CLASCAL REFERENCE MANUAL
forthe LISA™

First Draft, March 8th, MCMLXXXIII

by
David Céasseres

©Apple Computer, Inc. 1983

Clascal Reference Manual

CONTENTS

1 IntroductiontoClascalConceptsictieiennnnnnn 1
1.1 Class-Types.....ccvvveverenss et s e sesanne .. 1
1.2 Objectsttt ittt ettt 1
1.3 TheClassHierarcnyo ottt enenesasnsnosnncnnons 2
1.4 Inheritance...........cciiiiiieenannracnecnncaanans 2
1.5 Assignment-Compatibility of Objectsc....... 3

2 Expansion of Existing PascalSyntaXcccceeeeneennnn 3

3 Defininga Class ... vviiiiiiineerrenssessonnssnsssannes (5]

4 DefiningaMethod ittt eimnoncaaancenannns 9
4.1 OverridingInheritedMethods it ncennns 8
4.2 Self-Reference via the Self Pseudovariable o]
4.3 Self-Referencevia a Class-Identifier 11
4.4 ClasswideMethodsttt enecnns 13
4.5 AbstractMethodsccvcveenenennn te e e e ea s 13
4.6 TheNewMethodt iiiiieennecnaccnans 14

5 ClassObjeCt .. iiiiieiinrrenratnncarsnansssssasonnsns 14

6 ObjectsasHandlesc.t ittt recnncecansnncennns 15

7 SH+andSH-CompllerCommandscccveerrerennnennsn 16

Clascal } Reference Manual

1 Introduction to Clascal Concepts

Clascal is a set of extensions to Pascal on the Lisa. These extensions
support "object-oriented” programming in a style that somewhat re-
sembles SIMULA and Smalltalk. The purposeis to provide a very high-
level interface to code libraries, allowing the user program to perform
highly complicated functions with simple calls, while still retaining
flexibility.

1.1 Class-Types

Clascal is based on a new category of user—defined types called c/ass-
types. Anindividual class-typeis referred to asa class.

A class-type is a kind of structured-type, resembling a record-type in
thatit contains named fields. A classcanhave two kinds of fields:

* Data flelds are like the fields of a record; they contain variable
data, and each data field hasits own type.

* Methods are procedures and functions.

The fields are referenced like fields of a record, using a period and a
field-identifier (or a with—statement that references a field-identifier).
For example, if area identifies a field defined in class Triangle, and
crntTriangleis declared by

var crntTriangle: Triangle;
then crntTriangle. area is a reference to the area field of cxntTriangle.
If area is a data field, then crntTriangle.area is a variable-reference;

if area is a method, then crntTriangle.area is either a procedure-
statement or a function-call.

A class-type is declared in the interface-part of a unit, and is
supported by a method-block in the implementation~part of the same
unit. Section 3 gives the syntax for class-types and method-blocks.

1.2 Objects
A class defines the behavior (data fields and methods) of its objkcts.
Each objectis an instance of the class that defines its behavior.

Each object is stored in a dynamically allocated, potentially relocat-
able data area within a heap. An object of a given class is created by
the new method defined for that class; this method returns a newly
created object of the class (see Section 4.6).

First draft 1 9 March 1983

Clascal Reference Manual

A variable of a class-type references an object (once it has been
initialized). You can think of a class-type variable as being an object,
if you bear the following in mind:

* When an object is assigned to a class-type variable, the variable
does not become a. new copy of the object: it becomes a new reference
to the same object. Thus if class Square defines a data field named
side, and squarel and square2 are two variables of class Square,
and we make the assignments

squarel := Square.new;
squareZ := squarel;

then the variable-references squarel.side and square2. siderefer to
the very same data. (Formoreinformation, see Section 6.)

* The object referenced by a class-type variable is not necessarily an
instance of the class of the variable: it may be an instance of a
descendant of that class (see Section 1.3).

1.3 The Class Hierarchy
There is a predefined class named Object. Every classexcept Objectisa
subclass of exactly one other class, which is called its superc/ass. Any
class can have any number of subclasses. Thus the classes forma tree
hierarchy with Object as its root. Figure 1 shows how the tree might
look after a few classes have been declared; note that all classes in the
tree are strictly hypothetical except for class Object.

If XyzClass is some class, we can trace a chain of superclasses going
from the superclass of XyzClass to the superclass’s superclass and so
forth up to class Object. The classes in the chain are the ancestors of
XyzClass, and XyzClassis a descendant of each of its ancestors.

14 Inheritance
A class Inherfts the field definitions of its ancestors. Thus if class
Shape (see Figure 1) defines a field named center, then center is also a
fleld~identifier of Triangle even though Triangle does not explicitly
define such a field. The "meaning” of center as a field of Triangle is
given by its declaration as a. field of Shape.

When a method is inherited, it can be overzrdidden by the inheriting
class; thisisexplained in Section4.1.

First draft 2 9 tarch 1983

Clascal Reference Manual

OpenPoly

PolyN

Fig. 1: A Hypothetical Class Tree.
(Dark lines show the ancestors of class Triangle.)

15 Assignment-Compatibility of Objects
Suppose that V is a variable, parameter, or function-identifier of
class-type T, and expr is an expression whose result is to be assigned
to V. Vand expr are assignment-compatible if either of the following is
true:

* Theresult of expr isan objectof class T.
* Theresult of expr is an object of a class descended fromT.

2 Expansion of Existing Pascal Syntax

The following syntax diagrams are expansions of the conventional
Pascal syntax. Note that they allow all the same constructions as the
conventional syntax, and some additional constructions for Clascal.

First, the syntax for a structured-type is redefined to allow a class-
vpe.

First draft 3 9 March 1983

Clascal Reference Manual

.s'u'uctzged—bfpe ~—#| array-type 7 7 >
s/ set—type |—
- file-type ——
N record-type
Lb class-type o
. structured-type-identifier /

The syntax for a class-typeis given in Section 3.

Function-calls, procedure-statements, and actual-parameters are re-
defined in terms of funclion-references and procedure-references.
This allows reference to a method (procedure or function) that is
defined as a field of a class.

tunciron—call

— function-reference —»
\§ actual-parameter-list

Lupetion-reference - function-identifier —#

variable-reference

class—-identifier

procedure-statement
—® procedure-reference =

WA
actual-parameter-list

First draft) 4 9 March 1983

Clascal Referencs Manual

_procedure-reference

procedure-identifier 9
varia.ble—refererfjd
class—-identifier

actual-parameter

expression >

variable-reference

procedure~reference

function—reference |

Finally, the syntax for an implementation-part is redefined by re-
placing the procedure-and-function-declaration-part with a more
general construction called a subroutine-part.

Implementation-part b(nnplemen‘ca.u on)) N

constant-declaration-part —->

type-declaration-part r—)

variable-declaration-part r)

ANANANS

subroutine-part —

First draft 5 9 March 1983

Clascal Reference Manual

subroutine—-part

#! procedure—declaration |

function—-declaration

method-block

Like a procedure-and-function-declaration—part, a subroutine-part
allows procedure-declarations and function-declarations. In addi-
tion, it allows mezhod-blocks, which are discussed in Section 3.

3 Defining a Class

A class can only be defined within a unit (either a regular—-unit or an
intrinsic-unit). The specification of a class is in two parts. First the
class-type itself is declared in the type-declaration-part of the unit’s
interface—part; then the class’s methods are implemented in a method-
block in the unit’ s implementation-part.

The syntax for a class-typeis

Slass e (of #{ class-identifier L)

field-list —>
method-interface T—»@ >

class-identifier identifier F—

First draft : 6 9 March 1983

Clascal Reference Manual

method-intarface

T: procedure-heading
function-heading J

aOng

Example of a class—type declaration (must be in type—declaralion—-part
within a unit’sinterface-part):
Triangle = subclass of ClosedPoly
corner: array[l..3] of PlanePoint;
color: TColor;
{...other data fields...}
function sides: integer; classwide;
function new(cl, c2, ¢3: PlanePoint): Triangle;
function area: real;
procedure setCorners(cl, 2, c3: PlanePoint);
procedure translate(vect: PlanePoint);
procedure rotate(theta: real);
{...other method-interfaces...}
end;

Notice that the class~type being declared can be referred t¢ within its
own declaration.

Each method-interface in the class-type defines the interface to a
method of the class, i.e., the method’s identifier, its formal-
parameter—list (if any), and its result-type (if itis a function).

The identifiers of data fields and methods in a class-type must not
conflict with those of any data fields and methods inherited from
ancestor classes.

The abstract directive indicates a method with no implementation in this
class, intended to be implemented by a subclass. The classwide direc-
tive indicates a method to be invoked via a reference to the class-type
itself, instead of a reference to an object of the class. Abstract and
classwide methods are discussed in more detailin Section 4.

For each class-type declared in the unit’s interface, thereis a method-
block in the unit’ s implementation-part.

First draft 7 9 flarch 1983

Clascal EReference Manual

method-block

(of 1] class-identifier (5)

procedure-and-function—declaration-part

(—b@rea.uorg—b(begm creation-block | end

The method-block’s procedure—and-function-declaration-part imple-
ments the class’s non-abstract methods, including those that override
inherited methods.

Each procedure or function is declared without any formal-parameter-
list or result-type, since this information has already been given in the
method’s method-interface.

Example of a method-block (st be in the Implementation-part of the
unit):

methods of Triangle;
function sides {: integer; classwide};
begin sides := 3; end;
function new {(cl, c2, c3: PlanePoint): Triangle)};
begin {code to implement new} end;
function area {: real};
begin {code to implement areal} end;
procedure setCorners {(cl, 2, c3: PlanePoint)};
begin {code to implement setCorners} end;
procedure translate {(vect: PlanePoint)};
begin {code to implement translate} end;
procedure rotate {(theta: real)};
begin {code to implement rotate} end;
{...other methods...};
end;

A creation-block is simply a conventional Pascal block:

areation-block W [W-- 1 o

First draft 8 : 9 March 1983

Clascal Reference Manual

If a creation-block is present, it will be executed before execution of
any code in the host program. This allows initialization of the unit.

In general, there may be more than one creation—block to be executed
before the host code is executed. The ruleis that a creation block fora
given class will not be executed until all creation-blocks declared for
the class’ s ancestors have been executed.

4 Defining a Method

A method of a particular class is defined by two things:

* Its method-interface, which may appear in the class’s class-type
declaration or may be inherited froman ancestor class.

* A corresponding implementation (procedure-declaration or
function—declaration) in the class®’s method-block.

4.1 Overriding Inherited Methods
Figure 2 (overleaf) shows how a. method islooked up when itis called by
referencing an object’ s identifier qualified with themethod’s identifier.
Note that the search always begins in the object’s own class.

If doThis is a method of classL., then any descendant of classL (such as
classN) can override it by providing a different implementation of
doThisin its method-block.

Note that in this case there is no corresponding method-interface in the
class-type of classN; the overriding implementation inherits the
original interface.

The original doThis method will still be inherited by any class thatis
between classL and classN in the chain (such as classM), but the
overridden method will be inherited by descendants of classN. Any of
these decendants can again override themethod.

Note that you cannot override the method-interface of an inherited
method; a compiler error will result. Likewise, you cannot override the
declaration of an inherited data field.

42 Self-Reference via the Self Pseudovariable

Clascal provides a "pseudovariable” named self. When this identifier is
used in a method, it refers (at execution time) to the object that was
referred to in order to invoke the method. (In object-oriented
programming parlance, this object said to be "executing” the method.)

This allows an object’s methods to refer to the object’s own fields,
without knowing an identifier for the object itself.

First draft Q 9 March 1983

Clascal Referenoce Manual

classes: methods
Implemented:
1 L doThis
foo
classM foo

Search caused by
+ YObj.doThis (where yObj

classN doThis is an instance of classM)
classO foo %

v 1

classP %& 4

A\ﬁz,m&m&mfwv
i

Search caused by
x0Obj.doThis (where x0Obj
is an instance of classP)

Fig. 2: Inheriting a Method
(Small arrows indicate subclassing; see listing, Appendix A.)

Forexample, suppose the following:

¢ Class Triangle, as indicated in Section 3, declares a method named
area and a data field named corner.

* Method area contains a. reference to self.corner.
* tril and tri2 are variables of type Triangle.

If area is invoked by tril.area, then it will access the field tril.corner.
But if area is invoked by tri2.area, then it will access the field

Ancther example is shown in Figure 3. An instance of classP inherits the
doThis method from classN, and this doThis method contains the
reference self.foo. This is a reference to the foo fileld of whatever
object happens to be executing the doThis method (in the case
Nustrated, the object xObj). Thus the search for foo begins in classP,

First draft : 10 9 March 1983

Clascal Reference Manual

the class of the object executing doThis — not in classN, where doThis

isimplemented.
classas: methods
Implemented:
1 foo
L doThis

v

classM foo

classN

+ Search caused by
classO self.foo (in doThis
+ method of classN)
classP

Search caused by
xObj.doThis (where x0Obj
is an instance of classP)

Fig. 3: Self-Reference via the Self Pseudovariable
(Small arrows indicate subclassing; see listing, Appendix A.)

Clascal does not allow you to assign anything to self (with one
exception described in Section 4.6). However, you can make assign-
ments to fields that are referenced via self. In other words, self : =expr
isillegal but self.color :=exprislegal.

4.3 Self-Reference via a Class-Identifier

In addition to self, there is another mechanism for self-reference. A
method can be referenced by using a class-identifier instead of self.
Figure 4 (overleaf) llustrates this mechanism.

‘First draft 11 9 ftarch 1983

Clascal Reference Manual

classes: methods
Implemented:
L foomm mﬁ):"g:,vw:smw&&‘
doThis
'
1 {YSearch d by
cause
M classL.foo (in doThis
‘ 1 method of classL)
)
* Search caused by
classO self.foo (in foo
* method of classL)
classP

Search caused by
x0Obj.doThis (where xObj
is an instance of classP)

Fig. 4: Self-Reference via a Class-Identifier
(Small arrows indicate subclassing; see listing, Appendix A.)

The class-identifier must identify the class of the calling method (classN
in the illustration) or an ancestor of the calling method’s class (classM
or classL in the illustration).

Note that the only difference between using a class—identifier in this
way and using selfis the following:
* In a method reference using self, the search for the referenced

method always begins in the class of the object that is executing the
calling method. Thisisshownfor self.fooin Figures3and4.

¢ In a method reference using a class-identifier, the search for the
referenced method always begins in the specified class. This is
shown for classL.fooin Figure 4.

Calling a method via a class-identifier allows a method to call another
method that is overridden, as shown in Figure 4. If the doThismethod
of classN contained the call self.foo, this would invoke the foo method

First draft 12 9 farch 1983

Clascal Reference Manual

of classM, which overrides the foo method of classl.. The call
classL.foo, being more explicit, avolds this.

Note that the call via a class-identifier is just as self-referential as a

call via self. InFigured, the object xObjis executing the doThismethod

of classN, the foo method of classL, and the foomethod of classO (since

both the classL.foo and the self.foo calls are self-referential). If any
. of these methods accesses a data field, it will be a data field of xObj.

44 Classwide Methods
A classwide method is declared (in a class—type) by using the directive
classwide. A classwide method is invoked by reference to the class
itself, not by a reference to an object of the class.

For example, in the example of a class~type shown in Section 3 we have
sides declared as a classwide method of class Triangle; itis a function
that returns the integer value 3. This method is invoked by the
function-reference Triangle.sides. If triis an object of class Triangle,
the function-reference tri.sidesisan error.

ethod. There is a single
exception to this rule a newn'ethod is unphmtly a classwidemethod (as
explained in Section 4.6) butis allowed to refer to self.

45 Abstract Methods
An abstract method is declared (in a class-type) by using the directive
abstract. An abstract method has no implementation in the class’s
method-block; it is intended to be overridden by descendants of the
class.

A reason for declaring an abstract method is to allow other methods of
the class to refer to it. For example, suppose that class Shape (see
Figure 1) declares an abstract method named boundary and a non-
abstract method named inside, which refers to self. boundary. Theidea
is that descendants of Shape will inherit inside and owverride
boundary.

Suppose that class Poly overrides boundary, so that class Square
inherits boundary from Poly and inside from Shape. If nextSqris an
object of class Sguare, then nextSqgr.inside will invoke the inside
method defined in Shape; when this method refers to self.boundary, it
invokes the boundary method defined in Poly. Thus we have the useful
phenomenon of a method inherited from a high level (Shape) inveoking a
method that is not concretely defined until a lower level (Poly).

If a class’s newmethod (see Section 4.6) is abstract, the classis called
an abstract cddass. An abstract class cannot have any instances, and

First draft ‘ 13 9 March 1983

Clascal Reference Manual

exists in order to define common properties to be inherited by its
descendants.

4.6 The New Method
Every class-type must declare a method named new. Note that this
means that a new method cannot be inherited, and that the standard
Pascal new procedure is unavailable within the methods of any class-

type.

The new method must be a function. It can have any desired formal-
parameter-list (or none). The return-type must be the class-type
within which the new method is being declared, as in the example of a
class-type declaration shown earlier.

The new method is automatically a classwide method, althoughitisnot
declared with the classwide directive. Its purpose is to create and
return a. new object of the class—typein which itis declared.

Unlike other Pascal functions, the new method must not explicitly
assign a return value to the identifier new. Instead, it assigns a value
to self, and implicifly returns self. (This is the only case in which
assignment to self is allowed, and the only case in which a classwide
method can refer to seif.)

The right-hand side of the assignment to self may be either of the
following:

* An expression whose resultis a .handle for a newly created object of
the class being implemented (the handle concept is discussed in
Section 6)

* The constant nil (nhot just any expression with the value nil). This
should be used in case the allocation of the object fails.

The ToolKit provides a function called newObject, which allocates
space for an object on a heap and returns the object’s handle; this
function should be used in implementing newmethods.

5 Class Object

The predefined class Object has no data ﬁelds or methods. To make it
more useful, it can be redefined to provide a new method and a method
for deallocating an object. The ToolKit provides such a redefinition;
lacking the Toolkit, you can redefine class Object via the following
maneuver (or something similar).

First draft 14 : 9 farch 1983

Clascal HReference Manual

interface
type ObjectAlias = subclass of Object
function new: ObjectAlias;
procedure free;
end;

Object = ObjectAlias;

implementation

methods of Object;
function new {: Object};
begin {code to implement new} end;
procedure free;
begin {code to implement free} end;
end;

6 Objects as Handles

To use Clascal, itis not necessary tounderstand the explanation
given here.

Internally, a value of class-typeisnotreally an object buta sand/e for
anobject.

Handles support relocatable dynamic allocation of storage. The
pointer to a relocatable area is not relocatable, and the memory-
management software automatically maintains it when the object is
relocated. The handle points to thisnon-—relocatable pointer, and thus
does not need to be maintained. In conventional Pascal, a handle must
be double-dereferenced in order to access the relocatable object. Thus
if hndl is a handle for some relocatable variable, then hndl™" is a
reference to the variable itself.

A declared variable of class-type is actually a pointer—type variable; a
handle returned by the new method of the class can be assigned to it.
Clascal provides automatic double-deferencing of object handles, as
follows:

* A reference to a field (data or method) of a variable of class-typeis
automatically double-dereferenced, resulting in a reference to a
field of the associated object as described in Section 1. If class

First draft 15 9 March 1983

Clasecal Reference Manual

Sguare defines a data field calied edge, and aSquareis aninitialized
variable of class Square, then aSquare.edge is a reference to the
edge field of the object that aSquare is a handle for. (If aSquare
were a conventional Pascal handle instead of a class-type variable,
it would be necessary to write aSquare™ . edge.)

» In other words, you can think of the Va.ﬂab]e as If it were the obfct
v - Itself, when referring toflelds.

* However, a reference to a va.lue of class-type, without reference to
a particular field, is not dereferenced. If squarel and square2 are
both variables of class Square, and squarel has been initialized,
then the assignment square? : = squarel does not mean thata copy of
the object is assoclated with square2; it means that the handle in
squarel is copied to square2. Thus squarel and square2 are now
assoclated with the very same object, and the references
squarel.edge and square2.edge nowrefer to the same data.

7 $H+ and $H- Compiler Commands

Normally, objects are stored in heap.zones and can be relocated; an
cbject is relocated when the heap -zone. containing the object is
compacted. As explained in Section 6, all references to objects are
through Aandles (double-indirect pointers), so that the relocation is
invisible to the user program.

It is important to avoid code that forms a direct reference to an object,
then relocates the object, and then uses the direct reference — which is
invalid because of the relocation. Forexample, ifhisan objectandh.a
references an integer data, field of h, then

x := @ _.a; {direct pointer into the heap}
mamble; {a procedure that might compact the heap}
x" :=3; {intended to store into h.a...}

is unsafe; if foo does compact the heap, the third statement will
probably overwrite something thatisnoth.a.

Constructs like this one are obviously unsafe, and the programmer is
responsible for avoiding them.

But because Clascal provides gutomatic double-dereferencing of object
handles, the same problem can occur in some constructions that appear

First draft 16 9 March 1983

Clascal Refershnce Manual

safe. The compiler checks fér these constructionsif the $H+ command is
in effect (the default). The unsafe constructions are '

* Assigning the resul't of a function-call to a field of an object.
Example:

h.a := foo,{h is anAob,'ﬁct, foo is a function}

* Calling a procedure or ﬁ.incﬁon in a with-statement that is
controlied by a va.ria.ble of cla.ss-type Example:

mmhdobeg-m{hisanobject}

mzmble, {a prooedure}

end; ;
_* Passing a field of an object as an a.c‘ma.lma.blgparame‘bertoa .
procedure or function. ZExample:

frob(h.a); {h is an object, frob is a procedure that
ta.k&e a variable parameter}

If you are certain ﬂ'ta.'t the procedure or function in one of these
constructions will not compact the heap, you can turn off the compiler
checking by using the SH- comma.nd :

=4

First draft 17 ' 9 Harch 1983

Clascal - Reference Manual

‘First draft 18 9 March 1983

Clascal Reference Manual

Appendix A
Sample Listings

The following is skeleton source code for an example unit. This unit
declares and implements the classes shown in Figures 2-4 of this

manual.
unit Sample; ’
(e ‘ -==*)
- Interface
o : o)

{Declare class—typw for classL, classM, classN,
classO, and classP.}

type

classL = subclass of object
~ function new: classL; abstract;
procedure doThis;
procedure foo;
end;
Gl ' —-—- *)
classM = subclass of classL
function new: classM; abstract;
end; £
S s - : , *)
function new: classN; abstract;
, end;’ : ;
& - ; *)
classO = subclass of classN
function new: classQO; abstract;
end;
* *)
“classP = subclass of classO
function new: classP;
end;

First draft A-1 9 March 1983

._ Clascal _ Reference Manual

-

*

implerentation
s i *)

nethods of classL;
procedure doThis;
‘begin
end;
procedure foo;
begin
self.foo;
end;
end;
Ve

niethods of classM;
procedure. foo;
end;-
end;
> ——— ‘
. wethods of classi;
'~ procgdure doThis;
begin
self.foo;
classL.foo;
end;
end;
.t” e s - ”*)

=

e .))
methods of classP;
funciion new;
begin
self := {expression to return a handle...}
end;
end;
- - *)
end. {of unit}

First draft A-2 9 March 1983

CLRSCHL COMYILER ERPoRLS

Swper Class identifier missing.
Method New is not declared.

Subclass declaration not allowed here.
Method is not a procedure.

Method is not implemented.

class is not implemented.

super Class identifier is not a class.
identifier is not a class.

‘NEW’ not allowed here.

‘NEW’ was expected here.

I11egal ‘NEW’ method.

111egal use of Class identifier

$H+ h,a = pQ)

$H+ WITH h DO BEGIN ... p()> ENDj;

$H+ p(VAR h.a)

