Widget Firmware Specification
and
Theory of Operation

Revision 1.4-9
October 16,1983

Written by Rodger Mohme
Ms-24D x4879

Firm_1.Script- Widget Firmware Specification

{1 44
L4 (&4
il

o

Widget is Apple’s in-house name
Winchester hard disks. This current
MB of storage (formatted).

Widget has been designed as
intelligent subsystem. The purpose of
detail how this subsystem behaves
environment.

e g,
<A

HEN

for the
version

a complete,
this document

within

Page 1

latest in a line of
is available with 198.1

the

self-contained
is to explain in

complete

system

C

Firm_1.Script Widget Firmware Specification Page 2

Apple_Profile_Interface:

A more complete description of the Apple/Profile interface may
be found in the document "EXTERNAL REFERENCE SPECIFICATION (E.R.S)
PIPPIN HARDWARE" by Dick Woolley and Wolfgang Dirks, dated April 16,
1981, '

There are S control lines to/from the Apple ProFile Interface Card:
1. Parity

This line is 1 bit of odd parity (even parity across the
cable). The Interface Card is responsible for monitoring
this signal: the controller calculates parity only when it
sends a word across the bus; the controller does not check
parity when a word is sent from the host, instead the parity
bit is is generated once more on the controller side of the
bus and then routed back toc the host.

2. CMD ¢ Command/Attention: Asserted by Host, Active high)
This signal is one of two handshake signals across the
interface bus. Keep in mind that even though the host and
controller are two autonomous machines, the host is alwayrs
considered the master and the controller the slave (in this
conftiguration >. When the host wishes to initiate a transfer
to the controller it must first check if BSY (discussed
below) is active, If BSY is active then the Host must wait ¢
hopefully it will set a DeadMan timer and catch a "sick®
contraller > until BSY is no longer active,

3. BSY (Busy: Asserted by Controller, Active High
This signal is the dual of CMD, in other words this is the
signal with which the controller can hold off the host for an
indefinate period of time while it is "BUSY" performing scome
task. '

4, STRB (Strobe: Asserted by the Host, Active High >
Strobe is used to signal to the «controller/host pair that
datax is valid on the bus.

3. R/W (Read/Write: asserted by the Host, Write is Active Low
) _
Thie signal is used by the Host to indicate to the contraller
which direction data is to be going during a ‘transmission.
Read is used to direct data out of the controller into the
host and the opposite condition is true for lWrite.

Firm_{.Script : widget Firmware Specification Page 3

Profile Communication Protocol:

The following is an explanation of thé protocol that is wused
to provide communication between the host and the controller:

(Some explanation of the symbols that [am wusing is probably
called for at this point.

<y>’ 1+ The bracket symbols mean that the information inclosed
within them are mandi tory. '

‘0,37 1 The square bracket symbols mean that the information
inclosed is optional.

‘17 1+ The vertical bar symbols is used to indicate an alternative
or "OR" condition. For example, AIB can be thought of as "Either .
A OR B". .

‘eaa=7 : This symbols is used to indicate a definition or

equivalence.

{437 ¢ Curly brackets are used to denote comments.

“+7 ¢ The plus sign is as an addition symbol.
‘NULLY : This Key word indicates the empty set, or in some cases,

the fact that the function whose value is NULL can be ignored. An
example is:

Rrgle-Bargle ::= < NULL >

Essentially you <can forget that Argle_Bargle exists for this
context,

N /‘
S

.g‘jFirm_l.Script Widget Firmware Specification Page 4

PROFILE_COMMANPS

_ These commands are currently by the SO0S driver. Widget is
designed to be backwards compatible with the current ProFile driver,
and to that end there exists the three ProFile system commands:
Read, Write, and Write_Verify. '

Profile Commands:

Opcode » Definition

€49 Read Logical Block

$41 Write Logical Block

$62 Write/Verify Logical Block

The three Profile commands behave in exactly the same fashion as
do the corresponding instructions on ProFile, with one <small
exception: the Read Logical block command does not include
information concerning Retry count. or Sparing threshold {(however,

@/}ecause of a side effect in the way that the Host/Controller
interface was designed, the Host may write as many command bytes to
the controller as it chooses. The controller will only decode the
first 4. . The form of each command is:

{($48 | 341 | %2> <(3 Bytes of Logical Block Address >

There are two “special’ logical addrecses defined in the ProFile
protocol, namely $FFFFFF { -1)} and $FFFFFE { -2 }. Logical address

< =1 > returns as it’s value Device_ID { as explained under the
Widget Diagnostic commands Y and Logical address < -2 > returns as
it’s value Widget’s spare table structure in it’s raw?® form. It

should be noted that i¥ at any time Widggt can not pass it’s self
test that it will refuse to communicate via logical commands (bath
ProFile and System type commands . Widget will respond fo
Diagnostic commands at all times, however.

The rest of the commands available on Widget are a complete
departure from the ProFile way of doing things. The new form of
command is:

¢ < Command_Byte >

¢ Imstruction_Byte >

_ { Instruction_Parameter_String 1
(< checksyte > :
Command_Byte ::= { CommandType_Nibble + Commandlength_Nible >

CommandType Nibble ::= ¢ Diagnostic_Command | System_Command >

Diagnostic_Command ::i= < #1351 >

Firm_1.Script Widget Firmware Specification Page S

Syetem_Command ::= < $29 >

CommandLength_Nibble ::= Count of all bytes in the command string
NOT including the first one. This length is used only to calculate
the checkbyrte, and not to parse the command, therefore there is a
large variety of commands that perform exactly the same function but
differ in format in that their lengths are not the same.

IF System_Command
THEN Instruction_Byte ::= {Sys_Read | Sys_Write |
Sys_Wrler>

IF Diagnostic_Command
THEN Instruction_Byte ::= <

Read_ID |
Read_Controller_Status |
Read_Servo_Status |
Send_Servo_Command |
Send_Seek |
Send_Restore |
Set_Recovery |
Soft_Reset |
Send_Park |
Diag_Read |
Diag_ReadHeader |
Diag_Write |
Store_Map |
Read_SpareTable |
Write_SpareTable |
Format_Track |
Initialize_SpareTaxble |
Read_Abort_Stat |
Reset_Servo |

Scan >
Instruction_Parameter_String ::= {(This string is instruction
dependent, and will be formally specified at the same time as the
individual instructicns. 2 : :
CheckByte :1:= { This byte is the ones—complement of the sum, in

MOD=-2S5& arithmetic, of all the bytes including the Command_Byte 3.

—

-

i

Firm_1.Script Widget Firmware Specification Page 4

«

DIAGNOSTIC_COMMANDS

Widget’s "personality", or the manner in which it behaves, can be
thought of as having two distinct parts: 1) that portion that is
dictated by the hardware and 2) that portion that is controlled by

. the firmware. As trite as that last statement may seem on the

.,

surface, the fact remains that the part of Widget that is the
hardware is not easily molded to adapt to different environments.
The same is true, but not quite in the same manner, for the firmware
- the code is locked in a ROM of some sort and costs a lot to
change. - How then can Widget’s "personality" be changed { on-the-fly
} to "adapt" to a new environment? The answer in this case to
architect the firmware in a larered fashion: build the intelligence
required to run Widget in it’s normal operating mode from a pool of
discrete, primitive functions; these primitive functions in most
cases have only one particular task that they are capable of
completing. The implication of this architecture is that with wvery

little effort these same primitive functions are availble to the
host system, and thus make Widget a little "Schizoid". Such luxuries

“40 not come without their hidden costs, howewer. For one thing, the

Jidget controller is slightly more expensive to manufacture { a cost
that I believe pales in the sight of the added test/diagnostic
capabilities) because of the additional code space regquired for all
the bells and whistles, and another is that somecne must now develop
Host software to emulate the controller firmware design of choice.

The purpose of the rest of this section on Diagnhostic Commands is
to aquaint the casual/not-so-casual designer of Host software as to
how to maKe the best use of Widget’s multiple personality
capabilities. ' 4

L]

Firm_1.Script Widget Firmware Specification Page 7

Read_ID ::= < $8§ >

Instruction Parameter _String ::= NULL

This dxagnostlc command requires Widget to delnver to the host some
device specific information. The structural layout of the data
returned is: ’ :

STRUCTURE ldentitiy_Block

{ this identity block is defined by the data structures contained
within -it; you will note, however, that a comment is given
explaining the type of structure for a given element and range of
brtes { if the entire structure is thought of as a linear array of
brtes } that include the structure. An example is NameString {(first
element to be defined below 2} which is a 13-character ascii string,
and is located in bytes $8 thru $C of the returned block.

NameString ::= <

1AMB_Name |
29MB_Name | -
4@MB_Name (|3 Byrtes/$808:34C; Ascii String 3>
19MB_Name ::= (‘Widget-14 ‘D
20MB_Name ::= (‘Widget-29 D
48MB_Name ::= < ‘Widget-44 D
DeviceType ::= <(Device.Widget+Widget.Size+tWidget.Type { 3 Bytes /%I
1$8F 3>
Device.Widget ::= <3841 (2 Byrtes/38D:$8E >’
Widget.Size ::= (Size_18 | Size_28 | Size_48 {(1| Nibble, Brte 38F
its 7:4 3> »
Size_18 ::= <($88>
Size_28 :1:= (314>
Size_48 ::= (324>
Widget.Type ::= <(System | Diagnostic {(1| Nibble, Byte $6F/bits Z:
>
Syetem ::= <$44>; This refers to the type of Ffirmware that |
imbedded in - '
Widget.
System firmware will not allow the host to Format, or
Initialize_SpareTable; Diagnostic firmware will.
Diagnostic ::= <$81>
A
Firmware_Revision :1:= <{ 2 Bytes/s14:311 > . N
Capacity 1:= <(Cap_1# | Cap_28 | Cap_4d (3 Brtes/312:%14 1>
Cap_l18 :1:= <($984CH48>
Cap_28 ::= (3849244>
Cap_44 ::= <($sg413494>

po- 2 g - e

L ws - s e . i~ - . -

g

Firm_1{.Script

Cri_18 :
Cri_24 :
Cr1_48 :

Widget Firmware Specification Page~8

{(sg242>
{$8292>
{€@484>

Number_0f_Heads ::= (342 {(| Byrte/$19 3>

Number_0Of_Sectors ::= < Sctr_18 | Sctr_29 | Sctr_49 {(1| Bytes/¢lAa >

Sctr_18 ::= (313>

Sctr_20 ::= ($26>

Sctr_48 ::= <($24>
Number_0Of_Possible_Spare_Locations ::= <($88884C { 3 Brtes/$1B:$1D
Number_0Of_Spared_Blocks ::= <{ 3 Brtes/$1E:$28; range £..%4B >
Number_0Of_Bad_Blocks :1:= ({ 3 Bytes/$21:$23; range g..%4B 3>

Firm_2.Script . Nidgét Firmware Specification Page %

Read_Controller_Status ::= <$41>

Every time an operation completes <{ either successfully or

exceptionally 3 Widget will return what I refer to as
Standard_Status, thus allowing the Host system an opportunity to
change iit’s flow of execution based on state of the Status.

Normally, this Standard_Status is all that is necessary to ensure
continuous operation. In the exceptional case, or when the Host
system is emulating the controller’s functions, addi tional
information concerning the state of Widget is mandatory: without it
the Host simply could not make an optimum choice in deciding a
course of action.

Controller_Status is then & means for the Host system to
interrogate Widget <further. Each Status { with the exception of
Abort_Status, which is a seperate command and is discussed later in
this document > belongs to a homogeneocus data structure: namely a
four byte quantity containing a bit map representing the various
exceptional conditions { active high > that is available as the
first <four byrtes read from the controller upon completion of the
current command.

There are eight status’ available to the Host system. The Host
requests a specific status by setting Instruction_Parameter_String
to the value corresponding to the status needed.

IF ¢ Instruction_Byte = Read_Controller_Status)
THEN Instruction_Parameter_String ::= (

Standard_Status |
Last_Logical_Block |
Current_Seek_Address |
Current_Cylinder |
Intérnal _Status |
State_Registers |
Exception_Registers |
Last_Seek_~Address >

The four byrte response to each of the above status requests is of
the form:

Recsult :1:= { Byted Bytel Byte2 Byte3 >

i
)
(¢Firm_2‘8cript Widget Firmware Specification Page 10

Standard_Status ::= <{($84>

Byted ::= (i

Bit?7: Other than $55 response from Host
Bité: Write Buffer OverFlow
Bitd: { not used
Bitd: { not used 7

*Bit3: Read error

© Bit2: No matching header found
Bitl: Unrecoverable servo error

- Bitgd: Operation Failed >

Bit?7: { not used ?
Bité: Spare Table OverFlow
BitS: S or less spare bloacks available
Bit4: { not used 2
= Bit3: Controller SelfTest failure
@, Bit2: SpareTable has been updated
Bitl: Seek to wrong track occured
Bitd: Controller aborted last operation >

Brte2 :1:= < ,
Bit?: First status response since power-on reset
Bité: Last Logical_Block_Number was out of range
bitS:8 (not used » >

Byte3 :1:= <

Bit7: Read Error detected by ECC circuitry
Bité: Read Error detected by CRC circuitry .
Bit3: Header Timeocut on last read

Bitd4: { not used 7%]

Bit3:8 : number of unsuccessful retries { out of 18 > for last
read

-

Firm_2.Script Widget Firmware Specification Page 11

Brte3 ::= ({ Least Significant Byte of Logical_Block_Number 7

Current_Seek_Address ::= < $82 >

Brted ::= < Most Significant Crlinder Address >

Brtel :1:= < Least Significant Cylinder Address >
Byte2 ::= < Head Address >
Byte3 :1:= < Sector Address »

Current_Cylinder ::= ($83 >

{ The Current_Cylinder differs from the Current_SeeK_Address in
that it is perfectly reasonable for the Servo to have placed the
heads on another track under certain circumstances; for example, the
drive may have been bumped >

]

Brted ::= < Most Significant Cyrlinder address >

Brtel :1:= (Least Significant Cylinder address >

Byte2 :1:= <{ Most Significant Crlinder of current seek address >
Brte3 :1:i= < Least Significant Cylinder of current seek address
>

-
&

(\7irm_2.8cript Widget Firmware Specification Page 12

Internal _Status ::= < $@4 >

Brted :1:= ({(Register: Excpt_Status
Bit?: Recovery { active high --=> Recovery ON 2
Bité: Spare almost full
—~BitS: Buffer structure is contaminated
Bitd4: Power reset has just occured
Bit3: Current Standard Status is non-zero
Bit2:1 : { not used := & 3}
3 Bitd: Set if controller LED is 1it >

Brtel :1:= < { Register: DiskStatus 2

Bit7: On_Track { heads are position where they
should be 3

Bité: Read a Header after Recal

‘BitS: current operation is a WRITE operation

iBitd4: Heads are parked ‘
Bit3: Do sequential search of Logical Block
look—-ahead structure

.Bit2: Last commad was a multiblock command
Bitl: Seek_complete
Bitd: Servo offset (auto } is on >

Brte2 :1:= <({ Register: BlkStatus ?
This brte of status is wvalid ONLY after a ProFile/System
command. If the byte is read after a Diagnostic command it
wi 1l contain information concerning the last
non-Diagnostic command.
Bit7: SeekNeeded { a1 seek was needed to arrive at
the current block 2
Bité: Head_Change-:Needed <{(1like RBit7, but Head
change instead of seek 3
BitS:2 388 {(not used 7
Biti: Current Block is a Bad Block
Bitd: Current Block is a Spare Block »

Byte3 ti < 388 { not used » >

Firm_2.Script

State_Registers

Byted

Bytel

Byte2

—
—

Widget Firmware Specification . Page 13

1= < $4S >

{ $88 { not used 3} >

¢ ¢ Register: SelfTst Result)

Bit?: Ram_Failure

’vBlté: Eprom_Fallure

" BitS: Disk_Speed_Failure
Bitd4: Servo_Failure

Bit3: Sector_Count_Failure
Bit2: State_Machine_Failure
Bitl: Read_Write_Failure
Bitd: No_Spare_Table_Found >

{ Register: Port2 2

r Bit7: Disk Read/Write direction set to Read

Bité: Servo is able to accept a command { SioRdy 3

BitS: MSell { MSeld and | determine the memory
/source and destination 2
"Bitd4: Mselgd
"Bit3: BSY
; Bit2: CMD
Bitl: Ecc Error
r Bitgd: State machine is running >
{ Register: Controller_Status_Port 3
Bit?7: CrcError { active low 2}
{ this bit is wvalid ONMLY when the
controller state machine is NOT in reset,
which should be every time that this bit is

read by the host. Therefore, if this status
bit indicates a CrcError, then scmething

has croaked. The normal way +for the

host to

check i a Crc or Ecc error has occured is
to examine Status: Exception_Registers

which are dicussed below. }

Bité: Write_Not_Valid {(active low 1}

{ as in CrcError, thicec bit is valid only
when the state machine is NOT in reset. The

infaormation expressed by this

converted into a type of ServoError,

bit =
which

is found in Status: Exception_Reqisters. %

BitS: ServoReady
Bitd: SerwvcError

{ the servo status bits Jlisted zbove are
further explained in Appendix A: Servo
Processor Documentaticon. Escentially the

two bits combine to form four

possible

N

®

| P . .
(£}irm_2.8cript Widget Firmware Specification Page {4

servo states; the normal condition is
ServoReady AND ¢(NOT ServoError).

Bit3:8 Current controller state-machine state.
{ as in CrcError and Write_Not_Valid, these
status bits are valid only when the state
machine is NOT in reset, and should read
$88 any other time. 2

On the surface it appears that this byte is of limited use for non
real—- time situations. It is, however, invaluable in tryving to
decide if the Servo Processor is healthy, wealthy, and wise. It also
provides a means for diagnosing a sick state machine.

Firm_2.Script Widget Firmware Specification Page 1S s

Exception_Registers ::= ($84 >

Brted ::= { { Register: RdStat
Bit7: Read error occured on last read attempt
Bité: Servo Error while reading

Bit3: At least one successful read in last read
attempt (this means that valid data is residing in
Buffer2 7

Bit4: No matching header was found during last read
attempt : ?
Bit3: CrcError OR EccError occured during last read
attempt

Bit2:8 88 (not used 3} >

{ a read attempt is defined as being the sequence of events normally

associated with reading a single block of data. In the case where
the first read of a block was invalid for some reason, AND Recovery
is active, then the controller will automatically retry ¢ times: (4 P

tries total. For example, if the first read was invalid because of a
CrcError, but the second thru tenth reads are all correct them the
status bits that will be active are BitS, and Bit3. Correct and
valid data will be both in the normal Read buffer and in Buffer2. 3

Bytel :1:= (
Bit?: Error detected by ECC circuitry
Bité: Error detected by CRC circuitry
BitS: Header timeout
Bitd: (noy used := g ?
Bit3:8 : Numbeg of bad retries during last read
attempt >

{ For the above example, this status byte will contain the value 3%C{

3

Byte2 ::= < { Register: WrStat %
Bit7: Write error occured on last write attempt
Bité: Servo Error while writing | o : ’
BitS: At Jleast one successful write during last
write attempt : .
Bitd4: No matching header found durimg.last write
attempt oo -
Bit3:4-%8¥ (rot used 3 °

{ A write attempt is much the same as a read attempt in that there
are several events that can Keep the controller from writing & block
succescsfully — and can be detected at the time of the attempted
write, ¥ Recocvery is active then the controller will first copy.
the write buffer to Buffer2 and then retry 3

Byte2 :1:= < Number of bad retriec during last write attemnt >

i

(«

Tirm_2.Script Widget Firmware Specificatioh ” Page 146

Read_Servo_Status :1:= < %82 >
Instruction_Parameter_String :1:= < #..8 >

This status command ie used to interrogate the Servo Processor in
much the same way that Read_Controller_Status is used. In fact, the
form of the result is the same four byte bit-mapped quantity.

This command is of particular value to a diagnostician that is
interested in ‘picking—about’ with the servo processor without
dismantling Widget as a subsystem. Refer to Appendix A: Servo
Processor Documentation for a complete description of the wvarious
status’ available and their resulting bit descriptions.

Send_Servo_Command ::= < %83 >

Instruction_Parameter_String ::= (Brted Bytel Brte2 Byrte3 >

Normally, the Host will allow the controller to manipulate the servo
processor in order to perform useful { or maybe not so useful!
work. For example, let’s suppose that the Host system wishes to
move the disk drive heads from one track to another. Under normal
operating conditions the preferred way to perform this task is- to
use the Send_SeekK command { explained below }, However, the Host has
the capability to bypass the controller and direct the servo
processor. Indeed, the Host can issue the servo command to position
the heads {(via the Send_Servo_Command * <o that the seeK is
completly transparent to the controller. The implication of this
command is that the Host can gain even more control of the system if
it so chooses.

A more complete description of the Servo Commandse can be read in
Appendix A: Servo Processor Documentation.

Byted ::=

S _Command
Command :

+ S_Direction + Hi_Magnitude >
= <

<

S_ :
Off<set
Diagnostic
DataRecal
FormatRecal
ACCess

Access_Offset

(wi Home

Dffset 1:1= < 814 >
The Offset command allows the Host to microstep the heads
in 2ither a positive or negative direction from the center
of the track. The Widget Firmware docese not make use of
this feature! [have instead left this to a more specific

P I rPAAFMAIIERY AR T PR AP e A e e Llmm d T e 112) 0

Firm_2.Script Widget Firmware Specification : Page 17

and direction of the microstep are sent to the Servo
Processor in ByteZ2.

Diagnostic ::= < $28 (this command is not implemented in the
Servo } >

DataRecal ::= < $48 >

DataRecal (and also FormatRecal 3 is used as a "Get the
servo in a Known state’ command, and is usually sent by
the controller during initialization time or whenever the
servo is not “Ready’. This command places the heads over
the first data track closest to the inside diameter of the
disk, within a tolerance of 3 tracks. The accepted method
for makKing certain that the heads are over a Known track
following a DataRecal is to read a header and use the
track information located in the header to establish the
location.

FormatRecal ::= < $79 >

This command is identical to the DataRecal command except
for the track that the heads end up over upon completion:
about 38 tracks closer to the inside diameter of the disk.
Unlike the DataRecal command, however, the disk surface in
this area is not likely correctly store information
written there. This command then is wused to supply an
absolute reference point when formating the drive.

Access :1:= < $84 >
I use the term “access’ and “seekK’ interchangeably within
the context of this document. The servo Access command is
used to position the heads a relative distance from their

current position. The Servo Processor has no Knowledge
caoncerning absoclute position and it is up to the
controller (real or emulated } to supply the relative
distance. This information is passed along in Byted and
Brtel.
Access_UOffset 1:= ($96 >

The difference between an Access and an Access_Uffset iz
that the assumption is made that heads will position

themselves within a “tolerable’ distance of the center of
o the track with an Access command, while no such assumption

is made with an Access_Offset command. There s some
information written on each track of the disk “under’ the
index mark, This infarmation ie used by the serya

processor to “calculate’ the center of the track { data
center } and position. the heads accordingly. Because the
servo must wait for the index to arrive under the heads
before it can read this informaticon there ic an implied
latency of about I rauolution { currentls 12.4 mear~ =

-

I
(“Firm_Z.Script Widget Firmware Specification Page 18

attached to each Access_Offset. Normally, the Widget
controller will use the Access command for all reads, and
the Access_Offset command for all writes.

Home ::= < $C& > -
When the heads are ‘Homed’ they are sent completely off

the data surface and held in position very near the inside
diameter crash stop.

S_Direction :1:= < Positive | Negative >

Positive 1= { %84 { move the heads toward the outside
di ameter } >
Negative ::=

>

di ame ter 2

{ $88 { move the heads toward the inside

Hi _Magnitude 1::= < @..3 { move the heads a multiple of 256
tracks 3 >

Brtel :1:= (Low_Magnitude ::= §#..255 >
Hi _Maginitude + Low_Maginitude, and S_Direction establish the
relative distance the heads must maove to arrive at the target
track.

Brte2 1= (Offcet_Direction + Auto_Offsét_Switch + Offset_Magnitude
N

/7

This command byte, when used with the Offset command, establishes
~the degree and direction of microstéppjng.

Offset_Direction ::= ¢ Positive | Negative >

Positive ::= < $88 {(offset towards outside diamefer
} > e AN .
Negative ::= (g (offset towards inside diameter

(w; >

. Auto_Offset_Switch ::= < ON | OFF > |
ON ::= < 349 { turn automatic track centering on
without an zaccesse command -2 > OFF :1:= { 384 { do naot

auto track center on this command 2 >

Firm_2.Script

Widget Firmware Specification Page 1%

Offset_Maginitude ::= < 4..32 >

Byte3 ::=

¢ Baud_Rate + Powér_On_Reset >
Baud_Rate ::= < 19.5Kk_Baud | 57.6éK_Baud >

The servo ‘comes up’ at 19.5k baud because of the

test equipment used on it before it is integrated
into a system. Once it is running with a controller,
however, it is run continuosly at 57.4K baud. This

parameter is also a bit misleading in that once the
servo has been told to go to 3S7.6K it will forever
more ignore this parameter: in other words it i<
impossible to go from the higher baud rate to the
lower without reseting the servo processor.

192.5k_Baud ::= < $49 >
S7.6_Baud ::= < %88 >

Power_0On_Reset ::= (€48 >
This is one of three way to reset the servo
processor { such variety! }., The other two are:
1) Power switch, and 2> have the contraller pull
on the servo reset line. OQut of all three
me thods, choice two is the most preferable in
that the controller will completely initialize

all the drive parameters related to the cervo as
well as automatically go to the higher baud
rate.

S

.

iy

"Firm_a.Script Widget Firmware Specification Page 20

Send_Seek ::= ($44 >

Instruction_Parameter_String ::i= < HiCyl LoCyl Head Sector >

Widget’ s Send_SeekK command allows the Host system to place the
heads over any track on the disk., The value of the seeK address
sent in the parameter string is used read/write a block of data
Jysing the diagnostic commands for those functions. For example,
for the Host to read Cylinder- 1, Head @, Sector 18 a
Seek_Command would be issued for that combination of cylinder,
head, and sector { $@881 B8 12 > +followed by a Diag_Read ¢
explained below 2.

Firm_3.Script Widget Firmware Specification Page 21

Send_Restore ::= < $835 >

Restore_Data :
Restore_Format

{ %48 >

1= < 879 >

The Send_Restore command is used by the host to initialize the
servo processor and to put the heads in a Known location. This
command is the same as performing a Data/Format Recal except
that the controller updates it“s internal state to account for
the new servo position (as opposed to using the
Send_Servo_Command, which is transparent to the controller .

N

N

[P o .
(,#irm_S.Script Widget Firmware Specification Page 22

Set_Recovery :1:1= < $846 >

Instruction_Parameter_String ::= < ON | OFF >

SN
|
7

ON

r= ¢ $81 O
OFF ::

= < 384 >

To the best of my ability 1 have attempted to make the
exception handling characteristics of Widget a binary set:
either Widget handles everything, or the Host system does. The
command Set_Recovery is the Host’s link with this all or
nothing world in that it is through this instruction that the
Host can gain control of the media. When Widget comes up after
being reset it assumes control and sets Recovery to be ON. The
Host system must overtly change this state { via Set_Recovery
itf it wishes to emulate a different exception handling
criteria., Once Recovery is OFF, the controller will always fail
in an operation if an exception occurs: the Host system MUST
assume responsibility for ALL error handling.

Firm_3.Script Widget Firmware Specification

Soft_Reset ::= < %87 >

Instruction_Parameter_String ::= < NULL >

This commands instructs the
flow of execution at it’s
should be the same { from
power-reset.

i

Widget firmware
initialization point.
a software point-of-view 2

Page 23

to restart it’s
The results

as a

-

" oy M
ool

//'W
(

1
N

i
(,Firm_S.Script Widget Firmware Specification

Instruction_Parameter_String :

Page 24

Send_Park :1:= < $48 >

= { NULL >

When the Host issues a Send_Park command to the controller the
results are that that the heads are moved off the .data surface
and held very near the inside diameter <crash stop. The
di fference between thies command and the Send_Servo_Command:
Home is that Home is performed ‘open—-loop’ with the crach! stop
as it‘s reference point, while Send_Park is an access command
to a specific track. The net result is a fairly hefty saving of

time: the access command can be an order of magnitude quicKer
than Home/Recal.

. . . . N Vs i
Firm_3.Script Widget Firmware Specification Page 25 L

Diag_Read ::= < %89 >
Instruction_Parameter_String ::= < NULL >

The Diag_Read command is used to read the block on the disk
pointed to by the last seek address. This instruction is valid
for states that the controller might be in: it is advised that
a Send_Seek command precede the Read. The form of the returned
data is exactly the same as that .of ProFile_Read or a Sys_Read
in that 4 bytes of Standard_Status precede the block of data.

Diag_ReadHeader ::= < %84 >
Instruction_Parameter_String ::= < Sector {($8..%12 } >

When the heads are positioned over an unknown location, or when .
it is suspected that a block’s header is shot, it is time to ‘
use the Diag_ReadHeader command. This instruction allows the
‘host to “suck-up’ both whatever information is residing in the
block’s header field as well as the data from that block. The

form of the result is:

Result :1:= (

(Standard_Status/394:$83 >
He ader/$84:%89 >
Gap/$8A :1$4F >
Sync/$1g:811 >
Datas/s12.. > D

AN AN AN

Standard_Status ::= < { . as defined above >

Header ::= < HiCyl LoCxr1 HdSct -HiCyl -LoCyl -HdSct >
HiCyl :1:= < | Byte, Most significant cylinder address
> .
LoCyx1 1= < 1 Byte, Least significant cylinder
address >
HdSct i1:i= (| Brte, bits7:4 are head addrecs, bits35:4 —
are sector address P
“HiCxr1l ::= { OUnes-complement of HiCyl >
=LoCy1 ::= < Ones-complement of LoCr1 >

-HdSct :1:= < Ones-complement of hdSct >

=y L
(Firm_3.Script Widget Firmware Specification Page 2¢

11= < 5 bytes of $498 >

Firm_3S.Script Widget Firmware Specification

Diag_Write :1:= < $8B >

Instruction_Parameter_String ::= < NULL >

This instruction allows the host to write a block of
the location on disk pointed to by the last seek
Diag:Write is valid for all states that the controller
up in, but it is recommended that a Send_Seek command
the write command to ensure that the correct block
written. ! ~

Page 27

data

to

address.
may wind
precede

will

be

N

H

(‘=irm_3;8cript Widget Firmware Specification Page 28

Store_Map :1:= < $8C >

Instruction_ParameteE_String 1:= < NULL >

The Store_Map command is to be used by the Host to logically
re-interleave Widget. Widget will be used on a number of target
hosts, each of which would like to optimize the performance ¢
sequential) of the disk drive. This optomization can occur in

one of two ways: 1) either seperate lines are set wup in
manufacturing to initialize Widgets specifically for each
target host or 2) we can manufacture a single Widget unit and
have the Host initialize the drive for it’s specific

requirements.

Included in the SpareTable structure is a data structure called

the InterlLeave_Map. This map is used as another level of
logical addressing during the calculation of a cylinder, head,
and sector address from a given logical block address.

Specifically stated, once a sector address has been determihied
it is used as an index into the InterlLeave_Map and a new sector

address is generated { the InterlLeave_Map is an array with the
same number of entries as there are sectors, and each entry
must be unique and valued within the range of legal sector
values 3.

[t is extremely important that the host system proceed with
caution when changing the Map. A remapping of the elements
within the SpareTable is REQUIRED with every change to the Map

{ this is because as the sectors are logically remapped the
defects that stay with a physical address move around relative
to a logical block’s number Y. For this reason I suggest that
all changes to the map be done using the Write_SpareTable
command in conjunction with a remapping of all the spare/bad
blocks.

This command is externally executed { by the host } as a write
command. The first Number_0f_Sectors worth of data in the

buffer are assumed to be the new map.

i,

Read_SpareTable ::= < %4D > .

Instruction_Parameter_StrinQ ::= < NULL >

(Firm_S.S;ript Widget Firmware Specification Page 29

Reading (and writing > Widget’s spare table is an absolute must for

diagnostic purposes, and if the Host wishes to emulate

controller. The result of this instruction is identical

performing a ProFile_Read from block $FFFFFE and has the form:

Result :1:= (

{ Standard_Status/$88:483 { as defined above 3} >
{ Fence/$84:$87 >

{ RunNumber/$838:%8B >

{ Format_0Offset/¢8C >

{ Format_InterLeave/$6D >

{ HeadPtr_Array/$8E:$8D >

{ SpareCount/$8E >

{ BadBlockCount/$8F >

{ BitMap/$8A:493 >

{ Heap/$%94:%1C3 >

< Interleave_Map/$1C4:$1D7 >
{ CheckSum/$1D8:$1D% >

{ Fence/%$1DA:$1DD >)

Fence :1:= (< $FF > < $78 > < $3C > < $lE > >

Rurninumber ::= < 32-bit interger >

The RunNumber is incremented each time the spare table

the
to

is

writen to the disk. Because two copies are Kept on the

disk, the RunNumber is wused to decide which is the

mome

recent of the two cshould both copies of the table not be

updated.
Faormat_Qffset ::= < $d@..NumberCfSectors >
Format_Offset is the number of phrsical sectors there are
from index mark until logical sector 4.
Format_InterlLeave ::= ($44..%686 >
This number is the interleave factor for this disk and is
used in calculating where each of the logical sectors. are
in terms of actual physical szectors.
C HeadPtr_Array :1:= (ARRAY[§..127 1 of HeadPtr »
HeadPtr ::= ¢ Nil + Ptr >
Nil 1= ($96 | 3868 »
I+ a HeadPtr is "Nil, . then there na
‘linked-1ist structure in the heap corresponding

to the current logical block rnumber,
Ptr 1= ¢ BEHF..E7F

Firm_3.Script Widget Firmware Specification Page 30

A Ptr is a seven bit data structure that
‘points’ to a specific location within the Heap
{ if the Heap can be though of as a linear array
of bytes, the a Pitr is wused to index into that
array . To arrive at the actual index wvalue
within the Heap, the Ptr must first be
multiplied by four. :

When a disk is formatted and fresh data is being written to it,
each logical block is asigned the first available physical
block on the disk,. Therefore you would expect that
LogicalBlock(#) would occupy PhysicalBlock¢(@ >, L(1) ==>
PC(1>, etc. There are instances, however, when a block of data
must be relocated to another space on the disk that does not
follow the original progression { for example, the original
space was defective . In order to “find’ these relocated
blocks in the future a record must be Kept as to where all
these relocated blocks have been put. This record takes the
form of 128 linked 1lists having the form HeadPtrdn) -->
LinkedlList(n), where n := 4..127. The algorithm for deciding
whether or not a LogicalBlock has heen relocated is to extract
bits 16:19 from the LogicalBlockMNumber and use it as an index
into the HeadPtr_Array. If the HeadPtr associated with this
index value is Nil then LogicalBlock has not been relocated
else use HeadPtr.Ptr to search the linked list corresponding to
this HeadPtr value. Now to decide if the LogicalBlock has been
relocated a test must be made as the linked list is traversed
by comparing the LogicalBlockNumber’s bits @2:4 to the current
list element’s token value. If they match then LogicalBlock has
been relocated and it‘s new position is a multiple of the 1list
element’s position in the Heap.

SpareCount ::= < %84..%4C >
BadBlockCount ::= < $dg,.%4C >
BitMap ::= (ARRAY[§..$4B] of Bits >

The bit map is used to Keep a record of which zpare blocks
are occupied, and their locations on the disk.

Heap 1:= < ARRAY[4..%4B] of ListElement >
ListElement ::= (:

{ Nil+Used+tUseable+Spr_Type+Data_Trpe >
{ Token >
< Ptr >

Nil 1= <($88 {(IF Nil THEMN End_0Of_Chain > >

Used :1:= < 344 >

Useable :1:= ($29 »

S e ™ L e 1 ™~ =y

»

i .

(_?irm_B.Script Widget Firmware Specification Page 31
Spare- 1:= < $18 >
BadBlock :1:= < 488 >
Data_Type ::= < Data | SpareTable >
Data ::= < %82 >
SpareTable ::= { 388 >

Token :1:= < Bits®:8 of the LogicalBlockNumber >
InterLeave_Map ::= < ARRAY [#..NbrSctrsl OF Z..NbrSctrs >

CheckKSum ::= { the sum of all byrtes in the spare table from the
first fence to the end of the heap, in MOD-4533é arithmetic >

Firm_4.Script Widget Firmware Specification Page 32

i

Write_Spare_Table ::= < $8E >

Instruction_Parameter_String ::= (< $FF > ¢ $78 > < $3C > < $1E >
This command allows the Host to “force’ a new spare table on
the controller, and is executed just like - any of the other
weite commands { the data in this case MUST conform to the

structure presented in Read_SpareTable }. The data sent to the

controller is written to the two spare table locations on the
disk.

oA

(”Firm_4.8crip¥ Widget Firmware Specification Page 33

Format_Track ::= < $4F >

Instruction_Parameter_String ::= (
{ Format_Offset >
{ Format_InterLeave >
< Passiord >

Format_Offset ::= <{ $88..Number_0Of_Sectors >
This parameter dictates which sector { beginning with
sectord - the +first physical sector after index mark 72
will be logical sector 4 for that track.

Format_InterLeave ::= < $0f..$86 { interleave factor > >

PassWord :1:= (($F8 > < $78 > < $3C > < $1E >)

The format command is used to:

@‘ 1. Operate on the track that is currently beneath the
A heads - this implies that the Host had best perform a
Send_SeekK command prior to formatting a track.

2. AC erase the entire track - this implies that all
data stored on this track has acheived Nirvana and
are living happlily ever after in the great bit

bucket in the sky.

3.'New headers will be lared down on EVERY sector of
the track.

Firm_4.Script Widget Firmware Specification Page- 34

Initialize_SpareTable ::= < $18 >

Instruction_Parameter_String

{ Format_Offset >
{ Format_InterLeave >
{ PassWord >

Format_Offset ::= ($88..Number_0Of_Sectors >

 Format_InterLeave ::= < $44..$8é (interleave factor > >

PassWord 1:= ({ $FF > < $78
Host

as
initialized table is written

This command form the
the slate clean’ as far

> < $3C > < $1E >)
instructs the controller to ‘“wipe

the SpareTable is concerned. The
to disk.

WM‘

(7

irm_4.Script Widget Firmware Specification - Page 3S

Read_Abort_Status ::= < $11 >

Instruction_Parameter_String ::= <{ NULL >

Read_Abort_Status will return valid data only AFTER the
controller has abor ted { identified by
Standard_Status.Bytel.Bitgd -. The form of the result is a
sixteen byte string, and the contents are the contents of the
controller’s registers at the time of the abort - with the
exception of bytes $HE and $@F, which constitute the return
address of the procedure that called the Abort routine. Because
all of the information that can be derived from this request
from is extremely firmware dependent an appendix { Appendix C:
Abort_Status WVariables } has been created that hopefully will
be updated with each firmware release. :

Firm_4.Script Widget Firmware Specificétion Page 34 s

Reset_Servo ::= ($12 >

Instructidn_Parameter_String t1= < NULL >
Reset_Servo allows the host to initialize the servo processor
without having to power the device down. The controller will

automatically nreset the Servo, check for wvalid initial
conditions and perform a Data_Recal.

A

I(vFirm_4.Script Widget Firmware Specification - ‘ ‘ Page 37

Scan ::= < $f3 >

Instruction_Parameter_String ::= < NULL >

The Scan command causes the Widget to read all blocks that are
with the range of blocks set aside for user data blocks. 1+ any
of these blocks are bad then the block will either be relocated
{ if the data can be recovered } or markKed as bad and relocated
on the next write to that block. The SpareTable can be examined

before and aften a Scan command find the loccations of all bad
blocks. '

Firm_4.Script Widget Firmware Specificétfcn' Page 38 °

SYSTEM_COMMANDS
System_Commands have been implemented for essentially two reasons:
1. I felt that it was important for Widget toc add one more check on
the CMD/BSY handshakKe: namely the addition of a checkbyte following

the command string.

2., In order to increase the performance of the system without
modifying the hardware it was critical to introduce another level of

parallelism into the Host/Controller interface. Most (&84 or
greater } of the reads for a specific block on the disk are followed
by & read for the logically sequential block. In fact, in the

extreme case of Lisa, this percentage is almost 188%4. Therefore 1
have suppressed the command decoding for all but the first block
read {(over a small range }. The implementation, then, for this
added parallelism is to send an additional parameter with the (
first } LogicalBlock indicating the number of blocks to be read.

This implementation holds for Reads and Writes, but not for
WriteVerifies. I have taken the 1liberty of .assuming { hopefully
correctly > that WriteVerifies do not exhibit the same
characteristic behaviour as the other two types of commands, and
that they are fairly long commands to begin with. The trade-coff then
was one of saving code space { a Sys_Wrler is the same routine as a
Pro_WrUer, but with command checkbyting * wvs. adding a third
multiblock function with limited performance increases,

The protocol for System commands is slightly different then that of
Profile commands. In the case of a Read command, each block of data
15 transtered to the host when it received by the controller: there
is NO buffering of disk blocks on Widget at this time. The transfer
looks just like other read-style transfers in that Standard_Status
is sent with the data block and the data block is the same length ¢
932 bytes 3. Instead, however, of responding with the basic
‘Controller is ready for command’ response when the Host sets CMD (
atter storing the data block ¥ the controller will recepond with &
‘Controller ready to get next block’ response.

£
s

A

i

(‘?irm_4.3cript Widget Firmware Specification , Page 39
Sys_Read ::= < €44 >
Instruction_Parameter_String ::= ¢ < Block_Count > < Logiéalalock >

)

Block_Count ::= < $41..%13 >

LogicalBlock

This parameter is the number of blocks to be read that
follow sequentially from LogicalBlock. It is assumed that
one blockK (LogicalBlock Y will be read, making the
Block_Count the number of blocks <following the first one
that is to be read, also.

i= < L_1BMB | L_28MB

1 |
L_18MB ::= < $490090..8084BFF >
L_28MB ::= < $4Q8Q00F8..38897FF >
L_48MB ::= ($408@FFF..8012FFF >

Firm_4.Script Widget Firmware Specification Page 40 D

Sys_Write 1:= < $41 >

Instruction_Parameter_String ::= f { Block_Count > [Logicalélock >
)

Block_Count ::= < $81..$13 >

LogicalBlock ::= < L_186MB | L_26MB | L_48MB >

L_18MB ::= ($QHQHHGE..$884BFF >

L_28MB ::= < $00@B80..$0497FF > |

L_48MB ::= < $50900808..$612FFF > ‘
Sys_Wrlepr 1:= ($42 >

Instruction_Parameter_String ::= < LogicalBlock >

LogicalBlock ::= < L_18MB | L_208MB

: | L_48MB >
L_18MB ::= < $0PEE0H..$BH4BFF >
L_20MB ::= < $089994..$0897FF >
L_48MB ::= < $B@BEIF..$012FFF >

.....

i, .
(Firm_S.Script Widget Firmware Specification . Page 41

HANDSHAKE PROTOCOL

Both Widget and ProFile share the same Host interface scheme, and
therefore a lot in common when it comes to trying to communicate
with the Host system. ProFile’s protocol ie documented in “ProFile
Communication Protocol’, and a follow-up document titled ‘The
Extended ProFile Protocol’ written by Karl Young is available for
more detail.

The actual sequence of events can be portayed as follows:

Protocol_Sequence ::= (

Initial_HandShake >
Command_DownLoad >
Response_HandShake >
Data_Received_HandShake 1]
Final_HandShake >)

AT A AN

Q Initia]_HandShaRe 1=
1. Host asserts CMD, sets data direction to read
2. Controller asynchronously responds by:
a. Writing 381 to the Host
b. Asserting BSY

3. If the Host recognizes the controller response, it will
respond by:

a. Writing a $5S5 to the controller

b. Otherwise it will write a $AA

c. In either case the Host will de-assert CMD.

4, The controller will respond to the Host by:

a. In either case { whether the Host responded with a
$55 or $Aa or anything else » the controller will
eventually end up waiting for the next instance of
CMD,

b. 1+f the response was a $55 then the controller wil)
be a ‘captive’ audience, anxiously awaiting
instructions from the Host as to what fo do next.

c. Otherwise, the controller will Abort, and leave
Standard Status saying so in it‘s buffer where the
host can read it. The state of the command sequence
for the controller thenm becomes Initial_HandShake,

(T‘ and the Host should read do iit’s best fto read the
- Standard Status as soon as it noticee that he
handshakKe sequence has been changed. The execpftion to

thie ‘Otherwise’ i3 when the recsponse from the Host

is a FreeProcess response { explained below 3.

Command_DownlLoad ::=

Firm_S.Script Widget Firmware Specification ' Page 42

1. The Host writes a wvariable length string of hex bytes
to the controller. The address of where these bytes are
sent is set up by the controller in the Initial_HandShake
phase. The length of the hex string is up to the Host, but
is intended to be the length of a command string { indeed,
the string of brtes is supposed to be a command string! .
The controller Knows to increment it’s address counter {
remember, it is responsible for loading the string into
it’s memory)} by a falling edge of STROBE from the
interface card.

Response_HandShake ::=
1. The Host asserts CMD

2. The controller responds asynchronously by first reading
it’s buffer in the locations that it set aside for the

Host to perform it‘s command downlcad, doing what is
necessary to decode the command { i.e., validating the
checkbyte, making certain that the command was of the

right type, and decoding the command }. It then writes &
response byte to the Host which has the wvalue of (
Instruction_Byte + 2).
- 3. The controller asserts BSY
4, { locok at 3, for Initial_HandShake 3}
S. If the controller receives a $5S5 then it will continue
executing the command, ctherwise it will Abort and return to

Initial_HandShake.

Data_Received_HandShake 1:1:=

1. If the controller is expecting data { as is the case
for & write command then in the Response_HandShake it
will de—-assert BSY and wait for the next occurance of CMD.

2. When the Host “sees’” BSY become de—-asserted it will
then write as much data as it pleases (like the command
download, the conmtroller dictates the address of the data
while the Host dictates the length 3.

3. The Hoet the asserts CMD

4., The controller responds asynchronously o the Host bw
writing a £#6é6 to the Host.

S. The controller then asserts BSY

i‘

s,

Tirm_S.Script Widget Firmware Specification Page 43

4. Assuming the Host accepts the response from the
controller, it will respond by writing $55 back to the
controller and then de—asserting CMD.

7. The controller will then continue executing the
command. :

Final_HandShaKe ::=

1. When the controller finishes with the execution of the
instruction, _ ‘ . .

it will put the latest Standard_Status in a location in
it’s buffer

where it will be accessible to the Host (as well as
any data that

might be a result of the command execution 7.

2. The controller then de-asserts BSY

3. The Host detects that BSY has been de—asserted and then
‘reads from the controller as many bytes as it wishes (in
much the same fashion as it does when writing a command
string to the controller: the controller points to the
data and the Host moves it 2. :

There is { at least Y one implication to this protocol: the Host is
capable of tying up 1884 of the controller’s resources if it so
chooses. This is becauge the controller has no way of Knowing when
the Host has finished reading/writing from/to it’s data buffer.
There needs, therefore, to be a mechanism for the Host to let the
controller Know that it has +freed up the controller‘s resources.
This mechanism { for lack of a better name } is called the
FreePracess., The Host communicates the FreeProcess to the controlle
in either of two ways: 1) the ProFile way, and 2) the Widget way.

ProFile_FreeProcess ::=

1. The Host downloads a cbmmandé ot { 3F8 > to the
controller. a

(TW 2. The controller decodes the command and enters

FreeProcess.

Widget_FreeProcess ::=

{. During the Initial_HandShake <{ when the controll
attempting to let the Host Know that it is ready tor

r

14
hy
3
[I
£

Firm_S.Script Widget Firmware Specification Page 44

command } the Host responds to the $81 with a $49.

2. The controller responds to the reception of a %469
instead of $S5 by entering FreeProcess. All further
handshaking is terminated.

&y

(?firm_S.Script Widget Firmware Specificatfod ‘ Page 43

COMMAND SUMMARY
ProFile_Commands:
#> < 3 bytes LogicalBlock >)

g
$41> (3 byrtes LogicalBlock >)
(<($82> < 3 byrtes LogicalBlock >

ProFile_Read ::= (<%
ProFile_Write 1:= (<
ProFile_WrWVerify 1:

Diagnostic_Commands:

Read_ID :1:= (<($12> <%88> <($ED>) : :
Read_Controller_Status ::= (<($13> (381> <(Status > < CheckByte >
)
Read_Servo_Status ::
Send_Servo_Command :
CheckByte > O
Send_Seek :1:= (<$14> <(¥g4> < 4 bytes crl/head/sector > <
. CheckByte > O
’Q Send_Restore :1:= (<$13> (385> (Data/Format Recal > (CheckByte >

= ((313> (82> < Status > < CheckByte >
= {616> {$83> { 4 command bytes > 4

) ‘

Set_Recovery :1:1= (<$13> (388> < On/0ff > < CheckByrte >
Soft_Reset ::= ((312> (347> ($BES> > '

Send_Park :1:= ((312> (388> <(BES)>)

Diag_Read ::= ((312> (309> <($BE4>)

Diag_ReadHeader ::= (<($13> <($8A> < Sector > < CheckBrte > >

Diag_Write :1:= (<($12> <($@B> (BE2>)

Store_Map 1:= (($12> <($4C> < $E1 > O

Read_SpareTable ::= (<($12> <($4D> <(3EH> >

Write_SpareTable :1:= ((316> <(BPFE> (PassWord > < CheckByrte > >

Format_Track = ¢ <$13> ($GF>

{Offset><InterlLeave><{PassWord><{CheckByte>)

Initialize_SpareTable ::
 <K316> <(#14>
CheckByte > O

g,
< Offset > < InterLeaver < Pacssldord > <

Read_mbort_Stat ::= ((312> (311> <($DC>
Reset_Servo 1:= (<$12> ($12> 308> >

Scan ::= (<%12> <$13> <3DA> D
System Commands:
(<$24> <(3BF> < BIkCnt > < 3 bytes LagicalBlock > <«
(ﬁ“ CheckByte > > - .
Sye_lWrite :1:= ~
¢ <$24> <2Ei1> ¢ BlkCnt > ¢ 3 bytes LogicalBlock > <
CheckByte > ‘

Sre_Wrlerify 1= (<$25> <$62> < 3 byrtes LogicalBlock > <
CheckByte > -

Firm_S.Script

PasslWord ::=

Widget Firmware Specificatidh

{ $FF $78 $3C $lE >

Page 46

e
(
e

g

s

Tirm_é.Script Widget Firmware Specification Page 47

Exception Handling:

Widget has been designed to run fault free for most of it’s
operating time. This means that almost every single time that a
request is made of the controller it will be performed flawlessly.
However, there are some exceptional cases - most fall into the
category of extreme errors- where the controller must attempt to
correct a problem. The most likely to occur is either when the drive
is externally ‘bumped’ and the heads are forced off track, or flaky
block is read { crc/ecc error 3.)

SERVO EXCEPTIONS
It is possible for the Servo Processor to detect that the heads

have gone off track. When this occurs the Servo will attempt to put
the heads back on track transparently to the controller. There are

three outcomes to thics exception:

1. The Servo will put the heads back on the correct track and
all will be well with the world.

2. The Servo will mistakenly put the heads on a track that is
close to the target track. In this case the controller will
detect a header mismatch the next time it reads a block on the
disk and will issue a seekK to correct the position error.

3. The Servo will raise ServoError { a gross misalignment
detected ¥ and drop ServoReady in which case the controller
will have no choice but to issue a DataRecal to clear the
ServoError, then issue a seek to get back to the target track.

Firm_&.Script Widget Firmware Specification . ' Page 48

READ/WRITE EXCEPTIONS

There are occasions when the a spot on the disk surface becomes
unuseable, or for some reason causes the data stored in that area to
change. To handle this type of exception Widget is equiped with 2
error detecting devices and ! error correcting device { although Ecc
is both error detecting and error correcting . Widget uses a
sixteen-bit crc polynomial { CRC-16) to detect all single-burst

errors less than sixteen bits in length, almost all single-burst
errors of sixteen bits, and most single-burst errors greater than
sixteen bits in length. A 48-bit ecc polynomial is also used that
has error detecting properties similar to that of the <c¢rc

pol¥nomial, except that it handles burst of up to 48 bits. It can
also correct single—error bursts up to twelve bits in length.

When a block read, if the first read is successful { no errors 2

then the data is transfered to the Host, thus completing it’s
command. Suppose, however, that the block is not read successfully
the first time. The causes of this exception are 4:
1. Servo Error: this execption is handled by leaving the read
routine and getting in touch with the Servo Processor to see if
things can be straightened out. Once the controller is
convinced that the Servo is well and that the heads are

positioned where thye should be, it retries the read.

2. The state machine indicates that it is in the wrong ending
state. This is considered a catastrophic exception an the
controller will abort.

3. The state machine indicates that a matching header was not
found. Before making this decision the state machine searches
the track twice for a match header. To handle this exception
the controller reads a header from the track that the heads are
currently positioned over and tries to determine if the heads
are positioned correctly. If they are, then it is assumed that
target block’s header is faulty and the track will be spared.
If no header can be read from the track it can be determined if
the heads are positioned correctly or it all headers on the
track anre. shot. In this case the controller will issue a data
recal <~ and seek back to the target location and retry. If &
header still can not be found the block will be spared.

4. The state machine indicates that a crc or ecc errocr has
occured. The controller will automatically retry ¥ times { a
total of 1§ reade ¥. 1+ a successful read is ®rncountered during
this retry session the controller will save the walid data. &t
the end of all the retries, if the number of bad reads was 2 aor
less then the black is ftransfered to the Host. I+ the number iz

between 2 and 1 then the data ie still returned to the Host.

q

i(‘firm_é.Script Widget Firmware Specification - Page 49

but the controller goes back to the target block and performs a
WriteVerify with the valid data; if the block fails the verify
then it is spared. If the number of bad reads is 18 then the
ecc correction algorithm is applied to the result of the last
retry. If the data is correctable then it is returned to the
Host; the target block is then write wverified with the wvalid
data and if it fails it is spared. I+ the data is
uncorrectable, then undefined data is returned to the Host { i+
it chooses to read it } and Standard_Status indicates that the

operation failed. The target block is then declared a BadBlock
{ a form of spare 2.

BadBlocke have the property that when they are read the

controller will attempt to extract the data from the target
block and performing exactly the same steps as in a normal read
in an attempt to recover the data. When they are written to,
the controller performs a write verify to the target block. IF
the block passes the verifyu then it is no longer a BadBlock,
otherwicse it is spared.

SpareBlocks have the property that they are “‘relocated”’

logicalblocks. In other words, SpareBlocks are blocks on the
disk that are transparent to the Host and were set aside for
the explicit purpose of relocating faulty blocks. There are 74
such SpareBlocks on each Widget, spaced 254 blocks apart on a
1BMB drive, 512 blocks apart on a 26MB drive, and 1824 blocks
apart on the 46MB drive. When [decided upon this sparing
algorithm I chose a trade—of+f between overall performance and
data security.

When a block is spared, it is relocated to the nearest available

spare block so that the time to get to it is minimized. This
works only as long as spared blocks are more or less uniform
over the entire disk surface. On> the other hand, if the ideal
case were to be-uimplemented { the controller Keeping track of
which blockKs on the disk were unused and relocating to the
nearest one } the space needed to contain the data structure
that kept track of the algporithm would be enormous. The
decicion to Keep the structure contained inside of one data
block ¢ S12 bytee > led to the ‘checker—-bocard’ algorithm that
has been implemented on Widget.

i

. : "«
Firm_&.Script Widget Firmware Specification Page S0 N

MISCELLANEQUS

Parking:

To guard against any mishaps when power -is shut off toc Widget,
there is a mechanism in the firmware that takes the heads off
the data area of the disk after a period of idleness. This
mechanism is Known as ‘parkKing’. Unfortunately, it is possible
for parking to synchronize with periodic uses of the drive by
the Host, causing a mild form of thrashing brought about by the
constant seeking needed to move the heads between the park
position and the target position. It was determined
empirically on ProFile that a good compromise delay time to
park is 3 seconds and that time hold for Widget.

Arm_Sweep:

To protect the head—-arm bearings from too many short seeks {
this causes a possible migration of lubrication away from the -
surfaces that are meant to be lubricated } the arm is cswept the =~
complete width of the disk data surface every 2948 seeks,

Self_Test:

When the controller comes up from being reset it performs the
following selftest functions:

1. Register Test
Write and verify one’s and zero‘z to all registerc;
halt if failure

2. Stack Test
Check push/pop, call/return capabilities;y halt if
failure .

3. Ram Test
Write ones and zeros to &1l ram locations; don’t
allow ProFile or System commands i+ failure.

4, Eprom Test '

Check external eprom banks 4 and { for check byte;
don’t allow ProFile or System commands if failure.

S. Motor Speed
Check time from index to index; don‘t allcw ProFile
or System commands if failure.

-
Track Count <{/

(18

SeekK From the format recal position to track . This

test fails if the servo is unable to complete this
task,

7. Spare Tablse

,g(fﬁirm_é.Script Widget Firmware Specification

Page Si

Find both spare tables and write verify them; don’t
allow ProFile or System commands if failure.

8. Read/Write Test

Widget performs a read/write test on a track not used
for data.

If a failure occurs on all blocks of that
track then the controller

assumes that either the
disk or the read/write channel is unusable. .

Firm_7.Script Widget Firmware Specification ‘ Page S2

APPENDIX C: Abort_Status_Variables

There are occasions when the Widget controller will detect that
something is radically wrong with the Widget subsystem, i.e., the
ram on-board the controller goes on vacation, or the state machine
gives up the ghost, etc. In one of these cases the controller will
“abort’ iwt’s current instruction and return control to the Host,
hopefully with enough information that the Host can make an
intelligent decision concerning the state of the Widget.

The Host can read in some information concerning the abort that the
controller took by read Last_Abort_Status. This command returns a
result that is 29 byrtes long: 4 brtes of Standard_Status followed by
146 brtes of abort status. The contents of the 16 byte result is
dependent wupon the abort taken, and is determined by examining the
contents of the 15th and 14éth bytes which are a pointer into the
firmware where the abort occured.

In the following list the contents of bytes 15 and 1& are indicated
{ as a hexadecimal 1&é-bit integer, just as you would read them from

the buffer: byte 1S5 most significant... 3}, with a brief description
of th ereason why the abort was taken as well as any comments
concerning other bytes - of immediate interest included within the

Abort_Status structure.

$H2EA: lllegal interface response, or Host Nak
Bryted?: Response Byte received from Host
$d3B8: Illegal Ram_Bank select -
Bytedd: Bank number of attempted select
$4487: Format Error: Illegal State_Machine Stats
Brtedd: State of State_Machine at time of failure
$84CB: [1leqal BanK_Switch: Either call or return
S Brtedd: Bank number of attempted bank select
$8513: Illegal Interrupt or Dead_Man_Timecut
BytedA:8B : Address of routine at time of timeout
$1191: Format Error: Error while writing sector
Byted?: Error Status from FormatBlock
$11EA: Command CheckByte Error
$1283: ProFile or System command attemptsd while SelfTest error
$1217: I1legal Interface instruction
$1318: Unrecoverable Servo fRrror while reading
$13E8: Sparing attempted an nan—-existent zpared block
$135313: Sparing attempted while spare table full
$138D: Deletion attempted of non-existent bad block
$14B4: I1legal exception instruction

B D s [l oo o= b] o ™o s m oo omrm ik Y . i Dbl e o

B

i
‘ Tirm_7.Script Widget Firmware Specification Page 53

$1Bg1:
$1B354:

$1BAB:

$1BD2:
$1C13:
$1C24:

$1C78:
$1CFF:
$1EdA:

$1F2F:
%2821

1@’ €21F7:

$2374:
$2493:
$24B3:
$2522:

$265E:
$26B8:
$2FEH:

E2A14:
£2D13:

Servo Status request sent as Servo Command
Restore Error: Non—-Recal parameter
Brtedd: Il1legal parameter sent
Store_Map Error: Parameter larger then the number of sectors
BrteBA: 11legal parameter sent :
Illegal password sent for Write_Spare_Table command
Illegal password sent for Format command
Illegal format parameters
Brted?: Offcet parameter
BrtedA: interleave paramter
Il1egal password sent for Initialize_Spare_Table command
Zero block count sent for MultiBlock transfer
Write Error: Illegal State_Machine state
BytedA: State_Machine state at time of error
Read Error: Illegal State_Machine state
BrtedAa: State_Machine state at time of error
ReadHeader Error: lllegal State_Machine state
BrtefA: State_Machine state at time of error
Request for illegal logical block
BrtedC: High byte of requested logical block
BytedC: Middle byte of requested logical block
BytedC: Low byte of requested logical block
Search for SpareTable failed
Mo SpareTable structure found in SpareTable
UpDate of SpareTable failed
I11egal SpareCount instruction
Byted?: Value of illegal instruction
Unrecoverable Servo Error while performing overlapped seek
Unrecoverable Servo Error while seeKing
Servo Error after Servo Reset
Brtedd: Value of controller status port at time of error
Servo Communication error after Servo Resest
Scan attempted without SpareTable

I.

AHESD x A

WIDGET SERVO FUNCTIONAL OBJECTIVE

=

BASIC SERVO FUNCTIONS

Widget servo control fuﬁétions are handled by a Z8 microprocessor. The
Z8 handles all 1/0 operations, timing operations and communication with a
host controller. Control functions to the Z8 Servo Controller are made
through the serial I/0.. '

The following commands‘for the Widget servo are:

A. HOME - not detented, heads off data zones located at the inner stop.

B. RECAL - detented at ome of two positions.

1. FORMAT RECAL: 32, -0, +3 tracks from HOME use only during data
formatting.

2. RECAL: 72, -0, +3 tracks from HOME use to initialize home posi-
tion after power on or following an access or any other error.

C. SEEK = coarse track positioning of data head to any desired track (:
location. o

D. TRACK FOLLOWING - heads are detented on a specific track locatiom and
the device is ready for another command.

E. OFFSET - controlled microstepping of fine position system during
TRACK FOLLOWING (two modes).

1. COMMAND OFFSET - direction and amount of offset is specified to
the servo. s

2. AUTO OFFSET - command allows the servo to automatically move off
track by the amount indicated by the embedded servo signal on the
data surface (disk).

F. STATUS - command can read servo status.

G. DIAGNOSTIC - not implemented.

-See Table | for the actual command description. With the present com-

mand structure a SEEK COMMAND can be augmented with an OFFSET COMMAND.
Upon completion of a seek, the offset command bit is tested to determine
if an offset ‘will occur following a seek (either auto or command offset).

a\i

11,

When a SERVO ERROR occurs the Z8 SERVO will attempt to do a short RECAL
(ERROR RECAL). Two attempts are made by the system to do the ERROR RECAL
function. If either of the two RECAL operations terminate successfully
the protocol status will be SERVO READY, SIO READY and SERVO ERROR.
Should the ERROR RECAL fail then the system will complete the error
recovery by a HOME function.

The two OFFSET commands will be described. First COMMAND OFFSET is a pre-
determined amount of microstepping of the fine position servo. Included
in the OFESET BYTE (STATREG) bit B6=0 is a COMMAND OFFSET. Bit B7=l is a
forward offset step (toward the spindle); B7=0 is a reverse step. Ln the
case bit B6=1 the OFFSET command is AUTO OFFSET.

AUTO OFFSET command normally occurs during a write operation. When the
HDA was initially formated at the factory special encoded servo data was
written on each track '"near" the index zone. The reason for this follows:

Normal coarse and fine position information for the position servos 1is
derived from an optical signal relative to the actual data head-track
location. Over a period of time the relative position (optical signal)
will not be aligned to the absolute head-track position by some unknown
amount (less than 100 uln). This small change is important for reliabil=-
ity during the write operation. Write/Read reliability can be degraded
due to this misalignment. The special disk encoded servo signal is avail-
able to the fine position servo and will correct the difference between
the relative position signal of the optics and the absolute head to track
position under the data head only at index time. The correction signal
can be held indefinitely or updated (if desired at each index time) or
until a new OFFSET command or move command (SEEK or RECAL) occurs.

COMMUNICATION FUNCTIONS

The servo functions described in the previous section only occur when the
servo 28 microprocessor is in the communication state. Communication
states occur immediately after a system reset, upon completing head set-
ting after a recal, seek, offset, read servo status or set servo diag-
nostic. A special communication state exists after a servo error has
occurred. If + SIO READY is not active no communication can exist between
the external controller and the servo Z8 processor.

Servo commands are serial bits grouped as five separate bytes total. Re-
fer to Table | parts I through V as the total communication string. First
byte is the command byte (i.e. seek, read status, recal, etc.). Second
byte is the low order difference for a seek (i.e. Byte 2 = SOA is a ten
track seek). Third byte is the offset byte (AUTO or COMMAND OFFSET and
the magnitude/direction for command offset). Fourth byte is the status
and diagnostic byte (use for reading intermal servo status or setting
diagnostic commands). Byte five is the check sum byte used to check ver-
ify thacr the first four bytes were correctly transmitted (communication
error checking).

III.

Part of the communication function requires a specific protocol between
the servo Z8 processor and the extermal controller.

Servo control and communication are described in CHART I. This chart
illustrates the basic sequencing and control operations. Chart I does
not illustrate the servo error handling or command/protocol handling

functions. Error handling is described in Section IV and illustrated by
CHART II.

Z8 SERVO PROTOCOL

The protocol between the Z38 SERVO microcomputer and the CONTROLLER is
based on five I/0 lines. Two of the I1/0 lines are serial input (to 23
servo from controller) serial output (from Z8 servo to controller). Data
stream between the Z8 servo and controller is 3 bit ACSII with no parity
bit (the fifth byte of the command string contains check sum byte use for
error checking). There are three additional output lines between the Z38
servo used as control lines to the controller. Combining the two serial
I1/0 lines and the three unidirectional port lines generates the bases of
the protocol between the Z8 servo and controller. The important opera-
tions between the 28 servo and controller are:

l. Send commands to Z8 servo.

2. Read 28 servo status.

3. Check validity of all four command bytes.

4, 1/0 timing signals between the Z8 servo and controller.

5. 28 servo reset.

Sequencing the 28 servo controller is an important process following a
Power Up (Power On Reset) or if the controller should issue a Z8 Servo
Reset at any time. After a Z8 Servo Reset is inhibited the Z8 I1/0 ports
and internal register are initialized. This takes approximately 75 msec
after the 28 Servo Reset is inhibited. The protocol baud rate is auto-
matically set to 19.2KB and then the system is parked at HOME position
and SIO READY is set active. ***IMPORTANT***, If the desired baud rate
needs to be increased to 57.6KB; **after a Z8 Servo Reset is the ONLY
time this can be done***, Once set to 57.6KB the communication rate re-
mains at 57.6KB until a Z8 Servo Reset occurs. Setting 57.6KB is achieved
as follows:

1. 28 Servo '"Power On or Controller" Reset
2. Wait for SIO Ready

3. Send a READ STATUS COMMAND as follows:

BYTE 1 = $ 00
BYTE 2 = 5 00
BYTE 3 = 5 00
BYTE 4 = § 87

W

2

Iv. ™

After the completion of transmitting the bytes, the Z8 Servo Controller

chanzges to 57.6KB and will be waiting for the next transmitted command
at 57.6KB. ’

Before the controller transmits the command byte the controller must pole
the SIO READY line from the Z8 servo to determine if it is active (+5
volts). If the line is active then a command can be transmitted to the
Z8 servo. The program in the 28 servo will determine what to do with the
command bytes (depending upon the current status of the 28 servo). After
the command (five bytes long) has been transmitted to the Z8 servo, the
program in the Z8 servo will determine if the command bytes (first four
bytes) are in error by evaluating the check sum byte (fifth byte trans-
mitted). See table Chart III and IV for the error handling. After the
controller has transmitted the last serial string it must wait 250 usec
then test for SERVO ERROR active (+5 volts). If SERVO ERROR is active the
command was rejected (check sum error or invalid command). If the SERVO
ERROR 1is set active 6004sec after the command is sent (and not 250 sec),
this was a command reject. The SERVO ERROR must be cleared by READ
STATUS COMMAND or RECAL COMMAND before transmitting another command.

See CHART 1 for time diagram of the command sequence and 1/0 protocol.

As long as SIO READY is active the controller can communicate with the 78
Servo Controller. If SERVO READY is not active the only command that will
cause the Widget Servo to set SERVO READY active is a RECAL COMMAND (NOR-
MAL or FORMAT). Read Status will only clear SERVO ERROR. And all other
commands will be rejected.

Next, if SERVO READY is active and SERVO ERROR is also active, SERVO
ERROR can be cleared by:

l. Any READ STATUS COMMAND.
2. Any RECAL COMMAND.

3. Any other commands will be rejected and maintain SERVO ERROR.

. L4
If a SEEK COMMAND is transmitted with both SERVO READY and SERVO ERROR
active the command will be rejected.

It is important to check the status of all three status lines from the
Z8 Servo. It is best to avoid sending a SEEK COMMAND with SERVO READY
and SERVO ERROR active.

Chart V parts A-I illustrate some of the serial communication commands
and error conditions that can occur between the controller and Z8 SERVO.

‘ERROR HANDLING

SERVO ERROR will be generated during the following conditions:

"l. During Recal mode (velocity control only) access time—out.lf a Recal

function exceeds 150 msec then an access timeout occurs.

During Seek mode (velocity control only) access time—out. If a Seek .
function .exceeds 150 msec then an access time=out occurs. \

During Settling mode (following a Recal, Seek, or Offset) if there is
excessive On Track pulses (3 crossings) indicating excessive head
motion a Settling error check will occur.

During a command transmission if a communication error occurs (check
sum error).

During a command tansmission if a invalid command is sent.

P
St

(

APPENDIX A:

I1.

The purpose of the FINE POSITION SERVO is to maintain detent or lock on
a given data track. Any misregistrations of the head/arm due to windage,
mechanical observed by the optics position signal are corrected by the
close loop position servo. Misregistrations at the data head relative to
the actual data track on the disk must be corrected by the AUTO OFFSET
command. Figure I illustrates a block diagram of the Widget FINE POSI-

 TION SERVO. The amount of misregistration at the data track sensed after

a AUTO OFFSET command are summed into the servo and the servo is automat-
ically repositioned over the data track.

The COARSE POSITION SERVO (SEEK) has the function of moving the.data
head arbitarily from a current track to any other arbitrary track loca-

- tion within the total number of track locations between the inner to

outer crash stops. When a command is transmitted to the Z8 Servo con-
troller, the Z8 decodes and interprets the command into a servo function.
If a SEEK command is sent to the Z8 Servo Controller a direction and
number of tracks to move is also sent. The system starts its move to the
new track location. When the arm has moved to its new location the Z8
Servo Controller provides control and delay necessary to allow the data

'~ head and the FINE POSITION SERVO to come to rest immediately following a

SEEK. This insures that motion in FINE POSITION SERVO and data head will
be under control when the READ/WRITE channel begins operation. Reliabil-
ity of the data channel is assured with high margins. Figure I illustrates

-a block diagram of the Widget COARSE POSITION SERVO.

The differences between the FINE POSITION SERVO and the COARSE POSITION
SERVO is handled by the Z8 Servo Controller. The two servos share for
the most part the same set of electromics. The 28 Servo Controller and
analog multiplexers switch between the signal paths. In general there
are some circuits that are not shared because of their uniqueness for a
particular servo.

I.

BYTE 1:

command
bits

access
bits

II.

access direction

bioi

hi

COMMAND BYTE

B7

B&

BS

B4

B3 -X- not us
B2 -access di
Bl -hi di+f2

B3 -hi dif+l

ditf2 (S12

diff!l (25&)

BYTE 2: DIFF BYTE ¢

command BYTE 2

1 B7

-bit7= 128

1B& —bité= 54

00 00 oo

-bi tS= 32
-bitd= 14
=i t3= &
-bi t2=
-bitli=
-bi ta=

S~ N+
Londll W I SO ¢

28 SERVO COMMAND BYTES ’ ~ page 1
TABLE » _

{DIFCNTHD

i B7 Bé& BS B4 | FUNCTIONS

1 8 B8 @ ! access only
vl 8 8 1 | access with offset v
18 1t a3 8 i normal recal (to trk 720
- B | 1 { i format recal <to trk 320
P8 8 @8 | | offset-trk follaowing
D 1 & @ i home-<end to ID stop
18 8 1 B8 | diagnostic command
ed i 8 8 @84 @ i read status command
rection | —emmeemeeenmmec e
(S12)
(256
= | (FORWARD: toward the spindle)
= @ (REVERSE: away from the spindle>)
= | (S12 tracks to go) o
= 8 (not set)
= 1 (254 tracks to qo»
= 4 (not set)
DIFCNTL)

contains the LOW ORDER DIFFERENCE COUNT for ax seek

tracks
tracks
tracks
tracks
tracks
tracks
tracks
track

h

- v 28 SERUI COMMaND BYTES
TABLE 1
T

N . BYTE 3: OFFSET BYTE (STATREG)

command BYTE 3 contains the INSTRUCTIOM for an QFFSET
or during track following)

1B7 —offset direction

1Bé —auto offset function

iBS -read offcset value (after zauto or manual)
B4 —offcset bitd =14

B3 —affset bit3 =83

B2 —off<cet bit2 =4

1Bl -of+set bitl =2

i Ba

~offcset bita ={

1. if offcet command from BYTE | is followed by bits set

COMMAND (seek

1

(auto offse:

"offset direction (bit?7) read offset (LitSy and bits 4-9 are ignors
but should be set to 3 if not used.
2, OFFSET DIRECTION =1 (FORWARD OFFSET: toward the spindle)
=9 (REVERSE OFFSET:away from the spindle)
@ﬂ/ 3. AUTO OFFSET =] (normally used preceeding a write ocperation:
/ =8 (manual off<set:MUST cend direction and magni tv
of offsetd
4., REw~D QOFFSET =] (read offcset value from DAC;i.e. atter auis
offset)
=8 (no action)
* READ OFFSET COMMAND desired after AUTO OFFSET MUST be sent as
seperate commands
[V, BYTE 4: STATUS BYTE (CNTREG)
‘B7 —communication rate
1Bé —-power on reset
iBS -not used
iB4 -not used
B3 -—-=tatus or diagnostic bits
B2 - 1
Bl - b
B8 - &7
‘:/ 7=8; Communicaticn Rates 1= 17.2 KERUD
=13 Communication Rafts iz 37.8 KBaUD. g

e xchpwe

achiue

0w
(-
u

<)
D)

Fouwer On Reset Bt |
Power On Ha2=zet bDit |

e

—
an

V. BYTE

28 SERVI COMMAND BYTES page.
TABLE !
‘ PaE)
S: CHECKSUM BYTE (CKSUMD | e

[B? Bé BS B4 B2 B2 B1 BA)

results of the transmitted CHECK3UM BYTE are derived as:

(BYTE 1 + BYTE 2 + BYTE 3 + BYTE 4> = CHECKSUM BYTE

(+) is defined as the addition of each BYTE

(BYTE) is defined az the compliment of the BYTE ¢{-4)

UI. The SERVO STATUS lines (310 RDY,SERVO RODY,3ERUVO ERROR) must hawe the
following conditions in order to send the listed 28 COMMAMDS:

SERVO STATUS

S S S
I R R
Q U U
R R E
D o R
Y Y R
28 SERVQ CMD HEX
access(only) 8X Y 1 a1
access(ot+set) 9X i1 1 ai
recal (data» 44 il X X
recal(format) 79 i1 X Xi
park cg i1 X X
offset(detent) 1@ Y 1 a1
status 2% B X e
diagnostic 29 | mm—————————— i not implimented

X= either 4,1

BLAvcHARD ’

Vs
N
~Nariona

AEsdiny

brrvéer Ournocttn

2 Cock b/;ts RAML

//a' LUTERFARCL |

|

7o /Mo THER BoARD

Shie ii {:: S/ /9-/”,
Mckiel | 2ere |) dp s Lo
S| | e 2k 8K
: SraTie
Déeinc gé KAM £ Prom

£28
S TuTEiLs LUr (adrRO R
a) Y Comrorer : Npm fom , Sz0, CTC

z

b ¥V Mha }7.3:22)

PriEcover Y

a) DeFéerS —> Spariw G
V) No/SE .

Q) Sémvo freons

a() onra Cornecrid

Srare AUHIE

L SYUeHROW;2ZATHY FO DISA

2. FERForms flEho, QIRITE, Fonmaz, FEaDFerier,
2 CReféec

SEAEN A7 102

a) Ereon Derec rrod

4 CLomss /Sro nEs Lrire/peks Dpra 7;/ﬁm Dick

(6’) rower Ok

0.) Dérem LHES Ts /S G L)) A)
, RAdé £

—

) .
oY/

...m:s\
2/ 0% -
dad "o \ :

———

12030/ ‘oh
VI 0
1) P

. K .\\\. /
. o~/ N
W uemyar T N g e 1 /
(RA NS AV F:«.... p k, wh WK =L \
N e / .

NIE P \._.a,..mb.\ \O_m.. :
daiidliy) < Naayyor

=i vz
NN U hayt ol :

" 1//
\\ 9

xn/..,,.\ o 1
N ,*/a\, 1L zh A

-

K % |
‘/ﬂx:,é.; TR T g 1L
SN INDNE .
SRR 1T -

/Vl\\AV/
16 |
i/ m_%

.

(

._.zﬂzm\

1n%

Yol
7€),

*
AN
7

.4

BDro |

Troans VA

yus-

N \
1 Y \ \ Jald) *;me\ WLz A
/,.;;/.. ~ \\
0v: [
NN Daagy s Ivogvz sy ‘o/ . o - 13vs
Wiy 1y ‘o : Lbay ‘otz/ ¢ ob a3y :
AN T
Anonat/ A I 8 & _/¢ v (1119 k I I R I P
AN ST m\,\\ e /a\, I) A AN Kx 1K A BN
- \. ~ . .beﬁw*wuewuy.
Vivd/ ﬁb ANOarely ¢

WSy TGV EYangy ¥ INoang)

-

Jomda>/ - uspv/” Lo "o s/ [Wdyol
JAm)dy .
LIMON Dy

LM ot spapyry: 7 LAM
1203/ Ob)/ NaFES - (V7Y
-
DI BD Yy
Il zh §A Lawvis/
\ ~

NI/
A=

|V o 7117
TR

SQUARE
SQUARE
SQUARE

SHELEIS 5
SHEEIS §
SHEE1S §

=1=1-

1
2

P
~

Nartonac

42.381 5
42-382 10
42.389 20

C

28 O - s o HEA DER

’Bés/fd .
MIECL = FALSE] mSELP = True { Mew <> 23]
Cotd “BuFFER l)rH HEA2EL

w < %W D = M- ThAck Brre

< MR = lo- Temk ByrE

< "a.D>_ L=
<Wi- Wose€ Dz Hoo Scccer
<lo- NoeclD = Secroa Nomer

<¥og >:= zuexr(<%4>)

< Zo£> = zover (< o)

<t/@>!= zoverr(< *#on>)

<#y > = #M

Ser-p S7Are HACHIE .
NSEL L ;= Trus ; MSELY: = HIesE { mém <> > /5%)

DM =D Yorasr foar = & |
Drwe = fhisE { disk RERD FMENL = FalSE {4 é,untr:;
TFh Aontwmic MMEh) DL ERA TroL f
THEYS XDKIRH = FASE
ElS£ Roport = True { DosT cane Asrr Hedoen'b

T sk secror magie | foar3, 3.4 1]
Poee gk Mor(Secroe ALK)
STRARTC 1= rrul { Turd sTave mackws o |

WARIT Lo SETpr DoJE ok TIimeoer
e gum £ oo THES Excdrriaw)
A< SEcyor DoE
THES
ALRO SThrE Alhciind STR7US
ZF STRTE P THES HYERDEL /s mn m/ Cas Yo7 ZEro
Ff Sraré 2 .
THEL
Disk Dara w7 T Aon (¥1/9 - Fz20)
CRC. A7 fam Ad(# 22p - #3222
Lo Ar b Lr(F 22l - T2y
I A EXWR. THEL Exc f£7770

LELSE .
Voo o/ STRTE EXCEAT 0 k
STARTL ! = FhesE { RESEy STARFE PIACHKIE

EuD

= /ém ZE THS was A READ HEAIER Ol ATIR) THEY THE
BETEs [0 flan APOR KL gl 7S QIERE REspces BY
THE BITHES U THE [ELOLL SPRLE o) THE DSK. FHE

Wﬂw&

«

AR 9 &) RRE.

[Hosr ZTureelrce frorococ
Q) PesFiee, Dipcuosrse, MycrrBeock.

2. Cowrpnocs Srare ﬂﬂc///,ot S.euo
) BAasie Disk /"a,dc.ﬂo.ds

‘) Pd.S/l‘/ol/ /AJG
3. Pecoveny

<) PeErFOAMAICE.

8

|
T rzarrod
[Roor STnaP A Few 238 reé/irers
2. 7£sr AU BE nkésSTERS
2 SrAack, Cpee, Akrvre TEST
4 Zoiracors Z Gbal Upps
& hm TEsr
6. Efrom TEsT
7. Moron SPELD er{m Zrmu:}
8. Secrve Guusr
9P Séfnwo TEsrT
/4. ﬂ’m/wn'k TEsr
Y Fodo Srane Tasce
/2. Scad

Sh /e

L
Deisk Beoeks ¢ é
: 28S l 258

| Sface |256
25¢ : 159

L some —> | steut/ 256 Bocks
20 m& —> | stae/ s/t Blocks |
Yo Mmas = | srans/ 02y P ocks |

2. A Block s SPReko ifFf:
a) Vacio DdaTa is Avaciascs
b) 7ve Block /s A Hno DE&FET

3. 76 Teral Blocks AVAILABE Forn SARMS
) SPARE TAsE /s locaTho oi L
b 74 <(efr Fon Usex Dart

_ |

e

T 7ERCEANVE
L AL QJioCkTS FoamAT€ED Z: 4

2. CRPABILITr Exsss 7> Z&‘/E“Cf
T TERLERVE /01 =D b Setrs ¢+ L

3. OFfser Secron ¢
&) U 72 /6 SéEerpns
b) Aero o , Heno 4 ./)offéuo‘ewr

C e/ DER a0 {Sccira f?

Lodegn Annsy

4/ éf 5:.?{': éd (4

I.

WIDGET SERVO FUNCTIONAL OBJECTIVE

BASIC SERVO FUNCTIONS

Widget servo control functions are handled by a Z8 microprocessor. The
Z8 handles all I/0 operations, timing operations and communication with a
host controller. Control functions to the Z8 Servo Controller are made
through the serial I/0. ’

The following commands for the Widget servo are:

A.

B.

c.

F.

G.

HOME - not detented, heads off data zomes located at the inner stop.

RECAL - detented at one of two positioms.

1.

2.

FORMAT RECAL: 32, -0, +3 tracks from HOME. Used only during
data formatting. '

RECAL: 72, =0, +3 tracks from HOME. Used to initialize home
position after on or following an access error or any other
error.

SEEK - coarse track positioning of data head to any desired track
location.

TRACK FOLLOWING - heads are detented on a specific track location and
the device is_ ready for another command.

OFFSET - controlled microstepping of fine position system during
TRACK FOLLOWING (two modes).

1.

2.

COMMAND OFFSET - direction#®and amount of offset is specified to
the servo.

AUTO OFFSET - command allows the servo to automatically move off
track by the amount indicated by the embedded servo signal on the
data surface (disk).

STATUS = command can read servo status.

DIAGNOSTIC = not implemented.

See Table 1 for the actual command description. With the present com=
mand structure a SEEK COMMAND can be augmented with an OFFSET COMMAND.
Upon completion of a seek, the offset command bit is tested to determine
if an offset will occur following a seek (either auto or command offset).

AR,

II.

When a SERVO ERROR occurs the Z8 SERVO will attempt to do a short RECAL
(ERROR RECAL). Two attempts are made by the system to do the ERROR RECAL
function. If either of the two RECAL operations terminate successfully
the protocol status will be SERVO READY, SIO READY and SERVO ERROR.
Should the ERROR RECAL fail then the system will complete the error
recovery by a HOME functiom.

The two OFFSET commands will be described. First COMMAND OFFSET is a pre—
determined amount of microstepping of the fine position servo. Included
in the OFFSET BYTE (STATREG),bit B6=0 is a COMMAND OFFSET. Bit B7=1 is a
forward offset step (toward the spindle); B7=0 is a reverse step.

If bit B6=1, the OFFSET command is AUTO OFFSET.

AUTO OFFSET command normally occurs during a write operation. When the
HDA was initially formated at the factory, special encoded servo data was
written on each track "near" the index zone. The reason for this follows:

Normal coarse and fine position information for the position servos is
derived from an optical signal relative to the actual data head-=track
location. Over a period of time, the relative position (optical signal)
will be misaligned to the absolute head-track position by some unknown
amount (less than 100 uIln). This small change is important for reliabil-
ity during the write operation. Write/Read reliability can be degraded
due to this misalignment. The special disk encoded servo signal is avail-
able to the fine position servo. It will correct the difference between
the relative position signal of the optics and the absolute head to track
position under the data head omnly at index time. The correction signal
can be held indefinitely or updated (if desired at each index time)

until a new OFFSET command or move command (SEEK or RECAL) occurs.

COMMUNICATION FUNCTIONS

The servo functions described in the previous section only occur when the
servo Z8 microprocessor is in the communication state. Communication
states occur immediately after a system reset, upon completing head set-
ting after a recal, seek, offset, read servo status or set servo diag-
nostic command. A special communication state exists after a servo error
has occurred. If + SIO READY is not active, no communication can exist
between the external controller and the servo Z8 processor.

Servo commands are serial bits grouped as five separate bytes total. Re-
fer to Table 1 parts I through V for the total communication string.

The first byte is the command byte (i.e. seek, read status, recal, etc.).
The second byte is the low order difference for a seek (i.e. Byte 2 = SOA
is a ten track seek). The third byte is the offset byte (AUTO or COMMAND
OFFSET and the magnitude/direction for command offset). The fourth byte
is the status and diagnostic byte (use for reading internal servo status
or setting diagnostic commands). Byte five is the check sum byte used to
check verify that the first four bytes were correctly transmitted
(communication error checking).

e S . Rl T N AUl ot s e’ M e Ll K et i o air et narin s al e e e A et e e b - BT - At Wt i s A o f e et e a e w — b aem 4 o

III.

Part of the communication function requires a specific protocol between
the servo Z8 processor and the external controller.

Servo control and communication are described in CHART I. This chart
illustrates the basic sequencing and control operations. Chart I does
not illustrate the servo error handling or command/protocol handling
functions. Error handling is described in Section IV and illustrated by
CHART II. ’

Z8 SERVO PROTOCOL

The protocol between the Z8 SERVO microcomputer and the CONTROLLER is
based on five I/0 lines. Two of the I/0 lines are serial input (to 28
servo from controller) serial output (from Z8 servo to controller). Data
stream between the Z8 servo and controller is 8 bit ASCII with no parity
bit (the fifth byte of the command string contains check sum byte use for
error checking). There are three additional output lines between the Z8
servo used as control lines to the controller. Combining the two serial
I/0 lines and the three unidirectional port lines generates the bases of
the protocol between the Z8 servo and controller. The important opera=-
tions between the Z8 servo and controller are:

l. Send commands to Z8 servo.

2. Read 28 servo status.

3. Check validity of all four command bytes.

4, 1/0 timing signals between the Z8 servo and controller.
5. Z8 servo reset.

Sequencing the Z8 servo controller is an important process following a
Power Up (Power On Reset) or if the controller should issue a Z8 Servo
Reset at any time. After a Z8 Servo Reset is inhibited, the Z8 I/0 ports
and internal register are initialized. This takes approximately 75 msec
after the Z8 Servo Reset is inhibited. The protocol baud rate is auto-
matically set to 19.2KB and then the system is parked at HOME position
and SIO READY is set active. ***IMPORTANT***, If the desired baud rate
needs to be increased to 57.6KB; **after a 2Z8 Servo Reset is the ONLY
time this can be done***, Once set to 57.6KB the communication rate re=-
mains at 57.6KB until a Z8 Servo Reset occurs. Setting 57.6KB is achieved
as follows:

1. 28 Servo "Power On gg'Controller" Reset
2. Wait for SIO Ready

3. Send a READ STATUS COMMAND as follows:

BYTE 1 = $§ 00
BYTE 2 = $ 00
BYTE 3 = $§ 00
BYTE 4 = § 87

Iv.

After the completion of transmitting the bytes, the Z8 Servo Controller
changes to 57.6KB and will be waiting for the next transmitted command
at 57. 6“0 .""..

Before the controller transmits the command byte the controller must pole
the SIO READY line from the Z8 servo to determine if it is active (+5

volts). If the line is active then a command can be transmitted to the

Z8 servo. The program in the Z8 servo will determine what to do with the
command bytes (depending upon the current status of the 28 servo). After

the command (five bytes long) has been transmitted to the Z8 servo, the
program in the Z8 servo will determine if the command bytes (first four
bytes) are in error by evaluating the check sum byte (fifth byte trans-
mitted). See Charts III and IV for the error handling procedures. After the
controller has tramnsmitted the last serial string it must wait 250 usec

then test for SERVO ERROR active (+5 volts). If SERVO ERROR is active the
command was rejected (check sum error or invalid command). If SERVO

ERROR is set active 600 U sec after the command is sent (and not

250 U sec), this was a command reject. The SERVO ERROR must be cleared

by a READ STATUS COMMAND or RECAL COMMAND before transmitting another command.
See CHART 1 for the timing diagram of the command sequence and I/0 protocol.

As long as SIO READY is actiwve the controller can communicate with the Z8
Servo Controller. If SERVO READY is not active the only command that will
cause the Widget Servo to set SERVO READY active is a RECAL COMMAND (NOR-
MAL or FORMAT). Read Status will only clear SERVO ERROR, and all other
commands will be rejected.

Next, if SERVO READY is active and SERVO ERROR is also active, SERVO
ERROR can be cleared by:

l. Any READ STATUS COMMAND.
2. Any RECAL COMMAND. °
3. Any other commands will be rejected and maintain SERVO ERROR.

If a SEEK COMMAND is transmitted with both SERVO READY and SERVO ERROR
active, the command will be rejected.

It is important to check the status of all three status lines from the
Z8 Servo. It is best to avoid sending a SEEK COMMAND with SERVO READY
and SERVO ERROR active.

Chart V, parts A=-I, illustrate some of the serial communication commands
and error conditions that can occur between the controller and Z8 SERVO.

PR

ERROR HANDLING
SERVO ERROR will be generated during the following conditions:

l. During Recal mode (velocity control only) access time—out.If a Recal
function exceeds 150 msec then an access timeout occurs.

.
q
4

2.

3.

4,

During Seek mode (velocity control only) access time=out. If a Seek
function exceeds 150 msec then an access time—out occurs.

During Settling mode (following a Recal, Seek, or Offset) if there is
excessive On Track pulses (3 ctossings),indicating excessive head
motion, a Settling error check will occur. :

During a command transmission if a communication error occurs (check
Sum error). :

During a command tansmission if a invalid command is sent.

i

APPENDIX A:

I.

II.

The purpose of the FINE POSITION SERVO is to maintain detent or lock on
a given data track. Any misregistrations of the head/arm due to windage,
mechanically observed by the optics position signal are corrected by the
close loop position servo. Misregistrations at the data head relative to
the actual data track on the disk must be corrected by the AUTO OFFSET
command. Figure I is a block diagram of the Widget FINE POSITION

SERVO. The amount of misregistration at the data track sensed after

an AUTO OFFSET command is summed into the servo and the servo is automat-
ically repositioned over the data track.

The COARSE POSITION SERVO (SEEK) has the function of moving the data

head arbitrarily from a current track to any other arbitrary track loca-
tion within the total number of track locations between the inmer to
outer crash stops. When a command is transmitted to the Z8 Servo con-
troller, the Z8 decodes and interprets the command into a servo function.
If a SEEK command is sent to the Z8 Servo Controller a direction and
number of tracks to move is also sent. The system starts its move to the
new track location. When the arm has moved to its new location the Z8
Servo Controller provides control and delay necessary to allow the data
head and the FINE POSITION SERVO to come to rest immediately following a
SEEK. This insures that motion in FINE POSITION SERVO and data head will
be under control when the READ/WRITE channel begins operation. Reliabil-
ity of the data channel is assured with high margins. Figure I is a block
diagram of the Widget COARSE POSITION SERVO.

The differences between the FINE POSITION SERVO and the COARSE POSITION
SERVO is handled by the Z8 Servo Controller. The two servos share for

the most part the same set of electronics. The Z8 Servo Controller and
analog multiplexers switch between the signal paths. In general there

are some circuits that are not shared because of their uniqueness for a
particular servo.

e e - e T~ el ™ STl A S e

RN

APPENDIX B:

An important part of the Widget Servo System is the optics signal. The optics
signal provides the necessary signals for the fine position servo to position the
data head accurately over the data track and to provide the system velocity
signal during seek mode. The alignment of the optics signal is described in

the following section on "WIDGET OPTICS ALIGNMENT PROCEDURE."

Dan Retzinger
Nov. 9, 1982

WIDGET OPTICS ALIGNMENT PROCEEDURE

INTRODUCTION

The purpose of this note is to describe the procedure for properly adjusting
five pots on the widget mother board used to control the amplitude of the optics
signal. The five pots are R7, R8, R17, R19 and R35. The optics signal
originates at the end of the servo arm and is used in positioning the arm.

EQUIPMENT REQUIRED

An oscilloscope capable of operating in the X-Y mode of operation. A Tektronix
model 465 works fine.

PROCEEDURE -

Optics LED Drive Adjustment

1. Connect channel 1 of the oscilloscope to TP 5 on the Widget Mother Board.
2. Scope Vert. setting: 1 Volt/Div. Horizontal: Any sweep rate.
3. Adjust R35 so the voltage at TPS is 3.6 volts +/- .2 volts.

(clockwise, or more resistance=lower voltage)

Figure 1: TPS5 Amplitude

O o e G e @ -

i” ‘

——— - -

"ee
L]

]
|
[]
1
\
]
[}
[}
'
t
L]
'

‘ tepe

corfocer

1400

-
- L4 N
. .
. .
.
* . - - :
.
- ~a
. . . . L *
. v . i -
. . . .)
. H . .
+ . N
. . :
.
. . a R
. . »
. . . .
. . H . .
. . . +
- - .. _ :
. .

IED AN KX L Rd

IR AR
’

Position A and Position B Adjustment

4. Put scope in X-Y mode, ground channels X and Y, move dot to
center of screen.

5. Connect chan X to TP9, chan Y to TPS8. (Both TP's are located
near pin 1 of the Z8 microprocessor)

6. Scope vertical: Chan X and Y, 2 volts/Div.

7. At this point arm is to be moved. ** tp be determined how **

8. With arm in movement, a circular pattern should appear on the
scope. Adjust R7, R8, R17, R19 so the top, bottom, right
and left sides of the circle come at but no closer than a
minimum of 2.5 scope divisions from the center of the screen.

9. Each pot adjusts the circle as follows:

R7 Left side clockwise or lower res=smaller circle
R8 Right side !
R17 Bottom \ "
R19 Top “

10. Figure 2 shows a properly adjusted optics signal.

Figure 2: Position A and B

I 2.5 DIV MIN,

Eall L
J
V48N

PROCEEDURE SUMMARY

1. Adjust R35 so the voltage at TPS (R37) is 3.6 Volts +/- .2 volts.

2. Put scope in X-Y mode, chan 1 & 2 set to 2 volts/div. Adjust R7,
R8, R17, R19, so that the sides of the circle (during minimum
fluctuation) are each within 2.5 Divisions (+/- .1 div) of the
center. This corresponds to 5 Volts from the center to the
top, bottom, or either side.

ADDITIONAL INFORMATION NEEDED FOR WALT WEBBER

To provide information to convert the resistor trimming process into a laser
trimming process, Walt Webber needs the following information:

1. The actual final resistor value of R34 and R35 on a properly adjusted mother
board. (LED current drive adj.)

2. The final resistor value of the resistor pairs for adjusting the sides of
the circle: pairs RP1 and R7, RP1 and R8, RPl and R17, RP1 and R19.

3. Data from 20 to 50 boards is necessary for a good cross section.

=N

APPENDIX C:

Some of the analog control signals can be useful in understanding or evaluating
the function or performance of the Widget Servo. Photographs are provided to
illustrate some of the key Widget functions. Refer to the following document
"WIDGET SERVO WAVEFORMS."

WIDGET SERVO

VARIOUS KEY WAVEFORMS

Page
Page
Page
Page
Page
Page
Page
Page
Page

WO OWL & W

CONTENTS

Optics Ad justment

Current Sense and Position A

Current Sense and Position A (Forward and Rev Seeks)
Velocity and Position A

Velocity and Position A (Forward and Rev Seeks)

DAC Output and Position A

DAC Output and Position A (Forward and Rev Seeks)
Curve Shift Function and Position A (1 track seek)
Curve Shift Function and Position A (60 track seek)

WAVEFORM: Optics Ad justment

¢

Scope Adjustments:

Channel Probe Tip Test Point Notes
Chan 1 Position A TP9 2V/div
Chan 2 Position B TP8 2V/div

Trig In Not used

Horiz : X~-Y Mode

Servo:
Alternate Seeks, 512 tracks]
Press Z; 32, 0, 0, 0
8, 0, 0, O

PAGE 1

WAVEFOR!M: Current Sense and Position A

Scope Adjustments:

Channel Probe Tip Test Point dotes
Chan 1 Current Sense TP19 L SV/div
Chan 2 Position A TP9 .+ 5V/div
Trig In Access Mode TP27 * Positive trig, Ext/10

Horiz: Sms/Div Calibrated

, Servo:
Alternate Seeks, 96 tracks (Hex
2y _ 2

Press Z; 80, 60, 0, O
84, 60, 0, O

PAGE <

WAVEFORM:

Current Sense and Position A
(Forward and Reverse Seeks)

Scope Ad justments:

Servo:

Channel Brobe Tip Test Point tlotes
Chan 1 Current Sense TP19 S5V/div
Chan 2 Position A TP9 5V/div
Trig In Access Hode TP27

Horiz: ' 2ms/Div Uncalibrated

Alternate Seeks, 96 tracks (Hex $60)

Press Z;

30, 60, 0, O
84, 60, 0, O

Wi (M
R AVEA

b enfonnd 1
%EIIIWM |
A A
] NN

S
B

Positive trig, Ext/10

C

WAVEFORM: Velo;ity and Position A

Scope Adjustments:

Servo:

Channel Probe Tip

Chan 1L Velocity

Chan 2 Position A

Trig In Access Mode
Horiz: Sms/Div Calibrated

Test Point Notes
TP7 2V/div
TPY 5V/div

TP27 Positive trig, Ext/10

Alternate Seeks, 96 tracks (Hex 360)

Press Z;

80, 60, 0, 0
84, 60, 0, 0O

N
HEEANEEE

L
o

|
%;'

ll..=l
N L
A

0
B
G-
4
r

WAVEFORM:

Velocity and Position A
(Forward and Rev Seeks)

Scope Adjustments:

Servo:

Channel Probe Tip Test Point dotes

Chan 1 Velocity TP7 SV/div

Chan 2 Position A TP9Y SV/div 7

Trig In Access Mode TP27 Positive trig, Ext/10

"Horiz: 2ms/Div Uncalibrated

Alternate Seeks, 96 tracks (Hex $60)

Press Z; 30, 60, 0, O
84, 60, 0, O

ED-=~aRREN
L N
PARNEANERE
/S

A A
SN mu%mf i'i'li‘\"liki=.|
SN

Nt
A g

WAVEFORM: DAC Output and Position A

(/ Scope Ad justments:
Channel Probe Tip .Test Point Notes
Chan 1 DAC Output P13 2V/div
Chan 2 Position A TP9 SV/div .
Trig In Access lode - TP27 Positive trig, Ext/10°

Horiz: 5ms/Div Calibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, 0

| ‘
. ..!I-'.-
‘ .-\

N L

av]
W
[
]
[e;

WAVEFORM: DAC Output and Position A
(Forward and Rev Seeks)

(.

Scope Adjustments:

Channel Probe Tip . Test Point ‘Notes

Chan 1 DAC Output TP13 2V/div

Chan 2 Position A TP9 5V/div

Trig In Access Mode TP27 Positive trig, Ext/10

Horiz: 2ms/Div Uncalibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, O

=

=

N
0G- - - - [-~ -
i

: 0 s S
HEEEE RN
bl

HERY:E
pnus” i
il- d LlII

PAGLE 7/

WAVEFORM: Curve Shift Function and Position A
(Forward and Rev Seeks: 1 track)

¢

Scope Ad justments:

Channel Probe Tip Test Point Notes

Chan 1 Curve Shift Func. TPl2 2V/div
Chan 2 Position A TP9 5V/div o
Trig In Access Mode P27 Positive trig, Ext/10

Horiz: 2ms/Div Uncalibrated

Servo:

i Alternate Seeks, l track

Press Z; 80, 01, 0, O
84, 01, 0, O

RN

R

WAVEFORt{: Curve Shift Function and Position A
(60 track seek)

Scope Adjustments:

Channel - Probe Tip Test Point Notes

Chan 1 Curve Shift Func. TPL2 2V/div

Chan 2 Position A TP9 5v/div

Trig- In Access Mode TP27 Positive trig, Ext/10

Horiz: Sms/Div Calibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 30, 60, 0, O
84, 60, 0, O

a0 VO 0 I
AII‘IMMMMMAI HEENE
!l’IWWﬂPWlII L e

ST EEN

r

Avl Y

Z8 SERVO COMMAND BYTES
- TABLE 1

BYTE 1: COMMAND BYTE (DIFCNTH)D

I.
1B?7
command | Bé
bits iBS
B4

bi

IT.

iB3 =X~ not used
access B2

ts 181

access direction

hi diff2 (512>

hi diffl (258

-access direction
-hi diff2 (512
B8 -hi diffl (2548)

1
2

1]
S -

o
®

-

i B? B6 BS B4 | FUNCTIONS
i1 8 & 8 | access only
i1 @8 o8 i access with offset
i 38 1 8 8 | normal recal (to trk 72)
i 8 1 1 1 i format recal (to trk 32)
i 8 8 08 1 i offset-trk following
i1 1 8 8 | home—send to ID stop
i1 8 8 1| B8 | diagnostic command
i 8 8 0 B8 | read status command
(FORWARD: toward the spindle)
(REVERSE: away from the spindle)
(S12 tracks to go)
(not set)
(254 tracks to god
(not set)

BYTE 2: DIFF BYTE (DIFCNTL)

command BYTE 2 contains the LOW ORDER DIFFERENCE COUNT for a seek

187
1 Bé
1BS
1 B4
B3
1 B2
1 B1
| B9

-bi t7=
-bi té=
-bi tS=
-bi td4=
-bi t3=
-bi t2=
-biti=
-bi tg=

128 tracks
44 tracks
32 tracks
16 tracks
8 tracks
4 tracks
2 tracks
1 track

(1

IIl. BYTE 3:

28 SERVO COMMAND BYTES : page2
TABLE 1

OFFSET BYTE (STATREG)

command BYTE 3- contains the INSTRUCTION for an OFFSET COMMAND (seek
or during track following)

{B7 —offset direction

1Bé
185
1B4
183
B2
i Bl
iBe

1o i
o

-auto offset function

-t et — - —ar—ra - ﬂwr vs=d’
-offset bitd =14

-offset bit3 =8

-offset bit2 =4

-offset bitl =2

-offset bitd =1

f offset command from BYTE | is followed by bité set (auto offset)
ffset direction (bit?7) read offset (bit3) and bits 4-8 are ignorec

but should be set to 8 if not used.

2. 0

,3 \ 3. A

FFSET DIRECTION =1 (FORWARD OFFSET:toward the spindle)

=9 (REVERSE OFFSET:away from the spindle)
UTO OFFSET =1 (normally used preceeding a write operation)
=8 (manual offset:MUST send direction and magni tuc
of offset)
e
— @

PPt - ORRSFrEe-
IV. BYTE 4: STATUS BYTE (CNTREG>
iB7 -communication rate
iBé —-power on reset
i1BS -not used
iB4 -not used
1B3 -status or diagnostic bits
:82 - 1
1Bl - 1
B8 - v

.

@

~
wn

w
03

-

- am

-

-e ‘me

Communication Rate is 19.2 KBAUD

-

Communication Rate is 37.& KBAUD

Power On Reset bit is no active
Power On Reset bit is active

28 SERVO COMMAND BYTES page3
TABLE 1

{~b. BYTE S: CHECKSUM BYTE (CKSUM)

«[B? Bé BS B4 B3 B2 Bi B8l

resul ts of the transmitted CHECKSUM BYTE are derived as:

(BYTE 1 + BYTE 2 + BYTE 3 + BYTE 4> = CHECKSUM BYTE

(+) is defined as the addition of each BYTE

- (BYTE) is defined as the compliment of the BYTES(i-4)

VI. The SERVO STATUS lines (SI0O RDY,SERVO RDY,SERVO ERROR) must have the
following conditions in order to send the listed 28 COMMANDS:

SERVO STATUS

S S S
I R R
o Vv V
R R +E
D D R
Y Y R
Z8 SERVO CMD HEX
access(only) 8X B | 1 ai
access(offset) X i1 1 a8l
recal(data 49 i1 X X1
recal(format) 79 i1 X X1
park Ca i1 X X1
offset(detent) 1@ B! 1 8i
status a9 il X X1
diagnostic 28 i ! not implimented

= eijther 4,1

—

2§ SERVvO SEQUENCER

cHaeT I
Pwee on
SYSTE 14
RESET
STame SYSTEi 1401 T 1ALIZATION

e CLEAR PoRT3 AND THEMN O,1,2
e CLEAR BEGS /27 Fo Y

p——— SR.T" STACE RO/nITTE

LS COM10LICAMIOL) SET LR

- SET SO 70 /7.6 K3

SELI1AL COXRAYNICA-TTO)

————raat 2

RECAL STATE

= PARIZ AMD WAIT toopP

e LO D TIMEZS

- SET PoRTS

Z¢ SERVO SEQUENMCER
CrALr T

STRTE

i

STR-RY” RLELCAL 740770 N

3STATE

(e STA-RT™ T/ At ERS

e SET ZRQ ISk (T1)

TL=0 (Mmovedr ecquiecn r2ice CENGTH)

RECAL E/INAL APPEoAcCK

o

e SET” TRQ ARSK

e s£7 PomT g

-

FEZL (S0P UE-‘Loc:ry)
CoMdDITIOMS SM TRACK

SETTL/NG CownTe2ol

(e ST PORTS FOR SEFTLIN G
e STR-RT HBAD SETTLING TI4ER

e LOAD> TRACKR CEoSSING COuMTER (TL)

e STR- T T L
ip—— TEST FOR ORFIET B/T

o SET /NTEGRATOR Su

PAGL

STRRY SZO | COMIUAICATION

NOT /41PL/ MCLTED

access srars (SEsxs)

r e SR SEZE D/RCCT/ON

e ST PORTS

[¢——— LoAD AUD START T®, 7! TIMEZS

g SET SEEr CLRVE

(57 7L =
255

SEEK FINA(C APPROACH

Ml SET™ PO TS

———— UPDATE Pos/THON SISNAL FAR SETTLING

TERY . TRQ FOL TELLL COWDITION
Cowdition a

N

Arree
Two

SERve Eelese
ChaerT IL

SETr SELvO EZREOR

e s 1L L. TRY TWwio RETRIES

RETR:ES

o ComMmow) CATION
CHART IIT

STATE 1,7

——— SZO £2E40Y

o

=T SERVE
Eefor

VII’

ELeaes

Y DESELECT™ SO READY

SET SEmyy
BASoR

CoumuMAL) ELPoks
eHARTIT

-

COust 44 Awd LETECT

L8AD

=)

Ada LoCh

a

CHpRT Y

A 2eLse

v,

!‘ Love BESET ///7 / /

STe eOY //////

—s] | %pnmua»éé SO0 m

s’EAm Loy 7//,/

SLeyv Eregn ﬂ////

SZO 'sreve : ///////

5T ! ConTeocese /1)) //

NERN ﬁ N Y [

B=- AFTER weER UP — CHerr Siu Eregn -

Tze 2Bby

é.<vg ecdy

SELve Ertoe

Sy SEeve

STo LorTee

X_t;-_\(éz ' 8 fhes /

C - Ar7Ep Roswce gPp —/MNUALID CMD

STo L0y

SERve Lby

1
|
— | Dusee

SER Ve £Plom

a— x —

Si I SERVe
Zo

CoNTEL

' ‘Cb@éér r

»°

SIo &b Y
SELyey LY
SEeves £eror

SZO ' SERVv L

T Cc:ng‘ A2 =233 avfes X

STO Bl Yy

SELVY DY
Sﬁcvo Lo R
3iro. SELve

7O« Cowvre

T edyvy
ZEevy &V
ZE2ve TFEEor
SO IERUD

:I" 7)631\/ 7L

D= RE4O STATY S COtripwd

¢ |
-) : ’ x e Py
|

o \

‘\- = e Imsee

._q J‘lv-—- 00 usse

BE ‘YWX-NXB“XCSXf

E = 7240k FOLLOU /G Stpyo EFerpr - INyBCID COMuby)

V& azf 83y a4 cs Y

FeTrACE Foccouu) & szeua EREGR — PEAD STATYS
1

—s) le—lusec

F—X —uﬁ [loous

& Y 22\ 32X 29\ ooy

- v = A} v \ 7
J_s/ \z21232rcs §

"' V3
" .ewArT T G~TRack FOLLOW WG VALD Corumid Ciove)

')

ST 2OY [X —> ()()
-S(JVO 20y \“L
SERve FErEo2 _)(.
44

PA)

STo » sapue

(L

J)

re .« Cowrey RO

F-Teack zraugwi G (gyE D) Lottowsld BY Seevo Emﬂ?

o 20y 1 B T
W ‘

SEeve EePop ‘xi()

SC%" ffEBU 2

SZo « ConTEC {aufs2y 33 myfesh

L — Teack. moeLovs MG (1O caumwb) SERYY Zlrkor

I//////J/,///////////////zi
L 77777777777777777

STO RD Y

ZEeve L0y

SEeve FPPoje

SZO . Sfevs

P

SO . ConTRL

¢

/0/A7/ Z. ”‘i

BTSN
¢

UoTor
& R

- DUAC HMODE o s, T/00) SFRVO
(FE 4D oveSs RSr7IOM 5‘5&»@5)
TACKH C1) orPrics |
PHasE A\B|conirer
r2) -
L
PHASE A)\/ALOG " avacos] ErME AnaLoc Powrr
A Swir TCH S 17¢ 1+ PosS s 7nN Swirert AL R
PHASE 1 2 camp 3
B
' | . - |
 (. 1 |
AvA Lo
ST = A/D
. 4 onv
(d
‘ ; Z& —
} PuLse | PULsE SERVO ﬁf—
A . GEV Conrer
PuLse .
m
]))
/v DEX
-] DAC
! L4
W (Z |

AR PLE PES

L/CURE T

