Phrase File Document

Purpose of this Document: :
Understanding what a phrase file is and how you use it to set up your menus
and Alerts.

Introduction:
Phrase files are used by ToolKit applications to store written
communication with the user in a place that allows it to be changed without
regenerating the program that uses that written material. One important
use of phrase files is to allow menus and alerts to bé translated to
another language without the application that uses them being changed.
This makes it easy to internationalize a ToolKit application. Most of the
information in a ToolKit phrase file is the menus and alerts used by that
application.

Each ToolKit specific application must have its own phrase file to describe
the menus and alerts that are used in that application. The ToolKit has a
phrase file for the generic application. It is called PABC (it is the file
TK/PABC. text on your boot volume). PABC contains all the alerts that are
generated by the generic application. It also contains standard menus,
like the File/Print menu, that can be included in the list of menus in a
specific application's phrase file. All specific application phrase f11es
must include the generic application phrase file.

Phrase files are generated using the Workshop editor. If the name of your
specific application is 'FooSam', it will consist of at least the files:
HFooSam. text (Hain Program)
UFooSam. text (Clascal Interface)
UFooSam2. text (Clascal Implementation)
PFooSam. text (Phrase file for this application)
The easiest way to start editing a phrase file is to change an already
existing one, like a phrase file from a ToolKit sample application.

General format of a Phrase file:
We will show you the format of a phrase file using the following commented
phrase file. The working contents of the phrase file are in bold print.

Comment lines can be placed anywhere and nuitha'®
Blank lines are wnorped begt

The above line is the version number that must match the ‘phraseVersion’
Passed to TProcess. Conmence unless D is passed. This line must be present
If the version nusber does not match ‘phrasevVersion‘, the ToolKit will issue an alert.

2mtmm11mxsthemrofalenstohew use 3.

: Ihisabovenmxstmummrmpspacewforalensoftnisfne.

Try 2300 the first time. To get a more refined value for this number,

check the screen after running the TKAlert progran. TKAlert is used to convert
'PFooSan. text' file into a binary phrase and menu file.

The above line is a standard include command which must be present.
includes the file 'PABC. text' which contains standard ABC ases M this
point, you could also include standard Tool Kit Building Block Phrase
files using more include commands.

-—bv s b

m

Lissttarvel

: The sbove two lines should aluays be '1000°, then the name of your application

83 you want it spelled in messages to the user. Other application alerts cen

be included below here, numbered between 1001 and 32000. Me include a3 few examples
that show the foraat of an alert as well as the commenting conventions we use in
ToolKit phrase files:

: gaoc 1e = 1001; Constant declaration in your Ap.

; EOURE. TTKADSelection. CatchPass; The method(s) in vour AD that

Invoke this Phrase.
wm stop slert

Sorry, the psss was dropped.

: = 1002;

© PROCtSRE TTKApSelectTon Score: -

1002 note alert :

Far out, we nade a touchdoun.

: ohtouchnom is the PhraseNumber your Application would pass to the method

: 'mogeeis Note' to get this alert. There is further documentation on how this is
;. done below.

The ‘0’ 1ine Delow is ysed to denote the end of the alert information and

the start of the aenu mforna’uon for your application. Copy the format you see

here to set up your menus. The '1° nmbeloumtesthebemmi of the standard
‘File/Print’ menu. Start numbering your menus at 1, always the 'File/Print' menu, and
800 3s many MenuS as you need between 2 and 99. The number '2°, '3°, etc.. befoxe
each menu, is cslled the Menu 1D.

Py L TR R

-$PABC File/Print ‘ .
You can copy an entire meny fron another phrase file. The above line includes the
following menu from the PABC phrase file.
T —
et ASl my
Set ASIoe# 102

Sm & Put Ayt 103
Save & Continve#107
Awert to Previous version# 1oy

Fonot for Printer ... #104
Print ... 8105
Monitor the Printer ... 4106

‘u‘n‘l‘o"\o‘o‘n\."‘n.'.‘

smc Edit

You can derive part of a menu from an entire menu in another phrase file. The
*$PABC Edit’ line includes the stmdard part of the edit menu from PABC. This
vhnse file then adds ‘Clear’ and ‘Select All of Document’.

Ml”tm

oy 297
Paste/vedns
cleum

Seleet All of Document/AR204 ‘

Notice how the keyboard ‘Apple’ keys '/X /C,/V' are denoted for
: Cut, Copy and Paste. The number fonouim €aCh Rehu item "#201,4202.etc.”
: 1S the command number associated Vith that particular aenu iten.

Merus 10 and 11 are just semples of normal menus. The °-' character in menu 11
15 used to print & grey line in the menu DaT, when it is pulled down, dividing
Send to Back and Put Up Test Dialog.

.
M
,
.
S
L4
1
.

LR

Light Cray#1007
U'I“'.M

Srayé
Oark Cray#1009
Black1010

1"

Arrangenent 3 Dislogs
oring to Fronteid2v
SeM to BackR1021

m Up Test Dislog#1101

Dedug
Includes Debug menu from PABC.
N The meny sShould be present to use Tool Kit debugging aids to
: your application. It is given the nunber ‘99 sxmeywmntobe

rightmost menu.

snac BuzzWords

: Include Buzzilords menu from PABC, then add to it. All menus numbered greater
* then 99 are BuzzWord merus. BuzzWOIds are explained later in this document.
Create Dox#2000

Move Selections2001

This ‘0’ line indicates the end of the phrase file.

Setting up your Alerts: o _
The text of your alerts is placed in your phrase file as in the sample
phrase file above. The format for all alerts is as follows:

phinputError = 1003;
PROCEDURE TYourSelection. CheckInput:
1003 stop alert
The nunbder you entered vas 1 you must enter a number between "2 and “3.°L
Please enter that number now

The first two lines are comments that are put in the phrase file by
convention. The first line of the comment is a copy of the constant
declaration representing this alert in the interface of your Clascal unit.
Vhenever you want the message to appear., you pass this constant to the
appropriate process alert method. These methods are described below. The
second line of comment is the method in your application that uses this
alert. If more than one method uses it, we list each on a separate line.

The part of the alert (in bold for this explanation) is the actual working
contents of the alert in your phrase file. The first line of any alert
tells you the alert number, 1003 in this case, followed by the type of
alert. Specific application alerts can be numbered between 1001 and 32000.
There are many types of alerts. Each one is discussed below. The actual
text of the alert follows on the line(s) after the first line describing
the alert. The alert generator will automatically fit this text into the
alert box it provides, you do not have to worry about text wrap around.

The *“1°, *“2* and '“3' represent arguments to be passed to this alert.
Passmg arguments is done with the ArgAlert method described below. Notice
the *'“L’ editing symbol at the end of the first line in the alert text.
This ;.ells the alert generator to put the text that follows the '“L* on a
new line.

}P{ocess methods to access alerts defined in your phrase
ile:

PROCEDURE TProcess.ArgAlert(whichArg: TAlertArg: argText: $255);
ArgAlert Passes a text argument to the alert generator. The argument you
‘pass will be referenced in a future call to the alert generator. This
future call could be a TProcess. Ask, BeginWait, Caution, Note, etc.
whichArg can be in the range from 1 to 5. Here is a code example of how
ArgAlert is used:

{ Convert an entered number to 3 string. }
IntToStr(Entiiun, SInputium):
{ Pass the string parameter d the alert generator.)
Process. At lett 1. Inputium
{ Pass pmweter 10 the alert generator. }
nocm Mghlet *1°);
{ Pass 31d stri maetzr {0 the alert generator. }
Process. ArgAlert(3, °100°); ..
~{ call the alert generator with the alert that will use tms

argument. }
Process. Stop(phInputerror);
The info in the phrase file about phInputError is as follows:

nhlnbutfrtot = 1003;
: PROCEDURE IYourSelecuon CheckInput;
1003 stop alert
The nunber you entered was 1, ywmtentexamxbetneen “2 and 3.

If the number you entered was 255, the stop alert will print out:
'The number you entered was 255, you must enter a number between 1 and 100’

TProcess. Ask, BeginWait, Caution, Note or Stop are used to put & message
of one of the five different Alert types on the Lisa screen inside an

alert box. The alert box will come up as the front window on the screen
and will have your message along with a large black sign saying either

'?', Wait, Caution, Note or Stop depending on the type of alert you
requested. You can always reference argument 0 (“0) within an alert. It
is reserved for the name of your application and does not have to be passed
with a call to ArgAlert. The ToolKit gets the name from the start of your
phrase file as phrase number 1000 This is shown in the sample phrase file
above.

FUNCTION TProcess.Ask(phraseNumber: INTEGER): INTEGER;
The format for an Ask Alert in your phrase file is:

%sshrm = 1004;
EOURE ﬂKApSelecuon HakeAPaSS;
ma ask alert
.Ut to mess around?
1Yes 740 " Maybe

The message ‘Hey baby, Want to mess around?' will be presented in an alert
box. The sign in the alert box will contain a large question mark. The
three choices Yes, No and Maybe will be presented inside buttons on the
screen with Yes being the top button. TProcess.Ask will return the number
of the selected choice, 1=Yes, 2=No, 3=Maybe. The '!‘' choice denotes the
default. The default is picked if the user ignores the message and clicks
into another window than the alert box. If no *!‘ choice is mentioned,
there is no default, and the user must click one of the buttons explicitly
to dismiss the alert.

PROCEDURE TProcess.BeginWait(phraseNumber: INTEGER):
PROCEDURE TProcess.EndWait;

The format for a Wait Alert in your phrase file is:

phuai tForte =1

005.
. PROCEDURE TTKApSelection. AfterThePass;
1005 wait alert

Please be patient while [recharge ay batteries.

After calling process.BeginWait, the message 'Please be patient while I
recharge my batteries’ will stay on the screen till your process calls
process.EndWait. The sign in the alert box will contgin the word WAIT.

FUNCTION TProcess. Caution(phraseNumber: INTEGER): BOOLEAN:
The format for a Caution Alert in your phrase file is:

phFireCaution = 1

006,
: _ PROCEDURE TTKApSelection. MessageToSwokers:
1006_caution ok alert

Snoking is dangerous.

The message 'Smoking is dangerous.’ will stay on the screen till the user
chooses OK or Cancel. Inside the sign will be the word CAUTION. The
Caution function will return true if the user chose 0K and false if the
user chose Cancel. To permit user interface experimentation without Pascal
code changes, Caution alerts can be set up in five different ways depending
on how they are defined in the Phrase file. The options are:

option Sign & Buttons displayed Default
caution note NOTE 0K 0K
caution stop sTOP Cancel Cancel
caution ok CAUTION Cancel 0K

0K &
caution cancel CAUTION 0K & Cancel Cancel
caution insist CAUTION 0K & Cancel None (user must click a
button to dismiss)

PROCEDURE TProcess.Note(phraseNumber: INTEGER);

The format for a Note Alert in your phrase file is:

phBearwi thishote
; ___ PROCEDURE "KMSelectlm Bymelm
mn note alert

m: is the fmt tine we are teaching this class.
The message 'This is the first time we are teaching this class’ will

stay on the screen till the user chooses OK or clicks into another window.
This sign will contain the word NOTE.

PROCEDURE TProcess. Stop(phraseNumber: INTEGER);

The format for a Stop Alert in your phrase file is:

; phStoplt .= 1008;
im mmr YTWSelecuon YouSilly,
Rew, Stop that you silly’.

The message °‘Now, Stop that, you silly!‘ will stay on the screen
till the user chooses CANCEL or clicks into another window. This sign will
contain the word STOP.

FUNCTION TProcess.Phrase(error: INTEGER): INTEGER;

This function passes back the phrase number of the phrase associated with
a particular error number. An example of the use of this would be when
your process made an 0S call which returned an error, you could call
TProcess.Phrase passing it the error. TProcess.Phrase would return the
Phrase number of a message explaining that error or the general ‘unknown
error’ message if the Tool Kit did not know of the error. Your process
would then call process. Stop, Wait, Note or Caution, depending on the
error, and pass it the phrase number obtained from TProcess.Phrase. You
may subclass TProcess.Phrase adding your own Error to Phrase mappings then
have your subclass call TProcess.Phrase only for errors it doesn't
understand.

PROCEDURE TProcess. GetAlert(phraseNumber: INTEGER; VAR theText: S255);

This function passes back, in theText, the text part of the phrase
associated with phraseNumber. This provides a general mechanism for you
to store text in the phrase file that is used by your program in various
ways. This text does not have to have an alert associated with it. An
example of this is how the ToolKit stores various singular/plural words
within the phrase file. These words can be easily accessed by the ToolKit,
or your application, when needed and will also be easy to translate into
some other language. From the phrase file PABC:

902
H sih’ululpluul for seconds
second/seconds

m
: lar/plural for minutes
umte ninutes

904
; Ssingular/plural for hours
hour/hours

PROCEDURE TProcess. CountAlert(whichCtr: TAlertCounter: counter: INTEGER):
CountAlert can be used in combination with BeginWait and EndWait to give

the user continuous feedback on how much longer a particulasr task will

take. This can be shown in the following example:

; phiiai tForCharge = 1070

: PROCEDURE ﬁmselecnon cmroeuttenes

1070 wait alert

Please be patient while I recharge my datteries. L
T oh now "999% finished.

The wait alert is set up within your phrase file having a parameter of the
“gggy format. To put up the alert, call BeginWait(phWaitForCharge).
Immediately call CountAlert(9 {type of counter}, 0 {X done with charge}).
As the charge progresses, call CountAlert over and over again each time
you want the X done part of the Wait alert to change. The Wait alert will

start out reading: -

Please be patient while I recharge ny batteries.
I an now 0% finished.

The percentage amount on the second line will change each time you call
CountAlert. When you are finished and want to remove the alert, call
End¥ait. There can be up to three counters in a single Wait Alert. They
are identified by id's 7,8 & 9. For example:

Printing page “88 of "99.

PROCEDURE TProcess. RememberCommand (cmdNumber: TCmdNumber):

This method is called when you want to display the menu text of the last
command in an alert. To do this, call RememberCommend passing the command
number of the last command. Then the menu text of this command can be
referenced as a parameter to an alert that is set up as follows:

pcanotdo < 1065;

: EOURE TTKApSelection. Notlegal;
1066 stop alert _ o

You cannot do & c.t thls time.

The text of the command as selected from the menu, say it was ‘refresh’,
would be displayed in the alert at the position of the "“C'. For this
alert it would be 'You cannot do a refresh at this time’.

Setting up your Menus:
Within your phrase file, set up your menus in the format presented in the

sample phrase file above. In the interface of the Clascal unit for your
application, you will have a constant defined for each menu item in your
phrase file. This constant represents the command associated with the menu
item. The convention is that this constant begin with a lower case 'u’
followed by the name of the menu item it represents. Example:

Phrase File:
10

Shades
$hite#1006
Light Gray#1007
Gray#1008 :
Dark Gray#1009
Black#1010

Command Constant Declarations in the Interface of Your Application’s
Clascal Unit

ubhite = 1006;

uLtGray = 1007;
~ uGray = 1008

uDkGray = 1009;
uBlack -2 1010;

Hiow your Henus are used in your ToolKit application: ‘
When the user presses the mouse button in the menu bar, the ToolKit will
track the mouse. If a menu item is chosen, it will call your application
passing the command number chosen. Your application can then do & case
stament on the commands defined in Its Clascal Unit to determine if it will
handle this command or let a superclass in the ToolKit handle the command.
Example from TSomeSelectiorn. NewCommand:

BEGIN
NewCommand := NIL;

Function TSomeSelection. NewCommand(cmdNumber: TCmdNumber): TCommand;

6ASE cmdNumber OF

{ Commands my application handles }
ubhite, uLtGray, uGray, uDkGray, uBlack:
NewCommand : = TRecolorCmd.CREATE(....):
uSomethmﬁlse
NewCommand := TSomethingElseCmd. CREATE()

{ Let the ToolKn. or my window, handle thls command }
OTHERWISE
NewCommand := SUPERSELF.NewCommand(cmdNumber);
END;
END;

You will find out exact details of how to code the response to your menu

selections in the Toolkit Segments on Commands, Selections and Flow of
Control.

Using BuzzWords and the Methods in TMenuBar to modify your
menus on the fly:
Menus may be fixed, as most menus are, or they may have parameters that
change depending on the particular application or state of the application.
When using the ToolKit sample program you will notice that the second menu
item in the File/Print menu has changed from °‘Set Aside' to ‘Set Aside
LisaBoxer’. You will also notice that the first menu item in the Edit menu
has changed from 'Undo Last Change' to ‘'Undo Create Box®' or ‘'Undo Move
Selection’ depending on the last action done by the user.
These menus were chanqed by the ToolKit, with cooperation from the sample
application, by usmg the three methods described below.

FUNCTION TMenuBar.GetCmdName (cmdNumber: TCmdNumber: pName:
TPString):
This function returns true if cmdNumber is found in the menubar. If
cmdNumber is found then the string pointed to by pName is set to the
text of the menu associated with cmdNumber. If cmdNumber is not found
then pName is set to the empty string. If pName is passed in as NIL, it
is not modified in either case. This way you can use GetCmdName to find

out if a particular command number is there without paying the overhead
of copying a string.

PROCEDURE THenuBar.PutCmdName (cmdNumber: TCmdNumber: pName:
TPString):;
If cmdNumber is in the menubar, the menu associated with it is replaced
by the string pointed to by pName.

PROCEDURE THenuBar.) BuildCmdName(destCmd, templateCmd: INTEGER: param:
TPString):
The parameters destCmd and templateCmd are the command constants that
represent commands defined as menu items in your phrase file. These
command constants should be defined in the constant declaration part of
your clascal unit as described above. To, for example, change the menu
‘Undo Last Change' to ‘Undo Create Box', the ToolKit did the following:

1.0btain ‘Create Box' in tempString by calling
GetCmdName (lastCommandNumber, tempString). In this case,
lastCommandNumber will be equal to the constant uCreateBox that is
defined in the interface part of USample. When an undoable command
is executed, the ToolKit saves the command number of that command so
it can later get its menu text and insert it in the Undo menu.

2.Call BuildCmdName(uUndolLast, utUndolLast, tempString). The
constant ulndolast is defined in UABC and refers to the ‘Undo Last
Change' menu in PABC. This is the menu we want to change. The
constant utUndolLast is also defined in UABC and refers to the
template ‘Undo “Last Change”' defined in the Buzzwords menu of PABC.
This call to BuildCmdName will replace the variable part (the part
between the '“'s) with the text of tempString in this case 'Create
Box'. The new menu 'Undo Create Box' will now replace the destCmd
menu, in this case uUndoLast (‘'Undo Last Change').

If the text of templateCmd contains no '“'s, then the entire
templateCmd text replaces the normal text of destCmd. You can store
menu constants and templates in the BuzzWords section of your menu
definitions then later use these to modify menu items in your
application’s menus. BuzzWords are not automatically displayed in the
menu bar. They are used only to modify existing menus.

