Language
User’s Guide
Part10of 3

A6L0113

:
i

COBOL

COBOL User's Guide
for the Lisa™

029-0306-A

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to Incorporate Apple-developed libraries and object code flles
into thelr products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Marlani Avenue
Cupertino, California 95014
(408) 996-1010

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa
product or in the media on which a software product is distributed, Apple will
replace the documentation or media at no charge to you during the 90-day
period after you purchased the product.

Product Revisions

Unless you have purchased the product update service avallable through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returned
a registration card receilved with the product. ‘You should check periodically
with your authorized Lisa dealer.

Limitation on Warranties and Liability

All implied warranties conceming this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited
in duration to ninety (90) days from thc date of original retail purchase of
this product.

Even though Apple has tested the software described In this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality,
performance, merchantabllity, or fitness for any particular purpose. As a
result, this software and manual are sold “as is,” and you the purchaser are
assuming the entire risk as to thelr quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored In or used with Apple products, including the costs of recovering or
reproducing these programs or data.

The warranty and remedles set forth above are exclusive and in lleu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee Is authorized to make any modification, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

iii

License and Copyright

This manual and the software (computer programs) described in it are
copyrighted by Apple or by Apple‘s software suppliers, with all rights
reserved, and they are covered by the Lisa Software License Agreement
signed by each Lisa owner. Under the copyright laws and the License
Agreement, this manual or the programs may not be copied, in whole or in
part, without the written consent of Apple, except in the normal use of the
software or to make a backup copy. This exception does not allow copies to
be made for others, whether or not sold, but all of the material purchased
(with all backup coplies) may be sold, given, or loaned to other persons if they
agree to be bound by the provisions of the License Agreement. Copying
includes translating into another language or format.

You may use the software on any computer owned by you, but extra coples
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, Including a shared-disk system. (Contact your
authorized L.Isa dealer for more information on multiuse licenses.)

® 1983 by Apple Computer, Inc.
20525 Marlani Avenue

Cupertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.
Reorder Apple Product # AeD0104 (Complete COBOL package)

A6L0113 (Manuals only)

iv

COBOL is an Industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in
connection herewith,

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for
the Univac(R) I and 11, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DS127A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material, in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

©® 1983 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, CA 95014

© 1982 by Micro Focus, Ltd.
58, Acacia Road
St. Johns wood
London NW8 6AG

Contents

Chapter 1
Introduction
1.1 General DesCIPLION ... oot caetencrrenen s enaancertennnessasasnasesennsacenne 1-1
1.2 Getting Started with LEVEL II COBOLcccevinimmmirresimnitiunasseesssnesenens 1-1
1.3 Program Development CYCIEc..ciiiuiiiiiiciiininnceastatetrcnseaeenccansesens 1-4
Chapter 2
Compiler Controls
2.1 Command LINe SYNLAX.....cciciieeiciiienrecrenaaiimenereccnsserenescseseeonaseessnsssannans 2-1
2.2 Compiler DIFeCHIVEScicei i ccrrcrcrernceeeernestanereensttstsassensrrnssosssrone 2-2
23 Reference Table of DIreCtiVeS ...ttt ce e eeane 2-6
2.4 Summary Information oN CRT .cuciiirrciiiincimieniiisiininaiiinennessssssesssesssaes 2-7
25 LISHING FOIMNALS ..ot cieiai e secere et see s e eeaee s ae e et saanananesssnssrane 2-8
Chapter 3
Run-Time System Controls
3.1 RUN-TIME DIrBCHIVES ..ottt et cete e e e ee s e e saeaaee 3-1
Chapter &
CRT Screen Handling
B1 INLYOAUCTION. oo e cc e ccreeereecenoaeeaaeanrecesseanssanssssesensssessarmenoansmnns a4-1
4.2 Using the Extended Accept and Display Statementsccoeveeeceiieniiennnnnns 4-1
4.3 Displaying Data on the SCIEEN......ccceeeiieerenrireeerearannrearreaeeaseeaeansssaeeeane 4-3
4.4 Accepting Data Entered at @ CRTcevvveiiiiririiieniieieneeeeiress s sessesnns 4-5
45 Explicit Cursor PosTtioNINgGcccooermoircieiiacrcciiri et e eeae 4-8
Chapter 5
LEVEL 11 COBOL Application Design Considerations
5.1 INEIOOUCHION ... e reur e reersracnceree s oreeerecnee s essesasaeacesesareesaneas 5-1
5.2 LEVEL II COBOL Application Design FaCiHtesccecceeeeeserecneecerrennenne 5-1
Appendixes
A Summary of Compiler and Run-Time Directives.....cccccooieiiieinianencccennenes A-1
B Complle—TIME EITOIS vicirerimueiiiisirimsseseiiinsessssesaeiessnisranesssssesmesessesssssesees B-1
C RUNTIME EXTOTS i ioecericeeremeammeeeeseneemaceeees et aranesnssssasasssesassnssssssesnnee c-1
D Flle FOIMALS cccuiiiieiiiiiiiiiritieeisiiene sttt s r e seea s s ss s s s s e ns s s msasssanas D-1
E Useful FActs and FIQUIScciciiememcceeraemeacneeenecacennnsneseessssaecmmasessassessas E-1
F COBOL WOIKSNOP FIIES cucvcieireenciiiienciitinccieneniinreniieremeesssstenecesssenssensnens F-1
Index

vii
029-0307-A

Tables

2-1 Excluded Combinations Of DIFECLIVES ..eueeiirerncieienieernreeiressceneennsncecsssnnns 2-1

2-2 Reference Table Of DIYECHVEScceremeireecrieiiieiceseerreerenesteecsenseesesanaesnees 2-1

4-1 CRT CUrsor CONIOL KKBYScvcesieueisecraimnssssrosssassecssercsssosssssasssrossssssssnnns 4-2
Figures

1-1 Program DevelopmeENnt CYCIB......cccicccceecreeerenenseresecamaresssesssnnnrassssssessnannses 1-5

5-1 Sample CALL Tree StIUCIUIE.....ccciriemrmenrevactaneimsocenessensssnnsssonssrenscssnsennes 5-2

viii

Preface

The COBOL User's Gulde for the LIsa describes operating procedures for the
Lisa resident releases of the LEVEL II COBOL compiler and run-time
libraries. The compiler converts LEVEL Il COBOL source code into
intermediate code, which is interpreted at run time. The steps needed to
complle and execute a program are described, including all necessary linkage,
relocation, and run-time requirements.

Note that within this manual the product name LEVEL II COBOL Version 2 is
occasionally abbreviated to L/11 COBOL, and that COBOL as defined in the
ANSI standard X3.23 1974 is referred to as ANSI COBOL.

Audience

This manual is intended for personnel aiready familiar with COBOL.

Manual Organization

029-0308-A

Chapters 1 through S of this manual describe compiler features and general
procedures for loading and executing programs.

The appendixes provide summarized information for reference purposes.
This manual contains the following chapters and appendixes:

Chapter 1. Introduction, gives a general description of the LEVEL 11 COBOL
system, its input and output files, and the run-time libraries provided with the
compller, plus the step-by-step outline of compllation and execution of
sample interactive programs.

Chapter 2. Compiler Controls, describes compiler commands, directives, and
listing formats.

Chapter 3. Run-Time System Controls, gives general instructions for running
programs, operating the console, and CRT screen handling.

Chapter 4. CRT Screen Handling, describes in detail the extended ACCEPT
and DISPLAY facilities provided in LEVEL 11 COBOL for easy manipulation of
data with the CRT.

Chapter 5. Program Design Considerations, describes the facilities available
to overlay programs and invoke other COBOL programs,

Appendix A. Surmmary of Compiler and Run-Time Directives, summarizes the
comptler directives available in the LEVEL 1l COBOL compiler.

ix

Appendix B. Compile-Time Errors, lists all errors that can be signaled durlng
program compilation,

Appendix C. Run-Time Errors, lists all errors that can be signaled during
program execution.

Appendix D. File Formats, describes device and file naming conventions and
formats used by LEVEL II COBOL.

Appendix E. Useful Facts and Figures, briefly lists data that might be useful
in designing or debugging a LEVEL II COBOL program.

Appendix F. COBOL workshop Files, lists the names of the files contalned on
the COBOL language disks.

Related Publications

For details of the LEVEL II COBOL Language, refer to the COBOL Reference
Maral for the Lisa.

For details of the Lisa Operating System, Messages, and File Structures refer
to the Workshgo Users Guioe for the Lisa.

Notation in this Manual

Throughout this manual the following notation is used to describe the format
of data input or output

1. All words printed in lowercase letters are generic terms representing
names devised by the programmer.

2. when material is enclosed in square brackets [] it is an indication that
the material is an option which can be included or omitted as required.

3. The symbol << after a CRT entry or command format in this manual
indicates that the [RETURN] key must be pressed to enter the command.

4. All numbers are in decimal unless otherwise stated.

5. In the sample screen “conversations™ using the CRT shown in this manual,
displays are shown as they occur with the user response underlined.
Because underlining is a convention used to differentiate user response
from system response, the user does not include it as part of the response.

Headings are presented in the following order of importance:
Chapter Title

n.n Order One Heading

nnn Order Two Heading
nnnn Order Three Heading Text beneath
Order Four Heading

Chapter 1
Introduction

11 General Description 1-1
12 Getting Started with LEVEL 11 COBOL 1-1

121
1.2.2
123
1.24
125
1.26

ISSUB DISK ..ccvviermierereiiietientetatetcntesinsiississsssssssssssssssnssnsnnnssssnsrsssssnnas
The COMPLIEY ...t irrreren et ten et e cnn e sereasasesseasassessnsesnansssen
The RUN-TIME SYSTEM ..c.ciiiiiaiiiiiiiirristisnesesssessss s snsssssanasasesessarasase
The Demonstration Programs
L1 61 1 £

1.26.1 Inttlalizationcooceeveiininiiieneniinnneeenns

1.26.2 Device Management
1263 COmMPUALION ccocoiiiriimieieeiaeimneeeereenerstesssssnteree e sesanaessasssnanns
1.26.4 Running the Demonstration PYOQIamS....cccccccrvensssenseressenseesnss 1-3

1.3 Program Development Cycle 1-4

131
1.3.2

029-0048-A

Program Preparation Considerationsccccveereisieisseinisssssncsniessnsenneeenas 1-6
Program Design Consiaerationscceeeeiiviiiiiiinincisnnniscanneeescinnneenceenes 1-6

Introduction

11 General Description
COBOL (Common Business Oriented Language) is the most widely and
extensively used language for the programming of commercial and
aoministrative data processing.

LEVEL 11 COBOL is a compact, interactive, and standard COBOL language
system designed for use on microprocessor-based computers and intelligent
terminals under control of the Lisa Operating System.

The LEVEL Il COBOL compilation system converts LEVEL Il COBOL source
code into an intermediate code, which is then interpreted by a Run-Time
System (RTS).

LEVEL 11 COBOL programs can be created using a standard Lisa text editor
to create the LEVEL II COBOL source files, from which the compiler compiles
the source programs. A listing of the LEVEL II COBOL program and any
error messages is provided by the compiler during compilation.

The user should be familiar with the Lisa Operating System (see workstiop
User’s Guide for the Lisa) prior to beginning this manual.

1.2 Getting Started with LEVEL 11 COBOL
1.2.1 Issue Disk
The issue disk provides each user with the software that makes up the
COBOL development system described above. The contents of this software
package are listed in Appendix F.

122 The Compiler
The LEVEL Il COBOL compiler contains several overlays and loads each
overlay file from the diskette. The root segment is contained in COBOL.INT,
and the overlays are contained in the other COBOL files.

123 The Run-Time
The Run-Time System (RTS) executes the intermediate code generated by the
compiler. In addition to standard ANSI COBOL statements, LEVEL 11 COBOL
contains many extensions for use with interactive programs on the Lisa.

124 The Demonstration
PLTEXT, STOCKLTEXT, and STOCK2.TEXT are simple demonstration
programs, supplied in source form, which show many of the facilities present
in LEVEL II COBOL, and which can be used to become familiar with the
system.

1-1

COBOL. User’s Guloe Introouction

125 The COBOL Command Line
The COBOL command line appears on the top line of the system starting
screen and provides a choice of actions. Select one by entering a single
letter command; for example, C for Compile, R for Run, S for Set Switches.

126 First Steps
1261 Initialization
To obtain a working LEVEL 1I COBOL system, follow the installation
instructions provided in Chapter 1 of the workshgp User's Guide for the Lisa

1262 Device Management
For compilation, the compiler.INT files must reside on the boot volume. By
default the intermediate code is output to the disk containing the source at
compilation. The RTS (COBOL.OBJ) can reside on any of the default working
directories the user chooses. The most efficient disk allocation for this
systemn is the user's responsibility.

1263 Compilation
Compile all the demonstration programs, which are the source files with the
extension .TEXT. If the user knows that a source file to be compiled ends in
.TEXT, this extension can be omitted when entering the source file name.

Example:
LEVEL Il COBOL: Compile, Run, Set Switches, Printer, Quit : C
COBOL Source file [.TEXT] - STOCK1 << -
Cornpller directive - <<
* EVEL 11 COBOL Wv.r (C) 1982 Micro Focus, Ltd 1983 Apple Computer,inc.
*Compiling STOCKIL.TEXT
*ERRORS=00000 DATA=nnnn CODE=nnnnn DICT=nnnnn:nnnnn/nmnnnGSAFL AGS=0FF

LEVEL II COBOL: Compile, Run, Set Switches, Printer, Quit :

After compllation, a directory listing of the disk shows that two new
files exist: STOCKI1.LST.TEXT, which is the list file, and STOCK1.INT,
which Is the file containing the Intermediate code. Follow the same
procedure to compile STOCKZ2 and Pl

Note that STOCK2 has an error in it which Is present to show error
formats. This error is for demonstration purposes only, and does not
affect the running of the program.

The message produced by the error is:
nhnnnn MOVE GET-INPUT TO TF-DATE.

3] [35050 5263656 2H0ESEIE2E 0 30 54 550 23 22 224 *

#» Wrong data type or data name not declared. Ll

1-2

COBAL Users Guloe Introcetion

1264 Running the Demonstration Programs
By compiling and running the demonstration programs, the user has checked
the disk and mastered the fundamentals of LEVEL 1l COBOL facilities. If the
user knows that a program to be run ends in .INT, this extension can be
omitted when entering the COBOL program name.

Calculation of PI:

LEVEL Il COBOL: Compile, Run, Set Switches, Printer, Quit : R
Run what COBOL program? - [INT] Pl <<
Run time directive : <<

The screen clears, followed Dy:
CALCULATION OF PI
NEXT TERM IS 0.000000000000
Pl IS 3.141592653589
LEVEL 11 COBOL: Compile, Run, Set Switches, Printer, Quit:

During the execution of Pl the next term changes as the iteration
progresses.

Stock Control Program One (Cursor Control):

LEVEL 11 COBOL: Compile, Run, Set Switches, Printer, Quit : R
Run what COBOL program? - [INT] STOCK1 <«
Run time directive : <<

The screen clears, followed by:

STOCK CODE < >
DESCRIPTION < >
UNIT SIZE < D

STOCK1 is a skeleton stock data entry program in which stock records
are created on a stock flle in stock code order. This program provides an
opportunity to use the cursor control functions. The user has the ability
to:

* tab the cursor forwards and backwards from one data input field to
the next.

¢ move the cursor backwards and forwards nondestructively one
character position at a time in data input fields.

* place the cursor HOME to the first character position in the first
data input fleld.

In addition, numeric validation, which permits only nureric characters to
be entered on numeric fields, is avallable. Left zero fill on numeric
fields is automatic. See Cursor Control Facilities in Section 4.2.1 for
cursor control keys on the Lisa keyboard.

COBOY. User's Guide Introauction

Running STOCK1 also creates an indexed sequentlal file on disk called
STOCK.IT together with its index called STOCK.IDX.

To create a record, key data into the unprotected areas defined by < >.
when the record is complete, press the [RETURN] key and the record is
written to disk. If the record has been correctly entered, the
unprotected areas are space fllled, ready for the next record to be
entered. If the record remains displayed, the record was incorrectly
keyed and should be entered again.

To terminate the run, enter spaces into the STOCK CODE field and press
the [RETURN] key.

The result is:
END OF PROGRAM
Stock Control Program Two (Data Input) is run the same way.

After the user responds to the Run command, the screen clears,
followed by:

GOODS INWARD

STOCK CODE < >
ORDER NO <
DELIVERY DATE MM/DD/Y Y
NO OF UNITS < D

STOCK? is a skeleton stock data input program by which the stock
records created by STOCKI can be accessed.

The cursor control features are the same as in STOCKLINT. Note,
however, that the DELIVERY DATE has a different method of prompting
than was previously used.

Stop the same way as for STOCK1.

13 Program Development Cycle
The cycle for developing and running LEVEL II COBOL application programs is
shown in Figure 1-1.

CoBOL. Ukser's Gulge Introguection

Preparation: The source programs are created
on diskette with the user’s own existing editor

program.
Compllation: The following procedure ...
Compile, Run, Set Switches, Printer, Quit: C

COBOL Source file [-TEXT] - MYPROG <<
Compller directive - «

Source
Program

<>
List
File
... loads the single pass complier to convert a
source program (MYPROG.TEXT in this
example) into an object form known as
Intermediate Code (MYPROGINT). The user G ont
can specify the file on which the listing is to
appear. If this is a disk flie, it can be edited
to correct errors and used as input for the next
run of the compiler.

Printer

Running: The following procedure ...

Compile, Run, Set Switches, Printer, Quit: R i
Run what COBOL program? - LINT] - MYPROG «
Run time directive - << <IT33,

... loads the Intermediate Code, which is then
un.

-

Run Time System|

Figure 1.1
Program Development Cycle

COBOL. User's Guide Iptrocuction

131 Program Preparation Considerations
The LEVEL II COBOL complier accepts source Input from a standard source
flle, specified on the compller command line, as produced by any standard
Lisa editor or compatible proprietary editor software.

The LEVEL 11 COBOL program format Is the same as standard COBOL and is
detailed in the CQBOL Reference Maal for the Lisa.

NOTE

1. Each line of source code, Including the last line, must be
terminated by pressing the [RETURN] key.

2. The compiler rejects most nonalphanumeric characters within the
input file; for example, the [TAB] character, unless embedded in
literal strings.

13.2 Program Design Considerations
LEVEL I COBOL provides the full COBOL facilities for overlaying in memory
and for dynamically invoking programs or subroutines, whether written In
COBOL or assembly languages, as specified in the COBOL Segmentation and
Interprogram Communication modules. Chapter 5 contains more information
on the use of these features.

21

23

25

029-0309-A

Chapter 2
Compiler Controls

Command Line Syntax

Comptler Directives

2.2.1 Excluded Combinations Of DIFECHIVES ...eereveeercrerirmirreieeieiieereeenessessenns

Reference Table of Directives
Summary Information on CRT
Listing Formats

2-1

2-5
2-6
2-7
2-8

Compiler Controls

21 Command Line Syntax
The COBOL command line is where the user

1. invokes the COBOL compiler,
2. specifies the name of the source file to be compiled, and

3. enters the directives that modify the way in which the compiler processes
the source file.

The command line can be continued by using the ampersand (&) character.
The format of the command line Is:

LEVEL 11 COBOL: Compile, Run, Set Switches, Printer, Quit : C
COBOL Source file LTEXT] - filename <<
Compiler directive - directive <<

Compilef diref:uve - K
where:

filename is the name of the program that contains the LEVEL II
COBOL source statements to be compiled. The default
extension is .TEXT.

directives is a sequence of LEVEL Il COBOL directive statements.
Directives are supplied one at a time by the user until a
blank line is supplied by pressing the [RETURN] key.

The general form of directives is:
[NO]J keyword [argument]

NO Most directives can be "switched off" by use of
the word NO before the keyword. NO can adjoin
the keyword or be separated from it by one or
more spaces. NO is permitted where specified in
the list of directives below.

keyword One of the directives listed below.

COBOL Users Guide

Compller Controls

argument Where applicable, argument is a qualifier to the
keyword. The argument must appear in one of
two forms, and can adjoin the keyword or be
separated from it by one or more spaces.

"argument” where quotes are used the
argument can contain spaces.

(argument) where parentheses are used no
spaces are permitted.

NOTE

The commands are processed in order of entry, and a directive or its
negative can appear more than once; the setting of the directive used
by the compiler is the setting encountered last. This rule does not
apply where a directive is used but is excluded by the use of another
directive. See Table 2-1.

22 Compller Directives

[NO] ALTER

[NO] BRIEF

[NO} comMpP

[NO) COPYLIST

NO ALTER prohibits the use of ALTER statements within
the program being compiled, allowing the compiler to operate
more efficiently.

The default is ALTER.

Error numbers only to be produced on the listing and console;
that Is, the text of error messages Is suppressed.

By default this directive is off, meaning that error messages
are printed, unless no error message file can be found.

Causes the compiler to generate much more compact and
efficient code for certain statements involving PIC %2)
COMP and PIC 9(4) COMP data itemns. See Chapter S for
full details. The reason for this directive is that the
efficient code leads to nonstandard behavior in cases of
numeric overflow; the compiler cannot allow this to happen
unless the user specifies this directive, meaning that either
the user knows the statements do not lead to numeric
overflow (in which case the semantics of the program rernain
strictly in accord with the ANSI standard while at the same
time glving the advantage of the extra efficiency), or
alternatively the user means to take advantage of the
defined but nonstandard behavior that occurs on overflow.

By default this directive is off.

Causes the contents of any files named in COPY statements
to be listed,

2-2

COBOL Users Guide

Compller Controls

By default this directive Is off.

whatever the state of this directive, the name of any copy
file open at the time a page heading is output is listed as
part of the heading.

COPYLIST causes COPYLIST to be set in the
IDENTIFICATION DIVISION and in Segment
53 but not otherwise.

NO COPYLIST causes COPYLIST to be set in Segment 53
only.

CRTWIDTH “integer”

DATE “string"

[NO] ECHO

[NO] ERRLIST

Specifies the width of the user screen in characters. This
directive is used in Format 1 (standard ANSI) DISPLAY
statements to enable the user to plan the separation points
in displaying data items too long to fit on one physical CRT
line. The "integer" must be between 40 and 255.

By default this directive is set to 128.

Causes the "string" to be used in place of the comment
entry in the DATE-COMPILED paragraph, if present.

If the directive is omitted the comment entry, if present, is
used.

Causes error lines and flags to be echoed to the console.
when an error occurs, the source line producing it, the error
number, and (unless BRIEF Is set) an explanatory message are
printed on the console.

By default this directive is on.

Causes the listing to be restricted to those COBOL lines
containing syntax errors or flags, together with associated
error messages.

By default this directive is off.

COBAY. User’s Guloe Compller Controls

[NO] FLAG “rLOW- “
L-1
H-1
HIGH
L/
1BM

Causes the output of GSA compiler certification flags during
compilation for all features higher than the specified level.

LOwW GSA Low-level

L-1 GSA Low-Intermediate-level

H-1 GSA High-Intermediate-level

HIGH GSA High-level

L/ LEVEL I COBOL. extensions to ANSI COBOL
standard X3.23 1974. See the COBOL Reference
Marnal for the Lisa.

iBM IBM-compatible nonstandard COBOL. See
A;/)pendix 3, COBOL Reference Manual for the
Lisa

By default this directive is off.
[NO] FORM “integer”
Specifies the number of lines per page of the listing. The
"integer” must be at least 3.
By default 60 lines per page are printed.

One formfeed character is always produced at the head of
the listing file. If NO FORM is used, no further formfeed
characters and no page headings are produced in the body of
the listing.

If the listing is directed to the console, by use of the LIST
directive, then the first formfeed character is replaced by a
blank line.

[NO] INT “filename”

Specifies the file to be used to hold the intermediate code
output by the compiler. If the file specified exists, it is
overwritten,

NO INT suppresses the production of an intermediate code
file; that is, the compiler is used for syntax checking oniy.

By default the compiler adds .INT to the source file name,
replacing any existing file name extension.

COBOL Users Guide

(NOJ) 3 LIST
PRINT

[NO] QUAL

[NO] REF

[NO] RESEQ

Complier Controls

“destination*

Specifies the destination of the listing file. If an existing
file is specified, it is overwritten. The destination can be a
printing device; for example, the printer or the console.

NO (LIST
3PRINT§ suppresses production of a listing.

If "destination" is “-console”, the listing is directed to the
console. If "destination” is "-printer”, the listing is directed
to the printer.

If no directive Is specified, the compller forms a file name
by adding .LST.TEXT to the source file name. If a directive
is specified, but no flle name glven, then the console Is used.

NO QUAL prohibits qualified data names or procedure names
from the program being compiled, allowing the compiler to
operate more effectively.

The default is QUAL.

Causes four-digit location addresses to be included on the
righthand side of the listing file. Note that a listing with
location addresses can be required in order to identify the
locations reported in RTS error messages.

By default this directive is off.

Causes the compller to generate COBOL line sequence
numbers in increments of 10, starting at 10.

By default this directive is off.

221 Excluded Combinations of Directives
Using certain directives implles that certain other directives are ignored, even
if specified. Table 2-1 shows the combinations that are not permitted.

2-5

cCaBalL. Lkers Guioe

Directive
ERRLIST

[NOJ LIST

Compller Contirols

Table 2-1
Excluded Combinations of Directives

Excluded Directives

COPYLIST
[NO] REF
RESEQ

COPYLIST
ERRLIST
[NO] FORM
LIST
PRINT
[NO] REF
RESEQ

2.3 Reference Table of Directives

Directive

[NO] ALTER
[NO] BRIEF
[NO] comp
[NO] COPYLIST

CRTWIDTH "n"
DATE “string"

[NO] ECHO

[NO] ERRLIST

[NO] FLAG “-LOwW. "
L-1
H-1
HIGH
L/
1BM

[NO] FORM "n"
[NO] INT "filename"”

Table 2-2
Reference Table of Directives

Use

Allow ALTER statements
Suppress error messages
Use computational subset
List COPY files

Set width of CRT to "n"

As DATE below but "string” set to spaces
Use "string” for comment entry in
DATE-COMPILED paragraph

Echo errors to console

List only errors and flags

Flag code higher than level indicated

Suppress headers and form-feeds
Set length of page = "n" lines
Specify intermediate code filename

2-6

Default

OFF
OFF
OFF

n=128

OFF
OFF

ON n=60

= source
filename

COBOL User's Guide Compiler Controls

Directive Use Default
If no

(NOJ 3LIST Specify listing requirements directive:

PRINT) “filename" ON; that is

filename
= source
filename.
If directive
but no
filename:
filename
= -console

[NO] QUAL Allow qualified data-names and

procedure-names ON
{NOJ REF Insert addresses on listing OFF
[NO] RESEQ Resequence source flle OFF

24 Summary Information on CRT
After the user completes the command ling, the compiler replies with:

*# EVEL 11 COBOL Vv.r (C) 1983 Apple Computer,Inc. 1982 Micro Focus, Ltd
where v Is the version number and r is the release number.

The compiler then acknowledges each directive on a separate line, and either
accepts or rejects it. If the command line is continued using the ampersand
(& character, each line of directives is processed before the compiler allows
the next line to be entered. After the compller acknowledges all the
directives, it opens its files and starts to compile. At this point it displays
the message:

* compiling filename.Text
If any file fails to open correctly, the compiler displays:
Open fail: filename.Text
Comptiation is terminated, and control returns to the Operating System.

2-7

COBQY. Lsers Quioe : Conmpller Conlirols

when the compilation is complete, the compiler displays the message:
#*ERRORS=nNNNNDAT A=nnnnnCODE =nnnnnDIC T=mmmmm:nnnnn/pppppGSAFLAGS=nnnnn

where:

ERRORS denotes the number of errors found.

DATA denotes the size of RAM required; that is, data area of the
generated program.

CODE denotes the size of ROM required; that is, code area of the
generated program.

DICT mmmmm denotes the number of bytes used in the data
dictionary.
nnnnn denotes the number of bytes remaining in the data
dictionary

ppppp denotes the total number of bytes In the data dictionary

GSA FLAGS denotes the number of compller validation flags encountered or
‘OFF" {f the directive NOFLAG was entered or assumed.
25 Listing Formats
The general format of the list flle is:

«_EVEL 11 COBOL Vw.r (C) 1983 Apple Computer, Inc. 1982 Micro Focus, Ltd
* Accepted

* Rejected - optional directive as entered in compile command line

* Compiling filename

* LEVEL 1 COBOL Vv.r filename Page: nnnn
statement 1 HHHH
statement n HHHH

» LEVEL Il COBOL W.r revision n URN AA/O0DD/AA

* Compiler (C) 1983 Apple Computer, Inc. 1982 Micro Focus, Ltd.
*

*ERRORS=nnnnn DATA=nnnnn CODE=nnNNNDIC T=mmmmm:nnnnn/pppppGSAFLAGS=0FF

The first two lines of title Information are repeated for each page. The
final line is the same as on the CRT display. The value denoted by HHHH
is a hexadecimal value denoting the address of each data name or
procedure statement, and is generated if the REF directive is specified in
the command line. Addresses of data names are relative to the start of
the data area, while addresses of procedure statements are relative to the
start of the code area. An overhead Is at the start of the data area, and
a few bytes of Initialization code are at the start of the procedure area
for each SELECT statement defined in the ENVIRONMENT DIVISION,

COBOL Uksers Guloe Compliler Controls

A syntax error is marked in the listing by an error line with the following

format:

nnnnnn illegal statement

* Nm W . .. e *0
where:

nnnnnn is the sequence number of the erroneous line.
nnn denotes the error number.

The asterisks following the error number indicate the character
position of the error in the preceding erroneous source line, while the
asterisks at the end of the line simply highlight the error line.

NOTE

The demonstration program STOCK2, compiled as described under
Compilation in Chapter 1, contains a sample error line.

A flag is marked in the listing by a flagging line with the following format:

nnnnnn flagged feature
= level -—- ceemm e

where:
nnnnnn is the sequence number of the flagged line.

‘level’ represents the level at which the feature is flagged using the
same acronyms as can be entered in the command line, when setting
the lowest required flagging level:

LOW Low level

L-1 Low-Intermediate level

H-1 High-Intermediate level
HIGH High level

L/ LEVEL 11 COBOL extensions
IBM IBM~-compatible extensions

The flagged feature is pinpointed at the end of the line of characters beneath
the flagged line. The dashes at the end of the line simply highlight the
flagging line.

NOTE

A program In which flags are indicated can still be run. However,
errors should always be corrected, and the program recompiled, before
the object program is run.

Chapter 3
Run-Time System Controls

31 Run-Time Directives 3-1
3.1.1 Command LING SYNMAX.....ccceieriiimicicmeiiiiiiiiisiissseinissssssssssessessasnanes 3-1
3.1.1.1 SWILChPArameteruceeeeemmmeieeeeemeeennereeeneecieesnsnnsnsensesiesnas 3-1

3.1.1.2 Standard ANSI COBOL Debug SwitCh Parameter........ceeeuuenienanee 3-2

3.1.1.3 ProgramParamelerscceceeeereieeiinsiranreiiiascciroscressaossassnsanees 3-2

029-0310-a

Run-Time System Controls

3.1 Run Time Directives
3.1.1 Command Line Syntax
The COBOL command line syntax for running a LEVEL II COBOL object
program is:

LEVEL 11 COBOL: Compile, Run, Set Switches, Printer, Quit : R
Run what COBOL program? - [INT]}: filename.INT<<
Run time directive - directives<<

fllename is the name of the intermediate code file. An example of the whole
RUN command is given later In this chapter.

The filename is of the form
name.INT

Note that the search is of the volume specified in the filename. If no volume
is specified the prefixed ones are searched. If filename is not found, the user
is prompted for the correct filename and, simply presses [RETURN] to exit to
the COBOL command line.

3.1.1.1 Switch Parameter
LEVEL II COBOL includes the facility of controlling events in a program at
run time depending on whether or not programmable switches are set by the
user. See the description of the SPECIAL-NAMES paragraph in Section 3.4.1.2
of the COBOL Reference Manual for the Lisa. The user sets these switches
at run time with the Switch option in the COBOL command line. When
switches have been set at run time, they remain set when COBOL CALLed
modules are processed.

Example:
LEVEL H COBOL: Compile, Run, Set Switches, Printer, Quit : S
Current Switch settings

SW-0 SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 SW-7
OFF OFF OFF OFF OFF OFF OFF OFF

COBOL User's Gulae Run-Time System Conlrols

Do you wish to change the settings?: y

SWITCH Sw:0 = OFF FLIP? y
SWITCH Sw:l = OFF FLIP? n
SWITCH Sw:2 = OFF FLIP? n
SWITCH SW:3 = OFF FLIP? y
SWITCH SW:4 = OFF FLIP? y
SWITCH SW:5 = OFF FLIP? n
SWITCH SW:6 = OFF .FLIP? n
SWITCH SW:7 = OFF .FLIP? n

Updated Switch settings
Sw-0 Sw-1 Sw-2 Sw-3 Sw-4 Sw-5 Sw-6 Sw-7
ON OFF OFF ON ON OFF OFF OFF
Current ANSI Debug IS switched OFF
Do you wish to change the setting?: y
Updated ANSI Debug IS switched ON
LEVEL 11 COBOL: Compile, Run, Set Switches, Printer, Quit :

The switches remain in this state until remodified or untii the user exits the
COBOL environment.

3.1.1.2 Standard ANSI COBOL Debug Switch Parameter
Users can also include a parameter to invoke the standard ANSI COBOL
Debug module. See Chapter 11 of the COBOL Reference Manual ror the LiIsa
for a description of the Debug facilities.

To include the standard ANSI Debug facility a run-time switch is required.
The format is the same as for a normal switch parameter (see Switch
Pararneter above).

3.11.3 Program Parameters
Program parameters are any parameters required by the program. They can
be read in on the console file device "-console”. There can be as many
parameters as the programmer requires, text or numbers in any format,
limited to 80 characters on the command line.

Two methods access the program parameters:

READ
ACCEPT

READ

“-console” can be declared as a sequential or line sequential file (line
sequential is preferable as fixed-length records are not then expected).
This file can then be accessed by a READ; READ returns the command

COBOL User’s Guide Run-Time Systerm Controls

line program parameters until the command line Is exhausted.
Subseguent READs expect console input. In the absence of command
line parameters, the first READ retumns SPACES.

ACCEPT

The first ACCEPT FROM CONSOLE statement in a program retums
the program parameters from the command line. The CRTWIDTH
directive affects the behavior of the ACCEPT statement: ACCEPT is
compiled as a sequence of reads, each of CRTWIDTH characters,
sufficient to fill the data item specified.

Subsegquent ACCEPT statements expect console input.

41

43

aa

45

029-0311-A

Chapter 4

CRT Screen Handling

Introduction a-1
Using the Extended ACCEPT and DISPLAY Statements 4-1
4.2.1 Operator Cursor Control FaCIIUEScceeeeeeremeeeeereemeuimeeeranseeneneinsnisiens 4-2
Displaying Data on the Screen ..4-3
431 Clearing the SCIBENcecvciritiairerrrcteenssistensesriesessiisteessisessinsssasesans 4-3
432 Displaying SINGIE IEMS ..ccuviiriiniiitintiitintiiiienirnieneiseanisssessisaesscens 4-3
4.3.3 Displaying More COmMpPIeX SCIEENScuciermmeuiertemeriirenemmeseresssresasereennans 4-4
Accepting Data Entered at a CRT 4-5
4.4.1 Accepting an Elementary Item.....c.ccuirrimiiiiiirinirieccnrreecrercneenaes 4-6
442 Accepting @ GIoup ItBMcooveiiiiiiiititiinicnrnr st sseenesens 4-6

4421 Cursor Behavior During an ACCEPTcccovveecirienrireninreeanennes 4-8
Explicit Cursor Positioning ...4-8

CRT Screen Handling

4.1 Introduction
COBOL is traditionally a batch processing language, allowing for one line of
data at a time to be read into memory from the console, and for one line to
be displayed at a time. LEVEL II COBOL extends the language to make it
fully interactive; that is, whole screens of data can be displayed or entered
into memory using just one statement.

The ACCEPT and DISPLAY statements, used in COBOL for one line input and
output, are extended in LEVEL II COBOL to provide further facilities for
interaction with the user.

The remainder of this chapter describes the use of these facilities: for a
detalled specification refer to The ACCEPT Statement, The DISPLAY
Statement, and The SPECIAL-NAMES Paragraph in Section 3.4.1.3 in the
COBOL. Reference Manal for the Lisa

4.2 Using the Extended ACCEPT and DISPLAY Statements
The extended formats of ACCEPT and DISPLAY are:

data-name-2
ACCEPT data-name-1 [51 S teraiol 2] FROM CRT
data—name-Zi

AT §3 % teralol

data-name-1 data-name-2
ON CRT
prseay §55eanns Tl [ar fStiine)] oy a

3data—name-2$

AT }1iteral-s

Using these statements is described in the remainder of this chapter.

If these formats are to be used extensively, then the user might want to make
them the default formats of ACCEPT and DISPLAY in the LEVEL Il COBOL
program, and thus not have to specify AT ... FROM CRT or UPON CRT every
time.

COBAL Users Guide CRT Screen Haraling

In order to do this, the statement
CONSOLE IS CRT.

should be included in the SPECIAL-NAMES Paragraph of the ENVIRONMENT
DIVISION of the LEVEL Il COBOL program. The following sections assume

that this has been done.
Example:

SPECIAL-NAMES.
CONSOLE IS CRT.

421 Operator Cursor Control Facilities

Interaction implies action on the part of the user during the execution of a
program. The user has control over the cursor while data are being entered

in response to an ACCEPT statement in the program. The cursor is

manipulated on the CRT screen by the cursor control functions on the console

keyboard of your CRT device as shown in Table 4-1.

Table a-1
CRT Cursor Control Keys

Cursor Movement Key Function

Tab forward a field l
Tab backward a field T

Forward Space —
Backward Space -—
Column Tab TAB
Left Zero Fil 1)

Return RETURN

1 - The "." for left zero fill is a "," when
DECIMAL-POINT IS COMMA.
is specified in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION.

4-2

COBOL User's Guioe CRT Screen Hanaling

NOTE

Although the functions defined above are available on most keyboards,
the actual keys required to generate them can vary. Check with the
documentation supplied with the console keyboard.

43 Displaying Data on the Screen
The first step in making the LEVEL 11 COBOL program interactive is to
decide what messages and prompts are to be displayed on the screen to guide
the user, and what actlon the user iIs to take at each point. Thls section
describes the display facllities.

NOTE

As most terminals scroll upwards as a result of a character appearing
in the final character position (that is, bottom right of the screen), this
character position cannot be used as part of a DISPLAY.

431 Clearing the Screen
Unless deliberately displaying something upon a screen, which has already
been displayed and the results are known, the user should clear the screen
before any display. The statement

DISPLAY SPACE.
or DISPLAY SPACES.

causes the entire screen to be cleared.

4.3.2 Displaying Single items
Single text strings; for example, single prompts or messages, can be displayed
easily by using the AT clause to specify the coordinates of the start of the
dispiay item on the screen:

zinteger

DISPLAY data-item-1 AT data-item-2

where data-item-2 is PIC 9999. The most significant two digits specify a
line number in the range D1 to the maximum number of lines on the screen,
and the least significant two digits specify a column number In the range 01
to trite ma>idmum number of characters per line on the screen. Both numbers
are in decimal.

Data-item-1 is the text to be displayed.

COBOL User'’s Guide CRT Screen Handling

Example:
ENVIRONMENT DIVISION.
SPECIAL-NAMES.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION,
01 DISPLAY-ITEM-1 PIC X(33)
VALUE "SELECT ONE OF THE FOLLOWING ITEMS".

PROCEDURE DIVISION.
START-OF-PROGRAM.

DISPLAY SPACES.

DISPLAY DISPLAY-ITEM-1 AT 0507.

causes the message SELECT ONE OF THE FOLLOWING ITEMS to be displayed
on line 5 of the screen, beginning in column number 7.

Using the DISPLAY ... AT ... statement, the user can bulld up a full screen of
information, one item at a time.

433 Displaying More Complex Screens
When several items are to be displayed, many DISPLAY ... AT ... statements
might be required. Declaring FILLER items to fill the intervening gaps
simplifies this, thus requiring only one DISPLAY statement.

Example:
To generate
SELECT ONE OF THE FOLLOWING ITEMS

1. FOOTBALL SCORES
2. TENNIS RESULTS

3. GOLF NEWS

4. EXIT

the following program could be used for an 80-column screen.

COBOL User's Guide CRT Screen Hanaling

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-ITEM-1.
03 DISPLAY-ITEM-1-1 PIC X(33)
VALUE “SELECT ONE OF THE FOLLOWING ITEMS",
03 FILLER PIC X(128).
03 DISPLAY-ITEM-1-2 PIC X(18)
VALUE "1. FOOTBALL SCORES".
03 FILLER PIC X(62).
03 DISPLAY-ITEM-1-3 PIC X(17)
VALUE "2. TENNIS RESULTS".
03 FILLER PIC X(63).
03 DISPLAY-ITEM-1-4 PIC X(12)
VALUE "3. GOLF NEWS".
03 FILLER PIC X(68).
03 DISPLAY-ITEM-1-5 PIC X(7)
VALUE "8, EXIT".

PROCEDURE DIVISION.
START-OF-PROGRAM,

DISPLAY SPACES.

DISPLAY DISPLAY-ITEM-1 AT 0507.

FILLER items are never displayed, even as spaces, so whatever is on the
screen before a DISPLAY is still displayed In the places covered by FILLER
items.

4.4 Accepting Data Entered at a CRT

After the screen has been set up and displayed, and the user has entered
some data, the data must be ACCEPTED.

NOTE

As most terminals scroll upwards as a result of a character appearing
in the final (that is, bottom right) character position of the screen, this
character position cannot be used as part of an ACCEPT.

Two types of items can be accepted: elementary data items and group items.

COBAY. Lsers Guice CRT Screen Hardling

4481 Accepting an Elementary Item
The statement

ACCEPT MYDATA.

places the cursor at the HOME position, and accepts the character string
keyed in by the user until terminated by pressing the [RETURN] key. This
string is directly transferred into the data item MYDATA, and is aligned left
if too short. MYDATA is then checked against its declaration in the DATA
DIVISION, and any format errors are reported.

If the AT clause is used, then the value of the data item in the AT clause
defines the start position of the ACCEPT data item. This data item must be
PIC 9999 where the most significant two digits define a line number in the
range 01 to the maximum number of lines on the screen, and the least
significant two digits define a column number the range 01 to the maximum
number of characters per line on the screen. If data item contains zero or
spaces, it is treated as 0101 (HOME). The cursor is positioned at the start of
the data item to be accepted; that is, the position defined by the AT clause.
See Explicit Cursor Positioning.

Example:
ACCEPT MYDATA AT 1021.

positions the cursor at column number 21 on line 10, unless the cursor is
explicitly placed elsewhere (see Explicit Cursor Positioning), and accepts
whatever the user enters.

442 Accepting a Group Item
Accepting a group item is more complex. The user must declare the group
item in the WORKING-STORAGE SECTION of the program. This declaration
might be similar to the data declaration used to generate the DISPLAY
screen, except that data items in one are probably FILLER fields in the other.
In this case, the user might find redefining the original DISPLAY group item
as the ACCEPT group item to be advantageous.

4-6

COBOL User's Guide ORT Screen Handling

Example:
ENVIRONMENT DIVISION,
SPECIAL-NAMES.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-ITEM-1.
03 FILLER PIC X(324).
03 DISPLAY-ITEM-1-1 PIC X(33)
VALUE "SELECT ONE OF THE FOLLOWING ITEMS",
03 FILLER PIC X(128).
03 DISPLAY-ITEM-1-2 PIC X(18)
VALUE *1. FOOTBALL SCORES".
03 FILLER PIC X(62).
03 DISPLAY-ITEM-1-3 PIC X(17)
VALUE “2. TENNIS RESULTS".
03 FILLER PIC X(63).
03 DISPLAY-ITEM-1-4 PIC X(12)
VALUE "3. GOLF NEWS".
03 FILLER PIC X(68).
03 DISPLAY-ITEM-1-5 PIC X(7)
VALUE “4. EXIT",
01 ACCEPT-ITEM-1 REDEFINES DISPLAY-ITEM-1.
03 FILLER PIC X(504).
03 ACCEPT-ITEM-1-1 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-2 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-3 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-4 PIC X.

PROCEDURE DIVISION.
START-OF-PROGRAM,
DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-1.
ACCEPT ACCEPT-ITEM-1.

In the same manner as DISPLAY ... AT ..., the AT clause can be used 1o
define the initial position of the data, thus avoiding an initial FILLER item in
the data declaration (see Explicit Cursor Positioning below) The default
position for AT is HOME. HOME is also used if the position defined by AT is
outside the physical limits of the screen.

COBOL. User's Guide CRT Screen Handling

4.4.2.1 Cursor Behavior During an ACCEPT
Unless explicitly positioned by the program (see below), the cursor is initially
placed at the start of the first data item to be accepted. wWhile the user is
entering data in response to an ACCEPT clause, the cursor advances
character by character. If data are entered which do not completely fill the
data item, the user must advance the cursor to the next data item by either
advancing one space at a time to the end of the current data item, or using
the advance-one-field key. The cursor does not move into FILLER items. At
the end of the last data item of a group, the cursor remains in the last
character position and a bell sounds when any additional character is typed.
The last character typed is the one that is accepted.

Data entry to a group item is terminated by pressing the [RETURN] key.

when designing an interactive LEVEL Il COBOL program, the user should
adopt a consistent approach to ACCEPT statements. A number of individual
ACCEPTS on the same screen requires the user to press the [RETURN] key at
the end of each one. A group ACCEPT, performing the same function,
requires the user to tab forward from field to field (if the fields are not
completely filled by the data entered), and press the [RETURN] key only at
the end of the last field. Mixing these approaches In any one program or
suite of programs might be confusing, and should therefore be avoided.

4.5 Explicit Cursor Positioning
The LEVEL I COBOL user can exercise explicit control over the cursor by
using the "CURSOR IS data-name" clause in the SPECIAL-NAMES paragraph.
The data name must be a PIC 9999 item, where the most significant two
digits define a line number in the range 01 to the maximum number of lines
on the screen, and the least significant two digits define a column number in
the range 01 to the maximum number of characters per line on the screen.
Example:
ENVIRONMENT DIVISION.
SPECIAL-NAMES,
CURSOR IS CURSOR-POSITION.
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CURSOR-POSITION.
03 CURSOR-LINE PIC 99.
03 CURSOR-COLUMN PIC 99.
01 DISPLAY-ITEM-1.
03 FILLER PIC X (324).

4-8

COBOL User's Gulde CRT Screen Handling

On executing an ACCEPT statement, the cursor moves to the character
position defined by the CURSOR data item. If the CURSOR data item
contains zero or spaces or is undefined, HOME is used by default. Any AT
clause in the ACCEPT statement still defines the position of the data items
on the screen; the CURSOR data item merely positions the cursor. If the
defined position is either outside the physical limits of the screen or outside
the limits of the group item or elementary data item being ACCEPTED, the
?efined position is ignored and the start of the first data item is used
nstead.

If the defined position is in a FILLER item, the cursor moves to the beginning
of the next data item. Wwhen no further data item exists, the cursor returns
to the beginning of the first data item on the screen.

On return from an ACCEPT statement, the CURSOR data 1tem contalns the
address of the final position of the cursor on the screen.

One example of this facility is that in menu-type operations the user need
only move the cursor to a position on the screen corresponding to the
selection required. The user's cholce can be determined by the returned value
of the CURSOR data item.

If, in this type of operation, one choice per line exists, the resulting line
number can be used for a DEPENDING ON clause. The default choice can be
determined by explicitly positioning the cursor on one of the choices before
the ACCEPT statement.

Note that to use the CURSOR data item for cursor positioning, the data item
rmust contain a value other than zero or spaces. If the CURSOR data item
contains zero or spaces, it does not update with cursor positions after
ACCEPT statements.

Continuing with the example used earlier in this chapter:
SELECT ONE OF THE FOLLOWING ITEMS:

1. FOOTBALL SCORES
2. TENNIS RESULTS

3. GOLF NEWS

4, EXIT.

POSITION CURSOR AND PRESS RETURN

to display the screen and to execute a subroutine depending on the response,
the following program could be used.

COBOL Users Guiae CRT Screen Heanaling

ENVIRONMENT DIVISION.
SPECIAL-NAMES.
CURSOR IS CURSOR-POSITION,
CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CURSOR-POSITION.
03 CURSOR-LINE PIC 99. CURSOR
03 CURSOR-COLUMN PIC 99, data-item
01 DISPLAY-ITEM-1.
03 FILLER PIC X(324).
03 DISPLAY-ITEM-1-1 PIC X(33)
VALUE "SELECT ONE OF THE FOLLOWING ITEMS",
03 FILLER PIC X(128).
03 DISPLAY-ITEM-1-2 PIC X(18)
VALUE "1. FOOTBALL SCORES".
03 FILLER PIC X(62)
03 DISPLAY-ITEM-1-3 PIC X(17)
VALUE "2. TENNIS RESULTS", DISPLAY
03 FILLER PIC X(63). item
03 DISPLAY-ITEM-1-4 PIC X(12)
VALUE *3. GOLF NEWS".
03 FILLER PIC X(68).
03 DISPLAY-ITEM-1-5 PIC X(7)
VALUE "4, EXIT".
03 FILLER PIC X(153).
03 DISPLAY-ITEM-1-6 PIC X(32)
VALUE "POSITION CURSOR AND PRESS RETURN". /
01 ACCEPT-ITEM-1 REDEFINES DISPLAY-ITEM-1, \
03 FILLER PIC X(504).
03 ACCEPT-ITEM-1-1 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-2 PIC X. | ACCEPT
03 FILLER PIC X(79). ‘tem
03 ACCEPT-ITEM-1-3 PIC X.
03 FILLER PIC X(79).
03 ACCEPT-ITEM-1-4 PIC X.
PROCEDURE DIVISION. /
START-OF -PROGRAM.
DISPLAY SPACES.
DISPLAY DISPLAY-ITEM-1.
MOVE 0625 TO CURSOR-POSITION.,
ACCEPT ACCEPT-ITEM-1.
SUBTRACT 6 FROM CURSOR-LINE.
GO TO FOOTBALL-SCORES, TENNIS RESULTS, GOLF NEWS,
FINISH-OFF DEPENDING ON CURSOR-LINE.

4-10

Chapter 5
LEVEL II COBOL Application Design

Considerations
S.1 Introduction 5-1
52 LEVEL I COBOL Application Design Facilities 5-1
5.2.1 Segmentation (OVerlaying).......ccoeecereienensicincrennenanenrensremenssnsensasssscnsnses 5-1
5.2.2 Interprogram Communication (CALL) .. w52
5.2.3 CALL Requirements......ccccveeereenceassrennns w53

52.4 Producing Compact and EFFICIENt COOL w...eueeereureemereerereesenceseseensnenes 5-4

029-0312-4

LEVEL II COBOL Application Design
Considerations

5.1 Introduction
Designing a COBOL application program requires efficlent use of the space
and facilities avallable. This chapter is written for designing an application
to be written in LEVEL 11 COBOL, and describes the facilities avallable:

* memory management

* dividing monolithic programs into smaller units
* using default filenames

* calling other programs

* including user-written run-time subroutines

* calling the supplied run-time subroutines.

52 LEVEL II COBOL Application Design Facilities
5.2.1 Segmentation (Overlaying)
LEVEL Il COBOL enables a COBOL program with a large PROCEDURE
DIVISION to be divided into a COBOL program with a small PROCEDURE
DIVISION and multiple overlays containing the rermainder of the PROCEDURE
DIVISION. The resident part is known as the permanent segment and the

overlays are known as independent segments.

All of the PROCEDURE DIVISION can be loaded Into the avallable memory by
using the LEVEL II COBOL Segmentation feature. However, it cannot be
loaded all at once. It is loaded one segment at a time to achieve the same
effect In the reduced storage space as shown below.

IFull program (assuming space avallable)

Segment 1 B

[PERMANENT SEGMENT | Segment 2 |
Segment 3 |
Segment 4 |

v

<——————maximum 60K bytes

COBAY. Lser’s Guioe LEVEL T COPCY. Appiication Desipn Consicerations

In a segmented program, the beginning of each segment in the PROCEDURE
DIVISION 1is denoted in the LEVEL II COBOL source code by a SECTION label;

for example,

SECTION 52.
MOVE A TQ B.

SECTION 62.
MOVE X TO Y.

Segmentation can be applied to only the PROCEDURE DIVISION. The
IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs are common to all
segments; in addition, a common PROCEDURE DIVISION segment can exist,
This common code is known as the permanent segment. Control flow between

permanent and independent segments Is fully specified in the COBOL
Reference Manual for e LIsg Chapter 9.

NOTE
The cumulative size of the DATA DIVISIONs must be less than 64K

5.2.2 Interprogram Communication (CALL)
LEVEL 11 COBOL enables COBOL applications to be designed or divided, at
source level, into separately complled programs. Each program is then called
dynamically from the main application program, without the need for the user
to have linked the programs together first.

Figure 5-1 shows a sample application user Interprogram communication.

B/ C \ H
D/E!T\F x/v/ \Z\L\PI(

COBOL User's Gulde LEVEL Il COBOL Application Design Consigerations

The main program A, which is permanently resident in memory, calls B, C, or
H which are subsidlary and standalone functions within the application. These
programs call other specific functions as follows:

B calls B, E, and F.

C calls X, Y, or Z conditionally, and K or L conditionally.
H calls K

K calls M, N, or Q conditionally.

L calls M if it needs to.

As the functions B, C, and H are standalone they do not need to reside
permanently in memory together. They can therefore be called as necessary,
using the same physical memory when they are called. The same applies to
the lower functions at their levels in the tree structure.

In the example shown in Figure 5-1, the use of CALL and CANCEL
statements needs to be planned so that a frequently called subroutine, such as
K, Is kept in memory to save load time. On the other hand, because K is
called by C or H, it cannot be called initially without having C or H in
memory; that Is, the larger of C or H should call K initially to allow space.
Avoiding overflow of programs is also important. At the level of X, Y, and Z,
the order in which loading takes place does not matter, because calls are not
made at a lower level.

Leaving called programs in memory is advantageous if they open files. The
EXIT statement does not close files, but the CANCEL statement does.
Leaving called programs in memory avolds having to reopen files on every
call.

523 CALL Requirements
Any number of LEVEL 11 COBOL programs and assembly language routines can
be called from a LEVEL 11 COBOL program. This section describes the
requirements of the CALL statement.

1. The CALLed program file must be present on disk both at the time of the
first CALL of the program and while the program is being used.

2. Sufficient space must exist in memory for at least the DATA DIVISION to
be loaded. The ON OVERFLOW phrase can be used to specify program
action to be taken if insufficient space is avallable, otherwise the CALL
statement is ignored and the next program instruction is executed.

3. The CANCEL statement releases the memory occupied by the cancelled
program and closes any flles opened by it.

COBAL Users Guloe LEVEL T COBAL Agpllcatlon Design Consideratlons

If a tree structure of called independent programs as shown earlier is used,
each program can call the next dynamically by using the technigue shown in
the following sample coding:

WORKING-STORAGE SECTION.

01 NEXT-PROG PIC X(20) VALUE SPACES.
01 CURRENT-PROG PIC X(20) VALUE "STPRG.INT".

PROCEDURE DIVISION.

LOOP.
CALL CURRENT-PROG USING NEXT-PROG.
CANCEL CURRENT-PROG.
IF NEXT-PROG = SPACES STOP RUN.
MOVE NEXT-PROG TO CURRENT-PROG.
MOVE SPACES TO NEXT-PROG.
GO TO LOGP.

The actual programs to be run can then specify their successors as follows:

LINKAGE-SECTION.
01 NEXT-PROG PIC X(20).

PROCEDURE DIVISION USING NEXT-PROG.

MOVE “FOLLOW.INT" TO NEXT-PROG.
EXIT PROGRAM.

This example demonstrates that each independent segment or subprogram can
cancel itself, and, with the USING phrase, change the name In the CALL
statement to call the next one.

5.2.4 Producing Compact and Efflcient Code
Declaring data items to have usage COMP causes compact storage in the
minimum number of bytes needed to accommodate, in binary format, the
largest number allowed by the PICTURE string. However, declaring usage
COMP does not automatically ensure that arithmetic on such items is
efficient as well as compact. Except for the special cases detailed below,
arithmetic on COMP data items is done by expansion In Internal registers to
BCD format, and reconversion to COMP for storing the result.

COBAL. Lsers Guloe LEVEL I COBAY. Appllcation Design Considerations

Efficient coding, known as COMP code, Is avallable for the following types of

statements:
1. fapp 41O
SUBTRACT source LFROM target .

where either both source and target are PIC %2) COMP, or both
are PIC %4) COMP

or the source is an unsigned integer literal less than 256

and the target is PIC %(2) COMP, or the source is an
unsigned integer literal less than 65536 and the target
is PIC %(4) COMP.

and there is no ON SIZE ERROR clause.

{ MULTIPLY }

source BY } target
DIVIDE u get

INTO

where either both source and target are PIC 9%(2) COMP, or both
are PIC 9(4) COMP.

and there is no ON SIZE ERROR clause.
In such cases arithmetic is done on one- or two-byte binary gquantities
without overflow checking and with binary wraparound.
MOVE source to TARGET.

where the source and target satisfy the rules given above for ADD and
SUBTRACT statements.

In this case the MOVE is a one- or two-byte transfer without data
conversion.

Cornparisons of the form

left operand relation right operand

where the operands again satisfy the rules given above for ADD and
SUBTRACT statements, except that either (not just the left-hand one, but
not both) can be a literal.

A 1aw binary one- or two-byte comparison is the result.

Finally, even more compact and efficient code is generated for a
statement of the form

IF operand relation literal GO TO label.

COBAL Users Guioe LEVEL Il COBAL Appllcation Design Considerations

where:

the operand is declared as PIC 9(2) COMP and is the first data item
in the WORKING-STORAGE SECTION,

the literal is an unsigned integer less than 256, and
no ELSE clause is present.

In Case 4 the efficient code can be generated even when the comparison is
Just lorl';e of a sequence connected by AND/OR. However, Format S is totally
specific.

Code generated for these statement formats runs more than five times faster
than equivalent noncompact code, so taking care to use these formats where
possible is worthwhile. However, the interaction between the semantics
detalled above and the ANSI COBOL specification must now be examined.
The following considerations are relevant:

1.

2

3.

If an ON SIZE ERROR clause is present, the target must not be affected
if numeric overflow occurs; COMP code Is never generated in such a case.
If an ON SIZE ERROR clause is not specified, the result on numeric
overflow is implementor defined. In LEVEL 11 COBOL using COMP code,
the result is defined as above; that is, binary byte-oriented arithmetic
with wraparound. The user can decide to take advantage of this extra
level of definition as a LEVEL 1l COBOL extension. However, the
programs might not then be portable to other ANSI COBOL compllers,
because the feature is undefined in ANSI COBOL; alternatively, if the user
knows that the arithmetic statements do not lead to numeric overflow, the
programs can be portable in any case.

when the result of unsigned subtraction is negative, ANSI COBOL requires
that the absolute value be stored. COMP code stores the two's
complement result. Because of this conflict with ANSI COBOL semantics,
COMP code is never generated for SUBTRACT statements unless the user
specifies the COMP directive to the compiler; the user should do this
either when he or she knows the unsigned COMP subtractions does not
underflow (in which case the programs compiled with COMP code remain
portable) or when wishing to take advantage of the nonstandard behavior
which occurs on underflow.

Truncation on MOVE literal: in the statement

MOVE literal TO target.

where the target is PIC 9(2) COMP and 99<literal<256 or the target is PIC
9(4) COMP and 9999¢<literal<65536, ANSI COBOL requires that the literal
is truncated to the number of decimal places specified for the target.
COMP code does not truncate but stores the binary value. As in Case 2
above, because of this conflict the compiler does not generate COMP code
for this form of statement unless, for either of the reasons described
above, the COMP directive is specifieq,

mMmOoOOoOoe>»

029-0313-A

Appendixes

Summary of Compiler and Run-Time Directives
Compile-Time Errors

Run-Time Errors

File Formats

Useful Facts and Figures

COBOL Workshop Files

A-1
B-1
C-1

E-1
F-1

Appendix A
Summary of Compiler and Run-Time Directives

Al Compiler Directives
The compilation command structure is:

LEVEL 1l COBOL: Compile, Run, Set Switches, Printer, Quit : C
COBOL Source file [.TEXT] - _filename <«
Compiler directive - directive <<

Compiler directive - <<

where filename Is the name of the file that contalns the LEVEL 11 COBOL
source program. The default extension is .TEXT.

A description of the avallable compiler directives follows.

CcaBa. Users Guice

Directive

[NO] ALTER
[NO] BRIEF
[NO] comp
[NO] COPYLIST
CRTWIDTH “n*

DATE “string”

[NO] ECHO

[NO] ERRLIST

[NO] FLAG "-LOW - *
L-I
H-T
HIGH
LAl
1BM

[NO] FORM *n"
{NO] INT “filename”

NO gLXST
PRINT)"filename”

INO] QUAL

[NO] REF
[NO] RESEQ

Sumymary or Compller and Run-Time Directives

Use

Allow ALTER statements
Suppress error messages
Use computational subset
List COPY flles

Set width of CRT to "n"

As DATE below but “string" set to spaces
Use “string” for comment entry in
DATE-COMPILED paragraph

Echo errors to console

List only errors and flags

Flag code higher than level indicated

Suppress headers and form-feeds
Set length of page = "n" lines
Specify intermediate code filename

Specify listing requirements

Allow qualified data-names and
procedure-names

Insert addresses on listing
Resequence source flle

Default

ON
OFF
OFF
OFF
ON
n=128
ON

ON
OFF
OFF

ON n=60

ON

= source
filename

If nO
directive:
ON; that is
fllename

= source
fllename.
If directive
but no
filename:
fllename

= -console

ON
OFF
OFF

CaBAL Lkers Guide Summary of Compller and Run-T7ime Olrectives

A2 Run-Time Directives
Before running an L/l COBOL object program the user can modify the
program switches (see Section 3.4.1.3 in the COBAL Reference Marnsal for the
L/sa) in the range 0-7.

LEVEL Il COBOL: Compile, Run, Set Switches, Printer, Quit : S
Current Switch settings

SW-D SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 Sw-7
OFF OFF OFF OFF OFF OFF OFF OFF

Do you wish to change the settings?: y

SWITCH Sw:0 = OFF FLIP? ¥
SWITCH Sw:1 = OFF FLIP? n
SWITCH Sw:2 = OFF FLIP? n
SWITCH SW:3 = OFF .FLIP? y
SWITCH Sw:4 = OFF FLIP? y
SWITCH Sw:S = OFF FLIP? n
SWITCH Sw:6 = OFF FLIP? n
SWITCH Sw:7 = OFF FLIP? n

Updated Switch settings

Sw-0 Sw-1 Sw-2 Sw-3 Sw-4 SW-5 SwW-6 Sw-7
ON OFF OFF ON ON OFF OFF OFF

Current ANSI Debug IS switched OFF
Do you wish to change the setting?: y
Updated ANSI Debug IS switched ON
LEVEL Il COBOL: Compile, Run, Set Switches, Printer, Quit :

The switches remain in this state until remodified or until the COBOL
environment is left.

Appendix B
Compile-Time Errors

Listed below are the error descriptions that correspond to the error numbers
printed on listings produced by the LEVEL Il COBOL compiler. In case of
alternative meanings, relevancy is obvious from context.

ERROR

01

DESCRIPTION

Compller Error

Illegal format: data name

Megal format: literal

Hegal format: character

Data name not unique

Too many data or procedure names declared

Obligatory reserved word missing

Nested COPY statement or unknown COPY file specified

' missing

Statement starts in the wrong area of the source line

'’ missing

DIVISION missing

SECTION missing

IDENTIFICATION missing

PROGRAM-ID missing

AUTHOR missing

INSTALLATION missing

DATE-WRITTEN missing

SECURITY missing

ENVIRONMENT missing

CONFIGURATION missing

SOURCE-COMPUTER missing

MEMORY SIZE/COLLATING SEQUENCE/SPECIAL-NAMES
clause in error

OBJECT-COMPUTER missing

SPECIAL-NAMES missing

SWITCH Clause error or system name/mnemonic name error

DECIMAL-POINT Clause error

CONSOLE Clause error

Illegal currency symbol

*.' missing

DIVISION missing

SECTION missing

COBOL User's Guide

ERROR

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
62
63
64
65

66

67
68
69
70
71
72
73
n

75
76
77
78
79
81
82
83
84
85
86
87
88

complie-Time Errors

DESCRIPTION

INPUT-OUTPUT missing

FILE-CONTROL missing

ASSIGN missing

SEQUENTIAL or INDEXED or RELATIVE missing

ACCESS missing on indexed/relative file

SEQUENTIAL/DYNAMIC missing or »64 altemate keys

Illegal ORGANIZATION/ACCESS/KEY combination

Unrecognized phrase in SELECT Clause

RERUN Clause syntax error

SAME AREA Clause syntax error

missing or illegal file name

DATA DIVISION missing

PROCEDURE DIVISION missing or unknown statement

program collating sequence not defined »

EXCLUSIVE, AUTOMATIC, or MANUAL missing »

Nonexclusive lock mode specified for restricted file

DIVISION missing

SECTION missing

file name not specified in SELECT stmt or invalid CD name

RECORD SIZE integer missing or line sequential rec > 1024
bytes

Nlegal level no, (01-49), or 01 level req'd, or level hierarchy
wrong

FD, CD, or SD qualification syntax error

WORKING-STORAGE missing

PROCEDURE DIVISION missing or unknown statement

Data description qualifier or *.' missing

Incompatible PICTURE clause and qualifiers

BLANK illegal with nonnumeric data item

PICTURE clause too long

VALUE clause with nonelementary item, wrong data type, or
value truncated

VALUE in error or illegal for PICTURE type

nonelementary FILLER/SYNC/JUSTIFIED/BLANK clause

Preceding item at this level has > 8192 bytes or O bytes

REDEFINES of unequal fields or different levels.

Data storage exceeds 64K bytes

Data description qualifier inappropriate or repeated

REDEFINES data name not declared

USAGE must be COMP, DISPLAY, or INDEX

SIGN must be LEADING or TRAILING

SYNCHRONIZED must be LEFT or RIGHT

JUSTIFIED must be RIGHT

BLANK must be ZERO

OCCURS must be numeric, nonzero, unsigned, or DEPENDING

B-2

COBOL User's Guioe Cormpile-Time Errors

ERROR DESCRIPTION

89 VALUE must be a literal, numeric literal, or figurative
constant

90 PICTURE string has illegal precedence or illegal char

91 INDEXED data name missing or already declared

92 Numeric-edited PICTURE string is too large

101 Unrecognized verb

102 IF ... ELSE mismatch

103 operand has wrong data type or is not declared

104 Procedure name not unique

105 Procedure name same as data name

106 Name required

107 wrong combination of data types

108 Conditional statement not allowed in this context

109 Malformed subscript

110 ACCEPT/DISPLAY wrong or Communications syntax
incorrect

111 Illegal Syntax used with 1/0 verb

112 Invalid arithmetic statement

113 Invalid arithmetic expression

114 PROCEDURE DIVISION in memory > 32K

115 Invalid conditional expression

116 IF statements nested too deep or too many AFTERS in
PERFORM stmt

117 Incorrect structure of PROCEDURE DIVISION

118 Reserved word missing or incorrectly used

119 Too many subscripts in one statement

120 Too many operands in one statement »

121 LOCK clause specified for EXCLUSIVE file *

122 KEPT specified for uncommitable file i

123 KEPT omitted for commitable file

141 Intersegment procedure name duplication

142 IF ... ELSE mismatch at end of Source Input

143 operand has wrong data type or not declared

144 Procedure name undeclared

145 Ingex data name declared twice

146 Bad cursor control: illegal AT clause

147 KEY declaration missing or illegal

148 STATUS declaration missing

149 Bad STATUS record

150 Undefined intersegrment reference or error in ALTERed par

151 PROCEDURE DIVISION in error

152 USING parameter not declared in LINKAGE SECTION

153 USING parameter is not level 01 or 77

154 USING parameter used twice in parameter list

155 FD missing

COBOL Users Guide Complle-Time Errors

ERROR DESCRIPTION
157 Incorrect structure of PROCEDURE DIVISION
160 Too many operands in one statement
* - Apply to Flleshare optional proguct syntax.

In addition to these numbered error messages, the followlng message can be
displayed with subseguent termination of the compilation:

1-0 ERROR: {fllename }

OBJECT FILE
where filename Is the erroneous file.

OBJECT FILE is one of .INT, .D?7?, 0r1.177 (for segmented programs)
Any Intermedlate code flle produced Is not usable.
The following conditions causes this error:

Disk overflow

Flle directory overflow

File full

Impossible 1/0 device usage

Other Operating System dependent conditions can also cause this error.

The error numbers in the preceding list are not continuous: those that are
not listed are be produced only If an error occurs in the compiler. when this
happens, contact Technical Support immediately.

Appendix C
Run-Time Errors

C.1 Error Reporting Cc-1
C.1.1 ReCOVEraDIE EITOTS ...ccceceeniencinncrrereresracsnssansereserarasssnssssnssasannsansnnssnn Cc-1
C.1.2 FAtAl EYTOIS cuceeinecieieceecnsecaissesasseessesesesassssessssesasesssessansesasesasnssnsases C-1

C.2 Run-Time Ernror Codes Cc-2
C.2.1 FLIB EYTOYS couenicieereneetreneeseesaersencsnssestaseerssssssasasnnossssseasassssasnasnnananen c-2
C.2.2 EXCEPUIONS .. e iieieeeieicrecteetecrenserectesteaccesssnsseseanssaresssesnnssnsenssnsssnssnnns c-2

C.3 Sample Error Handling Routine c-a

Run-Time Errors

C.1 Ermor Reporting
Two types of run-time errors exist: Recoverable and Fatal.

C.1.1 Recoverable Errors
File handling errors (codes 0O - 99) do not cause termination of program
execution if the programmer has specified a STATUS field for the file
concerned. In this case, the RTS returns the character '9' in Status Key 1 of
the STATUS field, and the COBOL RTS error code, in binary (COMP), in Status
Key 2 field. (Because this error code is stored in binary (COMP) in Status
Key 2, the only way you can extract it is with the method shown in the
sample error handling routine, Section C.3) The RTS takes no other action:
the user must check for specific error conditions and take corrective action,
or terminate the program run.

If the programmer has not specified STATUS on that file, any file handling
error iIs a fatal error.

C.12 fFatal Errors
when the RTS detects a fatal error, the general class of error, along with its
associated file name, is printed out. The RTS then prints out the error code,
the COBOL program counter (pc), the CALL number, and segment number
corresponding to the statement where the error occurred.

Fatal errors fall into two categories:

1. Exceptions are errors detected by the RTS, such as arithmetic overfiow,
subscripts out of range, and INT. file load errors. These error codes are in
the range 100-200 decimal. A typical message appears:

Load error: flle 'MYPROG.153'
RTS error code: 160, pc=0085, call=0, seg=53
Consult COBOL User's Guide

The program is terminated, and control returns to the COBOL command
line.

COBOL User's Guige Run-Time Errors

2

File Handling Errors are errors in the range 0-99 decimal, on a user file
for which STATUS was not specified. For these errors, the original error
message signaled from the OS is displayed, along with the corresponding
RTS error code that would have been stored In Status Key 2 If a STATUS
field had been specified. A typical message appears:

OS error message = 921

1/0 error: file -MYPROG>DAT'

RTS error code: 12, pc=0085, call=0, seg=0
Consult COBOL User's Guide

The program is terminated, and control retumns to the COBOL command
line.

C.2 Run-Time Exror Codes
The run-time error codes and their meanings are:

C.2.1 Flle Errors

Unspecified error on attempting to OPEN file

Unspecified error on attempting to WRITE to flle

Unspelcifed error on attempting to ACCEPT FROM CRT
Unspecified error on attempting to READ file

Unspecified error on attempting to WRITE to line sequentlial file
Unspecified error on attempting to CLOSE file

Invalid pathname for file, or no such device

File not found

Unexpected file system error

No space avallable on disk for creating or extending file

Access denied by OS for specified operation on file; for example, file
locked

Too many files open: attempt to OPEN more files (20) than system
allows

C.22 Exceptions

151
152
153

154
155
156
157
158
159
160

161
162

Random READ on a sequential file
Attempt to REWRITE on a file not opened 1/0
Subscript bounds overflow; for example, zero, or greater than defined

range

PERFORM nesting exceeds allowed limit of S5 levels

Illegal command line

Invalid file operation

INT. file too large: not enough program memory for loading it
REWRITE on a line sequential file

Malformed line seguential file

Overlay loading error; for example, file not found, or invalld file
structure

Illegal intermediate code: program file probably corrupt
Arithmetic overflow or underflow

COBOL. User's Guioe Run-Time Errors

164
165
166
167
170
172

173
174
180
181
182
183
184
185
186
188
189
190
191
192
193
194

Specifled CALL subroutine not supplied

Incompatible version of Compiler and RTS: recompile source program
Attempt to OPEN 3a flle that Is already open

Attempt to CLOSE a file not already open

Illegal operation in Indexed Sequential module

Recursive CALL illegal; for example, attempting to CALL an active
program

Intermediate code file not found

Intersegment reference file for a segmented program cannot be loaded
COBOL. file malformed

Fatal file malformation

Atternpt to OPEN :CIL: or :CO: in illegal direction

Attempt to OPEN a line seguential file for 1/0

ACCEPT/DISPLAY error

Cannot load COBOL RTS module; for example, IXSIO.INT

Internal RTS error: contact Technoical Support

File name too long

Intermediate code load error

Too many arguments to CALLed subprogram

Terminal type not defined

Required terminal capability not supported

Null file name used in a file operation

Memory allocation error

CoPOL. Users Guiae Run-Time Errors

C3 Sample Error Handling Routine
Note that the original 2-character status fleld must be redefined as a (COMP)
field, and that LOW-VALUES must be moved to the Status Key 1 fleld before
the error code can be displayed or printed.

000010 ENVIRONMENT DIVISION. D118
000020 INPUT-OUTPUT SECTION. 0118
000030 FILE-CONTROL. 0118
000040 SELECT FILE1 ASSIGN"TST.FIL" o184
000050 STATUS IS FILE1-STAT. 0186
000060 DATA DIVISION, 018D
000070 FILE SECTION. 018D
000080 FD FILEL 018D
000090 01 F1-REC PIC X(80) 018D
000100 WORKING-STORAGE SECTION. 020F
000110 01 FILE1-STAT. 020F 00
000120 g2 S1 PIC X, 020F 00
000130 02 Sz PIC X. 0210 01
000140 01 STAT-BIN REDEFINES FILE1-STAT PIC(4) COMP. 020F 00
000150 01 DISPLAY-STAT. 0211 02
000160 02 Si-DISPL PIC X. 0211 02
000170 02 FILLER PIC X(3) 0212 03
000180 02 ‘S2-DISPL PIC 9999. 0215 06
000190 PROCEDURE DIVISION. 0000
000200 OPEN INPUT FILEL. 001A
000210 IF S1 NOT = 3 GO TO PARAL 001E
000220 0030
000230 MOVE S1 TO S1-DISPL. 0030
000240 MOVE LOW-VALUES TO S1. 0035
000250 MOVE STAT-BIN TO S2-DISPL. 003A
000260 DISPLAY DISPLAY-STAT. ooai
000270 PARAL pp4acC 00
000280 STOP RUN. 004D

C-4

D.1 Fixed File Assignment

D.2

D3

D.1.1

D.1.2

Run-Time File Assignment

D.21

LEVEL II COBOL Disk Flle Structures under the Lisa

D3.1

D.3.2
D33

D34

Appendix D
File Formats

ENVIRONMENT DIVISION.....cccuiiecceteieitecteteecsonseresasetossncsasnsessessessans
D111 General FOIMAt.....cccceieiiiieeceenraceceasesscmnsersanssessessssonnnsonee
D.1.1.2 PAramMELETS cucceureieniercetnrerersasecsstnessssesesansssssastassasassesssssssnns
(70 0 T o 1 1] = PN
PROCEDURE DIVISIONciiieierenseuseecnesnenesearassnssessessacsnsssssssassnsnne

ENVIRONMENT DIVISION. ... e crecreiirireereraiseeressessaesssssaseasenssessesensans
D.2.1.1 General FOIMAt......ccccecicteerecenteroscasasesesassennsnssesasassesesssanses
D.2.1.2 PaAraMELEIS .eciceuieeraterersesseraserssusnnsassnsssssrosssnsessssarasasassnases
D.2.1.3 EXAMPIL ciiieniireciirerasssestecienctestratesetnsseesanssenassensnasensanssnnses

SeQUENLIALeeirrire et ettt er e e e e e en s es e s e n s e nnnnnasnnnsees
D.3.1.1 Sequential File FOIMALccviivnimiceiineecionininsmccesnnnessnseseens
Line Sequential.....ccciiirrrerrccnieiiinnaercrer e ceaneeeresansieraansasensensan
LR (c F 14 1= TN

File Formats

D.1 Fixed Flle Assignment
D.1.1 ENVIRONMENT DIVISION
In the FILE-CONTROL Paragraph, the general format of the SELECT and
ASSIGN TO statements follows.

D.1.1.1 General Format
SELECT file-name
ASSIGN TO external-file-name-literal.
[, extemal-file-name-literal] .

D.1.1.2 Parameters

file-name is any user-defined LEVEL II COBOL
word.

external-file-pame-literal is a standard Lisa file name, enclosed in
quotes, of one the following general

formats.
Format 1
-device
where device is a logical device as follows:
PRINTER - line printer

CONSOLE - screen output
KEYBOARD - keyboard input

Example:
-printer

COBOL. Users Guice Flle Fonmats

Format 2 (a Lisa pathname)
[-volumename-Jfilenamef.extension]
where:

volumename is the name that the user has assigned to a
volume or a physical, block-structured device
as follows:

UPPER
LOWER
PARAPORT
SLOTMCHANN

Files on the working directory can be specified
without volumename and the delimiting "-".

filename is between one and 32 alphabetic or nureric
characters, spaces are permitted. The
combined length of the filename, plus
extension, plus the *.' delimiting the extension
must not exceed 32 characters.

extension is up to 32 alphabetic or numeric characters,
spaces are permitted, including the delimiting
", However, the same restriction as in
filename applies.

Example:
{-paraport-Jmyprogl.text]
Format 3
-gevice-dummy
where:
device is the name of a physical, sequential device as
follows:
RS232A
RS232B.
dummy is @ dummy file name.
Example:
-RS8232A-X

D.113 Example

SELECT STOCKFILE
ASSIGN TO "WAREHS.BUY™,

COBOL User's Guide File Fonmats

D.12 PROCEDURE DIVISION
The file name specified above is then specified in the OPEN statement when
the flle is required for use in the program. See The OPEN Statement in
Chapters 5, 6, and 7 of the COBOL Rererence Maral for the Lisa.

D.2 Run-Time File Assi
The internal user file name is assigned to a file identifier, an alphanumeric
user-defined COBOL word, which automatically sets up a PIC X(66) data area
in which to store the external Lisa file name; the user can specify a
differently sized data area by explicitly declaring it. The user can then store
the extemal Lisa file name in this data area in the PROCEDURE DIVISION,
and can alter it during the run as required.

The following specifications are required for run time assignment:

D21 ENVIRONMENT DIVISION
In the FILE-CONTROL Paragraph the general format of the SELECT and
ASSIGN TO statements is as follows:

D211 General Format
SELECT file-name
ASSIGN TO flle-identifler.
D.2.1.2 Parameters

file-name is any user-defined L/11 COBOL word.
file-identifier is any other user~-defined L/l COBOL
word
D213 Example

SELECT STOCK-FILE
ASSIGN TO STOCK-NAME.

D.2.2 PROCEDURE DIVISION
Before the file I1s OPENed for use, the extermnal Lisa file name of the required
file (see Fixed File Assignment above for format) Is stored, as required in the
file identifler location specified above by the user program.

COBOL. Lser's Guide Flle Fomats

Example:

MOVE "WAREHS.BUY" TO STOCK-NAME.
OPEN INPUT STOCK-FILE.

-

CLOSE STOCK-FILE.

;“IOVE "WAREHS.SEL" TO STOCK-NAME.
OPEN INPUT STOCK-FILE.

CLOSE STOCK-FILE.

The Lisa flle name can be entered via an ACCEPT statement, by an user, or
stored as any other variable data.

In this way, a different external file can be used as a cornmon internal user
file during any run of a program, but care is required to ensure that the
correct file is allocated at any glven time.

Note that once the OPEN statement has been executed, the file identifier
data area can be used for any purpose the user requests. In the above
example, between the two OPEN sentences, STOCK-NAME can be used for
storing any data string required.

D.3 LEVEL II COBOL Disk Flle Structures under the Lisa
LEVEL II COBOL offers four types of file organization for use by the COBOL
user: sequential, line sequential, relative, and indexed sequential (ISAM). A
file is a set of records. A record is a set of contiguous data bytes which are
mapped into hardware sectors with which they need not coincide; that is, a
record can start anywhere within a sector and can span hardware sector
boundaries. The data are held as follows:

D.3.1 Sequential
Sequentlal flles are read and written using fixed length records. The length
used is that of the longest record defined in the COBOL program's FD.

Normally the space occupied per record is the same as the program record
length, and data of any type can be held on the file. However, this does not
apply if WRITE statements are specified using BEFORE or AFTER
ADVANCING phrases. Then extra control characters are inserted, and the
data can no longer be read back correctly.

No limits exist on file size beyond those imposed by the Operating System
and/or hardware.

COBOL Users Guide Flle Fornats

D3.1.1 Sequential File Format
A sequential file consists of fixed length records without terminating
characters. The flle therefore appears as a string of characters. If the last
record in the file contains trailing 1AH characters, it might not be accessible.

D32 Line Sequential
Line sequential file format is intended for text (ASCII) files generated by
editors and other similar utilities, and is the only LEVEL 11 COBOL file
format that supports variable length records. The one-byte 0D carriage
return is used as a record delimiter. On input, the 0D Is removed and the
record area filled with spaces as necessary. On output, any trailing spaces in
the program's record area are ignored. Using ADVANCING phrases other than
BEFORE 1 causes the output of additional device control characters; a file
created this way can be read by a program. If a record is too long; that is, it
exceeds the maximum length specified for the flle, each access returns
‘maximum-length’ characters until the end of the record. After an access, if
the next two characters are 0D, they are omitted -- in this case, a blank line
is not be returned on the next access.

D33 Relative
Relative file organization provides a means of accessing data randomly by
specifying its position in the file. Records are of fixed length. The length
used is that of the longest record defined in the program's FD. To designate
whether or not a record logically exists, one byte is added to the end of each
recorc: this byte is 0D if the record loglcally exists on the file and 00 if it
does not. The total length of a file is determined by the highest relative
record number used; LEVEL 11 COBOL imposes no effective limit on this
value. Data of any type can be held on the file.

D.33.1 Relative File Format
A relative file is organized similarly to a sequential file; it is a string of
characters in fixed length records. However, each record is followed by a
one-byte interrecord rmarker which is:

carrlage return Hex 0D if the preceding record exists,
or

null Hex 00 if the preceding record doesn't
exist.

If a record is deleted from a relative file, the interrecord marker following
the record is changed to Hex 00 - the state of the data is undefined. If, for
security purposes, the user wishes to be certaln the data are deleted, the
recoad should be overwritten by using a COBOL REWRITE statement before
deletion.

D-5

COBOL. Users Guide File Fonmats

A relative flle can be read In sequentlal mode, If the record length is set to
Relative-record-length+1.

Note that the first record in a relative file is record one: no record zero
exists.

D.34 Indexed Sequential
The Indexed Sequential Access Method (ISAM) uses two types of flles: the
data file and the key or index file. Both types of flles are in relative file
format.

The name of the data flle is supplied by the user. The name of the
associated key file is produced by adding the extension .IDX to the root of
the data file name.

Example:
Data file Key file
MYFILE MYFILE.IDX
CLOCKFLE CLOCK.IDX

NOTE

Two or more data files with different extensions, but the same root
name, cannot be distinguished by ISAM as the key files all have the
same name. To avold using the extension .IDX in other contexts Is
also advisable.

The index Is bullt up as an inverted tree structure which grows in height as
records are added. The number of key flle accesses required to locate a
randomly selected record depends primarily on the number of records on the
flle and the ‘keylengths’. An approximate guide to the number of levels in
the tree, and hence the number of accesses required, is

index levels 100k (number of records)
where Kk o~ 150
keylength + 2

but varies slightly on the order in which records are added and deleted.

Faster response times are obtalnable when reading a file sequentially, but
only If other ISAM operations do not intervene.

The size, in bytes, of an ISAM flle is approximately related to the maximum
number of records it contains as follows:

data = (record length + 2) *» max. no of records

index =no of records * 256 where K Is as defined above
k-1

COBAL. User's Guloe Flle Formats

NOTE

The necessity of taking regular backup coples of all types of flles
cannot be emphasized too strongly, and should always be regarded as
the main safeguard. However, situations exist with indexed flles; for
example, media corruption, that can lead to only one of the two files
becoming unusable. If the index file is lost In this way, it Is normally
possible to recover data records from just the data file, although not in
key sequence, and cut down on the time lost due to a fallure. As an
aid to this, all unused data records are marked as deleted at the
relative file level by appending two bytes to each record that contalns
LOW-VALUES. For undeleted records, these bytes contain the
characters carriage return and line feed. The recovery operation can
therefore be done with a simple COBOL. program, by defining the data
file as ORGANIZATION SEQUENTIAL ACCESS SEQUENTIAL with
records defined as two bytes longer than In the ISAM file description.
The records are then read sequentially, and the data MOVEd from the
sequential file record area into the indexed (ISAM) file record area and
written to a new version of the indexed flle; except for those records
with LOW-VALUES In the last two (extra) bytes, these records should
be discarded. Note that these two bytes, contalning carriage retum
and line feed characters In a required record, are not written to the
ISAM flle on recovery, because of the record length discrepancy of two
bytes in the record definitions.

El

E4

E6

Appendix E
Useful Facts and Figures

PERFORM Nesting
Due to the mechanism used for controlling the nestlng of PERFORM
statements, LEVEL Il COBOL allows a maximum of 55 nested PERFORMS.

The PERFORM stack is between 470 and 480 bytes in size.

Tnis depth of PERFORM nesting applies to a whole CALLed sulte of
programs; any PERFORMs active at a CALL remain active.

USING Parameters
The maximum number of PROCEDURE DIVISION USING parameters is 12.

Level 01 Entries
There can be up to 63 Level D1 entries in the LINKAGE SECTION. This limit
does not include redefinitions.

Exponentiation
Fractional exponents are rounded down to the nearest positive integer before
evaluation. Negative exponents are correctly evaluated, but not fractions.
Exponents can be up to four digits in length. If larger than 9999, the
overflow flag is set.

Slze of Numbers
According to the ANSI standard:

Numbers are limited to 18 significant decimal digits.
All significant digits are within 18 digits of the decimal point.

In LEVEL Il COBOL the result of a multiplication or division that is greater
than 36 digits gives a SIZE ERROR, as does the result of an addition or
subtraction that is greater than 37 digits.

Open Files
The maximum number of files that a COBOL program can have open

simultaneously is 20 files. Exceeding this causes the RTS to signal Error 17
(see Appendix C).

Appendix F
COBOL Workshop Files

CoBOL User's Gulde COBOL Workshop Files

COBOL Workshop Files

This appendix lists the flles on the COBOL 1.0 diskettes.

File Name COBOL Notes Description
Diskette
BYE.TEXT Workshop installation exec file.
ByteDiff.obj utility program. .
Cistart.text Workshop installation exec file.
COBOL.ERR Workshop program.
COBOL .151 workshop program.
COBOL .152 Workshop program.
COBOL .153 Workshop program.
COBOL..156 Workshop program.
COBOL .1I59 Workshop program.
COBOL . INT workshop program.
COBOL .ISR Workshop program.
COBOL.0BJ Workshop program.
Diff.ob) uUtility program.
DumpPatch.obj Utility program.
EDIT.MENUS.TEXT Editor support file.
Editor.obj Workshop program.

Filediv.obj

Utility program.
Filejoin.obj

Utility program.

find.obj Utility program.

FMDATA 1,2 Data segment.

font.heur 1,2,3 Data needed to support SYSiLib.
FONT.HEUR Second copy of same file.
font.1lib 1,2,3 Data needed to support SYSiLib.
GETPROFILELOC.TEXT Wworkshop installation exec file.
GETYESNO. TEXT Wworkshop installation exec file.

INSERTDISK.TEXT

Wworkshop installation exec file.
Intrinsic.1ib

2,3 Library directory.

NN =N ENNNNNNNNRNNNNNNNN SN -

I0SFplib.obj Library unit w/interface.
10SPas1ib.ob] 2,3 Library unit w/interface.
IXSIO.INT Workshop program.

Note 1: These files are identical to Office System Release 1.0 files.

Note 22 These flles are identical to Office System Release 1.2 files. Office System
1.2 is functionally identical to Office System 1.0, but is released to ensure
compatibllity with Pascal 1.0, BASIC-Plus 1.0, and COBOL 1.0.

Note 3: These files are the minimum necessary to run a user program in the
workshop environment. A user program may require other files as well.

COPQAL. Lsers Guice

Flle Name CoB0L

Diskette

LDSPREFERENCES . 0BJ
LDS_RES_PROCS.TEXT
OSERRS.ERR

PAPER. TEXT

PI.TEXT
Portconfig.obj
resident_channel
Shell. WorkShop
STOCK1.TEXT
STOCK2. TEXT
Sulib.obj
Sxref.obj

SXREF .OMIT.TEXT

2
2
1
2
2
2
1
1
2
2
1
2
2
Sysilib.obj 1
SYS2L1B.0BJ 2
SYSTEM.BT_PROF 1
SYSTEM.BT_TWIG 1
SYSTEM.IUDIRECTORY 1
SYSTEM.LLD 1
SYSTEM.LOG 1
SYSTEM.OS 1
System.Shell 1
SYSTEM.STACK1 1
SYSTEM.STACK2 1
SYSTEM.STACK3 1
SYSTEM.STACKA 1
SYSTEM.SYSLOC1 1
SYSTEM.SYSLOC2 1
SYSTEM.SYSLOC3 1
SYSTEM.SYSLOC4 1
SYSTEM.TIMER_PIPE 1
SYSTEM . UNPACK 1
term.menus.text 2
transfer.ob) 2
WHDATA 1
{T11}BUTTONS 2
2

{T11}MENUS . TEXT

Notes

1,23

N

~
PDRNNRNNNRNNINNNNINNNEN
(U RV RV R RV R RV RV RV R R TR VRV RV RV R RVIRV RV

>

LY S N N Y

~

[T e e e)

.

&
NN

COBOL. Workshop Flles

Description

workshop program.
workshop data.

Workshop data.

Workshop data.

COBOL demonstration program.
utility program.

System data.

Workshop main program.

COBOL demonstration program.
COBOL demonstration program.
Library unit w/interface.
utility program.

Data.

Library units (no interface).
Library units (no interface).
System support.

System support.

System data.

System program.

System data.

System program.

System program.

System data.

System data.

System data.

System data.

System data.

System data.

System data.

System data.

System data.

System data.

Data for transfer program.
workshop program.

Data segment.

Data.

Data.

Note 1: These flles are identical to Office System Release 1.0 files.

Note 22 These files are identical to Office System Release 1.2 files. Office System
1.2 is functionally identical to Office System 1.0, but is released to ensure
compatibility with Pascal 1.0, BASIC-Plus 1.0, and COBOL 1.0.

Note 3: These files are the minimum necessary to run a user program in the
workshop environment. A user program may require other files as well.

F-2

Index

Index

Please note that the topic references in the Index are by section mumber.

A
accept data
elementary item 4.4.1
group item 4.4.2
ACCEPT MYDATA statement 4.4.1

ACCEPT statement 3.1.1.3, 4.2, 4.4, 45

ADD statement 5.2.4

ALTER directive 2.2

ampersand 2.1, 2.4

ANSI COBOL Switch parameter
3112, A2

argument 2.1

ASSIGN statement D.1.1, D.2.1

AT position 4.4.2

R

BRIEF directive 2.2

W
CALL,

See interprogram communication
CALL statement 5.2.2, 5.2.3
CANCEL statement 5.2.2, 5.2.3
clause

CURSOR IS 45

ON SIZE ERROR 5.24
clear screen 4.3.1
command

Compile 1.263, 2.1

Run 1264, 31.1

Set switches 3.1.1.1, A2
cormmand line

compile 1.25, 2.1

run-time 3.1.1
COMP directive 2.2
COMP code 5.24
Compile command 1.2.6.3, 2.1

compller 1.2.2, 2
directive 2.1, A
message 2.4
compile-time error B
CONSOLE IS CRT statement 4.2
COPYLIST directive 2.2
CRT screen handling
clear screen 4.3.1
display data 4.3
display complex items 4.3.3
display single item 4.3.2
CRTWIDTH directive 2.2
cursor control 4.2.1
CURSOR IS clause 4.5
cursor positioning 4.5

M-

| 4
DATE directive 2.2
demonstration programs
1.2.4, 1.2.6.3, 1.26.4
device D.1.1.2
device management 1.2.6.2
directive, Compiler 2.1
ALTER 2.2, A
BRIEF 22, A
CoMP 22, A
COPYLIST 22, A
CRTWIDTH 2.2, A
DATE 22, A
ECHO 22 A
ERRLIST 22, A
FLAG 22, A
FORM 22, A
INT 22, A
LIST 22, A
PRINT 22, A
QUAL 22 A

Index-1

COBOL Users Gulae

REF 22, A

RESEQ 2.2, A

excluded combination 2.2.1
directive, run-time 3.1, A
display data 4.3
DISPLAY SPACE statement 4.3.1
DISPLAY statement

42,432, 4.33
DIVIDE statement S.2.4

=

L ™

ECHO directive 2.2
ERRLIST directive 2.2
error format 1.2.6.3
error handling routine C.3
error message

compile-time B

run-time C.2.1, C.2.2
exponentiation E4
extension D.1.1.2

JEXT 1.26.3

DX 1.264

UNT 1.26.3, 1.26.48

IT 1264

LST 1.26.3
external-file-name-literal D.1.1.2

} snd

fatal error, run-time C.1.2
file format D
file-identifier D.2, D.2.1.2
file-name 0D.2.1.2
filename D.1.1.2
file organization
indexed sequential D.4
line sequential D.3.2
relative D.3.3
sequential D.3.1
FLAG directive 2.2
flagging line format 25
FORM directive 2.2

.

HOME position 4.4.1

Inoex

indexed sequential file organization
D34

initialize 1.2.6.1

ssue disk 1.2.1, F

INT directive 2.2

interprogram communication 5.2.2

ISAM,
See Indexed sequential file
organization

(7

keylengths D.3.4
keyword 2.1

level 01 entry E.3
LEVEL II COBOL., description 1.1
limits
exponentiation E.4
level 01 entrles E3
number size ES
open flles E.6
PERFORM nesting E.1
USING parameters E.2
line sequential file organization D.3.2
LIST directive 2.2
listing format 25

M
MOVE statement 5.2.4
MULTIPLY statement 5.2.4

number size limit E.S

O
ON SIZE ERROR clause 5.2.4

open file limit E.6
overlaying, See segmentation

D.

PERFORM nesting E.1
PRINT directive 2.2

Index-2

COBOL Users Guloe

program
design considerations 1.3.2
development cycle 1.3
parameter 3.1.1.3
preparation considerations 1.3.1

Q
QUAL directive 2.2

0

READ statement 3.1.1.3
recoverable error, run-time C.1.1
REF directive 2.2
relative file organization D.3.3
RESEQ directive 2.2
Run command 1.26.4, 3.1.1
run-time
command line 3.1.1
directive 3.1, A
error message C.2.1, C.2.2
Switch parameter 3.1.1.1. A2
system 1.2.3

Q.

screen handling,
See CRT screen handling
segmentation 5.2.1
SELECT statement D.1.1, D.21
sequential file organization D.3.1
Set switches command 3.1.1.1, A2
statement
ACCEPT 3.1.1.3, 4.2, 44,45
ACCEPT MYDATA 44.1
ADD 5.24
ASSIGN D.1.1, D.2.1
CALL 5.22,523
CANCEL 5.2.2, 5.2.3
CONSOLE IS CRT 4.2
DISPLAY 42,432,433
DISPLAY SPACE 4.3.1
DIVIDE S5.2.4
MOVE 5.24
MULTIPLY 5.24
READ 3.1.1.3
SELECT D.1.1, D.2.1
SUBTRACT 5.24
SUBTRACT statement 5.2.4

Switch parameter

ANSI COBOL Debug 3.1.1.2, A2

un-time 3.1.1.1, A2
syntax error format 2.5

unprotected area 1.2.6.4
USING parameter E.2

Index-3

Index

LisaWrite, LisaDraw, and
Lisal.ist.

, LL PRINTING Was done with an
— Apple Dot Matrix Printer.

the Lisa™

.. We use it ourselves.

COBQY. Uksers Guice Mall-Back Fonm

Apple publications would like to learn about readers and what you think about
this manual in order to make better manuals in the future. Please fill out
this form, or write all over it, and send it to us. We promise to read it.

How are you using this manual?
[] learning to use the product [] reference [) both reference and learning

{] other

Is it quick and easy to find the information you need in this manual?
[Jalways []often [] sometimes [] seldom [] never

Comments
what makes this manual easy to use?

what makes this manual hard to use?

wWhat do you like most about the manual?

what do you like least about the manual?

Please comment on, for example, accuracy, level of detall, number and
usefulness of examples, length or brevity of explanation, style, use of
graphics, usefulness of the index, organization, suitability to your particular
needs, readability.

what languages do you use on your Lisa? (check each)
[1Pascal []BASIC []COBOL []other
How long have you been programming?

[J0-1years []1-3 [14-7 [Jover 7 []not a programmer
what is your job title?
Have you completed:

{ 1 high school [] some college [] BA/BS [] MAMS [] more
what ragazines do you read?

Other comments (please attach more sheets if necessary)

029-0314-A

as

Fao
PLACE
STAP
HERE
4
'qpple computer
®

POS Publications Department
20525 Mariani Avenue
Cupertino, California 95014

TAPE R STRPLE

COBOL for the Lisa

Release 1.0 Notes

what's In the COBOL Release Notes?

These notes describe situations that were brought to our attention after it
was too late to document them in the COBOL manuals.

Insert these notes in the back of thelr respective manuals, so that you can
refer to them as necessary.

If you have a question or a problem that you can't find the answer to, either
in the manuals or In these notes, you should call the Lisa Telephone Support
Line, (800) 553-4000.

029-0454-4 November 1983

Release Note

Workshop
Chapter 1

workshop
Chapter 1

workshop
Chapter 1

Workshop
Chapter 1

Workshop
Chapter 1

workshop
Chapter 1

The Installation Instructions state that you must install the Lisa
Offlce System before Installing any optional language products.
However, these Instructions apply to only the installation order.
You do not need to Install the Office System if you intend to do

only language development.

After you press the on-off button (at the start of instaliation),
walt for a quick tone before selecting the disk drive,

Although the installation instructions state that the installation
procedure should be aborted if any error messages are returned,
you might normally encounter error 950 or 948 when you try

to install SYSTEM.TIMER_PIPE and RESIDENT_CHANNEL. You
might also encounter error 1176 for these pipes if you use the
Equal command after installation.

Correctly installing COBOL 1.0 on top of your Office System
Release 1.0 pulls the Office System up to level 1.2. All
subsequent installations of system software are then order
dependent, requiring instatlation from the workshop to follow
that of the Office System. Jo not reinstall the Office 1 and
Office II diskettes without immediately reinstalling the language
products(s). However, if your Office System is already at level
1.2, the installation is order independent.

After successfully adding COBOL 10 a ProFile contalning the
Offlce System, if the system is merely allowed to reboot, the
default of the Environments window will cause the Office
System to restart. To cause the initialization to pause at the
Environments window In order to examine or change the default,
press the space bar after the machine seiftest, while the
nourglass icon is showing.

If you have just printed anything on a daisy wheel printer from
the Office System, and you return to the workshop using the
Environments window, printing to logical device "-printer" will
be garbled until the printer is switched off and then on again.

November 1983

Manual

Chapter Release Note

workshop The print commands of the Editor always use the logical device

Chapler 1 “-printer” set in the System Manager. Choosing “Dalsy wWheel

- Printer* or “Dot Matrix Printer* from the Print menu does not
change the System's conflguration, but only adjusts the Editor to
the Intended device.

workshop Any program intended to run as a background process

Chapter 1 (MakeBackgroundProcess) must include freguent and judicious
cails to the Operating System procedure Yield CPU. Hence,
system utilities should never be run In the background. Also, a
background process should not have any interaction with the
console, and it cannot pull events from the hargware event
gueue.

workshop Designating user files to begin with the pathname “SHELL."

Chapter 2 makes them appear in the Environments window as an
alternative shell.

workshop You cannot directly rename a file to a name that differs from

Chapter 2 the original only in the case of the characters, because the
internal representation of the names is the same. Instead,
rename the file to a temporary name, and then change that
to the name you want.

workshop If you unmount the prefix volume by ejecting the diskette,

Chapter 2 Scavenging the volume, or using the Unmount command, the boot
volumne autornatically becomes the prefix volume.

workshop The Output Redirect function of the System Manager does not

Chapter 3 correctly handle screen output that uses GOTOXY, for example,
screen output done by the File Manager when listing wildcard
matches. This results in redirected output to the printer being
overwritten on one line.

workshop The Editor changes the creation date of a text file to the

Chapter 4 current date each time the file is modified.

November 1983

Manual
Chapter

Release Note

workshop
Chapter 4

workshop
Chapter 4

workshop
Chapter 4

workshop
Chapters 4
and 10

workshop
Chapters 4
and 10

workshop
Chapter 7

If the inltialization of the Eoitor falls due to lack of disk space
{error 309), and space on the disk Is then made free, the next
attempt to start the Editor will also fail (error 304). You must
enter the Process Manager of the System Manager, Kill the
Editor process, and then retry.

The language processors, Editor, and many other utilities of the
workshop expect as input a standard .TEXT flle. The internal
structure of a text file in a plock-structured device Is
described in the Lisa COBOL Reference Manuak

* Each page (two 512-byte blocks) contains some number of
complete lines of text and Is padded with null characters
{(ASCII 0) after the last line as necessary to complete the
page.

* Two 512-byte header blocks are also present at the
beginning of the file. These may or may not contain
information.

* A sequence of spaces (ASCII 32 decimal, $20 hexadecimal)
can be compressed intc a 2-byte code namely, a DLE
character (ASCI! 16 decimal, $10 hexadecimat), followed by a
byte containing the value 32 decimal plus the number of
spaces represented.

The file name “"PAPER.TEXT" is reserved for the default
stationery template of the Editor and should not be used for
other purposes.

Cursor residue might be left on the screen in the Editor and the
Transfer program, especially after an error message has
appeared.

The names of files created by the Editor and Transfer will be
changed to be all upper case, regardless of how they are typed
in.

If multiple errors occur during a link, due an attempt to link

regular units with intrinsic units, the Linker will terminate after
reporting only the first error.

November 1983

Manual

Chapter ReleaseNote

workshop For the Debugger, >PR 2 Is print to SLOT2CHANZ, not

Chapter 8 SLOT2CHANI. Upper and lower are reversed in the manual.

workshop Display of error message 647 while you are using the Transfer

Chapter 10 utility might indicate only that after a timeout the program has
falled to recelve the appropriate handshake from the host.

Wworkshop If you type any key during “Playback from what file " in the

Chapter 10 Transfer program, the piayback will abort.

workshop If you use the Transfer program to make contact with a host

Chapter 10 computer, and you exit the program without logging off
explicitly, the connection will not be automatically terminated.
This Is usually a convenience, but might not meet user
expectations.

workshop when the Workshop shell is initialized, all serlal ports are

Chapter 10 configured by default as if they were printers (e.g., 9600 baud,
DTR handshake, automatic linefeed insertion), whether or not
they are listed as such by Preferences. If you subseguently use
and then exit the Transfer program, the printer configuration is
restored automatically for ONLY those ports listed in
Preferences as printers; others will retain the properties set by
the Transfer program. The Editor will not reconfigure ports that
have been changed by PortConfig.

workshop To terminate recording to a file opened by the Transfer program

Chapter 10 during "Record to", open the Control menu and again select

, “Record to”. This terminates recording and closes the file.

Note that, unlike the Editor, Transfer does not automatically
insert a carriage return at the end of the file. If you use this
recording to capture text such as a source program, and the
language processor (such as BASIC-Plus) expects to see a
carriage return at the end of the file, attempting to run the raw
recorded text might cause the system to hang.

workshop The manual states that the default handshake in the Transfer

Chapter 10 program is XOn/XOff. The correct default is None.

Novernber 1983

Chapter Release Note
workshop ASCII characters in the range hex 20 through hex 7E are
Appendix B supported for screen display, for printing on a dot matrix

printer, and for printing on a dalsy wheel printer with the
following print wheels:

* Gothle, 15 pitch.

* Prestige Elite, 12 pitch.
* Courler, 10 pitch.

* Boldface/Executive, PS.

Printing ASCII characters to a daisy wheel printer is not
supported for the three print wheels with Modern type styles.

The character set in the Appendix should show the full

Lisa Character Set. All of the additional characters can be
displayed on the screen. Most additional characters can be
printed on a dot matrix printer, but none will print on a daisy
wheel printer. A new page B-1 is attached; take a moment now
to make the substitution.

November 1983

Manual
Chapter Release Note

COBOL An easy way to adapt the Mouse Editor for COBOL programs is

User's Guide to use the Edit menu to set tabs every eight spaces, tab to the

Chapter 1 72nd space, and resize the window to show only 72 columns of
text.

COBOL To avold destroylng a valld .INT flle when recompiling source
User's Guide flles with the same name, you can use the compller directive
Chapter 2 NO INT or INT "SOMETHING.INT".

COBOL An error during compilation sometimes results in a file ending In
User's Guide .D00 belng left on the disk. Ignore or delete the .DOD flle.
Chapter 2

COBOL User-defined collating sequences produce unpredictable results
Reference In some cases.
Chapter 8

November 1983

Appendix B

Workshop Character Set

) r - A| Y| A Gk
Bi+|viiaM dONEE|l— o 8 o
w—lo |o|lw|w|.|=|cale|o|: R AL JE
QD | vt | ot [t [OO O[O P B hee B Riee s
L || O]l [Z |10 |D | @ | (T | «T | :0 €| OO | D
QI T M| 0w 3> 3| X| >N —l—
C L 0T O DL wm|™ ~ &0
Ao |N - D>B|X>|N|—|~|rm |
@< DOQWL|T I~ -|2Z|0
O=wINM|IJ N OINOOIO vin|Ale
& | =2z B X|F|- |~|~|x <1 ~
d|{8|8|8|3|¥|5|E|% 5|8 2ls|2|s
|5 |E|E|E|B | 8|8l £ |8 |8 |w
g 4 &N M F N w N~ 0 o O 0 w uw

The first 32 characters and DEL are nonprinting control codes.

The shaded area is reserved for future use,

B-1

° U
e COBOL €

Packing List

This package contains the following items:

Item Quantity Part Number Description
1 1 620-6137 COBOL Reference Manual for the Lisa™
2 1 682-0015 COBOL 1, Diskette
3 1 682-0053 COBOL 2, Diskette
4 1 620-6148 Workshop User’s Guide for the Lisa™
5 1 620-6155 COBOL User’s Guide for the Lisa™
6 1 029-0183 Software Registration

In case of questions, contact the dealer from whom you purchased this product.

020-0162-A 41883

