Dialog
Building
Block

Toolkit Dialog Building Block

Dialog Boxes

A Dislog Box on the Lisa is a special window which, when
displayed, is as wide as the screen, and hangs down right
below the menu bar.

Dialog boxes can be used as alternatives to menu commands
wvhen an application needs to gather more detail from its
user than can be conveniently packaged in a menu.

A ToolKit application can put up a Dialog Box any time its
¥indow is active. The Dialog Building Block provides basic
structures sufficient to define dialogs, to display them,
to specify special behaviour within them, and to
interrogate them. _

Read No Further

The intended audience for this document is current or
prospective direct users of the Dialog Builoing Block. A
basic familiarity with the ideas behind the ToolKit and the
CLASCAL language is assumed. ToolKit }Jargon is unavoidable
in a document such as this.

Companion Documentation
The primary documentation for the Dialog Building Block

consists of three parts. I 1list them here in descending
order of importance and authority.

{al The source 1isting of the INTERFACE of UDialog

[b] The source 1istings of the ToolKit sample programs,
USample and USamDialog.

[c] Thisdocument, plus subsequent addenda/errata.

How To Do 1t

Simple use of the Dialog Building Block involves allocating
a TDialogvindow, installing a TDialog, and adding dialog
components (dislogImages) to the dialog to define its
display and behaviour.

In a typical dialog Box, an Application and its user agree
that whatever the user does up in the dialog box is not “for
real” until the OK button (or some other action button) is
pressed.

Each standard kind of dialog component carries with it some
basic assumptions about mouse- and cursor-behaviour. It is

Lisa ToolKkit Dialog Building Block - Z7 Rarch 1984 - page 1 of 18

Toolkit Dialog Building Block

an inherent property of the TCluster component, for
example, that one and only one of its checkboxes is selected
at any one moment. You do not programthis behaviour--you
select it by the very act of choosing to use a TCluster
component.

Thus, an application typically defines the form and
behaviour of a dialog box by the simple act of allocating
its components. The real action, whereby the Application
actually does something to its data structures, 1is
precipitated by the user's pressing a Button in the dialog.

The Application 1is able to capture control at
button-pushing time in either of two ways: [a] By
redefining TDialog.ButtonPushed, or [b] by associating a
command number with a button, and then fielding that
command in the NewCommand methods of its subclasses of
either TSelection or Twindow.

Formally, a Dialog is an object which resides in a
DialogvView, which in turnis installed in some panel of some
vindow. Beginning users may think of the Dialog, the
Dialogview, and the DialogWindow as confusingly
overlapping in function. 1It is hoped the explanations
below, combined with the streamlined functionality of the
NewStdDialog¥indow procedure, will let the novice user get
tnings done efficiently even before it is obvious what is
going on.

Each dialog box you use will involve at least objects of the
following classes:

[1] TDialogwindow: 1its ¥window. You usually create an
Instance of this class (rather than define a subclass),
and this 1s most expeditiously done by calling the
global function NewStdDialog¥indow, in which case you
also get a panel, a pane, and a dialogview all allocated
and properly installed.

[2] TPanel: the Panel in which the dialog takes place; no
easy way to subclass this, nor any clear justification
for wanting to do so. You get a panel for free if you use
NewStdDialog¥indow; otherwise, you need to allocate an
instance of TPanel yourself, in which case you can have
more control over its properties than the
NewStdDialog¥indow function affords.

[3) TPane: the Pane within the Panel. Allocated
automatically when the panel is created.

[4] TDialogview: the view installed in the panel. This
is —created automatically for you if you wuse
NewStdDialog¥indow.

[S] TDialog: A Dialog installed in the dialogview. You

Lisa ToolKit Dialog Bilding Block - 27 March 1984 - page 2 of 18

Toolkit Dialog Building Block

define either an instance of this class or else a
subclass of it. Hore than one Dialog can be installed in
the same dialogview (likely to be very useful for
programmed instruction and certain other specialized
applications, but irrelevant for most users).
Mote: TDialogs are the units which will be banked in 8 Tool Resource File vhen (if)
that module is completed and the Dialog Building Block is integrated with it.
Uhenever & dialog is allocated, you provide & 4-character "Key" to heve
parnanently assoclated vith the dialog in the Resource File. Unless and until
Tesource files are used, this “Key” plays no real role in mythigg. Still, it
nakes sense 1o assign & unique 4-character key to each different Dialog in your
applicetion, so that it will be sasier to switch over to Resourcs Files later.
(6] TDialogImage: the components of the Dialog:
checkboxes, buttons, etc. You create these by calling
methods of TDialog, such as TDialog.AddStdButton.
Nots: DialogInages were, in earlier versions of the Dialog Building Block, called
Conponents, and the terms “Dialog Inage”, “dialogInage”, “dialog Component™, and
“Component” will be used interchangeably in this document.

Typical use of adialogbox:

--Call NewStdDialog¥indow to define a new dialog box.

If you call the object you have just allocated “nyDialogitindow”, then the panel
and dialogView autonstically created for you are as follows:

y0islogiiindow .controlPanel is the panel.

nyDial .dialogViev is the dialogView installed in the panel (also
uchabgo of course &8s ayDialoglindov.controlPanel.view).

myDialoglindow .nainDialog is initially NIL, but is set to the first TDialog to be
installed in the dislogView.

-- Define your Dialog:

(1) Allocate an appropriate TDialog object.

If you are »not subclassing TDialog, you will ellocate an
Instanceof TDialog, and at the same time install it in your
dialogview with code 1ike:

myDialog := myDialogwindow.oialogview.AddNewDialog(‘XYZ');

If you gredefining your own subclass of TDislog, you will
need to install it in the dialogviev yourself. This can be
done by:

dialogiev := myDialoglindou.dialogViev,
dialogViev.AddDialog(MyDialog.CREATE(. ..dialogVien...)):

(2) One by orie, add the desired components to the Dialog.

If you are not subclassing TDialog., then you will do
this Jjust after your call to NewStdDialog¥indow,
probably in your vindow or selection‘s NevCommand.

If your &re subclassing TDialog, then you will do this
in your subclass’'s CREATE method.

Liss ToolKit Dialog Building Block - 27 March 1984 - page 3 of 18

Toolkit Dialog Building Block

DialogImages can be created and added to the dialog ina
single step using TDialog methods:

AddsStaButton ~--~----- to define a Button

AddstdCluster ------- to define a cluster of
checkboxes

AddStdfreeCheckbox--- todefine a free checkbox (one
which 1is not part of a
cluster)

AdaStdInputFrame ---- to define an Input Frame

AddStdLegend -------- to define a ‘Legend’ using any
Typestyle

AddSysiLegend -------- to define a Legend using

System Font

Once the dialog structures have been allocated, you can
at any point request your main ¥indow to put up the
dialog box, with a call to Tvindow.PutUpDialogBox. The
dialog box will be put up and business proceeds as
usual. Events that come in may be dispatched either to
the main window or to the dialog box, depending on the
settings of various dialogBox parameters.

To take down the dialog box, tell your main window to
TakeDownDialogBox. (This can also happen for you
automatically if you have said you wish your dialog box
to be automatically dismissed wunder certain
circumstances.)

Some thought needs to be given to whether a dialog box
will remain allocated even when not in use, or whether
it should be freed right avay after each dismissal. If
you choose the former route (saves time, wastes space,
gives sometimes-desirable continuity), you will need
to store a reference to the Dialog¥Window somewhere
(probably as a field in your main window). If you
choose to have the dialog structures go away after
dismissal, you can get thls behaviour by setting the
TDialogwindow's field "freeOnDismissal” to TRUE.

Identification of components: IDs and IDNumbers

Some dialogImage types, such as TButton, TCluster,
TInputFrame, and , have ‘'ID's associated with them for
identification. DialogImage 1ds can be either
string-valued (e.g. ‘Joe’) or integer-valued, or both.

String-valued ID's: Only the first 9 characters are
significant; all determinations are made in
upper-case, with up-shifting handled automatically.

Lise ToolKit Dialog Building Block - 27 March 1984 - page 4 of 18

Toolkit Dialog Building Block

Host dialogImages, when created in the ‘standard’' way,
take a character string called itsID as an argument.
-The upshifted version of the first 9 characters of this
ID will form the ID field of the dialoglmage
FOREVER--no matter how much or how often the text
associated with the dialoglImage changes.

Using 1dNumbers (INTEGERS) rather than ID's (STRINGS)
is naturally more efficient, and it is anticipated that
users will wuse the string-ID's 4nitially for
everything, and will later give idNumbers to any
dialogImages they wish to query, for efficiency.

The alternative of using an IDNumber which is also an
index into the Phrase File, from whence the text for the
object is obtained, (which was the technique used in
release TK7D of the ToolKit, before interactive Dialog
Layout and Resource Files existed), can still be used,
although the process is now more awvkward.

For example, if you have a checkbox whose legend you
vish to retrieve from the phrase as phrase number
xxZnak, then you can have code like:

process.CetAlert(xxZnek, thislD);

checkbox := cluster.AddAlignedCheckbox(thislD, FALSE);
checkbox . idNunber := xxZnak;

In this example, if you wanted to check whether this
particular checkbox is the one currently selected in
the cluster, you could find out with code like:

IF cluster.hitBox.idMumber = xxZnak THEN ...
OR alternatively:

CASE cluster.hitBox.idNumber OF
uzm: LE RN

Constructing a reference from an ID or an IINumber

Given the ID or IDNumber of a dialog component, you can
alvays obtain a reference to the object 1tself by using
one of the following methods:

FUNCTION TDialogImage.Obj¥ithID(id: S$255):
TD0ialogImage;

FUNCTION TDialogImage.ObjectwithIDNumber (idNumber:
INTEGER): TDialoglImage;

- ObJ¥itnhlD and ObjectwithIDNumber are defined for any
~ subclass of TDialogImage, but can be expected to return
" NIL unless called from a class which represents a
structured object with ‘chiloren’, such as TDislog
(children are its components), or TCluster (children
are its checkboxes).

Lise ToolKit Dialoo Buildina Elock - 77 March 1084 - nace S af 18

Toolkit Dialog Building Block

EXAMPLES:

(a) It SELF is o Dialo? vhich has g button whose ID is °NEXT’, then
TButton(SELF.Ob Wi thID('NEXT*)) is the button itself.

(b) If SELF is a Dialog which has & cluster whose IDNumber is 429, then
TCluster{SELF.0b jectiithIDNunber(429)) is the cluster itself.

(c) If SELF is a cluster which has a checkbox with idNumber 28, then
TCheckbox(SELF.0b jectiithIDNunber{29)) is the checkbox itself,

Determining whether a given component has a given ID

If myDialogImage is a some dialog 1image, one can
determine whether it has numeric ID 24 (for example) by
Just testing whether myDialogImage.idNumber = 24.

To test for a string-valued ID, however, it is better to
call the method TDialoglImage.HasID, since this will
adjust for unequal length strings and for upper-case
issues. Thus, to see if myDialogImage has "Jones" as
its 1D, you can look at the value of
myDialogImage.HasID('JONES'). ‘

The Standard Dialog Components

TLegend

This type of dialog image consists of one 1ine of text.
Hore than one typeStyle can be used in the line, but
typically one deals with a single typeStyle for the
entire Legend. 1Indeed, all the standard ways of
creating Legends involve specifying only a single
typeStyle; font and face changes are usually brought
about through interactive editing.

Legends are used in the Dialog Building Block wherever
text needs to be displayed, such as inside Buttons,
alongside Checkboxes., as the prompts in Input Frames.
and in Legend Headings (the standard kind of heading
avallable through the Dialog Building Block). Legends
can also be used directly todisplay any desired text on
the screen.

Creation:

FUNCTION TDialog.AddStdLegend(itsID: $255; itsXLoc,
itsyLoc: LONGINT; 1tsTypeStyle: TTypeStyle):
TLegend;

“"1tsID" is a string which will form the characters of
the legend: the baseline of the legend will be at
(1tsxLoc, itsYLoc) and all characters will be in the
typestyle given by itsTypeStyle.

Lisa Toolkit Dialog Building Block ~ 27 March 1984 - page 6 of 18

Toolkit Dialog Building Block

FUNCTION TDialog.AddSysLegend(itsID: $255; itsXioc,
itsYLoc: LONGINT): TLegend.

itsID is a string which will form the characters of the
legend; the baseline of the legend will be at (itsXLoc,
itsyLoc) and all characters will be in system font.

FUNCTION TLegend.CREATE(object: TObject; heap: THeap.
itsChars: S255; itsview: Tview; itsLocation:
LPoint; 1tsTypeStyle: TTypeStyle): TlLegend;

This 1s the required CREATE method, which you might
want to call if you are adding a legend to a dialogImage
which is nota TDialog.

Other TLegend methods which may be called by
applications:

PROCEDURE TLegend.ChangeToPhrase(newPhrase: INTEGER):

Changes the contents of the legend to the string
obtained from the phrase file as phrase number
newPhrase.

PROCEDURE TiLegend.ChangeToString(newString: S$255);

Changes the contents of the legend to the string
newString.

PROCEDURE TLegend.GetString(VAR itsString: $255);
Retrieves the current contents of the legend.

An aside about System Font:

System Font is used for the menu bar, for vindow titles
on the desktop, and can also be used in Dialogs for
display of static text (NOT for user-input of text),
such as in Buttons, Checkboxes, etc.

CAUTION: any attempt to send any text in System Font to
the dot-matrix printer in anything other than low-res
portrait will blow up Lisa Printing. DO NOT DO IT, YOU
¥ILL BE SORRY. ‘

For this and other reasons, we regard the worlds of
System Font and of 8ll other fonts as two disjoint
kingdoms. Although not a8ll the desired protections may
yet be in place, users are cautioned that mixing system
and non-system fonts ln the same TLegend may cause
problems.

Lisa ToolKit Dialog Building Block - 27 March 1984 - page 7 of 18

Toolkit Dialog Building Block

BUttons

TButton 1s the dialogImage subclass which handles all
Buttons. A Button is a rectangular shape with rounded
corners, which has some text inside it, and is usually
used to request some kind of action; common examples
are the OK and CANCEL buttons in Lisa dialogs. Other
examples are the NEXT button in LisaCalc. As such, the
functions of Buttons and of Menus overlap.

You are not expected to subclass TButton, but rather to
create objects of type TButton itself; when abuttonis
“pushed” by the user (mouse comes UP inside the button,
having gone down either inside the button or somevhere
outside other than within editable text), you get
control through your TDialog.ButtonPushed method.

Or, if your button has a command number associated wvith

- 1it, the generic TDialog.ButtonPushed will tell your

Creating

main window to PerformCommand of your main window's
NewCommand object for the command number associated
with the button that was pushed.

Buttons, and adding them to Dialogs

To add an OK button, you call the TDialog method
AddOKButton(noCmdNumber).

To add an OK button, upon the pressing of which you want
your main Window's NewCommand to be called with command
number 35, you call TDialog.AddOKButton(35).

To add a CANCEL button, you call the TDialog method
AddCancelButton(cmdNumber); wusually, you will set
cmdNumber to noCmdNumber, since you don't want to do
anything if the dialog is cancelled.

AddOKButton and AddCancelButton both place their
buttons at a likely spot near the right of the dialog
box. You can move them anywhere you wish by telling the
buttons to offset to the desired location. (Or you can
use interactive dialog layout to get themexactly where
you want).

If you use both AddOKButton and AddCancelButton, you
c?n be assured that the two buttons will be the same
slze.

Exanmple: Allocats an 0K button, and l1ocate its top-left corner st (480, 30):
SELF . AJIOKBut ton{noCadiunber) :

SetLPt{nevlocation, 480, 30);
TButton(SELF .0b Wi thID(okString)).Of fsetTo(newlocstion);

Lisa ToolKit Dialog Building Block - 27 March 1984 - page 8 of 18

ToolKit Dialog Building Block

Buttons other than OK buttons can be created using:

"FUNCTION TDialog.AddStdButton(itsID: S$255; itsXLoc,
itsYLoc: LONGINT;
itsCmaoNumber: TCmdNumber): TButton;

This allocates a standard button, using ‘standgarg’
settings for button metrics; it addos the button to
the 1ist of components of the dialog, andg also
returns a reference to the button in case the client

might have some use for it.

Example:

sameSizedButton: TButton.

nextButton := SELF.AddStdButton{ Next®', 240, 160, NIL, noCmadNunber);
prevButton := SELF.AddStdStdButton(‘Previous’, 240, 200, nextButton, noCadNumber);

This defines a two buttons, one of which says *Next’, is located at (240, 160), and
has no connand nunber associated with it. The other button says ‘Previous*®, is the
sane size as the “Next” button, and is Jocated at (240, 200).

FUNCTION TDialog.AddButton(itsID: S255; itsLocation:
LPoint; itsMetrics: TButtonMetrics:
sameSizedButton: TButton, itsCmdNumber:

TCmaNumber): TButton;

This allocates a button, using the button metrics
supplied as a parameter. If you are dissatisfiead
with anything about the way AddStdButton does
things, you can create your own ButtonMetrics and
create your buttons using AddButton rather than

Adastasutton.

Anatomy of a Button

A button’'s properties are governed by

[a] A set of "ButtonMetrics™. TButtonMetrics is a
record with the following fields:

height:

INTECER
INTEGER

INTEGER
INTEGER
INTECER
INTEGER
INTEGER

PenStats

The height of the button

The h-conponent of the button’s roundRect'’s
curvature. 4

The v-conponent of the button‘s roundRect'’s
curvature. '

The typestyle to be used for the text inside the
button,

Nunerator for expansion factor used in computing
vidth (see bolos

Denoninator for expansion factor used in
conputing width. (ses below)

The ebsolute ninimun width acceptable for the
button, no natter how short fts text.

The state the Pen should be in when drawing the
button’s youndRect.

[b]) A chain of “"same-sized Buttons®

Lisa ToolKit Dialog Building Block - 27 March 1984 - page 9 of 18

Toolkit Dialog Building Block

If more than one button appears in the same dialog,
then the user may wish to have a number of them have
the same size, for @sthetic reasons. To achieve this,
every button has a ‘nextSameSizedButton' field, which
is another button which will always be kept the same
size as it. Any number of buttons can be linked
together in a same-sized-button chain.

Essentially, each button has a ‘minimum width', which
can change as its text changes. It is a function of
the width of the text actually in the the button's
Legend at the moment, and of the expandNum/expandDen
fields of TButton (which, when divided by each other,
yield the factor by which the button must exceed its
legend in width), and of the relevant buttonMetrics'
absHinvidth field. :

A global variable, stdButtonMetrics, contains
‘standard’ settings for button metrics; users may use
this record as a point of departure if insisting on
departing from the standard.

Button-related methods of TDialogView

NOTE: Since users normally do not subclass TDialogView,
the following methods are most often just invoked in
their standard ToolKit form rather than redefined in a
subclass.

PROCEDURE TDialogview.AbandonThatButton;

This is how to turn off button highlighting, which will
still be on at the time ButtonPushed 1s called. Do NOT
try to have done with a pushed button just by telling it
to unHighlight, since the dialogview's data structures
vill not know about it.

PROCEDURE TDialogView.ButtonPushed(button: TButton);

This procedure turns off the button highlighting,
takes down the dialog box, and if the button which was
pushed has a command-number associated with {t, it
tells the main window to PerformCommand that command.
Most often, this method ends up being called from the
client's own TClientDialog.ButtonPushed method by way
of a SUPERSELF call, as the 1ast thing done in a dialog.
See TDialog.ButtonPushed discussion below.

PROCEDURE TDialogView.PushButton(button: TButton);

This method can be called either automatically by the
Dialog Building Block (such as when default dismlssal
of a dialog box is indicated) or by the application.
This procedure passes the request on to the Dialog in

Lisa Toolkit Dialog Building Block - 27 Rarch 1984 - page 10 of 18

Toolkit Dialog Building Block
which the button resides.

PROCEDURE TDialogview.SetDefaultButton(button: TButton);

Call this method at aialog creation time to establish
which button in a dialog view is to be the ‘Default’
one. The default button is distinguished on the screen
by being drawn with a thicker pen. Default dismissal of
@ dialog is triggered by a number of conditions,
depending on the settings of the response-variables in
the dialogBox (dialog¥indow). 1If you set a default
button in a dialog for which default dismissal is
impossible, it will be a wvaste of time.

PROCEDURE TDialog.SetDefaultButton(button: TButton);

This Just tells the parent dialogvView to set its default button to
the incicated button. You cancall this or TDialogview's method, to
the same effect.

Checkboxes

A checkbox (class TCheckbox) is a dialoglImage which
consists of a 1ittle rectangle which iseither selected
(f%llsd with black) or not selected (filled with
white).

Most uses of checkboxes involve having them grouped
together into a cluster--see belov. But checkboxes can
also be used on their own, so-called ‘Free Checkboxes',
and to create these, you cancall:

FUNCTION TDialog.AddStdFreeCheckbox(itsID: $255; itsXLoc,
itsYLoc: LONGINT): TCheckbox

Exanple: checkbox := SELF.AJIStdFresCheckbox(‘Fried Fish®, 250, 40):

This installs a fres checkbox into & dialog, with the legend ‘Fried Fish'
and locatad st (250, #0). The actual box dimensions, and the space
:i.um mt.:rcdbox and its legend, and the choios of font for the legend, are

FUNCTION TDialog.AddFreeCheckbox(itsID: S$255; itsXLoc,
itsyLoc: LONGINT,; box¥idth: INTEGER; boxHeight:
INTEGER; wantiLabel: BOOLEAN; labelOffset: Point;
itsTypeStyle: TTypeStyle): TCheckbox

- This is the most general way to add a free checkbox,
-allowing you complete control over all the oisplay
parameters.

Exarmple I1:

NakeTypeStyle(fartiodern, sizel2Pitch, [bold]. myTypeStyle):
SetPt(nylabelOffset, 10, -3):
checkbox := SELF.AdOFreeCheckbox(‘Fried Fish', 250, 40, 20, 11, TRUE, nylabelOffset,

ayTypeStyle);

Lise ToolKit Dialog Building Block - Z7 March 1984 - page 11 of 18

Toolkit Dialog Building Block

This installs a free checkbox into a dialog, with the legend ‘Fried Fish’' and located
at (250, 40). The checkbox itself will be 20 x 11 pixels, and the legend’s baseline
will be located 10 pixels to the right of the box and 3 pixels above the bottoa of the
box; the legend will be in 12-pitch modern type, bold face.

Example II:

NakaTypeStyle{famiodern, sizel2Pitch, [bold]. myTypeStyle);
checkbox := SELF.AdAFreeCheckbox(nolD, 400, 120, 25, 17, FALSE, zeroPt, myTypeStyle);

This installs a large free-checkbox into a dialog, with NO legend. Its top-left
corner is located at (400, 120), and the box itself is 25 x 17 pixels,

FUNCTION TDialog.AddBigFreeCheckbox(itsID: S$255; 1tsXxLoc,
itsYLoc: LONGINT): TCheckbox

This is 1ike AddStdFreeCheckbox, except it defines 8
much bigger box, with a larger font used for the
legend.

To determine whether a given free checkbox is currently
selected (ON; filled with black) or not (OFF,; fillea
with white), you look at its isSelected field.

Exanple III:
To detsrnine whether the checkbox whose ID is ‘Extrs Milk’ is on or not,

IF TCheckbox(SELF.ObWithID("EXTRA MILK')).isSelected THEN
{it's on — do what needs to be done)

ELSE
{it’s off — act accordingly)

Clusters

A cluster (class TCluster) is a dialogImage which
contains a 1ist of checkboxes. In a cluster, one and
only one of its checkboxes is selected at any given
moment. When a cluster is told to select a particular
checkbox, it first deselects its currently-selected
checkbox.

TCluster has a field hiLitBox which indicates which of
the boxes 1s currently selected (highlightea). To fina
the checkbox which is currently selected in myCluster,
look at myCluster.hiLitBox; to determine action based
on shich checkbox is chosen in a cluster, you can CASE
on myCluster.hiLitBox.iaNumber if you use ID Numbers.
If you use string-valued ID's only, then you can have
code of the form:

box :3 myCluster.hilitBox;
gﬁm.mro('msv THEN ...

IF box.HasID{‘Lenons’) THEN ...
.w'..

Lisa ToolKit Dialog Building Block -~ 27 March 1984 - page 12 of 18

Toolkit Dialog Building Block

To create a typical cluster, use the TDialog method
AdaStdCluster; this creates the cluster, but it is at
the moment empty. Now give it its desired checkboxes,

by using any of the following methoas:

FUNCTION TCluster.AddAlignedCheckbox(itsID: $255;
selectThisOne: BOOLEAN): TCheckbox

This is the easiest way to add a checkbox to a cluster;
you give the text to be shown as the first argument, and
for the second one you specify whether this should be
the box initially selected in the cluster. ,

Example:
cluster := SELF .AddStdCluster(‘Fruit’, iloiog 200);

.

clusur.ﬁddﬂlignewheckboxz‘mms |
cluster.AddAlignedCheckbox(‘Lenons’, FALSE

This adds & cluster which has two checkboxes, reading "Oranges® and ‘Lemons’, to the
dialog, with the Oranges box being selected. The cluster's location (100, 200) becomes
the location of the first checkbox; the second checkbox is placed to the right of the

first, st & standard distance.

(note the ID of the cluster, °Fruit’, will not show up in the dialeg. butiit is a name by

which the clustar is known for the purposes of identification [e.g., if one did not
store & referencs to it, one could determine it by SELF.gbjuithID ‘Fruit')), and wild

' appear as the cluster’s title during interactive layout.

CAUTION: AddAlignedCheckbox, &t the moment, keeps adding off to the right, taking no account
This could change later, if denand is heard. See the

of the right edge of the screen.
exanple on the next page under TDialog.AddRowOfboxes for an easy way to circuavent the
problen by simply individually positioning the first checkbox of sach new row.

.
.
.

FUNCTION TCluster.AddCheckbox(itsID: $255; itsLocation:
LPoint; boxwidth: INTEGER; boxHeight: INTEGER;
wantLabel: BOOLEAN; labelOffset: Point; itsTypeStyle:

TTypeStyle; selectThisOne: BOOLEAN): TCheckbox

This is the most general way to add a8 checkbox to a
cluster, allowing you complete control over 8all the

display parameters.

PROCEDURE TCluster.AddRowOfBoxes(numberO0fBoxes: INTEGER;
startingIDNumber: INTEGER; box¥idth: INTGER; boxHeight:

INTEGER; boxSpacing: INTEGER),
This allows you to add a whole rov of checkboxes in one
step.
. Exanple:

" cluster .AddRowOMBoxes(12, 201, 20, 14, 25):

This adds 12 checkboxes to the cluster. They are given ID numbers 201 through 212; each
box is 20 x 14 in size, and boxes are 25 pixels spart.

Lisa ToolKit Dialog Building Block - 27 March 1984 - page 13 of 18

ToolKit Dialog Building Block

FUNCTION TDialog.AddRowOfBoxes(itsID: S$255; itsXLoc,
itsyLoc: LONGINT, numberOfBoxes: INTEGER;
startingIDNumber: INTEGER; boxWidth: INTGER; boxHeight:
INTEGER; boxSpacing: INTEGER): TCluster:

This TDialog method allows you to allocate a cluster
and stuff it full of a rov of (unlabeled) checkboxes in
one step (note that by comparison, to use
TCluster.AddRovOfBoxes, you need first to have defined
the cluster)

Exanple: (SELF is @ TDialog here)

cluster := SELF.AddRowOfBoxes('Vibdle’, 20, 30, 6, 101, stdBoxWidth, stdBoxHeight,
stdBoxSpacing);

SetLPt(secondRow, 20, 50);

checkbox := cluster.AddCheckbox(nolD, secondRow, stdBoxWidth, stdBoxHeight,
stdBoxSpacing, FALSE, zerolPt, sysTypeStyls, FALSE):

checkbox . idNunber := 107

cluster .AddRowOfBoxes(S. 108, stdBoxWidth, stdBoxHeight, stdBoxSpacing):

This adds 2 rows of 6 checkboxes esch to the cluster. They are given ID numbers 101
through 112. The first checkbox of the second row has to be defined in greater detail
so that its new location can be specified.

Input Frames

An Input Frame 1s a dialogImage which allows the
application to obtain character input from its user.
Its basic elements are:

[a) A Prompt -- this is a TLegend, and forms the request
for input (e.g. "Please Type Your Name Here:"); this
involves a location, a typestyle, and the actual text
to be shown.

[b] Input specifications: ®here the input should show
up on the screen; what typestyle should be used for
echoing characters typed; and how many characters can
be accepted.

[c] Borders -- how far beyond the prompt and input
areas should the catchement area for mousepresses be?
(inessence, this yielas a hitRect).

The "Standard” input frame uses system font for its
prompt, 12-pitch modern type for its input font, and
has a8 standgard Borders setting, which is 11lustrated in
the sample programs.

Important methods related to Input Frames:

FUNCTION TOialog.AddStdInputfFrame(itsID: $25S;
itsxtoc, 1tsyLoc: LONGINT; maxInputChars:
INTEGER): TInputFrame;

Use this method to create a Standard input frame, wvith
prompt in System Font, input characters echoed 1in

Lise ToolKkit Dialog Building Block - 27 March 1984 - pege 14 of 18

Toolkit Dialog Building Block

12-pitch Hodern. The location you provide is for the
baseline of the prompt; the location of the input area
~is automatically determined.

FUNCTION TDialog.AddInputFrame(itsID: $255;
promptLocation: LPoint; promptTypeStyle:
TTypeStyle; inputLocation:LPoint;
inputTypeStyle: TTypeStyle; maxInputChars:
INTEGER; itsBorders: Rect; drawlnputLRect:
BOOLEAN; drawHitLRect: BOOLEAN): TInputFrame;

Call this method if AdoStdInputFrame does not serve
your purposes.

PROCEDURE TDialog.SelectInputFrame(inputFrame:
TInputFrame);

This method, when called, replaces the selection
associated with the dialog's panel witha ‘Select All’
on the user-input contents of the input frame.

PRDCEDUR; TInputFrame.SupplantContents(newContents:
§255);

Call this method to replace the ‘'user- 1nput' in the
input frame with the specified string.

PROCEDURE TInputFrame.GetContents(VAR contents: $255);

Call this method to find out what the current
user-input is.

Interactive Dialog Layout

vhenever a dialog box is up, if you are running a
version of software built with debugging turned on, you
can select ‘Edit Dialog’' from the DEBUG menu, and the
current version of your dialog box will temporarily be
replaced by an editable counterpart.

during interactive layout, you have the opportunity to
change two things:

- [a] Locations of things -- do by grabbing the tabs
provided and dragging them to where you want them to be,
then letting up. Use UNDD to reverse the operation.

[b] The textual content of any TLegend ob ject, whether
in a button, a checkbox, an inputfFrame, or by itself.

Layout is accomplished through the use of ‘Layout

Lise ToolKit Dialog Building Block - 27 March 1984 - page 1S of 18

Toolkit Dialog Building Block

Boxes', which are 1ittle boxes with 1ittle title tabs.

Dialoglmages which have ID's display those ID's in the

title tab; dialogImages which do not themselves have

{D : §suicn as TLegends) have a smaller title tab withno
ext in it

It is important to realize that what shows up in the
title table is the ID of the dialogImage &s J¢ Is
aerlned in your source progrem.

HOW TO STOP EDITING A DIALOG -- VERY IMPORTANT

The only way to stop editing a dialog is to select ‘Stop
Editing Dialog' from the DEBUG menu.

WHY DO INTERACTIVE EDITING?

The 1dea 1s that the results of the editing are stashed
in a Resource File. Subsequently, when you wish to
create another dialog of the same sort, you get it from
the resource flle rather than defining it with
TDialog.CREATE--but all of the methods of TDialog that
you have redefined or accepted will apply as usual.
This mechanism has however not been completed, and
until it is, interactive Dialog Editing is of limited
use.

If you have a dialog of the sort which is freed and the
reallocated each time it 1s needed, then interactive
dialog editing without resource files is nonsense for
you. If you keep a dialog around once it is allocatea,
then even in the absence of resource files, you can have
the results of your interactive editing saved by making
a Stationery pad of the document you were working on
when you did the editing; then all documents built from
triwat Stationery pad will show the edited version of the
dialog.

Multiple Dialogs in a DialogView

A dialogview can have any number of Dialogs installed
in 1t, any of which can be either active (visible and
playing a role in both output and input) or inactive
(not displayed and not flelding input, but fully
allocated and vaiting in the wings).

¥e have already seen how an instance of TDialog can be
added to a dialogview using TDialogview.AddNewDialog,
and how an already-allocated object can be added to a
dialogview using TDialogview.AddDialog.

In addition, the following three methods of
TDialogviev are of interest to users wishing to use
multiple dialogs in the same dialog view:

Lisa Toolkit Dialog Building Block - 27 March 1984 - page 16 of 18

Toolkit Dialog Building Block

PROCEDURE {TDialogview.}ActivateDialog(dialog: TDialog: whichiay: BOOLEAN):
PROCEDURE {TDialogview. }RenoveDialog(dialog: TDialog; andFree: BOOLEAN):
PROCEDURE {TDialogView.}ReplaceDialog{oldDialog, newDialog: T0ialog):

Miscellaneous notes, in no particular order

[{1] Sometimes the application wishes to gain control
at the moment & checkbox is hit, so that (for example)
it can change the display. To do this, it should
implement TDialog.CheckboxHit(checkbox: TCheckbox;
toggleDirection: BOOLEAN). The default CheckboxHit
method of TDialog does nothing other than pass the
message up the line to its Dialogview, whose default
CheckboxHit method does nothing.

Your own implementation of THyDialog.CheckboxHit will
presumably determine which checkbox was hit, and which
cluster that checkbox was in, 1f any, and take
appropriate action to modify the display or whatever.
The "Print Hanager" sample dialog in USamDialog gives
an example.

[2] The global procedure NewStdDialog¥indow gives you
a dialogvindow with one panel. To get =8
multiple-paneled dialog box, you can either call
NewStdDialogvindow, and then tell that one panel to
divide into two by using TPanel.Divide (this should
vork fine, provided that the properties of the first
panel created automatically suit the requirements of
at least one of your target panels), or you can call
TDialog¥indow.CREATE in the first place, in which case
you vill need to create all your panels explicitly (the
first with TPanel.CREATE and the rest with
TPanel.Divide). The "Headings and Margins...® dialog
brought up from the Page Layout menu gives an example.

{3] Subclassing Toialogview -- this is possible, and
ndeed is illustrated in the “"Demo Dislog” in the
sample program USamDialog. In order to allow
dialog-like behaviour to coexist with non-dialog
behaviour, a special set of TDialogview methods, all
with names starting weith °“X*, are available for
redefinition in your subclass of TDialogview.

These methods are: XDraw, XCursorAt, XHousePress,
XMouseHove, and XMouseRelease. The default
implementation of all of these methods is empty.

" XDraw 1s called from TDialogvViev.Draw; the idea is that
-+ @all the “dialog®™ parts of your diaslogviewv are drawn
~ automatically, and then your XDraw is called in case

you wish to add something else to the display.

The other 4 methods, relating to mousing, are all
‘escapes’', called only when no dialog component lays

Lisa ToolKit Dialog Building Block - 27 Rarch 1984 - page 17 of 18

Toolkit Dialog Building Block

claim to the mouse. Thus, if the mouse goes down in a
Dialogview, first all the components of all of its
active Dialogs are given a chance toclaim the mouse; if
none does, then XHousePress is called to give the
non-dialog portion of your DialogView a chance to claim
the mouse.

[4] Dialogview can be shown in an application’s main
window as well as up inadialog box. The application in
this case needs to do a bit of extra work to assure that
the "Edit Dialog®" menu command in the DEBUG menu is
suitably enabled and respected. The sample program
USamDialog i11lustrates this use.

[5] The dialog component "TPicObject® is implemented
but totally untested and not usable without some effort
and risk. The idea of this component is that it can be
filled with a QuickDraw picture, by using PASTE at some
suitable moment when some suitable thing is selected.
This remains a good idea which can't really be used on
the first release of the ToolKit.

[6] It is possible to use dialog boxes on the ToolKit
without using the Dialog Builaing Block. Class
TDialogBox 1is defined in the Generic Application
(“"ABC's"), but serves largely as a front-end to the
Dialog Bullding Block; anyone wanting to use dialogs
but not wanting to use the ToolKit's Dialog Building
Block could subclass TDialogBox in some other way.
This would involve considerable reinvention of the
wheel however. ‘

{7] It is possible to use the Dialog Building Block to
display a dialog in a panel of an application's main
vindow rather than up in a dialog box. The sample
program ‘SamDialog’ illustrates this.

[8] Each Dialog View operates in one of two ways when it
comes to mousing among free checkboxes (i.e.,
checkboxes which are not members of a cluster). The
default is that each time the mouse, while down, is
dragged through the domain of a free checkbox, that
checkbox is toggled. Some users may want to have a
different kind of behaviour, whereby once the mouse has
toggled one free checkbox OFF (for example), it will
only ever be able to turn other ON boxes OFF -- {.e., it
becomes a paintbrush which only paints boxes OFF. Of
course, corresponding behaviour will happen if the
first free checkbox the mouse encounters once down 1s
one which is currently OFF; in this case, the mouse
would become an instrument for painting OFF boxes ON,
and doing nothing with already-ON boxes. You can
obtain this alternative behaviour by setting the
TDialogview field "paintFreeBoxes” to TRUE.

[9] Be sure to get the 1atest arrata shest for this docunent fron Barry Haynes.

Lisa Toolkit Dialog Building Block - 27 March 1904 - page 18 of 18

e

To Lisa Toolkit users

From: Lo -

Suject: Dialog Builging Block Documentation: Addenda and Corrigenda
Date: 9 April 1984

Translatable Dialogs

when it recently became known that Resource Files would not be a part of the Spring
Release of the Lisa Toolkit, the Dialog Building Block, having based its designon the
assumption that the results of interactive dialog layout would be savable in a Resource
File, found itself in the awkward position of lacking any convenient way for text
withingialogs tobe translated into other languages.

Since ToolKit interfaces have now been frozen, all facilities described in the
document “ToolKit Dialog Building Block™ dated 27 March 1984 have to be retained
intact, so away out of the no-Resource-File imbroglio has been found by adding several
nev Methods to the Interface, while retaining the full functionality of all methods
described in the 27 Harch document. These new methods basically Qo back to the TK7D
design of getting text for dialog components froma Phrase File, but add the ability to
specify locations as well as textual content in the Phrase File.

No changes have been made to the interface of any existing methods, and existing code
calling the Dialog Building Block should continue to work as 1s. ‘

To use the new phrase-file-based methods, you place entries in the Phrase file using
the following syntax:

<phrase number>
<text> & <h-coordinate> , <v-coordinate>

For exanple, consider the following entry in a Phrase File

228
Next Question ® 140, 220 : ~

This associates the IDNumber 228 with the text “Next Question” and with the location
(140, 220). The “8"-sign is the delimiter signalling the end of the text and the
beginning of the location. The two locations must be separated by a comma. Spaces are
optional before and between. ~

1f inanapplication’s source program the igentifier phNextQuestion is declared tobe a
CONST w_m value 228, then the call:

button := dialog.NewButton(phNextQuestion, stdButtontetrics, prevButton,
- uNextQuestion);

will add & button to a dialog, putting the text “Next Question® inside the button.
Standard button metrics will be used, and the size of this new button will U
synchronized with the size of a previously created button called “prevButton®; *
top-center point of this new button will be located at (140, 220) in itsview. T

ToolKit Dialog Building Block - Addends ¢ Corrigenda - 9 RApril 1984 - poge 1 of 3

button will have phNextQuestion (228) as its igNumber, and when it is pushed by the
user, the main window's NewCommand will be called with uNextQuestion as the
command -number argument .

In similar ways, all the other standard dialog components can now be created such that
they get their text and locations fromaphrase file, and use the index into the phrase
file as the IDNumber for the component. ¥here necessary, some methods get only the text
(such as TCluster.NewAlignedCheckbox), or only the 1location (such as
TDialog.NewCluster).

The complete 1ist of new methods is as follows:
(A) New Hethods of TDialog

FUNCTION TDlalog.NewButton(itsPhrase: INTEGER; itsHetrics: TButtonHetrics;
sameSizeaButton: TButton; itsCmoNumber: TCmONUTDET):
TButton;

Text and locations obtained from phrase file; use stdButtonfetrics for itsMetrics to
get standard button metrics.

FUNCTION TDialog.NewCluster(itsPhrase: INTEGER): TCluster;
Location obtained from phrase file. Mo text involved

FUNCTION TDialog.NewFreeCheckbox(itsPhrase: INTEGER; boxwidth: INTEGER;
boxHeight: INTEGER; wantlLabel: BOOLEAN; 1abelOffset: Point;
1tsTypeStyle: TTypeStyle): TCheckbox;

Text and location obtained fyon phrase file.

FUNCTION TDialog.NewInputFrame(itsPhrase: INTEGER; promptTypeStyle: TTypeStyle;
inputOffset: Point; inputTypeStyle: TTypeStyle;
maxInputChars: INTEGER; itsBorders: Rect; drawlnputLRect:
BOOLEAN; drawHitlLRect: BOOLEAN): TInputFrame;

Text and 1ocation for the pronpt obtained from phrase-file; “inputOffset” parametar tells
how far to move fron the end of the prompt to find the location of the “input” rectangle.

Locations of both the prompt and the input rectangle indicats where the Jeseline of the
first character is or would be.

-FUNCTION mialog.uelffga'a(itsphrase: INTEGER; itsTypeStyle: TTypeStyle):
egend;

Text and location obtained fron phrase-file entry. Use sysTypeStyle for itsTypeStyle to
get the legend in Systen Font. Othervise, use global procedure MakeTypeStyls (defied in
UDrow) to construct & typeStyle to pass to this method, of to any method which calls for a
TTypeStyle paraneter).

FUNCTION TDialog.NewRowOfBoxes(itsPhrase: INTEGER; number0fBoxes: INTEGER;
startingIONumDer: INTEGER; boxwiath: INTEGER; boxHeignt:
INTEGER; boxSpacing: INTEGER): TCluster;

Location of the first box obtained fron phrase file. Mo text involved.

Toolkit Dialog Building Block - Addenda & Corrigenda - 9 April 1964 - pege 2 of 3

(B) New Hethods of TCluster

FUNCTION TCluster.NewAlignedCheckbox(itsPhrase: INTEGER; selectThisOne:
BOOLEAN) : TCheckbox;

FUNCTION TCluster.NewCheckbox(itsPhrase: INTEGER; boxwidth: INTEGER: boxHeight:
INTEGER; wantlLabel: BOOLEAN; labelOffset: Point;
itsTypeStyle: TTypeStyle; selectThisOne: BOOLEAN):
TCheckbox,

while it is true, as stated above, that no changes are necessary to any exising code,
211 new users are encouraged to use these new methods wherever they are appropriate.
Existing users who wish their applications to be portable overseas with ease are
encouraged to follow suit as time permits.

So What Use is Interactive Dialog Layout now?

Not very much, unless/until Resource files are incorporated. Sadly, the prospect of
use of Resource Files meant that one could be rather extravagent in several aspects of
internal design. Now that Resource files will not be withus, we are left with the price
of the design without the benefit. I am very sorry about it, and I hope that the.
inefficiencies in space and time will not be that grievous.

But interactive dialog layout sti1l can be used in the following two wvays:

[e] If you wish to use & non-blank Stationery Pad as the point of departure for
your application, then any edits to any dialogs that were prevalent at the -
tine the nodel docunent was nade into & Stationery Pad will be incorporated
in that Stationery.

But note that this only applies to dialogs that are allocated at start-up time and
then never deallocated. Dialogs which are freed and then allocated afresh when
needed will always cons up 8s specified in the Source Progran/Phrase File.

[b] To get & dialog to be exactly &s you want, you can use Interactive Layout, and then
use the ToolKit Debugger to inspect the locations of the components. You can then
enter those precise coordinates into the phrase file. Thisis a pretty lo-tech use
S f;.ho feature, but it beats dozens of iterstions between developnent systen and

1Ce Systen.

FurtherNotes

(1) Onpage 18 1f the 27 Harch document, additional notes (4) and (7) are essentially
: 1gentica1, giving you some idea of the time of night when the memo was written. Strike-
either entry.

(2) The 27 Harch document neglected to mention an important method of TDialog, namely
TDialog.PrepareToAppear. Whenever a dialog ¥indow is about to be put up, all dialogs
in all panels of the window which have TDialogview type view installed in themare sent
the message to PrepareToAppear. This can be useful if a dialog which is kept around
when not 1n use must be reformatted or somehow adjusted for the particular circumstance
at hend before 1t is redisplayed. Calls to methods l1ike TInputFrame.SupplantContents
and TDialog.SelectInputframe are anticipated in clients’ redgefinitions of

PrepareToAppear .

ToolKit Dialog Building Block - Addenda ¢ Corrigenda - 9 April 1984 - page 3 of 3

To: whoever still cares
Sub ject: The built-inheadings and margins facility in the Toolkit
Date: 24 April 1984

The ToolKit's standard Headings and Margins... dialog provides a uniform interface
for creating and editing headers and footers and for specifying page margins.

This dialog has fallen rather short of itsoriginal goals, in the following three ways:

(1) Hargins are set using a primitive checkbox dialog rather than by dragging around
some nice margin-setting icons.

(2) The only kinds of headings supported are text headings. Arbitrary graphical
headings, created by pasting from Universal Graph, haven't been implemeneted

yet.
(3) Some awkward limitations are still present in the user interface. These do not

1imit what can be achieved, but do make some things harder to do. These are all
discussed below.

" Thws, ve have a general and workable facility that didn't have time to get polished.
Its quite general functionality 1s unfortunately packaged in a not so insanely great
costume.

~ With these apologies out of the way, I offer nowa ---

- Brief Users’ Guide:

hen you request Headings and Margins... from the Page Layout menu, a dialog box
appears vith an upper (status) panel and a 1ower (layout) panel. The layout panel shous
an actual-size image of a prototype page of the printer for which the document 1s
formatted. The clear area here is the ‘margins’' area, in which the user is most 1ikely
to wish to locate his headings. The shaded area is the 'body’ area, within which the
contents of the associated view will be printed.

ALl headings defined for the view are shown in the layout panel. You can move any
heading anywhere you wish on the page, by grabbing its title tab with the mouse, moving
- the heading where you wish 1t tobe, and then lettinggo.

You can edit the text of any heading in the usual way.

The following two variables are predefined for headings:' {PAGE} indicates that the
page number should be substituted, and {TITLE} asks for the window title. Thus, a
heading which in the Layout Panel reads

<<<this i1spage {PAGE} of the window named {TITLE}!>>>
will shov up, when printed, as something 1ike:
<<< this is page 23 of the window named Annual Report !>>>

“ToolKit Headings and Margins Dialog - 24 Apr 1984 - Page 1 of 3

How toCreate aNew Heading

First choose the properties the nev heading is to have, up in the status panel; then
press Launch New Heading. A new heading with text ' --- New Heading --- * s createq,
and 1s located in the layout panel somewhere near the edge of the page that corresponds
to the page alignment chosen.

The new heading appears with all its text selected, so that you can immediately type in
the actual text you wish to have for your heading. Do text editing and typeStyle
specifications in the usual fashion. :

Finally, locate the heading exactly where you wish on the page, by grabbing its title
tabanddragging it.

How toDelete an unwantedHeading
Select its title tab, and then request CLEAR. Thisaction isnot at present undoable.

How to Specify Page Margins

Check inches or centimeters down in the lower part of the status panel, and then click
in the checkboxes until they reflect the margins you want. Then push the Install
Hargins button.

Undo:

You can UNDO any text edits, as well as any positioning of a box. You can NOT, in this
version, UNDO the installation of margins or the launch of a new Heading.

Major Cautions:

(1) The margins-specification checkboxes do NOT necessarily reflect what the
current settings for the margins are. The way to ensure that a particular
margins specification is used is to click in the appropriate boxes so that the
checkboxes selected reflect the desired margins, and then press the button
entitled Install Hargins. , i

(2) Some of a heading's properties can only be specified at creation time. You can
the text of any heading any time, as well as its type style and its
location. But the easiest way to change its page-alignment, or the
specifications of which page(s) it is to appear on (odd only, even only, or both

0dd and even; the minimum and maximum applicable page numbers) is to:

~~ [a) Select the text you wish to retain from the heading, and copy it top
, the Clipboard.

[b] Throw away the 01d unwanted heading (using CLEAR after selecting the |
title tab of the heading)

[c] Specify the gesired settings for the heading in the status panel, then
press button "Launch New Heading™ to get a new heading created with
the properties you want. The new heading will appear with all its

ToolKit Meadings and Nargins Dialog - 24 Apr 1984 - Page 2,.of 3

default text selected.

[d] Finally, request PASTE to overlay the default text with the text from
your earlier heading.

(3) The typestyles used in the Layout Panel for the variables {PAGE} and {TITLE) are

irrelevant at printing time; when avariable is substituted for, the typestyle
used for the print-time text is the typestyle associated with the 1ast character
berorethe variable. It is ok for that character to be a space, and indeed the new
headings generated by the Launch New Heading button have Just such a leading

space for just this purpose.

Notes:

(1)

(2)

(3)

(4)

The headings you see in the layout panel may or not be identical to the headings
which will actually be printed, depending on whether they do not or do invoke the
variables {PAGE} and {TITLE}. If infact there isone or more suchvariables ina
heading, then at print time, the actual bounds of the heading may be different.
what you are assured is that the actual heading printed will be located on the
printed page according to the same rules that locate the editable version in the
layout panel.

Hence, for example, if you have a heading which has center justification, and
you have its center located at the top center of the page, then you can be assured
that the actual heading to be printed will also have its center located at the
top center of the printed page, no matter how wide it is. Similar remarks hold
for left and right justification.

All headings specified, whatever their circumstances, show up in the layout
panel. You may well have a number of headings occupying the same place, such as
if you want one kind of heading on odd-numbered pages and another on
even-numbered pages, but both of them occupying the same relative location on
their respective pages. These headings, when stacked up one upon the other in
the layout panel, may be difficult to read, and you will probably want to move
them apart while you do text editing, then stack themback up again.

You can always determine which headings will actually be printed, where on the
page, on which pages, by entering page-preview mode in the relevant panel.

But while the Headings and Margins. .. dialog is up, don‘t expect any portion of
your main window seen peeking out below the dialog box to reflect the
currently-in-flux situation; while the dialog box is up, page-preview mode for
the panel in question will show the source versions of the headings, without
variable substitution. ,

ToolKit Headings and Margins Dialog - 24 Apr 1984 - Page 3 of 3

20 Rug 1984 10:54: 44

UDIALOG. TEXT Page

fprpwwnpwwwwupuwuuwﬁwpwvuaw#wauwnwwwwwwwwwwwHHH»wvawwpwwmwwwwwwwuuwwpuwaupuuuwwuwwwwwpw»unwwwwHwHMHHHHHHHHH‘\

WRNRNIEWN -

(* 3> UDITALOG <<

*)

{$SETC for0S : = TRUE}

UNIT UDialog; {Copyright 1984 by Apple Computer, Inc}

{04/25/84 0015 Added field TEditLegendSel ect ion. tripleCl ick, and methods TEditLegendSel ect jon,
-~ sePress, Houselove, and MouseRel ease

{04/23/8471210 Removed all references to ‘underfdit’ field of TDialogimage]}

[gctc Isdntrinsic : = TRUE }

Sf]FC IsIntrinsic)

NTRINSIC;
{ SENDC)

INTERFACE

USES
ESJ 11btk /UOb ject}
{$IFC LibraryVersion <= 20}

UFont UFont,
{ NDC&J
$U QuickDraw} QuickDraw,
ISU 1 ibtk /UDrav) UDraw,
$U 1 ibtk /UABC)

$U 1 ibtk/UUniviext]
$U 1ibtk/UText}

Uob ject,

UABC,
UTKUniversal Text,
UText;

CONST
UDialogVersion = ‘'UDialog 25Apr84 16: 30';
(o

Dialog Building Block for the ToolKit

The Dialog Building Block provides the follouing standard kinds of dialog Images:

Button A Lisa-style button (a round-comered Rectangle for pushing, with text inside it)
Checkbox A checkbox §a box for checking, plus an optional associated textual label)
Cluster A set of related checkboxes of which only one is selected at a time

InputF rame A place for keyboard input to be inhaled

Legend A character string, together with font & face information

TextDialogImage A box of text managed by the Text editor ilarpelg untested)

PicOb ject A QuickDrau picture (never tested; probably not bankable; status uncertain)

The basic bankable dialog entity which can be stashed into/retrieved from a Resource File
is the class TDialog. For each different kind of dial og box you want, you will typically define
another subclass of TDialog.

To EDIT a dialog interactively, iou must:
Have the menu items 'EEdit Dialog’ and ‘Stop Editing Dialeg’ in {our phrase-file
2 If the dialog is viewed in your main window rather than in a dialog box, (such as Preferences)
then your own main Windouw. CanDoCad should enable uEditDialog whenever the dialog to be editted
is unambiguously selected in the windou and there is not a dialog box up; in this
case, the dialog editting takes place in a dialog box whereas the dialog itsel f resides
in the main window.)

CAUTION: Until Resource Files are incoporated, the edits to a dial og are local to the document
:g :héch you made the edits, as well as documents made from a stationery pad made from
at document.

How to have your own vieuw be a subclass of TDialogView, and still do all of its normal View things.
while having the Dialog Building Block handle everything that occurs which is relevant to
its dialogs:
gas impl ement method TDial ogVieu. XDraw
b
c

Jo draw the non-dialog parts of the vieu,
impl ement method TDial ogView. XCursorAt

To set the cursor in the non-dialog parts of the vieu,

Impl ement XMousePress, XHousetiove, and XHouseRelease instead of their non-x counterparts
)
TYPE
S4 = STRING[4] ;

Tid = STRING{ IDLength};
TButtonHetrics =
RECORD

height: INTEGER;
curvk: INTEGER;
curvy: INTEGER;
typeStyle: TTypeStyle;
expandNum INTEGER; a button's min uidth is its text's uith times this numerator]
expandDen: INTEGER; ... divided by this denominator}
absMintlidth: INTEGER,;
END penState: PenState; {for drauing the round-rect}
TStringKey = RECORD {Keys for Dialogs in Resource Files}
t rueKey: LONGINT;
key: 3
END;

[ssasesense CLASSES ®oonsesee }

appic cormpautar

20 Rug 1984 10:54: 44 UDIALOG. TEXT ‘ Page

71 1 et 1 b e b e ot Db (s b b B e (b e et (b b e b et B b e (b Bt b b e e b b ot ot e Bt e 56 ek b et e ot b b [et et e ot et o et s b e Tt o et b b o b e b B b b e et e b o b o b b o b e b b b b b b b b b b e 0 1 s

{ classes implemented in file UDialog2

TDialogWiindow = SUBCLASS of TDialogBox {which itself is in UABC)

control Panei: TPanel; One with a dialogView in it; may be told to push its dfit button)
dial jou: TDial ogView; the view installed in SELF. controiPanel
mainDial og: TDial og; the first dialog installed in SELF. dialogViev]

~{Creation/Dest ruct ion}
FUNCY ION TDial ogtiindou. CREATE(ob ject: TOb ject; heap: THeap:; itsResizabil ity: BOOLEAN;
ixsHeight: INTEGER; itsKeyResponse, itsHenuResponse, itsDownInMainWindowResponse: TDiResponse)
- ¢ TDial ogli indou;
{Showing and Hiding}
PROCEDURE TDial ogiindow. Appear; OVERRIDE;
PROCEDURE T0ial og¥indow. BeDismissed; OVERRIDE;

FUNCT ION TD1ial ogli indow. CanDoCommand(cmdNumber: TCmdNumber; VAR checkIt: BOOLEAN): BOOLEAN, OVERRIDE;

PROCEDURE TDial ogld indow. Disappear; OVERRIDE;

{Commands}
FUNCTION TDial og indow. NeuCommand{ cmiNumber: TCmcNumber): TCommand, OVERRIDE;

END; {TDial ogiiindow interface}

{)
TDialogView = SUBCLASS OF TView ({a vieuw which contains dialog images as well as, possibly, other things)
rootDial og: TDialog {The children of this object are the constituent Dialogs of this vieu}
nonDial ogExtent: LRect; {intinsic overall extent, dialog + non-dialog actually)}
currentDial ogimage: TDialogimage; {which descendent ouns the mouse during drag)
de faul tButton: TButton; which if any button is the default]}
hitButton: TButton; which Button was last chosen}
isShouwing: BOOLEAN; used to suppress meaningless screen actions for not-yet-showing box}
paintf reeBoxes: BOOLEAN; whether free-checkboxes are to be painted in one sense only}
paintSense: BOOLEAN; ... and if so, in which sense }
startedPaint ing: BOOLEAN; whether uwe' ve begun to paint and hence establ ished paintSense}
styl eSheet: TStyleSheet; {for use by text images seen in the vieu]}
mouse IsDoun: BOOLEAN;
magnetCursor: TCursorNumber; {to force CursorAt to return this value until mouselsDoun is FALSE}

{ =<+ Publ ic Interface *** }
{Creat ion /Dest ruct ion}
FUNCTION TDialogView. CREATE(ob ject: TObject; heap: THeap; itsExtentLRect: LRect; itsPanel: TPanel;
jtsPrintManager. TPrintHanager; itsRes: Point): TDialogView;
PROCEDURE TDial ogView. Free; OVERRIDE;

{lnstalling. Removing, Activating, Deactivating dialogs}
PROCEDURE TDial ogView. AddDial og{ dialog: TDialog);
FUNCTION TDial ogVieuw. AddNewDial itsKey: Sk;: TDial og;
PROCEDURE TDial ogVieu. Act ivateDialog(dialog: TDialog: uhicmagz BOOLEAN);
PROCEDURE TDial ogView. RemoveDial og(ditlo?: TDial og; andfres: BOOLEAN);
PROCEDURE TDial ogVieuw. Repl aceDial og{ ol dDialog, newDialog: TDialog);

{Methods which cl ient should redefine to get a dialogVieu also to have non-dialog behaviour}
FUNCTION TDialogView. XCursorAt{mouseLPt: LPoint): TCursorNumber; DEFAULT;
PROCEDURE TDial ogVieuw. XDraw; DEFAULT;
PROCEDURE TDial ogVieuw. XMousePress(mouseLPt: LPoint); DEFAULT;
PROCEDURE TDial ogVieu. XHouseHove(mouselPt: LPoint); DEFAULT;
PROCEDURE TDial ogView. XHouseRel ease; DEFAULT;

{Buttons and checkboxes)

ROCEDURE TDial ogVieu. AbandonThatButton;)
PROCEDURE TDial ogVieuw. ButtonPushed{button: TButton); {normally, TD{al og‘ s ButtonPushed is used}
PROCEDURE TD{al ogVieu. CheckboxHit({ checkbox: TCheckbox; toﬁl eDirect ion: BOOLEAN);

PROCEDURE TD1{al ogView. PushButton{button: TButton): {cllent or ToolKit may call}

PROCEDURE TDial ogView. SetDefaul tButton{button: TButton);

{NB: PushButton ssts the dialogVisu s hitButton to the requested button, assures that it
is highl ighted, and then calls the cl ient's ButtonPushed method of the TDialog which
is the parent of the button}

{ **= Private Interface °** (Hethods not sxpected to be redefined or called by client)}
FUNCTION TDial ogVieu. CursorAt(mouselPt: LPoint): TCursorNumber; OVERRIDE;
DURE TDial ogVisu. Oraw; RRIDE;

PROCEDURE TDial ogVieu. EachActual Part(PROCEDURE. DoToObgoctSHltcrodObj: TOb ject)); OVERRIDE;

PROCEDURE TDial ogVieu. MouseMove(mouseLPt: LPoint); OVERRIDE;

PROCEDURE TDial ogVieu. HousePress(mouselLPt: LPotntS: OVERRIDE;

PROCEDURE TD{ial ogVieu. MouseRe! ease; OVERRIDE;

PROCEDURE TDial ogVisw. Recal cExtent; OVERRIDE;

END; {TDialogVieu interface}

{

TDialogimage = SUBCLASS OF TImage
parent: TDial ogImage;
isAct ive: BOOLEAN; ve
isEditable BOOLEAN;
withlD: BOOLEAN;

{Creat ion/destruct

ion
FUNCTION TDialo| {ngo. CREATE(obé:ct: TOb ject; heap: THeap; itsExtent: LRect: itsld: S255;
itsView: TView; withChildren: BOOLEAN): TDial ogimage;

PROCEDURE TDialogimage. Control Hit{control: TDialogimage; toggleDirection: BOOLEAN); DEFAULT;
FUNCTION TD{al oglmage. DounAt(mouseLPt: LPoint): TDialogImage; DEFAULT;

PROCEDURE TDial ogImage. Drau; RRIDE;

PROCEDURE TDial ogimage. DrawlustMe; {c

alled by Drav after children, if any, are told to drau} DEFAULT;

appie computar

20 Rug 1984 10:54: 44 ULLHLUG, IBAL - ruye

[1 1t b b ot e e o (b b b ot b e e b o D h b b o o b b b b (b b e o e b (b b o o i 8 et b b ot e ot b bt 10 1 1 Bt b b b o b b b b 0 1 ot B B 1 b 1 b b b b b b §d b bt b 5 Bt B B B Bk Bk (ot (s okt et ot B0 B B (ot e Bt Bttt

FUNCTION TDial ogImags. LaunchiayoutBox(view: TView): TImage; OVERRIDE;
PROCEDURE TDial ogImage. PrepareToAppear;

PROCEDURE TDialogImage. Recal cExtent; OVERRIDE;

FUNCTION TDialogimage. StillMytouse{mouselPt: LPoint): BOOLEAN, DEFAWLT;

{The following methods are stubs, redefined in TImageWithID}
PROCEDURE TD aloglngc.hddlmgo&dialoglmge: TDial ogImage); DEFAULT;
'.Dmsm }‘gia}og}ngc. aﬁctjiv?z: ng{o&?ilﬂ Image: TE 1?1 Ingr &hé:&ﬂ?y BOOLEAN); DEFAULT;
3 al og Image. Br ron al og Image: ial oglmage); H

.Com:gomard: DEFAULT;
PROCEBURE TDial ogImage. Del ete Image(dial ogimage: TDialogimage; andfree: BOOLEAN): DEFAULT;
PROCEDURE TDial ogImage. EachActua Ptrt&PRSCiDURE DoToOb ject{ fil teredob j: TObject)); OVERRIDE;
FUNCTION TDialogimage. HasId(id: S255): BOOLEAN; B
FUNCTION TDialogimage. ObjectWithIDNumber{ idNumber: INTEGES%: TDial ogImage; DEFAULT;
FUNCTION TDialogimage ObjWithld(id: S255): TDialogimage; FAULT;
PROCEDURE TDial ogImage. Repl ace Image(repl acee, newValue: TDialoglmage); DEFAULT;

END;

Timaget/ith1D = SUBCLASS OF TDialogImage {same interface as TDialogimage, basically]}
ci'g:udm TList; {of TDialoglimage]
ioMumber: INTEGER;

FUNCTION - TImageWithID. CREATE(ob ject: TOb ject; hesp: THeap; itsExtent: LRect; {tslId: S255;
itsView: TView; withChildren: BOOLEAN): na-vg;mmm;

FUNCTION TimageWithID. Clone(heap: THeap): TOb ject; R IDE;

PROCEDURE TImagetithID. Free; OVERRIDE;

PROCEDURE T ImageWithID. nddlmgeSdial og Image: TDialoslmm): OVERR IDE;
PROCEDURE TImageWithID. Act ivateimage(dial ogimage: TDialogimage; whichWlay: BOOLEAN); OVERRIDE;
PROCEDURE TImageUithID. BringToFront(dial ogimage: TDial ogimage); OVERRID

FUNCTION TlImageWithID. CursorAt(mouselPt: LPo nt;: TCurso er; OVERRIDE;

PROCEDURE TImageWithID. Del etalmagegdialoglmga: Dial ogimage; andFree: BOOLEAN); OVERRIDE;
PROCEDURE TImageWithID. Draw; OVERRIDE;

PROCEDURE T ImageliithID. EachActual Part(PROCEDURE DoToOb ject(filtsredObj: TObject)); OVERRIDE;
PROCEDURE T ImageWithID. EachVirtual Part(PROCEDURE DoToOb ject(filteredObj: TOb ject); OVERRIDE;
FUNCTION TlimageWithID. HasId(id: S255): BOOLEAN; OVERRIDE;

PROCEDURE TImageWithID. HaveVieu{ view: TVieuw); OVERRIDE;

FUNCTION TImageWithID. LaunchLayoutBox(view: TView): TImage; OVERRIDE;

FUNCTION TImaget/ithlID. ObjectwithIONumber{ idNumber: INTE R): TDial ogimage; OVERRIDE;
FUNCTION TImageithID. ObjwWithld(id: $255): TDial Imga: OVERRIDE;

PROCEDURE TImagelithID. OffSetBy{ del taLPt: LPoint); RR IDE;

PROCEDURE TImageliithID. Recal cExtent; OVERR IDE;

PROCEDURE T ImagelithID. Repl acelmge{ repl acee, newValue: TDhlE:gﬂImge%: OVERRIDE;

FUNCTION TImageWithID. StillHyMouse{mouselLPt : LPoint): BOOLEAN; OVERRIDE;

END;
{ }

TDialog = SUBCLASS OF TImagelithlD
stringKey: TStringKey; {essent ially a unique A-character ID by which this dialog is knoun}
{Creat ion} ‘
FUNCTION TDialog. CREATE(object: TObject; heap: THeap; itsKey: S4; itsVieu: TVieuw): TDialog;
{Creation of the basic dialog elements:) ;

{Elements originating from phrase file; in each case, the text for the legend associated uwith the
component, if any, as well as a LOCATION for the component, are obtained from the same entry
in the phrase file, with the syntax

<text>@<h-coordinate>, <v-coordinate>

EXAMPLE: Suppose the follouing 2 1ines are in the Phrase File:

449
Next @430, 50

1f we call NeuwButton(449, ...), then a button is created, with the text 'Next' inside it;
the button is given idNumber 449, and is located at (430, 50)}

{a-oo svescae .se Plec INTERFACE -~ usE THESE "E‘",ms .OCOC....C..Q.....O.C‘.o'.o..c.00-00}
FUNCT ION Tmalo?. NeuButton{ itsPhrase: INTEGER; itsMetrics: TButtonMetrics; sameSizedButton: TButtom
tsCmdNumber: TCmdNumber): TButton;

FUNCTION TDialog. NeuCluster(itsPhrase: INTEGER): TCluster;

FUNCT ION TDial og. NeuF reeCheckbox{ itsPhrase: INTEGER; boxWidth: INTEGER;
boxHeight: INTEGER; wantlLabel: BOOLEAN, labelOffset: Point; itsTypeStyle: TTypeStyle): TCheckBox;

FUNCTION TDialog. NeulnputFrame(itsPhrase: INTEGER, promptTypeStyle: TTypeStyle;
inputOffset: Point; inputTyg:Style: TTypeStyle; -
max InputChars: INTEGER: itsBorders: Rect; drauvlinputLRect: BOOLEAN;
dravHitLRect: BOOLEAN): TInputframe;

FUNCTION TDialog. NeuLegend(itsPhrase: INTEGER; itsTypeStyle: TTypeStyle): TLegend;

FUNCTION = TDial og. NewRouwO fBoxes(itsPhrase: INTEGER: numberOfBoxes: INTEGER;
start ingIDNumber: INTEGER; boxWidth: INTEGER; boxHeight: INTEGER; boxSpacing: INTEGER): TCluster;

controls

(PROCEDU;E TD1ial og. ButtonPushed(button: TButton); DEFAULT; {client overridass often}

PROCEDURE TDial og. CheckboxHit({ checkbox: TCheckbox; toggleDlirect ion: BOOLEAN); DEFAULT
cl ient overrides somet imes)

PROCEDURE TDial og. Control Hit(control: TD{ial ogimage; to?olcmroct ion: BOOLEAN); OVERRIDE:

:DURE TDialog. PushButton{button: TButton); {cl lent or ToolKit may call

PR E TDial og. Sel ect InputFrame(inputFrame: TI Frame);
PROCEDURE TDial og. Sotmfamsuuonibunm TButton;;

{ocoooo-o.o-c.-.o-o-.o-.-oo..-....oococ PRWM’E INTE”ME o-oooo‘oooo--........-co.oo-o.ooo-ooc-...o.o-~}

appic cormpubtar

20 Rug 1884 10:54:44 UDIALOG. TEXT Page

4

[1 1 10 1 1 0 1t 1 0 1 1 et D Bt e e b e e e b b et b bt b et ket 10 0 0 3 58 18 (0 0 12 5 10 10 B 5 5 1t 1t Bt (ot s 1 Bt 0 ot 13 08 00 10 0 1 10 10 1 1 1 1 I P P Po I P I T P P T P e e e e e e)

{These methods of TDialog are largely either for internal use of the building block, or maintained for
backuard compatabil ity with earl ier versions of the dialog building block}

{“Standard” elements: }
FUNCTION TDialog AddStdButton{ itsId: S255; itsXLoc, itsYLoc: LONGINT; sameSizedButton: TButton;
tsCmdNumber; TCmdNumber): TButton;
PROCEDURE TD1ial og. AddOKBuUt ton{ cmiNumber: TCmdNumber); OK Button
PROCEDURE TDial og. AddCancel Button(cmdNumber: TCmdNumber); Cancel Button}
FUNCTION TDialog AddStdCluster{ itsId: S255; itsXLoc, itsYLoc: LONGINT): TCluster
FUNCTJON TDial og. AddStdf reeCheckbox(itsld: S255; itsXLoc, itsYLoc: LONGINT): TCheckBox;
- FUNCTEON TDial og AddStdinputFrame(itsid: S255; itsXLoc: LONGINT;
i itsYLoc: LONGINT; maxInputChars : INTEGER): TInputframe;
- FUNCTION TDialog. AddStdlLegend(itsid: S255: itsXlLoc, itsYLoc: LONGINT:
- itsTypeStyle: TWE“““* TLegend;
FUNCTION TDialog. AddSysLegend(itsid: S$255; itsXLoc, itsYLoc: LONGINT): TLegend;

{General creation of dialoglm?es}
FUNCTION TDialog. AddButton{ itsld. S255; itsLocation: LPoint; itsMetrics: TButtonMetrics;
sameSizedButton: TButton; itsCmdNumber: TCmdNumber): TButton;

FUNCTION TDial og. AddFreeCheckbox{ itsID: S255; itsXLoc, itsYLoc: LONGINT; boxWidth: INTEGER;
boxHeight: INTEGER, wantLabel: BOOLEAN; labelOffset: Point; itsTypeStyle: TTypeStyle): TCheckbox:

FUNCTION TDilalog. AddBigF reeCheckbox(itsld: $255; itsXLoc, itsYLoc: LONGINT): TCheckbox;

FUNCTION TDial og. AddRouwO fBoxes(1tsID: S255; itsXLoc, itsYLoc: LONGINT; numberOfBoxes: INTEGER;
starting IDNumber: INTEGER; boxWidth: INTEGER, boxHeight: INTEGER; boxSpacing: INTEGER): TCluster

FUNCTION TDial og. AddInputFrame(itsld: $255;
promptLocat ion: LPoint; promﬂypeStrl e YTypoSt}n e
inputLocat ion: LPoint: inputTypeStyle: TTypeStyie;
max InputChars: INTEGER; itsBorders: Rect; drawlnputLRect: BOOLEAN;
dravHitLRect: BOOLEAN): TInputframe;

FUNCT ION TDial og. Dounft EmouseLPt: LPoint): TDialogimage; OVERRIDE;
PROCEDURE TDial og. Recal ckxtent; OVERRIDE;

END;
[e e e e e e m e e e e e i e e i e e)
TButton = SUBCLASS OF TImageWithID

cmdNumber: TCmdNumbe r;

minWidth: INTEGER;

isHighl ighted: BOOLEAN,

nextSameS izedButton: TButton;

1egend: Legend;

buttonHetrics: TButtonMetrics;

{Creat ion/Dest ruct ion}
FUNCTION TButton. CREATE(ob ject: TObject; heap: THeap; itsld: S255; itsView: TVieuw;
itslocation: LPoint; itsHetrics: TButtonMetrics, sameSizedButton: TButton;
itsCmdNumber: TCmdNumber): TButton;

PROCEDURE TButton. Drawlustfe; OVERRIDE;

PROCEDURE TButton. Highl ight(highT ransit: THighTransit);

FUNCT ION TButton, LaunchLayoutBox({ view: Tvieu;: T lmage; OVERRIDE;
PROCEDURE TButton. HousePress(mouselLPt: LPoint); OVERRIDE;

PROCEDURE TButton, MouseRel ease; OVERRIDE;

PROCEDURE TButton. Recal cExtent; OVERRIDE;

PROCEDURE TButton. Recompute(minWidth: INTEGER);

FUNCTION TButton. StillMyMouse(mouselLPt: LPoint): BOOLEAN; OVERRIDE;

END; {TButton interface}

(_______
TCheckbox = SUBCLASS of TimageWithID
isSelected: BOOLEAN;

rect image: TRect Image; [al so a chil d}
1egend: TLegend; if nonnil, alsc a child}

FUNCT ION TCheckbox. CREATE(ob ject: TOb;ect: heap: THeap; itslId: S255; itsView TVieuw;
ftsLocat ion: LPoint; boxWidth: INTEGER; boxHeight: INTEGER; wantLabel: BOOLEAN;
label Offset: Point; itsTypeStyle: TTypeStyle): TCheckbox;

PROCEDURE TCheckbox. ChangeLabel (newS255: $2585);

FUNCT JON TCheckbox. Cursor&témusel.ﬂ: LPoint): TCursorNumber, OVERRIDE;

PROCEDURE TCheckbox. Drau; RRIDE;

FUNCTION TCheckbox. LaunchLayout Box{ v iew: Niw;: Tlmgo: OVERR IDE;

PROCEDURE TCheckbox. HousePress(mouseLPt: LPoint); OVERRIDE;

PROCEDURE TCheckbox. Toggl e;

END; (TCheckbox interface]}
{ e
TCluster = SUBCLASS of TimageWithID

{children: TList; {of TCheckbox) }

locat ion: LPoint; only used for adding the first al igned checkbox}
hitBox: TCheckbox; vhich one was just successfully queried by Hit}
hilL itBox: TCheckbox; vhich one is highl ighted}

lastBox: TCheckBox; the checkbox most recently added checkbox)

FUNCTION TCluster. CREATE(ob ject: TObject; heap: THeap, itsld: S255; itsView: TVieuw;
itstocation : LPoint): TCluster

{=*=**= PUBLIC INTERFACE:
eeeess Create a cluster using TDial og NeuCluster, add checkboxes to it by call ing an{ of the following
eeese» three methods. To change which box is selected in the cluster programmatically, call SelectBox

svsocne

eeeees To find out which box is selected in a cluster, look at cluster. hilLitBox. idNumber}

appia compakar

20 Rug 1884 10:54: 44 UDIALOG. TEXT Page 5

fHﬂHHNPHHHHMMMO‘O‘HHHMHHHHMHl-IHHI-‘HHHHHr‘.—ﬂ-‘l—ﬂ-‘HHHHHHHHHHHHHPHHHHHHHHHHFHHHHHHF‘PHHH&*HHHFHHHHQAHHMHHHHHHHHH#HHHHPWHHHHNP ™\

FUNCTION TCluster. NewAl ignedCheckbox(itsPhrase: INTEGER; selectThisOne: BOOLEAN): TCheckbox:
FUNCTION TCluster. NeuCheckbox(itsPhrase: INTEGER. boxWidth: INTEGER;
boxHeight: INTEGER; wantLabel: BOOLEAN; labelOffset: Point; itsTypeStyle: TTypeStyle;
selectThisOne: BOOLEAN): TCheckbox;
PROCEDURE TCluster. AddRowO fBoxes(numberOfBoxes: INTEGER; startingIDNumber: INTEGER:
boxWidth: INTEGER; boxHeight: INTEGER;, bexSpacing: INTEGER);

PROCEDURE TCluster. Sel ectBox(checkbox: TCheckbox); {select this box, deselecting others}
{**===* PRIVATE INTERFACE:

soscee

seeeses These remaining methods of TCluster are for primarily for internal use:)}

FUNCTION TCluster. AddAl ignedCheckbox(itsId: S255; selectThisOne: BOOLEAN): TCheckbox;

FUNCTION TCluster. AddCheckbox(itsID: S255; itsLocation: LPoint; boxWidth: INTEGER;
boxHeight: INTEGER, uantLabel: BOOLEAN; labelOffset: Point; itsTypeStyle: TTypeStyle;
selectThisOne: BOOLEAN): TCheckbox;

FUNCTION TCluster. Hit{mouselLPt: LPoint): BOOLEAN; OVERRIDE;

PROCEDURE TCluster. MousePress(mouselLPt: LPoint); OVERRIDE;

FUNCTION TCluster. St il11MyMouse(mouseLPt: LPoint): BOOLEAN; OVERRIDE;

END; {TCluster interface}
e }

TinputFrame = SUBCLASS OF TImageWithID
tcxtntial og Image:]r"rcxtD 1al og Image;

promp Legend;

borders: Rect;

drauwinputLRect: BOOLEAN; Euhethcr or not to draw a faint box around the input LRect}
drauHitLRect: BOOLEAN; uhether or not to frame the hit rectangle}

max InputChars: INTEGER;

input TypeStyle: TTypeStyle;

FUNCTION TlInputFrame. CREATE(ob ject: TOb ject; heap: TH::Y; itslId: S255; itsView: TVieu:
promptLocation: LPoint; promptTypeStyle: TTypeSt{ [H
inputLocation: LPoint; inputTypeStyle: TTypeS:ﬂ e; maxInputChars: INTEGER;
)xts?t;rde{;: Rect; drawlnputlLRect: BOOLEAN; drawHitLRect: BOOLEAN
H nputr rame;

(#escsscccsssnnsnsssscsaccnnscssesssscssccssssns PUBL IC INTERFACE ®*¢esccrcscnccccceccsenssasccancscsncnss }

{Create an input frame by call ing TDialog. NeulnputFrame; use GetContents and SupplantContents
to find out what has been typed, and to change uhat appears in the typing ana?

PROCEDURE T InputFrame. GetContents{ VAR theStr: $255): f inspect current frame contents}
PROCEDURE T Inputf rame. Suppl antContents(neuSt r: SZSS) H change current frame contents}

[seccscsssscccscocsscssncssrsosnssvescccescnsess PRIVATE INTERFACE ®c®ccecccscrcsceccencrscncassocccccaanonss)

PROCEDURE TInputframe. Draw; OVERRIDE;

FUNCTION TInputFrame. LaunchLayoutBox(vieuw: TVieuw): ‘Hnge; OVERRIDE;
PROCEDURE T InputFrame. MousePress(mouseLPt: LPoint}; OVERRIDE;

PROCEDURE T InputF rame. Recal cExtent; OVERRIDE;

FUNCTION TInputFrame. St il1HyMouse(mouseLPt: LPoint): BOOLEAN; OVERRIDE;

END; {TInputFrame interface}

FUNCTION TInputFrame. CursorAt(mouseLPt: LPoint): TCursorNumber; OVERRIDE;

'

{ e }
TLegend = SUBCLASS OF TDial ogimage
locat ion: LPoint;
paragraph: TParagraph;
woul dBeDraggabl e: BOOLEAN; whether, during Jayout, 1t should itsel f be draggable)
usesSysFont: BOOLEAN; vhether it is In system font -- a special case}

FUNCTION TLegend. CREATE(ob ject: TOb ject; heap: THeap;, itsChars: S255; itsView: TVieu;
itsLocat ion: LPoint; itsTypeStyle: TTypeStyle): TlLegend
PROCEDURE TLegend. Free; OVERRIDE;

[ecesescsencssescnsene .o essccse eee PUBLIC INTERFACE ®*eevcccrcccvcccsscccsccsnsccccsncccncon)

PROCEDURE TLegend. ChangeToPhrase(neuPhrase:. INTEGER); {for getting neu text from phrase file)
PROCEDURE TLegend. ChangeSt ring(newSt ring: 8255;- for getting new text from a string}
PROCEDURE TLegend. Get St ring(itsString: S25); {determine current chars residing in the legend)

([Y Y Y Y P Y Y PR Y YR Y Y PR YA Y T Y 1) PRIVATE lNTERFmE X T Y Y Y Y Y A Y Y Y Y Y Y Y P Y R R R R R R R R LY I
PROCEDURE TLegend. Draw; OVERRIDE;
PROCEDURE TlLegend. GetBoxRight; sets extent based on current chars & location}
FUNCTION TiLegend. LaunchLayoutBox{view: TView): Tlmng OVERRIDE;
PROCEDURE TLegend. OffsetBy{deltalLPt: LPoint); OVERRIDE;
PROCEDURE TLegend. Recal cExtent; OVERRIDE;

END;
{ classes implemented in file UDialog3 -1

TPicObject = SUBCLASS OF TImageWithID {An Object which holds a QD Picture File} {CAUTION: totally untested)

jcture: PicHandl e;
oxAtCreat jon: Rect; {need to get itsVieu parameter into all these guys}

FUNCT ION TP!cobioct. CREATE(ob ject: TObject; heap: THeap, itsld: S285;

itsView: TView; itsLocation: LPoint; itsPicHandle: PicHandle): TPicObject;
PROCEDURE TPicOb ject. Free; OVERRIDE;
PROCEDURE TPicOb ject. Draw; OVERRIDE;

END;

20 Rug 1884 10:54: 44 UDIALOG. TEXT Page

-
T 7 J
% ggz - TRect Imsge = SUBCLASS OF TDialogImage {a rectangle packaged as a object}

i ggz - penState:. PenState;

1 557 -- FUNCT ION TRect Image. CREATE({ ob ject: TObject: heap: THeap; itsExtent: LRect; itsld: S255;

i ggg - itsView: TView; itsPenState: PenState; withChildren: BOOLEAN): TRect Image;

1 560 -- PROCEDURE TRect Image. Draw; OVERRIDE;

1 561 -- _ FUNCTJON TRect Image. LaunchLayoutBox(viw TView): TImage; OVERRIDE;

1 562 -- END;

1 563 -- -

1 564 -- {- -}
1 565 -- z

1 566 --

% gg'al -= TTextDialogimage = SUBCLASS OF TimageuithiID

1 569 -~ text Image: TText lmge

1 570 -- woul dBeDraggable: BOOLEAN;

i. g;% - refCount: IN EGER

1 573 -- FUNCTION TTextDial ogImage. CREATE objoct TOb ect; hup THeap; itsExtent: LRect; itsid: S$2S5;

1 574 -- itsView TView; its g Style: T poSty e;

1 575 -- itsinit ialChars: ERRTToxtDn oglmage;

i g;g - PROCEDURE TTextD{al ogImage. Fn..

1 578 -- PROCEDURE TTextDial ogimage. ChangeRe fCountBy(delta: INTEGER);

1 879 -- FUNCTION TTextDial oglmage CursorAt{mouselLPt: LPoint): TCursorNumber; OVERRIDE;

1 580 -- PROCEDURE TTextDial ogimage. Draw; RR IDE;

1 581 -- FUNCTION TTextDial ogimage. LaunchLayoutBox(vxw TView): TlImage; OVERRIDE;

1 582 -- PROCEDURE TTextDial ogImage. HousePress(mouselPt: LPoint); OVERRIDE;

% ggz -~ PgﬁgEDURE TT.xchloﬂll\lae OffsetBy(del talLPt: LPoint); OVERRIDE

1 585 -- '
A2 J
i ggg -- TFrameSelect ion = SUBCLASS OF TSelection {the phony selection covering TextSelection in an input frame}
i ggg -- inputFrame: TinputFrame; {the input frame in which the selection occurs}

1 592 -- FUNCTION TFrameSelect ion. CREATE(ob aoct: TOb ject; heap: THeap; itsInputFrame: TInputFrame)

% ggz -- : TFrameSel ect ion;

1 595 -- FUNCTION TFrameSel ect ion. CanDoComman: cmdNuutver TCmdNuube!‘ VAR check It: BOOLEAN): BOOLEAN; OVERRIDE;
1 596 -- PROCEDURE TFrameSel ect fon. KeyChar{ch: CHAR); OV

1 597 -- PROCEDURE TF rameSel ect ion. KeyEnter{dh, dv: INTEGER) OVERRIDE.

1 598 -- PROCEDURE TFrameSel ect ion. KeyReturn; OVERRIDE;

1 599 -- PROCEDURE TFrameSelect ion. KeyTab{ fBackward: BOOLEAN) OVERRIDE;

1 600 -- PROCEDURE TFrameSel ect ion. MousePress(mouseLPt: LPomt), OVERR ID

1 601 -~ PROCEDURE TF rameSel ect ion. PerfomComndScomnd TCommand; cmdPhase: TCmdPhase); OVERRIDE;

% g% - PROCEDURE TFrameSelect ion. Restore; OVERR

1 604 -- END; {TFrameSelection interface)

1 8oe - |

% gg; -- TPlannerView = SUBCLASS OF TDialogView {a view within uhich images are laid out}

1 609 -- {variables} '

1 610 --

i gg - viewBe ingPl anned: TVieu;

1 613 -~ all owSketching: BOOLEAN; {for internal use of the layout mechanism)

1 614 -- retainP ickedBox: BOOLEAN;

1. gig - currentiayoutBox: TLayoutBox;

1 617 -- {Creat ion/Dest ruct ion})

1 618 -~ FUNCTION TPlannerVieu CREATE({object: TObject; heap: THeap; itsViewBeingPlanned: TVie .

1 619 -- itsPanel: TPanel; itsAHouSketching BOOLEAN itsRetainPickedBox: BOOLEAN) TPl annerVieu;
1 620 -- PROCEDURE TPl annerView. lnlt(itsListOfImages: TList

% ggé -- FUNCTION TPlannerVieu. NeuwLayoutBox(image: Tlnge) TLayoutBox. {return NIL if element not to be shoun}
% ggz - PROCEDURE TPl annerVieu. Free; OVERRIDE;

1 625 -- {Di 52!

% ggg - ROCE RE TPlannerView. Draw; OVERRIDE;

1 628 -~ {House Track mF

1 629 -- FUNCTION TPlannerVieu. CursorAt{mouselLPt: LPoint): TCursorNumber; OVERRIDE;

1 630 -- PROCEDURE TPl annerVieuw. Mousetove(mouselLPt: LPoint) OVERRIDE;

1 631 -- PROCEDURE TPl annerView. HousePress(mouselLPt: LPoint) OVERR IDE;

% g§§ - PROCEDURE TP1annerVieu. HouseRel ease; OVERRIDE;

1 634 -- Enumerat jon of components}

1 g;g - { PROCEDURE TPl annerVieu. EachActual Part(PROCEDURE DoToOb ject(filteredObj: TObject)); OVERRIDE;

1 -—

1 637 -- END;

1 638 --

1 633 -—- { --}
1 640 --

1 641 --

i g:‘;’ -- TLayoutBox = SUBCLASS OF TimageWithiID

1 644 -- {variables}

1 645 -- man ipul ee: T Image;

{ g:g - titleTab: TTitleTab;

i g:g .- suppressDrauingHanipul ee: BOOLEAN;

1 650 -- isRoslzabla BOOLEAN;

1 651 -- borders Rect, , .
1 652 -~ uouldmkeSel ect jon: BOOLEAN, {cl ient must directly set if not wanting default ' FALSE'}
1 653 --

1 654 -- isDraggabl e: BOOLEAN;

i ggg - shoul dF rame: BOOLEAN;

i gg; -- hasDraggee: BOOLEAN;

1 659 -- Creat ion/Dest ruct ion

1 660 -- { FUNCT ION TLayoutBol CREATE(object: TObject; heap: THeap; baseExtent: LRect; itsID: S255;

\\§

appia compaikar

20 Rug 1884 10:54: 44 UDIALOG. TEXT

Page 7

[10 0ed b b ok b (o o b b ek (b e B b b 1 B 0 (b e et o B b 1 e B b ol e b o (b e (b b e e e e o b b b e et b B e b b e b B e B b o b e b b b o e b et b b et Bt o e b b e o e e ot (e b o b o e et e et ot e ot o B et et e ot B)

itsParent: TlLayoutBox; itsVieu: TView. itsHanipulee: TImage; itsBorders: Rect;
{tsResizable: EAN; itsSuppression: BOOLEAN, withChildren: BOOLEAN): TLayoutBox;
PROCEDURE TLayoutBox. Free; WER;;I)&, .

{Cha and Display
PRSSEDLRE TLayouton. ChangeDragState(enteringDrag: - BOOLEAN)

PROCEDURE TLayoutBox. Cons idertouse(mouselLPt: LPoint; VAR madeSel ect fon. BOOLEAN;
VAR pickedlLayoutBox: TLayoutBox); DEFAULT;

FUNCTION TLayoutBox. Cursorat(mouseLPt: LPoint): TCursorNumber; OVERRIDE;

PROCEDURE TLayoutBox. Draw; OVERRIDE;

PROCEDURE TLayoutBox, DrawJustMe, OVERRIDE;

PROCEDURE TLayoutBox. F reeManipul ee;

PROCEDURE TLayoutBox. High!l ight(highTransit: THighTransit);

PROCEDURE TLayoutBox. MousePress{ mouseLPT: LPoint); OVERRIDE;

PROCEDURE TLayoutBox. Move(del taLPt: LPoint); DEFAULT,

FUNCTION TLayoutBox. NoT itleTab(heap: THeap): TTitleTab;

PROCEDURE TlLayoutBox. OffsetBy{deltalPt: LPoint); OVERRIDE,

PROCEDURE TLayoutBox. OffsutLayoutBoxBE

PROCEDURE TLayoutBox. Recal cExtent; OVERRIDE;

PROCEDURE TLayoutBox. Res ize(neuExtent: LRect); OVERRIDE;

PROCEDURE TLayoutBox. TabGrabbed; DEFAULT;

END;
TLegendLayoutBox = SUBCLASS OF TLayoutBox {manipulee is a TLegend}
textDialogImege: TTextDialoglimage;
{Creat ion/Dest ruct ton}

del talLPt: LPoint; 'tuxt ImageAsWel1: BOOLEAN); DEFAULT;

FUNCHON) TLegendLayout Box. CREATE({ ob ject: TObject; heap: THeap; itsVieu: TView; itsLegend: TLegend

TLegendLayout Box;

FUNCTION TLegendLayoutBox. CursorAt(mouselLPt: LPoint}): TCursorNumber; OVERRIDE;
PROCEDURE TlLegendlayoutBox. Draw; OVERRIDE;
PROCEDURE TLegendLayoutBox. Of fsetBy(del taLPt: LPoint); OVERRIDE;

PROCEDURE TLegendLayoutBox. OffsetLayoutBoxBy(del taLPt: LPoint; text ImageAsiell: BOOLEAN); OVERRIDE;

{use of the second a nt is strange and non sel f-expl anatory, comments in the internal

documentat ion may heip. Nobody should be calling this old boy from outside, anyway}
PROCEDURE TLegendLayoutBox. MousePress(mouseLPT: LPoint); WERRIDE;
PROCEDURE TLegendiLayoutBox. Recal cExtent; OVERRIDE;

END;

TButtonLayoutBox = SUBCLASS OF TLayoutBox {manipulee is a TButton}

{variabl es%
next SameS {zedBox: TBut tonLayout Box;
ol dLegendToplLeft: LPoint;

{Creat ion/Dest ruct ion}
FUNCTION TButtonlLayoutBox. CREATE(obgect: TOb ject; heap: THeap; itsButton: TButton;
tsVieuw: TView): TButtonLayoutBox;

{other Methods}
PROCEDURE TButtonLayoutBox. Cons idertouse{ mouseLPt: LPoint; VAR madeSel ect ion: BOOLEAN;
. VAR pickedLayoutBox: TLayoutBox); OVERRIDE;
FUNCTION TButtonLayoutBox. CursorAt(mouseLPt: LPoint): TCursorNumber; OVERRIDE;
PROCEDURE TButtonlLayoutBox. DrawlustHe; OVERRIDE;
PROCEDURE TButtonLayoutBox. OffsetBy(deltalPt: LPoint); OVERRIDE;
PROCEDURE TButtonlLayoutBox. Recal cExtent; OVERRIDE;
PROCEDURE TButtonLayoutBox. Recal cJustMe;

END;

TTitleTab = SUBCLASS OF Tlmage

1 ayout Box: TLayoutBox;
1 egend: TLegend;
shoul dDraulegend: BOOLEAN; {FALSE if string is too wide to fit}

FUNCTION TTitleTab. CREATE(object: TObject; heap: THeap; itsLayoutBox: TLayoutBox; itsHeight:

itsCapt {on: szss;: TTitleTab;
PROCEDURE TTitleTab. Free; OVERRIDE;

PROCEDURE TTitleTab. Draw; OVERRIDE;

PROCEDURE TTitleTab. Of fsetBy(del talPt: LPoint); OVERRIDE;
E'R.?CEME TTitleTab. Res ize{ neuExtent: LRect); OVERRIDE;

TLayPickSel ect ion = SUBCLASS OF TSelection

{variadbles}
layoutBox: TlLayoutBox;

FUNCTION TLayPickSelect jon. CREATE(ob ject: TObject; heap: THeap; itsView:. TPlanne

Vieu;
itsKind: INTEGER, itsLayoutBox: TLayoutBox; itsAnchoriPt: LPoint): TLayPickSelection

FUNCTION TLayPickSel ect ion. CanDoCommand({ cmdNumber: TCmdNumber; VAR checkIt: BOOLEAN)
: BOOLEAN; OVERRIDE;

PROCEDURE TLayPickSel ect ion. Desel ect; OVERRIDE;

PROCEDURE TLayPickSelect ion. Highl ight(gbgm ransit: THighTransit); OVERRIDE;
PROCEDURE TLayPickSel ect ion. KeyClear; RR IDE;

PROCEDURE TLayPickSel ect ion. HouseHove(mouselLPt: LPoint); OVERRIDE;
PROCEDURE TLayPickSel ect jon. MouseRel ease; OVERR IDE;

PROCEDURE TLayPickSel ect fon. Restore; OVERRIDE;

END;

TLayMoveCmd = SUBCLASS OF TCommand

{variabl es)}
layoutBox: TLayoutBox;

hOffset: LONGINT;
vOffset: LONGINT;

INTEGER;

20 Rug 1984 10:54: 44 UDIALOG. TEXT Page

(7 1 10 1 B b et e b 1 1 o B ot bt 0 o B et o e e b e o b b e 0 B o b e o o e ek e e b o b 1 B 1 kb e e Bk et b o 1 8 8 b b b b b b a0 0 0 8 b 1 ek o Bk B B b 1t b 5 1 Fh B B b 03 0 1 b 1 1k Bt e et b

Creat fon
{ UNCTIOL TLayMoveCmd. CREATE(object TOb ject; heap: THeap; i{tsLayoutBox: TLuyoutBox.
itsHOffset, 1tsVOffset: LONGINT): TLayMoveCmd;

{Command Execut ton}
PROCEDURE TiLayMoveCmd. Perform{ cmdPhase: TCadPhase); OVERRIDE;

END;
- TEdiiEegendSel ect ion = SUBCLASS OF TSelection

{ Variables}
1 egendLayout Box: TLegendLayout Box;

hostLegend: TLegen
textDialogimage: TTextD hl og Image;
suppressHost: BOOL

tripl eCl ick: BOOLEAN; {+Su+}

{Creat ion/Dest ruct fon}

FUNCTION TEditLegendSel ect ion. CREATE(object: TObject; heap: THeap; itslLegendlayoutBox:
TLegendLayoutBox; itsAnchorLPt: LPoint): TEditLegendSelection;

FUNCTION TEditLegendSel ect ion. Cl one(heap: TH“EZ: TOb ject; OVERRIDE;

PROCEDURE TEditLegendSel ect ion. Desel ect; OVERRIDE;

PROCEDURE TEditLegendSel ect jon. Free; OVERRIDE;

{udde

FUNCTI N TEditLegendSel ect jon. CanDoComnd(cMmbe TCmdNumber; VAR check It: BOOLEAN)
BOOLEAN; OVERRIDE;

PROCEDURE TEditlLegendSel ect ion. KeyBack fuord: BOOLEAN) OVERRIOE

PROCEDURE TEditLegendSel ect jon. KeyChar{ ch: HﬁR) ERR

PROCEDURE TEditLegendSel ect ion. KeyEnter{dh, NTE&R). WERR!DE

PROCEDURE TEditLegendSelect ion. KeyReturn; RRI

PROCEDURE TEditLegendSel ect ion. Mousetove(mousel.Pt: LPoint) OVERRIDE; {+SW+}

PROCEDURE TEditlLegendSel ect ion. MousePress(mouselLPt: LPoin;Z OVERRIDE; {+Sl+)

PROCEDURE TEditLegendSel ect ion. HouseRel ease; OVERRIDE; {+SWe

FUNCTION TEditLegendSel ect ion. NeuCommand(cmdNumber: TCmdNumber): TCommand; OVERRIDE:

PROCEDURE TEditLegendSe] ect jon. Perfom(:ommand(command: TCommand; cmdPhase: TcmPhase); OVERRIDE;

PROCEDURE TEditLegendSel ect ion. Restore; OVERRIDE:

PROCEDURE TEditLegendSel ect ion. Reveal (asHuchAsPoss ible: BOOLEAN); OVERRIDE;

END;

TDial ogDes ignWindow = SUBCLASS OF TDial ogllindow

hos tWindouw: Window;
hostDial ogVieu: TD jal ogView;
fromDial ogBox: BOCLEAN;

FUNCTION TDial ogDes ign/indow. CREATE(ob ject: TOb ject: heap: THeap;
itsHostDialogView: TDialogView): TDial ogDesigniiindou;

FUNCTION TDial ogDes ignll indow. CanDoCommand(cmdNugﬁr o‘&gmugber VAR check It: BOOLEAN)
FUNCT ION - TDial ogDes ignil indow. NeuCommand(cmiNumber: TCmcNumber): TCommand; OVERRIDE;
PROCEDURE TDial ogDes ignliindow. Rel inquishCont rol;

PROCEDURE TD1ial ogDes ignliindou. Res ize(moving: BOOLEAN); OVERRIDE;

PROCEDURE TDial ogDes ignWindouw. SeizeControl;

END;

- classes implemented in file UDial og4 -——=}

TStdPrintManager = SUBCLASS OF TPrintManager

FUNCTION TStdPrintManager. CREATE(ob ject: TObject; heap: THeap): TStdPrintManager;

PROCEDURE TStdPrintManager. EnterPageEditting: OVERRIDE:

PROCEDURE TStdPrintManager. Init{ itsMainVieuw: TVieuw; itsDfltMargins: LRect); OVERRIDE;
PROCEDURE TStdPrintManager. ReactToPrint erChanSe OVERR 1DE;

PROCEDURE TStdPrintHanager. SetDfl tHeadings; VERR IDE;

END;

TLegendHeading = SUBCLASS OF THeading

masteriegend: TLegend;
currentLegend: TLegend:

topToBasel ine: INTEGER; {offset from box top to basel 105]
borders: Rect; {size by vhich box exceeds legend s extent}

{Creat ion/Dost ruct ion} .
FUNCT 1 TLegendHead ing. CREATE(ob ject: TOb)Ject heap: THeap; itsPrintManager: TPrintHanager
usStrinF $255; {tsTypeStyle: TTypeSty
itsPageAl ignment: TPageAl ignment; itsOffsotFroMl ignment: LPoint;
itsBorders: Rect): TLe eading;
PROCEDURE = TLegendHeading. Free; OVER 'IDE;

N ine
{ ZRSEEDUJ?E TLegendHeading. AdjustForPa%&pageNuﬂber LONGINT; editing: BOOLEAN); OVERRIDE;
PROCEDURE TLegendHeading. Draw:
FUNCT ION TLegendHeading. LaunchLa outBox(view: TView): Tlmgg. OVERRIDE;
PROCEDURE TLegendHeading. OffsetBy(del taLPt: LPoint).
PROCEDURE TLegendHeading. RecalcExtent; OVERR
FUNCTION TLegendHeading. Shoul dfF rame: BOOLEBN OVERRIDE

TPageDes ignliindow = SUBCLASS OF TDial ogWlindow

hostView: TView; the view uhose pages are being des i?md in this dialog}
layoutPanel: TPanel; {my controlPanel is the status panel

FUNCTION TPageDes igni/indou. CREATE(object: TObject; heap: THeap; itsHostView: TVieuw): TPageDesignilindow;

——— ' ®

)

appia compatar

20 Rug 1984 10:54: 44 UDIALOG. TEXT Page §
a N
1 881 -- PROCEDURE TPageDes ignWindow. Disappear; OVERRIDE;

i gg§ -- FUNCTION TPageDes ipni/ indou. NewCommand(cmdNumber: TCmdNumber): TCommand; OVERRIDE;

1 884 -- END;

1 885 --

1 886 --

i ggg -- TPagePlannerVieu = SUBCLASS OF TPlannerVieuw
1 889 -- - FUNCTJON TPagePlannerVieu. CREMEgob ect: TObject; heap: THeap;, itsPrintManager: TPrintManager;

% gg? - N N itsPanel: TPanel): TPagePlannerView;

} gg§ - PROCEDURE TPagePl annerVieu. Draw; OVERRIDE;

1 8% -- END;

1 895 --

1 896 -- =
:]L' ggg -- TPageStatusDialog = SUBCLASS OF TDialog
% ggg - currentHeading: THead ing;

1 901 -- oddEvenCluster: TCluster; |
1 902 -- minPageF rame: T InputF rame; |
1 903 -~ maxPageF rame: T InputF rame;

1 904 -- al ignCluster TCluster,

1 905 -- unitsCluster: TCluster;

1 906 -- marginTitle: TLegend;

1 907 --

1 908 -- leftCluster TCluster;

1 908 -- topCluster: TCluster;

1 910 -- rightCluster TCluster;

i gié - bottomCluster: TCluster;

1 913 -- {Creat jon/Dest ruct ion}

% gig - FUNCTION TPageStatusDial og. CREATE(ob ject: TOb ject; heap: THeap; itsPanel: TPanel): TPageStatusDialog;
1 916 -~ {Sonst
1 917 -- PROCEDURE TPageStatusDial og. ButtonPushed{button: TButton); OVERRIDE;

1 918 -- PROCEDURE TPageStatusDial og. CheckboxHit(checkbox: TCheckbox; toggleDirection: BOOLEAN); OVERRIDE;

1 919 -- FUNCTION TPageStatusDialog. DounAt({mouselLPt: LPoint): TDialoglmage. OVERRIDE,

1 920 -- PROCEDURE TPageStatusDial og. Draw; OVERRIDE;

1 921 -~ PROCEDURE TPageStatusDial og. lnspectHeadinFPam(VAR oddOnly, evenOnly: BOOLEAN;

1 %22 -- Vi pageﬁ i nt: TPageAl i nt; VAR minPage, maxPage: LONGINT);

1 923 -- PROCEDURE TPageStatusDial og. SetHeadingParms{oddOnly, evenOnly: BOOLEAN;

1 924 -- pageAl ignment: TPapeAl ignment; minPage, maxPage: LONGINT);

1 925 -- END;

1 926 --

1 927 -~
i ggg -- TPagelLayoutBox = SUBCLASS OF TlLayoutBox
1 930 --

1 931 -- {Creat jon/Dest ruct jon}

1 932 -~ FUNCTION TPagelayoutBox. CREATE(obgect: TOb ject; heap: THeap; itsView: TView; itsHeading: THeading;

% ggi - itsRes izable: BOOLEAN): TPagelayoutBox;

1 935 -- PROCEDURE TPagelayoutBox. FreeManipul ee; OVERRIDE;

:1[ggg - PROCEDURE TPagelayoutBox. TabGrabbed, OVERRIDE;

1 938 -- '

1 939 --

% g:g -- TiLgHdnglLayoutBox = SUBCLASS OF TPagelLayoutBox
i g:g -- 1egendLayoutBox: TLegendlLayoutBox;

1 944 -~ FUNCTION TlLgHdngLayoutBox. CREATE(ob ject: TObject; heap: THeap; itsView: TVieu;

% g:g - itsLegendHeading: TlLegendHeading): TLgHdnglLayoutBox;

1 947 ~- FUNCT ION TLgHdnglLayoutBox. Cursorﬁ‘t)emustLPt: LPoint): TCursorNumber; OVERRIDE;

1 948 -- PROCEDURE TlLgHdnglLayoutBox. Draw; OVERRIDE;

1 949 -- PROCEDURE TLgHdnglLayoutBox. MousePress(mouseLPT: LPoint); OVERRIDE;

1 950 -~ PROCEDURE TLgHdngLayoutBox. Move(del taLPt: LPoint); OVERRIDE;

} gg% - PROCEDURE TLgHdngLayoutBox. Recal cExtent; OVERRIDE;

1 953 -- END;

1 954 --

1 9585 --

1 956 -- VAR
1 957 -- stdF rameBorders: Rect; extra space around an input-frame and its text)}

1 958 -- stdHdngBorders: Rect; extra space around a standard heading)

1 959 -- stdHdngTypeStyl e: TTypeStyl e; tile 12 monospaced, normal faces, for titles} .
1 960 -- stdIDBorders: Rect; a title tab with string, and a small border on the other 3 sides}
1 961 -- stdlnput TypeStyle: TTypeStyle; std input font/faces}

1 962 -- stdF rme0ffset: Point; std distance betueen input frame's prompt and input rect}

1 963 -- stdLabel Offset: Point; offset from tog—lcft corner of a checkbox to leftmost pt of
1 964 -- basel ine of 1abel}

i ggg - stdPlainBorders: Rect; [; ﬂxé: i:apt ionless title tab, and a small border on the other

- s ides

1 967 -- stdThinBorders: Rect; a sl im captionless title tab above; no other borders}

1 968 -- HtlcT{poStyl e TTypeStyl e; tile 15 monospaced, for titles of layout boxes)

i ggg .- {NB: All the above are initialized in the creation block of TDialoglindou}

% g;% -- stdButtonMetrics: TButtontetrics; {reinitial ized in TDialog. CREATE each t ime}

1 973 --

i g;g -- {Unit-Global Procedures}

1 976 -- FUNCTION NeuStdDial ogWindow(heap: THeap; usHe!gm: INTEGER; itsKeyResponse, itsMenuResponse,

1 977 -- it sDoun InHainlindowResponse: TDiResponse): TDial indow;)

1 978 -- {sets up a standard, nonresizable, dialogiWindow, and Installs a single Panel into it, into
i. ggg -- which it installs a single DialogVieuw]

1 981 -- FUNCTION NeuStdlLegend(heap: THeap; itsChars: S$255; itsXLoc, itsYLoc: LONGINT; itsVieu: TView; -

% gg - itsTypeStyle: TTypeStyle): TLegend;

i ggg -- FUNCTION NewSysLegend(heap: THeap, itsChars: S255; itsXLoc, itsYLoc: LONGINT; itsView: TVieu): TLegend,
i ggg -- PROCEDURE SetParaExtent(paragraph: TParagraph; view: TVisu; location: LPoint; VAR extentLRect: LRect};

% ggg -- PROCEDURE LRectAddBorders{baseLRect: LRect; borders: Rect; VAR resultlRect: LRect);

1 990 -- PROCEDURE GetTextAndlLocat ion(phnsiNumon INTEGER; VAR itsChars: S255; VAR itsLocation: LPoint);

. —

appia compubar

20 Rug 1984 10:54: 44 UDIALOG. TEXT

Page 12

—

991
992
993
994
1
2
995
1
2

B0 0 b b b b b b e Bt B B Bt W AN B RO) 1 10 B b

IMPLEMENTAT ION

{$1 LIBTKADIalog2) {dialogs)
(S LIBTK7UDialog3} {layout)

{$1 LIBTK/UDal ogd} {page margins}

$1 UDjal og3 layout}
$1 UDial ogé page margins}

seveccccen

iﬂ UDlalogzi {dhlogs}

END. {unit UDialog)

20 Rug 1984 10:54: 44

-
1. 1ibtk/udial og. TEXT
2. LIBTK/UDialog2. TEXY
3, LIBTK/UDialog3. TEXT
4, LIBTK/UDialog4. TEXT
-A-
AbandonThatButto 183<(1)
absMinWidth .97+ 1
Aot vato mape’ gé' h 2653+ 1)
t ivatelmage . .
AddAl ignedCheckb 455+(1
AddB igF reeCheckb 354<(1
AddButton 348« 1
AddCancelButton 338°(1
AddCheckbox 456°(1
AddD 1al og 169+(1
AGOF reeCheckbox 351¢(1
Add Image 227+(1} 282+(1)
Add Input F rame 359°(1
AddNeuD ial og 170+(1
AddOKBUt ton 337+(1
AddRow0 fBoxes 366={ 1) 446+(1)
AddStaBut ton 335+ 1
AddStdCl uster 339+(1
AddStof reeCheckbd 340°(1
AddStdInputFrame 341°(1
AddSt dLegend 343(1
AddSysiLegend 345+ 1
Ad justForPage 864=(1
al ignCluster 904+(1
allouSketching =~ 613° 1;
Appear 127+(1
-B-
BeDismissed 128° 1?
borders 473+(1)} 651+(1) 854+(1)
bottomCluster 911+(1
boxAtCreat jon S41+(1
BringTof ront 229+ 1} 254+(1)
buttonMetrics 381<(1
ButtonPushed 184=(1) 320+(1) S17+(1)
-C-
CanDoCommand 129+(1) 5895=(1) 751<(1) 797<(1) 823°(1)
ChangeDragState 666°(1
Changelabel 412+(1
ChangeRe fCountBy 578°(1
ChangeString 822~(1
ChangeToPhrase 821+(1
CheckboxHit 185<{ 1) 321+(1) 918+ 1)
children 243 (1
Clone 249+(1) 792+(1)
cmdNumber 376 (1
ComeForward 230°(1
Cons iderMouse 667+(1) 716° 1}
Control Hit . 217+(1) 323<(1
cont rol Panel 117 (1
CREATE 122+(1} 1e4<(1) 214+ 1) 247-(1) 281<{ 1) 384=(1) 408*(1) 432+(1) 480+(1) 515-(1
643+ 1) 557+(1) 573<(1) 592<(1) e18+(1) 660~ 1} 690°(1) 712+(1) 733+(1) 748+(1
772°(1) 790<(1) 820+(1) 839 (1) 857+(1) 879*(1) 889 (1) 9o14<(1) 932 (1) 944+(1
currentDialogima 147°(1
curmntﬂeading 899 (1
currentLayoutBox 615°(1
currentLegend 8s51+(1
CursorAt 193+ 1) 255<(1) 413+(1) 497<(1) 579=(1) 629+(1) 669°(1) 693°(1) 718-(1) 947-(1)
curvH 89°(1 ’
curw 90°(1
-D~-
defaul tButton 149°(1
Del etelmage 231°(1) 256° 1;
Desel ect 753<(1) 793+(1
dialogView 118+(1
Disappear 130°(1) 881+(1
DouwnAt 218(1) 365+ 1) 919+(1
Drauv 194<(1} 219°(1) 257+(1 414°£ 1; 498’5 1 526'§ 1; 547+ 1; 860-(1) 580-(1) 626°(1)
670°(1) 694+ 1) 737+(1) 865+(1) 892+(1) 920+(1) 9S48<(1
drawHitLRect 476°(1
dravinputiRect 475(1
Drawlustie 0+(1) 388+(1) 671=(1) 719*(1)
-E-
EachActual Part 195+(1) 232+(1) 258+(1) 635°(1)
EachvirtualPart 259°{ 1
EnterPageEditt in 841°(1
expandDen 95{ 1
expandNum 94+{ 1
-F-
Free 166°(1 250‘5 1; 517+(1) 545+(1) 576°(1) 623+(1) 663=(1) 735+(1) 794~(1) 861°(1)
FreeHanipul ee 672°(1) 935°(1
fromDial ogBox 818+(1
-G~
GetBoxRight §27+(1
GetContents 492+(1
GetString §23~(1
Get TextAndtLocati 990+ 1
Hrasp 657°(1
hasDraggee .
Has Id 233+(1) 260°(1)
HaveVieuw 261°(1
H éhg?ttght Sgg. % 673+(1) 754°(1)
i - . -
hil itBox 429°(1
Hit 459 1
hitBox 428+{ 1
hitButton 150°(1
hoffset 768°(1
\—

20 Rug 1884 10:54: 44

UDIALOG. TEXT Page 12

4 ™\
hostDial ogView 817+(1
hostLegend 784(1
hostVieuw 876 { 1
hostUindow 816 (1
-l=
id 244+(1
IDLength 84 (1
idNumber 245+{ 1
Init - 620+(1) 842+(1)
inputF rame 590 ﬂ
inputvyﬁ:Style 4ys~(1
InspectHeadingPa 921+(1
INTRINSIC 16°(1
isAct ive 209°(1
isDraggable 654(1
isEditable 210<(1
isHighl ighted 378+ 1
isRes izable 650+(1
isSelected 403 (1
isShowing 151¢(1
-
key 103'} 1
KeyBack .799(1
KeyChar s96+(1) 800*(1)
KeyCl ear 755+(1
KeyEnter §97+(1 801‘2 1
KeyReturn 598°(1} 802+(1
KeyTab 599+(1
Hasts 430+(1
astBox .
aunchLayout Box . o . 1 . N . . (1
L hL tB 221 1) 262+(1) 390+(1) 415 499°(1) s528+(1) Seil+(1) S81 1) 866
layoutBox 729 (1) 746 (1) 766 (1
1ayoutPanel 877+ 1
leftCluster 908+(1
1 egend 380°(1) 406°(1) 730+(1)
legendLayoutBox 783 (1) 942 (1
1ocat ion 427 (1) si10(1
LPoint 427 L 1) sio(1) 709 (1)
LRect 145 (1
LRectAddBorders 988°(1
-
magnetCursor 160°(1
mainDial og 119+ 1
manipul ee 645 (1
marginTitie 906°(1
masterLogcnd 850 (1
max InputChars 477+(1
maxPagef rame 903+(1
minPagefF rame 902+ 1
minWidth 377+(1
ﬂggseésooun %32' % 630-(1) 756°(1} 803+(1
setove - - - .
ousePress . . - » 4o -
M P %gz % 32% % 416 § 13 460 z l; 500°(1) 6582+(1) 600+{ 1) ‘631 1) 674-(1) 659°(1)
MouseRel ease 198+{ 1} 392{ 1} 632(1) 757+(1) 805°{ 1)
Hove 675+(1) 950<(1
«N-
NeuAl ignedCheckb 442+(1
NewButton 301<{ 1
Neocluster. 3040 1
uster .
NewCommand 135’: 1} s806*(1) 82s°(1) 882+ 1)
NeuF reeCheckbox 506'} 1
New Input F rame 309<(1)
NewlLayoutBox 621°(1
NeuLegend 314+(1
NewRou0 fBoxes 316°(1
NeuwStdDialogWind 976*(1
NeuStdlLegend 981(1
NeuwSysLegend 984 1)
nextSameSizedBox 708 (1
nextSameSizedBut 379°(1
nonDial ogExtent 145<(1
NoTitleTab 676°(1
-0~
Obgectuxthlbﬂumb 234°(1 263'2 1;
objWithld 235+(1) 264°(1
y -
OffsetBy 529+ 1 583'% 13 677-(1) 695+(1) 720-(1) 738*(1) 867°(1)
OffsetLayoutBoxB 678+(1) 696°(1
oldLegendTopLeft 709%(1
P)
paintF reeBoxes 153<(1
paintSense 154+ 1
paragraph 511« 1
arent 208 (1
enState 98 (1) S55 2 13
State 98+ 1) S8 (1
rform 776%(1
PerformCommand 601<(1) 807<(1)
PicHandl e S40 (1
icture S40 (1
oint 962 (1) 963 (1)
PrepareToAppear 222°(1
gurogt 471 1)
shButton 186+(1) 324°(1)
-Q-
QuickDraw 27+(1)
-R=-
ReactToPrinterCh 843<(1)

20 Bug 1984 10:54: 44 UDIRLOG. TEXT Page 13
a
Recal cExtent %gg' } gszizf B 266°(1) 366+(1) 393~(1) 501+(1) 530°(1) 679°(1) 700+(1) 721(1} |
Recal cJustHe 722°(1
Recompute 394(1
Riac:I %g % 541 (1) 651 (1) 854 (1) 957 (1) 958 (1) 960 (1) 965 (1) 967 { 1)
rect Image .
re Coun? 571<(1
Rel inquishContro 826<(1
RemoveDial og 172°(1 ‘
Repl aceDial og 173°(1 !
Repl ace Image 2Z6°(1) 267°(1) - i
Res ize : 680°(1 739°(1 827'2 1}
Restore -- 602+(1 758+(1) 8o08*(1
retainPickedBox 614 1
Reveal 809 1
rightCluster 910'} 1
rootDialog 143 (1
-S=-
S4 82*(1) 103 (1)
SeizeCont rol 828+(1 |
Sel sctBox 449+(1
Select InputFrame 325+(1
SetDefaul tButton 187-(1) 326=(1)
SetDfltHeadings 844<(1
SetHead ingParms 923+(1
SetParaExtent 986+(1
shoul dOrauLegend 731¢(1
Shoul dF rame 869+(1
shoul df rame 655+(1
startedPaint ing 1585°(1
stdButtonMetrics 97i(1
stdf rameBorders 957°(1
stof rme0ffset 962+ 1
stdHdngBorders 958~(1
stdHdngT ypeSt yle 959+ 1
stdiDBorde 960°(1
stdrnputTypeStyl 961°(1
stdlLabel Offset 963 14
stdPlainBorders 965<(1
stdThinBorders 967 1
g;él&gyﬂousa 233‘ i Zgg'f B 395=(1} 461-(1) S02~(1)
stringKey 277 (1
styl eSheet 157<(1
Suppl antContents 493<(1
suppressDrauvingM 648<(1
suppressHost 786°(1
-T-
TabGrabbed 681+(1) 936°(1
;gu::onm .8 -1’32 % %gg % :_';g% i 336 (1) 349 (1) 374°(1) 379 (1) 386 (1)
ut t onLayout Box .
TButtonﬂegrics 86°{ 1) 381 (1) 971 (1
TCheckBox 307 (1) 340 (1} 430 (1
TCheckbox 352 { 1) 354 { 1) 401+(1 410{ 1; 428{ lg 429(12 442{ 1; .Msg 1; 4552 13 4582 1}
TCluster 304 1 317 (1) 339 (1 387 (1 423+(1) 433 1) 901 (1) 904 (1 905 1 908 (1
1o 3(7)2 % 910 1) 911 1
moNumber)
TCommand 133 (1 763 (1 806{ 1; 8252 1} 8825 1}
TCursorNumber _llgg % ézg i 193 (1) 286 (1) 413 (1) 497 (1) 579 (1) 629 (1) 669 (1) 693 (1)
;gg%:geox ﬁg i 143 1 170 (1) 275-(1) 281 (1) 897 (1)
TDialogDesigniiin 814<(1) 821 (1
TDial og Image %2; }% gg? i ggg i gig .‘i 218 (1) 234 (1) 235 (1) 241 (1) 263 (1) 264 (1)
Dimloodie, Ll T el gacn LY
al ogld indow -
TEditLegendSelec 780<{ 1) 791 (1
:ex:[}ia!oglmge ggg % 687 (1) 785¢(1)
ext Image
TFrameSel ect ion 588¢(1) 593 1
peseina T MY SR
Timage ;gg,i gg % 262 (1) 390 (1) 415 (1) 499 (1) 528 (1) 861 (1) 581 (1) 645 (1)
TImagelithiID 241‘:1 A8 (1) 275 (1 370{ 1 401§ 1; 423 (1 4682 13 SSSE 1; 567 (1) €42 (1)
T{ }Fgane a%’i 342 { 1) 363 (1) 4ee~(1) 484 (1) 590 (1) ¢02(1) 903(1
titleTal .
titleTypeStyle 968<(1
TLayHoveCmd 763+(1) 773 (1
&'53‘1“335: 'l %g ,i. ;%% i 642+(1) 662 (1) 685 (1) 705 (1) 729 (1) 746 (1) 766 (1) 928 (1)
ayPicl ect io -
TLegend 314 (1] 348 (1 345{ 13 380% 1; 406 1; 471 (1) 508°(1) 516 (1) 730 (1) 784 (1)
TLegendHead i gig»{ ggé I 2 1) sl
adin .
TLegendL ayout Box gl;g"i s (1 783 (1) 942 (1)
ayout Box .
TList Y 243 (1
}Objlnct ‘:’g % 792 (1)
‘ *
topCluster 909°(1
topToBasel ine 853(1
TPageDes ignbindo 874¢(1) 879 (1
TPageL ayout Box 928°(1) 933 (1) 940 (1)
TPagePl annervieu 887¢(1) 890 (1
TPageStatusDialo 897+(1) 914 (1
TPanel 117 (1) 877 (1
TParagraph $11 (1
TP!cObjecv. §38*(1 SM§ 1;
;;x:n::;vm gg;° i 619 (1) 887 (1)
rintHanager
t tlcClrk ?3?. .'1;1 ss3+(1) sse (1)
r P
102¢(1
TSol.ct ion 588 (1 743 (1) 780 (1)
TStdPrintManager 837¢(1} 833 (1
Tsutn&y 101+(1) 277 (1
L TStyl eSheet 157 (1 y

20 Rug 18684 10:54:44 UDIALOG. TEXT Page 14
4 \
TTextDialogimage 470 (1) 567+(1) 575 (1) 687 (1) 785 (1) |
TText Image $69 (1
TTitleTad 646 { 1) 676 (1) 727+(1) 734 2 1; :
TTypeStyle 92 (1) 478 { 1) 959 (1) 961 (1) 968 (1) i
TView 141 (1) 611 (1) 876 (1
Twindow 816 { 1
typeStyle 92°(1
-U- . i
UABC - 30°({ 1
UDialog - 7e(1
UDial ogVersion 36+(1
UDrav - 28°(1
UFont = 25°(1
unitsCluster 905{ 1
Uob ject 23*(1
usesSysFont 513+(1
UText 32°(1 |
UTKUniversal Text 31<(1 |
-l
viewBeingPl anned 611 E 1}
voffset 769°(1
-W-
withiD 211+(1
uouldBoDrag?able 512+(1) 570 1)
woul dMakeSelecti €52°(1
-Xe-
XCursorat 176°(1
XDraw 177°(1
XHouseMove 179+(1
XMousePress 178+(1
XMouseRel ease 180+(1
**» End Xref: 305 id's 657 references [417544 bytes /4694 id' s/42805 refs)
_ _/

