Rasterization

o Ikki to Cray Interface
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Internal Software
Development

* The Display Model

* Window/Color Manager Extensions
* Object/Animation Manager

« Animation Applications

* QuickScan Simulation

CONFIDENTIAL Advanced Development Group, Apple Computer , Inc.



'Productization

~ *RevO QuickSCan Product
*Rev 1 Quic’kScan Product

» External Graphics Cards

CONFIDENTIAL ; Advanced Development Group, Apple Computer , inc.
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- Future Directions

 Splinal Rasterization

« Smooth Shading
» Z-Buffering

 Anti-aliasing
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Current
Ref Red (8) 1 | Pixel Addr

Ref Green (8) —fgp{ | Counter # CLUT/RGB
Ref Bl L e
of Blue or CLUT (8) QuickScan Line Buffer A Pipelined |—® Redx

Sign (1) ¢ an ¢ er ALU —p> Greenx
AMumplier{Exponent @) — :: % BluexorCLUT
Mantissa (11) —
Ref Addr (10) — |

QuickScan Line Buffer B-
Block Diagram

Am = (R1/R0 -1)/(X1-X0)

Formula Computed
prior to Write
. (X1 is any X)
o Rx = RO ((X - X0) * Am + 1)
© Mode . Rel Color el Addr  AMullpler Pbl AdGr - Gx =G0 ((X-X0)"Am +1)
(RO.GOBO) 00 am (9 ~ Bx=B0 ((X- X0) * Am + 1)
Data Available each Pixel time | | Formulae Computed
o in ALU
QuickScan LIRP System
. Block Diagram
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One Scan Line

Two QuickScan Line Buffers Filled with
Data from the Indicated Scan Line
(the result of 4 Write Operations)

uickScan LIRP Line Buffer

Fill Example

7/14/86 *SGP* Apple Computer Confidential



Computed Formulae
Rx = RO ((X - X0) * Am +1)
Gx = GO0 ((X - X0) * Am +1)
Bx = BO ((X - X0) * Am +1)

Operations Clock Cycles

Am(float) (15 bits) -> Am(fixed) (19 bits) 3 (Shifter)

1 (Negate)

X - X0 -> Xnorm o 1 (Add)
_ Xnorm * Am->m 10 (Mult)
m+1->m -1 (Add)
RO*m->Rx GO*m->Gx BO*m->Bx 8 (Mult)
a | 24 (Total)

QulckScan LIRP ALU Pipeline

Computation Sequence

7/14/86 *SGP* Apple Computer Confidential
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To: Mike Potel

From: Steve Perlman x6248
Date: 27 August 1986
Subject: Parallel Gouraud Shading with QuickScan

X

cC: Graphics, North, Tesler, Marion, Kay
Abstract
First Paragraph.
\
Background

The QuickScan Line Buffer chips which we are currently implementing in
VLSI incorporate a parallel write mechanism which allows us to fill with a single
color or a repeating pattern any contiguous range of a single line in a single write
cycle. By using this parallel write capability repeatedly we can fill large,
overlapping areas very rapidly, provided that each area filled has long horizontal
stretches of a single color or a repeating pattern (i.e. they are spatially coherent). If,
however, an area to be filled has differing color values across horizontal stretches,
then it is best filled using the sequential write mechanism with a bit map (or at best

with a sequencer if the data is not random) producing the color information to be
written to the QuickScan Line Buffer.

Although sequential writes allow us full generality of coloring varying
horizontal stretches, we achieve that generality at a cost of about 2 orders of
magnitude in speed. If there is no pattern at all to the colors being written (e.g. text
or a digitized image), then there is nothing much to be done. But, if there is some
regular progression to the data, then it is possible to construct a parallel computation
structure which determines a unique color value for each pixel in the line as a

function of its position (the approach used by Henry Fuchs at UNC for "Pixel
Planes").

While a parallel computation approach is quite possible, it unfortunately is
very expensive because, not even considering the parallel computation mechanism,
there ultimately must be a unique data path for each pixel cell in the line buffer. A
common data path, shared by groups of pixel cells, requires far less silicon real

CONFIDENTIAL
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estate, but unfortunately implies that any parallel writes to the pixel cells of a given
group must all be written with the same data. We opted for the common data path
approach with QuickScan because we simply could not fit its 1024 x 25 bits of 25
MHz RAM onto a reasonable die without such optimization. It would seem that we
are destined to support no more than parallel writes of single colors and repeating

- patterns (i.e. one color to each pixel cell group) with QuickScan's architecture.

Such a limitation is regretable because there is a class of horizontal color
progressions which are extremely useful in computer graphics: color computations
which are a function of horizontal position (i.e. of x), and in particular, first-order
functions of x , called "Linear Interpolations" or LIRPs for short. LIRPs generate a
linear progression, or "ramp"” of color intensity interpolated from a start intensity to
a end intensity, which models point light source illumination of a one line of a
perfectly matte surface (i.e. there is no specular reflection). This is useful for a
number of applications, most notably for applying Gouraud (or Smooth) Shading
to 3-D polygons (LIRPs are done both horizontally and vertically for this model).

Although most commercial 3-D systems support Gouraud Shading, none of
them that we know of support it in anywhere near real-time. Even a new system,
Renaissance, from Hewlett-Packard which has special hardware for smooth
shading and purports "real-time Gouraud shading", in practice can only handle
small, simple objects in real-time. Only Henry Fuch's experimental system at
UNG, a rack of boards for even a low-resolution display, can fly about 6000
smooth-shaded polygons in real-time. N

Smooth shading adds a substantial degree of realism to polygon modeling,
and it is essential that we eventually provide such a capability for Apple 3-D
graphics products. It is unfortunate that we have to wait for the next generation of

our graphics hardware development in order to provide LIRPs in real-time... or do
we?

Ten Bits of Data We All Forgot About

As far as I can tell, it is indeed the case that the current generation
QuickScan parallel write mechanism can only fill a horizontal stretch with a single
RGB data code or with a repeating pattern of RGB data codes. And, since a
particular data code stored in the line buffer will always generate a particular color
(e.g. R=255, G=255, B=0 always generates bright yellow), a horizontal stretch of
the same data codes results in the same color or pattern being generated across that
stretch. This is because when the data is scanned out of the line buffer, pixel by
pixel, to be displayed on the monitor or written into a frame buffer, there is no other
data except for the RGB data code by which to determine a color to display. . . .but
is that really correct? Is that RGB data code the only meaningful data available
when the data is read out of the line buffer? Could it be that we forgot about some
extra data that's been there all along? dh

A

CONFIDENTIAL Advanced Development Group, Apple Computer , Inc. 2



When data is read out in serial order, as is the case when QuickScan's line
buffer is scanned-out, it is trivial to have a counter keep track of the number of
clocks, for QuickScan the number of pixels, which have passed since the data
stream began, for QuickScan the beginning of the horizontal line. This count
provides another piece of data, notably a piece of data which is unique for each
element of serial data. In the case of QuickScan the counter output is a 10 bit
number which identifies the x position of the pixel currently being scanned-out.
Coincidentally, we are concerned with computing a function of x! Perhaps there is
something here for us to work with.

When one has a function of only x, she has by definition a formula in which
x is the single variable, and all of the other elements are constants. Since a
horizontal LIRP is a function of only x, it can be computed from only constants and
x. QuickScan's parallel write mechanism can fill a horizontal stretch with constant
values. Our pixel counter provides us with x. So, in theory, we should be able to
apply a LIRP function based on x to the RGB constants as they are scanned-out of
QuickScan using the constant data that was written in parallel. This effectively
would give us smooth-shaded fills at the same rate that we get single color or
repeating pattern fills. But, can it be done in practice?

3. The Mathematics of Horizontal LIRPs in RGB Spacel

3.1. The Arithmetic

Since we are interpolating linearly from some color C, to some color C,,
from some position x, to some position x;, then there must be some expression of
the form C,, = C, + mAx, where C,is the color at the start of the LIRP run, m is the
unit change in the intensity of the color, and Ax is the unit distance from x,. m can
be derived from any twg locations of the LIRP run, x, and x},) by computing the
slope, (C, - Cp) / (x,; - ;é Since Ax = x - x,, where x is the €urrent pixel position,
clearly C, can be computed with the constants C,, x,, and m, and the variable x.

So, if we want to use the QuickScan parallel write mechanism to write
information which can generate a LIRP run, all we need do is write the three
constants, C,, X,, and m, across the length of a LIRP run in the line buffer, and
provide an ALU on the output of QuickScan which computes C, from these

constants and the x provided by a counter.2 Since we have three colors, R, G, and
B, we need to duplicate C, and m three times for each component, resulting in R,,

1As they apply to Gouraud shading. This section may not apply LIRPs in RGB space generally (but then
again, it might!). '
2Although it may seem ambitious to do a subtraction, a multiplication, and an add at the video rates that

QuickScan outputs data, we can quite practically build a pipelined ALU to accomplish this arithmetic with
effectively no more than a single addition per pixel clock cycle (more on this later).

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 3



G,, and B, and mg, mg, and mp. One x, will suffice if R,, G,, and B, all come
from the same pixel location.3

In practice, LIRPs are primarily used to ramp between two intensities of the
same hue. If this is the case, then the slope for each of the components is usually
different, but the ratios between starting and ending values of each of the
components is the same. That is:

Ry _ G _ B

R, ~ G, B,
even though mp # mg # mg.* Maybe we can make use of the coherence between
the R, G, and B LIRPs to reduce the amount of constant data that must be stored
with each LIRP run.
To do this, we must first determine a way to derive the slope for each
component from a common constant, , since we must have the slope in order to

compute a component's value at any given x position. But, the only information
that we have at the time of the computation which is component-specific is C,, the

reference color. So, if it is possible to derive the slope of a component from the
common constant, 3, the formula must involve the component's reference color,
C,- And, since this same formula must result in three separate slopes for the three
components, B must include C, and C, only in a form which is invariant for all three
components, i.e., C,/C,. As this necessitates an extra division in the formulation of
B, there must be an extra multiplication when B is expanded. Hence, it is a good

guess that the following formula can be used to compute each component's slope
from P and each component's reference color, C,:

m=C@B.

Now, let's solve for B. If we substitute for m, we get:
(C,-Col (x;-x9)=CB,

and after a little algebra, this becomes:

B=(C,/C,)-1
(XI-XO)

3In fact, no x, is needed if we normalize Ry, G,, and B, from a known pixel location (e.g. pixel 0), but if

they do not come from a pixel location within the extent of the LIRP, then we cannot guarantee that they
will have values representable in 8 bits. (Perhaps we should normalize them and then represent their values
in a different way. Under study.)

4For example, if we double the intensity of the RGB triple (1,2,4) across a stretch of 16 pixels, we get at
the end of the LIRP the triple (2,4,8), resulting in slopes of 1/16, 1/8, and 1/4, respectively. The slope of
the LIRP for each component is different, but the ratio between the starting and ending values of each of the
components, 2:1, 4:2, and 8:4, is the same.

CONFIDENTIAL Advanced Development Group, Apple Computer , Inc. 4
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As we had hoped, the formulation of B indeed includes C, and C, only in a form
which is invariant for all three components, C,/C,, so when f is multiplied with
each component's C,, it should result in a unique slope for each component.

Now, if we put all of the pieces together, inserting the derived slope into
our original LIRP function, we get:

C, =C, +C,BAx , or more conveniently,
Ci =Co(Blx-xp) +1).

And, here we have what we were looking for: a relative intensity function of
x and the constants C,, B, and x,, applicable to all three components. Thus, in

order to use QuickScan's parallel write mechanism for filling a LIRP run of the
same hue, we need to store only 5 constants: R,, G, B,, B, and x,.

3.2. The Representation

The only question remaining is what numeric representation is appropriate
for each constant?

Since our color resolution is 8 bits, there is little advantage to storing R,,
G,, and B, as integers of more than 8 bits, provided that x, is chosen to be ata
location where at least one of the components has its maximum value in the LIRP
(i.e. the last pixel at the bright end of the LIRP). The reason for this is that
numbers represented in fixed-point (in contrast to those represented in floating-
point) can be represented more accurately (i.e. will have more bits of significance)
when they are large. If we always multiply the largest color by an (accurate)
fraction, the resulting color will never be off by more than 1/2 of the least-
significant bit, which is as good as we can hope to do.’

Xy is easy: there are 1024 pixels in a line, so x, can be located at exactly
one of 1024 locations. We need a 10 bit integer.

B, however, presents a fairly complex numerical analysis. Its range extends
from about 1/256K to 1, so if we use fixed point numbers, we need at least 19 bits
of significance just to reach the extremes of range. Since we would like the
accuracy of the derived color at each pixel to be within 1/2 of the least significant
bit, we may need yet another bit of significance because we are going from an 8 bit

color representation to effectively a 9 bit color representation. This gives us 20 bits
for B's fixed-point representation.

5To see an illustration of this, consider the following example: We have a LIRP extending from 5% to
50% maximum intensity, and its hue is 30% red, 55% green, and 15% blue. The color at the bright end of
the LIRP is (11 -and the color at the dark end of the LIRP is (12, 21, 6). If we derive the dark
end color Py'\‘ﬁ uplying gie bright end color by 10, we get (rounded) (12, 21, 6), which is accurate. If,
however, we-desive the bright end color by multiplying the dark end color by 10 we get (120, 210, 60),
which has 4% inaccuracy in red and 2% inaccuracy in blue.

CONFIDENTIAL Advanced Development Group, Apple Computer , inc. 5



Closer analysis of this fixed-point representation of B, however, suggests
that it is a pretty sparsely utilized code space. Specifically, it would seem that the
larger numbers need no more precision than the smaller numbers, i.e., the LSB's of
the larger numbers could be zero without any loss in precision. So, there would
appear to be a need for fewer bits of precision than for range. This points toward
investigating a floating-point representation.

Clearly, the exponent of the floating point representation should be 5 bits
since we need to represent numbers from 2-19 to 20, But how many bits of fraction
do we need? I'm certain that there is some correct analytical method of determining
this, but after consulting with several sources, I could not get a consensus. So,
when in doubt, simulate the hell out of it: I wrote a program in C which
exhaustively goes through every possible LIRP which can be generated in a 1024-
pixel line with 8 bits each of R, G, and B. Unfortunately, this turned out be quite a
long simulation with so many cycles of floating point arithmetic. On "Apple”, a
busy Vax 11/750 with network responsibilities, it would have taken 1/2 year to
finish. On "BigMac", a relatively lightly loaded Vax 11/780, it would have taken
about 11 days (but I had to give it lower process priority in consideration of the
other users, bumping it up to about 1 or 2 months). But, on TMAL1, a presently
lightly utilized Cray X-MP/48, using all 4 processors it took only 2-1/2 hours (they
tell me if the simulation had been written in a vectorizing Fortran it would have
finished in 15 minutes!). The end result was that it needed 9 bits of fraction, but
since in normalized floating point the most significant bit of the fraction is always

1, that bit can be considered 1 implicitly, resulting in only 8 bits of fraction stored.
This combined with the 5 bits of exponent results in 13 bits total for B.6

Actually, we probably could eliminate one more bit of exponent by using
non-normalized fractions with the smallest exponent code (0000). This technique
would extend the 4 bit exponent range of 2-15 - 20 down to the 2-19 we need at
small extreme for B. Unfortunately, it would also substantially complicate the
encoding and decoding of the floating point number, so it is unclear whether it is
worth saving 1 bit in the representation. Preliminary simulation indicates that the
loss of accuracy in the denormalized numbers would still produce results within 1/2
of the least-significant bit, but I will not go to the effort of exhaustive simulation
unless we find that we really need to save that one bit of storage.

Note that with either representation, we shall need some special code to
mean zero. One possible encoding which is not otherwised used in either
representation is all zeros in the exponent and the mantissa.

So, in summary, to accurately represent any LIRPs of constant hue across
1024 pixels accurate 1/2 of the least-significant bit of each of the color components
we need minimally:

B1f x, is known to always be located at the bright end of the LIRP, we can guarantee that f is always
positive, and hence does need a sign bit.
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*R,, G,, and B, stored as integers of 8 bits, containing the color at
the bright end of the LIRP.

* x, stored as an integer of 10 bits, indicating the horizontal position
of R, G,, and B,

* B stored as an unsigned floating point number of 5 bits of
exponent and 8 bits of fraction with an implicit 1 in the MSB of
the fraction. The possibility exists to complexly encode the
floating point number with just 4 bits of exponent and 8 bits of
fraction.

As a caveat, remember that we have handily dismissed LIRPs which do not
have a constant hue. Although such LIRPs are not as common as the constant hue
variety, there are applications where they create useful effects (e.g. modeling with
multiple colored light sources). If we wanted to implement such LIRPs, we would
need an independent slope for each, R, G, and B instead of a common B. Each of
these slopes could be represented accurately by an 11 bit signed, fixed-point
number. Note that for this LIRP model, there is no advantage to choosing the
bright end of the LIRP for x, because C,, is never scaled and no accuracy is lost.

Furthermore, we cannot eliminate the sign bit in the slope representation by
establishing a convention for the placement of x,, because we cannot guarantee that

the three R, G, B LIRPs will be either all increasing or all decreasing. So, any
choice of position for x, will do equally well.

4. The Implementation

4.1. Hue-invariant LIRPs

The QuickScan Line Buffer Chip we are currently developing (see Figure 3)
will store 25 bits for each of 1024 pixels, 8 bits each for red, green, and blue, and 1
bit to indicate if the information is RGB or an index (stored in the blue plane) for a
color lookup table (CLUT). Additionally, there are left and right address
comparators which select a range of the line to enable for a write operation, and

finally, there is a 1 bit wide mask plane which can prevent an enabled pixel from
being overwritten.

Since there is just enough RAM to support the 24 bits of R, G, and B per
pixel, we clearly need more RAM to hold the extra data, x, and B, for the LIRPs.
The easiest way to accomplish this is to simply use a second QuickScan Line Buffer
Chip (see Figure 4). Coordinating the addressing between the two Line Buffers is
simple: just tie the address lines together. This way, whenever we are writing into
the first Line Buffer with R, G,, and B,, we write to the very same locations in the
second Line Buffer with x, and B, which is exactly what we want. The implication
is, of course, that there is a separate data bus leading into the second Line Buffer,
and a separate data bus leading out with the pixel data.
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This is fine for taking care of our LIRP objects, but what of the plain old
solid and pattern filled objects and bit map objects? As it turns out there is no trivial
way to reroute individual pixels around the hardware in the output stage of
QuickScan which computes the LIRPed value of R,, G,, and B, since it means
cicumventing a long pipeline (to be explained below). So, if we load up R, G, and
B in the first Line Buffer without considering what is stored in the second Line
Buffer, we'll get unpredictable results when the hardware considers a R, G, and B
pixel as R, G,, and B, and computes the LIRPed value from the random x, and B
which happened to be stored at the same pixel location. But, this can be easily
remedied by either storing zero for B or the current x position for x,. Then the
formula, C,, =C, + C,BAx ,reducesto C,, =C, +0ifeitherf=0or x,=x,
yielding R, G, and B from what the LIRP mechanism thinks is R,, G,, and B,,.

With such a double Line Buffer arrangement, we get an output of R,, G,
B,, x,, and B for each pixel shifted out of the two Line Buffers. What do we do
with this data now that we have it? Since the QuickScan chips output data ata 50 |
Mhz clip (20 ns per pixel!), whatever we decide to do, it had better be fast. Damn
fast. Well, what does the formula call for? C,, =C, + CBAx, Ax=x-x,. It '
looks like we need an addition, a subtraction, two multiplies, and some floating-
point to fixed-point conversions for each of the three color components in 20 ns.
To do that we'd have to build an ALU that is over 10 times faster than the Cray's. !
Fat chance. Maybe we ought to approach this problem from a little different angle.

Actually, if one looks closely at the way the Cray does its arithmetic, she S
finds that the Cray does not (and cannot) do a complex arithmetic operation such as
a multiply or divide in a single machine cycle. Rather, it breaks these operations
into stages and completes them in several cycles, but nonetheless, its average
throughput for such operations is one cycle per each. How can this be? The reason
is that its ALU is fully pipelined, which is to say that the next operation can be fed
into the ALU one cycle after the previous operation was fed in. So, while the
latency of complex ALU operations is several cycles long, the average throughput
is one operation per cycle. One can think of such an ALU as an assembly line of
workers, one at each stage of the production line. Each worker at any moment is
working on a different assembly unit, which he then hands to the next worker,
while he receives an assembly unit from the previous worker. The latency of the
assembly line is the time to go through all of the workers' hands, but the average
throughput is one assembled unit per the time to go through one worker's hands.

Thus, pipelined ALU's can be very effective because they take very
complex operations and break them down into manageable atoms without reducing
throughput. However, they are only effective when applied to steady streams of
data for which the same operations are to be applied repeatedly. Otherwise, the
pipeline gets empty stages (like a production line gets workers with empty hands),
and the throughput decreases. Fortunately, the stream of pixels which will be A
output from the QuickScan Line Buffers and the operations needed to be applied to s
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them are ideal candidates for a pipelined ALU: the data stream is constant, and the
operation applied to each is identical. So, while we cannot hope to apply the full
complex LIRP computation in 20ns to each pixel, we nonetheless can achieve an
average throughput of 1 computed pixel per 20ns.

Before we look at the actual pipeline, we need to first understand how
certain complex operations are broken into pipeline atoms. To start with, at least
for our pipeline, the atomic operations are a single addition/subtraction or a single
data selection stage (i.e. selection of a bit of data from one of several sources).
Data paths which don't change are hardwired and take "no time", and any number
of independent atomic operations can occur simultaneously in one cycle.

A pipelined fixed-point multiply takes as many pipeline stages as bits in the
multiplier. Effectively, the multiplicand is multiplied by 2 at each stage, and if the
bit for that power of two is set in the multiplier, then the multiplicand is added to an
accumulated sum. The multiplication works by at each stage examining the next
most significant bit in the multiplier while it shifts the multiplicand another bit to the
left (shifting in zeros). If the multiplier bit at that stage is a one, then the shifted
multiplicand is added to an accumulated sum, if the multiplier bit at that stage is a
zero then the accumulated sum is unaffected. Note that while the multiplicand is

shifted by one at each stage, this is a hardwired shift and thus takes "no time" to
complete.

Converting floating-point to fixed-point representation simply involves
shifting the fraction part of the floating point number by the amount of the
exponent. This variable shifting function can realized in a barrel shifter. A
pipelined barrel-shift can be implemented with a input word and a shift amount
word by log n stages of banks of 2-to-1 multiplexers, where each stage has one
multiplexer for each bit of the input word and where 7 is the maximum number of
bits to be shifted. At each stage of the barrel-shift pipeline the bank of 2-to-1
multiplexers either shifts the data by a degree of a power of 2 or does not shift the
data at all, as controlled by the state of the bit for that power of two in the shift
amount word. In a similar way to how the pipelined multiplier determines whether
or not to accumulate for each power of 2 in the multiplier, the barrel-shifter
determines whether or not to shift for each power of 2 in the shift amount input. I
realize this is terribly confusing in words, but it just doesn't merit a diagram, so
you'll have to trust me that it works.

Okay, the rest is easy. This is the pipeline to implement:

C.=C,(B(x-xp) +1) (algebraically equivalent toC,=C, + C,fAx)
for all three color components ("« means "gets"):

Operations Clock Cycles
Bfix «— Float-to-Fix(B) 5
Ax —x - x, : 1
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Templ « Pfix * Ax ' 10

Temp2 « Templ + 1 1
R, R, * Temp2; G, G, * Temp2; B, B,* Temp2; 8
25

And that's it. After a 25 stage pipeline the correctly Gouraud shaded R, G,
B values are output.

4.1. General LIRPs

If we examine the general LIRP function in which R, G, and B vary
independently, it is not very hard to see how a system similar to the hue-invariant
system discussed above might be implemented which realizes that function.
Indeed, as it turns out, such a system is simpler, involving only one multiplication
in the pipeline and no floating-point to fixed point conversion. The only drawback
is that it requires more RAM in the Line Buffer.

If you recall, the formula for computing a LIRP for an independent color
component is simply:

C,=C, + mAx, where Ax=x - x,.

This formula is similar to the hue-invariant formula, with the major differences
being the lack of a second multiplication and a slope m instead of a complex
constant . We had stored one P for all three color components, but since each
color component's slope is independent of the others', each one is stored
independently in the Line Buffer, as

mp, Mg, and mp.

Also unlike B of the hue-invariant formula, these slopes can be compactly

represented as signed, fixed-point numbers, each of 11 bits. Thus, we will require
33 bits of Line Buffer storage for the slopes. And, exactly as in the hue-invariant
implementation, we will require 24 bits for R,, G,, and B,, 10 bits for x,, and 1 bit
for the CLUT/RGB flag (explained in section 4.1). This gives us a total of 68
bits/pixel stored in the Line Buffer.

In the current QuickScan implementation this would require 3 QuickScan
Line Buffer chips of 25 bits apiece. A next generation QuickScan device could
feasibly, albeit awkwardly, support 34 bits/pixel providing 68 bits in 2 chips. And,
indeed, some day a single 68 bit/pixel QuickScan chip will also be feasible.

The arithmetic for the general LIRP representation is simpler, but there are
no common operations for the three color components. Thus, there are three
separate and independent ALU pipelines operating simultaneously. In fact, they are
so independent, the three pipelines could be implemented quite feasibly in three
identical chips. '
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The following is the ALU pipeline to implement C,=C, + m(x - x,). Itis
one of three identical pipelines for R, G, and B ("«<" means "gets"):

Operations k Cycl
Ax <—x -x, 1
AC —m* Ax 10
C,—AC + Ax 1
12

And, so we have it. A much simpler pipeline results than that of the hue-

invariant implementation, but one which requires 68 bits of input data instead of 48.
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To™ - Joualﬁan Arcfﬂtecture Group 0/
From:"" SteviFeriman - )

Date::s - 21°Februdry 1985 :
Subjects “Strawman Proposal for the 0uick5can Dlsplay Subsyé"cem

Attacmﬂ‘is #:Stra\‘t W‘Proposal for an ob ject-oﬂente&gﬁmtcs display -
system;’ GUiekSEEn Tnis 15 the first release of. the dod¥hentation for this
systemvand'it is somewhat (disorganized, but if you:atsleast make it
througf¥tfie introductton, thiep poke through.the technical: ‘specs:of-

interest’ you can get a pretty good feeling for the characlemstlcs of thec

system.* o T s
- S A ST 2

1"l be sﬁppiementing this package with additional doc%?héhtiuo’n # |

' pamcalarly some detaitéd descriptions on how' to peit up specific kinds: of Y

graphics obs)ects but in the meantlme I'd be most appreciative to get any .

feedback:yod may have, and I'd be delighted to answer any questions.
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*3GP* 2/15/85
Agsumptiong: '
1. NEC 256K VYRAMs used.
2. CPU cycle time s2080ns.
3. YRAM SReg Transfer Access time <280ns.
4. YRAM SReg Transfer Cycle time s400ns.

1. Bus Arbitration for Object Descriptions >1 Word in Length

The Line Buffer will detect internally when it is within 240ns of the end
of the Last Command on a Line. This will either occur because a single word
Command has its Dispatch Next bit set, or because a8 muilti-word Command has
its Dispatch Next bit set and 1t 1s within 240ns of 1ts end. 80ns after this peint,
the Line Buffer will activate 1ts Dispatch Next Flag. within 40ns the Dispatcher
will hold off any CPU bus requests (but of course will allow eny in progress
10 complete).

160ns after the Dispatch Next Flag, the next object will be dispatched wurf the
( Dispatcher sending 8 Context Switch Command. 40ns after this, the Dispatcher

will commence the VRAM object data Transfer to the Shift Register.
The Dispatcher will then send 2 LRun Commands (to set the Viewport)
followed by the First Instruction for the object. The Shift Register data
will be valid at this point, and the object 10ad will commence. 120ns after
this point, the YRAM access cycle will be complete, and CPU bus requests
will be honored.

20
sZﬂm
fromend Dispetch Next Object

of Last Next A
Commend Fleg Begins

i

Data Bus: ...SReg Data.. saeg Data SRegData Cswtch LRun LRun 1stCmd SReg Dati...SRog Data...

rme 1 L1 N N N
o= kf 3 s

( S0m—  CPUBus  BeginYRAM SReg Dets CPU Bus
- Requests Access Yalid Requests
Held Off Accepted

Apple Il Group Confidential and Private



2. VRAM Arbitration for Objects of | Word in Length

Objects of exactly 1 Word in length are started exactly like longer
objects, but instead of relinquishing control to the CPU after the VRAM
Transfer to the Shift Register cycle completes, the Dispatcher retains
bus control, and immediately begins the Transfer to the Shift Register.
for the following object.

This allows very small objects (e.g. icons, pomters background
fills) to be processed efficiently. |

Object .
* Begins

v ‘

DotaBus:  Cswtch LRun LRun 1stCmd gR:: Cswich LRun LRun 1stCmd SRegData..SRegData...

e o 4o Lo by Py by b by b b b P e B

T S t 8

BeginYRAM  30MS  spegData Begin VRAM SRegData CPU Bus
Access : Yalid Access Valid  Requests
Accepted

.
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*S0P* 2/19/85

Since QuickScan does not follow a predictable row access pattern, 1t must
periodically generate refresh cycles to keep the dynamic RAM intact. As
it turns out, 1t 1S necessary to generate slightly more than 4 refresh
cycles per 1ine in 30Hz mode and slightly more than 2 refresh cycles per
line In 60HZ mode. If we wanted to be clever, we could have QuickScan
generate just 4 or 2 cycles, respectively, each line, then periodically
insert an extra cycle, but its really little overhead to generate Sor 3
cycles every line, so that's what | recommend.

The big question 1s: where do these refresh cycles fit in with the
horizontal timing?

well, clearly we prefer to interfere with the CPU's throughput rather than
QuickScan's since we will be counting on the horizontal data load time to
be very precise. Furthermore, the refresh cycle is the same length as a
CPU memory cycle, yet different than a Shift Register Transfer cycle.
From a state machine point of view, we'd again be better off interfering
with the CPU.

There is st111, however, the question of where. If 3 programmer chooses to
hog all of the memory cycles on a line for QuickScan access, then she
should be allowed to do 0. Presumably, she would set up her code so that
the CPU can be asleep for that line. Well, if that's possible, then where
can we stick in refreshes during that line?

Wwell, the bottom line is: it's not possible. Let's construct the worst case
scenarto. It's in 60Hz mode, and she's set up all 64 objects so that they
are each 1 word long, S0 as soon as the Dispatcher has fetched one, it
immediately fetches the next, without letting the CPU get any cycles in
between. Each of these Dispatch cycles is 400ns long, and 64 of them one
after another amounts to 25.6 microseconds. The whole horizontal line Is
31.778 us in 60Hz mode, giving us 6.1784 left over. But, each refresh
cycle is only 280 ns, and we need at worst 3 of them. Not only will we get
our refresh, but we have 19 CPU cycles left over! Thus, QuickScan
allocates the first 3 or S CPU cycles each line to refresh.
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Introduction
"SOP* 2/20/85

neral Descri n i _

The QuickScan Display Subsystem is an object-oriented graphics
generation system designed to structure graphics image representation in
such a way as to relate an object's complexity to the amount of resources
the object consumes. This approach tailors graphics resources to the
exact needs of each object on the screen and saves us from accommodating
the most general case with monstrous bit-maps, or even more monstrous
graphics hacks

As a side-effect of this structuring process, QuickScan also provides
us with a neater way of organizing our “frame buffer” by maintaining
independent blocks for each of our graphics objects. We have the
opportunity now to manage graphics memory as we do main memory,
allocating it for graphics object needs as we do now for data structure

needs, balancing the memory resource for the particular application at
hand.

We also now have the capability to move large and complex images
around the screen with little more than a change of a pointer. Sequencing
through animation frames is accomplished instantly, with no redrawing or
“undrawing” whatsoever. Objects with large spaces of a single color need
not ever be uncompacted as QuickScan displays Run-Length Encoded (RLE)

directly, and in fact displays runs of arbitrary length faster than any other
display system available today.

QuickScan's bus interface was set up to be extremely general. It is
capable of addressing 4 Megabytes of display memory directly, and it has
hooks to be driven by graphics engines (like a 3-D polygon engine) while
still displaying its conventional graphics. The nature of the system also

makes it much simpler to genlock to an external video source for graphics
overlays and underiays.

| have tried very hard to keep the system as general as possible so as
to not lock programmers into a specific mode of generating graphics. |
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regret that at this point | haven't had the time to write up lots and lots of
examples to demonstrate the flexibility of the system. | believe, however,
that as you tinker with what you have in mind to display, you'll find that
there are routes within this system to get the image up, probably with
less memory and more control than you thought. And, if there isn't a way
to display what you envision, then / want to hear about it There's a
good chance there's something we can do about it.

Before we get into the nitty gritty of how this thing works, here's some
specifications you can use to put the QuickScan approach in context with
other graphics systems:

ickScan General Specification

Display Timing and Format:
640x484 60Hz non-interlaced or
640x484 30Hz interlaced, NTSC compatible
Pixel clock independent of system clock
External gen-lock and video underiay/overiay/middlelay capability
Square pixels (with proper timing)

Output:
Analog RGB
NTSC Video
(Stored internaily as 5-6-5 RGB and 4-4-4 RGB with 4 bit muitiplier.)

Object Capability:

2-1/2 D prioritization of 64 independent objects

Objects are of arbitrary size and shape, displayed through arbitrary
size and shape viewports

Objects described through bit=maps,-run-lengths, or any combinati

Objects can be made 8 bit lookup table pixels
with a 4 bit multiplier, or parts of each mode

Multiplier can be accessed independently to create luminance effects

Bit-map depths supported are 1,2,4,8, and 16 bits/pixel (BPP)

Bus Interface Characteristics:
Usually only interferes with CPU RAM access when starting an object
description
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Loading the object description occurs in full parailel with CPU access
Manages bus arbitration and dynamic RAM refresh
Uses NECuPD41264 256K Video RAMs

Performance Parameters:
Object dispatch overhead: 320 to 480ns/line of object
Bit Map overhead: 80ns/line of bit map '
Bit Map draw rate:
1 BPP: 1 pixel each 2.5ns (400 Million Pixels/second (MPS))
2 BPP: | pixel each 2.5ns (400 MPS)
4BPP: | pixel each S ns (200 MPS)
8 BPP: 1 pixel each 10 ns (100 MPS)
16 BPP : | pixel each 20 ns ( S0 MPS)
un Length overhead: 8BOns/sequence of runs/line
Run Length draw rate:
80ns per run of arbitrary length at 16 BPP
(This figure cannot be compared with other graphics systems
since they figure their runs in pixels/second. So...)
125 MPS min at 16 BPP
8000 MPS max at 16 BPP

4006 MPS ave at 16 BPP (a Cray can't write to memory this fast)

In case you need a basis of comparison for the above performance figures,
consider the fact that we recently had a visit from a high-end graphics
board manufacturer who was certain we'd be blown away by the drawing
speed of their awesome new display chip. In its run length mode in certain
conditions it could hit almost SO MPS at 8 BPP, and in its bit-map mode it
could get up to around 12 MPS at 8 BPP. This device used all of the bus
time. The processor could not run in display RAM whatsoever. in addition,
the device supported no objects. QuickScan needs very little bus time,

supports 64 independent objects, and is significantly faster than their
"state-of-the-art™ engine.

But, to be fair, their system was much "smarter” than QuickScan. It could
draw some simple figures as well as manage a display. (Even so, as Toby
pointed out, our 68020 will blow their silicon away in complex drawing
speed anyway.) This does, however, underscore a point. Unlike most of the
recent display processors to hit the market, QuickScan does not have the
ability to draw independently. it relies entirely on the CPU to give it
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instructions effectively will be necessary in order to use the device
effectively.

The ob )cht description is usually organized so that the instructions
for a given line are immediately followed by the instructions for the next
line which are followed by the instructions for the next line, and so on
until the 1ast line of the object (there are exceptions to this in advanced
applications). Thus, the Start Address in VRAM pointer in the Object
Dispatch Table (the ODT) should point to the instructions for the first line
of the object, and instructions for each of the rest of the lines should
follow in order. '

Let's consider a simple example: the sky. The sky in this picture is
light blue all the way across the screen. It happens to be object zero
because it is the background-most object. Well, it starts at the top of the
screen, and continues down to line 200 before it is covered by the water.
So, we specify the Start Line as O and the End Line as 200. Horizontally,
the sky begins at pixel 0, so let's specify the Absolute Origin to be O. Let's
put our object description at address 100 in RAM, so we set the Start
Address parameter to the value of 100. That takes care of the ODT. Now,
let's prepare the object description.

Since the sky is the same color (in this simple example, anyway) all
the way across the screen, it is the ideal situation for using a Run Length.
So, our very first instruction is a Run Length of light blue from pixel O to
pixel 640. And, that's it for the first line. By setting a bit (the Dispatch
Next bit) in the Run Instruction we let QuickScan know that we are all
done for the line. We place the instruction for the next line immediately
following the instruction we just put in, and sure enough it's the same
exact instruction since the sky is light blue straight across on this line as
well.m the firsi, we set the Dispatch Next bit so that QuickScan @'
realizes that it is at the last instruction in a line, and then we follow it
with the Run instruction for the next line, the next, and so on until we
have enough instructions for every line in the object. We don't need to tell
QuickScan that we have reached the end of an object description. It
determines this from the End Line value in the ODT.

Since we have 201 lines in this object, we'll need 201 Run

instructions to describe it. Each Run instruction takes 1 word (32 bit
word), so the whole light blue sky object takes only 201 words, yet it
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contains some 128,000 pixels. Indeed, when you get more advanced in
using QuickScan, you'll find there is a way to draw the whole light blue sky
with just 1 word in the object description|

Let's now consider something a little more tricky, the sun. This
particular sun object extends from line 40 to line 180, so that tells us
that Start Line and End Line in the ODT should be set to 40 and 180,
respectively. Unlike the sky object, however, the sun is not aligned with
the left side of the screen, its left-most rays extend only to pixel 400.
That tells us that its Absolute Origin should be set to 400. From now on,
all horizontal coordinates we specify in relation to this object will be
referenced to pixel 400. Let's have this object’s description start at
address 3000 in RAM, and we will set the Start Vram Pointer accordingly.

Refer the following diagram as we discuss how we set up the object
description.

Start Line

One Long Run
End Line

Absolute Relative Relative
Origin Origin  Limit
(for the Long Run only)

The Absolute Origin as a start position for all runs was sufficient for
the sky object because all runs began at the same point on every line.
Let's consider just the ball part of the sun object for the moment. The
first thing we see is that the Absolute Origin designation is insufficient
for the runs (i.e. the horizontal lines) that make up the ball because each
run on each line begins at a different point. To accommodate this
characteristic QuickScan supports a second Origin local to each subunit on
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direction. QuickScan only provides a structured image space model for the
CPU, and through this organization eliminates some space- and
time-consuming operations otherwise necessary with a vanilla bit-map.

But we're jumping ahead. QuickScan can best be introduced with an
example.

ickScan mp!

Consider the following scene:

Paintings by
Infamous Artists

“Sea Scene" by
Son of Sam

This scene can be considered to be made up of 11 objects. These are,
listed background to foreground: The sky, the sun, a cloud, a jet, water,
waves, a fish, a ship, 1and, a light house, and a text window. You could
specify each of these objects as an independent entity to QuickScan, and
given the appropropriate instructions, it would generate a composite
image just as you see above. Let's look into how we would do that.

First of all, we have to present the object list to QuickScan in the
order in which we'd like to see the objects prioritized, background to
foreground (just as we listed the objects above). The order is significant
because if we decided that we wanted to move an object we'd want it to
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appear on top of the objects behind it and behind the objects in front of it.
(For example, we'd want the plane to appear in front of the Sun, but not in
front of the text window.) The name of this ordered object list is the
Object Dispatch Table, and we may build this table at any address in the
256K Video RAM that is an even multiple of 1K

Each object is provided with a 4 word (32 bit word) entry in the O A GA—
Dispatch table. The background-most object uses the first entry, the
next-to background-most gets the second entry, and so on until the
foreground-most object has been entered. QuickScan supports up to 64
objects per frame, but you do not have to use them all. In this case we
specify only 11, and that is fine.

Each Dispatch Table entry has enough information to tell QuickScan
what it needs to know about the position and the characteristics of the
object the entry refers to. If you want to jump ahead there is a diagram of
the full entry format, but for our concerns right now I'll just discuss the
basics.

N

N

To begin with, there is a Start VRAM Address pointer which tells
QuickScan where in RAM it can find the beginning of the object's
description. Next there are 2 values, Start Line and End Line, which tell
QuickScan between which lines of the screen the object is to be displayed.
And finally (for our purposes) there is a value called the Absolute Origin
which tells QuickScan what horizontal point in screen space it should use
as a reference point for positioning this object left and right.

The object description is a line-by-line sequence of instructions that
tells QuickScan how to draw the object. Don't worry! These aren't
instructions like you've come to expect from a microprocessor or a high
level language. They are just very simple primitives which instruct
QuickScan to draw either Bit-Maps or Run Lengths, nothing fancy. Also,
don’t think you need a sequence of instructions all of the time. If all you
have to dispiay is a plain old rectanguiar bit map, or a regular sequence of
runs, then you just have to store the data. You don't need to worry about
instructions at all. Nonetheless, it is important to understand that
QuickScan is an instruction-driven machine; the rectanguiar bit map ,
happens to be a simple case where the instructions are effectively hidden. N
As you get into the more complex applications of QuickScan, utilizing the s
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each line of an object description, the Relative Origin. The Relative Origin
shown in the diagram is associated with gnly the particular run of the sun
highlighted in a thick black line. The run above it, the run below it, and
indeed every other run (or, as we'll see shortly, run sequence) in the object
description has its own particular Relative Origin.

The Relative Origin is to object coordinates exactly as the Absolute
Origin is to screen coordinates. That is to say, just as the Absolute Origin
defines an offset from the left edge of the screen, the Relative Origin
defines an offset from the left edge of the object (which is defined by the
Absolute Origin). So, if at any time you need to know the screen position
pointed to by a Relative Origin, you simply add it to the Absolute Origin
and you'll get the exact pixel position on the screen.

Now, that we've specified the start of the run, we need to specify its
end. There are 2 ways to do this: either specify its Run Length or specify
its Relative Limit. The Run Length says how long the run is, and the
Relative Limit says where the run ends (relative to the Absolute Origin).
There are reasons for specifying runs in either of these ways, and as you
get to QuickScan nitty-gritties, you find there are a few other
implications. But the end result, whichever way you specify it, is the
same.

So, if we are just drawing the ball part of the sun object , we find
that we once again need only one instruction per line (the Relative Origin
is specified in the Run ipstruction), only unlike the sky object's one
instruction,%%%%'létnfction is different for each line, reflecting the
varying shape of the object. But, we still are faced with the problem of
the suns rays. How do we describe these strangely shaped things?

The way to approach the problem is to consider how QuickScan sees
the rays: it sees them each line-by-line, so it is only concerned with the
individual pixel or pixels which appear from the rays on each line. Now,
we could specify a small bit-map for each of the individual pixels that
appear on each line, but that would be somewhat wasteful of RAM since
the rays themselves have no internal details. We might as well use the run
generation facility to simply make short runs to draw the individual

pixels, using the Relative Origin to position a run at the intersection of
each ray with each line.
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Now it is perfectly reasonable to generate an individual run
instruction for each of these little rays, but there is another approach. It
is sort of a Run Length shorthand useful in describing a sequence of runs
(this case isn't the greatest example, though -- it's especially handy with
cartoons). In the diagram I've shown a sequence of 5 short runs. The first
run is a teeny one to draw the first ray's intersection with the line, the
second run is a “transparent” run which just skips over to the next ray, the
third run draws the second ray, there is another "transparent” run, then
finally, the 1ast run draws the third ray. The short run sequences encode Q§\$§
in roughly half the memory space of the individual long runs (although they
take just as long to draw), and they make it possible to tie adjacent areas
of color together. For example, if | change the Relative Origin of the run
sequence all S runs are affected, but their position relative to each other
stays the same.

$
Wnatever approach we decide to use to encode the rays we,are now § g\g
| /

faced with the problem of combining the rays with the ball part of the sun.

This can be handled in 2 ways. First, we could keep the ball runs and the g
ray runs independent In this case each line of the object descriW o
would have first one run instruction, and then wouid end with th r run

instruction. If the rays require several run instructions for that line then

these can be inserted in any order/ The key thing is make sure all

instructions get in before the end of line bit (the Dispatch Next bit) is put

in. Second, we could encode the entire line as”‘a‘-‘§’equence of runs,

including the run defining the ball. Then, we'd have just one instruction

per line, and the description would be very neat (though not necessarily

optimally compact).

In any case you may have noted that we no longer have a uniform
number of words per line of object description. If you are wondering, no,
it's not a problem. QuickScan will simply count the words until the
Dispatch Next flag is picked up, then will update its internal state
accordingly.

So, how.many words would the full sun object description require? It
is 140 lines tall, and considering how | drew it, | figure there's about an
average of 3 runs per line. Encoding each of the runs individually, we'd use
exactly | word per run. So, that's 3 words per line times 140 lines gives
us about 420 words. Not too bad for an object that takes up about 1/6 of
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the screen.

Okay, suppose that after we'd defined the sun as above we wanted it
to set. How would we go about it? No problem. If you recall we defined
the sun to be way in the background; it moves in front of only the sky. So,
if we reposition it lower in the screen, it will be overlapped by any
objects which are positioned in front of it, in this case, by the water.
Repositioning it vertically only requires changing its Start Line and End
Line parameters in the ODT. The object description and everything else
remains the same. If, for some reason we wanted to reposition the sun
horizontally behind the cloud, then all we have to do is change its Absolute
Origin to some lower value. Since the object has been described relative
to this parameter, the various parts of the object will move to left along
with the Absolute Origin, maintaining the same horizontal spacing among
themselves.

Okay, let's jump ahead and take a look at how we generated the Bit
Map object (the text window) in the very foreground. To understand this
we need to unveil 3 more parameters of the ODT, the Left ViewPort, the
Right ViewPort, and the First Instruction.

Refer to the diagram below for the following discussions.

Actual Extent of Bit Map

Start Line Paimtings by
Infamous Artists
“Sea Scene" by -
Son of Sam “
End Line LTI

Left YiewPort Right YiewPort
snd
Absolute Origin

Although representing complex objects with instructions provides us
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with a useful organization, representing plain oid bit-maps with
instructions couid be very cumbersome. We want bit-maps to be stored
linearly in memory, with the last word of one line being followed directly
by the first word on the next line. The QuickScan system, as it's been so
far described, minimally requires one instruction on each line. If we
expect to have linear bit-maps as described above, imbedding an

instruction prior to each line of bit-map is out of the question (besides
that QuickDraw would have a bird).

To get around this problem (and aiso help out in other ways) there is a

Lijrst Instruction parameter for each object in the ODT. This instruction is

the first instruction executed at beginning of every line for the entire
object description, regardless of what data or instructions are to follow
on a particular line. Now, an obvious question is, what if you don't want
the same first instruction on every line? Then, you'd make the First
Instruction a NOP and there'd be no problem.

For our concerns with bit-maps it so happens that the Bit Map
instruction for every line of a linear bit-map is exactly the same. And the
data for the Bit Map instruction is set up in such a way that its meets the
linearity criteria set above in the way that it is organized in RAM. Thus,

the plain linear bit-map is a specific case that falls out of the QuickScan
general object description format.

The only constraint that QuickScan does impose upon bit-map
organization is that each line of the bit-map must end evenly on 2 32 bit
word boundary. Now this doesn't mean that all bit-maps that QuickScan

: displays must have horizontal dimensions in muitiples of 32 bit words (as

x
|

)

|

1

i

we'll see in a minute). It simply means that if your horizontal dimension
ends up with some fraction of a 32 bit word, then you have to waste the
remaining number of bits in the word to even out the line. Presently,
QuickDraw stores bit-maps aligned to 16 bit boundaries. | don't imagine
the change to 32 bits would be enormously difficult (famous last words).

| /)tonsidering the text window diagrammed above, we see that it bears
many

similarities to the sun object description. Like the sun object, the
Start Line and End Line parameters define the vertical limits of the
object, the Absolute Origin parameter defines the left limit of the object,
and (not diagrammed) the Start VRAM Address parameter points to the
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start of the object description (in this case it points to the first word of
the 1inear bit-map stored in RAM). And, 1ike the sky object, all lines begin
at the same pixel so there is no need to specify a Relative Origin for each

line. What distinguishes the ODT entry for this object from the others is
its ViewPort parameters.

@ just what it sounds like it is, a limited view into
anot ace. QuickScan has an extremely general ViewPort facility
which allows us to specify ViewPorts of arbitrary shape and size (the

cloud, for example, could be 2 ViewPort into a live video image), but for

the most part we only need rectangular ViewPorts. Folks at Apple call
such things "windows.”

The rectangular ViewPort is so common in AppleLand that it seemed
to me that it would be good marketing sense to include an automatic
rectangular ViewPort facility as part of each object dispatch. Seriously,
though, such 2 capability is fundamental when working with bit-map
objects anyway. Which leads us back to the problem at hand:

3
It so happens that this particular bit-map has a horizontal dimension Z?-%'
of 230 pixels. It isa | bit/pixel bit map so it takes up 7 words and 6 bits
for each line. As stated before QuickScan requires each horizontal line to
end exactly on a 32 bit word boundary, so we can say that this object has 8
words per line with the last 26 bits of the 8th word unused.

If we simply draw this bit-map object with blind abandon we will
find out that those 26 bits had some value, and they will clobber whatever
should have been directly to the right)@f\ rue bit-map image. This is
where the ViewPort fits in at its most simple application: it crops the
unused bits off of bit-maps so that only the true bit-map data makes it to
the display. Thus, by setting the Right ViewPort parameter in the ODT to
230 (yes, it is relative to the Absolute Origin), we will crop the unused 26
bits off the bit-map, and we will see displayed only the data in the true
bit-map.

So, how do the Left, Top and Bottom ViewPorts fit in, and how do we
specify the Top and Bottom if there is no direct parameter? Well, the Left
ViewPort is not needed in this example so we tuck it away out of trouble
at the Absolute Origin. It is used, as well as the Top and Bottom
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ViewPorts, but we'll have to wait till a little Jater to get into it. To give
you a hint at some of the possibilities, you get horizontal and vertical
scrolling within the your rectangular (or any shape) ViewPort without
having to move any data around.

Okay, this is where I'm going to leave off describing QuickScan for

this release. | realize there are many unanswered questions, but there is
enough here to start on until | have time to get the rest out.
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Command Word Format

*SGP* 2/17/85

Next
1)

Bit Map (BMap)
31 24,2y 16,15 8,7 0
0 O O(DetsFormet(S)| ( |/ Relative Origin (11) Dats Word Count (10)
i o oy
4eof v T xels
m
L_QD&B&L(LB__) /
2423 16,15 87 0
1 Run Data (7) V. N Relative Origin { 10) Relative Limit (10)
%- — Sten - SN
xt Data
@ (':) Map
()
Short Run (SRun)
= 2423 ] 1615 8,7
( o t|ostaformat(s)| , 444 Relative Origin (11) Data Word Count (10)
Y% ﬁLM:h‘ St 7 eppree
(9) )y It
Context Switch (CSwitch)
31 24,23 16,15 87
0100 Absol ute Origin (12) Constant Word ( 16)
_QangC_@_rzggmiBQQg;u
24,23 16,15 87
o 1 01 Not Used (12) Constant Word ( 16)
- NoOperation (NOp)
| ( = 2423 // 1615 87
ik /\{myﬁé\/‘r Not Used (21)
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JuickScan Line Buffer ] o S

N

Data Word Format *SGP* 2/17/85
Bit Map Data Word Formats
1 Bit/Pixel
31 24,23 16415 8,7 0
31(30]29|28]27|26(|25{24|23{22|21]20{19{18[1?|16]|15|14|13|12|[11|10{ 9|8 7|6 |5|4a|3]|2]|1]|0
- 32 1-Bit Pixels
2 Bits/Pixel
31 24,23 16,15 8,7 0
t1s |1a|l 131211 |1w0] 9] 8| 21|65 3 | 2 1 0 |
16 2-Bit Pixels
4 Bits/Pixel
31 24,23 16415 8,7 0
I 2 6 5 4 3 2 1 o |
8 4-Bit Pixels N
8 Bits/Pixel
31 24,23 16415 8,7 1)
3 2 | 1 )
4 8-Bit Pixels
- 16 Bits/Pixel |
31 2423 16415 8,7 0
1
2 16-Bit Pixels
Short Run Data Word Format
31 24,23 16,15 8,7 _ 1]
Run Data (8) Run Length (8) Run Dats (8) Run Length (8) '
2 Short Runs /\f\
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Ezample Configuration

Pixel O Pixel 640
ll.ett Side of Screen Right Side of Screen l
640 Cells '
< —>-
4MSB
B(B{B|B|B B{B B BiB|B(B|B|B|B
X|x|x X|x
16
XOIGGGGG Glg| ....... G GlclclclclG |G
4 RRRRRLLLRR RLLRRRRRRR
\/ yLsB

Mode|I|I|I|IJI|LJLJL}I|I] ....... IjLjLjryrjrjrjrjo|r

Mask |O|OfO|O|O|L|LjL1]L}1

Cell Descriptions
“IB| =5 bits Blue \‘-: = § Xtra bits, the lower
LY 4 bits of which hold
off “a muitiplier applied to

G| =6 bits Green{ (b ﬁ‘ the Lookup Table output

L| = 8 bits Lookup Table vaiue
R| =5 bits Red
I | = Image Mode L| = Lookup Table mode

0| = Writing Inhibited |1| = Writing Allowed

QuickScan Line Buffer

Programming Model ~ *sp*2/19/85
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JuickScan Line Buffer I on S

Instruction Descriptions
*50P* 2/20/85

The following are descriptions of the 6 instructions supported by the
QuickScan Line Buffer. All data access to the Line Buffer is carried out
through these instructions, and understanding them is fundamental to
understanding how QuickScan objects are displayed.

This document discusses the overall effect of each of the
instructions. Refer to the related Line Buffer instruction Set documents,
Command Word Format, Data Word Format, and Field Descriptions for
diagrams and further details.

Instructions execute in the same time that they take to load, so only
instruction load times are given.

text Switch
CSwitch <Absolute Origin», <Constant Word>

The Context Switch single word instruction redefines the Line Buffer
Absolute Origin and Constant Word, generally in preparation for a new
object description (refer to the Field Description document for an
explanation of the Absolute Origin and Constant Word). This instruction is
automatically generated by the Dispatcher when dispatching a new object,
but can also be specified within an object description for some other
purpose.

This instruction takes 80ns to load and cannot be the last instruction
in an object description.

Replace Constant
RConst <Constant word>

This single-word instruction replaces the value of the Constant word.
It is functionally equivalent to Context Switch except that it does not
affect the Absolute Origin.
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I P-Sr\(. Ud‘“ N~
This instruction takes 80ns to 10ad and cannot be the last Command in

an object description.

Bit Map

BMap <Data Format>, <write Mode>, <Dispatch Next>, <Relative Origin>,
<Data word Count>

This multiword instruction provides the means to display Bit Map
images. A single Command Word describes the characteristics of the Bit
Map data (the Data Format), the origin of the Bit Map relative to the
Absolute Origin (the Relative Origin), and the number of Data Words to
follow (the Data word Count). Tg_e Command Word is then followed
directly by the specified number, Data Words, and these words provide the f*
raw data necessary to generate {\he Bit Map. A Bit Map instruction may be

the final instruction for an object (i.e. by using its Dispatch Next bit).

QuickScan supports S different bit depths in its Bit Map displays.
These are: 1, 2, 4, 8, and 16 BPP (Bits/Pixel). Although the Bit Map
Command Word is the same for all depths, there are differences in the
Data Words. First of all, pixels are packed in different densities in the
various formats. Secondly, the rate that Data Words load into the Line
Buffer varies between the formats. The results are summarized below:

W_Load Time (ns) Clj
Depth xels/ Command Data Words Last

(BPP) D.wWord  Word except last  Data Word

| 32 80 80 80
2 16 80 40 80
4 8 80 40 80
8 4 80 40 80
16 2 80 40 80
pd
(Note that it takes an equal amount of time to loada 2BPP BitMapasai
BPP Bit Map, even though 1t§ twice as much data) é,.

Like all QuickScan Commands, Bit Map loads an image for a single line only.” -
If more than one line of Bit Map is desired, then either a Bit Map
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must be specified for each line, or the Bit Map-Command must be the First
~Command-in the Object Dispatch Table Entry.

reives ==

LRun <Run Data>, <write Mode>, <Dispatch Next>, <Data Map>, <Relative
Origin>, <Relative Limit>

This single word instruction loads one run of a single input data value
(the Run Data) into the Line Buffer. The run may be up to 1023 pixels long.
All pixels from the beginning to the end of the run will be written with the
given input data value at once, and no other pixels will be affected.

A run is specified by its left limit relative to the Absolute Origin (the
Relative Origin), and its right limit-1 relative to the Absolute Origin (the
Relative Limit)., If a run's right 1imit is specified to be to the left of it's
left Timit, ther &

s Tgnored. 6‘
This instrué\tion takes 80ns to load, and it can be the 1ast instructio g
in an object description.

Short Run

SRun <Data Format>, <write Mode>, <Dispatch Next>, <Relative Origin>,
<Data Word Count>

This multi-word instruction loads a sequence of consecutive runs into
the Line Buffer. The first run begins at an origin specified relative to the
Absolute Origin (the Relative Origin) and writes an input data value (the
Run Data) at once to a number of pixels (the Run Length) to the right of the
origin. The second run begins at the pixel following the last pixel written
by the first run and writes its input data value to a number of pixels to the
right of that point, and the process continues until each of the runs has
been loaded (the Data Word Count+2). Runs of zero length are ignored, and
processing continues with the following run.

Runs can be a maximum of 255 pixels long, and 2 runs are encoded in
each Data Word. |f an odd number of runs is desired, then the second run of
the last Data word should have a length of zero.

Runs can be “transparent.” That is to say, a run can be specified
which extends across a number of pixels but does not write anything to
these pixels. This comes in very handy when there is a sequence of runs, a

AN
-
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gap, and then another sequence of runs. The gap can be crossed with a
transparent run, continuing the same Short Run instruction into the second
sequence. Transparent is specified by a Run Data value of 255.

The Short Run Command Word takes 80ns to 10ad, and each Data word
takes 160ns. It can be the last instruction in an object description.

No Operation
NOp <Dispatch Next>

This single word instruction is a place marker; it has no function.
NOp takes 80ns to load, and it can be the last instruction in an object
description.
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Field Descriptions
"SOP* 2/17/8S5

Absolute Origin '

This 12 bit word defines the horizontal display space origin from
which all object positioning calculations will be made. It isa2's
complement number with the leftmost pixel (pixel 0) on the screen mapped
to position O, increasing with positive values to the right and decreasing
with negative values to the left. Thus, objects can be positioned relative
to a point up to 2048 pixels to the left of the screen and to a point up to
1408 pixels (+2047 less 640 plus 1) to the right of the screen.

There is more room provided on the left side of the screen because
objects are always generated left-to-right, never extending further left
than the Asolut igin, and thus, we need more room to move objects
off-screen on the left than the right. The screen position is maintained

internally in the Line Buffer in such a way that an object extending past ' 'j
pixel +2047 will not wrap around to the left side.

Relative Oriqi

This 10 or 11 bit word defines the pixel offset from the Absolute
Origin at which to begin writing the forthcoming data. In ggg ;ﬁg f gfit
Map TS def Mﬂxel addressed by the f if‘s;\?it ap Data &£—
word, and in a Run Cowmmend, this defines the leftmost pixel of the first
run. The Relative Origin word is a positive integer, summed internally
with the Absolute Origin to get the resulting pixel address.

Note that the resulting pixel address from the sum of the ﬂ%\)
and Relative Origins need not actually be on-scregn for the Commend to é"‘

executed apppropriately. If, for example, d pecifies its '

Relative Origin to be to the left of the screen, and part of its generated

image is off-screen and part of it is on-screen, the QuickScan Line Buffer

will generate the on-screen part of the image appropriately, even though

the screen border may fall right in the middle of a run or a Bit Map word.

If, however, the resulting pixel address is off the right side of the screen,

there is no on-screen part of the image, and QuickScan will just skip the —
~€ommand— . : | L
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Constant word
o (\When the Line Buffer is forming a 16 bit word to write to a pixel or 2

ggeup-vf pixels, it has to provide a full 16 bits for the write operation
even though the input data may provide less than 16 bits. The Constant
word provides these additional bits. Its function is best described by an
example: :

If the Line Buffer is loading in a 4 bit/pixel Bit Map, then the input ,«"’ VQ
data is providing 4 bits to write to each 16 bit pixel. The Bit Map M
attribute field "Data Format" indicates to the Line Buffer which 4 bits of p}‘
the 16 in each pixel cell the input data refers to, but it is still faced wit v
the problem of what values to assign to the remaining 12 bits. This is (“'V) g&*)(
where the Constant Word comes in. Whichever 12 bits happen tonotbe -
specified by input data (after the data has been formatted) come directly
from the corresponding 12 bits of the Constant Word. So, if the input data
provides bits 0 through 3, then bits 4 through 15 would be provided by bits
4 through 15 of the Constant Word.

The same applies analogously to input data widths of 1,2,7, and 8

bits. Note, however, that at 16 bits/pixel, the Constant Word is not used
at all.

Data Format

This field indicates the input data width and alignment in the 16-bit
pixel word. Available widths are 1,2,4,8, and 16 Bits/Pixel (BPP). An
alignment value of O indicates the data bits are aligned flush with the LSB
of the pixel word (Bit O of L-Byte), and increasing alignment values place
these data bits incrementally closer to flush alignment with the MSB of
the pixel word. Input data can only be aligned on bits which are muitiples
of its width (e.g. if the data width is 4 BPP, then there are 4 alignment
positions, but if the width is | BPP, then there are 16 alignment
positions). Those bits of the pixel word not provided by the input data are
provided from corresponding bits of the Constant Word.

width  Encoding

IBPP 1 AAAA

2BPP 01 AAA Where AA... is the alignment value.
.4BPP 001 AA : :

8BPP 0001 A

16BPP 0000 |
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This field indicates which sections (%f_ the pixel word are to be
affected by the forthcoming data writes. &H Séctions not selected in the 6—\
write mode will not be affected at all by the forthcoming writes.
When M write mode is selected (for writing to the Mask and Mode
bits), the Mask bit is written by q f the resultir‘\g 16 bit pixel word
and the Mode bit is written by bit#. Bit ugh-#% are ignored. If the
data width is | BPP, the data writes will aff ect only the Mask Bit; the
Mode bit will be left as is.

Mode Encoding Sections Written
M 00  Mask andddeseBitaOniy

L 01 L-Byte Only
X 10 X-Byte Only
X 11 L- and X-Bytes Only
mata e E ===
This field of the Long Run d Word provides a limited means of o

mapping the 7 bits of Run Data in the 16 bit internal pixel word. If the
write Mode is L, X, or LX, then when the Data Map bit is O, it will map the
Run Data to the lower 7 bits of the 16 bits, and when it is 1, to the upper 7
bits. If the Write Mode is M, then when the Data Map bit i\ , it will limit
the Run Data to | BPP with its LSB mapped to internal bit & (thereby
restricting it to the Mask bit), and yhen the Map bit is 1, it will map the
Run Data directly to the internal 7 bits (thereby allowing it to é
affect the Mask Bit 15 bit & and the Mode Bit in bit«f).
15y LY
Run Data
c&#ﬁm}%iﬁew provides an imbedded 7 or 8 bits of input data in a Run

0 be used in generating a word for writing to the group of pixels
addressed by the run. The use of this field varies between the Short and
Long Run Commands.

For Short Runs, this field is 8 bits long. It is formatted into the pixel
word following the width and alignment rules given above in the "Data
Format" paragraph -- with the following restriction: 16 BPP mode shouid
not be used (the resuiting pixel value is indeterminate). If input data n
widths of less than 8 bits are specified, these are taken from the Run Data I
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aligned to the LSB, and the upper bits of the Run Data are ignored.

For Long Runs, the 7 data bits are mapped based on the value of the

Map Data bit. The remaining 9 bits are provided by the corresponding bits
of the Constant Word.

\
This 10 bit field of a Long Run CommandWord indicates the pixel 6
number-1, relative to the Absolute Origin, which is the last pixel of a run.

All pixels from the Absolute Origin+Relative Origin to Absolute
Origin+Relative Limit-1 will be written in accordance with the Write Mode
selected.

Note that Relative Limit does not specify "Run Length™ but rather
specifies a fixed pixel position. If a Run Length is desired, then one or
more Short Runs must be specified.

Ryn Length
This field, as its name implies, specifies the length of a run. Or,
g o more precisely, it determines the right limit of a Short Run relative to the
o Run Start, an internal register initially loaded with the sum of the
Absolute and Relative Origins. By summing the Run Length with the Run
Start value, the Line Buffer calculates this right limit. After the run has
been written to the pixel cells (using the Run Start value as the left
limit), the Run Start register is loaded with the right limit value, and this
. vplue,becomes the Run Start for the next run in the same Short Run
A""éﬁm Note that Run Lengths of zero are degenerate and neither write
anything to the line buffer nor change the value of the Run Start register.
Subsequent runs do not overlap even though the right limit of the first
becomes the left limit of the second. This is because the left limit points
to the pixel of its value, and the right limit points to the pixel of its
value-1.

Dispatch Next
nt%hen set in a Command Word, notifies the Line Buffer that %
t is the last on this line for the currently loading object, and

/th%t %% Dispatcher should be signaled to dispatch the next object. If the

is a single word » then the Line Buffer will signal the 6’
Dispatcher immediately, but if it is a multiw the ’6———/ .
( - Dispatcher will be signaled 240ns before th ends. —
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when the Dispatch Next bit is set in a single word nand; there 1

a 160ns delay before the next object is dispatched, with multiple word
~/C%(except 2 or 3 word ones) there is no delay.

Data word Count A
This vajue indicates the number of Data Words less one to follow the 1

Command word. Thus, O indicates | Data Word shall follow, and 255
indicates 256 Data Words shall follow.
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In __|
(32)

Dispatch

4

Noxt

Clock o
Rete

Date

Clock

Control

VOIS III.VIS

o1l 12) 1311411151161 1?] 18] 19| |10] [11] |12] [13] |14] |13
Memory Cells of Line Buffer A
16] [17] |18] [19] [20] [21] |22] |23] |24] |25] |26] [27] |28] {29] [30] |31
Left Limit or BM Vrite Addr
Right Limit
Vrite Data
Constant Vord
WVrite Control
Read Addr
Read Data
Ol 11121 13114]15]116117]18] 9] |10} 11| [12] |13] |14] |15
Memory Cells of Line Buffer B
16] |17] |18] |19] |20] |21] |22] 23] |24] |25] |26] |27] |28] |29] [30] |31

*SGP* 2/18/85

Block Diagram
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Absolute Origin| |Run Stert Position
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'3
BM Write Addr
Left Limit
+ ‘ or BM Write
, >
Left Limit Address
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Data 7 ° , Write
Bus In A Dats
(327 [
» 5 » Constant
/] word
/ Instruction Constant .
/ Decode word .
/
/
v ®
/
7 v
,5 word Data write
,4 : Counter Format Mode
/ \ 4
Dispatch 1 |Dispatch
Next A nNext [ & i ¥ write
Clock 2 . » Control
oc / Finite [ |
Rate V] >
5 State 1 Line Bufrfer Read
Date / o Control [ Read Address > A ddress
Clock 7B Bl Counter
, N7
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uickSca i uffer C ol

Block Diagram

*3GP* 2/18/8S
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or Constant Word Write Data
BM Write
Address Right Limit l l Read Addr

Data Merge and Alignment Logic
| !

Pixel O {Y) & >0 &
Pixel 32 <32 & >32 &
Pixel 64 <64 § 64 a: — =
Pixel 96 96 & »>96 & o s
Pixel 128 <128 & »>128 & < < =
Pixel 160 <160 & >160 & @ ® =
Pixel 192 <192 & >192 & -
2 :
2|2 2 i
Y a L
o @ |
'nd End »
Address Pixel Storage o
Comparators 1k 3 8 o
a
‘7 tg ‘
Pixel 512 <512 & H>512 & =
Pixel S44 | <544 & >544 & -
Pixel 576 <576 & >576 & =
Pixel 608 <608 & >608 & -

' /
E% $ A—— 4
t( et | BRle 5
' Engig ] r"?\‘;”" >
(Memory Cell O is shown.) v '% v
 Read Data

Block Diagram
®S0P* 2/18/85
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N
Dispatch Table Format *SGP* 2/18/85
Object 0 | Word 0 | Word 1 | Word 2 | Word 3
Object 1 | Word0 | Word 1 | Word 2 | Word 3
Object 2 Word 0 word 1 Word 2 Word 3 | Closer to Background
Object Dispatch Table @
640bjects=1VRAMP@W=lKBytes |
_ Closer to Foreground
Word 0 Word 1 Word 2 Word 3
Word 0 Word 1| Word 2 Word 3
| \Q%\ Dispatch Table Entry Format -
. \p)i\ \\
V%ord N
31 / ¥ 24,23 16,15 87 0
Absomgg\ Origin (12) Stert YRAM Address (20) |
Syt
HENE 2423 16)15 Oy Bodr ~A(%) 8,7 0
End-Hine

Lo s MEN Stert Line (9) Address Increment (9)
Word 2 - N -
31 , D)“’pg:lzs 16,15 8,7 0
Left Viewfort (10) R4ENT View@ort (10) Constant Word (Lower 12 bits)
/ / ,
Word 3 -
31 2423 1615 87 «

First Instruction (32)

WVj - O
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Block Diagram *SGP* 2/18/85
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Functional Description
"SOP* 2/20/85

Introduction
The QuickScan Dispatcher’s primary function is to start up object

descriptions object-by-object in a line and line-by-line in a frame. To
accomplish this function, it must determine:

a) which object is the next one to load on the current line,
b) where in the Graphics memory that line of the object is stored,
and c) when it can access that memory and not interfere with the CPU.

This accomplished, it must access the data, send the appropriate
initializing information to the Line Buffer, then commence loading the

object description. Each startup operation like this is termed a “dispatch”.

The Object Dispatch Table «

- The Dispatcher is configured at the end of each Vertical Blanking
Interval. First it accesses a fixed address and loads in a few words of
control information (e.g. 30Hz/60Hz mode select, external genlock select,
etc.) as well as the row address of the Object Dispatch Table (the ODT).
Then it accesses the ODT row (the ODJ] takes up exactly one row), and
loads in the all 256 words. this Mﬂispatcher has all of the

information it needs to dispatch all 64 objects in the ODT for the entire
forthcoming frame.

Please refer to the Dispatcher Block Diagram and the ODT Dispatch Table
Format diagram during the following discussions.

The data in an ODT e i interest to the Dispatcher is the
Start VRAM Address, Mthe Count Words Flag, the
Start Line, and the End Line. The rest of the information is simply stored
by the Dispatcher, and sent directly to the Line Buffer during a
dispatch,virtually without evaluating its content whatsoever. The five

operating data fields listed above are divided into two groups, the address
information, and the line information.
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Retermining the Next Object to Dispatch

The line information group (Start Line and End Line) tell the
Dispatcher those lines on which an object is displayed. These two values
are stored in special memory cells which are actually 2 and < comparators
respectively with the current line number fed in continuously (see Block
Diagram). Thus, the Start Line value for every entry in the ODT is
constantly tested to be 2 the current line value, and the End Line value for
every entry in the ODT is constantly tested to be < the current line value.
The AND (&) of these two tests is generated, and so, on the output of each
ODT line information entry we effectively have a bit that says whether or
not the object for that entry appears on the current line.

Before these logical values are carried out of the structure they are
also each ANDed with@® special gifigle 1 bit cell7 These special | bit cells é_’”
have unique access properties: a single common input sets all cells to :
logic | state, and another single common input causes any individual cell
that is selected to go to a logic O state. The cells are selected by the
same address decoder which selects the entries in the ODT (other than the
line information). Thus, we have the capability to set all cells to logic 1,
then clear the individual cell which corresponds to the currently addressed
ODT entry.

As stated above, 2 /{)it cell is ANDed with the result of the line é Z
comparators for each entry. The resulting outputs feed into a 64 input
prioritizer with entry O having the highest priority and entry 63 the
lowest. The output of this prioritizer (a number between 0 and 63) is fed
into the address decoder which selects the ODT entries and the 1 bit cells.
So, the highest priority input running into the prioritizer determines the
entry selected by the address decoder (e.§. if the prioritizer input from
line comparators of entry 23 is the highest priority input, then ODT entry
23 will be selected by the address decoder).

The system works in the following way:
At the beginning of a line the Dispatcher state machine sets all of the
special bit cells to logic one, and the new current line is fed into thedine < 6

comparators. Since none of the bit cells affect the AND evaluatio‘ﬁé, the
line comparators output their logical result to the prioritizer without
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interference. Clearly, the prioritizer will output the entry number of the
highest priority object which appears on the current line. This number

will go to the address decoder, so the highest priority ODT entry which
appears on the current line will be selected.

Well, that's convenier%:_ It just so happens that this is the first
object we want to dispatchi’#e ODT entry already selected, the é—
Dispatcher state machine reads this data and deals with it accordingly
(discussed below).

Then, the entry still selected, the state machine activates the control
signal which clears the selected special bit cell to logic 0. Now, the line
comparator entry which had just been selected by the prioritizer is turned
of f: the bit cell forces the AND result to logic 0. But, all of the other line

comparators are still enabled, and the prioritizer outputs the entry number
of the next highest priority object which appears on the current line.

-l
. Curiously, this is exactly the next object that we want to dispatch! M M\
Thedb ject is then dispatched at the appropriate time, its corresponding Q/’) |
special bit cell is set to zero, and the next highest priority object which
appears on the current line is selected. And, so on until all of the objects 01'9 ,
on the current line have been dispatched. At this point the Dispatcher

state machine waits until the next line starts to begin the process again.

Handling Object Start Addresses
The address information group (the VRAM Start Address, the Address

Increment, and the Count Words Flag) holds the infogmati he Dispatcher
needs to determine the start address of each object,on each line.

The Dispatcher works from the paradigm that the Start Address
currently stored in the ODT for a given object holds the address that
should be accessed when the object is next dispatched. This works fine
for the first dispatch of a frame; the ODT Start Address still holds the
value loaded in during Vertical Blanking which points to the first line of
the object description. The problem is, how can we make sure that the
Start Address holds the correct address for the second and subsequent
lines of the object description when those lines of the object are

dispatched? Well, there are two ways, depending on the nature of the \i
object. -
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The first way is opted if the Count Words Flag in the ODT entry is 0
(negatively asserted). This means that the address increment from one
line’'s start to the next line's start in the object description is a fixed
amount. This amount is contained in the Address Increment. When the
object is dispatched, the Start Address goes into the Old Address register
(see Block Diagram), and tg: Address Increment goes into a register of the
same name. These 2 value —and while the ODT entry is still
selected (prior to clearing the special bit), the sum is written back to the
Start Address field, replacing the oid Start Address. Thus, when the next

line comes alonggand the object is dispatched again, the Start Address 6
field will point to the proper address for the next line's data.

The second way is opted if the Count Words Flag in the ODT entry is |
(positively asserted). This means that the address increment from one
line’'s start to the next line's start is a variable amount (often the case in
run-length descriptions). As in the first way the ODT Start Address is put
in the 01%@1‘38 egister. But in this case the Address increment is
lgnored a counter clocked by the Shift Register clock @ @

er s cleared to zeroy, the data load for the object description €~

is carried out, %f(gﬁéﬁ‘?‘a& of how many words are actually loaded into G
the Line Buffer. When the Line Buffer signals that it wants the Dispatcher
to dispatch the next object, the word count is summed with the Old
Address, and the result is placed in the Start Address field in the ODT.
(Then, the special bit is cleared, and the next object is dispatched.) Thus,
when the next line comes around, and the object is dispatched again, the
Start Address in the ODT will be exactly the address following the last
address loaded into the Line Buffer, regardiess of what the increment was
from the address at the beginning of the previous line.

Now that we have gone through each way independently, we have the

perpective to see that both ways are identical &xsept in state machine =
execution except for one register transfer. it works like this: Upon object
dispatch the Old Address Register is loaded with the Start Address, the

Address Increment Register is loaded with the Address increment, and the

word Counter is cleared to zero. Then, nothing happens (except for the

word Counter counting) until the Line Buffer sends a Dispatch Next signal

to indicate the object description's completion. Then, either the Address
Increment register or the Word Counter is selected to sum with the Oid
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Address depending on the Count Words Flag, and in a single cycle both the
sum (the new Start Address) is written and the special bit is cleared. The

very next cycle the dispatch data for the next ob ject is read from the ODT,
and the next object is dispatched.

There is one unresolved issue in this address increment process:

__ when the Dispatch Next Flag is received from the Line Buffer, there may be

0,1,2,3,4 or S words following, depending on the particular instruction
that the object description ends on. One approach would be to wait until
the object description ends before updating the ODT, but this is
problematic because we really need the time to complete the sum, update
the Start Address, and let the Prioritizer and Decoder settle in their new
state. Another approach would be to have the Line Buffer tell the
Dispatcher how many words are left, but this means pins. Another way is
to have the instructions partially decoded in the Dispatcher so it knows
what is going on and can figure out the number of words. But, | think the
simplest approach is to put the burden on the 68020 and require that all
variable length object descriptions end lines in such a way that there are
S words after the word at which Line Buffer will send Dispatch Next until
the first word of the next line in the object description. This will waste a
little RAM if the object descriptions are not planned well, but presumably
the variable length objects are pretty compact anyway.

Vv ion efr
VRAM Bus Arbitration and VRAM Refresh Generation are each

discussed in separate individual documents. It would be redundant to
discuss them here.

ispatching an Obje

After what it takes to get up to dispatching an object this part is
very simple. Essentially, an object is dispatched by sending four normal
instructions to the Line Buffer that happen to prepare it for the
forthcoming object load. The Line Buffer actually does not “know" that
these instructions are not part of an object description, and indeed, it
contains no special logic to support the dispatch process.

The four instructions that dispatch an object are as follows:

1. CSwitch Absolute Origin,Constant wWord
2.LRun 0,4,0,0,0,641
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3. LRun 1,M,0,0,Left ViewPort, Right ViewPort
4 First Instruction
Immediately following the First Instruction, the first word from VRAM

will load In, and the object description will continue loading until a
Dispatch Next bit is set in an instruction.

The explanation of the four instructions goes as follows: Instruction
| defines the horizontal reference point and the defauit input data, the
Absolute Origin and the Constant Word, respectively. Instruction 2 clears
the Mask bit in every pixel ceill in the Line Buffer, then Instruction 3 sets
the Mask bit in those cells between the Left ViewPort and the Right
ViewPort. This has the net effect of allowing writes to only those cells
within the ViewPort. Then, finally, the First Instruction is just that, the
first instruction of the object description. It can be anything.

There is an exception to this dispatch process worth mentioning. If
the object description requires a ViewPort more complex than the simple
one provided by this mechanism, the user can set up her own ViewPort in a
higher priority object description, then disable the automatic ViewPort
mechanism from clobbering the one she just set up. This is accomplished
by setting the Right ViewPort value to -1. The Dispatcher, upon detecting
this value will send NOp's instead of LRun's for instructions 2 and 3.

Handling Row Crossing Conditions

The Video RAMs specified for the QuickScan system are set up in such
a way that data is only rapidly accessible if it happens to be sequential
and all in one row. If a line of an object description is entirely contained
in one row, then managing the VRAM is no more complex than as it is
already described here. If, however, an object description of a line does
cross a row boundary, then a) a performance penaity will be applied, and b)
the Dispatcher will have to 10ad in the next row.

If you are familiar with the NEC VRAM devices, you will know that if
you anticipate crossing over the end of a row, you can start a Transfer to
Shift Register cycle early and seamlessly switch from the end of one row
to the beginning of the next. With QuickScan this can't quite be achieved.
First of all, the Shift Register is often being pushed to its maximum
speed; a seamless switch at that clock rate is virtually impossible. And,
second of all, the Dispatcher can’'t always anticipate that an object
description is going to cross a row boundary; it doesn't know the extent of
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a variable increment object description until the last instruction is

loaded.

As a straightforward solution to this problem | recommend that the
Dispatcher monitor the position in the row through some function
connected with its Word Counter. If the row boundary is actually crossed,
the Dispatcher will only then initiate the Transfer to the shift register.
Considering worst cases for DMA latency, we have to allow S60ns to get
the VRAM “back on line” with the next row's data. |'ve considered at least
a half dozen approaches to make this row transition less painful, but this
is by far the simplest, neatest, and most consistent in timing. It also is
nice because it follows the same timing chain that is used when the
Dispatch Next Flag is detected. | recommend that we just warn off
programmers from crossing row boundaries, and let them know it'1l cost
them S60ns every time they do.

‘‘‘‘‘‘
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Aemorandum

To: Jonathan Architecture Committee, et al
From: Steve Per

Date:  3/8/85
Subject: QuickScan Programming Manual

Attached is a copy of the QuickScan Programming Manual. This document
throughly describes the details of programming QuickScan without going
into any hardware implementation issues. Except for a few minor details
the functional specification of QuickScan is complete in this document, and
the system is ready for critical evaluation.

Although the functional specification is complete, I haven't quite finished
the Applications Chapter, but believe me, there's plenty here to go through!
Moreover, what is here really covers the core of QuickScan applications,
and | wanted to get these ideas into people’s thinking as soon as possible.

I'll be getting the last few pages covering the esoteric stuff out as soon as |
can.
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S-6 (Supplement) O
OUicKS . ‘

Programming Manual
&S0P* 3/5/85

Bevision History |
First Draft - Missi
some Applications and Appendix B 3/8/85 Steve Periman

Abstract
Although a detatled hardware description of QuickScan is the best
way to establish its feasibility, a detailed software description of the
subsystem's operation is the best way to establish its usefulness. The
first Strawman release of QuickScan had an introduction that went into
some of the salient features of the system and gave a few examplies of
how to program it, but the bulk of the document package focussed on the
implementation details. This document is a “Not for Programmers Only”
description of QuickScan's operation and software model. An extensive .
Applications chapter shows practical implementations with thorough ()
discussions of CPU overhead, QuickScan loading, and RAM utilization, but
from a programmer’s point of view. This document is intended to serve not

only as a programming guide, but, especially at this early stage, as a
means of evaluation.

\/":
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Memorandum
. jonathan ttee, et al
rom: Steve Per
Date: 3/18/85

Subject :QuickScan Programming Manuat Supplement

Attached is section 7.2 of the QuickScan Programming Manual as well as
an updated Table of Contents. Please replace your Table of Contents page
11 with the updated one, and then insert the text pages after page 67.
Some of the people who received double-sided copies of the Programming

Manual are missing pages 29, 30, and 31. I've included these pages at the
end of this packet for those of you who fall in this category.

This section covers applications of QuickScan's fully parallel run
generation mechanism including real-time cartoons, backgrounds, and
real-time 3-D solid polygon modeling. The capabilities of this mechanism,
more than any other particular feature, distinguish QuickScan from any
other display subsystem that exists commercially, at any price. If youre
interested in graphics, please take a moment to look through it.
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1 Introduction

This document is a detailed description of how one goes about
programming QuickScan. It pretty much goes through the transiation of
QuickScan's hardware functionality into software capability. I've avoided
as much as possible the discussing of actual issues in the silicon,
addressing any such constraints rather as fixed limitations of the
architecture. Thus, this document is a "how-to" guide to QuickScan. For a
"why-it-works™ guide refer to the additional documentation.

Although this document can be used as a reference and thumbed-
through in any order, | recommend that you read it at first starting from
the beginning and working your way to the end. | have been careful not to
use terms and concepts before they are defined, and if you don't skip any
sections, then you should be able to understand each new section as it is
discussed. ‘ '

To keep us in 2 68020 frame of mind, | refer to a 32 bit long word —
when | say "word” unless | qualify it as 16 bits. Also, when | qualify a N
statement with the phrase, "in general,” then | mean that the statement
holds true for uses by normal people, but beware: there are hooks for hacks
to mess around with things so that the statement might not be true.

Information contained in this document supersedes information
contained in the documentation packet released 2/21/85. An updated
hardware specification is forthcoming.

*SGP* 8 March 1985
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2.1 Object Descriptions

The following figure shows an example of a QuickScan display:

ickScan Displ xample |

All QuickScan displays are made up a collection of ob/ects Each
individual object in Example 1 is identified by a pattern. Note that objects
can be of any shape and size and need not even be contiguous. Objects may
be entirely visible on the display screen (objects 3 and 4 above), they may
be partially visible on the display screen (objects O, 1, and 2 above), or
they may be entirely off the display screen. Any part of an object which is
Off-Screen is automatically cropped by QuickScan.

We assign to each object a priority /eve/. The priority level tells
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QuickScan which object to put in front of another when 2 or more objects
overiap. Priority levels are from O to 63: the higher the priority
level, the closer to foreground QuickScan will place the object. The
number on each of the objects in the above diagram indicates its
respective priority level. There may be only one object to 2 priorit
Jevel. (But, in advanced applications, there may be more than one
priority level to an object.) Priority levels aiso serve as
identification for objects in the text of this document. Thus, Ob ject 2
refers to the object at priority level 2. '

All objects are made up of a contiguous sequence of words of
arbitrary length pius 4 words of control data. The former data is called
the object description, and the latter is called the g/ispatch tab/e
‘entry. Anobject description can be placed anywhere in RAM (sorry, not
in ROM), although there are some areas in RAM which are best avoided to
optimize performance. And, if it serves some hacker's end, object

descriptions can even overiap.

j N

The dispatch table entries for all of the objects to appear in a e

given video frame are collected in the Ob/ject Dispatch Table (the ODT). M .
Up to 64 entries may be sequenced, one after another for each frame. OM
Each entry identifies a particular object, and the order of the entries t
indicates the priority levels assigned to the objects. The first entry in .6\"‘"
the ODT is priority level O, the second is priority 1, and so on, until the @Q‘\ '
last entry is priority level 63. The 4 words of 2 dispatch table entry 0

contain the attribute information for an object as well as a pointer to the

beginning of the object description. (Note that the same object

description can be referred to by more than one dispatch table entry

if multiple copies of the same object is desired.) The ODT may begin in

RAM at any address that is a multiple of 1024, and it need extend only so

far as there are dispatch table entries. Note that there is only one ODT
for each frame displayed by QuickScan.

The conriguration data is a contiguous sequence of words at 2
fixed address in RAM which contains fundamental control information for
the QuickScan chip set. Most of the contents of this data are not very
relevant at this point in our discussions, but it is important to note that a) —
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this is the only data at a fixed address in RAM used by QuickScan, and b)
this data contains the pointer to the Object Dispatch Table.

This could be 2 memory map of what we've discussed thus far:
High RAM
Configuration Data

.

b N N S NN N NN S NS N NN NN Y

Object Dispatch Table (@—

Low RAM

r Example |

2.2 Line Descriptions

when QuickScan displays objects, it processes them each line-by-
line. (I use the word "line” here (and throughout this document) to refer
specifically to a | pixel tall horizontal row of pixels extending from the
far left side of an object to the far right side. Note that each line of an
object is coincident with a line on the monitor or TV screen when the

object is On-Screen.) More specifically, QuickScan processes each object
from its top line to its bottom line.

Looking closer at the object descriptions, we find that they are
each a sequence of independent //ne descriptionsto accommodate the
nature of this line-by-line processing. The first data in an object
description is the line description for the top line (line 0), it is
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directly followed (generally) by the data for the next line (line 1), and so
on, until the very last data is the line description for the bottom line
(line n). We end up with an object description memory map that looks

like this:
| _ Line n
\\§\\§.~2
Line 4
Line 3
Line 2
Line 1
Line 0
Line n
High RAM W 7
Object 4 Start Address - Line 4
| Object _ Object 31 Pointers Line 3
QspatCh Object 2 \ t:: f
Table Object | ™
Object O
Low RAM
Hign RATI Line 4
Line 3
Line 2
Object Line 1
Description Line O
|Lim Dtscription‘ N ‘Ling "
Low RAM ]
) SN \L;m\ \4\ NN
Line 3
Line 2
Line 1
Line O
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Each l1ine description of an object description is independent of |
the other 1ine descriptions in that object description; what is
happening on one 1ine of an object has no effect on what is happening on
any other line of the object. Indeed, it is quite correct to say that
QuickScan's fundamental independent display entity is an object line, and
that an object 1s simply an ordered collection of lines. Remember this
concept - the QuickScan architectyre revolves around it

An object’s l1ine descriptions may either be all of the same length
or all of variable length, and In both cases the chosen lengths are
arbitrary. Fixed or variable length mode is specified in the dispatch
table entry for each object, and If the lines are of fixed length, then the
1ine length is specified in the entry as well.

2.3 QuickScan Display Space
Consider the following figure:
(-2048.0) (0.0) (639.0) (2047.0)
OfT-Screen Left i
On-Screen Off-Screen Right
(2048 x 484) (640 x 484) (1408 x 484)
(~2048.483) (0.483) (639.483) (2047,483)
Off-Screen Below
(4096 x 28)
ick )

The above figure diagrams the display space managed by QuickScan.
The area labeled "On-Screen” identifies the region of the display space
which actually appears on the monitor display screen (a centered subset of
this area, about S12x210, is visible on a television screen). The
Off-Screen regions, although processed internally exactly like the
On-Screen regions, do not result in any visible display. Any object
descriptions which begin within the defined QuickScan display space, yet
extend outside of this space will be truncated at the display space limits.
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They will pot "wrap around” to the other side.

Since QuickScan object descriptions always progress to the right
and downward, by far the most important Off-Screen region is Off-Screen
Left. 1t allows an object description to begin far to the left of
On-Screen and extend into the visible display space. This capability is
fundamental for panning large backgrounds and for moving objects
gradually in from the left of the screen.

It is also vital to be able to move in objects from above the screen,
but this can be accomplished by the 68020 finding the address of the first
line description which is On-Screen, and replacing the start address
(of the object description) in the dispatch table entry with this
value. It is a2 simple problem for the 68020 to crop the top lines off of an
object in this way, but the same operation is a difficult problem for
QuickScan. Conversely, cropping the left pixels off of an object is a
trivial problem for QuickScan, yet a potentially monstrous problem for the
68020 (as you shall see). Hence, we have QuickScan manage Off-Screen
Left and the 68020 manage Off-Screen Above.

Notice also that Off-Screen Right and Off-Screen Below are reaily not
very useful regions of the display space; their inclusion in the QuickScan
display space is more or less vestigial. Although it is valid to specify an
object description which starts in one of these regions, an object so
described will not resuit in any visible display. These regions exist
because a) we get them for free, and b) they might simplify the coding of
objects which are frequently moved On- and Off-Screen.

2.4 The Line Buffer

As noted above, QuickScan processes object descriptions
line-by-line. To be more precise, QuickScan processes a given line
description while the line directly above it is being displayed. That is to
say, QuickScan's line processing is always one line ahead; it has one line's
time to prepare a line before it is displayed. This function is known as
single /line burrering and can be seen pictorially in the following
diagram: ,
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4 Displeyed Lines

Lmbnbg

While this This
line isbeing line is being
prepared displayed

A

NTMmMoOOw™

B
c
D
€

The Concept of Single-Line Buffering

In order to accomplish single line buffering, we need a temporary
place to store the line being prepared, holding it until the next line time
when it will be displayed. This temporary storage area is called the //ne
burrer, and it is in this subsystem that all QuickScan video is generated.

The line buffer is 640 pixels long, maintaining | p/xe/ storage

ce//for each pixel in a horizontal line across the On-Screen region. Each
pixel contains 18 bits, arranged in the following manner:
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MSB

X-Byte

X
16 Bits of Color Data

L-Byte

LS8

3 1 Mode Bit
3 | Mask Bit

The 16 Bits of color data hold the information that, in one of two
ways, represents the particular color for that pixel. The mode bit
indicates which of these two representations shall be used for that pixel.
And, finally, the mask bit controls whether the color data and mode bit
can be overwritten or not.

Considering the mask bit in detail we have:

= Writes to this
Pixel Accepted

@ = Writes to this
Pixel Ignored

The Mask Bit

It operates exactly as stated: |f an attempt is made to write to the
color data (and consequently the mode bit) and the mask bit's value is
1, then the existing color data and mode bit shall be replaced with the
data being written. |f the same write is attempted and the mode bit's
value is O, then the color data and mode bit shall remain as they are. As A
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we shall soon see, the mask bit is vitally important in the display of
bit-maps and complexly-shaped objects.

There are two modes in which a pixel's color may be represented by
the 16 bits of color data. The first is /mage mode Here the color
data is divided into 3 fields: S Bits for R, 6 Bits for G, and S Bits for B, as
shown below:

MSB

S bits Blue

6 bits Green

S bits Red

LS8

3 Image Mode
3 Masked as desired

\ Line Buffer Pixel in | Mod

The RGB value contained in the color data represents exactly the
color to be displayed on the monitor at this pixel; it is a direct mapping.
The mode bit is automatically set to image mode when the 16 bits of
color data are written in this mode, and the mask bit may be set to
what ever value is needed.

The second mode of representation is /ookup table mode. Here only
the lower 12 bits of the color data are used, the lower 8 bits
representing an /ndex to a 256-color Lookup Table, and the upper 4 bits
representing a mu/tip/ier value to apply to the color selected by the
index: '
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v/"('iu\\
N

MS8
4 Bits Not Used

4 Bit Multiplier

8 Bit Lookup Table index

LS8
Lookup Table Mode
Masked as desired

11 1

00 (T

The Lookup Table holds 256 colors represented as 4 bits R, 4 bits G,
and 4 bits B, and it is loaded from a table in RAM prior to the start of each
video frame. The 4 bit multiplier is applied independently to each R, G,
and B of the table entry selected by the index, multiplying each by a value
between O and 15. This has the effect of accordingly brightening or

darkening the nominal color, an effect very useful in 3-D shading models,
anti-aliasing, and interiace de-flickering.

Unlike in image mode, the color data in lookup table mode
represents colors indirectly: first by selecting a nominal color with the
index, and second by altering that nominal color with the multiplier.
The mode bit is automatically set to lookup table mode when the color
data is written in this mode, and the mask bit can be set as needed. The
upper 4 bits of the color data are not used, but should be set to zeros.

Now, as we noted before, QuickScan objects are processed line-by-
line, from top to bottom. What is perhaps not obvious from this, however,
is that the processing of all of the objects is interleaved, such that each
object which appears on a given line loads its line description for that
line into the line buffer before the line is dispiayed. While this is
occurring, the line just above this line is being displayed. Furthermore,
the processing of the objects’ line descriptions is done in the order that AN
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the dispatch table entries appear in the ODT. This serves to prioritize
the objects just as we expect by overwriting those objects of lower
priority where there is an overiap.

To clarify the previous paragraph, flip back to page 3 and the
QuickScan Display Example 1. Consider for 2 moment the line dead center
in the On-Screen region. Objects 1, 2, 3, and 4 all appear on this line, and
we expect them to be prioritized as shown in the picture. How would this
work? Well, first a line description of object 1 is loaded into the line
buffer, then one for objects 2 and 3. Then, the line description object
4 is loaded, and it overwrites some pixels which were written into the
line buffer by objects | and 3 at pixels of overiap, the prioritization
desired. A conceptual diagram follows:

Line Descriptions for all Objects on Line

Pixel O ‘ Pixel 639

Line Buffer

Color Data
and Mode Bit
Lookup
LokP Le-Table Mode
able Index Bit
4-4-4 RGB
R-G-8 Data

+ ‘ * Multiplier

X|X|X |——

RGB A

!

Line of Video to Monitoror TV

Line Buffer G tual Block Di
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As shown above, a line of 640 pixels is prepared by the line
descriptions for all of the objects appearing on that line. Then, the
preparation complete, the color data is output as a line of video. The
color data can either follow a direct path to the video output if it is in
image mode, or it follows an indirect path, through the Lookup Table and
the Multipliers, if it is in lookup table mode. Note that a line can
switch between image and lookup table modes at any pixel; there are
no restrictions in this regard. So, image mode objects and lookup table
mode objects can be intermixed on a line as is desired.

8
"
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J._Pixels

3.1 _Pixel Data Write Formats

when we write pixel data to the line buffer from 2 line
description , we generally don't specify all 16 bits of data to write. we
can, of course, specify 16 bits for each pixel if we want, but the amount of
RAM and CPU overhead necessary to support such line descriptions is

extraordinary, and as a result we avoid such large line descriptions
whenever possible.

So, if we specify fewer than 16 bits for each pixel, how can we
control what values are placed in the bits of the color data that we don't

specify? The function is accinr:p/lished witirthe const word, 3 A6 bit '{ﬁ
word which provides any bits.ifi the col are not ppovided by (h, saune

B

resolvedby a parame R the Tine description which specifies the
gata format of the forthcoming data. The data format fiegt-specifies
the pixel data w/ath (1,2, 4, 8, or 16 Bits/ Pixel),

alignmeny of the pixel/data bits
also a spécial data
é‘part}cmar cifcu

alignment affects only the line
word is 2 ays‘aligned at bit 0 j

The following diagrams show the various ment permutations
available for each of the pixel data widthsIn ezth 16 bit/m@data
word shown, the bits written/from the)’iﬁe degcription” pixel gata are
shaded,/and the bits written/from thé constapt word are left white. The
data/forma’t code is listéd below each 16 i;}offor data word. (in the 7
bitf@'rx’el width thec e/shown is actua special gata al/ignment

Apple 1l Group Confidential and Private Page 14



code, to be explained in the Instruction Set section.)

- MS8 ]
] -
oo LSB s

1 0 ‘10001 10010 10011 10100 10101 10111
- MSB : RARE
— s A S
[ ts8 -

11000 11001 11010 11011 11100 11101 11110 1111

| Bit/Pixel Data Formats

MSB ]
|
-
e — —
LSB ]

01000 01001 01010 01011 01100 01101 01110 'Ollll
2 Bits/Pixel Data Formats
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MSB

LT

ARRRNNNRRRNREAEE

00100 00101 00110 00111

4 Bits/Pixel Data Formats

[ ]
-
—
]
i
|
]
-
B
o
o
o
T
888
0 | (deta alignment code)
7 Bits/Pixel 3 Format

EEEEERL (L1111

00010 00011
8 Bits/Pixel Data Formats
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EEELEREREEETEE

LSB
00001

16 Bits/Pixel Data Format

Note that at 16 bits/pixel data width the constant word is not
used as all 16 bits of color data are provided by the line description
pixel data. ‘

32 _Pixel Write Modes

Since the upper and lower bytes of the color data word have
different meanings in lookup table mode, sometimes it is desirable to
write to one byte, but not to the other. Also, since the mask bit needs to
be set up by the line description before it is used, it is necessary to
have some way to access it. These pixel cell access paths are
called write modes and are selected in the line description by a 2 bit
write mode parameter. The encoding of the bits is as follows:

Mode Encoding Pixel Sectijons written

M 00 MaskBit Only

L 01 L-Byte(Color DataL.S. Byte) and Mode Bit Only

X 10  X-Byte (Color Data M.S. Byte) and Mode Bit Only

X 11 L-andX-Bytes (Color Data word) and Mode Bit Only

The previous section defined how to map the l1ine description data

to the color data word, but so far we haven't discussed how to map 1tne \'

description data to the mode and mask bits. The display mode of a
given object description is specified in its dispatch table entry in
the ODT. Whenever write modes L, X, or LX are specified and data is
written to a pixel (i.e. the pixel is not masked), then the pixel's mode bit
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is automatically set to the object's display mode. (If you're a real hack,
there is even a way to change an object’s display mode inside 2 line
description ).

whenever write mode M is selected, the least significant bit of the
line description pixel data is written to the mask bit uniess the write
is masked by an embedded mask (to be explained in the next section).
Note that the prior state of the mask bit has no effect on this operation;
the mask bit cannot mask itself. However, it can be masked by an
embedded mask, and in such a case the write would not occur. Note also
that the data alignment and the constant word are irrelevant to this
write operation, and further, all bits of the line description data except
for the LSB (and possibly the embedded mask bit) are ignored as well.

j 1di write masking facili itlythe mask bit
, QuickScan provi a maskirig facility within
scription pixel data. The asks are formed by emobeaded

If the e

ed mask mode is activzted in the dispatch tapie entry

'Mtl?g’set to 0. M the
he pixel cell mask

The embedded mask function/is/imm of the pixel data write
f unction,/éxcept insofar as to determine the gixel data width. The
embedd@/mask bit is a particular bit of tﬂg_ljne description pixe
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is in a fixed position in the W
ardless of the alignment , the write

e of the data. The particular bit for each data

ow (7 bits/pixel width cannot have an embedded

data for each different data width. T
pixel data for each data widt
mode, or the display
width is shown
mask bit):

] MSB
]
i
]
AR -
RR]RY : = =
] ] LsB
1 BPP 2 8PP 4 BPP 8 BPP 16 BPP

Embedded Mask Bit Placement in Line Description Data

This characteristic must be accounted for in the organization of the
Color Lookup Table in lookup table mode and in the assignment of color
values in image mode. The particular bit positions in the pixel data for
the embedded mask bits were chosen with cognizance of the fact that 1,
2, 4, and 8 bits/pixel widths will primarily be used in lookup table
mode, and the 16 bits/pixel width will primarily be used in image
mode. Remember that the color data that is written for an object in
embed mask mode shall have the embedded mask bit set to a constant.
If the most significant bit of the lookup table index holds a constant
value, then the group of colors selectable by the rest of the bits will be
contiguous (assuming alignment = 0), a useful organization. If the least
significant bit of Green in a 5S-6-5 RGB designation is held to a constant, ’
then we effectively reduced the RGB designation to S5-5-5, still quite N
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usable. Hence, the rationale for the embedded mask bit positions
selected for the pixel data.
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4_Positioning .
41 Horizontal Object Positioning

A QuickScan object’s object description , in general, is independent
of the object’s absolute position in display space. However, an object’s
line descriptions are, in general, dependent upon being positioned a
certain way in display space relative to each other. Stated simply, when
an object is repositioned, it should look the same except for regions of
interaction with other overlapping objects. The characteristic of an
object’s subparts to maintain consistent positioning relative to each other
despite the repositioning of the object as a whole | call coherence .

Maintaining vertical coherence is easy because QuickScan draws each
object line-by-line without ever skipping or repeating any lines, no matter
where an object is positioned. (Vertical positioning techniques will be
discussed presently.)

Maintaining horizontal coherence, however, is another story. Line
descriptions can become exceedingly complex, often beginning at varying
horizontal positions within the same object. Positioning line
descriptions correctly requires a more powerful model that simply a
fixed horizontal position for each object. QuickScan has two horizontal
position descriptors to accommodate this requirement: the aoso/ute
origin and the re/ative origin.

PN
y: \

The absolute origin is horizontal reference point in display space
to which all horizontal positioning in the object description shall be
referenced. If the absolute origin of an object is changed then the
entire object shall move left or right without the loss of any coherence
(except by deliberate hacks). The absolute origin of an object is
specified in its dispatch table entry and holds for every line in the
object (although it can be altered within a line description - the
deliberate hack parenthetically referred to in the last sentence).

Having the same absolute origin for every line in an object is fine
for a restricted class of objects (Mac windows fall in this class), but is
insufficient for many useful object shapes. To accommodate variable
horizontal positioning of each line in an object, yet maintain a global &
horizontal position for the object as a whole, we augment the object’s

o
£
K/

Apple 1l Group Confidential and Private Page 21



absolute origin with arelative origin for each line of the object.

Arelative origin is specified in the line description for each
line, and defines an offset to the right of the absolute origin at which to
place the forthcoming line description data. Note that the absolute
origin may be positive or negative and is referenced to the leftmost
On-Screen pixel, but the relative origin may be only positive and is
referenced to the absolute origin. Thus, objects may be positioned
anywhere {s display space, but an object’s line descriptions must all lie
aligned to or to the right of its absolute origin. The following diagram

maps typical absolute andrelative origins for the objects of Example
I

! 0 2 4 3 Object
| | | |
A 0 100 1¢ . Absolute >
-80 60 100 160 280 L.
Origin
Off-Screen
Above
e On-Screen
\’\/\;' ',\I\,\' '\,\ LSRN NENEN
AN B \ A l \ \:\:\:\:\:\,
ANRE RANNERNXXNRN, I Off-Screen
27 70 ‘/ A A4 .
.P\I\/\I /\/\/\/\I\I\/\/‘l\/\l\ / A R‘mt
LYENAN LA N N N NN NN 3 X

Off-w&n: .f\,\’\'\'\’\’\'\’\{/ g

AATAY ETAYAYA WA WA WA N U WL N WA Y
ILILI_I__‘fo‘/////III

Pixels st the Relative Origins of each
object are outlined with thick lines

Example 1 Absolute and Relative Origi
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Note that the relative origins for the rectangular objects, O, 1, and
3, all have zero value; the absolute origin is sufficient for such objects.
Objects 2 and 3, however, have different relative origins for just about
every line. The following diagram explicitly shows some of the relative
origins inobject 2.

<

Some Above
Samples of

Relative
Origins
Object Relative
Line Origin
07380
40——356
80—1—332
120—+—308
160—1—2064
240—1—-260
280—1—236
—0
._o
_0
L0

Off-Screen
Right

Pixels at
Reletive Origin
Outlined with
a Thick Line

320—
340—
360—
400—

Relative Origins for Object

Although in general, each line description of anobject has a single
relative origin, in a complex line description each subpart of the line
description has its own relative origin. Each of these relative
origins are independently relative to the absolute origin, not to each
other.

Note also, there is no rule requiring an object’'s absolute origin to
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be aligned with the object’s leftmost displayable pixel. The above
diagrams show this situation to reduce confusion, but the only
requirement on the location of an object's absolute origin is that it is
aligned to or to the left of the leftmost pixel of the object. There could
very well be 2 significant gap between the absolute origin and the
leftmost pixel in the object.

42 Vertical Object Positioning

QuickScan objects are positioned by an absolute offset from the top
of display space. The parameter for this specification, the start /ine, is
a non-negative number and identifies the line number in display space at
which the first line of the object shall be displayed. This start line
parameter is specified in a field in the dispatch table entry for the
object. The start line, and other, values for Example | are shown below:

O=y=0

‘\T!‘f’ 1
8

3—1—419

21 559
\4

= Start Line mple | Objects Start and End Lines
- = End Line

Unlike the horizontal extent of an object, the vertical extent of an
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object is not implicit in the object description . Consequently, an
additional parameter must be specified in the object’s dispatch table
entry which identifies the last line of an object. Although we could
specify the "end line” of an object (see the end lines of Example 1 in the
above diagram), we would then have to change both the start line and the
end line when the object moved vertically. Thus, the parameter specified
is the object height (actually the object height less 1), 3 non-negative
number which indicates the number of lines in an object (-1). To move an
object vertically we need only change its start line parameter; the
object height will stay the same.

You may have noticed in the diagram above that object O starts 80
lines before the first line of the screen, yet its start line parameter
points to line 0. This is because no object may start before the first line
of dispiay space. What is not shown in this diagram is the fact that the
start address parameter (to be covered shortly) in object O's dispatch
table entry has been changed by the 68020 to indicate the object
description for this object begins at the 81st line of the actual object
description , thereby “pulling a fast one" on QuickScan so that the proper
image is displayed. Note that QuickScan now knows of only the lower

portion of the object, and as such, the object height parameter has been
adjusted accordingly.

Although this vertical cropping procedure appears to be an onerous
burden for the 68020, bear in mind two things. Firstly, a window in
Appleland cannot extend above the first line of the screen; indeed it can't
even go above the menu bar. So, we never face this problem when our
objects are windows or fully contained in windows. Secondly, line
descriptions , by definition, are stored in independent, successive regions
of memory. Finding the nth line description when we want to crop n-1
lines is at worst a linear search, assuming we have no higher level
information obout the object description’s organization (as you'll see
shortly, the search is often as simple as one multiplication).
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S._Instructions

5.1 Instructions and Execution Time

A QuickScan line description {s a contiguous sequence of one or
more /nstructions. Each instruction is either exactly one word long (2
single-word instruction ), or one or more words long (a muiti-word
instruction) . Single-word instructions have only 2 command word
(i.e. the instruction is the command word), but multi-word
instructions have a command word and zero or more data words
following the command word.

If you recall from the section on line descriptions , QuickScan
employs a single-line buffering mechanism which loads 2 line into the
line buffer while a previously loaded line is being displayed (see page 8).
Consequently, QuickScan has exactly one display line's time to load each
line into the line buffer. The next line cannot wait if a given line takes
too long.

ability to display objects, This constant is 31.778 microseconds (although
it can be doubled for special TV-only displays). All instructions of all
line descriptions which need to be displayed in a given line must
complete their execution, with all associated overhead, within this time
limit. Otherwise, not only will some foreground objects disappear for that
line, but their display on lines below will be shifted down by one line.

Calculating the execution time of a line description is fairly
straightforward. Each word of an instruction compietes execution
before the next word is 1oaded in, and every word in an instruction takes
a determinate amount of time to execute. Each instruction in a line
description completes execution before the next instruction is loaded
in. Then, there is a certain overhead associated with ending one object’s
line description and starting up the line description of the next
object to be loaded (i.e. the object of the next priority which is displayed
on that line). Additionally, there is also some overhead incurred if the
line description crosses a2 1K byte boundary in RAM. Adding up these
various times for all of the line descriptions on a line, we get the total

execution time to load that line into the line buffer. This amount must
be less than 31.778 jsec.
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In the following sections, | will present the time overhead associated
with each operation | am relating. Once we get through these sections we
will be in a2 position to directly calculate exactly what QuickScan's object
display limitations are. | think you'll be impressed.

5.2 The Instruction Set
This section describes the 6 instructions and ! pseudo-instruction
supported by QuickScan. The word formats can be found in Appendix A

521 Context Switch
CSwitch a_origin, c_)aréz d_mode, %ty
where:

a_origin is the 12 bit, 2's complement absolute origin

d_mode is the one bit display mode (1 = image mode,
0= lookup table mode)

¥ Hy— i mask polarity (1 = 1 permits
writes-and-0-inhibitsO—=tinhibits writes and O permits)

The Context Switch single-word instruction redefines the
absolute origin, the constant word, the display mode, and the
-embedded—mask—pelarity, generally in preparation for a forthcoming line
description . Only the lower |2 bits-of-the-constent—word can-be-

—__specified with this instruction —The-upper<bitsare automaticatiy-set

to zeros.

— O ZETe:

This instruction may pot be the last instruction ina line
description . It takes 80ns (nanoseconds=10"? seconds) to execute.

522 Replace Constant

RConst c_word,d_mode,e—petarity—

N
S

where:
Zword is the 16 bit constant word
d_mode and e_poldrity are as in the

witch instruction

ntical to Context Switch except
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that all 16 bits of the conént wormﬁed and the’absolute

origin is not affecte
constant word wi
object’s absolute rlgin/is currently set/to,~You can algo
with the the displ de and embedded mask polari

if you so/desire.

This instruction may pot be the last instruction ina line
description . It takes 80ns to execute.

2.2.3, Bit Map
BMap d_format,w_mode,r_origin,dw_count,e_mode,end_line

where
d_format is the S bit data format
—womode-isthe 2 bit write-mode- | 17
r—origin is the 10 bit non-negative relative origin
dw_count is the 10 bit data word count
_e.mode is-the+bit-embedded—mask_mode select (1= embed

masks-O=-don-t-embed-masks)——

end_line is the | bit end of line description flag (1= last
instruction in the line description , O= not the last)

This multi-word instruction causes abit-map to be loaded into
the line buffer. The data words (see Appendix A for formats) following
the command word actuaily contain the data that makes up the bit-map,
and the dw_count parameter indicates how many of these words shall
follow. If the dw_count parameter is zero, then the instruction will be
ignored. If the end_line bit is 1, then after all of the data words have
been loaded, QuickScan will initiate loading the next line description on
the line.

The d_format parameter indicates the data width of the pixel data
in the data words and the alignment of this pixel data in the color
data of the pixel storage cells (see the section Pixel Data Write
Formats for details). The encoding is as follows:
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width  Encoding o

1BPP TAAAA
2BPP O1AAA
4BPP O01AA

8BPP 0001 A
16BPP 00001

A's indicate alignment code - see diagrams on pages 15-17.
Code 00000 is reserved.

The w_mode parameter determines to which part or parts of the
pixel cell the pixel data will be written. it is encoded as follows:

Mode Encod Pixel Sections Writ!
M 00 Mask Bit Only
L 01 L-Byte (Color Data L.S. Byte) and Mode Bit Only
X 10 X-Byte (Color Data M.S. Byte) and Mode Bit Only
X 11 L- and X-Bytes (Color Data Word) and Mode Bit Only

The r_origin parameter specifies the offset to the right of the
current absolute origin at which to begin writing to pixel storage
cells. Each subsequent write of pixel data shall be one pixel cell to the “\)
right of the cell just written. Thus, bit-maps are loaded into the line \]
buffer left-to-right starting at r_origin. WJ {

All pixel data from the data words specified wj
be loaded into the line buffer. Hence, all Bit Map i structlons
bit-maps which are made up of an integral number o bit-words. If you
require 2 bit-map which ends or begins with less than a full 32 bit word, Q‘\Y
you must provide masking for the undesired bits.

The execution time for the Bit Map instruction varies from a number
of conditions. The command word has a fixed execution time, then each
data word has 2 execution time determined by a) the data width, and b)
whether the data word is the 1ast word in the line description . The (
various permutations with executions times are shown in the following -
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table:

— Execution Time (NS)oo

Depth Pixels Command Each Data Last
(BPP) per word Word Except Data word
Data word Last of Line of Line
] 32 80 80 80
2 16 80 40 80
4 8 80 40 80
8 4 80 40 80
16 2 80 40 80
925 Run

Run w_mode,d,,a/lign,r_origin,r_Iimit,data_.?,end_line

where
4
w_mode is the 2bit write mode
__—d-atgn-isatbit-data-alignment code (1= align to X-Byte, 0= align
tol=Byte)—

r—origin is the 10 bit non-negative relative origin

r_limit is the 10 bit non-negative relative limit

data_7 is the 7 bit run data

end_line is the | bit end of line description flag (1= last
instruction in the line description , O= not the last)

This single-word instruction specifies a contiguous sequence of
pixel cells which are to be written to with the same pixel data. The
extent of this multi-pixel write is called a ru2 Formally, as Bennet so
astutely observed, a run is O bit/pixel bit-map (2° colors = 1 color), and
this instruction provides a short-hand means to specify that | color and
the limits of the O bit/pixel bit-map. The Run instruction is invaluable
in efficiently laying down large expanses of a single color and in setting
up large masks. There is no other display subsystem commercially
available that acheives this function nearly as fast as QuickScan.
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Since so much information is packed into this instruction’s single
word, we have to compromise some of the data format flexibility we have
with the other instructions . The Sequential Runs and Run Screen

instructions provides runs without loss of data generality.

when the end_line flag is set, QuickScan will end the current line
description and initiate the loading of the next line description inthe
line buffer immediately after completing the run.

The data_7 parameter provides 7 bits to be used as the pixel data for
all pixel cells affected by the run. This data is called the run data and

is handled very much like 8 bit/pixel pixel data except that the most
significant bi 1ts written to the pixel cells is provided by the
constant word TGt the pixel data. |

The w_mode parameter determines to which part or parts of the
pixel cells the run data shall be written. it follows the same coding as
in the Bit Map instruction .

The d_align parameter is a 1 bit data alignment code that provides
a means to align the run data in the pixel cells. See the diagram on
Page 16 for details.

The r_origin parameter specifies the relative origin, an offset to
the right of the current absolute origin at which to begin the run.

The r_limit parameter specifies the relative limit, an offset plus
one to the right of the current absolute origin, at which to end the run.
\f © limit is less t 1t iqin 1 ixel cells willt
written, This is because QuickScan can only generate runs from
left-to-right. Also note that r_limit is pot relative to the relative
origin, but rather to the absolute origin. Hence, if the relative origin
is changed, the run's length will change accordingly.

Embedde'f masks may not be specified+ un instruction (sucha
capability is not ugeful in a si\ngle run). A Run instruction takes 80n
execute. \‘ - .

N’
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825 Sequential Runs
SRuns d_format,w_mode,r_origin,dw_count,e_mode,end_line

where
d_format is the S bit data format
w_mode is the Z bit write mode
r—origin is the 10 bit non-negative relative origin

dw_count is the 10 bit data word ¢ -
i edded mask mode select (1= embed

— masks, 0= dont embed masks)
end_line isthe | bit end of line description flag (1= 1ast
instruction in the line description , 0= not the last)

This multi-word instruction provides a means to efficiently
specify a2 contiguous sequence of runs. It also allows full data format
and embedded mask capability with runs (except 16 bits/pixel data
width ). Sequential Runs are very useful for efficiently describing
adjacent regions of color, complex masks, and cartoons.

The Sequential Runs command word sets up the forthcoming run
sequence almost exactly as the Bit Map command word sets up the
forthcoming bit-map. The only difference is the relative origin
indicates the first pixel of the run sequence rather than the first pixel of
the bit-map, and the forthcoming data words contain run descriptions
rather than bit-map descriptions.

So, for the details of the Sequential Run parameters, see the Bit Map
instruction. The only restriction is that you may not specify 16 bits/pixel
data width in the data format. If you do, the resulting writes to the
pixel cells are indeterminate. When the end_line bit is set, this line
description will end, 2nd the next line description will be initiated to
begin 10ading as soon as the iast run specified in this instruction has
completed.

Each data word holds 2 16 bit run gescriptions . tEach run
description is made up of an 8 bit run data field called data_8, and an
8 bit run length field which specifies the length of the run (see Appendix
A for a word format diagram). Runs are sequenced in order of the data
words, and then within each data word, first the low-order run
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description and second the high-order run description .

The very first run begins at the relative origin and extends to the
right the number of pixels of its run length. Then, the second run begins
at the pixel directly to the right of the last pixel of the first run and
extends the number of pixels of its run length. The third run starts
immediately to the right of the second run, and so on, until all of the data
words specified in the dw_count have been loaded. If we specify a run

with a run length of zero, then no pixels will be written with its run
- data, and the succeeding run will begin at the pixel where the run would
have begun. |f-we-specify-aTumrwhen-embed—mask-mode_is selected-and-
the embedded mask bit in the-run's run data-is-set to the-weite THIOTC
state~thenmo pixelswit-be-written, but-thesucceeding run will-begin

The run data of 211 runs in the run sequence will be adjusted for the
pixel cells by the data format and write mode specifications exactly
the same as Bit Map pixel data is adjusted. Although runs are formally O
bit/pixel bit-maps, the width specified in the data format shall be used
to determine how many bits of the run data shall be used and how many
shall be be provided by the constant word. If not all 8 bits of the run
data are used (i.e. in 4 BPP mode), then the least significant bits of the

run data shall be used as the pixel data and the most significant bits will
be ignored.

Sequential Runs always specifies an even number of runs. {f an odd
number is desired, then the last run should be either masked or given 2
length of zero. If dw_count is zero then the instruction will be
ignored. A Sequential Run command word takes 80ns to execute, and
each data word takes 160ns to execute.

526 Run Screen
RScreen d_format,w_mode,data_16,e_mode,end_line

where |
d_format is the S bit data format
w_mode is the 2 bit write mode
data_16 is a 16 bit run data

emode is-the-l-bit emb € select (1= embe
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( masks, 0= don't embed masks)
< end_line is the 1 bit end of line description flag (1= last
instruction in the line description , O= not the last)

This instruction generates a run across the entire On-Screen region
of display space. It is useful for setting the background color or
initializing 21l of the mask bits. Note that this run's position is fixed
from pixel O to pixel 639, regardliess of the value of the absolute origin.

The parameters d_format , w_mode , e_mode, and end_line
function exactly as they do in the Sequential Runs instruction except for
the fact that they apply to this single run, and that the 16 bit/pixel width
is allowed. The data_16 field provides 16 bits of run data, utilized by
the same ruies as the Sequential Runs instruction .

A Run Screen instruction takes 80ns to execute.
527 No Operation
{ \ NOp end_line

where
end_line is the 1 bit end of line description flag (1= last
instruction in the line description , O= not the last)

This single-word instruction serves as a place holder in a line
description . It is coded as either a Bit Map or Sequential Runs
instruction with zero data words, so the only useful parameter is the

end_line parameter for if you want the No Operation as the last
~instruction inaline description .

No Operation, no matter how it is coded, takes 80ns to execute.
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6. Dispatching O

6.1 The Dispatch Table Entry

As mentioned in the early parts of this document, each object has
associated with it a2 4 word dispatch table entry which defines the
attributes of the object and identifies where the object may be found in
RAM. This section discusses the content of these 4 words in detail. A
word format diagram may be found in Appendix A.

Each dispatch table entry contains the following fields:

Eield name Bits
start address 20
line mode !
line length 10 =
start line 9 -
object height 9 -
absolute origin 12
constant word 12
viewport origin 10
viewport limit 10 , —
display mode |
e_potarity = —+—
first word 32
bus_access !
6.1.1 DStart Address

This parameter is a pointer to the word (32 bit) in RAM (generaily)
which is the beginning of the first line description of the object

description . The rest of the words in the object description follow
forth from this address.

(The reason | qualified the term "RAM" in the above paragraph is
because when we add graphics engines to the display subsystem, the start
address pointer can point to synthetic objects generated by the engines
as well as actva/ objects specified by object descriptions in RAM.
Just as we address 1/0 ports in 1/0 devices as well as bytes inRAM in 2
microprocessor's address space, we address synthetic objects in
graphics engines as well as actual objects in RAM in QuickScan's address ~ N
space. For the purposes of learning QuickScan assume all objects are N
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actual and reside in RAM. See the discussion of synthetic objects in
Appendix B.)

6.1.2 Line Mode and Line Length

The line mode bit specifies how QuickScan shail determine at what
address in RAM to find each successive line description after the
preceding l1ine description ends. If this bit is O, then the 1ine mode
shall be variable /ength, and a succeeding line description shall begin
at the word following the last word of the preceding line description . If
this bit is 1, then the line mode shall be fixed /ength, and a succeeding
line description shall begin at the address determined by the sum of the
address of the start of the preceding line description plus the line
length. Invariable length mode the line length parameter is ignored.

The following diagram shows a comparison between the two line
modes. Note that while variable length mode uses RAM more
efficiently, fixed length mode structures the line descriptions so that
they are easier to locate by the 68020 (e.g. for vertical cropping).

— 1
Variable Length Line Mode

Higher Addresses
eddresses
Lower Line Length

Fixed Length Line Mode

1 Line Description | = Stert of Line Description

= Unused RAM

Line Mode Comparison

Note that the 1ine length parameter is independent of the end_line
bit specified in an instruction . The end of a line description is

specified by the end_line bit, and the address increment to the next line
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description is specified by the line length bit. But by fiddling with the
relationship between these two parameters we can get some interesting
effects (see Applications, below).

The start line parameter is a non-negative integer which specifies
the line of display space on which the object's first line description is
to be displayed. The object height is a non-negative integer which, when
summed with the value of start line specifies the line of display space
on which the object’s last line is to be displayed. Note that object
height specifies the object’s actual height in lines minus 1. Note also
that there are only 484 displayable lines, so if you specify start line to
be 484 or greater, then the object will not be displayed at all. (This is, in
fact, the recommended technique for blanking an object.)

6.1.4 Absojute Origin

The absolute origin parameter is a 12 bit 2's complement value
which specifies the absolute origin for the object. See the section,
Horizontal Object Positioning, for details on the absolute origin.

In aimost all object descriptions that | can envision, we would not
want to change the absolute origin within the object description ; the
dispatch table entry specification will be sufficient. But, if you like to
hack, the facility exists to change it with the CSwitch instruction . Note,
however, that the absolute origin will revert back to the value specified
in this dispatch table entry parameter before executing each
successive line description .

6.15 Constant Word

The constant word parameter specifies the lower 12 bits of the
constant word for the object. The upper 4 bits are automatically forced
to zeros. If you wish to change the constant word within a line
description or if you want to give a value to all 16 bits, then you must
use the RConst instruction . Note, however, that the constant word
will revert back to the value specified in this parameter before executing
each successive line description . See the section, Pixel Data write
Formats, for details on the constant word.

6.1.6_Yiewport Origin and Limit
The viewport origin and limit parameters are each 10 bit
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non-negative integers and specify an automatic viewport for every line of
the object. A viewport is a region in display space wherein an object may
be displayed. Any parts of the object outside of the viewport will not
displayed. Viewports are created by clearing all mask bits on the screen
(diabling writes to all pixels), then selectively setting those mask bits
within the region where the viewport is desired.

The automatic viewport provided by QuickScan is simply a rectangular
area of the same height and vertical position as the object with a width
and horizontal position defined by the viewport origin and limit. The
following diagram shows an example of such an automatic viewport:

Absolute Yiewport Yiewpart
Perameter: origin  Origin Limit
< } } % >
Perameter value: 100 100 341
Screen Position: 100 200 440  Off-Screen
Above
Outline of
Yiewport
Off-Screen Region Off-Screen
left Right

esulting
/in Display

ject 2
Note in this diagram that a viewport may extend into Off-Screen area,

and only the portion of the viewport that is On-Screen will result in a
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displayable image.

O

The viewport origin is an offset to the absolute origin that
specifies the leftmost edge of the viewport. The viewport limit is an
offset to the absolute origin that specifies the rightmost edge plus | of
the viewport. If the viewport limit has the value of zero, then the
automatic viewport will not be activated, and the pixel mask bits in the
line buffer will retain the value they had at the end of the preceding line
description . If the viewport limit is less than or equal to the
viewport origin, but not equal to zero, then all pixel mask bits will be
cleared and writing to all pixel color words will be inhibited.

6.1.7 Display Mode

The display mode bit specifies whether the object is an image
mode (set to 1) or lookup mode (set to 0) object. The display mode
can be changed within an object description , but it will revert back to
this value at the beginning of each line description .

6.1.8_Embedded Mask Polarity

The e_polarity bit specifies the polarity of the embedded mask
bits if embed mask mode is selected in the object description. The
coding is shown in the following tablie:

E_mask Bit State
E_polarity Inhibit Permit
State writes  writes
! 0 1
0 1 0

The e_polarity may be changed at any time in an object
description with the CSwitch or RConst instructions , but note that it
will revert back to the state defined by this parameter at the beginning of
each line description .

6.19 First word

The first word parameter provides the first word of the first
instruction of each line description in the object description . Only
the second and subsequent words of each line description are stored in
non-dispatch table entry part of RAM, as the first word of all line o
‘descriptions is kept in common in this first word parameter. -
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This parameter provides the means to specify a common initial
command word for all line descriptions , thereby reducing storage
requirements for objects whose lines are similar in structure. It also
allows us to do large backgrounds with just using the 4 words in RAM
needed for the dispatch table entry. See Applications for details.

If the line descriptions for the object have each only a single
instruction (as is very often the case), then the end_line bit should be
set in the command word specified by the first word. Then the line
description will end with the completion of this single instruction , and
it will be the only instruction executed in the line description .

As you can see, QuickScan may not get in the last word, but it always
gets in the first...

6110 Bus Access

The bus_access parameter indicates that this object description
is completely contained in the dispatch table entry, and no RAM bus
access is necessary to load the line descriptions . The implication here
is, of course, that the first word is a single-word instruction and
happens to be the only instruction on every line (such is the case when
an object draws a background). The reason this bit exists is because
QuickScan can minimize the overhead in switching between a no
bus_access object and the line descriptions of a yes bus_access
object and also minimize interrupting the 68020's access to RAM.

If bus_access is |, then bus access is necessary, if bus_access 1is
0, then no bus access is necessary.

62 Object Dispatch Overhead

As alluded to previously, there is a certain execution time overhead
associated with ending one line description and starting the next. This
overhead is a function of how the ending line description terminates and
somewhat how the starting line description begins. The process of
ending one line description and starting the next is called an ob/ect
gispatch, the object whose line description is about to start is called
the aispatching object, and the one whose line description has just
ended is called the terminating object. The time lost in dispatching
anobject is called the object aispatch overhead.

Apple |l Group Confidential and Private Page 40



There is a minimum object dispatch overhead of 320ns, and the \J
following "IF statement” adds various amounts of time to this base:

IF the dispatching object is ano bus_access object (i.e. its
bus_access bit is set to 0) THEN there is no additional overhead.

ELSE

IF the terminating object has exactly O words (after the first
word) in its line description THEN the additional overhead will be
80ns.

ELSE

IF the terminating object has exactly | word (after the first
word) in its line description THEN there wiil be no additional

overhead.
ELSE
IF the terminating object has as its last instruction : \
- Run
- Run Screen
- No Operation

THEN the additional overhead shall be 240ns.

ELSE

IF the terminating object has as its last instruction Bit Map
THEN
BEGIN
if the data width is | bit/pixel THEN the additional overhead
shall be:

dw_count  Additional
yalue  gverhead(ns}

0 240
! 160
2 80 , .
23 0 ~
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ELSE

If the data width is 2,4,8, or 16 bits/pixel THEN the additional
overhead shall be:

dw_count Additional
yalue overhead (ns)
240
200
160
120
80
40
0

OOUNHDWND —O

2
END

ELSE

IF the terminating object has as its last instruction Sequential
Runs THEN the additional overhead shall be:

dw_count Additional
vyalue overhead (ns)

0 240
! 80
22 0
6.3 Row Boundary Overhead

QuickScan's RAM is organized into rows of 1K bytes each, and there is
an overhead associated with 2 line description which crosses a row

boundary. It is S60ns. Needless to say, you should plan your objects to not
cross these boundaries.

6.4 CPU Bus Overhead

Since QuickScan shares the same RAM array as the 68020 CPU,
QuickScan “steals™ a certain number of memory bus cycles from the CPU.
If the CPU is running out of ROM, or out of another memory array when
these bus cycles are stolen, then its performance will not be affected.
But, if, however, it wanted to get to the RAM array when QuickScan is
using the RAM, then it will enter a wait state until QuickScan completes
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its memory access.

It is difficult to assess precisely how QuickScan will affect the
CPU's performance since we as yet don't have any hard specifications on
the CPU board architecture. But, we can get some feeling of the
percentage of available CPU bus cycles that will be stolen for a given
collection of QuickScan objects.

For each object dispatch (that is a bus_access object) QuickScan
steals the bus for 400ns. Additionaily, there are 3 memory refresh cycles
each line @280ns apiece (although the 68020 has this overhead anyway).
And, finally there is a 400ns cycle stolen whenever a line description
crosses a row boundary.

Each line 1s 31.778 usec long, and each field is 16.66 ms iong. There
are 484 active lines, and there are 525 total lines. During inactive lines,
memory refresh still continues, but QuickScan only does 3 memory
accesses (@400ns apiece) for the Configuration Data, The Color Lookup
Table, and the Object Dispatch Table during this time.

we'll make the conservative assumption that a CPU memory cycle is
280ns.

There are 592686 possible CPU memory cycles each frame time. Of
these, 1575 cycles, or 2.7% go to memory refresh. 3 cycles, or .005% go
for QuickScan configuration. ,

Each object dispatch (if the object is a bus_access object) takes
1.4 cycles so we can determine the total number of cycles for an object by
multiplying its number of Tines (except those Off-Screen Below) by 1.4.
An object which is half the height of the screen (242 lines) takes 338.8
cycies, or .57%, an object which is the full height of the screen (and this
is the worst case) takes 677.6 cycles, or 1.14%. Of course, we have to
include row boundary crossings, but these shouldn't arise much in practice,
and even if they did, they would happen only every few lines (1K bytes is a
lot of line descriptions ).

So let's take an absolutely worst case: Assume 64 objects, each
bus_access and 484 lines tall. Assume that every row boundary is
crossed (there are 256 in the memory array). Then we have 1575 cycles
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for refresh, 3 cycles for QuickScan configuration, 43366.4 (677.6 * 64)
cycles for objects, and 358.4 cycles (256 * 1.4) for row crossings. That
gives us a grand total of 45302.8 cycies per frame or 76% of the available
CPU cycles.

Now, if 76% seems like a monstrous number, consider that we have 64
484-1ine objects gobbling up an entire 256K RAM array, and the CPU still
gets in there aimost 1/4 of the time. It can still run out of ROM or another
RAM array at full tilt. Or, if you consider that our 68020 will be running
about 6 times the speed of the Mac without cycle-stealing, then it would
still be running about 1.5 times the speed of the Mac in this absolutely
worst-case scenario if it were running solely out of the shared RAM array.

For any practical display that |'ve thrown together, the total CPU
cycles stolen rarely go beyond 1S or 20%. (Note that the Mac itself loses
about 25% of its CPU cycles to its | bit/pixel vanilla graphics display.) In
comparison to any shared-memory display device that |'ve seen, QuickScan
is extraordinarily efficient for what it puts up on the screen.
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Z_Anplications , O
Now that you know all about programming QuickScan, it will help ’

cement your knowledge to consider a few examples. The following

sections show how to generate and manipulate some simple objects with

QuickScan. Hopefully, some of the more obscure modes and functions

we've discussed in the preceding chapters will show their usefuiness here,

and you'll get an idea of what | had in mind when | dreamed them up.

1.1 Rectangular Bit-Maps

QuickScan has been especially optimized to support rectangular bit-
maps, providing convenient, linear RAM organization and manipulation
primitives with as little regard to the physical position of the bit-map as
possible. At the same time QuickScan supports bit-maps with full
generality to allow their inclusion as sub-units of compiex object
descriptions .

The tricky thing about maintaining both a nice linear bit-map array
and full generality for complex object descriptions is that the former
requires that the bit-map image in memory be entirely of data packed )
line-by-line, yet the latter requires that the bit-map image in memory be (7
one or more instructions , thereby allowing the bit-map to be separated ’
from other sub-units of the object description when it is decoded.
Clearly, each representation has its place: we want the linear array when
we have Mac-like windows with text and presentation graphics, we want
the complex object description when we have a "freeze-dried” object
downloaded from an application because of its compactness and ease of
manipulation. How can we resolve this philosophical discrepancy and still
maintain consistency? ,

To the rescue comes the first word of the dispatch table entry.
The deal is: all bit-maps, like all QuickScan graphics primitives, are
specified with instructions . When a bit-map is needed, then a Bit Map
instruction is specified in a line description , precisely as it has been
described in Chapter S. This, of course, takes care of the complex object
description requirement; now you can put a bit-map within an object as
desired. And, it takes care of the linear array requirement because such a
data structure results when the first word is a Bit Map instruction
command word. Let's take a closer look at exactly how this is so by
working through an example. P
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Z.1.1._The Basic Rectangular Bit-Map

The figure below shows a simple | bit/pixel bit-map with dimensions
of 240 horizontal and 160 vertical. The content of the bit-map happens to
be a text message of black letters on a white background. A memory map
is also shown detailing where memory is RAM is used to support this

display:

Pixel O Pixel 239

Line O

This Bit-Map

Shows Some

of ﬂuickScan‘s

Line 159

0 7
/’//mskedby

Object 0

Config. Data (<64)
Object 0 (1280)

CLUT (128)
00T(4)

Upper Half
of RAM Array
Shown Here

16x160
Region of

"Excess” pixels

On-Screen

High RAM
L. 30000H
— 28000H
.
20000H
Low RAM
<
256 Words ( 32 bits)

128 Rows

Note: RAM array proportions are realistic: one line (—) is one row thick.
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First of all notice that we are looking at the upper half of a 256K RAM
area, and that the memory is divided into rows of 256 32-bit words (128
rows are shown, 256 rows are available). Notice also that the black area
allocated for each block of data is pretty accurate, so you can think about
how much RAM is takes to store things as you work through this example
(but the ODT is longer than it should be so as to make it visible).

Some terms: the ODT is the Object Dispatch Table (see sections 2.1,
2.2, and 6.1) and the CLUT is the Color Lookup Table (see section 2.4). The
Configuration Data is not yet completely defined, but for our purposes, we
shall say that it contains pointers to the ODT and the CLUT.

In setting up this display, first we decide where we want to put the
CLUT and the ODT. The CLUT is 128 words long, and can be placed at any
place in RAM provided that it does not cross a row boundary. We place it
here at 28000H (note that QuickScan measures data in 32-bit words, yet |
specify byte addresses). The ODT must begin at a muitiple of 1024 bytes
in RAM, so we see it here placed at 26000H.

Next we allocate some space for the bit-map. | claim that the
bit-map can be set up as a linear array, one line following the next in
memory, each line rounded up to an integral number of words. Since the
horizontal dimension is 240 pixels, and we have 1 bit/pixel, then we need
240+32 = 7.5 words to hold each line. We must round up to a whole word,
so we need 8 words to hold each line. There are 160 lines, so the total
RAM requirement for this bit-map is 160%8 = 1280 words. Let's place this
data at 38000H. It extends to 384FFH.

Now we need to set up the dispatch table entry for the object.

This is essentially the definition of the object. Let's go through each
parameter (reference section 6.1). '

Start Address

This parameter points to the beginning of the object
description : address 38000H. Notice, however, that the number
coded is DOOOH (38000H+4) because we are specifying a word
address, not a byte address.

Line Mode
This parameter specifies whether the line descriptions are
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fixed length or variable length. In this case, either mode will
work because the bit-map line descriptions are of fixed length, so
we could specify the length in fixed length mode, or let QuickScan
figure out the length by specifying variable length-mode. But, why
bother specifying the length? Well, this first part of the example
doesn’'t show why, but you'll see why it's important in a little bit.
Thus, for this example we'll specify "1° for fixed length mode.

Line Length

The length of each line description in RAM is 8 words. We need
to specify this parameter because we are in fixed length line mode.
Notice that this parameter does not include the first word as part of
the length.

Start Line
This object begins at the first line of the On-Screen area, line O
(see diagram).

Object Height

The vertical dimension of this object is 160, so that is its height.
But, QuickScan requires that when this parameter is summed with the
start line that the result is the end line, line 159. So, the amount
coded for this parameter is the height minus 1, or 159.

bsolute Origi

This object’s leftmost pixels are at pixel O of display space. We
could specify the absolute origin to be any value that is O or
smaller, but for the sake of simplicity we shall specify O.

Constant Word :

Since we only have 2 colors in this example, black and white, we
might 2s well put them at the beginning of the CLUT. Let's plan on
aligning the 1 bit of the pixel data with the LSB of the color data
word. So, setting the lower 8 bits of the constant word to O will
cause the pixel data to select between the first and second CLUT
entries.

The next 4 bits of the constant word will hoid the muitiplier
we plan to apply to the output of the CLUT (see diagram on page 12)
because at | bit/pixel, we haven't enough data to specify this value
for every pixel individually. So, we'll assign each pixel the same
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value for its multiplier by putting the desired value in the constant .
word. Now, this is jumping ahead to the Multiplier Applications
section, but just understand that the 4 bit multiplier of the color
data word will affect the va/ve, or brightness, of the CLUT output.
This doesn't bother our black CLUT entry, because black is black no
matter how bright, but it will affect the intensity of our white
backdrop, determining whether we have black, hot white, or one of 14
grey levels in between. Let’'s opt for average value, so let's specify 8
for the multiplier . This we place in the least significant nibble
(LSN) of the upper byte of the constant word, and every pixel
written wiil be given this same brightness.

The MSN of the constant word cannot be specified in this
parameter, it will be set to O - which is just as well since those 4
bits have no meaning in a lookup table mode pixel. So, the
constant word parameter is set to 800H.

Vi t Origin and Limit
These parameters specify what horizontal region of the bit-map

pixel data will actually be displayed. If you recall, this bit-map

was actually 240 pixels horizontally, yet we had to round up to the

nearest whole word, as if the bit-map was 256 pixels horizontally.

As it turns out, QuickScan cannot tell where the real pixels of the

last data word of a Bit Map command end, and where the “excess”

pixels begin, so we must prevent QuickScan from displaying these:

excess pixels. This can be accomplished with these viewport

parameters.
The viewport origin identifies the pixei where the real bit-map

begins, relative to the absolute origin. That pixel is O and the g

absolute origin is 0, so the viewport origin is0-0=0. The g

viewport limit identifies the pixel where the real bit-map ends,

relative to the absolute origin, plus |. That pixel is 239 and the

absolute origin is 0, so the viewport limit is 239-0+1 = 240. .

The excess pixel region (see the diagram above) from pixel 240 to 255 Qg

now is masked since the viewport extends only between pixel O and

239. Our desired horizontal dimension of 240 is now achieved.

Display Mode
We are in lookup table mode since we have only | bit to provide
for each pixel. This bit is 0. s
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Embedded Mask Polarijty
We are not using the embedded mask function now, so the vaiue
of this bit doesn’'t matter.

Eirst word

This word holds the Bit Map instruction and makes the linear
bit-map array possible. When QuickScan is about to load 2 line
description from RAM into the line buffer, first it will configure
the line buffer with the relevant parameters listed above, and then
it will load this first word as the command word of the first
instruction of the line description . Only after that will
QuickScan begin loading in the rest of the line description from
RAM. In this example the first word contains a Bit Map instruction
command word, and of course, a2 Bit Map command word is
followed by data words containing the pixel data of the bit-map.
These data words will be found, in this case, starting with the
beginning of the portion of the line description in RAM..which is
where our linear bit-map array is stored! Couid the data word
format expected by the Bit Map command word and the data format
of a linear bit-map array be one and the same?

well, it just so happens, that this is exactly the case. To see this
let's look at the Bit Map command word and see how it fits together.
Wwe specify | bit/pixel mode with alignment to the color word L3E,
or d_format 10000 (see page 15). We specify w_mode LX(11)
because we wish to write the multiplier as well as the index. We
have no offset from the absolute origin, so our r—origin i1s 0. Our
horizontal dimension is 240 pixels, which rounds up to 8 data words
each line at 1 bit/pixel, so our dw_count is 8. We do not have
embedded masks, so the e_mode bit is 0. This js the last
instruction for this line description (it is the only instruction )
so the end_line bit is I.

So, starting with the first line of the object what happens? The
object is dispatched at line 0, and the line buffer is configured in

‘accordance with the dispatch table entry parameters. Then, the

first word, the Bit Map command word detailed in the preceding
paragraph, is taken and executed. QuickScan prepares the line

‘buffer for abit-map and expects 8 data words to be fed in to

describe the bit-map. The start address points to the first of these
data words, indeed the first word of data for our linear bit-map
array, and it and the following 7 words are loaded in to make up the
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first displayed line for the object (note that the last 16 pixels are e
masked). Well, so far so good. Those 8 words corresponded to the
first displayed line of the linear bit-map array.

On the second line, QuickScan again configures the line buffer,
and again executes the same first word, and again expects 8 words
of bit-map data. Qnly this time, the start address parameter is
pointing to the 9th data word. It was automatically incremented by
the vaiue in the line length parameter: 8. So, it loads in data
words 9 through!6 (assuming we numbered them from 1), which then
provides the data for the second displayed line of the object. Well,
that's fine because the 9th through 16th words of the linear bit-map
array happen to correspond exactly to the second line of the bit-map.

| think you can see how this process continues, displaying each
successive line, sucking in each successive line of bit-map data until
the end line of the object is reached, and the last line of data is
loaded in. All the time the very same Bit Map instruction in the
first word is used, and all we have stored in RAM is a nice, neat,
convenient, linear bit-map array.

Bus Access

Since we must get to RAM to load the bit-map in, we must allow
QuickScan to access the RAM bus. Bus_access is |I.

Now that we have our object completely defined, all we have to do is
"turn it on.” This is simply accomplished by taking our just prepared
dispatch table entry and placing it as the first entry of 4 words in the
ODT. We must also, of course, set up the CLUT with our two colors, black
and white, in the first 2 CLUT entries, but | shall leave that explanation
until the section on Multiplier Applications.

And, so, if you flip back a few pages to the diagram we started with,
you can see the end result.

Let's get an idea how much execution time this example takes and how
many CPU bus cycles it consumes: As far as execution time goes, we have
one object, it is a | bit/pixel, bus_access, bit-map with 8 data words
per line. Since this object is the first object on the line, it qualifies for
the minimum object dispatch overhead of 320ns. Furthermore, any
object following this one will also have minimum object dispatch \d
overhead (see section 6.2). The Bit Map command word is in the first ’
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word so its execution time is included in the object dispatch
overhead , and we have 8 | bit/pixel data words, so we use 80*8=640ns
to load the pixel data (see section 5.2.3) for each line. Notice that no
line description crosses arow boundary aithough the object
description takes up some S rows (this is due to the fact that 256 (the
words in a row) is a muitiple of 8, our line length), so we have no row
boundary overhead. Thus, we have a total object execution time of
320ns+640ns = 960ns, or just under | microsecond. To put that in
perspective, we have 31.778 usec available on each line for object
execution (see section S.1), so QuickScan is fast enough to display
(31.778x1075+960x10~= 33.102) 33 objects just like this on each line if
we wanted it to (all qualify for minimum object dispatch overhead ).

As far as stolen CPU bus cycles, we have a fixed overhead per 60Hz
frame for the Configuration Data, the CLUT, the ODT, and RAM refresh of
1578 cycles, out of an available 59286 cycles, leaving us a remaining
57690 (see section 6.4). 59286 cycles is 100% efficiency: the CPU can
access memory with no wait states whenever it wants to, but because of
RAM refresh, 97% efficiency is about the best we achieve in practice.
Let's see how much our object cuts into that figure. As noted about, the
object is bus_access, and it has no row boundary crossings. Therefore, its
total bus overhead is one object dispatch per dispiayed line. Each
object dispatch takes 1.4 CPU bus cycles, and there are 160 lines, so we
have 1.4*160 = 224 CPU cycles stolen. Adding that with the fixed
overhead of 1578 cycles we have 1802 total cycles stolen, or the CPU is
still running at about 97% efficiency! We haven't decreased performance
by even 1 whole percentage point. |f, as suggested in the previous
paragraph, we put up 33 such objects at once, we'd have a total of 7392
CPU cycles stolen plus fixed overhead giving us still about 85% efficiency.

Now, seriously, you ought to be impressed. There is no other display
processor | have heard of which comes near to these performance figures. \
None can put up 33 independent objects on one line, pone can put more tha X"é o“ '
a few large bit-maps such as the one in this example on one line, and none v
can put up half so many objects with such high resolution without bringing
the CPU to its knees with cycle stealing. As you'll see as we work through
more examples, QuickScan's performance is extraordinary.

7.1.2 Horizontal Positioni
Now that we've defined our object, let's consider what it takes to
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Y
manipulate it. A fundamental manipulation is positioning the object in N~
display space. Positioning is divided into two separate steps with

QuickScan, horizontal and vertical. Let's look at horizontal first. if we

wanted to take our exampie object and reposition it 160 pixels to the right
it would look like this:

Pixel 160 Pixel 399
Line O
Line 159 \
16x160
Region of
"Excess” pixels
High RAM
Config. Deta (<64) F— [ 3
Object 0 (1280) ——— 28000H
30000 | (28RO
cwr(i28) —~ 28000H
0oT(4) | ¢
Upper Half 20000H
of RAM Array Low RAM
Shown Here < >
256 Words ( 32 bits)
Note: RAM array proportions are relistic: one line (—) is onerow thick.
Notice that the memory map is identical to that of the object in its o
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original position. We don't have to move object descriptions _inorder to
move objects But, clearly something must be changed so QuickScan knows
to move the object. That something is the absolute origin parameter in
the dispatch table entry.

Whereas the absolute origin was set to 0 in section 7.1.1, it is set
to 160 here. Now, the horizontal positioning within the object
description is all referenced to 160 rather than to O and everything
accordingly shifts 160 pixels to the right.

Notice that the viewport defined by the viewport origin and
viewport limit has shifted along with the rest of the object, so the
excess pixels are still appropriately masked. This is because these
parameters are referenced to the absolute origin and are now offset by
160 as well. Notice, however, that we now have a region to the left of the
object which is masked. It doesn't affect us in this example because
nothing can be written to the left of the absolute origin anyway, but it
comes into play in an example below.

If we actually moved this object from its original position to this
new position as shown here, note that we could effect the change at any
time, yet the display transition would occur between frames. That is to
say, if QuickScan happens to halfway through displaying this object when
the 68020 changes its absolute origin parameter, the rest of the object
in that frame will still be drawn with the old absolute origin parameter.
With many display processors, parameter changes take effect
immediately, and consequently displayed objects may be changed partway
through 2 single frame with an unsightly display aberration as a result.
With QuickScan you are guaranteed coherence within each frame,

regardless of when 2 parameter is changed. There is, however, a slight
related restriction which 1’11 point out below.

Since the memory layout and access characteristics are the same as
that of the example in section 7.1.1, the execution time and CPU efficiency
are the same.

3 vertical Positioni
To reposition the object vertically, we need only change the start

line parameter. |f we wanted the object's first line to be line 80, then

we'd simply change the start line parameter to 80 from its current value
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AN

of 0. QuickScan would then load the first line description at line 80,
and each successive line description would be loaded with each
successive line. The resulting image would look like this:

Pixel 160 Pixel 399

Line 80

777077 This Bit-Mep /5///7//////
-'/Hﬁefgﬂ’/ Shows Some ,At,-,ﬂﬁﬂg" 7,
./vf” 4 of QuickScan's [}~ > o 7
’Viewpor 3 /Vlewport/

700 vy aoniest Y770

Y/ /

| \

Object O 16x160 .
Region of
"Excess” pixels

Line 239

On-Screen

High RAM
Config. Deta (<64) — 4

Object 0 (1280) jee—————————————— 3 2000H

300004 | 2O Rows
CLUT (128) - 28000H
ooT(4) $
Upper Half — 20000H
of RAM Array ow
Shown Here < >

256 Words ( 32 bits)

Note: RAM array proportions are relistic: one line (— ) is onerow thick.

Notice that the memory layout remains exactly the same. Notice aiso
that the previous horizontal positioning is not at all affected by this
vertical change.
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( As with the horizontal change, no matter when the start line
‘ parameter is changed, the vertical shift will occur cleanly between
frames. Also, the execution time and the CPU efficiency remain the same.

114 Horizontal Yijewports
The QuickScan viewport mechanism can be used for more than just

masking excess pixels. Consider the following display:
Pixel 200  Pixel 359

Line 80

//R N , ////, //

egion / /¥, eglon “7

-

High RAM
Config. Deta (<64) — 4
Object 0 ( 1280) —. 28000H
| 300004 | '2BROwe
CLUT (128) ~ 28000H
oD1(4) [ +
20000H
~Upper Half Low RAM
of RAM Array < »
Shown Here 256 Words ( 32 bits)
( - Note: RAM array proportions ere relistic: one line (— ) is onerow thick.

Apple |l Group Confidential and Private Page S6




Here we are diliberately masking off some of the real pixels of the
bit-map. This is logically what happens when a Mac window is sized down
horizontally so that it is smaller horizontally than bit-map that it “holds”,
and you use the horizontal elevator to view different parts of the bit-map.

Notice that once again, the memory layout is unchanged. The whole
effect is controlled by the dispatch table entries, viewport origin,
and viewport limit. As| alluded to before, the left mask region wouid
have some use, and indeed it does. Just as we saw the right mask region
masking of f the excess pixels, we now have the left mask region masking
off some real pixels. Furthermore, the right mask region has been brought
a bit to the left to mask some real pixels as well as the excess pixels.
The viewport position and size is controlled just as you might expect: the
viewport origin points to the pixels on the left edge of the viewport,
relative to the absolute origin, and the viewport limit points to the
pixels on the right edge of the viewport, plus | and relative to the
absolute origin. It this case the viewport origin is 200-160=40, and
the viewport limit is 359-160+1=200.

As in changing position, QuickScan guarantees that regardless of
when the parameter change occurs, the object change occur between
frames. But, it will not guarantee that both parameter changes will be
applied before a frame is displayed. This is because of the fact that there
is the extremely small possibility (1 chance in 59286) that QuickScan will
load the ODT after the first parameter (viewport origin) is changed, but
before the second parameter (viewport limit) is ioaded. Then, one frame
will be displayed with the new viewport origin, but the old viewport
limit. Now, | realize that in this particular example it is no big deal, but
it could be 2 significant problem given the right circumstances. | am
considering incorporating 2 semaphore mechanism of some sort to hold of f
the ODT load if multiple parameters are being changed. The other possible
solution is to prepare a second ODT in RAM with the changes, then in one
write, change the ODT pointer to point to this new table. We'll think up
something, but just be aware of this circumstance.

If this bit-map were indeed a Mac window, then we would need some

way to support the horizontal elevator, or rather we would need to support AN
horizontal scrolling within the horizontal viewport. This effect is easily e
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( achieved by just thinking carefully about what we are doing. We are not
" moving the viewport, we are moving the object. Hence, all that we have to
do is change the relative origin of the Bit Map instruction in the first

word, and the bit-map will move without disturbing the viewport. If we

change this relative origin from O to 20, we get the following display:

Pixel 200  Pixel 359

Line 80

,', ,/ 7 / 7 ] 4
Yl 17777
resion &/} fegn 7/
¢1 asked by,‘//./j.‘ ’
- ANiewpor

7
l S /‘r'/, / i
I

Line 239

High RAM
Config. Data (<64) [ 4

Object 0 (1280) S Z3000H

300004 | | 2BROWS
cLut(128) | . 28000H
T(4)
\
Upper Half 20000H
of RAM Arrey Low RAM
Shown Here < >

256 Words (32 bits)

Note: RAM array proportions are realistic: one line (—) is one row thick.
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Note that we cannot scroll to the left of the absolute origin, so if
you anticipate large horizontal scrolls to the left, then you ought to
position your absolute origin well to the left of the object.

2.1.6 Vvertical Viewports
Consider the following diagram:

Pixel 200 Pixel 359

Lines cropped by CPU
Line80 _§ l ~ ——————
Line 100~ s Bit-Map ==
// n s ’“"’RQIOD/////
ows S0Mme. ///,Maskedby///
3f QuickSca -'///vnewport,/ /,
Line 199 el 4 &
Line 239 S PANNERS EREEERN SRR x&\\ RN

LInes cropped by CPU

Object O

High RAM
Config. Date (<64) — ?
Object 0 (1280) |je———————————— 3 3000H
| 30000 | 28ROV
cwr(128) | — 28000H
00T(4) | ‘
Upper Half : 20000H
of RAM Arrey Low RAM
Shown Here < >

256 Words (32 bits)

Note: RAM erray proportions ere reslistic: one line (—) is one row thick.
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what is shown here is an object which is masked vertically as well as
horizontally. It has a vertical viewport as well as a2 horizontal one. Unlike
horizontal viewports, however, QuickScan does not provide direct support:
the vertical viewports must be generated by the 68020.

The way this is achieved is by the 68020 changing the object
description so that it describes only the lines of the object that we wish
QuickScan to display. That is to say, since our vertical viewport in the
diagram above extends from line 100 to line 199, then our object
description will only contain those lines of the object. Then, QuickScan
simply will not display those lines "masked” by the viewport and we will
get the desired effect.

In this example, we see that the visible lines of the object are from
its 20th line to its 119th line, since 20 lines from the top and 40 lines
from the bottom are masked by the viewport. We start by changing the
start address parameter to point to the line description for the 20th
line, since this is where our new object will start. Then, we change the
start line parameter to line 100, the first line in display space of the
new object. And, finally we change the object height parameter to 99 to
reflect the new height of the object. The result is the displayed region
shown in the center of the diagram above.

There a few fine points worthy of note. First of all we have the same
problem of the small possibility of muitipie parameter changes being
partially compiete when the ODT is loaded, and the resulting display
having 2 minor aberration as we discused in section 7.1.4. Second of all,
notice that we have not changed the RAM utilization of the object even
though we are only using part of the object description . You could, of
course, use this RAM for something else if you knew that the vertical
viewport would never be changed and that the object would never be
scrolled vertically. But, if this is not true, as you shall see in the next
example, you ought to leave the rest of the object description intact.
And, finally, notice that the CPU efficiency increases slightly with a
vertical viewport, although the horizontal execution time remains the
same. The CPU efficiency is a function of the lines of an object displayed,
and with 60 less lines displayed we have consequently less CPU cycles
stolen. The horizontal execution time is still the same because those
lines which are displayed take the same amount of time to load as they did
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before.

2.1.7 Vertical Scrolling
Just as the horizontal elevators in the Mac display caused horizontal
scrolling, the vertical elevators cause vertical scrolling. The effect of a
vertical scroll 20 lines up is shown here:
Pixel 200  Pixel 359
Pixel 160 P
Lines cropped by CPU
‘:\\\ N \ ‘\\ \ 0N — "3 aaN ; \\\ XI\Q \\\ \\\\
"/ Region .y / /.//Region // ///
ﬁijesked by/
g /Vlewport, A
Lines cropped by CPU
Object O
High RAM
Config. Data (<64) [— 'y
Object 0 (1280) —— 38000H
| zo000n | [ 23Rws
CLuT (128) - 28000H
opT(4) ‘
20000H
Upper Half Low RAM
‘of RAM Arrey < >
Shown Here 256 Words ( 32 bits)
Note: RAM errey proportions are relistic: one line (—) is onerow thick. N
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Just as a horizontal scroll entailed moving the object and holding the
viewport constant, a vertical scroll entails the same procedure. So, we
position the object vertically at the desired new position, starting at line
60. Then, we build a new vertical viewport just as we did before, except
this one starts at the 40th line of the object and ends at the 199th line.

Consider the following diagram:

Line 80

Mask Bit
Clesr

Line 239

High RAM
Config Data (<64) — 4
Old Object 0 ( 1280) —_ 38000H
New Object 0 (160) 128 Rows
| 30000H o
CLUT (128) — 28000H
oD1(4) [
' v
Upper Half 20000H
of RAM Array < Low RAM >
Shown Here 256 Words ( 32 bits)
(\ Note: RAM erray proportions are ralistic: one line (— ) is onerow thick.
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Sometimes we want a viewport which is not rectangular at all. For
this application we have a mechanism for arbitrarily shaped viewports.
The way it works is you define a 1 bit/pixel object that you wish to use as
your mask. This object (which | shall call object 0) must be directly
behind (i.e. at the next lower priority) than the object to which you wish to
apply a viewport (which | shall call object 1). Then, you specify the write
mode of object O to be M so that it writes to the mask bit of the pixel
storage cell. Where you wish object | to be masked, write O to the
mask bit, and where you wish it to show through, write 1. Then, in the
dispatch table entry of the object 1, set its viewport limit to 0. This
disables the automatic viewport mechanism from clobbering your custom
viewport when object 1 is dispatched.

-Object O was created in the foilowing way: | used its automatic
viewport to mask all pixeis on the screen (see first paragraph on page 39).
Then, | specified a single Run instruction on each line to clear the mask
bits from the left to the right side of the eilipse for that line. Note that
each line's run is different so | couldn't use the first word for the Run
instruction , but rather specified a NOp for the first word and put the
Run as the first (and only) word of each line description in RAM. For
those lines above and below the ellipse, | specified a NOp for that word.

Thus, the object description requires 160 words, | word for each
line in RAM. As the first object in each line, object O will be displatched
with minimai object dispatch overhead. The Bit Map instruction
takes 80ns to execute, and since object O's line description in RAM is
exactly 1 word long, object | will also be dispatched with minimal object
dispatch overhead (see section 6.2) as well. So, the total execution
time for the 2 objects is 320ns+80ns+320ns+640ns=1360ns.

The resulting display is shown below:
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Pixel 160 Pixel 399

Line 80

Line 239

Object O Object 1

On-Screen

High RAM
Config. Dats (<64) — I’y
Object 1 (1280) F_ 28000H
Object 0 (160)
- 300000 | 128 Rows
CLUT (128) — 28000H
ooT(8) |~
20000H A
of RAM Array < >
Shown Here 256 Words (32 bits)

Note: RAM array proportions are realistic: one line (—) is one row thick.

219 Embedded Masks

We might wish to overlay a backgromd object with our text bit-map
object and have th}h@ag;omd show through between the letters. we
could achieve this by loading down the background object, then by loading a

custom mask object which ¢t sponds to the text's pattern, and finally by
loading the text object on tor;:\tne\mask. But, there is a simpler way:
embedded masks.

The text object in this example 15 bit/pixel bit-map, and it so
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happens tha\i\we were going to make a custom mask, we need 2 |
bit/pixel bit- map\wth exactly the same pattern. Using this fact, we can
combine the bit-map write and the masking operation with the same text
bit-map and save ourselves an object description .

.

To see this, let's first maiém( background object. This object is
240 by 160 and 4 bits/pixel. It is shown below:

Pixel 160 Pixel 399

Line 80

\\\\\'\\\\\\\\A
RN NN NN NN NN
A AR AR
'/I/I//ll

I////t////'/A

AT
SRR s A
AU YA *\\\\‘-.\
/I/;/t//.' s 7 A
NN NN \\\\\\\
.o'/////////////
NN N NN

V//II/////I//J

A AT Y

r///;/t N
N

Line 239

Object 0
(4BPP)

High RAM
Config. Data (<64) [— A
01d Object 0 ( 1280) 38000H
New Object 0 (4800)
| 30000n | 2OROWS
cLut(128) | - 28000H
o0T(4) |
200004 ¥
Upper Half Low RAM
of RAM Array < >
Shown Here 256 Words (32 bits)

Note: RAM array proportions are realistic: one line (—) is one row thick.
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Notice that is hasno horizontal mask. This is so begause at 4
bits/pixel with a horizontal dimension of 240 we have z&actly 30 words
per line with ng excess pixels. |'ve disabled the horizontal viewport for
convenience. Notice also that we might like the 16 colors mapped by this
bit map to be separate from the 2 colors of the text bit-map. To do this
we need only change the lower byte of the constant word so that when it
is combined with the 4 bits of the pixel data the resulting index ends up
to point to a convenient place in the CLUT. This object shall be object O.

Now, using the text bit-map from the previous examples, there is very
little we have to do to activate the embedded mask function First of
all, we must make it so the white background masks (doesn't write) and
the black letters don't mask (do write). This is determined by the
e_polarity bit inthe dispatch table entry. Let's say that black is |
and white is O, then we want 1 to permit writes, so we set e_polarity to
1 (see section 6.1.7). Next, we have to change the Bit Map instruction in
the first word so that it is-in embedded mask mode by setting the
e_mode bit to/i . Ang, t/hat's it.

Notice that the fact that we are using embedded masks does not
obviate the need to have a horizontal viewport tomask off the excess bits
of this object. This masking function works with the mask/bit in the
pixel storage cell and is independent of the embedded mask function.
If either or both masks are inhibiting writes at a giver pixel, then the
write will be inhibited (see section 3.3).

well, after all is sa{tiand done, the resulting display is shown below:
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Pixel 160 Pixel 399 , N

=

IR SR A AR A A A S /
S

< Shaws

N
NN NN

’//,Ré%////

asked

/, PNIPNR ,.:i% ja:i!:y

g Xl RRAN ﬁibeww
Bsjisy ARIAES]

),

’ ’
AEV ENEENENENE W\ TE NN

Object 0 Object 1
(4BPP) (1BPP)

High RAM
Config. Data (<64) F— 'y —~
Object 1 ( 1280) 38000H -
Object 0 (4800) R
30000H | | 2OROWS
CLUT (128) |- 28000H
20000H
Upper Half Low RAM
of RAM Array < >
Shown Here 256 Words ( 32 bits)

Note: RAM array proportions are realistic: one 1ine (— ) is onerow thick.

-_
/And, so this completes the sectior-on-Rectangular bit-map

applications! Using the examples.shown here and the information in the

preceding chapters, you should be able to set up your own rectangular

bit-maps,\ggstomized for your owrZarticular display needs.
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7.2 Runs and Complex QObjects

This section shows examples of special case objects whose object
descriptions can be specified in ways which economize memory, time,
or both. It is important that you understand that all objects shown in this
section can be specified using the rectangular bit-maps discussed in the
previous section with precisely that same resulting displayed image. But,
these special case objects occur commonly enough and the savings are
substantial enough that | feel it is worthwhile to give QuickScan special
capabilities to support them. Note that the QuickScan mechanisms
directly used here are indirectly used in generating rectangular bit-maps,

so there is really no additional hardware cost directly attributable to
supporting these objects.

All of the special case objects considered in this section are largely
made up of runs, and | refer to such objects as run-c/ass objects. The
main capability that really makes considering run-class objects
worthwhile is that of the /uv//y para//e/ run. While a few display
processors that | know of have supported runs (although none have yet
made it to market), all of them implemented runs by iteratively writing
the pixels that make up the run in a line buffer. That is to say, if you
specified a run that was 400 pixels long, then the display processor would
go and write 400 pixels, one after another, or at best would write the
pixels in groups of 4, 8, or 16. QuickScan implements runs by having all
pixels that make up the run written simultaneously to the line buffer.
So, if 400 pixels are specified in a run, 400 pixels will be written at once.

Or, in hardware terminology, we’'d say that the runs are written fully in
parallel.

The key advantage of the fully parallel run capability is in “getting
the jump® on spatia/ complexity. To understand this concept we have to
make our way through a little mathematics. You computer-types out there
are familiar with use of the term computational complexity inregard
to iterative algorithms like sorts and searches. We might say that the
complexity factor identifies the facets, or gimensions of an algorithm so
that we can compare the algorithm's efficiency with that of others. For
example, an 0(n?) (read “order n-squared-) algorithm is less efficient than
an O(n) ("order n") algorithm because we can expect for every n operands
submitted to each algorithm the algorithm will go througn n? iterations in
the former case and n iterations in the latter.
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Spatial complexity, as | use it here, is an analogous concept which
identifies the dimensions of an object in regard to the amount of memory
necessary to represent the object per the object’s size. Thus, an object of
0(n) spatial complexity would require twice as much memory for its
representation if it were made twice as large, but an object of O(n?)
complexity would require 4 times as much memory for the same doubling
of size. Consider the following example objects: A point is O(1), a simple
line is O(n), and a bit-map is O(n?). We can derive these numbers
analogously to deriving computational complexity numbers: by changing the
size of each object (like changing the number of operands submitted to the
algorithm), and seeing how much memory it takes to represent the object,
proportional to the change in its size (like seeing the number of iterations
of the algorithm, proportional to the change in the number of operands).

A point is represented by | pixel, and as it has no dimensions, scaling
it by a scale factor n still results in the same size of 1 pixel. So, the
memory representation increases proportional to n%. A point is 0(1).

If we have a minimum width line x pixels in length, it can be
represented by approximately x pixels. |f we scale the line by scale factor

n, then it will now be about nx pixels long. So, the memory representation
increases proportional to n'. A line is O(n).

If we have a rectangular bit-map h by v (horizontal by vertical) pixels
in size, it can be represented by h*v pixels. If we scale the bit-map by
scale factor n, then it will now be about nh*nv pixels in size. So, the
memory representation increases proportional to n2. A rectangular
bit-map is O(n?). Coming to the same conclusion about non-rectangular
bit-maps is a little more tricky, but I'm sure you can see intuitively that
the result is the same.

Consequently, given two objects of the same size, one represented by
lines, and the other represented by bit-maps (e.g. a 3-D wire-frame model
vs. a 3-D solid model), we can expect that as we increase the size of the
objects, the memory required to represent the line object will increase
linearly, and the memory required to represent the bit-map object will
increase exponentially. For small objects, the exponential growth is not
that different from the linear growth, especially considering we normally
have several lines to symbolize the region represented by a single bit map,

and there is a fixed overhead for each line in any practical implementation.
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But, for large objects, the exponential growth far outpaces the linear
growth, and we soon find ourselves needing huge amounts of memory to
represent such large bit-maps (thank goodness it's only n-squared!).

Then, forgetting the cost of all of the memory to hold large bit-maps,
consider the overhead in manipulating such large bit-maps. Whether the
objects are software-based or hardware-based, the exponential growth
quickly outpaces our hardware, and we find that interactivity is shot to
hell. Notice how you don't move Mac windows, you move their out/ines.
The Mac operating system deals with the exponential explosion by dropping
the window object from an O(n?) bit-map representation to an 0(n) line
representation when you need interactivity in its manipulation. The
manipulation complete, it redraws and gives you back the 0(n?) bit-map
representation required for the object to be visually useful.

Anyone who has worked with interactive animation systems is
cognizant of the property of “inertia® associated with lugging around large
bit-maps. Notice that any people who do commercial 3-D animation (like
Pacific Data) always run through sequences with “wire-frames" to get the
motion right, then render the final solid objects off-line, letting their
computer munge away, computing the big bit-maps. They can manage the
0(n) complexity of lines (less the light models, too) in real time, but not
the O(n?) complexity of bit-maps. Notice that video games with bit-map
objects either have a very few, simple, large bit-maps (Pole Position,
Karate Champ), or have lots of little “sprite*-sized bit maps (Galaxian,
Defender, Dig Dug). They may have many large, complex objects made of
lines (Star Wars, Battlezone), but you pever see a video game with many
large, complex bit-maps; there is just no way to handle them in real time.

Just as we endeavor to reduce computational complexity in algorithm
development so as to increase program execution speed, we endeavor to
reduce spatial complexity in object representation so as to increase
object manipulation speed. As we have seen in the video game world, this
applies not just to software manipulations, but also to display processor
manipulations. And, as fast as QuickScan runs, it too can be brought to its
knees by large o(n?) object representations. It is especially vulnerable to
objects with large horizontal dimensions, since its fundamental speed
limitation is how many pixels for one line it can load in one line’s time.
For many bit-map objects, there is simply nothing that can be done - we
have to face the fact that they are O(n?) and live with it. But, wouldn't it
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be nice if we could find a useful class of bit-map objects that could be
represented by some lower order of spatial complexity...

Well, there just so happens to be a large class of useful bit-map
objects which can be represented largely or entirely by runs. These are
the run-class objects which | introduced at the beginning of this section,
and as we shall see, they are O(n). Objects of this class are formally
characterized by having a low frequency of horizontal color modulation
relative to their horizontal size, which means the number of pixels in each
horizontal line is much greater than the number of color changes. Objects
which fall into this class include backgrounds, cartoons, bar and pie
charts, certain types of 3-D models, certain CAD/CAM objects, and many
others. These objects can be specified efficiently in terms of a few
horizontal runs because only | run is needed per color change and thus the

number of runs in a line is much smaller than the number of pixels in a
line.

So, a run-class object can be represented in memory by about r*v
runs (r is the average number of runs per line, v is the number of lines). If
we scale the object by a scale factor n, then we find that representation
in memory has changed to r*nv, because at any scale the object has
the same number of runs horizontally ,but the scaling factor
increases the number of lines. Thus, the memory representation increases
proportional ton', and the object is O(n).

~ Virtually every graphics display system | have seen (including the SGI
IRIS) ultimately treats run-class objects as 0(n?) bit-maps, solving the
exponential complexity explosion by throwing fast, expensive processing
muscle at it. Even if they store the objects in terms of runs and therefore
enjoy O(n) complexity in their memory consumption, they iteratively write
- out each pixel of each run to a line buffer, effectively expanding the object
back into an O(n?) bit-map as far as manipulation speed goes. QuickScan
solves the problem with brains rather than brawn and instead of writing
out the h individual pixels of a run iteratively at high speeds it simply
writes all h pixels at once at a reasonable speed, maintaining O(n)
complexity both in memory consumption, and in manipulation overhead.

The result is that as objects get larger, the processing of the objects

increases linearly with QuickScan, whereas with everyone else’s graphics
display system the processing increases exponentially. Furthermore,
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QuickScan's linear growth is limited to the vertical dimension where it
has plenty of time, whereas their growth is in both the horizontal and
vertical dimensions. So, all else being equal, anything that they can do
with wire-frame models, we can do with solid models (they're O(n), we're
0(n)). If they can manipulate one run-class object in real-time that isn

by n, we can manipulate many (approaching n) such objects at once (they're
o(n?), we're 0(n?)).

Now, I'm sure you can appreciate that we are gaining a phenomenal
advantage over conventional graphics displays by having fully parallel
runs. When it comes to run-class objects, THE OTHERS CANNOT KEEP UP.
| don't care if they have a CRAY-X/MP hooked up to an ultrafast frame
buffer. We have 640 processing elements working at once. They have one.
Current technology cannot iteratively write 640 pixels as fast as the 80ns
it takes us to paraliel write one 640-pixel run, at any cost. In fact, it
doesn’t even come close. We have the opportunity here to chart new
territory in real time computer graphics - and we're talking about a
consumer product! Just think about the awesome interactive applications -
that can come out of this capability. it really blows me away.

Of course, this capability does not directly help us in speeding up
non-run-class bit-map objects, but remember, QuickScan still is an
extraordinarily fast bit-map display processor. Its efficient handling of
run-class objects augments this bit-map capability at the programmer’'s
discretion, and indeed, an individual object can very well be part runs and
part bit-maps, and still close enough to a pure run object to be
interactively manipulated. (Such objects are called comp/ex objects,
and | show examples of such objects in the forthcoming subsections.)

So, as you read the following subsections and consider the worth of
the parallel run capability, remember: this is really new technology in
computer graphics. Everyone's been talking about applying large-scale
parallelism to computer graphics for years - it's the only direction left
for more speed - but no one’'s ever been able to do it in a commercial
product. If this thing flies, we'll be leading the way into a new era.

121 Backgrounds ,

One application area in which runs immediately show their worth is
that of the generation of backgrounds. Backgrounds that are all of one
color that would otherwise be represented by a large 1 bit/pixel bit-map,
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now can be drawn with a single run per each line. Large backgrounds with S~
static objects (e.g. trees, mountains, clouds, sky) can be specified with a

handful of runs per each line, requiring orders of magnitude less memory

and line buffer write time than a comparable bit-map representation. In

fact, backgrounds even larger than the screen can be efficiently stored and

manipulated to give the illusion of the screen being a viewport into
another world.

- QuickScan is particularly optimized to generate rectangular,
single-color backgrounds. It can generate such backgrounds without using
any RAM, without stealing any CPU cycles, and taking only 320ns to
execute for each line of the background, regardless of the background's
size. (Indeed, this type of background is handled so efficiently, that it
actually qualifies to be of O(1) complexity in memory consumption.) The
way we specify such a background is very straightforward:

You make a dispatch table entry at the priority at which you want
the background.

Load start line with the first line of background; object height with =
its height-1; absolute origin to the background's left border; A
bus_access to O; viewport origin and limit both to O; constant
word and display mode as you wish; and start address, e._polarity ,
line_mode , and line_length to any value.

Load the first word with a Run instruction , setting r_origin to0;
r-limit to the horizontal dimension of the background; end_line to 1,
and data_7, w_mode, and d_align as you wish.

And that's it. On each line of the object, the one Run instruction in the
first word will execute, generating a run from the left side of the
background to the right, and that's it. You can choose the color and the
display mode. Since it's a no bus_access object, you are guaranteed that
its dispatch overhead is minimal (see section 6.2). An example of S
such backgrounds is shown below (each pattern represents a single color).
Note that there is no space in RAM allocated to each object at all, except
of course, for the 4 words in the dispatch table entry.
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Generating backgrounds more complex than just a single color,
however, is a little more involved. Since we would then have various
shapes in the background, we couldn't rely on each line having just the

same single run. Indeed, we couldn’t even guarantee that each line would
have the same number of runs!

Such background objects are usually made up of a collection of
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AN
individual primitive objects. These primitive objects are called hd
subobjects because each could be an object in its own right. An object

which contains 2 or more subob jects is called a comp/ex object, and a

complex object's object description is made up of the union of its

subobjects’ object descriptions. A complex object (aforest scene)

is shown below, with each subobject identified with a letter:
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A subobject may be made up of bit-maps, runs, or both, and there
may be any number of subobjects in anobject. In the forest scene
complex object shown in the above diagram, there are 13 subobjects ,
each a solid region of one color represented by runs. Subobjects may
also overlap, and in fact, in the above diagram subobject A is a simple
rectangle - the complex region which we see in the diagram for
subobject A results from the overlaps of the subobjects in front of A

Note that partitioning a complex object into subobjects serves us
only as a conceptual tool to help us find a way to represent an object
efficiently. QuickScan understands an object only in terms of what it is
told to display by its dispatch table entry and line descriptions ; it is
unaware of how the object has been partitioned. Thus, the criterion we
use to partition an object into subobjects is completely arbitrary, and
we can define this criterion however it is convenient. The criterion | used
in this example was to isolate a subobject wherever there was an
individual region of color, but it could just as well have been to isolate
the house as a single subobject and each tree as a single subobject . As
we shall see in a moment, my choice was informed and by choosing the
former criterion | saved a little more memory than | would have with the
latter. But, there may very well be an even more efficient criterion to
partition this complex object that | haven't thought of.

To generate the object description for the forest scene, we first
order each of the subobjects by subpriority, background to foreground.
Subpriority is to anobject as priority is to display space: it indicates
who is in front of who. | assigned a letter to each of the subobjects in
order of its priority such that A is the background-most and M is the
foreground-most.

Next, for each subobject we generate an object description , its
line descriptions referenced to the single absolute origin of the
complex object. Since the left border of the complex object is at
pixel =100, we might as well set its absolute origin to -100. And, since
each subobject in this complex object is a contiguous region of a one
color, each subobject line description is a single Run instruction .

Subobjects A, B, C,D,E,J, K, andL are all rectangles, so for each
one’'s line descriptions , we specify the same Run instruction (starting
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at the rectangle’s left edge and ending at its right edge). For example,
Subobject B is 40 pixels wide, 220 lines tall, and has its left edge at
pixel -60. 1t is described by 220 Run instructions , each with the

relative origin set to 40 (-60 - (-100)) and the relative limit set to
80 (-21 - (-100) +1).

Subobjects F, G, H, and | are all circles, so these take a little more
work to describe. We first observe that a circle is vertically symmetric
across its center, so when we figure out the set of runs for the line
descriptions of the top half of the circle, we need only reverse the order
of the set to get the line descriptions for the bottom half. To determine
the top half’'s set of runs, you can figure out the left and right edge of the
circle on each line by using some simple geometry, and then set up a Run
instruction for each line with the relative origin at the left edge and
the relative limit at the right. So, quite unlike the Run instructions
for the rectangular subobjects , all of the Run instructions in each half
of the circle have different relative origins and different relative
limits, and must be computed individually for each line.

Subobject M is atriangle, and as with the circle subobjects , you
need to apply a little geometry to determine the left and right edges of
each line, then use that information for the relative origin and relative
limit of the Run instructions for its line descriptions .

Now, to assemble these various subobject’'s object descriptions
into the one complex object's object description for the entire forest
scene, we have to interleave the various subobject line descriptions ,
line-by-line, with the lowest subpriority subobject’s line
description on each line first, and the highest subpriority subobject’s
line description last. This may be a little difficult envision, so on the
next page you'll find a diagram which shows the interleaving process in
two steps. Above, you'll see the forest scene, this time with each
subobject identified with a pattern. Then, on the lower left, you'll see a
diagram of all of the subobjects’ individual object descriptions ,
interleaved with each object description restricted to a slot
corresponding to the subob ject's subpriority . To see how this works,
compare the 480 lines of this diagram to the 480 lines of the forest scene.
Notice that the vertical size and position of the patterned bar representing
the object description for each subobject corresponds with the
vertical size and position of the subobject itself in the forest scene.
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N This is because the object description of each subobject only exists
( on those lines where the subobject exists. Thus, each line of a slot (see
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line numbering to the left) holds the line description corresponding to

the same line of the siot’'s subobject in the forest scene (two sample

~ subobject line descriptions are highlighted in the diagram).

Since each slot corresponds to a subpriority level, the line
descriptions on each line are in proper order for interleaving, left to
right, into 2 line description of the complex object - you just have to
eliminate the empty slots. The diagram on the lower right shows what we
get when we eliminate these empty slots, and pack everything to the left
(you can use a straight edge held horizontally to compare the two
diagrams). This is an exact representation of how the interleaved
~subobject line descriptions make up the line descriptions for the
complex object. If you scan left to right across a given line in this
diagram, the subobject line descriptions you'll cross will exactly
make up, in that order, the line description for the complex object for
that line of the forest scene (2 sample complex object line
descriptions are highlighted in the diagram). And, if you put all of the
complex object line descriptions from line O to line 479 one after
another in RAM, you'll have the object description for the full complex
object. Thus, we have the complex object's object description
formed from the union of the subobjects’ object descriptions .

For example, at line O, the line description of the complex object
is made up of just subobject A's line description since no other
subobjects are on that line, but about 80 lines down, we find that the
complex object's line description is made up of subobject A's line
description followedby F's, G's, H's, and I's. At around line 160 the
complex object's line description gets very long, being made up of
every subobject’s line description except forJ's andK's. Then by line
479, once again the only subobject on the line is A and the complex
object’'s line description is just made up of A's line description .

Since each subobject line description in the forest scene is just a
single Run instruction (which is a single-word instruction ), the
width of each of the patterned bars in the diagram on the right is one
word. If you count the number of bars horizontally on any line, you'll find
out the number of instructions , hence the number of words, for the
complex object's line description on that line. Notice that, unlike the o
previous examples I've shown you, these line descriptions are of e
variable length, and variable length line mode must be selected in the
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dispatch table entry for the complex object.

QuickScan has no way of determining by itself where each line
description ends, so the last instruction on each line of the complex
object must have its end_line bit set to let QuickScan know. Of course,
the last instruction on each line may belong to any subobject , so you
must inspect the object description line-by-line and set the end_line
bit in whichever subobject’'s Run instruction it is appropriate. Note
that end_line bit is not set at the end of each individual subobject’s
line description unless it happens to be the last subobject line
description in the resulting complex object's line description . The
end_line bit is the only way QuickScan has of finding the divisions
between line descriptions in an object description, so it is truly
unaware of subobject line description interleaving, or as | stated
before, the way we choose to partition an object into subobjects is
purely a conceptual tool for us humans, and QuickScan is unaware of it.

Notice that subpriority is handled by QuickScan very simply by just
overwriting as each subobject line description is loaded into the line
buffer. The lower subpriority subobjects are written to the line
buffer first (since they are first in the complex object line
descriptions ), and they are overwritten by the higher subpriority
subobjects that overiap them. So, in the forest scene we get a concave
curve at the top of the tree trunks and an angle at the base of the chimney
even though each of these subobjects is a simple rectangle. And although
our very background subobject , A, appears to be of an extremely complex
shape, it also is just a simple rectangle. Since the subobjects are
specified by runs, it costs us nothing to waste the portion of a subobject
that is covered up by another subobject , so we might as well describe
these background-most subobjects in whatever way is convenient.

QuickScan object descriptions have the first word of each line
description stored in common for all lines of the object in the dispatch
table entry. So, if every line description of an object description
starts with the same instruction command word, then we can put that
word in the first word and thereby avoid having to store it individually
in RAM for every line of the object description . Can we use this feature
with our forest scene complex object ? Well, looking at the packed
diagram and the forest scene above, we see that on every line, the first
word is indeed the same: it is the single word of a subobject A’'s Run
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instruction | On every line of the complex object we have subobject A
generated by a Run instruction with its relative origin at 0 and its
relative limit at 940. So, by putting this instruction in the first
word, we can directly shave 480 words (1 word for each line) off the
compiex object’'s RAM consumption. Although this may seem
coincidental, it really isn't. Complex objects commonly have a
rectangular "backdrop® upon which all of the foreground detail is
overlapped. This characteristic is one of the motivating influences in

QuickScan's design for the inclusion of the first word as a parameter in
the dispatch table entry.

So, we've “put away” subobject A, but how much RAM will the rest of
this object consume? The figure is listed in the initial forest scene
diagram's memory map, 6900 bytes. Not too bad for a 13 color object that
is 940 by 480! For comparison's sake the RAM comsumption of an
equivalently sized 1 bit/pixel bit-map is shown in the memory map as
well. Despite this bit-map’s consumption of S6.4K bytes, we only get 2
colors to choose from! If we wanted to have a bit-map with all 13 colors,
then we'd need 225.6K bytes. Note also, that we could, with the same
6900 bytes of memory consumed, have each run of a subobject have a
different color. So, you might put a horizon in subobject A, and perhaps
stripes on the wall and roof of the house (subobjects J and M) to make it
look like a cabin. Then, we'd have well over 16 colors in the complex

object and the cost of an equivalent bit-map would be 451.2K Bytes. |
think you get the point.

Let's now consider the execution time for each line of the forest
scene. Since the forest scene would probably be the lowest priority
object displayed (since it is a background), then its dispatch overhead
will be minimal, 320ns. Since the lines are variable length, some will
take longer than others to execute. To get a worst case figure, let's look
at the longest lines in the object, those around line 160, which each have
11 Run instructions . Now, since subobject A's Run instruction isin
the first word, its execution time is included in the dispatch overhead.
For the other 10 Run instructions , the execution time is 80ns apiece, for
a total of 800ns. Thus, the worst-case execution time for any line of the
forest scene is 320ns + 800ns = 1120ns. Now, it's not quite fair to leave
it at that because if you look in section 6.2 on page 41, you'll find that we
add 240ns to the dispatch overhead of the object next higher in
priority (unless its a no bus_access object) because our last
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instruction on every line of this object is a Run instruction . It's really
fair to consider this extra dispatch overhead as part of our execution
time, so then our worst case execution time is really 1120ns + 240ns =
1360ns, with the next higher priority object dispatching with ng
overhead. Also, because this is a variable length object, we have to be
very careful in planning its placement in RAM if we want to ensure that no
line description crosses a row boundary. If we don't plan for this case,
then we should also include in the worst case the execution time added in
case of a row boundary crossing, S60ns (see section 6.3). So, now our
absolute, most horribly worst case execution time is 1360ns + S60ns =
1920ns. Since we have about 32 psec total in each line, that means this
forest scene, in the very worst case, takes up 6% of the available time for

writing line descriptions to the line buffer. if we guarantee there are
no row crossings, then it is 425R.

Bear in mind that only a few of the lines of the forest scene take
anywhere this amount of time to execute since most are very short.
Notice also, that if added more subobjects to the forest scene to make
the picture more detailed and interesting, the execution time would not
increase by much. This is because most of the execution time for this
particular object comes from the fixed overhead of dispatching and row
crossing, a penalty we pay once. Of the 1920ns listed for the very worst
case, 320ns+240ns+S60ns = 1120ns, is fixed overhead. If, for example,
our worst case line of the forest scene had 22 runs instead of 11, our very
worst case execution time would only increase to 1920ns+(22-11)*80ns =
2800ns, or 8.75% instead of 6% of the total line time.

Now, let’s take a look at the CPU cycles stolen. We steal 1.4 CPU
cycles for each line of the object, or 480%1.4 = 672 cycles. Let's assume
that some line descriptions are going to cross row boundaries. Since
the object description is 6900 bytes long, it is 6900+4 = 1725 words
long. There are 256 words in a row, so there are 1725+256 = 6.7 rows in
the object description . In the very worst case, it will cross 7 row
boundaries total, resulting in 7%*1.4 = 10 CPU cycles. So, in very worst -
case, the forest scene will steal a total of 672+10 = 682 CPU cycles total.
Now, figuring that with the fixed overhead of 1578 cycles (see section
7.1.1) out of 59286 total available cycles, and we have the CPU running
with 59286-1578-682=57026 CPU cycles or at about 96% efficiency
(compared to 97% ideal efficiency). There's virtually no loss in CPU
performance attributable to this object.
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Wwe | first introduced the concept of complex objects | stated that
it was more efficient to partition the forest scene into its color regions
instead of into its conceptual objects, the house and the trees. This comes
from the fact that we are using subobject overlaps to make complex
regions. For example, if wanted to represent the front wail and door of the
house without overiaps, then we'd need to specify a run for the wall to the
left of the door, a run for the door, and a run for the wall to the right of
the door. Using overiaps, we specify a run for the wall, and then a run for
the door on top of the wall. We get our left wall-door-right wall at the
cost of 2 runs instead of 3. Similarly, with the lolly-pop trees, the ball
on top makes a small concavity into the rectangle trunk. With overiaps we
just need 1 run for the trunk and 1 run for the ball over the trunk. Without
overiaps we need a little run to the left of the ball, a run for the ball, then
a little run to the right of the ball. Thus, by partitioning this object into

its color regions instead of its conceptual objects we save memory and
execution time.

While this partition criterion works well for this particular complex
object, it may not work as well for other complex objects. You just
have to look closely at what you want to dispiay, and then try a few ways
of partitioning it. Just like anything else, with a little practice you can
get to the point where you can eyeball it and immediately know how to
deal with it. | am confident that we can make a paint program for an
authoring system which automatically generates reasonably optimal
complex object partition criteria, so QuickScan users don't have to
concern themselves overly much with this sort of decision making.

The previous examples have all used the Run instruction for
generating runs. If you flip back to section 5.2, you'll notice that there are
two other run generating instructions , Screen Run and Sequential Runs.
Screen Run is independent from object dependencies in that it always
generates a run from the left edge of the screen to the right edge,
regardless of the current absolute origin. This function plays a crucial
role in QuickScan's internal control functions, but for the most part is not
very useful from the user’s point of view. Sequential Runs, however, is
extremely useful in complex objects where there are several adjacent "
regions of color in a line. In a suitable complex object it uses about ¢
half the amount of memory as an equivalent number of Run instructions , -
and it plays a central role in generating the objects in the next sections.
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222 Masks

Runs find another application in the generation of 1arge masks. One of
the most common uses of masks is for the purpose of implementing
viewports. Inside the viewport the mask bit of all pixel storage cells
is set to 1, thereby allowing them to be written by the forthcoming object,
and outside the viewport the mask bit of all pixel storage cells is set
to 0, thereby inhibiting them from being written by the forthcoming
object. Viewports can be very large, in theory even larger than the entire
screen, and it is very expensive, in RAM and in time, to generate them with
even a | bit/pixel bit-map. But, is an O(n?) bit-map necessary? If you
think about it, viewports are large contiguous areas of “color,” the color

being the mask bit state. They qualify beautifully as run-class objects,
and can be generated in O(n) with runs.

In fact, the QuickScan automatic horizontal viewport mechanism
works in just this way. If you specify a horizontal viewport for an object
in its dispatch table entry (see sections 6.1.6 and 7.1.4), the way
QuickScan actually generates the viewport is as follows: First, it
generates a Run Screen instruction , clearing the mask bit of every
pixel storage cell inthe line buffer. Second, it generates a Run
instruction , using the viewport origin for its relative origin and the
viewport limit for its relative limit, setting the mask bit of every
pixel storage cell between the viewport origin and the viewport
limit. Because of the parallel run capability, this mechanism is

guaranteed to take exactly 160ns to execute, regardless of the size of the
horizontal viewport.

Arbitrarily shaped viewports can be easily specified as well, and an
example of one is given in section 7.1.8.

There are also applications where a complex object needs a
transparent region within it for which runs can be used to generate a
mask. If, for example, you wanted to display a large wheel-shaped space
station, you might want to use runs to mask out the regions between the
spokes of the wheel so that when you draw the space station with
bit-maps, you won't cover up these openings.

223 Cartoons

Representing cartoons efficiently and animating them in reai-time is
perhaps the most exciting application for fully paraliel runs. Since
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cartoon characters are made up of large, contiguous regions of color they S
usually meet the criteria for run-class objects, and compress readily

from O(n?) bit-maps into O(n) run-generated objects. As we can store

these cartoons characters efficiently, we can store many frames of each

character at once, and then, by switching between these frames rapidly,

we can get animation. In fact by storing a great deal of frames we can

actually store enough for a number of possible animation sequences,

thereby allowing /nteractive animation, so the user of the system can
control a cartoon character like a puppet.

Now, these ideas are not new; people have had dreams of animation
machines since the dawn of computer graphics. Indeed, you can find
scaled-down versions of these ideas implemented currently in video game
and home computers. These systems are just too simple and too crude to

be interesting or very useful, and as such, they have not received much
notice.

B { QuickScan' | and its full e} it is able ¢
-quali j i -1i And, with
reasonable data compression in the CD ROM, we can supply the data for
such animation continuously. This section will explain how an aliased

cartoon (i.e. one with "jaggies”) can be displayed by QuickScan, and section

7.3.3 will explain how an anti-aliased (i.e. smoothed) cartoon can be
displayed.

RN

Before we get into the actual cartoons, we need to get a better
understanding of the Sequential Runs instruction , since it is used
extensively in cartoon representation. The Sequential Runs instruction
generates a sequence of adjacent runs, left-to-right, starting from its
relative origin (see section 5.2.5). In has certain advantages over the
Run instruction , and certain disadvantages. Its key advantages are that
it stores 2 runs to a 32-bit word, it provides full data format flexibility
in writing to the pixel storage cells, and it can permit low dispatch
overhead for the next higher priority object. Its key disadvantages are
that the runs are limited to 256 pixels or less, there is the overhead of 1
word and 80ns for each run sequence, and that run sequence always has an
even number of runs (if there's an odd number needed, the 1ast run is made
null). Both instructions take 80ns per run (although Sequential Runs has
the additional overhead of 80ns per sequence), so the real issue is how A
much RAM we can save. S
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The following diagram shows an object efficiently represented by
Sequential Runs:

0O 80 160 240 320 400 480 560 640

Transparent Wedge
for Sequential Runs

it

160

% % : i 2. ;

320

High RAM
Config. Data (<64) [— ?
- 38000H
Runs (1120) | 30000H 128 Rows
Sequential Runs (640)
CLuT (128) L 28000H
00T(4) ‘
Y 20000H
Upper Half Low
of RAM Array < 2
Shown Here 256 Words ( 32 bits)

Note: RAM array proportions are realistic: one line (—) is one row thick.

The seven slanted bars (each pattern represents a solid color) can be

just as well represented with Run instructions as with Sequential Runs
instructions . Let's see how we'd do this in each case.
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Using the Run instruction , on each line we’'d have to specify a Run
instruction for each bar. Since the first bar is slanted, the relative
origin of the first run on each line is different. Thus, we cannot put the
first Run instruction into the first word and must instead waste the
first word with a NOp instruction . With 7 Run instructions per line,
we have 7 words per line description , and with a total of 160 lines, we
have 7*160 = 1120 words to store this object. Its execution time,
assuming minimal dispatch overhead for itself is 320ns+7*80ns=
880ns, but since the last instruction on every line is a2 Run instruction ,
we have to add 240ns of additional overhead to the next higher priority
object's dispatch overhead (see section 6.2), and it is fair to consider
880ns+240ns = 1120ns as the total execution time.

Using the Sequential Runs instruction , we'd have to specify just one
Sequential Runs instruction for each line. Now, it would be to our great
advantage if we could make use of the first word. The problem with
using the first word for this object is the relative origin of the first
run is different on every line due to the slant. Notice, however, that the
command word of the Sequential Runs instruction does not contain the
actual run data for the instruction : this is specified in the subsequent
data words (see section 5.2.5). Notice also, that we can specify a
“transparent run,” a run which spans a number of pixels but is masked, as
one of the runs in the sequence. So, utilizing this information, we can
place the command word in the first word with its relative origin
set to the very leftmost point of the first slanted bar. Then, we can
specify a transparent run on each line to make up the difference between
that relative origin and the actual position of the left edge of the first
slanted bar for that line (I drew a wedge in the diagram showing the area

spanned by these transparent runs). Thus, we can get the desired image,
yet also make use of the first word.

Since the command word for each line is contained in the first
word, we need only store the data words. Since we have 8 runs on each
line (counting the transparent run), we need 4 data words for each line.
There are 160 lines, so we need 4%160 = 640 words to store this object,
only S7% of the RAM needed to store the Run instructions . Assuming
minimal dispatch overhead for itself, the exection time for each line of
this object is 320ns + 4%160ns = 960ns. Since the last instruction on
each line is a Sequential Runs instruction with 4 data words, then we
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know that the next higher priority object will be dispatched with
minimal overhead (see section 6.2), so the 960ns is truly the total

execution time. Thus, by using Sequential Runs, we have slightly shorter
execution time than with the Run instruction .

Note that despite this particular example, many run-class objects
are represented more efficiently by using Run instructions than by using
Sequential Runs instructions . The forest scene example of section 7.2.1
is a case in point. If you try to use Sequential Runs to represent this
object, you find that the individual regions of color are for the most part
separated from each other, so you end up wasting one transparent run
getting from one color region to the next. So, effectively, you spend 2 runs
to get | displayed run, and you lose the memory savings over the Run
instruction . Also, some of the color regions are longer than 256 pixels
(1ike subobject A), so we need up to 4 runs one after anotfier just to span

the whole region. Needless to say, Sequential Runs are not suitable for
representing this object.

Okay, let's consider an example of a cartoon object. On the following
page you'll find a frame from the Disney feature, Jumobo. In this example,
| represent just Dumbo, himself, less the mouse in his hat. The
rectangular outline I've drawn around Dumbo is the smallest rectangie we

can make around the object, and is the region necessary for a comparable
bit-map representation.

You'll notice that, unlike the other run-class objects we've
considered previoiusly, Dumbo is composed of more than just large regions
of color. He also has black lines which serve to both border these regions
and provide additional details. We could represent these black lines by
very short runs if we'd like, but it is more efficient in this case to break
Dumbo into 2 subobjects , a color region subobject , and a black lines
subobject , with the black lines overiapping the color regions. Then, we
can efficiently represent the color regions with Sequential Runs, and

represent the black lines efficiently with 1 bit/pixel bit-map (using
embedded masks - see section 7.1.9).

If we follow this approach, we end up with about 750 words for the
color region subobject's object description and about 1680 words for
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A Frame from Disney's Jumbo.

Apple 1l Group Confidential and Private Page 89

N/



the bit-map subobject's for a total of around 2430 words, or 9720 bytes.
If we were instead to specify Dumbo with a large 4 bits/pixel bit-map, he
would require 13230 words, or some 52.9K bytes. So, even with a

detailed, Disney-quality object, we are using only 18% of the memory we
need with a bit-map. See the diagram and memory map below:

High RAM
~ Config. Data (<64) '\
Dumbo Bit-Map(13230) 38000H
128 Rows
Dumbo Complex (2430) 30000H
CLUT (128) 28000H
00T(4) | ‘
Upper Half 200004
of RAM Array < Low RAM .
Shown Here 256 Words (32 bits)

Note: RAM array proportions are reslistic: one line (—) is one row thick.

There are few characteristics about the Dumbo image worthy of note.
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First, this object is effectively masked in all regions surrounding Dumbo. (,
-That is to say, if we had a object of lower priority than Dumbo, then we'd

be able to see this object in all of the little crevices around Dumbo (e.g.

between his ears and his head, between his legs), just as we would expect

if we had built a custom mask for exactly Dumbo's shape. Second, Dumbo

is not anti-aliased, or rather his edges and lines are all going to be jaggy.

Since he is so large in this particular image (he takes up 34% of the whole

On-Screen area), these jaggies won't be all that noticeable, but

nonetheless, it won't be quite Disney quality. This issue will be addressed
in section 7.3.3.

Animation of Dumbo can be accomplished by storing the object
descriptions for his various animation states in different places in RAM
and changing the start address parameter in the dispatch table entry
for the Dumbo object to point to the approriate animation state for each
new frame of animation. The resulting effect is we'll see Dumbo smoothly
flapping his ears and soaring around, and we'll be appropriately seeing the
background around Dumbo’s exact outline at all times. If this sounds like
no big deal since that is what you'd expect to see, bear in mind that .
sustaining such animation in real-time with a smoothly shaped object this (
large cannot be done by any but the most expensive graphics display
systems available. With QuickScan it's child's play.

If we wanted to animate Dumbo with very good quality animation,
we'd need to sustain a rate of about 15 frames/sec. Assuming that each
frame has roughly the same amount of data, then we would need 9360%15 =
140400 bytes of data per second. Even if we applied no additional
compression of Dumbo’s representation than what we have already done
with the run and bit-map subobjects (and we certainly could compress it
significantly more), the CD ROM could sustain this data rate with enough
time left over for some simple branching. So Dumbo's flying around with

excellent quality animation under a child's interactive control can be a
reality with QuickScan.

And, if we did compress cartoon character representations further on
the CD ROM, and then expanded them back upon reading them off, we could
have several independent objects being animated in real time
simultaneously. We'd implement this by loading up a few frames of one :
object at once, then jumping to another track on the CD ROM and loading up AN
a few frames of another object, jumping and loading a few frames of /
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another object, and so on until we'd 1oaded frames for all the objects.
Then, we'd jump back to the first object to load its next few frames, and
continue through the cycle again. Meanwhile, we'd sequence through the
frames that had been loaded by changing the start address of each object
at each animation state to point to the appropriate frame, and the objects
would animate smoothly, each independent of the others.

What's extraordinary about this capability is that each object, within
limits, is in its own time continuum. What | mean by this, is the various
objects on the screen do not have to be synchronized with each other in
time. So, if Dumbo is flapping his ears to fly, and there is Mickey Mouse on
the ground waving his hand, the two actions of flapping and waving don't
have to be in sync. In fact, if Mickey wanted to stop waving his hand, and
walk away, he could do so without Dumbo’s motion being affected. The

possible applications for multi-object interactive animation are just
amazing.

You may be wondering where | dug up the estimates for the amount of
RAM needed to represent Dumbo. My method was to xerox the cartoon '
image onto a piece of 1/8" square graph paper. Then | defined each square
of the graph paper to be 2 10 by 10 pixel block, and proceeded to count the
number of runs and the number of words of bit-map needed to render one’
line out of every 10 lines of the image with an accuracy of 10 pixels
horizontally, being conservative in any rounding off. | then multiplied my
results times 10, working from the assumption that the other 9 lines in
each 10 line group required roughly the same representation as the line |
measured. | am confident that the precise memory requirements will be
somewhat less than my estimates, because not being able to work with
each line individually, | had to take a detail occurring in one line of the

object and pay for its representation in 10 lines to be sure it was
accounted for.

| won't belabor you with the details of the breakdown of the object
description , but the worst case line description has 8 sequential runs,
and 6 words of 1 bit/pixel bit-map. The Sequential Runs instruction is
in the first word, as in the previous example, so we have 80ns for each
run, 80ns for the Bit Map instruction , and 80ns for each bit-map data
word, for a total of 8*80ns+80ns+6*80ns = 1200ns. Assuming minimal
dispatch overhead, we have 1200ns+320ns = 1520ns worst case
execution time (since the line description ends with 6 1 bit/pixel
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bit-map data words there is no additional dispatch overhead for the
next higher priority object). Out of the available 32usec, Dumbo takes up
475%. The CPU overhead is minimal. So, we could very well have 20
cartoon characters of Dumbo’s size and complexity flying around on the
screen at once. If you flip back a couple of pages and take another look at
just how big Dumbo is, notice that no one has ever before seen such a
capability in real-time computer graphics. It's only possible because of

the fully parallel runs. | really think that kids (of all ages) are going to go
wild.

124 _3-D Polygon Modeling

Fully parallel runs are extremely useful in efficiently representing
filled polygon regions. Since a filled polygon is a single color region, it is
the quintessential run-class object and can be readily and
deterministically converted into a set of runs. In fact, there is a large and
useful class of polygons which can be represented by a single run for each
line. And, within that set are the convex polygons (polygons for which no 2
interior points exist with a segment between them that crosses into the
exterior) which in any orientation can be represented with exactly one run -
for each line of the polygon's height. Examples of convex and non-convex
polygons are shown below.

o () A

Convex Polygons

Non-convex Polygons
(with segment disproving convexity)
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. The convex polygon subset is of great interest in 3-D modeling

( : applications. Given the vertices of a convex polygon, we can compute the
lines between these vertices that form the perimeter of the polygon.
Then, by scanning the polygon from top to bottom, line-by-line, we can
easily generate a run for each line extending from the leftmost perimeter
of the polygon to the rightmost perimeter. (Since the polygon is convex,
we know that one run for each line will be necessary and sufficient.) The
runs for all of the lines, once submitted to QuickScan as an object
description , will generate an image of the convex polygon specified by

the vertices. This process is known as scan-converting and diagram of
the process is shown below:

Start with Vertices Compute Lines of Perimeter

Compute a Run for Each Line
From the Left Edge to the Right Edge

Scan-converting a Convex Polygon

If now we perform 3-D coordinate transformations (transiation,
scaling, rotation, or perspective) on these vertices, we will compute a
new set of vertices reflecting the transformed position of the polygon. By
scan-converting these vertices we will deterministically generate a new

set of runs describing the transformed polygon, and QuickScan will display
an image of the transformed polygon.

(i , A polyhedron is a solid object which has a polygon for each face.
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Examples of polyhedra are cubes, boxes, and pyramids, but they can, of
course, be very complex. If the faces of a polyhedron are convex, they we
can easily generate the polyhedron from the union of convex polygons. In
effect, the polyhedron is a complex object, and each polygon face is a
subobject . A rectangular solid polyhedron composed with 6 subobjects
for its faces is shown below with a pattern identifying each visible face
(the hidden lines showing through would not be visible in the real display).

R

7.4 Subobject 1:-;

LIS LIRS
l\\\\\\\\\\\\\
IIII IIIIIIII

AR] S
v 7 L4
[~/ Subobject 57.//x
ARANRY

L’\’\,\l AVATATATATATATANA]
L4 LA AN NN
A,\\ AVAVAVAVAVANA YA YA JAY

’ LR NRXRXRRXNNS
3 AVAVAVANAYANAYAYAYA VA VA Y
R RN RN

Subobject 4

High RAM
Config. Data (<64) F— T

- 38000H

300004 | ‘20RO

CLUT (128)
007(24)

—- 28000H

200004 ¥

Upper Half Low RAM
of RAM Array < —lp
Shown Here 256 Words ( 32 bits)

Note: RAM array proportions are realistic: one line (—) is one row thick. O
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To generate this polyhedron complex object, each of the polygon
subobjects was scan-converted and assigned a subpriority based on its
z-coordinate (z is perpendicular to this page of paper). Then, the

individual subobject's object descriptions were interleaved (just as
we did in section 7.2.1), and that was it.

If we wish to apply a 3-D transformation to this polyhedron we just
apply the transformation to the vertices of each of subobjects ,
scan-convert them, and interieave them again. The only extra work we
have to do beyond what we had to do to transform the polygons individually
is to determine the correct subpriorities . Without going into the
details, this means at worst one more vertex transformation per polygon
and a sort of the computed z-coordinates.

If this seems simple and straightforward, then you're right. It is. So
why don't we see more 3-D polygon graphics displayed on personal
computers and video games? Well, for one thing, computing a great many
vertices can take a fair amount of time, and as objects get complex,
computers without special hardware slow to a crawl. But, certainly
simple objects like cubes and pyramids don't require much computational
effort. Why don't we see cubes spinning around in space for neat effects in
video games? Ah, now we're getting to the crux of the problem. It's not
limits in computational speed which is the first roadblock. It's limits in
display speed - 1arge objects just take too long to draw to the screen.

We da see examples of real-time 3-D graphics. The Battlezone and
Star Wars video games are two excellent 3-D games, but they have no solid
objects: every polygon is represented with outlines. Although they can do
the coordinate transformations in real-time, they can't update the frame
buffer fast enough. | have a demo disk for the Macintosh (come and see me
if you want a copy) which has a 3-D image of a Macintosh Computer
tumbling in space. The Mac has no trouble keeping up the coordinate
transformations in real-time, and since it is just drawing the outlines of
the shape, it has no trouble keeping up with the display update. Pacific
Data Images told us that when they wanted to run through the motion of a
3-D scene in real-time, they just generated the outlines of the objects.
They found themselves in the same situation as the Atari video game
programmer and the Macintosh programmer: just can't update the display
of those solid polygons fast enough.
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well, fortunately for us, with QuickScan we don't have to update the
display; it does it for us. And, it can keep up because it generates runs
fully in parallel. In fact, it takes just as long to generate the solid faced

polyhedron above 3s it takes to display the outlined polyhedron shown
below (except for the subpriority sort):

Border of 1 Bit/Pixel
Bit-Mep

High RAM
Config. Dsta (<64) — 4
- 38000H
Bit-Map (2200) |
op ( )  <0000H 128 Rows
cur(zs) - 28000H
0oT(4) | ‘
Yo 20000H
Upper Half Low .
of RAM Array < —
Shown Here 256 Words ( 32 bits)

Note: RAM array proportions are realistic: one line (—) is one row thick.

Instead of drawing a left and right pixel for the lines on each edge of
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the polygons for this diagram's display, we just specified a run with 2 left
and right 1imit for the first diagram's display. In fact, the run is really
easier than the outline because we don't have to worry about setting one
bit in the middle of a 32-bit word for the one pixel of the line.

We already know that we have the computational muscle to do the
coordinate transforms and outline drawing (seriously, I'd love to show you
the Mac disk), so with QuickScan we can definitely manipulate solid 3-D

polygons and polyhedra in real-time Throw in a floating point
co-processor, and we'll really cruise!

One of the beautiful things about these fully parailel runs is that each
run takes the same amount of time to draw, 80ns, regardiess of how long
it 1s. So, no matter how big the polygons get (if for example, we get very
close to them), it will take the same amount of time to display them:
80ns/polygon. We have a {ixed and deterministic execution time for each
polygon with QuickScan. Period. The horrendous problem of determining
what you have time to display after the polygons have been transformed

with which you have to wrestle in any other graphics system environment, -
is trivial with QuickScan.

The other nice thing is that the hidden surfaces are automatically
removed by the prioritization of the subobjects . You don't have to be the
least bit concerned about which part of which polygon is obscured and
which isn't. You can forget about those backfacing algorithms that try to
reduce the amount of updating required by identifying completely hidden
polygons. It doesn't matter anymore, QuickScan takes care of it all.

But, of course there has to be limit of how many poiygons QuickScan
can put up. This limit is of course dependent on dispatch overhead , row
crossings, and other factors, but to get a rough idea, we just need to
divide the time to execute a Run instruction , 80ns, into the total line
time 32usec: 32usec+80ns = 400. So, if you wanted to, you could put up
an object made up of almost 400 filled convex polygons, regardless of
their size or shape. And, if you got the computational power (or special
hardware - see Appendix B) to transform the vertices, you could
manipulate this gargantuan object in real-time. Pretty awesome.

Now, it would be nice if we could apply a lighting model and shade the
faces of the polyhedra realistically. 1’11 show you how in section 7.3.2.0
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A.1. Command Word Format

*SOP* 3/4/8S

(  itMap (BMap)
31 24,23 16,15 8,7 0
0 0 O dformat(S) || | | r—origin ( 10) dw_count ( 10)
end_!;no l o.;?‘
M :zgwe
/
Run (Run)
31 24,23 16,15 8,7 0
1 date_7 (7), BENERE r—origin (10) r-limit (10)
W(‘l’ w(",’r " end_line | dd_;?ﬂn
v (1) w-mode (f)
4
- @
;
Sequential Runs (SRuns)
31 24,23 16,15 8,7 0

00

|

d_format (S)

| | |

r-origin ( 10)

dw_count ( 10)

end_l'ine l e..;l/w/de
(1) w-mode (1)
@

( \
31 \ 24 23 16,15 /////;:;_—_-5\\\\\\\\0
01 0 \Q a_origin ( 12) i | ( cword_12(12) N\
\ d_mode not used “_
Replace Constant/(RCenst )
31 \ 24,23 ///>bss o~ 8,7 N\ 0
o1 0 1\ / \ not used (&) Ui lyl v N\ c_word {fower 12 bitd)_
| - "ord N~ de I not used
‘ (1)
Run Screen (RScreen)
31 2423 16,415 8,7 0
0 1t 1| dformet(S) || ; | |notused(4) data_16 (16)
end_lline | ) l ode

C

(1) w-_mode (})
)y
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A 2. Data Word Format #SGP* 3/4/85 |
Bit Map Data Word Formats
1Bit/Pixel
31 24,23 1615 8 (
31(30|29/|28(|27|26{25|24{23|22|21|20{19|18|17|16|1S5{14[13|12]11]10 8 6{5|4(3(2]|1]|¢C
32 1-Bit Pixels
31 . 24,23 16,15 8 (
15 | 14 | 13 ] 12| N 10| 9| 8| 71| 6 | s 3| 211 1|0
16 2-Bit Pixels
4Bits/Pixel
31 24,23 16,15 8 e
7 6 S 4 3 2 1 0
8 4-Bit Pixels ;~
} Bits/Pixel Ay
31 24,23 16415 8 C
3 2 1 0
4 8-Bit Pixels
16 Bits/Pixel
31 2423 16,15 8,7 C
1
2 16-Bit Pixels
Sequential Runs Data Word Format
31 24,23 16,15 8 C
data_8 (8) run length (8) data_8 (8) run length (8)
second run 2 Short Runs first run



A.3. Dispatch Table Word Format

Dispatch Table Format *SGP* 3/4/85
High RAM
Object 63 | Word 0 Word | Word 2 Word 3
Object 62 | Word 0 Word 1 Word2 | Word 3
Object Di tch Table Closer 1o Foreground
64 Objects = 1| RAM Row = 1K Bytes
Object 2 Word 0 Word 1 Word 2 Word 3 Closer to Background
Object 1 Word O Word 1 Word 2 Word 3
Object 0 Word 0 Word 1 Word 2 Word 3
Low RAM
C Dispatch Table Entry Format
Word O
31 2423 16,15 8,7

absolute origin (12)

start address (20)

Word 1 bu.ti_nccesse"m;/l6‘("'y
34 24,23 16,15 ') 8,7
start line (9) object height (9) | , line length (10)
display' mode |
(1)  line mode
Word 2 (1)
51 2423 16,15 8.7
viewport origin (10) viewport limit (10) constant-word (12)

word 3

g 2423 16)15 87

first werd (32)
\H\ﬁruc’\iof\
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