
IOP SWIM Driver ERS
C D

Rev. LU Al 1/3/90

Introduction

The Modern Victorian architecture, and Four Square and Fl 9 implementations, contains two Input
Output Processors (IOPs), formerly called Peripheral Interface Controllers (PICs) which are
programmable input I output processors that have a shared memory interface with the main CPU
(68030). By off loading some of the input /output tasks to the IOPs, the main CPU will have more
free cycles and better performance in a multitasking environment. On the current IOP based CPU
projects, one IOP will be connected to a SWIM disk interface chip. This IOP will contain the code to
support the SONY Driver, which supports all disk devices that can be connected to the SWIM chip.
The basic message passing protocol between the Main CPU and. the IOP is described in the !OP
Manager ERS document. This document will describe the forma:t of the messages used to
communicate with the IOP based disk driver. Since the existence of IOP Manager is model dependent,
and given that no user written code should ever execute on this IOP, or need to call the IOP Manager,
the information in this document should noc be documented outside of Apple Computer, specifically, I
feel that this information should NOT appear in Inside iWacintosh.

SONY Driver Functionality

The SONY Driver for SWIM IOP based machines will provide the same functionality as the Macintosh
IIx SONY Driver (including FDHD disk drive support), but will be modified to pass messages to an
IOP based SWIM Driver, instead of directly accessing the IWM or SWIM hardware. All of the driver
OPEN, CLOSE, CONTROL, STATUS and PRIME calls will take the same parameters and return the
same results on both the Macintosh !Ix and SWIM IOP based machines.

The Macintosh IIx SONY Driver allocates its track cache (9K Bytes) in the system heap. On SWIM
IOP machines, the track cache will reside in IOP RAM, freeing up some system heap space, and may
be larger (18K Bytes), so that it can cache two tracks (one from each side of the disk). This has both a
positive and negative perfonnance impact. On the positive side, it frees up 9KB of system heap RAM,
which can be put to better uses, and it has a larger cache so the chances of a hit in the cache are greater.
On the negative side, since the cache is managed by, and resides in the IOP, you must pay for all of the
overhead associated with cross processor message passing and data transfer, even when you hit in the
cache, but overall, I think that the positives will out weigh the negatives.

The Macintosh Ilx SONY Driver that supports the SWIM chip, uses the IWM half of the SWilvl chip
for all access to GCR disks (400K/800K), and switches the SWIM chip into ISM mode when
accessing MFM disks (720K/1440K). The IOP SWIM Driver will use ISM mode exclusively, and nor
use IWM mode at all. The reasons for using just the ISM are as follows. Only ISM mode provides
the hardware handshake signals used by the IOP DMA hardware, the IWM has no handshake signal.
The only way to access the HeadSelect control line from the IOP is through a register in the ISM
register set, it cannot be accessed in IWM mode. The ISM provides a much nicer interface to software
than the IWi\r!, which will make the driver code, faster, smaller, and easier to understand, than if the
IWM mode were used. Mode switching is noc required if only one mode is used, and ISM mode is the
only mode that will support all of formats and drives that we need to support, IWM mode only
supports 400K/800K GCR and HD-20.

!OP SWIM Driver ERS Rev 1.0 Al 1 January 3, 1990
Apple Computer Confidential

There is some risk associated with this decision. No other project has used the GCR capabilities of the
ISM mode of the SWIM chip within Apple, since prior machines use IWM mode exclusively for GCR
mode, and just use ISM mode to access MFM encoded disks. However, I understand that the
consulting firm that designed the ISM has tested, and does use the GCR capabilities of the ISM
successfully. Additionally, the implementation of the IOP SWIM driver has progressed to the point
where GCR reads and writes are implemented, and they appear to be working without any problems.

Tnere is one extension that is being considered if development resources exist, and if it appears to be a
desirable extension. That extension is the addition of HD-20 (the old slow non-SCSI ones) support.
Support for the HD-20 was not included in the Mac II ROMs, but was later implemented in a RAM
based version of the SONY Driver, which along with a special cable (the Mac II does not have an
external disk connector), or using the built in ex'ternal floppy connector on the Macintosh SE-30 or
IIcx, allowed access to the HD-20 (the intention was to allow users who upgraded to Mac IIs to
transfer their data off of old HD-20s onto newer SCSI hard disks). If this type of upgrade path is still
popular, the only way that it could be supported would be through the IOP based driver, it would be
best to have it implemented in the standard driver, instead of having two drivers. If developmem
resources do not exist, then this feature may not be implemented at all.

Comoatibility lmcact

Since the new SONY Driver and IOP SWIM Driver will implement exactly the same functionality as
the Macintosh !Ix SONY Driver, any application that runs on the Macintosh IIx, and accesses the
SON-Y Driver through the Device Manager, should not have any compatibility problems with the IOP
based implementation.

The SONY Driver has several low memory globals that point to internal routines and data structures
used by the driver. This was so that the ROM code could jump indirect through these RAM locations,
which could be patched to fix potential bugs in the ROM code. If there are any applications that use
these patch vectors to directly call these internal SONY Driver routines (or worse yet, to change the
way these routines work), or access an of the internal data structures of the SON-Y Driver, they will
probably not run correctly on SWIM IOP based machines. Inside Macintosh does not document these
data structures, vectors, or the routines that they point to, so anyone who is doing this is probably also
doing other sleazy, model dependent things and is asking for trouble.

Many Copy Protection schemes access the disk in ways other than by accessing the SONY Driver
through the Device Manager, and may do thing such as patching portions of the SONY Driver, or
directly accessing the IWM hardware. Since the 680XX CPU, or SONY Driver on SWIM IOP based
machines will not be accessing the disk interface hardware directly, it is to be expected that manv
coov protected applications WTLL NOT RUN on SWIM TOP based machines!

It may be possible to support some copy protected software, if they are just making minor patches to
the SONY Driver, such as changing the values of Address Marks, or the GCR encoding tables. This
type of support , if implementable, will not be added until after the driver is fully implemented, and
debugged, and we are able to determine which applications might benefit from this type of kludge. I
feel that this should only be done if there are some very strong business reasons to support it Another
approach might be to work with the copy protection developers (and to be fair, the developers of copy
protection copying/defeating software), to establish a driver interface to accomplish what they need to
do, and implementing it in this and all future SONY drivers.

Pages 2 and 3 of Macintosh Technical Note #2 (May 1986) and pages 21, 24 and 25 of Macintosh
Technical Note #117 (March 1987) address using undocumented low memort globals, directly

!OP SW!/vf Driver ERS Rev 1.0 Al 2 January 3, 1990
Apple Computer Confidential

accessing the hardware, and copy protection. It's not like we haven't been warning developers that
something like the IOPs might come along someday.

Message Passing Overview

The 680XX based SONY Driver will communicate with the IOP based SWIM Driver using the
message passing interfaces provided by the IOP Manager. The format and contents of these messages
is described below. Developers should access the floppy drives by using the File System or the
SONY Driver, and should N.QI communicate directly with the IOP based SWIM driver, just as they
shouldn't directly access the IWM/SWIM chips on other system. The information below is to be used
internal to Apple for the Macintosh SONY Driver development, and possibly for the A/UX floppy
driver development

An IOP based driver can receive messages from the main CPU, and will notify the main CPU when
processing of the message request is completed. It can also return information in the completed
message. This method will be used for the main CPU to request disk operations to be performed. The
main CPU to IOP message number 2 will be used for this purpose.

It is also possible for the IOP based driver to send messages to the main CPU, which will be used to
notify the main CPU that a disk has just been inserted, or manually ejected. The IOP to main CPU
message number 2 will be used for this purpose.

Additionally, the IOP based SWIM driver will request data movement between the IOP and main CPU
memories, using IOP to main CPU message number 1, as described in the /OP Manager ERS
document.

Main CPU to IOP SWIM Driver Reguest Kinds

By convention, the first byte of any message associated with the IOP based SWIM driver will be a
request kind. The request kinds for the main CPU to IOP SWIM driver messages are as follows. The
error codes returned by these calls are the same error codes that the current Macintosh SONY driver
returns.

• $01 Initialize

• $02 ShutDown

• $03 Start Polling

• $04 StopPolling

• $05 SetHFSTagAddr

• $06 DriveStatus

• $07 Eject

$08 Format

!OP SWIM Driver ERS Rev 1.0 Al 3 January 3, 1990
Apple Computer Confidential

(

(

• $09 FormatVerify

• $0A - Write

• $08 - Read

• $0C - ReadVerify

• $OD - CacheControl

• $OE Tag BufferControl

• $OF Get Icon

• $1 O - DiskDuplnfo

• $11 - GetRawData

'·

Initialize

Offset Length Direction Description

$00 1
$01 1
$02 2
$04 28

In
In/Out
Out
Out

Initialize request byte ($01)
unused
Error Code
List of Drive Kinds

This needs to be the first call made to the IOP SWIM driver, and is normally made by the SONY driver
when it is first opened at system startup time. It causes the IOP SWIM driver to initialize its hardware
and data structures, and return a list ofdrives that are connected to the system, what kind of drive they
are, and an indication of the drive number to use to refer to them in future calls.

The driver can theoretically support 28 drives, numbered 0 through 27. The corresponding byte in the
List of Drive Kinds returned by the IOP indicates the drive kind for each of the 28 possible drives.
The encoding of the Drive Kind byte is the same encoding used by the SONY driver control call 23, as
follows.

0 No such drive
1 Unspecified drive
2 400K only drive
3 400K/800K drive
4 400K/800.K/720K/1440K drive (FOHD)
5 Reserved
6 Reserved
7 Hard Disk 20

/OP SWIM Driver ERS Rev I .0 AI 4 January 3, 1990
Apple Computer Confidential

Shut Down

Offset Length Direction Description

$00 1 In ShutDown request byte ($02)
$01 1 In/Out unused
$02 2 Out Error Code
$04 28 In/Out unused

This call used to shutdown the IOP based SWIM driver. It is not currently implemented, or needed,
and may be removed in the future.

StartPolling

Offset Length Direction Description

$00 1 In StartPolling request byte ($03)
$01 1 In/Out unused
$02 2 Out Error Code
$04 28 In/Out unused

This call used to enable the IOP based SWIM driver polling for disk insertion I eject requests. The
Macintosh OS SONY driver always wants polling to be enabled, and stans polling at driver open time.

StopPolling

Offset Length Direction Description

$00 1 In StopPolling request byte ($04)
$01 1 In/Out unused
$02 2 Out Error Code
$04 28 In/Out unused

This call used to disable the IOP based SWIM driver polling for disk insertion I eject requests.

SetHFSTagAddr

Offset Length Direction Description

$00 1
$01 1
$02 2
$04 4

In
In/Out
Out
In

SetHFSTagAddr request byte ($05)
unused
Error Code
HFS Tag buffer address

!OP SWIM Driver ERS Rev 1.0 Al 5
Apple Computer Confidential

January 3, 1990

$08 24 In/Out unused

This call used to support the extended 20 byte HFS file system tags that are used on the HD-20. The
first 12 bytes are also used by the 400K/800K floppy formats, and are passed in the message buffer,
but there was not enough room for the 8 bytes of extended info, so instead the IOP is notified of the
address of those 8 bytes, and when the IOP needs to access them it will send a move request to the
main CPU requesting them. If this call is never made, or if a buffer address of zero is passed to it,
then the IOP will not make requests for HFS tag data.

DriveStatus

Offset Length Direction Description

$00 1 In DriveStatus request byte ($06)
$01 1 In Drive number
$02 2 Out Error Code
$04 2 Out Track
$06 1 Out Write Protect
$07 1 Out Disk In Place
$08 1 Out Installed
$09 1 Out Sides
$QA 1 Out Two Sided Format
$08 1 Out New Interface
$0C 2 Out Disk Errors
$OE 4 Out Drive Info
$12 1 Out MFM Drive
$13 1 Out MFM Disk
$14 1 Out MFM Format
$15 1 Out Disk Controller
$16 2 Out Current Format (bit mask)
$18 2 Out Formats Allowed (bit mask)
$1A 4 Out Disk Size (blocks)
$1E 1 Out Icon Flags
$1F 1 Out unused

Returns Drive Status information for the disk and the drive specified. The meanings of most of these
bytes are the same as those used by many of the control and status calls to the SONY driver. Bytes
$02 through $OD are used for status call 8. Bytes $OE through $11 are used for control call 23. Bytes
$12 through $15 are used for status call 10. Bytes $16 through $18 are two 16 bit masks which are
used to indicate the current format and formats allowed, for status call 6. The bits have the following ...,
meanmgs.

Bit 0 HD-20 disk format
Bit 1 400K GCR format
Bit 2 800K GCR format
Bit 3 720K MFM format
Bit 4 1440K MFM format

!OP SWIM Driver ERS Rev 1.0 Al 6 January 3, 1990
Apple Computer Confidential

The Disk Size in Bytes $1A through $1D also used for status call 6. Byte $1E is used for control calls
21 and 22, to determine if the IOP based driver needs to supply the icons, or if the default icons used
by the SONY driver is correct. This is used for the HD-20 drive which supplies its own icons. The
bits have the following meanings.

Bit 0 0- use default Media icon, 1 - call IOP for Media icon
Bit 1 0 - use default Drive icon, 1 - call IOP for Drive icon

Eject

Offset Length Direction Description

$00 1 In Eject request byte ($07)
$01 1 In Drive number
$02 2 Out Error Code
$04 28 Out Same as DriveStatus request

Ejects the disk from the drive specified, and returns updated drive status reflecting the state of the drive
after the disk has been ejected. See the DriveStatus message for the meanings of the returned status
bytes.

Format

Offset Length Direction Description

o ~a -. ?. .•)

$00 1 In Format request byte ($08)
$01 1 In Drive number ·- _,

$02 2 Out Error Code -.... ,'i"

$04 28 Out Same as DriveStatus requ~st (r ., - ,/'° ..ri- .,,./JI

$04 2 In Format Kind
(!) -_./'

$06
.-

1 In Format Byte for Sector Header {O = use default)
$07 1 In Interleave (0 = use default)
$08 4 In Sector Data Main CPU RAM address (0 = use default data)
$0C 4 In Tags Main CPU RAM address (0 =use default tags)

Formats the disk in the drive specified, using the specified format kind, which the bit number of the
format kind to use, as described in the DriveStatus request. Tag and Data Buffer pointers may be
supplied to allow formatting and writing to the entire disk in just one pass. The sector interleave factor
may also be specified, as well as the FormatByte field of the sector headers. These options are
provided to support the Disk Duplicator application. After the format is complete, it returns updated
drive status reflecting the state of the drive after the disk has been formatted. See the DriveStatus
message for the meanings of the returned status bytes.

FormatVerify

Offset Length Direction Description

/OP SWIM Driver ERS Rev 1.0 Al 7 January 3, 1990
Apple Computer Confidential

·--

($00 1
$01 1
$02 2
$04 28

In
In
Out
Out

FormatVerify request byte ($09)
Drive number
Error Code
Same as DriveStatus request

Verifies that the disk in the drive specified is correctly formatted, and that each block of the disk can be
successfully read. Note that this call will not perform any error retrys, all errors are fatal. This is
because it is expected to be used immediatly after formatting a disk, to determine that the disk can be
used reliably, and soft errors would indicate unreliable media

Write

Offset Length Direction Description

$00 1 In Write request byte ($0A)
$01 1 In Drive number
$02 2 Out Error Code
$04 4 In Main CPU RAM address
$08 4 In Disk Block Number
$0C 4 In Block Count
$10 12 In/Our Tag Data
$1C 4 In I Out unused

Writes Block Count disk blocks; using data starting at Main CPU RAM address, to the disk in the
drive specified by Drive number, starting at Disk Block Number, using Tag Data for the first block
written, and updating it for each successive disk block. When the write is complete, error status is
returned in Error Code, and Tag Data is updated to reflect the tags of the last block transferred.

Read

Offset Length Direction Description

$00 1 In Read request byte ($OB)
$01 1 In Drive number
$02 2 Out Error Code
$04 4 In Main CPU RAM address
$08 4 In Disk Block Number
$0C 4 In Block Count
$10 12 Out Tag Data
$1C 4 In I Out unused

Reads Block Count disk blocks, into the data area starting at Main CPU RAM address, from the disk
in the drive specified by Drive number, starting at Disk Block Number. When the read is complete,
error status is returned in Error Code, and Tag Data is updated to reflect the tags read from the last
block transferred.

/OP SWIM Driver ERS Rev 1.0 Al 8 January 3, 1990
Apple Computer Confidential

ReadVerify

Offset Length Direction Description

$00 1 In ReadVerify request byte ($0C)
$01 1 In Drive number
$02 2 Out Error Code
$04 4 In Main CPU RAM address
$08 4 In Disk Block Number
$0C 4 In Block Count
$10 12 Out Tag Data
$1C 4 In I Out unused

Reads Block Count disk blocks from the disk in the drive specified by Drive nwnber, starting at Disk
Block Nwnber and compares the data from disk to the data in the data area starting at Main CPU TAG
address. When the read is complete, error status is returned in Error Code, and Tag Data is updated to
reflect the tags read from the last block transferred.

CacheControl

Offset Length Direction Description

$00 1 In CacheControl request byte ($OD)
$01 1 In/Out unused
$02 2 Out Error Code
$04 1 In Cache Enable Flag
$05 1 In Cache Install Flag
$06 26 In I Out unused

Controls the track caching feature. The meaning of two parameter bytes are the same as the csParam
bytes that are passed to control call 9 in the SONY driver.

TagBufferControl

Offset Length Direction Description

$00 1 In TagBufferControl request byte ($OE)
$01 1 In/Out unused
$02 2 Out Error Code
$04 4 In Main CPU RAM address
$08 24 In I Out unused

Specifies the Main CPU RAM address of an alternate tag buffer. An address of zero is used to disable

!OP SWIM Driver ERS Rev 1.0 Al 9 January 3, 1990
Apple Computer Confidential

(

the alternate tag buffer. The meaning of parameter is the same as the csParam bytes that are passed to
control call 8 in the SONY driver.

Getlcon

Offset Length Direction Description

$00 1 In Getlcon request byte ($OF)
$01 1 In Drive number
$02 2 Out Error Code
$04 4 In Main CPU RAM address
$08 2 In Icon Kind (O=Media, 1=Drive)
$0A 2 In I Out unused
$0C 2 In Max Byte Count
$OE 18 In I Out unused

Specifies the Main CPU RAM address of a buffer to receive the icon data, the Icon Kind and the Max
Byte Count of the receiving buffer. This call should only be used when the Drive Status indicated that
the IOP should be called for icon data.

DiskDuplnfo

Offset Length Direction Description

$00 1 In DiskDuplnfo request byte ($10)
$01 1 In/Out unused
$02 2 Out Error Code
$04 2 Out Version Number ($0410)
$06 1 Out Sector Header Format Byte
$07 25 In I Out unused

Returns the information needed by the Disk Duplicator Program. The version number indicates that
the driver support this level of functionality. The Sector Header Format Byte is the format byte field
from the last sector that was accessed on any drive.

GetRawData

Offset Length Direction Description

$00 1
$01 1
$02 2
$04 4
$08 4

In
In
Out
In
In

GetRawData request byte ($11)
Drive number
Error Code
Clock Bits Buffer Main CPU RAM address
Data Bytes Buffer Main CPU RAM address

/OP SWIM Driver ERS Rev 1.0 Al 1 0
Apple Computer Confidential

January 3, 1990

$0C 4
$10 2
$12 2
$14 1
$15 1

In I Out
In
In
In
In

• ·.-..... . JY',..,·_ ... _,

Byte Count Requested I Bytes Transferred
Search Mode
Cylinder Number
Head Number
Sector Number

Allows reading of the RAW data from the disk, at the specified cylinder and head. The parameters
correspond to those used by Control Call 18244 in the Macintosh Sony Driver.

IOP SWIM Driver to Main CPU Request Kinds

By convention, the first byte of any message associated with the IOP based SWIM driver will be a
request kind. The request kinds for the IOP SWIM driver to main CPU messages are as follows.

• $01 Disklnserted

• $02 - DiskEjectButton

• $03 - DiskStatusChanged

Disklnserted

Offset Length Direction Description

$00 1 Out D1sklnserted request byte ($01)
$01 1 Out Drive Number
$02 2 Out Error Code
$04 28 Out Drive status information

Informs the main CPU that a disk has just been inserted in the drive specified by DriveNumber, and
the new status for that drive is returned in Drive status information, which has the same format as the
DriveStatus request.

DiskEjectButton

Offset Length Direction Description

$00 1
$01 1
$02 2
$04 28

Out
Out
Out
Out

DiskEjectButton request byte ($02)
Drive Number
Error Code
Drive status information

Informs the main CPU that the eject button has been pressed on the drive specified by DriveNumber,
requesting the system to eject that disk. The current status for that drive is returned in Drive status
information, which has the same format as the DriveStatus request.

!OP SWIM Driver ERS Rev 1.0 Al 1 1 January 3, 1990
Apple Computer Confidential

(DiskStatusChanged

Offset Length Direction Description

$00 1 Out DiskStatusChanged request byte ($03)
$01 1 Out Drive Number
$02 2 Out Error Code
$04 28 Out Drive status information

Informs the main CPU that the status of the drive specified by DriveNumber, may have changed, and
the main CPU copy of the status may now be incorrect. The new status for that drive is returned in
Drive status information, which has the same format as the DriveStatus request.

/OP SWIM Driver ERS Rev 1.0 Al 12 January 3, 1990
Apple Computer Confidential

