- Widget Firmware Specification
and
Theory of Operation

Revision 2.0-0
tay 8, 1984

¥ritten by Rodger Hohme
HS-19F x4879

Some Userul Definftians:
The following is an explanation of the symbols that will be used throughout this document to
describe the operation of the various firmware commands. ,
>': The bracket symbols mean that the information inclosed within them
is manditory.
'[, 1’ : The square bracket symbols mean that the information inclosed within
ther isoptional.

*|' :Thevertical bar symbol is used to indicate analternative or oR"
condition. For example, A|B canbe thought of as "Either AorB".

‘::=": This symbol is used to indicate a definition or equivelence.

'{, }': Curly brackets are used to denote commemnts.
*+' : The plus sign is used as an addition symbol or loéical or'ing.

: The dolar sign is used to indicate that avalue is radix 16 {inother
vords, the number is inhexadecimal}. values that are not preceded

by '$’ are assumed to be decimal.

*NULL': This key word indicates the empty set, or in some cases the fact that
the function whose value is NULL can be ignored. Anexanple is:

Argle_Bargle ::= <NULL>
Essentially you can forget that Argle_Bargle exists for this context.

|$l

age 3

Command Types:
¥idget commands are broken up into 3 categories:
1. ProFile commands

These commands are used emulate a ProFile mass storage device and provice
for downward compatibility.

2. biagnostic commands
These commands are used to seperate the various subfunctions of the
drive and provide a means to troubleshoot a ¥idget without the controller
of performing any retryingof it’sown.

3. System commands '
These commands are used to operate a Widget at it's maximmefficiency.

Blocks are transfered 1logically in amultiple block fashion, up to
255 blocks.

Page 4

Proflle Commands.:

¥idget is designed to be backwards compatible with the current ProFile Driver, and to that end there
exists the three ProFile System commands {Read, ¥rite, and ¥rite_verify} within the firmware.

Opcode Definition
$00 Read Logical Block
$01 write Logical Block
$02 write_verifvlogical Block

The three Profile commands behave in exactly the same fashion as do the corresponding instructions
on ProFile, with one small exception: the Read Logical command does not include information
concerning Retry Count or Sparing Threshold {however, because of a side effect in the way that the
Host/Controller interface was designed, the Host may write as many command bytes to the controller as
it chooses. The Controller will only decode the first four.}. The formof each command is:

<$00|$01|$02> <3 bytes of Logical Block Address>

There are two 'special’ logical address defined in the ProFile protocol, namely $FFFFFF {-1} and
$FFFFFE {-2}. Logical address (-1) returns as it's value Device_ID {as explained under the section
titles Diagnostic Commands} and logical aodress (-2) returns as it' s value widget's spare table
structure init's raw form.

It should be noted that if &t any time ¥idget can not pass it's self test that it will refuse to
sommunicate via logical commands {both ProfFile and System type commands}; Wioget will respond to
Diagnostic commands at all times, however.

The Test of the commands available on ¥idget are a complete departure from the way that ProfFile was
implemented. The new form of any command is:

(<Command_Byte>
<Instruction_Byte>
[Instruction_Parameter)
<CheckByte>)

Command_Byte : := <CommandType_Nibble + CommandlLength_Nibble>
CommandType_Nibble : := <Diagnostic_Command |System_Command>
Diagnostic_Command ::= <$10>
System_Command : : = <$20>

Command_ength_Nibble :: = <Count of all the bytes in the command string AO7
including the first one. For example, the command string to read
Device_IDis: (<$12> <$00> <$ED>). The commandlength_nibble in this
case is2.>

System Command : := <Sys_Read|Sys_¥rite|Sys_wrver>

rage >

Diagnostic_Command ::= (<Read_ID|

Read Controller Status|

Read_Servo_Status|
Send_Servo_Command |
Send_Seek |

Send Restore|
Set_Recovery|
Soft_Reset |
Send_Park |
Diag_Read| ’
Diag_ReadHeader |
Diag_vrite|
Auto_Dffset|
Read_SpareTable|
write_SpareTable|
Format_Track |
Initialize_SpareTable|
Read_Abort_Stat |
Reset_Servo|

Scare)

Instruction_Parameter ::= { This value is instruction dependent, and will

CheckByte ::

= { Thisbyte
arithmetic, of all the bytes in the instruction string
Includingthe Command_Byte. }

be formally defined at the same time as the
individual instructions }

is the ones-complement of the sum, in HOD-256

Page ©

Dlagnostic Lommends:

vidget's personality, or manner in which it behaves in a specific Host environment, can be thoght of
as having two distict parts: 1) that portion that is dicteted by the hardware and 2) that portion that
is controlled by the firmeare. As trite as that last statement may seem, the fact remains that the part
of ¥idget that is the hardware is notr easily molded to adapt to different conditions. The same is
true, but not quite in the same manner, for the firmware: the code is locked in a RO of some sort and
costs a 1ot to change. How then can ¥idget's “personality” be changed {on-the-fdy} to "adapt” toanew
environment? The answer in thjis case was to architect the firmware in a layered fashion: build the
intelligence required to operate ¥idget in it's normal system mode from a pool of discrete, primitive
functions; these primitive functions having just one specific task that they are capable of
completing. The implication of this architecture is that withvery little effort these same primitive
functions are available to the Host system.

rage 7

"Read_ID

Read_ID : := <$00>
Instruction_Parameter ::= <NULL>

This diagnostic command requires Widget to deliver to the host some device specific information.
The structural layout of the data returned is:

STRUCTURE Identity Block

This identity block is defined by the data structures contained within it; you will note, however,
that a comment is given explaining the type of structure for a given element and range of bytes - if the

structure is thought of as a linear array of bytes - that include the structure. An example is
NameString. It isai13-character ascii string, and is located inbytes $0:C.

NameString ::= <10HB_Name|
20t8_Name |
40M8_Name {13 bytes/$0:C; Ascii String}>

10MB_Name ::=<'Wioget-10 ‘>
20t8_Name ::=<'Widget-20 °'>
40MB_Name ::=<'Widget-40 ‘>

Device_Type ::= <Device.¥idget+Wiaget .Size+wioget.Type {3 bytes/$0:F}>

Device.Widget ::=<$0001 {2 bytes/$D:E}>
vidget.Size ::=<Size_10|Size_20|Size_40 {4 bits, byte $F/bits 7:4}>

Size_10::=<$00> - Ty
Size_20 ::=<$01> v
Size_40 ::=<$02>

vidget.Type ::= <System|Diagnostic|AppleBus {4 bits, byte $F/bits 3:0}>

System : := <$00 {parallel host interface})> g
Diagnostic ::=<$01 {development use only}>
AppleBus ::= <$02 {serial host interface}>

Firmware Revision ::=<{Z2bytes/$10:11}>

Capacity ::= <Cap_10|Cap_20|Cap_40 {3 bytes/$12:14}>

Cap_10 : : = <$004C00>
Cap_20 : : = <$009800> |
Cap_40 : := <$013000> o o
Bytes_Per_Block ::= <532 {2bytes/s$15:16}> 16 2& e

'

Number_0Of_Cylinders ::=<Cyl_10|Cyl_20|Cyl_40 {2 bytes/$17:18}>

Page &

Cyl_10::=<518> , 107
Cyl_20 ::= <514>
Cyl_40 ::= <1028>
Number_Of_Heads ::= <2 {1byte/$19}>
Number_Of_Sectors ::=<Sctr_10{Sctr_20|Sctr_40 {1byte/$1A}>
Sctr_10 ::=<19%> 1\~

Sctr_20 ::=<38> 3~
Sctr_40 ::=<38> -

Number_Of_Possible_SpareBlocks ::=<$00004C {3 bytes/$1B:10}>
Number_Of_SpareBlocks ::= <{3bytes/$1E:20, range 0..$48}>

Number_Of_BadBlocks ::= <{3 bytes/$21:23, range 0. .$48}>

g ¥

Read__Controller _Status

Read_Controller_Status ::= <$01>

Every time an

operation completes {normally or abnormally} Widget will return Standard Status.

This allows the Host system to change it's flow of execution based on the state of the value returned in
the Status. Normally, Standard_Status is all that is necessary to ensure continuous operation. Inthe
exceptional case, or when the Host system is emulating the controler’'s functions, additional
information concerning the state of ¥idget is mandatory: without it the Host simply could not make an
optimumchoice in deciding a course of action.

Controller_Status is then a means for the Host system to interrogate Widget further. Each Status
{vith the exception of Abort_Status, which 1s a seperate command and is discussed later in this
document} belongs to a homogeneous data structure: namely a four byte quantity containing a bit map
representing the various exceptional conditions thyat are available as the first four bytes read from

the controller u
There are eight

pon completion of the current command.
L status’ available to the Host system. The Host requests a specific status by setting

the Instruction Parameter to the value corresponding to the status needed.

IF (Instruction_Byte =Read_Controller_Status)

THEN Instruct

ion_Parameter ::= (<Standard_Status|
Last_Logical_Block|
Current_Seek_Address|
Current_Cylinder |
Internal_Status|
State_Registers|
Exception_Registers|
Last-Seek_Address>)

The four byte response to each of the above status requests is of the form:

SEARE
co @cC
Qq ¢2

Status_Response ::= (<Byte(> <Bytel> <Bytez> <Byte3>)

TARLE Code

S W YA @3 dF R A gD Z{ATY oR 4 L&
Qe @7

Page 10

Standard_Status : := <$00>

ByteO ::= ¢ Bit7: Other than $55 response fromHost
tBit6: Write Buffer OverFlow
~Bit5: fnot used}
- Bit4: {not used}
¢ Bit3: ReadError
- B1t2: No Hatching Header Fomd
= Bitl: ServoError .
i Bit0: OperationFailed>

Bytel ::= <Bit7: {not used)
Bit6: Spare Table Overflow
BitS: 5or Less Spare Blocks Available
Bit4: {not used}
Bit3: Controller SelfTest Failure
Bit2: Spare Table has been Updated
Bitl: Seek Error'
Bit0: Controller Aborted Last Operation > .

Byte2 ::= <Bit7: First Status Response since Power-On.
Bit6: Logical Block Number Out of Range .
Bit5:0 : {not used}>

Byte3 ::= <Bit7: Read Error Detected by Ecc circuitry -
Bit6: Read Error Detected by Crc circuitry
Bit5: Header timeout
Bit4: {not used)
Bit3:0 : Number of unsuccessful retries {out of 10}>

Page 11

Last_Logical_Block ::= <$01>
ByteO : := {not used}
Bytel : := <ost Significant Block Address>
Byte2 : := <Next Most Significant Block Address>
Byte3 : := <Least Significant Block Address>

Page 12

Current_Seek_AQdress : := <${p
Byte0 : := <Host Significant Cylinder Address>
Bytel ::= <Least Significant Cylinder Address>
Byte2 : := <Head Address>
Byte3 ::= <Sector Address>

N NO

rage 15
373
Current_Cylinder ::= <$04>
ByteO : := <tost Significant Cylinder Address>
Bytel ::=<Least Significant Cylinder Aadress>
Bytez ::= <Head AOdress>
Byte3 : := <Sector Address>

Page 14

Intermal Status ::= <$04>

ByteD ::=<Bit7: Recovery On
Bit6: Spare Table Almost Full
BitS: Buffer Structure is Contaminated
Bit4: Power reset has just occured
Bit3: Current Standard Status is non-zero
Bit2:1 : {not used}
BitO: Controller LED is on>

Bytel ::=<Bit7: On_Track - .. o, -
Bit6: Read Headers after datarecal . I~
BitS: Current operation is a write operation
Bit4: Heads are parked
Bit3: Sequential look-ahead table search
Bit2: {not used} Y
Bit1: Seek_Complete
BitO: Auto_Offset is OnN>

\
cO
o9 -0

O

Byte2 ::= {this status isvalid ONLY after aProFile or SystemCommand}
<Bit7: Seek_Needed ©
Bité6: Head_Change_Needed/
Bit5:2 {notused} ©
Biti: Current block is a BAD blockso {
BitO: Current block is a SPARE block>

Byte3 ::= <SpareTable_Type|UserData_Type> O
SpareTable_Type ::= <$08>
UserData_Type : := <$02>

raye 15

State_Registers ::= <$05>
Byte0 ::= {not used}

Bytel ::=<Bit7: Ram_Failure
Bit6: Eprom_Failure
BitS: Disk_Speed Failure
Bit4: Servo_Failure

~Bit3: Sector_Count_Failure

Bit2: State_Hachine_Fallure
Bitl: Read_Write Failure -
Bit0: No_SpareTable_Found>-

Bytez ::=<Bit7: Disk Read/-¥rite N
Bit6: SioRdy -
Bit5: Msell
Bit4: Msell
Bit3: Bsy .
Bit2: Cmd
Bit1: EccError {active low} . B
BitO: Start {active low}>

Byte3 ::=<Bit7: CrcError {active 1ou}
Bité: Urite Not_Valid {active lowf-
BitS: ServoReady “ —
Bit4: ServoError <.
Bit3:0 : Current stateof the state-nachine> o>

Page 16

Exception_Registers ::= <$06>

Byte0O ::=<Bit7: Read error
Bité: Servoerror while reading

BitS: At least one successful read in 1ast retry sequence
Bit4: Header Timeout

Bit3: CrcError or EccError
Bit2:0 : {not used}>

Bytel ::=<Bit7 ::= EccError
B81t6 ::=CrcError
BitS ::=Header Timeout
Bit4 ::= %not used}
Bit3:0 : {number of bad retries out of 10}>

Byte2 ::=<Bit7: ¥riteError
Bit6: ServoError while writing
BitS: At 1east one sucessful write in last retry sequence
Bit4: Header Timeout:
Bit3:0 : {not used)>

Byte3 ::= {number of bad retries out of 10}

CTXCGERP TIoN) REQISTERS e

RMTE O Cf
BYTE | =]

7
RYTE 2 Cl)

AYTE 2 l

ruye 17

Read__Servo__Status

Read_Servo_Status : := <$02>
Instruction_Parameter ::=<0..8>

This status command is used to interrogate the Servo Processor in much the same way that
Read_Controller_Status isused. Infact, the formof the result is the same four byte -mapped quantity

This command is of the particular value to a diagnostician that is interested in *scoping-out’ the
Servo subsystem.

A more complete description of the servo commands can be read in the document titled “widget Servo
Functional Objective® written by JimReed.

Page 18

Send__Servo__ Command
Send_Servo_Command : : = <$03>
Instruction_Parameter ::= (<Byte0> <Bytel> <Byte2> <Byte3>)

Normally, the Host will allow the controller to manipulate the servo processor in order to perform
useful work. For example, let's suppose that the Hast system wishes to move drive‘s heads from one
track to another. Under normal operating conditions the preferred way to perform this task is to use

othe Send_Seek command {explained later}. However, the Host has the capability to bypass the

“controller and direct the servo processor. Indeed, the Host can issue the servo command to position

the heads so that the seek is completly transparent to the controller. The implication of this command
is that the Host can gain even more control of the system if it so chooses.

A more complete description of the servo commands can be read in the document titled “Widget Servo
Functional Objective” written by JimReed.

Byte0 : := <S_Command + S_Direction + Hi_Magnitude>

S_Command : := <Offset|
Diagnostic]
DataRecal |
FormatRecal |
Access|
Access_0Offset|
Home>

Offset ::= <$10>
Diagnostic : := <$20>
DataRecal ::= <$40>
FormatRecal ::= <$70>
Access : := <$80>
Access_Offset : := <$30>
Home : := <$C0>

S_Direction ::= <Positive|Negative>

Positive ::= <$04 1touards inside diameter}>
Negative : := <$00 {towards outside diameter}>

Hi_Magnitude ::= <0..3 {move heads inmultiples of 256}>
Bytel ::= <Low_Hagnitude ::=0..255>
{note: Hi_magnitude, Low_magnitude, and S_Direction establish
the relativedistance the heads must move to arrive at the target
track}
Byte2 ::= <Offset_Direction + Auto_Offset_Switch « Offset_Hagnitude>
Offset_Direction ::= <Positive|Negative>

Positive ::=<$80 {towards outside diameter}>
Negative ::=<$00 {towards inside diameter)>

Page 19

Auto_Offset_Switch ::= <ON|OFF>

ON ::= <840 {assert fine positioning}>
OFF ::= <$00>

Offset_Magnitude ::=<0..32>
Byte3 ::= <Baud_Rate + Power_On_Reset>
Baud_Rate ::=<19.5k_Baud|57.6k_Baud>

Send_Seek : := <$04>

Instruction_Parameter ::= (<HiCyl> <LoCyl> <Head> <Sector>)

vidget's Send_Seek command allows the Host system to place the heads over any track on the disk. The
value of the seek agdress is sent as the Instruction_Parameter, and each parameter is abyte inlength.

For example, for the Host to seek to (Cylinder 1, Head 0, Sector 18) a seek command would be issued with
the following Instruction_Parameter: (30000 $00, 312)

Page 21

Send__Restore

Send_Restore : := <$05>

Instruction_Parameter ::= <DataRecal |FormatRecal>
DataRecal ::= <$40>
FormatRecal : := <$70>

The Send_Restore command 1s used by the Host to initialize the servo processor and to put the heads in
a known location. This command is the same as performing a Data/Format Recal except that the
controller updates it’'s internal state to account for the new servo position.

Page 22

Set__Recovery
Set_Recovery ::= <$06>
Instruction_Parameter ::= <ON|OFF> i
ON ::= <$01>
OFF ::= <$00>

The exception handling characteristics of uoget approxinate a binary set: either ¥idget handles
everything, or the Host system does. The command ‘Set_Recovery' is the Host's 1ink with this protocol
in that it is through this instruction that the Host can gain control of the media. ¥hen ¥idget comes up
after being reset, it assumes control and sets ARecoveryto be ON. The Host system must overtly change
this state if it wishes to emulate a different exception handling criteria. Once Recovery is OFF, the
controller will always fail in an operation if an exception occurs: the Host must assume
responsibility for ALL error handling.

Paye 23

Soft_ Reset
Soft_Reset ::= <$07>
Instruction_Parameter ::= <NULL> .

This command instructs the Widget firmware to restart its flow of execution at its initialization
point. The results should be the same as a power reset.

Page 24

Send__ Park
Send_Park : := <$08>
Instruction_Paramter ::= <NULL>

¥hen the Host issues a Send_Park command to the controller the results are that the heads are moved
off the data surface and held very near the inside diameter crash stop The difference between this
command and the Send_Servo_Command: Home, is that Home is performed ‘open-1oop’ ¥ith the crash stop as
its reference point, while Send Park is an access command to a specific track. The net result is a
fairly hefty savings of time.

Diag_Read : := <$09>
Instruction_Parameter ::= <NALL>
The Diag_Read command is used to read the block on the disk pointed to by the 1ast seek address. The

form of the returned data is exactly the same as that of ProFile_Read or Sys_Read in that 4 bytes of
Standard_Status precede the block of data.

Diag_ ReadHeader
Diag_ReadHeader : := <$0A>
Instruction_Parameter ::= <Sector>

shen the heads are positioned over anunknown location, or when it is suspected that ablock's header
is shot, it is time to use the Diag_ReadHeader command. This instruction allows the host to *suck-up’
both whatever information is residing in the block's header field as well as the data from the block.
The formof the result is:

Result ::= (<Header {bytes/$00:05}>
<Gap {bytes/$06:0C}>
<Data {bytes/$00:21F}>)

Header : := (<HiCy1> <LowCyl> <HdSCt> <-HiCyl> <-LowCy1> <-HdSct>)

HiCyl : := <tost significant byte of cylinder address>
LowCyl ::=<Least significant byte of cylinder address>
HASct ::=<Bit7:6 : Head aadress

Bit5:0 : Sector aadress>

-HiCy1 : := <ones-complement of HiCyl>
-LowCyl : := <ones-complement of LowCyl>
-HASct : : = <ones-conplement of HASct>

Gap ::=<$00>

Paye 27

Diag_ Write
Diag_Write ::= <$0B>
Instruction_Parameter ::= <NULL>

This instruction allows the Host to write a block of data to the location on the disk pointed toby the
last seek address. Diag_Write is valid for all states that the controller may wid up in, but is
recm;rended that a Send_Seek command precede the write command to ensure that the correct block will
be written.

Page 28

Auto__ Offset

Auto_Offset ::= <$0C>
Instruction_Parameter ::= <NULL>

This command is used by the Host to fine-position the heads after they are on-track. The auto_offset
function can also be implemented by using the Send_Servo_Command instruction; the gifference is that
the controller will update some internal information {remember, servo commands are transparent} as
well as select the correct head to offset off of {the Widget system uses head 1 only for fine

positioning}.

Read__SpareTable

Read_SpareTable : : = <$0D>
Instruction_Parameter ::= <NULL>

Reading {and writing} the ¥idget's sparetable is an absolute must for diagnostic purposes, and if
the Host wishes to emulate the controller. The result of this instruction is identical toperforminga
Profile_Read fromblock -1 {$FFFFFE} and has the form:

Result ::= (<Fence {bytes/$00:03}>
. <Runhumber {bytes/$04:07}>

<Format_Offset {b /$08}>
<Format_InteriLeave {byte/tOQ}>
<HeadPtT_Array {bytes/$0A:83}>
<SpareCount {byte/$8A}>
<BadBlockCount {byte/$88}>
<BitHap {bytes/ﬁsc 95)>
<Heap {bytes/$96:1C5)>
<InterLeave_Map {bytes/$1C6:1D8}>
<CheckSum {bytes/$109 1DA}>
<Fence {bytes/$1D8:1DE}>
<Zone_Table {bytes/$10F : 1FF }>
<Fence {bytes/$200:203}>)

Fence ::= (<$F 0> <§78> <$30> <$1E>)

Runhumber : :=<32-bit integer>
This integer is incremented once each time the spare table iswrittento
to the disk.Because two copies are kept on the the disk, the Runhusber.js
used to indicate which is the more recent of the two, shouldboth
copies not be updated.

Format_Offset ::= <0. .Number0OfSectors>
Format_Offset is the number of physical sectors there are from index
mark until logical sector 0.

Format_Interieave ::=<0..6>
This number is the interleave factor for this disk and is used in
calculating where each of the 1logical sectors are relative to actual
sector locations. ,

HeadPtr_ArrTay ::= <ARRAY[0..127] of HeadPtr

HeadPtr ::=<Nil+Ptr>

Nil ::=<$80 {if Nil the end-of-chain}>

Ptr ::=<$00..87F {address of next e1enent}>
APtr isa7-bit structure that ‘points’ toa
specific location within the Heap. Toarrive
at the actual index value within the Heap, the
Ptr must first be multipliedby 4 {the length
of eachelement}.

Page 30

when a disk is formatted and being written to for the first time, each logical block is assigned the
first available physical block on the disk. Therefore you would expect that LogicalBlock(0) would
occupy PhysicalBlock(0), L(1) --> P(1), etc. There are instances, however, when a block of data must
be relocated to anaother space on the disk that does not follow the original progression (for example,
the original space was defective). In order to "find' these relocated blocks in the future a record
must be kept as to where all these relocated blocks have been put. This record takes the form of 128
linked lists having the form:

Hea®Ptr[n] --> LinkedList[n], where n ::= [0..127]

The algorithm for deciding whether or not a logical block has been relocated is toextract bits 10:16
from the LogicalBlockNumber and use it as an index into the HeadPtrArray:
IF (HeadPtr[LogicalBlockNumber/bits 10:16].Nil)
THEN LogicalBlock has not been relocated
ELSE use HeadPtr[].Ptr tobegin searching the chain for amatching
element {refer to the structure of ListElement for more detail}
IF no matching ListElement
THEN LogicalBlock has not been relocated
ELSE the element position in the Heap corresponds to the new physical
block location

SpareCount ::=<$00..$48>
BadBlockCount ::=<$00. .$48>

BitHap ::= <ARRAY[$00..$4B] of Bits>
The bit map is used to keep a record of which spare blocks are
occupied.

Heap ::= <ARRAY[$00. .$48] of ListElement>

ListElement ::= (<Nil+Used+Useable+Spr_Type+Data_Type>
<Token>
<Ptr>)

Used : := <$40>

Useable : := <$20>

Spr_Type : := <Spare | BadBlock>
Spare ::= <$10>
BadBlock : := <$00>

Data_Type : := <Data|SpareTable>
Data : := <$02>
SpareTable : := <$08>

Token ::= <Bits 0:9 of LogicalBlock>

InterLeave_Map ::= <ARRAY[0..15] of [0..Number0fSectors]>
The Interieave_Hap is used to logical re-interleave the drive so that
¥idget canbe run optimally on any system without having different
manufacturing or formatting processes.

Check_Sum : := <sum of all bytes in the spare table from the first fence to
beginning of this structure, inM0OD-65536 arithmetic>

Page 1

Zone_Table : := <ARRAY[0. .Number0fZones) of Zone_Element>
Zone_Element ::= <Offset_Direction+Offset_Hagnitude>

Page 32

Write__SpareTable

¥rite_SpareTable ::= <$0E>
Instruction_Parameter ::= (<$f0> <$78> <$3C> <$1E>)

This command allows the Host to ‘force’ a new spare table on the controller, and is executed just like
any of the other write commands (data, in this case, MUST conform to the structure presented in
Rtiaad_SpareTable} . The data sent to the controller is written to the two spare table locations on the
disk.

rage 5

Format__Track

Format_Track ::= <$0F>
Instruction_Parameter ::= (<Format_Offset>

<Format_Interieave>
<PassWord>)

Format_Offset ::= <0. .NumberOfSectors>
This parameter dictates which sector {beginning with sector 0 - the
first physical sector after index mark} will be logical sector 0 for

that track.
Format_InterLeave ::=<0..6 {interleave factor}>
PassWord : := (<$F 0> <$78> <$30> <$1E>)
The format command is used to:

1. Operate on the track that is currently beneath the heads - this
implies that the Host had best performa Send_Seek and Auto_Offset
command prior top formatting a track.

2. ACerase theentire track - this implies that all data stored on this
track will be destroyed.

3. New headers will be layed down in every sector of the track.

Page 34 CoCLlEQFRII AL

Initialize SpareTable

Initialize SpareTable ::= <$10>

Instruction_Parameter ::= (<Format_Offset>
<Format_Interieave>
<Passiord>)

Format_Offset ::= <0. .NumberOfSectors>
This parameter dictates which sector {beginning with sector 0 - the

first physical sector after index mark} will be logical sector 0 for
that track.

Format_Interieave ::= <0..6 {interleave factor}>
PassWord : := (<$F0> <8$78> <$3C> <$1E>)

This command instructs the controller to ‘wipe the slate clean' as far as the SpareTable is
concerned. The initialized table is updated on the disk.

roye >

wRead_Abort__Status

Read_Abort_Status ::= <$11>
Instruction_Parameter ::= <NLL>

Read_Abort_Status will return vaild data only AFTER the controller has aborted (identified by
Standard_Status.Bytel. BitO} The form of the result is a 16 byte string, and its contents are the
contents of the controller’s registers at the time of the abort - with the exception of bytes $0€:0F,
which constitute the reurn address of the procedure that called the Abort routine.

Page 36

Reset__Servo
Rese’t_Servo co=<$12>
Instruction_Parameter ::= <NULL>
Reset_Servo allows the Host to initialize the servo processor without having to power the gevice

down. The controller will automatically reset the Servo, set the baud rate at 57.6K, and check for
valid initial conditions.

ruge S7

Scan : ;= <$13>
Instruction_Parameter ::= <NULL>

The scan command causes the Widget to read all blocks that are within the range of blocks set aside
for user data blocks (all logical blocks). If any of these blocks are bad they will be either relocated
or marked as bad andrelocated on the next write. The SpareTable can be examined before and after a Scan
command to find the locations of all bad blocks.

Sys tem Commard's:
System commands have been implemented for essentially two reasons:

1. It was important for widget to add one more check on the CHO/BSY
hangsnake: namely the addition of a checkbyte following the command
string.

2. Inorder to increase the performance of the system without modifyi
the hardware it was critical to introduce another level of parallelism
into the Host/Controller interface. Host of the reads for a specific
block on the disk are followed by a read for the next logically sequential
block. Therefore the command decoding and checkbyte comparison for all
but the first block has been suppressed into a multiblock-type command.
The implementation for this added parallelismis to send anextra
parameter with the (first) LogicalBlock indicating the number of blocks
to be read sequentially.

Sys_Read

Instruction_Parameter ::= (<BlockCount> <.ogicalBlock>)

BlockCount ::= <$01..$FF>
This parameter is the number of blocks to be read that follow
sequentially fromLogicalBlock. It is assumed that one block
(LogicalBlock) will be read.

-

LogicalBlock ::=<__10MB|L_20MB|L_40MB>
L_10MB : := <$000000. . 004BFF>
L_<i78 : := <$000000. . 0097FF> -
L_40MB : := <$000000. .012FFF>

Page 30

Sys_Write

Instruction_Parameter ::= (<BlockCount> <L.ogicalBlock>)

BlockCount ::= <$01..$FF>
This parameter is the number of blocks to be read that follow
-sequentially fromLogicalBlock. It is assumed thatene block
(LogicalBlock) will be read. '

LogicalBlock ::= <L_10MB|L_20MB|L_40MB>
L_10MB : := <$000000. . DOABFF > .
L_20MB : := <$000000. . 0097FF>
L_40MB : := <$000000. .012FFF>

Fage 84

Sys_Write_ Verify

Instruction_Parameter ::= (<LogicalBlock>)

BlockCount ::= <$01..$FF>
This parameter is the number of blocks to be read that follow
sequentially fromLogicalBlock. It is assumed that one block
(LogicalBlock) will be read.

LogicalBlock : := <_10MB|L_20MB|L_40MB>
L_10MB : := <$000000. . D04BFF>
L_20MB : := <$000000. . 0097FF >
L_40MB : := <$000000. . 012FFF>

Page 42

Command Summary
ProFile_Commands:

ProfFile_Read ::= (<$00> <3 bytes LogicalBlock>)
ProFile_write ::= (<$01> <3 bytes LogicalBlock>)
ProFile_wrver ::= (<$02> <3 bytes LogicalBlock>)

Diagnostic_Commands:

Read_1d ::= (<$12> <$00> <$£D>)
Read_Controller ::= (<$13> <$01> <StatusRequest> <CheckByte>)
Read_Servo_Status : := (<$13> <$02> <StatusRequest> <CheckByte>)

Send_Servo_Command : : = (<$16> <$03> <CommandRequest> <CheckByte>)
Send_Seek : := (<$16> <$04> <SeekAddress> <CheckByte>)

Send_Restore : := (<$13> <$05> <On/0f f> <CheckByte>)

Set_Recovery ::= (<$13> <$06> <RecalType> <CheckByte>)

Soft_Reset ::= (<$12> <807> <$£6>)

Send_Park : := (<$12> <$08> <$£5>)

Diag_Read ::= (<$12> <$09> <$£4>)

Diag_ReadHeader : := (<$13> <$0A> <Sector> <CheckByte>)

Diag_Write ::= (<$12> <$0B> <$£2>)

AUtO_Offset ::= (<$12> <$0C> <$£1>)

Read_SpareTable : := (<$12> <$0D> <$E0>)

write_SpareTable ::= (<$16> <$0E> <PassWorgd> <CheckByte>)

Format_Track ::= (<$18> <Offset> <Interieave> <PassWord> <CheckByte>)
Init_SpareTable ::= (<$18> <Offset> <InterLeave> <PassWord> <CheckByte>)
Read_Abort_Status ::= (<$12> <$11> <$0C>)

Reset_Servo ::= (<$12> <$12> <$0B>)

Scan ::= (<$12> <$13> <3DA>)

System_Commands :
Sys_Read : := (<$26> <$00> <BlockCount> <LogicalBlock> <CheckByte>)
Sys_Write ::= (<$26> <$01> <BlockCount> <LogicalBlock> <CheckByte>)
Sys_Wrver ::= (<$25> <$02> <LogicalBlock> <CheckByte>)

PassWord : := (<$F (> <$78> <$30> <$1E>)

Abort__Status_ Variables

There are occasions when the Widget Controller will detect that something is
radically wrong with the ¥idget SubSystem, i.e., the ramon board the controllergoes on
vacation, or the positioning system gives up the ghost, etc. In one of these cases the
controller will abort its current instruction and return control to the Host,
hopefully with enough information that the Host can make an intelligent decision
concerning the state of ¥idget.

The Host can read some information concerning the abort that the controller took by
Tequesting Read_Abort_Status. This command returns a result that is 20 bytes long: 4
bytes of standard status and 16 bytes of abort status. The contents of the abort status

- are dependent upon the actual abort taken, and is determined by examining the contents
of bytes 15 and 16: the pointers to area of the firmware where the abort occured.

In the following table, the contents of bytes 15 and 16 are indicated {as a
hexadecimal 16-bit integer, just as you would read them from the buffer} with a brief
description of the reason why the abort was taken as well as any comments concerning
other bytes of immediate interest included in the Abort_Status structure.

$02EA: I11egal interface response, or Host Nak
Byte/$09: Response byte that caused abort
$0388: I1legal Ram_Bank select
: Byte/$00: Bank number
$048A: Format Error: illegal state-machine state
Byte/$0A: state of state-machine at time of abort
$04CE: Illegal Bank Switch (-~
Byte/$00: Bank number
$0516: Illegal interrupt or Deadttan_Timeout
Bytes/$0A:08: Address of routine at time of timeout
$1114: Format Error: Error while writing sector
Byte/$09: Error status from FormatBlock
$1204: Command Checkbyte Error
$1216: ProFile or Systemcommand attempted while SelfTest Error
$122A: Illegal interface instruction
$1229: Unrecoverable Servo Error while reading
$1408: Sparing attempted on non-existent spare block
$1542: Sparing attempted while sparetable full
$1588: Deletion attempted of non-existent bad block
$16E0: I1legal exception instruction
$18E8: ¥rite buffer overflow
$192C: Unrecoverable servo error while writing
$1B0A: Servo status request sent as Servo command
$1BSF: Restore Error: Non-Recal parameter
Byte/$00: I1legal parameter sent
$1BC3: I11egal password sent to ¥rite_SpareTable | OOnmand
$1C00: Illegal password sent to Format command
$1C0F: Iilegal format parameters
Bytes/$09:0A: 1llegal parameters
$1C63: I11egal password sent to Init_SpareTable Command
$1CF8: Zero block count sent to System Command

$1E49:
$1F3C:
$2026:
SZiE? :
$226F :

$236D:
$2493:
$2483:
$2525:

: Unrecoverable servo error while seeking
$2858:
$2877:
$2940:
$29C0:

$29F5:
$2C02:

¥riteError: Illegal state-machine state
Byte/$0A: State-machine state at time of abort
Read Error: illegal state-machine state
Byte/$0A: State-machine state at time of abort
ReacHeader Error: illegal state-machine state
Byte/$0A: State-machine state at time of abort
Reguest for illegal logical block
Bytes/$00:02: logical block number

External Stack overflow

Bytes/$04:07: stack history

Search for SpareTable failed

No sparetable structure found in sparetable
Update of sparetable falled

Illegal sparecount instruction

Bytes/$09: value of 1llegal instruction

Unable to transmit command to servo

Unable to receive status from servo

Unable to find any headers after DataRecal
Servo error after servo reset

Byte/$0A: value of controller status port
Servo communication error after servo reset
Scan attempted without sparetable

/S TWiece 8E0r Cadrroccsn
Comrorer : FAm Fom, Sz, CTC
b) VMme §7.3:2)}

? ’ﬂ?zc_auz« ¢ £
4) DEFErS —D S'mmal A
b) SVoisE

Q) Sénryo fm.ord
A) Dara Connecrmw

BLANCHARD || |

bivéer Oosrnocttn B tock b/); RA M

sy JOTERFACE
:‘2 {:: S/e IZ“,
Mackule 2e7c, N ~
———
Swic-| | Eec 2k gk
) STATIC
pre»a §é— LAm E Prom

7o /0 THER BOARD

—) i

7E /2/4.'

[SPuUeHROW/2ATHY 7O DISA |
2. FEnforams [fEA0, LIRITE Fonmas, FEao ferick,
2 CRCSEC evtrpriy

a) Erron Verecrrod

4 lams /S ronks Lrre/pets Dpra 7}490‘ Dick
CS’) rower Ok

Q) Dereers WHEY TSy 5 b Wi
RAé £

£8

/ TWTEcs 8ELr CadTRO CLlR
| a)/ Comtorer : 7am Fom,S5zo, CTCT
b) ¥ Me 37322}

2 Ecover Y

@) DeFEerS —> Spariw G
b) NsE .
) Sémvo Lrrons
a() Dura Comnecrri

__ _ /ENl‘Ux‘ i[@ntnu&vt ,Déﬂ/\ -_/BLC.IL e
Wwis 1

| el : QA;W (me
)

>4

[swagptsteyn, 0 O

Lk o YARCRZR I Y3 Ya Y| Yd ENOCNT Y3712 Vi “/at ‘ 1Ry 1 ?
_./:;”;;,N' R XXX c I O I A1 & 01 l «)&nam |)/;.h.ﬂ
J ‘J \-.....//
) . READ: 0O : /éo, ROGT 3 61, KDeil, /CHEHIR
SART W : GO $ /G0, RDAT 2.MECNT 2eo, KRG, fCrknoR
Flerp[:@o
~ S
Y272V %o orw ¥ forpR. ,(Yy V08 Y Aoy
ﬂﬁkl ‘ [] (5 ') —~——. }

\ T ge 3, DG) CHXHOR

/{jm"f\” /ENQNT LZHYCNT sGoudeia], CleR

. . dre) /i\n-,‘r,(HENPK

. 3) AR kw7

\ ToNeNTA AW N
/blhkl Yava o | IWOONT [B2 Y41) _En £ ‘ll %A\ | YNV (RO LYY
A do @ || @ / R w./' A /e

~——

-

AD SN fao s R0 t JCRCWRT : éo,/mcm : /6o, posir
werts AN o, WA T DlerewnT : G0, foRCCIR, . @o, /Wi
s SEADNL GO, Wial IR [cR(wRT 60, [CRCCUIR T 40, fend)

’356/:/ t
ML e FARSE; msecP s Trudl { Memn <> 28}
CoAd “BuFrFER w, m» AeEA0£l

« <*®W D ‘= H-7RAeck Brre
< MRS = lo- Tk BYE
< #50> =
<H- Mo €D > Sto Secscer
<o - Noaaid D™ Sgcrva Almrtn
<%¥of > = zwveeT(<toas)
< #5£5 .= zovEnT (< #oc>) i
<£9>:!= zoveun (< *¥ond>) i
<k >ie Eap |

Ser-r Srhre MAANE .
HSEC 2 = Trus , Mgl = dhiess { mbnm <> 2/s%)
DM = YorAa/r foar = &

DdrRWC = e sE {5k REaD) ; FMEVL = LALSE M fommar]
A AonwAcl ME€EAD O/ERA Tros ;
THES ROKIRH = FRCSE
ELo£E RoportF = TUE { DosT coank Ao Keaoen 'l

Toce ok secron pmarie | foar3, 3.2
Poce por Mor(secroe mmck)
STARTL 2 7aul { Tvrd STAvE MACKwE o Z

WRIT Lo Sécrpr QodE ok Timéowr
e gum £ o7 THES Excerria/
LA~ S€cron Do/E
THES
ALARO STarE Aleci STHTUS
TE STATE P THES JERIEL Misman raz/ Bars Yo7 Tl
¥ SraréE 2
THESL
Disk dara £ T Aon (¥19 - Fz2¢)
CRC. A7 fdsm Ao (# 22p - #3242)
Ecc #r Biwr HR(F 2r - T 234
LFE M EXTOR. THEL £Lxcfr 7o’
oAV
Vklow sy STRTE ExCElrol
S7TARTL = FlesE { QLSS STATE IACAK L

-

7

MOTE! ZE THE cas A READ HEWER ofitsTizg THES THE
BETEs [0 flan APOr. KB 48" B 7S QERE REsacen BY
THE BITHS U THE REAOLT SPRLE o) THE Dk, WL

MR Bl B 55,

R o) ARE

/ /4/431' ZHrERFRL [froroco
q) Pes FitE, Dpcijosrse y e rrZcock.

2. Cowrrocs Srare /IAcH0E, S.eua
) Basie Disk chc,nads

‘) Pd:/r'/od/d (A
3, ?zca Véry //

</ PERFOAMAYCE.

J:U/;‘/#C./.&Aﬁ;l/

/ Boor STnAlf A Fra 28 reEg/s7£rS
2. TEsr AL 28 nkb/STERS

Srack, Cact, Akrew TEST
Zircrd & % GCbat Upps
Trm 7Zsr

Lpriam 7E£s7T

Moron Sres TESr | Reeme Brars)
Secrve Guus

SéEne TEsr

ﬁ’m/&lr:‘ft Tesr

Frdo SrPAne Thsce

/2. Scad

\\Q‘Omﬂ‘\(\ﬂlo

> 2.4 l XLy

|_Sface | 256
. 189

[rome —> | staut/ 256 Blocks
20 Mt =2 | Stare/ S/t Blocks
Yo MmE —> | spans/ 02y Plocks

2 A Block ¢s SPRAED JFF:
o) Vaco dATa is AvaciasE
b) 7HEe Block s 4 Sfano DEFeeT

2. 7 7orRl Blocks AVAILAME Fre S/An/x‘ls:
4) SPANE TRBLE /¢ ClochTKD o L
b 74 <efr fFor User Dart

i

T TERCERN I E

/. Al GJ0CETS foamATT€D Z: 4

2. CAPABICITY Exrss yo Lo&rcAcer
TR/ FERLCERVE /1 =D b Sehrs 1L

3 OfFffser Secron d

1) e 7

b) Aero &, Hear 4 woerevoeyr

C e 0Er. B can {&cnn.?

lodean Annsy
// Jr 5&4: éd é

/7€ SEcrpns

5w Skeme

WIDGET SERVO FUNCTIONAL OBJECTIVE

BASIC SERVO FUNCTIONS
Widget servo control functions are handled by a Z8 microprocessor.
Z8 handles all I/0 operations, timing operations and communication

host controller. Control functions to the Z8 Servo Controller are
through the serial I/0. ’

The following commands for the Widget servo are:
A. HOME - not detented, heads off data zomes located at the inmmer
B. RECAL = detented at ome of two positiomns.

1. FORMAT RECAL: 32, =0, +3 tracks from HOME. Used only duri
data formatting. :

2. RECAL: 72, =0, +3 tracks from HOME. Used to initialize ho
position after on or following an access error or amny other
error.

C. SEEK = coarse track positioning of data head to any desired tra
location.

D. TRACK FOLLOWING - heads are detented on a specific track locati
the device is_ ready for another command.

with a
made

sStop.

ng

me

ck

on and

E. OFFSET - controlled microstepping of fine position system during

TRACK FOLLOWING (two modes).

l. COMMAND OFFSET - direction®and amount of offset is specifie
the servo.

2. AUTO OFFSET - command allows the servo to automatically mov
track by the amount indicated by the embedded servo signal
data surface (disk).

F. STATUS = command can read servo status.

G. DIAGNOSTIC - not implemented.

d to

e off
on the

See Table 1 for the actual command description. With the present com—
mand structure a SEEK COMMAND can be augmented with an OFFSET COMMAND.

Upon completion of a seek, the offset command bit is tested to dete
if an offset will occur following a seek (either auto or command of

rmine
fset).

II.

When a SERVO ERROR occurs the Z8 SERVO will attempt to do a short RECAL
(ERROR RECAL).. Two attempts are made by the system to do the ERROR RECAL
function. If either of the two RECAL operations terminate successfully
the protocol status will be SERVO READY, SIO READY and SERVO ERROR.
Should the ERROR RECAL fail then the system will complete the error
recovery by a HOME function.

The two OFPSET commands will be described. First COMMAND OFFSET is a pre—
determined amount of microstepping of the fine position servo. Included
in the OFFSET BYTE (STATREG), bit B6=0 is a COMMAND OFFSET. Bit B7=1 is a
forward offset step (toward the spindle); B7=0 is a reverse step.

If bit B6=1, the OFFSET command is AUTO OFFSET.

AUTO OFFSET command normally occurs during a write operation. When the
HDA was initially formated at the factory, special encoded servo data was
written on each track "near" the index zone. The reason for this follows:

Normal coarse and fine position information for the position servos is
derived from an optical signal relative to the actual data head-track
location. Over a period of time, the relative position (optical signal)
will be misaligned to the absolute head=track position by some unknown
amount (less than 100 uln). This small change is important for reliabil-
ity during the write operation. Write/Read reliability can be degraded
due to this misalignment. The special disk encoded servo signal is avail-
able to the fine position servo. It will correct the difference between
the relative position signal of the optics and the absolute head to track
position under the data head only at index time. The correction signal
can be held indefinitely or updated (if desired at each index time)

until a new OFFSET command or move command (SEEK or RECAL) occurs.

COMMUNICATION FUNCTIONS

The servo functions described in the previous section only occur when the
servo Z8 microprocessor is in the communication state. Communication
states occur immediately after a system reset, upon completing head set-
ting after a recal, seek, offset, read servo status or set servo diag-
nostic command. A special communication state exists after a servo error
has occurred. If + SIO READY is not active, no communication can exist
between the external controller and the servo Z8 processor.

Servo commands are serial bits grouped as five separate bytes total. Re-
fer to Table 1 parts I through V for the total communication string.

The first byte is the command byte (i.e. seek, read status, recal, etc.).
The second byte is the low order difference for a seek (i.e. Byte 2 = $S0A
is a ten track seek). The third byte is the offset byte (AUTO or COMMAND
OFFSET and the magnitude/direction for command offset). The fourth bvte
is the status and diagnostic byte (use for reading internal servo status
or setting diagnostic commands). Byte five is the check sum byte used to
check verify that the first four bytes were correctly transmitted
(communication error checking).

III.

Part of the communication function requires a specific protocol between
the servo Z8 processor and the extermnal controller.

Servo control and communication are described in CHART I. This chart
{llustrates the basic sequencing and control operations. Chart 1 does
not illustrate the servo error handling or command/protocol handling
functions. Error handling is described in Section IV and illustrated by
CHART 11I.

Z8 SERVO PROTOCOL

The protocol between the Z8 SERVO microcomputer and the CONTROLLER is
based on five I/0 lines. Two of the I/0 lines are serial input (to Z8
servo from controller) serial output (from Z8 servo to controller). Data
stream between the Z8 servo and controller is 8 bit ASCII with no parity
bit (the fifth byte of the command string contains check sum byte use for
error checking). There are three additiomal output lines between the Z8
servo used as control lines to the controller. Combining the two serial
I/0 lines and the three unidirectional port lines generates the bases of
the protocol between the Z8 servo and controller. The important opera-
tions between the Z8 servo and controller are:

l. Send commands to Z8 servo.

2. Read Z8 servo status.

3. Check validity of all four command bytes.

4., 1/0 timing signals between the Z8 servo and controller.
5. 28 servo reset.

Sequencing the Z8 servo controller is an important process following a
Power Up (Power On Reset) or if the controller should issue a 28 Servo
Reset at any time. After a Z8 Servo Reset is inhibited, the 28 I/0 ports
and internal register are initialized. This takes approximately 75 msec
after the Z8 Servo Reset is inhibited. The protocol baud rate is auto-
matically set to 19.2KB and then the system is parked at HOME position
and SIO READY is set active. ***IMPORTANT***, If the desired baud rate
needs to be increased to 57.6KB; **after a Z8 Servo Reset is the ONLY
time this can be done***, Once set to 57.6KB the communication rate re-
mains at 57.6KB until a Z8 Servo Reset occurs. Setting 57.6KB is achieved
as follows:

l. 28 Servo "Power Omn or Controller" Reset
2. Wait for SIO Ready

3. Send a READ STATUS COMMAND as follows:

BYTE 1 = § 00
BYTE 2 = $ 00
BYTE 3 = § 00
BYTE 4 = § 87

Iv.

After the completion of tramsmitting the bytes, the Z8 Servo Comtroller
changes to 57.6KB and will be waiting for the next transmitted command
at 570600 =,

Before the controller transmits the command byte the controller must pole

the SIO READY line from the Z8 servo to determine if it is active (+5

volts). If the line is active then a command can be transmitted to the

28 servo. The program in the Z8 servo will determine what to do with the
command bytes (depending upon the current status of the Z8 servo). After

the command (five bytes long) has been transmitted to the Z8 servo, the
program in the Z8 servo will determine if the command bytes (first four
bytes) are in error by evaluating the check sum byte (fifth byte trans-
mitted). See Charts III and IV for the error handling procedures. After the
controller has transmitted the last serial string it must wait 250 usec

then test for SERVO ERROR active (+5 volts). If SERVO ERROR is active the
command was rejected (check sum error or invalid command). If SERVO

ERROR is set active 600 U sec after the command is sent (and not

250 U sec), this was a command reject. The SERVO ERROR must be cleared

by a READ STATUS COMMAND or RECAL COMMAND before transmitting another command.
See CHART 1 for the timing diagram of the command sequence and I/0 protocol.

As long as SIO READY is actiwe the controller can communicate with the Z8
Servo Controller. If SERVO READY is not active the only command that will
cause the Widget Servo to set SERVO READY active is a RECAL COMMAND (NOR-
MAL or FORMAT). Read Status will only clear SERVO ERROR, and all other
commands will be rejected.

Next, if SERVO READY is active and SERVO ERROR is also active, SERVO
ERROR can be cleared by:

l. Any READ STATUS COMMAND.
2. Any RECAL COMMAND. °
3. Any other commands will be rejected and maintain SERVO ERROR.

If a SEEK COMMAND is transmitted with'both SERVO READY and SERVO ERROR
active, the command will be rejected.

It is important to check the status of all three status lines from the
Z8 Servo. It is best to avoid sending a SEEK COMMAND with SERVO READY
and SERVO ERROR active.

Chart V, parts A-I, illustrate some of the serial communication commands
and error conditions that can occur between the controller and Z8 SERVO.

ERROR HANDLING
SERVO ERROR will be generated during the following conditionms:

l. During Recal mode (velocity control only) access time-out.If a Recal
function exceeds 150 msec then an access timeout occurs.

2.

3.

4,

During Seek mode (velocity control only) access time=—out. If a Seek
function exceeds 150 msec then an access time-out occurs. :

During Settling mode (following a Recal, Seek, or Offset) if there is
excessive On Track pulses (3 crossings),indicating excessive head
uo:icn, a Settling error check will occur. :

During a command transmission if a cammunication error occurs (check
sum error).

During a command tansmission if a invalid command is sent.

APPENDIX A:

I.

1I.

The purpose of the FINE POSITION SERVO is to maintain detent or lock omn
a given data track. Any misregistrations of the head/arm due to windage,
mechanically observed by the optics position signal are corrected by the
close loop position servo. Misregistrations at the data head relative to
the actual data track on the disk must be corrected by the AUTO OFFSET
command. Figure I is a block diagram of the Widget FINE POSITION

SERVO. The amount of misregistration at the data track sensed after

an AUTO OFFSET command is summed into the servo and the servo is automat-
ically repositioned over the data track.

The COARSE POSITION SERVO (SEEK) has the function of moving the data

head arbitrarily from a current track to any other arbitrary track loca-
tion within the total number of track locations between the inner to
outer crash stops. When a command is transmitted to the Z8 Servo con-
troller, the Z8 decodes and interprets the command into a servo function.
If a SEEK command is sent to the Z8 Servo Controller a direction and
number of tracks to move is also sent. The system starts its move to the
new track location. When the arm has moved to its new location the Z8
Servo Controller provides control and delay necessary to allow the data
head and the FINE POSITION SERVO to come to rest immediately following a
SEEK. This insures that motion in FINE POSITION SERVO and data head will
be under control when the READ/WRITE channel begins operation. Reliabil-
ity of the data channel is assured with high margins. Figure I is a block
diagram of the Widget COARSE POSITION SERVO.

The differences between the FINE POSITION SERVO and the COARSE POSITION
SERVO is handled by the Z8 Servo Controller. The two servos share for

the most part the same set of electronics. The Z8 Servo Controller and
analog multiplexers switch between the signal paths. In general there

are some circuits that are not shared because of their uniqueness for a
particular servo.

APPENDIX B:

An important part of the Widget Servo System is the optics signal. The optics
signal provides the necessary signals for the fine position servo to position the
data head accurately over the data track and to provide the system velocity
signal during seek mode. The alignment of the optics signal is described in

the following section on "WIDGET OPTICS ALIGNMENT PROCEDURE."

Dan Retzinger
Nov. 9, 1982

WIDGET OPTICS ALIGNMENT PROCEEDURE

INTRODUCTION

The purpose of this-note is to describe the procedure for properly adjusting
five pots on the widget mother board used to control the amplitude of the optics
signal. The five pots are R7, R8, R17, R19 and R35. The optics signal
originates at the end of the servo arm and is used in positioning the arm.

EQUIPMENT REQUIRED

An oscilloscope capable of operating in the X-Y mode of operation. A Tektronix
model 465 works fine.

PROCEEDURE -
Optics LED Orive Adjustment

1. Connect channel 1 of the oscilloscope to TP 5 on the Widget Mother Board.

2. Scope Vert. setting: 1 Volt/Div. Horizontal: Any sweep rate.

3. Adjust R35 so the voltage at TPS is 3.6 volts +/- .2 volts. (quv - 28V
(clockwise, or more resistance=lower voltage)

Figure 1: TPS Amplitude

o
nnvnnnl
.

]
\
[
[]
..
‘A
v

[
]
‘
]
L feses
"ee
I
N
\
[
(]
'

-
-
-

Position A and Position B Adjustment

4,
5.
6.

7.
8.

10.

Put scope in X-Y mode, ground channels X and Y, move dot to
center of screen.

Connect chan X to TP9, chan Y to TP8. (Both TP's are located
near pin 1 of the ZB microprocessor)

Scope vertical: Chan X and Y, 2 volts/Div.

At this point arm is to be moved. ** to be determined how **

With arm in movement, a circular pattern should appear on the
scope. Adjust R7, R8, R17, R19 so the top, bottom, right
and left sides of the circle come at but no closer than a

minimum of 2.5 scope divisions from the center of the screen.

Each pot adjusts the circle as follows::

R7 Left side clockwise or lower res=smaller circle
R8 Right side "
R17 Bottom ‘ "
R19 Top .

Figure 2 shows a properly adjusted optics signal.

Figure 2: Position A and B

II":'IIIlll!illlll'i!‘ll IR 2.5 DIV MIN,
Iﬂll!ll\ll 4

AN E L

ARN

PROCEEDURE SUMMARY

1.
2.

Adjust R35 so the voltage at TPS (R37) is 3.6 Volts +/- .2 volts.

Put scooe in X-Y mode, chan 1 & 2 set to 2 volts/div. Adjust R7,
R8, R17, R19, so that the sides of the circle (during minimum
fiucuuatwon) are each within 2.5 Divisions (+/- .1 div) of the
center. This corresponds to 5 Volts from the center to the
top, bottom, or either side.

APPENDIX C:

Some of the analog control signals can be useful in understanding or evaluating
- the function or performance of the Widget Servo. Photographs are provided to

illustrate some of the key Widget functiomns. Refer to the following document
"WIDGET SERVO WAVEFORMS."

WIDGET SERVO

VARIOUS KEY WAVEFORMS

Page
Page
Page
Page
Page
Page
Page
Page
Page

WRN —

O o~ O WL

CONTENTS

Optics Ad justment

Current Sense and Position A

Current Sense and Position A (Forward and Rev Seeks)
Velocity and Position A

Velocity and Position A (Forward and Rev Seeks)

DAC Output and Position A

DAC Output and Position A (Forward and Rev Seeks)
Curve Shift Function and Position A (1 track seek)
Curve Shift Function and Position A (60 track seex)

WAVEFORM: Optics Adjustment

Scope Adjustments:

Channel Probe Tip Test Point Notes
Chan 1 Position A P9 2V/div
Chan 2 Position B TP 2V/div

Trig In Not used

Horiz : X-Y Mode

Servo:

Alternate Seeks, 512 tracks

Press Z; 82, 0,
86, 0,

0, 0
0, 0

WAVEFORI:

Current Sense and Position A

Scope Adjustments:

, Servo:

Channel Probe Tip

Chan 1 Current Sense
Chan 2 Position A
Trig In Access Mode
Horiz: Sms/Div Calibrated

Test Point

Jotes

P19
TP9
TP27

Alternate Seeks, 96 tracks (Hex
- _—

Press Z;

80, 60, 0, ©
84, 60, 0, O

e e
HEEEENEEEE

2aGt Z

. V/div
. 5V/div

Positive trig, Extc/l0

WAVEFORM:

Current Sense and Position A
(Forward and Reverse Seeks)

Scope Adjustments:

Servo:

Channel Brobe Tip Test Point ilotes

Chan 1 Current Sense TP19 S5V/div

Chan 2 - Position A TP9 SV/div

Trig In Access Hode TP27 Positive trig, Ext/10
Hbtiz: 2ms/Div Uncalibrated

Alternate Seeks, 96 tracks (Hex $60)

Press Z;

80, 60,
84, 60,

0,0
0, O

!' ‘1"

mnumlu
| I R AT AN
“.ﬂlﬁﬂ

RV
L1

WAVEFORM: Velocity and Position A

Scope Adjustments:

Servo:

Channel Probe Tip Test Point Notes

Chan 1 Velocity TP7 2V/div

Chan 2 Position A TPY S5V/div

Trig In Access Mode TP27 Positive trig, Ext/10
Horiz: Sms/Div Calibrated

Alternate Seeks, 96 tracks (Hex $60)

Press Z;

30, 60, 0, 0
84, 60, 0, O

.

L
TN L
VA e e e B e
HENNENEEEE

PAGLE =

WAVEFORM: Velocity and Position A
(Forward and Rev Seeks)

Scope Adjustments:

Channel Probe Tip Test Point Hlotes

éhan 1 Velocity TP7 5V/div

Chan 2 Position A TPY S5V/div

Trig In Access Mode TP27 Positive trig, Ext/10

"Horiz: 2ms/Div Uncalibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, O

PR
AN
T

N
-
NI

WAVEFORM: DAC Output and Position &

Scope Adjustments:

Channel Probe Tip .Test Point Notes

Chan 1 DAC Output TP13 2V/div

Chan 2 Position A TP9 SV/div .

Trig In Access Mode - TP27 Positive trig, Ext/10

Horiz: Sms/Div Calibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, 0

PAGE 9

WAVEFORM: DAC Output and Position A
(Forward and Rev Seeks)

Scope Ad justments:

Channel Probe Tip 1 Test Point ‘Notes

Chan 1 DAC Output TP13 2V/div

Chan 2 Position A TP9 S5V/div

Trig In Access Mode TP27 Positive trig, Ext/10

Horiz: 2ms/Div Uncalibrated

Servo:
Alternate Seeks, 96 tracks (Hex $60)

Press Z; 80, 60, 0, O
84, 60, 0, O

NB==%
S EEELEEE

TN
TN

ek L E L
T
TR T T T

A

~1

PAGL

WAVEFORM: Curve Shift Function and Position A
(Forward and Rev Seeks: 1 track)

Scope Adjustaments:

Channel Probe Tip Test Point Notes

Chan 1 Curve Shift Funmc. TP12 2V/div
Chan 2 Position A TP9 SV/div o
Trig In Access Mode TP27 Positive trig, Ext/10

Boriz: 2ms/Div Uacalibrated

Servo:
Alternate Seeks, 1 track

Press Z; 8o, 01, 0, O
8, 01, 0, O

i

-Illll

0 OO OV OO S O O
ol 0 I I I
IHENEEREE

=\~

Zavz ©

WAVEFOR!!:

Curve Shift Function and Position A

(60 track seek)

Scope Adjustments:

Servo:

Channel Probe Tip Test Point Notes

Chan 1 Curve Shift Funmc. TPl2 2V/div

Chan 2 Position A TP9 S5v/div

Trig- In Access Mode TP27 Positive trig, Ext/10

Horiz: Sms/Div Calibrated

Alternate Seeks, 96 tracks (Hex $60)

Press Z; 380, 60, 0, O
84, 60, 0, 0

-~

I. BYTE 11 COMMAND BYTE (DIFCNTH)

{B?7
command | Bé
bits {BS

{84

1B3 =X~ not us

access (B2 -access direction

ed

28 SERVO COMMAND BYTES page 1

" TABLE 1

bits iBl -hi diff2 (512)
iB8 -hi diffl (256)

access directio

hi diff2 (S12)

hi diffl (25&)

N =

e

® e

© -

B7? B BS B4 | FUNCTIONS

access only

access with offset
normal recal (to trk 72)
format recal (to trk 32)
offset-trk following
home—-send to ID stop
diagnostic command

read status command

.--.,_-_-------
DD DO ® e e
DO® s @ OD
O DD~ ODOP
DO e ® - @
- e, e e e e we e

(FORWARD: toward the spindle)
(REVERSE: away from the spindle)

(S12 tracks to go)
(not set)

(254 tracks to go)
(not set)

II. BYTE 2: DIFF BYTE (DIFCNTL)

command BYTE 2 contains the LOW ORDER DIFFERENCE COUNT for a seek

iB? -bit?= 128 tracks~
iBé -bité= &4 tracks

iBS -bitS= 32 tracks

B4 -bitd= 16 tracks

B3 -bit3= 8 tracks -
1B2 ~bit2= 4 tracks

‘Bl =-piti= 2 tracks

B8 -bitoe= | track

111,

IV,

28 SERVO COMMAND BYTES page2
TABLE 1

BYTE 3: OFFSET BYTE (STATREG)

command BYTE 3 contains the INSTRUCTION for an OFFSET COMMAND (seek
or during track following)

1B7 —-offset direction

{Bé ~auto offset function

{BS ~reed—eoffoct—veoilve—iatter—goita—ar—mreroe>- mT vs=d’
1B4 —-offset bitd =t¢g

1B3 ~-offset bit3 =8

1B2 -offset bit2 =4

{Bl -offset bitl =2

iB8 -offset bite =i

1. if offset command from BYTE | is followed by bité set (auto offset
offset direction (bit?7) read offset (bitS) and bits 4-8 are ignore:
but should be set to 8 if not used.

2., OFFSET DIRECTION =1 (FORWARD OFFSET:toward the spindle)
=8 (REVERSE OFFSET:away from the spindle)

3. AUTO OFFSET =1 (normally used preceeding a write operation)
=9 (manual offset:MUST send direction and magni tu:
of offsetd
—READ—SFFSEF———et—(read—offeet—vatove—fromBPAt e fter—zudo
el G

BYTE 4: STATUS BYTE (CNTREG)

1B7 -communication rate

1Bé -power on reset-—

iBS -not used

-not used

-status or diagnostic bits

i
C -- --

B?=6;: Communication Rate is 19.2 KBAUD
=13 Communication Rate is 57.6 KBAUD

Bé=3; Power On Reset bit ies no active
=1; Power On Reset bit is active

28 SERVO COMMAND BYTES page3
TABLE 1

. BYTE S: CHECKSUM BYTE (CKSUM)

«~[B? Bé BS B4 B3 B2 Bi B88)
results of the transmitted CHECKSUM BYTE are derived as:

(BYTE 1 + BYTE 2 + BYTE 3 + BYTE 4> = CHECKSUM BYTE

(+) is defined as the addition of each BYTE

- (BYTE) is defined as the compliment of the BYTES({-4)

V1. The SERVO STATUS lines (SIO RDY,SERVO RDY,SERVO ERROR) must have the
following conditions in order to send the listed 28 COMMANDS:

SERVO STATUS

S S S
I R R
0 V) V
R R +E
D D R
Y Y R
Z8 SERVO CMD HEX
accessionly) 8X HB i e
access(offset) 9X B 1 e!
recal(data> 49 i1 X X1
recal(format) 70 1B X X4
park Ce i1 X Xi
offset(detent) 10 1 i 8!
status ee H | X X1
diagnostic 20 : ! not implimented

X= either 8,1

2¢ SELvo SEQuENCsR

CraerT I
Pwse ou
SysTe s
RESET
STare SYSTE it 1401 T 1AL I12ATION
-}

pp—ee CLEAR PORT' 3 AND TWEN ©,1,2
e CLEAR RECS /27 Yo ¥

. SET” STACE RO/NTTR

Lo COMVuICATIOY SET LR

e SET STO O M. KEE

SEL/IAL COLtfAYAIICATTO8)

e PRI

RECAL STATE

e PACIZ Ad/D W AIT LOOP
M LOAD TIMERS

——— SET PORTS

PAer

. Z¢ S v SEQuUENCE R
CHALr T

STR-RT” RKELAL 44O 740 N

STAET 714t BRS

SEr TrQ Aersx (T1)

TL=o (meoves REQUIRED T2ACE CENGTH)

-

RECAL E/NAL APPEcAcCK

— ST TLQ A1ASXR

-___; ser PorT @

T rEza (ST A UELBCITY
Cowdirro WS 6N 7TRACK

Yo STarg) SETT/NG ConT2el

e AT PORTS FOR SEITLING

e STA-RT MEAD SETTLING TIMER

ad @ p——— LOoAD TRACE CROSSING COvirrma (TL)

—— TEST FOR OREIET 8/T

g SET /TEGRATOR AN

PAGL

& S2evo SEQUBwCEEL PRGE
CHART T

<G——(E)—CED

STREr SID | Cowiil osi/cATION.

@ MOT /61PL I M CTED

sTRTE
7
| [Chtr>
PEDDE
X ‘c""“" >
STATE
14

access srare (SEsxs)

STare

t— ST SEEE DIRLCTION
e SET PORTS
b LAAD AUD START 76) T TimeErs

+————— SET SEEKx CURVE

SEEK FINAC APPEROACH

g

TERY
Cowdirion

e SET PO ETS
e UPDATE Pos/TION SIGNAL FOR SETTLING

e TRG, FOL TELIt COMDITION

SEeve Eerecr
ChneT IL

SEr sSEevo Emeon

Me—— U 1L TRY TWio RETERIES

RETR/£S

Comatouwrs CATION ErrEoes
CHART TIT

g SO LE4DY

Coupy
[-4

LEssLacT SIo REAOY

CoOmumnyd ELloks
CrAaeT

-

COue 440 A d LETECT

CCHRET V

A5 ve

—] | ‘Pﬁnmnﬂl—é SO m

(2o LECET W//

e oo 777

(F-e-w Loy /////

ﬁ\\\
| .

U

[=£—w EreoR

71

A\

I

[\zo SELeve

7
'

SN\

= < oesee 777

7

N

B= AFTER MewEa UP — Coarr Siu Eregn -

<To CossTee

X‘e_'\(’sz '(8 fes /

C - Ar7ee ResEL 0P — /INUALID Car D

Q@ LLy

al”'e ve L5y

W= LOusec

:[?Q Ve EPrloa

— o —of

.l SERye

1[? - ConvéL

\g (222 ufe:f

" emArT ¥

G~ TRACK FOLLOWING VAULID COLIMAND (st.)

§:c> j -1 = X -9: () ('
! 10 ROy \)‘I
Lauo FE232 i g {
s
1: 73
o S2Rue
' L
(P (RO)
[f-Teack rewgwi s (LovE EmD) Dotlowsld BY Seeve Cersr
{= =& S
V1IN

£
)]

L(

),

(sez{3agfesh

L — Teack Foriouww /G- (WO caumwb) Sceve Zerof2

L

/117777777 777777

{'eva 2Dy

ﬁlevo ELrsr

‘i.o SERV S

$£o . CowrReL | x&l a2) BQ BVXCSX

|

!‘o 2p y

:l-‘evo 2y
5' 0 EeLor
:lc. SEeve

{‘@ . Cow7B

-’[":e oy

ZEoevy &ov

S eve IFEPeoR.
<TC ‘IERUY

[LonnTRC

D= REAO STATYUS COivurnwd

N !
- FRL S

\

"\P - fe— I msee

_.q l:v—- »o usee

Ye Yoo uafeales)

E =72p0e FOLLOGW i1nG Sktpye EeroRr - /WA D COMmbY)

Yo/ [82)f 83y 84 csY

FeTPACE FoclouuING SERVE Eresk — EEAD STATYS
— le—lusec

}*—X——Qﬁ k-n— 108 8

i

N &0 22\ 22) 20\ oey

-K"{

AN \ \ \ N,
\Zz\ ezl Bx s

N
~

DymEn) B V- e

(F/A/é‘ A1 D

\wESE RS/ TN SELudS)

PucSE AG (2) -
7ACH 1) |OPTICS |
PHAsE A8 |conirer -
&)
L J
PHASE | avALoc " avacoe Erupe ANALAE Powrrn UoTor
A Swr TN * Swrre 1+ oS/, TN SwiTerd AL P - kE R
PHASE i | 2 comp 3 r J
B > —
r ‘ T
Ana Lo
Sw T = A/D
,_;__ o Cavv
* !
— T 1
| Z &
& putse | Putse SERY(kj
A - |6Ev Cauret
puLs | -
B
, _
N DEX =
DAc
: i
Tl g z

SAcrrPLm PES

L'/6URE T

YA ts s
) 158

I 42 TR2 J00 STt
42 2 200 SHre

LQUARE
SNpARE

lofifg=
: ' o Pl
(ENDCNT % /RpvipR %t DATA @ /SECIDM
_WIDSET
|57 pBgerm) ANDONT
[STARTA STRSYN
START Y2 Yayl Y@ ENOCNT Y3 Y2 VI Y&
+/sTRSYN 'k! y @10)
ST READ: GO s /6o, ROGT : 4O, RDAT, /CHEHIR
WRE: GO : /Go, RD&T ZNOCNT &0, ROGT, /CHEHOR -
FORMT:GO .

LR fOHDR S Y2 Y ¥ 5 fENpeNT

N
N 26:0,ROGT y CHKHDR
¢) LNDCNT £40./k04T , CHITDR
. ; : GO, IGT, CHKIIDR

T
\ + BNOONT#/bRW
[sTART 3Y2 1 Y8\ ENDONT Brnr VYN Y /oAiEyE bew
o | B e 1@ 1 29 /CNTX/pRy)

PEAD <[SECTDN, [do, (REGT : JCRCWET : &0, [creaiR : /6o , RoaT

WRITE /SECTON » [G0, WIGT ! lcreweT : &0, [CRCCIR, : &O,/W‘-‘ﬂ‘

PRVAT :/SECTDN, /GO, WIGT /iR * [cRCwRT : 6o, [CRCCIR : 4o, fwrsT

/o//d’ /hﬁw_ - - - - - R PR a S R EGRE 22 ,, T "'| ;
- 17
< - Goo-q-BIes T T T T T -P2A
\WIDGET - ¢, -sle— 9 —n} e] ————pfe— /4/———»«—— T—— 2 - 532,—-+ 2 [¢- 6—He—2-T—»
SETY BB~ - -l%-— — - gP|P g1 T WS T TR WS .¢os¢as'm¢m% - —. — a2l asojl me‘\“ R | BCC - 7 I
Sl
<YATE, \\\/
RYanrg @ (E X 7 9 D < __E _Xr_._.__..« A 2} &
GO —
ENDONT 1 | [
f
pATA 5 = —
RGT — SR B N

wraT

CHKADR

CRLLR

CRCWRT

SECTDN

TS| A BRSNS IO T Py? 7
‘IO//e/az ; i\‘;) =t FRELEEEPIA
READ _OPEPAT i _ e 2/
B — — 1543 TP > goo-FRIES — i s A =
weaer | kE R T—Me—d e T —f 2 52 M 2 g 2
CECIoR TORMAT |58 - ~|ad =~ ~ - e da T1 T8 s T T 1S aefespdales wlag— - - - -992|d1faa] ppra CRC | ECcC Poa- — - -¢9 | |
STRT]
STATE .
3208 @ | F 7 T b c E (A z \»
GO
18 _PYTES h, 593 8yres |
ENDCNT L ' L L [—!
|
DATA
S B
T gL
I I) -
1 S S e
CriioR :
CRcCLR e —
CRCWRT R L
SECIDN e

@j- 61’,06](<I0

