The XENIX"

Operating System

Reference

for the Apple» Lisa 2

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©DMicrosoft Corporation, 1983

The Santa Cruz Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
_ Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Preface

The complete XENIX Reference Manual is actually divided into six partsand distributed
asindividual reference sections inthe various volumes of the XENIX Operating System,
Text Processing, and Development Systems. The following table lists the name, con—
tent, and locationof eachreference section.

Section " Description Volume

C Commands — used with the XENIX XENIX Reference
Operating System.

CT Text Processing Commands — used with Text Processing Guide
the Text Processing System.

CP Programming Commands — used with Programmer’sGuide
the Development System.

M Miscellaneous — information used for XENIXReference
access to devices, system maintenance,
and communications.

S System Calls and Library Routines — Programmer’sReference
available for C and assembly language
programming.

F File Formats — description of various Programmer’sReference

system files not definedinsectionM.

Intext, agivencommand, routine, orfile isreferred to by name and section. Forexam—
ple, the programming command ‘‘cc”’, which is described in the Programming Com—
mands (CP) section, islisted ascc (CP) inthe text.

The alphabetized table of contents given on the following pages is acomplete listing of
all XENIX commands, system calls, libraryroutines, and file formats. If you want tolo—
cateinformationabout a specific item look inthe indicated reference section.

Alphabetized List

Commands, Systems Calls, Library Routines, and File Formats

cal(C)

calendar(C)
malloc(S)

car(C)

cb(CP)

cc(CP)

¢d(C)

cdc (CP)

Sfloor(S)y

chdir(S)

checklist (F)
chgrp(C)

chmod(C)

chmod(S)

chown(C)

chown(S) -

chroot(C)

chroot (S)

chsize(S)

ferror(S)

close (S)

cmp(C)

col (CT)

comb (CP)

comm(C)

config(CP)

console (F)
copy(C)

core(F)

trig (S)

sinh(S)

cp(C)

cpio(C)-

cpio(F)

creat(S)

creatsem(S)
cref(CP)

cron(C)

crypt(C)

crypr(S)

csh(C)

a.out a.out(F) cal
a64l a641(S) calendar
abort abort(S) calloc
abs abs(S) cat
access access(S) ¢b
acct acct(F) cc
acct acct(S) cd
acctcom acctcom(C) cdc
accton accton(C) ceil

" acos trig(S) chdir
adb adb(CP) checklist
admin admin(CP) chgrp
alarm alarm(S) chmod
aliases aliases(M) chmod
aliases.hash aliases(M) chown
aliashash aliashash(M) chown
ar ar(CP) chroot
ar ar(F) chroot
as as(CP) chsize
ascii ascii(M) clearerr
asctime ctime(S) close
asin trig(S) cmp
asktime asktime (C) col
assert assert(S) comb
assign assign(C) comm
at at(C) config
atan trig(S) console
atan2 trig(S) copy
atof atof (S) core
atoi atof (S) cos
atol atof (S) cosh
atq at(C) cp
atrm at(C) cpio
awk awk(C) cpio
banner banner(C) creat
basename basename(C) creatsem
be be(C) cref
bdiff bdiff (C) cron
bfs bfs(C) crypt
brk sbrk(S) crypt
bsearch bsearch(S) csh
cabs hypot(S) csplit

csplit(C)

1

ctags ctags(CP) environ environ(M)
ctermid ctermid(S) eqn eqn(CT)
ctime ctime (S) eqncheck eqn(CT)
cu cu(C) errno perror(S)
curses curses(S) ex ex(C)
cuserid cuserid(S) execl exec(S)
cut cut(CT) execle exec(S)
cw ew(CT) execlp exec(S)
cwcheck cw(CT) execv exec(S)
daemon.mn daemon.mn(M) execve exec(S)
date date(C) execvp exec(S)
dbminit dbm(S) exit exir(S)
dc de(C) exp exp(S)
dd dd(C) explain explain(CT)
deassign assign(C) expr expr(C)
default default (M) fabs floor(S)
defopen defopen(S) faliases aliases(M)
defread ___ defopen(S) false Jalse(C)
delete dbm(S) fclose felose (S)
delta delta(CP) fentl Sfentl(S)
derofl deraff (CT) fevt ecvi(S)
devam devim (C) fd Jd(M)
df df(C) fdopen fopen(S)
diction diction(CT) feof ferror(S)
difr diff (C) ferror Serror(S)
diff3 diff3(C) fetch dbm(S)
diffmk diffmk (CT) flush Selose(S)
dir dir(F) fgetc getc(S)
dircmp diremp(C) fgets gets(S)
dirname dirname (C) fgrep grep(C)
disable disable(C) file system file system(F)
dtype diype (C) file file(C)
du au(C) fileno ferror(S)
dump dump(C) find find(C)
dump dump(F) finger finger(C)
dumpdir dumpdir (C) firstkey dbm(S)
dup dup(S) floor Sfloor (S)
‘dup2 dup(S) fmod Jloor(S)
echo echo(C) fopen Jopen(S)
ecvt ecvi(S) fork Jork(S)
ed ed(C) fprintf _printf (S)
egrep grep(C) fputc putc(S)
enable enable (C) fputs puts(S)
encrypt crypt(S) fread fread(S)
endgrent getgrens(S) free malloc(S)
endpwent getpwent (S) freopen Sfopen(S)
env env(C) frexp Sfrexp(S)

fscanf

foem scanf(S) hypot
fick - Jfsck(C) id s
poech fseek(S) init VA
ot stat(S) inode el
pell foek (S) intro 2
fame time(S) intro)
foi oS ot intro(CP)
o xlist(S) intro s
e gamma(S) intro .iMro(F)
& ecvt(S) intro)
B ger(CP) ioctl g
B gerc(S) isalnum o
bt getc(S) isalpha ponh 4
B getcw.d(S) isascii e
getenv getuid(S) isatty e
e geterfv(S) iscntr] e
getgid genid S) isdigt eope®
(e getuid(S) isgraph it
ge getgrent(S) islower e
getgrgidm getgrent(S) isprint o
geﬂtgrnaogin getgre{u(S) ispunct s
b getlogin(S) isspace e
b getopt(C) isupper el
g getopt(S) isxdigit e
getpass getpass(S) joO e
- ponid bessel(S)
getptpgrppid getpl:d(S) n bessel(S)
getee) getpid(S) join be:ml(S)
 went getpw(S) kill A
P o getpwent (S) kill piri
ey getpwent(S) kmem i
b getpwent(S) 1 iy
b gets(CP) 13tol o
) i) Ieke 3101(S)
i genty(M) le e
b getuid(S) Id o
gmtime ggtc(S) Id oon
i ctime(S) ldexp vl
Pt grep(C) lex Tricr
e group(M) line pnd
] grpc{neck (©) link s
hgsmaltsys ssignal(S) lint s
pat haltsys(C) lisa et
hor hdr(CP) In e
hers head(C) localtime -
s~ () Ik ctime(S)
hyphen(CT) locking o)
locking (S)

3

log exp(S) negn eqn(CT)
logl0 exp(S) negn neqn(CT)
login login(M) netutil netutil (C)
Jogname lograme(C) newgrp newgrp(C)
logname logname (S) nextkey dbm(S)
longjmp setjmp(S) -nice nice(C)
look {ook (C) -nice nice(S)
lorder lorder(CP) nl nl(C)
Ip {p(M) nlist ndist(S)
lpr Ipr(C) am _ . nm(CP)
Is is(C) nohup nohup (C)
Isearch Isearch(S) nroff nroff (CT)
Iseek Iseek(S) null - null(M)
Itol3 {310l(S) od 0od(C)
m4 m4(CP) open open(S)
machine machine(M) opensem opensem(S)
mail mail(C) pack ___ pack(C)
make make (CP) passwd passwd(C)
makekey makekey(M) passwd passwd (M)
maliases aliases(M) paste paste(CT)
malloc malloc(S) pause pause(S)
-master master (F) pcat pack(C)
mem mem(M) pclose popen(S)
mesg mesg(C) perror perror(S)
messages messages(M) pt pfM)
micnet micret(M) pipe pipe(S)
mkdir mkdir(C) popen popen(S)
mkfs mkfs(C) pow exp(S)
mknod mknod(C) pr _ pr(C)
mknod mknod(S) prep prep(CT)
mkstr mkstr (CP) - printf pringf(S)
mktemp mkientp(S) prof prof (CP)
mkuser mkuser (C) profil profil(S)
mm mm(CT) profile profile(M)
mmcheck mmcheck (CT) prs prs(CP)
mmt mmt(CT) ps ps(C)
mnttab mnitab(F) pstat pstar(C)
modf frexp(S) ptrace ptrace(S)
monitor monitor(S) ptx pix(CT)
more _ more(C) putc putc(S)
mount _ mount(C) putchar putc(S)
mount mount(S) putpwent putpwent(S)
mouse mouse(M) puts pus(S)
mv mv(C) putw putc(S)
nap nap(S) pwadmin pwadmin{(C)
nbwaitsem waitsern(S) pwcheck pwcheck (C)
ncheck ncheck(C) pwd pwd(C)

signal(S)

sigsem(S)

trig(S)

sink(S)

size(CP)

sleep(C)

sleep(S)

soelim(CT)
sort(C)

spell (CT)

spell(CT)

spell(CT)
spline (CP)

splin(C)

primf(S)

exp(S)

rand(S)

scanf(S)

ssignal(S)

stai(S).

stdio(S)

stime(S)

dbm(S)

string(S)

string(S)

string(S)

string(S)

string(Sy

string(S)

strings(CP)
strip(CP)

string (S)

string(S)

string (S)

string (S)

string(S)

string(S) -

string(S)

string(S)

sty(C)

style(CT)

su(C)

sum(C)

swab(S)

sync(C)

sync(S)

gsort gsort(S) signal
quot quot(C) sigsem
rand rand(S) sin
random random(C) sinh
ranlib ranlib(CP) size
ratfor ratfor (CP) sleep
rep rcp(C) sleep
rdchk rdchk(S) soelim
read _ read(S) sort
realloc malloc(S) spell
regemp regemp (CP) spellin
regcmp regex(S) spellout
regex regex(S) spline
remote remote(C) split
restor restor(C) sprintl
rewind Sfseek(S) sqrt
m m(C) srand
rmdel rmdel(CP) sscanf
rmdir rmdir(C) ssignal
rmuser rmuser(C) stat
rsh rsh(C) stdio
sact sact(CP) stime
sbrk sbrk(S) store _
scanf scanf(S) streat
scesdiff scesdiff (CP) strchr
scesfile sccsfile (F) stremp
sddate sddate(C) strepy
sdenter sdenter(S) strespn
sdget sdget(S) strdup
sdgetv sdgerv(S) strings
sdiff sdiff (C) strip
sdleave sdenter(S) strien
sdwaitv sdgetv(S) strncat
sed sed(C) strncmp
setbuf’ setbuf (S) strocpy
setgid setuid (S) strpbrk
setgrent getgrent(S) strrchr
sejmp __ setjmp(S) strspn
setkey crypr(S) strtok
setmnt setmnz(C) stty
setpgrp setpgrp(S) style
setpwent getpweni(S) sa
settime settime (C) sum
setuid setuid(S) swab
sh sh(C) sync
shutdn shutdn(S) sync
shutdown

shutdown(C) sys.erxlist

perror(S)
5

perror(S) uname

uname(S)

unget(CP)
ungetc(S)

uniq(C)

units (C)

unlink(S)

pack(C)

ustar(S)

‘utime(S)

utmp(M)

uucp(C)

uulog (C)

uunow(C)
uusend (C)
uux(C)

val(CP)

vi(C)

vsh(C)

- wait(C)

wait(S)

waitsem(S)

wall(C)

we(C)

what (C)

who(C)

whodo(C)
write(C)

write(S)

ump(M)

xargs(C)

xlist(S)

xref(CP)

xstr(CP)

“x.out(F)

bessel(S)

bessel(S)

yacc(CP)

yes(C)

bessel(S)

sys.nerr
sysadmin sysadmin(C) unget
system system (S) ungete
systemid - systemid (M) uniq
 tail tail(C) units
tan trig(S) unlink
tanh sinh(S) unpack
tar tar(C) ustat
thl tbl(CT) utime
tee tee(C) utmp
termcap termcap(M) uucp
terminals terminals(M) uulog
test test(C) vunow
tgetent termcap(S) uusend
tgetflag termcap(S) uux
tgetnum termcap(S) val
tgetstr termcap(S) vi
tgoto termcap(S) vsh
time time (CP) wait
time " time(S) wait
times times(S) waitsem
- tmpfile tmpfile(S) wall
tmpnam mpnam(S) we
toascii conv(S) what
tolower conv(S) who
top top(M) whodo
top.next top(M) write
tonch touch(C) write
toupper conv(S) wtmp
tputs termcap(S) xargs
tr r(C) xlist
trolf troff (CT) xrel
true true(C) xstr
tset tset(C) x.out
tsort tsort(CP) y0
tty uy(C) y1
tty ty(M) yace
ttyname ttyname(S) yes
ttys . ays(M) yn __
types types(F)
tzset ctime(S)
ulimit ulimit(S)
umask umask(C)
umask - umask(S)
vmount umount(C)
umount umount(S)
uname _ uname (C)

CONTENTS

intro

acctcom s —
accton

asktime

assign, deassign

at, atq, atrm

awk

banner
basename

calendar
cat

cd
chgrp
chmod
chown
chroot
cmchk
cmp
comm

copy
cp-
cpio
cron
crypt
csh

csplit
cu

date

dc

dd
devnm
df

diff
diff3
dircmp
dirname
disable

Commands (C)

Introduces XENIX commands.
Turnsonaccounting

Searches forand prints process accountingfiles

Prompts for the correct time of day
Assignsanddeassignsdevices
Executescommandsat alatertime
Invokesapatternprocessing editor
Printslarge letters

Delivers filename part of pathname
Invokesacalculator
Comparesfilestoolarge fordiff
Scansbigfiles

Printsacalendar

Invokesareminder service
Concatenatesand printsfiles

Changes working directory

Changes grouplD

Changesthemode ofthe named file
Changesowner!D
Changesrootdirectory for command
Reportshard disk block size
Comparestwofiles

Selectsorrejects linescommontotwo
sortedfiles

Copies groupsoffiles

Copiesfiles

Copiesfilearchivesinand out
Executescommands at specifiedtimes
Encodesand decodesfiles
Invokesashell commandinterpreter with
C—like syntax ‘
Splitsfilesaccording tocontext

Calls another XENIX system
Printsandsetsthe date
Invokesanarbitrary precision calculator
Convertsand copiesafile

Identifies devicename

Reportsthe number of free disk blocks
Comparestwotext files
Comparesthree files
Comparesdirectories
Deliversdirectory part of pathname
Turns offterminals
Determinesdisktype
Summarizesdisk usage

Performs incremental file system backup
Printsthe names offfileson abackup archive

echo

eject

Ic

line
logname
look

In

Ipr

Is

mail
mesg
mkdir
mkfs
mknod
mkuser
more
mount
my
ncheck
netutil
newgrp
nice

nl
nohup
od

pack, pcat, unpack
passwd
pr

ps

pstat
pwadmin

Echoesarguments

Invokesatext editor
EjectsLisallmicrofloppydisk
Turnsonterminals

Setsenvironment forcommandexecution
Invokesatexteditor

Evaluatesarguments asanexpression
Returns witha non—zero exit value
Findsfiles
Findspathname-listexpression
Findsinformationabout users

Formats floppy disks
Checksandrepairsfile systems
Parsercommand options
Searchesafilefor apattern

Checks group file

Closesoutthefile systemsandhaltsthe CPU
Displays filesin ahexidecimal format
Printsthe first few lines of a stream
Printsuser group1D and names
Joinstworelations

Terminatesaprocess

Lists information about contents of directory
Listsdirectory contents incolumns
Readsoneline

Getsloginname

Findslinesinasortedlist
Makesalinktoafile

Sendsfilestothe lineprinter queue forprinting
Givesinformationabout contents of directories
Sends, reads ordisposes of mail
Permitsordeniesmessage senttoterminal
Makes adirectory

Constructsafile system

Builds specialfiles

AddsaloginlDtothe system
Viewsafileone screenfulatatime
Mountsafilestructure
Movesorrenamesfileordirectories
Generates names frominode numbers
Administersthe XENIX network
Logsuserintoanew group
Runsacommandatadifferent priority
Addslinememberstoafile
Runsacommandimmunetohangupsandquits
Displays filesin octal format
Compressesandexpands files
Changesloginpassword

Prints filesonthe standard output
Reportsprocess status

Reports system information

Performs password aging administration

pwcheck
pwd
quot
random
cp
remote
restor
rm, rmdir
rmuser
rsh
sddate
sdiff

sed
setmnt
settime

shutdown
sleep

split
stty

sum

sync
sysadmin
tail

tee
test
touch

true
tset

tty
umask
umount
uname
uniq
units
uucp
uunow
uusend
uux .

vsh
wait
wall
we
what
who

Checkspassword fille

Prints working directory

Summarizes file systemownership
Generatesarandom number
Copiesfilesacross XENIX systems
Executesacommand onaremote XENIX system
Invokesincrementalfile systemrestorer
Removesfilesor directories
Removesauser fromthe system
Invokesarestricted shell (commandinterpreter)
Printsand setsbackupdates

Compares files side —by —side

Invokesthe stream editor
Establishes/etc/mnttabtable

Changesthe accessandmodificationdates
offiles

The shellcommandinterpreter
Terminatesallprocessing
Suspendsexecution foraninterval
Sortsandmergesfiles
Splitsafileintopieces

Setstheoptions fora terminal

Makesthe user super—user or another user
Calculateschecksum andcountsthe blocks
inafile

Updatesthe super—block

Performsfile system backups and restores files
Deliversthelast partofafile

Archivesfiles

Createsateeinapipe

Testsconditions

Updatesaccessand modificationtimes of a file
Translatescharacters

Returns with azeroexit value

Setsterminal modes

Getstheterminal’ sname
Setsfile—creation mode mask
Dismountsafile structure

Printsthe current XENIX name
Reportsrepeatedlinesinafile
Convertsunits

Copiesfiles from XENIX to XENIX
Initiate auucp sequence now

Send afiletoaremote host
Executescommandonremote XENIX
Invokesascreenorientedtext editor
Menudrivenvisualshell

Awaits completion of background processes
Writestoallusers

Countslines, words, andcharacters
Identifiesfiles

Listswhoisonthe system

1—iii

whodo

xargs
yes

Determines whoisdoing what
Writestoanotheruser
Constructs andexecutes commands

- Printsstringsrepeatedly

Index

Accounting files, printing acctcom
Accounting, starting accton
Archives, creatingandrestoring tar
atcommand at

atrm command at
Backup, creating dump
Backup, creatingandrestoring sysadmin
Backup, dates sddate
Backup, listing duvmpdir
Backup, restoring restor
Calculator be
Calculator dc
Calendar, display cal
Charactertranslation tr
Commands, constructing and executing xargs
Commands, executiononaremote system remote
Commands, executionpriority nice
Commands, execution without hangups and quits nokup
Commands, intersystem execution nox
Commands, options getopt
Commands, scheduled execution at
Commands, scheduledexecution cron
Communication, calling other systems 1}
Communication, copying files across systems rep
Conversions, units units
Date, setting date
deassigncommand assign
Devices, exclusivecontrol assign
Devices, names devnm
Directory, comparing dircmp
Directory, creating mkdir
Directory, listing Is
Directory, listing columns Ic
Directory, listing information 1
Directory, removing rmdir
Directory, renaming my
Disktype dtype
Displaying, command arguments echo
Displaying, firstlinesof afile head
Displaying, lastlinesofafile tail
Displaying, line numbers nl
egrepcommand grep
Environment, setting env
Expressions, evaluating expr
fgrepcommand grep
File system, backup dump

File system, backups sysadmin
File system, checking andrepairing fsck
File system, constructing mkfs
File system, mounttable setmnt
File system, mounting mount
File system, names from inode numbers ncheck
File system, ownership quot
File system, unmounting umount
File, access andmodificationdates settime -
File, access andmodificationtimes touch
File, access permissions chmod
File, building specialfiles mknod
File, checksum andblocks sum
File, comparing cmp
File, comparing bdiff
File, comparing side—by—side sdiff
File, comparingtext diff
File, comparingtext diff3
File, compressingandexpanding pack
File, concatenating anddisplaying cat
File, convertingandcopying dd
File, copying cp
File, copyingarchives cpio
File, copying groups copy
File, counting lines, words and characters we
File, creationmodemask umask
File, displaying pr
File, displayingrepeatedlines uniq
File, encryption crypt
File, groupID chgrp
File, hexadecimal display hd
File, identifying what
File, intersystem copy vucp
File, linking In

- File, locating find
File,movingandrenaming my
File, octal display od
File,ownerID chown
File, printing Ipr
File, removing rm
File, scanning bfs
File, selecting commonlines comm
File, sorting sort
File, splitting by context esplit
File, splitting by lines split
File,type file
File, viewing more
Group file grpcheck

Group, switching newgrp
IDs, userand group id
initiate auucpconnectionnow Uunow
Largeletters banner
Line, reading frominput line
Lines, findinginasortedlist lock
Login, name logname
Mail mail
Micnet, creatingand operating netutil
Password, aging pwadmin
Password, changing passwd
Password, filecheck pwcheck
Pathname, directory name dirname
Pathnames, filename basename
Pattern, searching grep
Pattern, searching and processing awk
pcat command pack
Pipe, creatingatee tee
Process, status 3
Process, temporary suspension sleep
Process, terminating kill
Process, waiting forbackground process wait
Random number random
Relations, joining join
Reminder service calendar
Returnvalue, nonzero false
Returnvalue, repeatedstring yes
Returnvalue, zero true
Rootdirectory chroot
Sendafiletoaremote host uusend
Shell csh

Shell sh

Shell, restricted rsh
Shell, visual vsh
System, current name uname
System, diskusage du
System, freedisk blocks daf
System, information pstat
System, stopping haltsys
System, stopping shutdown
System, super—block sync
Terminal, disable login disable
Terminal, enablinglogins enable
Terminal, enablingmessages mesg
Terminal, name tty
Terminal, settingmodes stty
Terminal, settingmodes tset
Terminal, writingtoall wall

Testingconditions test
Texteditor, line ed
Texteditor, line ex
Texteditor, screen vi
Texteditor, stream sed
Timeofday asktime
unpack command pack
User, addingtothe system mkuser
User, listing who
User, listing action whodo
User, removing fromthe system rmuser
User, switching su
User, writingtotheterminal write
Users, information finger
uulogcommand uucp
Working directory cd
Working directory pwd

INTRO(C) INTRO(C)

Name

intro - Introduces XENIX commands.

Description

This section describes use of the individual commands available in
the XENIX Timesharing System. Each individual command is
labeled with either a C, a CP, or a CT for easy reference from other
volumes. The letter *“‘C’’ stands for ‘“command”’. The letters “P”’
and ‘T’ stand for commands that come with the optional XENIX
Programming System and the XENIX Text Processing System,
respectively. For example, the reference date(C) indicates a refer-
ence to a discussion of the date command in the C section; the
reference ce{CP) indicates a reference to a discussion of the cc com-
mand in the XENIX Programmer’s System; and the reference
epell(CT) indicates a reference to a discussion of the spell command
in the XENIX Text Processing System. The Text Processing and
Programmer’s Systems are optional supplemental packages to the
standard Timesharing System.

The “M’’ Miscellaneous section contains miscellaneous information
including a great deal of system maintenance information. Other
reference sections include the *‘S’’ System Services section and the
““F*’ File Format section. Both these sections come as part of the
Programmer’s Reference with the optional Software Development
System.

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [option(s)] [emdarg(s)]

where:
name Is the name of an executable file.
option — noargletter(s) or,

— argletter< > optarg
where <> is optional whitespace.

noargletter Is a single letter representing an option without an
argument.

argletter Is a single letter representing an option requiring an
argument.

March 26, 1984 : Page 1

INTRO(C) INTRO(©)

optarg Is en argument (character string) satisfying preceding
: argletier.
emdarg Is 2 pathname (or other command argument) not
beginning with — . — by itself indicates the standard
input.
See Also

getopt{ G}, getopy(S) '
Diagniostics

Upon termination, each command returns 2 bytes of status, one sup-
plied by the system and giving the cause for termination, and (in the
case of ‘‘normal’ termination) one supplied by the program (see
wait(S) and ezit(S)). The former byte is 0 for normal termination;
the latter is customarily 0 for successful execution and nonzero to
indicate troubles such as erroneous parameters, bad or inaccessible
data. It is called variously ‘““‘exit code’, ‘‘exit status’’, or ‘‘return
code'’, and is described only where special conventions are involved.

Nomi

Not all commands adhere to the syntax described here.

March 26, 1984 ‘ Page 2

ACCTCOM(C) ACCTCOM(C)

Name
acctcom — Searches for and prints process accounting files.

Syntax
acctcom || options|[file]] . . .

Description
Acctcom reads file, the standard input, or /usr/adm/pacct, in the
form described by acct(F) and writes selected records to the stan—
dard output. Each record represents the execution of one process.
The output shows the COMMAND NAME, USER, TTYNAME,
START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN
SIZE (K), and optionally, F (the fork/exec flag: 1 for fork without
exec) and STAT (the system exit status).

The command name is prepended with a # if it was executed with
super—user privileges. If a process is not associated with a known
terminal, a ? is printed in the TTYNAME field.

If no files are specified, and if the standard input is aséociated with
a terminal or /dev/null (as is the case when using & in the shell),
fusr/adm/pacct is rcad, otherwise the standard input is read.

If any file arguments are given, they are read in their respective
order. Each file is normally read forward, i.e., in chronological
order by process completion time. The file /usr/adm/pacct is
usually the current file to be examined; a busy system may need
several files, in which case all but the current file will be found in
/usr/adm/pacct?. The options are:

~b Reads backwards, showing latest commands first.

—f Prints the fork/exec flag and system exit status columns
in the output.

-h Instead of mean memory size, shows the fraction of

total available CPU time consumed by the process
during -its execution. This ‘‘hog factor’’ is computed

as:

(total CPU time)/(clapsed time).
—i Prints columns containing the 1O counts in the output.
-k Instead of memory size, shows total kcore—minutes.
-~m Shows mean core size (the default).

May 9, 1984 ' Page 1

ACCTCOM(C) ’ ACCTCOM(C)

-r Shows CPU factor (user time/(system—time + user—
time).)

-t Shows separate system and user CPU times.

-v Excludes column headings from the output.

-1 line . Shows only processes belonging to terminal /dev/line .

—u user Shows only processes belonging to user that may be
specified by a user ID, a login name that is then con—
verted to a user 1D, a # which designates only those
processes executed with super—user privileges, or ?
which designates only those processes associated with
unknown user IDs.

—8 group v
Shows only processes belonging to group. The group
may be designated by either the group ID or group
pame.

—-d mmidd
Any time arguments following this flag are assumed to
occur on the given month and day, father than during
the last 24 hours. This is needed for lcoking at old
files.

—s time Shows only those processes that existed on or after
time, given in the form hrimin:sec. The :sec or
imin:sec may be omitted.

—e time Shows only those processes that existed on or before
time. Using the same time for both —s and —e shows
the processes that existed at time.

—n pattern
Shows only commands matching pattern that may be a
regular expression as in ed (C) except that + means
one Of More OCCUTences.

—H factor

Shows only processes that exceed factor, where factor
is the “‘hog factor’’ as explained in option —h above.

May 9, 1984 Page 2

ACCTCOM (C) ACCTCOM(C)

-1 number
Shows driver processes transferring more characters
than the cutoff number.

—O rime Shows only those processes with operating system CPU
time that exceeds time.

—C time Shows only those processes that exceed time (the total
CPU time).

Multiple options have the effect of a logical AND.
Files
letc/passwd

fusr/adnvpacct

letc/group

See Also
accton(C), ps(C), su(C), acct(S), acct(F), utmp(M)
Notes

Acctcom only reports on processes that have terminated; use ps(C)
for active processes.

May 9, 1984 Page 3

ACCTON(C) ~ ACCTON(C)

Name

accton - Turns on accounting.

Syntax

accton | file]

Description

Accton turns on and off process accounting. If no file is given, then
accounting is turned off. If file is given, it must be the name of an
existing file, to which the kernel appends process accounting records.
(see acct(S) and acet(F)).

Files
[etc/passwd Used for login name to user ID conversions
Jusr/libfacct Holds many accounting commands

Jusr/adm /pacct- Current process accounting file

[usr/adm/witmp Login/logout history file

See Also
acctcom(C), acct(S), acct{F), utmp(M)

March 24, 1984 Page 1

ASKTIME (C) ASKTIME (C)

Name

asktime - Prompts for the correct time of day.

Syntax

[etc/ask time

Description

This command prompts for the time of day. You must enter a legal
time according to the proper format as defined below:

mmddhhmm| yy)
Here the first mm is the month number; dd is the day number in the
month; Ak is the hour number (24-hour system}; the second mm is

the minute number; yy is the last 2 digits of the year number and is
optional. The current year is the default if no year is mentioned.

Examples

This example sets the new time, date, and year to ‘‘9:23 January 1,
1983".

I think it's Wed Nov 3 14:36:23 PST 1982
Enter time (mmddhhmm|[yy]): 6101092383

Diagnostics
If you enter an illegal time, asktime prom pts with:

Try again:

Notes

Asktime is normally performed automatically by the system startup
file /etc/rc immediately after the system is booted; however, it may
be executed at any time. The command is privileged, and can only
be executed by the super-user.

March 24, 1984 . Page 1

ASSIGN(C) ASSIGN(C)

Name

assign, deassign — Assigns and deassigns devices.

Syntax

assign [—u][=v][—d][device | ...
deassign | —u][—v][device | ...

Description

Assign attempts to assign device to the current user. The device
argument must be an assignable device that is not currently
assigned. An assign command without an argument prints a list of

- assignable devices along with the name of the user to whom they

are assigned.

Deassign is used to ‘‘deassign’’ devices. Without any arguments,
deassign will deassign all devices assigned to the user. When
arguments are given, an attempt is made to deassign each device
given as an argument. -

Available options include:

-d Performs the action of deassign. The —d option may be
embedded in device names to assign some devices and
deassign others.

-V Gives verbose output.

-u Suppresses assignment or deassignment, but performs
error checking. '

The assign command will not assign any assignable devices if it
cannot assign all of them. Deassign gives no diagnostic if the
device cannot be deassigned. Devices may be automatically deas—
signed at logout, but this is not guaranteed. Device names may be
just the beginning of the device required. For example,

assign fd

should be used to assign all floppy disk devices. Raw versions of
device will also be assigned, e.g., the raw floppy disk devices
/dev/rfd? would be assigned in the above example. Note that in

~many installations the ‘assignable devices such as floppy disks have

general read and write access, so the assign command may not be -
necessary. This is particularly true on one—user systems. Devices
supposed to be assignable with this command should be owned by
the user asg. The directory /dev should be owned by bin and have
mode 755. The assign command (after checking for use by some—
one else) will then make the device owned by whoever invokes the
command, without changing the access permissions. This allows

May 9, 1984 ' Page 1

ASSIGN(C) ASSIGN(C)

the system administrator to set up individual devices that are freely
available, assignable (owned by asg), or nonassignable and res—
tricted (not owned by asg and with some restricted mode). Note
also that the first time assign is invoked it builds the assignable
devices table /etc/atab. This table is used in subsequent invoca—
tions to save repeated searches of the /dev directory. If one of the
devices in /dev is changed to be assignable (i.c., owned by asg),
then /etc/atab should be removed (by the super—user) so that a
correct list will be built the next time the command is invoked.

Files
/etc/atab Table of assignable devices

/dev/asglock
File to prevent concutrent access

Diagnostics
Exit code O returned if successful, 1 if problems, 2 if device cannot
be assigned.

May 9, 1984 Page 2

AT(C) - AT(0)

Name

at, atq, atrm - Executes commands at a later time.

- Syntax ; v
at time | day] [file]
atq [- 1]

atrm idnumber ...

Description

At causes the contents of a file to be executed as a shell script at a
specified time. This command is useful for running processes at reg-
ular intervals, or when the system is not busy. The arguments are:
time 1 to 4 digits, followed by an optional ‘‘a’ for am, ‘“p’’ for
pm, ‘‘n’”’ for noon, or “m” for midnight. One- and two-
digit numbers are interpreted as hours, three- and four-digit
numbers as hours and minutes. If no letters follow the
digits, 24-hour time is assumed.

day Either a month name followed by a day number, or the
name of a day of the week. If the word ‘‘week’ follows the
name of the day, the file is invoked seven days after the day
named. Names of months and days may be recognizably
truncated. (See the Examples later in this section.}

file The name of the file containing the command(s) to be exe-
cuted. If no file is specified, the standard input is assumed.

At creates a file that is executed by the shell at the specified time.
This file contains a comment line that lists the user’s user ID and
group ID, a ¢d command that changes the working directory of the
process to the one you were using when you executed at, assign-
ments to the appropriate environment variables, and the file specified
in ‘the at command line. Output from processes in file must be
redirected or, (on most systems) it is lost. At shell scripts are run by
periodic execution of the command fusrfibfatrun from cron(C).

The atq command gives the following information about files waiting
to be processed:

- The user ID under which the file will run
- A unique ID number used to reference the file

- The date and time the file will be processed

March 24, 1984 Page 1

AT(C) AT(C)

The -l option displays the commands in each file in the queue.
The atrm command removes files from the ‘‘at’’ queue. Atrm uses
the ID number(s) from the atg command to remove the specific
file(s). A user can only remove his own files.

Examples
Use the following line to place a file in the queue:

at 8a jan 24 file

In the following command line, file will be executed a week from
this Friday at 3:30 pm.

at 1530 fr week file
To remove a file from the queue, find out the ID number(s) with
atq
Then remove the file with atrm :
atrm tdnumber
A sample at file might contain the line
Ipr biglongfile

which sends biglongfile to the lineprinter.

Files

Just/spool/at/yy.ddd.hhhh.uu
Activity to be performed at hour hkih of
day ddd of year yy Uu is a unique
number. :

[usr/spool/at/lasttimedone
Contains Akkh for last hour of activity.

[usr/spool/at/past Contains old at files.

i

Jusr/lib/atrun Program that executes activities at the
specified time.

See Also
calendar(C), cron(C), pwd(C)

March 24, 1984 Page 2

AT(C) AT(C)

Diagnostics

Complains about various syntax errors and times out of range. k
Notes

The directory /uer/apoél/at/paet should be periodically emptied by the
super-user.) '

Due to the granularity of the execution of jusrfib/atrun, there may be
problems in scheduling things exactly 24 hours into the future.

March 24, 1984) Page 3

AWK (C) AWK (C)

Name

awk — Searches for and processes 2 pattern in a file.

Syntax

awk [- Fc] [- f programfile |’ program’ | | file ...]

Description
Awk scans each input file for lines that match patterns specified in -
program or in programfile. When a line of file matches a pattern, an
associated action may be performed. Awk is useful for compiling
information, performing arithmetic on mput data, and for doing
iterative or conditional processing.

The options are:

- Fe Sets the field separator variable (FS) to the letter *‘¢>’. The
default field separators are tab and space.

-f Causes awk to take its program from programfile.

The arguments are:

programfile
A file containing an ewk program.

program An awk program. Programs given on the command line
must be enclosed in single quotation marks to prevent
interpretation by the shell.

file ... The name(s) of the file or files to be processed. If no
- filename is given, the standard output is used.

An awk program consists of statements in the form:
pattern { action }

Pattern-action statements may appear on the awk command line, or
in an awk program file.

If no pattern is given, all lines in the input file are matched. If no
action is given, each matched line is displayed on the standard out-
put.

A pattern may be a literal string or a regular expression, or a combi-

nation of a regular expression and a field or variable separated by
operators.

March 24, 1984 Page 1

AWK (C) AWK (C)

Auwk also provides two patterns, BEGIN and END, that can be used to
perform actions before the first line is read, and after the last line is
read, respectively.

To select a range of lines, use two patterns on a single program line,
separated by a comma.

An action is a sequence of statements separated by a semicolon,
newline, or right brace. See Statements later in this section.
Variables

In addition to variables declared and initialized by the user, awk has
the following program variables:

NR Number of records.

NF | Number of fields in a record.
FS Input field separator. .

OFS . - Output field separator.

RS Input record separatol;.

ORS Output record separator.

$0 The current record.

$1, $n Fields in the current record.
OFM The ouput format for numbers. The default is % 6g.

FILENAME
The name of the input file currently being read.

Arrays may be used to store data. Arrays do not need to be dimen-
sioned before use. For example, wli] denotes the ith item of array w.
Ezpressions

A pattern match with a field or variable may be tested with the fol-
lowing operators:

Matches the regulér expression.

March 24, 1984 Page 2

AWK (C) AWK (C)

! Does not match the regular expression.

Auwk processes relational expressions using the following operators:
< Less than

<= Less than or equal to

== Equal to

o= Not equal to

>= Greater than or equal to

> Greater than

Patterns can be combined using the operators:

&& And
| Or
! Not

An empty expression-list stands for the whole line. Expressions take
on string or numeric values as appropriate, and are built using the
following operators:

+ Addition

- _Subtraction

* Multiplication
‘ / Division

% Modulo

Concatenation is indicated by a blank.

The following C operators are also available in expressions:
+ 4 Increment |
- - De’crement

+= Add and assign

- = Subtract and assign

- Multiply and assign

March 24, 1984 Page 3

AWK (C) AWK (©)

/= Divide and assign
%= Modulo and assign
Statements

if (conditional) statement | else statement |

while (conditional) statement

for (ezpression ; conditional ; ezpression) statement
break :
continue

{] statement | ... }

vanable = ezpression

print [ezpression-list | [> ezpression |

printf format | , ezpression-list | | > ezpression |
next #skip remaining patterns on input line

while Used the same as in C.

for

The iterative construction. It can be used the same as in
the C language, or as an array iterator.

break Similar to its C counterpart.

continue - Similar to its C counterpart.

print Prints its arguments on the standard output, or in a file if

redirected.

printf Prints ezpression-list in the format specified in format. See

next

Com

printf(S).

Stops processing the current record and moves to the next
record, if any.

ments are preceded by a number sign (#).

Functions

Auvk
exit(

exp(

has the following built-in functions:

z) Terminates the awk program. If z is given, this value is
awk’s return value. If z is not given, 0:is returned. If the
program has an END section, it is invoked before termina-
tion. :

z) [Exponentiation of the value of 2. -

inydex(s 1)

Returns the starting position of the leftmost occurrence of ¢
in & If tis not a substring of &, then index(s, ¢) is 0.

March 24, 1984 Page 4

AWK (C) AWK (C)

int{z) Returns the largest integer less than or equal to z. If z is
negative, its value is the smallest integer greater than or
equal to z.

length(z)
A function whose value is the number of characters in the
string (). With no arguments length is equivalent to $0.

log(z) Natural logarithm of z.

split(z, y)
Assigns the fields of string z to successive elements of array |
¥

sqrt{z) Square root of z.

substr(string, indez, length)

Returns the substring of stnng that begins at indez and is
length characters long.
Examples
The following displays lines in file longer than 7? characters:
awk {length > 72} file
The following prints the first two fields in opposite order:
awk *{ print $2, $1 } file

The following adds up the first columns and prints their sum and
average:

s +=$1}
END print "sum is”, s, " average is", s/NR }

The following prints the fields in file in reverse order:
awk { for (i = NF; i > 0; - -i) print $i } file

The following awk program file will print all lines in the object file
whose first field is different from the first field in the previous line:

$1 != prev { print; prev = $1 }
See Also

grep(C), lex(CP), sed(C)
The XENIX Texzt Processing Guide

March 24, 1984 Page 5

AWK (C) AWK (C)
Notes
Input whitespace is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To
force an expression to be treated as a number add 0 to it; to force it

to be treated as a string concatenate the null string (") to it.

This command is more fully documented in the XENIX Tezt Process-
ing Guide.

March 24, 1984 Page 6

BANNER (C) BANNER (C)

Name

banner — Prints large letters.

Syntax

banner strings

Description
Banner prints its arguments (each up to 10 characters long) in large

letters on the standard output. This is useful for printing names at
the front of printouts.

March 24, 1984 Page 1

BASENAME (C) BASENAME (C)

Name

basename - Removes directory names from pathnames.

- Syntax

basename string [suffix |

Description
Basename deletes any prefix ending in / and the suffiz (if present in
string) from string, and prints the result on the standard output. The
result is the ‘‘base’’ name of the file, i.c., the filename without any
preceding directory path and without an extension. It is used inside
substitution marks (%) in shell procedures to construct new
filenames.

The related command dirname deletes the last level from string and
prints the resulting path on the standard output.
Examples

The following command displays the filename memos on the stan-
dard output:

basename fusr/johnh/memos.old .old
The following shell procedure, when invoked with the argument
Jusr/srcfemd/cat.c, compiles the named file and moves the output
to a file named cat in the current directory:

cc $1

mv aout ‘basename $1 .c*

See Also

dirname(C}, sh(C)

March 24, 1984 Page 1

BC(C) | . BC(C)

Name

bc - Invokes a calculator.

Syntax
be|[-c][-1]]file..]

Description

Be is an interactive processor for a language that resembles C but
provides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The — 1 argument stands for
the name of an arbitrary precision math library. The syntax for be
programs is as follows: L means the letters a- z, E means expres-
sion, S means statement.

Comments:
Enclosed in /* and */
Names:

Simple variables: L
Array elements: L | E]

1 s

The words ‘‘ibase’’, ‘“‘obase’’, and ‘‘scale”
Other operands:

Arbitrarily long numbers with optional sign and decimal point
(E)

sqrt (E)

length { E} Number of significant decimal digits

scale (E) Number of digits right of decimal point
L(E,..,E) '

Additive operators:
+

Multiplicative operators:

% (remainder)
* (exponentiation)

March 24, 1984 Page 1

~ BC(C)

Unary operators:

++

(prefix and postfix; apply to names)

Relational operators:

<=
>=
=
<

>

Assignment operators:

=+
.

=/
=%

Statements:

E
{S; ..
if(E)

for(E

S}
S

while (E) S
JE;E)S

null statement

break
quit

Function definitions:

defineL (L,.,L) {

~March 24, 1984

auto L, ..., L
S;...S
return (E)

BC(0)

Page 2

BC(C) BC(C)

Functions in — 1 math library: -

s(x) Sine

¢(x) Cosine

e(x) Exponential
I(x) Log

a(x) Arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of
de¢(C). Assignments to sbase or obase set the input and output
number radix respectively.

The same letter may be used as an array, a function, and a simple
variable simultaneously. All variables are global to the program.
‘‘Auto’’ variables are pushed down during function calls. When
using arrays as function arguments or defining them as automatic
variables, empty square brackets must follow the array name.

Be is actually a preprocessor for d¢(C), which it invokes automati-
cally, unless the — ¢ (compile only) option is present. If the — ¢
option is present, the de¢ input is sent to the standard output instead.

Example

The following defines a function to compute an approximate value of
the exponential function:

scale = 20
define e(x){
auto a, b, ¢, i, s
a==1
b=1
s=1
for(i=1; 1===1; i+ +){
a = a%x
b = b%
¢c=12afb
if(¢c === 0) return(s)
s = s+ ¢

March 24, 1984 ‘ Page 3

BC(C) BC(0)

The following prints the approximate values of the exponential func-
tion of the first ten integers:

for(i=1; i<=10; i+ +) e(i)
Files
Jusr/lib/libbc Mathematical library

Jusr/binfdc Desk calculator proper

See Also
de(C)
The XENIX User’s Guide
Notes
A For statement must have all three E’s.

Quit is interpreted when read, not when executed.

March 24, 1984 Page 4

BDIFF (C) BDIFF(C)

Name

bdiff - Compares files too large for diff.

Syntax
bdiff filel file2 [n] |- s]

Description

Bdiff finds compares two files, finds lines that are different, and

prints them on the standard output. It allows processing of files that

are too large for diff. Bdiff splits each file into n-line segments,

beginning with the first nonmatching lines, and invokes diff upon the

corresponding segments. The arguments are:

n The number of lines bdiff splits each file into for processing. The
default value is 3500. This is useful when 3500-line segments
are too large for diff.

— s Suppresses printing of bdiff diagnostics. Note that this does not
suppress printing of diagnostics from diff.

If filel (orfile?) is a dash (-)}, the standard input is read.
The output of bdiff is exactly that of diff. Line numbers are adjusted

to account for the segmenting of the files, and the output looks as if
the files had been processed whole.

Files

See Also
diff (C)

Notes

Because of the segmenting of the files, bdiff does not necessarily find
a smallest sufficient set of file differences.

March 24, 1984 Page 1

BFS(C) BFS (C)

Name

bfs — Scans big files.

Syntax

bfs [-] name

Description

Bfs is like. ed(C) except that it is read-only and processes much
larger files. Files can be up to 1024K bytes and 32K lines, with up
to 255 characters per line. Bfs is usually more efficient than ed for
scanning -a file, since the file is not copied to a buffer. It is most
useful for identifying sections of a large file where csplit(C) can be
used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size
of any file written with the w command. The optional dash (-)
suppresses printing of sizes. Input is prompted for with an asterisk
(*) by default. If a “P” and a RETURN are typed as in ed, then
prompting is turned off. The ‘P’ acts as a toggle, so prompting can
be turned on again by entering another ‘P’ and a RETURN. Note
that messages are given in response to errors only if prompting is
turned on. i

All address expressions described under ed are supported. In addi-
tion, regular expressions may be surrounded with two symbols other
than the standard slash (/) and (?): A greater-than sign (>) indi-
cates downward search without wraparound, and a less-than sign
(<) indicates upward search without wraparound. Since bfs uses a
different regular expression-matching routine from ed, the regular
expressions accepted are slightly wider in scope (see regez (S)}. The
differences from ed syntax include the fact that parentheses and
curly braces are special and need not be escaped. Differences are
listed below:

+ A regular expression followed by 4+ means one or more
times. For example, [0- 9]+ is equivalent to
[0- 9][o- 9]*.

{m} {m,} {m,u}

Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. .m is the
minimum number and % is a number, less than 256, which
is the maximum. If only m is present (e.g., {m}), it indi-
cates the exact number of times the regular expression is
to be applied. {m,} is analogous to {m,infinity}. The plus
(+) and star (*) operations are equivalent to {1,} and {0,}
respectively.

March 24, 1984 : Page 1

BFS(C) BFS(C)

(...)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ I)th argu-
ment following the subject argument. At most ten
enclosed regular expressions are allowed. Regez makes its
assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g. %,
+, {} can work on a single character or a regular expres-
sion enclosed in parenthesis. For example, (a*(cb+)*)$0.

There is also a slight difference in mark names: only the letters ‘‘a”’
through ‘‘z’’ may be used, and all 26 marks are remembered.

The e, g, v, k, n, p, q w, =, ! and null commands operate as
described under ed. Commands such as ---, +4+4+-, +++=,
— 12, and +4p are accepted. Note that 1,10p and 1,10 will both
print the first ten lines. The f command only prints the name of the
file being scanned; there is no remembered filename. The w com-
mand is independent of output diversion, truncation, or crunching
(see the xo, xt and xc commands, below). The following additional
commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received, or an
error occurs, reading resumes with the file containing the xf.
XT commands may be nested to a depth of 10.

xo | file]
Further output from the p and null commands is diverted to
the named file. If file is missing, output is diverted to the stan-
dard output. Note that each diversion causes truncation or
creation of the file.

: label
This positions a label in a command file. The label is ter-
minated by a newline, and blanks between the : and the start
of the label are ignored. This command may also be used to
insert comments into a command file, since labels need not be
referenced.

{ ., .)xbfregular ezpressionfiabel
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi-
tions:
1. Either address is not between 1 and $.
2. The second address is less than the first.

3. The regular expression doesn’t match at least one line
in the specified range, including the first and last lines.

March 24, 1984 Page 2

BFS(C)

| BFS(C)

On success, dot (.) is set to the line matched and a jump is
made to laéel. This command is the only one that doesn’t issue
an error message on bad addresses, so it may be used to test
whether addresses are bad before other commands are exe-
cuted. Note that the command

xb/"/ label
is'an unconditional jump.
The xb command is allowed only if it is read from somewhere

other than a terminal. If it is read from a pipe only a down-
ward jump is possible.

xt number

Output from the p and null commands is truncated to a max-
imum of number characters. The initial number is 255.

xv] digit] | spaces] | value]

The variable name is the specified digit following the xv.
Xv5100 or xv5 100 both assign the value 100 to the variable 5.
Xv61,100p assigns the value 1,100p to the variable 8. To refer-
ence a variable, put a %in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%b5
96

prints the first 100 lines.

8/%5/p

globally searches for the characters 100 and prints each line
containing a match. To escape the special meaning of % a \
must precede it. For example, '

8/ A\%eds]/p

could be used to match and list lines containing printf charac-
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of
output from a XENIX command can be stored into ‘a variable.
The only requirement is that the first character of value be a!.
For example,

xv5!cat junk

rm junk

techo "%5"
xvBlexpr 96 + 1

March 24, 1984 Page 3

BFs(C) : BF5(C)

puts the current line in variable 5, prints it, and increments the
variable 8 by one. To escape the special meaning of ! as the
first character of value, precede it with a \. For example,

xv7\!date
stores the value !date into variable 7.
xbz label
xbn label

These two commands test the last saved return code from the
execution of 2 XENIX command (!command) or nonzero value,
respectively, and jump to the specified label. The two exam-
ples below search for the next five lines containing the string
size:

xvdd

01

[size/

xv5lexpr %5 ~ 1
1if 0965 1= 0 exit 2
xbn |

xv45

|

[size/

xv4lexpr %4 - 1
1if 094 = 0 exit 2
xbz 1

xc |switch]
If eswiteh is 1, output from the p and null commands is
crunched; if ewstch is O it isn’t. Without an argument, xc rev-
erses switck. Initially, switch is set for no crunching. Crunched
output has strings of tabs and blanks reduced to one blank and
blank lines suppressed.

See Also
esplit{ C), ed(C), regex(S)

Diagnostics
If prompting is turned off, a question mark is printed (?) for errors

in commands. When prompting is on, self-explanatory error mes-
sages appear.

March 24, 1984) Page 4

CAL (C) , CAL (C)

Name

cal - Prints a calendar.

Syntax
cal [[month | year]

Desecription

Cal prints a calendar for the specified year. If a month is also
specified, a calendar for that month only is printed. If no arguments
are specified, the current, previous, and following months are
printed, along with the current date and time. The year must be a
number between 1 and 9999; month must be a number between 1
and 12 or enough characters to specify a particular month. For
example, May must be given to distinguish it from March, but'S is
sufficient to specify September. If only a month string is given, only
that month of the current year is printed.

Notes
Beware that ‘‘cal 84’ refers to the year 84, not 1984.
The calendar produced is that for England and her colonies. Note
that England switched from the Julian.to the Gregorian calendar in

September of 1752, at which time eleven days were excised from the
year. To see the result of this switch, try “‘cal 9 1752",

March 24, 1984 Page 1

CALENDAR (C) " CALENDAR (C)

Name

calendar — Invokes a reminder service.

Syntax
calendar | -]

Description
Calendar consults the file calendar in the user’s current directory
and mails him lines that contain today’s or tomorrow’s date. Most
reasonable month-day dates, such as ‘‘Sep. 7, ‘‘september 7, and
g /7', are recognized, but not *‘7 September’’, *“7/12” or ‘‘07/12".
On weekends ‘‘tomorrow’’ extends through Monday. Lines that con-
tain the date of a Monday will be sent to the user on the previous
Friday. This is not true for holidays.
When an argument is present, calendar does its job for every user
who has a file calendar in his login directory and sends the user the
results by masl (C). Normally this is done daily, in the early mom-
ing, under the control of cron (C).

Files
calendar
Jusr/lib/calprog To figure out today’s and tomorrow’s dates
[etc/passwd
Jtmp/cal*

fusr/lib/crontab

See Also
cron(C), mail(C)

Notes

To get reminder service, a user’s calendar file must have read per-
mission for all.

March 24, 1984 Page 1

CAT(C) CAT(C)

Name

cat — Concatenates and displays files.

Syntax
cat[-u][~-s] file...

Description
Cat reads each file in sequence and writes it on the standard output.
If no input file is given, or if a single dash (-~) is given, ¢at reads
from the standard input. The options are:
- s Suppresses warnings about nonexistent files.
~ u Causes the output to be unbuffered.
No input file may have the same name as the output file unless it is
a special file.
Examples
The following example displays file on the standard output:
cat file

The following example concatenates filel and file2 and places the.
result in file3:

cat filel file2 >file3
The following example concatenates filel and appends it to file2:

cat filel >> file2

See Also

cp(C), pr(C)

March 24, 1984 Page 1

*eD(©) , oD ()

Name

cd - Changes working directory.

Syntax

cd [directory |

Description

. If specified, directory becomes the new working directory; otherwise
the value of the shell parameter $HOME is used. The process must
have search (execute) permission in all directories (components)
specified in the full pathname of directory.

Because a new process is created to execute each command, cd
would be ineffective if it were written as a normal command; there-
fore, it is recognized and executed by the shell.

If the shell is reading its commands from a terminal, and the speci-
fied directory does not exist (or some component cannot be
searched), spelling correction is applied to each component of direc-
tory, in a search for the ‘‘correct’’ name. The shell then asks
whether or not to try and change directory to the corrected directory
name; an answer of # means ‘‘no’’, and anything else is taken as
uyesn.
Notes

Wildcard designators do not work with the cd command.

See Also
pwd(C), sh(C), chdir(S)

March 26, 1984 Page 1

CHGRP(C) CHGRP(C)

Name

‘ chgrp - Changes group ID.

Syntax

chgrp group file ...

Description

Chgrp changes the group ID of each file to group. The group may be
either a decimal group ID or a group name found in the file

[etc/group.

Files
Jetc/passwd

[etc/group

See Also
chown(C), chown(S), passwd(M), group(M)

Notes

Only the owner or the super-user can change the group ID of a file.

March 24, 1984 Page 1

CHMOD (C) CHMOD (C)

Name

chmod - Changes the access permissions of a file or directory.

Syntax
chmod mode file ...

Description
The chmod command changes the access permissions (or mode) of a
specified file or directory. It is used to control file and directory
access by users other than the owner and super-user. The mode may
be an expression composed of letters and operators (called symbolic
mode), or a number (called absolute mode).
A chmod command using eymbolic mode has the form:
chmod [who] + - == [permission ...| filename
Who is one or any combination of the following letters:
a Stands for ‘““all users’. If who is not indicated on the command
line, a is the default. The definition of ‘‘all users’ depends on

the user’s umask. See umask(C).

g Stands for ““group’’, all users who have the same group ID as
the owner of the file or directory.

o Stands for ‘‘others’, all users on the system.

u Stands for ‘‘user’’, the owner of the file or directofy.

The operators are:

+ Adds permission

— Removes permission

== Assigns the indicated permission and removes all other permis-
sions (if any) for that who. If no permission is assigned, existing
permissions are removed.

Permissions can be any combination of the following Ie_tteré:

x Execute (search permission for directories)

r Read

w Write

March 24, 1984 .) Page 1

CHMOD (C) CHMOD (C)’

s Sets owner or group ID on execution of the file to that of the
owner of the file. This permission is only useful with uor g

t Saves text in memory upon execution. (‘‘Sticky bit", see
chmud(3)). Can only be set by the super-user.

Multiple symbolic modes may be given, separated by commas, on a
single command line. See the following Examples section for sample
permission settings.

A chmod command using absolute mode has the form:

chmod mode filename

where mode is an octal number constructed by performing logical OR
on the following:

4000 Set user ID on execution

2000 Set group ID on execution

1000 Sets the sticky bit (see chmod(S))

0400 Read by owner

0200 Write by owner

0100 Execute (search in directory) by owner

0040 Read by group
0020 Write by group
0010 Execute (search in directory) by group
0004 Read by others

0002 Write by others

0001 Execute (search in directory) by others
0000 - No permissions
Examples

Symbolic Mode
The following command gives all users execute permission for file:

chmod + x file

March 24, 1984 Page 2

CHMOD (C) CHMOD (C)

The following command removes read and write permission for
group and others from file:

chmod go-rw file

The following command gives other users read and write permission

for file:
chmod o+ rw file
The following commmand gives read permission to group and other:

chmod g+ r,04+ r file

Absolute Mode

The following command gives all users read, write and execute per-
mission for file:

chmod 0777 file

The following command gives read and write permission to all users

for file:
chmod 0666 file

The following command gives read and write permission to the
owner of file only:

chmod 0600 file

See Also

15(C), chmod(S)

Notes
The user’s umask may affect the default settings.

The user ID, group ID and sticky bit settings are only useful for
binary executable files. They have no effect on shell seripts.

March 24, 1984 - Page 3

CHOWN (C) CHOWN(C)

Name

chown - Changes owner ID.

Syntax

chown owner file ...

Description

Chown changes the owner ID of the files to owner. The owner may
be either a decimal user ID or a login name found in the file

Jete /passwd.

Files
[ete/passwd

Jetc/group

See Also
chgrp(C), chown(S), group(M), passwd(M)

Notes

Only the owner or the super-user can change a file’s owner or group
ID.

March 24, 1984 : : Page 1

CHROOT(C) CHROOT(C)

Name

chroot - Changes root directory for command.

Syntax

chroot newroot command

Description
The given command is executed relative to the new root. The
meaning of any initial slashes {/) in pathnames is changed for a
command and any of its children to newroot. Furthermore, the ini-
tial working directory is newroot.
Notice that:

chroot newroot command >x

creates the file x relative to the original root, not the new one.
This command is restricted to the super-user.
The new root pathname is always relative to the current root even if
a chroot is currently in effect. The newroot argument is relative to the
current root of the running process. Note that it is not possible to
change directories to what was formerly the parent of the new root
directory; i.e., the chroot command supports the new root as an
absolute root for the duration of the command. This means that
“[.)" is always equivalent to *‘/".

See Also

chdir(S)
Notes

Exercise extreme caution when referencing special files in the new
root file system.

March 24, 1984 ' Page 1

CMCHK (C) CMCHK (C)

Name

emchk

Synopsis
emchk

Description

" Reports the hard disk block size (BSIZE) in bytes.

March 19, 1984 Page 1

CMP(C) CMP(C)

Name

emp - Compares two files.

Syntax
cmp|[-1] [- s8] filel fle?

Description
Cmp compares two files and, if they are different, displays the byte
and line number of the differences. If filel is — , the standard input
is used.

The options are:

~1 Prints the byte number (decimal) and the differing bytes
(octal) for each difference.

— s Returns an exit code only, 0 for identical files, 1 for different
files and 2 for an inaccessible or missing file.

This command should be used to compare binary files; use dif (C)
or diff$ (C) to compare text files.

See Also
comm(C), diff(C), diff3(C)

Diagnostics

Exit code 0 is returned for identical files, 1 for different files, and 2
for an inaccessible or missing argument.

March 24, 1984 Page 1

COMM (C) COMM (C)

Name

comm - Selects or rejects lines common to two sorted files.

Syntax

comm [- [123]] filel file2

Description

Comm reads filel and file2, which should be ordered in ASCII coliat-
ing sequence (see sort(C)), and produces a three-column output:

- lines only in filel; lines only in file2; and lines in both files. The
filename — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column.
Thus comm - 12 prints only the lines common to the two files;
comm - 23 prints only lines in the first file but not in the second;
comm — 123 is a no-op.

See Also
emp(C), diff(C), sort{C}, uniq(C}

March 24, 1984 Page 1

COPY(C) COPY (C)

Name

copy — Copies groups of files.
Syntax ‘

copy[opﬁon] ... source ... dest
Description

The copy command copies the contents of directories to another
directory. It is possible to copy whole file systems since direc—
tories are made when needed. ;

If files, directories, or special files do not exist at the destination,
then they are created with the same modes and flags as the source.
In addition, the super—user may set the user and group ID. The
owner and mode are not changed if the destination file exists.
Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for each
source directory with the the same destination directory for each
copy.

Under 3.0, options do not have to be given as separate arguments,
and may appear in any order, even after the other arguments. The
arguments are:

-a Asks the user before attempting a copy. If the response
does not begin with a *‘y’’, then a copy is not done.
This option also sets the —ad option.

-1 Uses links instead whenever they can be used. Other—
wise a copy is done. Note that links are never done for
special files or directories.

-n Requires the destination file to be new. If not, then the
copy command does not change the destination file. The
—n flag is meaningless for directories. For special files
an —n flag is assumed (i.e., the destination of a special
file must not exist).

-0 If set then every file copied has its owner and group set
to those of the source. If not set, then the file's owner is
the user who invoked the program.

-m If set, then every file copied has its modification time and
access time set to that of the source. If not set, then the
modification time. is set to the time of the copy.

-r If set, then every directory is recursively examined as it
is encountered. If not set then any directories that are
found are ignored.

May 9, 1984 ' Page 1

COPY(C) COPY (C)

—ad Asks the user whether an —r flag applies when a dircc—
tory is discovered. If the answer does not begin with a
‘‘y’’, then the directory is ignored.

-v If the verbose option is set messages are printed that
reveal what the program is doing.

source This may be a file, directory or special file. It must
: exist. If it is not a directory, then the results of the
command are the same as for the cp command.

dest The destination must be cither a file or directory that is
different from the source.

If the source and destination are anything but directories, then copy
acts just like a ¢p command. If both are directories, then copy
copies each file into the destination directory according to the flags
that have been set. '

Notes
Special device files can be copied. When they are copied any data
associated with the specified device is not copied.

May 9, 1984 Page 2

CP(C) CP(C)

Name

cp - Copies files.

Syntax
cp filel file2

cp files directory

Description

There are two ways to use the ¢p command. With the first way, filel
is copied to file2. Under no circumstance can filel and file2 be
identical. With the second way, directory is the location of a direc-
tory into which one or more files are copied.

See Also
copy(C), cpio(C), In(C), mv(C), rm(C), chmod(S)

Notes

Special device files can be copied. If the file is a named pipe, then
the data in the pipe is copied to a regular file. Similarly, if the file is
a device, then the file is read until the end-of-file is reached, and
that data is copied to a regular file. It is illegal to copy a directory to
a file.

March 24, 1984 Page 1

CPIO(C) CPIO(C)

Name

cpio — Copies file archives in and out.

Syntax

cpic —o | acBv |
cpio —i | Bedmrtuv | | patterns |
cpio —p [adlmruv | directory

Description

Cpio —o (copy out) reads the standard input to obtain a list of
pathnames and copies those files onto the standard output together
with pathname and status-information.

Cpio —i (copy in) extracts from the standard input (which is
assumed to be the product of a previous cpio —o) the names of
files - selected by zero or more patterns given in the name-—
generating notation of sh (C). In patterns, the special characters ?,
*,and | ...] match the slash (/) character. The default for pat—
terns is * (i.e., select all files).

Remember to escape special characters to prevent expansion by the
shell.

Cpio —p (pass) copies out and in during a single operation. Des—
tination pathnames are interpreted relative to the named directory.

The meanings of the available options are:

—a Resets access times of input files after they have been
copied.

-B Blocks input/output 5,120 bytes to the record (does not
apply to the pass option; meaningful only with data
directed to or from raw devices).

-d Directories are created as needed.
-c Writes header information in ASCl character form for

portability.

-r Interactively renames files. If the user types a null line,
the file is skipped.

-t Prints a table of contents of the input. No files are
created.

-u Copies unconditionally (normally an older file will not
replace a newer file with the same name).

-v Verbose: causes a list of filenames to be printed. When
used with the —t option, the table of contents looks like

May 9, 1984 Page 1

CPIO(C) CPIO(C)

the output of anls —1 command (see Is (C)).

-1 Whenever possible, links files rather than copying them.
‘ Usable only with the —p option.

—m Retains previous file modification time. This option is
ineffective on directories that are being copied.
Examples ,
The first example below copies the contents of a directory into an
archive; the second duplicates a directory bierarchy:
Is | cpio —o >/dev/fd

cd olddir
find . —print | cpio —pdl newdir

Or:
find . —print | cpio —oB >/dev/rfd
See Also ,
ar(CP), find(C), cpio(F)
Notes

Pathnames are restricted to 128 characters. If there are too many
unique linked files, the program runs out of memory to keep track
of them and thereafter linking information is lost. Only the
super—user can copy special files.

May 9, 1984 Page 2

CRON (C) | CRON(C)

Name

cron - Executes commands at specified times.

Syntax

/ete/cron ’

Description

Cron is the clock daemon that executes commands at specified dates
and times according to the instructions in the file' fusr/lib/crontab.
Because c¢ron never exits, it should be executed only once. This is
best done by running cron from the initialization process through the
file fetc/rc.

The file crontab consists of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify the minute (0-59), hour (0-23), day of the month (1-31),
month of the year (1-12), and day of the week (0-6, with 0=Sun-
day). Each of these patterns may contain:

- A number in the (respective) range indicated above .

- Two numbers separated by a minus (indicating an inclusive
range)

~ A list of numbers separated by commas (meaning all of these
numbers)

~ An asterisk (meaning all legal values)

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a newline character.
Only the first line (up to a %or end-of-line) of the command field is
executed by the shell. The other lines are made available to the
command as standard input.

Cron examines crontab periodically to see if it has changed; if it has,

cron reads it. Thus it takes only a short while for entries to become
effective.

Examples
An example crontab file follows:
3048 [etc/sa -s > [dev/null
0 45320 calendar -

15433 find fusr/preserve -mtime + 7 -a-exec rm -f {3} ;
304111 [usr/libJuucp/cleanlog

March 24, 1984 Page 1

CRON(C) CRON(C)

4045 find / -name '#+¢ -atime + 3 -exec rm -f {};
0,5,10,15,20,25,30,35,40,45,50,55 s s » » Jusr/lib/atrun
0,10,20,30,40,50 * * s » /fetc/dmesg - > > fusr/adm /messages
1,21,41 #+ #+ « « (echo -n’ ’; date; echo) > /dev/console
A history of all actions by cron can be recorded in fusr/lib/cronlog
This logging occurs only if the variable CRONLOG in
[etc/default/cron is set to YES. By default this value is set to NO
and no logging occurs. If logging should be turned on, be sure to
monitor the size of /usr/lib/cronial so that it doesn’t unreasonably
consume disk space.

Files
Jusr/lib/crontab
Jusr/lib/cronlog

[etc/default/cron

See Also
sh(C)

Notes

Cron reads crontab only when it has changed, but it reads the in-
core version of that table periodically.

March 24, 1984 Page 2

CRYPT(C) ‘ CRYPT(C)

Name

erypt - . Encodes and decodes files.

Syntax

crypt | password |

Description

Crypt reads from the standard input and writes on the standard out-
put. The password is a key that selects a particular transformation.
If no password is given, crypt demands a key from the terminal and
turns ofl printing while the key is being typed in. Crypt encrypts and
decrypts with the same key.

Files encrypted by erypt are compatible with those created by the edi-
tor ed (C) in encryption mode.

The security of encrypted files depends on three factors: the funda-
mental method of encryption must be hard to solve; direct search of .
the key space must be infeasible; ‘‘sneak paths’’ by which keys or
clear text can become visible must be minimized.

The transformation of a key into the internal settings of the machine
is deliberately designed to be expensive, i.e. to take a substantial
fraction of a second to compute. However, if keys are restricted to
(say) three lowercase letters, then encrypted files can be read by
expending less than five minutes of machine time.)
Since the key is an argument to the ecrypt command, it is potentially
visible to users executing ps(C) or a derivative. To minimize this
possibility, erypt destroys any record of the key immediately upon
entry. The choice of keys and key security are the most vulnerable
aspect of erypt.

Example
The following will print the contents of the file clear:
crypt key <clear >cypher

crypt key <cypher | pr

See Also
ed(C), makekey(M)

March 24, 1984 Page 1

CRYPT(C) CRYPT(C)
Notes

If output is piped to nroff (CT) and the encryption key is not given
on the command line, crypt can leave terminal modes in a strange
state (see stty(C)).

Crypt implements a one-rotor machine designed along the lines of
the German Enigma, but with a 256-element rotor. Methods of
attack on such machines are known, but not widely; moreover the
amount of work required is likely to be large.

March 24, 1984 Page 2

CSH (C) CSH (C)

Name

¢sh - Invokes a shell command interpreter with C-like syntax.

Syntax

csh | - cefinstvVxX | [arg ... |

Description

Ceh is a command language interpreter. It begins by executing com-
mands from the file .cshre in the home directory of the invoker. If
this is a login shell, then it also executes commands from the file
Jogin there. In the normal case, the shell will then begin reading
commands from the terminal, prompting with % . Processing of
arguments and the use of the shell to process files containing com-
mand scripts will be described later.

The shell then repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of
words is placed on the command history list and then parsed.
Finally each command in the current line .is executed.

When a login shell terminates, it executes commands from the file
.logout in the user’s home directory.

Lezical structure

The shell splits input lines into words at blanks and tabs with the fol-
‘lowing exceptions. The characters &, | ;, <, >, (,), form separate
words. If doubled in &&, || €<, or >>, these pairs form single
words. These parser metacharacters may be made part of other
words, or prevented their special meaning, by preceding them with \.
A newline preceded by a \ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ;, ‘or ”,
form parts of a word; metacharacters in these strings, including
blanks and tabs, do not form separate words. These quotations have
semantics to be described subsequently. Within pairs of or ” charac-
ters 3 newline preceded by a \ gives a true newline character.

When the shell’s input is not a terminal, the character # introduces
a comment which continues to the end of the input line. It does not
have this special meaning when preceded by \ and placed inside the
quotation marks °, ;, and ".

Commands

A simple command is a sequence of words, the first of which speci-
fies the command to be executed. A simple command or a sequence

March 20, 1984 Page 1

CSH (C) CSH (C)

of simple commands separated by | characters forms a pipeline. The
output of each command in a pipeline is connected to the input of
the next. Sequences of pipelines may be separated by ;, and are
then executed sequentially. A sequence of pipelines may be exe-
cuted without waiting for it to terminate by following it with an &.
Such a sequence is automatically prevented from being terminated
by a hangup signal; the nohup command need not be used.

Any of the above may be placed in parentheses to form a simple
command (which may be a component of a pipeline, etc.) It is also
possible to separate pipelines with ||or && indicating, as in the C
language, that the second is to be executed only if the first fails or
succeeds respectively. (See Ezpressions.)

Substitutions

The following sections describe the various transformations the shell
performs on the input in the order in which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences of words
from previous commands, possibly performing modifications on
these words. Thus history substitutions provide a generalization of a
redo function.

History substitutions begin with the character ! and may begin any-
where in the input stream if a history substitution is not already in
progress. This ! may be preceded by a \ to prevent its special mean-
ing; a ! is passed unchanged when it is followed by a blank, tab,
newline, =, or (. History substitutions also occur when an input
line begins with *. This special abbreviation will be described later.

Any input line which contains history substitution is echoed on the
terminal before it is executed as it could have been typed without
history substitution.

Commands input from the terminal which consist of one or more
words are saved on the history list, the size of which is controlled by
the history variable. The previous command is always retained.
Commands are numbered sequentially from 1.

For example, consider the following output from the history com-
mand:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usu-

ally necessary to use event numbers, but the current event number
can be made part of the prompt by placing a ! in the prompt string.

March 20, 1984 Page 2

CSH () CSH (C)

With the current event 13 we can refer to previous events by event -
number {11, relatively as in !~ 2 (referring to the same event), by a
prefix of a command word as in !d for event 12 or {w for event 9, or
by a string contained in a word in the command as in !?mic? also
referring to event 9. These forms, without further modification,
simply reintroduce the words of the specified events, each separated
by a single blank. As a special case !! refers to the previous com-
mand; thus !! alone is essentially a redo. The form !# references the
current command (the one being typed in). It-allows a word to be
selected from further left in the line, to avoid retyping a long name,
as in !#:1.

To select words from an event we.can follow the event specification
by a : and a designator for the desired words. The words of a input
line are numbered from 0, the first (usually command) word being
0, the second word (first argument) being 1, and so on. The basic
word designators are:

0 First (command) word

n
nth argument

First argument, i.e. 1
$ Lastargument

% Word matched by (immediately preceding) ?s? search

-y
Range of words

~ y Abbreviates 0- y
* Abbreviates "~ §, or nothing if only 1 word in event
z2* Abbreviates z- § '

z- .
Like ‘z* but omitting word $

The : separating the event specification from the word designator can
be omitted if the argument selector begins with a f, §, * - or %
After the optional word designator can be placed a sequence of
modifiers, each preceded by a :. The following modifiers are defined:
h Removes a trailing pathname component

r Removes a trailing .xxx component

s/t/+/

- Substitutes { for »

March 20, 1984 Page 3

CSH (C) , CSH (C)

t Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but do not execute it

q Quotes the substituted words, preventing substitutions

x Like g, but breaks into words at blanks, tabs, and newlines

Unless preceded by a g the modification is applied only to the first
modifiable word. In any case it is an error for no word to be applica-

ble.

The left side of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the
delimiter in place of /; a \ quotes the delimiter into the ! and r
strings. The character & in the right side is replaced by the text
from the left. A \ quotes & also. A null ! uses the previous string
either from a ! or from a contextual scan string sin !?6?. The trail-
ing delimiter in the substitution may be omitted if a newline follows
immediately as may the trailing ? in a contextual scan.

A history reference may be given without an event specification, e.g.
'$. In this case the reference is to the previous command unless a
previous history reference occurred on the same line in which case
this form repeats the previous reference. Thus !?foo? "I$ gives the
first and last arguments from the command matching ?foo?.

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a *. This is equivalent to !:s”",
providing a convenient shorthand for substitutions on the text of the
previous line. Thus “lblib fixes the spelling of lib in the previous
command. Finally, a history substitution may be surrounded with {
and } if necessary to insulate it from the characters that follow.
Thus, after Is - 1d “paul we might do !{l}a to do Is — 1d “paula, while
!la would look for a command starting la.

Quotations With * and ”

The quotation of strings by “and ” can be used to prevent all or
some of the remaining substitutions. Strings enclosed in ’ are
prevented any further interpretation. Strings enclosed in ” are vari-
able and command expansion may occur.

In both cases, the resulting text becomes (all or part of) a single
word; only in one special case (see Command Substitution below)
does a ” quoted string yield parts of more than one word; ’ quoted
strings never do.

March 20, 1984 Page 4

- CSH (C) CSH (C)

Aliae Substitution

The shell maintains a list of aliases which can be established,
displayed and modified by the alias and unaliae commands. After a
command line is scanned, it is parsed into distinct commands and
the first word of each command, left-to-right, is checked to see if it
has an alias. If it does, then the text which is the alias for that com-
mand is reread with the history mechanism available as though that.
command were the previous input line. The resulting words replace
the command and argument list. . If no reference is made to the his-
tory list, then the argument list is left unchanged.

Thus if the alias for Is is Is - | the command *‘ls /usr’’ would map to
“ls -1 Jusr”. Similarly if the alias for lookup was ‘‘grep !~
Jete/passwd’’ then ‘‘lookup bill” would map to ‘‘grep bill
[ete/passwd’’.

If an alias is found, the word transformation of the input text is per-
formed and the aliasing process begins again on the reformed input
line. Looping is prevented if the first word of the new text is the
same as the old by flagging it to prevent further aliasing. Other
loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyn-
tax. Thus we can alias print *‘ pr \!* | Ipr”’ to make a command that
paginates its arguments to the lineprinter.

Variable Substitution

The shell maintains a set of variables, each of which has as value a
list of zero or more words. Some of these variables are set by the
shell or referred to by it. For instance, the argv variable is an image
of the shell’s argument list, and words of this variable’s value are
referred to in special ways.

The values of variables may be displayed and changed by using the
sct and uneet commands. Of the variables referred to by the shell a
number are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a
toggle which causes command input to be echoed. The setting of
this variable results from the — v command line option.

Other operations treat variables numerically. The at-sign (@) com-
mand permits numeric calculations to be performed and the result
assigned to a variable. However, variable values are always
represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second
and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command
is executed, variable substitution is performed, keyed by dollar sign
(8) characters. This expansion can be prevented by preceding the
dollar sign with a backslash () except within double quotation marks

March 20, 1984 Page 5

CSH (C) CSH(C)

(") where it alwaye occurs, and within single quotation marks (‘)
where it never occurs. Strings quoted by back quotation marks (°)
are interpreted later (see Command eubstitution below) so dollar sign
substitution does not occur there until later, if at all. A dollar sign is
passed unchanged if followed by a blank, tab, or end-of-line.

Input and output redirections are recognized before variable expan-
sion, and are variable expanded separately. Otherwise, the com-
mand name and entire argument list are expanded together. It is
thus possible for the first (command) word to generate more than
one word, the first of which becomes the command name, and the
rest of which become arguments.

Unless enclosed in double quotation marks or given the :q modifier,
the results of variable substitution may eventually be command and
filename substituted. Within double quotation marks (") a variable
whose value consists of multiple words expands to a portion of a sin-
gle word, with the words of the variable’s value separated by blanks.
When the :q modifier is applied to a substitution the variable
expands to multiple words with each word separated by-a blank and
quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a
variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following
characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters, digits, and under-
scores.

If name is not a shell variable, but is set in the environment, then
that value is returned (but : modifiers and the other forms given
below are not available in this case).

$name|selector]
${name[selector]}

‘ May be used to select only some of the words from the value
of name. The selector is subjected to $ substitution and may
consist of a single number or two numbers separated by a - .
The first word of a variables value is numbered 1. If the first
number of a range is omitted it defaults to 1. If the last
member of a range is omitted it defaults to $#name. The
selector * selects all words. It is not an error for a range to be
empty if the second argument is omitted or in range.

$#name

${#name}
Gives the number of words in the variable. This is useful for
later use in a [selector].

March 20, 1984 Page 6

CSH (C) CSH (C)

$0 Substitutes the name of the file from which command input is
being read. An error occurs if the name is not known.

$number
${number}
Equivalent to $argv[number].

$* Equivalent to $argv[*].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions
above as may :gh, :gt and :gr. If braces { } appear in the command
form then the modifiers must appear within the braces. Only one :
modifier is allowed on each § expansion,

The following substitutions may not be modified with : modifiers.

$?name
${?name} .
Substitutes the string 1 if name is set, 0 if it is not.

$70 Substitutes 1 if the current input filename is knowh, 0if it is
not.

$$ Substitutes the (decimal) process number of the (parent) shell.
Command and Filename Substitution

Command and filename substitution are applied selectively to the
arguments of builtin commands. This means that portions of
expressions which are not evaluated are not subjected to these
‘expansions. For commands which are not internal to the shell, the
command name is substituted separately from the argument list.
This occurs very late, after input-output redirection is performed,
and in a child of the main shell:

Command Substitution

Command substitution is indicated by a command enclosed in back
quotation marks. The output from such a command is normally bro-
ken into separate words at blanks, tabs and newlines, with null
words being discarded, this text then replacing the original string.
Within double quotation marks, only newlines force new words;
blanks and tabs are preserved.

In any case, the single final newline does not force a new word.
Note that it is thus possible for a command substitution to yield only
part of a word, even if the command outputs a complete line.
Filename Substitution

If a word contains any of the characters *, 7, | or { or begins with

the character ~, then that word is a candidate for filename substitu-
tion, also known as globbing. This word is then regarded as a

March 20, 1984 Page 7

CSH (C) CSH (C)

pattern, and replaced with an alphabetically sorted list of filenames
which match the pattern. In a list of words specifying filename sub-
stitution it is an error for no pattern to match an existing filename,
but it is not required for each pattern to match. Only the metachar-
acters * ?, and | imply pattern matching, the characters ~ and {
being more zkin to abbreviations.

In matching filenames, the character . at the beginning of a filename
or immediately following a /, as well as the character / must be
matched explicitly. The character * matches any string of characters,
including the null string. The character ? matches any single charac-
ter. The sequence [..] matches any one of the ‘characters enclosed.
Within [...], a pair of characters separated by - matches any charac-
ter lexically between the two.

The character ~ at the beginning of a filename is used to refer to
home directories. Standing alone it expands to the invoker's home
directory as reflected in the value of the variable Aome. When fol-
lowed by a name consisting of letters, digits and — characters the
shell searches for a user with that name and substitutes their home
directory; thus “ken might expand to fusr/ken and “ken/chmach to
Jusrfken/chmach. If the character ~ is followed by a character other
than a letter or / or appears not at the beginning of a word, it is left
unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. This construct may
be nested. Thus “sourcefsl/{oldls,Is}.c expands to
Jusr/source /sl foldls.c fusr/source/s1/ls.c, whether or not these files
exist, without any chance of error if the home directory for source is
Jusr/source. Similarly ../{memo,*box} might expand to ../memo
../box ../mbox. (Note that memo was not sorted with the resulis of
matching *box.) As a special case {, } and {} are passed unchanged.

InputfOutput

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Opens file name (which is first variable, command and filename
expanded) as the standard input.

< < word .
Reads the shell input up to a line which is identical to word.
Word is not subjected to variable, filename or command substi-
tution, and each input line is compared to word before any sub-
stitutions are done on this input line. Unless a quoting
backslash, double, or single quotation mark, or a back quota-
tion mark appears in word, variable and command substitution
is performed on the intervening lines, allowing \ to quote $, \
and . Commands which are substituted have all blanks, tabs,

March 20, 1984 ' Page 8

CSH () CSH (C)

and newlines preserved, except for the final newline which is
dropped. The resulting text is placed in an anonymous tem-
porary file which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not
exist then it is created; if the file exists, it is truncated, and its
previous contents is lost.

If the variable noclobber is set, then the file must not already
exist or it must be a character special file (e.g. a terminal or
/dev/null} or an error results. This helps prevent accidental
destruction of files. In this case the ! forms can be used and
suppress this check.

The forms involving & route the diagnostic output into the
specified file as well as the standard output. Name is expanded
in the same way as < input filenames are.

>> name

>>& name

>>! name

>>&! name ,
Uses file name as standard output like > but places output at
the end of the file. If the variable noclobber is set, then it is an
error for the file not to exist unless one of the ! forms is given.
Otherwise similar to >.

If a command is run detached (followed by &) then the default stan-
dard input for the command is the empty file /dev/null. Otherwise
the command receives the environment in which the shell was
invoked as modified by the input-output parameters and the pres-
ence of the command in a pipeline. Thus, unlike some previous
shells, commands run from a file of shell commands have no access
to the text of the commands by default; rather they receive the origi-
nal standard input of the shell. The < < mechanism should be used
to present inline data. This permits shell command scripts to funec-
tion as components of pipelines and allows the shell to block read its
input.

Diagnostic output may be directed through a pipe with the standard
output. Simply use the form |& rather than just |

Ezpreseions
A number of the built-in commands (to be described later) take
expressions, in which the operators are similar to those of C, with

the same precedence. These expressions appear in the @, ezit, f,
and while commands. The following operators are available:

March 20, 1984 Page 9

CSH (C) CSH (C)

l= <= >= < > << >>

()

Here the precedence increases to the right, === and l=, <=, >,
<, and >, << and >>, + and - , * / and % being, in groups, at
the same level. The == and != operators compare their arguments
as strings, all others operate on numbers. Strings which begin with 0
are considered octal numbers. Null or missing arguments are con-
sidered 0. The result of all expressions are strings, which represent
decimal numbers. It is important to note that no two components of
an expression can appear in the same word; except when adjacent to
components of expressions which are syntactically significant to the
parser (& [< > (})) they should be surrounded by spaces.

&g |* & =
+- /%!

Also available in expressions as primitive operands are command
executions enclosed in { and } and file enquiries of the form - {
name where [is one of:

Read access
Write access
Execute access
Existence
Ownership
Zero size
Plain file
Directory

AN O ® X g~

The specified name is command and filename expanded, then tested
to see if it has the specified relationship to the real user. If the file
does not exist or is inaccessible then all enquiries return false, i.e. 0.
Command executions succeed, returning true, i.e. 1, if the command
exits with status 0, otherwise they fail, returning false, i.e. 0. If
more detailed status information is required then the command
should be executed outside of an expression and the variable statue
examined.

Control Flow

The shell contains a number of commands which can be used to
regulate the flow of control in command files (shell scripts) and (in
limited but useful ways) from terminal input. These commands all
operate by forcing the shell to reread or skip in its input and, due to
the implementation, restrict the placement of some of the com-
mands.

The foreach, switch, and while statements, as well as the - then— clee
form of the if statement require that the major keywords appear in a
‘single simple command on an input line as shown below.

If the shell's input is not seekable, the shell buffers up input when-
ever a loop is being read and performs seeks in this internal buffer
to accomplish the rereading implied by the loop. (To the extent that
this allows, backward goto commands will succeed on nonseekable

March 20, 1984 Page 10

CSH (C) CSH (C)

inputs.)
Built-In Commands

Built-in commands are executed within the shell. If a built-in com-
mand occurs as any component of a pipeline except the last then it is
executed in a subshell.

alias

alias name

alias name wordlist :
The first form prints all aliases. The second form prints the
alias for name . The final form assigns the specified wordlist as
the alias of name; wordlist is command and filename substi-
tuted. Name is not-allowed to be altae or unaliae

break
Causes execution to resume after the end of the nearest enclos-
ing foreach or while statement. The remaining commands on
the current line are executed. Multilevel breaks are thus possi-
ble by writing them all on one line.

breaksw

Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

cd name

chdir

chdir name
Changes the shell’s working directory to directory name. If no
argument is given then changes to the home directory of the
user. If name is not found as a subdirectory of the current
directory (and does not begin with /, ./, or ../), then each
component of the variable cdpath is checked to see if it has a
subdirectory name. Finally, if all else fails but name is a shell
variable whose value begins with /, then this is tried to see if it
is a directory.

continue
Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line are executed.

default: ;
Labels the default case in a swistch statement. The default
should come after all case labels.

echo wordlist
The specified words are written to the shell's standard output.
An \c causes the echo to complete without printing a newline.
An-\n in wordlist causes a newline to be printed. Otherwise the

March 20, 1984 ‘ - Page 11

CSH (C) CSH(C)

words are echoed, separated by spaces.

else

end

endif

endsw
See the description of the foreach, if, switch, and whie state-
ments below.

exec command
The specified command is executed in place of the current
shell.

exit

exit{ expr)
The shell exits either with the value of the status variable (first
form) or with the value of the specified ezpr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this command
and the matching end are executed. (Both foreach and end
must appear alone on separate lines.)

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to terminate
it prematurely. When this command is read from the terminal,
the loop is read up once prompting with ? before any state-
ments in the loop are executed.

glob wordlist
Like echo but no \ escapes are recognized and words are delim-
ited by null characters in the output. Useful for programs
which wish to use the shell to filename expand a list of words.

- goto word
The specified word is filename and command expanded to yield
a string of the form label. The shell rewinds its input as much
as possible and searches for a line of the form label: possibly
preceded by blanks or tabs. Execution continues after the
specified line.

history
Displays the history event list.

if (expr) command :
If the specified expression evaluates true, then the single com-
mand with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest of
the ¢f command. Command must be a simple command, not a
pipeline, a command list, or a parenthesized command list.

March 20, 1984 Page 12

CSH(C) : , osmcj

Input/output redirection occurs even .if ezpr is false, when
command is not executed.

if (expr}) then
else if {expr2) then
els.e"

endif :

If the specified ezpr is true then the commands to the first elee
are executed; else if ezpr? is true then the commands to the
second else are executed, etc. Any number of else-if pairs are
possible; only one endif is needed. The else part is likewise
optional. (The words else and endif must appear at the begin-
ning of input lines; the §f must appear alone on its input line or
after an elee.) logout

Terminates a login shell. The only way to log out if sgnoreeof is
set.

nice

nice + number

nice command

nice + number command
The first form sets the nice for this shell to 4. The second
form sets the nice to the given number. The final two forms
run command at priority 4 and number respectively. The
super-user may specify negative niceness by using ‘‘nice

- number”" The command is always executed in a subshell,
and ‘the restrictions placed on commands in simple if state-
ments apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to
be ignored for the remainder of the script. The second form
causes the specified command to be run with hangups ignored.
Unless the shell is running detached, nohup has no effect. All
processes detached with & are automatically nohuped. (Thus,
nohup is not really needed.)

onintr

onintr -

onintr label
Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command
input level. The second form onintr — causes all interrupts to
be ignored. The final form causes the shell to execute a goto
label when an interrupt is received or a child process ter-
minates because it was interrupted.

March 20, 1984 ' Page 13

CSH (C) CSH(C)

In any case, if the shell is running detached and interrupts are
being ignored, all forms of onintr have no meaning and inter-
rupts continue to be ignored by the shell and all invoked com-
mands.

rehash :
Causes the internal hash table of the contents of the directories
in the path variable to be recomputed. This is needed if new
commands are added to directories in the path while you are
logged in. This should only be necessary if you add commands
to one of your own directories, or if a systems programmer
changes the contents of one of the system directories.

repeat count command
The specified command which is subject to the same restrictions
as the command in the one line if statement above, is executed
count times. I/O redirections occurs exactly once, even if count
is 0.

set

set name

set name=word

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell
variables. Variables which have other than a single word as
value print as a parenthesized word list. The second form sets
name to the null string. The third form sets name to the single
word. The fourth form sets the indezth component of name to
word; this component must already exist. The final form sets
name to the list of words in wordlist. In all cases the value is
command and filename expanded.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value

‘ Sets the value of the environment variable name to be value, a
single string. Useful environment variables are TERM, the
type of your terminal and SHELL, the shell you are using.

shift

shift variable
The members of argv are shifted to the left, discarding argo[1).
It is an error for argv not to be set or to have less than one
word as value. The second form performs the same function
on the specified variable.

source name 3
The shell reads commands from name. Source commands may
be nested; if they are nested too deeply the shell may run out
of file descriptors. An error in a source at any level terminates

March 20, 1984 o Page 14

CSH (C) CSH (C)

all nested source commands. Input during esource commands is
never placed on the history list.

switch (string)
case strl:

bl"'e.aksw
.ci;:fauit:

breaksw
endsw

Each case label is successively matched, against the specified
etnng which is first command and filename expanded. The file
metacharacters *, ?, and [..] may be used in the case labels,
which are variable expanded. If none of the labels match
before a default label is found, then the execution begins after
the default label. Each case label and the default label must
appear at the beginning of a line. The command bresksw
causes execution to continue after the endsw. Otherwise control
may fall through case labels and default labels, as in C. If no
label matches and there is no default, execution continues after
the endsw.

time

time command
With no argument, a summary of time used. by this shell and:
its children is printed. If arguments are given the specified
simple command is timed and a time summary as described
under the &ime variable is printed. If necessary, an extra shell
is created to print the time statistic when the command com-
pletes.

‘umask

umask value
The file creation mask is displayed (first form) or set to the
specified value (second form). The mask is given in octal.
Common values for the mask are 002 giving all access to the
group and read and execute access to others, or 022 giving all
access except no write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are dis-
carded. Thus all aliases are removed by unalias *. It is not an
error for nothing to be unaliased.
unhash ‘
Use of the internal hash table to speed location of executed
programs is disabled.

unset pattern i

All variables whose names match the specified pattern are
removed. Thus all variables are removed by unset ¥ this has

March 20, 1984 Page 15

CSH (©) CSH(C)

noticeably distasteful side-effects. It is not an error for nothing
to be uneet.

wait ‘

All child processes are waited for. It the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and process numbers of all children known to be
outstanding. :

while (expr)

end
While the specified expression evaluates nonzero, the com-
mands between the while and the matching end are evaluated.
Break and continue may be used to terminate or continue the
loop prematurely. (The while and ead must appear alone on
their input lines.) Prompting occurs here the first time through
the loop as for the foreach statement if the input is a terminal.

e

@ name = expr

@ name[index| == expr
The first form prints the values of all the shell variables. The
second form sets the specified name to the value of ezpr. If the
expression contains <, >, & or |then at least this part of the
expression must be placed within (). The third form assigns
the value of ezpr to the indezth argument of name. Both name
and its sndezth component must already exist.

The operators *=, + ==, etc. are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of ezpr which
would otherwise be single words.

Special postfix + + and - - operators increment and decre-
ment name respectively, i.e. @ i+ +.

Predefined Variables

The following variables have special meaning to the shell. Of these,
argy, child, home, path, prompt, shell and status are always set by the
shell. Except for ¢kild and status this setting occurs only at initializa-
tion; these variables will not then be modified unless done explicitly
by the user.

The shell copies the environment variable PATH into the variable
path, and copies the value back into the environment whenever patk
is set. Thus is is not necessary to worry about its setting other than
in the file .cshre as inferior csh processes will import the definition of
path from the environment.

argv Set to the arguments to the shell, it is from this
variable that positional parameters are substituted,

March 20, 1984 Page 16

CSH (C)

cdpath

child

echo

histchars

history

home
ignoreeof

mail

March 20, 1984

CSH (©)

i.e. $1 is replaced by $argv[1], ete.

Gives a list of alternate directories searched to find
subdirectories in ¢d commands.,

The process number printed when the last command
was forked with &. This variable is unset when this
process terminates.

Set when the —'x command line option is given.

Causes each command and its arguments to be
echoed just before it is executed. For nonbuilt-in
commands all expansions occur before echoing.
Builtin commands are echoed before command and
filename substitution, since these substitutions are
then done selectively.

Can be assigned a two-character string. The first
character is used as a history character in place of !,
the second character is used in place of the “ substi-
tution mechanism. For example, set histchars=";"
will cause the history characters to be comma and
semicolon.

Can be given & numeric value to control the size of
the history list. Any command- which has been
referenced in this many events will not be discarded.
A history that is too large may run the shell out of
memory. The last executed command is always
saved on the history list.

The home directory of the invoker, initialized from
the environment. The filename expansion of ~
refers to this variable.

If set the shell ignores end-of-file from input dev-
ices that are terminals. This prevents a shell from
accidentally being terminated by typing a CNTRL-D.

The files where the shell checks for mail. This is
done after each command completion which will
result in a prompt, if a specified interval has
elapsed. The shell says “You have new mail”’. if
the file exists with an access time not greater than
its modify time.

If the first word of the value of mail is numeric it
specifies a different mail checking interval, in
seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell

says ‘‘New mail in name’’ when there is mail in the
file name.

Page 17

CSH (C)

noclobber

noglob

" nonomatch

path

prompt

shell

status

time

March 20, 1984

CSH(C)

As described in the section Inputfoutput, restrictions
are placed on output redirection to insure that files
are not accidentally destroyed, and that > > redirec-
tions refer to existing files.

If set, filename expansion is inhibited. This is most
useful in shell scripts which are not dealing with
filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to
not match any existing files; rather, the primitive
pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e. echo [still gives
an error.

Each word of the path variable specifies a directory
in which commands are to be sought for execution.
A null word specifies the current directory. If there
is no path variable then only full pathnames will
execute. The usual search path is /bin, fusr/bin,
and ., but this may vary from system to system.
For the super-user the default search path is Jete,
/bin and /usr/bin. A shell which is given neither
the — ¢ nor the — t option will normally hash the
contents of the directories in the path variable after
reading .cshrc, and each time the path variable is
reset. Il new commands are added to these direc-
tories while the shell is active, it may be necessary
to give the rehask or the commands may not be
found.

The string which is printed before each command is
read from an interactive terminal input. If a !
appears in the string it will be replaced by the
current event number unless a preceding \ is given.
Default is %, or # for the super-user.

The file in which the shell resides. This is used in
forking shells to interpret files which have execute
bits set, but which are not executable by the system.
(See the description of Nonbuilt-In Command Ezecu-
tion below.) Initialized to the (system-dependent)
home of the shell.

The status returned by the last command. If it ter-
minated abnormally, then 0200 is added to the
status. Built-in commands which fail return exit
status 1, all other built-in commands set status 0.

Controls automatic timing of commands. If set,

then any command which takes more than this
many c¢pu seconds will cause a line giving user,

Page 18

C;SH(C) | CSH(C)

system, and real times and a utilization percentage
which is the ratio of user plus system times to real
time to be printed when it terminates.

verbose Set by the — v command line option, causes the
words of each command to be printed after history
substitution.

Nonbuilt-In Command Ezecution

When a command to be executed is found to not be a built-in com-
mand the shell attempts to execute the command via ezec(S). Each
word in the variable path names a directory from which the shell will
attempt to execute the command. If it is given neithera — ¢ nor a
— t option, the shell will hash the names in these directories into an
internal table so that it will only try an ezec in a directory if there is a
possibility that the command resides there. This greatly speeds com-
mand location when a large number of directories are present in the
search path. If this mechanism has been turned off (via unhash), or
if the shell was given a — c or — t argument, and in any case for each
directory component of path which does not begin with a /, the shell
concatenates with the given command name to form a pathname of
a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd ; pwd) ; pwd prints the home directory; leaving you where you
were (printing this after the home directory), while ¢d ; pwd leaves
you in the home directory. Parenthesized commands are most often
used to prevent cd from affecting the current shell.

If the file has execute permissions but is not an executable binary to
the system, then it is assumed to be a file containing shell com-
mands an a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be
prepended to the argument list. to form the shell command. The
first word of the alias should be the full pathname of the shell (e.g.
$shell). Note that this.is a-special, late occurring, case of alias sub-
stitution, and only allows words to be prepended to the argument list
_without modification.

 Argument List Processing

If argument 0 to the shell is — then this is a login shell. The flag
arguments are interpreted as follows:

— ¢ Commands are read from the (single} following argument
which must be present. Any remaining arguments are placed
in arge.

— e The shell exits if any invoked command terminates abnormally
or yields a nonzero exit status.

March 20, 1984 Page 19

CSH (C) ~ CSH(C)

~ £ The shell will start faster, because it will neither search for nor
execute commands from the file .cshrc in the invoker's home
directory.

— i . The shell is interactive and prompts for its top-level input,
even if it appears to not be a terminal. Shells are interactive
without this option if their inputs and outputs are terminals.

- n Commands are parsed, but not executed. This may aid in syn-
tactic checking of shell scripts.

~ s Command input is taken from the standard input.

—t A single line of input is read and executed. A \ may be used
to escape the newline at the end of this line and continue onto
another line. .

— v Causes the verbose variable to be set, with the effect that com-
mand input is echoed after history substitution.

~ x Causes the echko variable to be set, so that commands are
echoed immediately before execution.

- V Causes the verbose variable to be set even before .cshre is exe-
cuted.

— X Causes the echo variable to be set even before .cshrc is exe-
cuted.

After processing of flag arguments, if arguments remain but none of
the - ¢, — i, — 8, or — t options were given, the first argument is
taken as the name of a file of commands to be executed. The shell
opens this file, and saves its name for possible resubstitution by $0.
Since on a typical system most shell scripts are written for the stan-
dard shell (see sh(C)), the C shell will execute such a standard shell
if the first character of a script is not a #, i.e. if the script does not
start with a comment. Remaining arguments initialize the variable
argo.

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals
are ignored for an invoked command if the command is followed by
&; otherwise the signals have the values which the shell inherited
from its parent. The shells handling of interrupts can be controlled
by onintr. Login shells catch the terminate signal; otherwise this signal
is passed on to children from the state in the shell’s parent. In no
case are interrupts allowed when a login shell is reading the file
Jogout.

Files

March 20, 1984 Page 20

CSH (C) CSH ()

“/.cshre Read at by each shell at the beginning
‘ of execution
"/ login Read by login shel!, after .cshrc at login .
: '/.logéut Read by ylogin sheil, at lc;gout
/bin/sh Sheil for scripts not starting with a #
'/tmp/sh,‘ “Temporary file for <<
/dev/null . Source of empty file
/et.c/passwd ’ Sou.rce of home directories for “"name
Limitations

Words can be no longer than 512 characters. The number of argu-
ments to a command which involves filename expansion is limited to
1/6 number of characters allowed in.an argument list, which is 5120,
less the characters in the environment. Also, command substitu-
tions may substitute no more characters than are allowed in an argu-
ment list..

‘To detect looping, the shell restricts the number of alias substitu-
tions on a single line to 20.
See Also
access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), environ(F) ~ .
Credit
This utility was developed at the University of California at Berkeley
and is used with permission.
“Notes -

Buxlb-m control structure’ commands like foreach a.nd whlle cannot
be used with l ∨.

Commands within loops, prompted for by ?, are not placed in the
history list. : :

It is not possible to use the colon (:) modifiers on the output of
command substitutions.

March 20, 1984 : Page 21

CSH (C) CSH (C)

Csh attempts to import and export the PATH variable for use with
regular shell scripts. This only works for simple cases, where the
PATH contains no command characters.

This version of ceh does not support or use the process control
features of the 4th Berkeley Distribution.

March 20, 1984 . Page22

CSPLIT(C) CSPLIT(C)

Name

csplit - Splits files according to context.

Syntax

csplit [~ s] |- k] [~ f prefix] file argl [. .. argn]

Description

Ceplit reads file and separates it into n+ 1 sections, defined by the
arguments argl... argn. By default the sections are placed in xx00

. xxn (n may not be greater than 99). These sections get the fol-
lowing pieces of file:

00: From the start of file up to (but not including) the line refer-
enced by argl.

01: rom the line referenced by argl up to the line referenced by
arg?. :

.

n+ 1: From the line referenced by argn to the end of file.
The options to ceplit are:

-8 Csplit normally prints the character counts for each file
created. If the — s option is present, ceplit suppresses the’
printing of all character counts.

-k Ceplit normally removes created files if an error occurs.
If the - k option is. present, .csplit leaves previously
created files intact.

—~ f prefiz If the — f option is used, the created files are named
prefiz00 . . . prefizn. The default is xx00 ... xxn.

The arguments {argl ... argn) to ceplit can be a combination of
the following:

[rezp/ A file is to be created for the section from the current line
up to (but not including) the line containing the regular
expression rezp. The current line becomes the line contain-
ing rezp. This argument may be followed by an optional
+or — some number of lines (e.g., /Page/- §).

%rezp% This argument is the same as [rezp/, except that no file is
created for the section.

- March 24, 1984 - Page 1

CSPLIT(C) CSPLIT(C)

inno A file is to be created from the current line up to (but not
including) Inno. The currznt line becomes Inno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rezp type argument, that
argument is applied num more times. If it follows Inno, the
file will be split every Inno lines {num times) from that
point.

Enclose all rezp type arguments that contain blanks or other charac-
ters meaningful to the shell in the appropriate quotation marks.
Regular expressions may not contain embedded newlines. Caplit
does not affect the original file; it is the users responsibility to
remove it.

Examples

esplit - f cobol file 'fprocedure division/' /[par5./ [parlB./

This example creates four files, cobol00 ... cobol03. After editing
the “‘split’’ files, they can be recombined as follows:

cat cobol0[0- 3] > file
Note that this example overwrites the original file.

esplit - k file 100 {99}
This example would split the file at every 100 lines, up to 10,000
lines. The — k option causes the created files to be retained if there
are less than 10,000 lines; however, an error message would still be
printed.

esplit - k prog.c '%main(% '/’}/+ 1" {20}
Assuming that prog.c follows the normal C coding convention of
ending routines with a } at the beginning of the line, this example
will create a file containing each separate C routine {up to 21) in
prog.c.

See Also

¢d(C), sh(C), regex(S)

March 24, 1984 - Page 2

CSPLIT(C) CSPLIT(C)

Diagnostics
Self-explanatory except for:
arg — out of range

which means that the given argument did not reference a line
between the current position and the end of the file.

March 24, 1984 Page 3

CcU(C) CU(C)

Name

cu — Calls another XENIX system.

Syntax

cu | —sspeed | [—aacu|[~lline| [~h][—ol—e] telno ! dir

Description

Cu calls up another XENIX system. It manages an interactive
conversation with possible transfers of ASCII files. Speed gives the
transmission speed (110, 150, 300, 1200, 4800, 9600); 300 is the
default value. Most modems are restricted to 300 and 1200.
Directly connected lines may be set to other speeds.

The —a and —] values may be used to specify device names for
the ACU and communications line devices. They can be used to
override searching for the first available ACU with the right speed.
The —h option emulates local echo, supporting calls to other
computer systems which expect terminals to be in half—duplex
mode. The —e (—o) option designates that even (odd) parity is to
be generated for data sent to the remote system. Telno is the tele—
phone number, with equal signs for secondary dial tone or minus
signs for delays at appropriate places. The string dir for telno
must be used for directly connected lines, and implies a null ACU.

Cu will try each line listed in the file /usr/lib/uucp/L—devices until
it finds an available line with appropriate attributes or runs out of
entries. After making the connection, c4 runs as two processes:

the transmit process reads data from the standard input and, except

for lines beginning. with a tilde (7), passes it to the remote system;
the receive process accepts data from the remote system and,

except for lines beginning with a tilde, passes it to the -standard
output. Normally, an automatic DC3/DC1 protocol is used to con—

trol input from the remote system so the buffer is not overrun.

Lines beginning with a tilde have special meanings.

The transmit process interprets the following:

" Terminates the conversation.

1 Escapes to an interactive shell on the local
system.

“temd. .. Runs cmd on the local system (via sh —c).

“$omd. .. Runs cmd locally and sends its output to

the remote system.

“%take from [to | Copies file from (on the remote system) to
file fo on the local system. If fo is

May 9, 1984 ' © Page 1.

CU(C) cu(C)

omitted, the from argument is used in both
places.

“%put from | to | - Copies file from (on the local system) to
file 0 on the remote system. If fo is
omitted, the from argument is used in both

places.
"%bor " %break Sends a break char to the remote system.
- ~ Sends the line ".... to the remote system.
“%nostop Turns off the DC3/DC1 input control pro—

tocol for the remainder of the session.
This is useful in case the remote system is
onc which does not respond properly to
the DC3 and DC! characters,

The receive process normally copies data from the remote system
to its standard output. A line from the remote system that begins
with "> initiates an output diversion to a file. The complete
sequence is:

->[>]: file

zero or more lines to be written to file

>
Data from the remote system is diverted to a file (or appended, if
>> is used). The trailing "> terminates the diversion.

The use of “%put requires szty (C) and cat (C) on the remote side.
It also requires that the current erase and kill characters on the
remote system be identical to the current oncs on the local system.
- Backslashes are inserted at appropriate places.

The use of “%take requires the existence of echo(C) and cat(C)
on the remote system. Also, stty tabs mode should be set on the
remote system if tabs are to be copied without expansion.

Files :
fust/lib/uucp/L—devices

lust/spool/uucp/LCK. .(tty —device)
{dev/null

See Also
cat(C), echo(C), stty(C), tty(M)

Diagnostics
Exit code is zero for normal exit, nonzero (various values) other—
wise. '

 May 9, 1984 ‘ Page 2

cu(c) cU(C)

Notes
There is an artificial slowing of transmission by cu during the
“%put operation so that loss of data is unlikely.

ASCHl files only can be transferred using take/put; binary files
cannot be transferred.

The maximum speed of the cu utility is 1200 baud.

The file /ust/lib/uucp/L—devices must contain information about the
type of connection and speed. Here is a sample L—devices file:

yl3 ACU 1200tyll 0 1200

The first device specification tells cu that ttyl3 is an auto—
communications line unit, i.e., meant to be hooked up to a
modem. The second device is a direct line, or DIR. Such a dev—
ice is meant to hook—up two XENIX systems directly over a wire.
The enabled login port on the ‘remote’ system for ttyl1 should be
set up for a 1200 baud login. The baud rate of both devices is set
to 1200.

May 9, 1984 Page 3

DATE (C) . DATE(C)

Name

date ~ Prints and sets the date.

Syntax

date | mmddhhmm(yy] | [+format]

Description

If no argument is given, or if the argument begins with 4, the
current date and time are printed. Otherwise, the current date is set.
The first mm is the month number; dd is the day number in the
month; k4 is the hour number (24-hour system); the second mm is
the minute number; yy is the last 2 digits of the year number and is
optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if
no year is mentioned. The system operates in GMT. Date takes care
of the conversion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the con-
trol of the user. The format for the output is similar to that of the
first argument to prntf(S). All output fields are of fixed size (zero
padded if necessary). Each field descriptor is preceded by a percent
sign (99 and will be replaced in the output by its corresponding
value. A single percent sign is encoded by doubling the percent
sign, i.e., by specifying *“%%'"'. All other characters are copied to the
output without change. The string is always terminated with a new-
line character.

Field Descriptors:
n Inserts a newline character
t Inserts a tab character

m Month of year - 01 to 12

d Day of month - 01 to 31

y Last 2 digits of year - 00 to 99
D Date as mm/dd/yy

H - Hour- 00 to 23

M Minute - 00 to 59

March 24, 1984 Page 1

DATE(C) DATE(C)

S Second - 00 to 59

T Time as HH:MM:SS

J Julian date — 001 to 366

w Day of the week - Sunday =

a Abbreviated weekday - Sun to Sat
h Abbreviated month — Jan to Dec

r Time in AM/PM notation

Example
The line
date "+ DATE: %m /%d/% %n TIME: 98:93M: %S"
generates as output:

DATE: 08/01/76
TIME: 14:45:05

Diagnostics
no permission You aren’t the super-user and you are trying
to change the date.
bad conversion The date set is syntactically incorrect.

bad format character The field descriptor is not recognizable.

March 24, 1984 Page 2

DC(C) De(C)

Name

dc - Invokes an arbitrary precision calculator.

Syntax

de | file]

Description

Dc is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you may specify an input base, output base,
and a number of fractional digits to be maintained. The overall
structure of dc is a stacking (reverse Polish) calculator. If an argu-
ment is given, input is taken from that file until its end, then from
the standard input. The following coustructions are recognized:

number ‘
The value of the number is pushed on the stack. A number
is an unbroken string of the digits 0- 9. It may be preceded
by an underscore (_) to input a negative number. Numbers
may contain decimal points.

+- /*%
The top two values on the stack are added (+), subtracted
(=), multiplied (*), divided (/}), remaindered (%3, or
exponentiated (). The two entries are popped off the stack;
the result is pushed on the stack in their place. Any fractional
part of an exponent is ignored.

sz The top of the stack is popped and stored into a register
named z, where z may be any character. If the s is capital-
ized, z is treated as a stack and the value is pushed on it.

1z The value in register z is pushed on the stack. The register z
is not altered. All registers start with zero value. If the l is
capitalized, register z is treated as a stack and its top value is
popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. p interprets the top of the stack as an ASCII
string, removes it, and prints it.

f All values on the stack are printed.

q Exits the program. If executing a string, the recursion level is
pepped by two. If qis capitalized, the top value on the stack

is popped and the string execution level is popped by that
value.

March 24, 1984 Page 1

DC(C)

—
.
.
.
—

.

March 24,

pc(c)

Treats the top element of the stack as a character string and
executes it as a string of de commands.

Replaces the number on the top of the stack with its scale fac-
tor. .

Puts the bracketed ASCH string onto the top of the stack.

>z =

The top two elements of the stack are popped and compared.
Register z is evaluated if they obey the stated relation.
Replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

Interprets the rest of the line as a XENIX command.

All values on the stack are popped.

The top value on the stack is popped and used as the number
radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number
radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a
nonnegative scale factor; the appropriate number of places are
printed on output, and maintained during multiplication, divi-
sion, and exponentiation. The interaction of scale factor,
input base, and output base will be reasonable if all are
changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the
terminal) and executed.

Used by bc for array operations.

1984 Page 2

po(c) DC(C)

Example . ,)
This example prints the first ten values of n!:

[la1+ dsa*plal0>y]sy

0sal
lyx
See Also
be(C)
Diagnostics
z 12 unimplemented The octal number z corresponds to a char-
acter that is not implemented as a com-
mand i
stack empty Not enough elements on the stack to do
what was asked
Out of space The free list is exhausted (too many digits)
Out of headers Too many numbers being kept around
Out of pushdown Too many items on the stack
Nesting Depth Too many levels of nested execution
Notes

Be is a preprocessor for de, providing infix notation and a C-like syn-
tax which implements functions and reasonable control structures
for programs. For interactive use, bc is preferred to dc .

March 24, 1984 ‘ Page 3

DD (C) DD(C)

Name «
dd — Converts and copies a file.

Syntax
dd [option=value] ...

Description
Dd copies the specified input file to the specified output with pos—
sible conversions. The standard input and output are used by
default. The input and output block size may be specified to take
advantage of raw physical 1/0.

Option Value

if=file Input filename; standard input is default
of=file Output filename; standard output is default
ibs=n Input block size n bytes (default is block size)
obs=n OQutput block size (default is block size)

bs=n Sets both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in—core copy needs to be done

cbs=n Conversion buffer size
skip=n Skips n input records before starting copy
seek=n Seeks n records from beginning of output file before

copying
count=n
Copies only n input records
conv=ascii
Converts EBCDIC to ASCLL
conv=ebcdic
Converts ASCH to EBCDIC
conv=ibm
Slightly different map of ASCH to EBCDIC
conv=lcase

Maps alphabetics to lowercase

May 9, 1984 Page 1

DD(C) DD (C)

.. Option Value

conv=ucase
Maps alphabetics to uppercase

conv=swab
Swaps every pair of bytes

conv=noerror
Does not stop processing on an efror

conv=sync
Pads every input record to ibs

conv=..,, ...
Several comma-—separated conversions

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by 1024,
512, or 2 respectively; a pair of numbers may be separated by x to
indicate a product.

Cbs is used only if ascii or ebedic conversion is specified. In the
former case cbs characters are placed into the conversion buffer,
converted to ASCL, and trailing blanks trimmed and newline added
before sending the line to the output. In the latter case ASClU
characters are read into. the conversion buffer, converted to
EBCDIC, and blanks added to make up an output record of size
cbs.

After completion, dd reports the number of whole and partial input
and output blocks.

Examples
This command reads an EBCDIC tape, blocked ten 80—byte
EBCDIC card images per record, into the ASCII file outfile:

dd if=/dev/irmtO0 of=outfile ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to /O on
raw physical devices because it allows reading and writing in arbi—
trary record sizes.

See Also
copy(C), cp(C), tar(C)

Diagnostics
Sp records in{out) Numbers of full and partial records

read(written)

May 9, 1984 Page 2

DD (C) DD(C)

Notes
The ASCWEBCDIC conversion tables are taken from the 256—
character standard in the CACM Nov, 1968.

Newlines are inserted only on conversion to ASCL; padding is done
only on conversion to EBCDIC.

May 9, 1984 Page 3

DEVNM (C) DEVNM (C)

Name

devnm - Tdentifies device name.

Syntax

[etc/devnm | names]

Description

Devnm identifies the special file associated with the mounted file sys-
tem where the argument name resides.

This command is most commonly used by Jetc/rc to construct a
mount table entry for the root device.
Examples
Be sure to type full pathnames in this example:
[etc/devnm fusr
If /dev/hdl is mounted on fusr, this produces:

hdl fusr

Files
/dev/* Device names

[ete/rc Xenix startup commands

See Also
setmnt{C)

March 24, 1984 Page 1

DF(C) DF(C)

Name

df - Reports the number of free disk blocks.

Syntax
df[-¢t] | -] [filesystem ...]

Description

Df prints out the number of free blocks and free inodes available for

- on-line file systems by examining the counts kept in the super-
blocks. One or-more filesystem arguments may be specified by dev-
ice name (for example, /dev/hd0 or /dev/usr). If the filesystem
argument is unspecified, then the free space on all mounted file sys-
tems is sent to the standard output. The list of mounted file systems
is given in /ete/mnttab.

The - t flag causes the total allocated block ﬁgnres to be reported as
. well

I the -t flag is given, only an actual count of the blocks in the free
list is made (free inodes are not reported) With this option, df
reports on raw devnces

Files -
/dev /‘

/et.c/mnttab
See Ai?o :
. 1sck(C), 1s(F), mnttab(F)

Notes

- ‘See also Noteo under mount(C).

March 26, 1984 ‘ Page 1

DIFF(C) - - DIFF(C)

Name

diff - Compares two text.-files.

Syntax
diff | - efbh] filel file2

Description

Diff tells what lines must be changed in two files to bring them into
. agreement. If filel (file2) is — , the standard-input is used. If filel
(file2) is a directory, then a file in that directory with the name file2
. [filel) is used. The normal outputicontains lines of these forms:
nl a nd,nf
nl,n2 d n8
nl,n2 c n8nf

These lines resemble ed commands to convert file! into file€. The
numbers after the letters pertain to file2. In fact, by exchanging a
for.d and reading backward one may-ascertain equally how to' con-
vert file? into filel. As in ed, identical pairs where ul = n2 or nd
== n{ are abbreviated as asmglc number.

Following each of these lines come all the lines that are affected in
- the first file flagged by <, then all the Imes that are affected in the
second file ﬂagged by >.

. The ~ boption causes trailing blanks (spaces and tabs) to be iinored
and other strings of blanks to compare equal.

The - e option produces a script of a, ¢ and d commands for the
editor ed, which will recreate file2 from filel. The - f option pro-
duces a similar script, not useful with ed, in the opposite order. In

~ connection with — e, the following shell procedure helps maintain
multiple versions of a file:

(shift; cat $% echo '1,8p’) |ed - $1

This works by performing a set of editing operations on.an original
ancestral file. This is done by combining the sequence of ed scripts
given as all command line arguments except the first. These scripts
are presumed to have been created with diff in the order given on
the command line. The set of editing operations is then piped as an
editing script to ed where all editing operations are performed on the
ancestral file given as the first argument on the command line. The
final version of the file is then printed on the standard output. Only
an ancestral file ($1) and a chain of version-to-version ed scripts
($2,83,..) made by diff need be an hand.

March 24, 1984 . " ‘Page 1

DIFF(C) DIFF(C)

Except in rare circumstances, diff finds the smallest sufficient set of
file differences.

The — h option does a fast, less-rigorous job. It wofks only when
changed stretches are short and well separated, but also works on
files of unlimited length. The — e and — f cannot be used with the
- h option.

Files
[tmp/d??27?
Jusr/lib/diffh for — h

See Also
emp(C), comm(C), ed(C)

Diagnostics
Exit status- is 0 for no differences, 1 for some differences, 2 for
errors. =

Notes

Editing scripts: produced under the — e or — f option do not always
work correctly-on lines consisting of a single period (.).

March 24, 1984 Page 2

DIFF8(C) , DIFF$(C)

Name

diff3 -~ Compares three files.

Syntax . -
diff3 [- ex3] filel file2 file3

Description

Diff8 compares three versions of a file, and pubbshes dlsagreemg
ranges of text flagged with these codes: =~ -

= v All three files differ
maz=m=] Filel is different
] File2 is diﬂ'eren‘t V
=l File8 is different

The type of change suffered in.converting a given range of -2 given
file to some other range is indicated in one of these ways:

f:nla " Text is to be appended after line number ul in
file f, where f == 1, 2, or 3.

f:inl,nec Text is to be changed in the range line nl to
©+ -line n2. If nl == n2, the ra.nge may be abbre-
viated to nl.

The ongmal contents of the range follows immediately after a ¢ indi-
cation. When the contents of two files are identical, the contents of
the lower-numbered file is suppressed.

Under the - e option, diff$ publishes a script for the editor ed that
will ineorporate into file! all changes between file2 and file8, i.e., the
changes that normally would be flagged and -3,
The ~ x option produces a script to incorporate changes flagged with -
“=====", Similarly, the ~ 3 option produces a script to incor-
porate changes flagged with ‘‘me======3’’. The following command
applies a resulting editing script to filel:

(cat script; echo '1,$p") fed - filel

' Files
[tmp/d3*
Jusr/lib/diff3prog

March 24, 1084 " Pagel

DIFF$(C) DIFFS(C)

See Also
diff(C)

Notes

The - e option does not work properly for lines consisting of a single
period.

The input file size limit is 64K bytes.

March 24, 1984 ' Page 2

DIRCMP(C) DIRCMP(C)

Name

diremp - Compares directories.

Syntax
diremp |~ d] [- s] dirl dir2

Description
Diremp examines dirl and dir2 and generates tabulated information
.about the contents of the directories. Listings of files that are unique
to each directory are generated in addition to a list that indicates
whether the files common to both directories have the same con-
tents. :

There are two options available:

— d Performs a full diff on each pair of like-named files if the con-
tents of the files are not identical

— s Reports whether files are ‘‘same’’ or ‘‘different”’

See Also ,
emp(C), diff(C)

March 24, 1984 Page 1

DIRNAME (C) DIRNAME (C)

Name

dirname — Delivers directory part of pathname.
Syntax

dirname string
Description

Dirname delivers all but the last component of the pathname in
string and prints the result on the standard output. If there is only
one component in the pathname, only a ‘‘dot’’ is printed. It is
normally used inside substitution marks (¢ ¢) within shell pro—
cedures.

The companion command basename deletes any prefix ending in a
slash (/) and the suffix (if present in string) from string, and prints
the result on the standard output. '

Examples »
The following example sets the shell variable NAME to
lusr/src/cmd:

NAME= ‘dirname /ust/src/cmd/cat.c®

This example prints /a/b/c on the standard output:
dirname /a/b/c/d

This example prints a “‘dot’’ on the standard output:
dirname file.ext

See Also
basename(C), sh(C)

May 9, 1984 Page ‘1

DISABLE (C) "DISABLE (C)

Name
disable - Turns off terminals.

T isable | - |[[~e]ty

Description
This program manipulates the /etc/ttys file and sxgnals init to disal—
low logins on a particular terminal. The —d and —e optxons
‘‘disable’’ and “enable" terminals, respectively.

Examples
A simple example follows:

disable tty0l

Multiple terminals can be disabled or enabled using the —d and -
switches before the appropriate terminal name:

disable tty0l —e tty02 —d tty03 tty04
Files
/devitty*
" lete/ttys

See Also
login(M), cnable(C). ttys(M), gcuy(M), init(M)

Warning ,
Be absolutely certain to pausé at least one minute before reusing
this command or before using the enable command. Failure to do
so may cause the system to crash.

May - 9, 1984 . Page. 1

DTYPE(C)

Name

. DTYPE (C)

dtype - Determines disk type.

Syntax

dtype [- s8] device ...

Description

Dtype determines type of disk, prints pertinent information on the
standard output unless the silent (~ 8) option is selected, and exits
with a corresponding code (see below). When more than one argu-

ment is given, the exit code corresponds to the last argument.

Disk Exit | Message

Type Code | {optional)

Misc. 60 etror {specified)
61 empty or unrecognized data

Storage - | 70 dump format, volume n
71 tar format|, extent e of n]
72 cpio format
73 cpio character (- ¢} format

MS-DOS | 80 MS-DOS 1.x, 8 sec/track, single sided
81 MS-DOS 1.x, 8 sec/track, dual sided
90 MS-DOS 2.x, 8 sec/track, single sided
g1 MS-DOS 2.x, 8 sec/track, dual sided
92 MS-DOS 2.x, 9 sec/track, single sided
93 MS-DOS 2.x, 9 sec/track, dual sided
94 MS-DOS 2.x fixed disk

XENIX 120 - | XENIX 2.x filesystem[needs fsck
130 XENIX 3.x filesystem| needs fsck

Notes

XENIX file systems, dump, and cpio binary formats may not be
recognized if created on a foreign system. This is due to such sys-
tem differences as byte and word swapping and structure alignment.

This utility only works reliably for floppy diskettes.

March 27, 1984

Page 1

DU(C) . DpU(C)

Name

du - Summarizes disk usage;

Syntax

du [- ars | [names]

Description

Du gives the number of blocks contained ‘in all files and (recur-
sively) directories within each directory and file specified by the
names argument. The block count includes the indirect blocks of the
file. If namee is missing, the current directory is used.

The optlonal argument ~ s causes only the grand total (for each of
the specified names) to be given. The optional argument — a causes
an entry to be generated for each file. Absence of either causes an
entry to be generated for each directory only.

Du is normally silent about dnrechoms that cannot be read, files that
cannot be opened, etc. . The — r option will cause du to generate
messages m such instances.

A file with two or more links is only counted once.

Notes

If the ~ a option is not used, nondirectories given as arguments are
not listed.

If there are too many distinct lmked fxles, du will count the excess
files more than once.

Files with holes in them will get an incorrect block count. .

- March 26, 1984 - Page-1

DUMP(C) ' DUMP(C)

Name

dump - Performs incremental file system backup.

Syntax

dump | key | arguments | filesystem |}

Description

Dump copies to the specified device all files changed after a certain
date in the filesystem. The key specifies the date and other options
about the backup, where a key consists of characters from the set
0123456780kfusd. The meanings of these characters are described
below:

f

Places the backup on the next argument file instead of the
default device.

If the backup completes successfully, writes the date of the
beginning of the backup to the file /Jetc/ddate. This file
records a separate date for each file system and each backup
level.

0- 9 This number is the *backup level’’. Backs up all files modified

since the last date stored in the file /etc/ddate for the same file
system at lesser levels. If no date is determined by the leve),
the beginning of time is assumed; thus the option 0 causes the
entire file system to be backed up.

For backups to magnetic tape, the size of the tape specified in
feet. The number of feet is taken from the next argument.
When the specified size is reached, dump will wait for reels to
be changed. The default size is 2,300 feet.

For backups to magnetic tape, the density of the tape,
expressed in BFl, is taken from the next argument. This is used
in calculating the amount of tape used per write. The default is
1600.

This option is used when backing up to a block-structured dev-
ice, such as a floppy disk. The size (in K-bytes) of the volume

being written is taken from the next srgument. If the k argu-

ment is specificd, any s and d arguments are ignored. The
default is to use s and d.

If no arguments are given, the key is assumed to be Ou and a default

March 24, 1984 Page 1

DUMP(C) DUMP(C)

file system is backed up to the default device.
The first backup should be a full level-0 backup:
dump Ou

Next, penodxc level 9 backups should be made on an exponential
progression of tapes or floppies:

dump 9u
{This is sometimes called the Tower of Hanoi progression after the
name of the game where a similar progression occurs, i.e., 12131
21 4 .. where backup 1 is used every other time, backup 2 every
fourth, backup 3 every eighth, etc.) When the level-9 incremental
backup becomes unmanageable because a tape is full or too many
floppies are required, a level-1 backup should be made:

dump lu
After this, the exponential series should progress as if uninterrnpted.
These level-9 backups are based on ‘the level-1 backup, which is
bised on the level-0 full backup. This progressxon of levels of back-
ups can be carried as far as desired.
The default file system and the backup device depend on the settinks
of the wvariables' DISK and TAPE, - respectively, in the file
[etc/default/dump. o

Files

-[etc/ddate Records backup dates of file system flevel

* etc/default/dump - Default dump information
See Also

XENIX Operatwm Gutde
cpio(C), default(M), dumpdir{C), restor(C}, dump(F)

March 24, 1984 - Page 2

DUMP(C) DUMP(C)

Diagnostics
If the backup requires more than one volume (where a volume is
likely to be a floppy disk or tape), you will be asked to change
volumes. Press RETURN after changing volumes.

Notes
Sizes are based on 1600 BFI for blocked tape; the raw magnetic tape
device has to be used to approach these densities. Write errors to
the backup device are usually fatal. Read errors on the file system
are ignored. ’

Warning

When backing up to fioppy disks, be sure to have enough formatted
floppies ready before starting a backup.

March 24, 1984 Page 3

DUMPDIR (C) , DUMPDIR (C)

Name

dumpdir - Prints the names of files on a backup archive.

Syntax
dumpdir | f filename)

Description

Dumpdir is used to list the names and inode numbers of all files and
directories on an archive written with the dump command. - This is
most useful when attempting to determine the location of a pamcu-
lar file in a set of backup archives.

The f option causes filename to be used as the name of the backup

device instead of the default. The backup device depends on the
sctting of the variable TAFE in the file /etc/default/dump.

Files -

rst+ Temporary files

See Also
dump(C), restor(C), defzult{M)

Diagnostics
If the backup extends over more than one volume (where a volume

is likely a floppy disk or tape), you will be asked to change volumes.
Press RETURN after changing volumes.

March 24, 1984 Page 1

ECHO(C) ECHO(C)

Name

echo - Echoes arguments.

Syntax
echo[-n}{-e][--]]arg]...

Description
Echo writes its arguments separated by blanks and terminated by a
newline on the standard output. The following options are recog-
nized: .
— n Prints line without a newline.

— e Prints arguments on the standard error output.

Prints arg exactly so that an argument begmnmg with a dash
(e.g., - € or - n) can be specified.

Echo also understands C-like escape conventions. The following
escape sequences need to be quoted so that the shell interprets them
correctly:

\b Backspace

\c¢ Prints line without newline; same as use of — n option

\f Form feed

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\n The 8-bit character whose ASCII code is the 1-, 2- or 3-digit
octal number #, which must start with a zero

Echo is useful for producing diagnostics in command files and for
sending known data into a pipe.

See Also
sh(C)

March 24, 1984) Page 1

ED (C) ED (C)

Name

ed - Invokes the text editor.

Syntax
ed[-] [-x][file]

Description

Ed is the standard text editor. If the file argument is given, ed
simulates an ¢ command (see below) on the named file; that is to
say, the file is read into ed’s buffer so that it can be edited. The
optional — suppresses the printing of character counts by e, r, and v
commands, of diagnostics from e and ¢ commands, and of the !
prompt after a !shell command. If — x is present, an z command is
simulated first to handle an encrypted file. Ed operates on a copy of
the file it is editing; changes made to the copy have no effect on the
file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer. There is only one
buffer.

Commands to ed have a simple and regular structure: zero, one, or
two addresses followed by a single-character command, possibly fol-
lowed by parameters to that command. These addresses specify one
or more lines in the buffer. Every command that requires addresses
has default addresses, so that the addresses can very often be omit-
ted.

In general, only one command may appear on a line. Certain com-
mands allow the input of text. This text is placed in the appropriate
place in the buffer. While ed is accepting text, it is said to be in
input mode. In this mode, no commands are recognized; all input is
merely collected. Input mode is left by typing a period {.) alone at
the beginning of a line.

Ed supports a limited form of regular ezpression notation; regular
expressions are used in addresses to specify lines and in some com-
mands (e.g., 8) to specify portions of a line that are to be substi-
tuted. - A regular expression specifies a set of character strings. A
member of this set of strings is said to be matched by the regular
expression. The regular expressions allowed by ed are constructed
as follows: '

The following one-character regular expressions match a single char-
acter: ’

1.1 An ordinary character (not one of those discussed in 1.2

below} is a one-character regular expression that matches
itself.

March 24, 1984 , Page 1

ED(C) ED(0C)

1.2 A backslash (\) followed by any special character is a one-
character regular expression that matches the special character
itself. The special characters are:

a. ., % [, and \ (dot, star, left square bracket, and backslash,
respectively), which are always special, ezcept when they
appear within square brackets ([]; see 1.4 below).

b. ~ (caret), which is special at the beginning of an entire
regular expression (see 3.1 and 3.2 below), or when it
immediately follows the left of a pair of square brackets
([1) (see 1.4 below).

c. § (dollar sign), which is special at the end of an entire reg-
ular expression (see 3.2 below}.

d. The character used to bound (i.e., delimit) an entire regu-
lar expression, which is special for that regular expression
(for example, see how slash (/) is used in the g com-
mand, below.)

1.3 A period (.) is a one-character regular expression that matches
any character except newline.

1.4 A nonempty string of characters enclosed in square brackets
({]) is a one-character regular expression that matches any one
character in that string. If, however, the first character of the
string is a caret (*), the one-character regular expression
matches any character ezcept newline and the remaining char-
acters in the string. The star (*) has this special meaning only
if it occurs first in the string. The dash (-~) may be used to
indicate a range of consecutive ASCII characters; for example,
{0- 9] is equivalent to [0123456789]. The dash (-) loses this
special meaning if it occurs first (after an initial caret (~}, if
any} or last in the string. The right square bracket (]) does
not terminate such a string when it is the first character within
it (after an initial caret (), if any); e.g., []a- f] matches
either a right square bracket (]) or one of the letters ‘‘a”
through “‘f”’ inclusive. Dot, star, left bracket, and the
backslash lose their special meaning within such a string of
characters.

The following rules may be used to construct regular expressions
from one-character regular expressions:

2.1 A one-character regular expression matches whatever the
one-character regular expression matches.

2.2 A one-character regular expression followed by a star (*) is a
regular expression that matches zero or more occurrences of
the one-character regular expression. If there is any choice,
the longest leftmost string that permits a match is chosen.

March 24, 1984) Page 2

ED (C) ED(C)

2.3 A one-character regular expression followed by \{m\}, \{m,\},
or \{m,n\} is a regular expression that matches a range o
occurrences of the one-character regular expression. The
values of m and n must be nonnegative integers less than 256;
\{m\} matches ezactly m occurrences; \{m,\} matches at least
m occurrences; \{m,n\} matches any number of occurrences
between m and n, inclusive. Whenever a choice exists, the
regular expression matches as many occurrences as possible.

2.4 The concatenation of regular expressions is a regular expres-
sion that matches the concatenation of the strings matched by
each component of the regular expression.

2.5 A regular expression enclosed between the character sequences
\(and \) is a regular expression that matches whatever the
unadorned regular expression matches. See 2.6 below for a
discussion of why this is useful.

2.6 The expression \rn matches the same string of characters as
was matched by an expression enclosed between \(and \) ear-
lier in the same regular expression. Here n is a digit; the
subexpression specified is that beginning with the n-th
occurrence of \(counting from the left. For example, the
expression “\(.*\)\1$ matches a line consisting of two
repeated appearances of the same string.

Finally, an entire regular ezpression may be constrained to match only
an initial segment or final segment of a line (or both}:

3.1 A caret (") at the beginning of an entire regular expression
. constrains that regular expression to match an initial segment
of a line.

3.2 A dollar sign ($) at the end of an entire regular expression
constrains that regular expression to match a final segment of
a line. The construction ~entire regular ezpression$ constrains
the entire regular expression to match the entire line.

The null regular expression (e.g., //) is equivalent to the last regular
expression encountered.

To understand addressing in ed it is necessary to know that there is a
current line at all times. Generally speaking, the current line is the
last line affected by a command; the exact effect on the current line
is discussed under the description of each command. Addresees are
constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

March 24, 1984 Page 3

ED (C) ED (C)

4. 'z addresses the line marked with the mark name character z,
which must be a lowercase letter. Lines are marked with the &
command described below.

5. A regular expression enclosed by slashes (/) addresses the
first line found by searching forward from the line following the
current line toward the end of the buffer and stopping at the
first line containing a string matching the regular expression.
If necessary, the search wraps around to the beginning of the
buffer and continues up to and including the current line, so
that the entire buffer is searched.

6. A regular expression enclosed in question marks {?) addresses
the first line found by searching backward from the line preced-
tng the current line toward the beginning of the buffer and
stopping at the first line containing a string matching the regu-
lar expression. If necessary, the search wraps around to the
end of the buffer and continues up to and including the
current line. See also the last paragraph before Files below.

7. An address followed by a plus sign (4) or a minus sign (-)
followed by a decimal number specifies that address plus or
minus the indicated number of lines. The plus sign may be
‘omitted.

8. If an address begins with 4+ or — , the addition or subtraction
is taken with respect to the current line; e.g, — 5 is understood
to mean .~ §.

9. If an address ends with 4+ or — , then 1 is added to or sub-
tracted from the address, respectively. As a consequence of
this rule and of rule 8 immediately above, the address ~
refers to the line preceding the current line. (To maintain
compatibility ‘with earlier versions of the editor, the character
~ in addresses is entirely equivalent to — .) Moreover, trailing
+ and — characters have a cumulative effect, so — — refers to
the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$,
while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands
that require no addresses regard the presence of an address as an
error. Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if more
addresses are given than such a command requires, the last
address(es) are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case,
the current line (.) is set to the first address, and only then is the
second address calculated. This feature can be used to determine
the starting line for forward and backward searches (see rules § and

March 24, 1984 Page 4

ED(C) ' ED (C)

6 above). The second address of any two-address sequence must
correspond to -a line that follows, in the buffer, the line correspond-
ing to the first address.

In the following list of ed commands, the default addresses are
shown in parentheses. The parentheses are not part of the address;
they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a
line. However, any command (except ¢, f, r, or w) may be suffixed
by por by], in which case the current line is either printed or listed,
respectively, as discussed below under the p and ! commands.

(.)a
<text>

The append command reads the given text and appends it after
the addressed line; dot is left at the last inserted line, or, if there
were no inserted lines, at the addressed line. Address 0 is legal
for this command: it causes the ‘‘appended’’ text to be placed at
the beginning of the buffer.

(:)C
<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the last line
input, or, if there were none, at the first line that was not
deleted.

(.,.)d
. The delete command deletes the addressed lines from the
buffer. The line after the last line deleted becomes the current
" line; if the lines deleted were originally at the end of the buffer,
the new last line becomes the current line.

e file :

- The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the
last line of the buffer. If no filename is given, the currently
remembered filename, if any, is used (see the f command).
The number of characters read is typed; file is remembered for
possible use as a default filename in subsequent e, r, and w
commands. If file begins with an exclamation (!), the rest of
the line is taken to be a shell command. The output of this com-
mand is read for the ¢ and r commands. For the » command,
the file is used as the standard input for the specified command.
Such a shell command is not remembered as the current
filename.

E file .
The Edit command is like e, except the editor does not check to
see if .any changes have been made to the buffer since the last w
command.

March 24, 1984 ' Page 5

ED (C) ED (C)

f file
If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

(1,8$)g/regular-ezpreesion [command list

In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such
line, the given command list is executed with . initially set to that
line. A single command or the first of a list of commands
appears on the same line as the global command. All lines of a
multiline list except the last line must be ended with a \; a, ¢,
and ¢ commands and associated input are permitted; the . ter-
minating input mode may be omitted if it would be the last line
of the command list. An empty command lsst is equivalent to the
p command. The g, G, v, and V commands are not permitted
in the command list. See also Notes and the last paragraph before
Files below. :

(1,8)G/regular-ezpression

In the interactive Global command, the first step is to mark
every line that matches the given regular expression. Then, for
every such line, that line is printed, dot (.) is changed to that
line, and any one command (other than one of the a, ¢, §, ¢, G,
v, and V commands) may be input and is executed. After the
execution of that command, the next marked line is printed,
and so on; a newline acts as a null command; an ampersand (&)
causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands
input as part of the execution of the G command may address
and affect any lines in the buffer. The G command can be ter-
minated by typing an INTERRUPT.

h
The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

H .
The Help command causes ed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It will
also explain the previous diagnostic if there was one. The H
command alternately turns this mode on and off; it is initially
on.

(.)i

<text>

The tnsert command inserts the given text before the addressed
line; dot is left at the last inserted line, or if there were no
inserted lines, at the addressed line. This command differs from
the ¢ command only in the placement of the input text.
Address 0 is not legal for this command.

March 24, 1984 Page 6

ED(C)

(.

(.)kz

ool ,

ED(©)

+1)j

The join command joins contiguous lines by removing the
appropriate newline characters. If only one address is given, this
command does nothing.

The mark co_mmand marks the addressed .line with name z,
which must be a lowercase letter, The address 'z then addresses
this line; dot is unchanged.

. The list command prints the addressed lines in an unambiguous

way: a few nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes, all other nonprinting

.characters are printed in octal, and long lines are folded. An{

command may be appended to any command other than e, f, r,
or w.

.,.)ma

The move command repositions the addressed line(s) after the
line addressed by a. Address 0 is legal for a and causes the
addressed line(s) to be moved to the beginning of the file; it is
an error if address a falls within the range of moved lines; dot is
left at the last line moved.

)n k .

The number. command prints the addressed lines, preceding
each line by its line number and a tab character; dot is left at the
last line printed. The n command may be appended to any com-
mand other than e, f, r, or w.

Jp :

The print command prints the addressed lines; dot is left at the
last line printed. The p command may be appended to any com-
mand other than ¢; f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands.
The P command alternately turns this mode on and off; it is ini-
tially on.. : :

The quit command causes ed to exit. No automatic write of a
file is done.

The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file

The read command reads in ‘the given file after the addressed
line. If no filename is given, the currently remembered

March 24, 1984 Page 7

ED(C) ED(C)

filename, if any, is used (see ¢ and f commands). The currently
remembered filename is not changed unless file is the very first
filename mentioned since ed was invoked. Address 0 is legal for
r and causes the file to be read at the beginning of the buffer. If
the read is successful, the number of characters read is typed;
dot is set to the last line read in. If file begins with !, the rest of
the line is taken to be a shell (sA(C)) command whose output is
to be read. Such a shell command is not remembered as the
current filename.

(.,.)s/regular-ezpression [replacement [
or

(.,.)s/regular-ezpression [replacement /g
The. substitute command searches each addressed line for an
occurrence of the specified regular expression. In each line in
which a match is found, all (nonoverlapped) matched strings are
replaced by the replacement if the global replacement indicator g
appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is
replaced. It is an error for the substitution to fail on all
addressed lines. Any character other than space or newline may
be used instead of / to delimit the regular expression and the
replacement; dot is left at the last line on which a substitution
occurred.

An ampersand (&) appearing in the replacement is replaced by
the string matching the regular expression on the current line.
The special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,
where n is a digit, are replaced by the text matched by the n-th
.regular subexpression of the specified regular expression
enclosed between \(and \). When nested parenthesized subex-
pressions are present, n is determined by counting occurrences
of \(starting from the left. When the character %is the only
character in the replacement, the replacement used in the most
recent substitute command is used as the replacement in the
current substitute command. The 93 loses its special meaning
when it is in a replacement string of more than one character or
is preceded by a \.

A line may be split by substituting a newline character into it.
The newline in the replacement must be escaped by preceding it
with a \. Such a substitution cannot be done as part of a gor v
command list. :

(.,.)ta
This command acts just like the m command, except that a copy
of the addressed lines is placed after address a (which may be
0); dot is left at the last line of the copy.

The undo command nullifies the effect of the most recent com-
mand that modified anything in the buffer, namely the most

March 24, 1984 Page 8

ED (C) . ED (©)

recent a, ¢, d, g, 1, J, m, 1, 8, ¢, v, G, or Vcommand.

(1,8)v/regular-ezprenmn/command list
This command is the same as the global comma.nd g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

(1,8)V/regular-ezpression/
This command is the same as the interactive global command G
except that the lines that are marked during the first step are
those that do not match the regular expression.

(1,8)w file
The write command writes the addressed lmes into the named
file. If the file does not exist, it.is created with. mode 666 (read-
able and writeable by everyone), unless the umaek setting (see
ek(C)) dictates otherwise. The currently remembered filename
is not changed unless flle is the very first filename mentioned
_since ed was invoked. If no filename is given, the currently
remembered filename, if any, is used (see ¢ and f/ commands);
dot is unchanged. If the command is successful, the number of
characters written is displayed. If file begins with an exclama-
tion (!), the rest of the line is taken to be a shell command to
which the addressed lines are supplied as the standard input.
Such a shell command is not remembered as the current -
filename..

X .
A key string is demanded from the standard input. Subsequent
e, r, and v commands will encrypt and decrypt the text with this
key by the algorithm of erypt(C). An explicitly empty key turns
off encryption. '

(%)=
The line number of the addressed line is typed; dot is
" unchanged by this command.

Vehell command.
The remainder of the line after the ! is sent to the XENIX shell
(22{C}) to be interpreted as a command. Within the text of that
- command, the unescaped character 9% is replaced with the
remembered filename; if a ! appears as the first character of the
shell command, it is replaced with the text of the previous shell
command. Thus, !! will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; dot is

unchanged.

(.41) An address alone on a line causes the addressed line to be
printed. A RETURN alone on a line is equivalent to .+ 1p. This
is useful for stepping forward through the editing buffer a line at
a time.

March 24, 1984 : Page 9

ED (C) ED(C)

If an interrupt signal (ASCIl DEL or BREAK) is sent, ed prints a
question mark (?) and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per glo-
bal command list, 64 characters per filename, and 128K characters in
the buffer. The limit on the number of lines depends on the amount
of user memory.

When reading a file, ed discards ASCII NUL characters and all charac-
ters after the last newline. Files that contain characters not in the
ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a regular expression or of a replacement
string (e.g., /) would be the last character before a newline, that del-

imiter may be omitted, in which ¢ase the addressed line is printed.
Thus the following pairs of commands are equivalent:

s/s1/s2s/s1/s2[p
g/slg/sl/p
751?517
Files
Jtmpfedt Temporary; # is the process number

ed.hup Work is saved here if the terminal is hung up

See Also
crypt(C), grep(C), sed(C), sh(C)

Diagnostics

? Command errors
? file An inaccessible file

Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command
that wrote the entire buffer, ed warns the user if an attempt is made
to destroy ed’s buffer via the ¢ or ¢ commands: it prints ! and
allows you to continue editing. A second ¢ or ¢ command at this
point will take effect. The dash (-) command-line option inhibits
this feature.)

Notes

An exclamation (!) command cannot be subject to a g or a v com-
mand. '

March 24, 1984 Page 10

ED (C) , ED (C)

The ! command and the ! escape from the ¢, r, and v commands
cannot be used if the the editor is invoked from a restricted shell
(see eh(C)).

The sequence \n in a regular expression does not match any charac-
ter.

The ! command mishandles DEL.

Files encrypted dxrectly with the erypt(C) command with the null key
cannot be edited.

Beca.use 0 is an illegal address for the w command it is not possible
to create an’ empty file with ed.

March 24, 1984 Page 11

EJECT (C) EJECT(C)

Name
eject
Syntax
eject
Description .
The eject(C) program ejects Lisa 2 Sony micro floppydisks.
Diagnostics
Terminal will display message ‘‘fd not loaded’” if there is no
floppydisk in the drive. ‘

“May 9, 1984 Page 1

ENABLE (C) ENABLE (C)

Name

enable - Turns on terminals.

Syntax
enable [-d] [[~e] tty ...

Description
This program manipulates the fetc/ttys file and signals init to allow
logins on a particular terminal. The — e and - d options may be
used to allow logins on some terminals and disallow logins on other
terminals in a single command.

Examples
A simple command to enable ttyOl follows:

enable tty01

Multiple terminals can be disabled or enabled using the — dand - e
switches before the appropriate terminal name:

enable ttyOl - e tty02 - d tty03 tty04
Files |
Jdev [ttys
[etc/ttys

See Also
login(M), disable(C), ttys(M), getty(M), init(M)

Warning
Be absolutely certain to pause at least one minute before reusing this

command or before using the disable command. Failure to do so
may cause the system to crash.

March 26, 1984 Page 1

~ ENV(C) ENV(C)

Name

env — Sets environment for command execution.

Syntax

env [~ | [name==value] ... | command args |

Description

Env obtains the current environment, modifies it according to its
arguments, then executes the command with the modified environ-
ment. Arguments of the form name=value are merged into the
inherited environment before the command is executed. The — flag
causes the inherited environment to be ignored completely, so that
the command is executed with exactly the environment specified by
the arguments.

If no command is specified, the resulting environment is printed,
one name-value pair per line.

See Also
sh(C), exec(S), profile(F), environ(M)

Notes
The 2.3 printens command has been replaced in XENIX 3.0 by the

env command. The printenv. shipped is simply a link to the 3.0 com-
mand env. -

March 20, 1984 . Page 1

Ex(C) | EX(C)

‘Name

ex - Invokes a text editor.

Syntax

ex|{-][-v][-ttag] |- r] [+lneno| name ...

Description

Ez is the root of the editors ¢z and v. Ez is a superset of ed, whose
most notable extension is a display editing faclhty stplay based
editing is the focus of vi.

If you have not used ed, or if you are a casual user, you will find
that edit is most convenient.for you. It avoids some of the complexi-
ties of ez which is used mostly by systems programmers and persons
very familiar with ed.

If you have a CRT terminé.l, you. may wish to use a display based edi-
tor; in this case see #(C), a command which focuses on the display
editing portion of ez.

For ed Users

If you have used ed you will find that ez has a number of new
features. Intelligent terminals and high-speed terminals are very
pleasant to ‘use with v. Generally, the ez editor uses far more of the
capabilities of terminals than ed does. It uses the terminal capability
database termcap(M) and the type of the terminal you are using
from the variable TERM in the environment to determine how to
drive your terminal efficiently. The ez editor makes use of features

"such as insert and delete character and line in its visual command
mode, which can be abbreviated vi , and which is the central mode
of editing when using v(C). There is also an interline editing open
command, (o) that works on all terminals.

" Ez contains a number of features for easily viewing the text of a file.
The z command gives:-easy access to windows of text. Hitting
CNTRL-D causes the editor to scroll a half-window of text and is

~ more useful for quickly stepping through a file than just hitting the
RETURN key. Of course, the screen-oriented visual mode gives
constant access to editing context.

Ez gives you more help when you make mistakes. The undo (u)
command allows you to reverse any single change. Ez gives you a lot
of feedback, normally printing changed lines, and indicates when
more than a few lines are affected by a command so it is easy to
detect when a command has affected more lines than it should have.

March 24, 1984 ’ Page 1

EX(C) EX(C)

The editor also normally prevents the overwriting of existing files
unless you have edited them, so that you don’t accidentally clobber
with a wnite a file other than the one you are editing. If the system
(or editor) crashes, or you accidentally hang up the phone, you can
use the recover command to retrieve your work. This will get you
back to within a few lines of where you left off.

Ez has several features for editing. more than one file at a time. You
can give it a list of files on the command line and use the next (n)
command to edit each in turn. You can also give the next command
a list of filenames, or a pattern used by the shell to specify a new set
of files to be edited. In general, filenames in the editor may be
formed with full shell metasyntax. The metacharacter ‘%"’ is also
available in forming filenames and is replaced by the name of the
current file. For editing large groups of related files you can use ez’s
tag command to quickly locate functions and other important points
in any of the files. This is useful when you want to find the
definition of a particular function in a large program. The command
ctags(CP) builds a tage file or a group of C programs.

For moving text between files and within a file, the editor has a
group of buffers named a through z. You can place text in these
named buffers and carry it over when you edit another file.

The command & repeats the last substitute command. There is also
a confirmed substitute command. You give a range of substitutions
to be done and the edltor interactively asks whether each substitu-
tion is desired.

You can use the substitute command in ez to systematically convert
the case of letters between uppercase and lowercase. It is possible to
ignore case in searches and substitutions. Ez also allows regular
expressions that match words to be constructed. This is convenient,
for example, when searching for the word “‘edit’’ if your document
also contains the word ‘‘editor.”

Ez has a set of options that you can set. One option which is very
useful is the autoindent option that allows the editor to automatically
supply leading white space to align text. You can then use the
CNTRL-D key to backt.ab space and tab forward to ahgn new code
easily.

Miscellaneous new useful features include an intelligent join (j)
command which supplies whitespace between joined lines automati-
cally, the commands < and > which shift groups of lines, and the
ability to filter portions of the buffer through commands such as sort.

Files
Just/lib/ex2.0strings Error messages
[ustflibfex2.0recover Recover command

March 24, 1984 Page 2

EX(C) EX(C)

Jusr/lib/ex2.0preserve Preserve command
[etc/termcap v Describes capabilities of terminals
$HOME/.exrc Editor staft.up file
Jtmp/Exnnnnn Editor temporary
/tmp/Rx nnnnn Named buffer temporary
[usr [preserve Preservation directory
See Also

awk(C), ctags(CP), ed(C), grep(C), sed(C), termeap(M), vi(C)

~ Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

The undo command causes all marks kto be lost on lines changed and
then restored if the marked lines were changed.

Undo never clears the buffer modified condition.
The z command prinbtsba number of logical rather than physical lines.
More than a screen full of output may result if long lines are

present.

File input/output errors don’t print a name if the command line
‘“— » option is used.

There is no easy way to do a single scan ignoring case. -

Because of the implementation of the arguments to nezt, only 512
bytes of argument list are allowed there.

The format of fetckermecap and the large number of capabilities of
terminals used by the editor cause terminal type setup to be rather
slow.

The editor does not warn if text is placed in named buffers and not
used before exiting the editor.

Null characters are discarded in input files and cannot appear in
resultant files. ’

March 24, 1984 ‘ Page 8

EXPR (C) EXFR (C)

Name

expr - ‘Evaluates arguments as an expression.

Syntax

expr arguments

Description

The arguments are taken as an expression. After evaluation, the
result is written on the standard output. Terms of the expression
must be separated by blanks. Characters special to the shell must be
escaped. Note that zero is returned to indicate a zero value, rather
than the null string. Strings containing blanks or other special char-
acters should be quoted. Integer-valued arguments may be preceded
by a unary minus sign. Internally, integers are treated as 32-bit, 2’s
complement numbers.

The operators and keywords are listed below. Expressions should be
quoted by the shell, since many of the characters that have special
meaning in the shell also have special meaning in ezpr. The list is in
order of increasing precedence, with equal precedence operators
grouped within braces ({ and }).

ezpr | ezpr
Returns the first ezpr if it is neither null nor 0, otherwise
returns the second ezpr.

ezpr & ezpr
Returns the first ezpr if neither ezpr is null nor 0, otherwise
returns 0.

ezpr{=, >, >= &, <=, =} ezpr
Returns the result of an integer comparison if both argu-
ments are integers, otherwise returns the result of a lexical
comparison.

ezpr {+, - } ezpr .
Addition or subtraction of integer-valued arguments.

ezpr{*, [, %} ezpr
Multiplication, division, or remainder of the integer-valued
arguments.

ezpr: ezpr
The matching operator : compares the first argument with
the second argument which must be a regular expression;
regular expression syntax is the same as that of ed(C),
except that all patterns are ‘‘anchored” (i.e., begin with a
caret (“)) and therefore the caret is not a special character

March 24, 1984 Page 1

EXPR (C) EXPR (0)

in that context. (Note that in the shell, the caret has the
same meaning as the pipe symbol (|).) Normally the match-
ing operator returns the number of characters matched
(zero on failure). Alternatively, the \(...\) pattern sym-
bols can be used to return a portion of the first argument.
Examples
1. a==‘expr $a + 1°
Adds 1 to the shell variable a.

2. # For $a equal to either "fusr/abe/file” or just "/file” ‘
expr $a : */\(.*\) | $a’

Returns the last segment of a pathname (i.e., file). Watch
out for the slash alone as an argument: ezpr will take it as
the division operator (see Notes below).

3. expr $VAR : *°

‘ Returns the number of characters in $VAR.

See Also
ed(C), sh(C)

Diagnostics

As a side effect of expression evaluation, ezpr returns the following
exit values:

0 If the expression is neither null nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:
syntaz error For operator/operand errors

nonnumeric argument If arithmetic is attempted on such a string

March 24, 1984 Page 2

EXPR(C) EXPR(C)

Notes
After argument processing by the shell, ezpr cannot tell the
difference between an operator and an operand except by the value.
If $a is an equals sign (=), the command:
expr $a = =
looks like:

expr = = =

Thus the arguments are passed to ezpr (and will all be taken as the
==operator). The following permits comparing equals signs:

expr X$a = X=

March 24, 1984 Page 3

FALSE (©) FALSE(C)

Name

false - Returns with a nonzero exit value.

Syntax
false

Description

False does nothing except return with a nonzero exit value.
True(C), falee’s counterpart, does nothing except return with a zero
exit value. False is typically used in shell procedures such as:

until false
do

command
done

See Also
sh(C), true(C)

Diagnostics

False has exit status 1.

March 24, 1984 Page 1

FILE (C) FILE(C)

Name

file - Determines file type.

Syntax
file file ...

file - f namesfile

Description

Fide performs a series of tests on each argument in an attempt to
classify it. If an argument appears to be ASCII, file examines the
first 512 bytes and tries to guess its language. If an argument is an
executable x.out file, file prints the version stamp, provided it is
greater than 0.

If the first argument is a — f option, file takes the list of filenames
from nameefile.

Several object file formats are recognized. For a.out and x.out for-
mat object files, the relationship of cc flags to file classification is - i
for ‘‘separate’’, — n for ‘‘pure’’, and — s for not ‘“‘not stripped”’.

Notes

It can make mistakes: in particular it often suggests that command
files are C programs. '

March 24, 1984 Page 1

FIND (C)

Name

FIND (©)

find - Finds files.

Syntax

find pathname-list expression

Description

Find recursively descends the directory hierarchy for each pathname
in the pathname-list (i.e., one or more pathnames) seeking files that
match a Boolean ezpression written in the primaries given below. In
the descriptions, the argument n is used as a decimal integer where
4+ n means more than n, — » means less than n, and n means

exactly n.

- name file

~ perm onym

- type ¢

~ links n

- user uname

— group gname

- size n

March 26, 1984

True if file matches the current filename. Normal
shell argument syntax may be used if escaped
(watch out for the left bracket ([), the question
mark (?) and the star (¥}).

True if the file permission flags exactly match the
octal number onum (see ¢hmod(C)). If onum is
prefixed by a minus sign, more flag bits (017777,
see stat(S)) become significant and the flags are
compared: '

» (flags&onum)===onum
True if the file is a semaphore or shared data file.
True if the type of the file is ¢, where ¢ is b, ¢, d,
p, or I, for block special file; character special file,
directory, named pipe, or plain file.
True if the file has n links.
True if the file belongs to the user uname. If
uname is numeric and does not appear as a login
name in the fetc/passwd file, it is taken as a user
ID.
True il the file belongs to the group gname. If
gname is numeric and does not appear in the
[ete/group file, it is taken as a group ID.

True if the file is n blocks long.

Page 1

FIND (C) FIND (C)

— atime n True if the file has been accessed in n days.

— mtime n True if the file has been modified in n days.
— ctime n True if the file has been changed in n days.
— exec ¢emd True if the executed e¢md returns a zero value as

exit status. The end of emd must be punctuated by
an escaped semicolon. A command argument {} is
replaced by the current pathname.

— ok emd Like — exec except that the generated command
line is printed with a question mark first, and is '
executed only if the user responds by typing y.

- print Always true; causes the current pathname to be
printed.
— newer file True if the current file has been modified more

recently than the argument file.

(ezpreesion) True if the parenthesized expression 1is true
(parentheses are special to the shell and must be
escaped).

The primaries may be combined using the following operators (in
order of decreasing precedence):

negation
The negation of a primary is specified with the exclamation (!)
unary not operator.

AND
The AND operation is implied by the juxtaposition of two pri-
maries.

OR The OR operation is specified with the — o operator given
between two primaries.

Examples

The following removes all files named a.out or *.o0 that have not
been accessed for a week:

find / \(- name aout - o - name '*.0' \) - atime +7 - exec rm

{s

Files

[ete/passwd

March 26, 1984 Page 2

FIND (C) FIND (C)
[etc/group’

See Also ‘
epio(C), sh(C), test(C), stat(S), cpio(F)

March 26, 1984 Page 3

FINGER (C) FINGER (C)

Name

finger - Finds information about users.

Syntax

finger | -bfilpgsw | [loginl [login2-...]]

Description

By default finger lists the login name, full name, terminal name and
write status (as a ‘‘s”’ before the terminal name if write permission
is denied), idle time, login time, and office location and phone
number (if they are known) for each current XENIX user. (Idle time
is minutes if it is a single integer, hours and minutes if a colon (:) is
present, or days and hours if a ‘*d"’ is present.)

A longer format also exists and is used by finger whenever a list of
names is given. (Account names as well as first and last names of
users are accepted.) This is a multiline format; it includes all the
information described above as well as the user’s home directory and
login shell, any plan which the person has placed in the file .plen in
their home directory, and the project on which they are workmg
from the file pro)ect also in the home directory. .
Finger options are:

— b Briefer long output format of users.

— f Suppresses the printing of the header line (short format)

— i Quick list of users with idle times.

— 1 Forces long output format.

— p Suppresses printing of the .plan files.

- q Quick list of users.

~ 8 Forces short output format.

-w
Forces narrow format list of specified users.

Files
[etcfutmp Who file
[ete/passwd User names, offices, phones,

March 26, 1984 Page 1

FINGER (C) FINGER (©C)

login directories, and shells

See Also

[usr/adm [lastlog Last login times
$HOME/.plan Plans
$HOME/.project Projects
who(C)

Credit

This utility was develo’ped at the University of California at Berkeley
and is used with permission.

Notes

Only the first line of the .project file is printed.

The “‘office’” column of the output will contain any text in the com-
ment field of the user's /etc/passwd file entry that immediately fol-
lows a comma (,). For example, if the entry is

johnd:eX8HinAk:201:50:John Doe, 321:/usr/johnd:/bin/sh
the number 321 will appear in the office column.
Idle time is computed as the elapsed time since my‘activity on the
given terminal. This includes previous invocations of finger which

may have modified the terminal’'s corresponding device file
[dev/tty??. ‘ -

March 26, 1984 ~ Page 2

FORMAT (C) FORMAT(C)

Name
format — format floppy disks

Syntax
format
format |~v] [~f device]

Description
Format formats micro floppydisks for use with Lisa XENIX. The
command may be used either interactively or from the command
line. If invoked without any arguments, the program will format -
the disk in drive /dev/rfd.

The following command line options are available:

—v * This specifies vetbosev(or interactive) mode. In interactive
mode, format will respond

_insert disk, press RETURN to continue
After the first disk is formatted, the program will prompt:

press RETURN to format another disk, "q’ to quit

—f device . e
This formats the giveén file. The default device is /dev/rfd.
The command

format —f /dev/nrfd
will format the disk using the no—eject deviccA.
Files D

/dev/rfd
/dev/nrfd

May 9, 1984 ~ Pagel

FSCK (C) FSCK (C)

Name

fsck -~ Checks and repairs file systems.

Syntax

[etc/fsck | options | | file-system | ...

Description

Fesck audits and interactively repairs inconsistent conditions for
XENIX file systems, whether XENIX version 2.3 or 3.0. If the file
system is consistent then the number of files, number of blocks
used, and number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before each
correction is attempted. It should be noted that most corrective
actions result in some loss of data. The amount and severity of the
loss may be determined from the diagnostic output. The default
action for each consistency correction is to- wait for the operator to
respond *‘yes” or ‘‘no’’. If the operator does not have write permis-
sion feck defaults to the action of the — n option.

The following flags are interpreted by fack:
—y Assumes a yesresponse to all questions asked by fack.

- n Assumes a no response to all questions asked by fack; do not
open the file system for writing.

— sb:e
Ignores the actual free list and (unconditionally) reconstructs
a new one by rewriting the super-block of the file system. The
file system must be unmounted while this is done.

The - sb:e:c option allows for creating an optimal vfree-list
organization. The following forms are supported:

-8
~ sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If b:c is not given, then the values used when the file system
was created are used. If these values were not specified, then
a reasonable default value is used.

- § Conditionally reconstructs the free list. This option is like
— sb:c above except that the free list is rebuilt only if there
are no discrepancies discovered in the file system. Using - S
forces a ““no” response to all questions asked by fsck. This
option is useful for forcing free list reorganization on uncon-
taminated file systems.

" March 26, 1984 Page 1

FSCK (C)

-t

FSCK (©)

If fsck cannot obtain enough memory to keep its tables, it
uses a scratch file. If the — t option is specified, the file named
in the next argument is used as the scratch file, if needed.
Without the — t flag, fsck prompts the operator for the name
of the scratch file. The file chosen should not be on the file
system being checked, and if it is not a special file or did not
already exist, it is removed when fack completes. .

Recovers the root file system. The required filesystem argu-
ment must refer to the root file system, and preferably to the
block device (normally /dev/root .) This switch implies — y
and overrides — n . If any modifications to the file system are
required, the system will be automatically shutdown to insure
the integrity of the file system.

Causes any supported file system to be converted to the type
of the current file system. The user is asked to verify the
request for each file system that requires conversion unless
the — y option is specified. It is recommended that every file
system be checked with this option, while unmounted if it is to
be used with the current version of XENIX. To update the
active root file system, it should be checked with: ’

fsck - ¢ - rr /dev/root

If no file systems are specified, feck reads a list of default file systems
from the file /etc/checklist.

Inconsistencies checked are as follows:

Blocks claimed by more than one inode or the free list

Blocks claimed by an inode or the free list outside the range of the -
file system

Incorrect link counts

Size checks:

Incorrect number of blocks
Directory size not 16-byte aligned

Bad inode format

Blocks not accounted for anywhere

Directory checks:

March 26,

1984 Page 2

FSCK (C) FSCK (C)

File pointing to unallocated inode
Inode number out of range

Super-block checks:
More than 65536 inodes
More blocks for inodes than there are in the file system

Bad free block list format

Total free block or free inode count incorrect

Orphaned files and directories (allocated but unreferenced) are, with
the operator’s concurrence, reconnected by placing them in the
lost+ found directory. The name assigned is the inode number. The
only restriction is that the directory lost+found must preexist in the
root of the file system being checked and must have empty slots in
which entries can be ‘made. This is accomplished by making
lost+ found, copying a number of files to the directory, and then
removing them (before feck is executed).

Files

Jetc/checklist Contains default list of file systems to check

See Also
checklist{ F), filesystem(F)

Diagnostics

The diagnostics produced by fsck are intended to be self-explanatory.

Notes

Feck will not run on a mounted non-raw file system unless the file
system is the root file system or unless the — n option is specified
and no writing out of the file system will take place.. If any such
attempt is made, a warning is printed and no further processing of
the file system is done for the specified device.

Although checking a raw device is almost always faster, there is no

way to tell if the file system is mounted. And cleaning a mounted
file system will almost certainly result in an inconsistent superblock.

.March 26, 1984 - Page 3

FSCK (C) FSCK (C)

Warning

For a XENIX 2.3 file system to be properly supported under XENIX
3.0, it is necessary that fsck be run on each 2.3 file system to be
mounted under the XENIX 3.0 kernel. For the root file system,
““fsck — rr /dev/root’’ should be run and for all other file systems
“fsck /dev/??” on the unmounted block device should be used.

March 26, 1984 Page 4

GETOPT(C) GETOPT(C)

Name

getopt — Parses command options.

Syntax

set — — ‘getopt optstring $**

Description

Getopt is used to check and break up options in command lines for
parsing by shell procedures. Optstring is a string of recognized
option letters (see getopt(S)). If a letter is followed by a colon, the
option is expected to have an argument which may or may not be
separated from it by whitespace. The special option — — is used to
delimit the end of the options. Getopt will place — — in the argu-
ments at the end of the options, or recognize it if used explicitly.
The shell arguments ($1 $2 . ..) are reset so that each option is pre-
ceded by a dash (-~) and in its own shell argument; each option
argument is also in its own shell argument.

Example

The following code fragment shows how one can process the argu-
ments for a command that can take the options a and b, and the
option o, which requires an argument:

set —. - ‘“getopt abo: $**

T8 1=0]

then
echo SUSAGE
exit 2

fi

for i in $*

do
case $i in
-a|-Db) FLAG=8$i; shift;;
- 0) OARG=$2; shift; shift;;
- =) shift; break;;
esac

done

This code will accept any of the following as equivalent:

emd - aoarg file file

emd - a - o arg file file
emd ~ oarg - a file file

emd - a - oarg — - file file

March 24, 1984 Page I

GETOPT(C) GETOPT(C)
See Also

sh(C), getopy(S)

Diagnostics

Getopt prints an error message. on the standard error when it
encounters an option letter not included in optstring.

March 24, 1984 Page 2

GREP(C)

Name

GREP(C)

grep, egrep, fgrep - Searches a file for a pattern.

Syntax

grep |

options] expression { files]

egrep | options | [expression | | files |

fgrep | options | | strings] | files]

Description

Commands of the grep family search the input files (standard input
default) for lines matching a pattern. Normally, each line found is

copied

to the standard output. Grep patterns are limited regular

ezpressions in the style of ed(C); it uses a compact nondeterministic
algorithm. Egrep patterns are full regular ezpressions; it uses a fast
deterministic algorithm that sometimes needs exponential space.
Fgrep patterns are fixed strings; it is fast and compact. The following
optione are recognized:

-V

=Y

All lines but those matching are printed.
Prints only exact matches of an entire line. (Fgrep only.)
Only a count of matching lines is printed.

Only the names of files with matching lines are listed,
separated by newlines.

Each line is preceded by its relative line number in the file. '
Each line is preceded by the block number on which it was
found. This is sometimes useful in locating disk block

numbers by context.

Suppresses error messages produced for nonexistent or
unreadable files.

Turns on matching of letters of either case in the input so that
case is insignificant. Does not work for egrep.

— e ezpression .

Same as a simple ezpression argument, but useful when the
ezpression begins with a dash (-~).

—~ 1 file

March 24,

The regular ezpression for grep or egrep, or strnngs list (for
fgrep) is taken from the file.

1984 Page 1

GREP(C) GREP(C)

In all cases, the filename is output if there is more than one input
file. Care should be taken when using the characters §, =, [, %, |, (,
), and \ in ezpression, because they are also meaningful to the shell.
It is safest to enclose the entire ezpression argument in single quota-
tion marks.

Fgrep searches for lines that contain one of the strings separated by
newlines.

Egrep accepts regular expressions as in ed(C}), except for \(and \),
with the addition of the following:

- A regular expression followed by a plus sign (+) matches one |
or more occurrences of the regular expression.

— A regular expression followed by a question mark (?} matches 0
or 1 occurrences of the regular expression.

~ Two regular expressions separated by a vertical bar (} or by a
newline match strings that are matched by either regular expres-

sion.

— A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [], then *? 4+ then con-
catenation, then the backslash (\) and the newline.

See Also

ed(C), sed(C), sh(C)

Diagnostics
Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files.

Notes

Ideally there should be only one grep, but there isn’t a single algo-
rithm that spans a wide enough range of space-time tradeofis.

Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a— z], in character classes.

When using grep with the — y option, the search is not made totally
case insensitive in character ranges specified within brackets.

March 24, 1984 Page 2

GREP(C) GREP(C)

Multiple strings can be specified in fgrep without using a separate
strings file by using the quoting conventions of the shell to imbed
newlines in the single string argument. For example, you might type
the following at the command line: ‘

fgrep ‘stringl

string?2

string3 ’text.file
Similarly, multiple strings can be specified in egrep by doing:

egrep stringlhtring2htring3 text.file

Thus egrep can do almost anything that grep and frep can do.

March 24, 1984 Page 3

GRPCHECK (C) GRPCHECK (C)

Name

grpcheck - Checks group file.

Syntax
pweheck | file]

grpcheck | file]

Description
Grpcheck verifies all entries in the group file. This verification

includes a check of the number of fields, group name, group ID, and
whether all login names appear in the password file. The default

group file is /etc/group.

Files

Jetc/group

Jetc/passwd

See Also
pwcheck(C), group(M), passwd(M)

Diagnostics

Group entries in fetc/group with no login names are flagged.

March 24, 1984 Page 1

HALTSYS(C) | Hursm(c)

Name

haltsys - Closes out the file systems and halts the CPU.

Syntax
[etc/haltsys

Description

Haltsys does a shutdn() system call (see shutdn(S)) to flush out
pending disk I/O, mark the file systems clean, and halt the proces-
sor. Halteys takes effect immediately, so user processes should be
killed beforehand. Skutdown(C) is recommended for normal system
termination; it warns the users, cleans things up, and calls kalisys.
Use halteys directly only if some system problem prevents the run-
ning of ehutdoun.

Notes

haltsys does not lock hard disk heads.

See Also
shutdn(S), shutdown{C)

March 26, 1984 ' Page 1

HD (C) HD (©)

Name

hd - Displays files in hexadecimal format.

Syntax

hd [- format [- s offset] [- n count] [file] ...

Description

The hd command displays the contents of files in hexadecimal, octal,
decimal, and character formats. Control over the specification of
ranges of characters is also available. The default behavior is with
the following flags set: ‘‘~ abx - A’. This says that addresses (file
offsets) and bytes are printed in hexadecimal and that characters are
also printed. If no file argument is given, the standard input is read.

Options include:

- 8 offeet Specify the beginning offset in the file where printing is
to begin. If no ‘file’ argument is given, or if a seek
fails because the input is a pipe, ‘offset’ bytes are read
from the input and discarded. Otherwise, a seek error
will terminate processing of the current file.

The offsct may be given in decimal, hexadecimal (pre-
" ceded by ‘Ox’), or octal (preceded by a ‘0’). It is
optionally followed by one of the following multipliers:
w, 1, b, or k; for words (2 bytes), long words (4 bytes},
half kilobytes (512 bytes), or kilobytes (1024 bytes;
Note that this is the one case where ‘‘b’’ does not stand
for bytes. Since specifying a hexadecimal offset in
blocks would result an an ambiguous trailing ‘b’, any
offset and multiplier may be separated by an asterisk

(#)-

— n count Specify the number of bytes to process. The count is in
the same format as offset, above.

Format Flags

Format flags may specify addresses, characters, bytes, words (2
bytes) or longs (4 bytes) to be printed in hex, ‘decimal, or octal.
Two special formats may also be indicated: text or ascii. Format and
base specifiers may be freely combined and repeated as desired in
order to specify different bases (hexadecimal, decimal or octal) for
different output formats (addresses, characters, etc.). All format
flags appearing in a single argument are applied as appropriate to all
other flags in that argument.

March 26, 1984 - Page 1

HD (C) ' HD (0Q)

acbwlA
Output format specifiers for addresses, characters; bytes, words,
longs and ascii respectively. Only one base specifier will be used
for addresses; the address will appear on the first line of output
that begins each new offset in the input.

" The character format prints printable characters unchanged, spe-
cial C escapes as defined in the language, and the remaining
values in the specified base.

_ The ascii format prints all printable characters unchanged, and
all others as a period (.). This format appears to the right of the
first of other specified output formats. A base specifier has no
meaning with the ascii format. If no other output format {other
than addresses) is given, bx is assumed. If no base specifier is
given, all of xdo are used.

hxdo
Output base specifiers for hexadecimal, decimal and octal. If no
format specifier is given, all of acbwl are used.

"t Print a text file, each line preceded by the address in the file.

" Normally, lines should be terminated by a \n character; but

long lines will be broken up. Control characters in the range

0x00 to Ox1f are printed as ‘"@’ to ‘"_’. Bytes with the high bit

set are preceded by a tilde (7) and printed as if the high bit were

not set. The special charcters (%, 7, \) are preceded by a

backslash () to escape their special meaning. As special cases,

two values are represented numerically as ‘\177’ and ‘\377’.

This flag will override all output format specifiers except
addresses.

March 26, 1984 Page 2

HEAD (C) HEAD (C)

Name

head - Prints the first few lines of a stream.

Syntax

head [- count] [file ...]

Description
This filter prints the first count lines of each of the specified files. If

no files are specified, head reads from the standard input. If no
count is specified, then 10 lines are printed.

See Also
tail(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 Page 1

ID(C) D (C)

Name

id - Prints user and group IDs and names.
Syntax
id

Description

Id writes a message on the standard output giving the user and
group IDs and the corresponding names of the invoking process. If
the effective and real IDs do not match, both are printed.

‘See Also

logname(C), getuid(S)

March 24, 1684 ‘ " Pagel

JOIN(C) JOIN(C)

Name

join - Joins two relations.

Syntax

join [options] filel file2

Description

Join forms, on the standard output, a join of the two relations
specified by the lines of filel and file2. If filel is a dash (—-), the
standard input is used.

Fiel and file2 must be sorted in increasing ASCII collating sequence
on the fields on which they are to be joined, normally the first in
each line.

There is one line in the output for each pair of lines in filef and file2
that have identical join fields. The output line normally consists of
the common field, then the rest of the line from filel, then the rest
of the line from file2.

Fields are normally separated by blank, tab or newline. In this case,
multiple separators count as one, and leading separators are dis-
carded.

These options are recognized:

- an In addition to the normal output, produces a line for each
unpairable line in file n, where nis 1 or 2.

~es Replaces empty output fields by string e.

—jnm Joins on the mth field of file n. If n is missing, uses the
mth field in each file.

— o list Each output line comprises the fields specifed in list, each
element of which has the form n.m, where n is a file
number and m is a field number.

- te Uses character ¢ as a separator (tab character). Every
appearance of ¢ in a line is significant.

March 24, 1984 Page 1

JOIN(C) JOIN (C)
See Also

awk(C), comm(C), sort{C)

Notes

With default field separation, the collating sequence is that of sort
— b; with — t, the sequence is that of a plain sort.

March 24, 1984 Page 2

KILL (C) KILL (C)

Name

kill - Terminates a process.

Syntax

kill { — signo | processid ...

Description

Kill sends signal 15 {terminate) to the specified processes. This will
normally kill processes that do not catch or ignore the signal. The
process number of each asynchronous process started with & is
reported by the shell (unless more than one process is started in a
pipeline, in which case the number of the last process in the pipeline
is reported) Process numbers can also be found by using ps(C).

For exa.mple, if process number 0 is specified, all .processes in the
process group are signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number preceded by — is given as the first argument, that
signal is sent instead of the terminate signal (see eignal(S)). In par-
ticular ““kill - 9 ...” is a sure kill.

See Also
ps(C), sh(C), kill(8), signal(S)

March 24, 1984 Page 1

L(C) - L(C)

Name

1 - Lists information about contents of directory.

Syntax

1 [- asdrucifg] name ...

Description

For each directory argument, [lists the contents of the directory; for
each file argument, ! repeats its name and other requested informa-
tion. The output is sorted alphabetically by default. When no argu-
ment is given, the current directory is listed. When several argu-
ments are given, the arguments are first sorted appropriately, but file
arguments appear before directories and their contents. Information
is listed in the format of the ‘‘Is - I'’ command, which is identical to
the ! command. This format and all provided switches are described
in ls(C), to which should you should refer for a complete discussion
of the capabilities of I.

Files
[etc/passwd Contains user IDs

Jetc/group Contains group IDs

Notes
- Newline and tab are considered printing characters in filenames.

The output device is assumed to be 80 columns wide.

March 24, 1984) Page 1

Le(c) Le(c)

Name

lc - Lists directory contents in columns.

Syntax

lc [— abedfgilmgrstux1FR | name ...

Description

For each directory argument, lc lists the contents of the directory;
for each file argument, le repeats its name and any other information
requested. The output is given in columns and is sorted alphabeti-
cally. When no argument is given, the current directory is listed.
When several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories and their
contents. ‘ ’

Files which are not the contents of a directory being interpreted are
always sorted across the page rather than down the page in columns.
This is because the individual filenames may be. arbitrarily long. A
stream output format is available in which files are listed across the
page, separated by commas. The — m flag enables this format.
Options follow:

— 1 Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each file.
(See below.) If the file is a special file the size field instead con-
tains the major and minor device numbers.

—~ 0 The same as = 1, except that the group is not printed.

— g The same as - 1, except that the owner is not printed.

- t Sorts by time modified (latest first) instead of by name, as is
normal.

— a Lists all entries; usually ‘.’ and *‘..”” are suppressed.
— 8- Gives size in blocks, including indirect blocks for each entry.

— d If the argument is a directory, lists only its name, not its con-
tents (mostly used with ~ 1 to get status on directory).

— r Reverses the order of sort to get reverse alphabetic or oldest
first as appropriate. o

— u Uses time of last access instead of last modification for sorting
(- t) or printing (- 1).

March 26, 1984 Page 1

Le(c) Le(o)

~ ¢ Uses time of file creation for sorting or printing.

- i Prints inode number in first column of the report for each ﬂle
listed.

~ f Forces each argument to be interpreted as a directory and lists
the name found in each slot. This option turns off - I, ~ t, — s,
and - r, and turns on — a; the order is the order in which
entries appear in the directory.

-~ n Same as the - | switch, but the owner’s user ID appears instead
of the owner’s name. If used in conjunction with the - g
switch, the owner's group ID appears instead of the group
name.

-m
Forces stream output format

— 1 Forces an output format with one entry per line.

- q Forces printing of nongraphlc characters in filenames as the
character *‘?”’,

~ b Forces printing of nongraphic characters to be in the \ddd nota-
tion, in octal.

- x Forces columnar printing to be sorted across rather than down
the page.

~ F Causes directories to be marked with a trailing **/"’ and execut-
able files to be marked with a trailing *‘»"’.

-R
Recursively lists subdirectories encountered.

The mode printed under the — 1 option contains 11 characters. The
first character is: ‘

— If the entry is a plain file

d If the entry is a directory

b If the entry is a block-type special file

c If the entry is a character-type special file
p If the entry is a named pipe

s If the éntry is a semaphore

m If the entry is shared data (memory)

" March 26, 1984 Page 2

LC(C) Le(cC)

The next 9 characters are interpreted as 3 sets of 3 bits each. The
first set refers to owner permissions; the next to permissions to oth-
ers in the same user-group; and the last to all others. Within each
set the 3 characters indicate permission respectively to read, to write,
or to execute the file as a program. For a directory, ‘‘execute’ per-
mission is interpreted to mean permission to search the directory for
a specified file. The permissions are indicated as follows:
r If the file is readable
w If the file is writable
x If the file is executable
— If the indicated permission is not granted
The group-execute permission character is given as s if the file has
set-group- ID mode; likewise the user-execute permission character
is given as s if the file has set-user- ID mode.
The last character of the mode (normally “x” or *~) is ¢t if the
1000 bit of the mode is on. See chmod(C) for the meaning of this
mode.
When the sizes of the files in a directory are listed, a total count of
blocks, including indirect blocks is printed.

Files
[etc/passwd To get user IDs for “le - I’

[Jetc/group To get group IDs for ‘‘lc - g”’

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.
Notes
Newline and tab are considered printing characters in filenames.
The output device is assumed to be 80 columns wide.
Column width choices are poor for terminals which can tab.

All switches must be given as one argument. Thus “lc - Isg” is
correct, but ““le - 1~ s - g’ is illegal.

March 26, 1984 Page 3

LINE (C) LINE (C)

Name

line = Reads one line.

Syntax

line

Description
Line copies one line (up to a newline) from the standard input and
" writes it on the standard output. It returns an exit code of 1 on

end-of-file and always prints at least a newline. It is often used
within shell files to read from the user’s terminal.

See Also
gets(CP), sh(C)

March 24, 1984 ' Page 1

LOGNAME (C) LOGNAME (C)

Name

logname - Gets login na:ne.

Syntax
logname

Description
Logname returns the contents of the environment variable SLOG-

NAME, which is set when a user logs into the system.

See Also

env(C), lbgin(M), logname(S), environ(M)

March 24, 1984 Page 1

LOOK ('0) , LOOK (C)

Name

look - Finds lines in a sorted list.

Syntax
look | - df] string | file]

Description

Look consults a sorted file and prmta all lines that begin. with string.
It uses binary search.

The options d and f affect comparisons; as in sort(C):

-d Dncmonary order: only letters, digits, tabs and blanks pamcxpate
ln compansons

— f Fold. Uppercase letters compare equal to lowercase.
If no file is specified, fuarfdictfwords is assumed with collating
sequence — df.
Files
[usr/dict/words

See Also

sor(C), grep(C)

March 24, 1984 T Page 1

LN(C) LN(C)

Name

In - Makes a link to a file.

Syntax

In filel file2
In filel ... directory

Description
A link is a directory entry referring to a file; the same file (together
with its size, all its protection information, etc). may have several
links to it. There is no way to distinguish a link to a file from its ori-
ginal directory entry. Any changes to the file are effective indepen-
dent of the name by which the file is known.

In the first case, In creates a link to the existing file, filel. The file2
argument is a new name referring to the same file contents as filel.

In the second case, directory is the location of a directory into which
one or more links are created with corresponding file names.

You cannot link to a directory or link across file systems.

Notes

See also ¢p(C}, mv(C), rm(C)

March 20, 1984 Page 1

LPR (C) LPR(C)

Name

lpr -~ Sends files to the lineprinter queue for printing.

Syntax

lpr [option ...] | name ...]

Description
Ipr causes the named files to be queued for printing on a lineprinter.
If no names appear, the standard input is assumed; thus lpr may be
used as a filter.

The following options may be given (each as a separate argument
and in any order) before any filename arguments:

~ ¢ Makes a copy of the file and prints the copy and not the ori-
ginal. Normally files are linked whenever possible.

—r Rémoves the file after sending it.
- m When printing is complete, reports that fact by mail (C).

-n Does not report the completion of printing by mail (C). This
is the default option.

The file /etc/default/lpd contains the setting of the variable
BANNERS, which contains the number of pages printed as 2 banner
identifying each print out. This is normally set to either 1 or 2,

Files
[etc/passwd User's identification and accounting data .
Jusr/lib/lpd Lineprinter daemon

[Just /spool/ipd/* Spool area

/etc/default,/lpé Contains BANNERS default setting

See Also
banner(C})

Notes

March 20, 1984 . Page 1

LPR (C) LPR (C)

If your system uses extra memory, make sure the parallel port on
the expansion card is disabled. On the AST board, for example, this
jumper is marked IRQ.

Once a file has been queued for printing, it should not be changed or
deleted until printing is completé. If you want to alter the contents
of the file or to remove the file immediately, use the — c option to
force Ipr to make its own copy of the file.
To set the serial printer speed, find the line in fetc/rc that reads:

stty 300 > /dev/lp

This sets the baud rate on the serial printer to 300 baud. Set the
number to whatever baud rate your printer will support.

March 20, 1984 Page 2

LS(C) Ls(cC)

Name

Is - Gives information about contents of directories.

Syntax
Is | ~ logtasdrucif | names

Description

For each directory named, ls lists the contents of that directory; for
each file named, ls repeats its name. and any other information
requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several
arguments are given, the arguments are first sorted appropriately,
but file arguments are processed before directories and their con-
tents. There are several options:

— 1 Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each file
(see below). If the file is a special file, the size field will contain
the major and minor device numbers, rather than a size.

o The same as — 1, except that the group is not printed.

g The same as — 1, except that the owner is not printed.

!

t Sorts by time of last modification (latest first) instead of by
name.

— a Lists all entries; in the absence of this option, entries whose
names begin with a period (.) are not listed.

s Gives size in blocks including indirect blocks for each entry.

— d If argument is a directory, lists only its name; often used with
— 1 to get the status of a directory.

— r Reverses the order of sort to get reverse alphabetic or oldest
first, as appropriate.

— u Uses time of last access instead of last modification for sorting
(with the — t option) and/or printing (with the — 1 option).

¢ Uses time of last modification of the inode (mode, etc.) instead
of last modification of the file for sorting (- t} and/or printing

(- 1).

i For each file, prints the inode number in the first column of the
report.

March 26, 1984 Page 1

L5(C) LS(C)

~ f Forces each argument to be interpreted as a directory and lists
the name found in each slot. This option turns off — 1, — ¢, - s,
and - r, and turns on - a; the order is the order in which
entries appear in the directory.

The mode printed under the —) option consists of 11 characters.
The first character is:

— If the entry is 2n ordinary file d If the entry is a directory
b If the entry is a block special file
¢ If the entry is a character special file
p If the entry is a named pipe
s If the entry is a semaphore
m If the entry is a shared data (memory) file
The next 9 characters are interpreted as 3 sets of 3 bits each. The
first set refers to the owner’s permissions; the next to permissions of
others in the user-group of the file; and the last to all others. Within
each set, the 3 characters indicate permission to read, to write, and
to execute the file as a program, respectively. For a directory, ‘‘exe-
cute’’ permission is interpreted to mean permission to search the
directory for a specified file.
The permissions are indicated as follows:
r If the file is readable
w If the file is writable
x If the file is executable
— If the indicated permission is not granted
The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character
is given as s if the file has set-user-ID mode. The last character of
the mode (normally x or —) is ¢ if the 1000 (octal) bit of the mode
is on; see chmod(C) for the meaning of this mode. The indications
of set-ID and 1000 bit of the mode are capitalized if the correspond-
ing execute permission is not set.
- When the sizes of the files in a directory are listed, a total count of
blocks including indirect blocks is printed.

Files

‘March 26, 1984 Page 2

L5(C) - Ls(c)

[ete/passwd Gets user IDs forls- land is - o

Jete/group Gets groupIDs forls — land ls ~ g

See Also
chmod(C), find(C), }(C), l¢(C)

Notes
Newline and tab are considered printing characters in filenames.

All switches must be given as one argument. Thus *‘Is - lsg” is
legal, but ‘‘lIs - 1 - 8 - g’ is not.

March 26, 1984 Page 3

MAIL (C) MAIL (C)

Name

mail - Sends, reads or disposes of mail.

Syntax
mail [[- u user] [~ f mailbox]] [~ R] [- i] [users ..]]

mail [~ s subject] [~ i] [user ..

Description

Mail is a mail processing system that supports composing of mes-
sages, and sending and receiving of ‘mail between multiple users.
When sending mail, a user is the name of a user or of an alias
assigned to a machine or to a group of users.

Options include:

- u user
Tells mail to read the system mailbox belonging to the specified
user.

— £ mailboz . ’
Tells madl to read the specified madboz instead of the default
user’s system mailbox.

- R .
Makes the mail session ‘‘read-only’’ by preventing alteration of
the mailbox being read. Useful when accessing system-wide
mailboxes.

— i Tells mad to ignore interrupts sent from the terminal. This is
useful when reading or sending mail over telephone lines where
“‘noise’’ may produce unwanted interrupts.

— 8 subject
Specifies subject as the text of the Subject: field for the message
being sent.

Sending mail
To send a message to one or more other people, invoke madl with
.arguments which are the names of people to send to. You are then

expected to type in your message, followed by a CNTRL-D at the
beginning of a line.

March 24, 1984 Page 1

MAIL (C) MAIL (©)

Reading Mail

To read mail, invoke mesl with no arguments. This will check your
mail out of the system-wide directory so that you can read and
dispose of the messages sent to you. A message header is printed
out for each message in your mailbox The current message is ini-
tially the last numbered message and can be printed using the print
command (which can be abbreviated p). You can move among the
messages much as you move between lines in ed, with the com-
mands + and - moving backwards and forwards, and simple
numbers typing the addressed message.

Dispoeing of Mail

After examining a message you can delete (d) the message or reply
(r) to it. Deletion causes the mail program to forget about the mes-
sage. This is not irreversible, the message can be undeleted (u) by
giving its number, or the masl session can be aborted by giving the
exit (x) command. Deleted messages will, however, usually disap-
pear never to be seen again.

Specifying Messages

Commands such as print and delete often can be given a list of mes-
sage numbers as argument to apply to a number of messages at
once. Thus ‘‘delete 1 2’’ deletes messages 1 and 2, while ‘‘delete
1- 5" "deletes messages 1 through 5. The special name *‘#”
addresses all messages, and ‘‘$”’ addresses the last message; thus the
command top which prints the first few lines of a message could be
used in ‘‘top #’ to print the first few lines of all messages.

Replying to or Originating Mad

You can use the reply command to set up a response to a message,
sending it back to the person who it was from. Text you then type
in, up to a CNTRL-D defines the contents of the message. While you
are composing a message, mail treats lines beginning with a tilde ()
as special. For instance, typing *‘’m”’ (zlone on a line) places a copy
of the current message into the response, right shifting it by one
tabstop. Other escapes set up subject fields, add and delete reci-
pients to the message, and allow you to escape to an editor to revise
the message or to a shell to run some commands. (These options
are be given in the summary below.) ;

Ending a Mail Session
You can end a mail session with the quit {q) command. Messages

which have been examined go to your mboz file unless they have
been deleted in which case they are discarded. Unexamined

March 24, 1984) Page 2

MAIL (C) : MAIL (C)

messages go back to the post office. The — f option causes maidl to
read in the contents of your mboz (or the specified file) for process-
ing; when you quit mas! writes undeleted messages back to this file.
The — i option causes mail to ignore interrupts.

Using Aliases and Distribution Lists

It is also possible to create a personal distribution lists so that, for
instance, you can send mail to ‘‘cohorts’” and have it go to a group
of people. Such lists can be defined by placing a line like

alias cohorts bill bob barry bobo betty beth bobbi

in the file .mailrc in your home directory. The current list of such
aliases can be displayed by the alias (a) command in mad. System
wide distribution lists can be created by editing /usr/lib/aliases, see
aliases(M); these are kept in a slightly different syntax. In mail you
send, personal aliases will be expanded in mail sent to others so that
they will be able to reply to the recipients. System wide alicses are
not expanded when the mail is sent, but any reply returned to the
machine will have the system-wide alias expanded.

Mail has a number of options which can be set in the .maidlre file to
alter its behavior; thus ‘‘set askec’”” enables the ‘‘askcc’’ feature.
(These options are summarized below.)

Summary

Each mail command is typed on a line by itself, and may take argu-
ments following the command word. The command need not be
typed in its entirety - the first command which matches the typed
prefix is used. For the commands that take message lists as argu-
ments, if no message list is given, then the next message forward
that satisfies the command’s requirements is used. If there are no
messages forward of the current message, the search proceeds back-
wards, and if there are no good messages at all, mad types ‘“No
applicable messages’’ and aborts the command.

- Goes to the previous message and prints it out. If
given a numeric argument n, goes to the nth previous
message and prints it.

+ Goes to the next message and prints it out. If.given a
numeric argument n, goes to the nth next message and
prints it.

RETURN Goes to the next message and prints it out.

? Prints a brief summary of commands.

March 24, 1984 Page 3

MAIL (©)

!

alias

cd

delete

dp

exit

file
forward

Forward

headers

March 24, 1984

" MAIL (©)

Executes the shell command which follows.
Prints out the current message number.
Prints out the first message.

Prints out the last message.

(a) With no arguments, prints out all currently-defined
aliases. With one argument, prints out that alias. With
more than one argument, adds the users named in the
second and later arguments to the alias named in the
first argument.

(c) Changes the user’s working directory to that
specified, if given. If no directory is given, then
changes to the user’s login directory.

(d) Takes a list of messages as.an argument and marks
them all as deleted. Deleted messages are not retained
in the system mailbox after a quit, nor are they avail-
able to any command other than the undelete command.

Deletes the current message and prints the next mes-
sage. If there is no next message, masl says ‘‘at EOF.”

(e) Takes a list of messages and points the text editor
at each one in turn. On return from the editor, the
message is read back in.

(x) Effects an immediate return to the shell without
modifying the user’s system mailbox, his mboz file, or
his edit file in - .

(i) Switches mailbox files to the file given by a
filename argument. (Not yet implemented.)

(f) Forwards the current message to the named users.
Current message is indented within forwarded message.

(F) Forwards the current message to the named users.
Current message is not indented within forwarded mes-

sage.

(h) Lists the current range of headers, which is an 18
message group. If a ‘4" argument is given, then the
next 18 message group is printed, and if a ‘-~ *’ argu-
ment is given, the previous 18 message group is
printed. Both ‘4" and ‘-’’ may take a number to
view '3 particular window. If a message-list is given, it
prints the specified headers.

Page 4

MAIL (C)

hold

lpr

mail

mbox

next

print

quit

reply

Reply

save

set

shell

size

March 24, 1984

MAIL (C)

(ho) Takes a message list and marks each message
therein to be saved in the user's system mailbox
instead of in mboz. Use only when the switch automboz
is set. Does not override the delete command.

(1) Prints out each message in a message-list on the
lineprinter.

(m) Takes as argun:xent login names and distribution
group names and sends mail to those people.

(mb) Marks messages in a message list so that they are
saved in the user mailbox after leaving mail.

(n like + or RETURN) Goes to the next message in
sequence and prints it. With an argument list, types
the next matching message.

(p) Prints out each message in a message-list on the
terminal display.

(q) Terminates the session, retaining all undeleted,
unsaved messages in the system mailbox and removing
all other messages. Files marked with a star (*) are
saved; files marked with an ‘“M”’ are saved in the user
mailbox. If new mail has arrived during the session,
the message ‘‘You have new mail”’ is given. If given
while editing a mailbox file with the — f flag, then the
edit file is rewritten. The user returns to the shell,
unless the rewrite of edit file fails, in which case the
user can escape with the exit command.

(r) Takes a message list and sends mail to each mes-
sage author. The default message must not be deleted.

(R) Takes a message list and sends mail to each mes-
sage author and each member of the message just like the
mail command. The default message must not be
deleted.

(s) Takes a message list and a filename and appends
each message in turn to the end of the file. The
filename in quotes, followed by the line count and
character count is echoed on the user’s terminal.

(se) With no arguments, prints all variable values. Oth-
erwise, sets option. Arguments are of the form
“‘option==value’’ or ‘‘option’’.

(sh) Invokes an interactive version of the shell.

(si) Takes a message list and prints out the size in’
characters of each message.

Page 5

MAIL (©) MAIL (C)

source (so) Reads mail commands from the file given as its
only argument.

top (t) Takes a message list and prints the top few lines of
- each. The number of lines printed is controlled by the
variable toplines and defaults to five.

undelete (u) Takes a message list and marks each one as not
\ being deleted.
unset (uns) Takes a list of option names and discards their

remembered values; the inverse of set .

visual (v) Takes a message list and invokes the display editor
on each message.

write (w) A syncnym for save .

Here is a summary of the compose escapes, which are used when
composing messages to perform special functions. Compose escapes
are only recognized at the beginning of lines.

“bname ... Adds the given names to the list of blind carbon copy
recipients.

“c name ... Adds the given names to the list of carbon copy reci-
pierits.

“cc name ... Same as "¢ above.

°d Reads the file ‘“dead.letter’” from your home directory
into the message.

e Invokes the text editor on the message collected so far.
After the editing session is finished, you may continue
appending text to the message.

“h Edits the message header fields by typing each one in
turn and allowing the user to append text to the end or
modify the field with the current terminal erase and kill
characters.

“m messages
Reads the named messages into the message buffer,
shifted right one tab. If no messages are specified,
reads the current message.

"M messages '\)V
Reads the named messages into the message buffer, o
shifted right one tab. If no messages are specified,
reads the current message.

March 24, 1984 Page 6

MAIL (C)

P

r filename

"8 string

“t name ...

v

“w filename

“temd

" jemd

“:mail-emd

““string

MAIL (C)

Prints out the messages collected so far, prefaced by
the message header fields.

Aborts the message being sent, copying the message to
‘‘dead.letter’” in your home directory if save is set.

Reads the named file into the message buffer.

Causes the named string to become the current subject
field.

Adds the given names to the direct recipient list.

Invokes a visual editor (defined by the VISUAL
option) on the message buffer. After you quit the edi-
tor, you may resume appending text to the end of your
message.

Writes the message to the named file.

‘Executes the indicated shell command, then returns to

the message.

Pipes the message through the command as a filter. If
the command gives no output or terminates abnor-
mally, retains the original text of the message.

Executes the indicated mail command, then returns to
the message.

Inserts the string of text in the message prefaced by a
single tilde (7). If you have changed the escape charac-
ter, then you should double that character instead.

Options are controlled with the set and unset commands. An option
may be either a switch, in which case it is either on or off, or a
string, in which case the actual value is of interest. The switch
options include the following:

askcc

asksubject

autombox

autoprint

March 24, 1984

Causes you to be prompted for additional carbon
copy recipients at the end of each message.
Responding with a newline indicates your satisfac-
tion with the current list.

Causes matl to prompt you for the subject of each
message you send. If you respond with simply a
newline, no subject field is sent.

Causes all examined messages to be saved in the
user mailbox unless deleted or saved.

Causes the delete command to behave like dp -
thus, after deleting a message, the next one will be

Page 7

MAIL (C)

chron

ignore

metoo

nosave

prepend

quiet

MAIL (©)

typed automatically.

Causes messages to be displayed in chronological
order.

Permits use of dot (.) as the end of file character
when composing messages.

Causes interrupt signals from your terminal to be
ignored and echoed as at-signs (@).

Usually, when a group is expanded that contains the
sender, the sender is removed from the expansion.
Setting this option causes the sender to be included
in the group.

Prevents aborted messages from being appended to
the file dead.letter in your home directory on
receipt of two interrupts (or a "q.)

Causes messages saved in mboz to be prepended to
the end rather than appended.

Suppresses the printing of the version header when
first invoked.

The following options have string values:

EDITOR
SHELL

VISUAL

escape
record

toplines

March 24, 1984

Pathname of the text editor to use in the edit com-
mand and “e escape. If not defined, then a default
editor is used.

Pathname of the shell to use in the ! command and
the " escape. A default shell is used if this option
is not defined.

Pathname of the text editor to use in the visual
command and v escape.

If defined, the first character of this option gives the
character to use in the place of the tilde (") to
denote escapes.

If defined, gives the pathname of the file used to
record all outgoing mail. If not defined, then outgo-
ing mail is not saved.

If defined, gives the number of lines of a message

to be printed out with the top command; normally,
the first five lines are printed.

Page 8

MAIL (C)

Files
Jusr/spool/mail /+
“/mbox
*/.mailre
[tmp/R#
Jusr/lib/mail/+
Jusr/lib/Mail.help.*
Jusr/lib/Mail.rc
/bin/mail

Jetc/delivermail

See Also
aliases(M)

March 24, 1984

MAIL (C)

System mailboxes

Your old mail

File giving initial mail commands
Tempo;'a.ry file for editor escape
Backend mailers

Help files

System initialization file

The mail command

Mail dispatch program

Page 9

MESG (C) MESG (©)

Name

mesg - Permits or denies messages sent to a terminal.

Syntax

mesg{n][y]

Description
Mesg with argument n forbids messages via write(C) by revoking
nonuser write permission on the user’s terminal. Meesg with argu-

ment y reinstates permission. All by itself, mesg reports the current
state without changing it.

Files
[dev /tty*

See Also

write(C)

Diagnostics

Exit status is 0 if meéssages are receivable, 1 if not, 2 on error.

March 24, 1984 Page 1

MKDIR (C) MKDIR (C)

Name

mkdir - Makes a directory.

Syntax
mkdir dirname ...

Description
Mkdir creates directories. The standard entries ‘‘dot’’ (.), for the -
directory itself, and ‘‘dot dot” (..), for its parent, are made automat-
ically. ‘

Mk dir requires write permission in the parent directory. The permis-

sions assigned to the new directory are modified by the current file
creation mask set by umask (C).

See Also
rmdir(C), umask(C)

Diagnostics

Mkdir returns exit code 0 if all directories were successfully made;
otherwise, it prints a diagnostic and returns nonzero.

March 24, 1984 Page 1

MKFS(C) _ MKFS (C)

Name

mkfs - Constructs a file system.

Syntax

Jetc/mkfs | - y] | - n] special proto { m n]

Description

Mkfe constructs a file system by writing on the special file special
according to the directions found in the prototype file proto. The pro-
totype file contains tokens separated by spaces or newlines. The first
token is the name of a file to be copied onto block zero as the
bootstrap program. The second token is a number specifying the
size of the created file system. Typically it will be the number of
blocks on the device, perhaps diminished by space for swapping.
The next token is the number of inodes in the i-list. The next set of
tokens comprise the specification for the root file. File specifications
- consist of tokens giving the mode, the user IDs, the group IDs and
the initial contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6-character string. The first character
specifies the type of the file. (The characters — bed specify regular,
block special, character special and directory files respectively.) The
second character of the type is either u or — to specify set-user-id
mode or not. The third is g-or — for the set-group-id mode. The
rest of the mode is a 3-digit octal number giving the owner, group,
and other read, write, execute permissions, see chmod(C).

Two decimal number tokens come after the mode; they specify the
user and group IDs of the owner of the file.

If the file is a regular file, the next token is a pathname whence the
contents and size are copied.

If the file is a block or character special file, two decimal number
tokens follow which give the major and minor device numbers.

If the file is a directory, mkfs creates the entries ‘‘dot’’ (.} and *‘dot
dot”” (..) and then reads a list of names and (recursively) file
specifications for the entries in the directory. The scan is terminated
by a dollar sign ($).

If the prototype file cannot be opened and its name consists of a
string of digits, mkfe builds a file system with a single empty direc-
tory on it. The size of the file system is the value of proto inter-
preted as a decimal number. The number of inodes is calculated as
a function of the file system size. The boot program is left uninitial-
ized.

“March 24, 1984 ‘ Page 1

MKFS (C) MKFS (C)

Mkfs can also be used to create a file system image in a regular file,
rather than on a special device file, by giving the pathname of the
target file, instead of special.

If the target file is not a regular file, then mkfs checks for an existing
file system on that device. If it appears the device contains a file sys-
tem, operator confirmation is requested before overwriting the data.
The — y “yes” switch overrides this, and writes over any existing
data without question. The — n switch causes mkfs to terminate
without question if the target contains an existing file system. The
check used is to read block one from the target device (block one is
the super block) and see whether the bytes are all the same. If they
are not, this is taken to be meaningful data, and confirmation is
requested.

A sample prototype specification follows:
[stand/diskboot
4872 110
d- -77731 .
usr d- -77731
sh - - - 75531 /bin/sh
ken d--75561
$
b0 b- -64431

00
c0 c--6443100
$.

See Also
filesystem(F) dir(F)

Notes

There is no way to specify links.

March 24, 1984 . ' Page 2

MEKNOD (C) MKNOD (C)

Name

mknod.- Builds special files.

Syntax
/etc/mknod name [¢] [b] major minor
/etc/mknod name p ‘
/etc/mknod name s
[etc /mknod name m

Description

Mknod makes a directory entry and corresponding inode for a special
file. The first argument is the name of the entry. In the first case,
the second argument is b if the special file is block-type (disks, tape)
or ¢ if it is character-type (other devices). The last two arguments
are numbers specifying the major device type and the minor device
(e.g. unit, drive, or line number), which may be either decimal or
octal. .

The assignment of major device numbers is specific to each system.
Mknod can also be used to create named pipes with the p option;
semaphores with the s option; and shared data (memory) with the m

option.

Only the super-user can use the first form of the syntax.

v See Also

mknod(S)

March 24, 1984 Page 1

MKUSER (C) MKUSER (C)

Name

mkuser - Adds 2 login ID to the system.

Syntax
[etc/mkuser

Description

Mkuser is used to add more user login IDs to the system. It is the
preferred method for adding new users to the system, since it han-
dles all directory creation and password file update. To add a new
user to the system, mkuser requires four pieces of information: the
login name, the initial password, and an optional comment string for
the password file. It also allows the new user to be assigned to a
group if required, although in most cases a default group is suitable.
The program prompts for these four items and validates the given
data. The login name is checked against certain criteria (i.e., it must
be at least three characters and begin with a lowercase letter). The
password must follow standard XENIX conventions, see passwd(C).
The password file comment field can be up to 20 characters of infor-
mation.

Mkuser takes some of its parameters from a default file,
[etc/defavltfmkuser. Currently the two settable options are the path-
name for the login shell and the root path of home directories. An
example default file is:

home=/fusr
shell=/bin/sh

This file can be edited (by the super-user) to change these defaults.
There are three other files in the directory fusrfib which may also be
altered to suit local options. They are mkuser.help which is the intro-
ductory explanation given by mkuser on startup, mkuser.masl which is
the initial mail message sent to new users, and mkuser.prof, the stan-
dard .profile file given to new users.

Mkuser allocates user IDs starting at 200, or the largest number used
in the password file. The default group ID for new users is 50. The
minimum group ID allowed for user accounts is 50, The program
prompts the operator for an optional group specification. This is a
group name.

Mkuser can only be executed by the super-user.
The minimum length of a legal password, and the minrimum and

maximum number of weeks used in password aging are specified in
/etc/default/passwd by the variables PASSLENGTH, MINWEEKS and

March 26, 1984 Page 1

MKUSER (C) MKUSER (C)

MAXWEEKS. For example, these variables might be set as follows:
PASSLENGTH =5
MINWEEKS=2
MAXWEEKS=6

Files

[ete/passwd

Jusr/spool/mail/username

[ete/default/mkuser

Jusrflib/mkuser.help

[usr/lib/mkuser.prof

[usr/lib/mkuser.mail

See Also

rmuser{C), passwd(C), pwadmin(C)

March 26, 1984 Page 2

MORE (C) ' MORE(C)

Name

more — Views a file one screen full at a time.

Syntax

more | — cdfisur] [- n] [+linenumber] [+ /pattern| [name ... |

Description

This filter allows examination of a continuous text one screen full at
a time. It normally pauses after each screen full, printing “‘--More--
" at the bottom of the screen. If the user then types a carriage
return, one more line is displayed. If the user hits the SPACE bar,
another screen full is displayed. Other possibilities are described
below.

The command line options are:

- n An integer which is the size (in lines) of the window which more

will use instead of the default.

More draws each page by beginning at the top of the screen and
erasing each line just before it draws on it. This avoids scrolling
the screen, making it easier to read while more is writing. This
option is ignored if the terminal does not have the ability to
clear to the end of a line.

— d More prompts with the message ‘‘Hit space to continue, Rubout

to abort” at the end of each screen full. This is useful if more is
being used as a filter in some setting, such as a class, where
many users may be unsophisticated.

This option causes more to count logical, rather than screen
lines. That is, long lines are not folded. This option is recom-
mended if nroff output is being piped through ul, since the latter
may generate escape sequences. These escape sequences con-
tain characters that would ordinarily occupy screen positions, but
that do not print when they are sent to the terminal as part of
an escape sequence. Thus more may think that lines are longer
than they actually are and fold lines erroneously.

Does not treat CNTRL-L (form feed) specially. If this option is
not given, more pauses after any line that contains a CNTRL-L,
as if the end of a screen full had been reached. Also, if a file
begins with a form feed, the screen is cleared before the file is
printed.

Squeezes multiple blank lines from the output, producing only
one blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on the screen.

March 24, 1984 Page 1

MORE (C) | MORE (C)

— u Normally, more handles underlining, such as that produced by
nroff in a manner appropriate to the particular terminal: if the
terminal can perform underlining or has a stand-out mode, more
outputs appropriate escape sequences to enable underlining or
stand-out mode for underlined information in the source file.
The - u option suppresses this processing.

— r Normally, more ignores control characters that it does not inter-
pret in some way. The — r option causes these to be displayed
as "C where “C”’ stands for any such character.

-w
Normally, more exits when it comes to the end of its input. With
- w however, more prompts and waits for any key to be struck
before exiting.

+ linenumber
Starts up at linenumber.

+ /pattern
Starts up two lines before the line containing the regular expres-
sion pattern.

More looks in the file ftefermcap to determine terminal characteris-
tics, and to determine the default window size. On a terminal capa-
ble of displaying 24 lines, the default window size is 22 lines.

More looks in the environment variable MORE to preset any flags
desired. For example, if you prefer to view files using the — ¢ mode
of operation, the shell command “MORE=- ¢’ in the .profile file
causes all invocations of more to use this mode.

If more is reading from a file, rather than a pipe, then a percentage is
displayed along with the ‘‘--More--’’ prompt. This gives the fraction
of the file (in characters, not lines) that has been read so far.

Other sequences which may be typéd when more pauses, and their
effects, are as follows {4 is an optional integer argument, defaulting
to 1):

1 <space>
Displays § more lines, (or another screen full if no argument is

given).

CNTRL-D
Displays 11 more lines (a “‘seroll’’). If 1 is given, then the scroll
size is set to 1.

d Same as CNTRL-D.

1z Same as typing a space except that 1, if present, becomes the
new window size.

March 24, 1984 Page 2

MORE(C) MORE(C)

is Skips ¢ lines and prints a screen full of lines.

sf Skips ¢ screen fulls and prints a screen full of lines.

qorQ
Exits from more.

= Displays the current line number.

v Starts up the screen editor v at the current line. (Note that o
may not be available with your system.)

hor?
Help command; Gives a description of all the more commands.

¢ fexpr

Searches for the ith occurrence of the regular expression ezpr.
If there are less than ¢ occurrences of ezpr, and the inputis a
file (rather than a pipe), then the position in the file remains
unchanged. Otherwise, a screen full is displayed, starting two
lines before the place where the expression was found. The
user’s erase and kill characters may be used to edit the regular
expression. Erasing back past the first column cancels the
search command.

tn Searches for the fth occurrence of the last regular expression
entered.

> {Single quotation mark) Goes to the point from which the last
search started. If no search has been performed in the current
file, this command goes back to the beginning of the file.

Ycommand
Invokes a shell with command. The characters % and ! in ““com-
mand” are replaced with the current filename and the previous
shell command respectively. If there is no current filename, %
is not expanded. The sequences ‘“‘\%’ and ‘‘\!”’ are replaced by
““9%’ and ‘1"’ respectively.

i:n Skips to the {th next file given in the command line (skips to
last file if n doesn’t make sense).

i:p Skips to the sth previous file given in the command line. If this
command is given in the middle of printing out a file, more goes
back to the beginning of the file. If ¥ doesn’t make sense, more
skips back to the first file. If more is not reading from a file, the
bell rings and nothing else happens.

:f Displays the current filename and line number.

:qor:Q
Exits from more (same as q or Q).

March 24, 1984 Page 3

MORE (C) MORE (C)

Repeats the previous command.

The commands take effect immediately, i.e., it is not necessary to
type a carriage return. Up to the time when the command character
itself is given, the user may hit the line kill character to cancel the
numerical argument being formed. In addition, the user may hit the
erase character to redisplay the ‘‘--More--(22%)’’ message.

The terminal is set to noecho mode by this program so that the out-
put can be continuous. What you type will thus not show on your
terminal, except for the slash (/) and exc¢lamation (!) commands.

If the standard output is not a teletype, more acts just like cat, except
that a header is printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff - ms + 2 doc.n |more -s

Files
[ete/termeap Terminal data base

/usr/lib/rhore.help Help file

See Also

csh(CP), sh(C), environ(M)

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

Notes
The v and kelp options may not be available.
Before displaying a file, more attempts to detect whether it is a non-
printable binary file such as a directory or executable binary image. If

more concludes that a file is unprintable, it rightly refuses to print it.
However, more cannot detect all possible kinds of non-printable files.

March 24, 1984 Page 4

MOUNT(C) MOUNT(C)

Name

mount - Mounts a file structure.

Syntax
[ete/mount | special-device directory [- r]j

[etc/umount special-device

Description

Mount announces to the system that a removable file structure is
present on special-device. The file structure is mounted on directory.
The directory must already exist; it becomes the name of the root of
the newly mounted file structure.

The mount and umount commands maintain a table of mounted dev-
ices. If invoked with no arguments, for each special device mount
prints the name of the device, the directory name of the mounted
file structure, whether the file structure is readonly, and the date it
was mounted.

The optional last argument indicates that the file is to be mounted
read-only. Physically write-protected must be mounted in this way
or errors occur when access times are updated, whether or not any
explicit write is attempted.

Umount removes the removable file structure previously mounted on
device special-device.

Files

Jete/mnttab Mount table

See Also

umount{C), mount(S), mnttab(F)

Diagnostics

Mount issues a warning if the file structure to be mounted is
currently mounted under another name.

Busy file structures cannot be dismounted with umount. A file struc-

ture is busy if it contains an open file or some user’s working direc-
tory.

March 24, 1984 Page 1

MOUNT(C) MOUNT(C)

Notes

Some degree of validation is done on the file structure, however it is
generally unwise to mount corrupt file structures.

Be warned that when in single-user mode, the commands that look
in Jete/mnttab for default arguments (for example df, ncheck, quot,
mount, and umount) give either incorrect results (due to a corrupt
/etc/mnttab from a non-shutdown stoppage) or no results (due to
an empty mnttab from a shutdown stoppage).

When multi-user this is not a problem; fetefrec initializes /etc/mnttab
to contain-only /dev/root and subsequent mounts update it appropri-
ately.

The mount(C) and umount{C) commands use a lock file to guarantee
exclusive access to Jetc/mnttab, the commands which just read it
(those mentioned above) do not, so it is possible to they may hit a
window during which it is corrupt. This is not a problem in practice
since mount and umount are not frequent operations.

March 24, 1984 Page 2

MV (C) MV(C)

Name

mv — Moves or renames files and directories.

Syntax
mv filel file2

mv file ... directory

Description
Mv moves (changes the name of) filel to file2.
If file2 already exists, it is removed before filel is moved. If file2
has a mode which forbids writing, mv prints the mode (see
chmod(S)) and reads the standard input to obtain a line; if the line
begins with y, the move takes place; if not, mv exits.

In the second form, one or more filee are moved to the directory with
their original filenames.

Mo refuses to move a file onto itself.

See Also

¢p{C), chmod(S), copy(C)

Notes

If filel and file2 lie on different file systems, mv must copy the file
and delete the original. In this case the owner name becomes that of
the copying process and any linking relationship with other files is
lost.

March 24, 1984 Page 1

NCHECK (C) i NCHECK (C)

Name

ncheck - Generates names from inode numbers.

Syntax

ncheck [- i numbers | [-a][-s] [file-system]

Description
Ncheck with no argument generates a pathname vs. inode number
list of all files on the set of file systems specified in fetc/mnttab.
The two characters ‘//.”’ are appended to the names of directory
files. The - i option reduces the report to only those files whose
inode numbers follow. The — a option allows printing of the names
. and .., which are ordinarily suppressed. The — s option reduces
the report to special files and files with set-user-ID mode; it is
intended to discover concealed violations of security policy. A single
filesystem may be specified rather than the default list of mounted file
systems.

Files

[ete/mnttab

See Also
fsck(C), sort{C)
Diagnostics
When the file system structure is improper, ?? denotes the ‘‘parent’’

of a parentless file and a pathname beginning with ... denotes a loop.

Notes

See Notes under mount(C).

March 24, 1984 Page 1

NETUTIL (C) NETUTIL (C)

Name

netutil - Administers the XENIX network.

Syntax

netutil [- option]

Description

The netutil command allows the user to create and maintain a net-
work of XENIX machines. A Micnet network is a link through serial
lines of two or more XENIX systems. It is used to send mail between
systems with the mail(C) command, transfer files between systems
with the rep(C) command, and execute commands from a remote
system with the remote(C) command.

The netutil command is used to create and distribute the data files
needed to implement the network. It is also used to start and stop
the network. The option argument may be any one of install, save,
restore, start, stop, or the numbers 1 through 5 respectively.

The install option interactively creates the data files needed to run
the network. The save option saves these files on floppy disks, allow-
ing them to be distributed to the other systems in the network. The
restore option copies the data files from floppy disk back to a system.
The start option starts the network. The stop option stops the net-
work. An option may also be any decimal digit in the range 1 to 5.
If invoked without an option, the command displays a menu from
which to choose one. Once an option is selected, it prompts for addi-
tional information if needed.

A network must be installed before it can be started. Installation
consists of creating appropriate configuration files with the install
option. This option requires the name of each machine in the net-
work, the serial lines to be used to connect the machines, the speed
of transmission for each line, and the names of the users on each
machine. Once created, the files must be distributed to each com-
puter in the network with the save and restore options. The network
is started by using the start option on each machine in the network.
Once started, mail and remote commands can be passed along the
network. A record of the transmissons between computers in a net-
work can be kept in the network log files. Installation of the net-
work is described in the XENIX Operations Guide.

Files

/bin/netutil

March 24, 1984 Page 1

NETUTIL (C) NETUTIL (C)

See Also

aliases(M), aliashash(M), mail(C), micnet{M), remote(C), rep(C),
systemid{M), top{M) XENIX Operations Guide

March 24, 1984 Page 2

NEWGRP(C) NEWGRP (C)

Name

newgrp — Logs user in to a new group.

Syntax

newgrp | group |

Description
Newgrp changes the group identification of its caller. The same per- '
son remains logged in, and the current directory is unchanged, but
calculations of access permissions to files are performed with respect
to the new group ID.
Newgrp without an argument changes the group identification to the
group in the password file; in effect it changes the group
identification back to the caller’s original group.
A password is demanded if the group has a password and the user
himself does not, or if the group has a password and the user is not
listed in /etc/group as being a member of that group.

When most users log in, they are members of the group named
other.

Files
[etc/group

[ete/passwd

See Also
login(M), group(M)

Notes
There is no convenient way to enter a password into /etc/group.
Use of group passwords is not encouraged, because, by their very
nature, they encourage poor security practices. Shell variables are

not preserved when invoking this command unless they are explicitly
exported.

March 24, 1984 Page 1

NICE (C) NICE(C)

Name

nice - Runs a command at a different priority.

Syntax

nice | - increment | command | arguments |

Description

See

Nice executes command with a lower CPU scheduling priority. Priori-
ties range from 0 to 39, where 0 is the highest priority and 39 is the
lowest. Be default commands have a priority of 20. If an — incre-
ment argument is given where tncrement is in the range 1-19, snere-
ment is added to the default priority of 20 to produce a numerically
higher priority, meaning a lower scheduling priority. If no increment
is given, an increment of 10 to produce a priority of 30 is assumed.

The super-user may run commands with priority kigher than normal
by using a double negative increment. For example, an argument of
~-<10 would decrement the default to produce a priority of 10, which
is a higher scheduling priority than the default of 20.

Also

nohup(C), nice(S)

Diagnostics

Nice returns the exit status of the subject command.

Notes

An tncrement larger than 19 is equivalent to 19.

March 24, 1984 Page 1

NL (C) NL (C)

Name

nl - Adds line numbers to a file.

Syntax

nl [- htype] [~ btype] [- ftype] [vstart#] |- iincr] [~ p] [~ Inum]
[~ ssep] [~ wwidth] [~ nformat] file

Description

M reads lines from the named file, or the standard input if no file is
named, and reproduces the lines on the standard output. Lines are
numbered on the left in accordance with the command options in
effect.

Nl views the text it reads in terms of logical pages. Line numbering
is reset at the start of each logical page. A logical page consists of a
header, a body, and a footer section. Empty sections are valid.
Different line numbering options are independently available for
header, body, and footer (e.g. no numbering of header and footer
lines while numbering blank lines only in the body).

The start of logical page sections is signaled by input lines containing
nothing but the following character(s):

Page Section Line Contents

Header e\
Body i\
Footer \

Unless signaled otherwise, nl assumes the text being read is in a sin-
gle logical page body.

Command options may appear in any order and may be intermingled
with an optional filename. Only one file may be named. The
options are:

~ btype Specifies which logical page body lines are to be num-
bered. Recognized types and their meaning are: a,
number all lines; t, number lines with printable text only;
n, no line numbering; pstring, number only lines that
contain the regular expression specified in string. Default
type for logical page body is t (text lines numbered).

— htype Same as — btype except for header. Default type for logi-
cal page header is n (no lines numbered).

March 24, 1984 Page 1

NL (©)

- ftype

- P

vetart#

-~ ifner

- ssep

wuwidth

nformat

- lnum

See Also

pr(C)

NL (C)

Same as — btype except for footer. Default for logical
page footer is n (no lines numbered).

Does not restart numbering at logical page delimiters.

Stert# is the initial value used to number logical page
lines. Defaultis 1.

Iner is the increment value used to number logical page
lines. Defaultis 1.

Sep is the character(s) used in separating the line number
and the corresponding text line. Default sep is a tab.

Width is the number of characters to be used for t.he line
number. Default width is 6.

Format is the line numbering format. Recognized values
are: In, left justified, leading zeroes supressed; m, right
justified, leading zeroes supressed; rz, right justified, lead-
ing zeroes kept. Default format is rn (right justified).

Num is the number of blank lines to be considered as
one. For example, — 12 results in only the second adja-
cent blank being numbered (if the appropriate — ha,
— ba, and/or — fa option is set}). Defaultis 1.

March 24, 1984 Page 2

NOHUP(C) NOHUP (C)

Name

nohup - Runs a command immune to hangups and quits.

Syntax

nohup command | arguments]

Description
Nohup executes command with hangups and quits ignored. If output
is not redirected by the user, it will be sent to nohup.out. If

nohup.out is not writable in the current directory, output is
redirected to $H OME /nohup.out.

See Also

nice(C), signal(S)

March 24, 1984 Page 1

oD(C) 0D (C)

Name

od - Displays files in octal format.

Syntax
od [~ bedox) [file] [| + Joffset] .][b]]

Description

.Od displays file in one or more formats as selected by the first argu-

ment. If the first argument is missing, — o is default. The meanings

of the format options are:

— b Interprets bytes in octal.

— ¢ Interprets bytes in ASCI. Certain nongraphic characters
appear as C escapes: null=\0, backspace=\b, form feed=\f,
newline==\n, return==\r, tab=\t; others appear as 3-digit octal
numbers.

—d Interprets words in decimal.

— 0 Interprets words in octal.

— x - Interprets words in hex.

The file argument specifies which file is to be displayed. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where displaying is
to start. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the
offset is interpreted in blocks. If the file argument is omitted, the
offset argument must be preceded by +.

The display continues until end-of-file.

See Also
hd(C), adb(CP)

March 26, 1984 Page 1

PACK (C) PACK (C)

Name

pack, pcat, unpack - Compresses and expands files.

Syntax
pack [-] name ...
pcat name ...

unpack name ...

Description

Pack attempts to store the specified files in a compressed form.
Wherever possible (and useful), each input file name is replaced by a
packed file name.z with the same access modes, access and modified
dates, and owner as those of name. If pack is successful, name will
be removed. Packed files can be restored to their original form
using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte
basis. If the — argument is used, an internal flag is set that causes
the number of times each byte is used, its relative frequency, and
the code for the byte to be printed on the standard output. Addi-
tional occurrences of — in place of name will cause the internal flag
to be set and reset.

The amount of compression obtained depends on the size of the
input file and the character frequency distribution. Because a decod-
ing tree forms the first part of each .z file, it is usually not
worthwhile to pack files smaller than three blocks, unless the charac-
ter frequency distribution is very skewed, which may occur with
printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size.
Load modules, which use a larger character set and have a more uni-
form distribution of characters, show little compression, the packed
versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:
~ The file appears to be already packed

- The filename has more than 12 characters

- The file has links

March 24, 1984 Page 1

PACK(C) PACK (C)

- The file is a directory
—~ The file cannot be opened
- No disk storage blocks will be saved by packing
~ A file called name.z already exists
~ The .z file cannot be created
—~ An 1/0 error occurred during processing
The last segment of the filename must contain no more than 12
characters to allow space for the appended .z extension. Directories
cannot be compressed. .
Pcat does for packed files: what cat(C) does for ordinary files. The
specified files are unpacked and written to the standard output. Thus
to view a packed file named name.z use:

pcat name.z
or just:

pcat name

To make an unpacked copy, say nnn, of a packed file named name.z
(without destroying name.z) use the command:

pcat name >nnn

Peat returns the number of files it was unable to- unpack. Failure
may occur if:

-~ The filename (exclusive of the .z) has more than 12 characters
— The file cannot be opened
- The file does not appear to be the output of pack

Unpack expands files created by pack. For each file name specified
in the command, a search is made for a file called name.z (or just
name, if name ends in .z). If this file appears to be a packed file, it
is replaced by its expanded version. The new file has the .z suffix
stripped from its name, and has the same access modes, access and
modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to
unpack. Failure may occur for the same reasons that it may in pcat,
as well as in a file where the ‘‘unpacked’ name already exists, or if
the unpacked file cannot be created.

March 24, 1984 Page 2

PASSWD (C) PASSWD (C)

Name

passwd - Changes login password.

Syntax

passwd name

Description

This command changes (or installs) a password associated with the
login neme.

The program prompts for the old password (if any) and then for the
new one (twice). The user must supply these. Passwords can be of
any reasonable length, but only the first eight characters of the pass-
word are significant. The minimum number of characters allowed in
a new password is determined by the PASSLENGTH variable.

Only the owner of the name or the super-user may change a pass-
word. The person attempting the change must actually know and
state the old password. Only the super-user can create a null pass-
word.
The password file is not changed if the new password is the same as
the old password, or if the password has not "aged” sufficiently; see
passwd(M)).
The minimum length of a legal password, and the minimum and
maximum number of weeks used in password aging are specified in
[etc/default/passwd by the variables PASSLENGTH, MINWEEKS, and
MAXWEEKS. For example, these variables might be set as follows:
PASSLENGTH=6
MINWEEKS=2
MAXWEEKS=6
Files
[etc/default/passwd

[Jetc/passwd

Notes

See also login(C), pwadmin(C), crypt(S), default{M), passwd(M)

March 26, 1984 Page 1

PR (C) PR (C)

Name

pr — - Prints files on the standard output.

Syntax

pr | options] | files]

Description

Pr prints the named files on the standard output. If file is — , or if
no files are specified, the standard input is assumed. By default, the
listing is separated into pages, each headed by the page number, date
and time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the — s option is used,
lines are not truncated and columns are separated by the separation
character.

If ‘the standard output is associated with a terminal, error messages
are withheld until pr has completed printing.

Options may appear singly or be combined in -any order. Their
meanings are: .

+k Begins printing with page k (default is 1).

-k Produces k-column output (default is 1). The options — e
and - i are assumed for multicolumn output.

- a Prints multicolumn output across the page.

~m_ Merges and prints all files simultaneously, one per column
(overrides the — k, and — a options).

-d Double-spaces the output.

— eck Expands input tabs to character positions k+ 1, 2%+ 1,
3*k+ 1, etc. If k is O or is omitted, default tab settings at
every 8th position are assumed. Tab characters in the input
are expanded into the appropriate number of spaces. If ¢
(any nondigit character) is given, it is treated as the input
tab character (default for ¢ is the tab character).

— ick In output, replaces whitespace wherever possible by inserting
tabs to character positions k+ 1, 2*k+ 1, 3*k+ 1, ete. If k is
0 or is omitted, default tab settings at every 8th position are
assumed. If ¢ {any nondigit character) is given, it is treated
as the output tab character (default for ¢ is the tab charac-
ter).

March 24, 1984 Page 1

PR(C)

- nck

- wk

— ok

—
~h

Examples

PR(C)

Provides k-digit line numbering (default for k is 5). The
number occupies the first k+ 1 character positions of each
column of normal output or each line of — m output. If ¢
{any nondigit character) is given, it is appended to the line
number to separate it from whatever follows (default for ¢ is
a tab).

Sets the width of a line to k character positions (default is 72
for equal-width multicolumn output, no limit otherwise).

Offsets each line by k character positions (default is 0). The
number of character positions per line is the sum of the
width and offset.

Sets the length of a page to k lines (default is 66).

Uses the next argument as the header to be printed instead
of the filename.

Pauses before beginning each page if the output is directed
to a terminal (pr will ring the bell at the terminal and wait
for a carriage return).

Uses form feed character for new pages (default is to use a
sequence of linefeeds). Pauses before beginning the first
page if the standard output is associated with a terminal.

Prints no diagnostic reports on failure to open files.

Prints neither the 5-line identifying header nor the 5-line
trailer normally supplied for each page. Quits printing after
the last line of each file without spacing to the end of the
page.

Separates columns by the single character ¢ instead of by the
appropriate number of spaces (default for ¢ is a tab).

The following prints filel and file2 as a double-spaced, three-column
listing headed by ‘‘file list”:

pr - 3dh "file list” filel file2 -

The following writes filel on file2, expanding tabs to columns 10,
19, 28, 37, ...:

pr - €9 - t <filel >file2

March 24, 1984 Page 2

PR(C) S _ _PR(0C)

See Also
cat{C)

March 24, 1984 . . Page3

‘PS(C)

Name

PS(C)

ps — process status

Syntax

ps | alx | | namelist |

Description

Ps prints information about active processes. The a option asks for
information about all processes with terminals (ordinarily only
one’s own processes are displayed); x asks even about processes
with no terminal; 1 asks for a long listing. The short listing con—
tains the process 1D, tty name, the cumulative execution time of
the process and an approximation to the command line.

The long listing is columnar and contains

F

UiD
PID

PPID
CPU
PRI

NICE
ADDR

SZ
ICT

May 9,

A status word consisting of flags associated with the pro—
cess. Each flag is associated with a bit in the status word.
These flags are added to form a single octal number. Flag
bits and their meanings are O1: in core; 02: system pro—
cess; 04: locked in core (e.g., for physical 1/0); 10: being
swapped; 20: being traced by another process.

The state of the process. O: nonexistent; S: sleeping; W:
waiting; R: running; I: intermediate; Z: terminated; T:
stopped.

The user ID of the process owner.

The process ID of the process; if you know the true name
of a process it is possible to kill the process with the kil
command.

The process 1D of the parent process.
Processor utilization for scheduling.

The priority of the process; high numbers mean low
priority.

Used in priority computation.

The core address of the process if resident, otherwise the
disk address.

The size in blocks of the core image of the process.

If the process is currently resides in core memory, then
ICT (in—core time) represents the number of seconds that
the process has been resident, up to a limit of 127. If the
process is currently on the swapper, then ICT is the
number of seconds since the process was swapped out of

1984 Page 1

PS(C) PS(C)

core.

WCHAN
The event for which the process is waiting or sleeping; if
blank, the process is running.

TTY The controlling tty for the process.
TIME The cumulative execution time for the process.

COMMAND
The command and its arguments.

A process that has exited and has a parent, but has not yet been
waited for by the parent is marked <defunct>. Ps makes an
educated guess as to the filename and arguments given when the
process was created by examining core memory or the swap area.
The method is inherently somewhat unreliable and in any event a
process is entitled to destroy this information, so the names cannot
be counted on too much.

if a second argument is given, it is taken to be the file containing
the system’s namelist.

Files

/xenix system namelist

/devymem core memory

/dev searched to find swap device and tty names
See Also

kill(€)
Notes

Things can change while ps is running; the picture it gives is only
a close approximation to reality.

Some data printed for defunct processes is irrelevant.

May 9, 1984 Page 2

PSTAT(C) » PSTAT(C)

Name
pstat — print system facts

Syntax
pstat | —aixpuf | [suboptions || file |

Description
Pstat interprets the contents of certain system tables. If file is
given, the tables are sought there, otherwise in /dev/mem. The
required namelist is taken from /xenix. Options are

-a Under —p, describe all process slots rather than just
active ones.
—i Print the inode table with the these headings:

LOC The core location of this table entry.
FLLAGS Miscellaneous state variables encoded thus:

L locked
U update time filesystem (F) must be corrected
A access time must be corrected
M file system is mounted here
w wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected
CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which
this inode resides.

INO I—number within the device.
MODE = Mode bits, see chmod(S).
NLK Number of links to this inode.

uUID User ID of owner.

SIZ/DEV Number of bytes in an ordinary file, or major and
minor device of special file.

-xX Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

T ptrace(S) in effect

w text not yet written on swap device
L loading in progress

K locked

w

wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of
- BLOCKSIZE bytes. v

CADDR Core address, measured in units of memory

S

May 9, 1984 Page 1

PSTAT(C)

SIZE

IPTR
CNT
CCNT
-p

PRI
SIGNAL
UID
TIM
CPU

NI
PGRP

PID

PPID
ADDR

SIZE

PSTAT(C)

management resolution, usually either 64 or 128 bytes.

Size of text segment, measured in units of memory
management resolution, usually either 64 or 128 bytes.

Core location of corresponding inode.

Number of processes using this text segment.

Number of processes in core using this text segment.
Print process table for active processes with these
headings: ,

The core location of this table entry.

Run state encoded thus:

0 no process

1 waiting for some event
3 runnable

4 being created

5 being terminated

6 stopped under trace

Miscellaneous state variables, OR—ed together:
01 loaded
02 the scheduler process

o4 locked
010 swapped out
020 traced

040 used in tracing

0100 . locked in by lock(S).

Scheduling priority, see nice(S).

Signals received (signals 1—-16 coded in bits 0—15),
Real user ID.

Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.

Nice level, see nice(S).

Process number of root of process group (the opener of
the controlling terminal). .

The process 1D number.

The process 1D of parent process.

If in core, the physical address of the ‘u—area’ of the
process measured in units of memory management
resolution, usually either 64 or 128 bytes. If swapped
out, the position in the swap area measured in multxples

* of BLOCKSIZE bytes.

Size of process image, measured in units of memory
management - resolution, usually usually 64 or - 128

 May 9, 1984 : Page 2

PSTAT(C)

WCHAN
LINK
TEXTP
CLKT

-u

FLG

CNT
INO
OFFS
Files
/xenix

PSTAT(C)

bytes.
Wait channel number of a waiting process.
Link pointer in list of runnable processes.

If text is pure, pointer to location of text table entry.

Countdown for alarm(S) measured in seconds.

print information about a user process; the next argu—
ment is its address as given by ps(C). The process
must be in main memory, or the file used can be a core

image and the address 0.
Print the open file table with these headings:

The core location of this table entry.
Muiscellaneous state variables encoded thus:

R open for reading

w open for writing

P pipe

Number of processes that know this open file.

The location of the inode table entry for this file.

The file offset, see Iseek(S).

namelist

/dev/imem default source of tables

See Also

ps(C), stat(S), filesystem(F)

May 9, 1984

Page 3

PWADMIN (C) PWADMIN (C)

Name

pwadmin - Performs password aging administration.

Syntax
pwadmin - dcfn [~ min weeks | [—~ max weeks] user
pwadmin user

Descniption

Pwadmin is used to examine and modify the password aging infor-

mation in the password file. The options one can specify are as fol-

lows:

—d Displays the password aging information.

— £ Forces the user to change his password at the next login.

~'c Prevents the user from changing his password.

- n Disables the password aging feature.

— min Uses the next argument as the minimum number of weeks
before the user can change his password. This prevents the

user from changing his password back to the old one.

- max Uses the next argument as the number of weeks before the
user must change his password again.

If pwadmin is invoked with a user name only, it interactively prompts
for changes to be made to the password aging information.

Files

Jetc/passwd

Notes

See also passwd(C).

March 26, 1984 Page 1

PWCHECK (C) PWCHECK (C)

Name

pwcheck - Checks password file.

Syntax

pweheck | file]

Description
Puwcheck scans the password file and checks for any inconsistencies.
The checks include validation of the number of fields, login name,
user ID, group ID, and whether the login directory and optional pro-
gram name exist. The default password file is /ete/passwd

Files

Jete/passwd

See Also

grpcheck(C), group(M), passwd(M)

March 24, 1984 Page 1

PWD(C) o : PWD (C)

Name

pwd - Prints working directory name.’

Syntax
pwd

Description

‘Pud prints the pathname of the working (current) directory.
See Also’
¢d(C)

Diagnostics

‘“Cannot open ..’ and ‘“Read error in ..”’ indicate possible file sys-
tem trouble. In such cases, see the Xeniz Operations Guide for infor-
mation on fixing the file system.

March 24, 1984 Page 1

QUOT(C) QUOT(C)

Name

quot - Summarizes file system ownership.

Syntax

quot | option } ... { filesystem |

Description
Quot prints the number of blocks in the named filesystem currently
owned by each user. If no filesystem is named, the file systems given
in fetc/mnttab are examined.
The following options are available:

— n Causes the following pipeline to produce a list of all files and
their owners:

ncheck filesystem |sort + On |quot — n filesystem
- c Prints three columns giving file size in blocks, number of files of
that size, and cumulative total of blocks in that size or smaller
file. Data for files of size greater than 499 blocks are included
in the figures for files of exactly size 499.

— f Prints count of number of files as well as space owned by each

user.
Files

[ete/passwd Gets user names

Jete/mnttab Contains list of mounted file systems
See Also

du(C), Is(C)

Notes
Holes in files are counted as if they actually occupied space.

See also Notee under mount(C).

March 24, 1984 Page 1

RANDOM (C) RANDOM (C)

Name

random - Generates a random number.

Syntax

random [~ s] [scale |

Descriptivon
Random generates a random. number on the standard output. and
returns the number as its exit.value. By default this number is
either 0 or 1, i.e., scale is 1 by default. If ecale is given a value
between 1 and 255, then the range of the random value is from 0 to
scale. If scale is greater than 255 an error message is printed.
With- the — s ‘“‘silent’’ option is given, then the random number is

returned as an exit value but is not printed on the standard output.
If an error occurs, random returns an exit value of zero.

See Also
rand(S)

Notes
This command does not perform any floating point computations.

Random uses the time of day as a seed.

March 24, 1984 Page 1

RCP(C) ROP(C)

Name

rcp - Copies files across XENIX systems.

Syntax

rep | options | [sremachine:]srefile [destmachine:]destfile

Description

Rep copies files between systems in a Micnet network. The com-
mand copies the ermachine:srcfile to destmachine:destfile, where
srcmachine: and destmachine: are optional names of systems in the
network, and srcfile and destfile are pathnames of files. If a machine
name is not given, the name of the current system is assumed. If -
is given in place of srcfile, rep uses the standard input as the source.
Directories named on the destination machine must be publicly writ-
able, and directories and files named on a remote source machine
must be publicly readable.

The available options are:
~m
Mails and reports completion of the command, whether there is
an error or not.
- u|{machine:] user
Any mail goes to the named user on machine. The default
machine is the machine on which rep is invoked.
Rep is useful for transferring small numbers of files across the net-
work. The network consists of daemons that periodically awaken
and send files from one system to another. The network must be be
installed using netutd (C) before rep can be used. Also, to enable
transfer of files from a remote system, the line
rep=/usr/bin/rcp
must be added to the default file jete/defaultfmicnet on the systems in
the network.

Example

rcp ~ m machinel:/etc/mnttab /tmp/vtape

See Also
netutil{C), remote(C), mail(C), micnet(M)

March 24, 1984 Page 1

RCP{C) RCP(C)
Diagnostics

If an error occurs mail is sent to the user.

Notes

Full pathnames must be specified for remote files.

Rep handles binary data files transparently, no extra options or pro-

tocols are needed to handle them. Wildcards are not expanded on
the remote machine.

March 24, 1984 Pa,ge 2

REMOTE (C) REMOTE (C)

Name

remote ~ Executes commands on a remote XENIX system. -

Syntax

remote [~ | [-ffile] |- m] |- uuser] machine command |
arguments | ’

Description

Remote is a limited networking facility that permits execution of
XENIX commands across serial lines. Commands on any connected
system may be executed from the host system using remote. A com-
mand line consisting of command and any blank-separated arguments
is executed on the remote machine:. A machine’s name is located in
the file Jetc/systemid. Note that wild cards are not expanded on the
remote machine, so they should not be specified in arguments, The
optional — m switch causes mail to be sent to the user telling
whether the command is successful.

The available options follow:

- A dash signifies that standard input is used as the stan-
dard input for command on the remote mackine:. Stan-
dard input comes from the local host and not from the
remote machine.

- ffile Use the specified file as the standard input for command
on the remote machine:. The file exists on the local host
and not on the remote machine.

- m Mails the user to report completion of the command. By
default, mail reports only errors.

-u Any report mail goes to the named user rather than to
the executor of the command. The user name may have
‘a prepending machine: name to signify a user on some
remote system.

A network of systems must first be set up and the proper daemons

initialized using netutil(C) before remote can be successfully used.

Example

The following command executes an le command on the remote
directory /tmp:

remote — m machinel lsd - 1 /tmp

March 20, 1984 4 Page 1

REMOTE(C) | " REMOTE (©)
See Also

" rep(C), mail(C), netutil(C) |

Notes

- The mail command uses the equivalent of remote to send mail
between machines.

Note

Jusr/lib/mail/mail.mn is linked to /usr/bin/remote.

March 20, 1984 . Page 2

RESTOR (C) RESTOR (C)

Name

restor - Invokes incremental file system restorer.

Syntax

reetor key | arguments |

Description

Restor is used to read archive media backed up with the dump com-
mand. The key specifies what is to be done. Key is one of the char-
acters rRxt, optionally combined with f.

f

Uses the first argument as the name of the archive instead of the
default.

r,R The archive is read and loaded into the file system specified in

argument. This should not be done lightly (see below). If the
key is R, restor asks which archive of a multivolume set to start
on. This allows restor to be interrupted and then restarted {an
Jeck must be done before the restart). '

Each file on the archive named by an argument is extracted.
The filename has all ‘‘mouynt’’ prefixes removed; for example, if
Jusr is a2 mounted file system, fusr/bin/lpr is named /bin/lpr
on the archive. The extracted file is placed in a file with a
numeric name supplied by reetor (actually the inode number).
In order to keep the amount of archive read to a minimum, the
following procedure is recommended:

1. Mount volume 1 of the set of backup archives.
2. Type the restor command.

3. Restor will announce whether or not it found the files, give
the numeric name that it will assign to the file, and in the
case of a tape, rewind to the start of the archive.

4. It then asks you to ‘“‘mount the desired tape volume’'.
Type the number of the volume you choose. On a multivo-
lume backup the recommended procedure is to mount the
last through the first volumes, in that order. Restor checks
to see if any of the requested files are on the mounted
archive (or a later archive~ thus the reverse order). If the
requested files are not there, restor doesn’t read through the

“tape. If you are working with a single-volume backup or if
the number of files being restored is large, respond to the
query with 1 and restor will read the archives in sequential
order.

March 24, 1984) Page 1

RESTOR (C) RESTOR (C)
t Prints the date the archive was written and the date the file sys-
tem was backed up. .
The r option should only be used to restore a complete backup
archive onto a clear file system, or to restore an incremental backup
archive onto a file system so created. Thus:

[etc/mkfs [dev/hdl 10000
restor r /dev/hdl

is a typical sequence to restore a complete backup. Another restor
can be done to get an incremental backup in on top of this.:

A dump !'ollowed by a mkfs and a restor is used to change the size of

a file system
Files
rste o ‘Temporary files
: /etc/defau]t/dumb)- Name of default archive device

The default archive unit varies with installation.

See Also
‘dum'p(C), fsck(C), mkfs(C)

Dlagnostlcs
There are various dlagnosncs mvolved w:th reading the archive and
writing the disk. There are also diagnostics if the i-list or the free
list of the file system is not large enough to hold the dump.
If the Ldump extends overi»more ‘than one disk or tape, it may ask
you to change disks or tapes...Reply with a newline when the next
unit has been mounted.

Notes

It is not possible to-successfully restor an entire active root file sys-
tem.

March 24, 1984 kPage 2

RM(C) RM(C)

Name

rm, rmdir - Removes files or directories.

Syntax

rm | — fri] file ...

rmdir dir ...

Description

See

Rm removes the entries for one or more files from a directory. If an
entry was the last link to the file, the file is destroyed. Removal of a
file requires write permission in its directory, but neither read nor
write permission on the file itself.

If a file has no write permission and the standard input is a terminal,
its permissions are printed and a line is read from the standard input.
If that line begins with y the file is deleted, otherwise the file
remains. No questions are asked when the - f option is given or if
the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless
the optional argument — r has been used. In that case, rm recur-
sively deletes the entire contents of the specified directory, and the
directory itself.

If the — i (interactive) option is in effect, rm asks whether to delete
each file, and if the ~ r option is in effect, whether to examine each
directory.

Rmdir removes empty directories.

Also

rmdir(C)

Diagnostics

Generally self-explanatory. It is forbidden to remove the file .. to
avoid the consequences of inadvertently doing something like:

rm-r.*

It is also forbidden to remove the root directory of a given file sys-
tem.

March 24, 1984 Page 1

RMDIR (C) RMDIR (C)

Name

rmdir - Removes directories.

Syntax
rmdir dir ...

Description
Rm removes the entries for one or more subdirectories from a direc-
tory. A directory must be empty before it can be removed. Rmdir
enforces a standard and safe procedure for removing a directory; the
contents of the directory must be removed before the directory itself
can be deleted with rmdir . Note that the ‘‘rm -r dir’’ command is a
more dangerous alternative to rmdir.
Rmdir removes entries for the named directories, which must be
empty.

See Also

rm(C)
Notes

Rmdir will refuse to remove the root directory of a mounted file sys-
temn.

March 24, 1984 Page 1

RMUSER (C) RMUSER (C)

Name

rmuser - Removes a user from the system.

Syntax

/etc /rmuser

Description

Rmuser removes users from the system. It begins by prompting for
a user name; after receiving a valid user name as a response, it then
deletes the named user's entry in the password file, and removes the
user’s mailbox file, the .profile file, and the entire home directory. It
will also remove the users group entry in fetc/group if the user was
the only remaining member of that group, and the group ID was
greater than 50.

Before removing a user ID from the system, make sure its mailbox is
empty and that all files belonging to that user ID have been saved or
deleted as required.

The rmuser program will refuse to remove a user ID or any of its
files if one or more of the following checks fails:

- The user name given is one of the ‘‘system’’ user names such
as root, sys, sysinfo, cron, or uucp. All user IDs less than 200
are considered reserved for system use, and cannot be removed
using rmuser. Likewise all group IDs less than 50 are not
removable using rmuser.

— . The user’s mailbox exists and is not empty.

- The user’s home directory contains files other than .profile.

Rmuser can only be executed by the super-user.

Files
Jetc/passwd
[usr [spool/mail/username

$HOME

See Also

mkuser(C), dump(C)

March 24, 1984) Page 1

RSH (C) RSH (C)

Name

rsh - Invokes a restricted shell (command interpreter).

Syntax

rsh | flags | [name [argl ...] |

Description

Reh is a restricted version of the standard command interpreter
eh(C). It is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard
shell. The actions of rsh are identical to those of sk, except that
changing directory with cd, setting the value of $PATH, using com-
mand names containing slashes, and redirecting output using > and
> > are all disallowed.

When invoked with the name — rsh, reh reads the user’s .profile
(from $HOME/.profile). It acts as the standard sk while doing this,
except that an interrupt causes an immediate exit, instead of causing
areturn to command level. The restrictions above are enforced after
.profile is interpreted. '

When a command to be executed is found to be a shell procedure,
reh invokes sh to execute it. Thus, it is possible to provide to the
end user shell procedures that have access to the full power of the
standard shell, while restricting him to a limited menu of commands;
this scheme assumes that the end user does not have write. and exe-
cute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed setup
actions, then leaving the user in an appropriate directory (probably
not the login directory).

Rsh is actually just a link to sk and any flags arguments are the same
as for sh(C).

The system administrator often sets up a directory of commands that
can be safely invoked by rsh.

See Also
sh(C), profile(M)

March 24, 1984 Page 1

SDDATE (C) SDDATE(C)

Name

sddate - Prints and sets backup dates.

Syntax

sddate [name lev date |

Description

If no argument is given, the contents of the backup date file

“‘Jetc/ddate’’ are printed. The backup date file is maintained by

dump(C) and contains the date of the most recent backup for each
" backup level for each filesystem.

If arguments are given, an entry is replaced or made in
“[fetc/ddate’’. name is the last component of the device pathname.
lev is the backup level number (from 0 to 9), and date is a time in
the form taken by date{C):

mmddhhmm|yy]
Where the first mm is a two-digit month in the range 01-12, ddis a
two-digit day of the month, hk is a two-digit military hour from 00-
23, and the final mm is a two-digit minute from 00-59. An optional
two-digit year, yy, is presumed to be an offset from the year 1900,
ie., 19yy.
Some sites may wish to back up file systems by copying them verba-
tim to backup media. Sddate could be used to make a ‘‘level 0’
entry in ‘‘fetc/ddate’’, which would then allow incremental backups.
For example:

sddate rhd0 5 10081520
makes an ‘‘/etc/ddate” entry showing a level 5 backup of
¢ fdev/rhd0” on October 8, at 3:20 PM.

Files

[etc/ddate

March 24, 1984 Page 1

' SDDATE(C) SDDATE (C)

Sée Also
dump(C), date(C)

Diagnostics

bad conversion If the date set is syntactically incorrect.

March 24, 1984 Page 2

SDIFF (C)

Name

SDIFF (C)

sdiffl - Compares files side-by-side.

Syntax

sdiff [options ...] filel file2

Description

Sdiff uses the output of dif{C) to produce a side-by-side listing of
two files indicating those lines that are different. Each line of the
two files is printed with a blank gutter between them if the lines are
~identical, a < in the gutter if the line only exists in filel, a > in the
gutter if the line only exists in Ale2, and a | for lines that are

different.

For example:

oo ow X
A

The following options exist:

o output

March 24, 1984

Uses the next argument, n, as the width of the output
line. The default line length is 130 characters.

Only prints the left side of any lines that are identical.
Does not print identical lines.

Uses the next argument, output, as the name of a third
file that is created as a user-controlled merging of file!
and file2. ldentical lines of filel and file2 are copied to
output. Sets of differences, as produced by diff{C), are
printed; where a set of differences share a common
gutter character. After. printing each set of differences,
sdiff prompts the user with a %5and waits for one of the
following user-typed commands:

1 Appends the left column to the output file
r Appends the right column to the output file

s Turns on silent mode; does not print ident-
ical lines

Page 1

SDIFF (C) SDIFF (C)

v Turns off silent mode

e | Calls the editor with the left column

e r Calls the editor with the right column

eb « .
Calls the editor with the concatenation of
left and right

e Calls the editor with a zero length file)

q Exits from the program

On exit from the editor, the resulting file is concatenated
on the end of the output file. '

See Also
diff(C), ed(C)

‘March 24, 1984 Page‘ 2

SED (C) SED (C)

Name

sed - Invokes the stream editor.

Syntax

sed[- n] [- escript] [- fsfile] [files]

Description

Sed copies the named files (standard input default) to the standard
output, edited according to a script of commands. The - f option
causes the script to be taken from file sfile; these options accumu-
late. If there is just one — e option and no - f options, the flag — e
may be omitted. The — n option suppresses the default output. A
script consists of editing commands, one per line, of the following
form:

[' address | , address | | function | arguments]

In normal operation, sed cyclically copies a line of input into a pat-
tern space (unless there is something left after a D command),
applies in sequence all commands whose addresses select that pattern
space, and at the end of the script copies the pattern space to the
standard output {except under — n) and deletes the pattern space.

Some of the commands use a kold space to save all or part of the
pattern epace for subsequent retrieval.

An address is either a decimal number that counts input lines cumu-
latively across files, a § that addresses the last line of input, or a con-
text address, i.e., a [regular ezpression/ in the style of ed(C)
modified as follows:

- In a context address, the construction \fregular ezpression?,
where .2 is any character, is identical to [regular ezpression/.
Note that in the context address \xabc\xdefx, the second x
stands for itself, so that the regular expression 1s abcxdef.

-~ The escape sequence \n matches a newline embedded in the pat-
tern space.

- A period . matches any character except the termsnal newline of
the pattern space.

- A command line with no addresses selects every pattern space.

~ A command line with one address selects each pattern space that
matches the address.

Mar‘ch‘ 24, 1984 . Page 1

SED (C) SED (C)

- A command line with two addresses selects the inclusive range
from the first pattern space that matches the first address
through the next pattern space that matches the second. (If the
second address is a number less than or equal to the line
number first selected, only one line is selected.) Thereafter the
process is repeated, looking again for the first address.

Editing commands can be applied only to nonselected pattern spaces
by use of the negation function ! (below).

In the following list of functions the maximum number of permissi-
ble addresses for each function is indicated in parentheses,

The tezt argument consists of one or more lines, all but the last of
which end with backslashes to hide the newlines. Backslashes in text
are treated like backslashes in the replacement string of an s com-
mand, and may be used to protect initial blanks and tabs against the
stripping that is done on every script line. The rfile or wfle argu-
ment must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins.
There can be at most 10 distinct wfile arguments.

(1) a\
teat Appends teat, placing it on the output before reading the
' next input line.

(2) b label Branches to the : command bearing the label. If label is
empty, branches to the end of the script.

(2) e\ ‘

tezt Changes text by deleting. the pattern space and. then
appending tezt. With 0 or 1 address or at the end of a 2-
address range, places tezt on the output and starts the
next cycle.

(2)d Deletes the pattern space and starts the next cycle.

(2)D Deletes the initial segment of the pattern space through
the first newline and starts the next cycle.

(2)g Replaces the contents of the pattern space thh the con-
tents of the hold space.

(2)G Appends the contents of the hold space to the pattern
space. ,

(2)h Replaces the contents of the hold : space with the contents
of the pattern space.

(2)H -Appends the contents of the pattern space to the hold
space.

March 24, 1984 ' Page 2

SED (C)
(1) i\
tezt

(2)1

(2)p
(2) P

(Daq

(2) r rfile

SED ()

Insert. Places tezt on the standard output.

Lists the pattern space on the standard output with non-
printing characters spelled in two-digit ASCIl and long
lines folded.

Copies the pattern space to the standard output. Replaces
the pattern space with the next line of input.

‘Appends the next line of input to the pattern space with
an embedded newline. (The current line number
changes.)

Prints (copies) the pattern space on the standard output.

Prints (copies) the initial segment of the pattern space
through the first newline to the standard output.

Quits eed by branching to the end of the script. No new
cycle is started.

Reads the contents of rfile and places them on the output
before reading the next input line.

(2) s/regular expression[replacement/flags

(2) ¢ label

(2) w wfile

(2) x

Substitutes the replacement string for instances of the reg-
ular ezpression in the pattern space. Any character may
be used instead of /. For a more detailed description see
ed(C). Flage is zero or more of:

g Globally substitutes for all nonoverlapping instances
of the regular ezpression rather than just the first one.

p Prints the pattern space if a replacement was made.
w wfile
Writes the pattern space to wfile if a replacement was
made.
Branches to the colon (:) command bearing label if any
substitutions have been made since the most recent read-

ing of an input line or execution of a t command. If label
is empty, t branches to the end of the script.

Writes the pattern space to wfile.

Exchanges the contents of the pattern and hold spaces.

(2) y/etring1 /string2/

Replaces all occurrences of characters in string! with the
corresponding characters in satring2. The lengths of

March 24, 1984 Page 3

SED (C) A SED (©)

stringl and string2 must be equal.

(2)! function
Applies' the function (or group, if function is {) only to
lines not selected by the address(es).

(0) : label This command does nothing; it bears a label for b and ¢
commands to branch to. ‘

(1) = Places the current line number on the standard output as
a line. ~
(2) { Executes the following commands through a matching }
only when the pattern space is selected.
(0) An empty command is ignored.
See Also

awk(C), ed(C), grep(C)
The XENIX Tezt Processing Guide

Notes

This command is more fully documented in the XENIX Tezt Process-
ing Guide.

March 24, 1984 Page 4

SETMNT(C) SETMNT(C)

Name

setmnt - Establishes /etc/mnttab table.

Syntax

[etc/setmnt

Description
Setmnt creates the Jetc/mnttab table (see mnttab(F)), which is
needed for both the mount(C) and umount(C) commands. Setmnt
reads the standard input and creates a mnttab entry for each line.
Input lines have the format:

filesys node

where fileeys is the name of the file system’s special file (e.g.,
**hd0’’) and node is the root name of that file system. Thus flesys
and node become the first two strings in the mnttab(F) entry.

Files

[etc/mnttab

See Also

mnttab(F)

Notes
If filesys or node are longer than 128 characters errors can occur.

Setmnt silently enforces an upper limit on the maximum number of
mnttab entries.

Setmnt is normally invoked by fetc/rc when the system boots up.

March 24, 1984 Page 1

SETTIME (C) SETTIME (C)

’ Name

settime - Changes the access and modification dates of files.

Syntax

settime mmddhhmm [yy] [- f fname | name ...

. Description

Sets the access and modification dates for one or more files. The
dates are set to the specified date, or to the access and modification
dates of the file specified via — f. Exactly one of these. methods
must be used to specify the new date(s). The first mm is the month
number; dd is the day number in the month; Ak is the hour number
(24 hour system); the second mm is the minute number; yy is the
last two digits of the year and is optional. For example:

_ settime 1008004583 ralph pete

sets the access and modification dates of files ralpk and pete to Oct 8, |
' 12:45 AM, 1983. Another example:

settime - f ralph john

This sets the access and modification dates of the file john to those
of the file ralph.

Notes

Use of touch in place of settime is encouraged.

March 24, 1984 Page 1

SH (C) | SH(C)

Name

sh - Invokes the shell command interpreter.

Syntax

sh [- ceiknrstuvx | | args |

Description

The shell is the standard command programming language that exe-
cutes commands read from a terminal or a file. See Invocation below
for the meaning of arguments to the shell.

Commands

A estmple-command is a sequence of nonblank words separated by
blanke (a blank is a tab or a space). The first word specifies the
name of the command to be executed. Except as specified below,
the remaining words are passed as arguments to the invoked com-
mand. The command name is passed as argument 0 (see ezec(S)).
The value of a simple-command is its exit status if it terminates nor-
mally, or (octal) 200+ status if it terminates abnormally (see
signal(S) for a list of status values).

A pipeline is a sequence of one or more commands separated by a
vertical bar (|). (The caret (°) also has the same effect.) The stan-
dard output of each command but the last is connected by a pipe(S)
to the standard input of the next command. FEach command is run
as a separate process; the shell waits for the last command to ter-
minate. '

A list is a sequence of one or more pipelines separated by ;, & &&,
or || and optionally terminated by ; or & Of these four symbols, ;
and & have equal precedence, which is lower than that of && and {}
The symbols && and ||also have equal precedence. A semicolon (;)
causes sequential execution of the preceding pipeline; an ampersand
(&) causes asynchronous execution of the preceding pipeline (i.e.,
the shell does not wait for that pipeline to finish). The symbol &&
() causes the list following it to be executed only if the preceding
pipeline returns a zero (nonzero) exit status. An arbitrary number
of newlines may appear in a list, instead of semicolons, to delimit
commands.

A command is either a simple-command or one of the following

commands. Unless otherwise stated, the value returned by a com-
mand is that of the last simple-command executed in the command:

March 20, 1984 Page 1

\SH (C) | SH (©)

for name | in wvord ...] do list done
Each time a for command is executed, name is set to the next
word taken from the in word list. If mwofd is omitted, then the
for command executes the do Uit once for each positional
parameter that is set (see Parameter Substitution below). Execu-
tion ends when there are no more words in the list.

case word in | pattern | |pattern | ...) Het ;5] ... esac
A case command executes the list associated with the first pat-
tern that matches word. The form of the patterns is the same as
that l)xsed for filename generation (see Filename Generation
below).

if list then list | elif list then ot | ... [else liot] fi
The Ust following if is executed and, if it returns a zero exit
status, the liet following the first then is executed. Otherwise,
the liet following elif is executed and, if its value is zero, the list
following the next then is executed. Failing that, the else list is
executed. If no else list or then list is executed, then the if
command returns a zero exit status.

while list do list done
A while command repeatedly executes the while liet and, if the
exit status of the last command in the list is zero, executes the
do list; otherwise the loop terminates. If no commands in the
do list are executed, then the while command returns a zero exit
status; unti]l may be used in place of while to negate the loop
termination test.

(liet)
Executes list in a subshell.

{liet;}

lsst is simply executed.

The following words are only recognized as the first word of a com-
mand and when not quoted:

if then else elif fi case esac for while until do done { }

Comments

A word beginning with # causes that word and all the following
characters up to a newline to be ignored.

Command Substitution

The standard output from a command enclosed in a pair of grave

accents (**) may be used as part or all of a word; trailing newlines
are removed.

March 20, 1984 Page 2

SH(C) SH(C)

Parameter Substitution

The character $ is used to introduce substitutable parameters. Posi-
tional parameters may be assigned values by set. Variables may be
set by writing:

name==value [name==value] .
Pattern-matching is not performed on value.

${parameter}

A parameter is a sequence of letters, digits, or underscores (a
name), a digit, or any of the characters *, @, #, ?, — , §, and !.
The value, if any, of the parameter is substituted. The braces
are required only when parameter is followed by a letter, digit,
or underscore that is not to be interpreted as part of its name.
A name must begin with a letter or underscore. If parameter is
a digit then it is a positional parameter. If parameter is * or @,
then all the positional parameters, starting with $1, are substi-
tuted (separated by spaces). Parameter $0 is set from argument
zero when the shell is invoked.

${parameter:— word}
If parameter is set and is nonnull then substitute its value; oth-
erwise substitute word. :

${parameter:=word)
If parameter is not set or is null, then set it to word; the value of
the parameter is then substituted. Positional parameters may
not be assigned to in this way.

${parameter:? word}
If paremeter is set and is nonnull then substitute its value; oth-

erwise, print word and exit from the shell. If word is omitted,
then the message ‘‘parameter null or not set’’ is printed.

${parameter:+ word}
If parameter is set and is nonnull then substitute word; otherwise
substitute nothing.
In the above, word is not evaluated unless it is to be used as the
substituted string, so that in the following example, pwd is executed
only if d is not set or is null:
echo ${d:- ‘pwd‘}

If the colon (:) is omitted from the above expressxons, then the shell
only checks whether parameter is set.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal

March 20, 1984 Page 3

SH(C) SH(C)

— Flags supplied to the shell on invocation or by the set command

? The decimal value returned by the last synchronously executed
command

$ The process number of this shell
! The process number of the last'background command invoked
The following parameters are used by the:shell:

HOME :
The default argument (home directory) for the ¢d command

PATH ; A
The search path for commands (see Ezecution below)

MAIL
If this variable is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file

PS1 Primary prompt string, by default *‘$
PS2 Secondary prompt string, by default *“> »’
IFS Internal field separators, normally space, tab, and newline

The shell gives default values to PATH, PS1, PS2, and IFS, while
HOME and MAIL are not set at all by the shell (although HOME ie
set by login(C)).

Blank Interpretation

After parameter and command substitution, the results of substitu- .
tion are scanned for internal field separator characters (those found

in IFS} and split into distinct arguments where such characters are

found. Explicit null arguments(®* or- 7} are retained. Implicit null

arguments (those resulting from parameters that have no values) are

removed.

Fillename Generation

Following substitution, each command word is scanned for the char-
acters *, 7, and [. If one of these characters appears then the word
is regarded as a pattern. The word is replaced with alphabetically
sorted filenames that match the pattern. If no filename is found that
matches the pattern, then the word is left unchanged. The character
. at the start of a filename. or immediately following a /, as well as
the character / itself, must be matched explicitly. These characters
and their matching patterns are:

March 20, 1984 Page 4

SH(C) SH(C)

¢ Matches any string, including the null string.

? Matches any single character.

[...]

Matches any one of the enclosed characters. A pair of charac-
ters separated by — matches any character lexically between the
pair, inclusive.

Quoting

The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

; & ()]* < > newline space tab

A character may be quoted (i.e., made to stand for itself) by preced-
ing it with a \. The pair \newline is ignored. All characters
enclosed between a pair of single quotation marks (77), except a
single quotation mark, are quoted. Inside double quotation marks
(™), parameter and command substitution occurs and \ quotes the
characters \, %, ", and $. "$*" is equivalent to *$§1 $2 ..."”, whereas
“$@ " is equivalent to "$1” "$2"

Prompting

When used interactively, the shell prompts with the value of PS1
before reading & command. If at any time a newline is typed and
further input is needed to complete a command, then the secondary
prompt (i.e,, the value of PS2) is issued.

InputfOutput

Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The fol-
lowing may appear anywhere in a simple-command or may precede
or follow a command. They are not passed on to the invoked com-
mand; substitution occurs before word or digit is used:

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1).
If the file does not exist then it is created; otherwise,
it is truncated to zero length.

>>word Use file word as standard output, If the file exists

then output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created,

March 20, 1984 Page 5

SH (©) SH (©)

<<|- Jword The shell input is read up to a line that is the same
as word, or to an end-of-file. The resulting docu-
ment becomes the standard input. If any character of
word is quoted, then no interpretation is placed upon
the characters of the document; otherwise, parameter
and command substitution occurs, (unescaped)
\newline is ignored, and \ must be used to quote the
characters'\, $, %, and the first character of word. If
— is appended to <<, then all leading tabs are
‘stripped from word and from the document.

< &digit The standard input is duplicated from file descriptor
digit (see dup(S)). Similarly for the standard output
using >. .

<& The standard input is closed. Similarly for the stan-

dard output using >.

If one of the .above is ptéceded by a digit, then the file desériptor
created is that specified by the digit (instead of the default 0 or 1).
For example: .

e 2>81
creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by & then the -default standard input for
the command is the empty file /dev/null. Otherwise, the environ-
ment for the execution of a command contains the file descriptors of
the invoking shell as modified by input/output specifications.

Environment

The environment (see environ(M)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argu-
ment list. The shell interacts with the environment in several ways.
On invocation, the shell scans the environment and creates a param-
eter for each name found, giving it the corresponding value. Exe-
cuted commands inherit the same environment. If the user modifies
the values of these parameters or creates new ones, none of these
affects the environment unless the export command is used to bind
the shell’s parameter to the environment. The environment seen by
any executed command is thus composed of any unmodified name-
value pairs originally inherited by the shell, plus any modifications or
additions,. all of which must be noted in export commands.

The environment for any eimple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM =450 cmd args

March 20, 1984 Page 6

SH (C) SH(C)

and
(export TERM; TERM=450; cmd args)
are equivalent (as far as the above execution of emd is concerned).

If the — k flag is 'set, all keyword arguments are placed in the
environment, even if they occur after the command name.

Signale

The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &; otherwise signals have the
values inherited by the shell from its parent, with the exception of
signal 11 (but see also the trap command below).

Ezecution

Each time a command is executed, the above substitutions are car-
ried out. Except for the Special Commands listed below, a new pro-
cess is created and an attempt is made to execute the command via
ezee(S). :

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is :/bin:/usr/bin (specifying the
current directory, /bin, and fusr/bin, in that order). Note that the
current directory is specified by a null pathname, which can appear
immediately after the equal sign or between the colon delimiters
anywhere else in the path list. If the command name contains a /
then the search path is not used. Otherwise, each directory in the
path is searched for an executable file. If the file has execute per-
mission but is not an a.out file, it is assumed to be a file containing
shell commands. A subshell (i.e., a separate process) is spawned to
read it. A parenthesized command is also executed in 3 subshell,

Special Commande

The following commands are executed in the shell process and,
except as specified, no input/output redirection is permitted for such
. commands:

No effect; the command does nothing. A sero exit code is
returned.

. file
Reads and executes commands from file and returns. The
search path specified by PATH is used to find the directory con-
taining file.

March 20, 1984 Page 7

SH(C) SH(C)

break [n |
Exits from the enclosing for or while loop, if any. If n is
specified then breaks a levels.

continue | n |
Resumes the next iteration of the enclosing for or while loop.
If n is specified then resumes at the a-th enclosing loop.

cd[arg |
Changes the current directory to arg. The shell parameter
HOME is the default arg.

eval [arg ...]
The a.rguments are read as input to the shell and the resulmng
command(s) executed.

exec | arg.
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output argu-
ments may appear and, if no other arguments are given, cause
the shell input/output to be modified.

exit| n |
Causes a shell to exit with the exit status specified by n. If n is
omitted then the exit status is that of the last command exe-
cuted (an end-of-file will also cause the shell to exit.)

export | name ... |
The given names' are marked for automatic export to the
environment of subsequently executed commands. If no argu-
ments are given, a list of all names t.ha.t, are exported in this
shell is printed.

newgrp[arg ...] »
Equivalent to exec newgrp arg"....

read [name ...]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. The return
code is 0 unless an end-of-file is encountered.

readonly | name ...]
The given names are marked readonly and the values of the
these names may not be changed by subsequent assignment. If
no arguments are given, then a list of all readonly names is
printed. v

set [— ekntuvx | arg ... |]

~ e If the shell is noninteractive, exits immediately if a com-
mand exits with a nonzero exit status.

March 20, 1984 ' Page 8

SH(C) SH(C)

— k Places all keyword arguments in the environment for a
command, not just those that precede the command name.

- n Reads commands but does not execute them.

— t Exits after reading and executing one command.

— u Treats unset variables as an error when substituting.
— v Prints shell input lines as they are read.

- x Prints commands and their arguments as they are executed.

Does not change any of the flags; useful in setting $1 to -.

Using <+ rather than — causes these flags to be turned off.
These flags can also be used upon invocation of the shell. The
current set of flags may be found in $- . The remaining argu-
ments are positional parameters and are assigned, in order, to
$1, $2, If no arguments are given then the values of all
names are printed.

shift
The positional parameters from $2 ... are renamed $1

test
Evaluates conditional expressions. See test(C) for usage and
description.

times
Prints the accumulated user and system times for processes run
from the shell.

trap[arg J [n] ...

arg is a command to be read and executed when the shell
receives signal(s) n. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Trap commands are
executed in order of signal number. Any attempt to set a trap
on a signal that was ignored on entry to the current shell is
ineffective. An attempt to trap on signal 11 (memory fault) pro-
duces an error. If arg is absent then all trap(s) n are reset to
their original values. If arg is the null string then this signal is
ignored by the shell and by the commands it invokes. If nis 0
then the command arg is executed on exit from the shell. The
trap command with no arguments prints a list of commands
associated with each signal number.

umask [000 | ;
The user file-creation mask is set to the octal number 000 where
o is an octal digit (see umask(C)). If ooo is omitted, the current
value of the mask is printed.

March 20, 1984 Page 9

SH(C) . SH (C)

wait .
Waits for all child processes to terminate, and reports the termi-
nation status. If n is not given then all currently active child
processes are waited for. The return code from this command is
always 0.

March 20, 1984 Page 10

SH (©) SH (©)

Invocation

If the shell is invoked through ezec(S) and the first character of
argument 0 is — , commands are initially read from /etc/profile and
then from $HOME/.profile, if such files exist. Thereafter, com-
mands are read as described below, which is also the case when the
shell is invoked as /binfsh. The flags below are interpreted by the
shell on invocation only; note that unless the — ¢ or — s flag is
specified, the first argument is assumed to be the name of a file con-
taining commands, and the remaining arguments are passed as posi-
tional parameters to that command file:

— ¢ string If the — ¢ flag is present then commands are read from
string.

-8 If the — s flag is present or if no arguments remain then
commands are read from the ‘standard input. Any
remaining arguments specify the positional parameters.
Shell output is written to file descriptor 2.

-i If the — i flag is present or if the shell input and output
-~ are attached to a terminal, then this shell is interactive. In
this case TERMINATE is ignored (so that kill 0 does not
kill an interactive shell) and INTERRUPT is caught and
ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.

-r If the — r flag is present the shell is a restricted shell (see

reh(C)).

The remaining flags and arguments are described under the set com-
mand above.

Exit Status
Errors detected by the shell, such as syntax errors, cause the shell to
return a nonzero exit status. If the shell is being used noninterac-
tively then execution of the shell file is abandoned. Otherwise, the
shell returns the exit status of the last command executed (see also
the exit command above).

Files
[etc/profile
$SHOME/ .profile
Jtmp/sh*

/dev/null

March 20, 1984 Page 11

SH (C) ' ’ SH (C)

See Also

¢d(C), env(C), login(C), newgrp(C), rsh(C), test{C), umask(C),
dup(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), profile(M); environ(M)

Notes

The command readonly (wnthout argumenfs) produces the same
output as the command export. .- .

If €< is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input docu-
ment; a garbage file /tmp/sh* is created and the shell complains
about not being able to find that file by another name.

The comment format for the Bourne shell sh(C) has been changed.
Under XENIX 2.3 (the equivalent of UNIX V7) and all prior versions,
the shell ignored anything from a colon to the end of the line
enclosed in single quotes. The colon required at least one whi-
tespace between the colon and the initial quote. E.g:

: "this is 2 2.3 bourne shell comment’-

Under 3.0, the comment convention is like the esh(C). Anything
from a pound sign ’#’ to the end of line is ignored. E.g.

This is a 3.0 bourne shell comment

March 20, 1984 ' Page 12

SHUTDOWN (C) SHUTDOWN(C)

Name

shutdown - Terminates all processing.

Syntax

[etc/shutdown [time | | su]

Description

Shutdown is part of the XENIX operation procedures. Its primary
function is to terminate all currently running processes in an orderly
and cautious manner. The time argument is the number of minutes
before a shutdown will occur; default is five minutes. The optional
eu argument lets the user go single-user, without completely shutting
down the system. However, the system is shut down for multiuser
use. Shutdown goes through the following steps. First, all users
logged on the system are notified to log off the system by a broad-
casted message. All file system super-blocks are updated before the
system is stopped (see sync(C)). This must be done before reboot-
ing the system, to insure file system integrity.

See Also
sync(C), umount(C), wall{C)

Diagnostics
The most common error diagnostic that will occur is device buey.

This diagnostic appears when a particular file system could not be
unmounted. See umount(C).

Notes

Once ehutdown has been invoked it must be allowed to run to com-
pletion and must not be interrupted by pressing BREAK or DEL.

Shutdown does not lock the hard disk heads.

March 26, 1984 Page 1

 SLEEP(C) : SLEEP(C)
Name

sleep — Suspends execution for an interval.

Syntax

sleep time

Descriptioh

Sleep suspends execution for time seconds. It is used to execute a
command after a certain amount of time as in:

(sleep 105; command) &

or to execute a command every so often, as'in:

while true
do
command
sleep 37
done

See Also
alarm(S), sleep(S)

Notes

Time must be less than 65536 seconds.

March 24, 1984 Page 1

SORT(C) SORT(C)

Name

sort - Sorts and merges files.

Syntax

sort | — emubdfinrtx | | +posl [—pos2 | | ... | — o output]
| files]

Description

Sort merges and sorts lines from all named files and writes the result
on the standard output. A dash (-)} may appear as a file in the fdes
argument signifying the standard input. If no input files are named,
the standard input is sorted.

The default sort key is an entire line. Default ordering is lexico-
graphic by bytes in machine collating sequence. The ordering is
affected globally by the following options, one or more of which may
appear.

- b Ignores leading blanks (spaces and tabs) in field comparisons.

- d “Dictionary’’ order: only letters, digits and blanks are
significant in comparisons,

— f Folds uppercase letters onto lowercase.

~ i Ignores characters outside the ASCII octal range 040-0176 in
nonnumeric comparisons,

- n An initial numeric string, consisting of optional blanks,
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. Option n implies
option b.

- r Reverses the sense of comparisons.
- tz “‘Tab character'’ separating fields is z.

The notation + posl - pos? restricts a sort key to a field beginning
at posl and ending just before pes2. Posl and pos? each have the
form m.n, optionally followed by one or more of the flags bdfinr,
where m tells a number of fields to skip from the beginning of the
line and n tells a number of characters to skip further. If any flags
are present they override all the global ordering options for this key.
If the b option is in effect n is counted from the first nonblank in
the field; b is attached independently to pos2. A missing .n means
.0; a missing ~ pes? means the end of the line. Under the - tz
option, fields are strings separated by 2z; otherwise fields are

March 28, 1984 Page 1

SORT(C) "SORT(C)

nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only
after all earlier keys compare equal. Lines that otherwise compare
equal are ordered with all bytes significant. Very long lines are
silently truncated. !

These option arguments are also understood:

— ¢ Checks that the input file is sorted according to the ordering
rules; gives no output unless the file is out of sort.

m Merges only, the input files are already sorted.

—~ u Suppresses all but one in each set of duplicated lines. Ignored
bytes and bytes outside keys do not participate in this com-
parison.

~ o The next argument is the name of an output file to use instead
of the standard output. This file may be the same as one of
the inputs.

Examples

The following prints in alphabetical order all the unique spellings in a
list of words (capitalized words differ from uncapitalized):

sort — u +0f +0 list

The following prints the password file (passwd(M)) sorted by user ID
(the third colon-separated field):

sort — t: +2n Jfetc/passwd
The following prints the first instance of each month in an already
sorted file of (month-day) entries (the options — um with just one
input file make the choice of a unique representative from a set of

equal lines predictable):

sort - um +0 - 1 dates

Files

Jusr/tmp/stm???

March 28, 1984 Page 2

SORT(C)) SORT(C)
See Also

comm(C), jin(C}, uniq(C)

Diagnostics

Comments and exits with nonzero status for various trouble condi-
tions and for disorder discovered under option - ¢.

March 28, 1984 . Page 3

SPLIT(C) - SPLIT(C)

Name

split - Splits a file into pieces.

Syntax

‘split[-—u][ﬁle[nam»e’]}

Description
Split reads file and writes it in n-line pieces (default 1000), as many
as necessary, onto a set of output files. The name of the first output
file is name with aa appended, and so on lexicographically. If no
output name is given, x is default.
If no input file is given, or if a dash (-) is given instead, then the
standard input file is used.

See Also
bfs(C), esplit{ C)

March'24, 1984 “7 - Page'l

STTY(C) STTY(C)

Name

stty — Sets the options for a terminal.

Syntax

stty [- a] [- g] [options]

Description

Stty sets certain terminal 1/O options for the device that is the
current standard input; without arguments, it reports the settings of
certain options; with the — a option, it reports all of the option set-
tings; with the — g option, it reports current settings in a form that
can be used as an argument to another sty command. Detailed
information about the modes listed in the first five groups below
may be found in tty(M). Options in the last group are implemented
using options in the previous groups. The options are selected from
the following:

Control Modes

parenb (- parenb)
Enables (disables) parity generation and detection.

parodd (- parodd)
Selects odd (even) parity.

csH csB csT cs8 :
Selects character size (see tty(M)},

0 Hangs up phone line immediately,

50 75 110 134 150 200 300 600
1200 1800 2400 4800 9600 exta
Sets terminal baud rate to the number given, if possible.

hupel (- hupel)
Hangs up (does not hang up) phone connection on last close.

hup (- hup)
Same as hupcl (- hupel).

cstopb (- cstopb)

Uses two(one) stop bits per character,

cread (- cread) :
Enables (disables) the receiver.

March 24, 1984 Page 1

STTY(C) STTY(C)

clocal (- clocal)
Assumes a line without (with) modem control.

Input Modes

ignbrk (- ignbrk)
Ignores {does not ignore) break on input.

brkint (- brkint)
Signals (does not signal) INTR on break.

ignpar (- ignpar)
Ignores (does not ignore) parity errors.

parmrk (- parmrk)
Marks (does not mark). parity errors (see tty(M)).

inpck (- inpck) :
Enables (disables) input parity checking.

istrip (— istrip) :
Strips (does not strip) input characters to 7 bits.

inler (- inler)
Maps (does not map) NL to CR on input.

igner (- igner)
Ignores (does not ignore) CR on input.

icrnl (- icrnl)
Maps (does not map} CR to NL on input.

iuclc (- iuclc)
Maps (does not map) uppercase alphabetics to lowercase on
input.

ixon (- ixon) ‘
Enables (disables) START/STOP output control. Output is
stopped by sending an ASCII DC3 and started by sending an
ASCII DC1.

ixany (- ixany)
Allows any character (only DC1) to restart output.

ixoff (~ ixoff)

Requests that the system send (not send) START/STOP charac-
ters when the input queue is nearly empty/full.

March 24, 1984 Page 2

STTY(C) STTY(C)

Output Modee

opost (— opost)
Post-processes output (does not post-process output; ignores all
other output modes).

olcuc (- olecuc)
Maps (does not map) lowercase alphabetics to uppercase on out~
put.

onler (- onler)
Maps {does not map) NL to CR-NL on output.

ocrnl (- ocrnl)
Maps (does not map) CR to NL on output.

onocr (- onocr)
Does not {does) output CRs at column zero.

onlret (~ onlret)
On the terminal NL performs (does not perform) the CR func-
tion.

ofill (~ ofill)
Uses fill characters (use timing) for delays.

ofdel (- ofdel)
Fill characters are DELs (NULs).

cr0 crl cr2 cr3
Selects style: of delay for carriage returns (see tty(M)).

nl0 nl1
Selects style of delay for linefeeds (see ty(M)).

tab0 tabl tab2 tab3
Selects style of delay for horizontal tabs (see tty(M)).

bsO bsl
Selects style of delay for backspaces (see tiy(M)).

f10 11 '
Selects style of delay for form feeds (see #ty(M)).

vt0 vtl
Selects style of delay for vertical tabs (see tty(M)).

March 24, 1984 Page 3

STTY(C) ‘ STTY(C)
Local Modes

isig (- isig) ‘ _
Enables (disables) the checking of characters against the special
control characters INTR and QUIT.

icanon (- icanon} ‘)
Enables (disables) canonical input (ERASE and KILL process-
ing). .

xcase (—~ xcase) ‘
Canonical {unprocessed) upper/lowercase presentation.

echo (- echo) _
Echoes back (does notecho back) every character typed.

echoe (- echoe)
Echoes (does not echo) ERASE character as a backspace-space-
backspace string. Note: this mode will erase the ERASEed char-
acter on many CRT terminals; however, it does not keep track of
column position and, as a result, may be confusing on escaped
characters, tabs, and backspaces.

echok (- echok)
Echoes (does not echo) NL after KILL character.

Ifke (- Hke)
The same as echok (- echok); obsolete.

echonl (- echonl})
Echoes { does not echo) NL.

noflsh (- noflsh)
Disables (enables) flush after INTR or QUIT.

Control Assignments

control-character-C .)
Sets control-character to C, where control-character is erase, kill,
intr, quit, eof, eol, If C is preceded by a caret (*} (escaped from
the shell}, then the value used is the corresponding CNTRL
character (e.g., “’D’’ is a OCNTRL-D); “"?"" is interpreted as
DEL and “**~ *’ is interpreted as undefined.

min i, time § (0<§<127)
When - icanon is not set, read requests are not satisfied until at
least min characters have been received or the timeout value
time has expired. See #3{C).

line ¢

Sets the line discipline to { (0 < { < 127). There are currently
no line disciplines implemented.

March 24, 1984 ’ Page 4

STTY(C) STTY(C)

Combination Modes

evenp or parity
Enables parenb and ¢s7.

oddp
Enables parenb, ¢s7, and parodd

- parity, — evenp, or — oddp
Disables parenb, and sets cs8.

raw (~ raw or cooked)
Enables (disables) raw input and output (no ERASE, KILL,
INTR, QUIT, EOT, or output post processing).

nl (- nl}
Unsets (sets) icrnl, onler. In addition — nl unsets inler, igner,
ocrnl, and onlret. -

lcase (- lcase)
Sets (unsets) xcase, iucle, and oleuc.

LCASE (~ LCASE)
Same as lcase (- lcase).

tabs (- tabs or tab3) ;
Preserves (expands to spaces) tabs when printing.

" ek. Resets ERASE and KILL characters back to normal CNTRL-H and
CNTRL-U .

sane
Resets all modes to some reasonable values. Useful when a
terminal’s settings have been hopelessly scrambled. '
term '
Sets all modes suitable for the terminal type term, where term is
one of tty33, tty37, vt05, tn300, ti700, or tek.
See Also

ioctl(S), tty(M)
Notes

Many combinations of options make no sense, but no checking is
performed.

March 24, 1984 : Page 5

SU(C) _ SU(C)

Name

su - Makes the user super-user or another user.

Syntax

su[- | [name [arg...]|

Description

su allows you to become znother user without logglng off. The
default user name is root {i.e., super-user).

To use su, the appropriate password must be supplied (unless you

are already super-user). If the password is correct, su executes a
new shell with the user ID set to that of the specified user. su
prompts for a log comment. To restore normal user ID privileges,
type a CNTRL-D to the new shell.

Any additional arguments are passed to the shell, permitting the
super-user to run shell procedures with restricted privileges (an arg
of the form — ¢ sinng executes ctn'na via the shell). When additional
arguments are passed, /bin/sh is always used. When no additional
arguments are passed, su uses che shell specified in the password
file.

An initial dash (-) causes the environment to be changed to the
one that would be expected if the user actually logged in again. This
is done by invoking the shell with an arg0 of — su causing the .pro-.
file in the home directory of the new user ID to be executed. Other-
wise, thé environment is passed along with the possible .exception of
$PATH , which is set to /bin:/etc:/usr/bin for root. Note that .pro-
file can check arg0 for — sh or — su to determine how it was

invoked.

Files
Jete/passwd The system password file
$HOME/ .profile User’s profile

See Also

~env(C), login(C), sh(C), environ(M)-

March 20, 1984 ' Page 1

SUM (C) SUM (C)

Name

sum - Calculates checksum and counts blocks in a file.

Syntax

sum [- r] file

Description
Sum calculates and prints a 16-bit checksum for the named file, and
also prints the number of blocks in the file. It is typically used to
look for bad spots, or to validate a file communicated over a

transmission line. The option — r causes an alternate algorithm to
be used in computing the checksum.

See Also
we(C)

Diagnostics

““Read error’’ is indistinguishable from end-of-file on most devices;
‘check the block count.

March 24, 1984) Page 1

SYNC(C) SYNC (C)

Name

sync - Updates the super-block.

Syntax

sync

Description
Sync executes the sync system primitive. If the system is to be
stopped, sync must be called to ensure file system integrity. Note
that shutdown(C} automatically calls eync before shutting down the
system.

See Also

sync(S)

March 24, 1984 Page 1

SYSADMIN (C) SYSADMIN (C)

Name

sysadmin - Performs file system backups and restores files.

Syntax

/etc [sysadmin

Description

Sysadmin is a script for performing file system backups and for res-
toring files from backup disks. It can do a daily incremental backup
(level 8), or a periodic full backup (level 0). It can provide a listing
of the files backed up and also has a facility to restore individual files
from a backup.

Sysadmin operates on XENIX format diskettes. The version provided
backs up the root file system. The script can be edited to operate on
additional file systems if required.

You must be the super-user to use this program.

Files

/tmp/backup.list

See Also
dump(C), restor(C), mkfs(C), dumpdir(C)

March 24, 1984 Page 1

TAIL (C) TAIL (C)

Name

tail - Delivers the last part of a file.

Syntax
tail [[number][lbc] [- £]] | file]

Description

Tad copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at distance < number from the beginning, or
—~ number from the end of the input (if number is null, the value 10
is assumed). Number is counted in units of lines, blocks, or charac-
ters, according to the appended option I, b, or ¢. When no units are
specified, counting is by lines.

With the ~ f (‘‘follow’’) option, if the input file is not a pipe, the
program will not terminate after the line of the input file has been
copied, but will enter an endless loop, wherein it sleeps for a second
and then attempts to read and copy further records from the input
file. Thus it may be used to monitor the growth of a file that is
being written by some other process. For example, the command:

tail - f file

will print the last ten lines of file, followed by any lines that are
appended to file between the time ted is initiated and killed.

See Also
dd(C)

Notes
Tails relative to the end of the file are kept in a buffer, and thus are

limited in length. Unpredictable results can occur if character special
files are ‘‘tailed’’.

March 24, 1984 Page 1

TAR(C) TAR (C)

Name

tar - Archives files.

Syntax
tar | key | [files]

Description

Tar saves and restores files to and-from an archive medium which is
typically a storage device such as floppy disk or tape, or a regular
file. Its actions are controlled by the key argument. The key is a
string of characters containing at most one function letter and possi-
bly one or more function modifiers. Valid function letters are ¢, t,
x, u, and r. Other arguments to the command are files (or directory
names) specifying which files are to be backed up or restored. In all
cases, appearance of a directory name refers to the files and (recur-
sively) subdirectories of that directory.

The function portion of the key is specified by one of the following
letters:

r The named files are written to the end of the archive. The
¢ function implies this function.

x The named files are extracted from the archive. If a named
file matches a directory whose contents had been written
onto the archive, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if
possible). If no filee argument is given, the entire contents
of the archive are extracted. Note that if several files with
the same name are on the archive, the last one overwrites
all earlier ones.

t The names of the specified files are listed each time that
they occur on the archive. If no files argument is given, all
the names on the archive are listed.

u The named files are added to the archive if they are not
already there, or if they have been modified since last writ-
ten on that archive.

c Creates a new archive; writing begins at the beginning of
the archive, instead of after the last file. This command
implies the r function.

The following characters may be used in addition to the letter that
selects the desired function:

March 26, 1984 Page' 1

TAR (C)

TAR (C)

0,...,7 This modifier selects the drive on which the archive is

mounted. The default is 1.

Normally, tar does its work silently. The v (verbose)
option causes it to type the name of each file it treats, pre-
ceded by the function letter. With the t function, v gives
more information about the archive entries than just the
name.

Causes tar to print the action to be taken, followed by the
name of the file, and then wait for the user’s confirmation.
If a word beginning with y is given, the action is performed.
Any other input means ‘‘no’’.

Causes tar to use the next argument as the name of the
archive instead of /dev/mt?. If the name of the file is a
dash (-), tar writes to the standard output or reads from
the standard input, whichever is appropriate. Thus, tar can
be used as the head or tail of a pipeline. Tar can also be
used to move hierarchies with the command:

cd fromdir; tar f - .|(cd todir; tar xf -)

Causes tar to use the next argument as the blocking factor
for archive records. Block size is 512 bytes. The default is
1, the maximum is 20. This option should only be used
with raw magnetic tape archives (see f above). The block-
ing factor is determined automatically when reading tapes
(key letters x and t).

Causes tar to use the next argument as the name of a file
from which succeeding arguments are taken. A lone dash
(-) signifies that arguments will be taken from the stan-
dard input.

Tells tar to print an error message if it cannot resolve all of
the links to the files being backed up. If 1 is not specified,
no error messages are printed.

Tells tar to not restore the modification times. The
modification time of the file will be the time of extraction.

Causes tar to use the next argument as the size of an
archive volume in kilobytes. The minimum value allowed
is 100. This option is useful when the archive is not
intended for a magnetic tape device, but for some fixed size
device, such as floppy disk (See f above). Very large files
are split into ‘‘extents’’ across volumes. When restoring
from a multivolume archive, tar only prompts for a new
volume if a split file has been partially restored.

Indicates the archive device is not a magnetic tape. The k
option implies this. Listing and extracting the contents of an

March 26, 1984 " Page 2

I"AR(C) TAR (C)

archive are sped because tar can seek over files it wishes to
skip. Sizes are printed in kilobytes instead of tape blocks.

p Indicates that files are extracted using their original permis-
sions. It is possible that a non-super-user may be unable to
extract files because of the permissions associated with the
files or directories being extracted.

Examples / fow /(A

If the name of a floppy disk device is #dev/fdl; then a tar format file
can be created on this device by typing:
Noc el Dedt-
tar cvfk /dev/id1 360 files

‘ Yoo
where files are the names of files you want archived and 380" is the
capacity of the floppy disk in kilobytes. Note that arguments to key
letters are given in the same order as the key letters themselves,
thus the fk key letters have corresponding arguments /dev/fdfand
360. Note that if a file is a directory then the contents of the direc-
tory are recursively archived. To print a listing of the archive, type:

tar vl /dev/td%,

At some later time you will likely want to extract the files from the
archive floppy. You can do this by typing:

tar xvf /dei'/fdt;fz
The above command extracts all files from the archive using the
exact same pathnames as used when the archive was created.
Because of this behavior, it is normally best to save archive files with
relative pathnames rather than absolute ones, since directory permis-

sions may not let you read the files into the absolute directories
specified.

In the above examples, the v verbose option is used simply to
confirm the reading or writing of archive files on the screen. Also, a
normal file could be substituted for the floppy device /dev/fdFin the
examples.

Files
[ete/default/dump

[tmp/tar*

Diagnostics

Prints an error message about bad key characters and archive

March 26, 1984 ‘ Page 3

TAR (C) TAR (C)
read/write errors.
Prints an error message if not enough memory is available to hold
the link tables.

Notes

There is no file read for default devices. Therefore, you must always
specify a device when using tar.

There is no way to ask for the nth occurrence of a file.
The u option can be slow.
The b option should not be used with archives that are going to be
updated. If the archive is on a disk file, the b option should not be
used at all, because updating an archive stored on disk can destroy it.
In order to update (r or u option) a tar archive, do not use raw
magtape and do not use the b option. This applies both when updat-
ing and when the archive was first created.
The limit on filename length is 100 characters.
Systems with a 1K-byte file system cannot specify raw disk devices
unless the b option is used to specify an even number of blocks.
This means that one cannot update a raw-mode disk partition. used.
Don’t do:

tar xfF - -

This would imply taking two things from the standard input at the
same time.

March 26, 1984 Page 4

TEE(C) TEE(C)

Name

tee ~ Creates a tee in a pipe.

Syntax
tee | -i][-a]|file]..

Description
Tee transcribes the standard input to the standard output and makes
copies in the files. The — i option ignores interrupts; the — a option
causes the output to be appended to the files rather than overwriting
them.

Examples

The following example illustrates the creation of temporary files at
each stage in a pipeline:

grep ABC [tee ABC.grep |sort [tee ABC.sort |more
This example shows how to tee output to the terminal screen:

grep ABC |tee /dev/tty |sort |uniq >final.file

March 24, 1984 Page 1

TEST(C)

Name

TEST(C)

test — Tests conditions.

Syntax
test expr

[expr]

Description

Test evaluates the expression ezpr and, if its value is true, returns a
zero (true) exit status; otherwise, a test returns a nonzero exit status
if there are no arguments. The following primitives are used to con-

struct ezpr:
— r file
- w file
- x file
— £ file
— d file
— ¢ file
- b file
- u file
- g file
- k file
- 8 file

t [fildes)

!

-z 8l
-~ n sl
8] = 82

8l 1==¢2

March 24, 1984

True if file exists and is readable.

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.
True if file exists and is a block special file.
True if file exists and its set-user-1D bit is set.
True if file exists and its set-group-ID bit is set.
True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal device.

True if the length of string &1 is zero.
True if the length of the string #1 is nonzero.
True if strings 1 and 82 are identical.

True if strings e and 82 are not identical.

Page 1

TEST(C) TEST(C)

sl True if 8! is not the null string.

nl — eqn2 True if the integers nl and n2 are algebraically equal.
Any of the comparisons — ne, — gt, — ge, — 1It, and — le
may be used in place of — eq.

These primaries may be combined with the following operators:

! Unary negation operator

~-a Binary and operator

-0 _ Binary or operator (~ a has higher precedence than
) :

(expr) Parentheses for grouping

Notice that all the operators and flags are separate arguments to test.
Notice also that parentheses are meaningful to the shell and, there-
fore, must be escaped.

See Also
find(C), sh(C)

A Warning
In the second form of the command (i.e., the one that uses [],

rather than the word test), the square brackets must be delimited by
blanks.

March 24, 1984 ’ Page 2

TOUCH (C) TOUCH (C)

Name

touch - Updates access and modification times of a file.

Syntax

touch [— ame | [mmddhhmm|yy] | files

Description

Touch causes the access and modification times of each argument to
be updated. If no time is specified (see date(C)) the current time is
used. The - a and ~ m options cause touch to update only the
access or modification times respectively (default is - am). The - ¢
option silently prevents touck from creating the file if it did not pre-
viously exist.

The return code from touch is the number of files for which the
times could not be successfully modified (including files that did not
exist and were not created).

See Also
date(C), utime(S)

March 24, 1984 Page 1

T?(C) TR (C)

Name

tr - Translates characters.

Syntax

tr [- eds | | stringl [string2] |

Description

Tr copies the standard input to the standard output with substitution
or deletion of selected characters. Input characters found in etmngl
are mapped into the corresponding characters of stnng2. Any combi-
nation of the options - cds may be used:

-c Complements the set of characters in strng! with respect to
the universe of characters whose ASCIl codes are 001
through 377 octal

-d Deletes all input characters in stringl

-s Squeezes all strings of repeated output characters that are in
stnng? o single characters

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings:

[a- 2] Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digitof nis 0, » is
considered octal; otherwise, n is taken to be decimal. A
zero or missing n is taken to be huge; this facility is useful
for padding string2.

The escape character \ may be used as in the shell to remove special
meaning from any character in a string. In addition, \ followed by 1,
2, or 3 octal digits stands for the character whose ASCII code is given
by those digits.

The following example creates a list-of all the words in filel one per
line in file2, where a word is taken to be a maximal string of alpha-
betics. The strings are quoted to protect the special characters from
interpretation by the shell; 012 is the ASCII code for newline:

tr - cs "[A- Z][a~ z]” "[\012%" <file] >file2

March 24, 1984 Page 1

TR (C) TR (C)
See Also

ed(C), sh(C), ascii(M)

Notes

Won't handle ASCHI NUL in stringl or stning?2; always deletes NUL
from input.

March 24, 1984 Page 2

TRUE (C) TRUE(C)

Name

true — Returns with a zero exit value.

Syntax

true

Description

True does nothing except return with a zero exit value. Falee(C),
true’s counterpart does nothing except return with a nonzero exit
value. Trueis typically used in shell procedures such as:

while true
do

command
done

See Also
" sh(C), false (C)

Diagnostics

True has exit status zero.

March 24, 1984 Page 1

TSET(C) TSET(C)

Name
tset — Sets terminal modes.
Syntax
tset | ~ |[—hrsulQS || -efcl” ~Ee|][—Kel]
[—m [ident|test baudrate]:type || type |
Description ,

Tset causes terminal dependent processing such as setting erase and
kill characters, setting or resetting delays, and the like. It is driven
by the /etc/ttytype and /etc/termcap files.

‘The type of terminal is specified by the fype argument. The type
may be any type given in /etc/termeap. If fype is not specified, the
terminal type is the value of the environment variable TERM, unless
the —h flag is set or any —m argument is given. In this case the
type is read from /etc/ttytype (the port name to terminal type
database). The port name is determined by a ftyname(S) call on
the diagnostic output. If the port is not found in /etc/ttytype the
terminal type is set to unknown.

Ports for which the terminal type is indeterminate are identified in
letc/ttytype as dialup, plugboard, etc. The user can specify how
these identifiers should map to an actual terminal type. The map—
ping flag, —m, is followed by the appropriate identifier (a four—
character or longer substring is adequate), an optional test for baud
rate, and the terminal type to be used if the mapping conditions are
satisfied. If more than onc mapping is specified, the first correct
mapping prevails. A missing identifier matches all identifiers.
Baud rates are specified as with stty(C), and are compared with the
speed of the diagnostic output. The test may be any combination
of: >, =, <, @, and !. (Note: @ is a synonym for = and !
inverts the sense of the test. Remember to escape characters
meaningful to the shell.)

If the type as determined above begins with a question mark, the
user is asked if he really wants that type. A null response means
to use that type; otherwise, another type can be entered which will
be used instead. (The question mark must be escaped to prevent
filename expansion by the shell.)

Tset is most useful when included in the .Jogin (for csh(C)) or
.profile (for sh(C)) file executed automatically at login, with —m
mapping used to specify the terminal type you most frequently dial
in on.

May 9, 1984 Page 1

TSET(C)

Options
—-e

S

hat 3

May 9,

TSET(C)

This flag sets the erase character to be the named character
¢ on all terminals, so to override this option one can say
—e#. The default for c is the backspace character on the
terminal, usually CNTRL-H .

This flag is identical to —e except that it only operatés on
terminals that can backspace.

This option sets the kill character to the named character,
¢, with c defaulting to CNTRL-U. No kill processing is
done if —Kk is not specified. In all of these flags, "X’
where X is any character is equivalent to CNTRL-X .

This option prints the terminal type on the standard output;
this can be used to get the terminal type by saying:

set termtype = ‘tset —°

If no other options are given, fset operates in “‘fast mode™
and only outputs the terminal type, bypassing all other
processing.

This option outputs ‘‘setenv’’ commands (if your default
shell is csh(C) or “‘export’ and assignment commands (if
your default shell is s#(C));

For the —s option with the sk shell, use:

tset —s ... > /tmp/tset$$
Mmpltset$$
rm /tmp/tset$$

This option only outputs the strings to be placed in the
environment variables.

if you are using csh, use:
set noglob
set term=(‘tset —S°)
setenv TERM $term(1]
setenv TERMCAP "$term|2}"
unset term
unset noglob

This option prints the terminal type on the diagnostic out—
put.

1984 Page 2

TSET(C) TSET(C)
~Q This option suppresses printing the ‘‘Erase set to” and
“*Kill set to”” messages. ,

—1 This option suppresses outputing the terminal initialization
strings.

—m This option is the mapping flag. It is used to specify the
terminal type you most frequently use. It is followed by
the appropriate identifier for your terminal, listed in

. letc/ttytype . When you log on the system will set the
terminal type to ident unless you specify otherwise.
Examples
tset gt42

Sets the terminal type to gt42.

tset —mdialup\>300:adm3a —mdialup:dw2 —Qr —ec#

If the entry in /etc/ttytype corresponding to the login port
is ““dialup™, and the port speed is greater than 300 baud,
set the terminal type to adm3a. If the /etc/ttytype entry is
“‘/dialup’’ and the port speed is less than or equal to 300
baud, set the terminal type to dw2. Set the erase charac—
ter to “‘#"’, and print the terminal type (but not the erase
character) on standard error.

tset —m dial:ti733 —m plug:\?hp2621 —m unknown:\? —e ~k"U

May 9,

If the /etc/ttytype entry begins with ‘‘dial’’, the terminal
type becomes ti733. If the entry begins with “‘plug’’, rset
prompts with

TERM = (hp2621)

Enter the correct terminal type if it is different than that
shown. If the entry is ‘‘unknown’’, fset prompts with

TERM = (unknown)

In any case erase is set to the terminal’s backspace char—
acter, and the terminal type is printed on standard error.

1984 Page 3

TSET(C) TSET(C)

Fﬂaletcmytypc Port name to terminal type map database
/etc/termcap Terminal capability database

See Also
tty(M), termcap(M), terminals(M), stty(C)

Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

May 9, 1984 Page 4

TTY (C) TTY(C)

Name

tty - Gets the terminal’s name.

Syntax

tty [~ s]

Description
The tty command prints the pathname of the user’s terminal on the
standard output. The — s option inhibits printing, allowing you to
test just the exit code.

Exit Codes

0 if the standard inputis a terminal, 1 otherwise.
Diagnostics

not o tty If the standard input is not a terminal and - s is not
specified

March 24, 1984 ' Page 1

UMASK (C) UMASK (C)

Name

umask - Sets file-creation mode mask.

Syntax

umask | ooo |

Description

The user file-creation mode mask is set to ¢oo. The three octal
digits refer to read/write /execute permissions for owner, group, and
othere, respectively Only the low-order 9 bits of ¢cmaek and the file
mode creation mask are used. The value of each specified digit is
‘“‘subtracted’’ from the corresponding ‘‘digit’’ specified by the system
for the creation of any file (see umask(S) or creat(S)). This is actu-
ally a binary masking operation, and thus the name ‘‘umask”. In
general, binary ones remove a given permission and zeros have no
effect at all. For example, umask 022 removes group and others
write permission (files normally created with mode 777 become
mode 755 ; files created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.
Umaek is recognized and executed by the shell. By default, login
shells have a umask of 022.
See Also
chmod(C), sh(C), chmod(S}, creat(S), umask(S)

March 24, 1984 Page 1

UMOUNT(C) UMOUNT(C)

Name

umount - Dismounts a file structure.

Syntax

/etc/umount special-device

Description
Umount announces to the system that the removable file structure
previously mounted on device special-device is to be removed. Any

pending I/O for the file system is completed, and the file structure is
flagged clean. For fuller explanation of the mounting process see

mount(C).

Files

[etc/mnttab Mount table

See Also
mount(C), mount(S), mnttab(F)

Diagnostics

device busy An executing process is using a file on the named
file system

March 24, 1684 Page 1

UNAME (€) UNAME (C)

Name

uname - Prints the current XENIX name.

Syntax

uname [- snrmduva |

Description

Uname prints the current system .name of XENIX on the standard
output file. The options cause selected information returned by
uname(S) to be printed:

— s Prints the system name (default)

n Prints the nodename (the nodename may be a name that the
system is known by to a communications network)

r Prints the operating system release

- m
Manufacturer Prints original supplier of XENIX system

-d Distributor Prints OEM for this system
— u Prints user serial number for this system
— v Prints the operating system version

— a Prints all the above information

See Also

uname(S)

March 24, 1984 v Page 1

UNIQ(C) UNIQ(C)

Name

uniq ~ Reports repeated lines in a file.

Syntax
uniq[~ude [+n] [-n]] | input| output]]

Description

* Uniq reads the input file and compares adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are
removed; the remainder is written on the output file. /nput and out-
put should always be different. Note that repeated lines must be
adjacent in order to be found; see sort(C). If the — u flag is used,
just the lines that are not repeated in the original file are output.
The ~ d option specifies that one copy of just the repeated lines is to
be written. The. normal mode output is the union of the — u and
—~ d mode outputs.

The - c option supersedes — u and — d and generates an output
report in default style but with each line preceded by a count of the
number of times it occurred.

The n arguments specify skipping an initial portion of each line in
the comparison:

-n The first n fields together with any blanks before each are
ignored. A field is defined as a string of nonspace, nontab
characters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

See Also
comm(C), sort{C)

March 24, 1984 Page 1

UNITS (C) UNITS (C)

Name

units - Converts units.

Syntax

units

Description

Units converts quantities expressed in various standard scales to
their equivalents in other scales. It works interactively in this
fashion:

You have: inch

You want: cm
* 2.540000¢+ 00
/3.937008e— 01

A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Powers are indicated by
suffixed positive integers, division by the usual sign:

You have: 15 lbs force/in2
You want: atm
*1.020689e+ 00
] 8.797299¢- 01

Units only does multiplicative scale changes; thus it can convert Kel-
vin to Rankine, but not Centigrade to Fahrenheit. Most familiar
units, abbreviations, and metric prefixes are recognized, as well as
the following:

pi Ratio of circumference to diameter
c Speed of light

e Charge on an electron

g Acceleration of gravity

force Same as g
mole Avogadro’s number
water - Pressure head per unit height of water

au Astronomical unit

March 24, 1984 Page 1

UNITS (C) UNITS (©)

Pound is not recognized as a unit of mass; lbis. Compound names

are run together, (e.g. lightyear). British units that differ from
their US counterparts are prefixed with “‘br’’. For a complete list of
units, type:)

cat fusr/lib/unittab

Files

Jusr/lib/unittab

March 24, 1984 " Page 2

vvce (C) UUCP(C)

Name

uucp, uulog - copies files from XENIX to XENIX.

Syntax

uucp | option } ... source-file ... destination-file

uulog | option | ...

Description

uucp copies files named by the source-file arguments to the
destination-file argument. A filename may be a pathname on your
machine, or may have the form:

system-name!pathname

where "system-name” is taken from a list of system names which
uucp knows about. Shell metacharacters ? #[] appearing in pathname
will be expanded on the appropriate system.

Pathnames may be a a full pathname, or a pathname preceded by
“user where useris a user ID on the specified system and is replaced
by that user’s login directory. Anything else is prefixed by the
current directory. '

If the result is an erroneous pathname for the remote system.the
copy will fail. If the destination-file is a directory, the last part of the
source-filename is used.

uucp preserves execute permissions across the transmission and gives
0666 read and write permissions (see chmod(S)).

The following options are interpreted by uucp:
-d Makes all necessary directories for the file copy.

-c Uses the source file when copying out rather than
copying the file to the spool directory.

-m Sends mail to the requester when the copy is complete.

uulog maintains a summary log of uucp and uuz{CP) transactions in
the file /usr/spool/uucp/LOGFILE by gathering information from
partial log files named fusr/spool/uucp/LOG.«.? . It removes the
partial log files.

March 20, 1984 v Page 1

UUCP (C) UUCP(C)

The options cause uulog to print logging information:

- seye
Prints information about work involving system eye.

— uuser
Prints information about work done for the specified useér.

Files
Jusr/spool/uucp Spool directory
Just/lib/uucp/s Other data and program files

See Also
uux(CP), mail(C)

Warning

The domain of remotely accessible files can (and for obvious security
reasons, usually should) be severely restricted. You will very likely
not be able to fetch files by pathname; ask a responsible person on
the remote system to send them to you. For the same ‘reasons you
will probably not be able to send files to arbitrary pathnames.

Notes

For security reasons, all files received by uucp should be owned by
uucp. :

The — m option will only work sending files or receiving a single file.
Receiving multiple files specified by special shell characters ?+[] will
not activate the — m option.

This version of uucp is based on a version 7 implementation of the
program.

March 20, 1984 " Page?2

UUNOW (C) UUNOW (C)

Name

uunow - initiate a uucp connection now

Synopsis

uunow [- w] sitenamel | - w] | sitetnameN]

Description
uunow initiates a uucp{C) connection between your site and sitena~
meN. The command should normally be run in the background or
you will have to wait until all spooled work (both machines) is
disposed of. A typical invocation of uunow might be by cron(CP),
which will automatically run uunow at a time specified by using the
correct syntax in fusr/lib/crontab.

If the — w option is specified, the connection will only be established
if there is work for sitenameN spooled. Otherwise, the connection
is always attempted.

Diagnostics
If /dev/eitenameNwire or /dev/culf is is locked by uucp, a warning is
issued.

See Also

uux(C), wucp(C), cron(S)

Notes

Dialer devices other than /dev/cul0 cause no warnings if busy.

March 20, 1984 Page 1

UUSEND (C) UUSEND (C)

Name

uusend ~ send a file to a remote host

Synopsis

uusend [- m mode | sourcefile sysl!sys2!..Iremotefile

Description
uusend sends a file to a given location on a remote system., The sys-
tem need not be directly connected to the local system, but a chain
of uucp(C) links needs to connect the two systems.
If the — m option is specified, the mode of the file on the remote
end will be taken from the octal number given. Otherwise, the
mode of the input file will be used.

The sourcefile can be "~ ", meaning to use the standard input. Both
of these options are primarily intended for internal use of uusend.

The remotefile can include the “userid syntax.

Diagnostics
Errors at systems more than one removed from yours will be
flushed.

See Also
uux(C), uucp(C)

Notes

You must use uusend to send a file through systems since uucp will
not handle it.

All systems along the line must have the uusend command available
and allow remote execution of it.

Some uucp systems have a bug where binary files cannot be the

input to a uux command. If this bug exists in any system along the
line, the file contents will be damaged.

March 20, 1984 " Pagel

UUX(C) vUx(c)

Name

uux - executes command on remote XENIX.

Syntax

uux | -] command-string

Description

wuz will gather 0 or more files from various systems, execute a com-
mand on a specified system and send standard output to a file on a

specified system.

The command-string is made up of one or more arguments that look

like a shell command line, except that the command and filenames
. may be prefixed by system-name!. A null system-name is inter-

preted as the local system.

Filenames may be (1) a full pathname; (2) a pathname preceded by

“zzz; where zzz is a user ID on the specified system and is replaced

by that user’s login directory; or {3) anything else prefixed by the

current directory.

The "~ " option will cause the standard input to the uuz command to
be the standard input to the command-string.

For example, the command
uux "diff usg!/usr/dan/f1 pwbal/ag¢/dan/f1 > !fi.diff”

will get the f1 files from the usg and pwba machines, execute a diff
command and put the results in f1.diff in the local directory.

Any special shell characters such as <>;|should be quoted either by

quoting the entire command-string, or quoting the special characters
as individual arguments.

Files
[usr/spool fuucp Spool directory

Just/libfuucp/L.emds Other data and programs

See Also

uuep(C)

March 20, 1984 Page 1

vux(c) _ UUX(0)

Warning
An installation may, and for security reasons generally will, limit the
“list of commands executable on behalf of an incoming request from
uuz. Typically, a restricted site will permit little other than the receipt
of mail vis vuz.
Notes
Only the first command of a shell pipeline may have a system-
name!. All other commands are executed on the system of the first
command. :
The shell metacharacter * will probably not perform as expected.

The shell tokens € < and > > are not implemented.

There is no notification of denial of execution on the remote
machine.) i

March 20, 1984 Page?2

VI(C) vI(C)

Name

vi - Invokes a screen-oriented display editor.

Syntax

vi | - option...] | command] | filename]

Description

Vi offers a powerful set of text editing operations based on a set of
mnemonic commands. Most commands are single keystrokes that
perform simple editing functions. Vi displays a full screen *‘win-
dow’’ into the file you are editing. The contents of this window can
be changed quickly and easily within vi. While editing, visual feed-
back is provided (the name vi itself is short for ‘‘visual’’).

Vi and the line editor ex are one and the same editor: the names vi
and ex identify a particular user interface rather than any underlying
functional difference. The differences in user interface, however,
are quite striking. Ex is a powerful line-oriented editor, similar to the
editor ed. However, in both ex and ed, visual updating of the termi-
nal screen is limited, and commands are entered on a command line.
Vi, on the other hand, is a screen-oriented editor designed so that
what you see on the screen corresponds exactly and immediately to
the contents of the file you are editing.

Options available on the vi command line:

-t Equivalent to an initial tag command; edits the file con-
taining the tag and positions the editor at its definition.

B 4 Used in recovering after an editor or system ecrash,
retrieving the last saved version of the named file. If no
file is specified, this option prints a list of saved files.

-1 Specific to editing LISP, this option sets the showmatch
and lisp options.

- wn Sets the default window size to n. Useful on dialups to
start in small windows.

- x Causes vi to prompt for a key used to encrypt and decrypt
the contents of the named files.)

-R Sets a readonly option so that files can be viewed but not
edited.

March 26, 1984 Page 1

VI (C) . ' VI(C)

The Editing Buffer

Vi performs no editing operations on the file that you name during
invocation. Instead, it works on a copy of the file in an editing buffer.
The editor remembers the name of the file specified at invocation, so
that it can later copy the editing buffer back to the named file. The
contents of the named file are not affected until the changes are
copied back to the original file. This allows editing of the buffer
without immediately destroying the contents of the original file.

When you invoke vi with a single filename argument, the named file
is copied to a temporary editing buffer. When the file is written out,
the temporary file is written back to the named file.

Modes of Operation

Within vi there are three distinct modes of operation:

Command Mode Within command mode, signals from the

keyboard are interpreted as editing com-
mands.
Insert Mode Insert mode can be entered by typing any

of the vi insert, append, open, substitute,
change, or replace commands. Once in
insert mode, letters typed at the keyboard
are inserted into the editing buffer.

Ex Escape Mode The vi. and ex editors are one and the
same editor differing mainly in their user
interface. In vi commands are usually sin-
gle keystrokes. In ex, commands are lines
of text terminated by a RETURN. Vihasa
special ‘‘escape’’ command that gives
access to many of these line-oriented ex
commands. To escape to ex escape mode,
type a colon (:). The colon is echoed on
the status line as a prompt for the ex
command. An executing command can
be aborted by pressing INTERRUPT. Most
file manipulation commands are executed
in ex escape mode; for example, the com-
mands to read in a file, and to write out
the editing buffer to a file.

Special Keye

There are several special keys in vi. These keys are used to edit, del-
imit, or abort commands and command lines.

March 26, 1984 Page 2

vI(C) , VI(C)

ESC Used to return to vi command mode, cancel partially
formed commands.

RETURN
Terminates ex commands when in ex escape mode. Also
used to start anew line when in insert mode.

INTERRUPT
Often the same as the DEL or RUBOUT key on many termi-
nals. Generates an interrupt, telling the editor to stop what
it is doing. Used to abort any command that is executing.

/ Used to specify a string to be searched for. The slash
appears on the status line as a prompt for a search string.
The question mark (?) works exactly like the slash key,
except that it is used to search backward in a ﬁle instead of
forward.

The colon is a prompt for an ex command. You can then
type in any ex command, followed by an ESC or RETURN
and the given ex command is executed.

The following characters are special in insert mode:

BKSP Backs up the cursor one character on the current line.
The last character typed before the BKSP is removed from
the input buffer, but remains displayed on the screen.

CNTRL-U Moves the cursor back to the first character of the i inser-
tion, and restarts insertion.

CNTRL-V Removes the special significance of the next typed charac-
ter. Use CNTRL-V to insert control characters. Line feed
and CNTRL-J cannot be inserted in the text except as
newline characters. CNTRL-Q and CNTRL-S are trapped
by the operating system before they are interpreted by vi,
so they t0o cannot be inserted as text.

CNTRL-W Moves the cursor back to the first character of the last
inserted word.

CNTRL-T During an insertion, with the autosndent option set and at
the beginning of the current line, typing this character
will insert shiftwidth whitespace.

" _CNTRL-@ If typed as the first character of an insertion it is replaced
with the last text inserted, and the insertion terminates.
Only 128 characters are saved from the last insertion. If
more than 128 characters were inserted, then this com-
mand inserts no characters. A CNTRL-@ cannot be part
of a file, even if quoted.

March 26, 1984 Page 3

VI (©C) VI(C)

Invoking and Eziting Vi

To enter vi type:

vi Edits empty editing buffer

vi file Edits named file

vi + 123 file Goes to line 128

vi + 45 file Goes to line 45

vi + /word file Finds first occurrence of “word”’
vi + [tty file Finds ﬁ‘nt occurrence of “tty”’

There are several ways to exit the editor:

ZZ The editing buffer is written to the file only if any changes were
made.

:x The editing buffer is written to the file only if any changes were
made.

:q! Cancels an editing session. The exclamation mark (!) tells vi
to quit unconditionally. In this case, the editing buffer is not
written out. :

Vi Commands

Vi is a visual editor with a window on the file. What you see on the
screen is vi's notion of what the file contains. Commands do not
cause any change to the screen until the complete command is typed.
Most commands may take a preceding count that specifies repetition
of the command. This count parameter is not given in the following
command descriptions, but is implied unless overriden by some
other prefix argument. When vi gets an improperly formatted com-
mand it rings a bell.

Cursor Movement

The cursor movement keys allow you to move your cursor around in
a file. Note in particular the arrow keys (if available on your termi-
nal), the **h’ “j°, “k” , and “I"” cursor keys, and SPACE, BKSP,
CNTRL-N, and CNTRL-P. These three sets of keys perform identical
functions.

Forward Space — 1, SPACE, or-->

Syntax: 1
SPACE

March 26, 1984 ' Page 4

VI(C) VI (C)

->

Function: Moves the cursor forward one character. If a count is
given, move forward count characters. You cannot move
past the end of the line.

Backspace - h, BKSP, or <--

Syntax: h
BKSP
L=

Function: Moves cursor backward one character. If a count is
given, moves backward count characters. Note that you
cannot move past the beginning of the current line.

Next Line - +, RETURN, j, CNTRL-N, and LF

Syntax: +
'RETURN

Function: Moves the cursor down to the beginning of the next line.

Syntax:
CNTRL-N
LF
(down arrow)

Function: Moves the cursor down one line, remaining in the same
column. Note the difference between these commands
and the preceding set of next line commands which move
to the beginning of the next line.

Previous Line - k, CNTRL-P, and -
Syntax: k
CNTRL-P
(up arrow)
Function: Moves the cursor up one line, remaining in the same

column. If a count is given then the cursor is moved
count lines.

Syntax: -

Function: Moves the cursor up to the beginning of the previous
line. If a count is given then the cursor is moved up a
count lines.

Beginning of Line - 0 and *

Syntax:
0

March 26, 1984 Page 5

VI (C) VI(C)

Function: Moves the cursor to the beginning of the current line.
Note that 0 always moves the cursor to the first character
of the current line. The caret (*) works somewhat
differently: it moves to the first character on a line that is
not a tab or a space. This is useful when editing files that
have a great deal of indentation, such as program texts.

End of Line - §
Syntax: s

Function: Moves the cursor to the end of the current line. Note
that the cursor resides on top of the last character on the
line. If a count is given, then the cursor is moved for-
ward count- 1 lines to the end of the line.

Goto Line - G
Syntax: [linenumber]G

Function: Moves the cursor to the beginning of the line specified by
‘ linenumber. If no linenumber is given, the cursor moves
to the beginning of the last line in the file. To find the

line number of the current line, use CNTRL-G.

Column - |
Syntax: [column]|

Function: Moves the cursor to the column in the current line given
by column. If no column is given then the cursor is
moved to the first column in the current line.

Word Forward - w and W

Syntax: w
w

Function: Moves the cursor forward to the beginning of the next
‘ word. The lowercase w command searches for a word
defined as a string of alphanumeric characters separated
by punctuation or whitespace (i.e., tab, newline, or space
characters). The uppercase W command searches for a

word defined as a string of nonwhitespace characters.

Back Word - band B

Syntax: b
B

Function: Moves the cursor backward to the beginning of a word.

The lowercase b command searches backward for a word
defined as a string of alphanumeric characters separated

March 26, 1984 Page 6

VI (C) VI (C)

by punctuation or whitespace (i.e., tab, newline, or space
characters). The uppercase B command searches for a
word defined as a string of non-whitespace characters. If
the cursor is already within a word, then it moves back-
ward to the beginning of that word.

End- eandE
Syntax: e
E

Function: Moves the cursor to the end of a word. The lowercase e
command moves the cursor to the last character of a
word, where a word is defined as a string of alphanumeric
characters separated by punctuation or whitespace (i.e.,
tab, newline, or space characters). The uppercase E
moves the cursor to the last character of a word where a
word is defined as a string of nonwhitespace characters.
If the cursor is already within a word, then it moves to
the end of that word.

Sentence — (and)

Syntax: (

Function: Moves the cursor to the beginning (left parenthesis) or
end of a sentence (right parenthesis). A sentence is
defined as a sequence of characters ending with a period
(.), question mark (?), or exclamation mark (!), fol-
lowed by either two spaces or a newline. A sentence
begins on the first nonwhitespace character following a
preceding sentence. Sentences are also delimited by para-
graph and section delimiters. See below.

Paragraph - {and }
Syntax: }
{

Function: Moves the cursor to the beginning ({) or end (}) of a
paragraph. A paragraph is defined with the paragraphs
option. By default, paragraphs are delimited by the nroff
.macros ‘‘IP’, “.LP, *“P”, “.QP”, and ‘“.bp”’. Para-
graphs also begin after empty lines.

Section - [[and]]

Syntax:]}

Function: Moves the cursor to the beginning ([[) or end (]]) of a
section. A section is defined with the sections option. By

March 26, 1984 Page 7

VI (C) ~ VI (C)

default, sections are delimited by the nroff macros *.NH"
and ‘‘.SH". Sections also start at formfeeds (CNTRL-L)
and at lines beginning with a brace ({).

Match Delimiter - %
Syntax: %

Function: Moves the - cursor to a matching delimiter, where a del-
: imiter is a parenthesis, a bracket, or a brace. This is use-
ful when matching pairs of nested parentheses, brackets,

and braces.

Home - H
Syntax: [offeefH

Function: Moves the cursor to upper left corner of screen. Use
this command to quickly move to the top of the screen.
If an offset is given, then the cursor is homed offect-1
number of lines from the top of the screen. Note that
the command ‘‘dH’’ deletes all lines from the current line
to the top line shown on the screen.

Middle Screen ~ M
Syntax: M

Function: ‘Moves the cursor to the beginning of the screen’s middle
line. Use this command to quickly move to the middle of
the screen from either the top or the bottom. Note that
the command ‘“dM*’ deletes from the current line to the
line specified by the M command.

Lower Screen ~ L
Syntax: [offsefL

Function: Moves the cursor to the lowest line on the screen. Use
this command to quickly move to the bottom of the
screen. If an offeet-is given, then the cursor is homed
offset-1 number of lines from the bottom of the screen.
Note that the command ‘‘dL’’ deletes all lines from the
current line to the bottom line shown on the screen.

Previous Context — **and *

.

Syntax:
‘character

(SN

‘character

March 26, 1984 ‘ Page 8

Vi(C) VI(C)

Function: Moves the cursor to previous context or to context
marked with the m command. If the single quotation
mark or back quotation mark is doubled, then the cursor
is moved to previous context. If a single character is
given after either quotation mark, then the cursor is
moved to the location of the specified mark as defined by
the m command. Previous context is the location in the
file of the last ‘‘nonrelative’’ cursor movement. The sin-
gle quotation mark (°} syntax is used to move to the
beginning of the line representing the previous context.
The back quotation mark (') syntax is used to move to
the previous context within a line.

‘ne Sereen Commands

The screen commands are not cursor movement commands and can-
not be used in delete commands as the delimiters of text objpects.
However, the screen commands do move the cursor and are useful
in paging or scrolling through a file. These commands are described
below:

Page - CNTRL-U and CNTRL-D

Syntax: [siz] CNTRL-U
[#i2¢] CNTRL-D

Function: Scrolls the screen up a half window (CNTRL-U) or down a
half window (CNTRL-D). If eize is given, then the scroll
is #ize number of lines. This value is remembered for all
later scrolling commands.

Scroll -~ CNTRL-F and CNTRL-B

Syntax: CNTRL-F
CNIRL-B

Function: Pages screen forward and backward. Two lines of con-
tinuity are kept between pages if possible. A preceding
count gives the number of pages to move forward or
backward.

Status - CNTRL-G

Syntax: BELL
CNTRL-G

Function: Prints vi status on status line. This gives you the name of
" the file you are editing, whether it has been modified, the
current line number, the number of lines in the file, and
the percentage of the file (in lines) that precedes the cur-

sor.

March 26, 1984 Page ¢

VI (C) VI(C)

Zero Screen - 2z

#12¢]RETURN -
sizel.
size]—

Syntax: linenumber]z
linenumber|z
linenumber]z

Function: Redraws the display with the current line placed at or
‘‘zeroed’’ at the top, middle, or bottom of the screen,
respectively. If you give a size, then the number of lines
displayed is equal to #ize. If a preceding linenumber is
given, then the given line is placed at the top of the
screen. If the last argument is a RETURN, then the
current line is placed at the top of the screen. If the last
argument is 2 period (.), then the current line is placed
in the middle of the screen. If the last argument is &
minus sign (-), then the current line is placed at the
bottom of the screen.

Redraw - CNTRL-R or CNTRL-L

Syntax: CNTRL-R
CNTRL-L

Function: Redraws the screen. Use this command to erase any sys-
tem messages that may scramble your screen. Note that
system messages do not affect the file you are editing.

Tezt Insertion

The text insertion commands always place you in insert mode. Exit
from insert mode is always done by pressing ESC. The following
insertion commands are ‘‘pure’’ insertion commands; no text is
deleted when you use them. This differs from the text modification
commands change, replace, and substitute, which delete and then
insert text in one operation.

Insert - iandl

Syntax: iftezt]ESC
I[tezf]ESC

Function: Insert tezt in editing buffer. The lowercase i command
places you in insert mode. Tezt is inserted before the
character beneath the cursor. To insert a newline, just
press a RETURN. Exit insert mode by typing the ESC key.
The uppercase I command places you in insert mode, but
begins text insertion at the beginning of the current line,
rather than before the cursor.

@mnd - aand A

March 26, 1984 : Page 10

VI (C) VI (C)

Syntax:. a[tez]ESC
- Altezf]ESC

Function: Appends tezt to the editing buffer. The lowercase a com-
mand works ezactly like the lowercase i command, except
“that text insertion begins after the cursor and not before.
This is the one way to add text to the end of a line. The
uppercase A command begins appending text at the end
of the current line rather than after the cursor.

Open New Line - 0and O

Syntax: oftezf]ESC
: Oftez{ESC

Function: Opens a new line and inserts text. The lowercase o com-
mand opens a new line below the current line; uppercase
O opens a new line above the current line. After the new
line has been opened, both these commands work like
the I command.

Tezt Deletion

Many of the text deletion commands use the letter *‘d'’ as an opera-

tor. This operator deletes text objects delimited by the cursor and a

cursor movement command. Deleted text is always saved away in a
- buffer. The delete commands are described below:

Delete Character - x and X

Syntax: x
X

Function: Deletes a character. The lowercase x command deletes
the character beneath the cursor. With a preceding
count, count characters are deleted to the right beginning
with the character beneath the cursor. This is a quick and
easy way to delete a few characters. The uppercase X
command deletes the character just before the cursor.
With a preceding count, count characters are deleted back-
ward, beginning with the character just before the cursor.

Delete - dand D
Syntax: dcursor-movement
' dd
D
Function: Deletes a text object. The lowercase d command takes a

cursor-movement as an argument. If the cursor-movement
is an intraline command, then deletion takes place from

March 28, 1984 - Page 11

VI (C) , VI(C)

the cursor to the end of the text object delimited by the
cursor-movement . Deletion forward deletes the character
beneath the cursor; deletion backward does not. If the
cursor-movement is a multiline command, then deletion
takes place from and including the current line to the text
object delimited by the cursor-movement .

The dd command deletes whole lines. The uppercase D command
deletes from and including the cursor to the end of the current line.

Deleted text is automatically pushed on a stack of buffers numbered
1 through 9. The most recently deleted text is also. placed in a spe-
cial delete buffer that is logically buffer 0. This special buffer is the
default buffer for all (put) commands using the double quotation
mark (") to specify the number of the buffer for delete, put, and
yank commands. The buffers 1 through 9 can be accessed with the
p and P (put) commands by appending the double quotation mark
(") to the number of the buffer. For example

"4p

puts the contents of delete buffer number 4 in your editing buffer
just below the current line. Note that the last deleted text is ‘‘put’’
by default and does not need a preceding buffer number.

Tezt Modification

The text modification commands all involve the replacement of text
with other text. This means that some text will necessarily be
deleted. All text modification commands can be ‘““undone’ with the
u command, discussed below:

Undo - uandU
Syntax: u
U

Function: Undoes the last insert or delete command. The lowercase
u command undoes the last insert or delete command.
This means that after an insert, u deletes text; and after a
delete, u inserts text. For the purposes of undo, all text
modification commands are considered insertions.

The uppercase U command restores the current line to its
state before it was edited, no matter how many times the
current line has been edited since you moved to it.

Repeat — .

Syntax: .

March 26, 1984 : ‘ » " Page 12

VJ(C) VI(C)

Function: Repeats the last insert or delete command. A special case
exists for repeating the p and P “put’’ commands. When
these commands are preceded by the name of a delete
buffer, then successive u commands print out the con-
tents of the delete buffers. .

Change - cand C

Syntax: ccursor-movement tez£SC
CtezfESC
ccteztESC

Function: Changes a text object and replaces it with tezt . Text is
inserted as with the i command. A dollar sign ($) marks
the extent of the change. The ¢ command changes arbi-
trary text objects delimited by the cursor and a cursor
movement . The C and cc commands affect whole lines
and are identical in function.

Replace - rand R

Syntax: rehar
RtezESC

Function: Overstrikes character or line with char or .tezt , respec-
tively. Use r to overstrike a single character and R to
overstrike a whole line. A count multiplies the replace-
ment text count times.

Substitute - s and S

Syntax: stezfESC
StezESC

Function: Substitutes current character or current line with tezt. Use
s to replace a single character with new text. Use S to
replace the current line with new text. If a preceding
count is given, then tezt substitutes for count number of
characters or lines depending on whether the command is
s or S, respectively.

Filter — !

Syntax: lcursor-movement emdRETURN

Function: Filters the text object delimited by the cursor and cursor-
movement through the command, emd. For example, the -
following command sorts all lines between the cursor and
the bottom of the screen, substituting the desxgnau:d lines
with the sorted lines:

{Lsort

March 26, 1984 Page 13

VI (C) | : vI(C)

Arguments and shell metacharacters may be included as
part of emd; however, standard input and output are
always associated with the text object being filtered.

Join Lines - J
Syntax: J

Function: Joins the current line with the following line. If a count
is given, then count lines are joined.

Shift - < and >

Syntax: > |[cursor-movement]
<L [eursor-movement|
>>
<<

Function: Shifts text left (>) or right (<). Text is shifted by the
value of the option shiftwidth, which is normally set to
eight spaces. Both the > and < commands shift all lines
in the text object delimited by the current line and
cursor-movement. The >> and << commands affect
whole lines. All versions of the command can take a
preceding count that acts to multiply the number of
objects affected.

Text Movement

The text movement commands move text in and out of the named
buffers a-z and out of the delete buffers 1-9. These commands
either ‘‘yank’’ text out of the editing buffer and into a named buffer
or “put”’ text into the editing buffer from a named buffer or a delete
buffer. By default, text is put and yanked from the ‘‘unnamed
buffer’’, which is also where the most recently deleted text is placed.
Thus it is quite reasonable to delete text, move your cursor to the
location where you want the deleted text placed, and then put the
_text back into the editing buffer at this new location with the por P
command.

The named buffers are most useful for keeping track of several
chunks of text that you want to keep on hand for later access, move-
ment, or rearrangement. These buffers are named with the letters
‘“a” through *z”. To refer to one of these buffers (or one of the
numbered delete buffers) in ‘a command such as put, yank, or
delete, use a quotation mark. For example, to yank a line into the
buffer named a, type:

ayy
To put this text back into the file, type:

March 26, 1984 v Page 14

V'I(C) VI (C)

ap

If you delete text into the buffer named A rather than 4, then text is
appended to the buffer.

- Note that the contents of the named buffers are not destroyed when
you switch files. Therefore, you can delete or yank text into a
buffer, switch files, and then do a put. Buffer contents are destroyed
when you exit the editor, so be careful.

Put- pandP

Syntax: ["alpkenumenc]p
® alph anumenic]P

Function: Puts text from a buffer into the editing buffer. If no
buffer -name is specified, then text is put from the
unnamed buffer. The lowercase p command puts text
either below the current line or after the cursor, depend-
ing on whether the buffer contains a partial line or not.
The uppercase P command puts text either above the
current line or before the cursor, again depending on
whether the buffer contains a partial line or not.

"Yank - yand Y

Syntax: "letter]ycursor-movement
Pletter]yy :
[Mletter]Y

Function: Copies text in the editing buffer to a named buffer. If no
buffer name is specified, then text is yanked into the
unnamed buffer. If an uppercase letter is used, then text
is appended to the buffer and does not overwrite and des-
troy the previous contents. When a cursor-movement is
given as an argument, the delimited text object is yanked.
The Y and yy commands yank a single line, or, if a
preceding count is given, multiple lines can be yanked.

Searching

The search commands search either forward or backward in the edit-
ing buffer for text that matches a given regular expression.

Search - /and?

Syntax: [[pattern]/[oflee] RETURN
-/ |pattern]RETURN

? [pattern)? [offse|RETURN
? pattern]RETURN

March 26, 1984 Page 15

VI(C) VI (C)

Function: Searches forward (/) or backward (?) for pattern. A
string is actually a regular expression. The trailing delim-
iter is not required. If no pattern is given, then last pat-
tern searched for is used. After the second delimiter, an
offset may be given, specifying the beginning of a line
relative to the line on which pattern was found. For
example

[word/-

finds the beginning of the line immediately preceding the
line containing ‘‘word” and

[word/+ 2

finds the beginning of the line two lines after the line
containing ‘‘word’’. See also the ignorecase and magic
options. :

Next String -~ nand N

Syntax: n
N

Function: Repeats the last search command. The n command
repeats the search in the same direction as the last search
command. The N command repeats the search in the
opposite direction of the last search command.

Find Character - f and F

Syntax: fchkar
Fchar

’

Function: Finds character char on the current line. The lowercase f
searches forward on the line; the uppercase F searches
backward. The semicolon (;) repeats the last character
search. The comma (,) reverses the direction of the
search.

To Character - tand T

Syntax: tchar
Tehar
H
’

Function: Moves the cursor up to but not on to ckar. The semi-
colon (;) repeats the last character search. The comma
(,) reverses the direction of the search.

March 26, 1984 ' Page 16

VI (0) vI ()

Mark - m
Syntax: mletter

Function: Marks a place in the file with a lowercase letter. You can
move to a mark using the “to mark’ commands
described below. It is often useful to create a mark,
move the cursor, and then delete from the cursor to the
mark ‘‘a’’ with the following command:

da
To Mark - ‘and*

Syntax: Tetter
“letter

Function: Move to letter. These commands let you move to the
location of a mark. Marks are denoted by single lower-
case alphabetic characters. Before you can move to a
mark, it must first be created with the m command. The
back quotation mark {) moves you to the exact location
of the mark within a line; the forward quotation mark (°)
moves you to the beginning of the line containing the
mark. Note that these commands are also legal cursor
movement commands.

Ezit and Escape Commande

There are several commands that are used to escape from vi com-
mand mode and to exit the editor. These are described below:

Ex Escape -
Syntax:

Function: Enters ex escape mode to execute an ex command. The
colon appears on the status line as a prompt for an ex
command. You then can enter an ex command line ter-
minated by either a RETURN or an ESC and the ex com-
mand will execute. You are then prompted to type
RETURN to return to vi command mode. During the
input of the ex command line or during execution of the
ex command you may press INTERRUPT to abort what
you are doing and return to vi command mode.

Exit Editor - Z2Z
Syntax: 2z

Function: Exit vi and write out the file if any changes have been
made. This returns you to the shell from which you

March 26, 1984 Page 17

VI (C) VI(C)

invoked vi.
Quit to Ex - Q
Syntax: Q

Function: Enters the ex editor. When you do this, you will still be
editing the same file. You can return to vi by typing the
vi command from ex.

Ex Commands

Typing the colon (:) escape command when in command mode, pro-
duces a colon prompt on the status line. This prompt is for a com-
mand available in the line-oriented editor, ex. In general, ex com-
mands let you write out or read in files, escape to the shell, or switch
editing files.

Many of these commands perform actions that affect the ‘‘current’
file by default. The current file is normally the file that you named
when you invoked vi, although the current file can be changed with
the ‘“‘file’’ command, f, or with the ‘‘next’ command, n. In most
respects, these commands are identical to similar commands for the
editor, ed. All such ex commands are aborted by either a RETURN
or an ESC. We shall use a RETURN in our examples. Command
entry is terminated by typing an INTERRUPT.

Command Structure

Most ex command names are English words, and initial prefixes of
the words are acceptable abbreviations. In descriptions, only the
abbreviation is discussed, since this is the most frequently used form
of the command. The ambiguity of abbreviations is resolved in
favor of the more commonly used commands. As an example, the
command substitute can be abbreviated s while the shortest avail-
able abbreviation for the set command is se.

Most commands accept prefix addresses specifying the lines in the
file that they are to affect. A number of commands also may take a
trailing count specifying the number of lines to be involved in the
command. Counts are rounded down if necessary. Thus, the com-
mand ‘“10p’* will print the tenth line in the buffer while ‘““move 5"’
will move the current line after line 5.

Some commands take other information or parameters, stated after
the command name. Examples might be option names in a set com-
mand, such as ‘“‘set number’’, a filename in an edit command, a reg-
ular expression in a substitute command, or a target address for a
copy command, such as

March 26, 1984 v Page 18

VI(C) VI(Q)

1,5 copy 25

A number of commands have variants. The variant form of the
command is invoked by placing an exclamation mark (!} immedi-
ately after the command name. Some of the default variants may be
controlled by options; in this case, the exclamation mark turns off
the meaning of the default.

In addition, many commands take flags, including the characters ‘‘p”’
and “‘I’. A “p” or “I” must be preceded by a blank or tab. In this
case, the command abbreviated by these characters is executed after
the command completes. Since ex normally prints the new current
line after each change, p is rarely necessary. Any number of plus
(+) or minus (-) characters may also be given with these flags. If
they appear, the specified offset is applied to the current line value
before the printing command is executed.

Most commands that change the contents of the editor buffer give
feedback if the scope of the change exceeds a threshold given by the
report option. This feedback helps to detect undesirably large
changes so that they may be quickly and easily reversed with the
undo command. After commands with global effect, you will be
informed if the net change in the number of lines in the buffer dur-
ing this command exceeds this threshold.

Command Addressing

The following specifies the line addressing syntax for ex commands:
The current line. Most commands leave the current
line as the last line which they affect. The default
address for most commands is the current line, thus

. is rarely used alone as an address.

n The nth line in the editor’s buffer, lines being num-
bered sequentially from 1.

$ The last line in the buffer.
% An abbreviation for ‘‘1,$”’, the entire buffer.
+nor-n An offset, nrelative to the current buffer line. The

forms “.+37 “+43” and “+++" are all
equivalent. If the current line is line 100 they all
address line 103.

[pattern/ or ? pattern?
Scan forward and backward respectively for a text
matching the regular expression given by pattern.
Scans normally wrap around the end of the buffer.
If all that is desired is to print the next line contain-
ing pattern, then the trailing slash (/) or question

March 26, 1984 Page 19

VI(C) | VI(C)

mark (?) may be omitted. If pattern is omitted or
explicitly empty, then the string matching the last
specified regular expression is located. The forms
““RETURN” and “?RETURN’’ scan using the last
named regular expression. After a substitute,
‘‘RETURN’ and “??RETURN” would scan using
that substitute’s regular expression.

or 'z Before each nonrelative motion of the current line
dot {.), the previous current line is marked with a
label, subsequently referred to with two single quo-
tation marks (“). This makes it easy to refer or
return to this previous context. Marks are esta-
blished with the vi m command, using a single
lowercase letter as the name of the mark. Marked
lines are later referred to with the notation

’

2.
where 2z is the name of a mark.

Addresses to commands consist of a series of addresses, separated
by a colon (,) or a semicolon (;). Such address lists are evaluated
left to right. When addresses are separated by a semicolon (;) the
current line (.) is set to the value of the previous addressing expres-
sion before the next address is interpreted. If more addresses are
given than the command requires, then all but the last one or two
are ignored. If the command takes two addresses, the first addressed
line must precede the second in ' the buffer. Null address
specifications are permitted in a list of addresses, the default in this

case is the current line **.”’; thus **,100"’ is equivalent to ‘*.,100"". It
is an error to give a prefix address to a command which expects
none.

Command Format

The following is the format for all ex commands:
[addrese [command] [!] [parameters] [count] [flage]

All parts are optional depending on the particular command and its
options. The following section describes specific commands.

Argument List Commands

The argument list commands allow you to work on a set of files, by
remembering the list of filenames that are specified when you invoke
vi. The args command lets you examine this list of filenames. The
file command gives you information about the current file. The n
(next) command lets you either edit the next file in the argument
list or change the list. And the rewind command lets you restart

March 26, 1984 Page 20

VI (C) vi(cC)

editing the files in the list. All of these commands are described
below: .

args The members of the argument list are printed, with
the current argument delimited by brackets. For
example, a list might look like this:

filel file2 [file3] file4 filed
The current file is file$.

f Prints the current filename, whether it has been
modified since the last write command, whether it is
readonly, the current linenumber, the number of
lines in the buffer, and the percentage of the buffer
that you have edited. In the rare case that the
current file is ‘‘[Not edited]’’ this is noted also; in
this case you have to use the form “‘w!” to write to
the file, since the editor is not sure that a w com-
mand will not destroy a file unrelated to the current
contents of the buffer.

f file The current filename is changed to file which is con-
sidered ‘'[Not edited]”".

n The next file in the command line argument list is
edited. :

n! This variant suppresses warnings about the
modifications to the buffer not having been written
out, discarding irretrievably any changes that may
have been made.

n [+ command] filelist
The specified filelist is expanded and the resulting list
replaces the current argument list; the first file in the
new list is then edited. If command is given (it must
contain no spaces), then it is executed after editing
the first such file.

rew The argument list is rewound, and the first file in the
list is edited.

rew! Rewinds the argument list discarding any changes
made to the current buffer.

Edit Commands

To edit a file other than the one you are currently editing, you will
often use one of the variations of the e command.

March 26, 1984 Page 21

VI(©) VI (C)

In the following discussions, note that the name of the current file is
‘always remembered by vi and is specified by a percent sign (%). The
name of the previous file in the editing buffer is specified by a
number sign (#).

The edit commands are described below:

e file Used to begin an editing session on a new file. The edi-
tor first checks to see if the buffer has been modified
since the last w command was issued. If it has been; a
warning is issued and the command is aborted. The com-
mand otherwise deletes the entire contents of the editor
buffer, makes the named file the current file and prints
the new filename. After ensuring that this file is sensible,
(i.e., that it is not a binary file, directory, or a device),
the editor reads the file into its buffer. If the read of the
file completes without error, the number of lines and
characters read is printed on the status line. If there were
any non- ASCII characters in the file they are stripped of
their non—- ASCII high bits, and any null characters in the
file are discarded. If none of these errors occurred, the
file is considered edited. If the last line of the input file is
missing the trailing newline character, it is supplied and a
complaint issued. The current line is initially the first line
of the file.

e! file ‘This variant form suppresses the complaint about
modifications having been made and not written from the
editor buffer, thus discarding all changes that have been
made before editing the new file.

e +n file
Causes the editor to begin editing at line n rather than at
the first line. The argument n may also be an editor com-
mand containing no spaces; for example, ‘‘+ [pattern’’.

CNTRL-*
This is a shorthand equivalent for ‘‘:e #RETURN”,
which returns to the previous position in the last edited
file. If you do not want to write the file you should use
‘‘;e! #RETURN"’ instead.

Wnte Commands

The write commands let you write out all or part of your editing
buffer to either the current file or to some other file. These com-
mands are described below:

w file ; ,
Writes changes made back to file, printing the number of lines
and characters written. Normally, fle is omitted and the buffer
is written to the name of the current file. If file is specified,

March 26, 1984 Page 22

VI (C) vI(C)

then text will be written to that file. The editor writes to a file
only if it is the current file and is edited, or if the file does not
exist. Otherwise, you must give the variant form w! to force
the write. If the file does not exist it is created. The current
filename is changed only if there is no current filename; the
current line is never changed.

If an error occurs while writing the current and edited file, the
editor prints

No write since last change
even if the buffer had not previously been modified.

w>> file
Appends the buffer contents at the end of an existing file. Pre-
vious file contents are not destroyed.

w! name
Overrides the checking of the normal write command, and
writes to any file that the system permits.

w lcommand
Writes the specified lines into command. Note the difference
between

w! file
which overrides checks and
w lemd

which writes to a command. The output of this command is
displayed on the screen and not inserted in the editing buffer.

Read Commands

The read commands let you read text into your editing buffer at any
location you specify. The text you read in must be at least one line
long, and can be either a file or the output from a command.

r file Places a copy of the text of the given file in the editing
buffer after the specified line. If no file is given then the
current filename is used. The current filename is not
changed unless there is none, in which case the file
becomes the current name. If the file buffer is empty and
there is no current name then this is treated as an e com-
mand.

Address 0 is legal for this command and causes the file to

be read at the beginning of the buffer. Statistics are given
as for the e command when the r successfully terminates.

March 26, 1984 Page 23

vi(C) . ‘ VI(C)

After an r the current line is the last line read.

r leommand
Reads the output of command into the buffer after the
specified line. A blank or tab before the exclamation
mark (!) is mandatory.

Quit Commands

There are several ways to exit vi. Some abort the editing session,
some write out the editing buffer before exiting, and some warn you
if you decide to exit without writing out the buffer. All of these
ways of exiting are described below:

q Exits vi. No automatic write of the editor buffer to a file
is performed. However, vi issues a warning message if
the file has changed since the last w command was
issued, and does not quit. Vi will also issue a diagnostic
if there are more files in the argument list left to edit.
Normally, you will wish to save your changes, and you
should give a w command. If you wish to discard them,
use the ‘‘q!’’ command variant.

q - Quits from the editor, discarding changes to the buffer
without complaint. ' '

wq name Like a wand then a q command.

wq! name This variant overrides checking of the w command so
that you can write to file that the system allows.

x name If any changes have been made and not written, writes
the buffer out and then quits. Otherwise, it just quits.

Global and Substitute Commande

The global and substitute commands allow you to perform complex
changes to a flle in a single command. Learning how to use these
commands is a must for the serious user of vi.

g/pattern[cmds
The g command has two distinct phases. In the first
phase, each line matching patiern in the editing buffer is
marked. Next, the given command list is executed with
the current line, dot (.), initially set to each marked line.

The command list consists of the remaining commands
on the current input line and may continue to multiple
lines by ending all but the last such line with a backslash
(\)- This multiple-line option will not work from within
vi, you must switch to ex to do it. If ¢mds (or the trailing

March 26, 1984 Page 24

VI(C) VI (C)

slash (/) delimiter) is omitted, then each line matching
pattern is printed.

The g command itself may not appear in e¢mds. The
options autoprint and autosndent are inhibited during a glo-
bal command and the value of the report option is tem-
porarily infinite, in deference to a report for the entire glo-
bal. Finally, the context mark () or (') is set to the
value of the current line (.) before the global command
begins and is not changed during a global command.

The following global commands, most of them substitu-
tions, cover the most frequent uses of the global com-
mand.

g/sl/p This command simply prints all lines that contain
the string ‘‘s1’’ .

g/sl/s/[s2/ This command substitutes the first occurrence of
““s1” on all lines that contain it with the string
“52,’-

g/sl/s//s2/g This command substitutes all occurrences of “s1”
with the string “s2”’. This includes multiple
occurrences of ‘‘s1’’ on a line. :

g/s1/s//s2/gp This command works the same as the preceding
example, except that in addition, all changed lines
are printed on the screen.

g/s1/s//s2/gc This command asks you to confirm that you want to
make each substitution of the string ‘‘s1’’ with the
string ‘‘s2’’. If you type a ‘‘y’’ then the given sub-
stitution is made, otherwise it is not.

g/s0/s/s1/s2/g This command marks all those lines that contain the
string ‘‘s0”’, and then for those lines only, it substi-
tutes all occurrences of the string ‘‘s1’’ with *‘s2’’.

g!/pattern/cmds This variant form of g runs emds at each line not
matching pattern.

s/pattern/repl/ options
On each specified line, the first instance of text
matching the regular expression pattern is replaced
by the replacement text repl. If the global indicator
option character ‘‘g’’ appears, then all instances on
a line are substituted. If the confirm indication char-
acter ‘‘c’’ appears, then before each substitution the
line to be substituted is printed on the screen with
the string to be substituted marked with caret (")
-characters. By typing a ‘‘y"’, you cause the substitu-
tion to be performed; any other input causes no

March 26, 1984 Page 25

vi(C) . o VI(C)

change to take place. After an s command the
current line is the last line substituted.

v/patternf/emds A synonym for the global command variant g!, run-
ning the specified emds on each line that does not
match pattern.

Tezt Movement Commande

The text movement commands are largely superseded by commands
available in vi command mode. However, the following two com-
mands are still quite useful.

co addr flage A copy of the specified lines is placed after addr,
which may be *“0”’ . The current line **.”” addresses
the last line of the copy.

|rangelmaddr The m command moves the lines specified by range
‘ after the line given by addr. For example, “‘m+ "’
swaps the current line and the following line, since
the default range is just the current line. The first
of the moved lines becomes the current line (dot).

Shell Escape Commands

You will often want to escape from the editor to execute normal
commands. You may also want to change your working directory so
that your editing can be done with respect to a different working
directory. These operations are described below:

ed directory The specified directory becomes the current direc-
tory. If no directory is specified, the current value
of the home option is used as the target directory.
After a cd the current file is not considered to have
been edited so that write restrictions on preexisting
files still apply.

sh A new shell is created. You may invoke as many
commands as you like in this shell. To return to vi,
type a CNTRL-D to terminate the shell.

Ycommand The remainder of the line after the exclamation (!)
' is sent to a shell to be executed. Within the text of
command the characters 9%’ and “#’’ are
expanded as the filenames of ‘the current file and
the last edited file and the character *‘!’’ is replaced
with the text of the previous command. Thus, in
particular, ‘‘!!’’ repeats the last such shell escape. If
any such expansion is performed, the expanded line
is echoed. The current line is unchanged by this
command.

March 26, 1984 Page 26

VI (C) Vi(C)

If there has been ‘‘[No write]”” of the buffer contents since the last
change to the editing buffer, then a diagnostic is printed before the
command is executed as a warning. A single exclamation (!) is
printed when the command completes. '

Other Commands

The following command descriptions explain how to use miscellane-
ous ex commands that do not fit into the above categories:

abbr Maps the first argument to the following string. For
example, the following command

:abbr.rainbow yellow green blue red

maps ‘‘rainbow’’ to ‘‘yellow green blue red”’. Abbrevia-
tions can be turned off with the unabbreviate command,
as in:

:una rainbow

map, map!
Maps any character or escape sequence to an existing
command sequence. Characters mapped with map! work
only in insert mode, while characters mapped with map
work only in command mode.

nu Prints each specified line preceded by its buffer line
number. The current line is left at the last line printed.
To get automatic line numbering of lines in the buffer,
set the number option.

preserve The current editor buffer is saved as though the system
had just crashed. This command is for use only in emer-
gencies when a.w command has resulted in an error and
you don’t know how to save your work.

= Prints the line number of the addressed line. The current
line is unchanged.

recover file
Recovers file from the system save area. The system
saves a copy of the editing buffer only if you have made
changes to the file, the system crashes, or you execute a
preserve command. Except when you use preserve you
will be notified by mail when a file is saved.

set argument
With no arguments, set prints those options whose values
have been changed from their defaults; with the argu-
ment all it prints all of the option values.

March 26, 1984 - Page 27

VI(C) . VI(C)

“@Giving an option name followed by a question mark (?) causes the
current value of that option to be printed.” The **?"’ is unnecessary
unless the option is Boolean valued. Switch options are given values
either with ,

set option

to turn them on or
set nooption

to turn them off. String and numeric options are assigned with
set optz’on=vajue

More than one parameter may be given to set; all are ihterpretzd
from left to right.

tag label
The focus of editing switches to the location of label. If neces-
sary, vi will switch to a different file in the current directory to
find label. If you have modified the current file before giving a
tag command, you must first write it out. If you give another
-tag command with no argument, then the previous label is used.

. Similarly, if you type only a CNTRL-], vi searches for the word
immediately after the cursor as a tag. This is equivalent to typ-
ing ““:tag”’, this word, and then a RETURN.

The tags file is normally created by a program such as ctags, and
consists of -a number of lines with three fields separated by
blanks or tabs.. The first field gives the name of the tag, the
second the name of the file where the tag resides, and the third
gives an addressing form which can be used by the editor to find

- the tag. This field is usually a contextual scan using /pattern/
to be immune to minor changes in the file. Such scans are
always performed as if the nomagic option was set. The tag
names in the tags file must be sorted alphabetically. There are a
number of options that can be set to affect the vi environment.
These can be set with the ex set command either while editing
or immediately after vi is invoked in the vi start-up file, .ezrc.

The first thing that must be done before you can use vi, is to set the
" terminal type so that vi understands how to talk to the particular ter-
“minal you are using.

Each time vi-is invoked, it reads commands from the file named
.ezr¢ in your home directory. This file normally sets the user’s pre-
ferred options so that they need not be set manually each time you
invoke vi. "Each of the options is described in detail below.

March 26, 1984 Page 28

VI(C) vi(C)

Options

There are only two kinds of options: switch options and string
options. A switch option is either on or off. A switch is turned off
by prefixing the word no to the name of the switch within a set com-
mand. String options are strings of characters that are assigned
values with the syntax option=string. Multiple options may be
specified on a line. Vioptions are listed below:

autoindent, ai -default: noai

Can be used to ease the preparation of structured program text.
For each line created by an append, change, insert, open, or
substitute operation, vi looks at the preceding line to determine
and insert an appropriate amount of indentation. To back the
cursor up to the preceding tab stop, you can type CNTRL-D.
The tab stops going backward are defined as multiples of the
shiftwidth option. You cannot backspace over the indent, except
by typing a CNTRL-D.

Specially processed in this mode is a line with no characters
added to it, which turns into a completely blank line (the whi-
tespace provided for the autoindent is discarded.) Also specially
processed in this mode are lines beginning with a caret (") and
immediately followed by a CNTRL-D. This causes the input to
be repositioned at the beginning of the line, but retains the pre-
vious indent for the next line. Similarly, a ‘0" followed by a
CNTRL-D repositions the cursor at the beginning but without
retaining the previous indent. Autoindent doesn’t happen in glo-
bal commands.

autoprint ap default: ap
Causes the current line to be printed after each ex copy, move,
or substitute command. This has the same effect as supplying a
trailing “‘p”’ to each such command. Autoprnt is suppressed in
globals, and only applies to the last of many commands on a

line.

autowrite, aw default: noaw
Causes the contents of the buffer to be automatically written to
the current file if you have modified it when you give a next,
rewind, tag, or ! command, or a CNTRL-" (switch files) or
CNTRL-] (tag go to) ¢cémmand.

beautify, bf default: nobeautify .
Causes all control characters except tab, new line and formfeed
to be discarded from the input. A complaint is registered the
first time a backspace character is discarded. Beautify does not
apply to command input.

directory, dir default: dir==/tmp
Specifies the directory in which vi places the editing buffer file.
If this directory is not writable, then the editor will exit abruptly
when it fails to write to the buffer file.

March 26, 1984 : Page 29

VI (©) o VI(©)

edcompatible default: noedcompatible
Causes the presence or absence of g and c suffixes on substitute
‘commarnds to' be remembered, and to-be toggled on and off by
- repeating the suffixes. The suffix r causes the substitution to be
like the command, instead of like &.

errorbells,eb - default: noeb
‘ Error messages are preceded by a bell. If possible, the editor
always places the error message in inverse video instead of ring-
ing the bell.

hﬁdtabs, ht default: ht=8
- Gives the boundaries on which terminal hardware tabs are set or
on which‘the system qxpa.nds tabs.

ignorecase, ic default. noic
Maps all uppercase characters in the text to lowercase in regular
expression matching. In addition, all uppercase characters in
regular expressions are mapped to lowercase except in character
class specifications enclosed in brackets.

lisp default: nolisp
Autoindent indents appropnatzly for LISP code, and the OO
and]} commands are modxﬁed to have meaning for LISP.

list default: nolist
All printed lines will be dlsplayed unambxguously, showing tabs
and end-of-lines..

magic default: magic
If nomagic is set, the number of regular expression metacharac-
ters is greatly reduced, with only up-arrow (°) and dollar sign
(8) having special effects. In addition the metacharacters ‘™
and ‘& in replacement patterns are treated as normal charac-
ters. All the normal metacharacters may be made magic when
nomagic is set by preceding them with a backslash (\).

mesg default: nomesg
Causes write permission to' be turned off to the terminal while
you are-in visual mode, if nomeeg is set. This prevents people
writing to your screen with the write comma.nd and scrambling
your screen as you edit. ;

number, n default: nonumber
-Causes all output lines to be printed with their line numbers.

open default..open ‘
If set to noopen, the commands open and wsual are not permit-
ted from ex. This is set to prevent confusion resulting from
accidental entry to open or-visual mode.

opt.xmlze. opt default. optimize -
Output of text to the screen is expedited by settmg the terminal

~‘March 26, 1984 - Page 30

VI (C) VI(C)

so that it does not perform automatic carriage returns when
printing more than one line of output, thus greatly speeding out-
put on terminals without addressable cursors when text with
leading whitespace is printed.

paragraphs, para default: para=IPLPPPQPP TPbp
Specifies paragraph delimiters for the { and } operations. The
pairs of characters in the option’s value are the names of the
nrofl macros that start paragraphs.

prompt default: prompt
Ex input is prompted for with a colon (:). If noprompt is set,
when ex command mode is entered with the Q command, no
colon prompt is displayed on the status line.

redraw default: noredraw:
The editor simulates (using great amounts of output), an intelli-
gent terminal on a dumb terminal. Useful only at very high
speed.

remap default: remap
If on, mapped characters are repeatedly tried until they are
unchanged. For example, if o is mapped to O and O is mapped
to I, o will map to /if remap is set, and to O if noremap is set.

report default: report=>5

Specifies a threshold for feedback from commands. Any com-
mand that modifies more than the specified number of lines will
provide feedback as to the scope of its changes. For global com-
mands and the undo command, which have potentially far
reaching scope, the net change in the number of lines in the
buffer is presented at the end of the command, subject to this
same threshold. Thus notification is suppressed during a g com-
mand on the individual commands performed. :

scroll default: scroll=window
Determines the number of logical lines serolled when CNTRL-D
is received from a terminal input in command mode, and the
number of lines printed by a command mode z command (dou-
ble the value of scroll).

sections default: sections=SHNHH HU
Specifies the section macros for the [[and]] operations. The
pairs of characters in the option’s value are the names of the
nrofl macros that start paragraphs.

shell, sh default: sh=/bin/sh
Gives the pathname of the shell forked for the shell escape
command ‘““!”” | and by the shell command. The default is

taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8
Gives the width of a software tab stop, used in reverse tabbing

March 26, 1984 ' Page 31

VI(C) ‘VI(C)

with CNTRL-D when‘using autoindent to append text, and by the
shift commands.

showmatch, sm default: nosm
When a) or } is typed, moves the cursor to the matching { or {
for one second if this matching character is on the screen.

tabstop, ts default: ts==8
The editor expands tabs in the input ﬁle to be on tabstop boun-
daries for the purposes of display.

taglength, tl default: t]==0 ‘
The first taglength characters in a tag name are significant, but
all others are ignored. A value of zero (the default) means that
all characters are significant.

" tags default: tags==tags [usr/lib/tags
A path of files to be used as tag files for the tag command. A
requested tag is searched for in the specified files, sequentially.
By default files named. tag are searched for in the current direc-
tory and in fusr/lib.

term . default=value of shell TERM variable
The terminal type of the output device.

terse default: noterse »
Shorter error diagnostics are produced for the experienced user.

warn default: warn
Warn if there has been *“{No write since last change]” before a
shell escape command (!).

window default: window=speed dependent
This specifies the number of lines in a text window. The default
is 8 at slow speeds (600 baud or less), 16 at medium speed
(1200 baud), and the full screen (minus one line} at higher
speeds.

w300, w1200, w9600
"These are not true options but set window (above) only if the
speed is slow (300), medium (1200), or high {9600), respec-
tively.

wrapscan, ws - default: ws
Searches using the regular expressions in addressing w1ll wrap
around past the end of the file.

wrapmargin, wm " default: wm=0
Defines the margin for automatic insertion of newlines during
text input. A value of zero specifies no wrap margin.

writeany, wa default: nowa
Inhibits the checks normally made before write commands,

March 26, 1984 Page 32

VI(C) vi(cC)

allowing a write to any file that the system protection mechan-
ism will allow.

Regular Expressions

A regular expression specifies a set of strings of characters. A
member of this set of strings is said to be matched by the regular
expression. Vi remembers two previous regular expressions: the
previous regular expression used in a substitute command and the
previous regular expression used elsewhere, referred to as the previ-
ous scanning regular expression. The previous regular expression

can always be referred to by a null regular expression: e.g., *“//"’ or
<o , 39

The regular expressions allowed by vi are constructed in one of two
ways depending on the setting of the magic option. The ex and vi
default setting of magsc gives quick access to a powerful set of regu-
lar expression metacharacters. The disadvantage of magic is that the
user must remember that these metacharacters are magic and pre-
cede them with the backslash (\) to use them as ‘‘ordinary’’ charac-
ters. With nomagsc set, regular expressions are much simpler, there
being only two metacharacters. The power of the other metacharac-
ters is still available by preceding the now ordinary character with a
“\”’. Note that ‘“\’’ is thus always a metacharacter. In this discus-
sion the magic option is assumed. With nomagic the only special
characters are the caret (°) at the beginning of a regular expression,
the dollar sign ($) at the end of a regular expression, and the
backslash (\). The tilde (°) and the ampersand (&) also lose their
special meanings related to the replacement pattern of a substitute.

The following basic constructs are used to construct magic mode reg-
ular expressions.

char :
An ordinary character matches itself. Ordinary characters are
any characters except a caret { °) at the beginning of a line, a
dollar sign ($) at the end of line, a star (¢) as any character
other than the first, and any of the following characters:

N

These characters must be escaped (i.e., preceded) by a backslash
(\) if they are to be treated as ordinary characters.

At the beginning of a pattern this forces the match to succeed
only at the beginning of a line.

$§ At the end of a regular expression this forces the match to
succeed only at the end of the line.

Matches any single character except the newline character,

March 26, 1984 Page 33

Vi(C) VI(0)

\< Forces the match to occur only at the beginning of a “word”’;
that is, either at the beginning of a line, or just before a letter,
digit, or underline and after a character not one of these.

\> Similar to ‘“\<”, but matching the end of a ‘‘word”, i.c. either
" the end of the line or before a character which is not a letter, a
digit, or the underline character.

otrin, .

[N)awhea any single character in the class defined by string. Most
characters in etring deﬂne themselves. A pair of characters
-separated by a dash (-) in string defines the set of characters
between the specxﬁed lower and upper bounds, thus *‘[a- 5]’ as
a regular expressxon matches any smsle lowercase letter. If the
first character of string is a caret () then the construct matches
those characters which it otherwise would not. Thus *‘[*a- 3]
matches anything but a lowercase letter or a newline. To place
any of the characters caret, left bracket, or dash in etring they
must be escaped with a preceding backslash ().

The concatenation of two regular expressions first matches the left-
most regular expression and then the longest string that can be
recognized as a regular expression.- The first part of this new regular
expression matches the first regular expression and the second part
matches the second. Any of the single character matching regular
expressions mentioned above may be followed by a ‘‘star’ () to
form a regular expression that matches gzero or more adjacent
occurrences of- the characters matched by the prefixing regular
expression. The tilde (") may be used in a regular expression to
match the text that defined the replacement part of the last s com-
mand. A regular expression may be enclosed between the sequences
~“*\("* and **\)” to remember the text matched by the enclosed regu-
lar expression. This text can later be mterpolated into the replace-
ment text using the notation

\digit
where digit enumerates the set of remembered regular expressions.

The basic metacharacters for the replacement pattern are the amper-
sand (&) and the tilde (7) these are given as ‘‘\&” and “\™ when
nomogic is set. Each instance of the ampersa.nd is replaced by the
characters matched by the regular expression. In the replacement '
pattern the t.xlde stands for the text of the previous replacement pat-
tern. .

- Other metasequences possible in the replacement pattern are always
introduced by a backslash (\). The sequence ‘*\n’’ is replaced by the
text matched by the nth regular subexpression enclosed between
“\(”” and “\)” When nested, parenthesized subexpressions are
present, n is determined by counting occurrences of ‘‘\(”’ starting
from the left. The sequences “‘\u’’ and **\I"” cause the immediately
following character in the replacement to be converted to uppercase

March 26, 1984 ' Page 34

VI (C) VI(©)

or lowercase, respectively, if this character is a letter. The sequences

*\U" and **\L” turn such conversion on, either until ‘“‘\E" or ““\e”

is encountered, or until the end of the replacement pattern.
Limitations

When using vi, you should note the following limita:‘

250,000 lines in a file

1024 characters per line

256 characters per global command list

128 characters per filename

128 characters in the previous inserted and deleted text

100 characters in a shell escape command

63 characters in a string valued option

30 characters in a tag name

Notes

The fusr flib [ez2.18preserve program can be used to restore vi buffer
files that were lost as a result of a system crash. The program
searches the /tmp directory for vi buffer files and places them in the
directory fusr/preserve. The owner can retrieve these files using the
- r option.

The [uer[lib [ez2.18preserve program must be placed in the system
startup file, fetc/rc, before the command that cleans out the /tmp
directory. See the XENIX Operations Guide for more information on
[fete/re.

March 26, 1984 Page 35

VSH(C) ‘ ' VSH(C)

Name :
’ vsh — menu driven visual shell
Syntax k

vsh

Description
Vsh is a highly interactive, visually oriented shell which eases
many XENIX activities. The vsh features both standard and cus—
tomizable XENIX command menus and on-line help. The vsh
displays information and menus in windows on the screen. To
enter vsh, simply type

vsh

from a shell prompt. Vsh can also be made a user’s default shell
by changing their shell entry in /etc/passwd (the last colon—
separated field). Help is available from all menus by typing the
question mark character.

The very last line of the screen is a status line. The status line
displays the current pathname, the date, time and operating system
name. If you have new mail, the status line will indicate so.
Above the status line is the message line, which dxsplays messages,
error or otherwise, from vsh.

A command menu is displayed at the bottom of the screen. The
standard menu contains a range of commonly used XENIX com—
mands. Above the command menu is the output window. This
window contains a scrolling display of the output from commands.
This window is not visible at start—up, but is displayed whxle run—
ning certain commands such as ‘="',

In the top of the screen is a window with a listing of the current
working directory. To alter the size of this window use the Win—
dow command from the main command menu. Items in the listing
window may be selected using standard key commands (q.v.).
Two special key commands are used with the listing window. The
equals sign ‘=’ (‘SHOW’) key displays the contents of the
currently selected file or directory. The minus sign ‘~’ (‘GOA—
WAY’) key will return you to the listing window.

Commands may be invoked in one of two ways. A command can
be selected by pressing the first letter of its name. Alternatively,
press the space bar. Each time the space bar is pressed, the next
menu item will be highlighted. This highlighting indicates that the
command has been selected. Backspace moves to the previous

- May 10, 1984 » Page 1

VSH(C) | VSH(C)

selection.

Once a command is selected, press the return key. A menu is
displayed which gives the valid arguments for the particular com—
mand. The default choice is shown in parentheses, e.g.:

recursive: Yes (No)

To send the output to another program, one may type a vertical bar
in the “‘output:”’ field of the commands’ menu.

When the menu is filled in, press RETURN to start the command.

Main Menu Commands
The following menu options are available from the standard main
menu. Certain sub—commands are available under the Options
selection. These are described in the next section.

Copy Copy a file to a new file. Copy the contents of a directory
to a new directory. '

Delete Delete a file or directory.

Edit Invoke an editor for a file. Default is the visual editor
vi(C). '

Help Get help on diverse topics. A menu is displayed at the

’ bottom of the screen of available help topics.

Mail Send or read XENIX mail.

Name Rename a directory or file.

Options Perform various commands. See OPTIONS section.

Print Print file or files on systems’ lineprinter.

Quit Quit the visual shell.

Run Run a specified XENIX command or applications pro—
gram.

View View a specified file or directory listing. This file or
directory listing will be displayed in the upper window.
Use the vsh scrolling commands to move around (see
KEY COMMANDS Section).

Window
Reset upper window ‘redraw’ characteristics and height.

Options Subcommand

May 10, 1984 - Page 2

VSH(C) VSH(C)

The Options selection on the main menu has several important
commands grouped under the selections Directory, Filesystem,
; Output, and Permissions. These are as follows:
Dlrectory _ ;
Make Make a direaory under current working directory.
Usage Display disk usage by number of blocks in current work—
A ing directory.
Filesystem .
Create Create a filesystem.
~ FilesCheck
‘ Check file system consistency.
Mount . Mount a file system on a specificd mount—point.
SpaceFree -

Report number of disk blocks avaxlable on all or some
mounted file systems.

Unmount :
Unmount specified file system if it is not currently busy.

Output ”
VShell Echo vsh commands in output window (default).

XENIX Echo actual XENIX commands in output window. For
instance, if running ‘‘Options Filesystem FilesCheck’’, the
command fsck will be displayed in the output window if
*‘Options Output Xenix" is set.

Permissions
Change penmssxons on a file or dxrectory

Key Commands
The following keyboard commands allow. editing of menus and
fields, and give access to various vsh features.

 <CTRL-E>
. Move the cursor up one line.
<CTRL-X>
Move the cursor down one line.
<CIRL-S$> ,
Move the cursor left one character.

<CIRL-D>
Move the cursor right one character.

- May 10, 1984 : Page 3

VSH(C) VSH(C)

<CTRL-R><CTRL-E>

Scroll page up.
<CTRL-R><CTRL-X>

Scroll page down,
<CTRL-R><CTRL-S>

Scroll page left.
<CTRL-R><CTRL-D>

Scroll page right.
<CTRL-Q>

Home. Go to start of menu.
<CTRL-Z>

End. Goto the end of menu.
<CTRL-C>

Cancel. Stop present operauon and return to the main

command menu.

<RETURN>
Start the present command.

<TAB>, <CTRL-I>, or <CTRL-A>
Move to and select entire contents of next field in com—
mand line.

<SPACE>
Select next item in menu.

<BACKSPACE> or <CTRL-H>
Sclect previous menu item. In editing command lists,
deletes character. Replacement text may then be typed.

<CTRL-Y> or

Delete selected character.
<CTRL-L>

Move to next character to right of current cursor position.
<CTRL-K>

Move to next character to left of current cursor position.
<CTRL-P>

‘ Move to next word to right of current cursor position.

<CTRL-O>

Move to next word to left of current cursor position.
? Help. Request information about the selected command

or command in progress at the time of the request.

May 10, 1984 Page 4

VSH(C)

May :10,

VSH(C)

Show. Display sub—directory listings and text files in
directory listings. Display submenus for commands in
main menu.

Goaway. Return listing window to current or parent
directory after a show command.

@ Display the Modify menu.
! Redraw the screen.
1 Display filter menu.
- Files
fust/lib/vsh/menu . def
standard menu definition file.
/ust/lib/vsh/.mnu
~ extension for customized command menus.
/usr/hb/vsh/VSHELL HPP
help file
Juse/lib/vsl/ VSHELL .HPT
* yet another help file .
Notes -

Mouse commands given in the help menus are not yet supported.

1984 Page 5

WAIT(C) ' WAIT(C)

Name

wait - Awaits completion of background processes.

Syntax

wait

Description

Waits until all background processes started with an ampersand (&)
have finished and reports on abnormal terminations.

Because the wait(S) system call must be executed in the parent pro-

cess, the shell itself executes wast, without creating a new process.
See Also

sh(C)

Notes

Not all the processes of a pipeline with three or more stages are chil-
dren of the shell, and thus cannot be waited for.

March 24, 1984 Page 1

WALL (C) WALL (C)
Name

wall - Writes to all users.

Syntax
Jetc/wall

Description
Wall reads a message from the standard input until an end-of-file. It
then sends this message to all users currently logged in preceded by
‘‘Broadcast Message from ..."". Wall is used to warn all users, for
example, prior to shutting down the system.

The sender should be super-user to override any protections the
users may have invoked.

Files
[dev [tty*

See Also

mesg(C), write(C)

Diagnostics

Cannot send to ... The open on a user’s tty file has failed.

March 24, 1984 ' Page 1

we(C) | we(c)

Name

wc ~ Counts lines, words and characters.

Syntax

wc | - Iwe] [names |

Description

We counts lines, words and characters in the named files, or in the
standard input if no names appear. It also keeps a total count for all
named files. A word is a maximal string of characters delimited by
spaces, tabs, or newlines.

The options 1, w, and ¢ may be used in any combination to specify
that a subset of lines, words, and characters are to be reported. The
default is — lwe.

When namee are specified on the command line, they will be printed
along with the counts.

March 24, 1984 Page 1

WHAT(C) : ' WHAT(C)

Name

what - Identifies files.

Syntax

what files

Description

What searches the given files for all occurrences 'of the pattern
@ (#) and prints out what follows until the first tilde ("), greater-
than sign (>), new-line, backslash (\} or null character. The SCCS
command get{ CP) substitutes this string as part of the @ (#) string.
For example, if the shell procedure in file print contains

@ (#)this’is the print program

@ (#)syntax: print [files]

pr $+ |lpr
then the command

what print

displays the name of the file print and the identifying strings in that
file:

print: .
this is the print program

syntax: print [files]

What is intended to be used with the get(CP) command, which
automatically inserts identifying information, but it-can also be used
where the information is inserted manually.

See Also
admin(CP), get(CP)

March 24, 1984 - Page 1

WHO (C) WHO (C)

Name

who - Lists who is on the system.

Syntax

who [who-file] [am1 |

Description

Who, without an argument, lists the login name, terminal name, and
login time for each current XENIX user.

Without an argument, who examines the /etc/utmp file to obtain its
information. If a file is given, that file is examined. Typically the
given file will be /usr/adm/wtmp, which contains a record of all the
logins since it was created. Then who lists logins, logouts, and
crashes since the creation of the wtmp file. Each login is listed with
user name, terminal name (with /dev/ suppressed), and date and
time. When an argument is given, logouts produce a similar line
without a user name. Reboots produce a line with x in the place of
the device name, and a fossil time indicative of when the system
went down.

With two arguments, as in who am I (and also who are you), wko
tells who you are logged in as.

Files

[etc/utmp

See Also

getuid(S), utmp(M)

March 24, 1984 ’ Page 1

WHODO (C) ' WHODO (C)

Name

whodo - Determines who is doing what.

Syntax
[etc /whodo
Description
Whodo produces merged, reformatted, and dated output from the

who(C) and ps(C) commands.

See Also
ps(C), who(C)

March 24, 1984 Page 1

WRITE (C) WRITE (C)

Name

write - Writes to another user.

Syntax

write user [tty]

Description

Write copies lines from your terminal to that of another user. When
first called, it sends the message:

Message from your-logname your-tty ...

The recipient of the message should write back at this point. Com-
munication continues until an end-of-file is read from the terminal
or an interrupt is sent. At that point, wnte writes

{end of message)
on the other terminal and exits.

If you want to write to a user who is logged in more than once, the
tty argument may be used to indicate the appropriate terminal.

Permission to write may be denied or granted by use of the mesg(C)
command. At the outset, writing is allowed. Certain commands, in
particular nroff{CT) and pr(C), disallow messages in order to
prevent messy output.

If the character ! is found at the beginning of a line, wnite calls the
shell to execute the rest of the line as a command. :

The following protocol is suggested for using wnte: when you first
write to another user, wait for him or her to write back before start-
ing to send. Each party should end each message with a distinctive
signal ((o) for ‘“‘over’” is conventional), indicating that the other
may reply; (oo) for ‘‘over and out’ is suggested when conversation
is to be terminated.

March 24, 1984 Page 1

WRITE (C) ' WRITE (C)
Files _

fetc/utmp To find user

/bin/sh To execute !
See Also

mail(C), mesg(C), who(C)

March 24, 1984 » ‘ Page 2

XARGS(C) XARGS (C)

Name

xargs - Constructs and executes commands.

Syntax

xargs | flags] | command [initial-arguments] |

Description

Xarge combines the fixed snitial-arguments with arguments read from
the standard input to execute the specified command one or more
times. The number of arguments read for each command invocation
and the manner in which they are combined are determined by the
flags speciﬁed.

Command, which may be a shell file, is searched for using the. shell
SPATH variable. If command is ommed /bin/echo is used.

Arguments read in from standard input are defined to be contiguous
strings of characters delimited by one or more blanks, tabs, or new-
lines; empty lines are always discarded. Blanks and tabs may be
embedded as part of an argument if escaped or quoted: Characters
enclosed in quotes (single or double) are taken literally, and the del-
imiting quotes are removed. Outside of quoted strings a backslash
(\) will escape the next character.

Each argument list is constructed starting with the snitial-arguments,
followed by some number of arguments read from standard input
(exception: see — i flag). Flags — i, - 1, and — n determine how
arguments are selected for each command invocation.” When none
of these flags are coded, the snitial-arguments are followed by argu-
ments read continuously from standard input until an internal buffer
is full, and then command is executed with the accumulated args.
This process is repeated until there are no more args. When there
are flag conflicts (e.g., — 1 vs. — n), the last flag has precedence.
Flag values are:

— lnumber Command is executed for each number lines of
nonempty arguments from the standard input. This is
instead of the default single line of input for each com-
mand. The last invocation of command will be with
fewer lines of arguments if fewer than number remain.
A line is considered to end with the first newline unless
the last character of the line is a blank or a tab; a trail-
ing blank/tab signals continuation through the next
nonempty line. If number is omitted 1 is assumed.
Option — x is forced. :

— irepletr Insert mode: command is executed for each line from
the standard input, taking the entire line as a single arg,

March 24, 1984 Page 1

XARGS(€)

. — nnumber

— géize

- ecofstr -

XARGS (C)

inserting it in {nitial-arguments for each occurrence of
replstr. A maximum of 5 arguments in snstial-arguments
may each contain one or more instances of replstr.
Blanks and tabs at the beginning of each line are
thrown away. Constructed arguments may not grow
larger than 255 characters, and option — x is also
forced. {}is assumed for replatr if not specified.

Executes command using as many standard input argu-
ments as possible, up to number arguments maximum.
Fewer ‘arguments will be used if their total size is
greater than ei2e characters, and for the last invocation
if there are fewer than number arguments remaining. If
option — x is also coded, each number arguments must
fit in the eize limitation, else zargs terminates execu-
tion.

Trace mode: The command and each constructed argu-
ment list are echoed to file descriptor 2 just prior to
their execution.

Prompt mode: The user is asked whether to execute
command each invocation. Trace mode (- t) is turned
on to print the command instance to be executed, fol-
lowed by a ?... prompt. A reply of y (optionally fol-
lowed by anything) will execute the command; anything
else, including just a carriage return, skips that particu-
lar invocation of command.

Causes zargs to terminate if any argument list would be
greater than size characters; — x is forced by the
options — i and — .. When neither of the options — i,
—~ 1, of = n are coded, the total length of all arguments
must be within the eize limit.

* The ' maximum total size of each argument list is set to
- size’ characters; size must be a positive integer less than

or equal to 470. If ~ s is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of

characters in the command name.

Eofstr is taken as the logical end-of-file string. Under-
score (._) is assumed for the logical EOF string if — e is
not codéd. — e with no eofetr coded turns off the logi-
cal EOF string capability (underscore ‘is taken literally).
Xarge reads standard input until either end-of-file or
the logical EOF string is encountered.

Xargs terminates if it either receives a return code of — 1 from, or if
it cannot execute, command. When command is a shell program, it
should explicitly ezit (see sk(C)) with an appropriate value to avoid
accidentally returning with — 1.

March 24, 1984

Page 2

XARGS (C) XARGS (C)

Examples

The following will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

Is $1 |xargs - i - ¢ mv $1/{} $2/{}

The following will combine the output of the parenthesized com-
mands onto one line, which is then echoed to the end of file log:

{lcgname; date; echo $0 $*) | xargs > >log

The user is asked which files in the current directory are to be
printed and prints them one at a time:

Is | xargs -~ p - 1 Ipr
Or many at a time:
Is | xargs - p - 1 | xargs lpr

The following will execute diff (C) with successive pairs of arguments
originally typed as shell arguments:

echo $* | xargs — n2 diff

March 24, 1984 Page 3

YES(C) : YES (©)
Name

yes < Prints string repeatedly.

Syntax

yes | string]

Description

Yes repeatedly outputs *‘y’’, or if a single string argument is given,
then arg is output repeatedly. The command will continue
indefinitely unless aborted. Useful in pipes to commands that
prompt for input and require a ‘'‘y’’ response for a yes. In this case,
yes terminates when the command it pipes to terminates, so that no
infinite loop oceurs.

March 24, 1984 Page 1

CONTENTS

Miscellaneous(M)
intro Introductiontomiscellaneous
featuresandfiles
aliases Micnet aliasing files
aliashash Micnet aliashashtable generator
ascii Mapofthe ASCl characterset
console Lisakeyboardand screen
daemon.mn Micnet mailer daemon
default Default program information
directory
environ Theuserenvironment
fd Lisall floppy devices
fixperm Correctorinitialize file
permissions and ownership
getty Setsterminalmode -
group Format ofthe groupfile
init Process control initialization
1d Invokesthelink editor
lisa Contrast — Lisaspecial devices
login Givesaccesstothe system
Ip Lineprinterdevice
. machine Descriptionofhostmachine
makekey Generatesanencryptionkey
mem, kmem Core memory image file
messages Descriptionof system console
messages
micnet TheMicnetdefault commandsfile
mouse Lisamouse pointing device
null Thenullfile
passwd The password file
pf ProFile disk drives
profile Scttingupanenvironmentat
logintime
systemid TheMicnet systemidentification
. file
termcap Terminal capability database
terminals Listof supportedterminals
top,top.next ~ TheMicnettopology files
tty Generalterminalinterface
ttys Loginterminalsfile

utmp, wtmp Formats of utmp and wtmp entries

Index

aliases.hashfile aliases
ASClIcharacter set aschi
Default information default
Description ofhost machine machine
/dev/ikmemfile mem
Encryption, key makekey
Environment, setup profile
Environment, user environ
faliasesfile aliases
Groupentries group
Initialization, system init
Lineprinter device Ip
Linkeditor d
floppy diskdrives Lisa
Lisakeyboardand screen console
Lisamouse pointing device mouse
Lisaspecialdevices lisa
Login, system login
Login, records utmp
maliasesfile aliases
Memory image, actual mem
Memory image, virtual mem
Messages, system messages
Micnet, aliashash file aliases
Micnet, alias hash program aliashash
Micnet, default commarnds micnet
Micnet, forwarding aliases aliases
Micnet, machinealiases aliases
Micnet, mailerdaemon dacmon.mn
Micnet, system identification systemid
Micnet, topology files top
Micnet, useraliases aliases
Nullfile null
Passwordentries passwd
ProFile pl
Terminal, capabilities termcap
Terminal, interface tty
Terminal, loginfile ttys
Terminal, loginmodes getty
Terminal, name list terminals
top.nextfile top
wtmp file utmp

INTRO (M) - INTRO(M)

Name

intro - Introduction to miscellaneous features and files.

Description
This section contains miscellaneous information useful in maintain-

ing the system. Included are descriptions of files, devices, tables and
programs that are important in maintaining the entire system.

March 24, 1984 Page 1

ALIASES (M) ALIASES (M)

Name

aliases, aliases.hash, maliases, faliases - Micnet aliasing files.

Description

These files contain the alias definitions for a Micnet network.
Aliases -are short names or abbreviations that may be used in the
mail command to refer to specific machines or users in a network.
Aliasing allows a complex combination of site, machine, and user
names to be represented by a single name.

The aliases, maliases, and faliases files each define a different type
of alias. The aliases file defines the standard aliases .which are
names for specific systems and users and, in some case, for com-
mands. The maliases file defines machine aliases, names and paths
for specific systems. The faliases file defines forwarding aliases
which are temporary names for forwarding mail intended for one
system or user to another.

The aliases.hash file is the hashed version of the aliases file created
-by the aliashash command. The file is used by the mail command to
resolve all standard aliases and is identical to the aliases file except
for a hash table at the beginning of the file. The hash table allows
for more efficient access to the entries in the file. The aliases file
need only be present to generate the aliases.hash file. The aliases
file is not required to run the network.

Each file contains zero or more lines. Each line lists the alias and its
meaning. The alias can have up to eight letters and numbers, but
must begin with a letter. The meaning can have site, machine, and
user login names and other aliases (its exact composition depends on
the type of alias). A colon (:) separating the alias and meaning is
required.

In the aliases file, a line can have the forms:

alias:{[site!] machine:] user|,[[site!] machine:}user]...

alias:|[site!]machine:] command-pipeline

alias:error-message
Site and machine are the site and machine names of the system to
which the user belongs or on which the specified command is to be
executed. The site and machine names must end with an exclama-
tion mark (!) or colon (:), respectively, and must be defined in a
systemid file. A machine alias may be used in place of a site and

machine name if it is followed by a question mark.

User is a user login name or another alias. User names.in a list must
- be separated by commas. A newline may immediately follow a

March 24, 1984 Page 1

ALIASES (M) ALIASES (M)

comma. Spaces and tabs are allowed, but only immediately before or
after 2 comma or newline.

Command-pipeline is any valid command (with necessary arguments)
preceded by a pipe symbol (|) and enclosed in double quotation
marks. Spaces may separate the command and arguments, but there
must be no space between the first double quotation mark and the
pipe symbol.

Error-message is any sequence of letters, numbers, and punctuation
marks (except a double quotation mark) preceded by a number sign
(#) and enclosed in double quotation marks.

In the faliases file, each line can have the same form as lines in the
aliases file except that no more than one user name can be given for
any one alias,

In the maliases file 2 line has the form:
alias:[[site!| machine:]...

Site and machine are the site and machine names for a specific net-
work and system. Multiple site and machine names direct messages
along the specified path of systems. If no site or machine name is
given, the alias is ignored.

Before the mail program sends a message, it searches the
aliases.hash, faliases, and maliases files to see if any of the names
given with the command are aliases. Each file is searched in turn,
(aliases.hash, faliases, then maliases) and if a match is found, the
alias is replaced with its meaning. If no match is found, the name is
assumed to be the valid login name of a user on that machine. The
search in the aliases.hash file continues until all aliases have been
replaced, so it is possible for several replacements to occur for a sin-
gle name. (If a loop exists, processing continues indefinitely.) The
faliases file is searched once, from beginning to end, even if it is
empty. The maliases file is searched only if the alias contains a
machine alias.

When an alias is a user or a list of users, the mad command sends
the message to each user in the list. When it is a2 command-pipeline,
the mail command starts execution of the command on the specified
machine and sends the message as input. When the alias is an
error-message, the mad command ignores the message and instead
displays the alias and its meaning at the standard error.

In all files, any line beginning with a number sign (#) is considered
a comment and is ignored.

As a special feature, any alias that contains a site name as the first
component of its meaning is automatically prepended with the
machine alias uucp?. This alias may be explicitly defined in the
maliases file to help direct mail between networks to the system

March 24, 1984 Page 2

ALIASES (M) ' ALIASES (M)

performing the uucp link.

Files
Jusr/flib/mail faliases
Jusr/lib/mail /aliases.hash
/ﬁsr/lib/mail/ma.liases
Jusr/lib/mail /faliases

See Also ‘
aliashash(M), netutil{C), systemid(M), top(M)

March 24, 1984 Page 3

ALIASHASH (M) ALIASHASH (M)

Name

aliashash - Micret alias hash table generator

Syntax

aliashash | -v | [-o output-file | [input-file]

Description

The aliashash command reads the input-file and generates a output-file
containing a hash table of alias definitions for a Micnet network.
The input-file must name a file containing alias definitions in the
form described for the aliases file (see alizses(M)). If the — o
option is not used to specify an output-file , the command creates a
file with the same name as the input-file but with .hash appended to
it. If no input-file is given, the command reads the file named
[usr/lib/mail /aliases and creates the file named
/usr/lib/mail /aliases.hash. '

If invoked with the — v option, the command lists information about
the hash table.

The output-file will contain both the alias definitions given in the
tnput-file and the new hash table. The hash table appears at the
beginning of the file and is separated from the alias definitions by a
blank line. The hash table has three or more lines. The first line is:

#<hash>

The second line has 4 entries: the bytes per table entry, the max-
imum number of items per hash value, the number of entries in the
table, and the offset (in bytes) from the beginning of the file to the
beginning of the alias definitions.

The next lines (up to the end of the hash table) contain the hash
table entries. FEach line has 8 entries (separated by spaces) and each
entry has 2 fields. The first field (1 byte) is a checksum
(represented as a printable character) the second field is a pointer (in
bytes) to the alias definition. The pointer is represented as a hexade-
cimal number with leading blanks if necessary and is always relative
to the start of the definitions.

The aliashash command is normally invoked by the snetall option of
the netutidd command. If the alias definitions of a network must be
changed, the definitions in the aliases file should be changed and a
new aliases.hash file created using the aliashash command. The
new aliases.hash file must then be copied to all other computers in
the network.

March 24, 1984 Page 1

ALIASHASH (M) : ALIASHASH (M)

Files
[usr/lib/mail/aliashash
Just/lib/mail/aliases
fusr/lib/mail/aliases.hash

See Also
aliases(M), netutil(C)

Warning
Do not use the aliashash command to create the aliases.hash file
while the network is running. If necessary, create a temporary out-
put file, aliases.hash- , using the —~ o option, then type:

myv aliases.hash- aliases.hash

This will prevent disruption of the network.

March 24, 1984 ‘ Page 2

ASCII (M)

Name

ascii - Map of the ASCII character set.

Description

ASCII (M)

Ascsi is amap of the ASCII character set. It lists both octal and hexa-
decimal equivalents of each character. It contains:

|000 nul |001
[010 bs |011
[020 dle |021
|030 can |031
1040 sp |041
1050 (|051
1060 0 |061
|070 8]071
100 @ 101
110 H 111
|120 P |121
130 X [131
140 ~ [141
(150 b [161
[160 p |161
j170 x 171
| 00 nul | 01
| 08 bs | 09
| 10 dle| 11
| 18 can| 19
| 20 sp | 21
|28 (| 29
| 300 |31
| 38 8 | 39
| 40@ | 41
| 48 H | 49
| 50 P | 51
| 58 X | 59
| 80 « | 61
| 68 h | 69
j70 p | 71
|78 x |79
Files
Jusr/pubfascii

March 24, 1984

S I ¥ o T -SSR

soh [002

bt

lo12

dc1 J022
em [032

|
1
9
A
1
Q
Y
i

a
q
y

|042
j052
|062

072 -

J102
j112

122~

J132
142
|152
J162
J172

soh | 02

bt

| 0a

dc1 | 12
em | la

I

| 2a
| 32
| 32
| 42
| 4a
| 52
| 5a
| 62
| 6a
| 72
| 7a

stx (003

{013

de2 [023
sub {033

2
B
J
R
Z
b
)
r
2

{043
1053
{063

1073

j103
{113
128
{133
j143
{183
[163
173

stx | 03

[ob

dc2 | 13

sub| 1b

2

NN e O N e

-~
o
-

I
|
|
!
I
I
| 53
|
I
I
|
I

etx
vt
deld
esc
#
+

3

~axo—wnnRQO--

etx

dc3
esc

w + 3k

w wxo—unRO-

|004 eot |[005 enq |006
|014 np [015 cr |016
[024 dc4 025 nak [026
[034 fs |035 gs |036
|044 $ |045 % |046
{054 , [055- |056
[064 4 (065 5 |066
|074 < 075 = [076
|104 D |105 E |106
114 L |115 M |116
|124 T 125U |126
{134 \ 135] |136
|144 d |145 ¢ [146
{154 1 [155 m {156
[164 t [165 u |166
174 | J175 } 176
| 04 eot | 05 enq| 06
| 0c np | 0d cr | Oe
| 14 dc4 | 15 nak | 16
|"1c fs | 1d gs | te
| 248 | 25% |26
| 2¢ , | 2d- | 2e
| 344 |35 |36
| 8¢< | 8d= | 3e
| 44D | 45 E | 46
| 4c L | 4dM | 4e
|54 T |55U |56
| 3¢ \ | 5d] | 5e
|64d |65e¢ |66
|61 | 6dm | 6e
|74t |75 u |76
| 7¢ | | 7d} | Te

ack [007
so |017
syn |027
rs |037
|047
|057
|067
[077
1107
|117
l127
|187
[147
|157
|167
|177

r<LZmV e

[- B

ack| 07
so | of
syn| 17
if
27
2f

3f

I
I
I
I
I
I
| 4f
I
I
I
I
l
I

Page 1

CONSOLE (M) CONSOLE (M)

Name ,
console, ttyOl, tty02 — Lisa keyboard and screen.

Description

The console, tty01, and tty02 device files provide character VO
between the system and the Lisa screen and keyboard. Each file
corresponds to a separate teletype device with an independent
bit—mapped screen display and keyboard access. The files are
used chiefly to display characters at the Lisa screen devices and .
read characters from the keyboard, but may also be used to gen—
erate bit—mapped- graphics.

Although all three files may be open at the same time, only one of
the corresponding devices can be active at any given time. The
active device displays its own bit—mapped screen and takes sole
possession of the keyboard. Changing from one active device to
‘the next is accomplished by typing APPLE—ENTER' (using the
APPLE or COMMAND key and the ENTER key found in the
numeric keypad). The changes are sequential, passing from con—
sole to tty0l to tty02 and back again. If the device is active, a
write to the corresponding file affects the current screen and a read
from the file reads the next line from the keyboard. If the device
is not active, a write to the file is saved in the device’s screen
display and displayed when the device becomes active; a read to
the file waits until the keyboard becomes active before returning.

When used to display characters, the screen has 30 lines of 88
characters each. When a new character is written to the screen, it
is placed at the active position (usually marked by a cursor) and the
active position moves one character to the right. If no room
remains on a line, the active position moves to the next line down.
If no room remains on the screen, the screen is scrolled up one
line. The character sizes are normally 8 bits by 8 bits with an extra
line above and below. The G2 and G3 alternate character sets
described below are 10 bits high by 8 bits wide.

The following character sequences (defined by ANSI X3.64—1979)
may be used to control and modify the screen display.

-May 14, 1984 Page 1

CONSOLE (M)

Character

ED
(Erase in Display)

EL
(Erase in Line)

SGR
(Select Graphic Rendition)

cup
(Cursor Position)

HVP
(Horizontal and
Vertical Position)

May 14, 1984

Character Code
ESC|[PsJ

ESC[Ps K

ESC[Psm

ESC[P1;P2H

ESC[P1;P2f

CONSOLE(M)

Meaning

Erases all or part of the
display. if Ps=0, erases
from the active position to
the end of the display. If
Ps=1, erases from the
beginning of the display to
the active position. If Ps=2,
erases the entire display.

Erases all or part of a line.
If Ps=0, erases from the
active position to the end of
the line. IfiPs=1, erases

from the beginning of the
line to the active position. If
Ps=2, erases the entire line.

Selects the mode or font for
rendering subsequent char—
acter graphics. If Ps=0,
normal. If Ps=1, bold. If
Ps=4, underscore. If Ps=7,
inverse. IfiPs=10, normal
font. if Ps=11, GS2 font. If
Ps=12, GS3 font. Some
modes may be combined by
separating -the parameters by
“;”’. For example, to reset
to normal mode, use: ESC |
0;10m

Moves the active position to
the location given by Pl
(vertical) and P2 (horizon—
tal).

Moves the active position to
the location given by Pl
(vertical) and P2 (horizon—
tal). ‘

Page 2

CONSOLE (M)

CUU
(Cursor Up)

CuD
(Cursor Down)

CUF
(Cursor Forward)

CUB
(Cursor Backward)

HPA

(Horizontal
Position Abso—
lute)

HPR
(Horizontal
Position Relative)

VPA
(Vertical Position
Absolute)

VPR
(Vertical Position
Relative)

IL
(Insert Line)

ICH
(Insert Character)

DL
(Delete Line)

DCH
(Delete Character)

May 14, 1984

ESC[PnA

ESC|[PnB

ESC[PnC

ESC[PnD

ESC|Pn*

'ESC[Pna

ESC|[Pnd

ESC|[Pne

ESC|PnL

ESC|[Pn @

ESC[PnM

ESC|[PnP

CONSOLE (M)

Moves the active position uj
Pn number of lines.

Moves the active positior
down Pn number of lines.

Moves the active position t
the right by Pn number of
characters.

Moves the active position tc
the left by Pn number of
characters.

~ Moves the active position tc

the character position giver
by Pn.

Moves the active positior
right by Pn characters.

Moves the active position tc
the line given by Pn.

Moves the active position
down Pn lines.

Inserts Pn previously deleted
lines at the active line.

Inserts Pn previously deleted
characters at the active
position.

Deletes Pn lines beginning
with the active line.

Deletes Pn characters begin—
ning with the active position.

Page 3

CONSOLE(M) CONSOLE (M)

S82 ESCN Signals that the next charac—

(Single Shift 2) ter belongs to the G2 graphic
set. Characters in the G2 set
correspond to the ruling
character set of the H19 or
Z19 terminal.

SS3 ESCO Signals that the next charac—

(Single Shift 3) ter belongs to the G3 graphic

set. Characters in the G3

character set

currently defined.
These character sequences correspond to the terminal type lisa as
defined in /etc/termcap file.

Note that the ASCU characters FS (Quit) and DEL (Rubout) can
only be generated by a combination of keys (e.g., CNTRL-\ for FS
and CNTRL-| for DEL). These key combinations can be defined
with the stty(C) or tset(C) command.

The files may be used to generate graphics on the Lisa screen
display. When a file is opened by a program, the bit—mapped
screen display of the corresponding device is automatically mapped
into the user’s logical address space. This display memory extends
from hexadecimal address FO0000 to address FOTFFF. The bits in
this screen memory represent the pixels on the Lisa screen. There
are 720 bits (90 bytes) of screen memory for each of the 364 hor—
izontal line of pixels on the screen. - (Screen pixels form a grid 720
horizontal by 364 vertical pixels.) Bit 7 of the byte at the hexade—
cimal address FOO000 represents the pixel at the upper left corner
of the screen and bit O of the byte at address FOTFFB represents
the pixel in the bottom right corner. Graphics are created by
changing the value of the screen bits to change the color of the
pixels. When a bit is set to 0, the corresponding pixel is white.
When a bit is set to 1, the pixel is black. Note that the bits in the
bytes after FOTFFB should not be changed. Also, the system
maps only one screen display at a time. If two files have been
opened, the screen display of the first file is mapped; the second
file is mapped as soon as the first file is closed.

Files

/dev/console
/devitty0l

May 14, 1984 Page 4

CONSOLE (M) CONSOLE (M)

Idevitty02

See Also
mouse(M)

Notes

The driver does not provide keyboard recognition. The keyboard

layout used is the New U.S. Standard. There is no current support

for the GS3 font, or for alternate fonts. It is anticipated that
unused positions in the G2 and G3 graphic sets will be used to

support user—defined fonts. There is no current support for Euro—

pean characters in either the keyboard or display driver. The bold -
graphic rendition does not work well with characters like m and w.

Bold and inverse are incompatible with each other.

May 14, 1984 ' Page 5

DAEMON.MN (M) DAEMON.MN (M)

Name

daemon.mn - Micnet mailer daemon

Syntax

Jusr/lib/mail/daemon.mn [-ex]

Description

The mailer daemon performs the ‘‘backend’’ networking functions
of the masl, rcp, and remote commands by establishing and servicing
the serial communication link between computers in a Micnet net-
work.

When invoked, the daemon creates multiple copies of itself, one
copy for each serial line used in the network. Each copy opens the
serial line, creates a startup message for the LOG file, and waits for a
response from the daemon at the other end. The startup message
lists the names of the machines to be connected, the serial line to be
used, and the current date and time. If the daemon receives a
correct response, it establishes the serial link and adds the message
““first handshake complete’’ to the LOG file. If there is no response
the daemon waits indefinitely.

If invoked with the — x switch, the daemon records each transmis-
sion in the LOG file. A transmission entry shows the direction of
the transmission (tx for transmit, rx for receive), the number of
bytes transmitted, the elasped time for the transmission (in minutes
and seconds), and the time of day of the transmission (in hours,
minutes, and seconds). Each entry has the form:

direction byte_count elasped_time time_of _day

The daemon also records the date and time every hour. The date
and time have the same format as described for the date command.

If invoked with the — e switch, the daemon records all transmission
errors in the LOG file. An error entry shows the cause of the error

~ preceded by the name of the daemon subroutine which detected the
error.

The mailer daemon is normally invoked by the start option of the
netutd command and is stopped by the stop option.

During the normal course of execution, the mailer daemon uses
several files in the /usr/spool/micnet/remote directory. These files
provide storage for LOG entries, commands issued by the remote(C)
command, and a list of processes under daemon control.

March 20, 1984 : Page 1

DAEMON.MN (M) DAEMON.MN (M)

Files |
. fusrflib/mail/daemon.mn
Jusr/spool/micnet/remote/+/LOG
Jusr/spool/micnet/remote /*/mn
/usr/spool/micnct/remotc/local/u.mt
[usr/spool/micnet/remote flock

/Jusr/spool/micnet/remote/pids

See Also

netutil{ C)

March 20, 1984 Page 2

DEFAULT (M) DEFAULT(M)

Name

default - Default program information directory.

Description

The files in the directory [etc/default contain the default informa-
tion used by system commands such as dump(C) and remote(C).
Default information is any information required by the command
that is not explicitly given when the command is invoked.
The directory may contain zero or more files. Each file corresponds
to one or more commands. A command searches a file whenever it
has been invoked without sufficient information. Each file contains
zero or more entries which define the default information. Each
entry has the form:

keyword
or

keyword=value
where keyword identifies the type of information available and value
defines its value. Both keyword and value must consist of letters,
digits, and punctuation. The exact spelling of a keyword and the
appropriate valuee depend on the command and are described with
the individual commands.
Any line in a file beginning with a number sign (#) is considered a
comment and is ignored.

Files

[etc/default/dump
/etc/default/dumpdir
Jetc/default/Ipd
Jetc/default/mkuser
Jetc/default/passwd
/etc/default/quot
Jetc/default/micnet

[etc/default/restor

March 24, 1984 Page 1

DEFAULT (M) DEFAULT (M)
/etc/default/su
See Also

dump(C), dumpdir(C), lpr(C), mkuser(C), pwadmin(C), quot(C),
remote(C), restor(C), su(C)

March 24, 1984 Page 2

ENVIRON (M) ENVIRON (M)

Name

environ - The user environment.

Description

The user environment is a collection of information about a user,
such as his login directory, mailbox, and terminal type. The environ-
ment is stored in special ‘‘environment variables,”” which can be
assigned character values, such as names of files, directories, and
terminals. These variables are automatically made available to pro-
grams and commands invoked by the user. The commands can then
use the values to access the user’s files and terminal.

The following is a short list of environment variables.

PATH Defines the search path for the directories containing
commands. The system searches these directories

. whenever a user types a command without giving a full

pathname. The search path is one or more directory

names separated by colons {:). Initially, PATH is set to

:/bin: fusr/bin.

HOME Names the user’s login directory. Initially, HOME is set
to the login directory given in the user’s passwd file
entry.

TERM Defines the type of terminal being used. This informa-

tion is used by commands such as more(C) which rely
on information about the capabilities of the user’s ter-
minal. The variable may be set to any valid terminal
name (see terminals(M)) directly or by using the
tset(C) command.

TZ Defines time zone information. This information is
used by date(C) to display the appropriate time. The
variable may have any value of the form xxxnzzz
where xxx is standard local time zone abbreviation, n
is the difference in hours from GMT, and zzz is the
daylight-saving local time zone abbreviation (if any).
For example, ESTSEDT.

The environment can be changed by assigning a new value to a vari-
able. An assignment has the form

name=value
For example, the assignment

TERM=h29

March 26, 1984 Page 1

ENVIRON (M) ENVIRON (M)

sets the TERM variable to the value ‘‘h29"’. The new value can be
‘“‘exported’’ to each subsequent invocation of a shell by exporting
the variable with the ezport command (see 8h(C)) or by using the
env(C) command.

A user may also add variables to the environment, but must be sure
that the new names do not conflict with exported shell variables such
as MAIL, PS1, PS2, and IFS. Placing assignments in the .profile file is
a useful way to change the environment automatically before a ses-
sion begins.

Note that the environment is made available to all programs as a_
string of arrays. Each string has the form:

name==value
where the name is the name of an exported variable and the value is
the variable’s current value. For programs started with a ezec(S)
call, the environment is available through the external pointer
environ. For other programs, individual variables in environment are
available through geteny(S) calls.
See Also

env(C), login(M), sh(C), exec(S), getenv(SC), profile(M)

March 26, 1984 Page 2

FD(M) FD(M)

Name
_fd — Lisa floppy disk drives.

Description
The file fd provides block—buffered access to the built—in Lisa

floppy disk drive. The file accesses the disk via the system’s nor—
mal buffering mechanism and may be read and written without
regard to physical disk records. Each disk is 800 blocks long.

The file rfd provides a “‘raw’’ interface for direct transmission
between the disk and the user’s read or write buffer. When
accessing the raw file, the user’s buffer must begin on a word
boundary and the count in a read(S), write(S), or Iseek(S) call
must be a multiple of 512 bytes (one disk block).

Whenever the devices fd and rfd are closed, the system will
automatically eject the disk. There are special files named nfd and
nrfd, which will not automatically eject the disk when the file is
closed (the ‘n’ is for no—eject).

The following iocti(S) call requests may be used to format and
unclamp floppy disks. These calls require exclusive use of the
device and prevent subsequent opens until the device is closed.

FDIOCFDSK
Formats one or more tracks of a floppy disk. The third
call parameter must give the starting track number (0—45)
in bits 5—0 and the side number (0 or 1) in bit 6.

FDIOCFTRK
Formats one track. The third call parameter must give the
track number (0—45) in bits 5—0 and the side number (0
or 1) in bit 6.

FDIOCUNLD
Unlocks and ejects the floppy disk in the disk drive given
by the file descriptor. Further operations on the drive are
forbidden until another disk is loaded.

Files
/dev/fd /dev/rfd /dev/nfd /dev/nrfd

Diagnostics

The following messages may be printed on the console:

Jd write protected
An attempt was made to open for writing a write—
protected floppy disk.

- May 9, 1984 Page 1

FD(M) ‘ FD(M)

fd not loaded o
An attempt was made to open a drive which had no disk
in place. ' ‘

Jd in use
The disk eject button was pushed on an open drive.

See Also
eject(C)

May 9, 1984 Page 2

FIXPERM (M) FIXPERM (M)

Name

fixperm - Correct or initialize file permissions and ownership.

Synopsis
fixperm [-c |-s |-n |-v |-f |-1 |-S |-d|BSTOA]] specfile

Description
For each line in the specification file specfile, fixperm makes the
listed pathname conform to a specification. fixperm is typically used
to configure a XENIX system upon installation. Only the superuser
can run fixperm with any flag but -n, -f or -1 (see options).
The specification file has the following format: Each non-blank line
consists of either a comment or an item specification. A comment is
any text from a pound sign "#" up to the end of the line. There is
one item specification per line. An item specification consists of a
package specifier a permission specification, owner and group specifi-
cations, the number of links on the file, and the file name.
The package specifier conisists of one of the following letters:
B Base Package
S Software Development
T Text Processing Package
O - Optional user-defined package.
After the package specifier is a permission specification. The permis-
sion specification consists of a file type, followed by a numeric per-
mission specification. The item specification is one of the following
characters:
x Executable
a Archive
e Empty file {create if -¢ option given)
b Block device

¢ Character device

d Directory

March 26, 1984 Page 1

FIXPERM (M) FIXPERM (M)

f

* Options

Text file.

The numeric permission conforms to the scheme described in
chmod(C). The owner and group permissions are in the third
column separated by a slash: e.g.: "bin/bin”. The fourth column
indicates the number of links. If there are links to the file, the
next line will contain the linked filename with no other informa-
tion. The fifth column is a pathname. The pathname must be
relative, ie., not preceeded by a slash ”/”. The sixth column is
only used for special files, giving the major and minor device
numbers.

The following options are available from the command line:

-¢ Create empty files and missing directories.

-d<character>
Process input lines beginning with given package specifier char-
acter (see above). For instance, -dT will only process items
specified as belonging to the Text Processing Package, -dA will
process all lines.

-f List files only on standard output.

-1 List files and directories on standard output.

-n Report all significant errors, other than non-stripped files and
those previous to version 3.

-v ~ Report all significant errors, including non-stripped files and
_executable files previous to version 3.

-s Modify special device file in addition to the rest of the permlist.

-S Executable files must be x.out format.

The following two lines make a distribution and invoke tar(C) to
archive only the files in base.perm on /dev/whatever:

[etc/fixperm -f [etc/base.perms > list
tar cfF /dev/whatever list ~

This example reports base package errors in your file system:

[etc/fixperm -n -dB-fetc/base.perms

March 26, 1984 » Page 2

FIXPERM (M) FIXPERM (M)

Notes

Usually fixperm is only run by a shell script at installation.

March 26, 1984 Page 3

GHﬂ(M) GETTY (M)

Name ,
getty — Sets terminal mode.

Syntax
letc/getty | char |

Description
Getty automatically adapts a terminal’s serial line to allow proper
communication between the terminal and the system. It is one of
three programs (init(M), getty(M), and login(C)) used by the sys—
tem to enable a terminal and allow user logins.

Getty is initially called by init which passes a single character
argument char. (Init reads the argument from the ttys file.) Gerty
uses char to set the initial line speed and to determine the type of
terminal to be accessed. It then writes a ““‘system!login:’’ message,
indicating the user may log in on the machine named system .

If the user types a name and terminates it with a newline (ASCU

LF) or carriage return (ASCll CR), getty scans the name for upper—

case alphabetic characters. If only uppercase characters are found,

getty adapts the system to map all subsequent lowercase characters

into the corresponding uppercase characters. Furthermore, if the -
name terminates with a carriage return character, getty sets the
terminal’s serial line mode to CRMOD (see ioctl(S)).

if, on the other hand, the user presses the BREAK key, getty writes
the login message again. It also changes the serial line speed if
char is one of those which cause ‘‘cycling’’ as described below.
This alloys the system to adapt to terminals whose line speeds

vary.
After a name has been typed and scanned, getty passes it to

login(C) which asks for the user’s password and completes the
login process.

The char argument may be any one of the following:

0 Cycles through 300—1200—150—110 baud. Usecful as a
default for dialup lines accessed by a variety of terminals.

- Intended for an on—line Teletype model 33, for example
an operator’s console.

1 Optimized for a 150—baud Teletype model 37.

Intended for an on—line 9600—baud terminal that requires
delays, for example the Textronix 4104,

3 Starts at 1200 baud, cycles to 300 and back. Useful with

May 14, 1984 Page 1

GETTY (M) GETTY (M)

212 datasets where most terminals run at 1200 speed.

4 Useful for on—line console DECwriter (LA36).

5 Same as 3 above, but starts at 300.

6 Intended for machine—to—machine (such as over a net—
work) logins at 2400 baud.

9 On-—line 9600 baud terminal that doesn't require delays.

The following types are intended for general—purpose on—line
terminals (unlike the specialized settings above), and differ only in
the baud rate:

50 baud.

75 baud.

110 baud.

134.5 baud, usually with 2 stop bits.

150 baud.

200 baud.

300 baud.

600 baud.

1200 baud.

1800 baud.

2400 baud.

4800 baud.

9600 baud. .
External baud rate <‘A,” usually 19200 baud.
External baud rate ‘‘B,’’ often either 3600 or 7200 baud.

Getty is intended to be invoked by init(M). Invoking getty as an
ordinary command is not recommended.

See Also
login(C), ioctl(8), ttys(M), init(M)

Files
letc/ttys, /etc/systemid

e B g = x = e "o a6 g

May 14, 1984 ' Page 2

GROUP (M) ' GROUFP (M)

Name

group ~ Format of the group file.

Description
Group contains for each group the following information:

- Group name

Encrypted password {optional)

-~ Numerical group ID

- Comma-separated list of all user allowed in the grohp

This is an ASCII file. The fields are separated by colons; each group
is separated from the next by a newline. If the password field is
null, no password is demanded.

This file resides in directory fete. ‘Because of the encrypted pass-

words, it can and does have general read permission and can be
used, for example, to map numerical group IDs to names.

Files

[etc/group

See Also

newgrp(C), passwd(C), crypY($), passwd(M)

March 26, 1984 Page 1

INIT(M) INIT(M)

Name

init - Process control initialization.

Syntax

[ete /init

Description

The tnit program is invoked as the last step of the boot procedure
and as the first step in enabling terminals for user logins. /nit is one
of three programs (snit, getty(M), and login(M)) used to initialize a
system for execution.

Init creates a process for each terminal on which a user may log in.
It begins by opening the console device, /dev/console, for reading
and writing. It then invokes a shell which asks for a password to
start the system in maintenance mode. The user may type the pass-
word or terminate the shell by typing ASCII end-of-file (CNTRL-D) at
the console. If the shell terminates, tnit performs several steps to
begin normal operation. It invokes a shell and reads the commands
in the Jetc/rc file. This command file performs housekeeping tasks
such as removing temporary files, mounting file systems, and start-
ing daemons. Then init reads the file fetc/ttys and forks several
times to create a process for each terminal device in the file. Each
line in the /etc/ttys lists the state of the line (0 for closed, 1 for
open), the line mode, and the serial line (see ttys(M)). Each process
opens the appropriate serial line for reading and writing, assigning
the file descriptors 0, 1, and 2 to the line and establishing it as the
standard input, output, and error files. If the serial line is connected
to a modem, the process delays opening the line until someone has
dialed up and a carrier has been established on the line.

Once fnit has opened a line, it executes the getty program, passing
the line mode as an argument. The getty program reads the user’s
name and invokes login(M) to complete the login process (see
getty(M) for details). [nit waits until the user logs out by typing
ASCII end-of-file (CNTRL-D) or by hanging up. It responds by wak-
ing up and removing the former user’s login entry from the file
utmp, which records current users, and makes a new entry in the file
wtmp, which is a history of logins and logouts. Then the
corresponding line is reopened and getty is reinvoked.

Init has special responses to the hangup, interrupt, and quit signals.
The hangup signal SIGHUP causes init to change the system from
normal operation to maintenance mode. The interrupt signal SIGINT
causes init to read the ttys file again to open any new lines and close
lines that have been removed. The quit signal SIGQUIT causes 1nst to
disallow any further logins. In general, these signals have a
significant effect on the system and should not be used by a naive

March 24, 1984 Page 1

INIT(M) INIT(M)

user. Instead, similar functions can be safely performed with the
enable(C), disable(C), and ehutdown{C) commands.
Files
[dev /ttys
[etefutmp
Jusr/adm /wtmp
[ete/ttys

[ete/re
See Also

disable(C), enable(C), login(M), kill(C), sh(C), shutdown(C),
ttys(M}, getty(M)

March 24, 1984 Page 2

LD (M) LD (M)

Name

Id - loads Inte]l 8086 relocatable format to x.out.

Synopsis
Id [options] files [libraries]

Description

Id combines one or more obiect modules in INTEL 8086 relocatable
format, resolves external references, and searches libraries, produc-
ing an executable x.out runfile. This file is made executable only if
no errors occur during the load. The default output file name is
x.out. The argument routines are concatenated in the order speci-
fied. The entry point of the output is the beginning of the first rou-
tine.

1d handles Intel 8086 Small and Medium Models. Where the regular
expression [SM] occurs in this manual page, it means that there are
two separate files with one of the capital letter S or M appearing at
that point in their name. The files are requisite to each model.
Note: many loader errors are caused by incorrect INTEL model
libraries or objects.

If a routine from a library references another routine in the library,
and the library has not been processed by ranlib{CP), the refer-
enced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries may be impor-
tant. If the first member of a library is named __.SYMDEF, then it
is understood to be a dictionary for the library such as produced by
ranlib; the dictionary is searched iteratively to satisfy as many refer-
ences as possible.

Id automatically searches the libraries /usr/lib/[SM]libc.a and
Jusr/lib/[SM]libcfp.a. These libraries are, respectively, the standard
C library for the 8086 and the 8086/8087 floating point libraries.

Id allows the user two methods of specifying libraries from the
command-line. The library may be specified verbatim, as the argu-
ment following a -1 flag. In this case one space must occur in the
command line between the -l and the relative or absolute pathname
name of a library to search. E

An abbreviated library name is specified from the command line by
the -1 flag appended to an abbreviation. In this case there is no
space between the -l and the abbreviation. The abbreviated library
name is expanded to /usr/lib/[SM]lib<abbreviation>.a. For
example, -ltermlib gets expanded to fusr/lib/Slibtermlib.a if no -
M flag has been seen yet, and Jusr/lib/Mlibtermlib.a if preceeded

March 20, 1984 Page 1

LD (M) LD (M)

by -M in the argument list.

The symbols "_etext”, "_edata” and "_end” ("etext”, "edata” and "end”
in C) are reserved, and if referred to are set respectively to the first
location above the program, the first location above initialized data,
and the first location above all data. It is erroneous to define these
symbols.

Except for -1, the following should appear before the file names.

-m [name] Create a memory map in name. This map specifies the
load addresses of the executable.

-0 [name] Output executable will be called name. Default is x.out.
-i Split] and D (separate text and data).
-C Case is significant in the symbo! table of the objects loaded.

-F [hex no] Fixed stack size. This restricts the stack size to [hex
no] bytes. Default is 16K.

-M Allow Medium Model.

-8 Strip symbol table from output runfile.

-d Verbose (debug) mode. Tell user which pass is being executed.
-1 [library] Search library file. Name is verbatim.

<1 |name] Expand lib to /usr/lib/[SM]lib<name>.a.

-v Set header verston bit for 2.3. Default is 3.0,

Files
/bin/1d the loader itself
Jlib/[SM]libs.a libraries
x.out output file
Notes

See also 8086 Object Module Format, (OMF), Intel External Pro-
duct Specification, 1981.

as(CP), cc(CP).

The portion of the load map sorted by address is jumbled.

March 20, 1984 Page 2

LISA(M) - LISA(M)

Name
contrast — Lisa special devices.

Description
The contrast file provides access to the contrast control of the Lisa
console display. The function of the file is similar to a manual
contrast control on a monitor. Each byte written to the device
changes the contrast level — the higher the byte value, the sharper
the contrast. If multiple bytes are written in a single call, the
second and later bytes will be delayed to effect a seemingly con—
tinuous change.

Files
/dev/contrast

NOTES
Many keys and key combinations have special meanings to the
system. These keys and key combinations have special names that
are unique to the system and may or may not correspond to the
keytop labels on your keyboard. To help you find the special
keys, the following table shows which keys on the Lisa terminal
correspond to system keys. In this table, a hyphen (—) between
keys means hold down the first key while pressing the second.

XENIX Name Lisa Keytop Action

INTERRUPT Apple—C Stops current action and returns
‘ to the shell. This key is also
called the DELETE or RUB key.

BACKSPACE Backspace Deletes the first character to the
left of the cursor.

CNTRL-D Apple-D Signals the end of input from
the keyboard; also exits current
shell.

CNTRL-H Apple—H Deletes the first character to the
left of the cursor. Also called
the ERASE key.

CNTRL—-Q Apple—Q Starts printing after it has been
stopped with CNTRL-S.

CNTRL-S Apple—S Stops printing at the standard
output device (does not stop the
program).

May 10, 1984 Page 1

LISA(M) | LISA(M)

CNTRL-U Apple-U Deletes all characters on the
current line. Also called the
KILL key.

Apple—\ Quits current command and
o creates a. core file (Recom—
mended for debugging only).
ESCAPE Clear Exits the current mode; for
' - example, exits insert mode
when in the editor vi.

May 10, 1984 | Page 2

LOGIN (M) LOGIN (M)

Name

login — Gives access to the system.

Description

The login command is used at the beginning of each terminal session
and allows you to identify yourself to the system. It cannot be
invoked except when a connection is first established, or after the
previous user has logged out by sending an end-of-file (CNTRL-D)
to his initial shell.

Login asks for your user name, and if appropriate, your password.
Echoing is turned off (where possible) during the typing of your
password, so it will not appear on the written record of the session.

At some installations, an option may be invoked that will require
you to enter a second “‘external’’ password. This will occur only for
dial-up connections, and will be prompted by the message ‘‘External
security:”’. Both passwords are required for a successful login.

If password aging has been invoked by the super-user on your
behalf, your password may have expired. In this case, you will be
shuntcd into pesewd(C) to change lt, after which you may attempt to
log in again.

If you do not complete the login successfully within a certain period
of time (e.g., one minute), you are likely to be returned to the
‘“‘login:’’ prompt or silently disconnected from a dial-up line.

After a successful login, accounting files are updated, you are
informed of the existence of any mail, and the start-up profile files
(i.e., /etc/profile and $HOME/.profile) (if any) are executed (see
profile(M)). Login initializes the user and group IDs ‘and the work-
ing directory, then executes a command interpreter (usually st(C))
according to specifications found in the fetc/passwd file. Argument
0 of the command interpreter is a dash (-) followed by the last
component of the interpreter’s pathname. The environment (see
environ(M)) is initialized to:

HOME== your-login-directory
PATH =:/bin:/usr/bin

Initially, umask is set to octal 022 by login.

Files

Jetefutmp Accounting

March 26, 1984 - Page 1

LOGIN (M) LOGIN (M)

Jusr/adm/wtmp Accounting

Just /spool/mail /your-name Mailbox for user. gour-name

[etc/motd Message of the day

/etc/pa.sswd . Password file

/efc/proﬁle » System profile

$HOME/ .proﬁle - Personal profile
See Also

. maﬂ(C), newgrp(C), 'sh(C), » passv;'d(C), su(C), imiask(C),
passwd(M), profile(M), environ(M), ;etty(M)

Di a@dﬁcs

Login incorrect
The user name or the password is incorrect.

No shell, cannot open password file, no directory:
Your account has not been properly set up.

Your passuword has ezpired. Choose a new one.
Password aging is implemented and yours has expired.

Under 3.0, only the 'super-user may execute login from a shell.

.Hence non-super-users must log out in order to log in as another
user. . .

Furthermore, there has been a change in login’s functionality. Pre-
system III login, if invoked from the command line while someone is
logged on already, logs the current user out and logs in the new
user. The new 3.0 login nests, i.e., the current user is not logged
“out. Thus it is somewhat like su, except that the new user’s .login
or .profile is run. Permissions and environment are those of the
new user. When the new user logs out, the previous user is still
runmng This practice is not recommended, as nested logms can
impair system performance.

March 26, 1984 " Page 2

LP(M) : . LPM)

Name
lp — Lineprinter device.
Description

The Ip file is used for character /O between the system and the
standard Lisa dot matrix printer. This file directs output through a
parallel communications port to the printer. The printer must be
attached to the lower parallel port of a two—port parallel port card
installed in expansion slot 1 of the Lisa.

The file is accessed by the lineprinter daemon, Ipd, which is in
turn called by lpr(C). The lineprinter daemon does not perform
any special translations. For convenience, the daemon sets the
printer’s tab width to 8 columns whenever it opens the file and
sends a page eject to the printer whenever it closes the file.

File
Idevilp

See Also
Ipr(C)

May 9, 1984 _ Page 1

"MACHINE (M) ; : MACHINE (M)

Name :
Machine — Description of host machine:

Description
This page lists-the internal characteristics of the Apple Lisa com—
puter and its associated hardware.. The information is intended for
software developers ‘who wish to. transfer relocatable object or
executable files from other XENIX machines to the Lisa and then
prepare the files for execution on the Lisa.

Central Processing Unit ~ Motorola M68000
 Disk Block Size(BSIZE) Sl2bytes
Disk Capacxty

Profile Hard Disk (formatted) 9728 blocks (4864K bytes)
Sony Micro Disk (formatted) 800 blocks (851K bytes)

Memory Management Scheme Paging with MMU

Memory Page Size 512 bytes
Shared (Pure) Text Supported
Variable Stack Size Supported
Data Relocation Base Addresses:

Impure Text Size of the text

Pure Text OxOL
Text Relocation Base Adresses:

Impure Text 0xOL

Pure Text 0x800000L

Binary executable files without the required relocation base
addresses (as described above) will not run on the Lisa. However,
binary executable files with the ‘‘short” form of relocation still
attached can be adapted for execution on the Lisa with the Id(M)
command. See the examples at the end of the /d(M) reference
page.
See Also
M)

May 10, 1984 N Page 1

MAKEKEY (M) MAKEKEY (M)

Name

makekey - Generates an encryption key.

Syntax
Jusr/lib/makekey

Description

Makekey improves the usefulness of encryption schemes by increas-
ing the amount of time required to search the key space. It reads 10
bytes from its standard input, and writes 13 bytes on its standard
output. The output depends on the input in 3 way that is intended
to be difficult to compute (i.e., to require a substantial fraction of a
second).

The first 8 input bytes (the snput key) can be arbitrary ASCII charac-
ters. The last 2 input bytes (the ealt) are best chosen from the set
of digits, dot (.), slash (/), and uppercase and lowercase letters. The
salt characters are repeated as the first 2 characters of the output.
The remaining 11 output characters are chosen from the same set as
the salt and constitute the output key.

The transformation performed is essentially the following: the salt is
used to select one of 4,096 cryptographic machines all based on the
National Bureau of Standards DES algorithm, but broken in 4,096
different ways. Using the input key as the key, a constant string is
fed into the machine and recirculated. The 64 bits that come out are
distributed into the 66 output key bits in the result.

Makekey is intended for use with programs that perform encryption
(e.g., ed(C) and crypt{C)). Usually its input and output will be
pipes.

See Also
erypy{C), ed(C), passwd(M)

March 24, 1984 . Page 1

MEM (M) MEM (M)

Name

mem, kmem - Memory image file.

Description

The mem file provides access to.the computer’s physical memory.
All byte addresses in the file are interpreted as memory addresses.
Thus, memory locations can be examined in the same way as indivi-
dual bytes in a file. Note that accessing a nonexistent location
causes an error.

The kmem file is the same as mem except that it corresponds to
kernel virtual memory rather than physical memory.

In rare cases, the mem and kmem files may be used to write to

memory and memory-mapped devices. Such patching is not

intended for the naive user and may lead to a system crash if not

conducted . properly. Patching device registers is likely to lead to

unexpected results if the device has read-only or write-only bits.
Files

/dev/mem

/dev/kmem

March 24, 1984 Page 1

MESSAGES (M) MESSAGES (M)

Name

messages ~ Description of system console messages.

Description

This section describes the various nondevice system messages which
may appear on the system console. Device-related messages start
with the name of the device driver; these messages are documented
by device in other pages in this section.

Most of these system messages begin with ‘‘panic:”” and are fatal
(the system refuses to execute further). Fatal messages represent
hardware problems or kernel software inconsistencies. Such internal
inconsistencies are usually traceable to hardware problems them-
selves, often forms of memory failure.

A few messages represent kernel operation problems, typically the
overflow of a critical table. These potential problems are guarded
against by the kernel. It takes extreme situations to bring them
about, so they should never occur in normal system use.

The messages are categorized as follows:

Fatal
Recovery is impossible.

System inconeistency
A contradictory situation exists in the kernel.

Abnormal
A probably legitimate but extreme situation exists.

Hardware
Indicates a hardware problem.

Many of the following messages are accompanied by a device
specification, dev. This will print as nnfmm where nn is the major
number and mm is the minor number of the offending device. If
you do not recognize the device by its numbers type:

Is -1 /dev |grep nn |grep mm
This will allow you to associate numbers with a physical device.
The messages are presented below in alphabetical order:
bad block on dev dev

A nonexistent disk block was found on, or is being inserted in,
the structure’s free list. System inconaisteney.

March 27, 1984 Page 1

MESSAGES (M) MESSAGES (M)

bad count on dev dev

Bad free count on dev dev
A structural inconsistency in the superblock of a file system.
The system attempts a repair, but this message will probably be
followed by more complaints about this file system. System
tnconsistency.

err on dev nam dev
This is the way that most device driver diagnostic messages
start. The message will indicate the specific driver and com-
plaint. The nam is a word identifying the device.

Inode table overflow
-Each open file requires an inode entry to be kept in memory.
When this table overflows the specific request (usually open(2)
or creat(2)) is refused. Although not fatal to the system, this
event may damage the operation of various spoolers, daemons,
the mailer, and other important utilities. Anomalous results
. and missing data files are a common result. Abnormal.

interrupt from unknown device, vec=xxxx
The CPU received an interrupt via a supposedly unused vector.
This message is followed by ‘‘Panic: unknown interrupt.’”’ Typi-
cally this event comes about when a hardware failure miscom-
_ putes the vector of a valid interrupt. Harduware.

no file
There are too many open files, the system has run out of
entries in its ‘‘open file”’ table. The warnings given for the
message ‘‘inode table overflow’ apply here. Abnormal.

no space on-dev dev

This message means that the specified file system has run out
of free blocks. Although not normally as serious, the warnings:
discussed for ‘‘inode table overflow’’ apply: often programs are
written casually and ignore the error code returned when they
tried to write to the disk; this results in missing data and
‘‘holes’ in data files. The system administrator should keep
close watch on the amount of free disk space and take steps to
avoid this situation.

s Normal System Shutdown ==
This message appears when the system has been shutdown
- properly. It indicates that the machine may now be rebooted
or powered down.

‘Out of inodes on dev dev.
The indicated file system has run out of free inodes. The
number of inodes available on a file system is determined
when mkfs(C) is run. The default number is quite generous,
this message should be very rare. The only recourse is to
remove some worthless files from that file system, or dump the

March 27, 1984 Page 2

MESSAGES (M) MESSAGES (M)

entire system to a backup device, rerun mkfs(C) with more
inodes specified, and restore the files from backup.

out of text

When programs linked with the Id — i or — n switch are run, a
table entry is made so that only one copy of the pure text will
be in memory even if there are multiple copies of the program
running. This message appears when this table is full. The sys-
tem refuses to run the program which caused the overflow.
Note that there is only one entry in this table for each different
pure text program. Multiple copies of one program will not
require multiple table entries. Each ‘‘sticky” program (see
¢hmod(C)) requires a permanent entry in this table; nonsticky
pure text programs require an entry only when there is at least
one copy being executed.

panic: /0 trap
A divide-by-zero occurred when executing kernel or device
driver code. System inconsistency, fatal.

panic: blkdev
An internal disk I/O request, already verified as valid, is
discovered to be refering to a nonexistant disk. System incon-
eistency, fatal.

panic: devtab
An internal disk I/O request, already verified as valid, is
discovered to be refering to a nonexistant disk. System sncon-
sistency, fatal.

panic: core free list
The internal memory allocation list has become corrupted. Sye-
tem tnconesistency, fatal.

panic: free mm <1 pages
The internal memory management tables have become cor-
rupted. System inconsistency, fatal.

panic: freeing free mm
The internal memory management tables have become cor-
rupted. System inconsistency, fatal.

panic: iaddress > 2°24
This indicates an attempted reference to an illegal block
number, one so large that it could only occur on a file system
larger than 8 billion bytes. System inconsistency, fatal.

panie: iinit
The super-block of the root file system could not be read. This
message occurs only at boot time. Hardware, fatal.

panic: impossible data page
The internal description of a task’s memory has become

March 27, 1984 Page 3

MESSAGES (M) MESSAGES (M)

corrupted. System inconsistency, fatal.

panic: impossible stack page
The internal description of a task’s memory has become cor-
rupted. System fnconsistency, fatal.

panic: impossible text page
The internal description of 2 task’s memory has become cor-
rupted. System inconsistency, fatal.

panic: Ill. TTY driver
An attempt wus made to call an iliegal tty driver. System sncon-
sistency, fatal.

panic: Impossible trap type _
The system hardware generated a trap of an unknown type.
Hardware, fatal.

panic: IO err in swap
A fatal I1/O error occurred while reading or writing the swap
ares. Hardware, fatal.

panic: Kernel data too large
An attempt to boot a XENIX kernel whose ‘‘data+ bss’’ seg-
ments are too large.

panic: mmblock
The internal memory management tables have become cor-
rupted. System snconsistency, fatal.

panic: mmufreemm
The internal memory management tables have become cor-
rupted. System snconsistency, fatal.

panic: mmugetmm
The internal memory management tables have become cor-
rupted. System inconsistency, fatal.

panic: mmumvmap
The internal memory management tables have become cor-
rupted. System snconsistency, fatal.

panic: mmusub:chk
The internal memory management tables have become cor-
rupted. System snconsistency, fatal.

panic: memory parity
The internal memory management tables have become cor-
rupted. System tnconsistency, fatal.

panic: multi seg data

The internal memory management tables have become cor-
rupted. System snconsistency, fatal.

March 27, 1984 Page 4

MESSAGES (M) MESSAGES (M)

panic: no fs
A file system descriptor has disappeared from its table. System
inconsistency, fatal.

. panic: no imt
- - A mounted file system has disappeared from the mount table.
System inconsistency, fatal.

panic: no procs

Each user is limited in the amount of simultaneous processes
he can have; an attempt to create a new process when none is
available or when the user’s limit is exceeded is refused. That
is an occasional event and produces no console messages; this
panic occurs when the kernel has certified that a free process
table entry is available and yet can’t find one when it goes to
get it. System snconsistency, fatal.

panic: out of swap
There is insufficient space on the swap disk to hold a task. The
system refuses to create tasks when it feels there is insufficient
disk space, but it is possible to create situations to fool this
mechanism. Abnormal, fatal.

panic: overflow trap
The CPU generated an overflow trap while executing kernel or
device driver code. System snconsistency, fatal.

panic: request for <1 mem
The internal memory management tables have become cor-
rupted. System snconsistency, fatal.

panic: Text on Non-Sep
The internal description of a task’s memory has become cor-
rupted. System snconeistency, fatal.

panic: Timeout table overflow
The timeout table is full. Timeout requests are generated by
device drivers, there should usually be room for one entry per
system serial line plus ten more for other usages. Abnormal,
Jatal.

panic: too much text
The internal description of a task’s memory has become cor-
rupted. System inconeistency, fatal.

panic: trap in sys
The CPU has generated an illegal instruction trap while execut-
ing kernel or device driver code. This message is preceded with
an information dump describing the trap. System inconsistency,
fatal.

panic: unknown interrupt
The CPU received an interrupt via a supposedly unused vector.

March 27, 1984 Page 5

« MESSAGES (M) . MESSAGES (M)

Typically this event comes about when a hardware failure
miscomputes the vector of a valid interrupt. Hardware, fatal.

Stray int: level n
The CPU received an interrupt via a supposedly unused vector.
This message is followed by ‘‘panic: unknown interrupt.”’ This
event comes about when a hardware failure miscomputes the
vector of a valid interrupt. Hardware, fatal.

supervisor trap type
This message precedes a ‘‘panic’’ message. The type is the
trap number given by the particular processor. System incon-.
sistency, fatal.

March 27, 1984 Page 6

MICNET (M) MICNET(M)

Name

micnet — The Micnet default commands file.

Description

The micnet file lists the system commands that may be executed
through the remote command. The file is required for each system in
a Micnet network. Whenever a remote command is received through
the network, the Micnet programs search the micnet file for the sys-
tem command specified with the remote command. If found, the
command is executed. Otherwise, the command is ignored and an
error message is returned to the system which issued the remote
command.

The file may contain one or more lines. If all commands may be
executed, then only the line

executeall

is required in the file. Otherwise, the commands must be listed indi-
vidually. A line that defines an individual command has the form:

command==commandpath
Command is the command name to be specified in a remote com-
mand. Commandpath is the full pathname of the command on the
specified system. The equal sign (=) separates the command and
commandpath. For example, the line

cat==/bin /cat

defines the command name cat (used in the remote command) to
refer to the system command cat in the /bin directory.

When ezecuteall is set, commands are sought in a series of default
directories. Initially, the directories are /bin and fusr/bin. The
default directories can be explicitly defined in the file by including a
line of the form:
execpath=PATH=directory][:directory]...
The first part of the line, ezecpath=PATH==, is required. Each direc-
tory must be a valid pathname. The colon is required to separate
directories. For example, the line
execpath=PATH=/bin:/usr/bin:/usr/bobf/bin

sets the default directories to /bin, fusr/bin, and /usr/bobf/bin.

" March 24, 1984 Page 1

MICNET (M) MICNET(M)

Files

Jete/default/micnet

See Also
aliases(M), netutil(C), systemid(M), top(M)

Notes

The rcp command cannot be executed from a remote system unless
the micnet file contains either ezecuteall , or the line

rep==/usr/bin/rcp

March 24, 1984 Page 2

MOUSE (M) : MOUSE(M)

Name
mouse — Lisa mouse pointing device.

Description
The file mouse provides access to the Lisa mouse, a pointing dev—
ice that controls the motion of a cursor on the Lisa console display
and allows input from a button on the mouse body. The file
allows user programs to get information about the mouse, such as
current cursor position and state of the button, and to control its
characteristics, such as the shape of the cursor and response to
events.

When the file is opened, the mouse is immediately associated with
the active Lisa console device (see console(M)). A cursor in the
shape of an arrow appears on the screen and begins to track the
subsequent motions of the mouse. Information about the mouse
position and button status is gencrated and can be read using
ioctl(CP) and read(CP) calls. This information is updated when—
ever one or events occur such as pressing or releasing the button.
Mouse positions are given in terms of horizontal and vertical pix—
¢ls. Horizontal positions range from 0 to 720. Vertical positions
from O to 364. The position (0,0) is the upper left corner of the
screen.

The chief interface between a user’s program and the file is the
ioctl call. This call can be used to pass information to and from
the opened file. The content of the information and the subsequent
action of the mouse depend on the request given with the call. To
use these requests in a C program, the following include statements
must be incorporated into the program:

#include <joctl.h>
#include <mouse.h>

Furthermore, many requests require a pointer to one of the fol—
lowing structures as the third parameter in the corresponding ioct!
call.

struct mous.curs {
char mc_hctr, mc_vctr;/* center of cursor ¥/
unsigned short mc_and[MCSlZE];
/* nand’ed with screen */
unsigned short mc_xox{ MCSIZE];
/* xor'ed with screen */

May 10, 1984 Page 1

MOUSE (M)

struct

te
i»

MOUSE (M)

mous._pos |
short mpx, mp.y; /* x and y position */

mous.bstat {
short mb.stat; /* state of button(s) */
short mb_count;
/* count of presses or releases */
short mb.x, mb_y;
/* cursor position at last press orrelease */

The following is a list of all requests:

MIOC

MIOCSCUR

MIOCHCUR

MIOCGPOS

MIOCSPOS

May 10, 1984

Reset the mouse.

Initializes the mouse parameters, placing the
cursor at the center of the screen, limiting cursor
movement to the limits of the screen, setting the
mickey/pixel ratio to 8 horizontally and 16 verti—
cally, and setting the cursor counter to —1.

Show cursor.

Increments a counter associated with the graphic
cursor. if the counter is 0, the cursor is
displayed on the screen. The initial value of the
counter is —1.

Hide cursor.

Decrements the counter associated with the
graphic cursor. If the counter is less than O, the
cursor is removed from the screen. This call
should precede any change to the display. For
each call to hide the cursor, there should be a
subsequent call to show the cursor.

Get cursor position.

Returns the current cursor position in the third
parameter of the ioct/ call. The parameter must be
a pointer to a structure of type struct mous_pos as
defined above.

Set cursor position.

Moves the mouse cursor to the screen location
given in the structure pointed to by the third
parameter. The structure must have the type
struct mous.pos as defined above. The specified

Page 2

MOUSE (M)

MIOCBIDN

MIOCBIUP

MIOCB2D

MIOCB2UP

MIOCGRFC

May

10,

1984

MOUSE(M)

screen location must be within the limits given by
the MIOCSVMM and MIOCSHMM requests.

Get primary button press information.

Returns the current button information in the
structure pointed to by the third parameter. The
information defined the current button status
(pressed or released), a count of the number of
times the button was pressed since the last call,
and the cursor position at the time of the last
button press. The structure must have the type
struct mous.bstat as described above.

Get primary button release information.

Returns the current button information in the
structure pointed to by the third parameter. The
information describes the current button status
(pressed or released), a count of the number of
times the bution was released since the last call,
and the cursor position at the time of the last
button released. The structure must have the type
struct mous_bstat as described above.

Get secondary button press information.
Unused. Maintains compatibility with two—
button mouse.

Get secondary button release information.
Unused. Maintains compatibility with two—
button mouse.

Set graphics cursor.

Defines the shape and center of the graphical
cursor as given by the structure pointed to by the
third parameter. The structure must have the
type struct mous.curs as defined above. The
cursor is actually a square array which moves
over the top of the screen display and affects the
color of the screen pixels under it. The arrays
mc.andandmc_xor define the shape of the cursor
by defining the color of the screen pixels. The
colors are created by first logically ANDing
mc_and with the screen under the cursor, then
logically XORing mc_xor with the result. The
following tables shows the pixel color.

Page 3

MOUSE (M) | MOUSE (M)

If mcand bit If mcxor bit Then the resuli

is is: is:
0 0 White pixel

0 1 Black pixel

1 0 Unchanged screen
i 1 {nverted screen

The values of mc_hctrandmc_vctr define the hor—

izontal and vertical location of the cursor’s center
(or “‘hot spot’’). This is always relative to the

upper left corner of the cursor array. The cursor
is defined to be at horizontal position O when the

cursor’s center is at that position; similarly, the

cursor is at vertical position O when the center is

there. The default cursor is a large arrow point—

ing upward and to the left. The default center is

the tip of the arrow.

MIOCTXTC Set text cursor.
Unused. Permits later expansion of the mouse
device.

MIOCFILT Set read filter.
Causes the mouse device to update status infor—
mation whenever the event(s) given by the third
parameter occur. The third parameter, a word,
represents a bit mask. When a bit is 1, the
corresponding event causes updates. The events
and mask values are defined as follows:

MOUSFMOVE 01 Produce input
record on cursor

movement.
MOUSFBIDN 02 Produce record
when button
pressed.
MOUSFBIUP 04 Produce record
when button
» released.
MOUSFKBRD 040 Produce record
when keyboard

character pressed.

The read filter is initially set to zero.

May 10, 1984 Page 4

' MOUSE (M)

MIOCSRAT

MIOCSHMM

MIOCSVMM

MOUSE(M)

Set mickey/pixel ratio.

Sets the ratios of mouse movement to cursor
movement to the values given in the structure
pointed to by the third parameter. The structure
must have type struct mous_pos as defined above.
The ratios are defined as the number of mouse
increments (or ‘‘mickeys’’) required to produce a
cursor movement of 8 pixels (mickeys are
roughly 1/100 of an inch). The initial values of
the ratios are 8 horizontally and 16 vertically.

Set horizontal minimum/maximum.

Sets the minimum and maximum horizontal cur—
sor positions to the values given in the structure
pointed to by the third parameter. The structure
must have type struct mous_pos as defined above.
The values must not exceed the limit of the
screen.

Set vertical minimumy/maximum.

Sets the minimum and maximum vertical cursor
positions to the values given in the structure
pointed to by the third parameter. The structure
must have type struct mous_pos as defined above.
The values must not exceed the limit of the’
screen.

After a MIOCFILT request, a user program may use a read call to
read status information directly from the mouse file. The informa—
tion has the form:

struct

B

mous.rec {{* record returned by
read */
char mr.flag; /* reason(s) for record */
char mr bstat; /* state of buttons */
char mr_char; /* keyboard character
if MOUSFKBRD */
char mrkey; /* unencoded key
if MOUSFKBRD %/
shot mrx, mry; /* cursor position at
last event ¥/
long mr_time; /* time at last event */

The number of bytes to be read must be equal to sizeof (struct

mous.rec).

May 10, 1984

The bit values in mrflag specify the event that

Page S

MOUSE (M) MOUSE (M)

generated the information and correspond exactly to the bits defined
with MIOCFILT. Multiple bits are set if more than one event
occurred. When the MOUSFKBRD event is enabled, the character
in mr_char is also put onto the teletype input queue.

Files
/dev/mouse

See Also
mouse(S)

Diagnostics :
If an error occurs, —1 will be retwrned and one of the following
values will be set into the external variable errno.
s—IENXIOs0
if the process does not have an associated display when an open is
attempted.

s—I1EINVALsO
If a parameter passed via ioctl is out of range.

s—1EFAULTs0
If a memory fault occurs when trying to access the values in a
structure passed to iocil.

s—1EIOs0
If an invalid byte count is passed to read.

May 10, 1984 Page 6

NULL (M)
Name

null = The null file.

Description

Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

Files
/dev /null

March 24, 1984

NULL (M)

Page 1

PASSWD (M) PASSWD (M)

Name

passwd - The password file.

Description
Passwd contains the following information for each user:
- Login name
- Encrypied password
— Numerical user ID
- Numerical group ID
~ Comment
~ Initial working directory
~ Program to use as shell

This is an ASCII file. Each field within each user’s entry is separated
from the next by a colon (:). The comment can contain any desired
information. Each user is separated from the next by a newline. If
the password field is null, no password is demanded; if the shell field
is null, sh(C) is used.

This file resides in the directory Jetc. Because the passwords are
encrypted, the file has general read permission and can be used, for
example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-
character alphabet (., /, 0~ 9, A~ Z, a— z), except when the pass-
word is null, in which case the encrypted password is also null. Pass-
word aging is in effect for a particular user if his encrypted password
in the password file is followed by a comma and a nonnull string of
characters from the above alphabet. (Such a string must be intro-
duced by the super-user.) The first character of the age denotes the
maximum number of weeks for which a password is valid. A user
who attempts to log in after his password has expired will be forced
to supply a new one. The next character denotes the minimum
period in weeks which must expire before the password may be
changed. The remaining characters define the week (counted from
the beginning of 1970) when the password was last changed. (A null
string is equivalent to zero.) The first and second characters must
have numerical values in the range 0- 63, where the dot (.) is equal
to 0 and lowercase z is equal to 63. If the numerical value of both
characters is 0, the user will be forced to change his password the
next time he logs in. If the second character is greater than the first,
only the super-user will be able to change the password.

March 24, 1984 Page 1

PASSWD (M) PASSWD (M)
Files

[etc/passwd

See Also

login(M), passwd(C), a64I(S), crypyS), getpwent(S), group(M),
pwadmin(C).

March 24, 1984 Page 2

PF (M) PF(M)

Name
pf — Profile disk drives

Description

The files pf* provide block—buffered access to Profile hard disks
connected to Lisa parallel ports. The file pf0 refers to the disk
connected to the built—in parallel port. The other files refer to
disks connected to expansion parallel port cards. The files access
the disks via the system’s normal buffering mechanism and may be
read and written without regard to physical disk records. The fol—
lowing table shows the size, in blocks, of each disk.

device file Lisa 210 Lisa 25
pfo 19456 9728
p2 9728 9728
pf4 9728 9728
pf5 9728 9728

The files rpf* provide a “‘raw’’ interface for direct transmission
between the disk and the user’s read or write buffer. When
accessing a raw file, the user’s buffer must begin on a word
boundary and the counts in read(S), write(S), and Iseek(S) calls
must be a multiple of 512 bytes (one disk block).

Files
/dev/pf* /dev/rpf*

Diagnostics
The following messages may be printed on the console:
pf n not on line

An attempt was made to open a file for which no
disk was plugged in.

handshake error 1vith pf n
The device at the other end of the parallel port did
not observe the handshake protocol for a Profile hard
disk.

May 13, 1984 Page 1

PROFILE (M) PROFILE (M)

Name

profile ~ Sets up an environment at login time.

Description

The optional file .profile permits automatic execution of commands
whenever a user logs in. The file is generally used to personalize a
user’s work environment by setting exported environment variables
and terminal mode (see environ(C)).

When a user logs in, the user’s login shell looks for .profile in the
login directory. If found, the shell executes the commands in the
file before beginning the session. The commands in the file must
have the same format as if typed at the keyboard. Any line begin-
ning with the number sign (#) is considered a comment and is
ignored. The following is an example of a typical file:

Tell me when new mail comes in
MAIL=/usr/mail/myname

Add my /bin directory to the shell search sequence
PATH =$PA TH:$HOME /bin

Make some environment variables global

export MAIL PATH TERM

Set file creation mask

umask 22

Note that the file /etc/profile is a system-wide profile that, if it

exists, is executed for every user before the user’s .profile is exe-
cuted.)

Files

‘$HOME/.profile
[ete/profile

See Also

env(C), login(M), mail(C), sh(C), stty(C), su(C), environ(M)

March 24, 1984 Page 1

SYSTEMID (M) SYSTEMID (M)

Name

systemid - The Micnet system identification file.

Description

The systemid file contains the machine and site names for a system
in a Micnet network. A machine name identifies a system and distin-

. guishes: it from other systems in the same network. A site name
identifies the network to which a system belongs and distinguishes
the network from other networks in the same chain.

The systemid file may contain a site name and up to four different
machine names. The file has the form:

[site-name]
machine-namel
[machine-name2)
[machine-name3]
[machine-name4]

The file must contain at least one machine name. The other machine
names are optional, serving as alternate names for the same
machine. The file must contain a site name if more than one
machine name is given or if the network is connected to another
through a uucp link. The site name, when given, must be on the
first line.

Each name can have up to eight letters and numbers but must
always begin with a letter. There is never more than one name to a
line. A line beginning with a pound sign (#) is considered a com-
ment line and is ignored.

The Micnet network requires one systemid file on each system in a
network with each file containing a unique set of machine names. If
the network is connected to another network through a uucp link,
then each file in the network must contain the same site name.

The systemid file is used primarily during resolution of aliases.
When aliases contain site and/or machine names the name is com-
pared with the names in the file and removed if there is 2 match. If
there is no match, the alias (and associated message, file, or com-
mand) is passed on to the specified site or machine for further pro-
cessing.

March 24, 1984 Page 1

SYSTEMID (M)

Files

Jetc/systemid

See Also
aliases(M), netutil(C), top(M)

March 24, 1984

SYSTEMID (M)

Page 2

TERMCAP (M) TERMCAP (M)

Name

termcap - Terminal capability data base.

Description

The file fetc/termcap is a data base describing terminals. This data
base is used by programs such ‘as #(C) and curses(S). Terminals are
described in termcap by giving a set of capabilities and by describing
how operations are performed. Padding requirements and initializa-
tion sequences are included in termcap.

Entries in termeap consist of a number of ‘' separated fields. The
first entry for each terminal gives the names which are known for
the terminal, separated by vertical bar (|) characters. The first name
is always 2 characters long for compatibility with older systems. The
second name given is the most common abbreviation for the termi-
nal, and the last name given should be a long name fully identifying
the terminal. The second name should contain no blanks; the last
name may well contain blanks for readability.

Capabilities

The following is a list of the capabilities that can be defined for a
given terminal. In this list, (P) indicates padding may be specified,
(P#) indicates that padding may be based on the number of lines
affected, and uppercase names indicate XENIX extensions (except for
CC).

Name Type Pad? Description
ae stt (P) [End alternate character set
al sttt (P*) Add new blank line

am bool Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not “H
BE str Bell character
bs bool Terminal can backspace with "H
BS str Sent by BACKSPACE key (if not be)
bt stt (P) Back tab
bw bool Backspace wraps from column 0
to last column
CC str Command character in prototype

if terminal settable

ed stt {(P#) Clear to end of display

ce stt (P) Clear to end of line

CF str Cursor off

ch stt (P} Like cm but horizontal motion only,
line stays same

CL str Sent by CHAR LEFT key

cl str (Ps) Clear screen

em str (P} Cursor motion

March 24, 1684 Page 1

TERMCAP (M)
CN str
co num
CO st
CR str
cr str
cs str
cv str
CW str
da bool
db bool
dB num
dC num
de str
dF num
DK str
DL str
DL str
dl str
dm str
dN num
do str
dT num
ed str
EE str
EG num
el str
EN str
€0 str
ES str
fi str
Gl str
G2 str
G3 str
G4 str
GD str
GE str
GG num
GH str
GS str
GU str
GV str
he bool
hd str
HM str
ho str
HP str
hu str
hz str
ic str
if str
im bool
in bool

March 24, 1984

(Ps)
(P)

(Pe)

(P+)

(Pe)

(P)

TERMCAP (M)

Sent by CANCEL key

Number of columns in a line

Cursor on

Sent by CHAR RIGHT key

Carriage return, (default “M)

Change scrolling region (vt100), like cm
Like ch but vertical only.

Sent by CHANGE WIND OW key

Display may be retained above

Display may be retained below

Number of millisec of bs delay needed
Number of millisec of cr delay needed
Delete character

Number of millisec of fl delay needed
Sent by down arrow key (if not kd)

Sent by DELETE key

Sent by destructive character delete key
Delete line

Delete mode (enter)

Number of millisec of nl delay needed
Down one line

Number of millisec of tab delay needed
End delete mode

Edit mode end

Number of chars taken by ES and EE

End insert mode; give “ei=:"

if ic

Sent by END key

Can erase overstrikes with a blank

Edit mode start

Hardcopy terminal page eject (default “L)
Upper-right (1st quadrant) corner character
Upper-left (2nd quadrant) corner character
Lower-left (3rd quadrant) corner character
Lower-right (4th quadrant) corner character
Down-tick character

Graphics mode end

. Number of chars taken by GS and GE

Horizontal bar character

Graphics mode start

Up-tick character

Vertical bar character

Hardcopy terminal

Half-line down (forward 1/2 linefeed)
Sent by HOME key (if not kh)

Home cursor (if no cm)

Sent by HELP key

Half-line up (reverse 1/2 linefeed)
Hazeltine; can’t print s

Insert character

Name of file containing is

Insert mode (enter); give “:im=:q’ if ic
Insert mode distinguishes nulls on display

Page 2

TERMCAP (M)

ip str
is str
kO-k9 str
kb str
kd str
ke str
KF str
kh str
kl str
kn num
KO str
ko str
kr str
ks str
ku str
10-19 str
LD str
LF str
li num
LK str
1 str
ma str
mi bool
ml str
MN str
MP str
MR str
mu str
nc bool
nd str
nl str
ns bool
NU str
0s bool
pc str
PD str
PL str
PR str
PS str
pt bool
PU str
RC str
RF str
RK str
RT str.
RT str
se str
sf str
sg num
50 str
sr str
March 24, 1984

(P+)

(P+)

(P)

(P)

TERMCAP (M)

Insert pad after character inserted
Terminal initialization string
Sent by ‘other’ function keys 0-9
Sent by backspace key

Sent by terminal down arrow key
Out of ‘keypad transmit’ mode
Key-click off

Sent by home key

Sent by terminal left arrow key
Number of ‘other’ keys
Key-click on

Termcap entries for other non-function keys

Sent by terminal right arrow key

Put terminal in ‘keypad transmit’ mode
Sent by terminal up arrow key

Labels on ‘other’ function keys

Sent by line delete key

Sent by line feed key

Number of lines on screen or page
Sent by left arrow key (if not ki)

Last line, first column (if no cm)

Arrow key map, used by vi version 2 only

Safe to move while in insert mode
Memory lock on above cursor

Sent by minus sign key

Multiplan initialization string
Multiplan reset string

Memory unlock (turn off memory lock)
No correctly working carriage return
(DM 2500,H2000)

Non-destructive space {cursor right)
Newline character {default \n)
Terminal is a CRT but doesn’t scroll
Sent by NEXT UNLOCKED CELL key
Terminal overstrikes

Pad character (rather than null)

Sent by PAGE DOWN key

Sent by PAGE LEFT key

Sent by PAGE RIGHT key

Sent by plus sign key

Has hardware tabs

{may need to be set with is)

Sent by PAGE UP key

Sent by RECALC key

Sent by TOGGLE REFERENCE key
Sent by right arrow key (if not kr)
Sent by RETURN key

Sent by return key

End stand out mode

Scroll forwards

Number of blank chars left by so or se
Begin stand out mode

Seroll reverse (backwards)

Page 3

TERMCAP (M) TERMCAP (M)

ta stt (P} Tab (other than “I or with padding)

TB str Sent by TAB key

tc str E-:try of similar terminal - must be last

te str String to end programs that use cm

ti str String to begin programs that use cm

uc str Underscore one char and move past it

ue str End underscore mode

ug num Number of blank chars left by us or ue

UK str Sent by up arrow key (if not ku)

ul bool Terminal underlines even though
it doesn’t overstrike

up str Upline (cursor up)

us str Start underscore mode

vb str Visible bell (may not move cursor)

ve str Sequence to end open/visual mode

vs str Sequence to start open/visual mode

WL str Sent by WORD LEFT key

WR str Sent by WORD RIGHT key

xb bool Beehive (f1=escape, f2=ctr]l C)

xn bool A newline is ignored after a wrap
(Concept)

xr bool Return acts like ce \r \n

. (Delta Data)

xs bool Standard out not erased by writing over it
(HP 2647)

Xt bool Tabs are destructive, magic so char

(Teleray 1061)
A Sample Entry

The following entry describes the Concept~ 100, and is among the
more complex entries in the termcap file. (This particular concept
entry is outdated, and is used as an example only.)

¢1|c100 jconcept100: 1s—\EU\Ef\E7\ES\E8\El\ENH\EK\E\200\E0&\200 \
:al=3+\E"R:am:bs:cd=16#\E"C:ce=16\E"S:cl=2
:em=\Ea%+ %+ :co#80:de=16\E"A: dl—3t\E‘B el—\E\200\
:eoiim=\E"P:in:ip=16«li#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED \EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last
character of a line, and that empty fields may be included for reada-
bility (here between the last field on a line and the first field on the
next). Capabilities in termcap are of three types: Boolean capabilities
which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular
delays, and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the
Concept has ‘automatic margins’ (i.e. an automatic return and

March 24, 1984 Page 4

TERMCAP (M) ’ TERMCAP (M)

linefeed when the end of a line is reached) is indicated by the capa-
bility am. Hence the description of the Concept includes am.
Numeric capabilities are followed by the character ‘#’ and then the
value. Thus co which indicates the number of columns the terminal
has gives the value ‘80’ for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an ‘=", and then a
string ending at the next following ‘:’. A delay in milliseconds may
appear after the ‘=" in such a capability, and padding characters are
supplied by the editor after the remainder of the string is sent to
provide this delay. The delay can be either a integer, e.g. ‘20’, or an
integer followed by an ‘#’, i.e. ‘3. A ‘#'indicates that the padding
required is proportional to the number of lines affected by the opera-
tion, and the amount given is the per-affected-unit padding required.
When a ‘¢’ is specified, it is sometimes useful to give a delay of the

form ‘3.5’ specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \E maps to an
ESCAFE character, "X maps to a control-x for any appropriate x, and
the sequences \n \r \t \b \f give a newline, return, tab, backspace
and formfeed. Finally, characters may be given as three octal digits
after a \, and the characters " and \ may be given as * and \\. If it
is necessary to place a : in a capability it must be escaped in octal as
\072. If it is necessary to place a null character in a string capability
it must be encoded as \200. The routines that deal with termeap use
C strings, and strip the high bits of the output very late so that a
\200 comes out as a \000 would.

Prepanng Deecriptions

We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is by imitating the
description of a similar terminal in termeap and to build up a descrip-
tion gradually, using partial descriptions with ez to check that they
are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the termcap file to describe it or bugs in
ez. To easily test a new terminal description you can set the environ-
ment variable TERMCAP to a pathname of a file containing the
description you are working on and the editor will look there rather
than in fetefermcap. TERMCAP can also be set to the termcap entry
itself to avoid reading the file when starting up the editor.

Basic capabilities

The number of columns on each line for the terminal is given by the
co numeric capability. If the terminal is a CRT, then the number of
lines on the screen is given by the li capability. If the terminal
wraps around to the beginning of the next line when it reaches the
right margin, then it should have the am capability. If the termiaal
can clear its screen, then this is given by the cl string capability. If
the terminal can backspace, then it should have the bs capability,

March 24, 1984 Page 5

TERMCAP (M) » TERMCAP(M)

unless a backspace is accomplished by a character other than “H in
which case you should give this character as the be string capability.
If it overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded
in termcap are undefined at the left and top edges of a CRT terminal.
The editor will never attempt to backspace around the left edge, nor
will it attempt to go up locally off the top. The editor assumes that
feeding off the bottom of the screen will cause the screen to scroll
up, and the am capability tells whether the cursor sticks at the right
edge of the screen. If the terminal has switch selectable automatic
margins, the termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and ‘glass-tty’ termi-
nals. Thus the model 33 teletype is described as

t3 [33 [tty33:co#72:0s
while the Lear Siegler ADM- 8 is described as
cljadm3BJsi adm3:am:bs:cl="Z:li#24:co#80
éunor addressing

Cursor addressing in the terminal is described by a cm string capabil-
ity, with prntf(S) like escapes % in it. These substitute to encod-
ings of the current line or column position, while other characters
are passed through unchanged. If the em string is thought of as
being a function, then its arguments are the line and then the
column to which motion is desired, and the % encodings have the
following meanings:

%d as in printf, 0 origin

% like %2d

%3 like %3d

% like %

%+ x adds z to value, then %

%>xy if value > x addsy, no output.

% reverses order of line and column, no output

% increments-line/cclumn (for 1 origin)

%% gives a single %

%n exclusive or row and column with 0140 (DM2500)
9B BCD (16%(x/10)) + (x%I10), no output.

%D Reverse coding (x-2%(x%16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs
to be sent \E&al2¢03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row
and column are printed as two digits. Thus its cm capability is
tem=6\E&%%2c%2Y’. The Microterm ACT-IV needs the current
row and column sent preceded by a “T, with the row and column
simply encoded in binary, ‘em=="T%%.’. Terminals which use ‘%’

March 24, 1984 Page 6

TERMCAP (M) TERMCAP (M)

need to be able to backspace the cursor (bs or be), and to move the
cursor up one line on the screen (up introduced below). This is
necessary because it is not always safe to transmit \t, \n *D and \r,
as the system may change or discard them.)

A final example is the LSl ADM-3a, which uses row and column offset
by a blank character, thus ‘cm=\E=%+ %+ .

Cursor motions

If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, then this sequence
should be given as nd (non-destructive space). If it can move the °
cursor up a line on the screen in the same column, this should be
given as up. If the terminal has no cursor addressing capability, but
can home the cursor {to very upper left corner of screen) then this
can be given as ho; similarly a fast way of getting to the lower left
hand corner can be given as ll; this may involve going up with up
from the home position, but the editor will never do this itself
(unless 1l does) because it makes no assumption about the effect of
moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as ce. If the
terminal can clear from the current position to the end of the
display, then this should be given as ¢d. The editor only uses cd
from the first column of a line.

Insertfdelete line

If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the cursor is on, then
this should be given as dl; this is done only from the first position
on the line to be deleted. If the terminal can scroll the screen back-
wards, then this can be given as sb, but just al suffices. If the termi-
nal can retain display memory above then the da capability should be
given; if display memory can be retained below then db should be
given. These let the editor understand that deleting a line on the
screen may bring non-blank lines up from below or that scrolling
back with sb may bring down non-blank lines.

Insertfdelete character

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using termcap. The
most common insert/delete character operations affect only the char-
acters on the current line and shift characters off the end of the line.
Other terminals, such as the Concept 100 and the Perkin Elmer Owl,
make a distinction between typed and untyped blanks on the screen,

March 24, 1984 Page 7

TERMCAP (M) TERMCAP (M)

shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped
blanks. You can find out which kind of terminal you have by clear-
ing the screen and then typing text separated by cursor motions.
Type ‘abe def’ using local cursor motions {not spaces) between the
‘abc’ and the ‘def’. Then position the cursor before the ‘abc’ and
put the terminal in insert mode. If typing characters causes the rest
of the line to shift rigidly and characters to fall off the end, then
your terminal does not distinguish between blanks and untyped posi-
tions. If the ‘abc’ shifts over to the ‘def’ which then move together
around the end of the current line and onto the next as you insert,
you have the second type of terminal, and should give the capability
in, which stands for ‘insert null’. If your terminal does something
different and unusual then you may have to modify the editor to get
it to use the insert mode your terminal defines. No known terminals
have an insert mode not falling into one of these two classes.

The editor can handle both terminals that have an insert mode and
terminals which send a simple sequence to open a blank position on
the current line. Give as im the sequence to get into insert mode,
or give it an empty value if your terminal uses a sequence to insert a
blank position. Give as ei the sequence to leave insert mode (give
this, with an empty value also if you gave im an empty value). Now
give as ic any sequence needed to be sent just before sending the
character to be inserted. Most terminals with a true insert mode will
not give ic, terminals which send a sequence to open a screen posi-
tion should give it here. (Insert mode is preferable to the sequence
to open a position on the screen if your terminal has both.) If post
insert padding is needed, give this as a number of milliseconds in ip
(a string option). Any other sequence which may need to be sent
after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode you can give the capability mi to speed up inserting in this
case. Omitting mi will affect only speed. Some terminals (notably
Datamedia’s) must not have mi because of the way their insert
mode works.

Finally, you can specify delete mode by giving dm and ed to enter
and exit delete mode, and dc to delete a single character while in
delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode
these can be given as so and se respectively. If there are several
flavors of standout mode (such as inverse video, blinking, or under-
lining - half bright is not usually an acceptable ‘standout’ mode
unless the terminal is in inverse video mode constantly) the pre-
ferred mode is inverse video by itself. If the code to change into or
out of standout mode leaves one or even two blank spaces on the

March 24, 1984 Page 8

TERMCAP (M) TERMCAP (M)

screen, as the TVI 912 and Teleray 1061 do, this is acceptable, and
although it may confuse some programs slightly, it can’t be helped.

Codes to begin underlining and end underlining can be given as us
and ue respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such
as the Microterm Mime, this can be given as uc. (If the underline
code does not move the cursor to the right, give the code followed
by a nondestructive space.)

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. If the terminal should be placed in a different
mode during open and visual modes of ez, this can be given as vs
and ve, sent at the start and end of these modes respectively. These
can be used to change, e.g., from a underline to a block cursor and
back.

If the terminal needs to be in a special mode when running a pro-
gram that addresses the cursor, the codes to enter and exit this
mode can be given as ti and te. This arises, for example, from ter-
minals like the Concept with more than one page of memory. If the
terminal has only memory relative cursor addressing and not screen
relative cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies,
for example, to the unshifted HP 2621 keys). If the keypad can be
set to transmit or not transmit, give these codes as ks and ke. Oth-
erwise the keypad is assumed to always transmit. The codes sent by
the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as kl, kr, ku, kd, and kh respectively. If there are
function keys such as {0, f1, ..., {9, the codes they send can be given
as kO, k1, ..., k8. If these keys have labels other than the default f0
through f9, the labels can be given as 10, 11, ..., 19. If there are
other keys that transmit the same code as the terminal expects for
the corresponding function, such as clear screen, the termeap 2 letter
codes can be given in the ko -<capability, for example,
‘:ko==cl,l],sf,sb:’, which says that the terminal has clear, home down,
scroll down, and scroll up keys that transmit the same thing as the
cl, 1l, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which
have single character arrow keys. It is obsolete but still in use in

March 24, 1984 . Page 8

TERMCAP (M) TERMCOAP(M)

version 2 of vi, which must be run on some minicomputers due to
memory limitations. This field is redundant with kl, kr, ku, kd, and
kh. It consists of groups of two characters. In each group, the first
character is what an arrow key sends, the second character is the
corresponding vi command. These commands are h for ki, j for kd,
k for ku, I for kr, and H for kh. For example, the mime would be
:ma="Kj"Zk"Xl: indicating arrow keys left {"H), down (K}, up
(*Z), and right ("X). (There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a
character other than “I to tab, then this can be given as ta.

Hazeltine terminals, which don’t allow ‘™ characters to be printed
should indicate hz. Datamedia terminals, which echo carriage-return
linefeed for carriage return and then ignore a following linefeed
should indicate nc. Early Concept terminals, which ignore a linefeed
immediately after an am wrap, should indicate xn. If an erase-eol is
required to get rid of standout (instead of merely writing on top of
it), xs should be given. Teleray terminals, where tabs turn all char-
acters moved over to blanks, should indicate xt. Other specific ter-
minal problems may be corrected by adding more capabilities of the
form xz.

Other capabilities include is, an initialization string for the terminal,
and if, the name of a file containing long initialization strings. These
strings are expected to properly clezr and then set the tabs on the
terminal, if the terminal has settable tabs. If both are given, is will
be printed before if. This is useful where if is fusrfibpabeet/std but is
clears the tabs first.

Stmilar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability tc
can be given with the name of the similar terminal. This capability
must be last and the combined length of the two entries must not
exceed 1024. Since termlib routines search the entry from left to
right, and since the tc capability is replaced by the corresponding
entry, the capabilities given at the left override the ones in the simi-
lar terminal. A capability can be cancelled with xx@ where xx is the
capability. For example:

hn [2621nl:ks@ :ke@ :tc=2621:
This defines a 2621nl that does not have the ks or ke capabilities,
and hence does not turn on the function key labels when in visual

mode. This is useful for different modes for a terminal, or for
different user preferences.

March 24, 1984 Page 10

TERMCAP (M) TERMCAP (M)

Files

Jetc/termcap File containing terminal descriptions

See Also
ex(C), curses(S), termeap(S), tset{C), vi(C), more{C)
Credit
This utility was developed at the University of California at Berkeley -
and is used with permission.
Notes
Ez allows only 256 characters for string capabilities, and the routines
“in termcap{S) do not check for overflow of this buffer. The total
length of a single entry (excluding only escaped newlines) may not
exceed 1024,

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not
~supported by any program.

March 24, 1984 Page 11

TERMINALS (M) TERMINALS(M)

Name
terminals — List of supported terminals.

Description
The following list, derived from the file /etc/termcap shows, for
each termnal, the ‘canonical name’ (suitable for use as a TERM
shell variable) and a short descsription of the terminal. The advice
in termcap (M) will assist users in creating termcap entries for ter—
minals not currently supported.

May 14,

Name Terminal

2621 hp 2621

2621wl hp 2621 with labels

3045 datamedia 3045a

4025 tektronix 4024/4025/4027

4025-17 tek 4025 17 line window

4025—17ws tek 4025 17 line window in workspace

4025ex tek 4025 '

8001 ISC8001

912b new televideo

925 newer televideo

TWO Altos Computer Systems 1

a980 adds consul 980

aa ann arbor

aaa ann arbor ambassador/48 lines

aaadb ann arbor ambassador 48/destructive backspace

actSs skinny actS

adds adds viewpoint

adml2 Isi adm12

adm31 Isi adm31

adm3a Isi adm3a

adm42 Isi adm42

ampex ampex dialogue

bh3m bechivellim

c100 concept 100

¢1004p c100 w/4 pages

c100rv ¢100 rev video

c100rv4p ¢100 w/4 pages

c100rvdpna ¢100 with no arrows

¢100rvs slow reverse concept 100

¢100s slow concept 100
cromemco 3102

¢3102
cci

1984

cci 4574

Page 1

TERMINALS (M)

cdc456

cdc4 56tst

cit80
di32

datapoint

delta

~ digilog
dm1520
dmi1521
dm2500
dm3025
dt80
dt80132
du
dumb
ep40
epd8
exidy
fox
fre100
h1500
hi1510
h1520
h19
hp
ibm
ibm3101
ibme
intext
lisa
liswb
microb

microterm
microtermS

mime
mime2a

mime2as

mime3a

mime3ax

mimehb
owl
pixel
regent

May 14,

1984

TERMINALS (M)

dc

dcAS56tst

c.itoh 80
datagraphix 132a
datapoint 3360
delta data 5000
digilog 333
datamedia 1520
datamedia 1521

' datamedia 2500

datamedia 3025a

datamedia dt80/1

datamedia dt80/1 in 132 char mode

dialup

unknown

execuport 4000

execuport 4080

exidy2500

perkin elmer 1100

Freedom 100

hazeltine 1500

hazeltine 1510

hazeltine 1520

heathkit h19

hp 264x series

IBM PC xenix console display

1BM 3101-10

1BM PC xenix color console display

1SC modified owl 1200

Apple Lisa XENIX console display (black on white)
Apple Lisa XENIX console display (white on black)
micro bee series :
microterm act iv

microterm act v

microterm mimel

microterm mime2a (emulating an enhanced vt52)
microterm mimeZa (emulating an enhanced soroc iq120)
mimel emulating 3a

mimel emulating enhanced 3a

half bright mimel

perkin elmer 1200

Pixel términal

adds regent series

Page 2

TERMINALS (M)

regent100
regent25
regent25a
sbl

sb2

soroc
superbeeic
t1061
13700
t3800

tek
tek4014
tek4014sm
tek4023
tvi910
tvio10+
tvio12
tvi950
vi200
visS0

vis5
vt100n
vt100s
vt100w
vt52
wy100
zen30

Files
letc/termcap

See Also

TERMINALS (M)

adds regent 100

adds regent 25

adds regent 25a

bechive super bee

fixed superbee

Soroc 120

bee with insert char

teleray 1061

dumb teleray 3700

teleray 3800 series
tektronix 4012

tektronix 4014

tektronix 4014 in small font
tektronix 4023

old televideo 910

televideo 910 PLUS

old televideo

televideo950

visual 200

Visual’s emulation of adds viewpoint
Visual's new old terminal using ADDS emulation
vt100 w/no init

dec vt100 132 cols 14 lines
dec vt100 132 cols

dec vt52

wyse 100

zentec 30

tset(C), environ(M), termcap(M)

May 14, 1984

Page 3

TOP(M) - TOP(M)

Name

top, top.next - The Micnet topology files.

Description

These files contain the topology information for a Micnet network.
The topology information describes how the individual systems in
the network are connected and what path. a message must take from
one system to reach another. Each file contains one or more lines of
text. Each line of text defines a connection or a communication

path.) '

The top file defines connections between systems. Each line lists the
machine names of the connected systems, the serial lines used to
make the connection, and the speed (baud rate) of transmission
between the systems. Each line has the form:

machinel ttyl machine2 tty2 speed
machinel and machine? are the machine names of the respective sys-
tems (as given in the systemid files). ttyl and #y2 are the device
names (e.g., tty01) of the connecting serial lines. The speed must
be an acceptable baud rate (e.g., 110, 300,:..., 19200).
The top.next file contains information about how to reach a particu-
lar system from 3 given system. There may be several lines for each
system in the network. Each line lists the machine name of a sys-
tem, followed by the machine name of a system connected to it, fol-
lowed by the machine names of all the systems that may be reached
by going through the second system. Such a line has the form:
machinel machine2 machine3 [machined]...

The machine names must be the names of the respective systems
(as given by the first machine name in the systemid files).

The top.nezt file must be present even if there are only two comput-
ers in the network. In such a case, the file must be empty.

In the top and top.next files, any line beginning with a number sign
(#) is considered a comment and is ignored.

Files
Jusr/lib/mail /top

Jusr/lib/mail/top.next

March 24, 1984) Page 1

TOP(M) TOP(M)

See Also

aliases(M), netutil{ C), systemid(M}, top(M)

March 24, 1984 Page 2

TTY (M) TTY (M)

Name

tty - General terminal interface. .

Description

This section describes both a particular special file and the general
nature of the terminal interface.

The file /dev/tty is, in each process, a synonym for the control ter-
minal associated with the process group of that process, if any. It is
useful for programs or shell sequences that wish to be sure of writ-
ing messages on the terminal no matter how output has been
redirected. It can also be used for programs that demand the name
of a file for output, when typed output is desired and it is tiresome
to find out what terminal is currently in use.

All asynchronous communications ports use the same general inter-
face, no matter what hardware is involved. The remainder of this
section discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to
wait until a connection is established. In practice, users’ programs
seldom open these files; they are opened by getty(M) and become a
user’s standard input, output, and error files. The very first terminal
file opened by the process group leader of a terminal file not already
associated with a process group becomes the control terminal for that
process group. The control terminal plays a special role in handling
quit and interrupt signals, as discussed below. The control terminal
is inherited by a child process during a fork(S). A process can break
this association by changing its process group using setpgrp(S).

A terminal associated with one of these files ordinarily operates in
full-duplex mode. Characters may be typed at any time, even while
output is occurring, and are only lost when the system’s character
input buffers become completely full, which is rare, or when the
user has accumulated the maximum allowed number of input char-
acters that have not yet been read by some program. Currently, this
limit is 256 characters. When the input limit is reached, all the
saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is del-
imited by a newline (ASCII LF) character, an end-of-file (ASCII EOT)
character, or an end-of-line character. This means that a program
attempting to read will be suspended until an entire line has been
typed. Also, no matter how many characters are requested in the
read call, at most one line will be returned. It is not, however,
necessary to read a whole line at once; any number of characters
may be requested in a read, even one, without losing information.

Erase and kill processing is normally done during input. By default,
a CNTRL-H or BACKSPACE erases the last character typed, except

March 24, 1984 o Page 1

TTY (M)

TTY (M)

that it will not erase beyond the beginning of the line. By default, a
CNTRL-U Kkills (deletes) the entire input line, and optionally outputs
a newline character. Both these characters operate on a key-stroke
basis, independent of any backspacing or tabbing that may have been
done. Both the erase and kill characters may be entered literally by
preceding them with the escape character (\). In this case the escape
character is not read. The erase and kill characters may be changed
(see atty(C)).

Certain characters have special functions on input. These functions
and their default character values are summarized as follows:

INTR

QUIT

ERASE

KILL

EOF

NL

"EoL

STOP

(Rubout or ASCIl DEL) Generates an snterrupt signal which
is sent to all processes with the associated control terminal.
Normally, each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to
receive a trap to an agreed-upon location; see signal(S).

(CNTRL-\ or ASCII FS) Generates a quit signal. Its treat-
ment is identical to the interrupt signal except that, unless
a receiving process has made other arrangements, it will
not only be terminated but a core image file (called core)
will be created in the current working directory.

(CNTRL-H) Erases the preceding character. It will not
erase beyond the start of a line, as delimited by a NL, EOF,
or EOL character.

(CNTRL-U) Deletes the entire line, as delimited by a NL,
EOF, or EOL character.

(CNTRL-D or ASCHl EOT) May be used to generate an
end-of-file from a terminal. When received, all the charac-
ters waiting to be read are immediately passed to the pro-
gram, without waiting for a newline, and the EOF is dis-
carded. Thus, if there are no characters waiting, which is
to say the EOF occurred at the beginning of a line, zero
characters will be passed back, which is the standard end-
of-file indication.

(Ascil LF) Is the normal line delimiter. It cannot be
changed or escaped.

(Ascll NUL) Is an additional line delimiter, like NL. It is.
not normally used.

(CNTRL-S or ASCIHl DC3) Can be used to temporarily
suspend output. It is useful with CRT terminals to prevent
output from disappearing before it can be read. While out-
put is suspended, STOP characters are ignored and not
read.

March 24, 1984 Page 2

TTY (M) irTY-(M)

START (CNTRL-Q or ASCII DC1) Is used to resume output which
has been suspended by a STOP character. While output is
not suspended, START characters are ignored and not read.
“The start/stop characters cannot be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL
may be changed to suit individual tastes, The ERASE, KILL, and
EOF characters may be escaped by a preceding \ character, in which
case no special function is carried out.

When the carrier signal from the dataset drops, a hangup signal is
sent to all processes that have this terminal as the control terminal.
Unless other arrangements have been made, this signal causes the
processes to terminate. If the hangup signal is ignored, any subse-
quent read returns with an end-of-file indication. Thus programs
that read a terminal and test for end-of-file can terminate appropri-
ately when hung up on.

When one or more characters are written, they are transmitted to the
terminal as soon' as previously-written characters have finished typ-
ing. Input characters are echoed by putting them in the output
queue as they arrive. If a process produces characters more rapidly
than they can be typed, it will be suspended when its output queue
exceeds a given limit. When the queue has drained down to the
given threshold, the program is resumed.

Several toctl(S) system calls apply to terminal files. The primary calls
use the following structure, defined in the file termio.h:

#define NCC 8

struct termio {
unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short - c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char : ¢_line; /* line discipline *
unsigned char ¢_cc[NCC]; /* control chars *

8

The special control characters are defined by the array ¢_ce. The
relative positions and initial values for each function are as follows:

VINTR DEL

0

1 VQUIT FS

2 VERASE BKSP

3 VKILL CNTRL-U, CNTRL-H,
4 VEOF EOT

5 VEOL NUL

6 Reserved

7 Reserved

March 24, 1984 ; Page 3

TTY (M) TTY (M)

The ¢_iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignores break condition

BRKINT 0000002 Signals interrupt on break

IGNPAR 0000004 Ignores characters with parity errors
PARMRK 0000010 Marks parity errors

INPCK 0000020 Enables input parity check

ISTRIP 0000040 Strips character

INLCR 0000100 Maps NL to CR on input

IGNCR 0000200 Ignores CR

ICRNL 0000400 Maps CR to NL on input

IUCLC 0001000 Maps uppercase to lowercase on input
IXON 0002000 Enables start/stop output control
IXANY 0004000 Enables any character to restart output
IXOFF 0010000 Enables start/stop input control

If IGNBRK is set, the break condition (a character framing error with
data all zeros) is ignored, that is, not put on the input queue and
therefore not read by any process. Otherwise, if BRKINT is set the
break condition will generate an interrupt signal and flush both the
input and output queues. If IGNPAR is set, characters with other
framing and parity errors are ignored.

If PARMRK 1is set, a character with a framing or parity error which is
not ignored is read as the 3-character sequence: 0377, 0, X, where X
is the data of the character received in error. To avoid ambiguity in
this case, if ISTRIP is not set, a valid character of 0377 is read as
0377, 0377. If PARMRK is not set, a framing or parity error which is
not ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set,
input parity checking is disabled. This allows output parity genera-
tion without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7- blts oth-
erwise all 8-bits are processed. i

If INLCR is set, a received NL character is translated into a CR char-
acter. If IGNCR is set, a received CR character is ignored (not rea.d)

Otherwise if ICRNL is set, a received CR chara.cter is translated into a
NL character.

If IUCLC is set, a received uppercase alphabetic character is
translated into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A received STOP
character will suspend output and a received START character will
restart output. All start/stop characters are ignored and not read. If
IXANY is set, any input character will restart output which has been
suspended.

If IXOFF 1s set, the system will transmit START characters when the
input queue is nearly empty and STOP characters when nearly full.

March 24, 1984 Page 4

TTY (M)

TTY (M)

The initial input control value is all bits ¢lear.

The ¢_oflag field specifies the system treatment of output:

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
éNLRET
OFILL
OFDEL

NLDLY
NLo
NL1

CRDLY
CRO
CR1
CR2
CR3

TABDLY
TABO
TAB1
TAB2
TAB3

BSDLY
BSO
BS1

VTDLY
VTO
VT1

FFDLY
FFo
FF1

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400

0
0000400

0003000

0

0001000
0002000
0003000

0014000
0

0004000
0010000
0014000

0020000
0
0020000

0040000
0
0040000

0100000

0
0100000

Postprocesses output

Maps lowercase to uppercase on output
Maps NL to CR-NL on output

Maps CR to NL on output '

No CR output at column 0

NL performs CR function

Uses fill characters for delay

Fills is DEL, else NUL ‘

Selects newline delays:

Selects carriage return delays:

Selects horizontal tab delays:

Expands tabs to spaces

Selects backspace delays:
Selects vertical tab delays:

Selects form feed delays:

If OPOST is set, output characters are post-processed as indicated by
the remaining flags, otherwise characters are transmitted without

change.

March 24, 1984

Page 5

TTY (M) : o . TTY(M)

If OLCUC is set, a lowercase alphabetic character is transmitted as
the corresponding uppercase character. This function is often used
in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL charac-
ter pair. If OCRNL is set, the CR character is transmitted as the NL
character. If ONOCR is set, no CR character is transmitted when at
column 0 (first position). If ONLRET is set, the NL character is
assumed to perform the carriage return function; the column pointer
will be set to 0 and the delays specified for CR will be used. Other-
wise the NL character is assumed to perform the linefeed function;
the column pointer will remain unchanged. The column pointer is
also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to
the terminal. In all cases a value of 0 indicates no delay. If OFILL is
set, fill characters will be transmitted for delay instead of a timed
delay. This is useful for high baud rate terminals which need only a
minimal delay. If OFDEL is set, the fill character is DEL, otherwise
NUL.

If a form feed or vertical tab delay is specified, it lasts for about 2
seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the car-
riage return delays are used instead of the newline delays. If OFILL
is set, 2 fill characters will be transmitted.

Carriage return delay type 1 is dependent on the current column
position, type 2 is about 0.10 seconds, and type 3 is about 0.15
seconds. If OFILL is set, delay type 1 transmits 2 fill characters, and
. type 2 transmits 4 fill characters.

Horizontal tab delay type 1 is dependent on the current column posi-
tion. Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to
be expanded into spaces. If OFILL is set, 2 fill characters will be
transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, 1 fill char-
acter will be transmitted.

The actual delays depend on line speed and system load.
The initial output control value is all bits clear.
The ¢_cflag field describes the hardware control of the terminal:

CBAUD 0000017 Baud rate:

BO 0 Hang up
-B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud

March 24, 1984 Page 6

TTY (M) TTY(M)‘

B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 - 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B¢600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External B
CSIZE 0000060 Character size:
CS5 0 5 bits

CS6 0000020 6 bits

CSs7 0000040 7 bits

CS8 0000060 8 bits

CSTOPB 0000100 Sends two stop bits, else one
CREAD 0000200 Enables receiver

PARENB 0000400 Parity enable

PARODD 0001000 Odd parity, else even
HUPCL 0002000 Hangs up on last close
CLOCAL 0004000 Local line, else dial-up

The CBAUD bits specify the baud rate. The zero baud rate, B0, is
used to hang up the connection. If BO is specified, the data-
terminal-ready signal will not be asserted. Without this signal, the
line is disconnected if connected through a modem. For any particu-
lar hardware, im possible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission
and reception. This size does not include the parity bit, if any. If
CSTOPB is set, 2 stop bits are used, otherwise 1 stop bit. For exam-
ple, at 110 baud, 2 stops bits are required.

If PARENB is set, parity generation and detection is enabled and a
parity bit is added to each character. If parity is enabled, the
PARODD flag specifies odd parity if set, otherwise even parity is
used. .

If CREAD is set, the receiver is enabled. Otherwise no characters
will be received.

If HUPCL is set, the line will be disconnected when the -last process
with the line open closes it or terminates. That is, the data-
terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a'local, direct connection
with no modem control. The data-terminal-ready and request-to-
send signals are asserted, but incoming modem signals are ignored.
If CLOCAL is not set, modem control is assumed. This means the
data-terminal-ready and request-to-send signals are asserted. Also,

March 24, 1984 i Page 7

TTY (M) TTY(M)

the carrier-detect signal must be returned before communications
can proceed.

The initial hardware control value after open is B9600, CS8, CREAD,
HUPCL.

The ¢_{flag field of the argument structure is used by the line discip-
line to control terminal functions. The basic line discipline (0) pro-
vides the following:

ISIG 0000001 Enable signals

ICANON 0000002 Canonical input (erase and kill processing)
XCASE 0000004 Canonical upper/lower presentation

ECHO 0000010 Enables echo

ECHOE 0000020 Echoes erase character as BS-SP-BS
ECHOK 0000040 Echoes NL after kill character

ECHONL 0000100 Echoes NL

NOFLSH 0000200 Disables flush after interrupt or quit
XCLUDE 0100000 Exclusive use of the line.

If ISIG is set, each input character is checked against the special con-
trol characters INTR and QUIT. If an input character matches one of
these control characters, the function associated with that character
is performed. If ISIG is not set, no checking is done. Thus these
special input functions are possible only if ISIG is set. These func-
tions may be disabled individually by changing the value of the con-
trol character to an unlikely or impossible value (e.g. 0377).

If ICANON is set, canonical processing.is enabled. This enables the
erase and kill edit functions, and the assembly of input characters
into lines delimited by NL, EOF, and EOL. If ICANON is not set,
read requests are satisfied directly from the input queue. A read will
not be satisfied until at least VMIN characters have been received or
the timeout value VTIME has expired. This allows fast bursts of
input to be read efficiently while still allowing single character input.
The VMIN and VTIME values are stored in the position for the EOF
and EOL characters respectively. The time value represents tenths of
seconds.

If XCASE is set, and if ICANON is set, an uppercase letter is accepted
on input by preceding it with a \ character, and is output preceded
by a \ character. In this mode, the following escape sequences are
generated on output and accepted on input:

For: Use:
(N \r

gt p, T
-
e

March 24, 1984 Page 8

TTY (M) - TTY(M)

For example, A is input as \a, \n as \\n, and \N as \\\n.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If
ECHO and ECHOE are set, the erase character is echoed as ASCII BS
SP BS, which will clear the last character from a CRT screen. If
ECHOE is set and ECHO is not set, the erase character is echoed as
ASCII SP BS. If ECHOK is set, the NL character will be echoed after
the kill character to emphasize that the line will be deleted. Note
that an escape character preceding the erase or kill character removes
any special function. If ECHONL is set, the NL character will be
echoed even if ECHO is not set. This is useful for terminals set to
local echo (so-called half duplex). Unless escaped, the EOF charac-
ter is not echoed. Because EOT is the default EOF character, this
prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues
associated with the quit and interrupt characters will not be done.

If XCLUDE is set, any subsequent attempt to open the tty device
using open(S) will fail for all users except the super-user. If the call
fails, it returns EBUSY in errmo. XCLUDE is useful for programs
which must have exclusive use of a communications line. It is not
intended for the line to the program’s controlling terminal. XCLUDE
must be cleared before the setting program terminates, otherwise
subsequent attempts to open the device will fail.

The initial line-discipline control value is all bits clear.
The primary 1octl(S) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Gets the parameters associated with ‘the terminal
and stores them in the termio structure referenced

by arg.

TCSETA Sets the parameters associated with the terminal
from the structure referenced by arg. The change
is immediate.

TCSETAW Waits for the output to drain before setting the
new parameters. This form should be used when
changing parameters that will affect output.

TCSETAF Waits for the output to drain, then flushes the
input queue and sets the new parameters.

March 24, 1984 Page 9

TTY (M) TTY (M)

Additional foct(S) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

“TCSBRK Wiaits for the output to drain. If arg is 0, then
sends a break (zero bits for 0.25 seconds).

TCXONC Starts/stops control. If arg is 0, suspends output;
if 1, restarts suspended output.

TCFLSH If arg is 0, flushes the input queue; if 1, flushes

the output queue; if 2, flushes both the input and
output queues.

Files
[dev Jtty
[dev [tty*

/dev/console

See Also
stty(C), ioctl(S)

March 24, 1984 Page 10

TTYS (M) TTYS(M)

Name :

ttys — Login terminals file.

Ducription
The /ete/ttys file contains a list of the device spemal files associated
with possible login terminals, and defines which files are to be
opened by the init(M) program on system start—up.

The file contains one or more entries of the form
state mode - name

The name must be the filename of a device special file. Only the .
filename may be supplied, the path is assumed to be /dev. If state
is ““1”, the file is enabled for logins; if ‘0", the file i is disabled.
The mode is used as an argument to the getty(M) program. It
defines the line speed and type of device associated with the ter—
minal. A list of arguments is provided in getzy(M).

For example, the entry ‘‘12tty02’’ means the serial line tty02 is to
be opened for logging in at 9600 baud.

Files
lete/ttys

See Also
init(M), getty(M), enable(C), disable(C) .

May: 14, 1984 Page 1

UTMP (M) UTMP (M)

Name

utmp, wtmp ~ Formats of utmp and wtmp entries.

Description

The files utmp and wtmp hold user and accounting information for
use by commands such as who(C), accteonl (see acctcon(C)), and
login(M). They have the following structure, as defined by

/usr/include /utmp.h:
struct utmp
{
char ut_line[8]; /* tty name */
char ut_name[8]; /* login name */
long ut_time; /* time on */
5
Files
[ete/utmp
Jusr/adm fwtmp

Jusr/include futmp.h

See Also
accteon(C), login{ M}, who{C), write(C)

March 24, 1984 Page 1

