The i1 Underground Yolume *1{
Introduction

The Geneva-12, Geneva-9, Athens-13, and Monaco-9 fonts are needed to
correctly view and print the files an this disk. The applications MacPaint,
Macwrite, and Consulair's Edit are needed to fully view and print the files.
MacWrite could be substituted for Edit as long as the ruler is set up to
emulate & character tab settings and a font such as Monaco-9 is used. -

The disk contains the follawing files:
Schematics

Memory (MacPaint)

Cantrol Logic {(MacPaint)

CPU & ROM (MacPaint)

W & VIA (MacPaint)

Serial Interface (MacPaint)
Address Multiplexer {MacPaint}
Keyboard & Mouse {MacFPaint)
128K/512K (MacPaint)

Hardware info

Keyboard Hardware (MacwWrite)
Yideo Hardware (Macwrite)
Sound Hardware (Macwrite)
YA Hardware (MacWrite)
Mouse Hardware (Macwrite)

kKeuyboard ROM

502 1PAGEC (Edit)
GO21PAGET (Edit)
02 1PAGEZ (Edit)
BO21PAGE3 (Edit)
Register Usage (Edit)

The 1N Tnelergrenmaad -1 -

© 1985

Charts

Yideo Timing (MacPaint)
Hacker Chart (Mac'write)
Empty Folder {Yes -- it is empty)

system Infg

The System Revealed (Macw/rite)
The Small System (Macwrite)
Resource Flags (Macwrite)

512K Upgrade {MacWrite)
Beyand S12K (Macwrite)

wWe strongly suggest that the reader also obtain (if they don't aiready
have it) the software documentation /mside Mecinitest fram Apple as it
provides waluable information about the inner workings of the operating
system and device drivers.

Flease notify us of any errors and/or omissions so that future releases
cah be corrected.

The keyboard ROM listings are from an 8021 MPU that did not have Apple's copyright in or on it.
The cirouit board schematios are traced from several Macintosh logic boards,

Apple, Apple Care, Finder, Image¥Writer , Inside Macintozh, Liza, Mac, Macintosh, Macintosh XL,
MacFaint, MacsBug, Macworks, MacWrite, QuickDraw , Resource Editor, and Resource Mover
are trademarks of Apple Computer, Inc.

Consulair is a trademark of Consulair, Inc.

Intel is 3 frademark of Intel Corporation.

Fedit iz copyright by John Mitchell.

Matoraola is 3 trademark of Motorsla, Inc.

Rockwell iz 3 trademark of Rockwell international.

Synertek is 3 trademark of Synertek, Inc.

Zilog i 3 trademark of Zilog, Inc.

The IM Underground Volume #1 iz available for $25 from:
The M Underground
715 Church Street #16
Ann Arbor , Michigan 42104

[]

The [0 Tnelerronmel :

€ 1985

DD ODODDDODODODD B DODDODDDODOD e
1514 13121110 9 8 ? 5 5 4 3 2 0 RAMRD
CASODD
_CASEVEN——15 15
RAS RAMW——3 3
T T p—]
RA3 2111111987615 211 1111918|?21615 19 E13 3 E12 !
RA4 AAS nz1110 j:j:;z 10 13ISIBEY 2 113ISNBE Y2
RAG—————13 13
RA?—3 9
RA8———— [
e foe o fom e]] b o |
W1 0 W5 N F W2 g ¥ 3
SERVID B 4 P, '—{’3 s 1 Y
UTDLORD : B —
A R10 1K =
15.6672MHz— s R39 3.3KQ
FB3 (only on
new boards)
FS - F12 = 4164-200 SOUNDPHHM ssssnmmiEEE|
65 - G12 = 4164-200 o N\e B8 Eds €15 wfys F15 w
(For S12K, use 41256-200)> SOUNDEN—1 ? 11121314 § '¥%1
E12 , E13 = 74LS244 ?.8336MHz
F13 , F14 = 74LS166A)
E1S , F15 = 74LS161A i
E14 = ASG = PAL16RS D1 SKPHH " e
15 Y
SOUND /UIDEO FETCH s)l
(b} 2
S 8]
SOUND /VIDEO 13 3 R35 47n

sihedliMfindesground

&) 198s

(Memory)

A A AARAARAAARAARARRARARARARAAARAARARARGATEHR __
232221191817 16151413 1211109 8 7 6 5 4 2 AZ0
L“ L _l_j —Jl’
N
11
RP1 2.2KR T : ROMEN
/14 1 1
{iﬂ 20 ee e 22
fe
1
15
2 ROM HI ROM LOMW
B3 23256 23256
4;5
old/new board &
f pinout D 19 NIRISIZR N IBIBINNIGISIIIR2 N
NN
R28 SSKR 25 5251 504BYI4EN5444 342 41 MD333B313635383332 313029 5 Do
21 bl D1
iea 3t D2
A " z D3 4
12 54 DS
22 53 06
Lo |a MC6S000GS o2 97 os
R20 3. 3K 50 03 .
R 53
UMA i3 :E D11 012
E 20 S5 D13
- D14
UPA ¥ 3 B 1 5 i a5 @y 23 1 e 5 5" D15
R/] L4 L ?.8336MHz
L0S RESET
UPS R3 1KR
— w .
S i
DTACK ;& C22 SH2
iPLO LM,_« T RESET
o~ R9 1KR
P Vo
T R34 3.3KR ICRZ
o L
R30 3.3Kn -5U R23 100KR
NN O O
R2 3.3KR SW1 INT |
Tae 000 .
i nderground
U d g8 ® 1988 (CPU & ROM)

MOUSE . X1 MOUSE.VY1

. Q215
I L1——'1 N ? Y 8
o8 w 5 B 7 8 - 5 15 J2-1
18 —J2-2
09 ' s <+L-———5 2 18 Jz2 4J2_3
D10 39 !?—I i4Cs) 20 15 6\J2--5
Dit 4 ;3‘ X —_E_— ' A? J2-7
D12 8 i 3 + 3 1B J2-9
1] CS l]
D13 3 ::] 5 16 9
8530 ‘ H1 +sux +r2ux
D14 n o {0 3 2 -
015 L _ ‘E;)»
A1 e 22 o R d3-2d3_
23p - J3-3
R2 32 244 f " 1 L] J3-4
25 J3-5
S_(_:E-'H 33 ;-‘_: Y LI mj_‘ —-\J3-6d3—?
L.DS 135 28} " - ______r_——d3‘8
294 13 + -8 13 J3-9
R43 2200 s e W cs r— |
SCCAD——~~—1 s -
R1D
3.6864MHz KR 4 R?, R10 = CR filter
SCCH/REQ p— v [
; ; cs SV ce
: I 2@ N5 CS = 26L532
QR E;f C6 = 260530
Optional-¥ CR1' - -
old X w» , Note: R43 and R44 are replaced * = |ow noise supply
-
boards . =& | by a direct connection on older boards.
only)> ' !
""" -12U +12V -5V
Video out J?-1—VUI{BECOUT
e 21 "Q1" 13
Horizontal sync J?-3—"~—HSYNC1 : ‘I
Audio out J?-4——S0OUNDOUT = =
Vertical sync J?-5——USYNC L3 '
+5 Volts J7-6 STTY +5U*
Ground JP=-P— L2
-12 Uolts J7-8 ARRA 12U%
Ground J7-9 L1
+12 VUolts J7-10 STYTY Y + 12y=*
Battery J?-1{——4 5V CS l 4 JE;;

fiheplinfuUn'derground

|||

e
7

I\m
€8, €9, C1?, C21, C23 - c48

e

L

|
o

n

2]

i\

(Rdd CS1 for a 512K version?

® 1985

.1 uF

(Serial Interface)

cle|{t|{s|olPr], T
H Y 6 8 | K M {ENT
F Y R 4 - [) N | BS
D c E 3 ? u J / '
S X W 2 9 0 L) SP
A 2 Q 1 =] |RET| \ |TAB
27} 18| 19| 20| 21| 22| 23| 24| 25 4] 51 6171 8]9
P21 P10 P11 P12 P13 P14 P15 PI6P1? P P P P P P
A 00 01 02 03 04 0S
3
28 PROG — NC
ucc 12
ALE — NC
470pF
JUF = Intel 802 1H MPU 15 7P
XTAL 1 —p—f
14
Uss 3 100uH
= 16
XTAL2 i€
RESET T1 P22 P23 PO6 P3? P20 470pF =
17 13 1 2 10 11 26 A
200K 10K
el]
[_T_<. 4 N
TI 2] 3] 0] 19 hﬂr—]m L1Ca s Lock | 227 27
1A 1B 1_UCC IRC IC P % +5
4 G CLR 34 12 Command 4
NC NC L-Shi ft —yel low
7?4LS 123 - 27
13 5 R-Shi ft NN——F>— green
1Q 20 27
2R 28(:5R GND 2RC 2C =—Option S red
g 1011 1 2 QE.] R-Option fj)f _r_[_—_m——);)——black
u
) N4 148
t = 200K620 1N4 148! TP2 2uF !
i
VT 14 g
J1-6 g
U/B interrupter L brown >—Y1-
2709 ﬁ . N { - UCC red , »— Y2~
Rt CR1 ¥~ *[ﬁ—\———-—»— DN — green —>>- SWC -
270a _ =2~ GND black »—NC-
rz cre ¥5 | 3B »>— UP 4— bl ue H>—X1-
= = U2 »>—R orange H— X2 -
— \ —
L/R interrupter Ji-t (>- GND
b oo L s
- » 74 -
Rs LhR3 1 = U3 ~°‘/’——ge| low 1
2700 ‘—V\/ﬂ . - | Si
re cre ¥: | i/

uq

iiheplYUn'dergnound

[GILLT

(Keyboard & Mouse)

Keybeard Hardwrare

This document covers the Macintosh keyb nard and it's communications
protocel. Electricaily, the keyboard sppears as & two dimensional array of
apensdclosed switches that can be scanned by sending a signal out one set of
wires and then checking a second set for the signal to return. If a key is
depressed, it will connect the two wires atiached to it thus causing & signal
sent out one of the wires to be returned via the other. In the Macintash, the
gctusl arrangement consists of a 6 by 9 array where the 9 wire set 15 used
to output & signal and the & wire set is used to detect t“n’:s. same signa
This array provides locations for up to 54 keys of which 52 are used in t
US version {53 on international versions).

such an arrangement has ona m’mmn problem - when more than two
Keys are depressed, it i3 possible for “ghost” keys to appear. For example,
when three keus in an L shaped pzattern are deprezsed, 3 fourth key will

—

e

— pun)

o

-3
“appear” at the last vertice of a square containing these four keys
Therefore, certain keys that are used in conjunction with others fmay naot pe
in this array. The Shift, Option, Caps Lock, and Command are thus connected
directly to the ke L_stn.mraj cantroller. Programatically, they can be thought of
3% being in the same array as the rest of the keybosrd aven though they are
physically separate.

The keyboard is controlled {and scanned) b by an Intel 8021 single chip
microcomputer. This device contains 1024 bu?e* af program ROM and
approximately 63 bytes of internal RAM. It can execute up to 100 Ralvle;
aperations per second. Electrical power is bUﬂ{IHt‘ﬂ yig two of the four
wires in the keyboard cable. The other two wires are used to communicate
in serial with the Macintosh, An almost identical arrangement can be found
in Apple's numeric keypad. The biggest difference is that the keybostd array
size has been changed.

The keyboard serial interface operates in an isosynchronous mode where
g clock signal is supplied on one wire while data is sent {or received) over
the ather. The resson for the separate clock is that the keyboard does not
contain a precise frequency source.

The format of the dats sent is the same as § 7 bit asynchronous link that
has ane start bit and & one stop bit. The only d]ffe.re.nc.a 15 that the high
order data bit is sent first. ‘when the Macintosh wishes to send to the
keyboard, it sets it's serial output to a logic ¢ end then loads s register
with the data to send. Eventually, the keyboard will notice the start bit and
respond by supplying the clock signal to clock the data byte to it one bit at a
time. Should the keybosrd wish to send to the Macintosh, it simply places

l‘l

The il Thdergronme -

© 1325

it's data on the serial data line and generates the clock which allaws the
Macintosh hardware to receive the data. Note that the keyboard slways
generates a clock for either data transfer direction. Also, data can be sent
in both directions on the same wire. (The data rate used in this interface is
near 3300 bits per second.)

The software in the keyboard operates by scanning all of the keys
repeatedly until a change is detected. This key is then "debounced” and the
Macintosh told about the change. In greater detail: The software starts at
the beginning of the key array and compares the present key status
{pushed/not pushed) of each key with what it saw previcusly. When & change
is detected, the software waits several milliseconds and then checks if the
key is still at it's new state. If so, & code byte for this change is
constructed and placed in a short buffer. Eventually, the keyboard will be
able to send this code to the Macintosh. Once per keyboard checking loop,
the keyboard checks the serisl data line for a start bit. If there is ona, it
tries to receive the dats. Also, the keyboard will be checking it's buffer for
any dats to send that it is sllowed to send. if there is some, it will be zent.

The comrmunications format used by the keyboard, keypad, and Macintosh
between themseives is & loose daisy-chained master/slave type of
architecture. For a slave to send data, it must have permission to zaend
given to it by the master. Since the interfsce is & bidirecticnal system
without collision detection, the rules for its operation need to be closely
followed. There are severs! cases where they may be broken due to a
time-out. These are listed below. The system is configured such that the
Macintosh is always & master and the keyboard is always a slave. Any
keypads (there could be more than one - although the Mac could get
confused) in between act as s slave to the Macintosh f{or next higher
element} and as & master to the keybosrd {or next lower element). :

There are 3 different commands that may be sent by the master. Of
these, the Permission to send and Self test keyboard commands (hex 10 and
76) are only sent by the Macintosh itself. |f a slave receives any commands
other than these, the slave ignores them. The commands are:

Request to send (Hex code 14)

This code is sent when the master wants data. The slave has permission
to respond with one byte of data which it should do irmmediately. If it has
no real data, g hex 76 should be sent.

ihepimelindergRountd! - 2-

® 19385

Permission to send (Hex code 100

This code 15 sent by the master to give the slave permission to send one
byte of dats when it is generated. After this one byte is zent, (it need not
be immediately} permission will once again be with the master.

Feset and identify (Hex code 16}

This code is sent by the master to reset the slave and have it identify
itseif. The slave has permission to respond with one of the following 3
codes. Hex 0211 it 15 just g keyboard, hex 1017 1t is just a keypad, and hex

2 if both a keypad and a keyboard are present. (The result of this command
can be found in the system qglobal KbdType at memoary location $21E in the
Macintosh.)

Perfarm self test {Hex code 367

This code is zent by the master to have the slave perform g test
RaM. The stave has permission to send a single byte resuit code. Hex
sent if there was an error and & hex 70 1g sent if the RaM tested out 0K

af 1
77

~

‘Remote self tast (Hex code 76)

This code is only sent by the Macintosh when both 8 keypad and keyboard
are present. The keypad will pass & self test command to the keuboard and
then pass the result to the Mac. If no keyboard is present or if it does not
respond, the keupad will send back a hex 77 as an errar code. As normal,
permission will revert to the Macintosh (the master) after this result is
sent. In reality any byte with bit DS set will be passed through with this
sarne bit cleared. ’

If the slave does not respond in & short time period to 8 command
requesting immediate response, permission to send will revert back to the
master. This 15 so that if a device is not present, the master will not get
stuck in a loop waiting for the {non-existent) slave. This also allows the
zlaves to be dizconnectied/connected at any time without destroying the
interface integrity. The Macintosh normally operates any slaves below it in
the Perrmsswn to send mode. Thus the slaves have a timeout mode where
they send a hex 78 to say that they have no data if no activity takes place
for about a quarter second. The keyboard will load its FIFO with & 7B after

The I Teergrovma .

€ 1985

the timeout but will not send the byte unless it has permission to send.
Thus, if it is operated in Request for dats mode only, these requests should
be at & reasonably fast rate. If the keypad tlme: 3ur it will send a byte of
data even if does not have permission. Thus it should be polled with request
for data at a ressonable rate or the master s’rsuu}j gssume that it does not
have permission to send. When a keypad is in the system, it will operate the
slave under it in a request for dats mode. This qu occurs at a
reasonable rate. The dsta sent to the keypad is stored ina FIFQ so that it
can later be sent upon reguest to the Macintesh,

Dats sent bu g siave

01 -8B Codes for keys as they are pushed down.

81 -tB Codes for keys as they are releaeej.

6DAED Unused by }’Pg card/keypad.

6F/EF CTRL push/release.

T1/F1 SHIFT pushérelease.

73/F3 CAPS LOCK push/release.

75/FS OPTIOM push/release.

77 Error from memory test,

7C Frefix to flag following key code as a
keypad key.

78 Mo change in status.

KL Metnory test passed.

7F/FF Unused by keyboard/keypad.
F7-FD Unused by keyboard/keypad.

Commands sent by & master

10 Permission to send.

14 Request to send data.

16 Reset and ujdntifg all devices.

Ria) Perform s2lf test in first receiving device.
76 Fass g self test command to the nest device.

e I Tdergrenme -

€ 1985

Video Hardware

A raster-scan video display (such as the one in the Macintosh) operates
by scanning & bearn of electrons across the screen (CRT), normally from left
to right and top to bottom. The beam is modulated by the video signal - thus
selectively sctivating the phosphor in the tube and causing it to amit Jight,
scanning must be repeated at approximately 60 Hertz since the phosphor
quickly ,t::xpc sz*?ing light. This article describes how the modulating
signal is made and the side affects that are produced.

Since the 9‘, ctron bearn scans each dot {pixel) on the screen individuaily,
the information to control it must be sent one unit at & time. in the
Macintosh, each pixel can be either black or white, so one binary bit of
information is sufficient for each pixel. As the electran beam scans, it
needs a continuous supply of bits {one at a time). This bit stream is
produced on the digital logic board by the video display hardware. This
fiardware also produces twao other signals - one to tell the electron beam
when to return to the Teft edge of the screen and one to tell it when io
return to the top. ‘while the electron beam does this, it is kept turned off 4o
prevent white lines on the screen in it's path. {In a black and white maonitar,
there really aren't individual dots on the screen - rather, the shape of the
modutating signal delineates the boundaries between pixels. The entire
process 15 similar to dragging & pen across a piece of paper and selectively
lifting and dropping it}

Ta continually scan the display, the present image on the screen is kept
in memaory (RAM) and read out by the video hardware as it is needed. The
Macintosh memory is 16 bits wide - thus this many bits are read at & time.
A dewice called & shift register is used to convert the 16 bits into & bit
stream that is 16 units of time long - thus defining 16 pixels on the CRT.
Incidentally, reading the wideo display performs another vital function -
refreshing’ the memary. This is needed because dynamic memory (as used in
the Macintosh) consists of many small, leaky capacitors. These must be
continuously discharged or recharged ta retain their data. A read (or write)
operation on the memory s enough to refresh 128 (or 256) memary
locations.

Any description of the video timing must slso inciude the memary timing
since the hardware for these is strongly intertwined. Proceeding with this
- the memory cycles 1958400 times per zecond. Each cycle is therefare
about about 511 nanoseconds (nS) long. These cycles are divided evenly
between the CPU and video with each device using alternate cycles. ‘while
video refresh is active {ie, not in a retrace) it's cycles are used to fetch

T I Undergrerme -

€ 1955

l."D
o
—
L)
2

videa dats for the CRT. Since these words are read y 1021
microseconds {uS), just enough bits will be fetched to meet the nee ds af the
13.6672 MHz video shift rate. At the end of every horizontal retrace, the
¥ideo cycie 15 uszed instead to read the sound and disk speed infe r"n:xfmn
from their RAM buffers. The remaining video cycles are given to the CPU to
allow the systern to run faster. This can be done because the electron beam
15 in retrace and needs no video signal. (See the MacPaint document “Wideo
Timing')

The figure has been arranged such that it contains all the memaory cycles
that happen during one camplete screen refresh (frame). tnciuding the
retrace times, there are a total of 88%370 ar 32550 memary cycles in ane
frame. This results in & screen refresh rate of 1958400/32580 or 60,147
Hz. As can be zeen from the figure, sach of the first 342 scan lines of the
C PT contain 32 video accesses snd 32 CPU accesses in the sctive part and

CPU accesses and 1 sound/dis ¥~*E¥Hed gccess in the inactive (retrace)
the 28 scan lines (which occur during vertical retrace)

;:xart Alsa, last -
contain 87 CPU sccesses and 1 sound/disk-speed access.

Une irmportant result of the above is that the 8000 CPU cannot run at

5 full V.8326 IMHz speed from the RAM since at that rete, it could use all
1'31‘384tm memary cycles in each second. If the CPU regquests access to the
RAM while it i3 being used by the video hardware, it will be forced to wait
for it's turn. However, internally, the CPU can still run at it's full spead.
This can be used to advantage by assembly langusge programmers by careful
arrangement of operations. For example, suppose the contents aof all 8 data
registers (DO-D7) need to be multiplied by some constant and then s
different constant needs to be added to the results. One immediately
obvicus wag of doing this is to have § MULY (or MULS) operations in & row
and then @ ADD opcodes in a row. This arrangement is the not the fastest.
possible - the ADD operations will he limited by the speed that these
opcodes can be fetched by the 68000, A better method would be to alternate
the MULL and ADD opcodes. This way, the ADD opcede will be read into the
68000°s instruction queue while the preceding multiply is taking place. The
result is that the 68000 runs at it's full speed internally,

The mermary used by the Macintosh for it's video display narmally starts
at FOTATOO (FO7AT00 in 512K versions). However, knowledge of this
address is not needed to program the Macintosh since QuickDraw will
sutomatically set up it's data structures to use the carrect range of
mermaory. The hardware itself supports the use of a different range (page) of
memary as an alternate source of video dats - this video page begins exactly

T

32K bytes telow the first. Since the herdware can instantly switch

1

The I Tndergremmd _

@ 1985

]
|

between the two pages, they could be used in extremely fast graphics
applications. {None of the 'tandurd application programs out yet use the
second video page - mainly because it leaves very little memary laft for the
program on a 128K machine.)

There is almost no support in the operating system to allow use of the

econd video page. It is limited to the ‘Launch’ and ‘Chain’ operating system

alls. Both of these allow & selector code ta determine which video page
W H be used by the application. However, this anly allocates an extra 32K
of memory after the stack memory if the second video page is selected. It
does nothing to switch the actusl memory used by the hardware.
Furthermaore, when a program is run from the Finder, it will be run with the
rirst video page selected - the only way to actually run & program with the
zecond video page selected is to write a short prograrm that calls the main
program with the correct page setup. Finally, the ‘Launch’ and ‘Chain
routines do not insure thst the second video page is actuslly usable - a
debugging program such as MacsBug may occupy that memary.

The best way use the second video page is to launch the program
normally. Then check if the present system iz a Macintosh {ie, not a Liss
running MacWorks) by checking such things as the screen size and operating
system version numbers stored in global RAM memary veriables and axiting
If they are incorrect. The presence of MacsBug ior & RAMdisk) can he
detected by checking if the system globals BufPtr {at $010C) and ScrnEase
{at $0824) are the same. After this, the progratrn can set up to use the
second ¥ideo page in one of two ways. lf the memory space between the two
pages (10860 bytes) is not enough for the stack space needs of the program,
it can rhanually set the stack top just below the start of the second video
page. Otherwise, the st ck can be left where it 15 snd the memaory space for
the second page reserved. Setting the application heap Himit to & g point just.
below that memary wuu}d suffice to reserve it - however, this does not
prevent the CPU stack from growing down into the video display. A better
way would be to manusally {ie., not vie the operating system) make the
second video page g non-relocatable memory block at the very end of the
application heap. This will allow the stack-overflow sniffer to operste
narmally and detect any stack overflows.

The [Undergrennal s -

91925

Sound Hardware

Gverall, the sound generator can be broken down into four pisces of
which three are hardware. These four pieces can than he arranged in &
hierarchy through which "commands” flow. Al the | highest Tevel iz a program
that controls all the hardware below it. This is part of the Macintosh
Operating S ?19 rmoand thus not a subject of this document. The Tevel just
below this is an arbitrary waveform generator. This can be thought of as a
black box th ::n‘ converts input data into any output desired. If the autput of
this box were graphed on the y-axis of 5 graph while the x-axis was time,
the data supplied to the box w :.uld b2 all the y coordinates nesded to producs
the desired output. However, becausa this could Fequire an infinite amount
of data to produce certain sounds, certain limitations are imposed by the
hardware. The main one iz that the y values are only supplied at discrets
{not continuous) time intervals. A smaller limitation is that the J valtues
can have only & limited amount of precision. When this data is pronued to
the “black box”, the intervals between the points are filled by interpolation.
The output of the black box is then sent to the third part of this hierarchy
which is an audio amplifier. The amplification (or resulting cutput volume)
that this section provides can be controlled by software. The final element
of this hierarchy is the speaker or external stereo system connected to the
audio output jack of the Macintosh.

The arbitrary waveform generator iz aess
Converter (DAC). In operation, the data that i
memory (RAM) in a buffer - 5o that it can be ger
actually needs it. As data is needed, the DAC is given the contents of
successive Tocations of this buffer. This buffer holds enough dats to
generate 1/60th of 3 second of sound. .

The DAC itself is built in a somewhat unconventional waly., The sound
data coming from tha buffer is first converted into variable width pulses by
g counter circuit. Thess pulses are then approximately integrated over time
by an analog circuit. The output of this is a voltage that roughly relates to
the pulse width l'*m't‘h was originally controlled by the data from the
buffery. The pulse width can be from O to 255 units of time. A width of 255
will result ina positive pesk to the speaker while & pulse width of O makes
3 negative peak.

As the systam is running, data values are taken (by hardware} from the
ouffer at the e d af every horizontal rﬂtr ace of the video maonitar. This iz a
ratp of 15.6672/704 MHz or about 22254.5 Hz. This data is then loaded into
an 8 bit "up” rr‘unfer. During the next horizontal scan line, this counter will

entially a Digital to Analog
2 sent to this DAC is held in
enerated before the hardwars

The I Tndergrenmd -

@ 1905

the next section of sound. The main or default buffer used most often is
called the First Sound Page while the second buffer is called (naturally) the
Second Sound Page. Each buffer contains 1/60th of & second of sound or 370
samples. The buffer used is determined by an output bit that is controllshle
by the program making the sound. Ina 128K Macintosh, the first sound page
starts at $1FDOO or 130304 decimal while the second page starts at an
address of $1A100 or 106752 decimal. After this starting sddress, the
sound data occupies the even numbered memory locations. The odd locations
are used to control the disk speed and thus should never be modified in the
pracess of producing sound. The tast address used in the first sound page s
$1FFE2 or 131042 decimal while the last used address in the second page is
$1A3E2 or 107490 decimal.

The above rmethod for producing sound ocutput is very good st producing
high quality sounds but it also will take & large amount of computer power
to generate the 22255 samples needed every second to produce sound.
Although it is possible to generate 1/60th second of sound and then allow
this data to repest continusiiy, doing this will Vimit the sound output to
those frequencies that can be evenly divided into 1/60 second intervals.
Therefore, there are two other ways to produce sound that are less
demanding on the microprocessor. Both of these invalve a specisl control
line to the 8 bit up counter used to produce the varying pulse widths. Both
methods will also result in equare wave output. A square wave signal is not
3 "pure” sound but rather it is the sum of & large number of sine waves
which each are mathematically & pure scund. While the control line to the
counter is active, it will force the counter toa value of 0. This will result
ina pulse width output of indefinite length for as long as the control line is
active. IT the sound buffer is entirely filled with the value of 255 and the
control is turned on and off, sound will be produced. This is hecsuse the
pulse width will essentially be changed from 0% to 1008 depending upon the
control line.

This control line can oe changed in two ways. The simplest is for the
microprocessor to change it as needed to produce the desired sound.
Another way is to program one of the lsrge scale integration chips in the
Macintosh to produce a square wave frequency there. Thus the frequency of
3 sound can be controlied with minimal processor control, An interesting
effect can also be performed with this circuitry. Instead of loading the
sound buffer with all 255s, a resl sound can be stared there. The square
wave being driven into the counter will then toggle the sound on and off.
This essentially adds a second sound signal to the output. Since the only
way to termingte a pulse from the counter is for it to count up to 255, there

The I Unedergronmd -

© 1985

will be & delay of sbout 32 microseconds as the counter does this coutting.
Mormally though, this will be of no affect. The control line also has a
second use; when set up to be controlled directly by the CPU, it iz used to
turn the sound on and of f. Thus between sounds, all audio output can be shut
nff.

seversl precautions should be observed when designing sound output. The
first of these iz the limited frequency range of the sudio output circuitry.
At low frequencies, the gain of the amplifier is reduced. This should not be
& big problem since most of these low frequencies won't be heard. However,
for frequencies that approsch the low end of the range, some extra
amplitude must be given to account for the loss in the amplifier. At the
high end of the spectrum, maore problems can result. Since each asudin cycle
of output will need st least two samples to produce the frequency, the
highest pozsible frequency that can be produced is 11127 He. Also, since
the filter circuit converting the pulse width signal will be filtering high
frequencies, & loss of amplitude will accur. This loss will be large enough
s0 that it can not be made up with a larger magnitude of values stored in the
sound buffer. Another precaution to observe is to use the control line ta
turn the sound off instesd of just filling the sound buffer with & constant
value {The buffer could be filled with 255's with no i1 affect though). This
is due to the fact that while the counter is producing any sort of pulse
output, the filter will allow some of it to appear st the speaker output in
the form of & very quite high pitched noise. The internal spesker will not
reproduce this well, but a home stereo system sttached vis the audio output
jack might. Another pracaution is that when the control line to the counter
is active, the effective ocutput pulse width is 352 units. Since the range of
outputs for the counter {when it is being fed data from the sound buffer) is
anty from O to 255 units, activating the control line will [in &l cases] cause
a large sudden change in the audio output signal. This will sound like a click
or pop and 15 the reason thet certain sounds start and end sharply. There is
no solution to this problem, however, having sounds end at & pulse width of
255 {by filling the sound buffer with 0's) will reduce the magnitude of the
change to the smallest possible value. ‘
~ The three volume control bits each have apprr:iximatelg 8 binary weight.
In other words, as the value reprecentad by these bits is increased in a
binary manner, the volume will increase in approgimately equal steps.
However, this pattern is not exact - writing the control bits most
significant to least significant and assigning the 000 setting to have the
relative volume level of 1, the following relationship holds: 000 = 1.0, 001
=20,010=41,011=51,100=79 101 =289, 110= 110 S =120

e I Undergrenme -

© 1985

Thus the volume setting of 7 is twelve times louder than the getting of O
Note that a control panel setting of © results in the sound being turned off
in same programs while other programs will use it as just another volume
setting.

All the control signais for the sound hardwsre come from s 6522
Yersatile Interface Adapter chip. This component is itself as complicated
a5 the sound circuitry ec oniy & minimal amount of information sbout it will
be presented here. For programming purposes, it can be treated as a set of
sixteen memory addresses of which two are of interest for this columf. At
the memory address of 111 H—*\“*f—“:*xl-i Tis-rrre-wux0, DO through D2 of
the byte are the sound volume control bits, 02 is the most significant bit,
D1 the next, and DO the lea 1‘ 51 qmm ant bit. In thn gbove address, the ¥'s
represent bits that can be either 0 or 1 {Apple seems to prefer to 5&1 these
to 1's.) Thus the sddress is 3E F FFt or 15728838 decimal. Since the other
bits in this byte are used for other system uses, the present value should be
read, maodified, and then written back (prefer ably with interrupts turned
off). In BASIC to set the 'v'l:in”fic' to 5, thizs would be: {FA = } 7286380 POKE
IRAPEEK(IRA) AND &HFB GOR &HOS. Note: this does not c ange the control
panel {master) volume ~z-ettvnq

At the same location that the volume can be modified, D4 selects which
sound page will be used. Setting this bit to g 1 will select the first socund
page. Putting @ O into this bit will select the second sound page. This bit
should probably never be modified since the disk speed control dats siso
comes from this same page. When this bit is changed from EBASIC, tne
aperating systern will still be using the first sound page and if any dis
usage is needed, the system will "hang”.

At the address of 1110-1xxe-sux0-000x8-weuw-wux0 (3EFEIFE or
15720958), the control line to the counter iz found. & 1 will allow the
counter to operate and thus produce sound while a O will force the counter
to the O state. This bit is found in D7 and can be read/written just like the
volurne control bits. Several ather locations in the 8522 chip can be used to
camrmand this bit to be connected to the ocutput of & counter. This is how &
square wave audio output can be genarated.

8as
3

fihiepMBiindesgrount! .

@ 1925

YiaA Hardyare

Ths document describes all the inputs and oytpts aw.m.:mm through th
Macintosk's 6522 Versatile interface Adapter (YI1A) chip. Since this iz 3
rather complicated *“m the varieus other functions it performs internaliy
will not be described. (For further informsation on this chip's internal
operations, consult the ! gnerfe% or Rockwell manual about it}

The entire chip consists 15 different byte wide registers through
which all of it's operations can be contralled. Because of the way H,at itis
gttached, each of the 16 registers is iocated S12 btytes apart in
Macintosh memory map. To find the exact address of earh !'PQH.EE.
register number should be multipiied by 512 and a bas
this result. The fins! result is the memory addr
affset (register number * 5121 is fived so that it
3 program. The base address is also fixed (in the 1

Assembly language programmers can use “
memory location 3104 fo find the base address of
shorter than loading th

5

Da Iy &)
o
IZr o~ L.('
L9 =B wa] Ln
(]
[}
- o
[
g ° e
o =
oL [re
— o
i ol
a
Law R S ¢]
- [}
o [
Ly
= [l
= —
[anCR v S i B 3

-L... L' 3

m
o
-
a

s
O

this is actually 2 bytes g

immediate value (using the global variable takes one to two microseconds

langer though). This global variable normally contains the value $EFEIFE.

Once the base address is in & register, the address register with

displacement mode can be used to get to the desired register in the YIA
Register number 15 {offset of $1E00 and address of $EFFFFEY is us

$ use
access the input and cutput bits located in Port A (PAn) A read aperatins
w1l return the current value on the chip's pins. A& write operation will only
affect the current output bits. Bits that are inputs will still latch the valua
written, however it waon't appear as an output until the line is changed to be
an cutput. Register number O (offset of 0 and address of $EFETFE} is used to
access those bits found on Port B Most of the 14 remaining registers are
not needed while doing simple operations with the Vi
SY0, S¥1. and S¥2 control the sound volume. A binary value of QOO0
produces the lowest volume while a binary walue of 111 produces the
maximum volume. Normally these bits will be altered only by the operating
system. (It will set them to match the volume selected from the control
‘panel.) However, as there i3 no routine to thangs the volume, a program
would need to alter these bits directly should it nesd to change the current
voiume setting. Apple recommends that this be done with the 68000°s
interrupt priority level set 1o "Z7 so that an interrupt cannot cocur while
the bits are being changed.
when OVERLAY is a 1, ROM memory is available at memory address .
This is used during system reset to allow the 63000 to read g reset vectar

Q
§
é

1
g2

L

Y

el ndengraund -

1935

line. At present, this input is not used by the operating system. A possible
use is to perform flicker free video page switching st a certain point in the
video refresh. Another use is as a time base upon which some input
sampling could be performed. Since it is of exactly the same frequency as
the sound output sampling rate, it might be used to help digitize an input
sound into the same number of samples needed to output it at a later time.

The SOUNDEN cutput is used to turn the sound hardware on and off as
described in the Sound Hardware document. A walue of O is the “on” state
and & value of "1" iz the off state. Chsanging this bit from within & user
program is harmless as the worst possible event is simply a constant sound
output.

The WSYHL input is us
tasks are performed by t
during every vertical retrus_....
be used to perform such things as

The KBD.CLK is generated by th
from the shift register in the
KBD.DATA line. These tw
replacement keybaard driver.

Oversll, sttempt to use an opersting system routine to alter these /0
bits to retain compatibility with different hardware (such as the Lisa).
where this is not possible, make sure that the system is a Macintosh and
carefully alter the needed bits.

ed as an interrupt upen which many time related
he Macintosh operating systermn. 1t will go low
(A rate of 60,1474 Hz.) This input could also
flicker free video page switching.
he keyboard/keypad to transfer data to and
6522, Data enters and ewits wia the
lines are of use only when writing a

FRO Oratpust SU0 Low order bit of volume select
FA1 Output S Middie order bit of volume control
Frid Output cuz High order bit of volume control

FAZ Output
PR4 Output

oMb . PG2 Soundsdisk page select
CUERLAY ROM/RAM select

FRS Output DIsKouT Disk command output

PRE Ouiput Ui0.PG2 Uideo page selsct

FRY irput SCCH/RED OMA request signal from SCC
PEOQ Input/Output RTC.DATA Data to/from RTC pin &

FE1 Otput RTC.CLK Data clock to RTC pin 7

FB2 Output RTC.EH Enable signal to RTC pin 5
FE3 frput MOUSE . CHL, Mouse button input

FEBd Irput MOUSE . X louse quadrature input

FEZ Trput MOUSE . 'r' House quadrature input

FBE Input HEYME2Z Horizontal sync zignal

FE7 Dutput SOUNDEN Sourd FUM enable/resat

A Irnput USYHC Yertical sync interrupt mpu*
CRZ tnput RTC. tHZ t Hz square wave from RTC pin 1
CE Input KBD.CLK Data clock input from keuboord
CBz tnput/Output KED.CATA Data to from keyboard

ihcRlTRindergRount!

© 1983

Mouse Hardware

At any moment of time, the position of & mouse can undergo three
possible state changes (for each axis of movement). These are: mave left,
stay in place, and move right. Information about these state changes must
be sent out of the mouse. Basically, two ways exist to do this: either the
computer can be taold 31 esch change or the mouse can output it's present
position from which each change can be deduced. The first method is
difficult to do with & limited amount of hardware since two {or more)
successive "move left” operstions must be distinguishable from just one.
Thus the second methad is employed in most mice.

Encoding the full mouse pointer position in the mouse hardware itself is
nat practical becsuse of the amount of dats this would require. Thus, the
mause sends only the mintmum amount of information needed to decode each
movement. {This rmovar wm iz then used to control the pointer movement.)
Three distir‘:gl.nar'mu!w pasitions are enough to express ail of the three
possible state chan gez. sF:Ee three positions are: the next left, the
present, and the next right positions. Because these must be encoded as s
binary number, st les st 2 bits are needed. However, 2 bits of data can
encode & totsl of four values so thus four positions are U"tflj MNote that at
any time, only three of the four will be used.

Four consecutive pasitions of the mouse could be numbered 0,1, 2, 8nd 3.
when the mouse i3 in positions 1 or 2, it always has another position
gvailable to the right or left. This is not true for locations O and 2.
Therefore, the number codes repeat as the foll owing endless sequence:

230 1 23012 . Az the mouse moves in either direction, it
traverses this set of numbers.

The encoding of these pasition numbers in binary must be done in &
special way. The initially obvious way of mapping them in the stendard
numerical binary sequence (0 to 00, 1 to Q1, 2 to 10, and 3 to 11} will not
work. Twao of the transitions (1 <> 2 and 3 <-> 0) in this type of coding
have mare than one bit change. Since the binary values will be generated
mechanically in the mouse, the two transitions cannot be quaranteed to be
simultaneous. What is needed i5 8 coding where one bit changes at & time.
{This is known as a Gray code.) The only 2 bit Gray code is: .., 10, 00, 01,
11, 10,00, . read in either direction. The Macintosh mouse uses this code,
when this sequence is graphed with respect to time, the result lTooks like
two square waves that are 30 electrical degrees offzet from each other {one
cycle is 360 degrees). For this reasan, such signals are often said to be in
quadrature.

Thag i Undergronme .

2 19z5

Listing 1 - Mouse signal demanstration program

10 IRB=13720958%
20 MOUSEXT = 10455754
30 MOUSEYT = 104585752

100 IF PEEK{MOUSEY 1) AND &H3 THEN PRINT "1"; ELSE F'PINT "O";

110 |F PEEKIRB) AMD &HZ0 THEN PRINT "1 " EL ‘EE FRINT ©

120 IF PEEK(MOUSEY 1) AND &HE THEN PP:HT ‘1"- ELSE PRIA T “f

130 IF PEEK{IRE} AND &H10 THEN PRINT "t ™ EL:,E PRINT "0 "
140 |F PEEK{IRB)Y AMD &HS THEN FRINT "1” ELSE FRINT 0"
1520 GOTO 100

T 0 Undergrerm

-
@ 1985

-3 -

BOZIPRGED - Commentis by The M Underground (0 1985
. 9

sDisassembiy listing of the Macintosh Keyboard and
;Keupad controlisr Cintel 2021 MPUS ROM. Moy 1959,
;This code continual iy scans the kegbogrd gnd reports
,ahg changss 1o the MHacinto=h.

;The chip from which this code was read waz marked:
;PE021H 2172, it had a iﬂte code of 8352, i did
not have any copuright in o on it other than the
sntel copyright for the CPU daszign.

;The approximate clock rate of the MPU is 2 Mhz.

;This resulis in a CFU cycle time of s!ughtég undse 10 uS.
SAHE of the quasi-Eidirectional pins bave interoal

spuliup resistors,

;Entry point of hardware (powsr-on) RESET

GO0 54 89 CALL z=24 ;init system FAM and timer

;Relocping sntry point - check for opsration mode

oo HGF ;hDelay
I oo IN A,FO ;Find out if keyboard or keypad
04] AHL A, #3520 sMask for oniy FOS input
QoS o5 J2 $0AS S jumpered to ground, we are g keypad

s

s¥egbogrd main loop

noa 34 92 CALL $1a2 iSoan the keys

e o8 30 MOU RO,#330 ;Load pointer to cutgoing FIFG

' EG 14 JNC $014 ;i no keypush, then skip

0ok 34 A% CALL $2As :Place key stroke in the FIFD

Q1o S4 B& CALL $2B6 Sinit timer

iz 04 ZB JMP F0ZB G0 attempt to sand the ! bigte

04 o MOU R, &R0 ;82 first byte in FIFC

015 g6 20 JNZ $029 it old data is present, try to send it
;Checlk for inactive timscut

a17 i 18 JTF $01B ;1f timeout

01z a4 2B JMP f02B ;Figure what there is to do

gis B2 ZE MOU RO, ®3ZE ;Load pointer to flag

oo IR yiale H,@EU ;Get the uaiue

GiE 53 02 AHL A/,%§02 ;See if inactive for too long

020 96 23 JHZ 3025 . ,Was

G2z 1o iHC &R0 ;Heep track of inactive time

023 04 2B JHP $02B :Go figure out what to do

25 BS 30 MOU RO,#330 ;Lood pointer to FIFO

0z7 20 7?8 MOV BRD,®ETE ;Load "1'm awcke” code and itry to send it

029 94 B6 CALL $2E6 pinit timer and reset idle counter
;Decide whmat needs orocessing and go do it

0zg o2 ZF MOV RO, ®% ;Load pointer to received data

20 Fid Mo H,?Pu JGet present wvalue

]
t-J
m

AR Tin B i L I N DN

o

Lover I wie I s §
) G2 L G D) D0

I4E
050
051
053
055
057

059

0sF

0o

i
ToD Al G

onocn l(':% h

L

Dos)

L ISUPRE ¢ I M o O o

Jo oh B g 00 GO

4 11

-

24

onon
S S

o]
EQ
Bd
12

EQ

=0

o2

=]
E

55
at
oz

s IO I
b x g N

ey
b;ag

r
P
T
.L‘

o
P:

’

—h

i)
L}

I~ <
prs
e

o4 e 2 X
x:ﬁcqn:mt;
<

HOY
YR
JZ $of
R tnh]
YHL ﬂ
7 ?Dhg
Mou PED,#
P

¥
oy

43
—

&l ;
l'ih s A% DT 8 R T

4,3 i)
G0

:[IIC'.\:TJI‘

1,

MOV RO #32
HORIURS SER-U SR
A2 ‘ZDII,_

cALL

TP 030
*HLL :“Er
JHC 3055
LHLL 5 220
N [:! 0z

JHF B3Z6

;Per-form
;

,hntru H

b ==
st

;Send a byte if owr furn stiid
o receive a command ond process it
JEomple serial inout
Jif irmctive, then reloop
;Beceive a data byte
;Get received data
4 ;See if request for data command
;Bespond with result
soet received dato
2 ;Sae i1 permission to sand
STy to sand a datn bute
;Get received data
) i it rasst "ﬂmﬂﬁﬁ“
et th sjbcard and return $03

"h

Pnnd”

tinz

i

00

i

Litee

in page e

_: L i ﬂ%ﬂ. ti:l i’“ﬁ"";:u’vt" H] i “ dﬂ?ﬂ ;"x’ujp-
sReset heyboard {reiurn F05)

FAr

Qre

727 = Error
o Bd, Jiond stariing test address
Fi, gnﬂd size to test (G232
R0, #LAA Fut walue into RAM
R ,,dnaﬂue pointer
OJHZ R1,%067 ;Loop through all locations

eid this ualue

Rgteing

ti

LA

oo
1R
[I 43 B]

-} =}
oy 3 s T 00
[ey 25]

0
h e

avE

o

[otd B von

[
(Lol w BN B (R BT QY

00O) 0D 00 O3 00

g]

[l i}
[N 03]
nomed

"

04
(g4
ags
05A
1=
=3
GAG

0AZ2
0OR3
A4
0AS
OAG
ORY

GAC
0RE

m
00D

BO
8o 0
0
13
EQ

Mya 3 o Mo

aa
0o
0o
oh
5k}
oo

W Eh) 0D D G0 D

[l
Dy Y

(@]

MOU R, #ECE ;Load =size again

MOU RO #3402 ;Load start again
10U A,ZR0 ;Fetoh value there
INC RO ;Hdvance pointer

1AL A, %%AA ;See if it was }AA
JNZ B0en iif error, exit

DJMNZ B1,%070 ;Loop for rest of RAM

JFill BAM with other bit pattern

MOU R1,83$3E ;Load size again

MOU RO, #$02 ;Load start again

MOU 8RO, #1355 ;Put (NOT $RAY in BAM
IHC RO ;Advarnce pointer

DJHZ R, $07C ;Loop for all of memory

;Chack |

&

-,

it held svaryshars

MOU R1 #§3E ;Load Size

Mo ﬁﬂ,“*@; sLond stg

MOV A/, 2R0 '-ef vGSUH frnx RAM
MG RO sAdvance pointer

XRL R, ®$53 ;Sem i error

JHZ $0eh s =0, exit

DJNZ B 1, 3083 ;Loop for rest of RAM

MO RLR sGet fino! wvalue of counter
:hd Rg sSave it in RZ
LL $280 ,in;t system
CRLL $2ES ;init timer to O
MOU H,R2 ;Get resuit back
N2 g0ac ;1 there was on ereor.
MOV RO, #5365 ;Load pointer
MO RO, #4470 ;Load OF code
P pU‘“ ;Eend the result code
HGY RO, #$36 ;Load pointer
MOU 2RO, %477 ;Load errar cods
JHP 3053 ;5end the result code
HOP ;Take up space
HOF s Toke up space
MOF ;Take up space
HoP ;Taka up zpace
HOP ;Take up space
NOF ;Take up space

;Keupad main ioop entry point

d ma
a__pad mode flag

|f |

Moy A, 3“01 ;Lo
CALL $2C 5

.*U

=i~ i)

;9 T keyboard communications must be dore

MOU RO, 420 ;Load pointer to flag
L G2t the walue

QAF
B0

0z

0Bt
ne?
0Eg
e

neC
QBE
oco
gcz
0oC4
oce
ace

och
ooc
OCE
ocF
Go1
an3
oos

o7
009

0oF
0E1

QEZ
0ES
OER
oE?
GEQ
OEE
0EC
GED
QEF

S
OF3
GF4
aFs
OF6
OFg
aF A

2

£d

BZ

b
Fo
a7
12

—

ch
Al

-~
.&\.’

co

54
ES
BS
54
74
F&

Go
RO

36

A0

[N
o M

omn
-J 0

2E
c2
20

o7

-
TF

0
50

i~

-

20

X
[dx]

L e R R R e A
IM e 0 M

£4
FO

RLC A

JHC R0BC
MOV RO, $2B
iNC 2RO

HOU A,EE0
LR C

ADDC A, %%
JHE GG”

MO 2RO R

By

JP $007
HOU R #$7F
CALL §201

CALL r:r[&

JEoan Keus o

: H l"“a_iu”f o

MOU RO, %320
MOU R, ERO
RLC A

JNC S0F 1
MOU A, #302
XFL A, #RO
MOV $RO,A
ANL A, #3502
JNZ $0FD

iCheck if

MOV RO, #$2E
INC 2RO

MOU R, SR
CLR C

ADDC A, #$E4
JHE $GFD
MOU BRO A

i ot pesuit in th

"apake code” {or

; Test keyboard absent fl
;if mhes enf then talk to keuyboard clwaus
LGﬂd a flag pointar

: n'.inf fr‘n |p;\

;Gat result

;3et up for 6502 typs AROD

;G=e if result was less than 8

JTry to find keyboard oniy every § passes

;Load new result (03

sk kayboard for data

;Lcad command buts

;Send the byte to the keuboog
A the keuboord took tha byte
;ioad mask

;Sat keyboard absent flag

;Elear keyboard absent flag
JReceive return code from the kegboard

2 §if 1o changes code

o, then don't give to Hac

F
ave the returned ualue

i

keypad FIFD

,5c1: keys
{f nothing choanged
,_uad FiFS pointer
;Save resuit
"‘-:acv FifFls o datg
;bon’t bother with awake stuff if data to send
&

extra time tgken io tolk to keyboord

;Load flag pointer

;Get the fiag bute

;Chack the keyboard present flag

;1 present, send awake codes qbt faster rate
;Lond mask

JFlip OV of flag byte

sPeploce result

;Check new status of 01

;Fend data at hatf rate if keybosrd absent

"no changes" ¥ should be zent
;Load pointer to another fiag
;Count loops

sPepioce resylt

;Set up for 6302 type ACD
;Ezszentially see if A was less
;if zo, then continue

;Load new result <0O)

than 28

: ;Eend q byte io the Hac
CALL %284 sRezel timer and timeo

OFE 24 iF iR $1IF ;Send an quaka code
(Chack for what needs to be Fra
ER
SR BS ZF MOU RO, BEZF sLoad pointer to 510 flog buts
OFF Fo HOU A, &R0 iGmt the value
100 on 03 JMzZ o ST 1L contatned 4 command
102 4 BF CALL $2BF ;Test P20 input from Hac
104 F& 1o 40 $t11i0 T inoctive, reicop
16 74 CF CALL $3CF ,”ace:ve the byte from the Hac
e R YRL A,8%14 ;S8ee if it o doto request commared
10H CH WP 02 BUF ;tend Q response to the Mac
i FO MO R 2RO ;Get the byte again
100 03 10 XRL A, %10 ;Check if it was permission to send
10F CH 25 JZ2 $12S S1F =0
111 FO Mo A, whd ;Get the byte again
iz 0% 18 ZRL A.#% = it g reset command
114 oS BE 0 J2 %10_ i oze
116 o HOU A, eRO :5et command again
117 33 8 ANL A, #%40 ;Ldec# for special kKeuboard self-test flag
1R o5 B2 JMEZ *1“’ ;Tell the keyboard to isst itsslf
1ig 04 45 JHP 4045 ;Ehecv for beypad s=if iest or NOP
;Branch to top of leop in different pace of ROM
110 a4 &2 P L0RC Veetar o start of keypad icop
Set up to zend data or an qwake oode
HiF 74 OE CARLL $30E ;Checke FiFQs for datgs
121 FE 25 40 125 ;11 zome data there
iz= BO 7B MOV BRO,¥EYE ;Place responss at (3300
b
;end a byte 1o the Mac if it exists
23 B2 2R L8 ;Lomd pointer
127 Fo 10U A, 8R ;Bet ihe byla
128 L6 5B JZ2 $15E ;U rothing in seypad FIFD
128 B8 2C MOU R0, wE2C ;Load flag pointer
12C Fo MOV A, B8R0 ;Gat contents
120 33 e AHL 8, #3504 jiask for 02
1ZF Q6 47 JNZ2 $147 it the orefix was sent, szend a data byte
;Send a $79 keypod data prefix to the Mac
i31 B3 36 MOU RO, ®ESE sLoad pointer
133 80 73 MOU 8RO, #E7g ;Load data o e sent
123 54 BA CALL $2ER ;Clear timer
127 o 0z JTF $102 ;00 timeout, itry to receiuvs q byte
139 24 BF ALl $zEF (Tezt PZO input
=k E5 7 JHD $137 sHait wntil ffac does not want to send
il 74 20 CRLL $3
IF i)
41 Cid
4%
45

O N G (N
)

>4 B ut mask
2 MoY A, #3504 jLogd mash

=4 CC CALL #$2CC ;5et prafix sant flag

g

AC JMP 30RC ;Reloop

o~

Rz H1 inderground <C) 1953

;Scan the keyboard and return the needad codes

sExit EV =0 if e walid chaﬁge

; C¥ = 1 1f g valid change
; A=Ra = Pewuit code
;Uses A,F,RD,R1,R2,A3,R4,R5,B6,R7, 682
19z B33 MOU R34 sLoad pointer into FiFd
1Q4 Fi MOU R, ER ;Get last buyte in FIFC
195 509 JZ $ias 18 room in FIFD for another key
197 27

; ke THI IS H BUGH i
ke abouve [ing showld be CLA

orm

K . Ol © to fiag no changas. B
sif the FIFO is fuil und T owog sset mrior to calling t
;routine, The last entry will be smashed with the pres
;oontents of BS. However, another pair of bugs that d
;aiiow the entire FIFD to be Lsed, will cause this cod
srever find a FIFD full condition and thus this bug is
(bynaszad

;.E‘
an]
£
[N
T
m
-

;0o t scam 1 f no scace

FPerform g scan

asi= MO R RE20 ;Load pointer o key siatus oreay
{5E MO R, REFD ;Load ﬁutpui data
ol oiTL F2LA JEmabte P2V ooutput
15E 34 EE CRLL $IEE ,iegt 1his o of kKeys
1RGO 23 FF [0 A, #3FF ;Load inactive daiq
182 i CUTL P2,A ;Ture outputs off
' FEGE JC 3193 ;Exit if there was a change
4 23 FE 10V A, %FFE sLoad starting scan code
18? Az MOW RO LA sSave i
1AS i) OUTL P1.A ,gﬂnevi a SCan rom P
3] 19 NG RY Advance key st iable pointer
1AA 34 EE CALL $1EE jT’st thiz row s
1AC 23 FF MU A, ®3FF Load imactive
1AE 23 ouTL P1,A saisct the oor §i=
1AF FG BOD JC $4ED it if there changs
1E1 ra MOL AL RO currant = tatus
182 a7 CRL C cY
1EZ F? AL R vz ihe scan line 1o tha iaft
1E4 F& A? JC $1AR7 ;Fejoop for another firs

iHC Rt ;Rduance tabls pointer to shift ztotus
CARLL #2048 the shift key status
yR! R,9R1 Hf anything changad
$1EE thare was o change - procaess it
22

g6
18?7
1E9
{BR
iBC
1ED

;Compute the key codes of a SHIFT fype key
‘: P - -

;Entry A = Change mask

; A1 = Pointer into status table

;Exit ¥ = 0 if ro vaiid change
{1 1{ g valid change

R]

3

DI]

; A = RS = Result code
U=es H F,EZ,R3,R4,85, &1
' 54 E7 L o§2E7 ;Compute a change mask
< =4 71 ;ﬁLL 12a1 ;Delay 4.2 ms for debounce
1C2 54 BE CALL %206 ;Bead shift status again
14 F1 Mou R BR1 ;Get oid status
iCS Sz AML A/LR3 sHask for only current key
iCe AC foU R4 LA ;Saue the resuit
ic? Fh MO A RS sMow fetch the shift status
1C&] AL F,RZ Mask it for oniy the current kay
1Co ac XRL A R4 ;See it old and oresent sigtus iz same
1CH CE BC U2 $1BC ;Exit if this key "bounced”
1CC FB MO A, RS ;Get the changed mask
1ch o1 ¥RL A, PR ;Change the bit in the array
{CE 51 1oy &8R1LAH ;Feplace the neuw result
iCF Fi R ;Compute key number from the mask
HEL o7 ARG A ;Test if it was OPTION
101 E& D7 JHC $107 S not, skip to naxt iast
pix 23 75 MO R, 8175 ;OPTION = S8
105 24 E9 NP 1ES JSkip to end
107 &7 RRC A sHas it :HlFT
108 ES EQ JNC HIED ;i not, to raxt tast
iGA 2571 NoU A, s JSHIFT =
108 24 B2 JMP 1EQ ;Skip to ﬂnd
1CE o MHOP ;Take up waste spaoe
{OF 0o HoP ;Take up woaste spacs
1EQ &7 R A ;Gze i wos CTRL
1E4 G ET JHC BT ;U not, assume CAF
1E3 23 BF POV R, RLEF ;CTHL ‘55
1ES 24 BEQ JnP $1ED ;Skip to end
. 2373 MO AR5 Cﬂrg LOCK = &7
. 45 ORL A, B2 .‘.ombxre with pushad/released info
1EfA &0 MO RS LR ;Save resuit
iEEB 947 LR C ,Fut a zero thars
iEC A7 ceL o ;Set LY to show key
£D 23 RET JDore

sDebounce g keyboord key read from PO
;Entry R in Gtus tahle

tz set up to rend the keyz from PO
H no walid keypush

If a valid change

Result code

:Uses A,F,R2,R3,R4,A5,R6,R7,&1

{EE o HOF ;helay

{EF 02 iH A,PD ;Get key st tus

1FQ 43 £0 R 8,305 ;Femove not-scan | ines

1F2 A MOV RS, A ; Bave resuit

1F3 0 YRL A, 871 ;See i there wmere any changes
1F4 oEFS 2 ?‘FS =

IFE gy LR C ;Flag none

1F? 23 RET JExit then

t

sOebounce a key and compute itz return coda

4 = "Changed mask”

Al = Pointar to key status table
: B3 = Initial read status of keys
: tine sat up to read the keys

Exit O¥ =10 Hf no vaiid change
oY = 1 if ualid change
: A = A5 = Result code
;Uzes A ,F,REZ,RS,R4,R5,R6,R7,8
34 EY CRLL $2E7 Joomputs mask of ohe of the keys
54 A1 CALL $2R1 L Y 4.2 m=
Fi Hou A, ER present status
B ANL A, R3 for oniy one key
RC MOU R4 R
Fa MOV A/, RJ ;Get contents
RE MOU FB A JURUSHT it
B2 20 nOU RO, 8820 ;Lood pointer
Fo MOV A, R0 ;oet fiag byte
57 ;Chaclk tzh
FEot i zet dperformed gz i keupad)
GO Deiay
(RES Dat =ztatuz of keys again
s cnly tha present one
oo taius changas =till pressent
a5 23 =1 Q VRiid change
FE MO A, d Rl contants
Az MouE them
a7 CLA < JFlag o chongss
&3 FET ; Do
4 3 U /LR able pointer
. 02 24 XRL A, #§2d ; if 24
214 Lo 07 2 %207 Then status comes from PO
216 03 07 XRL A/, 07 was 23
218 a8 10 JHZ B2 zean s multiplexed
21iA o9 i R,Fi iz from here
21e 44 08 JHP $209 =t of code
210 a3 IN A/,R2 tintaxed kays
Z1E 7 FR R a
2iF 4% Fa OR A, #§F3 or only PZ2,P23
221 6 09 JT1 20 icin rast
223 52 FE AND A, #%FE
225 44 09 JHP $209 Code
227 B3 20 MOY RO, ®52C ;Lomd pointer to keupad flag byte
229 Fa MOW A, BRD ;Gat the flag
ZZA S3 08 AND A,%308 ;Test a bit (This wiit! alwoys be a &2
220 Ga 41 JNZ $241 ;Skip Z-key roliover fimiting
22ZE B2 ZO MOV RO, #3220 ;Lond pointer to # of keys pushed
220 -0 oY HLRS ;Get zcan resuit
23 B ANL A, R2 iHask for the present key
222 05 38 42 $238 ST it was pushed
234 i HOU A, ERD ;Get present waiue
235 41 J2 241 ;0on't et it go rnegative

CEC #
foy BRO, A

;Remove one
;Feplace resuit

b

[0}
I Ca Ty
Loo U I m [)

G4 41 JHP §241 ;Skip to remaining ooda

Fii MOU R, SR (Get figg walu

53 02 ANL A, sd02 =)
- O 00 JNZ $200 i thiz one
Ld 10 IHC &R0 .C

F 124 8,83 ,Get mask

o XFL H,5R1 ;Flip statuz of that one key

A MOU B8R A ;Pepicee result

F MOU A,R1 ;Get table pointer

OF AML A, %30F ; mpute tha nffset from start (207

R
ear th Glsvw =}

o 4
]
Loy
n
o
I
s U‘l 3

nm
~J 0 Ch
4

[(I N N '\J'

R TN I NI N L I I R A T |
o o e e
o

POooda T s = AT T D D O

Aooc AL B ;RAd position in this row of the keu

CPL C et it (was still clearD

FLC A JMake ish o one {(for a stop bii>

oRL A,RZ Combine with pushed/releaszed info
EA JMP $ERA doin exit code

f no change found
: if change found
; B = B3 = Fesult code

slses H,F,RO,R1,RZ2,R3,R4,R5,F0,R7, 82

m o2 3E MOV RO, ®IGE ;koad buffer pointer

' Fi MO R ERD ,oet last byte of buffer
255 a7 CLR ;Get ready toc show no change
257 L& SA JZ2 238 ;1 space in buffer

254 a3 EET ;Don’ t do anything

25A I3 FB MY R, #IFE ;Locd initial mask valus
250 BG 2O HMOU R1,®$20 ;Load pointer to key siatus
23E A3 fct RGLRA ;Save port valusz

25 S{ CGUTL PO,H ;Seiect a scan line

260 34 TR CARLL $27A ;Sean this group

262 Z3FF 0 MOV A, #%FF sLoad inactive valus

254 S0 OuTL rﬂ ;Oesalact the {ine

265 FE 79 JC %279 (1 a key chonge was found
67 ta tHe Bi 91 Jance fa e pointer

265 A7 CPL £ ;Set it

269 Fz 10U R/,RD - ;Get present zelect byts
ZEBA &7 FRC A JHove over to right

6B Fa 38 JC $Z5E ;1f not done yet

2&D 09 M AP ;0et status of some more keus
2EE 54 22 CALL $222 ;Tast thasso

270 Fa 7?9 40 $2749 ;U a change

2 15 ‘HC R sAdvance table pointer

293 oy HOF ;e ay

274 IS M A,FD ;Bet remaining keys

275 GRL A, ®%3E7 ;Mask for oniy twe lines
2377 P f282 ;Chack these

;Entey Hone
JExwit A =T = 800

}Uses
ZBA 27 CLR A sLoad G

;Load a value to the timer

i This routin

;and to clear the ti

Entry A = Datan
A

Exit T o=
; =0
sUses TF,T
2BB &2 MO T,AH sSend it to timer
ZEC 16 BE JTF $28E ;Clear timer flag
2BE] RET ;Do
sCopy P20 imput to CY
;. This routine will test ths F20 zerial line
;eitl do a small amount of checking for nois:s
JErtry P20 = Y (o aliow input)
JExiU M = PZO
JUses H,F
dh 97 CLR C ;LClear resull flag
5] IH A,P2 ;Get P2 dotaq
201 33 01 AHL 7, #5014 JHask for P20 input from Moo
203 L6 CB JZ $2CB S aetive, axit
ZCS oA IN A P2 ;Gat data again
208 S2 01 AML H,#$Di soheck it agsin in case of noi
zee Co CB J2 $2CB JExit if active now
2CAH r? cRrL ¢ ;P20 was a che
2CB 83 FET ;Tone
JOR A to flag
zal bits in th

; This routine con be used o
ontxuh¢ t!nq byte

;Entrg H = HMask
;Exit A = Resuit

; AQ = $2C

; (200 = 320X OR A

;Uses A RO, CR20H
in ES 2C MOu HD #4520 ;Load address oointer
208 40 nPl @PU ;O rew value to old
2CF A0 1GU QPG.H ;Peplace result
200 g3 PET ;Oone

A

l.u

JAND R to fiag

; Thiz routine can be uzed to clear bits in the
tgnq- flq.:; h:_l'}p

:

sEntry A =Mask
JExit A = RBesult
R RO = f2C
; (F2C5 = ¢$203 AND A
(Uses ARG, (RZ0H
20 o ZC 10U RO, E ;Load aqddress pointer
203 i AHL H,?ﬁﬂ JAnd new ua!ue
204 A0 MOU 2RO, A ;Repiace result
203 53 RET ;Done

;Read soecial keys from keuboord

: This suarﬁuflﬂn wili read the status of the
sepecial i the keuboard and refuwn the
sresult the .crrat readed for ths key
;tabia

JEntrpy POE = P22 = P23 =1

JExit 8 = B3 = Result (0 = oushed?

; 0O = CPTION

R 01 = SHIFT

; 02 = CTRL

; 08 = CAPS LGCK

X 03~-05,0°¢ = 1

lses BR3
206 R M A, F2 ;Pet special key status
207 7T anoA ;Throw wag P20 serial input
208 43 FQ OR A,®4FQ ;Mask for oniy SHIFT and CTAL
20R 56 0E AT f»“" ;Tast OPTION
20C 33 FE AHL A,®#fFE ;Transfer it to 00 with cther keus
20E 53 EF ANL A,#35F ;Ctear bit for CAPS LOCK status
2ED Al M B3 A JSove resgil
2E 02 iH AR, PO JGet CAPS LOCK siatus
2EZ 53 40 ANL A, 340 (Mask for oniy it
2Eq 40 ORL ALRD ;Combine with other stqius
Z2ES A0 Mou :5 A ;Replace result
2ER 23 RET . at s

-,

sSet uwp masks for q keypush

; .

sThis routine will take a mask with 1's at the loccations
swhere a key charged state and single out one of them
and prepare a mask to use to process it further. Key
srelegses are orocessed first so 1hat the Mac does not
;:ee more keys pushed ot any time than there rzally are.

]

JEntry 8 = "Changed” mask

; B1 = Fointer into kay siatuz ighle
Exit R2 = $00 (pushed) or 380 (reisased:

; B3 = Bit set where the changs occurred
; F? = Bit numbar of the key (2-7)

;uses A,F,RZ,R3,R4,R6,R7

ZE? FF MOV B3, 8%FF Init for counter

HOY
CLR
RRC
INC
EB JMC

A
Fi ;Saue “changed” mask
C
A
R
$
MO R
A
A
A
R
Fi
A

;Oon't zhift ony omes in

JPop bits out to test for o fogic i
3 ;Count bit position
ZEE ,Lo@p until a 1 iz found
4 JSave partial resuit

DT e Ch O D KD

J T D T TR -d - 1)

Moy
Hou
CLR

2}
B3 ;8et coynter
?,A ;Sove it too
;Load a blonk workspoce
A ased flag

a5 HOM RZ, ;Clear pushed/reie
iB IHC R3 JRdjust for loop
F? RLC ;Ehift the one back to where it was
EE FS OJHZ B3, %2FS sLoop for correct number of bits
HB MO 3, A JSave mask containing o single “charge’
0o NOP Deiay
Ga HOP ;belay
oo HGP ;Delay
g HOR ;Delay
o HOP ;heiay
0t YRL A,ER1 ;Invert by sigtus data
B AHL R.RT sfask oniy for this key
CH OS5 JZ2 %305 S it was just pushed down
B8 80 MOY B2, %330 ;Load "ralessed” mask
23 RET ;Dore {(procese reiccse before any pushes)
FC MO R, R4 ;Get portial shift rezult
206 Qf 09 JNZ F304 i muittp!n push, reioop
208 o3 RET Dnne {"pushed”
309 FE MOU AL RZ ,Guf mask of changes
30R 37 CPL A ;Elip state
3os = AHL ARG JRemove the first key found
20C 44 E7 JMP F2E7 ;R=ioop

;S5et OV if the $30 or $38 FIFD'z contoin data

This subroutine will ?est oth of the FIFOs for
;data. The carry flag will cleared if both
FiFds are smpty.

Entry HMone
JExit LY =e

t if 2ither had datg
Jizes A F.RD

a0E Gy CLR C ;imit to azsume both empty

oF BS ZA OV RO, ®$3R ;hoad pointer

3 F HOU A, &R0 ;Cet first data byte from this FIFQ
312 a6 19 JHE $313 ;1 some contents

34 B 30 MOV RO, %20 L ad pointer

215 FO MO A, ER0 Get first data buto from this FIFQ

[Y]
- b -
o -

218
21D
31F
220
322

I24

0 QX) G
[O N

0 0 Ch

"

03 10 0
g

Ul = e

L1 S W N

o tnon

e D00 I
i BN R L T}

N T Lo 00

JZ2 331R sExit if it wazs empty
CFL o ;Flag some contents
RET ; Dorne

;Eend an "awake” code if nothing eize o zend

. This routine will check the keyboard FIFG for data
JIF it is empty, it wili plac =] “HU’" avent code
sthaere. In casas, it owill reset the idis timer
nnd go i e thz Moo

to sand the re;utt Cor datar
Tui" code is branched fo from the commond loop.

;Entrg MHons

;Exit RO = $20

; (330> = §7B if nothing elze in FIFD
; ($2E7 = $00

sUses A,F,T,%1

CALL %2EB4 yinit timer and reszet inoctive counter
MOU RO, %320 "Lﬁad pointer into FIFG

M) R, &R0 (Get pFPIEHv WG e

JMZ 33224 ;if something alreadi oresant - skip
MOV BRO, #47E ;Lead awake code

JHMP $635 ;G0 send it

sFeset keyboard

. This shord pisce of cods is executed from the command
sprocassing loop in response to g vagbnardx¥wggad
cresetl command. The resuli is qiwaus 03 and is set up
;o be sent out the serial port.

;

JEntry Hone

Exit B0 o= $35

; (325 = 303

jlises HIL&Z

CALL $280 ;Reset/initialize BAM

HOU RG, #8356 ;Load pointer to resuit “FIFQ"

MOU RO, 8203 sLoad return code soging "He're herel”
JMP £0Ju ;60 send it

2
X
o}

N7

0
Gl
2

G) 00 G L,

03D -~

(o
L}

3 LD O) (D Gl 0

[0
Tt
il

54 BAH

40

2
5
3 €0
4 B8
g 03
23 FO

45
O

;EOZIPRGES - Comments by The M Underground <0 1385

Tr csmit a data byte on P21

; Thiz routine will send 8 bits out P21 when supp!isd
swith an external clock inte PFOS. The msb will be =zant
sTirst, The code has several time outs. If one of ¢
;is reached, the transfer is aborted with the ports
; hogever ‘heu wera last. Initialiy, the routine wiil
;eait for the clock input to be inactive - it con aai
;forever for this., it will then sat P21 low s
JUstart” bit and the wait up to about 2048 cycies for *xw

-,

tooaoct

irzt clock edoe. On all following bits, it will wait
Jup to about 2192 cycies per bit before timing out. The
soutput dota will chonge within 8 Yo 12 cucles of the
;iaiiing edge of the clock. The clock should be low from

S0 to 2R cycies

and the maximum data rate is
|

sewery 23 cycies, Since PZ1 iz left at the lgst sent
;data sven during o time—out, the cailing code shouid
reset it to a 1 to allow futurse input.

;Eﬁtrg A = Data

; PoS = P21 i

JExit Mo timecut

R =R =300

; P2 = IFF

; Timeout

; A = $40

MOV RS, A ;Eauve trarsmit data
MOP ;Oetay

CRLL $28A ;Rezet timer

i R,PO ;Bet ciocking input

sMask for FOG
sLoop until inactive

HOU A, #$00
CALL $2BB
HOU R, %%02
MOU A, %$FD
QUTL PZ,A
MY A, AS

RFLC A
MGY R3,A
JC $350

M A,FO
AL H,#$4D
JZ2 $24

JTF $2 ae
JHP $345
MO A, #5FD
DUTL HZ A
CLR A

HOU T,
JTE $355

;Loead new timer data
;Set it oin

;Load data length
;Load a "0" for P21
;Fend siart Bt oon P2H

Get transmit data
JBhiTL over
;Replace result
;Send a one bit
;Get clock input
sHMask for ciock
;Gerd ihe next b
JError timsout
;uait for fatling clock edge
;Load output dota
iBend a 0" on P21
'Loqd o

eset the timer

esat timer figg

.'

input on POB

to wake up recsiver

a0 HOF 'ﬁeiau
43 DJMZ RYLE340 cop for fuill byis

=33
255 EQ ag
e

358 23 AET ;uann
Q 0z M A, PO sGet clocking input
3 ML &, 2340 ;Mask for POS
» Jz $262 ;9end the next Rit
E JTF %32B ;Errar timeout
1] JHP 8359 ;Hait for falling clock edge
362 R MO R BSFF ;Load output dato
364 A OUTL P2,R sSet a """ on FZi
363 & CLR A ;Lload a O
i3} G2 MO T, A ;Feset timar
367 16 69 JTF $364 ;Clear timer fiag
254 oo NOP sDalay
38R £9 40 OJM2 R1,%340 ;Loop for fuli byte
Klui &3 RET ;Dione
;Peceive g data byte on P21
; This routine will input o data bute from the P21 lirne.
JThe msb will be read first. 8 clocking input should be
sprovided on FOG. The code here will sample the data
sinput within 5 to 16 CFU cycies of the falling edge of
sihe clock line. The data should not be sent faster than
SV bt every 2 “”U clock oycies. If the entire byte has
;ot besn transferred within oboyt 2192 CFY cycies, ihe
sroutive will gbort the transfer. The clock input should
;be dow for o maximum of 19 cucies and a minimum of 10,
Entry FOG6 = 1
,h,xt Mo timeout
; A = KBS = Dota
: R1 = $00
; Timeout
; A o= $40
; Ri = Count of remaining unfetched bits
; P2 = §F
;Uses A,F,R1,RS,F2,T,41
280 o HOP ;Telay
3BE 54 BA CALL $2ER ;Clear timer for a timeout
370 RO MOU RS, A ;Clear receive byte (A = 000
a7t B2 02 MOV RY,s%08 ;Load data length to receive
373 a7 BEC R ;Load an $FF for output datg
74 iy ouTL P2,R)get outputs inactive
VS Ga H,PB ;Test the clock input
276 33 40 gHL A, #3440 iHask for FOO
KX s 7 U2 %CTE ;Get the bit if the clock went low
27R 16 88 JTF $32E ;eError timeoul if timer fimes cut
I7C 54 7S UNF 375 JReloop until timeout or full byte
37E A iH A,F2 stoput data from source
37F 3302 AHL A, %302 ;Hask for P21
21 a7 CLR ;Gat ready for shift
2E2 CE 25 JZ %385 sHake CY = P21
334 q7 CPL T }gWI* ch state to g ' 1"

9000 00
=d h O

D) L D)

& ’
]
o

a2 Ly G 0 0

L 1 N]

G Gy 0 Lo ol Ly

£Q
FG
AE
fE
FE

a7
Lt
]
s
Lo

a0
BC

34 8’3

co
oo

10U A,RS ;Get receive shift register
o

RFLC A ;ERITY in rew doto
MY R5,R ;hepioce result
HOF ;Belay
DINZ R1,$375 Fetoh full byte
RET ;Oon=

;Transmit a byte on P20 from a FIFD

)

; This routine will sand 8 bits of dota that mare
;2tored ina FIFO out the F20 100 fime. R clock is
sprovided out POT? to cleck the data. The msb will be
;:ent first. HAssuming nho hardwuare errors, the ish of
;the data sent will end wp bBzing a "1'. This routine
;will take 286 CPU cycles to execute {inciuding the CALL
io get hereld when the ish of the dotag zent iz g '1{°
;and the data sent was the only entry in the FIFD

;The clock will bhe low 16 cycies and high 17 cycles and
;ihe data out will change 4 cycies before the falling
iclock edge. Once the data buyte has baen sent, the FIFQ
;15 moved down one byte with the vacated position filied
;with a 0. The command flog is alszo cleared - thus
sturning of { whatever command caused this data byte to
;be sant,

; Bz written, the FIFD handling has two bugs. ! the
JFIFD contained § bytes of data, ihe last bute will
srever get cleared. 1t will reolicate itself forever
smuch like the sign bit in an ASR operation. Aizo, in
sthis situation, the command byte wiil not get cleared
;but rather the last datno byte wifl also replicate
sitself there.

;Entry RO = Start of FIFD 1o take data from
Exit H=(ZFr=10

; RO = ZF

: R4 = GO

; PO = P2 = FF

;Uses A,F,RO,R1,R3,R4,PD,P2,2

MO R, %308 ;Load number of bits to zend

MO A,eR0 ,het a data byte from the FIFQ

o :_,R ;Sauﬁ it in A2

BLC A ;Test the present msh

Moy B389 ;Saue rotating result for next foop
JC $3EG ;Transmit a logic one if g " 1°

JTransmit o logic zero

MOV R, SEFE ;Load port data

OUTL FE,R ;Set P20 to o logic O

MOV A BETF ;Load clocking data

QUTL PO,A ,Cet clock ready

M Rd #5014 ;Load delay count

CALL $2A3 ;Dalay tetal of 8 CPU cycles
HOF ;Delay

HOP ;0elay

280 23 FF MOV A, #3FF ;Lood ciocking data

A2 =0 QUTL RO.H ;Clock data in at destiration
A3 FB MOU A,R2 ;oet remaining data to send
! a0 MOF (Deiay

: & HaP ;Delay

me
(Yo o}
10

fon]

3A5 for- rest of the hits

Il
[x]
o
L)

DJNZ R1,$380

x "

JMove the FIFQ down one byte

3A8 BC 04 MOU R4, B304 shoad max size mowe FEE BT bk
AR Fa Mo R,ED ;het destination pointer
AR 17 INC A sAdvaree P11
ZRC Ag MOU R1i,H ;5at source just aboue destination
3AD Fi MoV A, 2R1 ;Get o bgte
3RE A0 Moy 8RO, A JHove it down ome FIFOQ entry
2AF €6 BS JZ $3BS JExit if end of dota
B g INC RO ;Adusnee destination pointer
B2 19 HC R JHdvance source oointer
B3 EC A0 DJNZ R4, $380 sLoop for up to 4 butes of data in FIFD
2ES B3 ZF MOV RO, ®32F sLoad pointer to commond byte
287 Al MOu 8RO, H JAttempt o cisar it w9k BUG #r
383 23 RET ;Oore
;Trarsmit a legic one
Zzg I FF MOY g, 8%FF ;hoad port data
BB A LUTL ”;,H ;Bat P20 ic g T
ZRC 23 FF 0 MOU R, RETF sLoad clocking dota
38E 24 SUTL POLH sBet clock outout raady
3BF 8C 01 MO R4, 8E01 ;Load deiay count
D 54 A3 CHALL $283 ;Deiay total of 3 CPY cycles
o ol MoP ;Oetay
‘ o0 NOP ;helay
3CE 22 FF . MOU B, 8%FF sLoad ciocking datg
37 3 OuTL POLA ;Clock data in at destination
acE FE Moy A/,R3 ,uat remaining data to send
i L MR ;Deloy
3CA o HOp ;0eiay
3B E3 90 DJNZ R, %300 ;Loop for rezt of bits
3co &4 AE JdP ¢“Rd ;G0 to FIFO mouve

;Raceive o dats byte from P20
. Thiz routine wil] read 2 bits of serial dota from the
JFE0 /0 Hive. 1t will supply a data clock out the PO7
joutput 1o clock data cut of the source. The msb is
,tran;tarred first. The dota read will be left in the A
;register and aiso placed in the active command flag.
;Thus any commands received will automatically be set as
sthe current commond to executz. The isb of ol received
da?a will be pitched so that it can be used as a stop
,fiag by the zender. Thiz routine will take 333 CPU cucles
:to execute (including the CALL to get here). The clock
;is low for 12 cycles and high for 22. The data will be
;zampled @ CPU cycles after the rising edge of the ciock.

]

2CF
301
203
=03
i
3z
208
ane
0D
anE
20F
3EQ
o i
ot iy |
3z
"\'-"!

W TR X
[N
't Jou L

) Lo
1mnn
RN B

mmornieoa
107 03 20

3 e L1 et Sl)

ot EaY
mm
LN 5}

) PR O

Ly e)

—

40 T T I

oy
o I)

Loy oM
DO e IS R TN T o)

o

i
i

JUses A,F,R

[0k B3, #8300
MO R, #8038
0U R, #ﬁ“F
OUTL PO, 6
HMOU B4 #302
CALL $2A3
MOU R BEFF
QUTL PG,A
MO A A3

HOP

HOP

¥ 8,r2
AML R, #3201

MOW B3, 8
HOP
NOP
HOP
HOP

DJUNZ R1,$302

AHL A, #3FE
i PU #E2
o BhQ.H
RET

,R1,R3,54,P0, 51

;Clear receive register
;Lond length in bitzs io receius
sLoad clocking data
;et PO? fow to ciock out next bit
sLoad delay ocount
;beloy total of 12 CPU cucles
sboad clocking data
;Set FO? high or inactive
;G2t serial shift register
;Move present daotq ouer one bit
;Save rasult for fater OR with rnews
;Delay
Delay
;Deloy
JGet input j}i. from P20
sHask for oniy zarial irput in a
Combine with oreu :cu”iu rend bit
,neDSGCd resutt for next tin
O=iay
;heiay
Jheloy
sDelay
,Loop for g complete byte of data

=3

JHask out isb dstop Bit) of irput data

;Load pointer to command fiag
;uaue :anT data with !sb=0 there
; Donez

;Use up waste space to fuil K

1

m

=

H

CE 3FF,

JEmply spoce

Heyboard MPU

Fag.
!'!%?

03-17
5-1F

20-24

25-240

9

2B

20
P

a3

F

%]
on

) G D)
o CFI |

) 03

Y

=F

Fort

ﬁu—DE
Oz-04
5
ag
1rd

Haybonrd usage

Generql purpose registers
g levei processor stack
Uz

d
ey status table (0 = pushad)
ezt of key =ztgius toble

d

Yaypad flag byte., Leaft at 0 {o
disable some keypad icop fiags.
00 = Set to {lag keypad mode
01 = Provides ,uide by 2 for

uw

idle timer (keyboord agbsent)
12 = Set when keypad prefix sent

| o Son T

02 = S2t to a ohe disable Z-key
rollover (always zero?

N4-08 = Unused - left at zaro

0? = Set if keyboard absent
Uriized
idle timar. lhsn it reaches 2,
a data byte i= sent to the floc.
Feset when data iz sent. Counts
when the timar timas out.
Command flag. received commands
are placsd here {or processing.
After they are executed, the
tocation i: claored.

10 = ziah to send 1 byte
14 = Requezt for dota

1% = Perform g resst

6 = Perform zeif test

Eisa = NOF

Keupoard FIFD. Oata is piaced
in the first zero iocation and
taken out of location 30.

Zero to aliow the cghove FIiFD
to emply.

Single byte FIFD for passing
responsaes back.

Zero Lo olear the chove

Unused

Unused

Unused

Keyboard usags

Sean return |
Scan return |
Scan return |
Status of CAP
Clocking output

ines
=
ine
S LOCK

o Mac or keupad

o+

register usage - Tha M Undergr

Kaypad uzage

General purpos
8 ilevel procss
Unused

Unused
Unuzed
Counts loops if keybos
ot responding (absen
Keypad flog., See at
uses of the various bi

Ursed

idle timer. Euvery 28 locps (26

if keybhoard absenty of idie time,
a data byte will be sent to the

ﬂac.

3~}

Commard flaq received commatids
are placed here for procsssing
Hftur they are execuised, the

focation is ciearad.
{0 = Permission to sand 1 byle
14 = Pequect for data
16 = Feset keuyboard and self
0 = Self test on keupad
76 = Self tast on keyboord
Else = NOP
FiFD of data read from the
keyboard. The operation is
identical to the keubcard mode.
Zero ito aliow the abouwe FiFQ
to empty.
Single byte FIFD for passing
~':pon’e= back

ro to clear the cbove
UNUScd

>

Keypad FIFQ. Opzrates similar
to the other FiF0s.
Zero to clear the above

aypad usage

Sean output lines

Hom muitioiexed key status
Tied iow o select keypod mode
Clocking input fro aegbuard
Cilocking ocutput to Hac

1a-17
20

{ine=

-

i
; {
P iy
. f SHIFT Scan return
P Status of CTRL Scan return
f t

Ti Status o

No

to Moo or keupad Seriai
-
on]

weajboard

-

o

=5
(1 G L

§ =
CPTHOH Scan et

- QN ~+~30

oma-<C

—aoN~~30C

< —rND

MmNQOQI ~07

Horizonta! video active Horizontal retrace
VAN

AN
/ N N

o 1 2 63 64 65 67 85 87 88

366
367
368
369

N 370

LA ST A A A AN

Each square represents one memory cycle - the use of each cycle is as follows:

D CPU access

t/
Video access /é Sound/disk speed

m@ U-mder‘g'r‘ﬂu d (Video Timing)

1985

ASCli Binary Oct Dec Hex ASCH! MName 85CH] Bimary Lot Dac Hew
NUL Q0000000 000 OO0 ol NUL - nuii (zero) & 1000000 100 054 40
SOH COOO0C0Y 001 001 o1 SOH - start of fiending 5 1000001 101 055 41
STX Q0000010 ooz oz STX - start of taxt e 01020010 102 088 42
ETX Q0OCO0OTY 002 003 03 ETX - end of text C 1000011 103 057 4%
EOT 00000150 S04 004 o4 20T - end of fronsmission O 01000100 104 0RS 44
EMO QOOO0IGY 005 005 05 EMO - enquiry E 1000101 105 088 95
ACK 00000110 005 005 05 ACK - acknowledge F 01000110 108 070 45
BEL CGOGO11Y 007 Q57 07 BEL - bell G 01080111 107 074 47
ES Q0001000 010 Q08 08 B8 -~ baockspars H 01001600 110 072 48
HT Qo000 011 009 04 HT - horizontal itob ! 1001601 111 973 40
LF 00001010 S12 910 oR LF - lire fead . J1001012 112 074 4R
UT Qo00i0ty 012 01t oE UT - vertical toh K 01001011 142 075 3B
FF 00001100 012 012 oo FF - form fesd Lo Oi001co 114 avs 40
CR 000091101 545 0413 QD CR - corriage return i 01001401 115

S0 CO001110 D48 D14 OF S0 - shift out M 0101110 1145

s COO0111Y 217 C1S OF 31 - =shift in 0 01001111 147

OLE 0010000 020 016 10 DLE - datg iink 2=zcape P 0010000 120

OCY COOI000T 021 047 14 BCY - device contral O 0enaot 121

DC2 CoOIC0i0 o2z 018 42 02 - device control 2 B 01010010 122 ;
OC2 0001001y 023 010 4o O3 - dewice contral 2 S 10001 123 083 53
OC4 CODI0100 024 020 18 304 - dezuice control 4 T Q010100 124 004 =g
MAK SO01001 025 oz1 45 HAK =gative acknowledae i D1010101 125 085 55
SYN 00010110 G328 022 iR VM - sunehvonous idle U Q1010110 125 086 56
ETE GGGty 027 473 17 ZTB - end of transmit block l G101011Y 127 G827 57
CAN COO011000 030 024 ig CAN - canced X 01611000 120 089 358
EM Q0000 031 925 14 EM ~ and of medium Yoo oIntinot {31 0so =o
SUR Q0011010 022 025 18 SUB - IREFEL: o 100D 132 090 SP
ESC 00011011 032 027 B : = [Oty 132 021 =g
FE OOQY1100 039 028 12 = far Yoo i01Y100 134 092 E0
G5 00011101 085 026 10 parator 1 igi11101 i35 003 =0
A% 00041110 036 030 1E rator * 01011110 136 094 SE
Us GO0y 537 031 9F tor - 0101111t 137 093 s5F
SP 00100000 040 032 20 sFo- 01100000 140 098 A0
! OC100001 Q41 033 21 a 01100001 144 097 &5
' COID001D Sd42 034 22 b 01100010 142 A2
00100011 043 035 23 c 01100011 143 099 63
$ 0OtI0100 D44 035 24 d CUODI0O 134 100 84
5 OOIGOI0Y 045 037 25 = 01100101 145 101 85
% 00100110 045 0233 26 f 01100110 1456 102 56
! o0i0011Y G47 oza 27 a 01100111 147 103 &7
e OO0 000 G50 40 28 h OHiG1000 150 104 a5
Yo 000001 051 041 29 i aUioeQt 151 105 &4
* Goi0i010 052 042 2R i 01101610 152 105 &8
+ Q0101011 053 043 2B K o11o1041 152 107 &8
. O0101100 054 044 20 ! D1i01100 154 {02 sC
- 03101101 055 045 20 m Q1161161 155 109 &80
. 00191110 0S5 046 ZE t 01101110 156 110 A/E
£ Cai101i111 057 047 2F o 01161111 152 111 &F
O 00110000 050 048 30 o O1110000 160 112 70
1 00110001 061 D49 21 q 01000t 161 113 74
z SO0110010 0R2 050 32 + 1110010 162 114 72
et o100ty 0583 051 33 = IOt 162 115 7=
4 00110100 G54 052 3 L 01110100 184 118 74
5 4oNn10tY 065 053 35 W 31001 185 117 75
& 20110110 066 054 26 v 1110110 155 118 75
7 Go110111 087 055 37 W G111011Y 167 119 77
2 00111000 070 055 38 o DUYHI000 170 120 78
9 Co111001 071 057 =9 g OMIHingt 171 121 g
: OOYii010 072 058 = z O1ii1090 172 122 7R
: CoO1i1013 072 059 =B { 1111091 173 122 78
1 g0i11100 074 060 =0 ! O1191100 174 124 ¢
= SO111101 075 061 30 } 01111101 175 125 0
> J31UU110 076 062 = Y DUIHIN0 176 126 78
? o111y 077 662 oF DEL - delete DEL G1141411 177 127 7F

Hocker Chart - The IM Underground (o) 1085

The System Revealed

The Standard System File (05/02/84) contains both a resource and data
fork. The data fork is loaded upon boot-time {systern start-up) and installs
various ROM patches -- the install entry point is Tocated 512 bytes inta the
fork. The resource fork of the file is where most of the action takes niace,
It contains 26 individual resource types:

ALRT (alert template)
4 resources - Used by the SFPackage (3) - Efs:h has the {Furgeable] bit set.
-3994 (12 bytes): La:mt find that di:

-3995 (12 butes): "A system error Ace ;red nlesse try again.”
-3996 (12 bytes!: "Replace existing ™
-3897 12 bytes): "Dizsk i3 locked.”
BNDL (Bundle)
1 resource
¢ (40 bytes) : Links System File with FREF & its icon.
CDEF (Control definition function)
2 resources - each has the [Purgeable] bit set
0 "ff}ﬁff tytes) : Object code for various button definitions.
1 {1268 bytes) : Object code for scrall bars definitions

CURS (Cursor - cursar, mask, & hot-spot)
4 resources
{58 bytes) : I-Beam curscor
{68 bytes) : Cross cursor
es) : Plus cursaor
) Watch curser

B
wy)
or
¥ ol

—+

DITL {item list in a dialog or slert)
& resources - Used by the SFPackage (3) - each has the [Furgeable] bit set.
-3994 (058 bytes) : "Can't find that disk.”
-3995 {078 bytes) : "4 system error m:rurrpd please try again.”
-3996 (074 bytes) : "Replace existing ™
-3997 {052 bytes): " 15 locked.”
< .
5}

=!
o W
=

-3999 (144 bytes
-4000 (153 byte

The Il Tnderremd S 1 -

£ 1933

DITL cont'd.
I resource - Used by Diskinit package (2) - has the [Purgescie] 0it set,
—604? hL_f.’ txgteq} !mfmth tmc d'sl«'?‘"

-!:‘3936 !.,v...':u t:gte;.,.f D E u aps dxalr«q Hvrr st

DLUG (Di«ﬂuq template)
2 resources - Used by the SFPackage (3) - each has the [Purgesble] bit set.
-3999 (23 bytes) : "Save as:" - used in SFPutfFile
-4000 {23 bytes) : "Open” - used in :IFS tFile
tresource - Used by Diskinit package (2) - has the [Purgeable] bit set.
-6047 {23 bytes) : Diskinit dialog box
I resource - Usad by Key Lap“ - has the [Purgeabis] bit set.
-15936 (29 bytes) : Key Caps dislog box

DRYR ({Desk accessory or other device drivar)
8 resources - each has th 1Puraeame] bit zet.
2 {1024 bytes) : "Print” - Handles Imagewriter printing
12 (2ddd i::gtes} "Calculator”
13 {3392 bytes) : "Alarm Clock”
14 i 1586 bytes) : "Key Caps”
15 (0932 bytes): "Puzzle”
16 {2418 bytes) : "Note Pad”
17 (2324 tsgte:zs'i :"Scrapbook’
18 {4038 bytes) : "Contral Panel”
DSAT (5y: h:m startup alert tabls)
! resource - {Locked] and [System Heap] bits se
0 {432 bytes) : Dialog information for =u_tt-m start-up.
FKEY (Command-Shift-Number routineg)
2 resources - each has the [Purgeatls] kit set.
3 {312 bytes) : Code for screen snapshot to disk.
4 (094 bytes) : Code for screen dump to printer.

FONT {Font)
27 resources - each has the [Purgzable] b 15&:4 CE‘M*CH]FUI’G 12,

0 {0000 bytes) : "Chicaga” fa. t raferance number,
12 {2940 bytes) : (Chicago- | Egs Heap] bit set.
256 L0000 bytes) : "New York” rcmt Ce nurmber.

The I Undergronmd -2 -

121 13985

FONT cont'd.

265 {2032 bytes) : (Naw York-2)

266 (2200 bytes): {New Yark-10)

268 {2734 bytes) : (New York-12)

270 (3352 bytes): (New York-14)

274 (4516 bytes): (New York-18)

276 (5260 bytes} : (New York-20)

280 (GA32 bytes) : (New York-24)

364 {0000 bytes) : "Geneva” font raference number.

393 {2152 bytes) : (Geneva-9)

394 {2200 bytes) : (Geneva- m*‘

396 {2734 bytes) : (Geneva-12

398 {3968 bytes) : (Geneva- z_ﬁ

402 (4664 bytes) : (Geneva- 18}

404 (5848 bytesz) ""‘er‘m‘a— 20}

408 {7568 bytes) : (Geneva-24)

512 {0000 bytes): "E:unax_-u font reference numbear,
921 ""O 26 bytes) : (Monac '::—*—“

524 2464 bytes) : (Monaco-12]

640 1’1000 bytes) : "Yenice” fmu raference number.
654 (3604 bytes) : (Yenice-14)

768 {0000 bytes) : "Londan” font reference number.
786 {3266 bytes} : (London-18)

896 {0000 bytes) : "Athens” font reference number.

914 (4463 bytes) : (Athens-18)

FREF {Fiie referenc
4 resources
0 {13 bytes): "System” - system file name.
1 {13 bytes) : "Finder” - ﬁndpr file name {start-up spplication}.
2 {18 bytes) : "Imagewriter” - print driver Tile name.
3 {21 bytes) : "Clipboard Fi w - clipboard Tile name.
FRSY (Font reserved for systerm use)
| resource
1 {10 bytes) : Hmmm?...

ICN* {lcan Yist - icon & mask)
1 resource
3 {256 bytes) : System File application icon

The Il Uneergronmel -3

@ 1935

ICON {icon)
4 resources - each has the [Purgeable] bit zet.

0 {128 bytes): Alert face with 1"

i (128 bytes) : Alert face with "*"

2 (128 butes) @ Alert face with 7"

-6047 (128 bytes) : Diskinit icon for DITL -A047

INIT {initialization FRSOUrCe

3 resources - each has the [Lacked] and [System Heap] bits zet,
0 {646 bytes) : Keyboard software map
1 (100 bytes) : Keypad software map
2 (768 bytes] : Dislog information for system “bomb-bax”

’NTL iInternahr.mal resaurce

0 {'3'-"’ ',‘ format settings (time, date, et
1 {332 bytes) - internations) date names (da ays, months, et;::...}

MACS (Program Information?
i resource
0 {13 bytes) : "Mac Software”

MDEF {(Menu definition n procedura)
| resource

+] (684 bytes) : Code standard menus,

PACK (Fackage)

b resources - each has the [Purgeable] bit se t.
2 {2430 bytes) : DiskinitPackage - [Locked] bit also set,
3 {3238 bytes) : SFPack ag - {Loc t!dj bit also se t
4 (4540 bytes] : Floating Point package
5 {4190 bytes) : Transcendental functions package
b {1436 bytes) lmernuhunal Utilities - [Locked] bit also set.
7 {0208 bytes) : Binary-Decimal Conversion

PAT "'F'attern - @ space 15 required after the T

5) Eesﬁup pattern - [System Heap)] bit set
S :

16 {8 byt se
rollbar pattern

3 byte
17 {3 bytes) :

e Il Undergronmd :

D 1385

PAT*= (Pattern list -

| resource - has thel i
0 {206 byt

PICT (Picture)

d resources - each h
-15800 (477
-15801 {«'7!9

-~ - \-.I
[
[soup

——"

[y Y

- J
i~

o
et Ui
[y KO ¢ X

RO R I S I)]

e et

=4

oroCr
L4 s oy

—

[y S 1]

PREC (Print recard)
| resource
2 {7

2 Egte-:ﬁ:

o0

STR (String -

ST P T

& space 15 required after ‘{hxa

1 in the Cantrol Fanel & MacPaint}
e trh—-; oit set.
1o 33 patterns
e [Purgeable] bit et
Control panel item - caret blink rate
cContraol panel item - volume stider
s Control panel item - keyboard rates

- Contral panel iterm - mouse button rate
: Control panel item - cursor scaiing rate
Control oanel item - volume scgle
cControl panel itern - meny tterm flasn rate
C&larm clock items

D Retains current print settings.

"l

4 resources - each has the [Purgeable] b 1 2y ep t-15871.
0 {22 bytes) : "Wersion 1.1 !4 Apr-g4” - system version numbar,
-8192 (12 bytes): "Imagewriter” - print driver file narme.
-15871 (B0 bytes): "The Note Pad is unavailable unless there are 2
free bytes on Hr*e startup dis
-15872 {14 bytes): "Note Pad File" - nate pad ’Hn: fatme.

STR* (String list
| resource - has t (G [F‘u
-15840 (285 bytes)

WDEF {\window definition functicn)

0 {1
i {0338 bytes

fiheRlingiindesground

1
}bg

2 resources - [Purgeable] bit set for WDEF 1.
1200 bytes

Object code for square-cornered windows.,
ct code for rounded-cornered windows.

@ 1985

Standard System File Data

Yarsion Date O5/02/54

Resource Fark 127450 bytes

Data Fork 3120 bytes

Type Z8%S

Creator MALS

File Attributes Bundle & Inited (321)
File Flags 380 (not protected)

The Smail Sustem

The Standard System File (05/02/84) can be significantly reduced in
Th

size. The following may be remeoved and the Finder and MDS Edit will still
function:
CURS - The thin-cross cursor (¥2) may be removed if the Alarm | Imif
DRVE 15 also removed. The 'a-%’é!ja—d‘z_%:z.:x cursor (*3) may be remaoved.
DITL - The Key Caps dislog iterm list {¥-15936) may be remaoved if the
Key Caps DRYR is also removed
digiog termnplate {¥-159326) may be removed i1 the

DLOG - The Key ap:.
Key Caps DRYR is a

DRYR - The Print driver {¥2 may be removed if both the imagewriter
file and the FREY 4 rﬂec:urre are removed and no printing 1s to be done. if
gny hidden drivers {those whose names begin with a period) are left, at
least one visible desk sccessory must also be left or the Finder will or
Mote that many system resources may be removed If certain of these drivers
are removed.

a5

i

FKEY - Either or both of these resources (*3 and *4) may be removed if
screen snapshots are not needed.

FONT - Almost all fonts may Se remaoved. Do
rescurce without removing ail of 1t's actual fonts u @
the Chicago-12 font since a font 15 required by the system

(MIT - The k’egtz aard mapping functicn (#*0} may be remwed if both the
kegboard and Key Caps accessory will not be used. The keyped mapping
functiaon (*1} may be removed if the Keypad is not prasem or will not he

used.
PACK - Both the Floating Point package (* 4) and Transcendentsl
Functions package (*35) may be removed if the Calculator scoessory is

removed.

OPhm iAn Bl 1
NG ML UReErremmal -1 -

PAT# - The pattern list (#0) may be removed if the Control Panel
sccessory is removed and MacPaint won't be used with this System,

PICT - The Alarm Clock pictures (#*-15968) may be remaved if the the
Alarm Clock DRVR ia mrrwrv---::ﬁ' The remaining pictures (*-132807 through

*-13800) may be remaoved 11 the Control Panel DRYR is removed.

PREC - The printer recard (*2) may be removed if the Print driver ig
remaoved.

STR - The system vergion number :z:tr?r.g #0) may be removed. The
.

ImageWriter Tile name string (*-3192) may be removed if the imagewriter
file iz removed. The Note Pad strings (¥-15871 and *-15872) mey o=

remayed 17 the Note Pad acoessory 15 removed.

STR#® - The ScrapBook sirings (¥-13840) may be removed 17 ihe
Scrapbook accessory is removed.

WBEF - The rcumj cornered window definition function may be removaed
i t'ne Laicuiator gecessory is removed and ne applications an the disk yse
l

The following resources are aii used to build the DeskTop file. Once this
has been constructed, these resources may be removed. However, if the
deskion needs to be runum mﬁ system icons won't gppear. The Finder will
also pause for g very long time before opening the disk's window. Al r'f
thesze resources should be mﬂ ted at once: BNDL *0, FREF #0 through #3,
ICR= *3, and MALS *0.

Kesource Flags

This document describes the effects of the various resources fla
listed in The System Revealed.

Any resource with the system heap fiag set will be Jeaded into the
systerm neap instead of the application heap. This means that theze
resources will be available zven w % en the application heap is not usable,
such as during a srogram launch t mu t. A constructive us x.? this
qy

H‘l

(l‘)

s
half

o

flag will be mentioned in the .311 | this document.

Since the INIT and DSAT rasources supp]q code and data that is important
to the system’s operation, these ail rr;ust load to the system he&’: !n
operation, these resources are detached from the _:uwtern file ance they are
toaded. This allows them to stay T
file is closed (such a5 when the startup disk is changad).

et

Two other resources load to the s:z,g:stem heap - the desktop pattarn and
the system font. The Chicage-12 font must load there since 1t is used in
system bomb and disk swiich aleris - whmh fay cccur at any tima. The
desk pattern is placed into the system heap as it is needed at the ztart of

every program when the window [Manager is initiglized. If it g nat in
memory st this time, a disk switch might be needed before the SCrEsn was

cleared.
The prelosd flag does not have much usefulness in the System file. In
fact, it is generally ignored for system resources during boot time. Alsa, if
resource editor, many unneeded resources

the System file is opened by s
fnight te preloaded into rr,emjnd

Unly & few resources use the jocked flag. As seversl low memory
nointers reference the INIT and DSAT resources, they need to be locked ohce

an ! 1
in memory. Several of the nackages slsc have the Jocked Bit set. There is no
particular reason for this as they will be locked upon being called and
unlocked when the package code terminates.

The purgeable bit by far has the most varied usage. I's use can
grofoundly affect system performance when memory space 1s low. Item
that should not be purgeable are those that are needed aimost continually by
an aoplication. Hence MDEF O, WDEF 0, and the various CURS rescurces ar
not purgeable. If these were purged at the wrong time, the system would
just have to purge something else and rerzad these resouwrces back inta
memory. Also, a8 heaﬂ graw zone function might be able to make space
very little cost but this does not happen untit ail purgeable memaory tﬂ,cxr,}f..;.

have been remaoved.

]

e I Unearreamnd i

@ 1935

poot

tterns thet should be purgeable are those that are used only ccoasionally
such as the digk initialization and standard file package dising rasources
Resources that are used with desk accesscries should slso be nurgesble so
that an spolication need not be permanently burdened with the remains of 3
desk accessory after it has been closed. Hence all of the AL CDHTL, DLOG,
DRYER, | i_.T, and FONT f{except Chicego-12) resocurces are purgeable. The
WDEF 1 resource is also purgesable since it is mainly usraa in some dJask
accessories. The -33 e Pad message STR -15871 is flagged as not purgeadle
This is probably a mistake and should be changed to being purgestie.
The Fast System
By careful use of the system heap flag, @ System file that iz aply used o
8 soeed un

512K {or more) computers can be changed to provide g noticeatla =0
This involves having the commonly used resources Toed into the systemn
instead of the ﬁpplinatisn hesp. Thus when g new aoplication
many of the resources i fat it needs will already be in memory - DUDEEsing
the delay in reading them from & disk.

There are several diss ‘3“ ntages to this: E:arr: programs mogify a
resource {in memory) for their own use. Since normally any :5:!.:&:3913_1.15:3?.
program wnuid ge. a new version of the resource tne resourca i
changad back. However, when it is in the systam ‘"eag e old n s-n:mmj cooy
will be used by the following program. An example of this iz the Fadit
program - it changes the dale format in the INTL resources. Ancther
disadvantage to placing rescurces in the system heeap is that the disk will
not he ysable on 8 128K computer. The last disadvantage is that the Fing
will accasionally purge the wrong data from memory - ies .'mg
looking fbut still functional} desktop - i.e, there 15 & bug som

Since there is not enough space to hold every resource, the greatest
benefit can be gained by p;nrmq only the most used cnes into the st
heap. Essentially, this smounts to those that are Ieﬁ gfter every s
mentioned in The Small Sgstgm has been performed. & few oihers may o
nlaced into the system hean - such as a font or accessary that is uupr* oite
(Mote that the Finder uses the Geneva—9 font) Don't et any flags for any :f

'e GNDL, FREF, ICH*, and 1aACS 12

sources a5 these are anly used oy the
inder to build the DeskTop file. Tre fallowing is a working iist of all the
resources that l1oad to the system heap from an e tremelg cut down System
file: {The only other resources in this file are the Finder resources
menticned above.)

The [Tnedergrenme 2

21285

DITL -5047, and -4000 tg -3904

DLOG -6047, -4040, and -3969
DSAT O

ICON 6047, and O through 2

INIT O and 2_‘

INTL 0 and 1

MDEF ©

PACK 2,3,6,and 7

FPAT 16 and 17

WDEF O

The FONTs Chicsgo-12, Geneva-9, and Monaco-2.

There are two way
to uze the Resource
change the needed flaf
programs can be us
following steps:

s to change all the the resource flags. The easiest is
itar g:m:sggram and simply open the System filz and
is not available, then the RMover and Fedit

r*'mh h the same result by following the

‘@ Use the Finder to duplicate the System file on the target disk. (Use a
disk without any important data on it. The disk also must have BEMover on it
and should have Fedit available)

s After the Fmder finishes, reset and reboot the system from this sams
disk. {Either by pushing the reset button or turning the computer off and
then back on) This is needed so that the new Tile can be renamed.

e Rename the copy of the System file to a 6 charascter long name.
Systen is g good choice.

s Using Fedit, Open the copy and get to the resource fork. Scan to near
the end until the resource type names in the resource msep become visible
Mow change all of them to something the system won't recognize but that
can be easily changed ba ?3 ck later. The best choice would te 1o simply change
the letters to lower case. The Resource Manager will consider these as
different resources but their true name will still be distinguishable. Note
that the ICH¥*, BNDL, FREF, ".zd MACS names can be ignored as these won't be
touched later

3] n
i) 1335

* Now use RMover (it must be run from the startup disk - which should

be same one that contains the duplicate System file) and Open the copy.
Select all of the resources to place into the system heop ond seiect Open

fram the menu. & diaicg box should appear that contains & check boy markad
System Heap. Click it so that it is selected. For the fonts, don't bother with
the resources thet simply define the font name (these will be O bytes long).

s Run Fedit agsin snd change the resource tyoe names back to their
originals. {The entire r eason for changing the names in the first place is so
that the system won't get confused between the real System file and the one
being modified.)

. The t‘nH-w,xi'f_ step requires that some File Maneger date be modifisd
stern 13 running and has ane of t‘re files in guestion ‘:;'er:.
5 gtap to completion all at one time. Use Open Yolume in
t-n open t‘; & startup volume (this is where a1l the shove changes have iwm
made}. Scan along several sectors until the volume directory (which begins
in sector numbar 4 Find the file name System and use ASCH-modi *j!
change it to something slse. (Susien is fine) Now look for the name of the
copy of the 9:;3.9'_:'; Systen if the original .-Jf.:gge.s.ucm was Tollowed! and
use ASCli-modify ta tffa' ge it to be System (this is the reason for making
it 5 characters long). Make sure to use the Write command to write each of
these changes to mar{, Thiz entire step is needed to replace the original
systerm file with the madified copy,

""r"l

s MNow immedistely reset and reboot the system (dom't even exit the
Feditl). IT this is not done immediately, the system might write same of the
old directory back or even worse - crash,

& The system should now boot up normally. As time gae . 1t should
speed up somewhat. 17 the detzugqpr program MacsBug is uﬂame us

g ?hw
HX and HD commands to examine the resources currentlg in the system he

The above 5teps should result in faster aperation of the computer. it is
recommendad that disks with important data not be modified in this way.

e I Underprenmd -4 -

@ 19385

512K Upgrade

This document describes the procedure to upgrade a 128K Macintosh to
512K. This gperation should only be attempted by those with considerabla
skill with soldering tcols and integrated circuits. it will also void Apple's
warranty and Apple Care. Finaliy, thers is the possioitity that after-market
hardwarp enhancernenis will be incompatible. {The i Underground cannot

ssume any re'*pmrum“ti for oro b ems Caus nﬁ by thiz orocedure))

in principle, the upgrade involves removing the present 54K RaMs,
installing new 256K parts and adding an extra multiplexer chip along with
some discrets 'D.’r;;:u’:f’;?ﬂtg The patts needed are:

2 Sixteen 250K it FAM chips @200nS or faster (412556-200).
A 7AASZET or 74F253 muitiplaxer

"" 'J...J |

2

8 Two 2.2K9 resistors.

& (ne 470 rasistor

8 (One .l uF capscitor{oreferab ‘-(g lass).

s 16 pin sockets for the sbove mentionad circuits,
Th ols

e following tools and supplies will be needed during the upgrade:
& ATorx T-10 screwdriver,
e Desoldering tools.
e A soldering iron with a small tip.
e A tool Lo help in removing and inserting chips from sockets,
e Diagonal cutters to clip excess lead length.
o Solder.
e Fine wire - such as wire-wrapping wire.

Even though =zockets are not absolutely required, installing them is

recommended becsuse the desoldering process can weaken the traces on the

time t 1ey probably won't come of f if care is takan
Hc:wmxvr the se:z:zruj i that @ chip is removed, the traces mignt sasiiy
come off. This would need to be done if one of the new RAM chips is
defective.

Precautions against static damage should be observed during the entire
upgrade procedure. If an anti-static workstation is not available, covering a
desktop with aluminum foil c-hnum suffice. If foil is used, be careful not to
short any live circuits to it Aveoid walking over & carpet and then directly
touching any circuitry. 1t is ‘3d'sfl-aﬁh e to remain seated at the work area
until the entire h{lﬂt"sdp iz finished. |f available, use 3 soldering iroh with a
nrr‘:undwd tio.

The first step in any upgrade is rxpemnq the Macintosh case. Start by
disconnecting all cables and accessories. Also remov the programmer’s

Eihepimiiindezground -

D 1985

switch if it iz installed. This can be done by prying it up using a small
screwdriver. MNow place the Macintosh face down on & smooth surface.
Using the Tork screwdriver, remove the 5 screws holding the case on. Two
are located at the bottom of the back near all of the connectors, ThEu
into metal and thus will ke hard to twist at first. {If a screwdriver other

fac
Ty
2

than the Torx is used, the heads of these screws will be simply strioped -
making it almost impossible to open the case) Another screw is located
Inside the battery compartment while the last two screws are at the top
under the carrying handle. Al of these go into plastic - it may be pessibie
to use g standard flat hesd screwdriver to remaove these. Mow opull the back
of the case off. This is an extremely tight friction fit and will require that
the top and bottom be gently worked locse. Do not use a screwdriver to
“lever” it open - this will anly gouge the plastic. Eventually, the case wiil
Hterally pop off. Slide it up and off carefully so as not 1o scratch the inside
which 15 coated with conductive paint. Once the case is opened, remove the
fail shield from the connectors. Newt unplug the 20 wire rilibon cable going
to the disk drive and the 10 wire power connector. Now grab the logic oosrd
oy the small metal frame on it and siide it out of the chassis.

The next step 15 remocving the present memaory chips. These are ail
located in the box marked "RAM" at the front of the circuit board. The grid

= 1
coordinates are FS through F12 and GS through G12. Thesz parts should be
marked either with the number 4164 or something cmce If a _esmce rg
station is to be uzed, desolder each pin of sach RAM and then gantly 1t it

cut of the circuit board. As g last resort {(or if a desoidering station is r,ut
available), snip every pin of the chips and remove the body. Then desclder
the pins individuaily. Do not ailow the circuit board to heat up much as this
might 117t zome of the fine traces. Also be careful about pulling the plated
through holes out. After all 16 chips are removed, examine the board for any
lifted traces and solder bridges. Remove anu soider bridges. For lifted
traces, note which pads they connect. This will be fixed later. Remove any
loose traces that might short other traces. Pa;; particular notice to the top
side of the board a5 this will be inaccessible after the sockets are
installed.

Mow install the sockets. If they have any orientation, place the pin one
end (this generally has a notch) towards the front of the circuit board. The
silkscreened pattern on the board should match. As the sockets are
installed, it may help to bend pins on two apposing corners out slightly to
nold the socket while the board is turned upside down to tack solder these
two pins. Mow rehest these pins and at the same time push the socket all
the t:*mg sgainst the circuit board. Finally solder the remaining pins and

Tae Il Underpronmel -3 -

© 1385

‘x,nl e

et S,

perhaps a«jd some exirg soider 1o the first bwo pins. Do not use excess
amounts of solder as thiz will terxd to csuse solder bridges. 1t may ais
cguse the :s::::hjer to fiow down through the board and into the socket -
preventing a nin from being it g wWith all sockets installed, chack
ance again for sc:‘zd id amove any. At this time use the fine wire
to replace any trac : 19.;3‘ during the desoidering phase.

{The following ste be ocritted if desired) Now plug the new
memory c‘mcx- ntc ?i’e sockels P‘;n I on all of them is towsrds the corner
af the board with the keuﬁaam plug. in other words, the pin 1 end is
towards the front of the circuit board {which is normally toward the front
of the computer). !t should alse line up with the notch drawn on the board
and probably the sockets. Mske sure that all pins are sested correctly in th
sookets and not Rent under the chips or perhup‘. gutside the QDC&Et
gouple-check for any ap solder or solder bridges. Mow piace the bosard
back into the chassis and reconnect the power and disk cables Set the
Macintosh upright and plug tne nower cable M {without putting the cover onl.
Be careful not to touch any of the inside circuitry while fhe pawer i
Turn the system on and verify that 11 cpera te» (still at 128K though)
spergtion hes Deen varifiad, turn it off and unplug the power cable. wait
zeveral minutes and then remaove the logic board agsin. Be careful arcund
the CRT &g it will still contain a high voltage charge.

‘The purpose of the preceding ztep is to verify that the sockets were
installed correctly and that there are no solder bridges. It also partisin
tests the new memory chips. I there was & problem, the Macintosh will
place a s8d Mac on the screen and show an error code De‘aw it. A memory
error vas found if the first iwo digits of the code are 02 through 05 i:‘s
this case the last four digits are s 16 bit number written in hexadecimal.
Each suspecied memory chip has the bit in it's position set to a 1 in this
number. Consuit the MacPainting Memory to map this vaiue to the sctusl
chips involved. (For exampie, if DO was set in the mask, then consult the
schematic to find that 00O connects to the chip at FS) if there is & problem,
check very carefully for shorts and/or bresks in traces. Perhaps use an
ohmmeter to verify the board against the schematics inciuded elsewhere in
this disk.

The next step is adding ihe extrs multiplexer chip. This can procede in
one of seversl ways. The newer circuit aourds have a place for he
roultiplexer. The older {originai) boards anly have a row of pads which can
be used to tap into the needed sig'}ais. With these boards, the extra chip can
be either piggy-back onto an existing one or mounted on a custom printed
circuit board that attaches to the row of pads.

o,

Tae I Undergranma -

S 12 o

LS

& For the newer circult boards:

There is an unused location at G13 (very near the keyboard connector).
This is designed to hold the extra 74A5253 chip needed. Simply mount &
socket there and then piug the chig in (it has the same pin 1 orientation as
the memary). Also, add the two 2.2KQ and the 474 resistors as shown in
the schematics. Tr ese go in the locations marked R40, R41, and R42. Add
the 1uF capacitor at the location marked C51. Finally, cut the jumper
marked as W1 and labeled 128K only.

Mow reassemble the comouter and procede with testing as above
camputer should now operste a5 g 512K system. If everything wn'ks, then
reattach the caze and the various other periphersis. Remember toplace t
foil shield over {:'59 connectors. Also, the yser preferences selectaed via t
control panel swill need Lo be reentered.

-
!
H

h

(A

-

hie

n

‘D [$%]

& For older circuit boards that will have the muiticlexer piggy-backe

Several pins of the multiplexer will need to be soidered to the chip
directly below i1, These are: 2, 8, 14, and 16, Bend all cther pins straight
put sa that they can be connected separately. Mow place this multiolexer
directly on top of the one gt F3. (It could also be piaced on top of Fd, G3, or
G4 but F3 is closest fo the row of 7 pads with the nesded extra s'gnais.
Also, it might be desirabie to place trd two chip assembl :_ in @ socket) Now
wire up pins 1 and 3 through 7 to mimic the circuitry on Apple's newer 1ogic
boards. Don't forget to add the 470 and 2.2KQ resistors. The sighals A17
A18, and RAG are available at varicus positions in the row of 7 pads near
the end of the 63000 CPU. Finally, cut the trace on the bottom side of the
bogrd that connects pins 1 and 2 of the pads. Now procede with system
check out as above.

o For older citcuit boasrds that will have an extrs board added:

Make g printed circuit boa ﬁ’mt nrovides all the needed connections. |If
a "‘4;‘;513 {or 74F253) device is not available, this method can allow the
use of other similar multiplexers. Continue by attaching the Gosrd to the

pads. Cut ?hP trace connecting pins 1 and 2 there and procede with system
check out as above.
Note that adding t e evira board altows for some interesting changes to

be made. Read the next page of the document for more data.
GEL o 8] : o1
The I Tandergrovnd -4 -

i€ 1985

Upgrade info

The multiplexer
418 address iines
hardware rmermo _‘ references, the multiplexer output should be at the le
it iz when both &17 and A13 are kigh. For a non-inverting multiplexer, this
is & high logic levei. it is & "low” for inverting multiplexers. Note that

no time should the multiplexer tri-state iU's output. The onh '
the multiplexers driving RAQC through RAT tri-state is that
multiples & total of 5 signals onto each memory row address.

sdded during the upgrade funclions to send the A1V and
from the CFU to the memory chips. For video and sound

4,:
th

The 470 resistor on the output is needed to reduce ringing ceused by the
highly capacitive ioad that H g *'.-mrg chips creste. Without it, the
effective access Lime wil EMI/RFI ermissions might alsc increase,

r-#-

The two puliup resistors &f drass lines are there {o Keep therm at 3
known state when the 8000 is currently in an inactive bus cycle. This can
be important Yor the rowy aadr ess as the hardware will still cycie t
memecry even during idle time intervals

The 74AS«xx parts are noi used primarily for their speed, but rather for
their reduced input currents. {(Witness the 74L5257 parts used to muitinies
the sound address.) 74L5253 parts would have been too siow while 7451 5
parts would have required too large of an input current on seversl of the
address lines. The AS parts are thus a useful compromise.

ANl the muitiplexers availsble sre not wused to their fullest when
emulating Apple's circuitry. Most have at least haif unused. By choosing the
correct part, this extra capability can be used to creste o system thatl can
pe both & 126K and a 312K oG nputer This can be useful 1o & software
developer who needs 312K to develop a program but would like to test it ing
128K environment. Consult the MacPaint document 128K/512K for the
schematic of such a modificaticn. In this circuil, the D flip-flop is used 1o
select between the two memory sizes. 1t latches the state af the interrupt
hutton at the end of each system reset. Simply pressing this button during &
reset is enough to select 128K, Note however that the reset signal has a
very long debounce time intervel (more than 1 second). To connect this
circuit, interrupt and reset are tapped by soldering a wire to one Pnﬁ ot the
pullup resistors for these signals. A 745151 part could be used since AtY
and A 18 did not connect to any other loads in the computer.

voarbe
=
&
[}‘:._:')]
=
Si
=)
B By
N

]
—
(V]

Beyond 512K

'J

This document doss not contain any specific information sbout the
Macintosh. Instead, it contains several rav id eas for expanding memory
beyond the standard 1 mit of S12K. There are several software problems
with this. The first is that the ROM {and some ather code) checks for how
much memory is available and chooses either 128K or S12K. Other sizes
will not be recognized without opersting system patches. The second
probletn is that during system txnc:t, the ROM addresses video memary at the
locations where it is found ina S12K system. ina | megabyte system, this
would require that the video memory be placed in the middle of the memory
gddress space. This will 1'rrtef‘fer‘e with a linear growth of memory heaps.

There are two solutions. The first is {0 use the extra 512K a5 a RAM disk,
The second is to tch irzn ImtaApolione system trap to allocate the video

mematy as § non- reI table dlock ins u;‘e the apmic:a?.icm heap. (0f course
this problem can be essi m Tixed by & ROM change) The final problem with
large memary spaces is that the Bloc w:«ve system trap can only correctly
move a marimum of 3 megs tgtec gt a time.

The memory expansion described here would be performed by soldering s
second 512K of memary on too of the present memory chips and generating a
separate RAS (and possible CAS) for this new bank. To avoid 5 doubling in
power dissipation, oniy one bank would be given RAS at & time. Because of
the charscteristics of dynamic memory, the power dissipation of 1M of
mefnary connected this way would be only siightly higher than that of the
standard 312K, Mernory refresh is the biggest concern in such s design. The
most critical point is during vertical retrace as video reads do not happen in
this time inter“a‘i Selow 15 & summary of the refresh intervals with
various memaory bank interleaving schemes.

e

sUs E' n constants:

44 waord times per scan line

370 scan lines per frame

28 tnactive scan lines per frame
S2*342 screen memaory reads per frame

all numbers below are either scan line indexes or time intervals in scan
lines. The values in parentheses specify a range of video scan lines {which
are not necessarily active lines) in the format: (startline . endline).

hcRimyiindesgRound -1 -

© 1985

If alternate words are iccated in alternating banks, the inactive time in
scan lines is:
(&1 selects which bank to usel

{for 296 row refrash chips} 16 scan Hnes for a1l rows)
(T35 .. 3413100 Sy=06+ 28 = 34 scan lines
(326 . 338)to{A . 181 =6+ 283+ 16 = 50 scan lines

{for 128 row refresh chins)(3 scan lines far all rows)
{336 .. 34110 (0 .. 5) = 0+ 28 scan lines = 34 scan lines
(334 .. 3353 ta(p ... 7)=06+28+ 8= 42 scan lines

If 256 words are found in ane bank with the following 255 words in the
ather bank, the inactive time in scan lines is:
fAQ selects which oank to use.)

rech chipsyl 16 scan lines for ail "H‘W"'

£y
i lmes from one bank, then 8 from the other bank
(326 . 338)1tofp . 18) =6+ 15+ 28 = 50 scan lines
{336 .. 341) to 10 5} = + 73 - 34 scan lines

if 128 words are found in one bank with the following 123 words in the
other bank, the inactive time in scan lines is
{AG seiects which bank to use.)

{far 128 row refresh chips)(d scan lines for ail rows)
{4 =can lines from one bank, then 4 from the other bank)
{236 . 3411 ta {0 . 5)Y= 06+ 28 scan lines = 34 zcan lines

-~

L=
"334 338 taia . 716+ 28+ 8 =47 scan Hines
The corversion from scan line times to actusl time is:

34 scan lines = 1.528

42 scan Yines = 1.8687 ms
50 scan lines = 2.247 ms
445 scan lines = 2000 ms

& 1985

[0

Fram the above 1t can be seen that if banks are switched by &1, refresh

timing will be met for both 128 (2 m5) and 256 {4 mS) row refresh chips. if
8 larger number of contiguous words reside in the same bank, then the

gctugl arrangement nezeded depends an the chips used. (Moie that the above
gssumes t‘r’iﬁt the low order address bits are given to the memaory chips a5 a
row address (ss they are in the Mac)) In practice it might be preferabie io
place s harger number of words in the same bank. This so that the minimum
number of muitiplexer inputs need to be rerouted.

One final item needs mentioning. The system can be sp
somewhat by changing the memory timing slightly. Since this
changes to the same FALs a5 with the extra memary, it might be reas urmb
to perform both changes at ance. The present timing performs two memaort
cycles in every ~1uS interyal. This could be increased to 4 cycles: 2 for th
CPU, one for video, and one idle. (During video retrace, it's cycle wmd
be idle - i.e, the mamory would not receive any control signals) IF thi
done, the cycles will be around 235 nS long. This requires some
mermory chips that will be run at their limits,

e 1

'3

f"'l

P g

=
-t LD

o} t'L' 11: (1 BN O I

n‘l =g

v

X Dy}
b (fl

ok,

(w1
(]

T IR Undergronmel -5 -

(a 1955

