Augmented File System

The Augmented File System (AFS) is an major evolution of the Macintosh File
Manager (FM). It consists of the FM programmatic interfaces with mostly new
implementations "behind” them - in particular in the areas of disk space
management and the directory.

The immediate motivation for AFS is to provide support for very large disk storage
volumes (on the order of 100Mbytes) and the large number of individual files (on
the order of 10,000 files) that will be found on such volumes. Since the
development of AFS is a significant effort, it should address future expansion to
handle even larger volumes - SOOMbytes and 50,000 files. (Note that volume here
does not have to be a single disk drive. What logically appears to be a volume
could, via software, be constructed out of several physical volumes.)

The first use of AFS will be in the AppleBus File Server. In the future AFS might
be the integral file system for Big Mac (or even used as an External File System on
512k Macs).

Motivation

The FM has several problems in dealing with large volumes:

1. The FM has an allocation map with 12-bit entries for each allocation block. If
each allocation block is 2 disk blocks (1024 bytes), then such an allocation map
for a 100Mbyte volume would be over 200,000 bytes or 400 disk blocks.

2. The FM keeps the entire allocation block map in memory. Even if this
information were “paged” through memory, its 400 block size would be time
consuming to process.

3. The FM has a fixed number of blocks on disk for the file directory. To provide
safely for 10,000 files about 1400 disk blocks would have to be allocated at
volume initialization, regardliess of whether they were ever used.

4. The FM's file directory is a simple list (non-hierarchical) and unsorted. Users
can't cope with 10,000 files in this fashion. Dynamically sorting that number of
files or inferring some structure from file names would be prohibitive. The Finder
also needs hierarchical structuring to deal with large numbers of files, replacing
its current in-memory, dynamically-created structures.

S. The FM makes little provision for caching of disk structures in memory.
Caching will be necessary for at least the directory information on very large
volumes.

EH,GS,RA BB,CMF June 1, 1984 Augmented File System |



Approach

while there are several problems with the current File mManager, 1ts design is not
gratuitously ignored in designing the AFS. Since the File Server is based on the
Macintosh OS and the AFS is a candidate for use on Macintosh, the design of AFS is
similar to and upward compatable from the current FM where possible.

1. The interfaces to the FM should be usable to address files stored in an AFS
volume.

2. Additional interfaces will be provided to allow more sophisticated enumeration
of files through the hierarchical directory of AFS.

3. For the File Server, most of the FM code will be replaced to handle different
space allocation and directory structures. Only higher-level code in the FM which
maps client calls into lower-level operations will be retained.

4. I1f/when AFS is used inside a Macintosh, it will have to exist as an External File
System, assuming the continued existince of the current Macintosh FM.

Overview of AF um at

(This discussion ignores block sparing. It is assumed that block sparing is
performed in the device driver for the rigid disk and that the AFS sees the volume
as a sequence of n logical disk blocks numbered (0 .. n-1). Block sparing is not
discussed further.)

The volume contains S categories of information (see Figure AFS-1):

1. Startup information (boot tracks) used during system startup for bootstrapping.
2. Information describing the volume (V1).

3. Space allocation information (SAl).

4. Ahierarchical directory (DIR).

S. The remainder of the volume - disk blocks allocated to (resource or data forks
of) files or available for new files or file extensions.

Category 1 information is not discussed in detail in this document.

Details of AFS Yolume Format

File numbers - File numbers are 32-bit numbers. Each new file created on the
volume gets a file number one greater than that of the file created just before it.

The first file created gets file number 5 (see below for 1-4). File number O is
used for certain available blocks (see below).

Logical Block Format - There are n logical blocks on a volume numbered (0 . .

EH,GS RA BB,CMF June 1, 1984 Augmented File System 2



1) Each logical block i 524 bytes and has exactly the same format as blocks on
standard FM volumes - 12 bytes of tags (same subfields as in the FM - file *,
resource/data flag, aequence * in f ile modif led date) and 512 bytes of data.

-

File Body Format - As a consequence of the above two facts, the format of
the body of files on an AFS volumes is similar to those on an FMvolume. The body
consists of the blocks on the volume that comprise the data and resource forks
plus a header page(s) which precedes the pages in the data fork.

The header page is used in conjunction with the directory entry for the file. The
directory entry contains file attributes which must be quickly obtainable (name,
dates, etc.) plus a pointer to the file’s body. The header page contains file
attributes whose access can take longer (eg, are only needed when a file is
opened/closed) as well as redundant information for scavenging.the dicectory.

The header page(s) is described more completely in the section on the Directory.

Startup Information - Blocks (0 .. 14) are startup information - bootstrap
code and bad block tables. They "belong” to the boot ROM and disk device driver.
These blocks are file number 1. Flag information for these blocks: file number=1;
fork type=file attributes=0; mod date=date last bad block added for bad block page,
bootstrap install date for other pages (that are used).

Yolume Information (V1) - The Volume Information Block (VIB) is stored in
pages 15 and n-1 of the volume. It is a superset of the FM Volume Information
(see figure AFS-2). The backup VIB on page n-1 us updated when the volume is
unmounted. These blocks are tagged as file number 2; fork type=file attributes=0;
mod date=date of last update.

1. Very large volumes are supported by extending the fields that count allocation
blocks to 32 bits. (With allocation units of 2Kbytes, a WORD would only suffice
for up to 128Mbyte volumes.)

2. A fixed block is allocated for the Directory (this simplifies allocation of space
~and allows internal Directory node pointers to be 16 bits). It can be expanded by
moving what follows it. An initial allocation of .5% of the volume size will
suffice for almost all situations. Several other fields are present for the
Directory. They are described in that section.

3. A field has been added at the end to indicate the presence of additional
expansion volumes. The first version of the AFS will not implement this
capability. Expansion volumes are basically just additional allocation blocks
added to the end of the space on the primary volume. Expansion volumes don't
contain directory or space allocation information.

EH,GS,RA BB,CMF June 1, 1984 Augmented File System 3



Scavenging - Volume informetion can be recreated or verified by scanning the
SAI and DIR areas of the disk.

Space Allocation Information (SAIl) - There are four blocks statically
allocated to record free space on the volume. The blocks holding SAI are file
number 3. Flag information for this block: file number=3; fork type=file
attributes=0; mod date=date of last update of each page. The SAl describes the
availability of space across the entire disk - space consumed by system startup
information, volume information, SAl itself, and the Directory is marked allocated
at volume initialization.

In this design, the free space on a volume is described by (allocation block *, #
blocks) pairs called extents Each extent describes a contiguous range of free
allocation blocks. (Unused extent entries contain 0, 0). For a newly Initialized
volume (up to 128Mbytes) there is one extent in the SAl area. The SAl area is
shown In figure AFS-3. The statically allocated SAl space can hold up to 408
extents. If the free space on the volume becomes further fragmented, then
additional 4-block tables are allocated from the pool of available space as shown
in AFS-3.

This part of the design described disk data structures, not algorithms. There are
many possible strategies on keeping sorted (all or just the first 408) extents
(probably by allocation block *), keeping unused extent entries at the end, etc.
Also, the extents describing the largest areas might be kept in the first 408
entries. When space is freed, the implementation should check whether it is
adjacent to already free space before blindly adding another extent. Exactly how
to manage the SAI is left to the implementation and tuning.

A SQUISH utility is described below. Essentially its goal is to reduce the
fragmentation of free space (like Crunch in UCSD Pascal) and to reduce the
fragmentation within each file. The existence of this utility running in the
background on the File Server or being explicitly invoked will tend to reduce the
number of extents in SAI to one.

Scavenging - The SAl information can be verified/reconstructed by subtracting
system space (SSI, VI, SAl, DIR) and enumerating the Directory (see below)
subtracting all the space allocated to files.

Directory - The directory is used to map textual file names into information

about the file and its location on the disk. Since the directory should be able to
store 50,000 entries, the linear, unsorted approach of the FM is not adequate.

EH,GS,RA BB,CMF June 1, 1984 Augmented File System 4



The AFS directory: -

1. implements a sorted, hierarchical name structure so that the large number of
files can be effectively presented to the end user;

2. includes sufficient information such that the Finder can operate without
scanning the entire directory and building the file tree in memory (as it does now
with the FM).

Name Hierarchy - The Directory supports a hierarchical name space of the form:
root>X>Y> ... >File
Throughout thlS discussion, the root is 1mphcit and pathnames for a file are
stated in the form:
X>Y> .. File
The strings delimited by ™" are the e/ementsof the name and can be up to 32
characters in length. All elements of the pathname except the last one are naming
directories (same as containers or folders). (NOTE that from here on Directory
refers to the Directory as a whole, while directory refers to a container or
sub-directory within the Directory’s hierarchical name space.) The last element
names an actual file (eg, the MacWrite object file or a document). The pathname of
a file contains O or more directory elements.

The hierarchy of the Directory is described by 3 types of record structures stored
within the Directory - f//e records, directory records and thread records
For every file (leaf node) in the Directory there is one file record. For every
directory there is a directory record and a thread record. The format of these
records is shown in figure AFS-4. As described later, these records are stored in
the Directory’'s disk data structure (a B*tree, the reason for the null pointer in all
3 records) sorted by ey, where a key defined as shown in AFS-4

Every directory has a 16-bit ID. The root's ID is 0. As each new directory is
created it is given the next greater ID number. A significant value of this
shorthand name for a directory is that it can be renamed by replacing just the
thread and directory records for that directory. The (presumably more numerous
than 2) records for the contents of that directory are unaffected.

An example hierarchy of directories and files that might be on a volume is shown
in figure AFS-5. Below the diagram are all the record entries (type shown first,
uninteresting components not shown) that would appear inside the Directory for
such a volume in the order they would appear - sorted by key. To find the entry for
Source>Text>Memo is performed by looking up <0>Source yielding <9>; looking up
D Text yielding <12>; finally looking up <12>Memo yielding that files attributes
and location information.

EH,GS,RA BB,CMF June 1, 1984 Augmented File System 5



Enumeration of Source>* is performed by looking up <0>Source yielding <9>; then
looking up <9>null and enumerating entries until key.piD * <9,

The directory and file records facilitate lookups - proceeding left to right through
pathnames or proceeding down the tree. The thread record allows proceeding up
the tree. For example, given the key <12>Memo, it is not possible to easily
generate its pathname Source>Text>Memo without thread records. But with thread
records proceed as follows: lookup <12>null yielding <9> and Text; lookup <9>nuli
yielding <0> and/Source; lookup <O>null yielding <- 1> and null ==> done.

[HMMM - | think we can simplify things by asserting that the root always has ID=0
and not even have a thread entry for it. Any holes in that logic?]

Internal Structure of the Directory - The Directory's file, directory and
thread records on stored and kept sorted in a B*tree. (Described in Knuth, Vol. 3,
pp. 471-479 under “Multiway Trees" attached.) A B*tree is a multiway or m-ary
tree that is perfectly balanced - all leaf nodes are at the same level (depth) in the
tree.

AFS implements this structure on disk in the form of 2048 bytes nodes These
nodes are all in the DIR section of the disk shown in figure AFS-1. The first node
in the DIR area is the root of the tree. It points to the nodes which are its
children, etc. The unused nodes in the DIR area are linked together on a free list.
When the free list is exhausted, the DIR area is grown by moving the file(s) that
follow it.

Each node conceptually consists of n pointers and n-1 keys (PO, K1,P1, ... K], Pj}.
For ease of implementation, the AFS Directory nodes contain an additional
(redundant) key - Kj+1. The detailed structure of a node is shown in figure AFS-6.

All nodes in the Directory’'s B*tree are in this format. All non-leaf nodes are index
nodes and contain only index records. All leaf nodes contain only leaf records -
the file records, directory records and thread records described above.

When the Directory is edited (insert/delete of file, directory, thread records) a
node may become full or empty. As described in Knuth, the implementation will
keep nodes horizontally balanced. That is, if a record is inserted and it "belongs”
in a full node, the adjacent sibling nodes are examined for free space and records

are rotated if possible before a node is split and another node is inserted in the
tree.

EH,GS,RA BB,CMF June 1, 1984 Augmented File System 6



Details of File Records and File Structure - Figure AF5-7 shows the
detailed contents of a file record in the Directory as well as the file's data and
resource forks. File attributes are stored in the Directory and in the leader page
of the data fork. The attributes in the Directory are the "popular” ones that must
be quickly obtainable, the ones in the leader page are slower to obtain. For
example, the ones in the file record of the Directory are readily available during
enumeration - these are the ones required by the Finder, for example, in displaying
awindow. The attributes in the leader page are those required at file open/close
or launch time.

The leader page is put on the data fork (requiring a data fork for all files) because
there are expected to be relatively few files with no data fork (ie, more Macwrite
files (data and resource) or Multiplan files (data only) than the actual Macwrite
code file or Multiplan code file (resource only).

The first of the extents in the file record describes the (start of) the data fork
since it always exists. The remaining 89 extents describe the remainder of the
data and resource forks in order, with extents for the two forks intermixed and
discriminated by the high-order bit. This guarantees that a file can grow to
180Kbytes even under worst-case conditions of fragmentation.

Flags - The Finder flags are as described in the FM documentation. “scav. hole”
means that during a scavenge not all pages of the file could be found and pages
containing all O were inserted.

NOTE: It was asserted earlier that the SAI information could be reconstructed by
enumerating the Directory. This is true for entries where "extents overfiow” is
false. When fragmentation has caused the number of extents to exceed 6, the
header page must also be read.

“User” attributes - wWhen used in the File Server, the AFS may have clients that use
foreign file systems (MS/DOS, Unix) are have additional attributes (author, last
read date, etc.). This design does not explicitly allow for them for the following
reasons:

* if the foreign file system is Mac compatible (or a Mac application with
additional attribute requirements), then there is more than enough functionality in
the resource fork to store this information (by using the user attributes field or
defining new resource types);

* if the foreign system is unaware of Mac conventions, then it undoubtedly will
not have resource forks at all. In using the AFS through our filing protocols, it can
merely read “resource fork” as "unlimited additional attributes fork™ and store any
additional attributes that way.

[Anyone buy that argument?]

EH,GS,RA BB CMF June 1, 1984 Augmented File System 7



Scavenging - The name and extent information in file records can be recreated
from the leader page and file tags respectively. The other information is
presumed expendable (true for Finder-type?). The name and extent information in
the leader page can be recreated from the file record and file tags respectively.
The other information is presumed expendable (true for Finder-creator and
password?). Other pages in the data fork and all of the resource fork is not
recreatable.

The directory and thread records can be used to recreate one another. This

presumes that the two entries for any giveR directory will be “far apart (in
different nodes of the B*tree) and not both be lost.

The index nodes of the B*tree can be recreated from the leaf nodes.

Interesting events in the life of an AFS

Volume Initialization - All blocks on the volume are written with 0 as the file
number in the tags. The volume, space allocation and directory information is set
to initial values. Startup information is handled outside AFS although the tag
information is set correctly.

File Create/Delete/Allocate/Extend - The Volume Information is updated as
appropriate. The SA! is updated as is extent information in the directory
(Extend/Allocate). The Directory gains/loses an entry on Create/Delete. The
above changes need not be flushed for every event, depending on the particular
implementation (however, if writes are deferred, the implementation must be able
to restore consistency after abnormal shutdown).

On Allocate/Extend all blocks added to the file are written with correct tag
information (is this necessary?).

Delete - The tags of the first pages of both the data and resource forks are set to

file number=0. This is necessary for scavenging so that deleted files don't
reappear. ‘ A

2quish
The goal of the Squish algorithm is that all files have a single extent for each fork
(be contiguous) and that all free allocation blocks be contiguous.

EH,GS,RA BB .CMF June 1, 1984 Augmented File System 8



Squish has two distinct modes - the first enumerates the Directory doing a best
effort job making each file contiguous, the second moves files as far toward the
“front” of the volume as possible making all free space contiguous. If the free
space on the volume exceeds the size of the largest file, successive applications
of Squish will achieve perfection - no fragmentation. Smarter versions of Squish
can achieve perfection with any non-zero amount of free space.

Note that making free space contiguous can be time consuming - it is driven either
by a traversal of the SAl information requiring lookups in the Directory based on
file number or by repeated traversals of the Directory looking for extents
preceded by free space. It is possible that applying these two phases during the
same enumeration of the Directory would help. It would also be nice for Squish to
be suspendable so that it could be a background task. More design ergs needed
here.

ISSUES

Does it make sense to duplicate the V1?7

Should the space for SAl be a function of volume size as with the Directory?
Is statically allocating space for the Directory (say .75% of the volume) OK?
Do we need better facilities for more “user” attributes?

Is 2048 the right allocation unit size?

Do we need to think further now about expansion volumes?

Is the scavenging plan for directory/thread records OK?

Need to worry about file number overflow? Directory ID overflow?

OK to only store file number in tags?

WONOUDUN—

EH,GS,RA BB.CMF June 1, 1984 Augmented File System 9



Vi

Sal

vi

14
15
16
19

20

2044x~1
20+4x

n-2
n-1

System Startup Area
Boot blocks
Bad block table /sparing information

Yolume Information

Space Allocation Information

Directory

Space for file storage

Free space
Actual bodies of files
Header page
Data fork
Resource fork
Redundont information for subdirectories

Duplicate of Yolume Information

AR



5S4

vi
SAl

vi

14
15
16
19

20+4x~1
20+4x

n-2

n-1 "'I'

drSigword
drCrDate

drLsBkUp
dr Atrb
drimfis
drDirst

drBiLen

NEW

NEW
NEW

drimABlks
dr AlBIkSiz
drClpSiz

dr AIBISt
NEYW
drNxtFNur
drFreeBks
dern

: 28 bytes

NEW

VOLUME INFUORMATIUN
—2 bytes ——

AFS signature always $D0D1
volume initiglization date

date of last backup

b0=1 --> volume open (scav.); b7=1 --> vol. locked by HW;
number of files on vol. b15=1 --> vol. locked by S¥
starting block number of Directory (also root node)

number of blocks in Directory orea (4x)

block number of first free Directory node (node = 4 blocks)

next directory ID to use
pointer to first node of directory backup info

# gllocation blocks on volume (n/4)

allocation block size in bytes (2048)
minimurn ® bytes to allocate (AFS voalue TBD)
block # of start of SAlinfo

number of blocks in primary SAl info

file number for next file to be created

number of allocation blocks free on volume -

volurne nome

count of associoted expansion volumes - always 0 for now -
for future exponsion - would be followed by volume name
and signature for each expansion volurne

AFS -2



OPACE ALLOCATION IRFORMATIO

—3bytes

2 bytes_

Alloc. block *

* blocks

Each entry is caolled an extent.

One entry for each run of contiguous
free ollocation blocks. Space for
storing first 408 free extent
descriptors pre-allocated.

0
SSA
14 ~
¥l 15
16
SAl
19
20
DIR
20+4x-1
20+4x
NOTE :
| —->inuse
| --3 free
n-2
-1 7
vi }

general space
pool as
needed.

—
| |
l |
Additionol 4 poge blocks dllecated from
If non-zero then
Alloc:. block * | # blocks
Unused
|
|
o 0
Unused



KEY

[Len [Parentin Iname o]
0 1t 2 3 .

Key (Name=directory nome)

Type=directory
ID of directory
Date created

12l
#®bytes

THREAD RECORD

Key (Name= null name)

Type=thread
parent ID
myName

P2 bytes

FILE RECORD

Key (nome=file narme)

.- eTyre=File
File attributes

Extent entries describing
location of dato and
resource forks and extend-
ed ottributes

w See subsequent diagram for
details

AP



ROOT D=0

Sowce D=9 System

Tix D=12 Alpha

Memo

Threod
Key=<0>null
piD=-1
myN=null

[ Dir

Key=<uU>Source
id=9

e

File

Key=<0>System

Thread

Key=<a>null

piD=0
myN=Source

File
Key=<0>Alpha
Dir
Key=<@>Text

g —

| D=12

File

Key=<Q>¥M

| Threod

Key=<12>pull

plD=9

myN=Text

File
| Key=<12>Memo FIGURE AFS-5




A Node in the B*tree used to store Directory records

u]
record 0

record 1

offset to record 1

offset to record O

* records in node
type={leof index} l

next .
- > only used in leaf nodes
2047 prior

v
&
}ﬁ Format for all records in Index Nodes

¥,

N
16-bit pointer 1o a node 36-byte key
- \“'3

A typical B*tree

/L’ root index node

Figure AF5-6



FILE RECORD

Key (nome=file name) 36
Type=file 1 o :
Flags 1 | locked, open,iscav. huD, extents overflow,
Mod. dote 4 Finder-has bundlg, invisible
Finder - type 4 ‘ |
Finder - x,y locn. 4
Phys. size in bytes 4
6 extents 30 S byte extent entries in file order
84 bytes HO bit=0 --> dato fork, =1--> rsre.
DATA FORK RESOURCE FORK
Key 36 0 or more pages private
.o to the AFS client andfor
... the Resource Manager

Creote date 4

Password 8t

4 EOFs : 16

Finder - creator 4

B84 extents 420

512 bytes
Stort of “real” data fork | |
3 or more pages of data | |

Figure AFS-7




