
CLASCAL REFERENCE MANUAL
for the LISA 1N

IApple Co"puter. Inc. 198J

First Dratt~ March· 9th, MCMLXXXIII

by
Da.vid Casseres

Cla.sca1

1

CONTENTS
Introduction to Clascal Concepts

1.1 Class-Types•.....
1.2 Objects
1.3 The Class H1erarchy

~~ce 1.4
1.5 Assignment-Compa;tibillty of Objects

Expa.ns1on ofEx1st1ng Pasca.1. Syntax ..
'Def1rdng a Class

Reference ManuaJ

..........

1
1
1

.. .. •. 2
2
3
3

•. 6
2
3
4 l)ef'ining a Metl\.od . • • • • • • . . . • . • • • • . • . • • • . • • • • . 9

9
9

5
6
'l

4.1 OverrldingInher1tedMethods •••
4.2
4.3
4.4
4.5

Self-Reference via. the Self Pseudova.ria.ble
Self-Reference via a Class-Identif1er
Cla.sswid.e Methods
Abstra.ctMethods •

4.6 The New Metl\.od
Class Object .•••••.
Objects as Handles
$H+ a.n.d$H- Compiler Commands

Appendix A:· Sample lJstings

11
13
13
14
14
15
16

A-l

Cla.sca.J Reference Manual

1 Introduction to Clascal Concepts
Clascal is a set of extensions to Pascal on the Lisa. These extensions
support "object-oriented" programming in a style th.a.t somewhat re­
sembles SIMULA and SmalltaJk. The purpose is to provide a very high­
level interface to code libraries, allowing the user program to perform
highly complicated functions with simple eaJ.ls, while still reta.irrlng
flexibility .

1.1 Class-Types
Cla.sealis ba.sed on a new category of user-def1ned types called clasS'"
types. An individual class-type is referred to as a aJass.

A cla.ss-type is a klnd of S'trUctured-type, resembling a reeord-type in
that it contains na.med fields. A class can have two kinds of fields:

• 1)8,:ta. Oelds are like the fields of a record; they. contain variable
data, and each data field has its own type.

• .Methods are procedures and functions.

The fields are referenced lUte fields of a record, using a period and a
field-identlf1er (or a w1th-statement that references a. field-identlf1er).
For' exa.mple, it. area. identi:f1es a· field· defined in class Triangle, and
c:rntTria:ngleis decla:rec:1 by

va.r c:rntTr.ia.ngle: Tr.ia.ngle;

then crntTrla.ngle. 8J'."e& is a reference to the area. field of cri\.tTrla.ngle.
If azea. is a data. field, then crntTr.ia.ngle. area. is a va.ria.ble-referen.c:e;
if area. is a. method, then crntTrla.ngle.area. is either a procedure­
sta. ternent or a. :t\mction-ca.ll.

A class-type is declared in the interface-part of a unit, and is
supported by a .method-block in th.eimplementation-part of the same
unit. Section 3 gives the syntax for class-types and method-blocks.

12 Objects
A class defines the behavior (data. fields and methods) of its objects:.
Each objeetis an .tnsta.nce of the class tha.t def1nes its behavior.

Each object is stored. in a. dyn~ca.lly alloca.ted.,pot.entially reloeat­
able data area. w1th,1n a heap. An. object of a given class is created by
the new method defined. for that class; . this method returns a newlY
created object of the cl.a.ss(see Seetl.on <4.6).

first dn,ft 1 9 March 1983

ClascaJ Reference Manual

A variable of a class-type references a.n object (once it has been
1n1t1al1zed). You can think of a class-type variable as bein2 art. object~
if you bear the following in mind:

• When an object is assigned to a class--type variable, the variable
does not become a.new ~ of the object: it becomes a new reference
to the ~ object. Thus if class Square defines a da.ta. field naJred
side, and squa.re.1 a.nd squ.a.1:'e2 a.retwo variables of cla.ss Squ.aze,
and we make the assignments

squ.a.1."el. : = Squa;re.:new;
squ.aJ:e2 : = sq1J.&'rel;

then the variable-re£erenoes squ.a.1."el.. side and squa.re2.. side refer to
the very sa.rre da.ta. (Formoreinforma:t1on, see See1ion 6.)

• The object referenced by a class-type variable is not necessarily an
instance of the class of the variable: it may be an instance of a
descenda.nt of tha.t class (see Section 1. 3).

1.3 The Class Hierarchy
There is a predefined class naJreCi Object. Every class except Objectis a
subclass of exa.ctly one other class, which is called its superr::Jass. Any
class can. have any number of subclasses. Thus the classes form a tree
hierarchy with Object as its root. Figure 1 shows how the tree might
look after a few classes have been declared; note that aJl classes in the
tree are strictly hypothetical except for class Object.

If XyzClass is some class, we can. trace a chain of superclasses go1ri.g
from the superclass of XyzC1ass to the supercl.a.ss' s supercl.a.ss a.nd so
forth up to cla.ss Object. The classes in the chajn are the ancestors of
XyzCla.ss, and XyzCla.ss is a. descendant of each ofits ancestors.

1.4 Inheritance
A class J.nher1ts the field den:n.1t1ons of its ancestors. Thus 1£ class
Sha.pe (see Figure 1) defines a field named. center, then center is also a
f'leld-1denti£1er of Trla.ngle even though Trla.ngle does not explicitly
define such a field. The "meaning" of cen1er as a field of Trla.ngle is
given by its decla.ration as a field of Sha.pe.

When a method is inherited, it can be overridden by the inheriting
class; th1sisexpla.inedin Section 4. 1.

First draft 2 9 narch 1983

.....

CJascaJ Reference Manual

PolyN

Fig. 1: A· BypothetlcaJ. Class Tree.
(Dark lines show the ancestors of class Tr.ia.ngJe.)

1.5 Assignment--COmpatibiIity of Objects
Suppose that V is a va.rlable, para.me"ter, or f'unet1on-identif1er of
class-type T, and expr'is an expression whose result is to be assigned
to V. V andexprare assigNrent-compa.tibleife1ther ofthefollowmgis
true:

• Theresult ofexpr is an objectofcla.ss T.

• The result of expr is an object of a. class descended £rom T .

2 Expansion of Existing Pascal Syntax
The following syntax dia.gra.ms a.re expa.nsi.ons of the conventional
Pascal syntax. Note that they allow all the same constructions as the
conventional syntax, and some additional constructions for Claseal.

First, the syntax for a structured-type is rede£1ned to allow a c1&ss­
type.

First draft 3 9 t1arch 198}

ClascaJ .Reference Manual

st:ructured--;~

structured-type-identU'ier 1------,..,

The syntax for a class-type is given in Section 3.

Function-calls, proced.ure-staterrents, and a.ctuaJ.-para.meters are re­
defined in terms of :iUnction-ref'erences and procedure-references.
This allows reference to a method (procedure or function) that is
def1ned as a field of a class.

fUnction-ca.lJ

---4.~1 function-reference I ..
\..j a.ctual-para.neter list ~

~~~~~~~~----------------~~function-idenUfier 

class-1dent1f1er 

procedure-statement 

---.J procedure-reference I ~ 
~ actual-para.meter-list ~ 

First draft 4 9 March 1983 



Cla.sca.l Reference Manual 

~~~~~~~~~~--------------~~ prooedure-identUler 

class-1dentifler 1----

actuaJ- ameter
~~~~~~~~--~~expres~on~----------~------------~ 

1\l.nction-re.ference 

Finally, the syntax for an implementation-part is redefined by re­
placing the procedure-and-£uncti.on-declaration-part with a more 
general construction called a subroutine-part. 

constant-declara;t1on-pa.rt 

type-declaration-part 

variable-declaration-part 

subrout1ne-part I------------lo........, .. 

First draft 5 9 March 1983 



ClascaJ Reference Nanua./ 

subroutine­
..=;.;:;====--=;...;;;..~~-eot procedure-declaration +----,---. 

method-block 1-----

Like a procea.ure-a.nd-function-declara:tion-pa.rt, a. subrou'tine-pa.rt 
allows procedure-declara.tions a:n.d function-declarations. In addi­
tion, it allows .method-blocksp which are discussed in Section 3. 

3 Defining a Class 
A class caJ\ only be defined 'Within a unit (either a regular-unit or an 
intrinsic-unit). The spec1£ica.tion of a class is in two parts. First the 
class-type itself is declared. in the type-decl.aration-pa.rt of the unit's 
interface-part; then the class's methods are implemented in a method­
block in the unit's implerrv!ntation-part. 

The syntax for a class--type is 

class class-1dentifler 

field-list 

method-interface I-oo:---t~ 

cla.ss-Jdentif1er .. I identifler 1 .. 

first drllft 6 9 nuch 1983 



ClascaJ Reference Manual 

Example of a cJa.ss-typedecla.rat:ion (must be in t;ype-decla.ration-part 
within a unitl sin ter:/'ace-part): 

Triangle = subclass of ClosedPoly 
corner: a.rra.y [1 •. 3] of Pl.a.nePomt; 
color: TColor; 
{ ... other data. fields ..• } 
fu:n.ctl.on sides: integer; cJ.asswide; 
t\mcti.on new(c1., c2, c3: Pl.a.nePoint): Triangle; 
fu:n.ctl.on area: real; 
procedure setCo.rners(c1., c2, c3: Pl.a.nePoint); 
procedure tra.ns1a.te(vect: Pla.nePoint); 
prooedu.re rota:te{theta.: real); 
{ ••• other rrethod-:lnterfaces .•. } 

end; 

Notice that the class-type being declared can be referred to within its 
own declara.tion. 

Each. method-interface in the class-type def1nes the interface to a 
rrethod of the cl.a.ss, i.e., the nethod's identifier, its formal­
par.a.rneter-l1st (1£ any), andltsresult~type (1£ltisa,f'unction). 

The identifiers of data :fields a.nd methods in a class-type must not 
conflict with those of any da.tafields a.nd methods inherited from 
ancestor cla.sses. 

The a.bstract directive indicates a. method with no implementation in this 
class, intended to be implemented. by a, subclass. The eJ.asswide direc­
tive indicates a. method to be invoked via. a reference to the class-type 
itself', instead of a. reference to an object of the class. Abstra.ct and 
classwid.e methods are discussed in more detail in Section 4. 

For ea.c.h class-type declared in the unit's interface, there is a method­
block in the unit's implementation-parl. 

First draft '( 9 March 1983 



ClascaJ Reference Manual 

method-block 

class-identlfier 

procedure-and-funct1on-declaration-part 

creation-block I-----~t>l 

The rcethod-block's procedure-and-funct1on-d.eclaration-part irople­
rrents the class's non-abstract methods, including those that oveITi.de 
inherited rcethods. 

Each procedure or function is declared without any formal-parameter­
list or result-type, since this info:nna.tion has already been given in the 
rcethod's rrethod -interfaoe. 

Example of a method-block (must beln theimpJeme.ntat/on-part of the 
unit): 

methods of Trlang1e; 
f'unction sides {: i:n:teger; c1.a.sswide}; 

begin sides : = 3; end; 
function new {Celt c2t c3: Pla:nePoint): Triangle}; 

begin {code to implement new} end; 
fUnction a.rea. {: real}; 

begin {code to implement a:rea.} end; 
proooedure setCorners {Celt c2, c3: Pla:nePoint)}; 

begin {code to implement setCorn.ers} end; 
proooedure tra.nsla:te {(veet: Pla.nePoint)}; 

begin {code to implement tra.nslate} end; 
proooed.ure rotate {(theta.: real)}; 

begin {code to implement rotate} end; 
{. ~ . other methods ... }; 

end; 

A creation-block is simply a conventional Pascal block: 

crea.tion-block .1 block I • 

first dr8ft 8 9 n8rch 1983 



Cla.sca.l Reference Manual 

If a creation-block is present, it will be executed before execution of 
any code in the host program. This allows 1nitializa:t1on of the unit. 

In general, there may be more than one creation-block to be executed 
before the host code is executed. The rule is that a creation block for a 
given class will not be executed. until all creation-blocks declared for 
the class's ancestors have 'been executed. 

4 Defining a Method 
A method of a particular class is defined by two things: 

• Its method-interface, which may appear in the class's class-type 
declaration or may be inherited. from an ancestor class. 

• A corresponding implerrentation (procedure-declaration or 
function-declaration) in the class's method-block. 

4.1 Overriding Inherited Methods 
Figure 2 (overleaf) shows how a rnethod is looked up when it is called by 
referencing an object's identifier quaJ.ified. with the method· s identifier. 
Note that the search always begins in the object's own class. 

If doThis is a method of cla.ssL, then any descendant ·of classL (such as 
cla,ssN) can over:r:fde it by providing a. different implerrentation of 
doThisin its method-block. 

Note that in this case 'there is no corresponding rne'thod-1nterface in the 
class-type of cla.ssN; the overriding implementation inherits the 
original interface. 

The original doTlds method will still be inherited by any class that is 
between classL and classN in the· chain (such as classM), but the 
overridden method will be inherited. by descendants of classN'. Any of 
these decendants can again OVerride thernethod. 

Note that you cannot override the rnethod-interfa.oe of an inherited 
method; a compiler error will result. Likewise, you cannot override the 
declara. tion of an inherited data. field. 

42 Self-Reference via the Self Pseudovariable 
Clascal provides a. "pseudova.rla.ble" named self. When this identifier is 
used in a method, it refers (a.t execution time) to the object that was 
referred to in order to invoke the rnethod. (In object-oriented. 
progra.:mming parlance, this object said to be "executing" the rnethod. ) 

This allows an object's rnethods to refer to the object's own fields, 
without knowing an identifier for the object itself'. 

fiIst draft 9 9 March 1983 



Cla.sca.l 

classes: 

classL 

• 
classM 

• 
cla.ssN 

• 
classO 

• 
classP 

methods 
Jmpleme.nted: 

doThis 
foo .. 
foo --...... 

doThis 
i 

3 
~ 

, 
foo 

~ 
"'<" 

~ ~ .~~, 

Reference Manual 

Search caused by 
yObJ. doThis (where yObJ 
is an instance of classM) 

~ Y·. 

Search caused by 
xObJ. doThis (where xObJ 
is an instance of classP) 

Fig. 2: Inheriting a. Method. 
(Small arrows indicate subclassing; see listing, Appendix A.) 

Forexample~ suppose the following: 

• Cla.ss Tr:ia.ngle, a.s indicated in Section 3, declares a method na.med 
area. and a data f1eld named comer. 

• Method area contains a reference to self. corner. 

• tri1 and trl2 are variables of type Tr:la.n.gJ.e. 

If &'rea is invoked by tril.. area, then it will access the field trU. corner. 
But 1£ area. is invoked by trl2.area., then it will access the f1eld 
tri2. corner. 

Another example is shown in Figure 3. An instance of classP inherits the 
doThis method from classN, and this doThis method contains the 
reference self.foo. This 1s a reference to the foo fleld of whatever 
object happens to be executing the doThis rrethod (in the ca.se 
illustrated, the object xObJ). Thus the search for foo begins in cl.a.ssP, 

First draft 10 9 March 1983 



Cla.sca.l Reference Manual 

the class of the object executing doThis - not in cl.a.ssN, where doThls 
is implemented. 

classes: 

cl.assL 

~ 
cl.a.ssM 

~ 
cl.a.ssN 

~ 
classO 

~ 
cJ.a.ssP 

methods 
lmplemen ted: 

foo 
doThis 

foo 

doThis 
~~; 

j~,¥~ 
~~ 

j 
foo ~. 

@\(. 
, •• :;(:l'>! ... :;;:= 

:~~ 
~: -;~ 
:~~ -
%,<»& *-. "«<"(~~~ 

'';'':' 
Iwt.m . 

Sea.rch caused by 
self.foo (in doThis 
method of cla.ssN) 

Search caused by 
xObj.doThis (where xObj 
is an instance of cl.a.ssP) 

':'(0( 

Fig. 3: Self-Reference via. the Self Pseudova.r1a.b1e 
(SmaJl arrows indicate subclassing; see listing, Appendix A.) 

Clascal does not allow you to assign anything to self (wlthone 
exception described in Section 4.6). However, you can make assign­
ments to fields that are referenced via self. In other words, self: =expr 
is illegal but self. color : =expris legal. 

4.3 Self-Reference via a Class-Identifier 
In addition to self, there is another mechanism for self-reference. A 
method can be referenced by using a class-identifier instea.d of self. 
Figure 4 (overleaf) illustrates this mechanism. 

First drcft 11 9 tlcrch 1983 



Clasca.l 

classL 

.methods 
JmpJeme.n ted: 

foo,--...... <-l,e.~~*~. 

Reference Manual 

doThis I 
~--~----~------~~ I 

classM foo 

cl.a.ssN 

classO 

cl.a.ssP 

I 
Search caused by 

. classL. foo (in doThis 
method of cla.ssL) 

Search caused. by 
self.foo (in foo 
method of classL) 

Search caused by 
xObj.doThls (where xObj 
is an instance of cla.ssP) 

Fig. 4: Self-Reference via. a. Class-Identifier 
(Small arrows indicate subclassing; see listing, Appendix A.) 

The class-identifier must identify the class of the calling trethod (classN 
in the illustration) or an ancestor of the calling method's class (c1a.ssM 
or classL in the illustration). 

Note that the .onb: difference between using a class-1dentifier in this 
way and using selfis the following: 

• In a method reference using sel:C, the search for the referenced 
method always begins in the class of the object that is executing the 
callingtrethod. Thisisshownforse1f.fooinFigures3a:nd4. 

• In a method reference using a class-identifier, the search for the 
referenced method always begins in the sped.f1ed class. This 1s 
shown for cl.a.ssL.foo in Figure 4. 

Calling a method via a. class-1dent1f1er allows a method to call another 
method tha.t is overridden t as shown in Figure 4. If the doThis method 
of classN contained the call se1f .foo, this would invoke the foo method 

first dreft 12 9 Itarch 1983 



ClascaJ Reference Manual 

of e1a.ssM., which overrides the foo method of cJ.assL. The call 
classL.foo, being more explicit, avoids this. 

Note that the call via. a class-identifier is just as self-refe:rential as a 
call via se1:f'. In Figure 4, the object xObJis executing the doTh1s:method 
of classN, the foo method of classL. and the foo method of classO (since 
both the cJ.assL.foo a.nd the self.foo calls are self-refe:rential). If a.ny 
of these methods a.ccesses a data f'leld, it will be a data£1eld ofxObJ •. 

4.4 Classwide Methods 
A classwidemethod is declared (in a class-type) by using the clirecti.ve 
cla.sswld.e. A classwide method is invoked by reference to the class 
itself, not by a reference to an object of the class. 

For example, in the example of a class-type shown. in Section 3 'We ha.ve 
sides declared as a classwide method of class Trlangle; it is a funetlon 
that returns the integer value 3. This method is invoked by the 
function-reference Trlangle.s1des. If1:rlis an object of class Trlang1e, 
the function-reference tri. sides is a.n error. 

No reference to self is ·allOwed, in a· cia,gswide method, There is a single 
exception to this rule: a new method is implicitly a classwide method (as 
explained in Section 4. 6) but is allowed to refer to self. 

4.5 Abstract Methods 
An a.bstra.ct method is declared (in ;a. class-type) by using the directive 
a.bstra.ct. An abstract method has no implementation in the class's 
method-block; it is intended to be overridden by descendants of the 
class. 

A reason for declaring an abstract method is to allow other methods of 
the class to refer to 1t. For example, suppose tha.t class Sha.pe (see 
Figure 1) declares a.n abstract method na.rred bounda.ry and a. non­
abstract method na.rred 1ns1de, which refers to self. boundary. The idea 
is that descendants ofSha.pe will Jnher.it :inside and override 
boundary. 

Suppose that class Poly overrides bounda.ry, so thatcla.ss Square 
inherits bound.a.ry from Poly and tnside from Shape. If nextSqr 1s an 
object of class Square, then nextSqr.inside will invoke the inside 
method defined in Shape; when this method refers to se1f. boun<ia.ry, it 
invokes the boundar;y' method defined in Poly. Thus 'We have the useful 
phenomenon of a method inherited from a high level (Shape) invoking a 
method that is not concretely defined until a lower level (Poly). 

If a class's new method (see Section 4.6) is abstract, the class is called 
an abstract class. An abstract class cannot have any instances, a.nd 

First dnlft 13 9 Mucfl1983 



Clasca.J Reterence Na.nua.l 

exists in order to define common properties to be inherited. by its 
descendants . 

4.6 The New Method 
EyeD' cl.ass-type must declare a method named. new. Note that this 
means that a new method cannot be inherited, and that the standard 
Pascal :new procedure is unavailable within the methocis of any cl.ass­
type. 

The new rrethod must be a function. It can have any desired formal­
para.rreter-list (or none). The return-type must be the cl.a.ss-type 
within which the new method is being declared, as in the example of a 
class-type declaration shown earlier. 

The new method is automatically a cl.asswide method. although it is not 
declared with the classwide d1rectlve. Its purpose is to create and 
return a new object of the cl.ass-type in which it is declared. 

Unlike other Pascal. functions. the new method must not explicitly 
assign a return value to the identif'J.er new. Instead, it assigns a value 
to self, and impUcltJ,y returns self. (This is the only case in which 
assignment to self' is allowed, and the onlY case in which a cl.asswide 
method ca.n refer to self.) 

The right-hand side of the assignment to self may be either of the 
following: 

• An expression whose result is a handle for a newly crea.ted. object of 
the class 'being implemented (the handle concept is discussed in 
SectionS) 

• The constant nil (not just any expression with the ya.lue nil). This 
should be used in case the allocation of the object fails. 

The ToolKit provides a function called newObject. which allocates 
space for an object on a heap and returns the object's handle; this 
function should be used in implementing new methods . 

5 Class Object 
The predefined class Object has no data. fields or methocis. To make it 
more use£ul. it can be rede:f'1ned to provide a new method and a method 
for deallocating an object. The ToolKit provides such a redefinition; 
lacking the Toolkit. you can redef1ne. class Object via the following 
maneuver (or something simil.a.r). 

first dtaft 14 9 M4I'ch 1983 



Clascal 

type ObjectAlia.s = subc1.a.ss of Object 
functlon new: ObjectAlia.s; 
pN)OE!Ciure free; 

end; 

Object = ObjectAlia.s; 

i:mplernenta:ti.on 

methods of Object; 
functlon new {: Object}; 

begin {code 'to implement new} end; 
procedure free; 

begin {code to implement free} end; 
end; 

Reference Manual 

6 Objects as Handles 
NOTE 

To use ClascaJ. t it is notneeessary to understand the explana:tion 
gtvenhere. 

Internally t, a value of class-type is not really an object but a handle for 
an object. "., 

Ha.n.dles support reloca.ta.ble ~a.mic allocation of storage. The 
pointer to a reloca.table area is not relocatable, and the rremory­
management software automa.ticaJ.ly rna.intainsitwhen the object is 
relocated. The handle points to this non-relocatable pointer, and thus 
does not need to be main:ta.ined. Il'\. conventional Pascal, a handle must 
be double-dereferenced in order to access the relocatable object. Thus 
if' hndl is a handle for some reloca.ta.ble va.rla.ble, then hndl ...... is a 
reference to the va.rlable itself. 

A declared variable of class-type is actually a po1n:ter-type va.ria.ble; a 
handle returned by the new method of the class can be assigned to it. 
Clascal provides automatic double-deferencing of object handles, as 
follows: 

• A reference to a field (da. ta. or rrethod) of a. variable of cl.a.ss-type is 
automatically double-dereferenced, result:l.ng in a reference to a 
field of the associated object as described in Section 1. If class 

First dr8ft 15 9 n8rch 1983 



Clast;al. Reference Manual 

... \ . Squ.a.re defines a data. field· called edge, and aSqu.a.re is an initialized 
variable of class Square, thenaSqua.re.edge is a reference to the 
edge field of the object that &Square ~ a handle for. (If aSquare 
were a conventional Pascal handle 1n.st.ead of a class-type variable, 
it would be necessary to write &Square ...... edge . ) 

In oth~ words, you ca.n th.ink of the va.r.1a.ble as Hit 'Wel'15" the object 
... itself', when referring tone/ds'. 

• However, a reference to a value of class-type, 'Without reference to 
a particular field, is nQ1dereterenoed. 1£ squa:re1. and squa.re2 are 
both variables of class Square, and square1 has been initialized, 
then the assignment squ.a.re2 : = squ.a.re1. does not mean that a copy of 
the object is associated. 'With squa.re2; it means that the handle in 
squa.re1. is copied to squ.a.re2. Thus squa:re1. a.nd squ.a.re2 are now 
associated 'With the very sa.meobject, and the references 
squ.a.rel.. edge and squ.a.t:eZ. edge now refer to the Sa.ITe data.. 

7 $H+ and $H- Compiler Commands 
Nonnally, objects are stored inheap~zones and can be relocated; an 
object is relocated when the heap ·zone:,conta.1ning the object is 
compacted. As expla.1nedin Section 6, all references to objects are 
through handles (double-indirect pomters) , so that the'relocation is 
invisible to the user program. 

It is important to avoid code that forms a cUrec;t reference to an object, 
then relocates the object, and then uses the direct reference - which is 
invalid because ofthereloca.tion. Forexa.mple, ifhisanobjectandh.a 
references an integer data. £leld ofh, then 

x := @h..a; {direct pointer into the heap} 
m..unble; {a procedure tha.t might compact the heap} 
x" : = 3; fin1mlded to store into h. a ... } 

is unsafe; if foo does compact the heap, the third statement will 
probably oVerwritesomethingthatisnoth.a. 

Constructs like this one are obviously unsafe, and the progra.ITU"ller 1s 
responsible for avoiding them. 

But because Clascal provides automatic double-dereferencing of object 
handles, the sa.me problem can occur in some constructions that appear 

First draft 16 9 narch 1983 



Clascal ReI'en!lhce Manual 

safe. The compiler c.hecks.:f'ol;<;these constructions if the $H+ comma.nd is 
in effect (the default). The unsafe constructions are 

- ,', . ' '.~ 

• Assignmg the result of a function-call to a field of an object. 
Example.." ... 

< ':, 

h. a. : = foo; ~ isa.n object, foo is a. function} . . ... \.: ' 

• Calling aprocedu:re or'function in a with-staterrent that is 
controlled by a va.r1al?le of class-type. Example: 

w11h. h ,do be~ {h·is '~. object} 

m..unble; {a.. prOCledure} 

endi . ". ~ , .' 

• Passing a field of an object. as an .actual. yarl.a.ble pa.ra.rnet.er to a 
procedure orfunct1on. 'Example: ' 

frob (h. a.); Olisa.n.object, frob'i$ a. procedure tha;t 
. takes a. Va.1!"lA.l.ble pa.ra:me1Ier} 

If you are certa.in that theproced.ure or function in one of these 
constructions will not eompactthe heap, you can 'tUrn .off the compiler 
checking by using the sa-comma.nd. ;, 

'y~ • ""-

~r ;..,. j" 

,.,: :, 

First draft 17 9 l1uch 1983 



Cla.scaJ·, Reference Manua./ 

:'. 

~ ;" .. ~ ... 
.. l ~ 

.. ;.. ..... 

.. t' 

~l' 

" ' . ...:. .- ,. " ". 

).,1 ..... ~, 

; \"" 

.~ ... :;.~~. , ... 
:"-. .', 

, ... ,~;, ". 

,.',J 

.:, 

first draft 18 9 March 1983 



Appendix A 
Sample Listings 

The following is skeleton source code for an example unit. This unit 
declares and implements the classes shownm Figures 2--4 of this 
manual. 

First draft 

u:nitSa.mp1e; 

(* --.... ~---------:..~------------------------~----.... ~---.*) 

(* -----------~-:~---------;;.;;.;..,.-----------:---.------... - *) 

{Dec1&re ~forc1a.ssL, c1.assM,classN, 
classO t and c1assP.} 

type 

, classL = Stl.bc:1a.ss of object 
func:tl.on new:.' c1assL; a'bstract; 
prooed.ure"'doTlUS;" 
procedure ,foot 

end; 

(*----~~-----~~~-----------~~--------~-----------'*) 
'cla.ssM == su.'bc:lUsofcla.sSL ' 

t\rn.ctlon ~:new: 'd.a.ssM;" ,~stract; 
end; 

.(*------------~--~~---~-----~-~-----~---------~--*) 
clasaN == su.bcl.a.sS Of: c:l.a.ssM,,, 

t\rn.ction new: cl8.ssN; abs1:ra.ct; 
en<i; , 

(*----------------------~-------.-~----------------*) 
classO = subclass of cla.ssN 

function:new: cla.ssO; abstract; 
en<i; 

(*----------------~----~-~~------------------~-~--*) 
classP = subclass ,of classO 

func:tlonnew: " class!>; 
end; 

A-l 9t1ueh 1983 



·c;ascal 

First dreft 

Reference Manual 

(* ...... ---..,;.:;;-------.... ~---.-... -~-----."""""-----.... ~.---~---------- *) 

.lYethodj "Qf QJ.assL; 
procedure doThis; 

'begin 
end; 
~urefoo; 

begin 
~.foo; 

end; 
el1d.;; 

,(~ .----..... --~.,...--:-. ..... ----------... -----.... -~--------~-::~-----. *) 
.ilie'th.od:to£,:·daSsM; 
~u.xe:.fo:o; 

bejm 
en4;: 

end; 
(* ----..-----7':'.----~---.---------- ........ --------------.*) 

trethod.$. of .41s.sSN; 
~ure' detl'hiS; 
be~ 
.v~foo; 
¢lassL~foo; 

en.d; 
_4;· 

.(If __ ~-..... ~~_~ __ ....... ~ ___ ~_.,...-.,.-> ______ __:_~~~---------------- *) 

uethodS·,of c1AsSO; 
"prooed\i;re :too; 

begit\ 
end; 

en~; 
. (*. -----.----------------------------------,---------*) 
~Qds of c1assP; 

fu.nCt.l.on :new; 
begin 

sEM := {e:xpression to return a handle •.• } 
end; 

end; 

(*------------------------------------~------------*) 
end. {of um:t} 

A-2 9 March 1983 



o~ 
,,'7 .. 
os 
09 
10 
11 
12 
13 

;14 
31 :5 

Swpt.lr C.) Us 1c:l~"t'Tl(',. taiS$lng. 
Method New is not declared. ~ 
subclass declaration not allowed here. 
Method is not a procedure. 
Method Is not implemented. 
Clas5 is not Implemented. 
super Class identifier is not a class. 
Identifier Is not a class. 
'NEW' not allowed here. 
'NEW' was expected here. 
111 egal 'NEW' me thod. 
111e9al ~se of Class identifier 
sH+ i'.a :- pO 
sH+ I~ITH h 00 BEGIN ••• p<) END; 
sH+ I) <VAR h. a) 


