
. Phrase Fi Ie Document

Purpose of this Docu.ent:
Understanding what a phfase file is and how you use it to set up your menus
and Alerts.

Introduction:
Phrase files are used by ToolKit applications to store written
communication with the user in a place that allows it to be changed without
regenerating the program that uses that written material. One important
use of phrase files is to allow menus and alerts to b' translated to
another language without the application that uses them being changed.
This makes it easy to internationalize a ToolKit application. Host of the
information in a ToolKit phrase file is the menus and alerts used by that
application.

Each ToolKit specific application must have its own phrase file to describe
the menus and alerts that are used in that application. The ToolKit has a
phrase file for the generic application. It is called PABC (it is the file
TKIPABC.text on your boot volume). PABC contains all the alerts that are.
generated by the generic application. It also contains standard menus,
like the FilelPrint men~ that can be included in the list of menus in a
specific application's phrase file. All specific application phrase files
must include the generic application phrase file.

Phrase files are generated using the Workshop editor. If the name of your
specific application is 'FooSam', it will consist of at least the files:

MFoOSam.text (Main Program)
UFooSam.text (Clascal Interface)
UFooSam2.text (elascal Implementation)
PFooSam.text (Phrase file for this application)

The easiest way to start editing a phrase file is to change an already
existing one, like a phrase file from a ToolKit sample application.

General for.at of a Phrase file:
Ie will show you the fonmat of a phrase file using the following commented
phrase file. The working contents of the phrase file are in bold print.
• CO_ent lines can be placed If¥'hele and begin vi'th a';'.
1 Blank lines are i.,..red.

• The above line is the version IUIber tha't MISt utch the 'phraseVersion'
• Passed to TProcess. CONIlnee &Ness 0 is passed. This line MISt be F-esent.
; If the version IUIber does not AItCh 'phraseVersion'. the Toolkit vl11 issue an alert.
J .
: The above line is the IUIber of alerts to be etched.. use 3. 2_ ~

• This above line is the uxillUR heap space needed for alerts of this file.
• Try 2300 the fint tile. To get a fIOre refined value for this fUIber ..
; chick the screen after nmina the TWert progrll.. TWert is used to convert
tp~ ·PFooSM. text' file into a binary phrase and ... file.

: The above line is • s~d include COfIMnd wch RUSt be~esent. It
• includes the file 'pa. text' web contains standard a ISIS. At this
• point .. Y(KI could also include standard Tool Kit Building ock Phrase
files using ROre include CCNands.

1.
lisIIIIrftl . . .
; The tbOYt two 11ntS should IIVIYS be '1000', theft the naM of your .,llCltlGn
, ., ~ Mnt it soelled in ~ to the user. Other applic.tion .lerts cen
; be 1ncluded below here, tUbered between 1001 n 32(D). Ie inclUde I few ex_les
; that ShOW the forut of an alert as well IS the COMenUng CCMWenuons we use in
; ToolKit phrase files:

Di'fUlilble = 1001'
PROCEOtME TTKApselettion~ CltchPlSS;

1.11 stop Ilert
Sorry, the pass HI dropped.

DhTouchDOWt = 1002'
, PROC£DtME TTKApSelection~ Score;
111J2 note Ilert

Constant detllr ation in your _.
The Mthod(S) in your _ that
IfM)ke this Phrase.

fir. out MCIe I touchdcMIft.
; phTouchDOWt is the PhrasetUber your Application would PISS to the Mthod
; 'TProcess. NOte' to get this alert. There is futther doeUMntation on ... this is
; Clone bel •.

The '0· l1ne below is used to denote the end of the alert 1nforution and
the start of the MOO inforMtion for yOUr application. COpy the forut you see
here to set uP your MIm. The' l' line bel. denotes the beGinniOO of the standard
'filelPrint' MOO. Start lUlbering your MOOS at 1, always the 'fileIPrint' MOO, and
add as ..any MOOS as you need between 2 and 99. The IUIbeJ' '2', '3', etc., before

iJ
1

each 1tenU, is called the fIenU 10.

$PAIC-rllelPrlnt . .
; You can CoPY an entire MnU frOR another Phrase file.
; following RenU frOR the PABC phrase file.

'iJI/Prlht
· SIt Asi. lJllrythil16l101

~t Asi*"lD2

· SWt & Put A!M.YIllJj
SWt & Ctlntillflt!l107

,. ~wrt tfJ PrefifJIJS VlrsifJfllllJ8

· 'UMt lor Priht#r ... "'04
· Print . .. "1115
· lkIni tfJr tM Prin~r ... ",116

2

The above line inclUdeS the

srAIIC-Edit .
: You can derive Plrt of 8 MnU frOR an entire MOO in .-.other Phrase file. The
; '$PABC-£dit' line includes the standard part of the edit MOO frOll PABC. This
; phrase file then adds 'Clear' and 'select All of DoeuMnt'.
: Edit
· /.tit» LISt ~

Clelr"

Select All of ~tlM204
: Notice ,.. the keybOard • APPle' keys 'IX, Ie, IV' are denOted for
; CUt~ COpy IncJ Peste. The nuRber fOllowing eech aenu iteA ·1201~aJ2 .. ete.·
; is the COMInd 1Ulber assoeiltecl with that Dlrticullr MIW i tet ..

11

!IeOOS 10 W\d ~1 Ire just ~~es of norMl MNIS. TM. '-'character in.~ 11
1S used to prInt I grey lIne 1n the bit, Yhen It IS pulled -.n .. dlY1dlng
Seftd to lick tnd Put • Test Dillog.

SbIdes
.itt.1.

lilbt 11,,'11111
11'.".
IIrk 11.,,11109
II1CkI1010

11
Arrange_It • 81llogs
IIi... to frontl1021
SeM to 111Ck11D21
-
Put Up Test Dill0ll1'.'

99
$PMC-Debug
; InclUdes DebUG MOO fro.. PABC.
: The debUG MOO ShOuld De present to use Tool kit debugGina aidS to deDUa
: "-"r IDPlication. It is Given the r "99" since yOU want it~to .. De the
; IlGhtMSt -, .

1110
$PABC-auzZlords
; Include BuzzWords MOO frOR PABC, then tdd to it. All MfM rubered grelter
; thin 99 are .a.tzZWOrd MOOS. BuzZWOrds are explained liter in thiS dOCURent.
Create 8oxI2OOO
love Stiecti0Rl2001

o
This "0' line indiCites the end of the Phrase file.

Setting up your Alerts:
The text of- your alerts'is placed in your- phrase file as in the sample
phrase file above. The format for all alerts is as follo.s:

ph I nputfrror • 1003;
, PROCflUf TYourSelection. Checkl.,t;
1003 stop .lert
TMnuMer you entered AS A1. JtQ RUSt eater I ftUlMr MtIeeft A2 .. ~. Al
PlelSe enter tMt r _,

The first two lines are comments that are put in the phrase file by
convention. The first line of the comment is a copy of the constant
declaration representing this alert in the interface of your Clascal unit .
• henever you want the message to appear, you pass this constant to the
appropriate process alert method. These methods are described below. The
second line of comment is the Method in your application that uses this
alert. If more than one method uses i~ we list each on a separate line.

The part of the alert (in bold for this explanation) is the actual working
contents of the alert in your phrase fila. The first line of any alert
tells you the alert number, 1003 in this cas~ followed by the type of
alert. Specific application alerts can be numbered between 1001 and 32000.
There are many types of- alerts. Each one is discussed below. The actual
text of the alert follows on the line(s) after the first line describing
the alert. The alert generator will automatically fit this text into the
alert bo)(it provides, you do not have to worry about. text wraparound.
The ,Al', ,A2' and ,A3' represent arguments to be passed to this alert.
Passing arguments is done with the ArgAlert method described below. Notice
the ,AL' editing symbol at the end of the first line in the alert text.
This tells the alert generator to put the text that follows the ,AL' on a
new line.

TProcess methods to access alerts defined in your phrase
file:

PROCEDURE TProcess.ArgAlert(whichArg: TAlertArg; ergText: S255);
ArgAlert Passes a text argument to the alert generator. The argument you
pass will be referenced in a future call to the alert generator. This
future call could be a lProcess. Ask, Beginlai t.. Caution.. Note.. etc.
whichArg can be in the range from 1 to 5. Here is a code ex_le of how
ArgAlert is used: -

{ Corwert an entered nuN>er to a string. }
IntToStr(fntluR. IlnputluR);

{ Pass the string par_ter to the alert generator. }
Process. ItaAlett(1. l_tIIUI);

{ Pass 2M SUing par_ter to the alert generator. }
PrOCtSS.ArgAlert(2, '1');

{ Pass 3rd string par_ter to the alert generator. }
Process.lt_lett(3. '110'); ~.

{ Cell the alert generator with the alert that vill use this
l1'~t. }

rtocess.StGp(pblnputfttot);

The info in the phrase file about phInputError is as follows:

phlnoutfrror = 1003;
• PROtEIDE TVourSelection. Checklnput;
11113 st" alert
The nuRber you enteted VIS "1. you MISt enter I MMbet between -2 .. '"3.

If ~he number you entered was 255. the stop alert will print out:
.' The n\Dber· you entered. was 255, you IIlJst· ent.er a nunber bat ween 1 and 100·

TProcess. Ask, Beginlai~ Caution.. Note or Stop are used to put a message
of one of the five different Alert ~ypes on the Lisa screen inside an
alert box. The alert box will come up as the front window on the screen
and will have your message along with a large black sign saying ei~her
'?', lait. Caution.. Note or Stop depending on the type of alert you
requested. You can always reference argumen~ 0 (AO) wi~hin an aler~. It
is reserved for the name of your application and does not have.to be passed
with a call to ArgAlert. The ToolKit gets the name from the start of your
phrase file as phrase number 1000. This is shown in the s_le phrase file
above.

FUNCTION TProcess.Ask(phraseNu.ber: INTEGER): INTEGER;
The format for an Ask Alert in your phrase file is:

pNlessArOlftl = 1~;
, PROCEDURE TTKApSeleetlon.llaktAPass;
11m4 .. alert
HeY NbY, IIftt to aess uMlMl?
-'Yes·"'''?II,rbe

The message 'Hey baby, lent to mess around?' will be presented in an alert
box. The sign iO the alert box will contain a large question mark. The
three choioes Ves, No and Haybe will be presented inside buttons on the
screen with Yes being the top button. TProcess.~sk will return the number
of the selected choice, 1 =Ves. 2=No, 3=Haybe. The' !' choice denotes the
default. The default is picked if the user ignores the message and clicks
into another window than the alert box. If no '" choice is mentione~
there is no defaul~ and the user must click one of the buttons explicitly
to dismiss the alert.

PROCEDURE TProcess.8eginlait(phraseNu.ber: INTEGER);
PROCEDURE TProcess.Endlait;

The format for a lait Alert in your phrase fila is:

DNIIitforne ~ 1005;
, PROtEIDE TTOpStleetion. AfterThePISS;
11105 Hit Ilert
PIe.. .. Ntient _iI, I rteMr .. If Htttries.

After calling process.BeginWait. the message 'Please be patient while I
recharge my batteries' .ill stay on the screen till your process calls
process. EndWait. The sign in the alart box .ill cont.ti~ ~ha word IAIT.

FUNCTION TProcess.Caution(phraseNu.ber: INTEGER): BOOLEAN;

The format for a Caution Alert in your phrase file is:

PhfireClution = 1006;
, PROCEOlIlE TTOpStleetion.ttessageToSRokers;
11106 cautiOft ok 11ert
SMkina is rous.

The message • $MIdng is dangerous.' .ill stay on the screen till the user
choos.es OK or Cancel.' Inside'the sign will be the word CAUTION. The
Caution function will return true if the user chose OK and false if the
user chose Cancel. To permit user interface experimentation .ithout Pascal
code changes, Caution alerts can be set up in five different .ays depending
on how they are defined in the Phrase file. The options are:

option

caution note
caution stop
caution ok
caution cancel
caution insist

Sign & Buttons displayed

MlTE
STIP
CAUTI(If
CAUTION
CAUTION

IJ(

Cancel
IJ(& Cancel
IJ(& Cancel
IJ(& Cancel

PROCEDURE TProcess.Note(phraseNu.ber: INTEGER);

Tha format for a Nota Alert in your phrase fila is:

; Ph8eIrIIi tNJsIIOte = 1001·
, PROCflUlf TTKAPSe1ection. ByT_; 1., note alert
Tus is tM first ti are teacbiftl tlds class.

Default

IJ(

Cancel
IJ(

Cancel
None (user must click a

button to dismiss)

The Message 'This is the first time we are teaching this class' .ill
stay on the screen till the user chooses IJ(or clicks into another window.
This sign .ill contain the word NOTE.

PROCEDURE TProcess.Stop(phraseNu.ber: INTEGER);

The format for 8 Stop Alert in your phrase file is:

, phStoPlt .• 1008·
, PROCfDURf TTKApSelec1lon.YOUSillY;
1. SteP Ilert
.. , St .. that, you 1111,,-

The message 'Now, Stop that, you silly" will stay on the screen
till the user chooses CANCEL or clicks into another window. This sign will
contain the word STOP.

fUNCTION TProcess.Phrase(error: INTEGER): INTEGER;

This function passes back the phrase number of the phrase associated with
a particular error number. An example of the use of \his would be when
your process made an OS call which returned an error,·'yOu'could call
TProcess.Phrase passing it the error. TProcess.Phrase would return the
Phrase number of a message explaining that error or the general 'unknown
error t message if the Tool Kit did not know of the error. Your process
would then call process. Stop, Wai t, Note or Caution, depending on the
error, and pass it the phrase number obtained from TProcess.Phrase. You
may subclass TProcess.Phrase adding your own Error to Phrase mappings then
have your subclass call TProcess.Phrase only for errors it doesn't
understand.

PROCEpuRE TProcess.GetAlert(phraseNu.ber: INTEGER; VAR theText: S2~);

This function passes back, in theT~ the text part of the phrase
associated with phraseNu.ber. This provides a general mechanism for you
to store text in the phrase file that is used by your program in various
ways. This text does not have to have an alert associated with it. An
example of this is how the ToolKit stores various Singular/plural words
within the phrase file. These words can be easily accessed by the ToolKitv
or your application, when needed and will also be easy to translate into
some other language. From the phrase file PABC:

to2
; singular/plurll for secondS
second/secondS

tIJ3
; singular/plural for ainutes
aiaute/ainutes .4
; nagulB/plutll for MUls
bIUIlMUrs

PROCEDURE TProcess.CountAlert(.hichCtr: TAlertCounter; counter: INTEGER);
CountAlert can be used in combination with Begin'.it and End'.it to give
the user continuous feedback on how much longer a particular task will
take. This can be shown in the following example:

pNlaitforCMrge • 1070;
• PROCfIU£ TTapseleetion. ChIrgeIetteries;
1070 Hit Ilert
PlelSt 1M flUent "'lIe I recMrge If Htteries. Al
I • fi"isIaM.

The .ait alert is set up .ithin your phrase file having a parameter of the
A~ forll8t. To put up the alert, call Beginla1t(phlaitforCharge).
Immediately call CountAlert(g {type of counter}, 0 {' done .ith charge}).
As the charge progresses.. call CountAlert over and over again each t.ime
you .ant the , done part of the lait alert to change. The lait alert .ill
start. out reading:

'leae be patient _ile I rechlrge '" '-tteria.
I ... lit flnlSbeG.

The percentage amount on the second line .ill change each time you call
CountAlert. When you are finished and .ant to remove the alert.. call
Endlait. There can be up to three counters in a sin~e~~ait Alert. They
are identified by ides 7 .. 8 & 9. For example:

Printing page A8B of _99.

PROCEDURE TProcess.R~erCa.aand(a.dNu.ber: tc.dNu.ber);
This method is called .hen you .ant to display t.he menu text of the last
command in an alert. To do this.. call RamemberCommand passing the command
number of the last command. Then the menu text of this command can be
referenced as a parameter to an alert that is set up as fol10.s:

=tDo . = 1066; .
• E E TtKApSelection.lIotlegll;
1166 stop Ilert
'eu ~t do I .. c It this tiRe.

The text of the command as selected from the men~ say it .as 'refresh' ..
• ould be displayed in the alert at the position of t.he ·-C'. For this
alert it .ould be IVOU cannot do a refresh at this timel.

Set.t.ing up your "enus:
lithin your phrase file.. set up your menus in the format presented in the
sample phrase file above. In the interface of the Clascal unit for your
applicatio~ you .ill have a constant defined for each menu item in your
phrase file. This constant represents t.he command associated .it.h t.he menu
item. The convention is that this constant begin .ith a 10.&r case IU·
follo.ed by the name of the _nu it_ it represents. Ex_Ie:

Phrase File:
10
Shades
MUte. 1 006
Light. Gray.1007
Gray.l0oa
Dark Gray.1009
Black.1010

Ca..and Constant Declarations in the Interface of Your Application·s
Claseal Unit
uWhite
LLtGray

. uGray

= 1006;
= 1007;
= 1008;

t£JkGray
\Black

= 1009;
c 1010;

Ho. your Henus ere used in your ToolKit application:
.hen the user presses the mouse button in the manu bar, the ToolKit will
track the mouse. If a menu item is chosen, it will call your application
passing the command number chosen. Your application can then do a case
stament on the conmands def'ined in its C18SCIJ1 Unit to determine if it will
handle this command or leta superclass in the ToolKit handle the command.
Example from TSa.eSelection.NewC~nd:

Function TSomeSelection.NewCommond(cmdNumber: TCmdNumber): TCommand;
BEGIN

NewConwnand : = NIL;

CASE ~lIIIber CF

EN);

{ Commands my application handles }
ulhite, tLtGray, \Sray, lDkGray, tBlack:

NewConmand : = TRecolorCmd. CREATE(••••);
uSomethin~lse:

NewConmand : = TSomethingElseCmd. CREATE(•.•);

{ Let 'the ToolKit, or my window, handle this conmand }
OTt£RlISE

NewConmand : = SlPERSELF. NewConmand (cmcWunber);
EN);

You will find out QXact details of how to code the responsQ to your menu
selections in the Toolkit Segments on Ca..ands, Selections and Flo. of
Control.

Using BuzzWords and the Methods in TMenuBar to modify your
menus on the fly:

Henus may befixe~ as most menus are, or they may have parameters that
change depending on the particular application or state of the application.
When using the ToolKit sample progr~ you will notice that the second menu
item in the FilelPrint EnU has changed from 'Set Aside' to 'Set Aside
LisaBoxer'. You will also notice that the first menu item in the Edit menu
has changed from 'Undo Last Change' to 'Undo Create Box' or 'Undo Hove
Selection' depending on the last action done by the user.
These menus were changed by the ToolKit, with cooperation from the s_le
application, by using the three methods described below.

FUNCTION THenuBer.Gete.dNa.e(a.dNu.ber: te.dNu.ber; pH ... :
TPStrina);

This function returns -true if cmdNumber is found in the _nubar. If
cmdNumber 1s found then the string pointed to by pName is set to the
text of the menu associated with cmdNumber. If cmdNumber is not found
then pName is set to the empty string. If pName is passed in as NIL it
is not modified in either case. This way you can use GetCmdName to find

out if a particular command number is there without paying the overhead
of copying a string.

PROCEDlIE THenuBar. Putc.w .. (C8CfiUllber: rc.:r...t»er; pH .. :
TPString);

If cmdNumber is in the menubar, the menu associated with it is replaced
by the .string pointed to by pName.

PROCEDlIE TJtenuBar. BuilcladNa.(destc.d. tellplatee.t: INTEGER; par.:
TPString);

The parameters destc.d and ta.platee.d are the command constants that
represent commands defined as menu items in your phrase file. These
command constants should be defined in the constant declaration part of
your clascal unit as described above. To, for exampi~ change the menu
'Undo Last Change' to 'Undo Create Box', the ToolKit did the following:

1.0btain 'Create Box' in tempString by calling
Getc.wa.e(lastCa.I8ndNu.ber .. tapSt.ring). In this case,
lastCa.aandNu.ber will be equal to the constant uCreateBox that is
defined in the interface part of USample. lhen an undoable command
is execute~ the ToolKit saves the command number of that command so
it can later get its menu text and insert it in the Undo menu.

2. Call BuilcladNa.e(uUndolast.. uWndolast.. tapString); The
const-ant uUndoLast is defined in UABC· and refers to the 'Undo Last
Change' menu in PASC. This is the menu we want to change. The
constant utUndolast is also defined in UABC and refers to the
template 'Undo A Last Change A

, defined in the Buzzwords menu of PASC.
This call to BuildCmdName will replace the variable part (the part
between the tAtS) with the text of tapString, in this case 'Create
Box'. The new menu 'Undo Create Box' will now replace the destc.d
menu, in this case uUndolast ('Undo Last Change').

If the text of ta.platee.d contains no ,·,s, then the entire
ta.platee.d text replaces the normal text of deste.d. You can store
menu constants and templates in the Buzzlords section of your menu
definitions then later use these to modify menu items in your
application's menus. Buzzlords are not automatically displayed in the
menu bar. They are used only to modify existing menus.

