
Augmented File System

The Augmented Flle System (AFS) is an major evolution of the Macintosh File
Manager (FM). It consists of the FM programmatic interfaces with mostly new
implementations "behind" them - in particular in the are.as of disk space
management and the directory.

The immediate motivation for AFS is to provide support for very large disk storage
volumes (on the order of 100Mbytes) and the large number of individual files (on
the order of 10,000 files) that wi11 be found on such volumes. Since the
development of AFS is a significant effort, it should address future expansion to
handle even larger volumes - 500Mbytes and 50,000 files. (Note that volum~ here
does not have to be a single disk drive. What logically appears to be a volume
could, via software, be constructed out of several physical volumes.)

The first use of AFS will be in the AppleBus File Server. In the future AFS might
be the integral fiJe system for Big Mac (or even used as an External File System on
512k Macs).

Motivation

The FM has several problems in dealfng with large volumes:
1. The FM has an allocation map with 12-bit entries for each al1ocation block. If
each allocation block is 2 disk blocks (1024 bytes), then such an allocation map
for a 1 OOMbyte volume would be over 200,000 bytes or 400 disk blocks.
2. The FM keeps the entire allocation block map in memory. Even if this
informat1on were "paged" through memory, its 400 block size would be time
consum i ng to process.
3. The FM has a fixed number of blocks on disk for the file directory. To provide
safely for 10,000 files about 1400 disk blocks would have to be al10cated at
volume initialization, regardless of whether they were ever used.
4. The FM's fHe directory is a simple list (non-hierarchical) and unsorted. Users
can't cope with 10,000 files in this fashion. Dynamical1y sorting that number of
files or inferring some structure from file names would be prohibitive. The Finder
also needs hierarchical structuring to deal with large numbers of fiJes, replacing
its current in-memory, dynamically-created structures.
5. The FM makes little provision for caching of disk structures in memory.
Caching will be necessary for at least the directory information on very large
volumes.

EH,GS,RA.BB,CMF June 1,1984 Augmented File System 1

Approach

Whl1e there are several problems wIth the current File mManager, Its design Is not
gratuitously Ignored In desIgnIng the AFS. Since the File Server Is based on the
MacIntosh OS and the AFS 1s a candIdate for use on Mac1ntosh, the desIgn of AFS Is
slml1ar to and upward compatable from the current FM where possIble.

1. The Interfaces to the FM should be fusable to address files stored In an AFS
volume.
2. AddItional Interfaces wIll be provided to al10w more sophisticated enumeration
of files through the hIerarchIcal dIrectory of MS.
3. For the File Server, most of the FM code will be replaced to handle different
space allocatIon and dIrectory structures. Only higher-level code ,In the FM which
maps cl1ent calls Into lower-level operatIons wIll be retaIned.
4. If/when AFS Is used InsIde a MacIntosh, It will have to exIst as an External F Be
System, assumIng the continued exlstJnce of the current Macintosh FM.

Overview of AFS Volume Format

(This discussion ignores block sparing. It is assumed that block sparing is
performed in the device driver for the rigid disk and that the AFS sees the volume
as a sequence of n logical disk blocks numbered (0 .. n-l). Block sparing is not
discussed further.)

The volume contains 5 categories of information (see Figure AFS-l):
1. Startup information (boot tracks) used during system startup for bootstrapping.
2. Information describing the volume (VD.
3. Space allocation information (SAD.
4. A hierarchical directory (OIR).
5. The remainder of the volume - disk blocks allocated to (resource or data forks
of) files or available for new files or file extensions.

Category 1 information 1s not discussed in detail in this document.

Detajls of AFS Volume Format

File numbers - File numbers are 32-blt numbers. Each new file created on the
volume gets a file number one greater than that of the f11e created Just before It.
The fIrst file created gets fHe number 5 (see below for 1-4>' File number 0 Is
used for certain available blocks (see below).

Logical Block Format - There are n log1cal blocks on a volume numbered (0 ..

BH,GS,RA.BB,CMF June 1, 1984 Augmented File System 2

n- '): Each \091c41\ block l(s 52 4 byt~ and t\C1(S exact \y the same format as blocks 00

standard FM volumes - J 2 bytes of tags (same subftelds as fn the FM - ffle .,
resource/data flag, ~eQuence • in fUe, modified date) and 512 bytes of data.

/ I,'
, /'

(, • I

File Body Format - As a consequence of the above two facts, the format of
the body of files on an AFS volumes Is similar to those on an FM volume. The body
consIsts of the blocks on the volume that comprise the data and resource forks
plus a header page(s) whIch precedes the pages In the data fork.

The header page Is used in conjunction with the directory entry for the file. The
directory entry contains fHe attributes which must be Quickly obtainable (name,
dates, etc.) plus a poInter to the fl1e's body. The header page contains fl1e
attributes whose access can take longer (eg., are only needed when a fUe Is
opened/closed) as well as redundant InformatIon for",scaV.enQ.inadlbe.,dic.e.c1.OrY.

The header page(s) Is descrIbed more completely In the sectIon on the DIrectory.

Startup Information - Blocks (0 .. 14) are startup Information - bootstrap
code and bad block tables. They "belong" to the boot ROM and disk device driver.
These blocks are file number 1. Flag information for these blocks: fHe number= 1;
fori< type=ftle attrlbutes=O; mod date=date last bad block added for bad block page,
bootstrap install date for othe~ pa~es (that are usep:} .. ,

Volume Information (VI) - The Volume Information Block (VIB) is stored in
pages 15 and n-l of the volume. It Is a superset of the FM Volume Information
(see figure AFS-2>' The backup via on page n-1 us updated when the volume is
unmounted. These b10cks are tagged as file number 2; fork type-fHe attrlbutes=O;
mod date-date of 1ast update.

1. Very large volumes are supported by extending the fjelds that count al1ocation
blocks to 32 bits. (With allocation units of 2Kbytes, a WORD would only suffice
for up to 128Mbyte volumes.)
2. A fixed block is allocated for the Directory (thiS simplifies allocation of space

. and allows internal Directory node pOinters to be 16 bits). It can be expanded by
moving what follows it. An initial allocation of .5% of the volume size wil1
suffice for almost al1 situations. Several other fields are present for the
Directory. They are described In that section.
3. A field has been added at the end to Indicate the presence of additional
expansion volumes. The first version of the AFS wi 11 not Implement this
capabi11 ty. Expansion 'volumes are basically just additional allocation blocks
added to the end of the space on the primary volume. Expansion volumes don't
contain directory or space allocation information.

BH,GS,RA,BB,CMF June I, 1984 Augmented File System 3

ScavengIng - Volume 1nform~t1on can be recreated or verified by scanning the
SAl and DIR areas of the disk.

Space Allocation Information (SAl) - There are fou~ blocks statically
allocated to record free space on the volume. The blocks holding SAl are file
number 3. Flag information for this block: fiJe number=3; fork type=file
attrlbutes=O; mod date=date of last update of each page. The SAl describes the
aval1ability of space across the entire disk - space consumed by system startup
Information" volume information" SAl Itself" and the Directory Is marked al10cated
at volume Initialization.

In this design" the free space on a volume Is described by (allocation block -" .­
blocks) pairs called extents. Each extent describes a contiguous range or tree
allocation blocks. (Unused extent entries contain 0" 0). For a newly Inltlal1zed
volume (up to 128Mbytes) there Is one extent In the SAl area. The SAl area Is
shown In figure AFS-3. The statically al10cated SAl space can hold up to 408
extents. I f the free space on the volume becomes further fragmented" then
additional 4-block tables are al10cated from the pool of available space as shown
In AFS-3.

This part of the design described disk data structures" not algorithms. There are
many POSSible strategies on keeping sorted (al1 or just the first 408) extents
(probably by al1ocation block -)" keeping unused extent entries at the end" etc.
Also" the extents describing the largest areas might be kept in the first 408
entries. When space Is freed" the implementation should check whether it Is
adjacent to already free space before bHndly adding another extent. Exactly how
to manage the SAl Is left to the Implementation and tuning.

A SQUISH ut111ty Is descrIbed below. Essentially Its goal Is to reduce the
fragmentation of free space () Ike Crunch In UCSD Pascal) and to reduce the
fragmentation within each fHe. The existence of this utility running In the
background on the File Server or being expl1cltly Invoked will tend to reduce the
number of extents In SAl to one.

ScavengIng - The SAl Information can be verified/reconstructed by subtracting
system space (SSI" VI" SAl" DIR) and enumerating the Directory (see below)
subtracting all the space allocated to files.

Directory - The directory IS used to map textual file name~ into Information
about the fUe and its location on the disk. Since the directory should be able to
store 50,,000 entries" the linearJ unsorted approach of the FM is not adequate.

BH,GS,RA,BB,CMF June 1, 1984 Augmented File System 4

The AFS directory:
1. implements a sorted, hierarchical name structure so that the large number of
files can be effectively presented to the end user;
2. _ includes sufficient information such that the Finder can operate without
scanning the entire directory and building the fUe tree in memory- (as it does now
with the FM).

Name Hierarchy - The Directory supports a hierarchical name space of the form:
root>X>y> ... >File

Throughout this discussion, the root Is implicit and pathnames for a file are
stated in the form:

X>Y> ... >Ftle
The strings delimited by">" are the elementsof the name and can be up to 32
characters in length. All elements of the pathname except the last one are naming
directories (same as containers or folders). (NOTE that from here on Ilirectory
refers to the Directory as a whole .. whHe jJjrectory refers to a container or
sub-directory within the Directory's hierarchical name space.) The last element
names an actual fUe (eg, the MacWrite object file or a document). The pathname of
a fUe contains 0 or more directory elements.

The hierarchy of the Directory is described by 3 types of record structures stored
within the Directory - file records, directory records and thread records.
For every file (leaf node) 1n the Directory there is one fHe record. For every
directory there is a directory -recor<fancfa--ltlfeaa --re-~d. The format of these

'-- ,. -'

records is shown in figure AFS:'4~ , As described later;;, these records are stored in
the Directory's disk data structure (a B*tree .. the reason for the nul1 pOinter in all
3 records) sorted by key, where a key, defined as sb~wn l.n AFSJ-4.

Every directory has a 16-blt 10. The root's 10 is O. As each new directory 1s
created it is given the next greater 10 number. A significant value of this
shorthand name for a directory is that it can be renamed by replacing just the
thread and directory records for that directory. The (presumably more numerous
than 2) records for the contents of that directory are unaffected.

An example hierarchy of directories and files that might be on a volume is shown
in figure AFS-~. Below the diagram are all the record entries (type shown first ..
uninteresting components not shown) that would appear inside the Directory for
such a volume in the order they would appear - sorted by key. To find the entry for
Source>Text>Memo is performed by looking up <O>Source yielding <9>; looking up
<9> Text yielding < 12>; finally looking up < 12>Memo yielding that files attributes
and location information.

BH,GS,RA,BB,CMF June I, 1984 Augmented File System 5

Enumeration of Source>* is performed by looking up <O>Source yielding <9>; then
looking up <9>null and enumerating entries until key.plD # <9>.

The directory and file records facllitate lookups - proceeding left to right through
pathnames or proceeding down the tree. The thread record al10ws proceeding up
the tree. For example, given the key < 12>Memo, it 1s not possible to east ly
generate its pathname Source>Text>Memo without thread records. But with thread
records proceed as follows: lookup < 12>nu11 yielding <9> and Text; lookup <9>null
yielding <0> and Source; lookup <O>null yielding <-1> and null ==> done.

/' (' ,

[HMMM - I think we can simplify things by asserting that the root always has 10=0
and not even have a thread entry for tt. Any holes tn that logic?]

Internal Structure of the Directory - The Directory's file, directory and
thread records on stored and kept sorted in a B*tree. (Described in Knuth, Vol. 3,
pp. 471-479 under "ttJltiway Trees" attached,) A B*tree is a multiway or m-ary
tree that is perfectly balanced - al1leaf nodes are at the same level (depth) in the
tree.

AFS implements this structure on disk 1n the form of 2048 bytes nodes. These
nodes are all in the DIR sect ion of the disk shown in figure AFS-l. The first node
in the DIR area 1s the root of the tree. I t pOints to the nodes which are its
chi ldren, etc. The unused nodes in the DIR area are linked together on a free 1 ist.
When the free llst 1s exhausted, the DIR area is grown by moving the flle(s) that
fo11ow it.

Each node conceptually consists of n pOinters and n-l keys (PO, K l,P 1, ... Kj, P j).
For ease of implementation, the AFS Directory nodes contain an additional
(redundant) key - Kj+ 1. The detai led structure of a node is shown in figure AFS-6.

All nodes 1n the Directory's B*tree are in this format. All non-leaf nodes are index
nodes and contain only index records. All leaf nodes contain only leaf records -
the file recQrds, ~irectory records and thread records desc~i.bed above.

When the Directory IS edited (insert/delete of fUe, directory, thread records) a
node may become full or empty. As described in Knuth, the implementation will
keep nodes horizontal1y balanced. That is, If a record 1s inserted and it "belongs"
in a full node, the adjacent sibl1ng nodes are examined for free space and records
are rotated 1f possible before a node IS spl1t and another node is inserted in the
tree.

BH,GS,RA,BB,CMF June I, 198~ Augmented File System 6

Detai Is of Fi Ie Records and Fi Ie Structure - Figure AFS-7 shows the
detailed contents of a file record in the Directory as well as the f .le's data and
resource forks. File attributes are stored in the Directory and in the leader page
of the data fork. The attributes in the Directory are the "popular" ones that must
be Quickly obtainable, the ones in the leader page are slower to obtain. For
example, the ones in the file record of the Directory are readily available during
enumeration - these are the ones required by the Finder, for example, in displaying
a window. The attributes in the leader page, are those required at file open/close
or launch time.

The leader page is put on the data fork (requiring a data fork for all files) because
there are expected to be relatively few files with no data fork (ie" more MacWrite
files (data and resource) or Multiplan files (data only) than the actual MacWrite
code file or Multiplan code file (resource only).

The first of the extents in the f1 Ie record describes the (start of) the data fork
since it always exists. The remaining 89 extents describe the remainder of the
data and resource forks 1n order, with extents for the two forks intermixed and
discriminated by the high-order bit. This guarantees that a fHe can grow t.o
180Kbytes even under worst-case conditions of fragmentation.

Flags - The Finder flags are as described in the FM documentation. "scavo hole"
means that during a scavenge not al1 pages of the file could be found and pages
containing all 0 were inserted.

NOTE: It was asserted earJier that the SAl information could be reconstructed by
enumerating the Directory. This is true for entries where "extents overflow" is
false. When fragmentation has caused the number of extents to exceed 6" the
header page must also be read.

"User" attributes - When used in the File Server, the AFS may have clients that use
foreign file systems (MS/OOS, Unix) are have additional attributes (author, last
read date, ,etc.). This design does not expHcitly allow for them for the following
reasons:
* if the foreign fHe system is Mac compatible (or a Mac application with
addltlorlal attr1bute requirements) .. then there 1s more than enough functionality in
the resource fork to store th1s 1nformat1on (by uslng the user attr1butes f1eld or
defining new resource types);
* if the foreign system is unaware of Mac conventions, then it undoubtedly wil1
not have resource forks at all. In using the AFS through our filing protocols} it can
merely read "resource fork" as "unlimited additional attributes fork" and store any
additiona1 attributes that way.
[Anyone buy that argument 1]

BH,GS,RA,BB,CMF june 1, 198-4 Augmented File System 7

Scavenging - The name and extent information in file records can be recreated
from the leader page and file tags respectively. The other information is
presumed expendable (true for Finder-type?). The name and extent information in
the -leader page can be recreated from the file record and file tags respectively.
The other information 1s presumed expendable (true for Finder-creator and
password?). Other pages in the data fork and all of the resource fork is not
recreatable.

The directory and thread records can be used to recreate one another. This
presurnes tt\at the two entr'les f'Of' any giv@n directory wil1 be "far apart .. (in
different nodes of the B*tree) and not both be lost.

The index nodes of the B*tree can be recreated from the leaf nodes.

Interesting events in the life of an AFS

Volume InitializatIon - All blocks on the volume are written with 0 as the file
number In the tags. The volume .. space allocatlon and directory Information Is set
to Initial values. Startup Information Is handled outSide AFS although the tag
information is set correctly.

Fl1e Create/Delete/ Allocate/Extend - The Volume Information Is updated as
appropriate. The SAl Is updated as is extent information In the directory
(Extend/ Allocate). The Directory gains/loses an entry on Create/Delete. The
above changes need not be flushed for every event .. depending on the particular
Implementation (however .. If writes are deferred .. the Imp1ementatlon must be able
to restore consistency after abnormal shutdown).

On Allocate/Extend all blocks added to the file are written with correct tag
Information (Is this necessary?).

De lete - The tags of the first pages of both the data and resource forks are set to
fUe number=O. This Is necessary for scavenging so that deleteq fUes. don't

h ~ / ..

reappear.

Squish

The goal of the Squish algorithm is that all files have a single extent for each fork
(be contiguous) and that all free al1ocatfon blOCKS be contiguous.

BH,GS,RA,BB,CMF June 1, 1984 Augmented File System 8

Squish has two distinct modes - the first enumerates the Directory doing a best
effort job making each fHe contiguous, the second moves files as far toward the
"front" of the volume as possible making a11 free space contiguous. If the free
space on the volume exceeds the size of the largest fHe, successive appHcations
of Squish w111 achieve perfection - no fragmentation. Smarter versions of Squish
can achieve perfection with any non-zero amount of free space.

Note that making free space contiguous can be time consuming - it is driven either
by a traversal of the SAl information requiring lookups in the Directory based on
fHe number or by repeated traversals of the Directory looking for extents
preceded by free space. It 1s possible that applying these two phases during the
same enumeration of the Directory would help. It would also be nice for Squish to
be suspendable so that it could be a background task. More design ergs needed
here.

ISSUES

1. Does 1t make sense to dup11cate the VI?
2. Should the space for SAl be a function of volume size as with the Directory?
3. Is stat1cally a110catlng space for the Directory (say .75% of the volume) OK,?
4. Do we need better facilities for more "user" attributes?
5. Is 2048 the right al1ocation unit size?
6. Do we need to think further now about expansion volumes?
7. Is the scavenging plan for directory/thread records OK?
8. Need to worry about file number overflow? Directory 10 overflow?
9. OJ< t~ only stJ~t~JJJe nYnlQ~f.J!:L,~~1l~~1

BH,GS,RA,BB,CMF June 1,1984 Augmented File System 9

SS~

VI

SAl

DIR

VI

0

14

15

16

19

2Q
\/

2O+4x-1

2O+4x

10-2

n-1

Sgsteom Startup Areoa

Boo~ blocks

Bad block t~ I sporing informo~ion

Volumeo Information

Spec. Allocation Information

Direoctorg

Spac. for fil. storage

rr~ space

Actual bodies of files

HeadEtr page

Data fork

Resource fork

Redundant information for subdirectories

Duplicateo of Volum. Information

o

SSA

14

] [YI 15

16
SAl

19

20 - ~

DIR

2O+4x-1

20+4x - I-

n-2

YI n-1 lr

VOLUME INfORMATION

-2byt~s -

drSigW'ord

drCrDote

drlsBkUp

drAtrb

drNmFls

AfS signature alway s $DOD 1

volume initialization dote

dote of lost backup

I '----+---f drDirSt

bO= 1 --)0 volume o~n (scav.); b 7= 1 --)0 vol. locked bIJ H'w';

raumbw of files on vol. b 15= 1 --)0 vol. locked by S'YI

starting block numb~r of Directory (also root no~)

drBller.

NEW'
NEW'
NE'w'

drNmAIBlks

drAIBIkSiz

drClpSiz

'"--~ dr AlBlSt

NEW'

drNxtfNum

number of blocks in Directory area (4xJ

block number of first free Directory node (node = 4 blocks)
next directory ID to use
pointer to first node of directory backup info

• oDocotion blocks on volume (n 14)

allocation block siz~ in byt~s (2048)

minimum # bytes to allocate (AfS value TBO)

block • of start of SAl info

number of blocks in primary S AI info

file number for next file to be created

1 ~~~eeBkS 1 number of oIIocotion blocks fr~ on yolurn@ .

drYn
I

i I
I 28 bytes

volur'M nome

I I ... _NE_'y/ __ ~1 count of associated expansion yolumes - oI"'OOJs 0 for no", -

for future expansion - would be f08o'YIed by volume nome

and signature for each expans'ion volumto
/~

o

SSA

14

VI 15

16
SAl

19

20

DIR

2O+4x-l

20+4x

NOTE:
I --) in user

I --> frere

YI

n-2

n-l

SPACE ALLOCATION INFORHATION
_3 byters __ 2 byters_

_---I Ano(:. block· • blocks Eoch erntry is coUerd on extent.

- I-

- ~

-

lr-_---'
I
I

I
I

-~

If non-ZH"O thern
I

Unused

One entry for each run of contiguous
frere oIlocation blocks. Spoce for
storing first 408 free extent
descriptors pre-allocated.

~

-

Additionol4 page blocks allocated from

AHo(:. block •

I
I

I~
0

1

general space
• blocks pool as

neerdeod.

I
I

01

KEY

~rl=EN~lp~~~M~t~~~I~No~m~e______________________ = = ~
o 2 3

fJiRECTORV RECORD

Ketl (Nome=directory nome)

Ty~=dir~ctory

ID of directory
Dot~ crEtat~d

THREAD RECORD

KE'Y (Name= null nomE')

Type=thrE'od
parent ID
my Name

r,i
E:.-~ _______ --' ~ bytes

FILE RECORD

Extent entries describing
location of data and
resource forks and extend­
E'd attributes

"it'
.",." See subsequent diogram for

details:

35

~~

~
hreOd

Key = <0 >rauII
piD=-l
myN=null

Dir
Key = <U>Source
id=9

Fie
Key= <O>System

ThrE'Od
Key = <9 >rauO
plD=O
myN=Source

File
Key = <9>VM

ThrE'Od
Ke-y=<12>null
p1D=9
myN=Te-xt

File
Key=<12>Memo

ROOT ID=O

SOUl"'C9 10=9 System

FIGURE AF5-5

A Node in the 8*tree used to store Directory records

o
record 0

record 1

...

. . .

. . .

. . .
offset to rEtCord 1

offset to rEtCord 0

• records in node
type={~f, index} I

next
prior

') only used in ~f nodes
2047

... ~
'v f(Format for oil records in Index Nodes
.~

'b-~
J I 16-bit pointer to Q node 36-by te key . '>

A typical 8*tree

index nodes

Figure AF5-6

FILE RECORD

Key (nome=fiJE. nome)
...
. ..

Ty pe=file
floQS
Mod. dotE'
Finder - ty pE'
FindE'r - x .. y Iocn.
Phy s. size in by tes

36

1
1

4
4
4
4

locked, open ~ ~~~~: b~, extents overflo'W ,
finder~hos bun~ .. invisible

......- 6 E'xtents 30 a---;;;....;..;;~;;.;..,;,;;;,-+----.;;..;;.-' -------- 5 byte extE'nt entries in file order
84 bytE's HO bit=O --> data fork, =1--> rsrc.

DATA FORK

Cr~ot~ dote
Password
4 EOFs
FindE'r - creator
84 extE'nts

36

4
S-'"'r,-

16
4

420

start of ureol" data fork

3 or more pages of data

I
~
1 ••••••••••••••••••••••••• _ •• _ •••••

512 bytE's

Figure AF5-7

RESOURCE FORK

o or more paQes private
to the AFS client and/or
the Resource Manager

