Read This First !

Contents of Package Il
Clascal and ToolKit

This guide will serve as an overview of the documents
contained in Package II. Please read this entire guide
before you start reading the documents.

Contents:

Summary of Contents

Packaging and Release Information
Clascal Documentation
- ToolKit Segments (a self-paced ToolKit course)
ToolKit Reference Manual
Debugging ToolKit Applications
Using Phrase Files
ToolKit Flow of Control Diagrams
- ToolKit Interfaces
Building Blocks
Lisa User Interface Guidelines
Converting from TK70 to the Final ToolKit
A Word About Cross-Referencing

Seeton | /p-

Packaging and Release Information

1. In this package you should have the following pieces:

o "8 v

PIAP T TO 40 00T

. Installation Instructions

The Introduction to Clascal Manual.

Clascal Syntax Diagrams.

The Lisa ToolKit Self-Paced Training.

The Lisa Applications ToolKit Reference Manual.

. Hore on Debugging.

A Phrase File Document

A Printing Document

A Class Hierarchy Document

UObject, UDraw, and UABC interfaces.

UDialog documentation and interface.

UText documentation, and interface for UText and WinivText.
Listings of Sample ToolKit programs -

Documentation on converting from older versions of the ToolKit to
ToolKit 3.0.

Icon editor documentation.

Lisa User Interface Guidelines.
Lisa Internals.

A Flow of Control Diagram (poster).
Five (5) ToolKit Release Diskettes.

2. To use the ToolKit, you need to have the following:

b.
c.

3.

A one megabyte Lisa with at least one 5 Megabyte profile. Two 5
Megabyte profiles or one built-in 10 Megabyte hard disk is better.
¥e strongly discourage using just one 5 Hegabyte profile; a single
profile leaves very little space in which to work.

The Lisa Office System version 3.0.
The Lisa Workshop development environment, version 3.0.

Toolkit 3. O Release Motes. This memo describes the ToolKit release
you were sent and how to.install it on your machine along with the
other software you have purchased. Please read it carefully and

completely and follow the instructions exactly. This will give your

l]p.z

Lisa the standard ToolKit development configuration and make it easier
to find problems if they occur.

Clascal Documentation

1. An Introouction to Clascal. This explains the Clascal language and why
we are using it to implement the ToolKit. (read this first)

2. Clascal Syntax Diagrams. This short manual contains all the syntax
diagrams for Clascal.

ToolKit Segments (a self-paced ToolKit course)

The ToolKit Segments are & self-paced tutorial explaining most of the
concepts you need to know to use the ToolKit. You should read this
section after you have mastered the Clascal documentation above. The
segments start out with the very simple ToolKit concepts and build
towards more complicated subjects as your knowledge of the ToolKit grows.
Included with the Segments are listings of actual ToolKit sample
programs. These sample programs are also included on the disks which
accompany this package so you can try them out and modify them as
directed in the segments. Here are the titles to the 11 ToolKit
Segments.

Conceptual Foundstion of the Toolkit.

Introduction to the Toolkit.

meat is & Document.

Creating from the Generic Application.

BlankStationary: The View of & New Document.

Intro to the Baxer Application

Selections and Highlighting in Boxer.

HMoving Boxes.

Creating & Bax A Second Selection Lless. :
. Recoloring Duplicating and Clear All Commands with Undb.
10. Filters.

11. Cut + Paste and Mouse Key Events as Lommends, Advenced Lommanos.

© D NS LA DN ND

- l/p}

‘The Lisa Applications ToolKit Reference Honuel

This is a comiete reference manual describing the entire ToolKit. It is
a very useful reference manual. You should look through this after

reading the segments above. Entirely read chapters 1 through 5. Chapter
six should be scanned and then used later while programming to answer
specific questions about 8 particular Class, Method or Variable.

7 Introduction to the ToolKit

2 Ubbject

2 Wrav

4 Application Base Classes

& ToolKit Debugger

& Reference Information for ToolKit Classes

Debuggihg ToolKit Applications

Chapter S of The Lisa Applications ToolKit Reference Manual and More
on Debugging show you how to use the ToolKit debugger as well as hos to
interpret Clascal code from within LisaBug.

Using Phrase Files

Phrase files are used for all menu, alert, dialog and other textual
information in a ToolKit application. By keeping all this information in
a phrase file that can be easily edited, a ToolKit application can be
converted to the language of another country by a bi-lingual person
familiar with the application. A recompile is not required to move a
ToolKit application to another language. No programming is needed.

1. 7he Phrase File cocument. This document explains everyhthinq you need
to know about using phrase files.

2. X/PABC. PABC is the phrase file that is used in all ToolKit
applications. It contains all the standard 'Generic Application’
phrases.

Sec+t //p'ﬁ

ToolKit Flow of Control Diagrams

Flow of Control (the order in which ToolKit methods are called and how
the ToolKit calls your Application) is discussed in many places within
these ToolKit documents. This wall poster contains flow of control
diagrams to give you an overview of the structure and logic of the
ToolKit Generic Application and how your Application fits into this
architecture.

ToolKit Interfaces

The interfaces contain all the ToolKit global constant, type and variable
declarations as well as all the ToolKit methods that you may want to call
from your application. You will never have to actually call or even
understand many of these methods, so don’t get overwhelmed by the number
of methods in the interfaces. The Interfaces are very useful however and
you can learn a lot by reading through them and studying them. Any
serious ToolKit developer needs to become very familar with the
interfaces to UObjeot, UDraw and UABC. These three units make up the
core of the ToolKit Generic Application.

1. Wbject ToolKit unit that implements the standard lowest level
methods (procedures and functions) that are used by all Classes in the
ToolKit environment. UObject also implements a standard set of
“collection” primitives used throughout the ToolKit. You need to
understand Collections and Scanners well. They are documented in the
interface as well as the reference manual. The ToolKit debugger is also
implemented in UObject. Both UDbject and the debugger are documented in
The Lisa Applications ToolKit Reference Hanual.

2. Wrewe \Draw implements a 32 bit coordinate system within the ToolKit
and provides a way to convert graphic items in that coordinate system to
the 16-bit QuickDraw world. See The Lisa Applications ToolKit
Reference Manual for more documentation on this unit.

3. UABC. UABC provides the higher level structure for all ToolKit
applications. 1Its classes are the 'Generic Application®’ upon which all
ToolKit 'Specific Applications’ are built. See the ToolKit Reference
Manual for documentation on this unit; there are also important
comments in the interface itself. The Class Hierarchy document is
very helpful in finding your way around the ABC structure. You
will find that flipping to that document often will save you a lot
of time. You may want to make a copy of it to post on the wall and
be in constant view.

1/p.S

Building Blocks

Building Blocks are units that add functionality to the ABCsS. You need
only study the interfaces to the building blocks that are going to be
used in the specific application you are writing. If you are using
dialogs in your application. study the Dialog Building Block. If you
are using text, especially a word processor application, study the Text
Building Block. The documentation available for each building block is
included in the section for that building block. The sample
applications do not demonstrate all the capabilities of their respective
building blocks.

1. Wialog This building block allows an application to easily put
dialog boxes up on the Lisa screen. Dialog boxes are used by all the
Lisa applications to get specialized information from the user. The
windows that come up when you choose ‘Format for Printer...* or
‘Print..."* from the File/Print menu are examples of dialog boxes. There
are many different types of dialog boxes. See the documentation on the
Dialog Box Building Block included here. It is quite well documented.
There is also a sample application USamDialog also in this section, for
more information.

2. UText. The text building block provides the basis for ToolKit text = .. -
editing in any ToolKit applications. This building block provides very
extensive text handling as well as cut and paste of text with other
ToolKit applications.

Lisa User Interface Guidelines

This document contains useful information about the User Interface
Guidelines for all Lisa Applications. It also contains definitions for
Lisa terminology you will need to be familar with. You should read this.

Converting from TX7D to the Final ToolKit

This documents most of the changes that happened to the ToolKit and the
Clascal language between the TK7D version and the final ToolKit version.
Since many people were initially given the TK7D version we hope this will
help them convert to the final version.

| /p.é

A Vord About Cross-Referencing

You will notice that the program listings in this package are
cross-referenced. This means that at the end of each program listing
you will find an index of identifiers that appear in that listing. The
identifiers which are indexed are those shich are declared at the
outer-most scope level of the program. Thus, globally defined
variables. class names, and the fields and methods of classes will be
indexed. Also, any unnested procedure or function names will be
indexed. Hence, local variables and nested procedure and function
names will be indexed only if they were previously defined at an
outer-most scope level. If you find a variable, procedure, or
function name which is used in a program but which is not
‘cross-referenced and which is not defined in the scope of the global
procedure or function in which it appears, then you will find it defined
in one of the files used by that program (note: some files may reside
in libraries., in which case you will not be able to examine them).

An index entry is of the form:
<id name> <line number> <info. symbol)> (<file number>),
where <id name> is the name of the identifier, |

{file number> is the nth file included in the cross-referenced
listing. Often, a program is so large that it
exists in separate files which are linked together -
in a chain by $7 compiler directives. Usually, the
program's interface is the first file in the chain
and the program's implementation is the second file
in the chain. If the program is large enough, like
UABC is, then its implementation may be spread over
many files (UABC, for example, has its
implementation spread over the second, third,
fourth, and fifth files in its chain). A file
number n, then, refers to the nth file in the chain.

{line number> is the mth line number in the file denoted by <{file
"~ number>.

{info. symbol> is an % = or a blank. An asterisk means that the
identifier is defined at the specified location. An
equals sign means that an assignment is made to the
identifier at the specified location. A blank means
that the identifier is neither defined nor assigned
to at that location.

In the program listings, the 7ile number is the left-most number on
every line. The Zine number is the number to the immediate right of the
file number. Thus, for example, if an index entry were:

HousePress 255%(1)

then you would know that AbusePress was defined on 1i
1. This location is labelled 1 255 in the left-margin of the listing.

l/‘).7

Copyright 1984: Apple Computer Inc. reserves all rights to the
contents of this package. Neither printed material nor information
encoded on the accompanying diskette media may be reproduced without
the explicit permission of Apple Computer Inc.

Applications developed using this package may not be sold without a
license from Apple Computer, Inc. Low-cost licenses are available
from:

Apple Computer, Inc.
Attn: Software Licensing Department

20525 Marioni Ave.
Cupertino, CA 95014-2004

I'/p-$

