
Nisha SpareTable Specification
Preliminary
Version 0.1-0

Oct. 3.. 1984

«Fence {bytes/$OO:03; length = 4}>
<RunNumber {byte~./$04: 07; len~~th = 4})
<Format_Off-:.et {b~lte/·$08; length = 1}>
<Format_Interleave {byte/tOg; length = 1}>
<HeadPtr_Array {bytes/$OA:49; langth = 54}>
<SpareCount {byte/$4A; length = 1})
<BadBlockCount {byte/$4B; length = 1}>
(BitMap {bytes/$4C:55; length = 10}>
<Heap {b~'tes/$56: 185; length = 304}>
<Interleave_t·lap {byte~./~; 18fl: 1 A5; I en~~t h = NurflberOfSector~.} >­

<CheckS,-ff"O {bytes/$1n6: 1n7; length = 2}>
<Fence {byte~'/~;1A8: 1RS: length = 4})
<Zone_T~ble {b$ytes/$1AC: 1C3; lengt.h ~ 24}> .J , .. (
<Fence "I.byte':./ ·200: 20~:; len~1th = 4J>)

Fence" = «$FO> <$78) <$:3C> <$1E>)

RunNumber ::= (32-bit integer>

This integel' i·~ inc.l·emented I=,nce each time the ·spare table is written to
i:o the disk. Because tV\ICI copies .3re kept 1:ln i:he the disk, -the RunNumber t·:.
u·sed to indicate which i·s the more recent of the two, should both
copies noi: be updated.

Fc,rmat_Off·set :: = (0 .. NumberOfSectors)

Form.3i:_Offsei: i-:. the rtumber I:,f physic.31 -;ect':lr·; there ·3re fr'Jffi index mark
until logical sector o. On Nisha. this value will always be $00
indicating th.3i: lc,gical sectclr I) .31ways fClllo'f,' the index mark.

Format_Interleave ::= (0 .. 5)

Trlis numtler is the interleave factor for trlis disk and is. u~.ed in
calculating where each of the logical sectors are relative to actual
sector locations. On Nisha, this value will always. be $01 indicating a
physical interleave of 2: 1.

HeadPi:r_Array ::= (ARRAY[O .. 127] of Headptr

HeadPtr ::= (Nil+Ptr>
Nil··= ($80 {if Nil the end-of-chain}>

Ptr ::= ($00 .. $7F {address of next element}>
A Ptr is a 7-bi t ·;trl.Jc:ture trlat 'pclints I to

arrive
.3t the ac:tual inljex value wi thin the Heap,

the
Ptr m,-~st first be m'.Jltiplied by 4 {the

length
of each el ement}.

When a disk is formatted and being written to for the first time, each logical
block i,:. as';i'~ned the first a'v'.:dlable phY';ical block on the di·;k. Therefore yClu
'rY.::.uld e~:peot that Lo.;,ioalBlook(O) 'rlould c.c:cup~" Phys.ioalBlook(O), L(1) -->
P(1), etc. There are instances, however, when a block of data must be relocated
to another space on the disk that does not follow the original progression (for
example, the original space was defective). In order to 'find' these relocated
blooks in the future a reoord must be kept as to where all these relooated
blocks have been put. This record takes the form of 128 linked lists having the
fClrm:

Headptr[n] --) LinkedList[n], where n ::= [0 .. 121J

The algorithm for deciding whether or not a logical block has been relocated
i·; to extract tlit·; 10: 1.:1 rror ... the Logica18l,:,ckN

'
....IrrJl:,er and use it ·3'; an index into

the HeadptrArray:

IF (He.3dPt r [Logi c.3l8l ':11:: kNumber""bi t s 10: 1~,] . Ni 1)
1HEN LogicalBlock has not been relocated
ELSE use HeadPtr[J.Ptr to begin searching the ohain for a matching

element {refer to the structure of ListElement for mt:,re detail}
IF no matching ListElement

1HEN LogicalBlock has not been relocated
ELSE the element position in the Heap corresponds to the new

physical
block loc..:aticlft

SpareCount ::= <$00 .. $48)

BadBlockCount ::= <$00 .. $48)

BitMap ::= (ARRAY($OO .. $48] of Bits>

1he bit map is used to keep a record of which spare blocks

occupied.

Heap: : = <ARRAY[$OO .. $48] clf Li·;tElement>

Li~.tElement :: = «Nil+U~.ed+U~.eable+Spr_Type+Data_Type>
<Token>

<Ptr»

Used: : = ($40 >
Useable ::= ($20)
Spr_ Type: : = (Spare 18ad8loc:k>

Spare ::= <$10)
BadBlock ::= ($00)

Data_T}lpe : : = <Datal SpareTable>
Dat a :: = < $ 0 2 >
SpareTable ::= <$08)

Token ::= (Bits 0:9 of LogicalBlock)

Interleave_Map:: = (ARRAY[O .. 1~IJ I:.f [0 .. NumberOfSectl:.rs]>

the InterLeave_~1ap is. used to logical re-interleave the drive so that
Widget can be run optimally on any system without having different
manufacturing or formatting processes.

C~-leck_Sum .. = <sum clf all bytes in the spare table frclfI"i the first fence to
beginning of this structure, in MOD-65536 arithmetic>

Zone_Element: : = <Offset_Directicln+Offset_Hagni tude>

The Zone_Table is u';ed in impro ... "ing the performance of the posi tioning
·;y·;tem. In the ca~·e hlr,ere the drive develop':' a nCln-negligible .~molJnt of
fine po·:.i tionin9 cdfset (as in the case clf high elr lQl(',1 temperature)
';eel<-; 1."/i th m.3nual off';et are used. The amount to manu.3lly 01f';et (.3nd
direction) is kept in the Zone_Table. Refer to the N.i.sha Operat.i.on
Summary .spec:i f i C.3t i (In f ()r f uri: her ciet ai 1 s .

Finding the SpaIeTable on Nisha

T rle ~.p.areT al::I 1 e (In Ni's ria is .allowed t 0 OCCL~py any of t rle bloc ks res erv ed
for sparing {there is nothing unique about the media location that the
SpareTable is written at and therefore is subject to the same probabilities
for defects and handling errors as any other block of data}. Because of
thi·: ... \"/hen the drive is powere.::~ up the Sp.3reTable can not be counted ()n to
be residing in any specific location and must be searched for.

SpareBlocks are located every 512 physical blocks apart, beginning with
physical block 512. Because Nisha has 2 tracks per surface and 32 sectors
per track, SpareBlocks can easily be located by noting that they reside on
sector 0, {the sector following Index} head 0 of every eigth track. To
actually find the SpareTable, each spare block must be read to see if it is
one of the SpareTable blocks; in order to not confuse a block of data with
a SpareTable block several data structures need to match:

1. the fence residing at address 0:4
2. the fence residing at address $1A8:1AB
3. the fence res.iding at addre~.~. $200:203
4. the checksum must match

After all SpareTables have been found {it is quite possible to have more
than 2 copies of legitimate SpareTables on the disk at any given point in
time; the RunNumber decides which is the most current} the 2 that are
themos.t current are L~pdated {RLmNumber incremented by one, and
Write/Verified to the diSk}. In the case where only one SpareTable is
found .. ,then a second one is gene:rated \"'11 th the same RunNumbe:r.

Find_SpareTable;
begin

while Not_All_SpazeBlocks_Have_Been_Seaxched do begin
%ead a spa%eblock using full %ecove%y methods
if The_BlocK_Can_Be_Read t.hen

begin
if (byt.es 0:4 = fence) and

(bytes $1A8: 1AB = fence) and
(byt.es $200:203 = fence) and
(bytes $1A6: 1A7 = c:alculated check sum) then

begin
this block is a SpareTable
increment the count of SpaxeTables found
if (mo%e than one SpareTable has been found) and

(the RunNumber of the last SpareTable fCII...Ind is great.er
then the RunNumber of the previous Spa%eTable)

then latest SpareTable found is valid and should replace
any previous version found

end {if-then}
end {if~then} .

end {while-do}
if At_Least_One_Copy_Of_The_SpareTable_Has_Been_Found

en.:t.

trlen increment the RunNumber and Wri te/Veri fy back to the di s k
else the drive should not be used

Updating the SpareTable Structure

The SpareTable keeps track of two data structures: SpareBlocks and
BadBlocks (SpareBlocks are sectors that have been remapped, while BadBlocks
are sectors whose dat. can not be recovered and are logged until the next
I,,,ri te ~o that sector when they Itlill l,ecorne candidates for remapping). By
definition a SpareTable is a SpareBlock, a SpareBlock may be either of type
UserData or SpareTableData, and a BadBlock is always of type UserData and
never occupies an actual sector (it is just logged in the SpareTable).

Basically, the overall structure of the SpareTable is that 01 a series of
singly linked lists. These linked lists are pointed to by a Headptr which
i·; kept in ·3n 64 element array of HeadPtrs. TI:) 11:)co3te .3 block wi thin the
SpareTable an algorithm is used consisting of finding the correct linked
list to search (indexing to the proper HeadPtr) and then matching DataType
(SpareTable vs. UserData), SpareType (Sp.3re8lclck vs. 8ad8loc:k).. Useable
(has t rle tIl oc: k been rem.3pped s ever .01 times?), .:and ·EI port i on clf the bl CIC k
number being searched for. Once a block has been found in the SpareTable,
it·:. nelN prlysiC.31 address is ·3 fl.mction clf its po·:.i tion \,.,i thin the
SpareTable (i.e., if it occupied the 1st location in the SpareTable then
its address would be 1x512, the 2nd position --) 2x512. etc.). Adding and
deletirlg element·:. from the SpareTable is a matter of manipulating the
linked lists: llsts that have thier last element deleted must change the
Headptr for that list to reflect an empty list; 8adBlocks can be deleted
·("hile SpareBlocks are never c~eleted ':·0 removing an element from the middle
of a list must be handled; and of course adding onto the end of a list is
common.

Ex.

Let~. as·~·Llne that Logical Block $32AA is. to be ~.earchec' for in the
SpareTable.

Function SearchSpareTable(LogicalBlock Bloc kNumber.~

var
PhysicalBlclI:k : BlockNumber;
IsData : Boolean;
var IsSpare : Boolean{output})

begin

Boolean

index := most significant 6 bits of LogicalBlock
if HeadPtr[index].NIL then

PhysicalBlock := LogicalBlock + (LogicalBlock DIV 512)
if (PhysicalBlock DIV 512) (> (LogicalBlock DIV 512)
then PhysicalBlock := PhysicalBlock + 1
SearchSpareTable := false {LogicalBlock not found}

els.e
ptr := HeadPtr[index].ptr * 4 {calculate effective address within

Heap}
if ptrA.Useable and

((ptr" . Data_Type = UserData) = IsData) and

(ptrA.Token = bits 0:9 of LogicalBlock) then
PhysicalBlock := (index+1)*512
if (ptrA.Spr_Type = Spare)

t.hen IsSpare := true
else IsSpare := false

SearchSpareTable := true {LogicalBlock found}

