
GUIDE TO THE OPERATING SYSTEM

October 1 t 1982

Introduction • · • 1

Configuration
OS Volume Types

System Files •

Installing the OS
How to Boot the OS · · · ·
Shutting Down the OS · · · ·
Program Development · • . ·
The as Command Shell.

The Filer •

The Privileged Filer. • ·
The Asynchronous File System •

• • • • 1

· . . • 2

· . • 3

• • • • 4

· · 6

· · · · 6

• • 8

· • 9

· • 11

· 14

· • · 16

as Performance • • 17

Twiggy Bad Block Handling

Printers and RS232 Input/Output

Stack Size •

• • 18

• 19

• • • 21

Intrinsic Units

Alternate Screen •

Pas lib • •

· • 22

· • • • • 24

· . 24

The Pascal Heap · . . • • • 28

The OS Interface • • • 30

Add! tions to the OS • • 41

as Error Messages • • 46

5. ~ Verst OV\

Confidential Guide to OS

INTRODUCTION

This document explains how to use the 5.3 release of the Operating System.
It includes all relevant material from prior releases and also describes
the new features of this release. The User's Guide does not explain each
feature of the OS in detail; instead, it explains operations such as
installing and booting the system, and presents the details of the Command
Shell and Filer commands (see the Operating System 'Reference Manual for a
complete description of the Operating system).

Because the Operating System Reference Manual is not updated for each new
release, the User's Guide also contains explanations of any new features or
calls that may not fit into the above topics. The User's Guide assumes
that the Operating System Reference Manual that you have is dated March 1,
1982.

CONFIGURATION

The OS boots from either a Profile or a Twiggy. Most people will boot the
OS from a Profile, and use another hard disk for the Monitor.

The OS restricts how you can use the various devices. The OS treats the
Corvus as a source of Monitor files, not as an OS volume. The Lisa screen
can be accessed by either the OS or the applications. The Lisa screen can
display either the "main screen" that is usually reserved for applications,
or the "alternate screen" that is used for Lisabug, and, read and writelns
for debugging. There is a MOVESOROC program to change where application
readln and writelns are to be displayed. They may be displayed on either
the main screen, the alternate screen, or an external Soroc. If you use an
external Soroc, you can see both the main applications screen, and the
debugging screen at the same time. If you wish to use a Soroc, attach it
to channel A of the Lisa.

When the OS boots from a Profile, that Profile must be attached to the
parallel port (the connector farthest to the right when viewed from the
front). This port is 'PARAPORT' to the as and '&3' to the Monitor.

Your other hard disks are attached to the N-Port card, which must (for now)
be in Slot 2 (the middle slot). Starting from the bottom of the N-Port
card, the ports are named '&4', '&5', and '&6' by the monitor, and
'SLOT2CHANl', 'SLOT2CHAN2', and 'SLOT2CHAN3' by the as. The monitor gives
preference to disks attached to the bottom of the N-Port card, so your
monitor disk should probably be attached to &4.

Roth 1 October 1, 1982

Confidential Guide to OS

After you have installed the OS, run the OSCONFIG program. OSCONFIG
produces a configuration file that defines, at boot time, which devices are
attached at each port (&3 thru &6), and which ONE disk is the Monitor's
working device, the device the OS can access Monitor files from. OSCONFIG
also allows you to emulate a smaller machine.

The devices OSCONFIG recognizes are Profile, Corvus, and printers. If a
device isn't named in the configuration program, the OS doesn't see it even
if you explicitly mount it. To change your configuration, rerun OSCONFIG
and name the output file SYSTEM.CONFIG,on the boot device. Then physically
switch to the new arrangement, and reboot the OS. If your boot volume I
contains no SYSTEM.CONFIG file, the only optional device configured is the
disk on PARAPORT (&3) if there is one connected there.

OS VOLUME TYPES

The as currently supports two types of file system volumes, one built on
top of the Monitor's concept of logical volumes and one entirely
independent of Monitor volumes. The type of OS file system volume built
within a Monitor logical volume is what you've used for the last few months
when running the as under the Monitor on a single disk.

Under the current OS, you can only access this type of volume on the
designated Monitor working device. This type of as volume CANNOT be a boot
volume. It can reside anywhere on the disk and its access is totally
protected by the Monitor's mount table.

'as Devices' is the term used to describe the second type of volume. This
type of volume CAN be a boot volume. However, an as device has only a
single OS volume 'that must start a't the beginning of the device. When you
initialize that volume, you specify how many blocks (pages) are it has.

The OS initializes the specified number of pages on the as device. For
example, if you specify 9720 blocks when initializing a Profile as an as
device, all 9720 blocks are rewritten from the front of the disk without
regard for any Monitor volumes that already exist there. The OS doesn't
check the mount table to avoid destruction of existing Monitor volumes.

However, it is possible for a device to be both an os and a Monitor device
if you create the Monitor volumes BEYOND the portion of the disk used as
the as volume. To reserve room for the OS volume, create a Monitor volume
(under the volume manager) starting at the first physical block (block 8)
of the disk that has the same size as the number of blocks you need for the
as device. The remaining space is usable for other Monitor volumes.

Roth 2 October 1, 1982

Conf ide nt ial Guide to OS

WARNING: When initializing an OS device that is split between an as volume
and Monitor volumes t be sure to initialize the correct number of pages.
Sp~cifying too large a number of blocks results in the destruction of
Monitor volumes that follow the as volume. In general t BE CAREFUL when
mixing as volumes and Monitor volumes on one device.

SYSTEM FILES

The as is distributed on Twiggys that hold a bootable copy of the as,
miscellaneous release files t and the installation utilities. The files
below define the release. All files listed should be on the as boot
volume. All are required to boot and run the OS except for RS232TEST,
OSCONFIG, and OSINSTALL.

SYSTEM.OS - The main portion of the OS code.

SYSTEM.SHELL - as command shell

SYSTEM.BT PROF - The profile version of the OS loader

SYSTEM.BT TWIG - The Twiggy version of the OS loader

SYSTEM.DEBUG - First part of Lisabug

SYSTEM.DEBUG2 - Sec.on~ part of Lisa bug

SYSTEM.LLD - Low level drivers

SYSTEM.CONFIG - User-produced definition of desired configuration

IOSPASLIB.OBJ - System runtime library

INTRINSIC. LIB - Intrinsic unit directory

RS232TEST - RS232 test program (optional)

OSINsTALL.TEXT - Exec file that transfers files onto your OS working
device

OSCONFIG

MOVE SORO C

Roth

- Utility to generate a SYSTEM.CONFIG file

- Utility to move application WRITELN's between main
screen, alternate screen, and external Soroc

3 October 1, 1982

Confidential Guide to OS

The files in the following list may be useful to you, but are not required
to install the OS. These files are used to prepare an application to run
on the OS.

SYSCALL.OBJ - Public system calls unit

INSTALLING THE OS

The following are the steps req~ired to install OS 5.3 onto a Profile:

1) Insert the bootable OS Twiggy in the top slot of your
system, attach your target OS boot Profile to &3, the parallel port.

2) Be sure the Sysmgr 'Zero' has been run at some time on your
target OS boot Profile. OS devices need to have a valid, volume
table, both to avoid confusion when examining the drive from the
Monitor, and to allow the OS to use the drive as the Monitor's
working device if necessary.

3) If you are developing programs on the Monitor to run on the OS, you
must transfer the following files from the twiggy to a
Monitor volume:

IOSPASLIB.OBJ
INTRINSIC. LIB
SYSCALL.OBJ

4) Boot the OS from the bootable twiggy (see the section below on booting
the OS for directions). Press the right hand COMMAND and ENTER to
display the alternate screen.

5) Type 'P' to run the privileged filer and then type 'I' (for I(nit)
to initialize your OS device (see the section on P(rivfiler if you
need assistance). Use the name PARAPORT to identify your profile

Roth

at position &3. Depending on whether you have any Monitor volumes
on your profile, you may want to respond with less than the maximum
device size (9720) when 1(nit asks how many pages (blocks) it should
initialize for the OS volume. The OS uses 1300 blocks of your boot
volume. So you will want to create at least 1500 blocks even if you
don't intend to store anything else on the volume. Note that the OS
boot volume must have enough space for the
swap space for the applications, and swap space for data segments.
Therefore, the minimum recommended size is 2000 blocks.

4 October 1, 1982

Confidential Guide to OS

6) Type 'Q' to return to the OS Shell. Then type 'F' to run the OS Filer.
Once you are in the filer, type. 'M' to mount your newly initialized
profile using the name PARAPORT. The Mount command is described
under the OS Filer.

7) Type 'w' to change your working directory to the name of your OS volume.
If you don't change the working directory, the macro that transfers the
system files to your OS boot· volume will NOT run correctly.

8) Type 'Q' to return to the OS Shell. Once you are in the Shell, type 'X'
to execute <-OSREL-OSINSTALL, a macro that transfers each of the following
files into your initialized volume using the FTP utility 'T(rans':

SYSTEM.OS
SYSTEM. SHELL
SYSTEM.BT PROF
SYSTEM .BT TWIG
SYSTEM.DEBUG
SYSTEM.DEBUG2
SYSTEM.LLD
IOSPASLIB.OBJ
INTRINSIC. LIB
RS232TEST
OSCONFIG
MOVE SO ROC
o SINSTALL. TEXT

9) Quit the OS and wait for the system to reset itself. You should
now be able to boot the OS from your Profile (see BOOTING below for
instructions) •

10) Run OSCONFIG to configure any optional devices.

Remember that the OS and UCSD file systems are not compatible.

Roth 5 October 1, 1982

Confidential Guide to as

HOW TO BOOT THE as

The boot pram can boot either the as or the Monitor. To decide which
system to boot and which device to boot from, the prom selects .the FIRST of
the following list of possibilities that it encounters:

1. If one of the combinations of keys listed below is pressed at the
right time, the prom selects the corresponding system/boot device.

'Command' followed by '1' means boot the as from the top
Twiggy drive

'Command' followed by '2' means boot the os from the bottom
Twiggy drive

'Command' followed by '3' means boot the as from the Profile
on the parallel port

The boot prom makes a soft click when it's ready for you to type a boot
device keycode, and a second click when it's no longer receptive.

2. If parameter memory is 'valid', the prom uses the boot device stored
there. The parameter memory manager application writes parameter
memory.

3. Boot from the top twiggy.

The Profile must be left on for each attempt to boot the OS. Hopefully,
this won't endanger disk integrity. If you have a Corvus attached to the
system, you may want to turn it off before powering the system off and on.

After booting the OS, the alternate screen displays the as version number,
the devices in the current configuration, and the numbers of the available
volumes. The alternate screen is not visible, because the main screen is
displayed. After the boot is complete, you can display the alternate
screen by pressing the right COMMAND key, then the ENTER key.

SHUTTING DOWN THE as

Whenever a user process returns to the Shell, you can quit the as.
However, if a user-process exception or system exception occurs, special
action is necessary to preserve the integrity of files. During the normal
course of running the as, user and system data destined for a disk volume
may still be in memory. If you reset the machine and reboot while data is
in the buffer, the disk will be in an inconsistent state. The table below
describes several situations that cause this problem and recommends an
action for each.

Roth 6 October 1, 1982

Conf 1dent 1al Guide to OS

------_.-_---_ _----------_ .. _---------------------

Roth

Error

Exception in USER process
such as divide by zero,
bus error, address error,
etc.

NMI in USER process that
is indicated by entering
debugger in a domain other
than zero AND without
the debugger condition
, DOMAIN=2 , OVERIDDEN TO 0'

Exception in system
code

NMI in system code

Action

Type 'g' from the debugger
and the OS continues to
abort the process and do a~y
necessary clean up work.

Type 'g' from the debugger
to continue executing the
process. To abort the
process, induce an arti­
ficial exception. One way
to do this is to set PC to
o ('pc 0') and then type
'g'. The process will
probably get an illegal
instruction exception and
the OS should be able to
abort it and do any clean
up work necessary.
REMEMBER: this only works.
1f the domain IS NOT ZERO.

Once in the debugger, type
'OSQUIT' from the debugger
and the OS attempts to shut
down the OS file system in
an orde rly fashion. You
might have to type 'OSQUIT'
several times before it
works. DO NOT use NMI and
'rb' to reset the machine
unless OSQUIT does not work
after repeated attempts.

Type 'g' to continue. To
recover from a fatal error
in the OS, type 'OSQUIT'.
You may have to type 'OSQUIT'
several times before it works
DO NOT use NMI and ' r b ' to.
reset the machine unless
OSQUIT does not work after a
dozen or so attempts.

7 October 1, 1982

Confidential Guide to OS

PROGRAM DEVELOPMENT

To wri te a program that can run on the OS:

1. Compile your program using the SYSCALL unit

2. Link the compiled version of your program with IOSPASLIB

3. X(ecute the program

If you are writing the program on the monitor, you must boot the OS and
T(ransfer the linked .OBJ file to an OS file volume before X(ecuting it.

Roth 8 Oc to be r 1, 1 982

Conf ident ial Guide to OS

THE OS COMMAND SHELL

When the OS comes up, a sys tem proces s (the Root proces s) looks on the OS
volume for a program file named SYSTEM.SHELL. If the OS finds one, it uses
it as the OS command shell. If the OS doesn't find a SYSTEM.SHELL file,
the Root process complains and goes automatically to the file transfer
utility. At this point you can transfer any file from the UCSD world to
serve as the' OS shell. When you leave the file transfer utility, the Root
process again looks for SYSTEM.SHELL. It repeats this cycle until it
finally finds and starts up a shell.

To change the shell, kill the current SYSTEM.SHELL, transfer a new
SYSTEM.SHELL to the OS volume, and then type 'Q' to quit. The Q(uit
command asks whether or not you want to restart the Shell. If you type 'n'
or press the carriage return, the OS terminates the Shell and shuts down
the system. If you type 'y' in response to the question, the OS recreates
the Shell from SYSTEM.SHELL. This procedure assumes that your current
shell can kill and transfer files.

The position of a device determines its OS device name. The definitions of
as device names are as follows:

-PARAPORT is the device attached to the parallel port.

-SLOTxCHANy is the device attached to a 4-port card's slot x and
channel y. Slots and channels are numbered 1, 2, and 3. Slot 1
is the slot furthest from the power supply side of the machine;
channell is the bottom channelo EXAMPLE: A drive connected to
the bottom port on a 4-port card that is in slot 2 is mounted as
device -SLOT2CHAN1.

The remainder of this section presents the os Command Shell line and
explains the os command shell options. The OS command shell behaves like
the UCSD command shell; to invoke an action, type the first character of
the option you desire.

lisaOS: X(ecute, D(ebug, F(iler, P(rivFiler, T(ime, V(ers, O(ff, Q(uit

X(ecute

Roth

Executes a program. It prompts for the name of
the program file to execute and expects the full
OS file system name of a file that is on the OS
volume. You must compile a program that runs on
the os with the SYSCALL unit and link it with
IOSPASLIB before transferring it to the os file
system. If the character '(' precedes the file
name, the Shell assumes that the file is an exec
file. OS exec file format is the same as the
Monitor format. The system determines which type
of volume an exec file resides on by the file name
used (see the T(rans command).

9 Oc to be r 1, 1982

Confidential

Roth

D(ebug

F(iler

P(rivFiler

T(ime

L(ib

Veers

O(ff

Guide to as

Debugs a program. D(ebug acts the same as the
X(ecute command except that the program comes up
with a breakpoint at its first instruction. Due
to the breakpoint, the system enters Lisabug and
you can debug as usual. After prompting for the
name of the program to debug, the command asks if
you also want to debug all the son processes. If
you type 'n' for no, only the process created to
run the.program comes up with the breakpoint at
the first instruction. If you type 'y' for yes,
every process created until the main program
terminates comes up with a breakpoint on the first
ins truction.

Enters the Filer (described below).

Enters the privileged Filer (described below).

Displays the current date/time setting and lets you
enter a new date and/or time if desired. Type <CR)
to indicate no change. To change the date or time,
enter the new date and/or time in the format that
the prompt specifies.

Re-installs the Intrinsic Unit Directory file in
memory. The command assumes that the new
INTRINSIC. LIB file is already on the as volume
and that the Shell is the only. process running in
the system. If any error occurs during directory
installation, a system error results and you must
restart the as. You can transfer and use a new
INTRINSIC.·LIB and use it while the as is rebooting.
Usually, no problems should occur when installing
a new directory. NOTE: you cannot change IOSPASLIB
using this command; you must reboot the as to change
it.

Lists module version numbers and the OS release
number. The as group uses it to determine which
versions of the os components are being used.

Turns Lisa off. The user is warned that power is
about to be turned off. Answering yes ('y' or 'Y')
to the warning prompt terminates the Shell and turns
off the Lisa. Any other answer returns to the Shell
command line.

10 Oc to be r 1, 1982

Conf i dent ial

Q(uit

THE FILER

Guide to OS

Terminates the current Shell process. The user is
asked if a new shell should be created or if the
Operating System should be shut down and the Lisa
reset (the power is left on). Note that the Q(uit
and O(ff commands are

THE ACCEPTABLE WAYS TO LEAVE THE OS
AND RETURN TO THE MONITOR.

These alternatives allow the Operating System to
completely close and flush files that are open
and to put the disk in a consistent state. If you
do not wish to shut down the the system, the OS
tries to start another SYSTEM.SHELL program. Use
this to change Shells while rUnning under the OS.
You can also type 'OSQUIT' to return to the Monitor.
This alternative is not desirable but is encouraged
if the other alternatives don't work.

There are two 'Filers' in the OS environmente The 'Filer' handles normal
file operations. The 'PrivFiler' handles special privileged operations
mostly used to manage volumes.

When prompted for a device name, a response of <cR> is sufficient to
specify the current working directory. In general, however, a response of
<CR> to a prompt indicates that the command should be aborted. In those
situations where <CR) means the current working directory, a response of
<ESC> aborts the command.

The first half of the Filer command line is:

Filer: T(rans, L(ist, N(ew, K(ill, R(ename, M(ount, U(nmount, Q(uit, ?

Note that '?' is a command, not a request for information. It causes the
command prompt to flip to the other half of the command line and display
the other available commands. The other half of the Filer command line is:

W(orkingDir, S(afety, D(eleteFiles

T(rans

T(rans invokes the file transfer utility FTP. FTP transfers files from the
Monitor to the as and from OS files to other OS files. Give FTP the source
file name using either the UCSD file name syntax or the OS file name
syntax, depending on the file, and the destination file name using the OS
syntax. The file types and ,the file name syntax is described below. If a
file with the destination file name already exists, FTP asks you for
confirmation before writing over the old file. Once the transfer is
complete, FTP asks for the next file to transfer. Type <cr> to exit.

Roth 11 October 1, 1982

Confidential Guide to OS

Because two different file naming conventions are in use here, perhaps an
example will be useful:

T(ransfer
What Lisa or UCSD file to transfer? VOL:MYTEXT.TEXT <cr>
What Lisa file to transfer into? -DISK-MYFILE <cr>
What UCSD file to transfer? <cr>

This example takes the Pascal text file MYTEXT.TEXT from the Pascal volume
named VOL and places it· in the Lisa file MYFILE that is on the Lisa volume
named DISK.

Note that Paslib now supports RESET/REWRITE to an OS file. Therefore the
prompt for the name of the file to transfer accepts either an OS file name
or a Monitor file name.

Because Paslib supports both Monitor volumes and as volumes, the following
naming convention has been adopted in order to distinguish one type from
the other. A file name represents a Monitor file only if a colon (:) is
one of the characters in the name AND the leading character of the name is
not a dash (-). So, for example, you can transfer an OS file named
VOL:MYTEXT.TEXT as long as you add a dash to the beginning of the name.
Note that even when you transfer a Monitor file that resides on the boot
volume, you must type the volume number or name and the file name; typing
only the file name is not sufficient to identify the file.

T(rans currently can only transfer. Monitor· files that reside in one of the.
SHORT directory volumes on the Monitor working device. The command
considers the large directory volumes on the Monitor device invalid and
skips over them when searching the volume for the specified file. If you
want to transfer a file that is currently in a large directory, create a
short directory volume and transfer the necessary file or files to that
directory while running under the Monitor. Then, boot the OS and transfer
the files. The next release of the OS or Paslib will support large
directory Monitor volumes.

If you have multiple hard disks connected to your system via the 4-port
card, you can only transfer the UCSD files stored on a single device. To
select a working device you run the OSCONFIG program and copy the result
into your OS boot volume.

Note that the transfer utility does not recognize the new Monitor file name
syntax (DEV/VOL:FILE).

If you transfer a file into the Lisa file INTRINSIC.LIB, the system asks
you if ·it should install the new Intrinsic Unit Directory immediately. The
system installs it if you respond 'Y' or 'y'. If you choose not to install
the new directory at that time, you must use the L(ib command late·r to
install it yourself before running any programs that use the new
INTRINSIC. LIB file~

Roth 12 October 1, 1982

Confidential Guide to OS

L(ist -

Lists the ,files on a given directory, their sizes and the disk space that
each uses. The disk space size is the number of blocks (512 bytes)
currently allocated to the file (the PEOF), whereas the file size is the
number of bytes of data in the file (the LEOF). The file list also tells
if a file is software theft protected. See the P(rotect command under the
PrivFiler for more information on theft protection.

N(ew

Creates a new file.

K(ill

Deletes a file.

R(ename

Renames an existing file or volume. If a volume is renamed, you must
precede the volume name with a dash. Do not specify the dash if you are
renaming a file on the working directory.

M(ount
U(nmount

The two commands permit you to manage multiple OS file system volumes.

S(afety

Toggles the safety switch of a file on or off. The command asks for a file
name and then asks whether the switch should be turned on (respond 'y' to
the question) or off (respond 'n' or just <CR»). If the safety switch of a
file is on, the file can not be killed.

W(orkingDir

Displays the current working directory and then prompts for a new one. To
change it, type the name of the new working directory; <CR) indicates no
change. When changing the working directory, use a complete volume name
(remember to include the '-') or the command has no effect. '-DEV9' and
'-MyVol' are two example volume names. Once a working directory is set,
partially specified pathnames are evaluated using that directory. If you
UNMOUNT the volume containing the current working directory, the boot
volume becomes the working directory.

Roth 13 October 1,1982

Confidential Guide to OS

D(eleteFiles

Deletes files using a simple wild card mechanism. The command first asks
for the name of the directory to be searched and then asks for the partial
file name for the search. The partial file name is the initial characters
of the file names you want. For example, if you type 'ABC', the Filer
searches for any file beginning with 'ABC'. If you type <cr>, all files in
the directory match. After the directory search, D(eleteFiles prompts you
to enter whether or not you want to delete the files, if any, that match
the partial name. Type <ESC> to stop file .deletion before going through
the whole directory.

THE PRIVILEGED FILER

The P(rivFiler command line is:

PrivFiler: O(nline, E(ject, F(ix, I(nit, 'Z(ap, N(ewTwig, W(riteBT, Q(uit, ?

As with the Filer, the? command flips to the other half of the PrivFiler's
command line which is:

D(ump

O(nline

Lists each currently mounted volume and the device it is mounted on. It
also prints the name of the current working directory.

E(ject

Ejects a Twiggy disk from the specified device. Note that the button on a
drive will not eject a disk; you must use the E(ject command. However, the I
command will not eject a disk that is still mounted.

F(ix

Invokes the Scavenger, the volume restoration utility program. It recovers
lost space on a volume and repairs damaged file structures. You cannot run
the Scavenger against the OS boot volume. If you attempt to scavenge the
boot volume, the Scavenger returns error 1228.

I(nit

Creates an OS file system volume. The volume initialized must not be
mounted. After you specify the device name (without the '-'), the Filer
asks for the set up information it needs. If the device is a diskette (not
a Profile or the network), the media is automatically formatted. To
initialize an entire diSC, you may respond "0" to the number of blocks to
in! tialize.

Roth 14 October 1, 1982

Confidential Guide to os

Although I(nit destroys the current volume contents, the Pascal directory,
if it is a small one, is untouched. Thus, the Monitor can still read the
volume. Once you have initialized the volume, remember to mount it so you
can use it. Boot tracks are automatically written to any initialized
device as long as it is not the boot device.

DO NOT attempt to Initialize an illegal device.

Z(ap

Invalidates an OS file system volume. To use the volume again, you have to
initialize the volume the next time you start up the OS. If you change
your mind after Zapping a volume, just Zap it again. Zap makes the volume
appear to be an unmountable non-OS volume. The Z(ero command in the
Monitor is not equivalent to Zap.

N(ewTwig

Formats a Twiggy diskette. The command prompts for the device name;
"UPPER" or "LOWER" are appropriate names for Twiggies. After formatting
the diskette, you should initialize it as an OS volume. Note that you no
longer have to format a diskette before you initialize it.

W(riteBT

Writes boot track information on an initialized Twiggy diskette or Profile
to allow you to boot the OS. NOTE: you can't write boot tracks on your
boot volume. Instead, boot the OS from another Profile or Twiggy, attach
your boot Profile to the N-port card, and then write boot tracks to it.
Users following the standard OS installation procedures should not end up
with a boot volume without boot tracks. Because boot tracks are
automatically written when a volume is initialized, this function is useful
mainly when new boot tracks need to be written and you do not want to lose
the contents of the disk.

D(ump

Provides a nicely formatted hexadecimal and ASCII dump of any page in the
Lisa file system. The OS group uses D(ump primarily as a debugging aid.

Roth 15 October 1, 1982

Confidential Guide to OS

P(rotect

Sets the software theft protection fields for the specified file. The user
is asked for verification before the file is protected, because once it is
protected, it cannot be unprotected. If the user verifies that it is to be
protected by responding "y", the file is made into a "virgin protected
mas.ter." This means the file can only be copied by facilities that
implement software theft protection, such as the Lisa Applications Filer.
In particular, the 0 S Shell will not be able to copy it with the T(ransfer
command. The file can, however, be executed on any machine. The L(ist
command of the filer indicates if a file is protected or not. Note that a
protected file can be killed if desired.

Q(uit

Quit exits the PrivFiler and returns you to the OS command shell.

THE ASYNCHRONOUS FILE SYSTEM

Because your OS volume can only be on a Profile or a Twiggy, the OS blocks
a process calling a system procedure that involves an I/O operation until
the operation is complete. If there is a ready process at that time, the
scpeduler starts that process running during the time necessary for the I/O
operation.

This feature may improve overall performance of the OS. However, it can
cause some problems. It is possible with this feature that writeln
messages from several processes can get interspersed. This occurs if a
writeln message from one process interrupts a writeln message from another
process currently blocked for an I/O operation.

Although this feature should not affect application programs, problems may
occur with executing processes that share variables. A situation that
could cause problems with shared data is the following. A process sets up
a shared data address and then calls READ DATA to this address. The
READ DATA call blocks this process and allows a second process, possibly of
lower priority, to run. If the second process attempts to use the shared
data, it might receive erroneous data. If you have any problems protecting
shared data, consult the OS group.

Roth 16 October 1, 1982

Confidential Guide to as

a S PERFORMANCE

This section explains the file system improvements that are part of the 5.2
release of the Operating System and suggests how you can take advantage of
them to improve program performance. Optimizations occurred in the
following areas:

o Creation and killing of objects

o Allocation and deallocation of space

o Multiple-block I/O

Reorganizing the catalogs speeded up creating and killing objects. The as
now uses a hashing technique to map an object name to a location within a
catalog. Other internal reorganizations further reduce the I/O time
required for most catalog accesses. In release 5.3, the degradation of
Get Next_Entry has been fixed.

Space allocation and deallocation no longer write page label (hint)
information. The write operation is postponed until data is written to the
file because I/O has to occur at that time anyway. The implications of
this change are:

o Although allocation and deallocation are significantly faster,
reliability may be somewhat reduced. It is very important to
use the recommended shutdown techniques discussed earlier to
guarantee that the file system information is flushed to disk
in a consistent state.

o Because automatic allocation on writes is still implemented,
explicit allocation is useful mainly for guaranteeIng the
availability of disk space rather than for performance benefits.

Major optimizations were made to take advantage of any opportunity to do
multiple-block I/O. The larger the request, the better the increase in
speed is likely to be. Conversely, you will probably see no significant
improvement in I/O operations that deal with only one byte at a time.
However, there should be some improvement of speed in such I/O operations
due to the fact that automatic write through to the disk no longer occurs.

To summarize, create and kill are much faster, allocate and deallocate,
although much faster, are now useful mainly for managing availability of
disk space, and reading and writing multiple blocks of data at a time is
much faster. It is hard to state how much faster these operations are;
feedback from user tests would be much appreciated. However, please see
the Operating System group if you don't notice significant improvement in
the above areas.

Roth 17 October 1, 1982

Confidential Guide to OS

TWIGGY BAD BLOCK HANDLING

Two new device control functions are available for Twiggy drives. One of
them (decode = 20) returns status information on the Twiggy drive. The
other (decode = 21) is used to control sparing. A program to call these
functions appears as follows:

BEGIN

cparm:
errnum:
path:

dctype;
integer;
pathname:

path := '-upper'; (* or path := '-lower'; *)
cparm.dcversion := 1;
cparm.dccode := 20; (* or cparm.dccode := 21; *)
cparm.dcdata[1] := 1; (* see below *)
DEVlCE_CONTROL(errnum, path, cparam);

E~;

When decode = 20:

Roth

dcdata[O] returns: o - no disk present
1 - disk present but not accessed yet

returned values 2-4 only after first disk access (usually
mount)

dcdata[l] returns:

dcdata[2] returns:

dcdata[3] returns:

dcdata[4] returns:

2 - bad block track appears to be
unformatted .

3 - disk last formatted by some program
other than the OS

4 - OS formatted disk

o - no button press pending
1 - disk present, button pressed, but not

yet ejected

number of blocks still available for
remapping (0-16)
(meaningful only when dcdata[O] = 4)

o - both copies of bad-block directory are
intact

1 - one of the bad-block directory copies
is corrupt

(meaningful only when dcdata[O] = 4)

o - automatic bad-block sparing is disabled
1 - automatic bad-block sparing is enabled,

and will occur as long as there are
blocks available for remapping

18 October 1, 1982

Confidential Guide to OS

When decode = 21:

dcdata[O] set to: o - disables automatic bad-block sparing
1 - enables automatic bad-block sparing

whenever there are blocks available
for remapping (default)

PRINTERS AND RS-232 INPUT/OUTPUT

The Operating System supports the parallel ports and one serial RS-232
port; the other RS-232 port is reserved for Lisabug on the standalone OS.
The parallel ports on the 4-port card are named -slotxchany-anything, where
x and yare numbers 1 through three depending on the configuration. The
device pathname for the OS supported RS-232 port is '-RS232B-anything'
where 'anything' is any sequence of characters. RS232B is the leftmost
port when facing the front of the machine. There is no device control
required for printing on the parallel ports. The remainder of this section
is devoted to serial printing.

Follow the directions in this paragraph to set up a printer. Set the
printer to handle 1200 baud serial communications. Connect the printer
cable to a modem eliminator, and connect the modem eliminator to the RS232B
port. If you want to connect the printer to a Soroe instead, set the Soroc
to 1200 baud (set its rotary switch to 6) and connect the Soroe to the
RS232B port using a standard Lisa-to-Soroe cable.

The default configuration is no parity, DTR handshake, 1200 Baud. You can
change the configuration by using the DEVICE CONTROL procedure. A sample
program fragment that calls DEVICE CONTROL follows.

VAR
cparm: dctype;
errnum: integer;
path: pathname;

BEGIN
pa t h: =' -RS23 2B' ;
cparm.dcversion:=2; (* note version change *)
cparm.dccode:= « w »; (* see below *)
eparm.dedata[O]:= «x »;
eparm.dcdata[l]:= «y »;
cparm.dedata[2]:= «z »;
DEVICE_CONTROL(errnum,path,cparm);
END;

« w », « x», « y », and « z » are defined as follows:

Roth 19 October 1, 1982

Confidential Guide to OS

FUNCTION « w » « x » « y » « z »

Group A--Parity:

No parity 1 0

Odd parity, no 1 1
input pari ty
checking

Odd pari ty 1 2

Even parity, no 1 3
input pa ri ty
checking

Even parity 1 4

Group B--output Handshake:

None 11

DTR hands hake 2

XON/XOFF handshake 3

delay' after Cr, LF 4 ms delay

Group C--Baud rate: 5 baud
Group D--Input waiting:

wait for full line 6 0

return whatever rec'd 6 1

Group E--Input handshake:

no hands hake 7 0
9 -1 -1 65

DTR hands hake 7

XON/XOFF handshake 8

Group F--Input type-a~ead buffer:

flush only 9 -1 -2 -2

flush'& re-size 9 bytes -2 -2

flush, re-size, 9 bytes low hi
and set thres h

Roth 20 October 1, 1982

Confidential

FUNCTION « w »

Group G--Disconnect Detection:

none

device on
RS232B

10

10

Guide to OS

« x » « y » « z »

o o

o -128

To change the configuration, call DEVICE CONTROL for the option you want in
each group. You can set baud to any standard rate. However, 3600, 7200,
and 19200 baud are available only on the RS232B port.

'Low' and 'Hi' under Group F set the low and high threshhold in the type
ahead input buffer. When 'hi' or more bytes are in the input buffer, XOFF
is sent or DTR is dropped. Then when 'Low' or fewer bytes are in the type
ahead buffer, XON is sent or DTR is re-asserted. The size of the type
ahead buffer can be anywhere between 0 and 64 bytes inclusive.

Once the device is properly configured, OPEN a pathname , RS232B-any thing'
where 'anything' can be any string of characters. You can now WRITE DATA
and READ DATA with any size data block to the refnum opened.

STACK SIZE

The stack size that"a process requires depends on several factors. These
include the amount of storage necessary for program global variables,
regular unit global variables and intrinsic unit global variables, but do
not include shared intrinsic variables.

Besides the static stack space requirements, a process also requires stack
space dynamically for procedure stack frames. These stack frames contain
the procedure linkage information, procedure local variables, and space for
temporary expressions. The initial amount of dynamiC stack space is
obtained from the program file the process is to execute and is allocated
when the OS creates a process. The default initial dynamic stack size is
10K (set by the Linker). The user can set the initial dynamic stack size
to any desired value using the +S option of the Linker.

During the course of execution, it is possible for a program to requi~e
more dynamic stack space than is currently allocated to the stack (stack
overflow). When this occurs, the operating system automatically expands
the stack by the necessary amount. Stack expansions occur as needed until
an expansion would make the stack larger than the maximum stack size
contained in the program file. The default value for maximum stack size is
128K (again set by the Linker). You can set the maximum stack size to any
desired value uSing the +T option of the Linker.

Roth 21 Octo ber 1, 1982

Confidential Guide to OS

Under the current system, if a process requires a stack expansion that
would cause the stack to exceed the maximum stack size, the process gets a
bus error and enters LisaBug. Once in LisaBug, the system displays the bus
error message and allows the user to do any debugging desired. To
continue, type 'g' to exit LisaBug and allow the OS to abort the process.

Under the final (production) system, the Operating System terminates a
process needing more stack space than the maximum. The cause of the
termination, located in the exception information block associated with the
SYS_TERMINATE exception, will indicate 'stk_overflow' (see Unit Syscall).

Currently, the Operating System does not allow a stack size greater than
128K (the size of a hardware segment). So if you specify a value greater
than 128K in either the +S or +T option, the OS lowers it to 128K when the
process is created. Note also that there can be a performance penalty
associated with stack expansion, since Memory Manager must be run in order
to make space (possibly causing I/O) for the larger stack segment.

INTRINSIC UNITS

To use Intrinsic Units under the OS you need the Monitor release 8.0
versions of the compiler and code generator, the 8.2 versions of the
Intrinsic Unit Manager and Intrinsic Unit Linker, an INTRINSIC.LIB file,
and the linked library file IOSPASLIB.OBJ found on the OS release disks.

The INTRINSIC.LIB file used must contain the 4 units that comprise PasLib.
, These are uni ts 1 (PASLIB), 102 (BLKIOINT), 103 (BLOCKIO), and 104

(PASHEAP). The INTRINSIC.LIB file may contain anything else that you
require for the application. Before using the INTRINSIC. LIB and
IOSPASLIB.OBJ to link a new unit or program, you must I(nstall the
IOSPASLIB.OBJ from the OS release disk with the Intrinsic Unit Manager.

The INTRINSIC.LIB file, IOSPASLIB.OBJ file, and any other library files
required must be on the Monitor root volume and the OS volume before
executing programs under the OS.

You must compile programs that callOS routines using the SYSCALL unit. If
a program calls anything from the privileged OS interface, you must include
the PSYSCALL unit as well. In addition, you must link programs calling OS
routines from either interface with IOSPASLIB.OBJ.

Because both the INTRINSIC. LIB file and the various library files are
required to run any programs that use Intrinsic Units, several problems can
occur if you are not careful about keeping these files consistent with each
other. If a library file is ever changed, YQU must re-install it in
INTRINSIC.LIB, and, if you are using the monitor, you must transfer both
the new library file and the new INTRINSIC.LIB to the OS volume.

When you transfer a new INTRINSIC. LIB file to the OS volume, you must also
change the memory resident copy of INTRINSIC. LIB. You can change the
memory resident copy of the file either while in the T(ransfer command of
the F(iler or later with the L(ib command of the Shell (see the
descriptions of these commands for details).

Roth 22 October 1, 1982

Confidential Guide to as

If any of these steps are omitted, various errors can occur. For example,
if you define a new Intrinsic Unit, build a program that uses the unit, but
forget to transfer and change the INTRINSIC.LIB file on the as volume,
Make_Process returns an error saying that the unit was not found in the
Intrinsic Unit Directory. The error occurs because it 1s not in the memory
copy of INTRINSIC. LIB.

As an aid in tracking these kinds of errors, the as Loader currently
displays the Intrinsic Uni t number and name that was not found on the
screen. This display will not be in the production system. Similar errors
occur when you change the name or type of a unit and forget to transfer
over the new INTRINSIC. LIB and/or library file before executing a program
that uses the unit.

More complicated errors can occur if the size of a shared code segment
associated with an Intrinsic Unit or its location in a library file changes
and the new INTRINSIC. LIB and/or library file 1s not transferred to the as
volume. In this case, the error 1s not detected until the code segment is
swapped into memory. At this point, you get the message

*** Error swapping in private code segment /I nn for process id /I pp
OR

*** Error swapping 1n shared code sement /I nn (segname) for process
id II pp

where nn is the code segment number the application process uses, segname
is the name of the shared segment from Intrinsic.Lib, and pp is the process
identification number of the process for whom the segment is swapped in.

If the swap-in error is for a shared segment, it is generally due to an
inconsistency between Intrinsic.Lib and the library file containing the
shared segment. If this is the case, the correct Intrinsic.Lib and the
library file associated with the bad segment are probably not on the as
volume.

If the swap-in error is for a private segment, it is generally due to
either an improper link or.a bad spot on the disk. To solve this problem,
relink the program and transfer the relinked version to the as volume.

Regardless of the kind of sWap-in error, type < ret > to continue. The as
terminates the failing process and the information block associated with
the process's SYS TERMINATE exception indicates that the as is terminating
the process due to a swap-in error.

Roth 23 Octo ber 1, 1982

Confidential Guide to as

ALTERNATE SCREEN

The as and PASLIB support an alternate screen, that is normally used to
display writeln's and the output from Lisabug. These types of outputs can
go to one of three places: the main screen, the alternate screen, or an
external Soroc. The main screen is usually used for the applications.
Either the main screen or the alternate screen can be displayed on the Lisa
screen. You can switch between the two by pressing the right hand COMMAND
key and ENTER.

The default for applications and OS's writeln's is the alternate screen.
This means you must make the alternate screen visible in order to see the
writeln. When you boot the as, the main screen will be visible first until
you press COMMAND and ENTER to make the alternate screen visible. You can
type COMMAND and ENTER again to flip back to the main screen.

The graphic output will always be shown on the main screen. Note that the
keyboard input always goes to the currently visible screen (sometimes
called the active screen), so a readln will not return until you make the
alternate screen visible and type something to satisfy it. If there is a
readln waiting and the alternate screen is not visible, the system will
appear to be hung. If your Lisa application seems to be hung, try
flipping to the alternate screen to see if there is a readln pending.

There is a MOVESOROC program that you can execute to change where wri te1n
and readlns appear. They may be sent to the main screen, the alternate
screen, or to an external Soroc co~nected to RS232A. Note that you do not
want to have writelns going to the main screen if you are running Lisa .
applications. With writelns going to the soroc, you can have simultaneous
graphic and writeln output. Note that this program changes the
applications wr1teln/readln only. The OS's wr1teln cannot be re-directed
at run-time. In a later release, we will have a configuration program to
change the console (writeln, readln) in parameter memory. This program
will allow the OS's writeln to be redirected in the parameter memory also.
This redirection will take effect at the next boot.

PASLIB

The as does not support some of the Paslib routines. The remainder of this
section explains how you use PASLIB routines in the as world. If an
unsupported function is called in the as, the system displays the following
message:

MONITOR TRAP (E) occurred, index=<iiii> (routine name) in process. of gid <gggg>

where <iiii> is the routine's index to the Monitor's TRAP E handler. See
the Pascal Development System Internal Documentation for the identity of an
index without a routine name.

Roth 24 October 1, 1982

Conf ide nt ial Guide to OS

The OS does not support unit 10 routines such as Unitread and Unitwrite and
does not support the seek routine. However, it does support the GOTOXY
routine. bp The Paslib ~outines for value range check and string index
check run in the OS environment. If the range check indicates an error in
OS code, a system error is signalled. The .message displayed is:

or:

VALUE RANGE ERROR in system code!
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

where:

<pppppp> is the address of the next statement of the call
to the range check routine in Paslib,

<cccccc> is the address of the link field at the time of
the call to pas lib

ILLEGAL STRING INDEX in system code!
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

In this case and for other errors in sys tem c.ode", use the OSQUIT facili ty
described earlier instead of typing g to continue. If you type g and try
to continue, you get system error 10201 and you must reboot the system.

If a range check error occurs in application code, the system exception
'SYS_VALUE_OOB' is signalled. The message displayed is:

or:

Roth

VALUE RANGE ERROR in process gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

ILLEGAL STRING INDEX in process of gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

25 October 1, 1982

Confidential Guide to as

If the process has not declared an exception handler for the exception that
occurs, the system exception handler is entered after you type 'g' to
contine. ·It terminates the process. If the process has declared a
handler, the handler is called after you type 'g', and the process then
continues execution.

The intrinsic procedure HALT calls TERMINATE PROCESS without passing an
event.

The block 10 routines, RESET, REWRITE, BLOCKREAD, BLOCKWRITE, and IORESULT,
act in the operating system just as they do in the Monitor. In fact, RESET
and REWRITE accept both Moni tor and as file names.

In order to distinguish between the two types of files in RESET and
REWRITE, Paslib has adopted the following file naming convention: a file
name designates a Monitor file only if the name includes a colon (:) AND
does not begin with a dash (-). All other files are considered as files.

You can override the file system mode with a call to SetMPrefix. This call
allows you to choose the file system you want; its format is:

procedure SetMPrefix (var errnum: integer;
prefix: vid);'

where vid is of type string [7] •. If you set prefix to '%%OS', later
calls to RE'SET or REWRITE assume that file names refer 'to as files. If you
set prefix to '%%MO', subsequent calls to the two routines assume that file
names refer to Monitor files. The file naming conventions given above are
in effect if you set prefix to '%%BO'. The file system mode you choose
rema~ns in effect until the next call to SetMPrefix.

Before calling SetMPrefix, you must declare it as external. This call will
no longer be necessary once the entire development system is running on top
of the OS and OS support of Monitor volumes isn't necessary.

The OS file system mode does not support the file name construct [X], where
X is a number of blocks. There is no need for the OS to support this
syntax because an OS file expands as needed, and will not take the largest
available space if X is not specified. In fact, if you do append the
construct to the file name, it becomes part of the file name.

IORESULT, in the OS file system mode, returns the same error values as
Monitor files, but the error return numbers are in the OS file system
range. The current mapping of as to UCSD file system error values is:

Roth 26 October 1, 1982

Confidential Guide to OS

OS Error Value UCSD Error Value

882 8

894 6

921, 946 7

941 5

948 10

Other errors are not mapped. The above error mappings will no longer exist
once the OS stops supporting Monitor files.

Note also that IORESULT now returns error 11 (duplicate file) as a warning
(-11) and completes the operation as normal when the error results from a
second REWRITE of a file without a CLOSE after the first REWRITE. This
change allows the user to decide whether to continue the program if the
error occurs because of a program crash or to stop execution if there is a
name conflict with another program that has already done a REWRITE to the
same file.

For Monitor files, only units 5, and 9 through 20 are considered block
structured devices·. Block IO to a non-block structured device is' noe
supported. IORESULT can return an additional error number:

17 - device error, non-zero value returned from last LISAIO call

Text file block IO works as expected. RESET and REWRITE of a text file
(.TEXT suffix) sets the current block number to 2, thereby bypassing the
text file header blocks. Note that RESET and REWRITE only accept names of
files on the working device. In addition, the two routines do not support
the new Monitor file name syntax (DEV/VOL: . FILE) yet.

In this release of PASLIB, the seek routine is finally supported. Also,
there are three virtual devices supported in this PASLIB, '-CONSOLE',
'-KEYBOARD', and '-PRINTER'. The -CONSOLE device works the same way as
CONSOLE: in the monitor. The -KEYBOARD is a non-echoing input device
intended to replace the unitread of unit number 2 function. These two
devices can be opened by a RESET:

Roth

VAR keyboard: interactive
RESET (keyboard, '-KEYBOARD');
READ (keyboard, ch);

27 October 1, 1982

Confidential Guide to OS

Note that the -KEYBOARD device follows the characteristics of the -CONSOLE
device and returns a space when a carriage return is entered. The -PRINTER
device must be opened by a REWRITE and passed -PRINTER as the file name.
Either write/writeln or blockwrite can be used to send data to the printer.
Current implementations of writeln and blockwrite are transparent to the
contents of data, i. e. blockwrite does not expand 'OLE' to spaces if the
buffer contains blocks read in from a text file with blockread.

In this ,release fo PASLIB, you can only connect the C.ltoh printer to the
slot2chan2 port, and the switch 1-8 must be in the closed position.
Eventually, there will be a configuration program to allow the C.Itoh
printer to be on any parallel interface port, and the Qume printer to be on
any parallel or serial port.

THE PASCAL HEAP

The heap is one contiguous piece of memory. It obtains a contiguous piece
of memory with a call to Make_Dataseg. The heap works automatically
without any initialization call; there are default values for size of the
heap, the LDSN used, etc.

Most users of the heap should use it the same way as they use the Monitor
heap. For those having special needs, there is a call, PLINITHEAP, that
specifies the LDSN, the initial heap SIZE, whether the heap can be swapped
to disk, and the heap DELTA size. When you use PLINITHEAP, you must call
it before making a call to the other heap routines.

PLINITHEAP (ERROR, REFNUM, SIZE, DELTA, 9, FALSE);

PLINITHEAP is defined as 'follows in the PASLIBCALL unit:

procedure PLINITHEAP (var ERNUM, REFNUM: integer;
SIZE, DELTA: longint;
LDSN: integer;
SWAP ABLE: boolean);

where ERNUM is the error number returned if the procedure has any problems
making a data segment having a mem size of SIZE bytes, LDSN is the LDSN
used for the heap (the default is-5), REFNUM is the refnum of the heap,
DELTA is the amount the data segment increases when the current space is
used up (If you use a large heap, use a large number for DELTA), and
SWAPABLE is the boolean that determines whether the system can swap the
heap data segment out to disk if it needs to.

When a Pascal program starts execution, there is no heap space allocated
(no data segment made). On the first call to one of the heap routines or
on thefirstPLINITHEAP call, the heap is created with either a default
size of 16k bytes or the size specified in the PLINITHEAP call.

Roth 28 October 1, 1982

Confidential Guide to OS

PLINITHEAP makes the heap as a private data segment so that the OS will
remove it when the process calling PLINITHEAP terminates. Note that when
the heap is ini tialized, size and delta are put on 512 byte block
boundries. Therefore, if you use the PLINITHEAP call and specify. values
for size and delta that don't fallon block boundaries, the procedure
increases the values to the next block boundary.

If the heap runs out of space while it is being used, the size of the heap
is increased by the default of 16k or the DELTA specified in PLINITHEAP.
The default LDSN used is LDSN 5. If you want a different LDSN for the heap
data segment, call PLINITHEAP. Remember that the size of a data segment is.
limited by the LDSN you use. For LDSN 16, you can only get 128k (actually
96k safely), for LDSN 15 256k, for LDSN 14 384k, ••••

If SWAPABLE is true, the heap is made with disc size equal to SIZE so the
data segment will not be memory resident. The default for SWAPABLE is
false. When SWAPABLE is false the procedure creates a data segment that
has a disc_size of 0 which makes it memory resident.

The unit PASLIBCALL contains the interface for the PLINITHEAP call.
PASLIBCALL will contain the interface to all procedures that effect the
PASLIB. PASLIBCALL will be released with Tippe.

Currently, the OS supports the built in Pascal heap routines NEW, MEMAVAIL,
MARK, and RELEASE.

If you call NEW and there is not enough space, the size of the heap is
increased by the default of 16k or the deltasize specified in PLINITHEAP.

MEMAVAIL gives you the maximum number of words you could ever expect to get
and takes into account the LDSN you used as well as the amount of free
space the OS currently has available. If there is another process using
memory concurrently, it's use of memory also effects MEMAVAIL. MEMAVAIL
does not show the amount of memory left in the heap's data segment alone
since the heap's data segment can grow and shrink over time.

MARK works as it does in the Monitor.

If you release the heap to a point within the original size of the heap
data segment, the heap data segment is reduced to its Original size. Other
than this, RELEASE works as it does in the Monitor.

The current heap could be replaced later by heap routines within the
standard storage manager. There are currently implementation dependencies
in the Compiler, and probably other parts of the system, that require a
UCSD style contiguous heap. If these dependencies are removed in time, we
may go to a fancier heap for first release that contains DISPOSE and
possibly other features.

Roth 29 October 1, 1982

Confidential

THE as INTERFACE

UNIT syscall;
INTRINSIC;

INTERFACE

CONST
max_ename = 32;
max label size =- 128;
len-exname = 16;
size_exdata = 11;

s ize_ etext =- 9;
size waitlist = 10;

call term = 0;
ended = 1;
self killed = 2;
killed =- 3;
fthr term = 4;
bad_syscall = 5;
bad errnum = 6;
swap error =- 7;
stk_overflow = 8;
data overflow = 9;
parity_err = 10;

def div zero
def-value oob - -def ovfw
def nmi key
def-range
def-s tr index

= 11;
= 12;
= 13;
= 14;
= 15;
=- 16;

bus error = 21;
addr_error =- 22;
illg inst = 23;
priv:violation = 24;
line_lOlO = 26;
line 1111 = 27;

div zero = 31;
va.l.ue_oob = 32;
ovfw = 33;
nmi_key = 34;
value_range = 35;
str index = 36;

Roth

Guide to as

(* system call definitions unit *)

(* maximum length of a file system object name *)
(* maximum size of a file label, in bytes *)
(* length of exception name *)
(* 48 bytes, exception data block should have the same

size as r_eventblk, received event block *)

(* event text size - 40 bytes *)
(* size of wait list - should be same as reqptr_list *)

(* exception kind definitions for 'SYS TERMINATE'
exception *)

(* process called terminate-yrocess *)
(* process executed 'end' statement *)
(* process called kill-yrocess on self *)
(* process was killed by another process *)
(* process's father is terminating *)
(* process made invalid sys call - subcode bad *)
(* process passed bad address for errnum parm *)
(* process aborted due to code swap-in error *)
(* process exceeded max size (+T nnn) of stack *)
(* process tried to exceed max data space size *)
(* process got a parity error while executing *)

(* default handler for div zero exception was called *)
(* " for value oob exception *)
(* " for overflow exception *)
(* .. for NMI key exception *)
(* .. for 'SYS VALUE OOB' excep due to value range err *)
(* " for 'SYS-VALUE-OOB' excep due to string index err*)

(* bus error occurred *)
(* address error occurred *)
(* illegal instruction trap occurred *)
(* privilege violation trap occurred *)
(* line 1010 emulator occurred *)
(* line 1111 emulator occurred *)

(* exception kind definitions for hardware exception *)

(* excep kind for value range and string index error *)
(* Note that these two cause 'SYS_VALUE OOB' excep *)

30 October 1, 1982

Confidential

TYPE
pathname = string [255];
e name = string [max enamel;
namestring = string [20];
procinfoRec = record

pathname;
longintj
longint;
1 •• 255;

Guide to OS

progpathname
global id
father-id
priority
state
data in

(pactive, psuspended, pwaiting);
boolean

end;

Tdstype = (ds_shared, ds_private); (* types of data segments *)

dsinfoRec = record
'mem size : longintj
disc_size: longintj
numb open : integer;
ldsn-: integer;
boundF : boolean;
presentF boolean;
creatorF : boolean;
rwaccess : booleanj
segptr : longint;
volname: e_name;

endj

t ex name = string [len exname];
longadr = Alongintj -
t ex state = (enabled, queued, ignored);
p-ex-data = At ex data;
t-ex-data = array-[O •• size exdata] of longint;
t-ex-sts = record -

Roth

- - ex_occurred_f : boolean;
ex_state : t_ex_state;
num_excep : integer;
hdl_adr : longadr;

end;

31

(* exception name *)

(* exception state *)

(* exception data blk *)
(* exception status *)
(* exception occurred flag*)
(* exception state *)
(* number of exceptions q'ed*)
(* handler address *)

October 1, 1982

Confidential

p_env_blk =- ""env_blk;
env blk = record

pc
sr
dO
dl
d2
d3
d4
dS
d6
d7
aO
801
a2
a3
a4
as
a6
a7

end;

p _ t e l"Dl.-ex_ da t a
term ex data =

longint;
integer;
longint;
longint;
longint;
longint;
longintj
longint;
longint;
longint;
longint;
longint;
longint;
longint;
longint;
longint;
longint;
longint;

= term_e~data;
record

(*

Guide to OS

environment block to pass to handler *)
(* program counter *)
(* status register *)
(* data registers 0 - 7 *)

(* address registers ° - 7 *)

(* terminate exception data block *)
case excep_kind longint of

Roth

call_term,
ended,
self killed,
killed,
fthr term,
bad syscall,
bad errnum,
swap error,
stk overflow,
da ta ove rf low,
parity_err : ();

illg_inst,
priv_violation,

line_IOIO,
line 1111,
def_div_zero,
def_value_oob,
def ovfw,
def nm!_key

: (sr : integer;
pc : longint);

def_range,

32

(* due to process termination *)

(* due to illegal instruction,
privilege violation *)

(* due to line 1010, 1111 emulator *)

(* terminate due to default handler for
hardware exception *)

(* at the time of occurrence *)

October 1, 1982

Confidential Guide to OS

end;

def str index - -

(value_check
upper bound
lower-bound
returnJc
caller a6

bus error,
addr error

(fun.-field

(* terminate due to default handler for
'SYS VALUE OOB' excep for value
range or string index error *)

integer;
integer;
integer;
longint;
longint) ;

(* due to bus error or address error *)
packed record (* one integer *)

filler: 0 •• $7ff; (* 11 bits *)
r_w_flag boolean;
i n flag boolean;
fun-code 0 •• 7; (* 3 bits *)

end;
acces.s adr : longint;
inst_register : integer;
sr_error integer;
pc_error: longint);

p hard ex data = Ahard_e~data;
hard ex data = record (* hardware excepti~n data block *)

case excep kind longint of
d1v zero,-value oob, ovfw

:-(sr : integ;r;
pc : longint);

value range, str index
(;alue check- integer;
upper-bound integer;
lower_bound integer;
return pc longint;
caller-a6 longint);

end;

accesses = (dread, dwrite, append, private, global_refnum);
mset = set of accesses;
iomode = (absolute, relative, sequential);

UID = record (*unique id*)
a, b: longint

end;

(* time interval *) timestmp_interval = record
sec : longint;
msec : 0 •• 999;

end;

(* number of seconds *)
(* number of milliseconds within a second *)

Roth 33 October 1, 1982

Confident ial Guide to OS

info type - (device t, volume t, object t);
devtype - (diskdev,-pascalbd,-seqdev, bItbkt, no~io);
filetype - (undefined, MDDFfile, rootcat, freelist, badblocks,

sysdata, spool, exec, usercat, pipe, bootfile,
swap data , swapcode, ramap, userfile, killedobject);

entrytype= (emptyentry, catentry, linkentry, fileentry, pipeentry, ecentry,
killedentry) ;

fs info =- record

Roth

name : e_name;
dir path : pathname;
machine id : longint;
case otype : info type of

device_t, volume_t: (
iochannel : integer;
devt : devtype;
slot no : integer;
fs sIze : longint;
vol_size : longint;
blocks tructured , mounted : boolean;
opencount : longint;
privatedev, remote, lockeddev : boolean;
mount_pending, unmount-pending : boolean;
volname, password : e name;
fsversion, volnum : integer;
volid : urD;
blocksize, datasize, clustersize, filecount integer;
freecount : longint;
DTVC, OTCC, DTVB, DTVS : longint;
master_copY_id, copy_thread longint;
overmount_stamp : uro;
privileged, write protected boolean;
master, copy, copy flag, scavenge flag boolean;
vol_left_mounted :-boolean); -

object t : (
size-: long1nt;
ps1ze : longint;
lpsize : integer;
ftype : filetype;
etype : entrytype;

(* physical file size in bytes *)
(* logical page size in bytes for this file *)

DTC, OTA, DTH, DTB, DTS longint;
refnum : integer;
fmark : longint;
acmode : mset;
nreaders, nwriters, nusers : integer;
fuid : urD;
eof, safety on, kswitch : boolean;
private, locked, protected, master file : boolean;
file scavenged, file closed by OS,-file left open: boolean)

end; - - - - --

34 October 1,1982

Confidential

dctype = record
dcversion : integer;
decode integer;

Guide to OS

dcdata : array [0 •• 9] of longint; (* user/driver defined data *)
end;

(* wait list *)
integer;

t_waitlist = record
length
refnum

end;
array [O •• size_waitlist] of integer;

t eheader = recor~
send_pid longint;
event_type : longint;

end;

(* event header *)
(* sender's process id *)
(* type of event *)

t event text = array [O •• size_etext] of longint;
p r eventblk = Ar eventblk;
r-eventblk = record

event header : t_eheader;
event text

end; -

p s eventblk = As_eventblkj
s-eventblk = t_event_text;

time rec =

chn kind =
t chn sts

record
year : integer;
day : 1 •• 366;
hour: -23 •• 23;
minute: -59 •• 59;
second: 0 •• 59;
msec O •• 999;

end;

(wait_ec, call_ec);
= record

chn_type : chn_kind;
num_events : integer;
open recv : integer;
open:send : integer;
ec_name : pathname;

end;

hour range = -23 •• 23;
minute_range = -59 •• 59;

Roth 35

(* julian date *)

(* channel status *)
(* channel type *)
(* number of events queued *)
(* number of opens for receiving *)
(* number of opens for sending *)
(* event channel name *)

October 1 t 1982

Confidential Guide to os

(* File System calls *)

procedure MAKE FILE (var ecode:integerj var path:pathnamej label_size:integer);

procedure MAKE PIPE (var ecode:integerj var path:pathname; label_size:integer)j

procedure MAKE_CATALOG (var ecode:integerj var path:pathname; label_size:integer);

procedure MAKE LINK (var ecode:integer; var path, ref:pathnamej label_size:integer)j

procedure KILL_OBJECT (var ecode:integerj var path:pathname);

procedure UNKILL_FILE (var ecode:integer; refnum:integer; var new_name:e_name);

procedure OPEN (var ecode:integerj var path:pathnamej var refnum:integerj manip:mset)j

procedure CLOSE_OBJECT (var ecode:integer; refnum:integer);

procedure READ DATA (var ecode
refnum

data addr
count

var actual
mode

offset

procedure WRITE_DATA (var ecode
refnum

data addr
count

var actual
mode

offset

integer;
integer;
longintj
longint;
longint;
iomode;
longint);

integer;
integerj
longintj
longintj
longint;
iomode;
longint);

procedure FLUSH (var ecode:integer; refnum:integer);

procedure LOOKUP (var ecode
var path

var attributes

integerj
pathname;
fS_info) ;

procedure INFO (var ecode:integerj refnum:integerj var refinfo:fs_info);

procedure ALLOCATE (var ecode integer;
refnum integer;

contiguous booleanj
count longint;

var actual longint) j

procedure TRUNCATE (var ecode integer; refnum : integer);

procedure COMPACT (var ecode . integer; refnum : integer) ; .
procedure RENAME ENTRY (var ecode:integer; var path:pathnamej var newname

Roth 36 October 1, 1982

e name);

Coni ident ial Guide to OS

procedure READ LABEL (var ecode integer;
var path pathname;

data addr longint;
count longint;

var actual longint);

procedure WRITE LABEL (var ecode integer;
var path pathname;

data addr longint;
count longint;

var actual longint) ;

procedure MOUNT (var ecode:integer; var vname : e_name; var password
var devname : e_name);

procedure UNMOUNT(var ecode:integer; var vname : e_name);

procedure SET_WORKING_OIR (var ecode:integer; var path:pathname);

procedure GET_WORKING_OIR (var ecode:integer; var path:pathname);

e name

procedure SET_SAFETY (var ecode:integer; var path:pathname; o~off:boolean);

procedure DEVICE CONTROL (var ecode:integerj var path:pathname;
cparm : dctype);

procedure RESET CATALOG (var ecode : integer; var path: pathname);

procedure GET_NEXT_ENTRY (var ecode : integer; var prefix, entry: e_name);

procedure SET_FILE_INFO (var ecode
refnum
fsi

(* Process Management system calls *)

function My_ID : longint;

integer;
integer;
fs_info);

procedure Info Process (var errnum : integer; proc id : longint;
var proc_info : procinfoRec);

procedure Yield CPU (var errnum : integer; to_any: boolean);

procedure SetPriority_Process (var errnum : integer; proc_id
new-priority : integer);

longint;

procedure Suspend_Process (var errnum : integer; proc id
susp_family : boolean); -

longint;

Roth 37 October 1, 1982

Confidential Guide to OS

procedure Activate Process (var errnum
act_family

integer; proc_id
boolean) ;

longint;

procedure Kill_Process (var errnum : integer; proc_id: longint);

procedure Terminate Process (var errnum : integer; event-ptr: p_s_eventblk);

procedure Make Process (var errnum : integer; var proc_id : longint;
var progfile : pathname; var entryname : namestring;
evnt_chn_refnum : integer);

(* Memory Management system calls *)

procedure make dataseg(var errnum:. integer; var segname: pathname;
- me~sizet disc_size: longint; var refnum: integer;

var segptr: longint; Idsn: integer; dstype: Tdstype);

procedure kil~dataseg (var errnum integer; var segname pathname) ;

procedure ope~dataseg (var errnum integer; var segname pathname;
var refnum integer; var segptr : longint;
Idsn : integer);

procedure close_dataseg (var errnum : integer; refnum : integer);

procedure size_dataseg (var errnum : integer; refnum : integer;
deltamemsize : longint; var newmemsize : longint;
deltadiscsize: longint; var newdiscsize: longint);

procedure info_dataseg (var errnum
var dsinfo

integer; refnum : integer;
dsinfoRec) ;

procedure setaccess_dataseg (var errnum : integer; refnum
readonly : boolean);

integer;

procedure unbind_dataseg (var errnum : integer; refnum : integer);

procedure bind_dataseg(var errnum : integer; refnum : integer);

procedure info_ldsn (var errnum : integer; ldsn: integer; var refnum: integer);

procedure flush_dataseg(var errnum: integer; refnum: integer);

procedure mem_info(var errnum: integer;
var swapspace, dataspace,

cur_codesize t ma~codesize: longint);

procedure info_address(var errnum: integer; address: longint;
var refnum: integer);

Roth 38 October 1, 1982

Conf i de nt ial

(* Exception Management system calls *)

procedure declare_excep_hdl (var errnum : integer;
var excep name : t ex name;
entry-point : longadr);

procedure disable_excep (var errnum : integer;
var excep name : t ex name;
queue: boolean); - -

procedure enable_excep (var errnum : integer;
var excep_name : t_ex_name);

procedure signal_excep evar errnum : integer;
var excep name : t ex name;
excep_data : t_ex_data);

procedure info_excep (var errnum : integer;
var excep name : t ex name;
var excep status :-t_ex_sts);

procedure flush_excep evar errnum : integer;
var excep_name : t_ex_name);

(* Event Channel management system calls *)

procedure make event chn evar errnum : integer;
var event_ehn_name : pathname);

procedure kil~event_chn (var errnum : integer;
var event_chn_name : pathname);

procedure open_event_chn (var errnum : integer;
var event chn name : pathname;
var refnum : Integer;
var excep_name : t_ex_name;
receiver: boolean);

procedure close_event_chn evar errnum : integer;
refnum : integer);

procedure info_event_chn (var errnum : integer;
refnum : integer;
var chIl.-info : t_chn_sts);

procedure wait event chn evar errnum : integer;

Roth

var wait list : t waitlist;
var refnum : integer;
event-ptr : p_r_eventblk);

39

Guide to OS

Octo ber 1, 1982

Confidential

procedure flush_event_chn (var errnum : integer;
refnum : integer);

procedure send_event_chn (var errnum : integer;
refnum : integer;
event-ytr : p_s_eventblk;
interval : timestmp interval;
clk~ime : time_rec);

(* Timer functions system calls *)

procedure delay_time (var errnum : integer;
interval : timestmp interval;
clktime : time_rec);

procedure get_time (var errnum : integer;
var gmt_time time_rec);

procedure set_loca~time_diff (var ermum : integer;
hour : hour range;
minute: minute_range);

procedure convert time (var errnum : integer;

Roth

var gmt time : time rec;
var local time : time rec;
to_gmt: boolean); -

40

Guide to OS

October 1, 1982

Confidential Guide to OS

ADDITIONS TO THE OS

This section documents all the changes to the OS that have occurred since
the last release of the OS Reference Manual. When the manual is updated,
the material will be deleted from this section.

NEW OS PROCEDURES

A new data segment call named Info Address was added in release 5.2. This
call returns the refnum of the data segment that maps to the address that
the user specifies in the call. The definition of the call is:

Info Address (var errnum: integer;
address: longint;

var refnum: integer);

where errnum is the return status of the call, address is the address that
is converted to a data segment number, and refnum is the refnum of the data
segment that maps to the address 'address'.

Info Address can return any of the following errors:

303 - No data segment bound to the address

314 - Address does not fall within the valid ldsn range

1998 - Invalid parameter address

MEM INFO, defined below retrieves information about the memory resources
that the calling process uses.

Roth

MEM INFO (var errnum : integer
var swapspace;

dataspacej

where:

swapspace

d~taspace

cur_codesize;
max codesize: longint)

= amount of system memory available (in bytes)
fo r swapping

= amount of memory (in bytes) the calling process
requires for its bound data areas. This value
includes the stack of the process and the data
segment for shared intrinsic data.

41 October 1, 1982

Confidential Guide to OS

cur codesize = size (in bytes) of the calling segment.

max_codesize = size (in bytes) of the longest code segment within
the address space of the calling process.

The Set_File_Info system call, added in release 5.2, alters certain status
information associated with a file system object. The call format is:

Set_File_Info (var ecode: integer;
refnum: integer;
fsi: fS_info);

where ecode is the error return code, refnum is the refnum of the object,
and fsi is the fs information record that the OS calls LOOKUP and INFO use.
Note that the object that refnum identifies must be open at the time of the
call to Set File Info. - -
Set_File_Info alters the status information of the named object to conform
to the values of the information record named in the call. Call INFO and
set the values in fsi you want to change before calling this procedure.

Currently, Set_File_Info can change the following status fields:

o file_scavenged

o file_closed_by_OS

o file_left_open

The Unkill File call was added in release 5.3. It reverses the effect of
the Kill Object operation on an open file. Only objects of type file can
be unkilTed. A new catalog entry is created for the file with the name
new name. The call format is:

Unkill File (var ecode: integer;
refnum: integer;

var new name: e_name);

Where ecode is the error return code, refnum is the refnum of the open
file, and new name is the name the file is to be cataloged under.

INTERFACE CHANGES

The following interface changes were made in release 5.3.

1. The Get_Dev_Name system call has been removed from the OS user
interface.

The information that used to be returned by Get_Dev_Name is now
available

in the FS INFO record returned by Lookup and Info.

Roth 42 October 1, 1982

Confidential Guide to OS

2. The devnum field has been removed from the FS INFO record

3. A new field

dir-yath: pathname

has been added to the FS INFO record. For Lookup/Info on an object,
dir path is the pathname of the directory containing the objects entry.
-Therefore, a unique pathname for an object can be constructed by

For lookup on a device, dir-path is the pathname of the directory for
that device.

DATA SEGMENT CHANGES

From OS release 5.1 on, OPEN DATASEG is much less sensitive to the values
of LEOF and PEOF within the-data segment being opened. The results of an
OPEN DATASEG call under various conditions are outlined below:

Condition

o < ~OF <= 128kb
PEOF = any value

LEOF > 128kb
PEOF = any value

LEOF = 0
o < PEOF <= 128kb

LEOF = 0
PEOF > 128kb

LEOF = 0
PEOF = 0

Resulting Data Se,gment

memory size = LEOF; disk size = PEOF
errnum = 0

errnum = 306 (data segment too big)

memory size = PEOFj disk size = PEOF
errnum = -320 (a warning)

memory size = 128kb; disk size = PEOF
errnum = -320 (a warning)

memory size = 512 . disk size = 0 ,
errnum = -320 (a warning)

Those conditons which result in a warning error (-320) should be checked
via INFO DATASEG to verify that the resulting data segment has the desired
memory and disk sizes before the segment is used.

Roth 43 October 1, 1982

Confidential

In release 5.2 of the Operating System the calling sequence for
Make_Dataseg has changed to:

Tdstype = (ds_shared, ds-private)

Make_Dataseg (var errnum: integer;
var segname: pathname;

mem_size, disc_size: longint;
var refnum: integer;
var segptr: integer;

ldsn :integer;
dstype : Tdstype);

Guide to as

All parameters are the same as before except dstype. Dstype now specifies
whether the data segment created is shared or private. The segment is
located on the disk that segname specifies. Note that a null segname is no
longer valid.

Info_Dataseg returns the attributes of a data segment in the record Dslnfo.
Release 5.2 adds two values to this record: segptr and volname. segptr is
of type longint and represents the base address of the data segment;
volname is of type e name and represents the volume that contains the data
segment.

CKANGES TO LISABUG

This section presents the additions and fixes to Lisabug that were made in
the 5.2 release of the as. These changes involve stack crawl and
breakpoints.

The stack crawl command, SC, is now very robust. It correctly lists all
stack frames even in domain O.

This version of Lisabug allows you to run a program with the initial
breakpoint set at the first instruction of the program. See the
description of the D(ebug command in the section on the as Shell in this
manual for the details of this feature.

You can now set a breakpoint in code that is not in memory. As the code is
swapped in and out, the as automatically restores the breakpoints
associated with the code currently in memory. Note that although you can
set breakpoints in code that is not in memory, you can only use symbols for
the code, such as procedure names, when the code is in memory. Therefore,
you must use the logical address form of the breakpoint command when
setting a breakpoint in code not in memory. However, once the code is
swapped in, you can use the symbolic form of the breakpoint.

Roth 44 October 1, 1982

Confident ial

Another added breakpoint command feature is a format for specifying
breakpoints on a process basis. The syntax of the new format is:

>br procid : address

Guide to OS

When the process specified by procid reaches 'address', the breakpoint is
taken. However, if any other process reaches 'address', the breakpoint 1s
not taken. If you don't specify a procid in a breakpoint command, the OS
assumes the procid of the currently executing process (most application's
programmers will probably use this mode). Note that to reflect the change
of associating a breakpoint with a process, Lisabug now displays the procid
of the currently running process as well as the domain currrently in
effect.

Although only the OS group will probably do this, if you wish to set a
breakpoint in the Operating System, specify 0 as the procid in the command.
Using 0 as the procid, causes all processes to take the breakpoint in the
OS when they reach the specified address.

ERROR CHANGES AND ADDITIONS

Release 5.2 contains a new error for Open Dataseg, Make Dataseg, and
Size_Dataseg. This error, 315, indicates-that the operation could not be
completed because it might cause a data lockout situation.

Open_Dat~eg can now return the warning -321. This warning indicates that
the data segment was opened successfully, but the file system returned a
warning that the data within the segment may not be valid because the data
segment was open when the system crashed.

Roth 45 October 1, 1982

Confidential Guide to as

as ERROR MESSAGES

The following list of OS error messages is in ascending numerical order.
However, the ordering scheme ignores the sign of the error number; the
minus sign preceding an error number indicates that the message is a
warning; the as mayor may not have completed the flagged action.

o no error

PROCESS MANAGEMENT

100
101
110

-115
-120
-125

130
131
132
133
134
135
136
138
139
141

142
143

144

145

146

147

148

-149

-150

Specified process does not exist
Specified process is a system process
Invalid priority specified (must be 1 •• 255) (SetPriority Process)
Specified process is already suspended (Suspend Process)- .
Specified process is already active (Activate_Process)
Sepcified process is already terminating (Kill_Process)
Could not open program file
Error while trying to read program file
Invalid program file (incorrect format)
Could not get a stack segment for new process
Could not get a syslocal segment for new process
Could not get a PCB for new process (no sysglobal space)
Could not set up communication channel for new process
Error accessing program file while loading
Could not get a PLCB to load the program (no sysglobal space)
Error accessing a library file while loading program (e.g. the
library file containing required shared segment not found)
Can't run protected file on this machine
Program uses an intrinsic unit not found in the Intrinsic
Library
Program uses an intrinsic unit whose name or type does not
agree with the Intrinsic Library
Program uses a shared segment not found in the Intrinsic
Library
Program uses a shared segment whose name does not agree with
the Intrinsic Library
No space in syslocal for program file descriptor during
process creation
No space in the shared IU data segment for shared IU globals
required by the program
Process was created, but the specified program file has been
scavenged and altered
Process was created, but a library file required by the program
has been scavenged and altered.

EXCEPTION MANAGEMENT

Roth

2Cn
202

203

No such exception name declared
No space left in the system data area for declare_execp_hdl
or signal excep.
Null name-specified as exception name.

46 Octo ber 1, 1982

Confidential Guide to OS

MEMORY MANAGEMENT

302
303
304
306
307
308
309
310

311
312
313
314
315

-320

-321

Invalid ldsn
No data segment bound to an ldsn when there should be
Data segment bound to an ldsn when it shouldn't be
Data segment too large
Input data segment path name is invalid
Data segment already exists
Insufficient disk space for data segment
An invalid size has been specified:

- memory size <= 0
- memory size of shared data segment > 128K
- disk size < 0

Insufficient system resources
Unexpected file system error
Data segment not found
Invalid address passed to Info_Address
Operation may cause a data lockout
Could not determine size of data segment.
were: memory size = 512 bytes, disk size
Data segment open when the system crashed.
invalid.

Defaults used
= 0 bytes
Data possibly

EVENT MANAGEMENT

401

402
403
404
405
406
410
411

-412

-413
413
416

417
420

421

422

423

Roth

Invalid event channel name passed to make event chn:
empty string or string longer than 16 characters
No space left in system global data area for open_event_chn
No space left in system local data area for ope~event_chn
Non-block structured device specified in pathname
Catalog is full in Make Event Chn or Open Event Chn
No such event channel exists In Kill Event Chn -
Attempt to open a local event channel to send
Attempt to open an event channel to receive when event
channel already has a receiver
Event channel was left open and system crashed,
Ope~Event_Chn

Event channel was scavenged, Open Event Chn
Unexpected file system error in Open Event Chn
Cannot get enough disk space for event channel in
Open Event Chn
Unexpected-file system error in Close Event Chn
Attempt to wait on a channel that the-calling process
did not open
Wait Event Chn returns while waiting on an empty channel
because a sender process was not able to successfully
complete sending an event.
Attempt to call wait_event_chn on an empty event-call
channel
Cannot find corresponding event channel after being
blocked (wait_event_chn)

47 October 1, 1982

Confidential

424

425
426
427
428

429
430

431

432
433
440

.441
445
450
600

TWIGGY DISK

606
608
609
610
613
614
617
618
623

18xx

GENERAL I/O
600
602

-603
605
608
609
610
615
616
619
658
659

Roth

Guide to as

The actual amount of data returned while reading an event
from a channel is not the same as the size of that event
block in wait event chn (probably disk I/O failure)
Event channel-empty-after being unblocked. Wait_Event_Chn
Bad request pointer error returned in Wait Event Chn
Wait_List has illegal length specified, Wait Event_Chn
Receiver unblocked because last sender closed,
Wai t Event Chn
Unexpected-file system error in Wait Event Chn
Attempt to send to a channel which the calling process
does not have open
The actual amount of data transferred while writing an
event to a channel is not the same as the size of an
event block in send event chn (disk is probably full)
Sender unblocked because receiver closed in Send_Event_Chn
Unexpected file system error in Send Event Chn
Unexpected file system error in Make-Event-Chn
Event channel already exists in Make-Event-Chn
Unexpected file system error in KiII-Event_Chn
Unexpected file system error in Flush Event Chn
See GENERAL I/O ERRORS below --

Can't find sector (disk unformatted)
See GENERAL I/O ERRORS below
See GENERAL I/O ERRORS below
See GENERAL I/O ERRORS below
Unpermitted direct access to spare track with sparing enabled
No disk present in drive
Checksum error
Can't format, or write-protected, or error unclamping
Illegal device control parameters to Twiggy I
See "OTHER ERRORS" below .

Attempt to perform I/O operation on non I/O request
No more alarms available during driver initialization
Warning - recoverable errors encountered during disk read
Call to non-configured device driver
Illegal length or disk address for transfer
Call to non-configured device driver
No more room in Sysglobal for I/O request
Wrong call version to Twiggy
Unpermitted Twiggy function
No more room in Sysglobal for I/O request
Premature end of file when reading from driver
Corrupt file system header chain found in driver

48 Octo ber 1, 1982

Conf ident ial

TIME MANAGEMENT

630

631
632
634
635

636
638

639

RS-232

640
641
642
646
647
648

649

PROFILE DISK

652
653
654
655
656
658
659
660
662
663
666
670
685

18xx

SERIAL DRIVER

680
682
683

Roth

Guide to OS

The time passed to delay time, convert time, or
send_event_chn is such that the year is less than 1900
or greater than 2035.
Illegal Timeout request parameter
No memory available to initialize clock
Illegal Timed event id of -1
Process got unblocked prematurely due to process
termination (delay time)
Timer request did ~ot complete successfully (delay time)
The time passed to delay time or send event chn is-more
than 23 days from the current GMT time -
Illegal date passed to Set_Time, or illegal date from
system clock in Get Time

RS-232 driver called with wrong version number
RS-232 read or write initiated with illegal parameter
Unimplemented or unsupported RS-232 driver function
No memory available to initialize RS-232
Unexpected RS-232 timer interrupt
Unpermitted initialization or required modem signals
not present
Illegal device control parameters to RS-232

N-port driver not initialized prior to Profile
No room in sysglobal to initialize Profile
Hard error status returned from drive
Wrong call version to Profile
Unpermitted Profile function
See GENERAL I/O ERRORS above
See GENERAL I/O ERRORS above
Cable disconnected
Parity error
Checksum error
Timeout
Bad command response from drive
Eject not allowed this device
See "OTHER ERRORS" below

Wrong call version to serial driver
Unpermitted serial driver function
No room in sysglobal to initialize serial driver

49 October 1, 1982

I

Confidential Guide to OS

N-PORT CARD DRIVER

686
687
688

No room in sysglobal to initialize n-port card driver
Unpermitted n-port card driver function
Wrong call version to n-port card driver

PARALLEL PRINTER

690
691
692
693
694
696
698

STARTUP

700

701
702
703
704
705
706
707
708
709
710

FILE SYSTEM

VmStuff:
801
802
803

806
809
810
816
819
820
821
822

SFileIO:
825
826
828
829
835
837

Roth

Wrong call version to parallel printer
Illegal parallel printer parameters
N-port card not initialized prior to parallel printer
No room in sysglobal to initialize parallel printer
Unimplemented device control
Out of paper
Offline

Mismatch between loader version number (in OS.OBJ) and
operating system version number (in SYSTEM.OS.OBJ)
OS exhausted its internal space during startup
Cannot make system process
Cannot kill pseudo-outer process
Cannot create driver
Cannot program NMI key
Cannot (soft) initialize Twiggy
Cannot (soft) initialize the file system volume
Profile not readable
Cannot map screen data
Too many slot-based devices

IoResult <> 0 on I/O using the Monitor (LISArO)
Asynchronous I/O request not completed successfully
Bad combination of mode parameters (this is an internal
error that should not occur when you run your code)
Page specified is out of range (TFDM)
Invalid'arguments (page, address, offset, or count) (VM)
The requested page could not be read in (VM)
Not enough sysglobal space for file system buffers (initqvm)
Bad device number (10 INIT)
No space in sysglobal-for asynchronous request list
Already initialized I/O for this device
Bad device number (IO_DISINIT)

Error in parameter values (Allocate)
No more room to allocate pages on device
Error in parameter values (Deallocate)
Partial deallocation only (ran into unallocated region)
s-file number < 0 or > maxfiles (illegal value) (SList_IO)
Unallocated s-file or I/O error (FMap_Mgr)

50 October 1, 1982

Confidential Guide to OS

838 Map overflow: s-file too large (this error obsolete from
release 5.2 of the OS on)-

839 Attempt to compact file past PEOF (FMap Mgr)
841 Unallocated s-file or I/O error (Get PSIze)
843 Requested exact fit, but one couldn't be provided (AppendPages)
847 Requested transfer count is <= a (DataIO)
848 End-of-file encountered
849 Invalid page or offset value in parameter list
852 Bad uni t number (FlushFS)
854 No free slots in s-list directory (too many s-files) (New_SFile)
855 No"available disk space for file hints
856 Device not mounted
857 Empty, locked, or invalid s-file (Kill SFile)
861 Relative page is beyond PEOF (bad parameter value) (AbsPage)
864 No sysglobal space for volume bitmap (Real_Mount, Real_Unmount)
866 Wrong FS version or not a valid Lisa FS volume
867 Bad unit number (Real Mount, Real Unmount)
868 Bad unit number (Def Mount, Def Unmount)
869 Unit already mounted-(mount)/no-unit mounted (unmount)
870 No sysglobal space for DCB or MDDF (mount)

FS Primitives:
871 Parameter not a valid s-file 10 (Open SFile)
872 No sysglobal space for s-file control-block
873 Specified file is already open for private access
874 Device not mounted
875 Invalid s-file ID or s-file control block (Close_SFile)
879 Attempt to postton past LEOF (Direct 10)
881 Attempt to read empty .file (FileIO) -
882 No space on volume for new data page of file
883 At temp t to read pas t LEOF
884 Not first auto-allocation, but file was empty
885 Could not update filesize hints after a write (fileio)
886 No syslocal space for I/O request list
887 Catalog pointer does not indicate a catalog (bad parameter)
888 Entry not found in catalog (Lookup by ename)
890 Entry by, that name already exists (Make Entry)
891 Catalog is full, or was not as catalog -
892 Illegal name for an entry
894 Entry not found, or not a catalog (Kill Entry)
895 Invalid entry name (kill entry) -
896 Safety switch is on--cannot kill entry (kill_entry)

FS Init:
897

FS Interface:
921
922
926
927
941
944
945
946
947

Roth

Invalid bootdev value

Pathname invalid or no such device (Make_File)
Invalid label size (Make File)
Pathname invalid or no such device (Make_Pipe)
Invalid label size (Make Pipe)
Pathname invalid or no such device (Kill_Object)
Object is not a file CUnkill File)
File is not in the killed state (Unkill File)
Pathname invalid or no such device (Open)
Not enough space in syslocal for file system refdb

51 October 1, 1982

Conf i dent ial

948
949
950

951
952
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
971
972
974
977
978
979
981
982
983
985
986
987
988
989
990
994
995
999

1021
1022
1023
1024
1031
1032
1033
1041
1042
1043
1051
1052

Roth

Guide to OS

Entry not found in specified catalog (Open)
Private access not allowed if file already open shared
Pipe already in use, requested access not possible OR
dwrite not allowed for pipe
File is already opened in private mode (open)
Bad refnum (Close Object)
Bad refnum (Read data)
Read access not allowed to specified object
Attempt to position FMARK past LEOF not allowed
Negative reques.t count is illegal (read data)
Non-sequential access is not allowed (read_data)
System resources exhausted
Error writing to pipe while an unsatisfied read was pending
Bad refnum (write_data)
No WRITE or APPEND access allowed
Attempt to position FMARK too far past LEOF
Append access not allowed in absolute mode
Append access not allowed in relative mode
Internal inconsistency of FMARK and LEaF (warning)
Non-sequential access is not allowed (write_data)
Bad refnum (Flush)
Pathname invalid or no such device (Lookup)
Entry not found in specified catalog
Bad refnum (Info)
Bad refnum (allocate)
Page count is non-positive (allocate)
Not a block structured device (allocate)
Bad refnum (Truncate)
No space has been allocated for specified file
Not a block s.tructured device (truncate)
Bad refnum (Compact)
No space has been allocated for specified file
Not a block structured device (compact)
Bad refnum (Flush Pipe)
Caller is not a reader of the pipe
Not a block structured device (flush-pipe)
Invalid refnum (Set File Info)
Not a block-structured device (Set_File_Info)
Asynchronous read was unblocked before it was satisfied.
This may occur during process termination.
Pathname invalid or no such entry (Rename Entry)
No such entry found (rename entry) -
Invalid newname, check for '-' in string (rename entry)
New name already exists in catalog (rename_entry)
Pathname invalid or no such entry (Read Label)
Invalid transfer count (read label) -
No such entry found (read label) .
Pathname invalid or no su~h entry (Write Label)
Invalid transfer count (write label) -
No such entry found (write label)
No device or volume by that name (mount)
A volume is already mounted on device

52 Octo ber 1, 1982

Confidential

1053

1054

-1059

-1060

1061
1062

-1063

1071
1091
1092
1101
1121
1128
1130

get open lis t
1131 -
1132
1133

reg open lis t
1134 -
1135

Guide to OS

Attempt to mount the temporarily unmounted boot volume
just unmounted from this machine (MOUNT)
The bad block directory of the diskette is invalid.
The mount is not completed (real mount)
Warning, the bad block directory-of the diskette is almost
full or difficult to read. The mount is completed (real mount)
Attempt to mount a foreign boot disk following a temporary
unmount
No device or volume by that name (Unmount)
No volume is mounted on device

Warning, attempt to mount a temporarily unmounted boot
volume that was either unmounted from another machine or
was not the most recently unmounted boot volume. The
mount is completed (MOUNT)
Not a valid or mounted volume for working directory
Pathname invalid or no such entry (Set_Safety)
No such entry found (set safety)
Invalid device name (DEVICE_CONTROL)
Invalid device, not mounted, or not a catalog (reset catalog)
Invalid pathname, device, or volume not mounted (get-dev name)
File is protected; cannot open due to protection violation

No device or volume by that name
No volume is mounted on that device
No more open files in the file list of that device
(no files, data segments, event channels open on that device)'

Cannot find space in sysglobal for open file list
Cannot find the open file entry to modify

fs utilities calls:
1136 Boot volume not mounted (fs utility, ubd)
1137 Boot volume already unmounted (fs utility, ubd)
1138 Caller cannot have higher priority than system

1141
1142

1143
1144

1145
1159

fs shutdown
1158
1159
1160
1161
1162

Roth

processes when calling ubd (fs utility, ubd)
Boot volume was not unmounted when calling rbd
Some other volume still mounted on the boot device when
calling rbd
No sysglobal space for MDDF to do rbd
Attempt to remount a volume which is not the temporarily
unmounted boot volume from the same machine (rbd)
No sysglobal space for bit map to do rbd
fs_shutdown is not allowed while boot volume unmounted
but operation is carried out

calls:
Track-by-track copy buffer is too small
Shutdown requested while boot volume was unmounted
Destination device too small for track-by-track copy
Invalid final shutdown mode
Power is already off

53 October 1, 1982

Confidential Guide to OS .

fs utilities calls:
1163 Illegal command
1164
1165
1166
1167
1168

newvolume
1169
1170
1171
1172

WARNINGS!
-1173
-1174
-1175

Device is nota Twiggy device
No volume is mounted on the device
A valid volume is already mounted on the device
The Device is not blockstructured
Device name is invalid

(volume initialization):
Could not default mount volume before initialization
Could not mount volume after initialization
'-' is not allowed in a volume name
No space available to initialize a bitmap for the volume

from opening a file or mounting a volume:
File was last closed by the OS
File was left open or volume was lef·t mounted, and system crashed
File or volume was scavenged

When these warnings occur on an OPEN call for a file or a.MOUNT
call for a volume, the OS goes ahead and opens the volume/file
for access as usual. HOWEVER, the contents of the file might
be inconsistent.

CIRCULAR PIPES:

1176

1177
1178

1180

1181

1182

1183
1184

1186

1188

1190

OTHER:
1196
1197
1198
1199
1200
1201

Roth

Cannot read from a pipe more than half of the allocated
physical size (read_data)
Cannot cancel a read request ~or a pipe (read_data)
Process waiting in read data for pipe data got unblocked·
because the last writer-of the pipe has closed it (read_data)
Cannot write to a pipe more than half of the allocated
physical size (write data)
No system space left-for request block for pipe (write_data)

Writer process to a pipe got unblocked before the request
was satisfied (this can occur during process termination)
(wri te data)
Cannot-cancel a write request for a pipe (write data)
Process waiting in write data for pipe space got unblocked
because the reader closed the pipe (write data)
Cannot allocate space to a pipe while it has data wrapped
around (allocate)
Cannot compact a pipe while it has data wrapped around
(compact)
Attempt to access a page that is not allocated to the
pipe (absrelbyte)

Something is still open on device--cannot unmount (real unmount)
Volume is not formatted or cannot be read (def mount) -
Negative request count is illegal (write_data)-
Function or procedure is not yet implemented
Illegal volume parameter
Blank file parameter

54 October 1, 1982

Confidential

1202
1203
1204
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
18xx

1807
1820
1822
1882
1885
1998
1999

Error writing destination file
Invalid UCSD directory
File not found
Boot track program not executable
Boot track program too big
Error reading boot track program
Error writing boot track program
Source file not found
Can't write boot tracks on that device
Couldn't create/close internal buffer
Boot track program has too many code segments
Couldn't find configuration information entry
Couldn't get enough working space
Premature EOF in boot track program
Position out of range
No device at that position

Guide to as

Error number xx from Boot ROM or Twiggy ROM. Likely errors
appear below
No disk in Twiggy drive
Write protect error on Twiggy
Unable to clamp Twiggy
Bad response from Profile
Profile timeout error
Invalid parameter address
Bad>refnum

The pathname error codes (921, 926, 941, 946, and 971) often mean that the
volume specified in the pathname is not mounted. If error 966 occurs
while writing a file using the FTP utility, you probably ran out of space
on the destination volume.

Roth 55 Octo ber 1, 1982

Confidential Guide to OS

Operating System Error Codes by Procedure

PROCESS MANAGEMENT
Note that Yield CPU and Terminate Process return no errors

Returned by all procedures except Make_Process
100 Specified process does not exist
101 Specified process is a system process

SetPrio ri ty Proces s
110 - Invalid priority specified (must be 1 •• 255)

Suspend Process
-115 - Specified process is already suspended

Activate Process
-120 - Specified process is already active

Kill Process
-125

Make Process
13'0
131
132
133
134
135
136
138
139
141

142
143

144

145

146

147

148

-149

-150

Roth

Specified process is already terminating

Could not open program file
Error while trying to read program file
Invalid program file (incorrect format)
Could not get a stack segment for new process
Could not get a syslocal segment for new process
Could not get a PCB for new process (no sysglobal space)
Could not set up communication channel for new process
Error accessing program file while loading
Could not get a PLCB to load the program (no sysglobal space)
Error accessing a library file while loading program
(e.g. library file containing shared segment required by
program not found)
Can't run protected file on this machine
Program uses an intrinsic unit not found in the Intrinsic
Library
Program uses an intrinsic unit whose name or type does not
agree with the Intrinsic Library
Program uses a shared segment not found in the Intrinsic
Library
Program uses a shared segment whose name does not agree
with the Intrinsic Library
No space in syslocal for program file descriptor during
process creation
No space in the shared IU data segment for shared IU
globals required by the program
Process was created, but the specified program file has
been scavenged and altered
Process was created, but a library file required by the
program has been scavenged and altered

56 Octo ber 1, 19·82

~

'.'

Confidential

EXCEPTION MANAGEMENT

Returned by all procedures
1998 Invalid parameter address

Declare excep hdl
201 - -No such exception name declared
202 No space left in the system data area
203 Null name specified as exception name.

Disable_excep
201
203

Enable_excep
201
203

Info_excep
201
203

Flush.-excep
201
203

Signal excep
201 -
202
203

No such exception name declared
Null name specified as exception name.

No such exception name declared
Null name specified as exception name.

No such exception name declared
Null name specified as exception name ..

No such exception name declared
Null name specified as excep t ion name ..

No such exception name declared
No space left in the system data area
Null name specified as exception name.

MEMORY MANAGEMENT
Returned by all procedures

1998 Invalid parameter address

Guide to OS

Returned by all procedures except INFO LDSN, MAKE_DATASEG, OPEN_DATASEG,
KILL_DATASEG, and MEM INFO -

1999 Bad refnum

Note that SETACCESS DATASEG and INFO DATASEG return only 1998 and 1999
and that MEM INFO returns only 1998

INFO LDSN
302 Invalid ldsn
303 No data segment bound to an ldsn when there should be

UNBIND DATASEG
303 - No data segment bound to an ldsn when there should be

BIND DATASEG
_ 302 Invalid ldsn

304 Data segment bound to an ldsn when it shouldn't be

Roth 57 October 1, 1982

Confident ial

MAKE DATASEG
302
304
306
307
308
309
310

311
312
315

OPEN DATASEG
302
304
306
307
311
312
313
315

-320

-321

Invalid ldsn
Data segment bound to an ldsn when it shouldn't be
Data segment too large
Input data segment path name is invalid
Data segment already exists
Insufficient disk space for data segment
An invalid size has been specified:

- memory size <= 0
- disk size < 0

Insufficient system resources
Unexpected file system error
Possible data lockout

Invalid ldsn
Data segment bound to an ldsn when it shouldn't be
Data segment too large
Input data segment path name is invalid
Insufficient system resources
Unexpected file system error
Data segment not found '
Possible data lockout
Warning: could not determine size of data segment.
The following defaults were used:

- memory size = 512 bytes
disk size = 0 bytes

Data segment open when system· crashed

CLOSE DATASEG
312- Unexpected file system error

KILL DATASEG
307
312

Input data segment path name is invalid
Unexpected file system error

313

SIZE DATASEG
304
306
309
310

312
315

FLUSH DATASEG
312-

INFO ADDRESS
303
314

Data segment not found

Data segment being grown into an LDSN already in use
Data segment too large
Insufficient disk space for data segment
An invalid size has been specified:

- memory size <= 0
- memory size of shared data segment > 128K
- disk size < 0

Unexpected file system error
Possible data lockout

Unexpected file system error

No data segment bound to the address
Address does not fall within valid ldsn range

Guide .to ~~

Roth 58 October 1, 1982 r

Confidential
.' \. ec

'; ... :

Guide to OS

EVENT MANAGEMENT
Returned by all procedures

1998 Invalid parameter address
L:: .' .

Make Event Chn
401 - Invalid event channel name passed to Make Event Chn:

empty string or string longer than 16 characters
404 Non-block structured device specified in pathname to

Make Event Chn, Kill Event Chn, or Open Event Chn
405' Ca talog is-full in M8:ke Event Chn - -
440 Unexpected file system error in Make_Event_Chn
441 Event channel already exists in Make_Event_Chn

Kill Event Chn
401 - Invalid event channel name passed to Kill Event Chn:

empty string or string too long --
404 Non-block structured device specified in pathname
406 No such event channel exists in Kill Event Chn
445 Unexpected file system error in Kill-Event Chn

Open Event Chn
201 - No such exception name declared
401 Invalid event channel name passed to Open-.Event_Chn:

empty string or string too long
402
403
404
406
411

No space left in system global data area for 'Open Event Chn
No space left in system local data area for Open_Event_Chn
Non-block structured device specified in pathname
No such event channel exists in Open Event Chn
Attempt to open an event channel to receive when event
channel already has a receiver

-412

-413
413

Event channel was left open and system crashed,
Open Event Chn
Event channel was scavenged, Open Event Chn
Unexpected file system error in Open Event Chn
Cannot get enough disk space for event channel at open

Returned when the event channel is local:
416

405 Catalog is full in Open_Event_Chn
410 Attempt to open a local event channel to send

Close Event Chn
201- No such exception name declared
417 Unexpected file system error in Close_Event_Chn

1999 Bad refnum

Info Event Chn
1999 - Bad refnum

Roth 59 Oc to be r 1, 1982

Confidential

Wait Event Chn
402 - No space left in system global data area
420 Attempt to wait on a channel that the calling process

421

422
423·
424

425
426
427
428
429

1999

did not open
Wait Event Chn returns while waiting on an empty channel
because a sender process was not able to successfully
complete sending an event
Attempt to call Wait Event Chn on an empty event-call channel
Cannot find corresponding ;vent channel after ~ing blocked
The actual amount of data returned while reading:an event
from a channel is not the same as the size of ,an event
block in Wait Event Chn (probably disk I/O failure)
Event channel-empty-after being unblocked
Bad request pointer error return from Ca~Aread_P1pe
Wait List has illegal length specified, Wait Even.t Chn
Receiver unblocked because last sender closed, Wait Event Chn
Unexpected file system error in Wait_Event_Chn - -
Bad refnum

Flush Event Chn - -450 Unexpected file system error in Flush_Event_Chn
1999 Bad refnum

Send Event Chn
430 Attempt to send to a channel which the calling process

does not have open
431 The actual ,amount of data transferred while writing an

event to a channel is not the same as the size of an
event block in Send Event Chn (disk is probably full)
Sender unblocked because receiver closed in Send Event Chn 432

433
1999

TIME MANAGEMENT

Unexpected file system error in Send Event Chn - -
Bad refnum -

Returned by all procedures:
(Note that this is the only error message that Set_Local_Time_Diff
returns)

1998 Invalid parameter address

Delay_Time
630

Roth

632
635

636
638

The time passed to Delay Time, Convert Time, or
Send Event Chn is such tnat the year is less than 1900
or greater-than 2035
No space in sysglobal
Process got unblocked prematurely due to process <

termination (Delay Time)
Timer request did ;ot complete successfully
The time passed to Delay Time or Send Event Chn is more
than 23 days from the current GMT time

60 October 1, 1982

Co~ident ial"

Convert_Time
630

Get Time
6"!9

PWBT
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

PFTP
1200.
1201
1202
1203
1204

Guide to OS

The time passed to Delay_Time, Convert_Time, or
Send Event Chn is such that the year is less than 1900
or greater-than 2035

Year not between 1981 and 1995 in Get Time or Set time.
In Get Time the error indicates a dead battery. -

';. ~

Year not between 1981 and 1995 in Get Time or Set Time.

Boot-track program not executable
Boot track program too big
Error reading boot track program
Error writing boot track program

. Source file not found
Can't write boot tracks on that device
Couldn't create/close internal buffer
Boot t~ack program has too many code segments
Couldn't find configuration information entry
Couldn't get enough working space
Premature EOF in boot track program

Illegal volume parameter
Blank file parameter
Error writing destination file
Inval~d UCSD directory
File not found

Get Config Name
1~21 - Position out of range
1222 No device at that position

Disk Likely
1221
1222

Roth

Position out of range
No device at that position

61 October 1, 1982

Conf ide nt ial

OS LOADER DIAGNOSTICS

Error Message

FILE SYSTEM VERSION MISMATCH

FILE SYSTEM CORRUPT

MEMORY EXHAUST

SYSTEM CODE FILE NOT FOUND

SYSTEM CONFIGURATION FILE
NOT FOUND

BOOT DEVICE READ FAILED

CODE FILE CORRUPT

TOO MANY OS SEGMENTS

SYSTEM DEBUG FILE NOT FOUND

PROGRAM NOT EXECUTABLE

SYSTEM LOW LEVEL DRIVER FILE
NOT FOUND

CONFIGURATION FILE NOT USABLE

WRONG DRIVER

RANGE ERROR, OR UNKNOWN BOOT
ERROR

Roth

Guide to OS

Cause or Description . ~ ,>

The boot tracks don't know
the r1g~t file system version

Either damaged file system or
damaged con·t ents

The OS will not' fff'

Cannot find SYSTEM.OS

Cannot find SYSTE:t-j .• CONFIG

Device could not ~~' read, .. ' for
whatever reason

Ref e rs to SYSTEM. oS,

Refers to SYSTEM.OS

Cannot find SYSTEM.DEBUG

Refers ,to SYSTEM.OS, SYSTEM.DEBUG
or SYSTEM.LLD

Refers to SYSTEM.LLD

Refers to SYSTEM.CONFIG

For instance, storing a
Twiggy driver on a Profile

A loader bug

62 October 1, 1982'

Conf i de nf' lal' . Guide to OS

SYSTEM E~RS

A system error ittdfcates that.something·h'asLgone seriously awry within the
Operatil;lg$y;~Te~~ CO({C!,.· Whert~'-sys temerror . occurs , the Operating System
reports ';'he e~ror an.ci stops~" Ple'as,e.report the 'occurrence of any system
errors tci'~:,fhe, Operating" System group~" ,

'::;; \ . ; .:,

Common system errors:
10102

. 10ioi'
Err9~ while creating System.Shell during StartUp
Hard"are,sexception (divide by zero, for example)
1noperi:i.ting System code

EXCEPTIONS

During execution applications can field hardware 'exceptions. If such an
exception occurs, the system displays one of the following messages:

Bus error" br'>address: errorexceptidn: .

EXCE~ttmF"aii"'.'proces' sof gi'd <gggg>
Pr()C$ss?is: about to be terminated.
access address = <aaaaaaaa> = mmulF <mmm> (segment name), offset <0000>
inst reg = <rrrr> sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to Lisabug, type g to continue

Any other hardware exception:

where:

EXCEPTION in process of gid <gggg>
Process is about to be terminated.
sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to Lisabug, type g to continue

<gggg> is the global ID of the process that incurred the exception.
<aaaaaaaa> is the address that caused the bus or address error
<mmm> is the segment number represented by <aaaaaaaa> and
<0000> is the offset within that segment
<rrrr> is the value of the instruction register at the time of the exception
<ssss> is the value of the status register at the time of the exception
<pppppp> is the value of the program counter at the time of the exception
<xxxxxxxx> 1s the address of the saved register information

All numbers displayed are decimal; the segment name is displayed only if
the segment number makes sense to the Operating System.

Roth' 63 Octo ber 1, 1982

Confidential Gu1de .. tQ . QS

If the exception is divide by zero, overflow, or CHK out of bounds, t,h~.
. ' ..) ...

process is not terminated and the line to that effect is not shown. If
the process has declared an excep~io.n handler .. fo.r.i!t~is exceptio~, ~~~~
handler is entered after you type. g,to Lisa~~g, .anq. the proces~ ~9~ll:. -. ".,
continues execution. If no handler 'has been ·.~~ciar'ea~ the ·sY~tem. "4~f4,l!lc
handler terminates the process. If the exc~Rtiqq ilt: a bus p~ri:~!.).i1d ~.he
segment name is ' stack seg', a stack overflow' has probably 'occurred. }~'l1ie
Operating System cannot currently recover from this error~

If the exception occurs in Operating System code" tne, displays are the same ~
as given above except that the first two lin~~ 4,j~ ~eplaced by:

EXCEPTION in system code!

If you type g in Lisabug after this exception, a system error 10201 occurs
and you must reboot.

" ,

You should use release 7.4 or later of the Monitor because In''these
versions the Lisabug regiS ter display is the, user' s ,re.gis.t.~r:> g.~~pJ.ay.., and
the user can use the stack crawl command to find the call1~; procedures.
You should not examine the memory location <xxxxXX> that ~.oDrt,"i.'''#e:}:~2
saved registers because the debugger saves t~e system's r~31~t!!.rs~ ~~~

Roth 64 October 1, 198~:

