Nisha SpareTable Specification

Preliminary
Version 0.1-0
Oct. 3, 1834

Structure ::= {{Fence {bytes/$00:03: length = 4}’
{RunNumber {bytec/$04:07: length
{Format_Uffset {byte/$08; length
{Format_InterLeave {hbyte/$00; length
‘HeadPtr_Axrxay {bytes/$0A:49; lzngth
{3pareCount {hyte/$4R: length = 1}>
<BadBlockCount {byte/$4B; length = 1}
{BitMap {bytes/$4C:55; length = 10}>
{Heap {bytes/$56:185; length = 204}’
{Intexrleave_Map {bytes/$186:1A45; lenath = NumberOfSectors}?
“Check3um {bytes/$1A6: 1A7; length = 2}>
{Fence {bytes/$1AE: 1AB; length = 4}

: 2, S (A
‘Zone_Table {bytes/$1AC:1C3; length = 24}7 S0 s ‘. 5}4%’2 -
{Fence {bytes/$200:203; length = 43) R 4% o A/fé c
g A /c%/,iﬁma Ty

=4}
= ‘{}

oy

Fence ::= (<{$F0 <$78> <$3C» <$1E>)}

RunMumbezr ::= (32-bit integer’

This integer i: incremented once each time tha spare table is written to
1o the disk. Because two copies are kept on the the disk, the RunNumbexr is
usad to indicate which is the more recent of the two, shouwld both

copies not be updated.

Format_0Offset ::= (0..MumberQfSectors?

Format_Offset ic the number of physical sectors there are from index mark
until logicsl sector 0. On Nisha, this value will always be §$a0
indicating that logical sector 0 always follow the index mark.

Format_Interieave ::= 0. .67

This numbker 1is the interleave factor for this disk and is used in
caloulating where esach of the logical sectors are relative to actual

sactor locations. On Misha, this value will always be $01 indicating a
physical interleave of 2:1.

HeadPtr_Array ::= (AREAY[O0..127] of HeadPty

HeadPty - := <Nil+Ftzx>
Mil ::= {$80 {if Nil the end-of-chain}>

Ptx ::= {$00..8$7F {address of next element}>
APty i1s & ?-bit structure that '‘points' to

3
specific location within the Heap. To
arrive
at the actusl index value within the Heap,
the
Pty must first be multiplied by 4 {the
length

of zach elementt.

When a disk is formatted and being written to for the fixst time, each logical
block ie assigned the first availakle physical block on the disk. Therefore you
would expect that LogicalBlock(0) would occupy PhysicalBlock(0O), L(1) --»
P{1)]. etc. There are instances, however, when a block of data must ke relocated
to anothexr space on the disk that does rnot follow the original pregression (for
example, the original e¢pace was defective). In orxder to 'find' these relocated
blocks in the future a3 record must be kept as to where all these relocated
blocks have keen put. This recoxrd takes the forxm of 128 linked lists having the
foxm:

HeadPtr[{n] ——» LinkedList[n], where n ::= [0..127]

The algorxithm for deciding whether or not z logical block has been relocated
iz to extract kit: 10:13 from the LogicalBlockNumber and use it a3 an index into
the HezdPtrBrray:

IF (HeadPtr[LogicslBlockMNumkerbdits 10: 15].Mil)

THEN LogicalBlock has not keen relocated

ELSE wse HeadPtx[].Ptr 1o begin seazxching the chain foxr a matching
element {refer to the structure of ListElement for more detail}

IF no matching ListElement
THEN LogicalBlock has not been relocated
EL3E the =lement position in the Heap corrxesponds to the new
physical
block location

SpareCount ::= {$00. . $4E>
BadBlockCount ::= <$00. . $4E>

BitMap ::= <AFRAY[$00..$46] of Bits)

The bit map is used to keep & record of which zpaxe hlocks

oooupled.
Heap ::= <ARRAY[$00..$4B] of ListElement)

ListElement ::= [{(Nil+Used+Useable+Spr_Type+Data_Type’
‘Token?

{Ptx>)

Used ::= {$40>
Useable ::= {$20>
3pr_Type ::= {(Spare|BadBlock’
Spare ::= {$10>
BadBlock ::= ($00>
Data_Type ::= {Datal|SpareTable>
Data ::= {$02>
SpareTable ::= {$08>
Token ::= {Bite 0:9 of LogicalBlock:?
Interleave_Map ::= <ARRAY[O0..15] of [0. . NumbexOfSectors]>

The Interleave_Map is used to logical re-interleave the drive so that
Widget can be run optimally on any system without having different
manufacturing or foxmatting procecsces.

Check_3um ::= <sum of all bytes in the spaxe table from the first fence to
beginning of this structuzre, in MOD-65536 arithmetic’

Zone_Table ::= (ARRAY[O. . NumberQfZones] of Zone_Element’

Zone_Element ::= {0ffset_Direction+Offcet_Magrnitude?

The Zorne_Table is used in improving the performance of the positicning
zystem. In the case where the drive develops a non—negligible amount of
firne positioning coffset (as in the case of high or low temperature)
seeks with manual offset are used. The amount to manually offset (and
direction) iz kept in the Zone_Table. Refer to the Misha Operation
Summary Specification for furiher details.

Finding the SparxeTable on Nisha

The 3pareTable on Nisha is a3llowed to ccoupy any of the klocks reserved
for sparing {there iz nothing urnique about the media location that the
3pareTable iz written at and theretore is subject to the same probakbilities
for defects and handling errors as any other block of data}. Because of
this, when the drive is powered up the 3pareTable can not be counted on to
be residing in any specific location and must be searched for.

3pareBlocks are loocated evexry 512 physical klocks apart, beginning with
physical block 512, Because Nisha has 2 tracks per surface and 32 sectoxs
per track, 3pareBlocks can e=asily be located by noting that they reside on
zector 0, {the sector following Index} head 0 of every eigth track. To
actually find the 3pareTable, each spare klock must be read to see if it 1is
one of the 3pareTable blocks; in orxder to not confuse a block of dats with
a SpareTable block sevexral data structures need to match:

the fence residing at address 0:4

the fence residing at address $1A8: 1AE
the fence residing at addrezs $200:203
the checksum must match

ESAVIN

After all SpareTakle:s have been found {it is quite possible to have more
than 2 copies of legitimate SpareTables on the dizk at any given point in
time; the RunNumber decides which is the most currentt the 2 that axe
themost current are updated {BunNumber incremented by cne, and
WritesVerified to the disk}. In the case where only one SpareTable is
found. then a second one is genexated with the same RunNumber.

Find_SpareTable;
begin
while Not_All_SpareBlocks_Have_Been_Searxched do begin
read a spareblock using full recoverxry methods
it The_Block_Can_Be_Read then
begin
it (bytes 0:4 = fence) and
[bytes $1AB:1AE = ferce) and
(bytes $200:203 = Tence)] and
(bytes $1R6:1A7 = calculsted check sum) then
beqin
this block it a SpareTable
increment the count of SpareTakles found
if {more than one 3pareTable has been found) and
{the RunNumber of the last SpareTable found is greatex
then the RunNumber of the previous SpareTable)
then latest SpareTable found is valid and should replace
any previous version found
end {if-then}
end {if-then}
ernd {while-do}
if At_Least_One_Copy_0f_The_SpareTable_Hasz_Been_Found
then increment the RunNumber and Wrxitesverity back to the disk
elze the drxive should not be used
atrid.

Updating the SpareTable Structuxe

The SpareTable keeps track of two data structurxes: SpareBlocks and
BadBlocks {3pareBlocks are sectors that have been remapped, while BadBlocks
axe sectors whose data can not be recovered and are logged until the next
write to that sectoxr when they will become candidates for remapping). By
definition a SpareTable is a SpareBlock. a SpareBlock may be either of type
UserDats or 3pareTableData., and a BadBlock is always of type UserData and
never occupies an actual sector (it is just logged in the SpareTable).

Basically, the overall structure of the SpareTable is that of a serxries of
zingly linked lists. These linked lists are pointed to by 3 HeadPtr which
iz kept in an 64 element array of HeadPtrxs. To locate a block within the
3pareTable an algorithm is used consisting of finding the correct linked
list to search (indexing to the proper HeadPtr) and then matching DataType
{SpareTable vs. UserData), SpareType (SpareBlock vs. BadBlock), Useable
(has the block keen remapped several times?), and a portion of the block
number being sesrched for. Once a block has been found in the SpareTable,
its new physical address is a function of its position within the
SpareTable (i.e., if it occupied the 1s:t location in the SparxeTable then
its address would be 1x312, the Znd position --> 2x312, etc.). Adding and
deleting element:s from the SpareTable it 3 matter of manipulating the
linked lists: lists that have thier last element deleted must change the
HeadPtx for that list to reflect an empty list: BadBlock:s can be deleted
while SpareBlocks are never deleted zo removing an element from the middle
of 3 list must be handled:; and of course adding onto the end of a3 lizt is
COMMOo.

"
Ex.

Lets aszume that Logical Block $32AA i: to be cearched for in the
SpaxeTable.

Furiction Search3pareTablellogicalBlock : BlockMNumbex:

¥ aY
PhysicalBlock : BlockNumbex;
IzData : Boolean:
vay Is3pare : Booleanfoutput}) : Boolean

begin

index := most significant 6 bit: of LogicalBlock

if HeadPtr[index].NIL then
PhycicalBlock := LogicalBlock + (LogicalBlock DIV 312)
if (PhysicalBlock DIV 512) <> (LogicalBlock DIV 512}
then PhysicalBlock := PhysicalBlaock + 1

Search3pareTable := false {logicalBlock not found}
else
pty := HeadPtr[index].ptx * 4 {calculate effective address within
Heap}

it ptxr’.Useable and
({ptr .Data_Type = UsexData) = I:Datzs) ard

(ptxr .Token = kits 0:9 of LogicalBlock) then
PhysicalBlock := (index+1)*512
if (ptx".Spx_Type = 3pare)
then Is3pare := true
else IszSpare := false
Search3pareTable := true {lLogicalBlock found}

