
United States Patent c191
Baker et al.

[54) MEMORY MANAGEMENT UNIT WITH
OVERLAPPING CONTROL FOR
ACCESSING MAIN MEMORY OF A DIGITAL
COMPUTER

[75] Inventors: Paul A. Baker, Los Altos; Gary L
Marten, Cupertino, both of Calif.

[73] Assignee: Apple Computer, Inc., Cupertino,
Calif.

[21] Appl. No.: 933,071
[22) Filed: Dec. 17, 1986

Related U.S. Applicadon Data

[63] Continuation of Ser. No. 426,869, Sep. 29, 1982, aban­
doned.

[51] Int. a.s .. G06F 9/00
[52) U.S. CL 364/200; 364/238.4;

364/246; 364/246.3; 364/246.4; 364/246.5;
364/245.4

[58) Field of Search 364/200, 900
[56] References Oted

U.S. PATENT DOCUMENTS

3,828,327 8/1974 Berglund et al 340/172.5
3,902,163 8/1975 Amdahl et al 340/172.5
4,004,278 1/1977 Nagashima 340/172.5
4,037,215 7/1977 Birney et al 364/200
4,084,224 4/1978 Appell et al 364/200
4,084,227 4/1978 Bennett et al 364/200
4,084,228 4/1978 Dufond et al 364/200
4,096,568 6/1978 Bennett et al 364/200
4,104,718 8/1978 Poublan et al 364/200
4,130,867 12/1978 Bachman et al 364/200
4,297,743 10/1981 Appell et al 364/200
4,316,245 2/1982 Luu et al 364/200
4,354,225 10/1982 Frieder et al 364/200
4,376,297 3/1983 Anderson et al 364/200
4,378,591 3/1983 Lemay 364/200
4,410,941 10/1983 Barrow et al 364/200
4,424,561 1/1984 Stanley et al 364/200

FOREIGN PATENT DOCUMENTS

0040702 2/1981 European Pat. Off ..
190324 12/1982 New Zealand .

1413739 11/1975 United Kingdom .
1477977 6/1977 United Kingdom .
1487078 9/1977 United Kingdom .
1498116 1/1978 United Kingdom .
1547382 6/1979 United Kingdom .

[11) Patent Number.
[45) Date of Patent:

4,926,316
May 15, 1990

1557121 12/1979 United Kingdom .
1577592 10/1980 United Kingdom .
1585960 3/1981 United Kingdom .
2073458 2/1984 United Kingdom .

OTHER PUBLICATIONS

Wescon Conference Record, vol. 25, Sep. 1981, pp. 1-9,
El Segundo, U.S.; S. Walters: "Memory Management
Made Easy with the Z8000".
Electronic Design. vol. 29, No. 17, Aug. 1981, pp.
115-121, Waseca, MN, U.S.; D. L. Collins et al.: "Mem­
ory Management Chip Masters Large Data Bases".
Electronics International, vol. 54, No. 11, Jun. 1981, pp.
134-138, New York, U.S.; J. Beekmans et al.: "Chip Set
Bestows Virtual Memory on 16-bit Minis".
Primary &aminer-Gareth D. Shaw
Assistant Examiner-John G. Mills
Attomey, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman
[57) ABSTRACT

An improved memory management unit (MMU) for
interfacing between a CPU and a main computer mem­
ory. The MMU receives logical addresses from the
CPU and converts a portion of the logical address to be
used for generating a physical address to address to
address the main memory. The MMU memory contains
relocation data which is stored in a plurality of seg­
ments known as contexts. For a given logical address
provided by the CPU, the CPU also selects an appropri­
ate context so that the mapping of the main memory is
determined by the selected relocation base. This permits
relocation data to be stored for a plurality of processes
and thus. allows several programs to be run without
reprogramming the MMU. Special "limit" bits and
"access" bits are also stored in the MMU's memory for
each of the relocation base data. The limit bits are used
to check the range of the memory area requested for a
given context to determine if it is in the allowable range.
Access bits are used to determine if the type of access
being requested is a legal access for the given context.
Because the MMU stores a number of relocation bases
which are programmable by the CPU, areas of main
memory can be accessed by more than one context,
thereby providing an overlapped mapping of the main
memory. For example, in a supervisory mode the super­
visory context is able to access all of the main memory.

5 Claims, 3 Drawing Sheets

U.S. Patent May 15, 1990

55

CPU
A1A1V

-10- -1.z-

37

18

CoNT£XTO--

00ER.471AIG S'KSTEU

Qo.4.0REA/T

Co,vT£...rT 1--0ol..----------- --- -
RELOC.4 7/01/

fi,qs£

loA!TEXT z--.;..-----------------­
RE.(OC/CI T/ON

8t4.S£

f- ,(/,,W/T4 t4CCES.:S
/~/3/7(5

loAJTE%Tc3 , ------ ---------
/.2.c;&Ts RE.(oct4 770A/

_i__ L3r1S£

Sheet 1of3 4,926,316

16

57

Jlt41N

HEMORV

-14-

1oa,b

/l)C

Su,PER t//SoRY A/oLJE

, .
.3 Of/ER.(t4.P.P/A/G

:<.od

UEtWOR/.EcS"
~Of> USER
?A=VcES.Uc.5

L1251T.S_J

U.S. Patent May 15, 1990 Sheet 2 of3

&:GMENT

7f31TJ 8 '3!TcS 98/TcS

vV
7 /

RE..<'. o c~ 770A/ t1cc£.S.S .-------
M.s£ .L/M/T C#EC.<

.8/TS

47'--i

--25-
45\ /4 ~-....... JZS---------'

7 _ ___,,___.]\I 00
4~ 16 S .--_-a_iv~1---:1---.:....L· ki.lU.-__

t4cc£.ss OJrGeROJ<I

Ch'ECR' (t'ZeRY
LoG/C J,v

~27--

9.<5/T
OFFSET

4,926,316

LJc

~
~ 2 I 81T{J;h'YS/C.4i.) .4.0LIRESS

h 70 HcVA/ HEUOR Y

[.))
(_b):JG/CH',.(H~ESS 2111h JJvN'A/.EAICWY (/4)

~ o ;f;" 200.<"fi -- o.s J CavrE,tT o
C\J /A Jr&-~_~_rs_aR~V-=~~:::..J
~j Jhla

HEE &<#cE

/.Sina 1--~~~~~~---1

,/ OG/O:U .. f1.aa.f'£So 1
o;o (JOO,(Lj --CtwTEXT 4ra

£l4Tt4

?Al?6Rt4W
/.-?lnO t--~~~~~~---<

/.h1.6

,/OG/Cf/,L ~E..S.S
0 '70-4bo-<23 -- Ca-vT£XT

2-12

6aa&

&:xJ,(23

./oG/C..U. .4.a?RESS
070 500£8 -- CcwT£XT

/-fa}

0

/REE 6.Pt4CE

LJ.4T.4

/k>£E S.P.4C'£ - --;o~GR"°AU __ _

/'REE S/:#c£

£#Tel
1...--60-

?Ro5fWA4

--59-

Ca-vrEXT I lOVT£XT2

A,611a:ESS
70 ,#,e;w,Ry

CoNTE.KTd

A/o fkc.ES&
70~Y

l ___ _
ijw

REt40
o..v~y_

CcwTE..fT 0

-T
Coit'..A:'.'£TE
~CCESS

70 A/#~
KE"tWORYd­

rM?w~t#OPY

A6 llcc£ss
70~~y

52 I A.6 A/A-Ill

-- ~~~Ela:£~
51 ~

,.W,;tl;t4tL REtf/L>

A£-M:JeY ikr:£ so OV,(y

R/cv

-----+
REllDG.£.Y

~.4

A6t:/ccESS
;o-A/,4-la.
#E/WORV

,,(,6 c!cc.ESS

To#~y

~
~

~ ;-
a

g
~

JJt

i

ga
a
~

e,
~

~

~
tu
~

°"

1
4,926,316

2

MEMORY MANAGEMENT UNIT WITH
OVERLAPPING CONTROL FOR ACCESSING
MAIN MEMORY OF A DIGITAL COMPUTER

address signals for accessing the memory. The MMU
also includes storage means for receiving and storing
signals representative of the types of information stored
in locations in the main memory. Accessing means are

This is a continuation of application Ser. No. 426,869
filed Sept. 29, 1982.

BACKGROUND OF THE INVENTION

s provided for accessing these stored signals when the
corresponding locations are accessed in the main mem­
ory. The stored signals from the storage means are
coupled to the main memory to, for example, limit ac­
cess of certain types of data in the memory such as

1. Field of the Invention.
The invention relates to the field of computer memo­

ries and units for managing the contents of such memo­
ries.

10 operating systems. The signals may be also used to
permit reading-only of programs, and reading and writ­
ing of data.

2. Prior Art
In most computers, a central processing unit (CPU) 15

communicates directly with both an address bus and a
data bus. These buses are coupled to a main memory (or
main memory systems) in addition to numerous other
items such as input/output ports, specialized processors,
DMA units, etc. The main computer memory is often 20
the most expensive component of the computer, partic­
ularly when compared to the price of currently avail­
able microcomputer CPUs such as the 8080, 8086, 6800
and 68000. Thus, it is important to efficiently utilize the
computer's main memory. 25

Memory management units (MMUs) are used in the
prior art to provide efficient utilization of the comput­
er's main memory. These units perform housekeeping
functions such as remapping, etc. Often, an MMU in­
cludes a memory which stores a data relocation base 30
The higher order bits of the logical address from the
CPU are used to address the MMU's memory. These
bits from the CPU's standpoint, for instance, select a
segment of the main memory. The selected CPU seg­
ment number is replaced by a new number from the 35
MMU's memory and effectively, a relocation occurs
between the logical address from the CPU and the
physical address used to access the main memory.

Another function performed by prior art MMUs is to
check addresses from the CPU to verify that they fall 40
within certain ranges. A limit number stored in the
MMU's memory is compared with lower order bits of
the logical address (for example, the page offset) to
assure that the page offset falls within a predetermined
address range of the selected segment number. This 45
prevents, by way of example, the accidental reading of
"data" from memory locations where data has not been
placed.

The present invention builds upon those prior art
MMUs which provide a relocation base and address 50
range verification. As will be seen, the MMU's memory
is expanded in one direction to store signals represent­
ing the nature of information stored in the main mem­
ory. This is used to control access of the main memory
and, by way of illustration, prevents accidental writing 55
into programs and user access to operating systems. The
MMU's memory is expanded in another direction so
that overlapping memory management is provided.
This allows several different processes (program and
data) to be run by the computer without reprogram- 60
ming the MMU memory.

SUMMARY OF THE INVENTION

An improved memory management unit (MMU) is
described for use with a computer which includes a 65
central processing unit (CPU) and a main memory. The
MMU includes a relocation base and when receiving
first address signals from the CPU, provides second

In the presently preferred embodiment, the storage
means is an integral part of the MMU's memory. The
MMU's memory has four times the capacity than is
needed to provide relocation base numbers and limit
numbers for the entire main memory. As will be de­
scribed, this additional capacity permits a form of "bank
switching" and allows different processes to be run on
the computer without reprogramming of the MMU
memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a general block diagram illustrating a cen­
tral processing unit, memory management unit (MMU)
and main memory and their interconnections in a com­
puter.

FIG. 2 is a diagram illustrating the organization of
data stored in the memory of the invented MMU.

FIG. 3 is a block diagram of the invented MMU.
FIG. 4 is a diagram used to describe the different

contexts used in the operation of the MMU and the
resultant organization of information stored in the com­
puter's main memory

DETAILED DESCRIPTION OF THE
INVENTION

A memory management unit (MMU) is described for
use in a digital computer which includes a central pro­
cessing unit (CPU) and a main memory. In the follow­
ing description, numerous specific details are set forth
such as specific memory sizes, part numbers, etc., in
order to provide a thorough understanding of the pres­
ent invention. However, it will be obvious to one skilled
in the art that these specific details are not required to
practice the present invention. In other instances, well­
known structures and circuits are not described in detail
in order not to obscure the present invention in unneces­
sary detail.

Referring first to FIG. 1, the coupling between an
MMU, CPU and main memory is illustrated This cou­
pling is somewhat the same for the present invention as
it is for the prior art. The computer of FIG. 1 includes
a bidirectional data bus 16 which communicates with
the CPU 10, main memory 14 and the MMU 12. The
address bus 18 receives address signals from the CPU 10
and communicates part of these addresses to the MMU
12 and part to the main memory 14. Other control sig­
nals are coupled between the CPU 10 and MMU 12 as
illustrated by lines 35 and 37 and between the MMU 12
and the main memory 14 as shown by line 57.

The MMU 12 is programmed from the CPU 10
through the data bus 16. Addresses are communicated
over the bus 18 to the MMU from the CPU 10 to allow
the loading of the MMU 12.

In the presently preferred embodiment, the CPU 10
comprises a 68000 processor. For this processor, the
CPU 10 provides 24 bit addresses (Actually, the lowest

4,926,316
4 3

order bit is not physically present as such but encoded
into other signals, however, for purposes of discussion,
it will be assumed to be an ordinary address bit.) Also,
for purposes of discussion, it will be assumed that the 7
highest order bits of each logical address from the CPU 5
selects a segment in memory, the next 8 lesser signifi­
cant bits comprise a page offset, and the least significant
9 bits, an offset.

In the presently preferred embodiment, the segment
and page offset of each address are coupled to the 10
MMU 12. The MMU provides a relocation base by
exchanging the segment number from the CPU 10 with
a segment number stored in the MMU 12. Specifically,
the segment number from the CPU 10 addresses a mem­
ory within the MMU 12 and this memory provides a 15
segment base used to address the main memory 14. The
page offset portion of the address from the CPU 10 is
checked to determine if the page offset falls within a
predetermined range of the segment. This, for instance,
would prevent the reading and interpreting as data, all 20
zeros from an unused space in main memory. The seg­
ment base from the MMU along with the page offset are
added and then coupled to the main memory 14 on the
bus 18a and 18b of FIG. 1.

The 9 least significant bits are passed directly from 25
the CPU to the main memory via bus 18c.

Referring now to FIG. 3, the presently preferred
embodiment of the MMU includes an MMU memory
20. This memory is a random-access memory fabricated
from commercially available MOS static RAMs. As 30
currently implemented, three Part No. 2148 RAMs are
used for memory 20, thus providing a total capacity of
12k bits. The organization of the MMU memory is dis­
cussed in greater detail, particularly in conjunction with
FIG. 2. 35

The address from the CPU is shown as the 24 bit
address (logical address) in the uppermost part of FIG.
3. The 7 most significant bits of this address are coupled
to the MMU's memory via bus 18a and are used to
address the MMU's memory. The next most significant 40
bits (bus 18b) are coupled to an adder 27, and the least
significant 9 bits (offset) are coupled via bus 18c to
register 28. The output of the MMU's memory 20 con­
sists of two 12-bit words (buses 22 and 23). These words
are coupled through the multiplexer 25 to the 12-bit bus 45
30. One of the 12 bit words from the memory 20 pro­
vides the segment base from the stored relocation base.
The second 12 bits consist of 8 bits for limit checking of
the page offset and 4 additional bits which perform
functions which are part of the present invention. 50

(In the presently preferred embodiment, multiplexer

significant bits of the physical address These 12 bits
along with the 9 bits from bus 18c are coupled to the
register 28 to provide a 21 bit address which is commu­
nicated to the main memory 14. (The register 28 does
not exist in the presently preferred embodiment, it is
shown for purposes of explanation).

The 4 access check bits are coupled from the multi­
plexer 25 via line 45 to the access logic 40. Here the
signals are decoded to provide main memory control
and other control as follows: One bit controls the type
of main memory access (1 =read only, O=read/write}.
The second bit controls 1/o access (1 =41/o, 0 =no I/o
access}. The third bit controls main memory access
(1 =memory access, O=no main memory access). The
fourth bit controls stacking (1 =stack segment - check
for no overflow, O=normal segment - check for over­
flow). The access check logic 40 is shown in FIG. 3
coupled to the main memory control via line 57 to con­
trol memory access and the type of accesses permitted
(i.e., read or read/write). Logic 40 is coupled to adder
27 via the overflow/carry in lines and to memory 20 via
line 47 to enable memory 20 access.

The specific access control bit pattern used in the
presently preferred embodiment is shown below.

ACCESS CONTROL BITS

MEM/ ADDRESS
BITS IO/ RO/ STK/ SPACE AND ACCESS

0 I 0 0 Main Memory - Read Only Stack
0 I 0 I Main Memory - Read Only
0 I I 0 Main Memory - Read/Write Stack
0 I I I Main Memory - Read/Write
I 0 0 1 1/0 Space
I I 0 0 Page Invalid (segment not present)
I I I I Special 1/0 Space

Any other Not allowed (unpredictable result)

Assume first that the memory 20 has been pro­
grammed from the CPU. For purposes of a first level
explanation of the MMU's operation, the function of the
2 bits on lines 35 shall be ignored When the CPU ad­
dresses the main memory, the most significant 7 bits
address the MMU's memory 20. The 12 bits from the
relocation data segment are coupled via bus 22 and bus
30 to the adder 27. There they are combined with the
page offset (bus 18b) and the resultant address is com­
bined with the 9 bits of the offset in the register 28 to
provide the final physical address. This portion of the
MMU operates in a manner quite similar to prior art
MMUs. Thus, the relocation segment base data can be
programmed into the memory (ignoring line 35) in a
manner well-known in the prior art.

The 12 bits forming the limit and access data are

25 does not physically exist, rather the output of mem­
ory 20 is time division multiplexed. However, for pur­
poses of explanation it is easier to include the multi­
plexer 25.)

The multiplexer 25 is also used to load information
from the bus 16 into the memory 20. The signal on line

55 coupled via bus 23 through the multiplexer 25. The 8
bits of the limit data are coupled to the adder 27. The 4
bits of the access data are coupled to logic 40 via line 45
as discussed. The limit data in the presently preferred 47 from the access check logic 40 provides access to the

memory 20 as do the signals on line 35. The signal on
line 37 controls the multiplexing of data between either 60
the bus 22 or the bus 23.

The 12 bit bus 30 from the multiplexer 25 is coupled
to the adder 27. This adder also receives the 8 bits on
bus 18b. As will be described, the adder 27 is used to
determine if the page offset falls within a predetermined 65
range of the selected segment. The adder 27 also com­
bines the relocation (segment base) from the MMU's
memory with the page offset to provide the 12 most

embodiment is stored in ones complement form in the
memory 20 for a non-stacked segment. For stacked
segments the limit stored is "length minus one" (e.g. a
two page segment would be stored as 0000 0001 in
memory 20.) When this limit data is added to the page
offset in adder 27, the result of this addition determines
whether or not the page offset falls within the predeter­
mined range of the segment. This is an improvement
over prior art limit checking where additional logic
steps are required

5
NON-STACK EXAMPLE

4,926,316
6

those segments containing only program, only reading
of the memory is allowed. This, of course, prevents the

Referring briefly to FIG. 4, a representation of the inadvertent writing into program. Both reading and
computer's main memory 14 is illustrated. Assume that writing into the segments which contain data may be
data is stored at locations 50. Further assume that the s permitted. This is indicated to the right of program 59
highest page offset (1111 1111) for data 50 extends to and data 60 in FIG. 4.
location 52, and that within this segment data extends to The memory 20 is programmed (i.e., access check
a page offset of 1110 0000 (line 51). For this page offset, bits) to prevent reading of some segments of the main
the ones complement of 1110 0000 (0001 1111) is stored memory except in certain modes (e.g., supervisory
in the memory 20 of FIG. 3. If this segment is ad- 10 mode). This is done, for instance, to prevent a user from
dressed, and assuming the page offset address is 1111 reading and then copying an operating system. Refer-
1111 (that is, into the free space of the memory), adder ring briefly to FIG. 4, when the program 59 is being
1:1 adds 1111 1111 to the stored number 0001 1111. An run, no access to memory 20 is permitted since such
overflow occurs from the adder 27 and this overflow access could cause the relocation base, limit data or
condition is sensed by the logic 40 of FIG. 3. For this 15 access data to be inadvertently altered. Thus, the four
example, an overflow indicates that the page offset is access bits provide protection for the program stored
not within range and a signal is provided on line 57 to within the main memory and also limit access to certain
show that the address is in error. Logic 40 via line 57 information stored in the memory. In a typical applica-
prevents access to main memory and/or an error signal tion, an operating system is loaded from a disk into the
is generated. 20 main memory. Once in the main memory, the CPU can

Again referring to FIG. 4, assume that a program is access the operating system in supervisory modes, how-
stored at locations 53 and that the highest page offset ever, the user is prevented from accessing and hence
(1111 1111) for program 53 extends to location 50 copying the operating system.
which is outside of the actual program which ends at With the present invention, the memory 20 has four
location 54. If the page offset for location 54 is 0011 25 times the capacity than is actually needed to provide a
0000 then 1100 1111 is stored within the memory 20 of relocation base, and limit and access data for the main
FIG. 3 for the segment which begins at location 55. If memory. The signals from the CPU on lines 35 allow
this segment is addressed and the page offset is 0000 the selection of each quadrant of the memory 20. Each
0001, (addressing the program) the adder 1:1 adds 1100 of these quadrants are referred to as a context (context
1111 and 0000 0001. This time no overflow occurs and 30 0-3) in the following description.
no signal is communicated to the logic 40, that is, access Referring to FIG. 2, the organization of the MMU
is permitted. Note that if the page offset is 0100 0000 memory 20 is illustrated as four separate quadrants: 20a
(not within range) when this number is added to the (context 0), 20b (context 1), 20c (context 2) and 20d
stored number of 1100 1111 an overflow occurs. This (context 3). Context 1,2 and 3 are each organized in a
overflow indicates to the logic 40 that the page offset is 35 256 X 12 bit arrangement (128 X 12 bits for the relocation
not in range and memory access is disabled. base and 128 X 12 bits for the limit and access data).

STACK EXAMPLE

For some programming languages (e.g. Pascal) stacks
(in memory) are very desirable. Stacks can be formed 40
by moving data up in memory, albeit time consuming.
Stacks with the presently described system are permit­
ted to grow down in memory with a different limit
checking procedure.

Assume a one page stack segment. The limit number -45
stored in memory 20 as the one's compliment of the
page offset (1111 1111 _,.()()()() 0000) which is the same as
the size minus one (0000 ()()()()_,.()() 0000). The access
check bits causes the logic 40 to provide a carry-in of
one. If the page offset is 1111 1111, an overflow occurs. SO
This overflow is sensed by logic 40, and interpreted as
a valid (within range) condition. If the page offset were
1111 1110 (stack grown too much), no overflow occurs
and this is interpreted as an out of range address.

Similarly, if the stack is a two page segment, 0000 55
0001 is stored in memory 20. Again the carry in is set to

Context 0 is selected by the CPU during the supervisory
mode and this context stores management data relating
to the operating system. It should be noted that each
context is capable of storing information covering the
entire main memory, thus there are three overlapping
MMU memories for user processes.

The value of having these overlapping memories is
best illustrated in FIG. 4. The main memory 14 is shown
programmed with three processes, Pl, Pl and P3. Pro­
cess 1 is stored between 0 and 500 KB, process 2 be-
tween 600 KB and l mB and process 3 between 1.2 mB
and 1.5 mB. Data relating to the operating system is
stored between 1.8 mB and 2 mB. Assume first that the
operating system is loaded into memory and is stored
between 1.8 mB and 2 mB. An appropriate relocation
base is stored within the memory 20 such that during
supervisory modes, the addresses 0-200 KB automati­
cally select 1.8 mB through 2 mB in the main memory.
Also, the appropriate limits are loaded to assure that
during the supervisory mode, the free space in the mem-
ory is not accessed. During the supervisory mode (con­
text 0) as indicated in FIG. 4 under the heading context
0, complete access to the MMU memory and main

a one. A page offset of 1111 1110 would result in an
overflow indicating an in range address, whereas with a
page offset of 1111 1100 no overflow would occur,
indicating an out of range address.

FIG. 4 EXAMPLE

60 memory is possible (except for access bits which pre­
vent the writing into the operating system stored in
main memory thereby protecting the program from
damage due to a program error). Since the MMU mem-Referring again to FIG. 4, assume that a process

(program and data) is stored in the main memory 14
between the locations 0 and 500 KB. The 3 remaining 65
access bits in the memory 20 corresponding to the seg­
ment addresses for locations 0-500 KB are used to pro­
vide special control, as mentioned. For instance, for

ory is accessible at this time, it can be programmed
through the bus 16 as indicated in FIG. 3, and as previ­
ously discussed.

Assume that context 1 is to be used for program 59
and data 60, one quadrant of the MMU's memory 20

7
4,926,316

8
corresponding to context 1 is programmed to indicate
the location of program 59 and data 60. The limit and
access bits are set as indicated under context 1. Thus,
when context 1 is selected, program 59 can be read
(only) and, reading and writing of data 60 is permitted. 5
No other access to other memory locations is possible
nor can the MMU memory be written into.

A second process can be stored in memory. The oper­
ating system knows the location of the first process and
can program another quadrant of memory 20 for pro- 10
cess 2. The relocation base is programmed such that
when the CPU addresses locations corresponding to
0-400 KB, locations 600 KB to l mB, are provided to
the main memory. As indicated under the heading con­
text 2 in FIG. 4, the access bits are programmed to 15
allow reading and writing into the data SO and reading­
only of the program 53. Also, no access (for writing) to
the MMU memory is permitted, nor is access permitted
to other locations in the main memory. Similarly, a third
process can be stored in the main memory for context 4 20

as indicated in FIG. 4.
The advantage to the arrangement of FIG. 4 is that

three separate processes are stored within the main
memory and that each process may be easily selected

25 through the MMU's memory, that is, by selecting con­
text 1, 2 or 3. A separate context (context 0) is reserved
as a starting point for the operating system, in the pres­
ently preferred embodiment, as discussed. This allows
running of three separate programs without any repro- 30
gramming of the MMU's memory. This versatility is
achieved because of the overlapping memory manage­
ment capacity of the MMU's memory.

Thus, an improved memory management unit has
been described which allows a plurality of programs to 35
be run without reprogramming of the computer's MMU
memory. The improved unit also limits access to certain
types of data and prevents inadvertent writing into

said adder also coupled to receive said limit bits cor­
responding to said accessed relocation base address
and adding it to said second portion of said logical
address and generating an indication signal if said
second portion of said logical address exceeds a
value set by said limit bits;

access check logic means coupled to said MMU
memory and said adder for receiving said access
bits corresponding to said accessed relocation base
address and determining if said access bits permit
access of said main memory for a type of access
requested by said CPU and generating a fault signal
to prevent access of said main memory if an illegal
access of said main memory is attempted;

said access check logic means also generating said
fault signal if said indication signal is received from
said adder;

each said relocation base address for pointing to a
corresponding mapped base address in said main
memory, such that a given logical address is
mapped into a plurality of physical addresses,
wherein at least one physical address is provided
for each context; and

wherein selected physical addresses of said main
memory can be accessed by more than one context.

2. The MMU defined by claim 1 wherein one of said
MMU memory contexts is selected as a supervisory
context when said CPU is in a supervisory mode, such
that said supervisory context accesses all of said main
memory.

3. The MMU defined by claim 2 wherein said adder
receives said limit number which is a binary comple­
ment of an offset from its relocation base address, such
that when said binary complement is added to said
second portion of said logical address said indication
signal is generated when an overflow occurs from said
adder.

programs.
We claim:

4. The MMU defined by claim 3 wherein said MMU

40 memory stores said relocation base addresses, said limit
1. In a computer system which includes a central bits, and said access bits from said CPU during a MMU

processing unit (CPU and a computer main memory, a program cycle.
memory management unit (MMU) coupled to said CPU 5. In a computer system which includes a central
and said main memory for translating a logical address processing unit (CPU) and a computer main memory, a
from said CFU to provide a physical address for access- 45 memory management unit (MMU) coupled to said CPU
ing said main memory, comprising: and said main memory for translating a logical address

a MMU memory for storing a plurality of relocation from said CFU to provide a physical address for access-
base addresses, wherein said relocation base ad- ing said main memory, an improvement comprising:
dresses are segmented into sections of memory a MMU memory for storing a plurality of relocation
(contests) such that each said context has at least 50 base addresses, wherein said relocation base ad-
one relocation base address associated therewith; dresses are segmented into sections of memory

each said relocation base address having correspond- (contexts) such that each said context has at least
ing limit bits and access bits associated therewith, one relocation base address associated therewith;
said limit bits and access bits also store said MMU each said relocation base address having correspond-
memory;

said MMU receiving a control signal from said CPU
for selecting a predetermined one of said contexts
when said logical address is provided by said CPU;

55

said MMU memory for receiving a first portion of
said logical address from said CPU and said first 60
portion of said logical address accessing a stored
relocation base address of a selected context and
corresponding to said limit and access bits;

an adder coupled to said MMU memory for receiving
said accessed relocation base address of said se- 65
lected context and combining it with a second
portion of said logical address to output said physi­
cal address for accessing said main memory;

ing limit bits and access bits associated therewith,
said limit bits and access bits also stored in said
MMU memory;

said MMU receiving a control signal from said CPU
for selecting a predetermined one of said contexts
when said logical address is provided by said CPU;

said MMU memory for receiving a first portion of
said logical address from said CPU and said first
portion of said logical address accessing a stored
relocation base address of a selected context and
corresponding of said limit and access bits;

an adder coupled to said MMU memory for receiving
said accessed relocation base address of said se­
lected context and combining it with a second

9
4,926,316

10
portion of said logical address to output said physi­
cal address for accessing said main memory;

said adder also coupled to receive said limit bits cor­
responding to said accessed relocation base address
and adding it to said second portion of said logical s
address and generating an indication signal if said
second portion of said logical address exceeds a
value set by said limit bits;

access check logic means coupled to said MMU
memory and said adder for receiving said access 10
bits corresponding to said accessed relocation base
address and determining if said access bits permit
access of said main memory for a type of access
requested by said CPU and generating a fault signal

15

20

2S

JO

35

40

4S

so

SS

60

65

to prevent access of said main memory if an illegal
access of said main memory is attempted;

said access check logic means also generating said
fault signal if said indication signal is received from
said adder;

each said relocation base address for pointing to a
corresponding mapped base address in said main
memory, such that a given logical address is
mapped into a plurality of physical addresses,
wherein at least one physical address is provided
for each context; and

wherein selected physical address of said main mem­
ory can be accessed by more than one context.

• • • • •

