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ABOUT THIS CHAPTER

This chapter provides a basic description of the hardware of the
Macintosh 128K and 512K computers. It gives you information that
you'll need to connect other devices to the Macintosh and to write
device drivers or other low-level programs. It will help you figure
out which technical documents you'll need to design peripherals; in
some cases, you'll have to obtain detailed specifications from the
manufacturers of the various interface chips.

This chapter is oriented toward assembly-language programmers. It
assumes you're familiar with the basic operation of microprocessor-

based devices. Knowledge of the Macintosh Operating System will also
be helpful.

(warning)
Only the Macintosh 128K and 512K are covered in this
chapter. In particular, note that the memory addresses
and screen size are different on the Macintosh XL (and
may be different in future versions of the Macintosh).
To maintain software compatibility across the Macintosh
line, and to allow for future changes to the hardware,
you're strongly advised to use the Toolbox and Operating
System routines wherever possible.

To learn how your program can determine which hardware environment it'
operating in, see the description of the Environs procedure in the
Operating System Utilities chapter.

OVERVIEW OF THE HARDWARE

The Macintosh computer contains a Motorola MC68PP§ microprocessor
clocked at 7.8336 megahertz, random access memory (RAM), read-only
memory (ROM), and several chips that enable it to communicate with
external devices. There are five I/0 devices: the video display; the
sound generator; a Synertek SY6522 Versatile Interface Adapter (VIA)
for the mouse and keyboard; a Zilog Z853f Serial Communications
Controller (SCC) for serial communication; and an Apple custom chip,
called the IWM ("Integrated Woz Machine") for disk control.

The Macintosh uses memory-mapped 1/0, which means that each device in
the system is accessed by reading or writing to specific locations in
the address space of the computer. Each device contains logic that

recognizes when it's being accessed and responds in the appropriate
mannere.

The MC680PP can directly access 16 megabytes (Mb) of address space. In

the Macintosh, this is divided into four equal sections. The first
four Mb are for RAM, the second four Mb are for ROM, the third are for
the SCC, and the last four are for the IWM and the VIA. Since each of
the devices within the blocks has far fewer than four Mb of
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4 Macintosh Hardware

individually addressable locations or registers, the addresses within
each block "wrap around” and are repeated several times within the
block.

RAM is the "working memory" of the system. Its base address is address
P. The first 256 bytes of RAM (addresses P through $FF) are used by
the MC68PPP as exception vectors; these are the addresses of the
routines that gain control whenever an exception such as an interrupt
or a trap occurs. (The summary at the end of this chapter includes a
1list of all the exception vectors.) RAM also contains the system and
application heaps, the stack, and other information used by
applications. In addition, the following hardware devices share the
use of RAM with the MC68099:

- the video display, which reads the information for the display
from one of two screen buffers

- the sound generator, which reads its information from one of two
sound buffers

- the disk speed controller, which shares its data space with the
sound buffers

The MC680PP accesses to RAM are interleaved (alternated) with the video
display's accesses during the active portion of a screen scan line
(video scanning is described in the next section). The sound generator
and disk speed controller are given the first access after each scan
line. At all other times, the MC68PPP has uninterrupted access to RAM,
increasing the average RAM access rate to about 6 megahertz (MHz).

ROM is the system's permanent read-only memory. Its base address,
S4pPPPP, is available as the constant romStart and is also stored in
the global variable ROMBase. ROM contains the routines for the Toolbox
and Operating System, and the various system traps. Since the ROM is
used exclusively by the MC68PPP, it's always accessed at the full
processor rate of 7.83 MHz.

The address space reserved for the device I/0 contains blocks devoted
to each of the devices within the computer. This region begins at
address $8PPPPP and continues to the highest address at $SFFFFFF.

(note)
Since the VIA is involved in some way in almost every
operation of the Macintosh, the following sections
frequently refer to the VIA and VIA-related constants.
The VIA itself is described later, and all the constants
are listed in the summary at the end of this chapter.

2/11/85 /HARDWARE /HDWR . 2



THE VIDEO INTERFACE 5

THE VIDEO INTERFACE

The video display is created by a moving electron beam that scans
across the screen, turning on and off as it scans in order to create

black and white pixels. Each pixel is a square, approximately 1/74
inch on a side.

To create a screen image, the electron beam starts at the top left
corner of the screen (see Figure 1). The beam scans horizontally
across the screen from left to right, creating the top line of
graphics. When it reaches the last pixel on the right end of the top
line it turns off, and continues past the last pixel to the physical
right edge of the screen. Then it flicks invisibly back to the left
edge and moves down one scan line. After tracing across the black
border, it begins displaying the data in the second scan line. The
time between the display of the rightmost pixel on one line and the
leftmost pixel on the next is called the horizontal blanking interval.
When the electron beam reaches the last pixel of the last (342nd) line
on the screen, it traces out to the right edge and then flicks up to
the top left corner, where it traces the left border and then begins
once again to display the top line. The time between the last pixel on
the bottom line and the first one on the top line is called the
vertical blanking interval. At the beginning of the vertical blanking
interval, the VIA generates a vertical blanking interrupt.
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Figure 1. Video Scanning Pattern

The pixel clock rate (the frequency at which pixels are displayed) is
15.6672 MHz, or about .P64 microseconds (usec) per pixel. For each
scan line, 512 pixels are drawn on the screen, requiring 32,68 usec.
The horizontal blanking interval takes the time of an additional 192
pixels, or 12.25 usec. Thus, each full scan line takes 44.93 usec,
which means the horizontal scan rate is 22.25 kilohertz.

A full screen display consists of 342 horizontal scan lines, occupying
15367.65 usec, or about 15.37 milliseconds (msec). The vertical
blanking interval takes the time of an additional 28 scan lines——
1258.17 usec, or about 1.26 msec. This means the full screen is
redisplayed once every 16625.8 usec. That's about 16.6 msec per frame,

which means the vertical scan rate (the full screen display frequency)
is 6P.15 hertz.

The video generator uses 21,888 bytes of RAM to compose a bit-mapped
video image 512 pixels wide by 342 pixels tall. Each bit in this range

controls a single pixel in the image: A P bit is white, and a 1 bit is
black.
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THE VIDEO INTERFACE 7

There are two screen buffers (areas of memory from which the video
circuitry can read information to create a screen display): the main
buffer and the alternate buffer. The starting addresses of the screen
buffers depend on how much memory you have in your Macintosh. 1In a
Macintosh 128K, the main screen buffer starts at $1A7PP and the
alternate buffer starts at $127pP; for a 512K Macintosh, add $6PPPP to
these numbers.

(warning)
To be sure you don't use the wrong area of memory and to
maintain compatibility with future Macintosh systems, you
should get the video base address and bit map dimensions
from screenBits (see the QuickDraw chapter).

Each scan line of the screen displays the contents of 32 consecutive
words of memory, each word controlling 16 horizontally adjacent pixels.
In each word, the high-order bit (bit 15) controls the leftmost pixel
and the low-order bit (bit #) controls the rightmost pixel. The first
word in each scan line follows the last word on the line above it. The
starting address of the screen is thus in the top left corner, and the
addresses progress from there to the right and down, to the last byte
in the extreme bottom right corner.

Normally, the video display doesn't flicker when you read from or write
to it, because the video memory accesses are interleaved with the
processor accesses. But if you're creating an animated image by
repeatedly drawing the graphics in quick succession, it may appear to
flicker if the electron beam displays it when your program hasn't
finished updating it, showing some of the new image and some of the old
in the same frame.

One way to prevent flickering when you're updating the screen
continuously is to use the vertical and horizontal blanking signals to
synchronize your updates to the scanning of video memory. Small
changes to your screen can be completed entirely during the interval
between frames (the first 1.26 msec following a vertical blanking
interrupt), when nothing is being displayed on the screen. When making
larger changes, the trick is to keep your changes happening always
ahead of the spot being displayed by the electron beam, as it scans
byte by byte through the video memory. Changes you make in the memory
already passed over by the scan spot won't appear until the next frame.
If you start changing your image when the vertical blanking interrupt
occurs, you have 1.26 msec of unrestricted access to the image. After
that, you can change progressively less and less of your image as it's
scanned onto the screen, starting from the top (the lowest video memory
address). From vertical blanking interrupt, you have only 1.26 msec in
which to change the first (lowest address) screen location, but you

have almost 16.6 msec to change the last (highest address) screen
location.

Another way to create smooth, flicker-free graphics, especially useful
with changes that may take more 16.6 msec, is to use the two screen
buffers as alternate displays. If you draw into the one that's
currently not being displayed, and then switch the buffers during the
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8 Macintosh Hardware

next vertical blanking, your graphics will change all at once,
producing a clean animation. (See the Vertical Retrace Manager chapter

to find out how to specify tasks to be performed during vertical
blanking.)

If you want to use the alternate screen buffer, you'll have to specify
this to the Segment Loader (see the Segment Loader chapter for
details). To switch to the alternate screen buffer, clear the
following bit of VIA data register A (vBase+vBufA):

vPage2 .EQU 6 ;0 = alternate screen buffer
For example:
BCLR #vPage2,vBase+vBufA
To switch back to the main buffer, set the same bit.

(warning)

Whenever you change a bit in a VIA data register, be sure
to leave the other bits in the register unchanged.

(warning)
The alternate screen buffer may not be supported in
future versions of the Macintosh.

THE SOUND GENERATOR

The Macintosh sound circuitry uses a series of values taken from an
area of RAM ta create a changing waveform in the output signal. This
signal drives a small speaker inside the Macintosh and is connected to
the external sound jack on the back of the computer. If a plug is
inserted into the external sound jack, the internal speaker 1is
disabled. The external sound line can drive a load of 6f9 or more
ohms, such as the input of almost any audio amplifier, but not a
directly connected external speaker.

The sound generator may be turned on or off by writing 1 (off) or P
(on) to the following bit of VIA data register B (vBase+vBufB):

vSndEnb .EQU 7 ;P = sound enabled, 1 = disabled
For example:
BSET #vSndEnb,vBase+vBufB ;turn off sound

By storing a range of values in the sound buffer, you can create the
corresponding waveform in the sound channel. The sound generator uses
a form of pulse-width encoding to create sounds. The sound circuitry
reads one word in the sound buffer during each horizontal blanking
interval (including the "virtual" intervals during vertical blanking)
and uses the high-order byte of the word to generate a pulse of
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THE SOUND GENERATOR 9

electricity whose duration (width) is proportional to the value in the
Another circuit converts this pulse into a voltage that's
attenuated (reduced) by a three-bit value from the VIA. This reduction
corresponds to the current setting of the volume level. To set the
volume directly, store a three-bit number in the low-order bits of VIA

gister A (vBase+vBufA). You can use the following constant to
isolate the bits involved:

byte.

data re

Here's

vSound .EQU 7 ;sound volume bits

an example of how to set the sound level:

MOVE.B vBase+vBufA,D@ ;get current value of registe
ANDI.B #255-vSound,Df ;clear the sound bits
ORI.B  #3,DP ;set medium sound level

MOVE.B D@,vBase+vBufA ;put the data back

After attenuation, the sound signal is passed to the audio output line.

The sound circuitry scans the sound buffer at a fixed rate of 379 words
per video frame, repeating the full cycle 60.15 times per second. To
create sounds with frequencies other than multiples of the basic scan
rate, you must store phase-shifted patterns into the sound buffer

each scan. You can use the vertical and horizontal blanking
signals (available in the VIA) to synchronize your sound buffer updates

between

to the buffer scan. You may find that it's much easier to use the
routines in the Sound Driver to do these functions.
(warning)

The low—-order byte of each word in the sound

buffer is

used to control the speed of the motor in the disk drive.

Don't store any information there, or you'll
with the disk I/O.

interfere

There are two sound buffers, just as there are two screen buffers. The
address of the main sound buffer is stored in the global variable
SoundBase and is also available as the constant soundLow. The main
sound buffer is at S$1FDPP in a 128K Macintosh, and the alternate buffer
1s at $1A10P; for a 512K Macintosh, add $6PPPP to these values. Each

sound buffer contains 379 words of data.

As when you want to use the

alternate screen buffer, you'll have to specify to the Segment Loader

that yo
details
followi

To retu

u want the alternate buffer (see the Segment
). To select the alternate sound buffer for
ng bit of VIA data register A (vBase+vBufA):

vSndPg2 .EQU 3 ;0 = alternate sound

rn to the main buffer, set the same bit.

(warning)

Be sure to switch back to the main sound buffer before
doing a disk access, or the disk won't work properly.

2/11/85

Loader chapter for
output, clear the

buffer
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10 Macintosh Hardware

(warning)
The alternate sound buffer may not be supported in future
versions of the Macintosh.

There's another way to generate a simple, square-wave tome of any
frequency, using almost no processor intervention. To do this, first
load a constant value into all 37@ sound buffer locations (use $PP's
for minumum volume, $FF's for maximum volume). Next, load a value into
the VIA's timer 1 latches, and set the high-order two bits of the VIA's
auxiliary control register (vBase+vACR) for "square wave output" from
timer 1. The timer will then count down from the latched value at
1.2766 usec/count, over and over, inverting the vSndEnb bit of VIA
register B (vBase+vBufB) after each count down. This takes the
constant voltage being generated from the sound buffer and turms it on
and off, creating a square-wave sound whose period is

2 * 1,2766 usec * timer 1's latched value

(note)
You may want to disable timer 1 interrupts during this
process (bit 6 in the VIA's interrupt enable register,
which is at vBase+vIER).

To stop the square-wave sound, reset the high-order two bits of the
auxiliary control register.

(note)
See the SY6522 technical specifications for details of
the VIA registers. See also "Sound Driver Hardware" in
the Sound Driver chapter.

Diagram

Figure 2 shows a block diagram for the sound port.

2/11/85 /HARDWARE /HDWR. 2



THE SOUND GENERATOR 11

A new word is read every

po—ce——- h)
Internal spesker :
{disconnected when éﬁ’ o ey i 4
output % =
connecter is used)
Sound
6522 (V1A) Amplifier
Sound/ disk- speed ';:? ,| Yolume control
butfer {in RAM) Alternate PA2 {eight levels)
butfer Z S
High (Lov PA3
(even) (odd)
byte _Dyte Sound On-off switch
= 0 |Sound| Disk |<--- . PB7 3 (square-wave
§ 1 [Sound| Disk 4 (tlw‘l! generator)k
- 2 [Sound] Disk 4%
§ 3 [Sound] Disk J«-----.""% -
<5 ' ] . '..'.:.:.. DIglta'-tm'm
ooy ' ' ' ~3 convertor
-g : : : "a S
o : : : ."i? High
S | 16€([Sound] Disk J«---- /= , byte
§ | 16F(Sound] Disk J&= Buffer \__Words from
5 | 170{Sound Disk wenf'f select /selected buffer
* + 171 [Sound] Disk J«--- Low
byte
Alternate butter Digitsl-to-analog
0 [Sound] Disk J<----. convertor
1 ESOLnd{ Disk L -----
iy
16F (Sound] Disk F To motor speed control
170[Sound] Disk J<--- .7 lines for internal and
171 [Sound] Disk < external disk drives

Figure 2. Diagram of Sound Port
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12 Macintosh Hardware

THE_SCC

The two serial ports are controlled by a Zilog 28530 Serial
Comunications Controller (SCC). The port known as SCC port A is the
one with the modem icon on the back of the Macintosh., SCC port B is
the one with the printer icon.

Macintosh serial ports conform to the EIA standard RS422, which differs
from the more common RS232C standard. While RS232C modulates a signal
with respect to a common ground ("single-ended" transmission), RS422
modulates two signals against each other ("differential" transmission).
The RS232C receiver senses whether the received signal is sufficiently
negative with respect to ground to be a logic "1", whereas the RS422
receiver simply senses which line is more negative than the other.

This makes RS422 more immune to noise and interference, and more
versatile over longer distances. If you ground the positive side of
each RS422 receiver and leave unconnected the positive side of each
transmitter, you've converted to EIA standard RS423, which can be used

to communicate with most RS232C devices over distances up to fifty feet
or so.

The serial inputs and outputs of the SCC are connected to the ports
through differential line drivers (26LS3fp) and receivers (26LS32). The
line drivers can be tri-stated between transmissions, to allow other
devices to transmit over those lines. A driver is activated by the
lowering the SCC's Ready To Send (RTS) output for that port. Port A
and port B are identical except that port A (the modem port) has a

higher interrupt priority, making it more suitable for high-speed
communication.

Figure 3 shows the DB-9 pinout for the SCC output jacks.

©kz°s°z°:'/©

Ground

+ 5 volts

Ground

Transmit dots «+

Trensmit dats -

+12 volts
Handshske/external clock
Receive deta +

Receive dats -

Figure 3. Pinout for SCC Output Jacks

OWONOUNLWN -
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THE SCC 13

(warning)

Do not draw more than 10p milliamps at +12 volts, and 2P
milliamps at +5 volts from all connectors combined.

Each port's input-only handshake line (pin 7) is connected to the SCC's
Clear To Send (CTS) input for that port, and is designed to accept an
external device's Data Terminal Ready (DTR) handshake signal. This
line is also connected to the SCC's external synchronous clock (TRxC)
input for that port, so that an external device can perform high-speed
synchronous data exchange. Note that you can't use the line for
receiving DTR if you're using it to receive a high-speed data clock.

The handshake line is sensed by the Macintosh using the positive
(noninverting) input of one of the standard RS422 receivers (26LS32
chip), with the negative input grounded. The positive input was chosen

because this configuration is more immune to noise when no active
device is connected to pin 7.

(note)

Because this is a differential receiver, any handshake or
clock signal driving it must be "bi-polar", alternating
between a positive voltage and a negative voltage, with
respect to the internally grounded negative input. If a
device tries to use ground (P volts) as one of its
handshake logic levels, the Macintosh will receive that

level as an indeterminate state, with unpredicatbale
results.

The SCC itself (at its PCLK pin) is clocked at 3.672 megahertz. The
internal synchronous clock (RTxC) pins for both ports are also
connected to this 3.672 MHz clock. This is the clock that, after

dividing by 16, is normally fed to the SCC's internal baud-rate
generator.

The SCC chip generates level-1 processor interrupts during 1/0 over the
serial lines. For more information about SCC interrupts, see the
Device Manager chapter.

The locations of the SCC control and data lines are given in the
following table as offsets from the constant sccWBase for writes, or
sccRBase for reads. These base addresses are also available in the
global variables SCCWr and SCCRd. The SCC is on the upper byte of the
data bus, so you must use only even—addressed byte reads (a byte read
of an odd SCC read address tries tn reset the entire SCC). When
writing, however, you must use only odd-addressed byte writes (the
MC68PPP puts your data on both bytes of the bus, so it works
correctly). A word access to any SCC address will shift the phase of
the computer's high-frequency timing by 128 nanoseconds (system
software adjusts it correctly during the system startup process).
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14 Macintosh Hardware

Location Contents
sccWBaset+aData Write data register A
sccRBase+aData Read data register A
sccWBase+bData Write data register B
sccRBase+bData Read data register B
sccWBase+aCtl Write control register A
sccRBase+aCtl Read control register A
sccWBase+bCtl Write control register B
sccRBase+bCt1l Read control register B
(warning)

Don't access the SCC chip more often than once every 2.2
usec. The SCC requires that much time to let its
internal lines stabilize.

Refer to the technical specifications of the Zilog 28530 for the

detailed bit maps and control methods (baud rates, protocols, and so
on) of the SCC.

Diagram

Figure 4 shows a circuit diagram for the serial ports.
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Figure 4. Diagram of Serial Ports
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THE MOUSE

The DB-9 connector labeled with the mouse icon connects to the Apple
mouse (Apple II, Apple III, Lisa, and Macintosh mice are electrically
identical). The mouse generates four square-wave signals that describe
the amount and direction of the mouse's travel. Interrupt-driven
routines in the Macintosh ROM convert this information into the
corresponding motion of the pointer on the screen. By turning an
option called mouse scaling on or off in the Control Panel desk
accessory, the user can change the amount of screen pointer motion that
corresponds to a given mouse motion, depending on how fast the mouse is
moved; for more information about mouse scaling, see the discussion of
parameter RAM in the Operating System Utilities chapter.

(note)
The mouse is a relative-motion device; that is, it
doesn't report where it is, only how far and in which
direction it's moving. So if you want to connect
graphics tablets, touch screens, light pens, or other
absolute-position devices to the mouse port, you must
either convert their coordinates into motion information
or install your own device-handling routines.

The mouse operates by sending square-wave trains of information to the
Macintosh that change as the velocity and direction of motion change.

The rubber-coated steel ball in the mouse contacts two capstans, each

connected to an interrupter wheel: Motion along the mouse's X axis

rotates one of the wheels and motion along the Y axis rotates the other
wheel.

The Macintosh uses a scheme known as quadrature to detect which
direction the mouse is moving along each axis. There's a row of slots
on an interrupter wheel, and two beams of infrared light shine through
the slots, each one aimed at a phototransistor detector. The detectors
are offset just enough so that, as the wheel turms, they produce two
square-wave signals (called the interrupt signal and the quadrature
signal) 99 degrees out of phase. The quadrature signal precedes the
interrupt signal by 99 degrees when the wheel turns one way, and trails
it when the wheel turns the other way.

The interrupt signals, X1 and Y1, are connected to the SCC's DCDA and
DCDB inputs, respectively, while the quadrature signals, X2 and Y2, go
to inputs of the VIA's data register B. When the Macintosh is
interrupted (from the SCC) by the rising edge of a mouse interrupt
signal, it checks the VIA for the state of the quadrature signal for
that axis: If it's low, the mouse is moving to the left (or down), and
if it's high, the mouse is moving to the right (or up). When the SCC
interrupts on the falling edge, a high quadrature level indicates
motion to the left (or down) and a low quadrature level indicates
motion to the right (or up):
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SCC VIA Mouse

Mouse Mouse Motion

interrupt quadrature direction in

X1 (or Y1) X2 (or Y2) X (or Y) axis

Positive edge Low Left (or downm)
High Right (or up)

Negative edge Low Right (or up)
High Left (or dowm)

Figure 5 shows the interrupt (Y1) and quadrature (Y2) signals when the

mouse is moved downwards. e
positive-edge interrupt
- negetive edge interrupt

Dol LML

quedrature motion
levels interrupts
YIA SCC
Dets
reg.B

Y2l s Ylsco B
bit 4 XUbco A

Figure 5. Mouse Mechanism

The switch on the mouse is a pushbutton that grounds pin 7 on the mouse
connector when pressed. The state of the button is checked by software
during each vertical blanking interrupt. The small delay between each
check is sufficient to debounce the button. You can look directly at
the mouse button's state by examining the following bit of VIA data
register B (vBase+vBufB):

vSW .EQU 3 ;0 = mouse button is down
If the bit is clear, the mouse button is down. However, it's
recommended that you let the Operating System handle this for you

through the event mechanism.

Figure 6 shows the DB-9 pinout for the mouse jack at the back of the
Macintosh.
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Ground

+5 volts

Ground

Mouse X2 (VIA quadrature signsl)
Mouse X1 (SCC interrupt signal)
(not connected)

Mouse switch

Mouse Y2 (VIA quadrstiure signal)
Mouse Y1 (SCC interrupt signal)

Figure 6. Pinout for Mouse Jack

OCONOUNNLEWN =

(warning)
Do not draw more than 2ff milliamps at +5 volts from all
connectors combined.

Diagram

Figure 7 shows a circuit diagram for the mouse port.
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Figure 7. Diagram of Mouse Port

THE KEYBOARD AND KEYPAD

The Macintosh keyboard and numeric keypad each contain an Intel 8921
microprocessor that scans the keys. The 8p21 contains ROM and RAM, and
is programmed to conform to the interface protocol described below.

The keyboard plugs into the Macintosh through a four-wire RJ-11
telephone-style jack. If a numeric keypad is installed in the system,
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20 Macintosh Hardware

the keyboard plugs into it and it in turn plugs into the Macintosh.
Figure 8 shows the pinout for the keyboard jack on the Macintosh, on
the keyboard itself, and on the numeric keypad.

r

N\

4 J
1 Ground
2 Clock
3 Desta
4 +5 volis

Figure 8. Pinout for Keyboard Jack

(warning)

Do not draw more than 20f milliamps at +5 volts from all
connectors combined.

Keyboard Communication Protocol

The keyboard data line is bidirectional and is driven by whatever
device is sending data. The keyboard clock line is driven by the
keyboard only. All data transfers are synchronous with the keyboard

clock. Each transmission consists of eight bits, with the highest-
order bits first.

When sending data to the Macintosh, the keyboard clock transmits eight
33p-usec cycles (16 usec low, 179 usec high) on the normally high
clock line. It places the data bit on the data line 4P usec before the
falling edge of the clock line and maintains it for 330 usec. The data
bit is clocked into the Macintosh's VIA shift register on the rising
edge of the keyboard clock cycle.

When the Macintosh sends data to the keyboard, the keyboard clock
transmits eight 4@P-usec cycles (18 usec low, 22 usec high) on the
clock line. On the falling edge of the keyboard clock cycle, the
Macintosh places the data bit on the data line and holds it there for
4PP usec. The keyboard reads the data bit 8p usec after the rising
edge of the keyboard clock cycle.

Only the Macintosh can initiate communication over the keyboard lines.
On power-up of either the Macintosh or the keyboard, the Macintosh is
in charge, and the external device is passive. The Macintosh signals
that it's ready to begin communication by pulling the keyboard data
line low. Upon detecting this, the keyboard starts clocking and the
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Macintosh sends a command. The last bit of the command leaves the
keyboard data line low; the Macintosh then indicates it's ready to
receive the keyboard's response by setting the data line high.

The first command the Macintosh sends out is the Model Number command.
The keyboard's response to this command is to reset itself and send
back its model number to the Macintosh. If no response is received for
1/2 second, the Macintosh tries the Model Number command again. Once
the Macintosh has successfully received a model number from the
keyboard, normal operation can begin. The Macintosh sends the Inquiry
command; the keyboard sends back a Key Tramnsition response if a key has
been pressed or released. If no key transition has occurred after 1/4
second, the keyboard sends back a Null response to let the Macintosh
know it's still there. The Macintosh then sends the Inquiry command
again. In normal operation, the Macintosh sends out an Inquiry command
every 1/4 second. If it receives no response within 1/2 second, it
assumes the keyboard is missing or needs resetting, so it begins again
with the Model Number command.

There are two other commands the Macintosh can send: the Instant
command, which gets an instant keyboard status without the 1/4-second
timeout, and the Test command, to perform a keyboard self-test. Here's
a list of the commands that can be sent from the Macintosh to the
keyboard:

Command name Value Keyboard response

Inquiry S1p Key Transition code or Null ($7B)
Instant $14 Key Transition code or Null ($7B)
Model Number S16 Bit @: 1

Bits 1-3: keyboard model number, 1-8
Bits 4-6: next device number, 1-8

Bit 7: 1 if another device connected
Test $36 ACK ($7D) or NAK ($77)

The Key Transition responses are sent out by the keyboard as a single
byte: Bit 7 high means a key-up tramsition, and bit 7 low means a key-
down. Bit @ is always high. The Key Transition responses for key-down
transitions on the keyboard are shown (in hexadecimal) in Figure 9,
Note that these response codes are different from the key codes
returned by the keyboard driver software. The keyboard driver strips
off bit 7 of the response and shifts the result ome bit to the right,

removing bit §. For example, response code $33 becomes $19, and $2B
becomes $15.
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Figure 9. Key-Down Transitionms
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Keypad Communication Protocol

When a numeric keypad is used, it must be inserted between the keyboard
and the Macintosh; that is, the keypad cable plugs into the jack on the
front of the Macintosh, and the keyboard cable plugs into a jack on the
numeric keypad. In this configuration, the timings and protocol for
the clock and data lines work a little differently: The keypad acts
like a keyboard when communicating with the Macintosh, and acts like a
Macintosh when communicating over the separate clock and data lines
going to the keyboard. All commands from the Macintosh are now
received by the keypad instead of the keyboard, and only the keypad can
communicate directly with the keyboard.

When the Macintosh sends out an Inquiry command, one of two things may
happen, depending on the state of the keypad. If no key transitions
have occurred on the keypad since the last Inquiry, the keypad sends an
Inquiry command to the keyboard and, later, retransmits the keyboard's
response back to the Macintosh. But if a key transition has occurred
on the keypad, the keypad responds to an Inquiry by sending back the
Keypad response ($79) to the Macintosh. In that case, the Macintosh
immediately sends an Instant command, and this time the keypad sends
back its own Key Transition response. As with the keyboard, bit 7 high
means key-up and bit 7 low means key-down.

The Key Transition responses for key-down transitions on the keypad are
shown in Figure 9 above. Again, note that these response codes are
different from the key codes returned by the keyboard driver software.
The keyboard driver strips off bit 7 of the response and shifts the-
result one bit to the right, removing bit .

THE DISK INTERFACE

The Macintosh disk interface uses a design similar to that used on the
Apple II and Apple III computers, employing the Apple custom IWM chip.
Another custom chip called the Analog Signal Generator (ASG) reads the
disk speed buffer in RAM and generates voltages that control the disk
speed. Together with the VIA, the IWM and the ASG generate all the
signals necessary to read, write, format, and eject the 3 1/2-inch
disks used by the Macintosh.

The IWM controls four of the disk state-control lines (called CA§, CAl,
CA2, and LSTRB), chooses which drive (internal or external) to enable,
and processes the disk's read-data and write-data signals. The VIA
provides another disk state-control line called SEL.

A buffer in RAM (actually the low-order bytes of words in the sound
buffer) is read by the ASG to generate a pulse-width modulated signal
that's used to control the speed of the disk motor. The Macintosh
Operating System uses this speed control to allow it to store more
sectors of information in the tracks closer to the edge of the disk by
running the disk motor at slower speeds.
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Figure 1P shows the DB-19 pinout for the external disk jack at the back
of the Macintosh.

oy
19 18 17 16 15 14 13 12 11
©.........©

o~
L
@
®
@
®
&

1  Ground 11 CAD
2 Ground 12 CA1
3 Ground 13 CA2
4 Ground 14 LSTRB
S -12 volts 15  Write request
6 +5 volts 16  SEL
7  +12 voits 17  Externsl drive ensble
8 +12 volts 18 Read dats
8  (not connecied) 19  Write date
10 Motor speed control
Figure 1f#. Pinout for Disk Jack
(warning)

This connector was designed for a Macintosh 3 1/2-inch
disk drive, which represents a load of 509 milliamps at
+12 volts, 50 milliamps at +5 volts, and P milliamps at
=12 volts. If any other device uses this connector, it
must not exceed these loads by more than 1#9 milliamps at
+12 volts, 2PP milliamps at +5 volts, and 1§ milliamps at

=12 volts, including loads from all other connectors
combined.

Controlling the Disk State-Control Lines

The IWM contains registers that can be used by the software to control
the state-control lines leading out to the disk. By reading or writing
certain memory locations, you can turn these state-control lines on or
off. Other locations set various IWM internal states. The locations
are given in the following table as offsets from the constant dBase,
the base address of the IWM; this base address is also available in a
global variable named IWM. The IWM is on the lower byte of the data
bus, so use odd-addressed byte accesses only.
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Location to Location to
IWM line turn line on turn line off

Disk state-control lines:

CAP dBase+phfPH dBase+phfL

CAl dBase+phlH dBase+phlL

CA2 dBase+ph2H dBase+ph2L

LSTRB dBase+ph3H dBase+ph3L
Disk enable line:

ENABLE dBase+motorOn dBase+motorOff
IWM internal states:

SELECT dBase+extDrive dBase+intDrive

Q6 dBase+q6H dBase+q6L

Q7 dBase+q7H dBase+q7L

To turn one of the lines on or off, do any kind of memory byte access
(read or write) to the respective location.

The CAP, CAl, and CA2 lines are used along with the SEL line from the
VIA to select from among the registers and data signals in the disk
drive. The LSTRB line is used when writing control information to the
disk registers (as described below), and the ENABLE line enables the
selected disk drive. SELECT is an IWM internal line that chooses which
disk drive can be enabled: On selects the external drive, and off
selects the internal drive. The Q6 and Q7 lines are used to set up the
internal state of the IWM for reading disk register information, as
well as for reading or writing actual disk-storage data.

You can read information from several registers in the disk drive to
find out whether the disk is locked, whether a disk is in the drive,
whether the head is at track @, how many heads the drive has, and

whether there's a drive connected at all. In turn, you can write to

some of these registers to step the head, turn the motor on or off, and
eject the disk.

Reading from the Disk Registers

Before you can read from any of the disk registers, you must set up the
state of the IWM so that it can pass the data through to the MC68pp9's
memory space where you'll be able to read it. To do that, you must
first turn off Q7 by reading or writing dBase+q7L. Then turn on Q6 by
accessing dBase+q6H. After that, the IWM will be able to pass data
from the disk's RD/SENSE line through to you.

Once you've set up the IWM for disk register access, you must next
select which register you want to read. To read one of the disk
registers, first enable the drive you want to use (by accessing
dBase+intDrive or dBase+extDrive and then dBase+motorOn) and make sure
LSTRB is low. Then set CAf, CAl, CA2, and SEL to address the register
you want. Once this is done, you can read the disk register data bit
in the high-order bit of dBase+q7L. After you've read the data, you
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may read another disk register by again setting the proper values in
CAP, CAl, CA2, and SEL, and then reading dBase+q7L.

(warning)
When you're finished reading data from the disk
registers, it's important to leave the IWM in a state
that the Disk Driver will recognize. To be sure it's in
a valid logic state, always turn Q6 back off (by
accessing dBase+q6L) after you've finished reading the
disk registers.

The following table shows how you must set the disk state-control lines
to read from the various disk registers and data signals:

State-control lines Register
CA2 CAl CAP SEL addressed Information in register

) [} [} [} DIRTN Head step direction
9

'] ] 1 CSTIN Disk in place
() [ 1 () STEP Disk head stepping
P ) 1 1 WRTPRT Disk locked
) 1 () [ MOTORON Disk motor running
) 1 [/ 1 TKO Head at track 9
[ 1 1 1 TACH Tachometer
1 [ [ ) RDDATAD Read data, lower head
1 L4 P 1 RDDATA1 Read data, upper head
1 1 ) 9 SIDES Single- or double-sided drive
1 1 1 1 DRVIN Drive installed

Writing to the Disk Registers

To write to a disk register, first be sure that LSTRB is off, then turn
on CAP and CAl. Next, set SEL to f. Set CAP and CAl to the proper
values from the table below, then set CA2 to the value you want to
write to the disk register. Hold LSTRB high for at least one usec but
not more than one msec (unless you're ejecting a disk) and bring it low
again. Be sure that you don't change CA@-CA2 or SEL while LSTRB is
high, and that CAP and CAl are set high before changing SEL.

The following table shows how you must set the disk state-control lines
to write to the various disk registers:

Control lines Register
CAl CAf SEL addressed Register function

P [ DIRTN Set stepping direction
P 1 ') STEP Step disk head one track
1 [/ ] MOTORON Turn on/off disk motor
1 1 9 EJECT Eject the disk
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Explanations of the Disk Registers

The information written to or read from the various disk registers can
be interpreted as follows:

- The DIRTN signal sets the direction of subsequent head stepping:
P causes steps to go toward the inside track (track 79), 1 causes
them to go toward the outside track (track 0).

- CSTIN is @ only when a disk is in the drive.

- Setting STEP to P steps the head one full track in the direction
last set by DIRTN. When the step is complete (about 12 msec), the
disk drive sets STEP back to 1, and then you can step again.

- WRTPRT is @ whenever the disk is locked. Do not write to a disk
unless WRTPRT is 1.

- MOTORON controls the state of the disk motor: ® turns on the
motor, and 1 turns it off. The motor will run only if the drive

is enabled and a disk is in place; otherwise, writing to this line
will have no effect.

- TKO goes to P only if the head is at track f. This is valid
beginning 12 msec after the step that puts it at track 0.

- Writing 1 to EJECT ejects the disk from the drive. To eject a
disk, you must hold LSTRB high for at least 1/2 second.

- The current disk speed is available as a pulse train on TACH. The
TACH line produces 6@ pulses for each rotation of the drive motor.
The disk motor speed is controlled by the ASG as it reads the disk
speed RAM buffer.

- RDDATAP and RDDATAl carry the instantaneous data from the disk
head.

- SIDES is always P on single-sided drives and 1 on double-sided
drives.

- DRVIN is always P if the selected disk drive is physically
connected to the Macintosh, otherwise it floats to 1.

THE REAL-TIME CLOCK

The Macintosh real-time clock is a custom chip whose interface lines
are available through the VIA. The clock contains a four—byte counter
that's incremented once each second, as well as a line that can be used
by the VIA to generate an interrupt once each second. It also contains
29 bytes of RAM that are powered by a battery when the Macintosh is
turned off. These RAM bytes, called parameter RAM, contain important
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data that needs to be preserved even when the system power is not
available. The Operating System maintains a copy of parameter RAM that
you can access in low memory. To find out how to use the values in
parameter RAM, see the Operating System Utilities chapter.

Accessing The Clock Chip

The clock is accessed through the following bits of VIA data register B
(vBase+vBufB):

rTCData .EQU ] ;real-time clock serial data line
rTCClk .EQU 1 ;real-time clock data-clock line
rTCEnb .EQU 2 ;real-time clock serial enable

These three bits constitute a simple serial interface. The rTCData bit
is a bidirectional serial data line used to send command and data bytes
back and forth. The rTCClk bit is a data-clock line, always driven by
the processor (you set it high or low yourself) that regulates the
transmission of the data and command bits. The rTCEnb bit is the
serial enable line, which signals the real-time clock that the
processor is about to send it serial commands and data.

To access the clock chip, you must first enable its serial function.
To do this, set the serial enable line (rTCEnb) to f. Keep the serial
enable line low during the entire transaction; if you set it to 1,
you'll abort the transfer.

(warning)

Be sure you don't alter any of bits 3-7 of VIA data
register B during clock serial access.

A command can be either a write request or a read request. After the
eight bits of a write request, the clock will expect the next eight
bits across the serial data line to be your data for storage into one
of the internal registers of the clock. After receiving the eight bits
of a read request, the clock will respond by putting eight bits of its
data on the serial data line. Commands and data are transferred
serially in eight-bit groups over the serial data line, with the high-
order bit first and the low-order bit last.

To send a command to the clock, first set the rTCData bit of VIA data
direction register B (vBase+vDirB) so that the real-time clock's serial
data line will be used for output to the clock. Next, set the rTCClk
bit of vBase+vBufB to f, then set the rTCData bit to the value of the
first (high-order) bit of your data byte. Then raise (set to 1) the
data-clock bit (rTCClk). Then lower the data-clock, set the serial
data line to the next bit, and raise the data-clock line again. After
the last bit of your command has been sent in this way, you can either
continue by sending your data byte in the same way (if your command was
a write request) or switch to receiving a data byte from the clock (if
your command was a read request).
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To receive a byte of data from the clock, you must first send a command
that's a read request. After you've clocked out the last bit of the
command, clear the rTCData bit of the data direction register so that
the real-time clock's serial data line can be used for input from the
clock; then lower the data-clock bit (rTCClk) and read the first (high-
order) bit of the clock's data byte on the serial data line. Then
raise the data-clock, lower it again, and read the next bit of data.
Continue this until all eight bits are read, then raise the serial
enable line (rTCEnb), disabling the data transfer.

The following table lists the commands you can send to the clock. A 1
in the high-order bit makes your command a read request; a P in the
high-order bit makes your command a write request. (In this table, "2"
is the bit that determines read or write status, and bits marked "a"
are bits whose values depend on what parameter RAM byte you want to
address.)

Command byte Register addressed by the command
zPPPPPP1 Seconds register P (lowest-order byte)
zPPPP 191 Seconds register 1
2PPP1901 Seconds register 2
zPPpPp11P1 Seconds register 3 (highest-order byte)
pP110001 Test register (write only)

PP11P191 Write-protect register (write only)
zP1Paafl RAM address 1PPaa ($19-$13)
zlaaaafl RAM address faaaa ($P9-$PF)

Note that the last two bits of a command byte must always be pl.

1f the high-order bit (bit 7) of the write-protect register is set,
this prevents writing into any other register on the clock chip
(including parameter RAM). Clearing the bit allows you to change any
values in any registers on the chip. Don't try to read from this
register; it's a write-only register.

The two highest-order bits (bits 7 and 6) of the test register are used
as device control bits during testing, and should always be set to P
during normal operation. Setting them to anything else will interfere
with normal clock counting. Like the write-protect register, this is a
write-only register; don't try to read from it.

All clock data must be sent as full eight-bit bytes, even if only one
or two bits are of interest. The rest of the bits may not matter, but
you must send them to the clock or the write will be aborted when you
raise the serial enable line.

It's important to use the proper sequence if you're writing to the
clock's seconds registers. If you write to a given seconds register,
there's a chance that the clock may increment the data in the next
higher-order register during the write, causing unpredictable results.
To avoid this possibility, always write to the registers in low-to-high
order. Similarly, the clock data may increment during a read of all
four time bytes, which could cause invalid data to be read. To avoid
this, always read the time twice (or until you get the same value
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twice).

(warning)
When you've finished reading from the clock registers,
always end by doing a final write such as setting the
write-protect bit. Failure to do this may leave the
clock in a state that will run down the battery more
quickly than necessary.

The One-Second Interrupt

The clock also generates a VIA interrupt once each second (if this
interrupt is enabled). The enable status for this interrupt can be
read from or written to bit P of the VIA's interrupt enable register
(vBase+vIER). When reading the enable register, a 1 bit indicates the
interrupt is enabled, and P means it's disabled. Writing $01 to the
enable register disables the clock's one-second interrupt (without
affecting any other interrupts), while writing $81 enables it again.

See the Device Manager chapter for more information about writing your
own interrupt handlers.

(warning)
Be sure when you write to bit P of the VIA's interrupt

enable register that you don't change any of the other
bits.

THE VIA

The Synertek SY6522 Versatile Interface Adapter (VIA) controls the
keyboard, internal real-time clock, parts of the disk, sound, and mouse
interfaces, and various internal Macintosh signals. 1Its base address
is available as the constant vBase and is also stored in a global
variable named VIA. The VIA is on the upper byte of the data bus, so
use even-addressed byte accesses only.

There are two parallel data registers within the VIA, called A and B,
each with a data direction register. There are also several event
timers, a clocked shift register, and an interrupt flag register with
an interrupt enable register.

Normally you won't have to touch the direction registers, since the
Operating System sets them up for you at system startup. A 1 bit in a
data direction register means the corresponding bit of the respective

data register will be used for output, while a P bit means it will be
used for input.

(note)
For more information on the registers and control
structure of the VIA, consult the technical
specifications for the SY6522 chip.
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VIA Register A

VIA data register A is at vBase+vBufA. The corresponding data
direction register is at vBase+vDirA.,

Bit(s) Name Description
7 vSCCWRegq SCC wait/request
6 vPage2 Alternate screen buffer
5 vHeadSel Disk SEL line
4 vOverlay ROM low-memory overlay
3 vSndPg2 Alternate sound buffer
-2 vSound (mask) Sound volume

The vSCCWReq bit can signal that the SCC has received a character (used
to maintain serial communications during disk accesses, when the CPU's
interrupts from the SCC are disabled). The vPage2 bit controls which
screen buffer is being displayed, and the vHeadSel bit is the SEL
control line used by the disk interface. The vOverlay bit (used only
during system startup) can be used to place another image of ROM at the
bottom of memory, where RAM usually is (RAM moves to $609PPP). The
sound buffer is selected by the vSndPg2 bit. Finally, the vSound bits
control the sound volume.

VIA Register B

VIA data register B is at vBase+vBufB. The corresponding data
direction register is at vBase+vDirB.

Bit Name Description

7 vSndEnb Sound enable/disable

6 vB4 Horizontal blanking

5 vY2 Mouse Y2

4 vX2 Mouse X2

3 vSW Mouse switch

2 rTCEnb Real-time clock serial enable

1 rTCClk Real-time clock data-clock line
() rTCData Real-time clock serial data

The vSndEnb bit turns the sound generator om or off, and the vB4 bit is
set when the video beam is in its horizontal blanking period. The vY2
and vX2 bits read the quadrature signals from the Y (vertical) and X
(horizontal) directions, respectively, of the mouse's motion lines.

The vSW bit reads the mouse switch. The rTCEnb, rTCClk, and rTCData
bits control and read the real-time clock.
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The VIA Peripheral Control Register

The VIA's peripheral control register, at vBase+vPCR, allows you to set
some very low-level parameters (such as positive-edge or negative-edge
triggering) dealing with the keyboard data and clock interupts, the one-
second real-time clock interrupt line, and the vertical blanking
interrupt.

Bit(s) Description

5-7 Keyboard data interrupt control

4 Keyboard clock interrupt control
1-3 One-second interrupt control

P Vertical blanking interrupt control

The VIA Timers

The timers controlled by the VIA are called timer 1 and timer 2. Timer
1 is used to time various events having to do with the Macintosh sound
generator. Timer 2 is used by the Disk Driver to time disk I/0 events.
If either timer isn't being used by the Operating System, you're free
to use it for your own purposes. When a timer counts down to @, an
interrupt will be generated if the proper interrupt enable has been

set. See the Device Manager chapter for information about writing your
own interrupt handlers.

To start one of the timers, store the appropriate values in the high-
and low-order bytes of the timer counter (or the timer 1 latches, for

multiple use of the value). The counters and latches are at the
following locations:

Location Contents

vBase+vT1C Timer 1 counter (low-order byte)
vBase+vT1CH Timer 1 counter (high-order byte)
vBase+vTl1L Timer 1 latch (low-order byte)
vBase+vT1LH Timer 1 latch (high-order byte)
vBase+vT2C Timer 2 counter (low-order byte)
vBase+vT2CH Timer 2 counter (high-order byte)

(note)
When setting a timer, it's not enough to simply store a
full word to the high-order address, because the high-
and low-order bytes of the counters are not adjacent.
You must explicitly do two stores, one for the high-order
byte and one for the low-order byte.
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VIA Interrupts

The VIA (through its IRQ line) can cause a level-P processor interrupt
whenever one of the following occurs: Timer 1 or timer 2 times out;
the keyboard is clocking a bit in through its serial port; the shift
register for the keyboard serial interface has finished shifting in or
out; the vertical blanking interval is beginning; or the one-second
clock has ticked. For more information on how to use these interrupts,
see the Device Manager chapter.

The interrupt flag register at vBase+vIFR contains flag bits that are
set whenever the interrupt corresponding to that bit has occurred. The
Operating System uses these flags to determine which device has caused
an interrupt. Bit 7 of the interrupt flag register is not really a
flag: It remains set (and the IRQ line to the processor is held low)
as long as any enabled VIA interrupt is occurring.

Interrupting device

IRQ (all enabled VIA interrupts)
Timer 1

Timer 2

Keyboard clock

Keyboard data bit

Keyboard data ready

Vertical blanking interrupt
One-second interrupt

[« -]
SF‘NU)DMO\\I:

The interrupt enable register, at vBase+vIER, lets you enable or
disable any of these interrupts. If an interrupt is disabled, its bit
in the interrupt flag register will continue to be set whenever that
interrupt occurs, but it won't affect the IRQ flag, nor will it
interrupt the processor.

The bits in the interrupt enable register are arranged just like those
in the interrupt flag register, except for bit 7. When you write to
the interrupt enable register, bit 7 is "enable/disable": If bit 7 is
a l, each 1 in bits §-6 enables the corresponding interrupt; if bit 7
is a P, each 1 in bits P-6 disables that interrupt. In either case,

f's in bits P-6 do not change the status of those interrupts. Bit 7 is
always read as a l.

Other VIA Registers

The shift register, at vBase+vSR, contains the eight bits of data that

have been shifted in or that will be shifted out over the keyboard data
line.

The auxiliary control register, at vBase+vACR, is described in the
SY6522 documentation. It controls various parameters having to do with
the timers and the shift register.
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SYSTEM STARTUP

When power is first supplied to the Macintosh, a carefully orchestrated
sequence of events takes place.

First, the processor is held in a wait state while a series of circuits
gets the system ready for operation. The VIA and IWM are initialized,
and the mapping of ROM and RAM are altered temporarily by setting the
overlay bit in VIA data register A. This places the ROM starting at
the normal ROM location $40PPPP, and a duplicate image of the same ROM
starting at address P (where RAM normally is), while RAM is placed
starting at $6P0PPPP. Under this mapping, the Macintosh software
executes out of the normal ROM locations above $4PPPPP, but the MC68HPP
can obtain some critical low-memory vectors from the ROM image it finds
at address f.

Next, a memory test and several other system tests take place. After
the system is fully tested and initialized, the software clears the
VIA's overlay bit, mapping the system RAM back where it belongs,
starting at address f. Then the disk startup process begins.

First the internal disk is checked: If there's a disk inserted, the
system attempts to read it. If no disk is in the internal drive and
there's an external drive with an inserted disk, the system will try to
read that one. Otherwise, the question-mark disk icon is displayed
until a disk is inserted. If the disk startup fails for some reason,
the "sad Macintosh" icon is displayed and the Macintosh goes into an
endless loop until it's turned off again.

Once a readable disk has been inserted, the first two sectors
(containing the system startup blocks) are read in and the normal disk
load begins.
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SUMMARY

(warning)
This information applies only to the Macintosh 128K and
512K, not to the Macintosh XL.

Constants

; VIA base addresses

vBase .EQU SEFEIFE ;main base for VIA chip (in variable VIA)
aVBufB -EQU vBase ;register B base

aVBufA .EQU SEFFFFE ;jregister A base

aVBufM .EQU aVBufB ;register containing mouse signals

aVIFR .EQU SEFFBFE ;interrupt flag register

aVIER .EQU SEFFDFE ;interrupt enable register

; Offsets from vBase

vBufB .EQU 512%9 ;register B (zero offset)

vDirB .EQU 512%2 ;register B direction register
vDirA .EQU 512%3 ;register A direction register
vT1C .EQU 512%4 ;timer 1 counter (low-order byte)
vT1CH .EQU 512*%5 stimer 1 counter (high-order byte)
vTIL .EQU 512%6 ;timer 1 latch (low-order byte)
vT1LH .EQU 512%7 ;timer 1 latch (high-order byte)
vT2C .EQU 512%8 ;timer 2 counter (low-order byte)
vT2CH .EQU 512%9 ;timer 2 counter (high-order byte)
vSR .EQU 512*19 ;shift register (keyboard)

vACR .EQU 512*11 ;auxiliary control register

vPCR .EQU 512%12 ;peripheral control register

vIFR .EQU 512%13 ;interrupt flag register

vIER -EQU 512*%14 ;interrupt enable register

vBufA .EQU 512%15 ;register A

; VIA register A constants

vAOQut .EQU $7F ;direction register A: 1 bits = outputs
vAInit .EQU $7B ;initial value for vBufA (medium volume)
vSound .EQU 7 ;sound volume bits

; VIA register A bit numbers

vSndPg2 .EQU
vOverlay .EQU
vHeadSel .EQU
vPage2 .EQU
vSCCWReq .EQU

;0 = alternate sound buffer

;1 = ROM overlay (system startup only)
;disk SEL control line

;0 = alternate screen buffer

3SCC wait/request line

NOoOVL»L B Ww
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; VIA register B constants

vBOut .EQU $87 ;direction register B: 1 bits = outputs
vBInit .EQU $97 ;initial value for vBufB

s VIA register B bit numbers

rTCData .EQU 9 ;real-time clock serial data line
rTCClk .EQU 1 ;real-time clock data-clock line
rTCEnb .EQU 2 ;real-time clock serial enable
vSW .EQU 3 ;# = mouse button is down

vX2 .EQU 4 ;mouse X quadrature level

vY2 .EQU 5 ;mouse Y quadrature level

vH4 .EQU 6 ;1 = horizontal blanking

vSndEnb .EQU 7 ;0 = sound enabled, 1 = disabled

; SCC base addresses

sccRBase .EQU S9FFFF8 ;SCC base read address (in variable SCCRd)
sccWBase .EQU $BFFFF9 ;SCC base write address (in variable SCCWr)

; Offsets from SCC base addresses

aData .EQU 6 ;channel A data in or out
aCtl .EQU 2 ;channel A control
bData .EQU 4 ;channel B data in or out
bCtl .EQU 9 ;channel B control

; Bit numbers for control register RRP

rxBF .EQU ) ;1 = SCC receive buffer full
txBE .EQU 2 ;1 = SCC send buffer empty

; IWM base address

dBase .EQU S$DFE1FF ;IWM base address (in variable IWM)

; Offsets from dBase

phpL +EQU 512%9 sCAD off (9)

phPH -EQU 512*1 sCAP on (1)

phlL -EQU 512%2 ;CAl off (@)

phlH -.EQU 512%3 ;CAl on (1)

ph2L .EQU 512%4 ;CA2 off (9)

ph2H .EQU 512*5 ;CA2 on (1)

ph3L .EQU 512%6 ;LSTRB off (low)

ph3H .EQU 512%7 sLSTRB on (high)
mtrOff -EQU 512%8 ;disk enable off

mtrOn .EQU 512%9 ;disk enable on
intDrive .EQU 512%1@ ;select internal drive
extDrive .EQU 512*%11 ;8select external drive
q6L .EQU 512%12 ;3Q6 off

q6H -EQU 512*13 3Q6 on

q7L -EQU 512%14 ;Q7 off
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.EQU 512*15 ;Q7 on

; Screen and sound addresses for 512K Macintosh (will also work for
; 128K, since addresses wrap)

screenlow LEQU $7TA79P ;top left corner of main screen buffer
soundLow .EQU $7FDPP ;main sound buffer (in variable SoundBase)
pwmBuffer .EQU $7FDP1 ;main disk speed buffer

ov1yRAM +EQU $600PPP ;RAM start address when overlay is set
ovlyScreen .EQU $67A7909 ;screen start with overlay set

romStart .EQU $4PPPP0 ;ROM start address (in variable ROMBase)
Variables

ROMBase Base address of ROM

SoundBase Address of main sound buffer

SCCRd SCC read base address

SCCWr SCC write base address

IWM IWM base address

VIA VIA base address

Exception Vectors

Location

Purpose

$0P
$P4
$p8
$pC
$19¢
$14
$18
$1C
$29
$24
$28
$2C
$3p-$3B
$3C
$40-S$5F
$60
$64
$68
$6C
$79
$74
$78
$7¢
$80—-S$BF
$CP-SFF
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Reset: 1initial stack pointer (mot a vector)
Reset: 1initial vector

Bus error

Address error

Illegal instruction
Divide by zero

CHK instruction

TRAPV instruction
Privilege violation

Trace interrupt

Line 1§19 emulator

Line 1111 emulator
Unassigned (reserved)
Uninitialized interrupt
Unassigned (reserved)
Spurious interrupt

VIA interrupt

SCC interrupt

VIA+SCC vector (temporary)
Interrupt switch

Interrupt switch + VIA
Interrupt switch + SCC
Interrupt switch + VIA + SCC
TRAP instructions
Unassigned (reserved)
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