

029-0306-A

COBOL User1s Guide
for the Lisa'IM

LIcensing RE!(JJlrements for SOftware DeVelopers
Apple has a low-cost lIcensing program, WhiCh permits developers of software
for the Lisa to Incorporate Apple-developed libraries and Object COde fUes
Into their prOdUCts. Both In-hOuse and external distribUtion require a Ucense.
Before distribUting any prOdUcts that Incorporate Apple software, please
contact SOftware Licensing at the address below for both licensIng and
technIcal Information.

@1983 by Apple Computer, Inc.
20525 MarIanI Avenue
CUperUno, California 95014
(408) 996-1010

CUStomer satlSfaCtloo

If you discover physical defects in the manuals distribUted with a Lisa
product or in the media on which a software product is distributed, Apple will
replace the documentation or media at no charge to you dUring the 90-day
period after you purchased the product.

ProWct Revisions
Llnless you have purchased the prodUct update service available through your
authorized Usa dealer .. Apple cannot guarantee that you wlll receive notice of
a revision to the software described in this manual, even If you have returned
a registration card receIved wIth the prOduct. You shoUld check perIodically
with your authoriZed Usa dealer.

Llmltatloo on Warrmtles cnj Llcmlllty

All Implled warranties concernIng this manual and medIa, inclUding Implled
warranties of merchantabll1ty and fitness for a particular purpose, are lImited
In dUration to ninety (90) days from the date of origina~ retail purchase of
thIs prOdUct.
Even thOUgh Apple haS tested the software descrIbed In thIs manual and
revIewed its contents, neither Apple nor Its software suppl1ers make any
warranty or representation .. either express or Implled .. with respect to thIs
manual or to the software desCrIbed In this manual, their quality,
performance .. merchantabllity .. or fitness for any particular purpose. p.s a
result, this software and manual are sold "as Is," and you the purchaser are
assumIng the entire riSk as to their qualIty and performance.
In no event will Apple or Its software suppliers be liable for dIrect, indIrect,
speCial, Incidental, or consequential damages resulting from any defect In the
software or manual, even If they have been adVised of the possIbility of suCh
damages. In particular, they shall have no llability for any programs or data
stored In or used wIth Apple prOdUcts, inclUdIng the costs of recovering or
reprOdUcIng these programs or data
The warranty and remedIes set forth abOve are exclusIve and In lIeu of all
others, oral or wrItten, express or ImplIed. No Apple dealer, agent or
employee Is authOrized to make any modIfication, extension or addition to this
warranty.
Some states do not allow the exclusion or limitation of impUed warranties OJ
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

iii

License em Cq)yr1~t
thIs manual and the software (computer programs) deScrIbed in It are
copyrIghted by Apple or by Apple's software suppliers, with all rights
reserved, crld they are covered by the LIsa SOftware LIcense Agreement
signed by each Lisa owner. lJnder the copyright laws and the License
Agreement, this manual or the programs may not be copied, in Whole or in
part, withoUt the written consent of Apple, except in the normal use of the
software or to make a bacKup copy. This exception ooes not allow copIes to
be macIe for others, Whether or not sold, but all of the material purchased
(with all baCKup copIes) may be sold, given, or loaned to other persons if they
agree to be bOund by the provisions of the LIcense Agreement copying
inclUdes translating into another language or format
You may use the software on any computer owned by you, but extra copIes
cannot be macJe for thIs purpose. For some prodUcts, a multiuse l1cense may
oe purcnasecJ to allow the software to be used on more than one computer
OWned by the purChaser, inclUding a Shared-diSk system. (contact your
authOrized LIsa dealer for more Information on multiuse llcenses.)

e> 1983 by Apple Computer, Inc.
20525 Mariani AVenJe
CUpertino, cal1fomla 95014
(408) 996-1010

~ple, LIsa, and the ~le logo are trademarks of Apple Computer, Inc.
Simultaneously publlShed in the USA and Ganada

ReorOOr Apple ProcJUct #I A600104 (complete COBOL package)

A6L0113 (Maruals only)

1v

COBOL Is crl IndUStry lmguage and Is not the property of any cornpcrly or
group of companIes, or of any organIzation or group of organIzations.
No warranty, expressed or Implled, Is made by any contribUtor or by the
COOASYL ProgrammIng Language Committee as to the accuracy and
functioning of the programmIng system and language. Moreover, no
responslbllIty Is assumed by any contribUtor, or by the committee, In
connection herewith.
The authors and copyright holders of the copyrighted material used herein:

FLOW-MA TIC (Trademark for Sperry Rand corporation) Programming for
the lJnivac(R) I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand COrporation; IBM commercial Translator Form No.
F2S-S013, copyrighted 1959 by IBM; FACT, DS127A5260-2760, copyrighted
1960 by Mlmeapolls-Honeywell.

have specifically authorIzed the use of this material, in whole or in part, in
the COBOL specifications. SUCh authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

C) 1983 by Apple Computer, Inc.
20525 Mariani Avenue
CUpertino, CA 95014

C) 1982 by Micro FOCUS, Ltd.
58, Acacia Road
SL Johns WoOd
London NW8 6AG

v

Contents

Chapter 1
IntJ"()(l£tlm

1.1 General Description .. 1-1
1.2 Getting Started with LEVEL II COBOL ... 1-1
1.3 Program Development Cycle .. 1-4

Chapter 2
corTClller controls

2.1 Command Line Syntax ... 2-1
2.2 Compiler Directives .. 2-2
2.3 Reference Table of Directives ... 2-6
2.4 Surnrnary Information on CRT .. 2-7
2.5 Listing Formats .. 2-8

Chapter 3
Rt.Il-TIme System controls

3.1 Run-Time 01 recti ves ... 3-1

Chapter 4
CRT SCreen Hcnnlrg

4.1 Introduction .. 4-1
4.2 Using the Extended Accept and Display Statements 4-1
4.3 Displaying Data on the Screen ... 4-3
4.4 Accepting Data Entered at a CRT ... 4-5
4.5 Expllcit Cursor Positioning .. 4-8

ChapterS
LEVEL II ccea.. ARlllcatlm Desl~ conslderatlons

5.1 Introduction .. 5-1
5.2 LEVEL II COBOL Application Design Facilities5-1

~
A summary of CompUer and Run-Time Directives A-1
B Compile-TlrT1e Errors ... B-1
C Run-Time Errors .. C-1
o File Formats ... 0-1
E Useful Facts and Figures ... E-1
F COBOL WorkShop Files .. F-1

Index

vii
029-0307-A

Tables

2-1 Excluded CombInations of DIrectives ..•............ 2-1
2-2 Reference Table of DIrectives ... 2-1

4-1 CRT CUrsor Control Keys ... 4-2

Figures

1-1 Program Development Cycle .. 1-5
5-1 Sample CAL..L Tree Structure•.....................................•.......••....... 5-2

viii

Preface

The COBa. User's Guide for the Lisa describes operating procedures for the
Lisa resident releases of the LEVEL II COBOL compiler and run-time
llbraries. The compiler converts LEVEL II COBOL source COde Into
intermediate code, whiCh is interpreted at run time. The steps needed to
compile and execute a program are described, inclUdIng all necessary 11nkage,
relocation, and run-time requirements.

Note that within this manual the product name LEVEL II coea.. version 2 is
occasionally abbreviated to LIlI COBOL, and that COBOL as defined in the
ANSI stcndard X3.23 1974 is referred to as Al\lSI COBOL.

JUftence

This manual is intended for personnel already familiar with COBOL.

Marual OIgallzatlm

029-0308-A

Chapters 1 through 5 of this manual describe compiler features and general
procedures for loading and executing programs.

The appendixes provide summarized information for reference purposes.

This manual contains the following chapters and appendixes:

Chapter 1. IntrodUction, gives a general description of the LEVEL 11 COBOl
system, Its input and output flles, and the run-time libraries provided with the
compller, plus the step-by-step ouUlne of compllation and execution of
sample interactive programs.

Chapter 2. compiler COntrols, describes compiler commands, directives, and
Usting formats.

Chapter 3. Run-Time System COntrols, gives general instructions for running
programs, operating the console, and CRT screen handllng.

Chapter 4. CRT screen HandUng, describes In detaU the extended· ACCEPT
and DISPLAY facilities provided in LEVEL II COBOL for easy manipulation of
data with the CRT.

Chapter 5. Program Design COnsiderations, describes the facilities available
to overlay programs and invoke other COBOL programs.

Appendix A. summary of Compiler and Run-Time Directives, summarizes the
compiler directives available in the LEVEL II COBOL compiler.

lx

AppendIx B. Gomplle-TIme Errors, llsts all errors that can be sIgnaled dUring
program compilation.
Appendix C. Run-Time Errors, lists all errors that can be signaled dUring
program execution.
Appendix O. File Formats, describes device and fUe naming conventions and
formats used by LEVEL II COBOL.
Appendix E. Useful Facts and Figures, briefly lists data that might be useful
in designing or debugging a LEVEL II COBOL program.
Appendix F. COBOL workshOp Files, lIsts the names of the flIes contaIned on
the COBQ language diSks.

Related PtmllcatiCllS

For detaIls of the LEVEL II COBOL Language, refer to the COBa. Reference
Mamal for tI1e Lisa.

For details of the Usa Operating System, Messages, and File Structures refer
to the WOrkSl1op User's Guide for tne Lisa.

I'obtation In this McnJaI

Throughout this manual the following notation is used to describe the format
of data input or output
1. All words printed in lowercase letters are generic terms representing

names devised by the programmer.
2. When material is enclosed in square brackets [1 it is an indication that

the material is an option which can be included or omitted as required.
3. The symbol « after a CRT entry or conmand format In thIs manual

Indicates that the [RETURN] key must be pressed to enter the command.

4. All numbers are In deCimal unless otherwise stated.
5. In the sample screen "conversations" usIng the CRT ShoWn In thIs manual,

displays are shown as they occur with the user response underlined.
Because underlining is a convention used to differentiate user response
from system response, the user dOes not inclUde it as part of the response.

Headings are presented in the following order of importance:

Chapter Title

n.n orner Ole HeadlflJ ! n.n.n Older Two HeadlflJ
n.n.M ORIer 1llree HeadlflJ

Order Four HeadIng
Text beneath

x

Chapter 1
Introduction

1.1 ~raJ. IJescriptloo •••••••.•••.•••••••••••••.•..•••••••••.•••.•••••••••••••••.•••••••••••.•••••••••••• 1-1

L2 ~Urlg start,e(j wittl LE\IE:L n c::c8:Il. •••••••••••••••••••••••.•••••••.•••••••••••.•••••••••••• 1-1

1.2.1 Issue Disk•...•..................................•.......•............. 1-1
1.2.2 The ComplIer .. 1-1
1.2.3 The Run-Time System .. 1-1
1.2.4 The Demonstration Programs .. 1-1
1.2.5 The COBOL. Command Line .. 1-2
1.2.6 First Steps .. 1-2

1.2.6.1 InItIalIzation ... 1-2
1.2.6.2 Device Management .. 1-2
12.6.3 CompIlatIon•.. 1-2
1.2.6.4 Running the Demonstration Programs•.........•.....•........... 1-3

1.3 Program 1JeVe1oprTlellt Cycle ... 1-4

1.3.1 Program Preparation Considerations .. 1-6
1.3.2 Program Design Considerations •..•..........• 1-6

029-()().18-A

Introduction

Ll General Oescrlptloo
COBOL (Common Business Oriented Language) is the most widely and
extensIvely used language for the programming of commercIal and
administrative data processing.
LEVEL II COBOL is a compact, interactive, and standard COBOL language
system designed for use on mIcroprocessor-based computers and intelfigent
terminals under control of the Usa Operating System.
The LEVEL II COBOL compllatlon system converts LEVEL II COBOL source
code into an intermediate code, which is then interpreted by a Run-Time
System (RTS~
LEVEL II COBOL programs can be created using a standard Usa text editor
to create the LEVEL II COBOL source files, from which the compiler compiles
the source programs. A listing of the LEVEL II COBOL program and any
error messages is provided by the compUer during compilation.
The user shOUld be familiar wIth the Usa operating System (see Wod<sl1op
User's Guide for tI1e Lisa) prior to begiming this manual.

1.2 Getting Started with LEVEL II COBa..
L2.1 Issue Disk

The issue disk provides each user with the software that makes up the
COBOL development system described above. The contents of this software
package are listed in Appendix F.

122 TIle COflllUer
The LEVEL II COBOL compiler contains several overlays and loads each
overlay fHe from the diskette. The root segment Is contained in COBOL.INT,
and the overlays are contained in the other COBOL files.

1.2.3 The Rt.n-TIme System
The Run-Time System (RTS) executes the intermediate code generated by the
compUer. In addition to standard ANSI COBOL statements, LEVEL II COBOL
contains many extensions for use with interactive programs on the Lisa

1.2.4 The Demonstration ProgIaII~
PI. TEXT, STOCK1.TEXT, and STOCK2.TEXT are sImple demonstration
programs, supplied in source form, which show many of the facilities present
in LEVEL II COBOL, and which can be used to become familiar wIth the
system.

1-1

COBOL User's Guide

1.25 1he CCBl... COlima M:J Line
The COBOL coomand l1ne appears on the top l1ne of the system starting
screen and provIdes a ChoIce of actions. select one by entering a single
letter coomand; for example, C for complle, R for Run, S for set SWItches.

1.2.6 First steps
1.2.6.1 Inltia1lzation

To obtain a working LEVEL II COBOL system, follow the installation
instructions provided in Chapter 1 of the WOrkshop USer's Guide for tIJe LIsa.

1.2.6.2 Device MCI.agement
For compUatloo., the compller.INT fUes must resIde on the boot volume. By
default the Intermediate code is output to the disk containing the source at
compUatlon. The RTS (COBOL.OBJ) can reside on any of the default WOrking
directories the user chooses. The most efficient disk allocation for this
system Is the user's responsibility.

1.2.6.3 compUatioo
compUe all the demonstration programs, which are the source fUes with the
extension .TEXT. If the user knows that a source file to be compiled ends in
.TEXT, this extension can be omitted When entering the source file name.
Example:
LEVEL II COBOL: compile, Run, set Switches, Printer, Quit: Q
COBOL SOUrce file [. TEXT] - STOCK1 < < .
compUer directive - ~
*lEVEL II COBOL VV.r (C) 1982 Micro Focus, Ltd 1983 Apple Computer,Inc.
*Compiling STOCKl. TEXT

*ERRORS=OOOOO OATA=nnnn CODE=mnnn DICT=mnm:nmmtnnnnnGSAFLAGS-OFF

LEVEL II COBOL: CompIle, Run, set SwItches, Printer, Quit :

After compllatlon, a dIrectory lIsting of the diSk shOws that two new
flIes exist: STOCK1.LST.TEXT, Which Is the lIst fUe, and STOCK1.INT,
WhIch Is the file contaIning the intermedIate COde. Follow the same
procedure to compile STOCK2 and PI.
Note that STOCK2 has an error In It which is present to show error
formats. This error is for demonstration purposes only, and does not
affect the ruming of the program.

The message prOduced by the error Is:
nnnnnn MOVE GET-INPUT TO TF-OATE.

103********************* **
** wrong data type or data name not declared.

1-2

CCB<.:t.. user's GI./lde Introt:kct/on

12.6.4 RlJ'Illng the Dernoostratlon Progtalt as
By compiling and running the demonstration programs, the user has checked
the disk and mastered the fundamentals of LEVEL II COBOL facUities. If the
user knows that a program to be run ends in .INT, this extension can be
omitted when entering the COBOL program name.
calculation of PI:

LEVEL II COBOL: compUe, Run, Set Switches, Printer, Quit : 8..
Run What COBOL program? - [.INn PI < <
Run time directive : ~

The screen clears, followed by:
CALCULATION OF PI
!\EXT TERM IS 0.000000000000

PI IS 3.141592653589

LEVEL II COBOL: compUe, Run, Set Switches .. Printer, Quit:
During the execution of PI the next term Changes as the Iteration
progresses.

Stock Control Program One (Cursor COntrol~
LEVEL II COBOL: compUe, Run, Set SwItches, PrInter, QuIt: 8.
Run What COBOL program? - [.INn STOCK1 «
Run time directive : ~

The screen clears, followed by:
STOCK CODE (>
DESCRIPTION (>
Uf'UT SIZE (>

STOCK1 is a skeleton stock data entry program in which stock records
are created on a stock file in stock code order. This program provides an
opportunity to use the cursor control functions. The user has the ability
to:

• tab the cursor forwards and backwards from one data input field to
the next.

• move the cursor backwards and forwards nondestructively one
Character position at a time in data input fields.

• place the cursor HOME to the fIrst character post tion In the first
data Input fIeld.

In addition, numeric validation, WhiCh permits only numeric Characters to
be entered on numeric fields .. is available. Left zero fill on numeric
fields is automatic. See Cursor COntrol Facilities in Section 4.2.1 for
cursor control keys on the Lisa keyboard.

1-3

et:JEJa User's Guide

RlRllng STOCK1 also creates an Indexed sequential fUe on diSk called
STOCK.lT together with Its Index called STOCKIDX.
To create a record, key data Into the unprotected areas defined by < >.
When the record Is complete, press the [RETURN] key and the record Is
written to dISk. If the record has been correctly entered, the
unprotected areas are space filled, resay for the next record to be
entered. If the record remains dIsplayed, the record was Incorrectly
keyed and ShOUld be entered agaIn.
To terminate the run, enter spaces into the STOCK caJE field and press
the [RETURN] key.
The result Is:

END OF PROORAM

Stock COOtrol Program Two (Data Input) Is run the same way.
After the user responds to the Run command, the screen clears,
followed Dy:

GOODS INWARD
STOCK CODE < >
ORDER NO < >
DELIVERY DATE MMIODIYY
NO OF LNITS < >

STOCK2 is a skeleton stock data input program by which the stOCk
records created by STOCKl can be accessed.
The cursor control features are the same as in STOCK1.lNT. Note,
hOWever, that the DELIVERY DATE has a dIfferent method of prompting
than was previously used.
stop the same way as for STOCKl.

1.3 PrograI •• oevel~t Cycle
The cycle for developing and running LEVEL II COBOL application programs is
shown In FIgure 1-1.

1-4

COEJa User's Guide

Preparation: The source programs are created
on diSkette with the user's own existing editor
program.

compllatlon: The following procedUre ...

compIle, Run, set SWitches, Printer, Quit: c
COBOL SOUrce fUe [-TEXT] - MYPROG «
compiler directive - ~

... loadS the single pass comp1ler to convert a
source program (MYPROG. TEXT in this
example) Into an Object form known as
Intermediate COde (MYPROG.INT~ The user
can specify the fUe on Which the lIsting Is to
appear. If this is a diSk file, it can be edited
to correct errors and used as Input for the next
run of the compUer.

RlIlnlng: The following procedure ...

compile, Run, set Switches, Printer, Quit: B
Run What COBOL program? - [.INn - MYPROG < <
Roo time directive - ~

... loads the Intermediate Code, whiCh is then
run.

Figure 1.1
Plognm Development Cycle

1-5

Inl.rl:NiA::t/m

COBOL User's Guide Intn:JalCtlm

1.3.1 Progrcm PreparaUon COOSlcJeraUons
The LEVEL II COBOL compiler accepts source Input from a standard source
fUe, specIfIed on tile compUer conmand Une, as prOdUced by any standard
Usa edItor or compatible proprIetary edItor software.
The LEVEL II COBOL program format Is the same as standard COBOL and Is
detailed In the al9a. Reference f\1anlIaJ ror the Lisa •

r-.KJTE

1. Each line of source COde, IncludIng the last Une, must be
terminated by pressing the [RETURN] key.

2. The complIer rejects most nonalphanumerlc Characters within the
Input fHe; for example, the [TAB] character, unless embedded In
literal strings.

1.32 progran Deslgl conslderaUons
LEVEL 11 COBOL provides the full COBa.. facUlties for overlaying in memory
and for dynamIcally Invoking programs or sUbroutines, Whether written In
COBOL or assembly languages, as specIfied In the COBOL segmentation and
Interprogram communication modUles. Chapter 5 contains more Information
on the use of these features.

1-6

Chapter 2
Compiler Controls

2.1 0lrnrnaI1(j Lire Syrltax .. 2-1

2.2 ~ler [)J.r'ooUves •••.•...•••.•.•••......•..•.•.••...••...••.•.•...•..••...••........•......•.•.••••• 2-2

2.2.1 ExclUded CombInations of DIrectives .. 2-5

2.3 RefererlCe Tat)le of DIrectives ••.•••..•..•.••••.••••..•.•.•.•.•.••..•••.•••.••••.••••.••••.••••••• 2-6

2.4 Sl.ITlrnary InfollTl8tiOll OIl ~T ••••••••.•••••••••••••••.•••••••••••••••••••.•••••••••••••••••••••••• 2-7

2.5 Usting FOll1l8ts •••••••••••••••••••••••••..•.••••••••••••••••••.••.••••••••.••••••••••••••.•••••••••••••• 2-8

029-0:509-A

Compiler Controls

2.1 COI.I.ald Line Syntax
The COBOL command line is where the user
1. invokes the COBOL compiler"
2. specifies the name of the source fIle to be compiled, and
3. enters the directives that modify the way in which the compHer processes

the source flle.

The command nne can be continued by using the ampersand (&) character.
The format of the command Hne is:

LEVEL II COBOL: Compile, Run, set Switches" Printer, QuIt: Q
COBOL SOUrce fHe [. TEXT] - fllename «
Compiler directive - directive < <

. .
CompHer directive - «

Where:
filename

directives

is the name of the program that contains the LEVEL II
COBOL source statements to be compUed. The default
extension is . TEXT.
is a sequence of LEVEL II COBOL directive statements.
Directives are supplied one at a time by the user untll a
blank. line Is supplied by pressing the [RETURN] key.
The general form of directives Is:
[NO] keyword [argument]
NO Most directives can be "switched off" by use of

the word NO before the keyword. NO can adjoin
the keyword or be separated from it by one or
more spaces. NO Is permitted where specified In
the list of directives below.

keyword one of the directives listed below.

2-1

COBOL User's Guide CtKrpiler COntrols

argument Where applicable, argument is a qualifier to the
keyword. The argument must appear In one Of
two forms, and can adjoin the keyword or be
separated from it by one or more spaces.

"argument" Where quotes are used the
argument can contain spaces.

(argument) Where parentheses are used no
spaces are permitted.

f\DTE

The commands are processed In order of entry, and a directive or Its
negative can appear more than once; the setting of the directive used
by the compHer is the setting encountered last ThIs rule dOes not
apply where a directive is used but is exclUded by the use of another
directive. see Table 2-1.

22 CCJrfllller Directives

[NO] AL TER NO AL TER prOhIbIts the use of ALTER statements wIthIn

[NO] BRIEF

[NO] COMP

the program beIng compiled, allowIng the compUer to operate
more efflclently.

The default Is ALTER.

Error numbers only to be prOdUced on the l1sting and console;
that Is, the text of error messages Is suppressed.

By default thIs directive Is off, meanIng that error messages
are prInted, unless no error message fUe can be found.

Causes the compHer to generate much more compact and
efficient code for certain statements involving PIC 9(2)
COMP and PIC 9(4) COMP data items. See Chapter 5 for
full details. The reason for this directive is that the
efficIent code leads to nonstandard behavior In cases of
numeric overflow; the compiler cannot allow this to happen
unless the user specifies this directive, meaning that either
the user knows the statements do not lead to numeric
overflow (1n which case the semantics of the program remain
strictly in accord with the ANSI standard whlle at the same
time gIving the adVantage of the extra efficIency)' or
alternatively the user means to take advantage of the
defIned but nonstandard behavior that occurs on overflow.

By default this directive is off.
[NO] COPYLIST causes the contents of any files named in copy statements

to be Usted.

2-2

COBOL User's Guide compiler Controls

By default thIs dIrective Is off.

Whatever the state of this directive, the name of any copy
fUe open at the time a page headlng is output is listed as
part of the heading.

COPYLIST causes COPYLIST to be set In the
IDENTIFICATION DIVISION and In segment
53 but not otherwise.

NO COPYLIST causes COPYLIST to be set In Segment 53
only.

CRTWIDTH "Integet'

DATE "string"

Specifies the width of the user screen in characters. This
directive is used In Format 1 (standard ANSI) DISPLAY
statements to enable the user to plan the separation points
in displaying data items too long to fit on one physiCal CRT
Une. The "integer" must be between 40 and 255.

By default this dIrective Is set to 128.

causes the "string" to be used In place of the comment
entry In the DATE-COMPILED paragraph" if present.

If the directive Is omitted the comment entry, if present, Is
used.

[NO] ECHO Causes error Hnes and flags to be echoed to the console.
When an error occurs" the source line producing it, the error
number, and (unless BRIEF Is set) an explanatory message are
printed on the console.

By default this directive is on.

[NO] ERRLIST Causes the lIsting to be restricted to those COBOL lInes
contaIning syntax errors or flags" together wIth associated
error messages.

By default this directive is off.

2-3

[NO] FLAG

"[~~l"
LIl1
IBM

carpJleJ" CCntrols

Causes the output of GSA complier certification flags dUring
compilation for all features higher than the specified level.

LOW GSA Low-level
L -I GSA Low-Intermediate-level
H-I GSA High-Intermediate-level
HIGH GSA High-level
LIlI LEVEL II COBOL extensions to ANSI COBQ

standard X3.23 1974. See the COBOL Reference
Manual for t/Je LIsa.

IBM IBM-compatible nonstandard COBOL. See
AppendIx J, COBOL Reference MantlBl for tile
Lisa.

By default this directive is off.

[NO] FORM "Integer"

Specifies the number of lines per page of the Usting. The
"integer" must be at least 3.

By default 60 llnes per page are printed.

one formfeed character Is always prOdUced at the head of
the listing f11e. If NO FORM is used, no further formfeed
characters and no page headIngs are prodUced In the body of
the l1sting.

If the Ustlng Is directed to the console, by use of the LIST
directive, then the first formfeed character is replaced by a
blank 11ne.

[NO] INT "filename"

Specifies the file to be used to hold the intermediate code
output by the compiler. If the fUe specified exists ... it Is
overwritten.

NO INT suppresses the production of an intermediate code
f11e; that Is, the compiler Is used for syntax cheCking only.

By default the compHer adds .INT to the source fUe name,
replacing any existing fUe name extensIon.

2-4

COBa User's Guide compiler controls

[NO] SLIST ~
lPRINT5 "destination"

[NO] QUAL

[NO] REF

[NO] RESEQ

Specifies the destination of the listing fUe. If an existing
fUe is specified, it Is overwritten. The destination can be a
printing devIce; for example, the prInter or the console.

NO SLIST ~
?PRINT5 suppresses production of a listing.

If "destination" Is "-console", the listing is directed to the
console. If "destination" is "-prInter", the listing Is directed
to the prInter.

If no dlrecUve Is specifIed, the compiler forms a flIe name
by addIng .LST.TEXT to the source fne name. If a dIrective
Is specified" but no fHe name given, then the console Is used.

NO QUAL prohibits qualified data names or procedUre names
from the program beIng compiled, allowIng the compiler to
operate more effecUvely.

The default Is QU,AL.

Causes four-digit location addresses to be included on the
righthand side of the listing fHe. Note that a listing wIth
location addresses can be requIred In order to Identify the
locations reported in RTS error messages.

By default this· directive is off.

causes the compller to generate COBOL Une sequence
numbers in Increments of 10" starting at 10.

By default this directive Is off.

2.2.1 ExclUded cormlnaUons of DlrecUves
USIng certain dIrectives Implies that certain other directives are ignored, even
if specIfIed. Table 2-1 shOws the combinations that are not permItted.

2-5

CU9a. USer's GlIJde

Table 2-1
Exclooed CorOOlnatIons of Directives

D1rectIve

ERRLlST

[NO] LIST

Excluded D1rectIves

COPYLIST
[NO] REF
RESEQ

COPYLIST
ERRLIST
[NO] FORM
LIST
PRINT
[NO] REF
RESEQ

2.3 Reference Table of Directives

Table 2-2
Refererce Table of Directives

Directive Use

[NO] PLTER Allow PL TER statements
[NO] BRIEF SUppress error messages
[NO] COMP Use computational sUbset
[NO] COPYLIST List copy files

CRTWIDTH "n" set width of CRT to "n"

Cotrpfle./" Cmlmls

Default

ON
OFF
OFF
OFF

ON
n - 128

DATE "string·· /ls DATE below bUt "strIng" set to spaces ON
use ··strlng·· for comment entry In
DATE-COMPILED paragraph

[NO] ECHO EChO errors to console ON
[NO] ERRLIST List only errors and flags OFF

[NO] FLAG rOWl" Flag cOde hIgher than level Indicated OFF
l-I
H-I
HIGH
lllI
IBM

[NO] FORM "n" Suppress headers and form-feeds ON 0-60
Set length of page ... "n" lines

[NO] INT "filename" Specify intermediate code fllename ON
- source
filencme

2-6

COBOL User's Guide

Directive

[NO] SLlST ~ Specify listing requirements
? PRINT5 "fllename"

[NO] QUAL

[NO] REF
[NO] RESEQ

Allow qualified data-names and
procedure-nErnes
Insert addresses on listing
Resequence source fUe

2.4 Slm1lary Infonnatlon on CRT

Compiler Controls

Default

If no
directive:
ON; that is
filename
- source
fUename.
If directive
but no
fIlename:
fUenane
- -console

ON
OFF
OFF

After the user completes the command line, the compiler replies with:

**LEVEL II COBOL W.r (C) 1983 Apple Computer,lnc. 1982 MIcro Focus, Ltd

Where v is the version number and r is the release number.

The compller then acknowledges each directive on a separate Une, and either
accepts or rejects it If the command line is continued usIng the amperSand
(&) character, each line of directives Is processed before the compller allows
the next line to be entered. After the compHer acKnowledgeS all the
dIrectives, It opens Its files and starts to compile. At thIs poInt it dIsplays
the message:

* compiling filename. Text

If any file falls to open correctly, the compiler displays:

Open fail: filename. Text

compUation is termInated, and control returns to the Operating System.

2-7

CU9a. user's GlIlde CC¥rpller COOtrols

When the compllatlon is complete, the compUer displays the message:
**ERRORS-nnnnnDATA-mnnnCODE .. nnnnnDICT -mmmmm:mnnn/pppppGSAFLAGS-mnnn

where:

ERRORS
DATA

CODE

DICT

denotes the number of errors found.
denotes the sIze of RAM requIred; that Is, data area of the
generated program.
denotes the size of Rorvt required; that is, code area of the
generated program.
mmmmm denotes the number of bytes used in the data
dictionary.
mnm denotes the number of bytes remaining in the data
dictionary
ppppp denotes the total nurntler of bytes In the data dIctionary

GSA FLAGS denotes the number of compUer validation flags encountered or
·OFF· if the directive NOFLAG was entered or asstrneC1.

25 Ustlng Fonnats
The general format of the list fUe is:

*LEVEL 11 COBOL W.r (C) 1983 Apple Computer, Inc. 1982 MIcro Focus, Ltd
* AcceptecJ
* Rejected - optional dIrective as entered in complle command Une
* Comp1l1ng fllename
* LEVEL II COBOL W.r fllename Page: moo
*
statement 1 HHHH

statement n HH-H
* LEVEL II COBOL VV.r revision n URN AAlOOOOI AA
* ComplIer (C) 1983 Apple Computer, Inc. 1982 Micro Focus, Ltd.
*

*ERRORS-nnnnn DATA-nnmn COOE-nnnnnOICT -mmmmm:nnnnnlpppppGSAFLAGS-OFF
The first two Unes Of title information are repeated for each page. The
final Une Is the same as on the CRT display. The value denoted by Ht-H-i
Is a hexadecimal value denoting the address of each data name or
prOCedUre statement, and is generated If the REF directive Is speclf1edln
the commandl1ne. Addresses of data names are relative to the start of
the data area, WhUe addresses of procedure statements are relative to the
start of the COde area ArI overhead Is at the start of the data area, and
a few bytes of initialization cOde are at the start of the procedUre area
for each SELECT statement defined in the ENVIRONMENT DIVISION.

2-8

Garpfler controls

A syntax error Is marked in the llstIng by an error line with the followIng
format:

nnnnnn illegal statement
** nnn *** ... *** **

Where:
nnnnrn Is the sequence number of the erroneous Une.
nnn denotes the error number.
The asterisks following the error number indicate the character
position of the error In the preCeding erroneous source line" while the
asteriSks at the end of the line slmpl y highlight the error line.

NJ1E

1l1e demonstration program STOCK2" compiled as described under
compilation In Chapter 1, contains a sample error llne.

A flag is marked In the I1stlng by a flaggIng Une wIth the followIng format:

Where:

nnnnnn flagged feature
** level ---

nnnnnn is the sequence number of the flagged Une.

'level' represents the level at which the feature is flagged using the
same acronyms as can be entered in the command llne" when setting
the lowest required flaggIng level:

LOW Low level
L -I Low-Intermediate level
H-} Hlgh-Intermediate level
HIGH High level
LIII LEVEL II COBOL extensions
IBM IBM-compatible extensions

The flagged feature Is pInpoInted at the end of the line of characters beneath
the flagged line. The dashes at the end of the Une simply hIghlight the
flaggIng line.

NJ1E

A program in whICh flags are IndIcated can still be run. However"
errors ShoUld always be corrected, and the program recomplled, before
the Object program Is run.

2-9

Chapter 3
Run-Time System Controls

3.1 Rl.I1-TIme DlIectlves ...•............................ 3-1

3.1.1 Cornrnand Line Syntax .. 3-1
3.1.1.1 Switch Parameter ... 3-1
3.1.1.2 Standard ANSI COBOL DebUg Swi tch Parameter 3-2
3.1.1.3 Program Parameters ... 3-2

Run-Time System Controls

3.1 RLIl TIme DIrectives
3.1.1 cmmar Id Line Syntax

The COBOL command nne syntax for rumlng a LEVEL II COBOL object
program is:

t.:EVEL II COBOL: COmpile, Run, Set Switches, Printer, Quit: B.
Run what COBOL program? - [.INT]: filename.lNT < <
Run time directive - dlrectives«

fUename is the name of the intermediate cOde f11e. An example of the WhOle
RUN command Is gIven later In thIs chapter.

The filename is Of the form

name.INT

Note that the search is of the volume specified In the filename. If no volume
is specified the prefixed ones are searched. If filename is not found, the user
Is prompted for the correct filename and, simply presses [RETURN] to exit to
the COBOL command line.

3.1.1.1 SWItch Panmeter
LEVEL II COBOL includes the faclUty of controlling events in a program at
run time depending on whether or not programmable switches are set by the
user. see the description of the SPECIAL -NAMES paragraph In section 3.4.1.2
of the COBOL Reference Manual for tIJe Lisa. The user sets these switches
at run time with the switch option In the COBOL command line. When
switches have been set at run time, they remaln set when COBOL CALLed
modUles are processed.

Example:

LEVEL 11 COBOL: Complle, Run, Set Switches, Printer, Quit: §.

CUrrent switch settings

SW-O SW-l SW-2 SW-3 SW-4 SW-S SW-6 SW-7
OFF OFF OFF OFF OFF OFF OFF OFF

3-1

COBOL User's Guide Run- Time System Controls

Do you wIsh to Change the settlngs?: y..

SWITCH SW:O - OFF .FLIP? y..
SWITCH SW:l - OFF .FLIP? n
SWITCH SW:2 - OFF .FLIP? n
SWITCH SW:3 - OFF .FLIP? i
SWITCH SW:4 - OFF .FLIP? y..
SWITCH SW:5 - OFF .FLIP? n
SWITCH SW:6 - OFF .FLIP? n
SWITCH SW:7 - OFF .FLIP? n

Updated SwItch settings

SW-O SW-l SW-2 SW-3 SW-4 SW-5 SW-6 SW-7
ON OFF OFF ON ON OFF OFF OFF

Current ANSI Debug IS swItched OFF

Do you wish to Change the setting?: y..

Updated ANSI Deoug IS swItched ON

LEVEL II COBOL: Compile, Run, Set Switches, Printer, Quit :

The switches remaIn In thIs state untll remodifled or until the user exits the
COBOL environment

3.1.1.2 sta1dard ANSI COBOL Debug SWitch Panmeter
Users can also include a parameter to invoke the standard ANSI COBOL
Debug module. see Chapter 11 of the COBOL Reference Manual for tile Lisa
for a description of the Debug facilltIes.

To include the standard ANSI Debug facility a run-time switch is required.
The format Is the same as for a normal swItch parameter (see Switch
Parameter abOve~

3.1.1.3 ProgIa II ParaTleters
Program parameters are any parameters required by the program. They can
be read in on the console file device "-console". There can be as many
parameters as the programmer requires, text or numbers in any format,
limited to 80 characters on the command Une.

Two methods access the program parameters:

READ

READ
ACCEPT

"-console" can be declared as a sequential or line sequential file (line
sequential is preferable as fixed-length records are not then expected~
This file can then be accessed by a READ; READ returns the command

3-2

COBOL User's Guide RlII?-Time System Controls

line program parcmeters l.I1Ul the command line Is eXhausted.
SUbSequent READs expect console Input In the absence of command
line parameters, the fIrst READ returns SPACES.

ACCEPT

The fIrst ACCEPT FROM CONSOLE statement 1n a program returns
the program parameters from the command Une. The CRTWIDTH
directive affects the behavior of the ACCEPT statement: ACCEPT 1s
complied as a sequence of reads, each of CRTWIDTH characters,
sufficient to fill the data item specified.
SUbsequent ACCEPT statements expect console input

3-3

Chapter 4
CRT Screen Handling

4.1 IntJ'o(lJctloo •••••••••••.•.•.•••..••••...••••.•••.•••••.•.•••.••••••••••••.•.•••.•.••.....••••.•.•••.•.•.•.• 4-1

4.2 USlrg the Extended ACCEPT and DISPLAY statements•.......... 4-1

4.2.1 Operator CUrsor Control Fac1l1Ues .. 4-2

4..3 DlSillaylng Data on ttle SCreet1 .•••••••••.••.••••••••••••••••...•••••.•.•....•••.•.••••••.••••.••.• 4-3

4.3.1 Clearing the Screen ... 4-3
4.3.2 Displaying Single Items ...•.....•........•.•... 4-3
4.3.3 Displaying More Complex Screens ... 4-4

4..4 ~tirlg [)ata Entered at a ffiT .. 4-5

4.4.1 Accepting an Elementary Item .. 4-6
4.4.2 Accepting a Group Item ..•.......... 4-6

4.4.2.1 Cursor Behavior During an ACCEPT 4-8

4..5 Explicit OJrsor Positlonirlg •.•••.•.•.....•.••.....•.•..••......•................•.....••.•...•...... 4-8

029-0311-A

CRT Screen Handling

4.1 IntIoc:l£t1m
COBOL is traditionally a batch processing language, allowing for one line of
data at a time to be read Into memory from the console, and for one Hne to
be displayed at a time. LEVEL II COBOL extends the language to make it
fully interactive; that is, whole screens of data can be displayed or entered
into memory using just one statement.

The ACCEPT and DISPLAY statements, used in COBOL for one line input and
output, are extended in LEVEL II COBOL to provide further facilities for
interaction with the user.

The remainder Of this Chapter describes the use of these facm ties; for a
detailed specification refer to The ACCEPT Statement, The DISPLAY
Statement, and The SPECIAL -NAMES Paragraph in Section 3.4.1.3 in the
COBa. ReFerence /V1antJal 1'0J" tIJe Lisa.

42 USing the Extended ACCEPT a1d DISPLAY statements
The extended formats of ACCEPT and DISPLAY are:

[[
~ data-name-2~J 1 ACCEPT data-name-l AT 1· 1 1 FROM CRT --- - ltera - ----

sdata-name-2~
AT ? 1i tera1-1 ~

d t name q[[sdata-name-2~J UPON
DISPLAY ~1~t:~al-3- S AT ?literal-4 ~

S data-name-2~
AT ? 1iteral-4 ~

CRT

USIng these statements Is descrIbed In the remainder of this chapter.

1

If these formats are to be used extensively, then the user might want to make
them the default formats of ACCEPT and DISPLAY in the LEVEL II COBOL
program, and thus not have to specify AT ... FROM CRT or UPON CRT every
time.

4-1

COBa.. User's Guide CRT SCreen Handling

In order to do this, the statement
CONSOLE IS CRT.

should be included in the SPECIAL -NAIVES Paragraph of the ENVIROI'JIVENT
DIVISION of the LEVEL II Coaa.. program. The followIng sections assume
that this has been done.

Example:

SPECIAL -NAMES.
CONSOLE IS CRT.

4.2.1 Operator cursor control Facilities
Interaction implies action on the part of the user during the execution of a
program. The user has control over the cursor While data are beIng entered
in response to an ACCEPT statement in the program. The cursor is
manipulated on the CRT screen by the cursor control functions on the console
keyboard of your CRT deVice as shown in Table 4-1.

Tcmle 4-1
CRT cursor control Keys

CUrsor Movement

Tab forward a field
Tab backward a field

Forward Space

Backward Space
Column Tab

Left Zero Fill 1

Key Function

TAB

Return RETURN
1 - The for left zero fIll is a "," when

DECIMAL -POINT IS COMMA
is specified in the SPECIAL -NAtv1ES paragraph of the
ENVIRONMENT DIVISION.

4-2

COBOL User's GuIde CRT Screen HandlIng

NOTE

Although the functions defined above are available on most keyboards,
the actual keys required to generate them can vary. Check wlth the
documentation supplied with the console keyboard.

4.3 DlsplayIrYJ Data on the Screen
The first step In makIng the LEVEL 11 COBOL program Interactive Is to
decide What messages and prompts are to be displayed on the screen to guIde
the user, and What action the user Is to take at each poInt ThIs section
descrIbes the dIsplay facIl1tIes.

NOTE

As most termInals scroll upwardS as a result of a character appearing
In the final Character posItion (that is, bottom right of the screen), this
character posItion cannot be USed as part of a DISPLAY.

4.3.1 C1ear1t'¥J the Screen
unless deliberately displaying something upon a screen, whiCh has already
been displayed and the results are known, the user should clear the screen
before any display. The statement

DISPLAY SPACE.
or DISPLAY SPACES.
causes the entire screen to be cleared.

4.3.2 Displaying Single Items
SIngle text strIngs; for example, sIngle prompts or messages, can be dIsplayed
easily by usIng the AT clause to specIfy the coordinates of the start of the
dIsplay Item on the screen:

DISPLAY data-Item-1 AT
S integer ~
? data-item-2 5 •

Where data-Item-2 Is PIC 9999. The most sIgnificant two dIgIts specIfy a
Une IUllber In the range 01 to the maximum number of Unes on the screen,
and the least signIfIcant two dIgIts specIfy a column number In the range 01
to the maximum number of characters per Une on the screen. Both numbers
are In decimal.
Data-item-1 is the text to be displayed.

4-3

COBOL User's Guide

Example:

ENVIRONfvENT DIVISION.
SPECIAL -NAfvES.
CONSOLE IS CRT.
OAT A DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-ITEM-l PIC X(33)

CRT SCreen Handling

VALUE "SELECT ONE OF THE FOLLOWING ITEMS".

PROCEDURE DIVISION.
STAAT -QF-PROGRAIVl.

DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-l AT 0507.

causes the message SELECT ONE OF THE FOLLOWING ITEMS to be displayed
on line 5 of the screen, beginning in column number 7.

using the DISPLAY ••. AT ... statement, the user can buIld up a full screen of
Information, one Item at a time.

4.3.3 Displaying I'1ore COOlllex SCreens
When several items are to be displayed, many DISPLAY .•. AT •. _ statements
might be required. Declaring FILLER items to fill the intervening gaps
simplifies this, thus requiring only one DISPLAY statement.

Example:

To generate

SELECT ONE OF THE FOLLOWING ITEMS

1. FOOTBALL SCORES
2. TENNIS RESULTS
3. GOLF NEWS
4. EXIT

the following program could be used for an 80-column screen.

4-4

COBOL USer's Guide

ENVIRQl\lVENT DIVISION.
SPECIAL -NAI'1ES.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-ITEM-I.

03 DISPLAY-ITEM-l-l PIC X(33)

CRT SCJeefl Handling

VALUE "SELECT ONE OF THE FOLLOWING ITEMS".
03 FILLER PIC X(128~
03 DISPLAY-ITEM-I-2 PIC X(18)

VALUE "1. FOOTBALL SCORES".
03 FILLER PIC X(62~
03 DISPLAY-ITEM-1-3 PIC X(17)

VALUE "2. TENNIS RESUL TS-'.
03 FILLER PIC X(63~
03 DISPLAY-ITEM-l-Q. PIC X(12)

VALUE "3. Ga...F NEWS".
03 FILLER PIC X(68~
03 DISPLAY-ITEM-I-5 PIC X(7)

VALUE "4. EXlr'.

PROCEDURE DIVISION.
START -OF -PROGRAM.

DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-l AT 0507.

FILLER items are never displayed, even as spaces, so whatever is on the
screen before a DISPLAY Is still displayed In the places covered by FILLER
items.

4.4 Accepting oata Entered at a CRT
After the screen has been set up and displayed, and the user has entered
some data, the data must be ACCEPTED.

1'D1E

As most terminals scroll upwardS as a result of a Character appearing
in the final (that is, bottom right) Character position of the screen, this
character position cannot be used as part of an ACCEPT.

Two types of items can be accepted: elementary data items and group items.

4-5

al9Cl. User~ Gl/Jde

11..4.1 Accepting m Elementary Item
The statement

ACCEPT MYDATA

CRT SCllJel7 Handling

places the cursor at the HOME position, and accepts the character string
keyed In by the user untll terminated by pressing the [RETURN] key. This
string is directly transferred into the data item MYDATA, and is allgned left
if too short. MYDAT A is then Checked against Its declaration in the DATA
DIVISION, and any format errors are reported.

If the AT clause is used, then the value of the data item in the AT clause
defines the start position of the ACCEPT data item. This data item must be
PIC 9999 where the most significant two digits define a llne number in the
range 01 to the maximum number of lines on the screen, and the least
significant two digits define a column number the range 01 to the maximum
runber of characters per Une on the screen. If data Item contains zero or
spaces, it is treated as 0101 (HOME~ The cursor is pOSitioned at the start of
the data item to be accepted; that is, the position defined by the AT clause.
see Explicit Cursor Positioning.

Example:

ACCEPT MYDATA AT 1021.

positions the cursor at column number 21 on line 10, unless the cursor is
expllcitly placed elsewhere (see Explicit Cursor positionIng), and accepts
whatever the user enters.

4.4..2 Accepting a GI'ot4l Item
Accepting a group item is more complex. The user must declare the group
item In the WORKING-STORAGE SECTION of the program. This declaration
might be similar to the data declaration used to generate the DISPLAY
screen, except that data items in one are probably FILLER fields in the other.
In this case, the user might find redefining the original DISPLAY group item
as the ACCEPT group item to be advantageous.

4-6

COBOL User's Guide

EXarTll1e:

ENVIRONMENT DIVISION.
SPECII-\l... -NAt-1ES.
CONSOLE IS CRT.
OAT A DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-ITEM-1.

03 FILLER PIC X(324~
03 DISPLAY -lTEM-l-l PIC X(33)

,CRT Screen Handling

VALUE "SELECT ONE OF Tt-E FOLLOWING ITEMS"•
03 FILLER PIC X(128~
03 DISPLAY-ITEM-1-2 PIC X(18)

VALUE "1. FOOTBAlL SCORES".
03 FILLER PIC X(62~
03 DISPLAY-lTEM-1-3 PIC X(17)

VALUE H2. TENNIS RESUL TS".
03 FILLER PIC X(63~
03 DISPLAY-ITEM-1-4 PIC X(12)

VALUE "3. GOLF NEWS".
03 FILLER PIC X(68~
03 DISPLAY-ITEM-1-5 PIC X(7)

VAlUE "4. EXIT".
01 ACCEPT-lTEM-1 REDEFINES DISPLAY-lTEM-l.

03 FILLER PIC X(504~
03 ACCEPT-ITEM-l-l PIC X.
03 FILLER PIC X(79~
03 ACCEPT-lTEM-1-2 PIC X.
03 FILLER PIC X(79~
03 ACCEPT-ITEM-1-3 PIC X.
03 FILLER PIC X(79~
03 ACCEPT -ITEM-1-4 PIC X.

PROCEDURE DIVISION.
START-OF -PROGRAI'1.

DISPLAY SPACES.
DISPLAY DISPlAY-ITEM-I.
ACCEPT ACCEPT-ITEM-1.

In the same manner as DISPLAY... AT •.. , the AT clause can be used to
define the initial position of the data, thus avoiding an initial FILLER item in
the data declaration (see Explicit CUrsor PositionIng below~ The default
position for AT is HOfv1E. HOME is also used if the position defined by AT is
outside the physical limits of the screen.

4-7

COBOL User's Guide CR T screen Handling

'lUI cursor Behavior During al ACCEPT
unless explicitly positioned by the program (see below), the cursor is initially
placed at the start of the first data item to be accepted. While the user is
entering data in response to an ACCEPT clause, the cursor adVances
character by character. If data are entered which do not completely fill the
data Item, the user must adVance the cursor to the next data item by either
advancing one space at a time to the end of the current data item ... or using
the adVance-one-fleld Key. The cursor dOes not move into FILLER Items. At
the end of the last data item of a group, the cursor remains in the last
character position and a bell sounds when any additional Character is typed.
The last character typed is the one that is accepted.
Data entry to a group item is terminated by pressing the [RETURN] Key.
When designing an interactive LEVEL II COBOL program, the user should
adOpt a consistent approach to ACCEPT statements. A number of individual
ACCEPTS on the same screen requires the user to press the [RETURN] Key at
the end of each one. A group ACCEPT, performing the same function,
requires the user to tab forward from field to field (if the fields are not
completely filled by the data entered), and press the [RETURN] Key only at
the end of the last field. Mixing these approaches In anyone program or
suite of programs might be confusing, and shOuld therefore be avoided.

4.5 Explicit cursor PosttlmlrYJ
The LEVEL II COBOL user can exercise explicit control over the cursor by
using the "CURSOR IS data-name" clause in the SPECIAL -NAMES paragraph.
The data name must be a PIC 9999 item, where the most significant two
digits define a line number in the range 01 to the maximum number of lines
on the screen ... and the least significant two digits define a column number in
the range 01 to the maximum number of characters per line on the screen.
Example:

ENVIROI\II'1ENT DIVISION.
SPECIAL -NAMES.
CURSOR IS CURSOR-POSITION.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CURSOR-POSITION.

03 CURSOR-LINE PIC 99.
03 CURSOR-COLUMN PIC 99.

01 DISPLAY-ITEM-i.
03 FILLER PIC X (324~

4-8

COBOL User's Guide CRT Screen Hanclling

on executing an ACCEPT statement" the cursor moves to the character
positIon defined by the CURSOR data Item. If the CURSOR data Item
contains zero or spaces or is undefined" HOME is used by default My AT
clause In the ACCEPT statement still defInes the posItion of the data Items
on the screen; the CURSOR data item merely posItions the cursor. If the
defined position Is either outside the physIcal lImits of the screen or outsIde
the limits of the group item or elementary data item being ACCEPTED" the
defined posItion Is Ignored and the start of the fIrst data Item Is used
instead.
If the defined posItion is In a FILLER item" the cursor moves to the begInning
of the next data item. When no further data item exists" the cursor returns
to the begInning of the first data item on the screen.
01 return from an ACCEPT statement, the CURSOR data Item contaIns the
address of the fInal poslt1on of the cursor on the screen.
One example of this facUity is that in menu-type operations the user need
only move the cursor to a posit1on on the screen correspondIng to the
selection required. The usets chOice can be determined by the returned value
of the CURSOR data item.

If" In this type of operation" one choice per line exists" the resulting line
number can be used for a DEPENDING ON clause. The default choIce can be
determined by explicitly positionIng the cursor on one of the chOIces before
the ACCEPT statement.
Note that to use the CURSOR data item for cursor positioning.. the data item
must contain a value other than zero or spaces. If the CURSOR data item
contains zero or spaces" It does not update with cursor posItions after
ACCEPT statements.
continuIng wIth the example used earlIer In thIs chapter:

SELECT ONE OF THE FOLLOWING ITEMS:

1. FOOTBALL SCORES
2. TENNIS RESUL TS
3. GOLF NEWS
4. EXIT.

POSITION CURSOR AND PRESS RETURN

to display the screen and to execute a subroutine depending on the response"
the following program could be used.

4-9

COBa. User~ Guide CRT SCreen Handling

ENVIRONMENT DIVISION.
SPECIAL -N,AMES.
CURSOR IS CURSOR-POSITION.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CURSOR-POSITION.

03 CURSOR-LINE PIC 99.
03 CURSOR-COLLMN PIC 99.

01 DISPLAY-ITEM-I.
03 FILLER PIC X(324~
03 DISPLAY-ITEM-I-I PIC X(33)

}

VALUE "SELECT ONE OF THE FOLLOWING ITEMS".
03 FILLER PIC X(128~
03 DISPLAY-ITEM-1-2 PIC X(18)

VALUE "l. FOOTBALL SCORES".
03 FILLER PIC X(62~
03 DISPLAY - ITEM-1-3 PIC X(17)

VALUE "2. TENNIS RESULTS".
03 FILLER PIC X(63~
03 DISPLAY-ITEM-1-4 PIC X(12)

VALUE "3. GOLF NEWS".
03 FILLER PIC X(68~
03 DISPLAY -ITEM-1-5 PIC X(7)

VALUE "4. EXIT".
03 FILLER PIC X(153~
03 DISPLAY-ITEM-1-6 PIC X(32)

VALUE "POSITION CURSOR AND PRESS RETURN'.
01 ACCEPT-ITEM-l REDEFINES DISPLAY-ITEM-1.

03 FILLER PIC X(504~
03 ACCEPT-ITEM-l-l PIC X.
03 FILLER PIC X(79~
03 ACCEPT-ITEM-1-2 PIC X.
03 FILLER PIC X(79~
03 ACCEPT -ITEM-l-3 PIC X.
03 FILLER PIC X(79~
03 ACCEPT-ITEM-1-4 PIC X.

PROCEDURE DIVISION.
START -OF-PROGRAM.

DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-l.
MOVE 0625 TO CURSOR-POSITION.
ACCEPT ACCEPT -ITEM-l.
SUBTRACT 6 FROM CURSOR-LINE.

CURSOR
data-item

DISPLAY
item

ACCEPT
item

GO TO FOOTBALL -SCORES, TENNIS RESUL TS, GOLF NEWS,
FINISH-OFF DEPENDING ON CURSOR-LINE.

4-10

Chapter 5
LEVEL II COBOL Application Design

Considerations

5.1 Int.rocaJctloo •••••••.••••••••••••••••••••••.•• 5-1

5.2 LEVEL U COBa Appllcation Deslgl Faclllties .. 5-1

S.2.1 Segmentation (Overlaying)•.....................•.............. S-1
S.2.2 Interprogram communication (CALL)•.................................... S-2
S.2.3 CALL Requlrel1'lents•............................•.................. S-3
5.2.4 Producing Compact and Efficient Code•.................................... 5-4

029-0}12-A

LEVEL II COBOL Application Design
Considerations

5.1 Introdlction
DesignIng a COBOL appllcatlon program requIres efficient use of the space
and facUlties avallable. This Chapter Is written for designIng an application
to be wrItten In LEVEL II COBOL ... and descrIbes the facIlIties avaIlable:

• memory management
• dIvIdIng monolithIc programs Into smaller lXlits

• usIng default flIenames

• callIng other programs
• IncludIng user-written run-time subroutines
• calling the supplIed run-Ume subroutines.

5.2 LEVEL n COBOL .owllcatlon Desl~ FacUlties
5.2.1 8er}nentatlon (OVerlaying)

LEVEL 11 COBOL enables a COBOL program wIth a large PROCEDURE
DIVISION to be divIded into a COBOL program with a small PROCEDURE
DIVISION and multiple overlays containing the remainder of the PROCEDURE
DIVISION. The resident part is known as the permanent segment and the
overlays are known as indepet Ideot segments.

All of the PROCEDURE DIVISION can be loaded Into the available memory by
usIng the LEVEL II cosa.. segmentation feature. However ... It cannot be
loaded all at once. It Is loaded one segment at a time to achieve the same
effect In the reduced storage space as shown below.

I Full program (assumIng space avallable)

segment 1 I
I PERMAl'ENT SEGMENT segment 2 I

segment 3 ,
segment 4 I

•• ----maxlmum 60K bytes --------......

5-1

ca9a. Llser's Guide LEVEL II ca9a. .AlPlleation DesI!T1 Considerations

In a segmented program, the begimlng of each segment In the PROCEDURE
DIVlSIQI\I Is denoted In the LEVEL II COBOL source code by a SECTION label;
for example,

SECTION 52.
MOVE A TO B.

SECTIOI\I 62.
MOVE X TO Y.

Segmentation can be applied to only the PROCEDURE DIVISION. The
IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs are common to all
segments; In addition, a common PROCEDURE DIVISION segment can exist.
This common code Is known as the permanent segment Control flow between
permanent and independent segments is fully specified in the COBOL
Reference Manual for the LiSa, Chapter 9.

1'D1E

The cumulative size of the DATA DIVISIONs must be less than 64K.

5.2.2 Intelprogran COImUllcatlon (CALL)
LEVEL 11 COBOL enables COBOL appllcaUons to be des1gned or dIvIded, at
source level, Into separately complled programs. Each program Is then called
dynamicall y from the maIn appl1caUon program, wIthout the need for the user
to have linked the programs together fIrst
FIgure 5-1 Shows a sample appllcatIon user Interprogram communIcation.

B------l~H
/,,,- //\~I

o E F X Y Z L ~ /1"-
M N Q

FI~ 5-1
SCIl1l1e CALL Tree structure

5-2

COBOL User's Guide LEVEL 11 COBOL t4pp1lcation DeSign ConsldeJations

The maln program A, WhICh Is permanently resIdent In memory, calls 6, C, or
H WhICh are SUbSIdIary and standalone flWlCtlonS wIthIn the appl1catlon. These
programs call other specIfic functions as follows:

B calls 0, E, and F.
C calls X, Y, or Z conditionally, and K or L conditionally.
H calls K
K calls M, N, or Q conct1tionally.
L calls M if it needs to.

As the functions B, C, and H are standalone they do not need to reside
permanently In memory together. They can therefore be called as necessary,
using the same physical memory When they are called. The same appUes to
the lower functions at their levels In the tree structure.
In the example shown in Figure 5-1, the use of CALL and CANCEL
statements needs to be planned so that a frequently called subroutine, such as
K, is kept in memory to save load time. on the other hand, because K is
called by C or H, it cannot be called initially without having C or H In
memory; that is, the larger of C or H ShOUld call K initially to allow space.
Avoiding overflow of programs is also important At the level of X, Y, and Z,
the order in whiCh loading takes place doeS not matter, because calls are not
made at a lower level.
LeavIng called programs In memory Is advantageous If they open fIles. The
EXIT statement does not close flIes, bUt the CAl\lCEL statement does.
LeavIng called programs In memory avoIds having to reopen fUes on every
call.

5.2.3 CALL Requirements
My number of LEVEL II COBOL programs and assembly language routines can
be called from a LEVEL II COBOL program. This section describes the
requirements of the CALL statement.
1. The CALLed program fUe must be present on disk bOth at the time of the

first CALL of the program and whUe the program is beIng used.
2. Sufficient space must exist in memory for at least the OAT A DIVISION to

be loaded. The ON OVERFLOW phrase can be used to specify program
action to be taken if insufficient space is available, otherwise the CALL
statement is ignored and the next program instruction Is executed.

3. The CAf\JCEL statement releases the memory occupied by the cancelled
program CVld closes any flIes opened by it

5-3

COBa. user's Guide LEVEL II COBa. ,AppJlcat/m Design CtnsIderat/ms

If a tree structure of called Independent programs as shoWn earner Is USed,
each program can call the next dynamically by using the technique shown in
the followIng sample COdIng:

WORKING-STORAGE SECTION.

01 !\EXT -PROG PIC X(20) VALUE SPACES.
01 CURRENT-PROG PIC X(20) VALUE "STPRG.INT".

PROCEDURE DIVISION.
LOOP.

CALL CURRENT -PROG USING NEXT -PROG.
CANCEL CURRENT -PROG.
IF NEXT-PROG - SPACES STOP RLN.
MOVE NEXT-PROG TO CURRENT-PROG.
MOVE SPACES TO NEXT -PROG.
GO TO LOOP.

The actual programs to be run can then specify theIr successors as follows:

LINKAGE-SECTION.
01 NEXT -PROG PIC X(20~

PROCEDURE DIVISION USING NEXT -PROG.

MOVE "FOLLOW.INT" TO NEXT -PROG.
EXIT PROGRAM.

thIs example demOnstrates that each Independent segment or sUbprogram can
cancel itself, and, with the USING phrase, change the name In the CALL
statement to call the next one.

5.2.4 Proc1JCIng ~t and Efficient Code
Declaring data items to have usage COMP causes compact storage in the
minimum number of bytes needed to accommodate, in binary format, the
largest number allowed by the PICTURE string. However, deClaring usage
CCl'1P dOes not automatically ensure that arithmetic on such items is
efficient as well as compact. Except for the special cases detailed below,
arittmetic on CQIV1P data items Is done by expansIon In internal reg1sters to
BCD format, and reconversion to COf"P for storing the result.

5-4

C09Cl. user's GlI/de LE~L II C09Cl. ,.dpplicatlmlJesf!T1 consideratlms

Efficient Coding, knOwn as COMP code, Is avaUable for the fOllowing types of
statements:

1.
{

ADD }
SUBTRACT

source JTO }
tFROM target.

Where both source and target are PIC 9(2) COMP, or both
are PIC 9(4) COI"P

or the source Is an unsigned integer literal less than 256
and the target is PIC 9(2) COMP, or the source is an
unsigned integer Uteral less than 65536 and the target
Is PIC 9(4) CaMP.

and there Is no ON SIZE ERROR clause.

2. {MULTIPLY}
DIVIDE source target.

Where either both source and target are PIC c.:(2) CaMP, or both
are PIC 9(4) corvtP.

and there is no ON SIZE ERROR clause.

In SUCh cases arithmetic Is done on one- or tWO-byte binary quantities
without overflow checkIng and with binary wraparound.

3. HOVE source to TARGET.

where the source and target satisfy the rules given above for PDQ and
SUBTRACT statements.

In this case the MOVE Is a one- or two-byte transfer without data
conversion.

4. comparisons of the form

left operand relation right operand

Where the operands again satisfy the rules given above for .ADD and
SUBTRACT statements, except that either (not just the left-hand one, bUt
not both) can be a literal.

A raw binary one- or two-byte comparison is the result.

5. FInally, even more compact and effIcIent cOde Is generated for a
statement of the form

IF operand relation literal GO TO label.

5-5

Where:

LEJEL 11 al9a. ~llcaUon t:eslgl conslderal/ons

the operand Is declared as PIC 9(2) CQIV1P and Is the first data item
In the WORKING-STORAGE SECTION,

the literal Is an t.rlSlgned Integer less than 256, and

no ELSE clause Is present.

In case 4 the efficient COde can be generated even When the compar1son Is
Just one of a sequence connected by AND/OR. However, Format 5 Is totally
specific.
Code generated for these statement formats runs more than five times faster
than equivalent noncompact code, so taking care to use these formats Where
possible is worthwhile. However, the interaction between the semantics
detailed above and the ANSI COBOL specification must now be examined.
The following considerations are relevant:

1. If an ON SIZE ERROR clause Is present, the target must not be affected
if numeric overflow occurs; COMP code is never generated in sUCh a case.
If an ON SIZE ERROR clause Is not specified, the result on numerIc
overflow is implementor defined. In LEVEL II COBOL using COMP code,
the result Is defined as above; that is, binary byte-oriented arIthmetic
with wraparound. The user can decide to take advantage of this extra
level of definition as a LEVEL II COBOL extension. However, the
programs might not then be portable to other ANSI COBOL compilers,
because the feature Is undefined In ANSI COBOL; alternatively, if the user
knows that the arithmetic statements do not lead to numerIc overflow, the
programs can be portable In any case.

2. When the result of unsigned subtraction is negative, ANSI COBOL requires
that the absolute value be stored. COMP code stores the two's
complement result. Because Of this conflict with ANSI COBOL semantics,
COM=> code is never generated for SUBTRACT statements unless the user
specifies the COMP directive to the compiler; the user should do this
either when he or she knows the unsigned COMP subtractions does not
underflow On which case the programs compiled with COMP code remain
portable) or When wishing to take adVantage of the nonstandard behavior
Which occurs on underflow.

3. Truncation on MOVE literal: in the statement

HOVE literal TO target.

Where the target Is PIC 9(2) COMP and 99< literal <256 or the target Is PIC
9(4) COfVIP and 9999 <literal <65536, ANSI COBOL requires that the literal
is tlU1Cated to the number of decimal places specified for the target.
COfVIP COde does not truncate but stores the binary value. As in case 2
above, because of this conflict the compiler does not generate COMP COde
for this form Of statement unless, for either of the reasons described
above, the CO'1> directive is specified.

5-6

Appendixes

A StmTlary of Conlpller CIld RtJ'l-TIme D1rectlves .. A-l

B Conlplle-Tlnle Errors ••••••.••••••••••••.•••••••••••.••••••••••••••.••••••••••••.••.•.•••.•.•••••••••••• B-1

C RtJ'l-Tlrne Errors •••••••••••••••••••••.•••••••.•••.•••••••••••••.•••••••••••••••.•.••••.•••.•••••••.•••••• C-1

o File F011l18ts •••••••••••••••••••••••••••••.•••.•.••••••••••.•••.•••• 0-1

E lJseftJl Facts and Figures•....••..•••.•.•••••••.•••.••••••.•••••••.••••••.••••.•••.•••.•••••.•.•• E-l

F c:x::ec:JI Work~ Flies .. F-1

Appendix A
Sunmary of Compiler and Run-Time Directives

A1 COr'flJller Oirectives
The compilation command structure Is:

LEVEL 11 COBOL: Compile, Run, set Switches, Printer, Quit: C
COBOL SOurce file [. TEXT] - filename < <
Compiler directive - directive < <

. .
CompHer directive - ~

Where fllename Is the name of the fIle that contaIns the LEVEL II COBOL
source program. The default extension is .TEXT.
A description of the avallable compiler directives follows.

A-1

crea. LISer's GlIfde

DIrective

[NO] ALTER
[NO] BRIEF
[NO] CQIVP
[NO) COPYLIST
CRTWIDTH un"

DATE "string"

[NO] ECHO
[NO) ERRLIST

[NO) FLAG "[~Ll"
LIlI
IBM

[NO] FORM "nil

[NO] INT "fllename"

SU711118lY of' carpller 8IJt1 RiIJ-Time Directives

Use

Allow ALTER statements
SUppress error messages
Use computational subset
List COPY flIes
set wIdth of CRT to "n"

As DATE below but "strlng" set to spaces
Use "string" for comment entry in
DATE -COMPILED paragraph
Echo errors to console
List only errors and flags
Flag code hIgher than level Indicated

Suppress headers and form-feeds
Set length of page - "n" lines
Specify intermediate code fllename

Default

ON
OFF
OFF
OFF
ON
n - 128
ON

ON
OFF
OFF

ON n-60

ON

NO ~ LIST ~ Specify l1stlng requirements
~PRINT~ "filename"

- source
f1lename
If no
directive:

[NO] QUAL

[NO] REF
[NO] RESEQ

Allow quaIl fled data-names and
procedUre-names
Insert acJdresses on llsting
Resequence source fHe

A-2

ON; that is
fllename
- source
fllename.
If directive
bUt no
filename:
filename
- -console

ON
OFF
OFF

COBa.. user's GuIde SUTmary of Ct:npiJer and RlI1-Time Direct/ves

A2. Rtn-TIme DIrectives
Before runnIng an LI1I COBOL object program the user can modify the
program swItches (see Section 3.4.1.3 In the COBa.. ReFemnce fvIantIaI Fa)" the
Lisa) In the range 0-7.

LEVEL II COBOL: Compile" Run" Set Switches" PrInter" Quit : ~

CUrrent Switch settings

SW-O SW-l SW-2 SW-3 SW-4 SW-5 SW-6 SW-7
OFF OFF OFF OFF OFF OFF OFF OFF

Do you wish to change the settings?: Y..

SWITCH SW:O - OFF .FLlP? Y..
SWITCH SW:l .. OFF .FLIP? n
SWITCH SW:2 .. OFF .FLlP? n
SWITCH SW:3 - OFF .FLIP? Y
SWITCH SW:4 = OFF .FLIP? Y..
SWITCH SW:5 - OFF .FLIP? n
SWITCH SW:6 .. OFF .FLIP? n
SWITCH SW: 7 .. OFF .FLIP? !i

Updated Switch settings

SW-O SW-l SW-2 SW-3 SW-4 SW-5 SW-6 SW-7
0\1 OFF OFF ON ON OFF OFF OFF

CUrrent mSI Debug IS switched OFF

Do you wish to change the setting?: Y..

Updated ANSI Debug IS swItched ON

LEVEL II COBOL: Compile" Run" Set Switches" Printer" Quit:

The switches remain in this state until remodified or until the COBOL
envIronment Is left.

A-3

Appendix B
Compile-Time Errors

Listed below are the error descriptions that correspond to the error numbers
prInted on llstlngs prOdUCed by the LEVEL II COBOL compHer. In case of
alternative meanings, relevancy is obvious from context.

ERROR
01
02
03
04
05
06
07
08
09
10
21
22
23
24
25
26
27
28
29
30
31
32
33

34
36
37
38
39
40
41
42
43

DESCRIPTION
compiler Error
Illegal format: data name
Illegal format: 11 teral
Illegal format: character
Data name not unIque
Too many data or procedUre names declared
Obllgatory reserved word mIssIng
Nested COPY statement or unknown COpy flIe specIfied
I: mIssIng
Statement starts in the wrong area of the source line
I: missing
DIVISION missing
SECTION mIssIng
IDENTIFICATION missing
PROGRAM-ID missing
AUTHOR mIssing
INSTALLATION mIssIng
DATE-WRITTEN miSSing
SECURITY missIng
ENVIRONfVlENT missing
CONFIGURATION missing
SOURCE -COMPUTER missing
MEMORY SIZE/COLLATING SEQUENCE/SPECIAL -NAMES

clause in error
OBJECT-COMPUTER missing
SPECIAL -NAI'-1ES missing
SWITCH Clause error or system name/mnemonic name error
DECIMAL -POINT Clause error
CONSOLE Clause error
Illegal currency symbol
I.' missIng
DIVISION missing
SECTION mIssing

6-1

COBOL User's GI.Ilde COtnplle-Time Errors

ERROR DESCRIPTIQI\J

44 INPUT -OUTPUT mIssing
45 FILE-CONTROL mIssIng
46 ASSIGN mIssing
47 SEQUENTIAL or INDEXED or RELATIVE mIssIng
48 ACCESS missIng on indexed/relative file
49 SEQUENTIALIDYNAI'1IC mIssIng or >64 alternate keys
50 Illegal ORGANIZA TION/ACCESSIKEY combination
51 unrecognized phrase in SELECT Clause
52 RERUN Clause syntax error
53 SAME MEA Clause syntax error
54 mIssing or Illegal file name
55 DATA DIVISION mIssIng
56 PROCEDURE DIVISION missing or unknown statement
57 program collating sequence not defined ,.
58 EXCLUSIVE, AUTOMATIC, or MANUAL mIssing *
59 Nonexclusive lock mode specifIed for restrIcted fUe
62 DIVISION mIssIng
63 SECTION mIssIng
64 fUe name not specified in SELECT stmt or invalid CD name
65 RECORD SIZE integer missing or line sequential ree) 1024

bytes
66 Illegal level no, (01-49), or 01 level req'd, or level hierarchy

wrong
67 FD, CD, or SO qualification syntax error
68 WORKING-STORAGE missing
69 PROCEDURE DIVISION missing or unknown statement
70 Data description qualifier or ': missing
71 Incompatible PICTURE clause and qualifiers
72 BLAI\IK illegal with nonnumeric data item
73 PICTURE clause too long
74 VALUE clause with nonelementary item, wrong data type, or

value truncated
75 VALUE in error or illegal for PICTURE type
76 nonelementary FILLER/SYNC/ JUSTIFIEDIBLANK clause
77 Preceding item at this level has > 8192 bytes or 0 bytes
78 REDEFINES of unequal fields or different levels.
79 Data storage exceeds 64K bytes
81 Data description qualifier inappropriate or repeated
82 REDEFII\ES data name not declared
83 USAGE must be COMP, DISPLAY, or INJEX
84 SIGN must be LEADING or TRAILING
85 SYNCHROI'JIZED must be LEFT or RIGHT
86 JUSTIFIED must be RIGHT
87 BLANK must be ZERO
88 OCCURS must be numeric, nonzero, unsigned, or DEPENDING

B-2

COBa.. User's Guide

ERROR

89

90
91
92
101
102
103
104
lOS
106
107
108
109
110

111
112
113
114
115
116

117
118
119
120
121
122
123
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

COITplle-Time Errors

DESCRIPTION

VALUE must be a literal, numeric literal, or figurative
constant

PICTURE string has lliegal precedenCe or Illegal char
II\IOEXED data name missing or already declared
Numeric-edited PICTURE string is too large
unrecogniZed verb
IF ... ELSE mismatch
operand has wrong data type or is not declared
ProcedUre name not unique
ProcedUre name same as data name
Name required
wrong combination of data types
COnditional statement not allowed in this context
Malformed SUbSCript
ACCEPT /DISPLAY wrong or Communications syntax

incorrect
Illegal Syntax used with 110 verb
Invalid arithmetic statement
Invalid arithmetic expression
PROCEDURE DIVISION in memory > 321<
Invalid conditional expression
IF statements nested too deep or too many tAFTERs in

PERFORM stmt
Incorrect structure of PROCEDURE DIVISION
Reserved Word missing or incorrectly used
Too many subscripts in one statement
Too many operandS in one statement
LOCK clause specified for EXCLUSIVE file
KEPT specified for unconmitable file ...
KEPT omitted for commitable file
Intersegment procedUre name dUplication
IF ... ELSE mismatch at end of SOUrce Input
operand has wrong data type or not declared
Procedure name undeclared
Index data name declared twice
Bad cursor control: illegal AT clause
KEY declaration missing or illegal
STATUS declaration missing
Bad STATUS record

*

LJndefined intersegment reference or error in ALTERed par
PROCEDURE DIVISION in error
USING parameter not declared in LINKAGE SECTION
USING parameter is not level 01 or 77
USING parameter used twice in parameter list
FD missing

B-3

COBOL User's Guide COrrplle-Time Errors

ERROR DESCRIPTION
157 Incorrect structure of PROCEDURE DIVISION
160 Too many operandS in one statement

* - Apply to Flleshare optlonal prOdUCt syntax.
In addition to these numbered error messages, the following message can be
displayed with SUbsequent termination of the compilation:

{
filename }

1-0 ERROR: OBJECT FILE

Where flIename Is the erroneous fHe.
OBJECT FILE Is one of .INT, .O??, or.l?? (for segmented programs)

MY IntermedIate COde file prOdUced Is not usable.
The following condItions causes thIs error:

Disk overflow
Flle dIrectory overflow
Flle full
ImpossIble 1/0 deVice usage

Other Operating System dependent cOndItions can also cause this error.
The error numbers in the preceding l1st are not continuous: thoSe that are
not listed are be produced only If an error occurs In the complIer. When thIs
happens, contact Technical SUpport ImmedIately.

B-4

Appendix C
Run-Time Errors

C.l Error Reportlrlg .••.••••••.•.••••••.••••.••••....•.•..•••••...••.....•••••.•...•.•..•.•..•••.•••.••..••• C-l

C.1.1
C.1.2

Recoverable Errors .•....•.....................................•............................ C-1
Fatal Errors ..•............................ C-1

C2 Rt.rl-TInle Error c:::odes •• C-2

C.2.1 File Errors ... C-2
C.2.2 Exceptions .. C-2

C.3 SCII1l1e Error t-ICI'dIrlg RootIne •.•..••.•...••...•........•..........•...................•.•...... C-4

Run-Time Errors

C.l Error Reportlng
Two types of run-time errors exist: Recoverable and Fatal.

C.l.l Recoverable Errors
File handUng errors (codes 0 - 99) do not cause termination of program
execution if the programmer has specified a STATUS field for the file
concerned. In this case, the RTS returns the character 191 in Status Key 1 of
the STATUS field, and the COBOL RTS error code, in binary (COMP), in Status
Key 2 field. (Because this error code is stored in binary (COMP) in Status
Key 2, the only way you can extract it is with the method shoWn in the
sample error handling routine, Section C.3.) The RTS takes no other action:
the user must check for specifiC error conditions and take corrective action,
or terminate the program run.
If the programmer has not specified STATUS on that file, any file handling
error Is a fatal error.

C.1.2 Fatal Errors
When the RTS detects a fatal error, the general class of error, along with its
associated file name, is printed out. The RTS then prints out the error code,
the COBOL program counter (pc~ the CALL number, and segment number
corresponding to the statement where the error occurred.

Fatal errors fall into two categories:

1. Exceptions are errors detected by the RTS, such as arithmetic overflow,
SUbscripts out of range, and INT. fUe load errors. These error codes are in
the range 10D-200 decimal. A typical message appears:

Load error: file 'MYPROG.IS3'
RTS error code: 160, pc-OOBS, call-O, seg-53
Consult COBOL user's Gulae

The program is terminated, and control returns to the COBOL command
line.

C-1

COBOL User's GuIde RU1-TIme ErJ1)~

2. File HandUng Errors are errors in the range 0-99 decimal, on a user fUe
for whiCh STATUS was not specified. For these errors, the original error
message signaled from the OS Is displayed, along with the corresponding
RTS error cOde that would have been stored In Status Key 2 If a STATUS
field had been specified. A typical message appears:

OS error message - 921
1/0 error: file '-MYPROG > DATI
RTS error code: 12, pc-008S, callzaO, seg-O
consult COBOL User's Guide

The program Is terminated, and control returns to the COBOL command
Une.

Co2 Ru1-TIme Error COdes
The run-time error codes and their meanings are:

C.2..1 File Errors

1 unspecified error on attempting to OPEN file
2 unspecified error on attempting to WRITE to fUe
3 unspeicifed error on attempting to ACCEPT FROM CRT
4 Unspecified error on attempting to READ fUe
5 unspecified error on attempting to WRITE to line sequential file
6 Unspecified error on attempting to CLOSE fUe
12 Invalid pathname for file, or no sUCh device
13 File not fot.l1d
14 Unexpected fUe system error
15 No space avallable on disk for creating or extending fUe
16 Access denied by OS for specified operation on fUe; for example, fUe

locked
17 Too many files open: attempt to OPEN more files (20) than system

allows

C.2.2 Exceptlms

151 Random READ on a sequential fUe
152 Attempt to REWRITE on a file not opened 110
153 Subscript bounds overflow; for example, zero, or greater than defined

range
154 PERFORM nesting exceedS allowed Umit of 55 levels
155 Illegal command Une
156 Invalid fUe operation
157 INT. file too large: not enough program memory for lOading it
158 REWRITE on a line sequential fUe
159 Malformed line sequential fUe
160 Overlay loading error; for example, fUe not found, or inval1d fUe

structure
161 Illegal intermediate code: program file probably corrupt
162 ArIthmetic overflow or underflow

C-2

COBOL User's Guide RlII1-Time Errors

164 Specified CALL subroutine not supplied
165 Incompatible version of compHer and RTS: recomplle source program
166 Attempt to OPEN a flIe that Is already open
167 Attempt to CLOSE a flIe not already open
170 Illegal operation In Indexed Sequential modUle
172 Recursive CALL Illegal; for example, attempting to CALL an active

program
173 Intermediate code fUe not found
174 Intersegment reference fHe for a segmented program cannot be loaded
180 COBOL fUe malformed
181 Fatal fHe malformation
182 Attempt to OPEN :CI: or :co: in illegal direction
183 Attempt to OPEN a 11ne sequential fUe for 1/0
184 ACCEPT /DISPLAY error
185 Cannot load COBOL RTS module; for example, IXSIO.INT
186 Internal RTS error: contact Technoical Support
188 FUe name too long
189 Intermediate code load error
190 Too many arguments to CALLed sUbprogram
191 Terminal type not defined
192 Required terminal capabIlity not supported
193 Null file name used in a file operation
194 Memory allocation error

C-3

COBOL User's Guide Run-Time Erro.l$

C.3 ~le Error HemUng Routine
Note that the original 2-Character status field must be redefined as a (COMP)
field, and that LOW-V,ALLES must be moved to the Status Key 1 field before
the error COde can be displayed or printed.

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280

ENVIRONMENT DIVISION.
INPUT -OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE1 ASSIGN"TST.FIL"

STATUS IS FILE1-STAT.
DATA DIVISION.
FILE SECTION.
FD FILE 1.
01 F1-REC PIC X(80~
WORKING-STORAGE SECTION.
01 FILE1-STAT.

02 Sl PIC X.
02 S2 PIC X.

01 STAT-BIN REDEFINES FILE1-ST AT
01 DISPLAY-STAT.

02 Sl-DISPL PIC X.
02 FILLER PIC X(3~
02 S2-DISPL PIC 9999.

PROCEDURE DIVISION.

PAAA1.

OPEN INPUT FILEl.
IF Sl NOT - 9 GO TO PAAA1.

MOVE Sl TO Sl-DISPL.
MOVE LOW-VPLUES TO Sl.
MOVE STAT -BIN TO S2-DISPL.
DISPLAY DISPLAY-STAT.

STOP RUN.

C-4

PIC(4) COfv1P.

0118
0118
0118
0184
0186
0180
0180
01BD
0180
020F
O2OF 00
O2OF 00
0210 01
O2OF 00
0211 02
0211 02
0212 03
0215 06
0000
001A
001E
0030
0030
0035
003A
0041
004C 00
0040

Appendix D
File Formats

0.1 Fixe<i File Assig"lJTlerlt .•.•.•...•••...••...•...................•.....•....•........•.................. 0-1

0.1.1 ENVIRONfvENT OIVISI()I\I ••.....•.•.•.•..•..•...••......•.....•................•......... 0-1
0.1.1.1 General FOrnlat .. 0-1
0.1.1.2 Parameters .. 0-1
0.1.1.3 Example ..•....................... 0-2

0.1.2 PROCEDl.RE OIVISIOI\I•.....•.•.....•..............................•.•.•••...••.. 0-3

0.2 Rtrl-Tirre File Assigrl1Et1t •..••••••.••••.•••.•.•..•..•...•.••..•.••....•..•..•••.••.•.•.••....•••. 0-3

0.2.1 ENVIRONMENT DIVISION•.•...•...........•.....•....•.....•...•.....•.•... 0-3
0.2.1.1 General Format .. 0-3
0.2.1.2 Parameters .. 0-3
0.2.1.3 Example•.. 0-3

0.2.2 PROCEDLRE DIVISION•.............•...•.•.....•.......••....•.•....•........... 0-3

0.3 LEVEL II cooa... DISk Flle Stn£tures trlder the Lisa .•.....•.....•..........•.•.•..... 0-4

0.3.1 Sequential .. 0-4
0.3.1.1 sequential File Format ... 0-5

0.3.2 Line sequential ... 0-5
0.3.3 Relative ... 0-5

0.3.3.1 Relative File Format .. 0-5
0.3.4 Indexed sequential .. 0-6

File Formats

D.1 Fixed File Asslgment
D.1.1 Ef'IMRCJ\M:NT DIVlSI~

In the FILE -CQI\.ITRa... paragraph, the general format of the SELECT ana
ASSIGN TO statements follows.

0.1.1.1 General Format
SELECT flIe-name

ASSIGN TO extemal-flle-name-l1teral.

0.1.12 Parcmeters

file-name

external-flIe-name-l1teral

Fonnat 1
-devIce

[, extemal-fUe-name-Uteral) .

is any user-defined LEVEL II COBOL
word.

is a standard Usa file name, enclosed In
quotes, of one the following general
formats.

Where device Is a logical device as follows:
PRINTER - Une printer
CONSOLE - screen output
KEYBOARD - keyboard input

Example:

-printer

0-1

COBOL User's Guide File Fonnats

Format 2 (a Usa pathnarne)
[-VOlumename-]fllename[.extension)

Where:

volumename is the name that the user has assigned to a
volume or a physical, block-structured deVice
as follows:
UPPER
LOWER
PAAAPORT
SLOTmCHANn

files on the working directory can be specified
without volumename and the delimiting "_".

filename is between one and 32 alphabetic or numeric
characters, spaces are permltted. The
combined length of the filename .. plUS
extension., plus the ": delimiting the extension
must not exceed 32 characters.

extension Is up to 32 alphabetic or numeric characters,
spaces are permitted .. inclUding the delimiting
I:. However .. the same restriction as in
filename applies.

Example:
[-paraport-)nyprog.text)

Format 3
-device-dUmmy

Where:
device

dummy
Example:

-RS232A-X

D.1.1.3 Ext:fT1)le
SELECT STOCKfILE

is the name of a physical .. sequential device as
follows:
RS232A
RS232B.

Is a dUmmy file name.

~IGN TO "WAREHS.BUY".

0-2

COBOL User's Guide File Formats

0.12 PROCBX..RE OMSICl'I
The file name specified aboVe is then specified in the OPEN statement when
the file is required for use In the program. See The OPEN Statement in
Chapters S, 6, and 7 of the COBOL Reference Manual for tI7e Lisa.

D.2 R..n-TIme FUe Assl~t
The internal user fUe name ·is aSSigned to a fUe identifier, an alphanumeric
user-defined COBOL word, which automatically sets up a PIC X(66) data area
in which to store the external Lisa file name; the user can specify a
differently sized data area by explicitly declaring it. The user can then store
the external Lisa file name in this data area in the PROCEDURE DIVISION,
and can alter it during the run as requIred.

TIle following specifications are requIred for run time assIgnment:
0.2.1 E~ OMSICl'I

In the fILE-CONTROL Paragraph the general format of the SELECT and
ASSIGN TO statements is as follows:

0.2.1.1 General Format

SELECT file-name

ASSIGN TO fIle-Identifier.
D.2.1.2 Parcmeters

file-name

file-identifier

0.2.13 Example

SELECT STOCK-FILE

Is any user-defined LIII COBOL word.

is any other user-defined LIII COBOL
word

ASSIGN TO STOCK-NAfVIE.

0.2.2 PROCEDl..RE OMSIa-.I
Before the fUe Is OPENed for use, the external LIsa fUe name of tne requIred
fIle (see Fixed FIle Ass1gnment abOve for format) 1s stored, as requ1red 1n the
fUe identifier location specIfIed aoove by the user program.

0-3

CCBCl. l/se['s Guide File Fonnats

Example:
MOVE "WAREHS.BUY" TO STOCK-NAfV1E.
OPEN II\IPUT STOCK-FILE.

CLOSE STOCK-FILE.

MOVE ··WAREHS.SEL·· TO STOCK-NAME.
OPEN INPUT STOCK-FILE.

CLOSE STOCK-FILE.
The Usa flle name can be entered via an ACCEPT statement, by an user, or
stored as any other variable data.
In this way, a different external fHe can be used as a common internal user
fHe during any run of a program, but care is required to ensure that the
correct fHe is allocated at any given time.
Note that once the OPEN statement has been executed, the fUe identifier
data area can be used for any purpose the user requests. In the above
example, between the two OPEN sentences, STOCK-NAME can be used for
storing any data string requIred.

0.3 LEVEL n ccea.. Disk File structures &.mer the Lisa
LEVEL II COBOL offers four types of fUe organization for use by the COBOL
user: sequential, line sequential, relative, and indexed sequential (ISAIVt). A
fHe is a set of records. A record is a set of contiguous data bytes which are
mapped into hardware sectors with which they need not coincide; that is, a
record can start anywhere within a sector and can span hardware sector
boundaries. The data are held as follows:

0.3.1 sequential
sequential flIes are read and written usIng fixed length recordS. The length
used Is that of the longest record defined in the COBOL program·s FO.
Normally the space occupIed per record is the same as the program record
length, and data of any type can be held on the file. However, this does not
apply If WRITE statements are speCified usIng BEFORE or AFTER
ADVANCING phrases. Then extra control characters are Inserted, and the
data can no longer be read back correctly.
No limits exist on fUe sIze beyond those Imposed by the Operating System
and/or hardware.

0-4

COBOL User's GlIide File Formats

03.1.1 5eQJentlal File Fo:rmat
A sequential flIe consIsts of fixed length records wIthout termInating
characters. The fUe therefore appears as a strIng of characters. If the last
record In the fHe contaIns trall1ng lAI-I characters, it mIght not be accessIble.

0.32 Line 5eQJentlal
Line sequential file format is intended for text (ASCII) files generated by
editors and other simUar utiUties, and is the only LEVEL II COBOL file
format that supports variable length records. The one-byte 00 carrtage
return is used as a record delimiter. On input, the 00 Is removed and the
record area filled with spaces as necessary. On output, any trailing spaces in
the program's record area are ignored. using ADV Af\ICING phrases other than
BEFORE 1 causes the output of additional deVice control characters; a file
created this way can be read by a program. If a record is too long; that is, it
exceeds the maximum length specified for the fUe, each access returns
'maximum-length' characters untll the end of the record. After an access, if
the next two Characters are 00, they are omitted -- in this case, a blank line
is not be returned on the next access.

0.3.3 Relative
Relative fUe organization provides a means of accessing data randomly by
specifying its posItion in the fUe. Records are of fixed length. The length
used is that of the longest record defined in the program's FO. To deSignate
whether or not a record logically exists, one byte Is added to the end of each
record: this byte is DO If the record logically exists on the f11e and 00 If it
does not. The total length of a fHe Is determined by the highest relative
record number used; LEVEL II COBOL imposes no effective limit on this
value. Data of any type can be held on the f11e.

0.3.3.1 Relative Flle Format
A relative file is organized similarly to a sequential f11e; it Is a string of
Characters in fixed length records. However, each record is followed by a
one-byte interrecord marker Which is:

carrIage return Hex 00

null Hex 00

1 f the precedIng record exists,
or

if the preCeding record doesn't
exist

If a record Is deleted from a relative f11e, the interrecord marker following
the record Is Changed to Hex 00 - the state Of the data Is undefined. If, for
security purposes, the user wishes to be certain the data are deleted, the
record shOUld be overwrItten by usIng a COBOL REWRITE statement before
deletion.

0-5

COBOL User's Guide File Fonnats

A relatIve flIe can De read In sequentIal moae, If the record lengUl Is set to
RelatIve-record-IengUl+ 1.

Note that the first record in a relative fUe is record one: no record zero
exists.

0.3.4 Indexed 5ecJJentlal
The Indexed sequential Access MethOd (ISAM) uses two types of fUes: Ule
data fUe and the key or index f11e. BoUl types of fUes are In relative fUe
format.
The name of the data fUe is supplied by the user. The name of the
associated key fUe Is prodUced by adding the extension .lOX to the root of
the data fUe name.
Example:

Data fUe
MYFILE
CLOCK.FLE

Key fUe
MYFILE.IOX
a...OCK.IOX

i'DlE

Two or more data fUes wiUl different extensIons, bUt the same root
name, cannot be dIstinguIShed by ISAI'1 as the key flIes all have the
same name. To avoId usIng the extensIon .IOX In oUler contexts Is
also advIsable.

The Index is bUllt up as an inverted tree structure Which grows In height as
records are added. The ntJrTt)er of key fUe accesses requIred to locate a
randomly selected record depends primarlly on the number of records on the
fUe and the ~eylengthS·. M approximate guide to the numtler of levels In
Ule tree, and hence the number of accesses required, Is

index levels 10Qk (number of records)
Where k 150

keylength + 2
bUt varies sl1ghuy on the order in whIch records are added and deleted.
Faster response times are obtainable When reading a fUe sequentially, bUt
only if other ISAI'1 operations dO not intervene.
The size, In bytes, of an lSAM fUe is approximately related to the maximum
number Of records It contains as follows:

data - (record length + 2) * max. no of records
Index -no of records * 256 Where k Is as defined abOVe

k - 1

0-6

COEJCK.. USer's Guide File Fonnats

The necessity Of taking regular backup copies of all types of flIes
cannot be emphaSized too strongly, and shOUld always be regarded as
the main safeguard. HoWever, situations exist with Indexed flIes; for
example, medIa corruption, that can lead to only one of the two flIes
beComIng unusable. If the Index flIe Is lost In this way, It Is normally
possible to recover data records from just the data flIe, althOUgh not In
key sequence, and cut down on the time lost dUe to a fallure. As an
aid to this, all lXlUSed data records are marked as deleted at the
relative flIe level by appending two bytes to each record that contains
LOW-VALUES. For undeleted records, these bytes contain the
Characters carriage return and Une feed. The recovery operation can
therefore be dOne with a simple COBOL program, by defining the data
flIe as ORGANIZATION SEQUENTIAL ACCESS SEQUENTIAL with
records defined as two bytes longer than In the ISAr'1 fUe description.
The records are then read sequentially, and the data MOVEd from the
sequential fUe record area Into the Indexed (ISAr'1) fUe record area and
written to a new version of the Indexed f11e; except for those records
with LOW-VALUES In the last two (extra) bytes, these records shOUld
be discarded. Note that these two bytes, containing carriage return
and Une feed characters In a required record, are not written to the
ISAr'1 flIe on recovery, beCaUSe of the record length discrepancy of two
bytes In the record definitions.

D-7

E.1 PERFORM Nestlng

Appendix E
Useful Facts and Figures

Due to the mechanIsm usea for controllIng the nest1ng Of PERFORM
statements .. LEVEL II COBOL allows a maximum of SS nestea PERFORMS.

The PERFORM stack is between 470 ana 480 bytes in size.

This aepth Of PERFORM nesting appUes to a wnole Cf\L.Lea suite Of
programs; any PERFORMs active at a CALL remain active.

E.2 USII'G Parcmeters
The maximum number of PROCEDURE DIVISION USING parameters is 12.

E.3 Level 01 EntIles
There can be up to 63 Level 01 entrIes in the Llf\KAGE SECTION. This Umit
cIoes not incllJOe reaefinitions.

E.4 Exponentiation
Fractional exponents are rounded down to the nearest positive integer before
evaluation. Negative exponents are correctly evaluated .. but not fractions.
Exponents can be up to four digits in length. If larger than 9999 .. the
overflow flag is set.

ES Size Of I'lITtlers
According to the ANSI standard:

NUmbers are limited to 18 significant decimal digits.
All significant digits are within 18 digits of the decimal point.

In LEVEL II COBOL the result of a multiplication or division that is greater
than 36 dIgits gives a SIZE ERROR .. as does the result of an addlt10n or
subtraction that is greater than 37 digits.

E.6 Open Files
The maximum number of files that a COBOL program can have open
simultaneously is 20 fUes. Exceeding this causes the RTS to signal Error 17
(see Appendix C~

E-l

Appendix F
COBOL Workshop Files

COBOL User's Guide COBOL WorkstJop Files

COBOL Workshop Files

This appendix llsts the flIes on the COBOL 1.0 diskettes.

File Ncne con. Notes Descriptim
Diskette

BVE.TEXT 1 WorkshOp installation exec file.
ByteDiff.obj 2 utility program.
Cistart.text 1 WorkShop installation exec file.
COBOL.ERR 2 WOrkshop program.
COBOL.ISl 2 WorkShOp program.
C08OL.IS2 2 WOrkShOp program.
COBOL.IS3 2 workShop program.
C08OL.IS6 2 WOrkshop program.
COBOL.IS9 2 Workshop program.
COBOL.INT 2 WorkShOp program.
COBOL.ISR 2 WOrkshOp program.
COBOL.OBJ 2 workshOp program.
Diff.obj 2 utility program.
DunpPatch.obj 2 utility program.
EDIT.MENUS.TEXT 2 Editor support file.
Editor.obj 2 Workshop program.
Filediv.obj 2 utility program.
Filejoin.obj 2 utility program.
find.obj 2 utility program.
FMDATA 1 1,,2 Data segment.
font.heur 1 1,2,3 Data needed to support SVS1Lib.
FONT.HEUR 2 Second copy of same file.
font. lib 1 1,,2,3 Data needed to support SVS1Lib.
GETPROFILELOC.TEXT 1 Workshop installation exec file.
GETVESNO.TEXT 1 Workshop installation exec file.
INSERTDISK.TEXT 1 WorkShOp installation exec file.
Intrinsic. lib 1 2,3 library directory.
IOSFplib.obj 2 Library unit w/interface.
IOSPaslib.obj 1 2,3 library unit w/interface.
IXSIO.INT 2 WorkshOp program.

Note 1: These fUes are laentical to Office System Release 1.0 flIes.
I'bte 2: These fUes are laentical to Office system Release 1.2 files. Office System

1.2 Is functionally identical to Office System 1.0" bUt is released to ensure
compatibility with Pascal 1.0, BASIC-Plus 1.0, and COBOL 1.0.

Note 3: These fUes are the minimum necessary to run a user program in the
WOrkshop env1ronment A user program may require other flIes as well.

F-l

ca9a.. User!r GuIde C09l:l. WorkShop Files

F1le ttIE aBl.. Notes Descrlptl00
DiSkette

LDSPREFERENCES.OBJ 2 workshOp program.
LOS RES PROCS. TEXT 2 WOrkshOp data.
OSERRs.ERR 1 3 Workshop data.
PAPER. TEXT 2 WOrkShop data.
PI. TEXT 2 COBOL demonstration program.
portconfig.Obj 2 Utility program.
resident Channel 1 1,2,3 System data.
Shell.WOrkShop 1 3 workshop main program.
STOCK1. TEXT 2 COBOL demonstration program.
STOCK2.TEXT 2 COBOL deIoonstration program.
SUlib.obj 1 3 Library unit w/interface.
5xref.Obj 2 Utility program.
SXREF.Ot1IT.TEXT 2 Data.
Sysllib.obj 1 1,2,3 Library units (no interface).
SYS2LIB.OBJ 2 1,2,3 Library units (no interface).
SYSTEI1.BT PROF 1 1,2,3 System support.
SYSTEI1.BT-TWIG 1 1,2,3 System support.
SYSTEI1.IuOIRECTORY 1 1,2,3 System data.
SYSTEI1.LLD 1 1,2,3 System program.
SYSTEI1. LOG 1 1,2,3 System data.
SYSTEI1.0S 1 2,3 System program.
System.Shell 1 1,2,3 System program.
SYSTEI1.STACKl 1 1,2,3 System data.
SYSTEI1.STACK2 1 1,2,3 System data.
SYSTEI1.STACK3 1 1,2,3 System data.
SYSTEI1. STACK4 1 1,2,3 System data.
SYSTEI1. SYSLOC1 1 1,2,3 System data.
SYSTEI1.SYSLOC2 1 1,2,3 System data.
SYSTEI1. SYSLOC3 1 1,2,3 System data.
SYSTEI1.SYSLOC4 1 1,2,3 System data.
SYSTEI1.TIHER PIPE 1 1,2,3 System data.
SYSTEI1.UNPACK 1 1,2,3 System data.
term.menus.text 2 Data for transfer program.
transfer.Obj 2 WOrkShOp program.
lIHDATA 1 1,2 Data segnent.
{Tll}BUTTONS 2 2 Data.
{Tll}t1ENUS.TEXT 2 2 Data.

I'bte 1: These flIes are identical to Office System Release 1.0 flIes.

I'bte 2: These files are identical to Office System Release 1.2 files. Office System
1.2 is flllCtionally identical to Office System 1.0, but Is released to ensure
compatibility with Pascal 1.0, B~IC-Plus 1.0, and COBOL 1.0.

I'bte 3: These files are the minimum necessary to run a user program in the
WOrkshOp environment. A user program may require other files as well.

f-2

Index

Index

Please note that the topIc references In the Index are by secUm 17t.I1Der.

----------A----------
accept data

elementary item 4.4.1
group item 4.4.2

ACCEPT MY DATA statement 4.4.1
ACCEPT statement 3.1.1.3, 4.2, 4.4, 4.5
ADD statement 5.2.4
AL TER directive 2.2
ampersand 2.1, 2.4
Al'JSI COBOL Switch parameter

3.1.1.2, A.2
argument 2.1
ASSIGN statement 0.1.1, 0.2.1
AT position 4.4.2

----------8----------
BRIEF dIrective 2.2

----------C----------
CALL,

see Interprogram communication
CALL statement 5.2.2, 5.2.3
CANCEL statement 5.2.2, 5.2.3
clause

CURSOR IS 4.5
ON SIZE ERROR 5.2.4

clear screen 4.3.1
command

Compile 1.2.6.3 .. 2.1
Run 1.2.6.4, 3.1.1
Set switches 3.1.1.1, A.2

command line
compUe 1.2.5, 2.1
run-time 3.1.1

COMP directive 2.2
COMP code 5.2.4
COmpUe command 1.2.6.3 .. 2.1

compHer 1.2.2 .. 2
directive 2.1, A
message 2.4

compile-time error B
CONSOLE IS CRT statement 4.2
COPYLIST directive 2.2
CRT screen handUng

clear screen 4.3.1
display data 4.3
display complex items 4.3.3
display sIngle item 4.3.2

CRTWIOTH directive 2.2
cursor control 4.2.1
CURSOR IS clause 4.5
cursor positioning 4.5

----------0----------
DATE directive 2.2
demonstration programs

1.2.4, 1.2.6.3, 1.2.6.4
device 0.1.1.2
device management 1.2.6.2
directive, Compiler 2.1

AL TER 2.2, A
BRIEF 2.2, A
COMP 2.2, A
COPYLIST 2.2, A
CRTWIDTH 2.2, A
DATE 2.2, A
ECHO 2.2, A
ERRLIST 2.2, A
FLAG 2.2, A
FORM 2.2, A

Index-1

INT 2.2, A
LIST 2.2, A
PRINT 2.2, A
QUAL 2.2, A

COBOL User's GIl/de

REF 2.2, A
RESEQ 2.2, A
exclUded combination 2.2.1

directive, run-time 3.1, A
display data 4.3
DISPLAY SPACE statement 4.3.1
DISPLAY statement

4.2, 4.3.2, 4.3.3
DIVIDE statement 5.2.4

----------E----------
ECHO directive 2.2
ERRLIST dIrective 2.2
error format 1.2.6.3
error handllng routine C.3
error message

compUe-time B
run-time C.2.1, C.2.2

exponentiation E.4
extension 0.1.1.2

.TEXT 1.2.6.3

.lOX 1.2.6.4

.INT 1.2.6.3, 1.2.6.4

.IT 1.2.6.4

.LST 1.2.6.3
external-file-name-literal 0.1.1.2

----------F----------
fatal error., run-time C.1.2
file format 0
fUe-identIfier 0.2, 0.2.1.2
file-name 0.2.1.2
filename 0.1.1.2
fUe organization

indexed sequential 0.4
I ine sequential 0.3.2
relative 0.3.3
sequential 0.3.1

FLAG directive 2.2
flaggIng line format 2.5
FORM directive 2.2

----------H----------
HOME posItion 4.4.1

----------1----------
Indexed sequential file organization

0.3.4
Initialize 1.2.6.1
Issue disk 1.2.1, F
INT directive 2.2
Interprogram communication 5.2.2
ISAM,

see Indexed sequential fUe
organIzation

----------K----------
keylengths 0.3.4
keyword 2.1

----------L----------
level 01 entry E.3
LEVEL 11 COBOL, description 1.1
llmlts

exponentiation E.4
level 01 entries E.3
number size E.5
open flIes E.6
PERFORM nesting E.l
USING parameters E.2

Index

line sequential fUe organization 0.3.2
LIST directive 2.2
listing format 2.5

----------~---------
MOVE statement 5.2.4
MUL TIPL Y statement 5.2.4

----------N----------
number size limit E.5

----------0----------
QI\I SIZE ERROR clause 5.2.4
open fUe limit E.6
overlaying, See segmentation

----------P----------
PERFORM nesting E.l
PRINT directive 2.2

Index-2

COBOL User's Guide

program
design considerations 1.3.2
development cycle 1.3
parameter 3.1.1.3
preparation considerations 1.3.1

----------Q----------
QUAL directive 2.2

----------R----------
RE.AD statement 3.1.1.3
recoverable error, run-time C.1.1
REF directive 2.2
relative fUe organization 0.3.3
RESEQ dIrective 2.2
Run command 1.2.6.4, 3.1.1
run-time

command line 3.1.1
directive 3.1, A
error message C.2.1, C.2.2
Switch parameter 3.1.1.1. A2
system 1.2.3

----------s----------
screen handling..

see CRT screen handl1ng
segmentation 5.2.1
SELECT statement 0.1.1,0.2.1
sequential fHe organization 0.3.1
set switches command 3.1.1.1, A2
statement

ACCEPT 3.1.1.3, 4.2, 4.4, 4.5
ACCEPT MyoATA 4.4.1
,ADO 5.2.4
ASSIGN 0.1.1 .. 0.2.1
CALL 5.2.2, 5.2.3
CANCEL 5.2.2, 5.2.3
CONSOLE IS CRT 4.2
DISPLAY 4.2, 4.3.2, 4.3.3
DISPLAY SPACE 4.3.1
DIVIDE 5.2.4
MOVE 5.2.4
MUL TIPL Y 5.2.4
READ 3.1.1.3
SELECT 0.1.1, 0.2.1
SUBTRACT 5.2.4

SUBTRACT statement 5.2.4

SWitch parameter
Af\JSI COBOL Debug 3.1.1.2, A2
run-time 3.1.1.1, A.2

syntax error format 2.5

----------U----------
unprotected area 1.2.6.4
USING parameter E.2

Index-3

Index

Tms MANUAL was produced using
LisaWrite, LisaDra-w, and

LisaList.

ALL PRINTING was done with an
Apple Dot Matrix Printer.

the LisalM

... we use it ourselves.

CCJEJC¥.. useE's Guide I'1a.IJ-B8ck Fo.rm

029-0314-A

Apple publications would like to learn about readers and what you think about
this manual in order to make better manuals in the future. Please fill out
this form, or write all over It, and send It to us. We promise to read It.

How are you USing this manual?
[] learning to use the product [] reference [] both reference and learning
[] other _______________________ _

Is it quick and easy to find the information you need in this manual?
[] always [] often [] sometimes [] seldom [] never
Crnnmen~ __ ___

What makes this manual easy to use? _____________________ _

What makes this manual hard to use? _________________________ _

What do you liKe most about the manual? _______________________ _

What do you like least about the manual? ___________________ _

Please comment on, for example, accuracy, level of detaU, number and
usefulness of examples, length or brevity of explanation, style, use of
graphiCS, usefulness of the index, organization, suitability to your particular
needs, readabllity.

What languages do you use on your Lisa? (Check each)
[] Pascal [] BASIC [] COBOL [] other __________ _

How long have you been programming?

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
What Is your job tltle? ________________________________ _

Have you completed:

[] high school [] some college [] BAIBS [J MAIMS [J more
What magazines do you read? _____________________________ _

Other commen~ (please attach more Shee~ if necessary) ______ _

.. FllD·· .. .

.. Fao····· .. · ·········· ···· .. ··········· .. · .. ···· .. ······

t
.~pplC! computczr

POS Publications Department

20525 Mariani Avenue

Cupertino" CalIfornIa 95014

TAPE (R STAPLE

PLACE
STlfff'
HERE

COBOL for the Lisa
Release 1.0 Notes

wnat1s In tne COBa... Release I\k)tes?

These notes describe situations that were broUght to our attention after it
was too late to document tt'lem In me COBOL manuals.
Insert these notes In the back of their respective manuals" so that you can
refer to them as necessary.
If you nave a questlon or a problem that you can't flnd the ans\\ler to, eIther
1n tne manuals or 1n these notes, you should call the Usa Telephone Support
Une, (800) 553-4000.

029-0454-A November 1983

McnJal
O1apter Release Note

WOrkShop The installation instructions state that you must install the Lisa
Chapter 1 Office System before InstalI1ng any optional language prodUcts.

However, these Instructions apply to only the 1nstallation order.
You dO not need to install the Office system If you intend to dO
Only language development.

WOrkShop After you press the on-off button (at the start of installation),
Chapter 1 walt for a QuICK tone before selecting the disk drive.

WorkShOp Although the Installation Instructions state that the installation
Cnapter 1 procedure should be aborted if any error messages are returned,

you might normally encounter error 950 or 948 when you try
to install SYSTEM. TIMER PIPE and RESIDENT CHANNEL. You
mIght also encounter error 1176 for these pipes if you use the
Equal command after installation.

WorkshOP Correctly installing COBOL 1.0 on top of your Office system
Chapter 1 Release 1.0 pulls the OffIce System up to level 1.2. All

subsequent installations of system software are then order
dependent, requIrIng installation from the WOrkshOp to follow
that of the Office System. Do not reinstall the Office I and
Office II diskettes without immediately reinstalling the language
products(S~ However, if your Office System is already at level
1.2, the installation is order independent.

WOrkShOP After succeSSfUlly adding COBOL to a ProFlle contaInIng the
Chapter 1 OffIce System, If the system Is merely allowed to reboot, the

default of the EnvIronments wIndow wIll cause the OffIce
System to restart. To cause the inlt1al1zatlon to pause at the
EnvIronments windOW In order to examIne or Change the cJefaul t,
press the space bar after the machine self test, \+/hUe the
hourglass icon Is ShowIng.

WOrkShOP If you have just printed anythIng on a daisy Wheel printer from
Chapter 1 the Office System, and you return to the WOrkshOp using the

Environments windOW, prInting to logical device "-prInter" will
be garbled until the printer is swItched off and then on again.

November 1983

Marual
Olapter Release Note

WOrkShOp The prInt commands of the EdItor always use the logical device
Chapter 1 "-prInter" set In the system Manager. ChOosIng "DaIsy Wheel

PrInter" or IlDot MatrIx Printer" from the PrInt menu does not
Change the system's configuration .. but only adjusts the EdItor to
the Intended devIce.

WOrkshOp Any program intended to run as a baCkground process
Chapter 1 (MakeBackgroundProcess) must InclUde frequent ancl judIcIous

calls to the operating System procedure YIeld_CPU. Hence ..
system utl1It1es should never be run In the baCkground. Also, a
baCKground process should not have any interaction with the
console .. and It camot pull events from the hardware event
queue.

Workshop Designating user files to begin with the pathname "SHELL."
Chapter 2 makes them appear In the Environments window as an

alternative shell.

Workshop You cannot directly rename a file to a name that differs from
Chapter 2 the orIginal only In the case of the characters .. because the

internal representation of the names is the same. Instead,
rename the file to a temporary name, and then change that
to the name you want.

Workshop If you unmount the prefIx volume by ejecting the diskette,
Chapter 2 Scavenging the volume, or using the Unmount command, the boot

volume automatically becomes the prefIx volume.

Workshop The Output Redirect function of the System Manager does not
Chapter 3 correctly handle screen output that uses GOTOXY .. for example,

screen output done by the File Manager when listing wildcard
matches. This results In red1rected output to the printer being
overwritten on one l1ne.

WOrkshop The Editm changes the creation date of a text file to the
Chapter 4. current date each time the file is modIfied.

November 1983

McnJa1
Olapter Release Note

WOrkShOp If tne InltialIzaUon of tne Editor fails due to 1001< of disk space
Chapter 4- (error 309)., ana space on the d1sk Is then made free .. the next

attempt to start me Ed1tor wIll alSO fail (error 304). You must
enter me Process Manager of me System Manager .. KIll ttle
EdItor process, and then retry.

WOrksnop The language processors, Editor .. and many other utilIties of the
Chapter 4- WOrkShOp expect as Input a standard . TEXT f11e. The internal

structure Of a text fUe in a block-structured devIce Is
described In me Usa COBOL Reference Manual:

WorkShOp
Chapter 4

Workshop
Chapters 4-

and 10

Workshop
Chapters 4

and 10

Workshop
Chapter 7

• Each page (two 512-byte blOCKS) contaIns some nurroer of
complete Unes of text and Is padded wI th null characters
(ASClI 0) after the last Une as necessary to complete the
page.

• Two 512-byte header blocks are also present at the
beginning of the file. These mayor may not contain
information.

• A sequence of spaces (ASCII 32 decimal, $20 hexadecimal)
can be compressed into a 2-byte code namely .. a OLE
character (ASCII 16 deCimal, $10 hexadecimal), followed by a
byte containing the value 32 decimal plus the number of
spaces represented.

The file name "P '£\pER. TEXr' is reserved for the default
stationery template of the Editor and should not be used for
other purposes.

Cursor residue might be left on the screen in the Editor and the
Transfer program, especially after an error message has
appeared.

The names of files created by the Editor and Transfer will be
Changed to be all upper case, regardless of how they are typed
in.

If multiple errors occur dUring a link, due an attempt to link
regular units with intrinsic units, the Linker will terminate after
reporting only the first error.

November 1983

McnJal
Olapter Release f\k)te

WOrkShOp For the oeougger., >PR 2 is print to SLOT2CHAl'J2, not
Chapter 8 SLOT2CHAN1. Upper and lower are reversea In the manual.

WOrkShOp Display of error message 647 whlle you are usIng the Transfer
Chapter 10 ut1I1ty might indicate only that after a timeout the program has

fallea to receive the approprIate hanashake from the hOSt

WOrkShop If you type any key aur1ng "PlaYback from What flIe II In the
Chapter 10 Transfer program, the playoack will abOrt.

WOrkShOp If you use the Transfer program to make contact wIth a hOSt
Chapter 10 computer, ana you exit the program wIthOut loggIng off

expIlcluy, the connection wlll not be automatically terminated.
ThIs Is uSUally a convenIence, OUt mIght not meet user
expectations.

Workshop When the WOrkShOP shell is initialized, all serial ports are
Chapter 10 configured by default as if they were printers (e.g., 9600 baUd,

OTR handshake, automatic linefeed insertion), whether or not
they are listed as such by Preferences. If you SUbsequently use
and then exit the Transfer program, the printer configuration is
restored automatically for ONLY those ports listed in
Preferences as printers; others will retain the properties set by
the Transfer program. The Editor will not reconfigure ports that
have been changed by PortConfig.

Workshop To terminate recording to a file opened by the Transfer program
Chapter 10 during "Record to", open the Control menu and again select

"Record to". This terminates recording and closes the file.
Note that, unliKe the Edltor, Transfer does not automatically
insert a carriage return at the end of the file. If you use this
recording to capture text such as a source program, and the
language processor (suCh as BASIC-Plus) expects to see a
carriage return at the end of the file, attempting to run the raw
recorded text might cause the system to hang.

Workshop The manual states that the default handshake in the Transfer
Chapter 10 program is XOn/XOff. The correct default Is None.

November 1983

McnJal
Olapter Release Note

WOrkshop ASCII characters in the range hex 20 through hex 7E are
Appendix B supported for screen display, for printing on a dot matrix

printer, and for printing on a daisy wheel printer with the
fOllowing print wheels:

• Gothic, 15 pitch.
• PrestIge EUte, 12 pitch.
• COUrier, 10 pitch.
• BoldfacelExecutive, PS.

Printlng ASCII characters to a daisy 'Wheel printer is not
supported for the three print wheels 'With Modern type styles.

The character set in the Appendix should sho'W the full
Lisa Character Set. All of the additional characters can be
displayed on the screen. Most additional characters can be
printed on a dot matrix printer, but none 'Will print on a daisy
wheel printer. A new page 8-1 is attached; take a moment now
to make the substitution.

November 1983

McnJal
Olapter Release f'.k)te

COBOL M easy way to adapt the Mouse Editor for COBOL programs Is
user"s Guide to use me Edit menu to set tabs every eight spaces, taO to the
Chapter 1 72nd space, and resIze the wIndow to show only 72 columns of

text.

COBOL To avoId destroylng a valld .INT fIle when recompIlIng source
Usets GuIde fUes wim me same name, you can use the compHer dIrective
Chapter 2 NO INT or INT "SOMETHING.INT",

COBOL M error dur1ng compllat1on sometImes results In a flIe endIng In
Usets GuIde ,DOO beIng left on the dIsk. Ignore or delete the .DOO f11e,
Chapter 2

COBOL User-defIned collating sequences produce unpredlctable results
Reference In some cases.
cnapter 8

November 1983

0

1

2

3

4

5

6

7

8

9

A

6

C

0

E

F

0 1 2

..... II..E SP

SOt DC1

STX DC2 II

me DC3 #

EO(DC4 $
E1IO .. %
a S1II &
BEL E18 •

IS CM (
NT HI)
LF .. *
VT ESC +

FF FS
I

CR C$ -
so RS

SI us /

Appendix B
Workshop Character Set

3 4 5 6 7 8 9 ABC 0 E F

0 @ p P
1 A Q a q A •• 0 e
2 B R b r
3 C S c S

4 D T d t

5 E U e u
6 F V f V

7 G W 9 w
8 H X h x
9 I Y i y a 6

.

J Z j Z a 0 1W f ~){))j)))j) jl)))l)lt) lj){)}
. K [k { I

< L \ 1 I
= M] m }

> N n
? 0 0 DEL

The first 32 characters and DEL are nonprtnUng control codes..

The shaded area is reserved for future use.

B-1

COBOL

Packing List

This package contains the following items:

1 1 620-6137 COBOL Reference Manual for the Lisa™
2 1 682-0015 COBOL 1, Diskette
3 1 682-0053 COBOL 2, Diskette
4 1 620-6148 Workshop User's Guide for the Lisa™
5 1 620-6155 COBOL User's Guide for the Lisa™
6 1 029-0183 Software Registration

In case of questions, contact the dealer from whom you purchased this product.

029-0162-A 41883

