| Lisa Dew@\gp Meak §\/sk~v\ Mamu&

Updaded by
Rl .Paﬁg_

3/1/85




b2t , Hem5L, 571,56 l

28

Ta.b\s, o'e CQ f\‘\'m

Bocting Lisas, Maclels % Mo tor
Trhodaction

Covnprlen

Linkanv

Assesblav

| Lisa.\oo%

Filer

Edvtor

Sys mar

Files % Filenomes

'E\No( S

15
23

37

53

59
2
©3

|01




@

BQQ‘\"\.V\% L.I\SA

N’ovma\\\( +la_ L\'say : \Q“:“’ \Q\ij

.m—‘ro +ha.  wall w\-H\ pd\NQM sw\-(-cox
| aﬁ" pon eV svpp\\j v Bl ONJ -

poStt‘lof\.. This ) Kaeso +)la_
S Jal4 s"k‘qmck\a\{ anaDadola. 4

oL‘Mﬂy_’l“L&- Ni Cds  whwih \'(n-n-\o
-‘:Ln._ clccl< a..[wQ.

Press pdw 'Su-\\*'c.O\ v} ‘fV‘d\zCk'

- Wask 2 seconds \QLV c\ic e

Holh  dewn cammarnk Ky ar
WPC “ Z. '

.&-V\W"r \osat- Adsic < ¢ v\o’f A\V\uJA’ (M)

Beat RAWN  shau\d S'd-bj Boé+th3. .

SC(% W \\ 6@ wL\-(tQ- ) d(:sk. Wt“ .Spl'h) ..

Page 3




- (D IR had ik dies  net

‘

'BQQ‘VQV\% doo Mac Seftrwene

@ %noj\' '('\rxe. m&&\‘y\&, Us\‘hﬁ ;_
tHae Ak W\W(Q& PKEBOQT:’_“

® Whuy 4o MAC Tcow
oppeevs Ha gake W\ ke
ejeatred. |

A Tnsen Mac Systam Dik

Bocr\ri noy He Monte, ’D.Qve\'ap et 515%

O Best ths waeliia 03""\3
e A5k  marked BoOGT*

@ while Sys€em~ U Lw*t;«g
B TN on.  hardk o([;(<.

a4k maunked b ot  fimz

v SysMy b et e

ds |
Page 4




MNoN\TOR Dzwﬁ.\n\omm Sy stom~

- Tha systam— consrshs a&  seveval

\orgpee  progvamis ard. o= collechne
ol svmall u\‘\\'\-\\'gs o Thee  maa

pawpt Qs prwides 1 kay  stvelss
agcess  Fo te Pllaving B
Edi+tor
Compla b code. Genavaber
Filewx ‘
L inken
Ass ol
Sys
Q.})_<_ec.u fon o a rog . '




The Pascal févelopuent System Manual ‘ 16=Feb~-82

MONITOR

The Monitor is an operating system for the Lisa computer. Its user

interface is patterned after that of the UCSD system on the Apple II.
There are several possible system configurations. A standard one
i1s:

Am————t R -—
| Disk | | Soroc |
tmm—— ~+ (or a hard disk) | for |
| Disk | | Debugger |
tmm——— -

€ o —

pun
+

- - == - -+
| |
+ -+ t———————
} UART | | Corvus |
+ + | | | or |
| Apple IT |{= = = =] LISA | | Profile |
| j= = = =>| | et
+ -+ | |
I + +
v N
| Soroc | | Keyboard |
| or I ~ee---
| Apple II |
| monitor |

The hard disk can be connected directly to the Lisa, or it can be accessed
through the Apple II. It can also be omitted.

BOOTING THE MONITOR

To boot from a diskette based Apple 1I, first power up the Apple II with
the male boot diskette in drive #4:. Insert the female boot in drive #5:
and power up the Lisa. The female boot volume can also reside on a hard
disk. SYSTEM.STARTUP on the male boot volume automatically executes
MONBOOT, the program that starts up the Monitor on the Lisa. If you
type space during the boot process, MONBOOT is not executed. If you
type ‘D’ during the boot process, the debugging version of the Monitor
is booted.

Page 1



The Pascal Develo, .cu ..anual 16=-Feb-82

The Monitor comes up on the Lisa screen. If you want it to appear
on the Apple II monitor or the Soroc connected to the UART port,
change the MON.STARTUP program as follows:

1) for the Apple window: remove MON.STARTUP

2) for the Lisa window (the default): transfer MONSTART1.O0BJ
to MON.STARTUP

3) for the UART window: transfer MONSTART2.0BJ to MON.STARTUP

To move the Monitor around after booting, execute MOVESOROC. MOVESOROC
simply asks you for the new source and destination for Monitor I/0:
A(pple, L(isa, or U(art. Input always comes from the terminal to which
output has been directed. WRITELNs used for debugging purposes appear
on the Monitor screen, so you may not always want the application and
Monitor screens to be together on the Lisa.

CONFIG.DATA tells the monitor how much RAM your system has. The default
configuration assumes that you have a megabyte of RAM. For a 256K byte
system, CONFIG.DATA should be a copy of NPC4.DATA. For a 512K byte system,
use NPC8.DATA. NPCl6.DATA is a copy of the default CONFIG.DATA, in case

you ever need to back up. See CONFIGURE in the Utilities chapter if you
want to change CONFIG.DATA to suit your own needs.

The monitor’s keyboard driver supports the Lisa User Interface Keyboard
layout. SHIFT [ is {, SHIFT ] is }, SHIFT . is >, and SHIFT , is <.

NMI is the third key from the left in the upper row of the numeric

keypad. Currently, the "4" key is backspace. The CODE key is in the upper
left corner of the keyboard. CODE ; is |, CODE + is =, CODE _ is \, and
CODE " is ‘. ESCAPE is the upper left key of the numeric keypad.

Control=S is the key in the upper right corner of the numeric keypad.

THE COMMAND LINE
The Monitor command line is:
Monitor: E(dit, C(ompile, F(ile, L(ink, A(ssemble, D(ebug, ? [0.1]

There are several hidden commands. Type ? to see them displayed.

E(dit Lisa=-gtyle Editor

C(ompile Pascal Compiler I-code generator
F(ile Filer

I(intrinsic Intrinsic Unit Linker (release 8.0 and beyond)
L(ink Linker

A(ssemble Assembler

D(ebug Symbolic Debugger

M(acsBug LisaBug (low level debugger)
G(enerate Pascal compiler OBJ file generator
u(csn UCSD Editor

X(ecute Execute a program or an EXEC file

Page 2



— -

The Pascal Development System Manual 16-Feb=-82

The Monitor recognizes male volumes and logs them off-line so that

they cannot be accidentally overwritten. The volume MEMORY: is always
available. MEMORY: allows you to use the Lisa RAM as a file storage area.
Of course, anything in MEMORY: is lost when the power is turned off, or
the system is rebooted. MEMORY: is mounted as unit #4:, and its default
size 18 10 blocks. Its size can be changed by the Z(ero command in the
Filer, or by the CHANGEMEM program described in the Utilities section of
this manual.

When X(ecuting a program, the monitor searches for the program filename
as follows:

Filename
Filename.OBJ
*Filename
*Filename.0BJ

Filename.TEXT (* as an exec file *)

When you invoke a program from the Monitor command line (F for Filer.Obj,
for example), the Monitor looks first at the MEMORY: volume.

EXEC FILES

EXEC files can be used on the Monitor., They must be created in the
Editor (there is no M(ake command). To execute such a file,

X(ecute <{filename>

If an object file exists with the same name as that of the EXEC file, the
object file is executed. The first character of an EXEC file (a textfile)
defines the termination character. The first occurrence of two terminators
marks the end of the EXEC file. Certain portions of the system (the compiler,
for example) terminate an EXEC file if an error is encountered. If you

- X(ecute a .TEXT file, the monitor assumes that the file is an EXEC file.

EXEC files cannot be nested, nor can parameters be passed to them.

Page 3



The Pascal Development System Manual lo-Feb-02

LOWw MEMORY LAYOUT -

From To Description
0000 OOFF Exception vectors -(see 68000 manual)
0100 OIFF Memory configuration map (see page ##)
0200 0300 Free space for user assembly globals
0300 0341 KCS numerics status information
0342 O3FF Free space
0400 O7FF LisaBug Globals
800 O8FF Boot stack
0900 OAFEJ LisaGraf Globals
0BOO . - OBxx Unit Table
0Cc00 OCFF Pointer array
0D00 ODxx Syscom, miscinfo
0EOO OEFF String buffer
OF00 OFFF Unused (reserved) space
1000 17FF User code buffer
1800 3FFF User Jump Table
4000 Heap Bottom
Registers Description
A7 Stack Pointer
A6 Stack frame Pointer
AS Global Data Pointer
A3=A4 Used for code optimization
A2-A0 Scratch
DO-D3 Scratch
D4-D7 Used for code optimization

Registers D3 and A2 may someday be used by the compiler for code
optimization.,

Page 4



The Pascal Development System Manual l6~Feb-82

MEMORY MAP

A set of very detailed memory maps can be found in the Linker chapter.
We give below a general view of memory and a detailed view of the
Monitor’s Map Table.

| Memory = === == = =| UART | §11C
| mapped | - -t
| 1/0 j{= = = = = = = - | Port to Apple ] $118
| |
+ —+(= - - | [
| Screen | | . +
| Memory | + = = = = | Memory Top | $114 .
| | +— t
+ (e = = = = = = = )} Screen Base | $110
| LisaBug 1 - 4
+ + +- = =| Buffer Pointer | $10C
| Disassembler| . | + +
+ -t | | Not Used | $108
| Graphics | i 4+ - -t
+ t{(= = = =« =|= = =| Monitor Top | $104
"} Monitor { | + -t
T3 +f= = = = =|= = =] Monitor Bottom | $10% gETILL
Ionde | | +- —t+de -
lg’;l Vv I<= = = = =+ [
©evi v (:::) | - “ |
i [pefaule stack Potnter)—— T 40@710 §0 goo
| Stack | - |
| | | -
I v | == === =) -+ |
ﬁﬂDQ' - | | | Assembly Globals | |
| 1 I | + -+ |
| Heap b | Map Table at $100|- - —+ 6@’3
+ -+ | | - |
| MEMORY: ] | | [
+ -t -t + i
| Globals ) | Trap Vectors |
$0 4+ —t - - - - - - =)t -+

[0 5D — DFEFF

— e

Page 5



The Pascal Development System Manual ‘ 16-Feb-82

THE MAP TABLE ? 2 Tecovewudoe |
. [ ] .
Monitor bottom $100
Monitor top . fran $104
Butim~ o £ BV '
Buffer g .
{4c,— Screen base AMW §110
Memory top $114
Port to Apple II $118
UART $lic
?M—Luabw—table-— ? $120
9 Per—reCOTOXE o~ ? 24
Ptr to Soroc driver é-_}ZD
?mof-s-bmk_um___ ® S12C
=% Ptr to UART driver $130 GO\
Ptr to Getuus—eard bkt in P/A Q(}Oo\

Ptr _to base of hea 138 [
Pt ‘s_last ;T:-T'_Lmo Lot

B T T —c T T WO

Ptr to Twiggy driver $148 0= waf O3l0 @2 orf
P deb d $150 TR 125 Rt
tr to debug car | 2 LR Y
Ptr to loader for 1Us ‘$154 A “rs | L K l:_'l M
Ar 4o zj:vf
P‘r " eaﬂw-w& .
QUL ¢ N,o,,.\ 160
> LU Do Wie] Mgy
Apple net $168
Apple net $16C

Many of these vectors can be changed by the CONFIGURE program described in
the Utility section of this manua]. The main vector of interest is the
default stack pointer ($13C). Thq utility program SETSP can be used to
change the default stack pointer falue temporarily. CONFIGURE can be

used to change it permanently. Unised addresses are reserved for future
use by the Monitor.

| g (o) les G190 lr -
éﬁ“ P s (168) o $174 froos

feer

' gél’age 6



233
00

e

oy
[-3-3-]

Rih Paga
3/i1/03

Execotion E"‘“.“’O"\"“QM‘\' Ascumed b\j the Co o o

Reqisters

’\°A‘ As%j
DOD‘D?- 04 b< D& D)

Do - DZ/AO-A-I US¢.- tvmioorufut
00‘93/040“51 Co\mpnbv lo\po_vwvfex
W—D?/AB-R‘{ Cov-‘o'\lw viet  for ‘au-o&*.' ptrs

ﬁs ] P'\v 4o 3(6‘9&-9- 'gvaup-l.
Fo Ph %o low® Roma
h’ ?4-' “'b "‘P o‘_ S*Mk -

Global Frame:

3-.»7 Tedote

. £80000 —|—
AS —

gﬁ vt Glolods

In{v;m?c Unte G lbds

AS +52 = QUICEDeAY DP
AS t21 © JOMTIR Ffc-

AS+20 = PHYSICAL

- ASte = COMMONS);

AS t12 = @OouTpur
AS+Q = Q@IneuT

AS +d = & Adly

As + O = OWAS

} Uink A(JQ.

'§ Compapns 120

UM q( o~vecs
r.:? eV ertad

> DYNSTACK
-~

FLG-
2




FuncTions Rezult X 0,%a 4
- éirsd E
N N
Pﬁ@mﬂ%‘ XAy \;‘_’_
STATIC LUV Hxde— OodY
Return MMS H
d
od Ao
Locels | Link AC, gt et
Canprler Tanys
Dynoaic stacde avea 3 Lees Hom YK
RA? — |—
Wfrx STACK

* 24 Wdes i€ FUNCTION
W Nbyles Lepeelig o poramhe~ Vg
TxX¥ Preg a—lﬁ) fH- N leval 4 'oroas'{ M

?Maw-a.‘*ﬂc. ?vbwhc& % ﬁl@‘f".’h&:
pox annsdves

@ proc lody, 4
Gvae o Thkic L 4




Adomatic Stace Expamsio~

TsT. W e (A1)
oR.
meve. L k7, Ao
5u8.L # 5w, AO
TST. W (ac)
misC T_EZL.CS

IQ T;op Har-d. (er
3 F(wﬂ "g- ‘f L,‘L

Sat % S'\'\n;\ﬁ Cotants
Mo'/vas Spﬂu._
bloek (<) fr code § Laka,

26le b
Mﬂ\op-'u) extra

ypawnic + stakix

dynamic + shtic

J<e, JmP, Ler peR




W

v Zoeo |

A



The Pascal Development System Manual ‘ ' 16 Feb=-82

THE COMPILER

Files needed: COMPILER.OQBJ
CODE.OBJ
MPASLIB.OBJ, NOFPLIB.OBJ, or IUPASLIB.OBJ

GENERAL INFORMATION

The compiler is split into two programs, COMPILER.OBJ and CODE.OBJ.
COMPILER.OBJ (invoked by the Monitor’s C(ompile option) parses the
Pascal program text into semantically equivalent tree structures.
CODE.OBJ (invoked by the G(enerate command) then turns these trees
into 68000 code. The compiler follows the proposed ISO standard
Pascal with some exceptions and extensions. A complete definition
of Lisa Pascal can be found in the Pascal Language Reference Manual.
The definition of I-code formats and MPaslib information can be found
in the Development System Internal Documentation.

The compiler first asks for the
Input file -

The TEXT extension is added, if necessary. In the following prodp:s,
the bracketed text is used if you leave out that portion of the file names.

" Listing file (<cr> for none) - « >
Qutput file {<in name> .1
Debug file [<input name>] [.DBG] - NGgT MA\L%LE-

If you do not want a debug file created, type <ESC><crd>. <cr> always
accepts the default setting. If you write both the .I file and the
«DBG file to the same volume, use the [*] specification on the .I
file to avoid space problems. The trouble arises when you have

one large block on the volume. When the operating system allocates
space for a file, it gives the file all of the largest block it can find
unless you specify otherwise. If no other block of space exists

and all of the existing block has been allocated to the .I file,

you get a "no room on vol" error when the system attempts to

‘open the .DBG file, even if there is plenty of room for both. The
(*] specification tells the operating system to allocate only

half of the largest available block to the file.

The Pascal run time support routines are in MPASLIB. If you do not
need the floating point arithmetic routines, you can use NOFPLIB
instead of MPASLIB. If you are using intrinsic units, use IUPASLIB.

Page 7



The Pascal Development System Manual 16=Feb=82

CR

-
vE

COMPILER OPTIONS

$C+ or $C-

$D+ or $D-

$DECL

$E filename

$ELSEC
$ENDC

SI filename
$IFC

$L filename

$L+++ or §Le==-

$R+ or $R-

$§S segment

$SETC

$U filename

Turns code generation on (+) or off (-) on a procedure
by procedure basis. The default is C+.

If the $D option is on (the default), the compiler places
procedure names in the object file. The object file is
slightly larger, but LisaBug use becomes much more
pleasant.

Compile time variable declaration (conditional compilation;.
Compile time variables must be declared before they can be
used (in $SETC), and all declarations must precede the
first procedure or function definition in the program.

The $DECL compiler option does not exist until the

version 8.0 compiler.

Starts logging compile time errors as they are encountered.
This option is analogous to the $L option.

Conditional compilation.
Conditional compilation.

Includes the file ‘filename’ in the compilation. The
filename cannot begin with a '+’ or a “=’.

Conditional compilation.

Starts making a listing of the compilation in file
‘filename’. If a listing is already in progress, that
file is closed and saved before the new listing file
is opened.

The first +/= turns listing on (+) or off (=) during the
first pass. The second +/=-, if present, turns on or

off the listing with object code offsets during the
second pass. The third +/-, if present, controls

the production of an interlisting during the second pass.

Turns range checking on (+) or off (-). Currently,

range checking is done in assignment statements, on

array indexes, and for string value parameters. The
default is §R+.

Starts putting code modules into the segment named
‘segment’. The default segment (' ‘) holds the
main program and all built=-in support code. All other
code can be placed in any segment.

Compile time variable declaration and assignment.

Searches the file ‘filename’ for any subsequent units.

Page 8



The Pa. ... ~wuuent System Manual ~ 16=Feb=82

$X+ or $X- - Turns stack expansion code on (+) or off. The default
is $X+.
$%+ or $X- = Allows the use of percent signs as legal characters

in identifier names. The default is $%-. The X option
should not be used by normal applications.

PACKING INFORMATION

Packed records are very expensive in terms of the number of bytes of
code generated by the compiler to reference a field of a packed
record. In general, you should avoid packing records unless there
are many more instances of a particular record than there are
references to it.

Packed arrays are also code-expensive, with one exception. Packed arrays
of char are treated as a special case, and the code associated with
them is compact.

To paraphrase von Neumann, anyone who needs to know the details of
the packing algorithms is in a state of sin, but the following is
provided for the sake of completeness.

Elements of packed arrays are stored with multiple values per byte
whenever more than one value can be fit into a byte. This only
happens when the values require 4 bits or-less. Values requiring
3 bits are stored into 4 bits.

The first value in a packed array is stored in the lowest numbered
bit position of the lowest addressed (most significant) byte.
Subsequent values are stored in the next available higher numbered
bit positions within that byte. When the first byte is full, the
same positions are used in the next higher addressed byte. Consider
the following examples:

a: PACKED ARRAY([l..12] OF BOOLEAN

byte 1: bit O
| a8 | a7 | a6 | a5 | a4 | a3 | a2 | al |
byte 2:

=== Unused ===

4+-4

al2] ally alO| a9 |

4+ -
i
|
|

Page 9



The Pascal Development System Manual 16=Feb=82

b: PACKED ARRAY[3..8) OF 0..3

. byte 1:
i al6) 1 a[s] 1 al4] 1 al3] |
byte 2:
| === Unused =-—— | a[8] | a[7] i
¢: PACKED ARRAY[C..2] OF 0..7
or
PACKED ARRAY[0..2]) OF 0..15
byte 1:
| all] | a(0] |
byte 2:
} == Unused --— | al2] |

You can use the @ operator to. poke around inside any packed value
and thereby discover what the packing algorithm (probably) is. For
example, to get the data given above, you can use a program like
the following:

Program Test;
Var i:integer;

p:“integer;
boolArr:packed array [l..12] of boolean;
Begin
boolArr[l]:=true; (* find out where lst bit is put *)
for 1:=2 to 12 do boolArr([i]:=false;
p:=@boolArr;

Writeln(’equiv word is ‘,p");

(* write the packed array as an integer *)
End.

Page 10



The Pascal Development System Manual

Consider also the following program fragment:

BITE = 0..255;

WORDSWAP = PACKED RECORD

Each variant gets packed into 16 bits.

CASE INTEGER OF

0: (HWord: INTEGER);
1:(HiByte,LoByte:BITE);
2:(High:BITE;

Low:BITE);
3:(Hexl,Hex2,Hex3,Hex4:0..15);
4:(Bool:0..1;

Octl,0ct2,0ct3,0ctéd,0ct5:0..7);
5:(Al1:0..15;

B1:0..7;

BZ:O. 07;

33:00 07;

34:0007);
6:(Bin:PACKED ARRAY[O0..15] OF 0..l)

END;

16=-Feb-82

The question then is, where in

B T S T i e e
i15 01,
| HiByte ' | LoByte |
B s o e e e e M e e iy e e s B e o
} High i Low |
D e e s s e s e e AN s s iy mg
| Hex] | Hex2 | Hex3 | Hex4 |
e bt
I{BJOctl {0ct2 (0ct3 |Octéd |O0ctS |
B e e e R Eaae mme s e s ey ey ey e
| Al ] Bl | B2 | B3 | B4 |

P N S S N I I i Sl n 3 3 T I WO W
BN ] v T LA Shuus Miuh Mieun } v L) LA S J | At §

1716151413121 |10|FIEIDIC|{BlA}918i
B e s L SRS B M S

the 16 bits do the various portions of the variants get placed:

Integer -

iHiByﬁé,LoB&:e:O;.255~

High:0..255; Low:0..255;
Hexn:0..15

B:0.s1; Octn:0..7;
Al:0..15; Bn:O;.7;

Variant #6 (using hex digits)

Page 11



‘lhe rascal vevelopment system danual L0=rep=0s

LISA PASCAL AND APPLE PASCAL

Lisa and Apple Pascal aré quite similar. We give below a list of the major
differences, and a section of hints for translation from Apple to Lisa
Pascal. Full details can be found in the Pascal Language Reference Manual.

EXTENSIONS TO APPLE PASCAL

@ Operator

CASE OTHERWISE Clause

POINTER function

Hexadecimal constants

DISPOSE

ORD4 function

Global GOTO

Parametric Procedures and Functions

DELETIONS FROM APPLE PASCAL
Initialization block in UNIT declaration
PWROFTEN, TREESEARCH, BYTESTREAM, WORDSTREAM, KEYBOARD
Extended comparisons
Some Compiler options
SEGMENT Procedures and Functions
REPLACEMENTS FOR APPLE PASCAL FEATURES
Léng Inteéers == 32 bit integers

Scan == ScanEq and ScanNe ‘
TURTLEGRAPHICS and APPLESTUFF == LisaGraf

TRANSLATION FROM APPLE PASCAL TO LISA PASCAL
Translation of Apple Pascal programs is usually not very difficult. The

following hints may be of use to you 1if you find yourself saddled with
the translation task. Thanks to Ken Friedenbach for the hints!

MOVELEFT(Source_Buf([i],Dest_Buf(k],n) can be translated into:
FOR Locall:=0 TO n~1 DO Dest_ Buf{Locall+k]:=Source Buf([Locall+i];
It may be necessary to declare the local integer used as the FOR loop

control variable.

MOVERIGHT(Source_Buf[i],Dest_Buf(k],n) becomes:
FOR Locall:=n-1 DOWNTO O DO Dest_Buf[k+Locall]:=Source_Buf[i+Locall];

Page 12



The Pascal Development System Manual 16=-Feb=82

FILLCHAR(Buf([i],n,Ch) becomes:
FOR LocalI:=0 TO n-1 DO Buf[i+Locall]:=ch;

1:=SCAN(n,<>ch,Buf[k]) becomes:
Locall:=0;
IF n>0 THEN
WHILE (LocallI<n) AND (Buf[k+Locall]=ch) DO Locall:=Locall+l
ELSE
WHILE (LocalId>n) AND (Buf[k+Locall]=ch) DO Locall:=Locall~-l;
i:=Locall;

If SCAN is looking for =ch, just substitute <>ch in the loops above.

READ(KEYBOARD,ch) becomes:

UNITREAD(2,ChArr,1);
ch:=ChArr[0];

where chArr=packed array [0..1] of char.

EOLN(KEYBOARD)

can check the character read above. If ch=CHR(13) then EOLN is true.

KEYPRESS

is NOT UNITBUSY(2).

Strings must be given a length, non-local EXITs must be replaced with GOTOs.

ClearScreen and other such functions can be handled by Jim Merritt’s
CUSTOMIO unit. ClearScreen on the Lisa is presently WRITE(CHR(27),CHR(42));

If underbars are used in the Apple Pascal program, they must be used
consistently (they are ignored by the Apple Pascal Compiler!).

If the Apple Pascal units have code in the intialization block, put it
in a procedure called at the beginning of the program.

Page 13



The Pascal Development System Manual 1.b-82

To force segments to be .resident, build a chain of dummy procedure calls
that forces the loader to keep them all in core. The main program then
becomes a procedure called by the top of the chain. Say we have 3 segments
called SEGl, SEG2, and SEG3, and have put our main program into a procedure
named MAIN PROGRAM. We can now force everything to be memory resident by
adding the following procedures:

(*$S SEGL*)
Procedure Kludgel;
BEGIN

Main Program;

END;

(*$S SEG2*)
Procedure Kludge2;
BEGIN

Kludge3;

END;

(*$S SEG3*)
Procedure Kludgel;
BEGIN

Kludge2;

END;

(*ss *)

- BEGIN:

Kludgel;
END. (* end of main program *)

Page 14



The Pascal Development System Ma.ual 16=-Feb=-82

THE LINKER

Files needed: LINKER.OBJ or IULINKER.OBJ

GENERAL INFORMATION

The Linker combines object files. Its input consists of commands and
object files. Its output consists of object files, link-map information,
and error messages. Partial links are allowed. The output of the
compiler must be linked with some version of PASLIB.OBJ before it

can be executed. Other object files, including libraries, partial
links, and object files produced by the Assembler, can also be linked
into the output object file.

The Intrinsic Unit Linker (IULINKER.OBJ) expects to find the file
*INTRINSIC.LIB even if you are not using any intrinsic units. LINKER.OBJ

(’The Linker’ in this chapter) expects to find LOADER.IMAGE somewhere
on the systenm.

LINKER PROMPTS

The linker first prompts for the names of the input files:

Input file [.OBJ] =

It continues to ask for input files until you type <cr>. The
next request is for the

Listing file -

Type <er> if you don’t want any listing file. The last request
is for the name of the

Output file [.0BJ] =-

LINKER COMMAND FILES

The Linker can read commands from a text file. At any time

you can switch to such a file by typing ‘<’ followed by the name

of the file in which the commands reside. If there is a blank line
in the file, the Linker assumes that this line is equivalent to the
<er> typed to end input file input. The line after the blank

line (if any) is the listing file name, and the line after

that is the output file name. These two files need not be

given in the command file.

Page 15



The Pascal Development System Manual 16=Feb=-82

LINKER OPTIONS

Linker options can be entered at any time in response to the prompt for

an input file.
In particular, segment names cannot be mapped to several different names.

The options do not have any effect until the link begins.

The Intrinsic Unit Linker has the following options:

4
WAv H Y

MG T b/

+A
+D

+H num

=H num

+L

Alphabetical listing of symbols. The default is -A.
Debug information. The default is -D.

+H sets the maximum amount of heap space the Operating
System can give a program before allowing it to die.
Here, as in the other options, ‘num’ can be either
decimal or hexadecimal.

=H sets the minimum amount of heap space needed by a
program.

Location ordered listing of symbols. The default is -L.
The location is the segment name plus offset.

+M fromName toName

+P

+S num

+T num

?

+M maps all occurrences of the segment ‘fromName’ to the

‘segment ‘toName’. This allows. you to map several small
" segments into a single larger segment. You can thereby

postpone the segmentation decision until link time by
using many segment names in the source code.

Production link. The default is =P. +P produces a
‘production’ .0BJ file. A production object file
does not contain information used by the debugger

and the linker, and intrinsic unit files do not
contain a jump table. The production object file can
be executed, but cannot be handled by the linker or
the debugger.

+S gets the starting dynamic stack size to ‘num’. The
default is currently 10000.

+T sets the maximum allowed location of the top of the
stack to ‘num’. The default is 128K.

Prints the options available and their current values.

The Linker has the following options:

?
Q

Print out the options and their current values

Use Quick Load blocks in place of Executable blocks.
The Monitor has never supported this option.

Page 16



The Pascal Development System Manual . 16=Feb=-82

P Do a Physical (+P) or Logical (-=P) link. +P is the
default. The logical link uses the MMU’s to map logical
addresses into physical memory. The physical link
maps all of memory linearly. A loglcally linked program
is more sensitive to uninitialized pointer problems than
a physicaly linked program. If a physical link is
performed, the linker and the executable program it
produced must execute with the default stack
polnter set to the same location. The default stack
pointer value is $80000.

THE LINKER OUTPUT FILE

If no errors occur during the link, the output file contains the result
of the link. If all external references are resolved and a starting
location is specified, the output file is an executable object file.
You must link in MPASLIB.OBJ or its equivalent to resolve all external
references.

ERROR MESSAGES
The Linker reacts in three general ways to dubious usage. It
gives a warning message if some action cannot be performed. This

kind of message can be distinguished from the others by carefully
noting that it begins with:

**%* Yarning

In order to recover from the error, simply reenter the command
correctly, and all will proceed as though no error had occurred.

An error that makes it impossible for the Linker to complete the
link successfully causes a message that begins:

*%% Error

The link process can be continued, however, so that any further problems
can be discovered.

A fatal error causes the link to be terminated immediately and sends
a message beginning with:

**% Fatal Error

See the section on errors for a complete list of the Linker error messages.

Page 17



The Pascal Development System Manual 16=Feb=-82

EXTERNAL NAMES

An external name is a symbolic entry point into an object module.
All such names are visible at all times=-there is no notion of
the nesting level of an external name. External names can be
either global or local. A local name begins with a § followed
by 1 to 7 digits. No other characters are allowed. A global
name s any name which i1s not a local name.

The scope of a global name is the entire program being linked.
Unsatisfied references to global names are allowed. Only one
definition of a given global name may occur in a given link.

The scope of the local name is limited to the file in which it
resides. When a partial link is done, global names are passed
through to the output file unmodified, but local names are
renamed so that no conflicts occur between local names defined
in more than one file. All references to a given local name must
occur within the same input file.

MODULE INCLUSION

The first file presented to the Intrinsic Unit Linker must be either

a main program file to be linked, or an unlinked intrinsic unit file.

.You cannot have both intrinsiec unit and main program files in a single -

- linke All modules from a non-library file are included in the output file.
Only those modules which are needed in the link, however, are taken

from a library file. The Linker considers a module to be needed if:

1) it defines an unresolved global name, or

2) it is referenced by a module in the same library file
that is included in the output file.

A module i3 not included simply because it references an already
defined global name. Thus, the inclusion of a library module

i8 dependent on the order in which files are specified to the
Linker=-the module must be specified after the modules that
reference it. You can easily use an alternate module to one in
a library by including the alternate prior to specifying the
library file.

After linking an intrinsic object file and before referring to it in
another link, ypou must update the segment and unit tables in

*INTRINSIC.LIB with the IUMANAGER utility. IUMANAGER is described
in the Utilities Chapter of this manual. ’

Page 18



The Pascal Development System Manual 16=Feb=-82

STRUCTURE OF AN EXECUTING PROGRAM

When a program is executing, the Lisa memory map is:

- = - - - - - ($114) (Top of memory)
| Screen Memory |
; = == - - - ($110) (Screen Base)
| Bootfiles
| (LisaBug, GotoXY)
| (Core, MonSoroc)
- (o = = = == ($104) (Monitor top)
Monitogxg

Program Code
|
\

CODE

(physical link)

|
|
|
= = - = - - ($100) (Monitor bottom)
]
|
|
|
(Jump Table) |
l

- em o o e e o

Exception vectors

JUMP (data ptrs ) (see below)
—)tlm - - - - - ($13C) (SETSP default)
TABLE pars to main prog | (see below)
o 0 ot = .- - el - - - (AS) (top of 81°bals)
| Globals |
! i
| Stack (grows down)|
L R I I I e === == . (A6) (stack frame pointer)
DATA | (locals)’ B L. : .
ElE R R L IR o SRR (A7) (top of stack)
| |
| |
| Heap (grows up) |
| MEMORY: |
| Monitor heap |
S = = - - - - ($138) (Heap base)
} Jump Table | (logical 1link)
+ = - - - - - $1800 (used to be A4)
| Monitor globals |
+ b = == == - $0100
| |

Page 19



.cal Development System Manual . 16=-Feb=-82

A physical link places the Jump Table above A5, but a logical or Intrinmsic
Unit link places the Jump Table at $1800 to free up A4 for code optimization.
Even when placed at $1800, the Jump Table is logically above A5. The
program globals are located below A5. The details of the portion of

memory addressed by offsets from A5 is:

| Jump Table }
n | Intrinsic Unit |
+ Data Ptr + JT SEGMENT
| Table : |
. of .
+ - -, n Units .
| | }
i + +
| 14 1
I : ,
| | JTSegDelta | (distance to jump table)
! + = == === ($13C)
| | StkSegDelta | (distance to stack)
I +— .L
| | main program parameters| (see below)
| aadb i e === - (A5)
| | Main program globals |
| el it & STACK SEGMENT
| | Regular Unit globals | '
| e T I TR -+
+

= >| Intringic Unit Globals | (Shared Intrinsic Unit globals are elsewhere)

w T

If the program is using shared intrinsic units, some of the intrinsic unit
data pointers point to locations in the Shared Data Segment which contains
global data used by all processes. The JT Segment is read-only and grows
up. The stack segment is read-write and grows down.

Page 20



The Pascal Dééeloéﬁéﬂé System Manual ‘ 16-Feb=-82

The parameters to the main program are:

i pointer to $$FIRST i +58

Eiteserved I +56

?—Lisagraf info E +52
i

| Saved registers
|

ewere e
‘\\"‘Mvnicm:_ﬁla;:::::sssL +21

|
| Physical Size | +20
| Common Size | +16 (regular and intrinsic unit size)
| GOUTPUT | +12
| QINPUT { +8
| Return address |+
| 01d AS | +0
+ H = == - - - (AS)
| (Globals) |

A6 1s the stack frame pointer. The stack frame of a procedure is:

High Memory +- -+
| Caller’s stack frame |

| Caller’s dynamic link |{= = +

. . l

. . |

+- —t |

| Function Result (only | |

| for a function) | |

I s I

| Procedure arguments ] |

= - --—--- - === -t |

| Static Link (only for a | |

| level 2 or higher proc) | |

o e e e e e . -- -t |

| Return Address | |

. o - e e e e —-— - -+ |

(A6) = = = =>| Dynamic Link |= = -+

= e e e e .- --—
| Local frame |
= - - - - - - -——--
| Dynamic requirements |
Low Memory + H(= = = (A7)

Page 21



The Pascal Development - - - 16=-Feb=-82

THE 68000 ASSEMBLER

Files Needed: ASSEMBLER.OBJ
N68K.OPCODES
N68K.ERRORS

GENERAL INFORMATION

The Assembler is derived from the TLA Assembler on the Apple II.
When invoked, it asks first for

Input file [.TEXT] =

You can reset the values of the options displayed, or give the name of
the assembly source file. The next prompts are:

Listing file ( <CR> for none) -
Output file [inputname] [.OBJ[(*] ] -
Symbols file {inputname] [.SYMBOLS] ( <ESC> for none) =

The symbols file is sometimes used during debugging, although the compiler
D+ option provides a similar service with less hassle. The symbol table is
discussed in more detail below in the section ‘Communication with
Pascal’. . ' :

_If you specify a file, rather than PRINTER: or CONSOLE: as the listing
file, it is probably wise to specify that the listing file take only
half of the largest area on the volume by adding [*] to the file name.
If this is not done, the first opened file may take up all the free
area on the volume, and later attempts to open a file will fail.

The assembler uses a temporary work file, so even if you do not ask
for a listing file, the system may complain about not being able to
find room on the volume. If you specify a size, be certain the size

i8 not too small for the listing file.

If an error is encountered and the file N68K.ERRORS is on your prefix
volume, the Assembler gives an error message as well as the error number.
The error messages are also given in the Errors chapter of this manual.

The 68000 opcodes are described in the Motorola MC68000 Microprocessor
User’s Manual. The assembler has two variant mnemonics for branches
(BHS for BCC and BLO for BCS). The variant names are more indicative of
how the instruction is being used after unsigned comparisons. The
default radix is decimal. It should be noted that the Assembler accepts
generic instructions and assembles the correct form. The instruction
ADD, for example, is assembled into ADD, ADDA, ADDQ, or ADDI, depending
on the context.

ADD D3,DS
becomes ADDA D3,DSs.

MOVE, CMP, 'and SUB are handled in a similar manner.

Page 23



The Pascal Development System Manual l6=Feb=-82

ASSEMBLER OPTIONS

The Assembler has three options:

M toggles whether detailed Pass2 information is printed
(] toggles whether information about available space is printed
c determines whether a .CODE or .OBJ file is created.

+C produces a .CODE file (for male byte sex machines).
-C (the default) produces a .0OBJ file.

The current value of each option is displayed when the Assembler is invoked.

ASSEMBLER SYNTAX
$ = hex
@ = local label
is a legal identifier character
R 4 A legal identifier character except inside a macrq definition.

In a macro definition, Zn is a reference to the nth parameter
of the macro.

. is a legal character
# immediate operand
‘ delimits strings

begins comments

* current location

The size of an operation (byte, word, or long) 1s specified by
appending either .B, W, or .L to the instruction. The default
operation size is word. To cause a short forward branch,

append a +S to the instruction. The default branch size is Long.

Only the first eight characters of identifier names are meaningful to the
assembler. The first character must be alphabetic; the rest must be
alphanumeric, period, underbar, or percent sign. )

Labels begin in column one. They can be followed by a colon, if you
like. Local labels can be used to avoid using up the storage space
required by regular labels. The local label stack can handle 21

labels at a time. It is cleared every time a regular label is
encountered. Local labels in this assembler start with the character @.

Page 24



The Pascal Development System Manual 16=-Feb-82

All quantities are 32 bits in size unless constrained by the instruction.
Expressions are evaluated from left to right with no operator precedence.
Angle brackets can be used to control expression evaluation. The following
operators are available:

+ unary or binary addition
= unary minus or subtraction
ones complement (unary operator)
exclusive or
multiplication
division (DIV)
. MOD
logical OR
logical AND
equal (used only by .IF)
> not equal (used only by .IF)

Al =N %)

The following is a summary of the addressing mode syntax for the 68000:

Mode Register Syntax Meaning Extra Words
0 0..7 Di Data direct 0
1 0..7 Al Address direct 0
2 0..7 (A1) Indirect : 0
3. 0..7 (ai)+ Postincrement 0
4 Cee? -(Al) Predecrement 0
5 0..7 e(Al) - Indexed 1
_ 6 0..7 e(Ai,R1) _Offset indexed , 1
7 (¢} e Absolute short address 1 «
7 1 e Absolute long address 2 «
=7 2 e PC Relative 1
7 3 e(Ri) PC Relative indexed 1
7 4 fle Immediate 1l or 2
Notes:

1) The indexed and PC relative indexed modes are determined
by the opcode.

2) The absolute address and PC relative address modes are
determined by the type of the label (absolute or relative).

3) The absolute short and long address modes are determined by
the size of the operand. Long mode is used only for long
constants. ,

4) The number of extra words for immediate mode is determined
by the opcode (.W or .L).

To specify which registers are affected by Move Multiple (MOVEM),
specify ranges of registers with "=", and specify separate registers

with "/". For example, to push registers DO through D2, D4, and
AQ through A4 onto the top of the stack:

MOVEM.L  DO0-D2/D4/A0-A4,-(A7)

Page 25



The Pascal Development System Manual 16=Feb-82

ASSEMBLER DIRECTIVES

The Assembler directives (pseudo-ops) are:

.PROC <identifter>[,Expr] begin procedure with Expr args

.FUNC <identifier>[,Expr] begin function with Expr args

.END end of entire assembly

+ASCII ‘<character-string>’ place ASCII equivalents of chars in code

«BYTE <value-listd allocate a byte in code for each value

.BLOCK <length>[,value] allocate length bytes of value

+WORD <value-listd> allocate a word for each value

«LONG <value=list> allocate a long word for each value

.ORG <{value> place next byte at <value>

<EQU <value> set label equal to <value>

+MACRO <identifier> begin macro definition

«ENDM . end macro definition

JIF <expr> begin conditional assembly

+ELSE optional alternate to .IF block

«ENDC end conditional assembly

«DEF <identifier-listd> make identifiers externally available
. «REF <{identifier-list> ‘declare external identifiers that will be used

«LIST turn on assembly listing

+«NOLIST turn off assembly listing

-PAGE ' issue a page feed in listing

.TITLE ‘<title>’ title of each page in listing

« INCLUDE <filename> ingsert <{filename> into assembly

COMMUNICATION WITH PASCAL (.PROC and .FUNC)

Pascal programs can call assembly language procedures in a manner
similar to that found in the UCSD system. The Pascal program declares
the assembly language procedure or function to be EXTERNAL. If the
assembly routine does not return a value, use .PROC. If .FUNC is used,
space for the returned value is inserted on the stack just before the
function parameters, if any. The amount of space inserted depends on
the type of the function. A LongInt or Real function result takes

two words, a Boolean result takes one word with the result in the

high order byte, and other types take one word. In the following example, we
link a bit-twiddling assembly language routine into a Pascal program.
The Pascal host file is:

Page 26



The Pascal Develooment System Manual ‘ 16=Feb=-82

PROGRAM BITTEST;
VAR I,J: INTEGER;

FUNCTION Tand( i, § : INTEGER ) : INTEGER;
EXTERNAL; (* external = Assembly language *)

BEGIN
1= 255;
j = 33;
WRITELN (I,J,’ AND = “,Tand (I, J));
END.

The Assembler file is:

+FUNC IAND,2 3 two arguments
RORG 0

MOVE.L (A7)+,A0 return address

H
MOVE.W (A7)+,D0 ; J
MOVE.W (A7)+,D1 i I
AND.W D1,DO ; I AND J

MOVE.W DO, (A7)
JMP (A0)
«END

In the example given above we have made little attempt to make the assembly
language procedure mimic the structure of a procedure generated by the
Pascal Compiler. A complete description of this structure requires some
preliminary discoutse.

Automatic stack expansion code makes procedure entries a little complicated.
To ensure that the stack segment 1s large enOugh before the procedure is
entered, the compiler emits code to ‘touch’ the lowest point that will be
needed by the procedure. If we ‘touch’ an illegal location (outside the
current stack bounds), the MMU hardware signals a bus error which causes

the 68000 to generate a hardware exception and pass control to an exception
handler. This code, provided by the operating system, must be able to
restore the state of the world at the time of the exception, and then
allocate enough extra memory to the stack that the original instruction can be
re=-executed without problem. To be able to back up, the instruction that
caused the exception must not change the registers, so a TST.W instruction
with indirect addressing is used.

Page 27



The Pascal Development System Manual ' 16=Feb=82

In the normal case, the procedure’s LINK instruction should be preceded

by a TST.W e(A7) which attempts to reach the stack location that can
accomodate the static and dynamic stack requirements of the procedure.

If the static and dynamic stack requirements of your assembly language
procedurez are less than 256 bytes, you can assume that the ¢ompiler’s
fudge factor will protect the assembly language procedure, so the TST.W

can be omitted. If the requirements are greater than 32K bytes, e(A7)

may not be sufficient because only 16 bits of addressability are available (
the 68000 does call a 16-bit processor). In this case, the compiler
currently emits code something like:

MOVE.L A7,A0
SUB.L #S1ze,A0 ;#size=dynamic + static requirements
TST.W (AO)

If the compiler option D+ is in effect (the default), the first eight
bytes of the data area following the final RTS or JMP (AO) contain the
procedure name. LisaBug gets the procedure name from this block, making
debugging much more pleasant. The following example is provided to show
how an assembly language programmer can provide LisaBug with all the
information it needs to perform fully symbolic low level debugging.

ASSEMBLY LANGUAGE EXAMPLE

we we weo

DEBUGF .EQU | 3 true => allow debugging with proc names

HEAD == This MACRO can be used to signal the beginning of an assembly
language procedure. HEAD should be used when you do not want to
build a stack frame based on A6, but do want debugging information.

we wWe wWo we we weo

No arguments

+MACRO HEAD

IF DEBUGF

LINK A6,#0 3 fancy NOP just for debugging purposes
MOVE.L (A7)+,A6

-ENDC

+ENDM

TAIL == This MACRO can be used as a generalized exit sequence. There
are two cases. First, if you build a stack frame, TAIL can be used
to undo the stack frame, delete the parameters (if any) and return.
Second, if you do not want to build a stack frame based on A6,

this MACRO can be used to signal the end of an assembly language
procedure. In either case if DEBUGF is true, the Procedure_name

is dropped by the MACRO as an 8 character name.

e We We We Wo we WO we we

Page 28



The Pascal Development System Manual 16=Fo4=~82

We We We we Wr we Ws W Ve we

Three arguments:

1) Number of bytes of parameters to delete
2) Procedure_Name (maximum of 8 chars, no trailing blanks)

If the 7.0 assembler is used the .BLOCK kludge can be removed.
The previous assembler (good old TLA) removes trailing blanks from
strings passed as arguments to a MACRO

+MACRO TAIL
UNLK A6
oIF Xl =0
RTS ; O bytes of parameters
+ELSE
MOVE, L. (A7)+,(A7) ; 4 bytes of parameters
RTS
+ELSE
MOVE, L. (A7)+,(A0) ; 2 or >4 bytes of parameters
ADD.W #21,A7 s asm ADDQ.W or ADDA.W
JMP (A0) ‘
+ENDC
.ENDC
«IF DEBUGF
«ASCII %2
v BEOCK %3520
<ENDC
«ENDM

The following example demonstrates the use of the TAIL macro for the

purpose of debugging. The example assumes that you want to build

a stack frame based on A6. In a real assembly language procedure the
zeroes below would be replaced by the local size and parameter size.

.PROC  SIMPLE,O

LINK A6,#0 3 zero here indicates zero bytes of locals
() e —— —3 body of procedure °
TAIL Q,'SIMPLE'QEJ"'}.zero here indicates zero bytes of parameters

«END

Page 29



The Pascal Development System Manual ' 16=Feb=-82

These macros are sufficient for the programmer writing small assembly language
routines to be called from Pascal. If, however, you want the debugger

to be able to handle symbols in a single huge .PROC (an interpreter, or

an operating system, for example), you need to set up the symbol table
yourself. The Assembler can create a .SYMBOLS file for you. Each entry

in the file (and in the symbol table) contains 12 bytes. The first 8

bytes are the symbol name, left justified and padded with trailing spaces.

The last 4 bytes are the symbol’s value. The debugger uses location $406

to find the first entry in the table. Location $40A points to the first

free entry (just past the last entry in the table).

L b 1
T r L

name 1 val | name 2 wval | « . & 100000000 0000}

i -t
T

8 4 8 4 ~ (need not be loaded)

| |
$406 The Symbol Table $40A

4 — 4

To load your symbol table, load the .SYMBOLS file into memory, offset
each of the symbol values by the loading address of your program, and
reset the pointers in $406 and $40A to point to the new location of the
table. The debugging version of the Monitor loads M.SYMBOLS into memory
in exactly this manner so that the debugger can provide symbolic
disassembly of the Monitor. If the symbols for the registers (RDO..RD7,
and so on) are not in the table, the debugger appends them to the table
when 1t is first invoked.

' Upon entry to the assembly routine, the stack is:

oo

|
User Stack | (previous stack data)

Function result

Parameters

Static Link

Return Address |

t—t—F+—4+—-+

DO-D2/A0-Al: Scratch registers (can be clobbered)

D3,A2 Scratch registers, but should be preserved
D4=D7/A3,A4 Used for code optimization

AS: Pointer to user globals (must be preserved)
A6: Pointer to base of stack (must be preserved)
SP: Top of stack

Registers D3 and A2 may be used at some time in the future by the compiler
for code optimization, so the assembly language programmer should
preserve them also.

The function result is present only if the Pascal declaration is for

Page 30



The Pascal Development System Manual 16=-Feb-82

a function. It is either one or two words. If the result fits in a
single byte (a boolean, for example), the most significant half
(the lower addressed half) gets the result value.

Parameters are present only if there are parameters. They are pushed
on the stack in the order of declaration. All reference parameters
are represented as 32 bit addresses. Value parameters less than 16
bits in size always occupy a full word. All non-set value parameters
larger than 4 bytes are passed by reference. It is the procedure’s
responsibility to copy them. All large set value parameters are
pushed onto the stack by the calling routine.

The static link is present only if the external procedure’s level of

declaration is not global. The link is a 4 byte pointer to the enclosing
static scope.

It is the responsibility of the assembly language procedure to deallocate
the return address, the static link (if any), and the parameters

(if any). The SP must point to the function result or to the previous
top of the stack upon return. Registers D4 through D7 and A3 through A7
must be preserved. It is recommended that you also preserve D3 and A2.
SPACE ALLOCATION DIRECTIVES

The space allocation directives are .ASCII, .BYTE, .WORD, .LONG, and
-BLOCK. o * to . '

+ASCII “‘string’

converts ‘string’ into the equivalent ASCII byte constants and places
the bytes in the code stream. The string delimiters must be single
quotes. To insert a single quote into the code:

+.ASCII '‘AB’ ’

«BYTE  $27 ;ASCII equivalent of single quote

.ASCII ‘CD’
" assembles the string AB’CD.
«BYTE <values>

allocates a byte of space in the code stream for each of the values given.
Each value must be between =128 and 255.

«BLOCK <length>[,value]

allocates <length> bytes for each value listed. If no value is given, a
block of zeros is allocated.

Page 31



The Pascal Development System Manual 16-Feb=-82 °

<WORD <values>

allocates a word of spade in the code stream for each of the values listed.
The values must be between =32768 and 65535. For example,

TEMP «WORD 0,65535,-2,17
creates the assembled output:

0000
FFFF
FFFE
0011

.LONG <values>
allocates two words of space for each value in the list. For example,
STUFF .LONG 0,65535,-2,17

creates the output:

00000000
000OFFFF
FFFFFFFE
00000011

<label> .EQU <value>

assigns <value> to <label>. <value> can be an expression containing other
labels.

+ORG <value>

puts the next byte of code at <value> relative to the beginning of the
assembly file. Bytes of zero are inserted from the current location to
<value>.

«RORG

is similar to .ORG. It indicates that the code 1s relocatable. Because
the loader does not support the .ABSOLUTE pseudo~op, RORG is mostly
cosmet ic.

RORG (without the leading period) is the same as .RORG. Similarly,
END = ,END, EQU = ,EQU, PAGE = ,PAGE, LIST = ,LIST, NOL = ,NOLIST,
and TTL = .TITLE. The TLA directives .INTERP and .ABSOLUTE have not
been implemented. The TLA directives .PRIVATE, .PUBLIC, and .CONST
are currently unimplemented.

Page 32



The Pascal Development System Manual . 16=-Feb-82

ment Ny

MACRO DIRECTIVES

A macro consists of a macro name, optional arguments, and a macro body.
When the assembler encounters the macro name, it substitutes the macro
body for the macro name in the assembly text. Wherever Zn occurs in the
macro body (where n is a single decimal digit), the text of the n-th
parameter is substituted. If parameters are omitted, a null string is
used in the macro expansion. A macro can invoke other macros up to five
levels deep. In the assembly listing, macros are shown fully expanded
and marked with a ‘#’ in the left margin.

«MACRO <identifier>

-ENDM

defines the macro named <identifier>. The macros HEAD and TAIL are defined
above. As a further example, consider:

+«MACRO Help
MOVE  %1,DO
ADD  DO,%2
<ENDM

If ‘Help’ is called in an assembly with the parameters ‘Alpha’ and ‘Beta’,
the listing created would be:

Help Alpha,Beia

# MOVE  Alpha,DO
# ADD DO,Beta

Page 33



The Pascal v ..u, .. otem Manual 16=-Feb=-82

CONDITIONAL ASSEMBLY DIRECTIVES

The conditional assembly directives .IF, .ELSE, and .ENDC are used to
include or exclude sections of code at assembly time based on the value
of some expression.

+IF <{expressiond

identifies the beginning of a conditional block. <expression> is considered
to be false if it evaluates to zero. Any non-zero value is considered true.
The expression can also involve a test for equality (using <> or =). Strings
and arithmetic expressions can be compared. If <expression> is false, the
Assembler ignores code until a .ELSE or .ENDC is found. The code between

the optional .ELSE and .ENDC is assembled 1f <expression> is false. Otherwise
it 1s ignored. Conditionals can be nested. The macros HEAD and TAIL

given above provide examples of the use of conditionals. The general

form is:

oIF <expression>

. ;assembled only if <expression> is true
[ .ELSE] ;optional

. ;assembled only if <expression> is false
«ENDC

EXTERNAL REFERENCE DIRECTIVES (.REF and .DEF)

Separate routines can share data structures and subroutines by linkage
between assembly routines using .DEF and .REF. These directives cause
the Assembler to generate link information that allows separately compiled
assembly routines to be linked together. .DEF and .REF associate labels
between assembly routines, not between assembly routines and Pascal.

The Linker resolves the references.

+DEF {identifier-list>
identifies labels defined in the current routine as available to
other assembly routines through matching .REFs. The .PROC and .FUNC

directives also generate a .DEF with the same name, so assembly
routines can call external .PROCs and .FUNCs with .REFs.

Page 34



The Pascal Development System Manual 16=-Fab~82

+PROC Simple,l
.DEF Alpha, Beta

BNE Beta

*

Alpha MOVE
RTS

Beta MOVE
RTS
«END

This example defines two labels, Alpha and Beta, which another assembly
rout ine can access with .REF.

+REF {identifier-list>

identifies the labels in <identifier-list> used in the current routine
as avalilable from some other assembly routines which used .DEFs.

«PROC Simple
«REF Alpha

JSR Alpha

+END
uses the label ‘Alpha’ declared in the .DEF example.

When a .REF is encountered, the assembler generates a short absolute
addressing mode for the instruction (the opcode followed by a word of
0’s). The assembler’s second pass transforms each of these into a
short external reference with an address pointer to the word of 0°s
following the opcode. If the referenced label and the reference are
in the same segment module, the Linker changes the addressing mode
from short absolute to single word PC relative. If, however, the
referenced procedure is in a different segment, the Linker converts the
reference to an indexed addressing mode (off A5) and the word of

zeros is couverted into the proper entry offset in the jump table.

If the referenced procedure is in an intrinsic unit (and therefore

in a different segment), the IUJSR, IULEA, IUJMP, and IUPEA instructions
are used (see page ##). The Linker blindly assumes that the word
immediately before the word of zeros is an opcode in which the low
order 6 bits are the effective address. Thus, a .REF label cannot be
used with any arbitrary instruction. The .REF labels are intended for
JSR, JMP, PEA, and LEA instructions.

Page 35



The Pascal Development System Manual 16-Feb=-82

LISTING CONTROL DIRECTIVES
The directives that control the Assembler’s listing file output are
.LIST, NOLIST, .PAGE, and .TITLE. If you do not specify a name for
the listing file in response to the.Assembler’s prompt:

Listing file (<cr> for none) =

the listing directives are ignored.

«LIST and .NOLIST
can be used to select portions of the source to be listed. The listing
goes to the specified output file when (LIST is encountered. .NOLIST

turns off the listing. .LIST and .NOLIST can occur any number of times
during an assembly.

«PAGE

inserts a page feed into the listing file.

«TITLE ‘<title>’

specifies a title for the listing page. <titled> can contain up to 80
characters. .

«TITLE ‘Interpreter’

places the word, Interpreter, at the head of each page of the listing.

FILE DIRECTIVE
The pseudo-op
« INCLUDE <{filename>
causes the contents of <{filename> to be assembled at the point of the
«INCLUDE. <filename> need not specify the .TEXT suffix. The last
character of the filename must be the last non-space character on the

line=~do not put a comment on this line. An included file cannot itself
contain a .INCLUDE statement.

Page 36



LlUE fadldd WEVELVPUELLL VD iLtUW liauiu- ! AV ATU

LISABUG

LisaBug allows you to examine, disassemble, and change the contents
of memory, set breakpoints, and do immediate assemblies. If the
compiler D option is on (the default), procedure names are available
to the debugger, and Lisabug uses the symbols wherever appropriate.

Type M to the Monitor command prompt to invoke LisaBug. It asks:

What file?

You can type <cr> to enter LisaBug without any file. If you type a
file name, that code file is loaded into LisaBug. The LisaBug command
prompt is ‘>‘. The default radix is hexadecimal.

You can drop into LisaBug by hitting the NMI key which is currently
the third key from the left in the top row of the numeric keypad.

A FEW EXAMPLES

If you type a file name, LisaBug starts up with the program
counter at the start of the program. To see one instruction
disassembled (say at 32F96), type

>ID 32F96

(followed by RETURN, of course). ID stands for Immediate Disassemble.
Each subsequent ID command, if given without any address,
disassembles the next instruction found. In addition to printing

the value of each byte, LisaBug prints the ASCII equivalent

of that value, if a printable one exists. If none exists, it

prints a period.

To disassemble 20 consecutive addresses, type

>IL

IL (Immediate Disassemble Lines) can also be followed by an address.
Subsequent IL commands disassemble successive blocks of 20
consecutive locations in memory.

If the object file being examined was compiled with the D+ compiler
option, the procedure names are available in LisaBug and can be used
in any expressions. For example,

>2IL Foo 5§

disassembles the first 5 lines of procedure ‘Foo’.

>BR Foo+40

sets a break point 40 bytes into procedure ‘Foo’.

Page 37



The Pascal Development System Manual : 1y . ab=p 16=Feb=-82

You can also use labels in immediate assemblies:

>sy Ken 6000
>A Ken NOP

assembles a NOP instruction at the address ‘Ken’.

>A 6000 <er>
>Rich: TAS $100
p <cr>

enters the immediate assembler at 6000, defines the label ‘Rich’, and
assembles a TAS ingtruction.

THE SYMBOL TABLE

The symbol table is the union of the user symbol table and the distributed
procedure names. The user symbol table contains the user declared symbols
(like ‘KEN’ in the example above) and the predefined symbols (RDO and
friends). Each entry contains twelve bytes. The first eight bytes are
the symbol name, and the last four bytes are the symbol’s value.

Location $406 gives the beginning of the symbol table, and $40A points

to the end of the table. The section ‘Communication with Pascal’ in

the Assembler chapter of this manual contains more information about

~ the symbol table. .

Page 38



The Pascal Development System Manual

LISABUG COMMANDS
Definitions:
Constant
$§Cons tant
&Constant
ASCII String’
Name

RegName

Expr

Exprlist

Register

Moving the LisaBug Window:

P expr

A constant in the default base

A hex constant

A decimal constant

An ASCII string
A symbol in the symbol table

R.DOO 0RD7’ RAO. ORA7, PC, US’ or SS.

A predefined symbol in the symbol table

with a value set by LisaBug. The

value 1s equal to the value of the

register in question. LisaBug

automatically updates the values of these
symbols. The ‘R’ is appended to distinguish
the register names from hexadecimal numbers.

An expression. Expressions can contain
names, regnames, strings, and constants.
Legal operators are + — * /. Expressions
are evaluated left to right: * and /

take precedence over + and -. ( and )

can be used to indicate indirection.

< and > can be used to nest expressions.

In those cases where an odd value 1s probably
a mistake, LisaBug warns you that you

are trying to use an odd address. If you
decide to go ahead, it subtracts one from
the address given. If the compiler optiom
D+ is used, procedure names are also legal
in expresgsions.

A list of expressions separated by blanks.

DO..D7, AO..A7, PC, SR, US, or SS. Note
that A7 is SP (the stack pointer).

Set port number to expr. Valid port numbers

are:

Lisa keyboard and screen (default)
UART Port A (farthest from Power Supply)
UART Port B

N - O

If you move the port to a UART, you must have a
modem eliminator connected to that port.

Page 39



The Pascal Development System Manual 16~Feb-82

Symbols and Base Conversion:

sY Display the values of all symbols

SY name Display the value of the symbol name

SY name expr Assign expr to the symbol name

CV exprlist Display the value of each expression in hex and decimal.
SH Set the default radix to hex

SD Set the default radix to decimal

Assembly and Disassembly:

A expr statement

A expr
Agsemble one statement (instruction) at expr. If
you use the form A expr, LisaBug asks you for the
gtatement to be assembled. You can continue
assembling instructions into consecutive locations.
Type <cr> to exit the immediate assembler.

‘ID : Disassemble one line at the next address’

ID expr Disassemble one line at expr

IL Disassemble 20 lines at the next address

IL expr Disassemble 20 lines starting at expr

IL exprl expr2 Disassemble expr2 lines starting at exprl

Upon entering LisaBug, the ‘next address’ is the current PC.

Page 40



‘The Pascal

Development System Manual 16-Feb=82

Set, Display, and Find Memory:

SM

SB

SW

SL

DM

DM

DB

DW

DL
FB

FW

exprl exprlist
Set memory with exprlist starting at exprl. SM assumes
that each element of exprlist is 32 bits long. To
load different length quantities, use SB or SW described
below. If the expression given 1s longer than 32 bits,
SM takes just the upper 32. For example, 1f we ask
LisaBug to:

SM 1000 ‘ABCDE’

it deposits the ASCII equivalent of ‘ABCD’ starting
at 1000.

exprl exprlist
Set memory in bytes with exprlist starting at exprl

exprl exprlist
Set memory in words with exprlist starting at exprl

exprl exprlist

Set memory in long words with exprlist starting at exprl.
For example,

SL 1001
is equivalent to
SM 100 0000 0001

expr Display memory at expr. DM RA3+10, for example,
displays the contents of memory from the address
pointed to by A3 for 10 bytes. DM (110) displays
the contents of the memory location addressed by
the contents of location 110.

exprl expr2 Display memory. If exprl < expr2, then display
memory from exprl to expr2. Otherwise, display
memory for expr2 bytes starting at exprl.

expr Display memory as bytes.

expr Display memory as words.

expr Display memory as long words.

starting addr count data v Find Byte.
Find the byte or bytes ‘data’ in memory between
‘starting_addr’ and ‘starting_Addr‘+‘count’.

starting addr count data , Find Memory

starting addr count data Find Word

Page 41



The Pascal Development System Manual 16=Feb=-82

FL starting addr count data Find Long

Set and Display Registers:

D

register

register expr
Memory Management:
LP expr

DO expr

WP OQor il

Display the Trace Display at the current PC

Display the current value of the register.

DO, for example, 1s a command to LisaBug to
display the current value in the register DO.
RDO, on the other hand, is a name automatically
placed in the symbol table to give you a handle
on the contents of DO in an expression.

Set the register to expr

Convert logical address to physical address.

Set the SEG1/SEG2 bits. These bits determine the
hardware domain number. If the Status Register
shows that you are in supervisor state, then the
effective domain is zero, and the domain number
returned by LisaBug is the domain which would be
active 1f the SR were changed to user state.

Diable (0) or Enable (l) Write Protection. The default
is 1.

MM start [end_or_count]

MM with one or two arguments displays information
about the MMU registers. The second argument
defaults to l. If the starting address is
greater than the second .argument, the second
argument is a count of the number of MMU registers
to be displayed. If the starting address is less
than the second argument, the second argument is
the last register displayed.

MM 70
displays
Segment [70] Origin[000] Limit[00] Control[C]

These values are the Segment Origin, Limit, and
Control bits stored by the hardware for each MMU
register. As can be seen from a careful perusal

of the hardware documentation, a Control value of

C means the segment in question is unused (invalid).
If the Control value is valid (F, for example),

the debugger also displays the Physical Start

Page 42



The Pascal Development System Manual ‘ 16=-Feb=82

‘and Stop addresses of the segment.

MM &100 8

displays the MMU register information for the 8
registers starting at register 64 (decimal 100).

MM num org lim cntrl
The MM command followed by four arguments sets the
MMU information for segment ‘num’. The Origin,
Limit, and control bits can be changed. The
Monitor uses the first 16 registers, so 1t is
safer not to mess with them.

MM 70 100 ££f 7

sets the Origin of segment 70 to 100 and the
control bits to 7 (a regular segment). The
segment limit of -1 makes the segment 512 bytes
long.

Breakpoints, Patchpoints, Traces, Calls:

BR . Display the breakpoints currently set. Up to 16
breakpoints can be handled by LisaBug. Break points
are displayed botH as addresses and as symbols.

An asterisk marks the point of the breakpoint in
the disassembly. Patch points are marked with ‘!’.

BR exprlist Set each breakpoint in exprlist. Symbols are
legal, of course, so we can:

BR Ralph+4
if Ralph is a known symbol.

PA insertion addr destination_addr
Insert a Patch. PA can be used to insert a
sequence of code terminafed by a TRAP #Sf
into another sequence of code. Lisabug maintains
a table of patches and return addresses to
implement this facility. The trace command
works with patches. It displays the next
instruction to be executed and its environment.
You can have up to 16 patches. A patch can be
removed by using the CL (Clear) command with
the patch insertion address.

PA Display patch addresses
CL Clear all breakpoints and patchpoints
CL exprlistc Clear each breakpoint or patchpoint in exprlist

Page 43



_, The Pascal Development System Manual 16-Feb=-82

g - eaQF.

G Start running at the current PC

G expr Starting running at expr

T Trace one instruction at the current PC

T expr Trace one instruction at expr

CA expr Call a subroutine in the dgbugger's environment.

SC expr Stack Crawl. Display the user call chain. Expr
sets the depth of the display. It can be omitted.

Q Exit LisaBug, if it was called from Talk

RM * Return to the Monitor. RM checks the interrupt

level, stops exec files, and sets the domain to
zero. If you are in an interrupt handler, RM
may refuse to do anything. If the SR shows

2nxx where n is not zero, you are in an interrupt
handler. To get back to the monitor, type G,

hit NMI, and try RM again. With any luck, you
will escape eventually.

RB Reboot. The Lisa is reset. Reboot the Apple II
and the Lisa should also reboot automatically.

Overcome Inadequate Hardware:

o~

_ DU expr Disk unclamp. The Twiggy may not reliably eject
the disk at the right time. If you have trouble,
v GY try the DU command followed by the drive number.
d/O Valid drive numbers are 1l and 2.
) 3’ DC expr Disk Clamp. If the Twiggy refuses to suck up the
éyliﬁ disk and clamp it in place, try the DC command
: L—— followed by the drive number (1 or 2).
RS Display the patch Return address Stack

If you have the debug card,
DR Display index or ranges of dump RAM.

MR Set a value level #5 interrupt on a word change.

Page 44



--2lopment

register
register expr

System Manual 16-Feb=-82

Display the current value of the register.
-Set the register to expr

A expr statement

A expr Assemble one statement (instruction) at expr.
BR Display the breakpoints currently set.

BR exprlist Set each breakpoint in exprlist.

CA expr Call a LisaBug subroutine

CL Clear all breakpoints and patchpoints

CL exprlist Clear each breakpoint or patchpoint in exprlist
CV exprlist Display the value of each expression in hex and decimal.
DB expr Display memory as bytes.

DC expr Disk Clamp.

DL expr Display memory as long words.

DM exprl expr2 Display memory.

DO expr Set the SEGl/SEG2 bits.

DR Display index or ranges of dump RAM.

DU expr Disk unclamp.

DW expr Display memory as words.

FB starting_addr count data Find Byte.

FL starting_addr count data Find Long

FM starting_addr count data - Find Memory

FW starting_addr count data Find Word

G Start running at the current PC

G expr Starting running at expr

ID Disassemble one line at the next address

ID expr Disassemble one line at expr

IL. Disassemble 20 lines' at the next address:

IL expr Disassemble 20 lines starting at expr

IL exprl expr2 Disassemble expr2 lines starting at exprl

LP expr Convert logical address to physical address.
MM exprl expr2 Display MMU information

MM num org lim ctrl Set MMU information

MR Set a value level #5 interrupt on a word change.
P expr Set port number to expr.

PA insrtaddr destaddr Insert a Patch.

PA Display patch addresses

Q Exit LisaBug, if it was called from Talk

RB Reboot .

RM Return to the Monitor.

RS Display the patch Return address Stack

SB exprl exprlist Set memory in bytes with exprlist starting at exprl
SC expr Stack Crawl.

SD Set the default radix to decimal

SH Set the default radix to hex

SL exprl exprlist Set memory in long words with exprlist starting at exprl.
SM exprl exprlist Set memory with exprlist starting at exprl.

SW exprl exprlist Set memory in words with exprlist starting at exprl
sY Display the values of all symbols

SY name Display the value of the symbol name

SY name expr Assign expr to the symbol name

T Trace one instruction at the current PC

T expr Trace one instruction at expr

D Display the Trace Display at the current PC

WP Oorl Diable (0) or Enable (l) Write Protection.

Page 45



The Pascal Development System Manual 16-Feb-82

THE FILER
File Needed: FILER.OBJ
INTRODUCTION

The Filer is modeled after the UCSD P-system’s Filer and provides a similar

set of functions. However, there are some small but important differences
between the two.

The Monitor Filer requires that a colon follow a volume name in every case.
It provides access to as many as 20 on-line volumes. The maximum number of
files in a volume directory is 77.

All "workfile" commands and workfile-oriented features of the UCSD Filer
have been omitted from the Monitor Filer. The functions of the Monitor
utility programs Flipdir and Verify are provided by the Filer commands
"S(ex" and "V(erify," respectively.

The UCSD Filer’s "V(olume" command has been changed to "O(n=line" in the
Monitor Filer. The UCSD Filer’s "eX(amine'" command is not available in
the Monitor Filer.

The Monitor Filer’s "T(ransfer" command performs automatic verification of
all transfers between blocked devices.

ESCAPE aborts the currently executing function. When a wildcard R(emove
or C(hange 1s aborted, you are asked whether to update the directory.
A response of ESCAPE to this question is interpreted as “No’.

The Monitor Filer includes a volume manager subsystem that permits you to
maintain and manage the volume population on a Corvus drive. This subsystem,
accessible through the '"M" command, replaces the old VMGR utility.

FILER COMMANDS

The following is a list of commands that are recognized by the Filer.

Filer commands are invoked by pressing the key which corresponds to the

first letter of the command name.

B(ad=blocks = Scans for and reports bad blocks on blocked device.

C(hange = Changes a volume or file name on a blocked device.
"Wildcard" file name specifications are recognized.
D(ate -~ Sets or changes the system date.
E(xtended
directory

listing = Provides a detailed 1list of the contents of a blocked
volume. "Wildcard" file names specify the display of a
directory subset. You can write a directory to a
printer with E #4: ,PRINTER:

Page 53



The Pascal Development System Manual 16-Feb-82

K(runch - =

L({ist
directory -
N(ew -

Creates the largest possible block(s) of contiguous space
on a blocked volume by relocatiug existing files on that
volume. It’s a good idea to scan a volume for bad blocks
before any attempts are made to Krunch it. Do not Krunch
a volume that has bad blocks.

Provides an summary of the contents of a blocked volume.
See "E(xtended directory listing,'" above.

Creates a directory entry with the specified file name.
Any volume name used to prefix the file name must be

that of an on-line, blocked device. You can attach

a size=-specification suffix to the end of the file name.
This suffix indicates the number of blocks to be occupied
by the new file. The suffix consists of a non-negative
integer constant or an asterisk ("*"), enclosed

in square brackets ("[]"). For example,

FARLEY:MYFILE.TEXT[40]
XRAY.OBJ[*]

The new file is placed on the specified volume in the

" first empty space that is large enough to hold it.

O(n=-1line -
P(refix -

Q(uit -

R(emove -

S(ex -

T(rangfer =

The asterisk indicates that the file should fill half the
largest free area on the volume, or all of the second=-
largest area, whichever is larger. In the absence of a size
specification, the newly-created file occuples the largest
area of contiguous free blocks on the volume. Files

created with N(ew are stamped with the current system date,
while the storage areas to which they correspond are left
unaltered. N(ew permits the creation of zero-length files.

Provides a list of all voluﬁes that are on-line.
Changes the system prefix volume name.
Exits the Filer.

Deletes entries from the directory of a blocked volume
on a single~file or 'wildcard" basis.

Performs sexual reassignment of a blocked volume’s
directory. This command corresponds to the FLIPDIR
utility. The Lisa is a female machine, whereas the
Apple II is a male machine.

Copies and transfers information between volumes.
Single-file or multiple-file wildcard transfers are
allowed. You can also transfer between blocked

and unblocked volumes. Transfers between blocked volumes
are automatically verified, but transfers involving
unblocked volumes are not.

Page 54



The Pascal Development System Manual 16=Feb=-82

V(erify =

Z2(exro =~

Compares blocked files for equality. You can compare
single-files or multiple files common to two blocked volumes.
Wildcard specifications can be used to name the comparands,
so subsets of the files on one volume can be compared with

a congruent subset of files on another volume. Verify
detects and reports the following situations:

* The "source' and "destination" files match;

* The source differs from the destination in
date=-stamp, size, and/or contents (contents
are always compared if sizes match, whether
or not dates match);

* No counterpart to a given source file exists
on the destination volume.

The report produced by Verify can be redirected to a
device or file other than the console by following
the destination file/volume name specification with
a comma, then the name of the desired output device
or file. For example,

Verify what file/vol ? VOL1:,VOL2:,PRINTER:
is equivalent to:,

Verify what file/vol ? VOL1:
Against what file/vol ? VOL2:,PRINTER:

The verification report in either of these cases is
diverted to the PRINTER: device.

Erases and initializes the directory area of a blocked

~volume. If the volume already has a directory prior to

the Z(ero, you have the option of retaining the old

volume name and/or volume size. Z(ero can be used to
increase or decrease the size of the virtual volume MEMORY:.
Caution should be exercised, however, because it is possible
to specify a volume size that is much larger than the LISA
memory complement permits. In this case, a "memory overflow"
is reported, and you should again invoke Z(ero to shrink
MEMORY: to a reasonable size. Do not leave the Filer

or attempt to use MEMORY: after receiving the "memory
overflow" message!

Remember that Z(ero produces an empty directory. Therefore,
to change the size of MEMORY: without erasing the directory,
you must still use the CHANGEMEM utility.

vM(gr ~ Enters the volume manager (vMgr) subsystem, which presents

L(ist

its own sub-menu, and offers the following commands:

- List the hard disk Volumes (like Filer’s O(n-line command).

From time to time, you may destroy the directory of one or
more volumes that reside on the hard disk. The vMgr

Page 55



The Pascal Development System Manual 16=Feb=82

M(ount -

N(ew -

Q(uit -

R(emove =~

U(nmount =

W(rite=
protect -

subsystem assigns temporary names to these '"bad" volumes
so that you can be warned of their contamination, and can-
also manipulate them, if necessary. The form of such
temporary names is BAD*n, where n is an integer (e.g.,
BAD*1, BAD*10, etc). Temporary names for '"bad" volumes

are effeccive only within the vMgr subsystenm.

M(ount assigns a hard disk volume to a specific Monitor device
number, taken from the set [4,5, 9..20]. You can specify

the device number to which a volume is assoclated, or you

can accept the default selected by the vMgr. When vMgr

picks a default unit number, it chooses the highest number
that is not currently in use.

N(ew creates new volumes. You can accept the default
values for volume size and location as offered by the

vMgr, or specify your owne.

Leave vMgr subsystem. If you have made any changes to the
volume table you must confirm whether or not they should be
made permanent in the default mount table. If you respond
with any character other than ‘Y’, any changes made are
temporary —— when the system 1s xebooted, the original
settings will take effect.

R(emove unmounts and destroys a volume. You can R(emove a _
M(ounted volume, but to do so you must approve the
U)nmount ing of that volume.

U(nmount 1is comparable to removing a floppy from a drive. It
disassociates the volume from the unit on which it was mounted.
The U(nmounted volume and the data it contains still exist

on the hard disk drive, but can not be accessed through any
Monitor device.

W(rite-protect toggles the write-protection status for a
volume. The contents of a write-protected volume cannot
be changed. This command changes the default mount table.
Newly-created volumes are not write-protected.

See the Apple Pascal Operating System Reference Manual for further information.

Page 56



The Pascal Development System Manual 16=~Feb-82

THE EDITOR

File needed: EDITOR.OBJ
LISA:EDITOR.FONT
LISA:EDITOR.MENUS
LISA:SYSTEM.FONT

INTRODUCTION

The mouse oriented editor is invoked by the monitor command E. Unlike the
UCSD editor (invoked by U), this editor adheres to the Lisa User Interface.

When invoked, it displays its menu, a portion of the Scrap folder, and
a dialog box which asks you for the name of the file to be edited:

Get Document named?

Type the name of the desired file, followed by <RETURN>. The editor opens a
folder and displays the first portion of the file. To open an empty folder
(to start a new file), type just <RETURN> to the request for a document name.

The arrow or I-beam shows the current position of the mouse. The blinking

vertical bar marks the insertion point. Activity takes place at the

insertion point even if that point is not visible. If, for example,

you open a folder, scroll to the end of the file, then start typing, the _

. characters you type are inserted at the start of the file (where the cursor is),
rather than at the end of the file (which you are merely looking at). ’

To mark text to be deleted or copied, set the insertion point to the start of
the text (move the mouse there and click), then drag the mouse through the text
to be acted upon. Selected text is displayed in inverse video. Click twice

to select a word, three times to select an entire line. To select large

pleces of text, put the cursor at the start of the text, move the mouse

to the end of the text, and shift click at that point.

At any time you can,

Open a new folder
(select the PULL item in the DESKTOP menu)

Start editing in any folder on the screen

(select the desired folder from the tray icon menu, or
click in the body of the desired folder)

Move the folder around on the screen
(drag the folder’s tab)

Make the folder larger or smaller
(drag the grow box. The grow box is the square in the
lower right corner of the folder)

Scroll up a line

(click the up arrow box in the lower right corner. To
scroll continuously, hold the button down in the box)

Page 59



The Pascal Development System Manual 16=Feb—-82

Scroll down a line
(elick the down arrow box in the upper right corner. To
scroll continuously, hold the button down in the box)

Jump back a windowful ‘
(click in the grey area above the elevator. Hold the
button down in this area to continue flipping pages.
The elevator i1s the empty box in the vertical scroll
bar)

Jump forward a windowful
(click in the grey area below the elevator. Hold the
but ton down to continue flipping pages)

Jump to certain place in the folder
(drag the elevator to the position in the scroll bar that
corresponds roughly to the desired position in the file)

Cut out the selected text and place it in the Scrap
(select the CUT item in the EDIT menu, or type Command=-Z)

Paste the Scrap contents into the folder at the selection point
(select PASTE in the EDIT menu, or type Command-X)

Copy'the'selectéd'text into the Scrap
(select COPY in the EDIT menu, or type Command=C)

Adjust the selected text right one space
(select ADJUST RIGHT in the EDIT Menu, or type Command-R)

Adjust the selected text left one space
(select ADJUST LEFT in the EDIT Menu, or type Command-L)

Save all your edits and close the folder
(select PUT BACK in the DESKTOP menu)

Save all your edits, but remain in the folder
(select ACCEPT ALL EDITS in the DESKTOP menu)

Write the current folder contents to another file

(select CROSSFILE TO... in the EDIT Menu. CrossFile asks
you for the file name to cross file to. If that file
already exists, you are given a chance to change your
mind before the old file is overwritten. CrossFile does
not change the file name used by Accept All Edits or

Put Back. If you do not want to crossfile after all,
type <RETURN> as the filename).

Cancel all the editing done since the last save command
(Select UNDO ALL EDITS from the DESKTOP menu. The editor
gives you a chance to change your mind before it cancels
all your edits).

Page 60



The Pascal Development System Manual 16=Feb=-82

Exit from the Editor

Set tab

(Select EXIT EDITOR from the DESKTOP menu. If there are
unsaved edits in the folder, the editor asks you if these
should be thrown away. The prompts force you to answer
"Y" then "N" or vice versa to be able to get out, which is
less than friendly.)

stops
(select SET TABS... from the EDIT Menu. You can change the
number of spaces between tab stops. The default is eight)

Find some target string starting from the current selection

(select FIND... from the SEARCH Menu. The default search
ignores case and is token oriented. To change either of
these, select the appropriate item in the SEARCH menu. FIND
asks you for the target string. To find the same thing again,
select FIND SAME. FIND & PASTE ALL performs a global find
and replace. FIND can be invoked by Command~F, and FIND

SAME can be invoked by Command-=S. Only the first eight
characters of a token-oriented search target are significant).

To move text from one folder to another, select and COPY the text from the
source folder, activate the destination folder, set the cursor to the desired
ingsertion point, and select PASTE.

CUSTOMIZING THE

The editor uses

EDITOR

whatever font it finds in the file LISA:EDITOR.FONT to

display the folder contents. The suggested foants are:

TITLE12R12S.F 20 lines x 82 chars

SARAS8,F 26 lines x 83 chars

TILEX.F 32 lines x 82 chars (default)
TILE7R1SS.F 32 lines x 94 chars
TILESR18S.F 37 lines x 132 chars

Page 61



The system manager is a collection of commands to let the user manage
the Lisa hardware and the devices f{ie. disks and printers>. The commands
available are as follows:

Contrast

Device

Mount
off

Printer

Unmount

Work

dpple

Flip

dim
Lisa

scReen

Set time
Time
Volume
Zero

Quit

Allows the user to adjust the screen contrast.

Lists all devices currently mounted and identifies
which device is the workKing dewvice.

Allows the user to mount a disk device.
Allows the user to turn off the Lisa.

Allows the user to mount a printer. Use &3 thru &7
for parallel printers., Use &8 for serial printers,

Allows a user to unmount a disk. This MUST be done
before attaching a different disk to the same port.
Mote: the working device cannot be unmounted. Use
the work command to make some other device be the
working device first,

Allows the user to .make a device (floppy or hard disk)
be the working device,

Allows the user to connect the Lisa to an Apple Il

Used in conjunction with the Apple command to select
memory or floppy as volume #4,

Sets the time before the screen dims.
Tells the user about the Lisa.

Used to move the prompt, readln & writelns to the
other screen {ie. primary <{--> alternate).

Sets the date & time.

Tells the user the time and day.

Allows the user to adjust the speaker volume.
Allows the user to ZERO the contents of a hard disk.

Quit the SysMgr and return to the Monitors prompt line,

P&5¢ 62



| l

f;\,,_; % File nowes

Fla orme kald cow\-‘ubuous\y A~

Ao dsk (or we www\) w rthim,

oe pMs{c& k\'wwdu.) & valumas
This hieravehy cansists ofF o

fallawing

Devieeg

Volumas

Files
ARy specified nema s ot
o fovwa |

dania. /vo\um.; e homa o Sy ‘?\'x

&> g <~ —>
max 7 max 7 e (&

Thae nowie oF 99 cann e
ddoverieded  pn wmamy wa,u‘ﬁ by
Qﬁw'kﬁ o5 "LG-QAN;GL Namws. , o

/

@ dwia %—. voluws— o, @ s fFix

Page ©3




I |

.o Vd\Uh-‘- mmbw. \/O‘UMQ_ nume s

A A-O.Nlu. N\ S Cone  oa_
speebiad by adha 4 7
chharader ( Sypha umai e w&x)

nosme_— o o Aanca hUMbgn,-.

Dovlce  viumbavs  are.  SWal L
wdeqews  precadad by &

Dot numbavs ane  assigred
ann  f\loug:
24 vepen '4’-(':\9011 (e Twggy )
%2 \aen lapoy (e Tugeyfoony)
53 prralleld port (Al o peinkes)
&Y ..27 ‘aa}t—s o~ Y povt  condN
38 sl port (prinker onlly)

A valume_ nNomi—  Cam. ke sm;%e&
b.‘e-.tﬁ\w e 1 Bovoder nama o

N vaUs ;N’ru‘.w (\'4- Yame.e | -HsZQ)




VQ\UM—- HUV\NM IN2— 451 g
Ar> %\\(SWS .

4t

Consele wvth, echo
#Z ‘ wihalk edna
#3 Casawv el .
# 9 MJUVWYW valu w.s_.
hanid Drswe valunes—
# @ Peivdeans
%2 R o nade

m"-#’m D\.ﬁk-

Vé\\;%

o o oL wskh Yo velee VO(UM
506-0\ o 'awsabg./ MeMﬂo/v' N }0,-,,'\1_%

¥

b" Mo M USmm

CoONSoLE ¢
Me moRY
PRINTER

(X}

LA

Page 65




File nownaes Mo have a <oPfi¢

T ha_ Su‘g"e \X e hika +hs—
3 chovacter  ex o aon & <P
o Tho— ‘p.\\QTYP-L. - Cms.

A «ff\v carn ba & oAy ,Q%jd.ﬁ\
(ie. mueds Loss thaae 1S) bt anel

Sove typreal e suffixes

ore o B\\awus

JTexT - axii &fo
. I ‘ complan rdav medida
+ QB3 object o

= Lok {les




The Pascal Development System Manual

UTILITY PROGRAMS

(IUManager, ChangeSeg, SegMap) e @ o o o o o s o * o 8 e o

(Configure, Contrast, SetSP, ChangeMem, Flip4, MoveSoroc).

(FileDiv, FileJoin)

(Diff, FindID, Pretty List, PascalRef) « o « o o ¢ o

(DumpObj, DumpHex, Patch, ObjDiff,

(LisaTeSt) e o o o o o o o o
(Perform, Coverage Analysis)
(Script) e o o o & o o e o &

(Terminal Emulator)e. « « o »

L

ByteDiff,

-Page 71

.

GxRef) .

.

16-Feb-82

72
75
77
80
87
91
93
96
98



The Pascal Development System Manual 16-Feb=-82

IUMANAGER

IUMANAGER modifies the file INTRINSIC.LIB used by the intrinsic unit

Linker and loader to find the intrinsic unit files. INTRINSIC.LIB

is essentially a directory of unit names, segment names, and file names.
When executed, IUMANAGER asks for the input and output files to be modified.
The default name for both files is *INTRINSIC.LIB. The intrinsic unit
manager has three modes: Manage Segments, Manage Units, and Manage

Files. Each mode operates on an associated table of information used

by the loader to properly link intrinsic unit code and data into an

execut ing program.

Manage Segments Mode operates on the Segment Table which contains a list
of segment names with information about each segment for the loader and
linker. Manage Units operates on the Unit table which contains the
unit names and information used by the loader and linker to build the
data pointer table. Finally, Manage Files operates on the File Table
which contains a list of files indexed by a file number. The loader
uses the file number to find the intrinsic units and segments on the

disk.
IUMANAGER has the following commands:

Q(uit Write the output file and exit from IUMANAGER.

S(egments Enter the Segment Manager and list the contents of
the Segment Table.

U(nits Enter the Unit Manager and list the contents of the
Unit Table.

F(iles Enter the File Manager and list the contents of the
File Table.

In each of the modes you can:

L(ist List the contents of the curreatly active table.
If you have more than 32 entries in the table,
you can stop the listing with Control-=S (the
‘=’ key on the numeric keyboard).

R(emove Remove an entry from the currently active table.

C(hange Modify information in the currently active table.
The Change command prompts you for the value of
each field. A response of <cr> accepts the default.

N(ew Create an entry in the currently active table.

The New command prompts you the value of each field.
A response of <cr> accepts the default value.

Page 72



The Pascal Development System Manual

In the File Manager you have one further command choice:
. I(nstall Install (update) the segment and unit tables from

a linked object file. The Install command prompts
you for the file number of the entry to be updated.

Page 73

16-Feb-82



The Pascal Development'System Manual 16-Feb-82

CHANGESEG

CHANGESEG changes the segment name in the modules in an object file.
The first prompt asks for the object file you want to change:

File to change:

Changes are made in place (the file itself is changed). You are next
asked:

Map all Names (Y/N)

If you want to change segment names in all modules, respond Y. If you
want to be prompted for the new segment name for each module, type N.
A response of <cr> accepts the default name.

SEGMAP

SEGMAP produces a segment map of one or more object files. The first
prompt:

Files to Map ?

accepts either an object file name or a command file name. A command file
must be preceded with a <. SEGMAP adds the .TEXT suffix to the command

file name. The next prompt:

Listing File ?

directs the map information to the file given. A response of #l: or
CONSOLE:, for example, send the map information to the screen. The
map information includes the object file name, the name of the unit
in the file, the names of the segments used in that unit (if any),
and the new segment names.

Page 74



The Pascal Development System Manual 16-Feb=82

CONFIGURE

CONFIGURE modifies some of the vectors in the Monitor Map Table.
These vectors are stored in CONFIG.DATA on the male boot volume
and are used by the Monitor to configure your system when it is
booted. To use CONFIGURE, copy CONFIG.DATA from the male side to
a female volume, or flip the sex of the boot diskette. X(ecute
CONFIGURE. CONFIGURE asks you whether it should Go or Quit. Type
G to run CONFIGURE, Q to return to the Monitor command line.
CONFIGURE asks you for the file containing the vectors you want to
change. If you do not give a volume name, it look on the prefix
volume. If you give just the volume name, it looks for CONFIG.DATA
on that volume. CONFIGURE can change the following vectors:

dE(bug pointer [$150]
D(efault Stack pointer [$13C] (* most important *)
H(eap pointer [$138]
C(orvus pointer [$134]
U(art pointer [s11C]
A(pple port [s118]
M(emory top [$114]
S(creen base [$110]
B(uffer pointer [s10C]

The old and new value of each vectors is also displayed. Type the
capitalized letter of the vector you want to change. Lower case 1s
allowed in hexadecimal numbers. When you are done, type Q to Quit.

At this point you are asked where to save the new values. You can
write the changes back to CONFIG.DATA, exit without making .any changes,
and so on.

A memory map is given in the Monitor chapter showing the relationship of
these vectors. Do not place the start of the heap above the stack pointer.
Because CHANGEMEM sets aside heap space, it is safer to set the stack
pointer before grabbing a lot of the heap with CHANGEMEM.

Once you have finished modifying CONFIG.DATA, transfer it back to the
male boot volume so that it can take effect when the system is rebooted.

CONTRAST

CONTRAST changes the contrast setting of your screen without changing the
default setting. It is a simple program that should be self-explanatory.
Like CONFIGURE, it first asks whether to G(o or Q(uit. If you type G,

some alphanumeric characters are scattered around the screen for reference.
You can type ‘>’ or ‘.’ to increase and ‘<’ or ‘,’ to decrease the screen

contrast.

Page 75



The Pascal Development System Manual 16-Feb-82

SETSP

SETSP sets the address at which the stack poilnter starts. Memory above
that address is then reserved for code, and memory below it is the stack
and heap space. If your program requires a great deal of room

for data, set the stack pointer to a high address. If the program
requires a great deal of code, set the SP to a low address. The
Monitor default SP starting address depends on the version of
CONFIG.DATA on your male boot volume. The highest possible address

is the bottom of the Monitor.

All SETSP I/0 is in hex. When X(ecuted, it displays the current
stack pointer value. Type O to exit the program. The optimal value
to give SETSP may not be obvious at first, since code swapping can
change your memory requirements. It is quite possible that a program
will run happily for hours, then die with a Loader Error when a

plece of code couldn’t be fit in memory. If this happens, set the
stack pointer to a lower starting address, and try again.

CHANGEMEM

CHANGEMEM changes the size of the predeclared RAM-resident volume MEMORY:.
Its interface is identical to that of SETSP. The default size of MEMORY:
is 10 blocks. Space for the MEMORY: volume is taken from the available
heap space.

FLIP4

Volume #4: is normally the RAM~based volume MEMORY:. The Disk drive
that would usually be #4: is hidden from the monitor to avoid overwriting
the male boot volume. If you want access to that disk drive from the
monitor, run FLIP4. FLIP4 executes a simple loop until you tell it to
Quit. After asking whether to continue or to quit, FLIP4 gives you a
chance to toggle the state of #4:. #4: is either MEMORY: or the disk
drive. Remember to remove the male boot volume before writing to #4:.

MOVESOROC

MOVESOROC (also sometimes known as MS) determines where the Pascal WRITELN
output goes. It normally is sent to the Lisa screen. When an application
is running on this screen, however, debugging WRITELNs mess up the program’s
pretty output. MOVESOROC redirects this output to either the Apple monitor,
the UART (serial port #2), or back to the Lisa. Monitor input always comes
from the terminal to which output has been directed.

Page 76



The Pascal Developmenﬁ System Manual 16-Feb-82
FILEDIV and FILEJOIN

It is often necessary to distribute files that are too large to fit onto a
single floppy diskette. FILEDIV can be used to break a large file

into several diskette=-sized pieces. FILEDIV can then be used to rejoin
these pieces at the file’s destination. These two programs replace the
TRANSFER program.

To divide a large text or object file, execute FILEDIV.

Input file: <give the name of the file to be divided>
Output file: <give the name to be used for the output files>

Do not include the suffix in the file name. If, for example, you want

to divide TEMP.TEXT, give TEMP as the input file, and TEMP (or whatever)

as the output file. FILEDIV will create a group of files named TEMP.l.TEXT,
TEMP.2.TEXT, and so on, until TEMP.TEXT is completely divided up. If you
use the drive number (#9:, for example), rather than the volume name, the
new files can be written to multiple diskettes. When space on a diskette
is exhausted, FILEDIV asks you to insert another diskette.

‘To rejoin the pieces of the file, execute FILEJOIN. Using the example given
above, we can rejoin TEMP.l1.TEXT and friends into TEMP.TEXT by responding:

Input file: TEMP <will read TEMP.l.TEXT, etc>
Output file: TEMP : <will create TEMP.TEXT>

FILEDIV and FILEJOIN use regular directories, so a spurious sex change
cannot destroy your file. Files are verified in both directions.

Page 77



The Pascal Development System Manual ' 16=-Feb-82

DIFF

DIFF is a program for comparing ".TEXT" files, in the LISA Pascal
development environment. DIFF is strongly oriented toward use with
Pascal or Assembler source files.

DIFF is not sensitive to upper/lower case differences. All

input is shifted to a uniform case before comparison is done.
This is in conformance with the language processors, which ignore
case differences.

DIFF is not sensitive to blanks. All blanks are skipped during
comparison. This is a potential source of undetected changes,

since some blanks are significant (in string constants, for instance).
However, DIFF is insensitive to "trivial" changes, such as indentation
ad justments, or insertion and deletion of spaces around operators.

DIFF does not accept a matching context which is '"too small".
The current threshold for accepting a match is 3 consecutive matches.
The M option allows you to change this number. This has two effects:

Areas of the source where almost "every other line" has been
changed will be reported as a single change block, rather than
being broken into several small change blocks.

Areas of the source which are "entirely different" are not
broken into different change blocks because of trivial similarities
(such as blank lines, lines with only "begin" or "end", etc.)

DIFF makes a second pass through the input files, to report the

changes detected, and to verify that matching hash codes actually
represent matching lines. Any spurious match found during
verification is reported as a "JACKPOT". The probability of a JACKPOT
is8 very low, since two different lines must hash to the same code at a
location in each file which extends the longest common subsequence, and
in a matching context which is large enough to exceed the threshold for
acceptance.

DIFF can handle files with up to 2000 lines.

DIFF first prompts you for two input file names: the "new" file, and the
"old" file. DIFF appends ".TEXT" to these file names, if it is not
present. DIFF then prompts you for a filename for the listing file.
Type carriage-return to send the listing to the console.

DIFF does not (currently) know about INCLUDE files. However, DIFF does
allow the processing of several pairs of files to be sent to the same
listing file. Thus, when DIFF is finished with one pair of files, it
prompts you for another pair of input files. To terminate DIFF, simply
type carriage-return in response to the prompt for an input file name.

The output produced by DIFF consists of blocks of "changed" lines.
Each block of changes is surrounded by a few lines of "context" to aid

Page 78



The Pascal Development System Manual 16=-Feb=-82

in finding the lines in a hard-copy listing of the files.
There are three kinds of change blocks:

INSERTION == a block of lines in the "nmew" file which does not
appear in the "old" file.

DELETION == a block of lines in the "o0ld" file which does not appear
in the "new" file.

REPLACEMENT -- a block of lines in the '"new" file which replaces a
corresponding block of different lines in the old file.

Large blocks of changes are printed in summary fashion: a few lines
at the beginning of the changes and a few lines at the end of the
changes, with an indication of how many lines were skipped.

DIFF has three options which allow you to change the number of context
lines displayed (+C), the number of lines required to constitute a
match (4M), and the number of lines displayed at the beginning of a
long block of differences (+D). To set one of these numbers,

type the option name followed by the new number to the prompt for

the first input file name. +D 100, for example, causes DIFF to

print out up to 100 lines of a block of differences before using

an ellipsis. The maximum number of context lines you can get is 8.

Page 79



The Pascal Development System Manual 16-Feb-82

FINDID

FINDID searches code files for an identifier. It provides a service
similar to that of the editor’s literal search, but the search can
cover any number of files of any size. When executed, it asks first
for the name of the file which contains the list of files through which
you want to search. For example, if you want to search the files
CODE.TEXT, CODE1l.TEXT, and CODE2.TEXT, make a file which contains:

Code.Text
Codel.Text
Code2.Text

and give FINDID this file’s name. FINDID then asks for the identifier
you want to search for. Only the first eight characters are significant.
The search is always literal--any identifier beginning with the specified
eight characters is considered a match. FINDID’s last prompt asks whether
the search should ignore case differences. FINDID then grovels through
files in the list reporting any occurrences of the identifier. To get

out of FINDID, hit NMI, then type RM to LisaBug.

Page 80



The Pascal Development System Manual 16-Feb-82

PRETTY LIST

Pretty List scans a listing produced by the Assembler, and replaces

the asterisks in the displacement portion of branch instructions with
the actual forward reference value. When you X(ecute PRETTY, you

are asked for the Input File (the Assembler listing file). Because this
file can be either a data file or a text file (with a .TEXT extension),
the next prompt 1is:

If input file is a text file (file.text) type 1 else type 0 =-
Pretty List then asks for the output file name.

If the listing file contains:

0360i CHKLO BSR4 CHKMEM
0360] 49FA #**x LEA @1,A4
0364] 6000 ***x BRA CHKMEM
0362* 0006

Pretty list produces:

03601 CHKLO BSR4 CHKMEM
03601 49FA 0006 LEA @1,As
0364] 6000 005A BRA CHKMEM

e =

Page 81



The Pascal Development System Manual 16~Feb-82

PASCALREF

Pascalref is a cross reference utility for Lisa Pascal programs.

It can perform partial or complete cross references, can handle

USES and INCLUDE statements correctly, and imposes no limit on the size
of the target programe.

Pascalref assumes that the program or unit to be referenced (target
program) has been compiled without syntax errors. It also assumes
that the font BOLDIOV and the file MPMENUFILE.TEXT are available on
your prefix volume or the boot volume (#5:).

THE USER INTERFACE

ACTION SEARCHOPTIONS FINDTYPES  YN~-TF {— The Menu Bar
Setup Files Interactive Declared Yes-=True
Set Scope Relof fsets Modified No-False
Begin Pascalref Procdic Accessed
Widepaper Stnd PFT

Used Unit Int
Out Scope Vars

The line in capitals at the top represents the menus in the menu bar.

The lower case names are the items in each pull down menu. A shaded

menu item shows that the option represented by that item is active.

To change the ‘Procdic’ option, for example, use the mouse to select
"Procdic’ then select either True or False. You can also type SP, then
enter Y(es or T(rue, N(o or F(alse. When you have all your options set up,
select ‘Begin Pascalref’.

OPTIONS
Setup Files

You are asked for the names of the listing file, source file, and
output file.

Set Scope

Pascalref allows you to set the scope to be a single procedure.
Only identifiers within that procedure and its local procedures are
referenced. Of course, accesses to any variables global to the
procedure are included in the OUT OF SCOPE section. The default
scope is the whole program. Currently, when referencing a Unit by
itself, only set the scope to the whole unit. Also, don’t set the
scope to a FORWARD procedure or a procedure in the interface of a
unit.

Page 82



The Pascal Development System Manual 16~Feb-82

Begin Pascalref

Start the cross reference.

SEARCHOPTIONS
Interactive

When Interactive 1s true (the default), Pascalref looks only for
those names that occur in the list of variables that you type in.

When a particular reference is finished, Pascalref asks you ‘Look at
more identifiers?’. 1If you answer yes, PascalRef returns to the options
setting routine with the same files set up. You can change the options
and the files on each pass if you want to.

When Interactive is false, Pascalref cross references all identifiers
within the specified scope.

Reloffsets

Next to each occﬁrrence of an identifier is the line number it occurs
on. When Reloffsets is true (the default), the line numbers are listed
relative to the procedure the occurrence is in.

When Reloffsets is false, offsets are given relative to the beginning
of the program.

Procdic

If Procdic is true, Pascalref creates a procedure dictionary listing
each Procedure with the line it starts on. The default for ProcDic is
false. The program or outermost procedure in the scope is procedure #l.
Nested procedures are indented.

In the case of forward procedures and procedures declared in the
interface of a unit, the procedure number listed reflects where

the procedure declaration occurs. ‘=Forward Proc’ appears in the
procedure dictionary after the ‘STARTING LINE #°. The ordered location
of the procedure name and the starting line number within the procedure
dictionary reflect where the header to the body part of the procedure
occurse.

Widepaper

The default value (False) should be used when sending output to the
console or to standard 8-1/2 inch wide paper. When printing on
132 column paper, set Widepaper to true.

Page 83



The Pascal Development System Manual 16-Feb-82

Used Unit Inﬁ

The default value of True causes the INTERFACE parts of USED units
to be included in the PASCALREF scan. This allows you to see where
every identifier used by a Pascal program is defined. If you are
not interested in the INTERFACE of a unit, set ‘Used Unit Int’ to
false.

Out Scope Vars

When a program accesses a identifier that has not been defined, that

. access shows up in the OUT OF SCOPE VARIABLES OR PROCEDURES section of
the PASCALREF listing. This part of the listing is present when
‘Out Scope Vars’ is true (the default).

FINDTYPES

The three °‘Find Types’ are DECLARED, MODIFIED and ACCESSED. The

default value of each type is true. Each type can be set independently.
When all are true, all occurrences of an identifier are listed. I1f, for
example, only ACCESSED is true, PascalRef lists only places where a
variable is accessed. MODIFIED flags places where a variable occurs

to the left of :=, and where it is passed as the actual parameter

to a formal VAR parameter. DECLARED lists places where an identifier

is declared.

Stnd PFT lists occurrences of standard procedures, functions and types.
Its default is false.

IN-TF

This menu gives you an option for answering Yes-No and True-False
questions. Choosing Yes~True is the same as entering a ‘Y’ or ‘T’

from the keyboard and choosing No-False is the same as entering a
‘N’ or ‘F’.

Page 84



The Pascal Development System Manual 16-Feb-82

OUTPUT FORMAT

LISTING (Pascalref can produce a listing identical to that produced by
the compiler)

PROCEDURE DICTIONARY:

PROC #, PROC NAME, STARTING LINE #
13 MAINPROGRAM 0
3: NESTEDPROC 80
4: FURTHERNESTEDPROC 120
: PROC 200

2: FORWARDPROCWHOSEBODYCOMESAFTERPROC 40=Forward Loc
6: PROCNE STED INBODYOF FORWARDPROC 280
7: LASTGLOBALPROC 300

The identifier we are referencing
| The procedures it occurs in
| | The occurrences within those procedures

| | |
IDENTIFIER PROCEDURE OCCURRENCE (D=defined, A=accessed, M=modified,

- V=Var param def, P=passed to Var param)
I PROCA D 10, P 45, A 50, A 60.
PROCB D 16, A 20, A 30,
STRNG PROCA D 12, M 41, M 62, A 50, A 58,
A 60,
PROCC v 75, M 80, A 82.

OUT OF SCOPE VARIABLES OR PROCEDURES

These are listed in the same format as that of the regular identifiers,
but represent items that are global to the chosen scope. To find out
what global variables a procedure and its nested procedures access,

set the scope to the procedure, set INTERACTIVE to false and look at
the resulting OUT OF SCOPE items.

GENERAL NOTES ON THE USE OF PASCALREF

Pascalref does not store information about variable types or record
structures. If you have both a stand alone variable named AVAR and
a record field named AVAR, PascalRef lists both as the same
identifier.

Include commands are recognized by Pascalref and the INTERFACE
parts of units USED by the target program are included in the

Page 85



The Pascal Development System Manual 16-Feb-82

reference if the scope is set to the whole program.

To find variables that are declared but no longer used by a program,
do a reference of the whole program. Variables that have a ‘D’
occurrence and no others can often be removed from the program.

Occurrences of a particular identifier are always exactly in order
when interactive is true. When interactive is false, occurrences are
grouped by the procedures where the identifier is declared locally.
In the case where interactive 1s false, you may notice the following:

1 PROCA D 10,P 45, A 50, A  60.
PROCB D 16, A 20, A 30,

The variable ‘I’ was declared and accessed in PROCA and declared and
accessed in PROCB. The accesses in PROCA occur after the declaration
and accesses in proc B but they are listed first.

If ‘1’ were not defined in PROCB, it would look like:

1 PROCA D 10,
PROCB A 20, A 30,
PROCA P 45, A 50, A 60,

If the first example were done in interactive mode, it would look like:

I PROCA D 10,
PROCB D 16, A 20, A 30,
PROCA P 45, A SO, A  60.

Procedures and Functions as parameters are currently not fully
implemented in Pascalref. They are parsed by Pascalref, but
Variables passed to a procedure or function that is a parameter are
always marked as modified in that occurrence.

Page 86



The Pascal Development System Manual 16-Feb-82

DUMPOBJ

DUMPOBJ is a disassembler for 68000 code. It can disassemble either
an entire file, or specific modules (procedures) within the file.
DUMPOBJ replaces DUMPMCODE.

DUMPOBJ first asks for the input file which should be an unlinked
object file. The output (listing) file defaults to CONSOLE:.
You are asked whether you want to dump

A(1l, S(ome, or P(articular modules.

If you respond S(ome, DUMPOBJ asks you for confirmation before dumping
each module. A response of <ESC> gets you back to the top level. If
you respond P(articular, DUMPOBJ asks you for the particular module(s)
you want dumped.

The next question is: ‘Dump file positions [N]?’ The file position
is a number of the form [0,000] where the first digit is the block
number (decimal) within the file and the second number is the byte
number (hexadecimal) within the block at which the module starts.
This information can be used in conjunction with the PATCH program.
Finally, DUMPOBJ asks if you want the object code disassembled.

Page 87



The Pascal Developmert Sys..m Manual 16~Feb-82

DUMPHEX

DumpHex provides a textual representation of the contents of any file.
The file dump is block-oriented with the hexadecimal representation on
the left and the corresponding ASCII representation on the right. If

a byte cannot be converted to a printable character, a dot is substituted.

When DumpHex is X(ecuted, it asks you for the name of the output file.
A TEXT extension is added if necessary. To direct the output to the
console, type carriage return. After getting a valid output file name,
DumpHex asks for the input file to be dumped. No extensions are
appended, so give'the full filename. Once a file has been completely
dumped, DumplHex asks you for the next file to dump. Type carriage
return to exit the program.

After opening the input file, DumpHex asks you which block to dump.

The default (carriage return) is block O. If the output is going to
a file, you are asked which block is the last you want dumped. The

default here (carriage return) is the last block in the file.

The format of the console output depends on the number of lines your
screen has. If fewer than 33 lines are available, the output is
displayed only a half block at a time. Between blocks or block
halves you have the option to

Type <space> to continue, <escape> to exit.

Escape returns to the prompt for an input file.

Page 88



The Pascal Development System Manual 16~Feb=-82

PATCH

Patch allows you to examine and change the contents of any file. The
display of the file’s contents is exactly like that of DumpHex. With
Patch, however, you can use the cursor control keys to move around in
the block and change the value of any byte using either the hexadecimal
representation on the left or the ASCII representation on the right.

After X(ecuting Patch you are asked for the full name of the file to
patch. Carriage return exits Patch. No extension is appended to the
file name. You are then asked for the number of the block you want
to mess around with. Carriage return here returns you to the file
name prompt.

The block is displayed with the cursor in the upper left corner at
word O of the block. The arrow keys can be used to move around in
the block. If you move the cursor up from the top line, you get the
bottom line of the preceding block. Similarly, if you move down
from the bottom line, you move into the top line of the next block.

When the cursor is on the hexadecimal side of the display, you can
change any byte by typing the new hexadecimal value. Any non-hex
‘characters are ignored. You can impress your friends by pointing
out that the change is reflected automatically in the ASCII portion
of the display. When the cursor is on the ASCII side, type any
character to replace the value of the byte. Until you move out of
the block you can undo any changes by typing <escape>.

Page 89



The Pascal Development System Manual 16-Feb-82

OBJDIFF
OBJDIFF performs a comparison of two object (.O0BJ) files. The two
files being compared should be very similar. OBJDIFF uses procedure
boundaries to get itself back in sync after a difference 1s found.
BYTEDIFF
BYTEDIFF compares any binary files, but once it finds a difference
between the two files, it does not always find where the differences
end. ‘ :
GXREF
GXREF lists all the modules which call a given procedure, and all the

modules which that procedure calls. It provides a global cross reference
of subroutines and modules.

Page 90



The Pascal Development System Manual 16-Feb-82

LISATEST

LISATEST is a package of hardware test routines. The DIAG: diskette
which contains these programs can be obtained from Rich Castro. To use
the programs, boot the Apple II with the Lisa in the power—-on reset
state, then X(ecute LISATEST. You have eight choices:

1) Apple-Lisa Interface Test
2) Memory Test (RAMTEST)

3) Display Memory Test Results
4) UART Wrap Around Test

5) Video Latch Test

6) MMU Test

7) Keyboard Test

9) Quit

The tests are, for the most part, self-explanatory. For a complete
description of each test, its prompts, error messages, and options
please see the Lisa Production Tests documentation by Rich Castro.
A short description of each test is given below.

Apple-Lisa Interface Test

The Interface Test attempts to use the parallel port interface between
the Apple II and the Lisa to verify that the two systems can communicate
with each other.

Memory Test

The Memory Test program tries to single out bad or marginal memory chips
and provides trouble shooting information about other memory board
problems. It is essentially an updated and easy to use version of
RAMTEST.

Display Memory Test Results

After running the Memory Test, you can have the results of that test
redisplayed by the Display Memory Test Results programe.

UART Wrap Around Test

The UART Test checks the UART on the CPU board that controls the RS-232
port #1 (the one on the left as you face front of the machine). To run
the test you need a specially wired wrap around DB=25 male connector.

Video Latch Test

The Video Latch Test checks the operation of the video page latch on the
MCU board.

Page 91



The Pascal Development System Manual : 16-Feb-82

MMU Test

The MMU Test tries to verify that the MMU is working properly. It sets
up the base and limit registers in the MMU with various values and then
attempts to access the corresponding memory segments.

Keyboard Test

The Keyboard Test checks the keyboard and mouse buttons to verify that
the COPS interfaces are functioning properly.

Page 92



The Pascal Development System Manual ' 16=Feb-82

PERFORM

Perform monitors the execution performance of a program. After X(ecuting
Perform, you are asked for the listing file’s name. A carriage return
directs output to the console. If necessary, .TEXT is appended to the
listing file name. You are next asked for the name of the program

you want to analyze. If necessary, the extension .0BJ is added to

the file name. The program file must be executable and must be

linked with the corresponding .DBG files.

Perform scans the program file for procedure entry points, listing them
as they are found. It then waits for you to type a space before executing
the program. Every 1/60 second the program’s program counter is checked
to find out which routine is executing at that moment. When the program
terminates, Perform produces a listing of the routines it found executing
ordered according to the amount of time spent in each routine. Routines
that were never caught executing are listed separately. Perform may miss
the execution of short or rarely called routines.

The longer the program runs, the more trustworthy the analysis. Routines
that are synchronous with the 60 Hz clock are not measured correctly.

If M.SYMBOLS is included, PERFORM also gives information on the

amount of time spent in the monitor (MPASLIB).

Page 93



The Pascal Development System Manual 16-~Feb-82

COVERAGE ANALYSIS

The CA program provides a coverage analysis of a Lisa Pascal program. Branch
counters are inserted into the source (.TEXT file) of the program under test.
The output of the CA program is then compiled and linked. At the end of

the program’s execution, a text file is produced giving the branch numbers
and the number of times each branch was executed.

To xun the coverage analysis program you need to get the sources of any of
the units and programs you want to analyze and the .0BJ versions of any
other units that are required to link the program. You should be able to
compile and link these sources without error. To add counters to a unit
or program:

X(ecute CA
CA first asks for the name of the source file:

Input file -

Give it the name of the file you want analyzed. The output of CA is another
source file containing the original source modified by the addition of the
counters and the analysis machinery. The output file can be very large, so
give it plenty of room.

Output file -

The name you give here is the name of the new source (with the branch
counters added in). :

The next prompt is:
Count B(ranches, P(rocedures, O(ne unit

You can count every branch (every THEN, ELSE, CASE branch, REPEAT, DO, etc),
just procedure entries, or just report on the branch counters in a unit that
has already been run through CA. If you ask that every branch be counted, CA
also asks:

Routine to skip (<cr> for none):

The compiler has a fixed code buffer size. If a procedure in the original
program is close to the size limit, it may be impossible to add counters
to every branch and still compile that procedure. The compiler error is
#350, "procedure too large". If you add the counters and the compiler
complains about some procedure, run CA again, and give the offending
procedure name here. If more than one procedure is too large, either
complain to the developers, or ask someone to make the ‘routine-to-skip’
code take a list of names.

The next prompt was Pete Cressman’s idea:

Enable tracing?

Page 94



The Pascal Development System Manual 16-Feb~82

Type ‘y’ and every time the program is executed you will be asked if you
want to be informed about every procedure entry during execution of the
program. This avalanche of names can be very tedious to watch. If you
respond "n", the tracing machinery is omitted from the program and you are
never asked whether it should be activated.

The next prompt is:
Data file -

The data file is the file containing the coverage analysis after the program
has executed. It is a text file, so you can read it with the mouse editor.
You can match each counter number up with the code it is counting by
examining the output file that CA produces. At each branch you will find

a procedure call of the form:

_CA_InC (n ) H

where n is the counter number. All objects added by CA to the program
start with the the four letters ‘°_CA ’ to try to avoid naming conflicts.

Finally, you are given a chance to place some arbitrary sequence of text
in the header of the data file (date of the test, or whatever). Type <cr>
to end the comments.

If you are adding counters to a unit, some of these questions are omitted
because they are irrelevant.

Once CA has added the counters, you must compile the output file, generate
the .OBJ file, and link it with all the units it requires.' If all goes
well, each time you execute the program the data file is updated. If the
data file does not exist, it is created. If it does exist, the counter
data it contains are added to the current counter values. The resulting
data file therefore contains a record of an arbitrary number of program
executions.

If you get the Linker warning:
Segment <mumble> too large

you will have to break that segment into two pieces, write a procedure to
force the new segment to be resident whenever the old one was, and start
over with the CA program. The problem here is that a segment can contain
no more than 32 Kbytes of code or data. There is no way the CA program can
tell when a segment is close to the limit. If a segment is right on the
borderline, it is not inconceivable that the branch counters will cause it
to overflow.

The counters pin at 32767, Programs that run in the Window Manager=-0S
environment are recognized, and theoretically correct code is issued,
but no promises are made yet. CA increases the size of both the source
«TEXT file and the final .OBJ file by about 30 percent. It may slow
execution rates noticeably.

Page 95



The Pascal Development System Manual 16=-Feb-82

SCRIPT

SCRIPT is Colin McMaster’s text formatting program. SCRIPT commands
are:

Name Default Example Effect

Page Length 66 “pl N Define page length to be N lines

Page Number 1 “pn N Start page numbering at N

Page Break - “bp Start a new page

Need Lines - “ne N Make sure at least N lines remain on page
Line Space 1 “1s 1 Set single or double spacing

Space 1 “sp N Space N lines

Break Line - “br Start a new line

Page Offset 0 “po N Start leftmost printing at column N
Indent 0 “in N Indent N columns from page offset
Temporary Indent O “ti N Indent N columns for next line only
Right Margin 72 “rm N Set line length to N characters

Fill - “fi Set filling mode to true

No F1il1 - “nf Set filling mode to false

Justify - “ad Justify text to right margin

No Justify - “na Turn justification off

Center 1 “ce N Center next N lines

Text - “tx ‘N Display N literally

Change command == “cec N Change SCRIPT command character to N
Title - “tl ‘L°C’R Print titles Left, Center, Right
Margin 1 4 “ml N Set number of lines above and including header
Margiln 2 2 ‘m2 N Set number of lines below header
Margin 3 2 “m3 N Set number of lines above and including footer
Margin 4 4 “mé N Set number of lines below footer
Header - “he ‘L’C’R Place headers Left, Center, Right
Even Header - “eh ‘L’C’R Place even headers Left, Center, Right
0dd Header - “oh ‘L’C’R Place odd headers Left, Center, Right
Footer - “fo ‘L°C’R Place footers Left, Center, Right
Even Footer - “ef ‘L’C’R etc

0dd Footer - “of ‘L‘C’R

Source - “so ‘File’ Begin printing text of File

Zero Slash -— “z8 Turn on zero slashing

No Zero Slash =-- “nz Turn off zero slashing

Keywords - “kw Underline Pascal keywords

No Keywords - “nk Do not underline Pascal keywords
Define Macro — “de VO Begin definition of macro VO
Terminate Macro == a= End definition of macro

Append Macro - “am VO Append to macro VO

Delete Macro - “dm VO Delete macro VO

Page 96



The Pascal Development System Manual : 16=Feb=-82

SCRIPT OPTIONS (specified when SCRIPT is executed)

=cC Change command character to C

~fFILE Send output to FILE (.TEXT is not appended for you)

-k Underline Pascal keywords

-1 Assume output is going to a Printronix=-style printer
-nN Start page numbering at N

=~oLIST Output only the pages given in LIST

-p Assume printer has full control of page

-q Assume output is going to a Qume-like printer

-8 Stop printing after each page and wait for <cr> or <ESC>
-zN Set page offset to N

This version of Script does not attempt to return to its top level when
it has finished with a file. Because it is trying to exit the program
from a unit, it usually quits with ‘fatal error 1°. Do not use the
options that refer to printers. To see your formatted text, use either
"S or ~F.

More complete documentation is available from Publications.

Page 97



The Pascal Development System Manual 16-Febh~-82

TERMINAL EMULATOR

Files needed: TERM.OBJ
LISA:SYSTEM.FONT
LISA:TERM.MENUS
LISA:SARASF

The terminal emulator (TERM) provides a Lisa folder which is a full duplex
virtual terminal. The terminal control commands implemented here are
similar to those of the Hewlett-Packard 2640 and 2645, the DataMedia,
Perkin-Elmer Fox and Owl, Beehive, and the DEC VT-52 terminals, as well
as the "VT52" modes of the DEC VT-100 and HeathKit H19 terminals.

The terminal emulator works only with the '"new" Lisa hardware. In addition,
you must make a hardware modification to your Lisa: open the back of the
machine and find the three large chips in the center of the visible board
(the 10 board). The chip nearest the power supply should already have the
10th pin from the bottom on the power supply side raised. For the terminal
emulator, the 9th pin from the bottom on the same side should also be raised.

To invoke the emulator, copy the files given above, and X(ecute TERM.
The emulator has three menus and a tray icon. The Speed menu sets the
baud rate. Available speeds are 300, 600, 1200, 2400, 4800, 9600, and
19200 baud. 600 baud is not available on Port #l. The default speed
is 300 baud.

The Port Menu determines which serial port is connected to the modem.
Port #1 is the connector in the center. Port #2 is the connector nearest
the power supply. The default port is #2.

The control menu has four items: Record, Play Back, Debug, and Quit. If
you select Record, all characters received by the UART are saved in the
file RECORD.TEXT. If you select Play Back, the contents of the file
PLAYBACK.TEXT are sent to the UART just as if they had been typed. If you
want to see exactly what characters are being received, including control
characters and escape sequences, select Debug. To exit the terminal
emulator, select Quit.

The control commands are:

Ctrl-G Bell (screen flashes)

Ctrl-H Backspace

Ctrl-1 Tab (8 spaces)

Ctrl-J Linefeed

Ctrl-M Carriage return

Ctrl-[ Start Escape Sequence (see below)
Escape-@ Enter Insert Character Mode
Escape-A Cursor Up

Escape-B Cursor Down

Escape~C Cursor Right

Escape=D Cursor Left

Escape~E Clear screen

Escape-H Cursor home (top left corner)

Page 98



The Pascal Development System Manual

Escape-I

Escape-J
Escape=-K
Escape-L
Escape-M
Escape-N
Escape-0
Escape-P
Escape-Y
Escape-b
Escape—j
Escape=-k
Escape-l
Escape=-o
Escape=~-p
Escape=q
Escape=2z

Scroll down

Clear to end of screen
Clear to end of line

Insert line position

Delete line position

Delete character position
Leave Insert Character Mode
Insert character position

Absolute character positioning (Y+31, X+31)

Clear to beginning of screen

Save Cursor position

Restore saved cursor position
Erase line

Clear to beginning of line

Stand out (bold characters)

Reset Stand Out (normal characters)
Initialize terminal

All other Escape and Control sequences are ignored.

Page 99

M N aa? Mpogealcceooms Muesa.. Sao o . -1

16-Feb=-82

oy

An



e fascCal vevelvpuelll dysiel nanuald

Page 100

10=rep=o«

T7 ™ an



LUG 4GILAL UESVCLUPWEILE UYD LG Mauuas . ~w e mw w-

ERROR MESSAGES

There are several error categories--I/0 errors, Loader errors,

trap handler errors, and Pascal Compiler errors. In most cases,
you can type SPACE to return to the Monitor command line. Since
nothing in the Monitor is tied to the user stack pointer, the
Monitor can usually recover from errors that are fatal in the
Apple II UCSD system. The Monitor’s globals are hidden beneath
the heap, and the Monitor code itself sits above your code

space, o both are somewhat protected from inadvertent destruction.

I/0 ERRORS
0 No error .
1 Bad Block (Parity error)
2 Bad device number
3 Bad mode (Illegal operation)
4 Undefined hardware error
5 Lost device
6 Lost file
7 Bad file name
8 No room
9 No device
10 No file
11 Duplicate file
12 . - File not closed before open.
13 File not open
14 Bad format
15 Ring buffer overflow
16 Write-protect error
64 Device error
/ odsgj‘
LOADER ERRORS resdve
0 Unknown segment 7 cl(’45 @k
1 No room in memory §7E*’75429¢
v2Z Bad block
v3 ~———erem Can’t read code file
v Jump table overflow
5 SetSP at wrong place (after a physical link)
6 This loader does not handle intrinsic units
7 Too many units
'8 Bad unit number
9 No INTRINSIC.LIB file
“10 "~ No unit location table
1 : No segment location table
V/lz Cannot open intrinsic segment file
13 Cannot read file names block
14 Bad Seagment ¥ .
L1y NO unpack Translation Talle
e Bad URIPac < UERSIoN # Unpack Feobled
L/}-7 r n o wfﬁc, F%l& {

- : 6%u~h,¢A’ l o3 ,;Ajftiaon- - Lnap4;,:5ﬂgL_
16 Zﬂdﬁi' Pesdte. +le praiess he newey Mk

WM/ U7 ST 7 Io|
2 NoO Ty Lstrose— 2ac 10
v2\ e Too ;e Bhs

277, h/aw-'7 N}
W @‘5“-"." L R Ceean. \’1... :1: MM v wmos an

5

%
§



d ‘k VWEWN ~O

FATAL ERRORS

Illegal index at trap handler
Stack Overflow

Programmed Halt

Range value error

Illegal string index

Can’t read Root Volume

Page 102

Ve, e e

LY.



-ttt & W Wl & “Q-'\-.Lvyuﬂ-hl\- TP bt AL

PASCAL COMPILER ERRORS

Lexical Errors:

10
11
12
13
14
15
16
17
18

Too many digits

Digit expected after ‘.’ in real

Integer overflow ’

Digit expected in exponent

End of line encountered in string constant
Illegal character in input

Premature end of file in source program

Extra characters encountered after end of program
End of file encountered in a comment

Syntactic Errors:

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
?7 39
. %0
41
42
43
44
45
46
47
48
? 49
7 50
51
52
53
54
55

Illegal symbol

Error in simple type
Error in declaration part
Error in parameter list
Error in constant

Error in type

Error in field list
Error in factor

Error in variable
Identifier expected
Integer expected

‘(’ expected

’)’ expected

‘[’ expected

‘]’ expected
‘s’ expected
‘:’ expected
‘m’ expected
’y’ expected
:*"expecced

=’ expected

‘program’ expected
‘of° expected

‘begin’ expected
‘end’ expected
‘then’ expected
‘until’ expected

‘do’ expected

‘to’ or ‘downto’ expected
‘file’ expected

‘1f° expected

"<’ expected
‘implementation’ expected
‘interface’ expected
‘intrinsic’ expected
‘shared’ expected

Page 103

Tha Darnnaal Nawalanmane Cowntaqem Mavmeprn?

—v e e we

LTS - - L, ]



Semantic Errors:

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
? 126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
? 148

-~

Mup Nawee? Naccat g e v e . P .. - Ve e s

Identifier declared twice

Identifier not of the appropriate class
Identifier not declared

Sign not allowed

Number expected

Lower bound exceeds upper bound
Incompatible subrange types

Type of constant must be integer

Type must not be real

Tagfield must be scalar or subrange

_Type incompatible with with tagfield type

Index type must not be real

Index type must be scalar or subrange

Index type must not be ‘integer’ or ‘longint’

Unsatified forward reference

Forward reference type identifier cannot appear in variable
declaration

Forward declaration - repetition of parameter list not allowed
Forward declared function = repetition of result type not allowed
Function result type must be scalar, subrange, or pointer
File value parameter not allowed

Missing result type in function declaration

F-format for real only

Error in type of standard function parameter

Error in type of standard procedure parameter

Number of parameters does not agree with declaration
Illegal parameter substitution

Result type of parameteric function function does not agree with
declaration : :
Expression i{s not of set type

Only tests on equality allowed

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be Boolean

Set element type must be scalar or subrange

Set element types not compatible

Type of variable 13 not array or string

Index type 1s not compatible with declaration

Type of variable is not record

Type of variable must be file or pointer

Illegal type of loop control variable

Illegal type of expression

Assignment of files not allowed

Label type incompatible with selecting expression

Subrange bounds must be scalar

Type couflict of operands

Assignment to standard function is not allowed

Assignment to formal function is not allowed

No such field in this record

Type error in read

Page 104

L)



e LUINO L HCYCLV UGS WUydweCuUt auua .l AV s e e

149 Actual parameter must be a variable
150 ‘Multidefined case label
151 Missing corresponding variant declaration
? 152 Real or string tagfields not allowed
153 Previous declaration was not forward
7 154 Substitution of standard proc/fumc 1is not allowed
155 Multidefined label
156 Multideclared label
157 Undefined label
158 Undeclared label
159 Value parameter expected
160 Multidefined record variant
? 161 File not allowed here
162 Unknown compiler directive (not ‘external’ or ‘forward’)
163 Variable cannot be packed field
164 Set of real is not allowed
165 Fields of packed records cannot be var parameters
166 Case selector expression must be scalar or subrange
167 String sizes must be equal
168 String too long
169 Value out of range
170 Address of standard procedure cannot be taken
171 Assignment to function result must be done inside that function
172 Loop control variable must be local

{90 No such unit in this file

Conditional Compilation:

260 New compile-time variable must be declared at global level
261 Undefined compile~time variable

262 Error in compile~time expression

263 Conditional compilation options nested too deeply

264 Unmatched ELSEC

265 Unmatched ENDC

266 Error in SETC

267 Unterminated conditional compilation option

Compiler Specific Limitations:

300 Too many nested record scopes

301 Set limits out of range

302 sString limits out of range

303 Too many nested procedures/functions

304 Too many nested include/uses files

305 1Includes not allowed in interface section
306 Pack and unpack are not implemented

307 Too many units

308 Set constant out of range

350 Procedure too large
351 File name in option too long

Page 105

Tha Nocen?t Nowalccmeme Owedcn MWMaw.. .ot 1£ ™ v an



Lile rfascdd wevelivplell oys$iem ralivdd ) Lo=tep=oc

I/0 Errors:

400
401
402
403
404
405
406
407
408
409
410
420

Not enough room for code file
Error in rere2ading code file
Error in reopening text file
Unable to open uses file

Error in reading uses file
Error in opening include file
Eror in rereading previously read text block
Not enough room for i-code file
Error in writing code file
Error in reading i-code file
Unable to open listing file

I/0 error on debug file

Code Generation Errors:

1000+ Code generator errors = should never occur

2000 End of I-code file not found

2001 Expression too complicated, code generator ran out of registers
2002 Code generator tried to free a register that was already free
2003--2005 Error in generating address

2006~2010 Error in expressions

2011 ° Too many globals-

2012 Too many locals

Verification Errors:

4000
4001
4002
4003

4100
4101

Bad verification block format
Source code version conflict
Compiler version conflict
Linker version conflict

Version in file less than minimum version supported by program
Version in file greater than maximum verslon supported by program

Page 106

M., Moee.ocat N PEYEY . IS e - Ve e e An



L4UC AADLAL VEVELVPUWELLL OYyStiell ddiluad . L0~"reu-oe¢

ASSEMBLER ERRORS

00 .
l. wundefined label
2, operand out of range
3. must have procedure name
4, number of parameters expected
5. extra garbage on line
6. 1input line over 80 characters
7. not enough .IF’s
8. must be declared in .ASECT before used
9. identifier previously declared
10. {mproper format
11. JEQU expected
12. must .EQU before use if not to a label
13. macro identifier expected
l4. word addressed machine
15. backward .ORG currently not allowed
16. identifier expected
17. constant expected
18. 1invalid structure
19. extra special symbol
20. branch too far
2l. variable not PC relative
22. 1illegal macro parameter index
23. not enough macro parameters
- 24. operand not absolute .
* 25+ 1llegal use of special symbols
26. 1ll-formed expression
27. not enough operands
28, cannot handle this relative expression
29. constant overflow
30. 1illegal decimal constant
3l. 1illegal octal constant
32. 1illegal binary constant
33. 1invalid key word
34. macro stack overflow - 5 nested limit
35. include files may not be nested
36. unexpected end of input
37. this is a bad place for an .INCLUDE file
38. only labels & comments may occupy col 1
39. expected local label
40. 1local label stack overflow
4l. string constant must be on one line
42. string constant exceeds 80 characters
43. 1illegal use of macro parameter
44. no local labels in .ASECT
45, expected key word
46. string expected
47. bad block, parity error (CRC)
48. bad unit number
49. bad mode, illegal operation
50. undefined hardware error
5l. 1lost unit, unit is no longer on-line

Page 107

L e Mo ae® MugiaVa o uote Muinn . ¥0 .. = s = e an



e S MM e Wt ma Ut W @ el bl L

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72,
73.
74,
75.
76.
77.
78.
79.
80.
8l.
82.
83.
84.
85.
86.
87.
88.
89.
90.
9l.
92.
93.
94,
95.
96.
97.
98.
99.
100.

lost file, file is no longer in directory
bad title, illegal file name

no room, insufficient space on disk

no unit, no such volume on=line

no file, no such file on volume
duplicate file

not closed, attempt to open an open fille
not open, attempt to access a closed fil
bad format, error in reading real or int
nested macro definitions illegal

‘m’ or ‘<>’ expected

may not EQU to undefined labels

must declare .ABSOLUTE before lst .PROC

Not even a register

Not a Data Register.

Not an Address Register

Register Expected

Right Paren Expected

Right Paren or Comma Expected
Unrecognizable Operand

0dd location counter

Unimplemented Motorola directive
Comma Expected. .
One operand must be a data register.
Dn,Dn or -(An),-(An) expected.

No longs allowed.

First operand must be immediate.
First operand must be Dn or {E

(An+), (An+) expected

Second operand must be an An

Second operand must be a Dn
#<data>,Dn expected.

first operand must be a Dn.
An,#<{displacement)> expected

An is not allowed with byte

only alterable addressing modes allowed
only data alterable addr modes allowed
An is not allowed

USP, SR, and CCR not allowed

Cannot move from CCR

Dx,d (Ay) or d(Ay),Dx expected.

Only memory alterable addr modes allowed
Only control addressing modes allowed
Must branch backwards to label

Page 108

v e e



Te: Lisa Users
From: One who has been bitten
Oate: October §, 1982

Subject: Raegister usgse conventions

For those who ars writing assembly language routines to be used with Pascal code, there ars
register usgae conventions you should be following. These conventions insure that you da not trash
the Pascal runtime enviorment and bring down the entire machine, not just your pragram!. The
canventions are as follows:

You can clobber: A0, A}
00, D1, 02
these registers are usable by snyone. 0o not put dats in them which you expect to be
pressrved over the course of a JSR; somebody else may have changed them.

You must preserve: A2
03

but assume that the information will be clobbered. These two registers are special becausze
the Pascal enviorment currently does not meintained these registers, but will in tha future.
Therefaore, if you stick information ineco these registers now, thers iz no gusrantee that
the information will be there after a JSR completes. In the future, informstion could be
safely be stored in these registers. By saving these registers befare a JSR and restoring
them after the JSR you will not have to chsnge you asssembly code later when the Pascal
enviarment changes.

You must preserve: A3, A4, AS, A§, A7
04, 0S, D6, 07
these are registers mesintained by the Pascal system. If you do nat maintain them, your Pascal
runtime enviorment will not run properly. Plain and Simple. For those who do nat know what
thess registers are, here is a brief explanation:
A7 - top of stack pointer
A8 - stack frame pointcer
AS - top of globals poincer
A3. . A4 - code optimization rsgisters
03..07 - code optimization registers

For thaoses whoses assembly langauage routines save all the registers AQ0..A7/00..07 and then usss

them with the expectation that thoss registers will be restored at the end of the routine, you are flirting

with dissster. [f your assembly language routine dies for soms rasson and does do not restore the
registers that must be preserved, A2..A7/03..07 (particularly AS5..A7) , you will be bring down the whole

system. Oying within LisaGraf (QuickOrasw) or OBlib cauld does this, and may be a problem within the system.

Bewars!!!




	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104

