
A/UX® User Interface

031-0125

• APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc., and
UniSoft Corporation. All rights
reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple
or UniSoft. The same proprietary and
copyright notices must be afftxed to
any permitted copies as were afftxed to
the original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, NUX,
ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

MacPaint is a registered trademark of
Claris Corporation.

UNIX is a registered trademark of
AT&T Information Systems.

Simultaneously published in the
United States and Canada.

031-0125

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different, check with your
authorized Apple dealer.

AU IMPLIED WARRANTIES ON
TInS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABIIJTY AND FITNESS
FOR A PARTICUlAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM TIlE DATE OF TIlE
ORIGINAL RETAIL PURCHASE OF
TInS PRODUCf.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRAN1Y OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECf TO TIns MANUAL,
ITS QUAIlTY, ACCURACY,
MERCHANTABIllTY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, TInS MANUAL IS SOlD
"AS IS," AND YOU, TIlE
PURCHASER, ARE ASSUMING TIlE
ENTIRE RISK AS TO ITS QUAllTY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECf, INDIRECf,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECf OR
INACCURACY IN TInS MANUAL,
even if advised of the possibility of
such damages.

TIlE WARRANTY AND REMEDIES
SET FORm ABOVE ARE EXCLUSIVE
AND IN LIEU OF AU OmERS, ORAL
OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

031-0125

Contents

Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix A

AlUX User Interface

The AlUX Shells: An Overview

Bourne Shell Reference

Korn Shell Reference

C Shell Reference

Shell Layering

Additional Reading

Preface

Conventions Used in This Manual
Throughout the A/UX manuals, words that must be typed exactly as
shown or that would actually appear on the screen are in Courier
type. Words that you must replace with actual values appear in italics
(for example, user-name might have an actual value of joe). Key
names appear in CAPS (for example, RETURN). Special terms are in
bold type when they are introduced; many of these tenns are also
defined in the glossary in the A/UX System Overview.

Syntax notation
All A/UX manuals use the following conventions to represent
command syntax. A typical A/UX command has the form

command [flag-option] [argument] ...

where:

command

flag-option

argument

[]

Command name (the name of an executable file).

One or more flag options. Historically, flag options
have the form

-[opt .. .]

where opt is a letter representing an option. The
form of flag options varies from program to
program. Note that with respect to flag options, the
notation

[-aU -b][-c]

means you can select one or more letters from the
list enclosed in brackets. If you select more than one
letter you use only one hyphen, for example, -abo

Represents an argument to the command, in this
context usually a filename or symbols representing
one or more filenames.

Surround an optional item.

Follows an argument that may be repeated any
number of times.

Courier type anywhere in the syntax diagram indicates that
characters must be typed literally as shown.

italics for an argument name indicates that a value must be
supplied for that argument.

Other conventions used in this manual are:

<CR>

"x

cmd(sect)

indicates that the RETURN key must be pressed.

An abbreviation for CONrROL-X, where x may be
any key.

A cross-reference to an A/UX reference manual.
cmd is the name of a command, program, or other
facility, and sect is the section number where the
entry resides. For example, ca tel).

Chapter 1

The A/UX Shells: An Overview

Contents

1. Using the shell • 1
1.1 How the shell interprets and manages

commands . . .• 1
1.2 Programming constructs 2

2. The shell environment

3. When the shell executes commands
3.1 Standard input and output

4. The three AjUX shells . . • .
4.1 The Bourne shell .
4.2 The Korn shell. • . . .
4.3 The C shell. •
4.4 Similarities among the shells . • . . .

4.4.1 Command features .•..
4.4.2 Shell layering and job control
4.4.3 The environment • . • .
4.4.4 Shell programming

4.5 Basic differences among the shells. .

Figures

Figure 1-1. The environment and new shell
instances • • • • • • • •

Figure 1-2. How the shell executes a process

Figure 1-3. Input and output redirection • •

- i -

2

4
6

9
9
9
9

10
10
10
11
11
11

4

6

8

Tables

Table 1·1. Command features

Table 1·2. The environment

Table 1·3. Shell programming .

- ii -

12

12

13

Chapter 1

The A/UX Shells: An Overview

1. Usi ng the shell
The A/UX shells are interactive programs that accept and interpret
command input. The shells include standard features that simplify
access to NUX programs and allow you to combine programs,
manipulate their input and output, run more than one program at a time,
switch back and forth between jobs, and so on.

When you log in, the system invokes a shell (called the login shell) for
you to work with. By default, this is the Bourne shell (sh). You can
change your default shell to either the C shell (c s h) or the Korn shell
(ksh) by using the chsh command (see chsh(l) in AIUX Command
Reference) or directly modifying a field in the system file
/etc/passwd. SeeAIUX Local System Administration for more
information.

1.1 How the shell Interprets and manages commands
The shell prints a prompt character and waits (indefinitely) for you to
give commands. In the Bourne shell, the prompt character is a dollar
sign ($) by default.

When you enter a command, the shell interprets it, looking for
filenames, variables, and special characters (called metacharacters)
that tell the shell what to do. Once the shell has interpreted all the
information associated with your command, the shell organizes the
information, sends it to the appropriate NUX program (or starts the
appropriate process), and waits for that program or process to execute.

You can instruct the shell to return the shell prompt immediately,
without waiting for command completion, by putting your command in
the "background."

The A/UX Shells: An Overview 1-1

The shell presents a consistent interface: most commands can run in
the foreground or background, be interrupted, take input from a file and
send output to a file, and so on for any of the shell features for handling
commands. The shell responds the same way whether you invoke any
A/UX command, a built-in shell command (each shell has its own set
of built-in commands), or a shell program (a program you can write
using NUX commands and built-in shell commands).

1.2 Programming constructs
The shell contains built-in commands and constructs that allow it to
function as a programming language. You can write shell programs
(often called shell scripts) that contain lists of commands for tasks that
are complicated or that you have to repeat many times. Within shell
programs you can

• refer to files in the current directory or another directory

• accept input from the keyboard or from a file

• direct output to the terminal screen or to a file

• loop, compare, and make decisions

• store information in variables

• invoke other programs (binary executables) and shell scripts

Shell programs may be typed in at the shell prompt or inserted in text
files. See "Overview of Shell Programming" in the chapter of this
manual that is appropriate for your shell.

2. The shell environment
The environment is a list of characteristics describing a particular
user. These characteristics identify the user to the system, and
influence and constrain that user's access to the system. A user's
environment includes several attributes, including the search path, the
user ID, the user's file permissions, the current working directory, and
a number of other environment variables. Some of these attributes can
be modified by the user. See "The Environment" in the appropriate
chapter of this manual.

If you assign new values in the environment, you can customize certain
aspects of how the shell responds. You can also define and assign your

1-2 AlUX User Interface

own variables; for example,

a=10

You have a choice about whether to keep these variables and their new
values local, or insert them in the environment. In the Bourne shell,
you insert variables and values in the environment using the export
command; for example,

export a

When you invoke a new instance of the shell, for example, using the
command

sh

all the variables and values in the environment are copied for the new
instance of the shell. Local variables are not copied and are not
available in the new instance of the shell.

Figure 1-1 shows that the environment of a new instance of the shell
contains all the values in the parent shell's environment. Note that
local values, which were not inserted in the parent shell's environment,
are not copied to new instances of the shell.

The A/UX Shells: An Overview 1-3

Figure 1-1. The environment and new shell instances

Parent shell
Environment Local r----------,

I TERM=3a I
I I
I TZ=PST8PDT I b=23
I

USER=fred
I

dir=/usr I I
I a=10 I
I I L __________ .J

III Child shell
Environment Local

TERM=3a
TZ=PST8PDT c=35
USER=fred direct=/tmp
a=10

Thus, if you are working in the shell and want to create a new copy, or
instance, of the shell, the new copy inherits all the values in your
environment. This new instance is called a subshell or "child" shell.
The original shell is called the "parent" shell. See "The
Environment" and "The Environment and New Shell Instances" in
the appropriate chapter of this manual, and "Commonly Used
Environment Variables" in Chapters 2 and 3 and "C Shell Variables"
in Chapter 4.

3. When the shell executes commands
To understand what occurs when you enter a command at the shell
prompt, you should know the following:

fork When a process "forks," it creates another process like
itself. There are a few differences between the original (or

1-4 AlUX User Interface

parent) process and the new one (child). One of the
differences is that the parent knows that it has a child running
and receives a signal when the child terminates. fork can
be thought of as the initialization phase of creating a new
process.

exec When a process "execs," it overwrites the old process with a
new one. That is, the original process is replaced by a new
one. exec can be thought of as the program load phase of
creating a new process.

wa it When a process' 'waits," it simply waits for a change in the
child's status (usually termination) before resuming.

Figure 1-2 shows how the shell executes a process.

The A/UX Shells: An Overview 1-5

Figure 1-2. How the shell executes a process

Get command
from user

Fork a child process

Wait
until child exits

Child process

Reset file descriptors,
if necessary

exec
the command

Finish

Exit

See the next section for information about the file descriptors in Figure
1-2.

Note that the original process does not wait when you end your
command line with an ampersand (&). In this case, the command
executes as shown above, but the shell prints a new prompt so it can
accept input immediately.

3.1 Standard input and output
The shell has certain defaults for where it expects to find input to a
command, where it writes the command's output, and where it prints
the error messages. These defaults are as follows:

1-6 NUX User Interface

Standard input (the data stream used for input to a command):
Unless you use the less-than sign «) on your command line, the shell
expects any input to be typed in at the keyboard. The less-than sign «)
directs the shell to accept input from a file or device.

Standard output (the data stream used for output from a command):
Unless you use the greater-than sign (» on your command line, the
shell directs any output to the terminal. The greater-than sign (»
directs the shell to write output to a file or device.

Standard error output (the data stream used for error messages from
a command): Unless redirected, the shell directs standard error output
to the terminal. Each shell uses its own method of redirecting standard
error output; this is described under' 'I/O Redirection" in the
appropriate chapter in this manual.

The possibilities for redirecting standard input, standard output, and
standard error output are shown in Figure 1-3. In this figure, the cat
command is the representative' 'process." The same principles of
redirection apply to any process.

Note that the cat command and many other A/UX commands can
accept input from a file without using the less-than sign «) by simply
specifying the filename on the command line; that is,

cat filename

has the same effect as

cat < filename

The symbol is shown in Figure 1-3 to illustrate input and output
redirection.

The A/UX Shells: An Overview 1-7

Figure 1·3. Input and output redirection

DI4-------t D
111111111111111 111111111111111

cat cat > a

D'~ D
111111111111111 \111111111111111\

cat < a

See "Using Shell Metacharacters" and "I/O Redirection" in the
appropriate chapter of this manual.

1-8 AlUX User Interface

4. The three A1UX shells
The A/UX system provides three separate shell programs: the Bourne
shell, Korn shell, and C shell. The Bourne shell is the default login
shell if no other shell has been specified. See chsh(1) in A/UX
Command Reference for information about changing your default login
shell.

While each of these shells is a slightly different program, their basic
function-interpreting commands for execution-is the same. They
differ only in certain features that are built in. In general, if you know
how to use one shell, you will not have much trouble figuring out how
to use the others.

4.1 The Bourne shell
The Bourne shell is efficient and fast, and provides extensive constructs
for shell programming. Shell programs written in the Bourne shell
generally run two to five times faster than scripts in the C shell, and are
easier to debug and get running. However, people familiar with the C
programming language may find the Bourne shell's constructs less
convenient than those of the C shell.

In general, the Bourne shell makes fewer concessions to interactive use
than the Korn or C shells.

4.2 The Korn shell
The Korn shell is an extension of the Bourne shell, so it is compatible
in many ways. It retains and extends the Bourne shell's capabilities
and efficiency in programming, while also incorporating features that
make giving commands, editing commands, and reusing commands
much easier.

The Korn shell also provides job control: this allows you to switch
back and forth between different jobs, and to begin working on a job
and then put it in the background where it will continue (or wait) until
you bring it back into the foreground.

4.3 The C shell
The C shell is not strictly compatible with the Bourne and Korn shell.
It lacks many of the programming capabilities of the Bourne and Korn
shells (including file descriptor assignment and most error handling),
and it can use variables that are not compatible with the Bourne shell or
Korn shell, such as the C shell variable that protects the user from

The AlUX Shells: An Overview 1-9

inadvertently overwriting files.

The C shell's programming constructs look much like the C
programming language. In general, scripts written in the C shell
execute more slowly, and some people find that they are more difficult
to debug than scripts in the other shells.

Like the Korn shell, the C shell provides command history, editing, and
reuse, as well as job control. Job control allows you to switch back and
forth between different jobs, and to begin working on a job and then
put it in the background where it will continue (or wait) until you bring
it back into the foreground.

4.4 Similarities among the shells
Features that are common to all three NUX shells are listed below.

4.4.1 Command features
All three shells provide the following features that are useful in
entering commands at the prompt:

• background commands

• input and output redirection

• filename expansion with metacharacters

• pipelines

• multiple commands on a single line

• executing commands in a subshell

See "Interactive Use," "Using Shell Metacharacters," "Command
Grouping," and "Working With More Than One Shell" in the
appropriate chapter of this manua1.

4.4.2 Shell layering and job control
The shl program allows you to create up to seven labeled subs hells
called sbelliayers within your login shell. These layers can then be
referred to by name (or number), suspended and resumed, deleted, and
so on. Each of these layers appears like your login shell, but can be
used to run a process while you switch to another layer. This provides
a management scheme for multiple concurrent processes.

1-10 AJUX User Interface

In addition, the C shell and Korn shell provide a form of job control
that allows you to run multiple processes that can be suspended and
resumed as desired.

See "Using Shell Layering," "Working With More Than One Shell,"
and "The Environment and New Shell Instances" in the appropriate
chapter of this manual. Also see "Job Control" in the Korn and C
shell chapters.

4.4.3 The environment
All three shells provide the following features in their environment:

• variables used during shell execution

• file(s) that may assign values to variables

See "The Environment," "Environment Variables," and "The
. profile File," "The. kshrc File," or "The. cshrc File" in
the appropriate chapter of this manual.

4.4.4 Shell programming
All three shells provide the following programming capabilities:

• examine exit status of jobs

• assign, reassign, and remove variables

• check file status

• compare and make decisions

• loop

• read and write information to and from standard input and output
streams

See' 'Overview of Shell Programming," "Exit Status: The Value of a
Command," "Assigning Values," "Arithmetic Expressions," "File
Status," "Control-Flow Constructs," and "Input and Output" in the
appropriate chapter of this manual.

4.5 Basic differences among the shells
Tables 1-1 through 1-4 summarize the basic differences in the
capabilities of the three NUX shells. In general, only relatively major
differences have been included. Features such as different options to
the same command. or different commands performing the same

The AlUX Shells: An Overview 1-11

function, are not mentioned here.

Note: Different entries in each column of the tables mean that
the shells differ significantly at the level of capability, not in
syntax or command name.

Table 1·1. Command features

Capability sh ksh

command history n y
command reuse n y
command editing n y
tilde substitution n y
preceding directory remembered n y
exclude characters [! ...] y y
repeated substitution in filename expansion n n
I/O redirection safety n n
connect background pipe to parent shell n y
job control n y

Note: Table 1-2 does not include information about differences
in environment variables and shell execution options.

Table 1·2. The environment

Capability sh ksh

. cshrc/. kshrc read at each invocation n y

. prof ile read at login y y

. login read at login n n

. logout read at logout n n
exportable functions n y
functions that may not be exported y n
exportable command aliases n y
command aliases that may not be exported n n

csh

y
y
y
y
n
n
y
y
n
y

csh

y
n
y
y
n
n
n
y

1-12 AlUX User Interface

The . kshrc file is read at every invocation of the Korn shell if and
only if the ENV variable has been set. See "The. kshrc File" in
Chapter 3.

Table 1-3. Shell programming

Capability sh ksh csh

functions y y n
functions with local variables n y n
typed variables n y n
one-dimensional arrays n y n
one-dimensional arrays of strings n y y
creation of substrings n y n
modifiers in substitution n n y
substitution of defaults y y n
built-in formatted output y y n
built-in fixed output n n y
file descriptors in redirection y y n
redirection with control structures n y n
built-in arithmetic n y y
background exit status y y n

The AJUX Shells: An Overview 1-13

Chapter 2

Bourne Shell Reference

Contents

1. The Bourne shell prompt • . . .
1.1 The secondary shell prompt
1.2 Changing the prompt character

2. Types of commands

3. The parts of a command

4. Interactive use • • . . . •
4.1 Command termination character .
4.2 Impossible commands . . .
4.3 Background commands. • . .

4.3.1 Checking command status .
4.3.2 Logging out . . . • . . • .

4.4 Canceling commands . • . .
4.4.1 Before you press RETURN •

4.4.2 While a command is running
4.4.3 Canceling background commands

5. Using shell metacharacters
5.1 Specifying filenames with metacharacters
5.2 Input and output redirection • . • • .
5.3 Combining commands: pipelines .
5.4 Command grouping. .
5.5 Conditional execution
5.6 Quoting • . . •

6. Working with more than one shell
6.1 Changing to a new shell
6.2 Changing your default shell

7. The environment
7.1 Listing existing values • • .

- i -

1
1
1

1

2

3
3
3
4
4
4
5
5
5
7

7
9

11
12
13
15
15

17
18
18

18
19

7.2 Assigning values to environment variables • . 19
7.3 Removing environment variables. . 20
7.4 Commonly used environment variables . 20
7.5 The environment and new shell instances 22
7.6 Special environments 22
7.7 The default environment on your system 24

8. The . prof ile file
8.1 A sample .profile file • •

8.1.1 Locating commands. •
8.1.2 Shortcuts in changing directories • .
8.1.3 Receiving mail
8.1.4 Your editing environment . •

8.2 Customizing your login procedure

9. Shell execution options . . • .
9.1 Options that affect the environment . .
9.2 Options for invoking new shells . • • .

10. Restricted shell . •

11. Using shell layering

12. Overview of shell programming
12.1 Writing shell programs .
12.2 Executing shell scripts .
12.3 Comments ••..
12.4 Writing interactive shell scripts
12.5 Canceling a shell script •
12.6 Writing efficient shell scripts •

13. Command evaluation
13.1 Forcing more than one pass of evaluation
13.2 Command execution
13.3 Exit status: the value of the command

14. Defining functions • • . • • •

25
25
25
26
27
27
27

28
28
29

29

30

30
31
31
33
33
33
34

34
36
36
37

37

15. Positional parameters and shell variables 39
15.1 Positional parameters 39

15.1.1 Setting values in a script 40
15.1.2 Changing parameter positions • 41
15.1.3 Number of parameters ..•.• 42

- ii -

15.2 Shell variables 42
15.2.1 Assigning values. • . 42
15.2.2 Removing shell variables 43

15.3 Setting constants. . • . • 44
15.4 Parameter and variable substitution . • . . 44
15.5 Testing assignment and setting defaults . 45
15.6 Parameters and variables set by the shell 46

16. Control-flow constructs · . .
16.1 for loops
16.2 case statements · . ·
16.3 while loops ·
16.4 until loops ·
16.5 if then else ·
16.6 exit · .

17. Input and output
17.1 I/O redirection

17.1.1 Redirection with file descriptors
17.1.2 File descriptors redirecting input • .
17.1.3 File descriptors redirecting output
17.1.4 Combining standard error and standard

.

output. • . • • . .
17.1.5 Changing the shell's standard input and

output. . . . • . • . • • •
17.1.6 Associating file descriptors with other

files • . .•
17.2 Reading input
17.3 Taking input from scripts
17.4 Using command substitution . . . •
17.5 Writing to standard output • •

18. Other features
18.1 Arithmetic and expressions .•••
18.2 File status and string comparison
18.3 The null command (:) • • •

19. Error handling • • • . . . •
19.1 Fault handling and interrupts •
19.2 Debugging a shell script

- iii -

47
47
49
51
53
54
56

57
57
57
58
58

58

59

60
61
62
65
66

68
68
69
70

71
71
75

20. Summary of Bourne shell commands 75

- iv -

Chapter 2

Bourne Shell Reference

1. The Bourne shell prompt
The Bourne shell is a program that interprets commands and arranges
for their execution. The Bourne shell displays a character called the
prompt (or primary shell prompt) whenever it is ready to begin
reading a new command from the terminal. By default, the Bourne
shell prompt character is set to the dollar sign ($).

1.1 The secondary shell prompt
If you press the RETURN key when the shell expects further input, you
will see the secondary shell prompt. By default, this prompt character
is set to the greater-than sign (». Like the primary shell prompt, this
can be redefined.

The secondary prompt will appear, for example, if you enter a multiline
construct (such as a function definition) at the primary shell prompt.
The secondary prompt will appear at each line until you give the final
delimiter. Whenever you have a secondary prompt (either because you
are using a multiline construct or because of an error), an interrupt will
abort the process and issue a primary prompt ($) for another command.
See "Canceling Commands" for infonnation about the interrupt on
your system.

1.2 Changing the prompt character
You may change the primary prompt character by redefining the
environment variable P S 1 to any other character or string of
characters. You can change the secondary prompt character by
redefining the PS2 environment variable. See "Commonly Used
Environment Variables."

2. Types of commands
The shell works with three types of commands:

Built-in shell commands: Built-in commands are written into the
shell itself and are generally used for writing shell programs. Each

Bourne Shell Reference 2-1

NUX shell has a slightly different set of built-in commands. The
built-in Bourne shell commands are listed under "Summary of Boume
Shell Commands."

AlUX commands: Every shell can invoke all NUX commands (see
"Command Summary by Function" in AIUX Command Reference for
a complete list of these). NUX commands are executable programs
stored in system directories such as /bin and /usr/bin. When you
enter an NUX command (for example, ls), the shell searches all
directories specified by your PATH variable (see "Locating
Commands' ') to locate the program and invoke it.

User-defined commands: You can combine built-in shell commands
and A/UX commands to define your own shell programs (see
"Overview of Shell Programming"). Shell programs can be typed in
at the shell prompt or entered in a file. A shell program contained in a
file is generally called a shell script. Once a shell script is defined,
with certain limitations, it can be used like any other command or
program.

You can also write your own commands in a high-level language such
as C. (SeeAIUX Programming Languages and Tools, Volume 1 for
more information.) The names of user-defined commands should not
be the same as any existing shell or NUX command.

3. The parts of a command
Whenever you see a shell prompt, you can enter a command by typing
the command name. Most NUX commands have one or more flag
options, which can follow the command name to modify the way the
command operates. Flag options are usually a hyphen followed by one
or more characters; for example, -1 is a flag option to the ls
command:

ls -1

In this case, the -1 is a flag option that modifies the way the 1 s
command operates, producing a long listing that contains more
information than the standard 1 s output. For the flag options that
apply to a particular A/UX command, see the manual page entry for

2-2 AlUX User Interface

that command in AIUX Command Reference. For options to the
Bourne shell built-in commands, see "Summary of Bourne Shell
Commands.' ,

Many NUX commands also expect one or more arguments, which
pass information to the command. An argument may be any data
expected by the command; for example, a directory name may be an
argument to the 1 s command:

Is Ibin

The entire command specification, including any flag options and other
arguments, is called the command line. A command line is terminated
by RETURN. For example, in the command line

Is -1 Ibin

1 s is the command name, -1 is a flag option (specifying a long
listing), and Ibin is an argument (specifying which directory to list).

To give a command longer than one line, you must precede RETURN

with a backslash (\). This prevents the shell from interpreting RETURN

as the end of a command. You can continue this for several lines; the
shell will wait for a plain RETURN (not preceded by a backslash) to
execute the multiline command.

Commands can also be combined; see' 'Command Grouping."

4. Interactive use
4.1 Command termination character
When you are entering commands to the shell interactively, the shell
will not begin executing the command until you press the RETURN key.
Therefore, if you mistype something, you can back up and correct the
mistake before pressing RETURN. When the shell recognizes the
RETURN, it executes the command line; when the process completes, a
new prompt will be printed on the screen. The shell is now ready to
accept further commands.

4.2 Impossible commands
If you give an impossible command (a command that doesn't exist or a
command line that uses improper syntax), the shell will print an error
message and return the prompt for another command.

Bourne Shell Reference 2-3

4.3 Background commands
You can direct the shell to execute commands in the "background"
while you continue to work at the shell prompt (the "foreground").
To run background processes, end the command line with an
ampersand (&) before the final RETURN. For example,

cat smallfile1 smallfile2 > bigfile &
1234

The number shown below the command line is the process ID (PID)
associated with the sample cat command as ,long as it is executing.
After the process ID is displayed, the shell returns the prompt so you
can use the terminal immediately for other work.

Note: To save the output from ajob you are running in the
background, you must redirect it into a file or pipe it to a
printer. If you do not redirect the command output, it will
appear on your screen and will not be saved. In addition,
remember that the output of a background command is not
complete until the command has finished. The presence of a
prompt does not mean that the output is ready for use.

To suspend processes that require input from the keyboard (such as an
editor or a remote login across a network), use shell layering. See
Chapter 5, "Shell Layering."

4.3.1 Checking command status
To check on the status of a background command, use

ps

This command shows the process status of all your commands; they
are identified by process ID and by name. See ps(1) in A/UX
Command Reference for details.

4.3.2 Logging out
The shell terminates all processes when you log out of the system (or
are forced to log out, for example, by a broken dialup connection). To
make sure that a process will continue to execute after you log out, use
the nohup command (which stands for "no hang up") as follows:

2-4 A/UX User Interface

nohup command &

See nOhup(l) in AIUX Command Reference for details.

4.4 Canceling commands
A number of special control sequences come into play when canceling
commands. The A/UX standard distribution defines these sequences as
follows:

Name

interrupt
quit
erase
kill
eof
swtch
susp

A/UX standard distribution

CONTROL-C

CONTROL-I

DELETE

CONTROL-u

CONTROL-d

CONTROL-'

CONTROL-z

However, you may reassign any of these sequences using the stty
command. See s t t y(l) in AIUX Command Reference for more
information.

4.4.1 Before you press RETURN

If you type part of a command and then decide you do not want to
execute it, you can send an interrupt or kill to the system at any point in
the command line.

4.4.2 While a command is running
There are several ways to stop a command that is executing. You can
redefine these using s tty unless otherwise noted.

• Send the interrupt signal.

For example, the output of a command such as

cat /etc/termcap

will scroll by on your terminal. If you want to terminate the
process, you can send the interrupt signal. Because the cat
command does not take any precautions to avoid or otherwise
handle this signal, the interrupt will (eventually) cause it to
terminate.

Bourne Shell Reference 2-5

2-6

• Use CONTROL-S to suspend scrolling output.

The NUX control-flow keys are CONlROL-S (suspend scrolling
output) and CONTROL-q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a
screenful again. CONTROL-S and CONTROL-q cannot be redefined
using stty; however, stty can enable and disable control-flow
using "stty -ixon".

• Send an eo! character.

Many programs (including the shell) terminate when they get an
eo! condition from their standard input. You could accidentally
terminate the shell (which would log you off the system) if you
enter eo!at a prompt or, in terminating some other program, if
you send an eo! one time too many.

• Wait for the eo! condition from a file.

If a command has its standard input redirected from a file, then it
will terminate normally when it reaches the end of that file. If
you give the command

mail ellen < note

(where note is an existing file), the mail program will
terminate when it detects the eo! condition from the file.

• Send the quit signal.

If you run programs that are not fully debugged, it may be
necessary to stop them abruptly . You can stop programs that
hang or repeat inappropriately by using quit. This will usually
produce a message such as

Quit (Core dumped)

indicating that a file named core has been created containing
information about the state of the running program when it
terminated because of the quit signal. You can examine this file
yourself, or forward information to the person who maintains the
program telling him or her where the core file is.

• Send a suspend signal.

A/UX User Interface

If you are using shell layering, you can type suspend to stop
jobs temporarily that are running on a shell layer. You can then
resume the job with a special shl command. See Chapter 5,
"Shell Layering."

4.4.3 Canceling background commands
If you have a job running in the background and decide you do not
want the command to finish executing, use the A/UX kill command.

When a job is running in the background, it ignores interrupt and break
signals. To terminate a background command, use

kill process-ID

The kill command takes the process ID as an argument. See
kill(l) and ps(l) inAIUX Command Reference for details.

5. Using shell metacharacters
Shell metacharacters are characters that perform special functions in
the shell. This section discusses how to use these metacharacters. The
following are the Bourne shell metacharacters:

& An ampersand at the end of a command line causes the shell to
run the command(s) in the background and prints the process
ID(s).

? A question mark used as part of a file or directory name causes
the shell to match any single character (except a leading period).

* An asterisk used as part of a file or directory name causes the
shell to match zero or more characters (except a leading period).

[] Brackets around a sequence of characters (except the period)
cause the shell to match each character one at a time.

A hyphen used within brackets to designate a range of characters
(for example, [A-ZJ) causes the shell to match each character in
the range.

< A less-than sign following a command and preceding a filename
causes the shell to take the command's input from that file.

> A greater-than sign following a command and preceding a
filename causes the shell to redirect the command's standard

Bourne Shell Reference 2-7

output into the file. See "Input and Output" for a description of
how this metacharacter is used to redirect error output.

> > Two greater-than signs following a command and preceding a
filename cause the shell to append the command's output to the
end of an existing file.

A vertical bar between two commands on a command line causes
the shell to redirect the output of the first command to the input
of the second command. This can occur multiple times on a
command line, fonning a pipeline.

A semicolon between two commands on a command line causes
the shell to execute the commands sequentially in the order in
which they appear.

Braces around a series of commands group the output of the
commands.

Parentheses around a pipeline or sequence of pipelines cause the
whole series to be treated as a simple command (which may in
turn be a component of a pipeline), and a subshell to be spawned
for the commands' execution.

\ A backslash prevents the shell from interpreting the
metacharacter that follows it.

, , Single quotes around a command, a command name and
argument, or an argument prevent the shell from interpreting the
enclosed metacharacters.

" "

, ,

$

2-8

Double quotes around a command, an argument, or a command
name and argument prevent the shell from interpreting the
enclosed metacharacters with the exception of back quotes (, ,)
and the dollar sign ($).

Back quotes around a command cause the characters in that
command to be replaced with the output from that command.

The dollar sign causes evaluation of the variable it precedes.
"$a" causes evaluation of the variable a.

NUX User Interface

5.1 Specifying filenames with metacharacters
Using the filename expansion metacharacters (also called
, 'wildcards' ') will spare you the job of typing long lists of filenames in
commands, looking to see exactly how a filename is spelled, or
specifying several filenames that differ only slightly.

These metacharacters are interpreted and take effect when the shell
evaluates commands. At this point, the word incorporating the
metacharacter(s) is replaced by an alphabetic list of filenames, if any
are found that match the pattern given. Filename expansion
metacharacters can be used in any type of command; however, in the
case of filenames given for input and output redirection, filename
expansion may cause unexpected results if the metacharacter usage
expands into more than a single filename. To tum off the special
meaning of metacharacters and use them as ordinary letters, they must
be quoted. See "Quoting."

The following are filename expansion metacharacters in the Bourne
shell:

? A question mark matches any single character in a filename. For
example, if you have files named

a bb ccc dddd

the command

echo ???

matches a sequence of any three characters and returns

ccc

* An asterisk matches any sequence of characters, including the
empty sequence, in a filename. (It will not, however, match the
leading period in such names as . profile.) To list the
sequence of files named

chap chapl chap2 chap3 chap3A chapl2

you can use the notation

Is chap*

The files are listed as

Bourne Shell Reference 2-9

chap chap1 chap12 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the
null sequence composed of no characters.

[] Brackets enclosing a set of characters match any single
character, one at a time, from the set of enclosed characters.
Thus,

2-10

Is chap. [12]

matches the filenames

chap.1 chap.2

Note that this does not match chap .12. To match filenames
chap .10, chap .11, and chap .12, use the notation

chap.1[012]

You can also place a hyphen (-) between two characters in
brackets to denote a range. For example,

Is chap. [1-5]

is the equivalent of

chap. [12345]

A range of characters can also be indicated in brackets. The
notation [a - z] matches any lowercase character, [A - Z]

matches any uppercase character, and [a - zA - Z] matches any
character, regardless of case.

To match anything except a certain character or range of
characters, use the exclamation point inside the brackets. When
the first character following the left bracket ([) is an exclamation
character (!), any character not enclosed in the brackets is
matched. For example,

[! b]

matches any filename composed of one letter, except a file
namedb.

A/UX User Interface

None of these metacharacters will match the initial period at the
beginning of special files such as . prof ile. These must be matched
explicitly. Periods that do not begin a filename can be matched by
metacharacters.

If you use these metacharacters and the shell fails to match an existing
filename, it will pass the character on as an argument to the command.
For example, if you have one file named bb, the command

echo ??

prints

bb

The command

echo ?

prints

?

5.2 Input and output redirection
An executing command may expect to accept input and create output,
possibly including error output (error messages). In the A/UX system,
there are default locations set for input and output:

• Standard input is taken from the terminal keyboard.

• Standard output is printed on the terminal screen.

• Standard error output is printed on the terminal screen.

These defaults can be changed using the following metacharacters (also
called redirection symbols). The redirection metacharacters are a way
of using file descriptors, described in detail in "Redirection With File
Descriptors.' ,

< A less-than sign followed by a filename "redirects standard
input" (takes command input from a file or device other than the
keyboard). For example,

mail ellen < note

uses a file named note instead of a message typed from the
keyboard as the input to ma i 1.

Bourne Shell Reference 2-11

> A greater-than sign followed by a filename' 'redirects standard
output" (prints command output in a file or to a device other
than the terminal screen). If a file by that name already exists, its
previous contents are overwritten; otherwise a new file is created.
For example,

sort filel > file2

uses a file for the output of the sort command. When sort
completes,file2 contains the sorted contents offilel.

See' 'Input and Output" for information on redirecting standard
error output using file descriptors.

» Two greater-than signs followed by a filename append the output
of a command to a file. If no file by that name exists, one is
created. For example,

who » log

appends the output of the who command to the end of the
existing file log.

5.3 Combining commands: pipelines
You can send the output of one command as input to another command
by using the vertical bar (I). When two or more commands are joined
by a vertical bar, the command line is called a pipeline.

For example, to see which files in a directory contain the sequence old
in their names, you can use a pipeline as follows:

ls I grep old

The pipe character (I) tells the shell that output from the first command
(the list of files produced by the 1 s command) should be used as input
to the grep command. The output of the pipeline (filenames in the
current directory containing the string old) prints on standard output
(unless you redirect it to a file).

Pipelines may consist of more than two commands; for example,

ls I grep old I we -1

prints the number of files in the current directory whose names contain
the string old.

2-12 AlUX User Interface

Pipelines may also be executed in the background. For example, to
avoid the time-consuming process of waiting for a very large file to be
sorted and printed, you could give the following pipeline:

sort mail. list I lp &

This pipeline would sort the contents of a file named rna i 1 . 1 i stand
send the sorted information to the 1 p program to be placed on the
printer queue. The shell would respond with the process ID of the last
command in the pipeline.

The tee command is a "pipe fitting"; it can be put anywhere in a
pipeline to copy the information passing through the pipeline to a file.
See tee(l) in AIUX Command Reference for more information.

A filter is a program or a pipeline that transforms its input in some
way, writing the result to the standard output. For example, the grep
command finds those lines that contain some specified string and prints
them as output.

grep 'correction' draft1

prints only the lines in draft1 that contain the string correction.

Filters are often used in pipelines to transform the output of some other
command. For example,

who I grep jon

prints

jon ttyp8 Jul 21 12:25

if a user whose login name is j on is currently logged into the system
on ttyOI.

5.4 Command grouping
You can use the following metacharacters to group commands
together:

Group several commands on one command line by separating
one command from another with a semicolon (;). The
commands will be executed sequentially in the order in which
they appear. For example, the command line

Bourne Shell Reference 2-13

cd test; Is

changes to the test directory and then lists its contents.

& Group background commands on a single line by separating
them with ampersands (&) and then ending the line with another
ampersand. The background commands will exit independently
while the shell continues to accept new commands in the
foreground.

{ } Use braces to group commands for functions and control-flow
constructs (see "Defining Functions" and "Control-Flow
Constructs"). You can also use braces to group the output from
several sequential commands, which is then used as the input to a
following command in a pipeline. Braces used in the latter way
are recognized only when they are the first word of a command
or are preceded by a semicolon or newline, and when the first
brace is followed by a space. For example, to put the date and
the list of users into one file (log), you could give the command

{ date; who;} > log

Note the space following the first brace and the semicolon
following the last command in the braces; these are required. If
you type a newline before closing with another brace, you will
see the secondary prompt until you give the closing brace. Note
that commands enclosed in braces are executed by the current
shell (that is, a new instance of the shell is not invoked to execute
them).

() Enclose a group of commands in parentheses to execute them as
a separate process in a subshell (a new instance of the shell). For
example,

2-14

(cd test; rm junk)

first invokes a new instance of the shell. This shell changes the
directory to test and then removes the file junk. Mter this,
control is returned to the parent shell, where the current directory
is not changed. Thus, when execution of the commands is over,
you are still in your original directory.

The commands

A/UX User Interface

cd test; rm junk

(without the parentheses) are executed in the current shell and
have the same effect but leave you in the directory test.

5.5 Conditional execution
You can use the following symbols to indicate that your command
should be executed only if some condition is met:

& & The command form

command1 & & command2

means "If commandl executes successfully (returns a zero exit
status), then execute command2."

I I The command form

command1 I I command2

does the reverse. This form means' 'If command1 does not
execute successfully (returns a nonzero exit status), then execute
command2. "

For exit status, see "Exit Status: The Value of the Command."
Conditional execution is also available in joining pipelines. For other
ways of obtaining conditional execution, see "Control-Flow
Constructs. "

5.6 Quoting
If you need to use the literal meaning of one of the shell metacharacters
or control the type of substitution allowed in a command, use one of
the following quoting mechanisms:

\ A backs lash preceding a metacharacter prevents the shell from
interpreting the metacharacter. For example, to use the A/UX
echo command to display a question mark, you must precede
the question mark with a single backslash (\). Thus,

echo \?

prints

?

Without the backslash, the echo command would generate a list

Bourne Shell Reference 2-15

, ,

" "

2-16

of all one-character filenames in the current directory. If there
are none, the command returns

?

Single quotes prevent the shell from interpreting any
metacharacters in the enclosed string. The command

echo '*test'

prints

*test

while the command

echo *test

attempts to list all the files in your current directory ending with
the characters test. If there are none, the command returns

*test

Within double quotes, variable substitution and command
substitution occur, but filename expansion and the interpretation
of blanks do not. For example, if you have the variable
messagel with the value "this is a test", the
command

echo "$messagel"

prints

this is a test

Double quotes can also be used to give a multiword argument to
commands; for example,

echo "type a character"

For more information on variable substitution, see' 'Positional
Parameters and Shell Variables." You can also suppress
filename expansion universally by invoking the shell with the - f

option; see "Shell Execution Options."

AlUX User Interface

, , A command name enclosed in back quotes is replaced by the
output from that command. This is called command
substitution. For example, if the current directory is
/usr/marilyn/bin, the command

i='pwd'

is equivalent to

i=/usr/marilyn/bin

If a back quote occurs within the command to be executed, you
must escape it with a backslash (\ '); otherwise the usual quoting
conventions apply within the command.

Command substitution takes place before the filenames are
expanded. If the output of substituted command is likely to be
more than one word, the command must be enclosed in double
quotes as well as back quotes; for example,

a="'head -1'"

where the command head -1 (read the first line of input) might
yield more than one word.

6. Working with more than one shell
When you wish to use another NUX shell, you can use one of the
following commands:

s h This spawns another instance of the Bourne shell.

ksh This spawns an instance of the Korn shell.

c s h This spawns an instance of the C shell.

You can type these at your shell prompt; for example,

csh

In this case, your new shell will run as a subshell or "child" of your
current one. You can use the exi t command or the eo! sequence to
return to your login shell whenever you wish. The login shell is the
shell that is automatically invoked when you log in. (If you
accidentally give the exi t command or the eo! sequence in your login
shell, you will be logged out of the system altogether.)

Bourne Shell Reference 2-17

6.1 Changing to a new shell
You can also obtain a new shell using the exec command; for
example,

exec csh

If you use the exec command, the C shell program csh replaces your
current shell. You cannot return to your original shell; it has
disappeared.

Generating new instances of a shell affects the environment settings for
each shell. See "The Environment and New Shell Instances" for more
information.

6.2 Changing your default shell
To change your default shell from the Bourne shell to the Korn or C
shell, use the chsh command. For example,

chsh login.name /bin/ksh

(where login.name is your login name on this system) changes your
default login shell to the Kom shell. See chsh(l) in AIUX Command
Reference for more information.

7. The environment
The environment is a list of variables and other data that is available to
all programs (including subshells) invoked from the shell. A shell
inherits the environment that was active when it started, and passes that
environment (including any modifications) to all programs it invokes.

If you assign values to variables using the set command or the
assignment operator (=) at the shell prompt (or within a shell script),
these remain local to the shell in which you assigned them. If you use
the export command (or set the -a shell option; see "Shell
Execution Options"), these changes will be passed on to any subshells
you invoke and to executing commands.

Note: Modifying the environment in a subshell (for example, in
a shell script) never changes the parent shells or their
environments. Because these changes are made to a copy of the
parent shell's environment, the parent shell's environment is
never affected by changes in a subshell, even if you use the

2-18 A/UX User Interface

expo rt command. When a subshell terminates, its
environment no longer exists.

In general, the most essential variables are assigned default values
during login or by the shell every time you invoke it. Convenient but
inessential variables are simply left unassigned. Thus a default
environment is created for you.

7.1 Listing existing values
The env command and the printenv command both list the values
of all variables in the current environment.

The export command without an argument lists all explicitly
exported variables in the environment. Variables with default values
assigned by the shell, variables not exported in the current shell, and
variables local to the current shell are not listed.

The set command without arguments lists the values of all variables
in the current shell, including default values, values in the environment,
local shell variables, and the text of all functions defined.

7.2 Assigning values to environment variables
Setting up your own customized environment is not necessary, but it
can make your work easier and more efficient. To customize your
working environment, you may change the default values assigned to
some of the environment variables and add others that have not been
included in the default environment.

Unless you have set the -a shell execution option (which tells the shell
to export all variables automatically; see "Shell Execution Options"),
the process of assigning a value to an environment variable requires
two commands. The command syntax

name=va/ue

sets a variable name to value. Note that there are no spaces around the
equal sign; this is the required format. By convention, environment
variables have uppercase characters in their names.

After you have assigned a value, the command syntax

export name

Bourne Shell Reference 2-19

includes the variable name and the value you assigned to it in the
environment for this shell. If you don't export the variable, the shell
will not be able to pass it to your commands or programs.

Thus, the complete process of assigning a value to the USER variable
would be

USER=daphne
export USER

7.3 Removing environment variables
The command

unset name

removes the specified variable. The PATH, PSI, PS2, MAILCHECK,

and IF S variables cannot be removed.

7.4 Commonly used environment variables
The following variables are typically inserted into the environment. By
convention, environment variable names are uppercase. Some of these
variables are assigned default values at login or by the shell at
invocation. All of them can be reset by the user.

HOME

CDPATH

EXINIT

PATH

2-20

This variable specifies your home directory. The login
procedure sets the value of this variable to the pathname
of your login directory.

The value of this variable should be a list of absolute
pathnames of directories (separated by colons) that you
use frequently. The shell uses this variable when you
give an argument to the cd command that is not a
relative or absolute pathname. This variable is usually
set in the . prof ile file; otherwise its default value is
the current directory.

This variable indicates various options for your editing
environment when you are using the ex or v i text
editing program (see "Using ex" and "Using vi" in
AIUX Text Editing Tools).

The value of this variable should be a series of
pathnames separated by colons (:). The shell uses the
value of PATH executable programs whenever you give

AlUX User Interface

MAIL

a command. If the directory containing the command is
not specified, the shell displays an error message. For
example, if you enter the command foo, the shell prints

foo: not found

PATH is usually set in the . profile file. For
efficiency, the list of directories in the PATH variable
should be in order from the directories containing
commands most often used to those least often used.
The default value for PATH is the current directory,
/bin, and /usr/bin.

The shell uses this variable as the pathname of the file
where your mail is delivered. This variable is typically
set in the file. prof ile in the user's login directory.

MAILCHECK This variable specifies how often (in seconds) the shell
will check for the arrival of mail in the file specified in
MAIL. The default value is 600 seconds (10 minutes).
If set to 0, the shell will check before each prompt.

PSI

PS2

IFS

SHELL

This variable specifies the primary prompt string (the
prompt you see when the shell is waiting for you to give
a command). The default setting is the dollar sign ($).

This variable specifies the secondary prompt string (the
prompt you see when the shell is waiting for more
information for a command you have already started).
The default setting is the greater-than sign (».

The shell uses this variable to interpret command
strings. IFS stands for "Input Field Separator." The
default values of this variable are space, tab, and
newline, specifying the characters used to separate the
parts of commands. You can reset this to include any
data delimiters.

This variable specifies your preferred login shell. It is
set at login to the value found in the / et c / pa s s wd
file. The default shell is the Bourne shell. For
instructions on how to change your login shell, see
chsh(1) in AIUX Command Reference.

Bourne Shell Reference 2-21

TZ

TERM

This variable indicates your time zone. It is set at login.

This variable specifies the type of terminal you are
using. The default value is mac2. You can find out
what your current terminal type is with the command

echo $TERM

7.5 The environment and new shell instances
When you invoke a new instance of the shell (using the sh command
for the Bourne shell), the values you have exported to the environment
(using the export command) are copied to the environment of the
new shell. If you have assigned values to variables without exporting
them to the environment, these remain local to the parent shell. You
may reset the value of any exported variable within the subshell.
Because these changes are made to a copy of the parent shell's
environment, the parent shell's environment is never affected by
changes in a subshell, even if you use the export command. Note,
however, that these changes will be passed on to new instances invoked
from the subshell. When a subshell terminates, its environment no
longer exists.

In the Bourne shell the. profile file is read only once, at login.
Thus, if you have changed the value of an environment variable, the
subshell will inherit the new value, not the value set routinely in
. prof ile. You can force a new instance of the shell to read
. prof ile by using the "dot" command (.); see "Executing Shell
Scripts."

In general, running one shell as the child of another (for example,
running the C shell under the Bourne shell) will not cause any
problems. The only exception may be if you have assigned values to
environment variables that are significant to the other shell. See
Chapters 3 and 4, "Korn Shell Reference" and "C Shell Reference."

7.6 Special environments
Normally, the environment for a command is the complete
environment of the shell where the command was given. You can
change the environment used by a command in three ways:

• Augment the environment by inserting additional variables and
new values into the environment. This is done by preceding the

2-22 A/UX User Interface

command with one or more assignments to variables on the
command line. For example,

a=b command

Note that because variable substitution occurs before the
environment is changed, you cannot assign environment
variables whose values are then immediately referenced on the
command line. For example, the sequence of commands

x=5
x=3 echo $x

prints

5

not

3

because the value of x is inserted into the command line before
the environment is changed.

• Set the - k shell option using the command

set -k

When set, this shell option inserts variables and values given on
the command line into the environment for a particular
command. For example, if the - k option is not set, the command

echo a=b c

prints

a=b c

After - k has been set, a = b is interpreted as a variable
assignment instead of an argument, and the same command
prints

c

Note that because values are substituted for variables before the
environment is changed, this is subject to the same limitation
documented above.

Bourne Shell Reference 2-23

• Use the NUX command

env [-Hname=value ...] [command] [args]

to set the environment for the command. With this command,
you can not only add things to the environment inherited by a
command, but also exclude the current environment. To add
variables and their values to the current environment, give the
variables and values before the command name. For example, to
run a subshell with a changed PATH environment variable, you
could give the command

env PATH=directory-list sh

For the duration of the new shell (and its subshells), the PATH
variable would be set to the directories in the list.

To set up a completely new environment, first give the option -,
which excludes the current environment, and then assign the
variables and values you want. These (and only these) will be
available in the environment for the new command.

7.7 The default environment on your system
Whenever you log in, the following procedures occur:

• The login program sets the default PATH and sets values for
the variables HOME, LOGNAME, and SHELL from the information
in the system file /etc/passwd.

• The login shell then checks the file / et c / p ro file to find out
the default environment to set up for all users. This file may
contain settings for PATH, TZ, and TERM.

• The login shell assigns default values to P S 1 (the primary
prompt), PS2 (the secondary prompt), MAILCHECK, and IFS
(Input Field Separator).

When you invoke new instances of the shell (for example, using the sh
command), the new shell checks the environment for any new values of
these variables you may have placed there. If it doesn't find any values
in the environment, it assigns the default values.

Then the new shell reads your .profile file. If you have assigned
new values there, it uses your values instead of the defaults.

2-24 AlUX User Interface

8. The . profile file
The . prof ile file is simply a text file. It contains a series of
commands typed exactly as you would type them at the shell prompt.
Every time you log in, the shell looks in your home directory for a file
named. prof ile and executes all the commands found there before
issuing the shell prompt and taking commands. If no . prof ile file
exists, your environment will simply be the default environment
created by the shell at login.

8.1 A sample . profile file
The following is a sample. profile file:

PATH=:/bin:/usr/bin:/users/elaine/bin:$HOME
export PATH
CDPATH=:/users/group.project/elaine/revisions
export CDPATH
MAILCHECK=O
export MAILCHECK
EXINIT='set wm=lO'
export EXINIT
date
Is

The variables and commands in this file are discussed in the sections
that follow.

8.1.1 Locating commands
The PATH environment variable lists the directories (separated by
colons) where the shell will look for the executable files that are A/UX
(or user-defined) commands. Each time you give a command, the shell
searches the directories listed in the order specified. Most A/UX
commands are located in the /bin, /usr/bin, or /usr/ucb
directory. When you assign a value to PATH, be sure to include these
directories.

If the shell cannot find the file in one of the directories specified, the
command cannot be executed and you will see the message

command-name: not found

The directories listed in the PATH variable are specified by their
absolute pathnames, separated by colons. If the list of directories

Bourne Shell Reference 2-25

begins with a colon, the path search begins in the current directory. At
login, the PATH variable is set as follows:

PATH=:/bin:/usr/bin:/usr/ucb

This assignment sets the PATH variable to the current directory and the
system directories /bin and /usr/bin.

To reset the PATH variable in . profile, insert the lines

PATH=:/bin:/usr/bin:/usr/ucb:/users/na~/bin:$HOME

export PATH

The export command is discussed under "Customizing Your
Environment. ' ,

If you include the pathnarnes of personal directories that contain shell
programs you have written, these will be accessible to the shell no
matter what your current directory is. If you wish to execute a
command or shell program that is not in one of the directories in your
PATH variable, simply give the absolute pathname of the directory
where the command or shell program is to be found.

For information on referencing variables using the $ syntax (as in
$HOME above), see "Parameter and Variable Substitution." For more
information about pathnarnes, see the glossary in A/UX System
Overview.

8.1.2 Shortcuts in changing directories
If CDPATH is set, you can use the cd command with a simple directory
name that is neither an absolute nor a relative pathname. The shell then
searches for that directory in all the directories listed in CDPATH. The
directories are searched in the order specified. If CDP ATH is not set,
only the current directory is searched.

If the directory you specify, for example tmp, is not found in any of
the directories given in CDPATH, you will see the message

tmp: bad directory

After CDPATH is set, you can still, of course, give the relative or
absolute pathname of any directory you wish. When you give an
absolute or relative pathname in the cd command, CDP ATH is not
used.

2-26 NUX User Interface

8.1.3 Receiving mail
The MAILCHECK environment variable specifies how often (in
seconds) the shell should check for new mail. When you log in, the
shell sets MAILCHECK to 600 seconds (10 minutes). You can change
this to whatever you wish using the commands

MAILCHECK=O

export MAILCHECK

These commands assign and export the value of the MAILCHECK as O.
When MAILCHECK is 0, the shell checks for new mail before each
prompt.

8.1.4 Your editing environment
The EXINIT environment variable tells the shell how to initialize the
v i or ex editing program. This variable is set to a series of editor
commands that should be run every time the editor is called before any
commands are read from the terminal. In the sample. profile
above, for example, the commands

EXINIT='set wm=10'
export EXINIT

assign and export the value of EXINIT as the command

set wm=10

which sets the word-wrap margin so that the editor will automatically
break lines ten spaces before the right margin. The command is
enclosed in double quotes because the entire string must be treated as
one "word" and not divided up.

For details on EXINIT, see A/UX Text Editing Tools. For the use of
double quotes, see "Quoting."

8.2 Customizing your login procedure
You can also use your. profile file to customize your login
procedure. In the sample .profile above, the commands

date
ls

direct the shell to display the date and time and then list all the files in
the current directory before displaying the shell prompt. These will be

Bourne Shell Reference 2-27

executed at login.

You can include any commands you wish in .profile, including
your own functions and shell scripts. One commonly included
command is the shl command. If you include the shl command, the
shell will invoke the shell-layering process before you give any
commands from the terminal. This means that instead of the normal
shell prompt, your first prompt will be the shl prompt:

»>

For information on shell layering, see Chapter 5, "Shell Layering."

9. Shell execution options
The shell is a program like other A/UX commands, and it too has a
variety of options used to control how it executes. All shell execution
options can be set using the set command as follows:

set -opt[opt ... J

Or they can be specified on the command line when you invoke a new
shell or run a shell script with the sh command:

sh -opt[opt ... J name

Use the set command to set new options in your current shell. Use
the sh command to invoke a subshell with the options specified or to
run a script with options.

To turn options off, precede the option with a plus (+) instead of a
minus (-).

The variable $ - contains a list of all the options set. For example, if
you have the a and x shell execution options set, the command

echo $-

returns

ax

9.1 Options that affect the environment

-a When the -a shell option is set, all variable assignments result in
that variable and its value being inserted into the environment.

2-28 AlUX User Interface

You do not need to use the expo rt command to insert new
values.

- k The shell execution option - k can be used to insert variables and
values into the environment for a particular command; see
, 'Special Environments. "

9.2 Options for Invoking new shells
In addition to the options available with the set command, there are
four options that can be used only when a new shell is invoked with the
sh command. These are

-c string
If the -c flag is present, string is executed. Mter execution,
control is returned to the parent shell. This command is often
used to execute shell scripts; see' 'Executing Shell Scripts."

- s If the - s flag is present or if no arguments remain, commands
are read from the standard input.

- i If the - i flag is present, the shell is interactive. The terminate
signal is ignored (so that kill 0 does not kill an interactive
shell), and the interrupt signal is caught and ignored (so that
wait is interruptible). In all cases, the quit signal is ignored by
the shell.

- r If the - r flag is present, the shell invoked is a restricted shell.
Restricted shells cannot change directories, alter the value of the
PATH environment variable, redirect output, or specify path or
command names containing the symbol /. See' 'Restricted
Shell."

During shell invocation, if the first character of argument 0 is a -,
commands are read from the . pro file file.

10. Restricted shell
The Bourne shell supports a limited version called the restricted shell,
or rsh (note that in NUX, the 4.2 BSD rsh remote shell network
program has been renamed remsh to prevent conflict with this
program).

Bourne Shell Reference 2-29

This version of the shell is used to set up login names that have
restricted access to the file system (they cannot execute the cd
command or redirect output) and a limited menu of commands (they
cannot specify absolute pathnames or change the value of their PATH
variable).

This is useful if you want to allow several users to log into your
machine but want to restrict them to a single directory or to a limited
subset of commands. In that case, you may want to set up a special
directory of commands (for example, /usr / rbin) that can be safely
invoked by all users, and include only that directory in the value of the
PATH variable. Because rsh is invoked after .profile is read, you
can set up such an environment by writing special. prof ile files for
such users. See sh(l) in AIUX Command Reference for more
information.

11. Using shell layering
The shl program allows you to create up to seven labeled subshells
called shell layers within your login shell. These layers can then be
referred to by name (or number), suspended and resumed, deleted, and
so on. Each of these layers appears like your login shell, but can be
used to run a process while you switch to another layer. This provides
a management scheme for multiple concurrent processes. See Chapter
5, "Shell Layering."

12. Overview of shell programming
A shell program is simply a list of commands. These commands can
be entered at the prompt or inserted in a file. They may contain

• variables and assignments

• control-flow statements (for example, if, for, case, or
while)

• built-in shell commands

• any A/UX command

Input for the shell program can be read from the keyboard (this is the
default standard input), taken from files, or embedded in the program
itself (using here documents).

2-30 AlUX User Interface

Shell programs can write output to the terminal screen (the default
standard output), to files, or to other processes (via pipes).

When the shell program executes, each command is executed until the
shell encounters either an eo! character or a command delimiter that
directs it to stop. During execution, you can trap errors and take
appropriate action.

Shell program variables are strings. Arithmetic is not provided, but is
available indirectly using the expr command.

12.1 Writing shell programs
You can enter a shell program at the prompt. When you use a built-in
shell command that expects a delimiter (such as done) or a certain
type of input, the secondary shell prompt appears after you press
RETURN. This prompt (> by default) appears at each line until you give
the expected delimiter; for example,

$ for i in *
> do
> cat $i
> done
$

Note that you can send an interrupt to cancel the script and return to
the primary prompt.

You can also write a shell program in a text file (using a text editor)
and then execute it (see "Executing Shell Scripts"). These program
files are often called shell scripts. Note that all shell programs may be
entered at the shell prompt or inserted in a file. This does not affect
their actions. Hereafter "shell scripts" will be used to refer to shell
programs that reside in a file.

12.2 Executing shell scripts
There are several ways to execute a shell script; these differ mostly in
terms of which instance of the shell is used for the execution .

• You can use the sh command to read and execute commands
contained in a file. The script will be run in a subshell, which
means that it will have access only to the values set in the
environment and will be unable to alter the parent shell. The
command

Bourne Shell Reference 2-31

sh filename args ...

causes the shell to run the script contained in filename, taking the
args given as positional parameters. Shell scripts run with the
sh command can be invoked with all the options possible for the
set command.

• You can change the mode of the shell script file to make it
executable. For example,

chmod +x filename

makes filename executable. Note that you may want to modify
your PATH variable to include a personal directory containing
your shell scripts. When you have done this, you can use your
script names as ordinary commands, regardless of your current
location in the file system. Then the command

filename args ...

has the same effect as using the sh command. The arguments
become the positional parameters (see "Positional Parameters");
the script is run in a subshell, which means that it will have
access only to the values set in the environment and will be
unable to alter the parent shell.

• You can run a shell script inside the current shell by using the
"dot" command (.). The dot command tells the current shell to
run the script; no subshell is invoked. This should be used if you
wish to use local shell variables or functions, or modify the
current shell:

. filename args ...

Note that there must be a space between the dot and the filename.
Because the commands are executed in the current shell, this is
the way to run a script that is to change values in the shell. The
arguments become positional parameters. Otherwise the
positional parameters are unchanged.

• You can run an executable shell script with the exec command
(the file containing the shell script must have execute
permission). This should be used when the shell script program
is an application designed to execute in place of the shell and

2-32 A/UX User Interface

replace interaction with it:

exec filename args ...

In this case, the shell script replaces the current shell. This
means that when the script is over, control will not return to the
shell. If you were in a login shell, you will be logged out.

12.3 Comments
A word beginning with a number sign (#) causes that word and all the
following characters up to a newline to be ignored.

12.4 Writing interactive shell scripts
A shell script can invoke an interactive program such as the vi editor.
If standard input is attached to the terminal, vi will read commands
from the terminal and execute them just as if invoked from an
interactive shell. After the session with vi is finished, control will pass
to the next line in the script. In a similar manner, a script can invoke
another copy of a shell (using sh, csh, or ksh), which will interpret
commands from the terminal until you send an eof. Control will be
returned to the script. You can use this to create a special environment
for certain tasks by setting environment variables in a shell script and
then invoking a new subshell.

You can also write interactive shell scripts by using the read and
eval commands and prompting users to enter commands:

read cormnand
eval $command

The first line will read the user's command line into the variable
command. The eval command will then cause the command to
execute.

12.5 Canceling a shell script
You can cancel a shell script just like an ordinary A/UX command. If
the script is running in the background, use the NUX k. i 11 command.
See "Canceling Commands" for details on kill and various types of
interrupts that can stop a command.

Note: Interrupts can be trapped and handled within the script
using the trap command. See "Summary of Boume Shell
Commands. "

Bourne Shell Reference 2-33

12.6 Writing efficient shell scripts
In general, built-in commands execute more efficiently than NUX
commands. See "Summary of Bourne Shell Commands" at the end of
this chapter for a complete list of these commands. The following
built-in commands are useful in constructing efficient shell scripts:

hash This causes the shell to remember the search path of the
command named.

u 1 imi t This can be used to set a limit on files written by processes.

time s This prints the accumulated user and system times used by
the current shell.

You can also set the - h shell execution option using

set -h

This will locate and remember functions as they are defined, instead of
when they are invoked, as normal.

Careful setting (or resetting inside a shell script) of the PATH and
CDPATH environment variables make sure that the most frequently
used directories are listed first. This also improves efficiency.

13. Command evaluation
When you give a command, the shell evaluates the command in one
pass and then executes it. To force more than one pass of evaluation,
use the eval command (see "Forcing More Than One Pass of
Evaluation ").

While evaluating the command, the shell performs the following
substitutions on variables:

• Variable substitution. This replaces variables preceded with $
(for example, $user) with their values. Only one pass of
evaluation is made. For example, if the value of the variable
user is daphne, then the command

2-34

echo $user

prints

daphne

AlUX User Interface

However. if the value of the variable user is $name. then the
command

echo $user

prints

$name

The second variable is never evaluated. and the value is not
substituted. See "Parameter and Variable Substitution" for
more information.

• Command substitution. The shell replaces a command enclosed
in back quotes with the command's output. For example, if the
current directory is /users/doc/virginia, then the
command

echo 'pwd'

prints

/users/doc/virginia

• Blank interpretation. The shell breaks the characters of the
command line into words separated by delimiters (called
"blanks' '). The delimiters that are interpreted as blanks are set
by the shell variable IFS; by default, they are spaces, tabs. and
new lines. The null string is not regarded as a word unless it is
quoted; for example,

echo "

passes the null string as the first argument to echo, whereas the
commands

echo

and

echo $null

(where the variable null is not set or set to the null string) pass
no arguments to the echo command.

• Filename expansion. The shell scans each word for filename
expansion metacharacters (see "Using Shell Metacharacters")

Bourne Shell Reference 2-35

and creates an alphabetical list of filenames that are matched by
the pattem(s). Each filename in the list is a separate argument.
Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated with a for
loop.

13.1 Forcing more than one pass of evaluation
Sometimes more than one pass of evaluation is necessary for a
command to be interpreted correctly. For example, suppose that the
following two lines occur near the beginning of a shell script:

name=elaine
err_33='echo $name: user not found'

If you give the command

$err_33

you get

$name: user not found

(which is not quite what you want). In cases like this, you can use the
built-in command eval. So, the command

eval $err_33

forces two evaluations of the value of the variable err 33. Thus it
prints

elaine: user not found

In general, the eval command evaluates its arguments (as do all
commands) and treats the result as input to the shell. The input is read
and the resulting command(s) executed.

13.2 Command execution
After all substitution has been carried out, commands are executed as
follows:

• Built-in commands, functions, and shell scripts run with the dot
command (.) are executed in the current shell. The command
has available all current shell execution options, the values of
variables and environment variables, and functions defined in the
current shell.

2-36 A/UX User Interface

• NUX commands, programs, executable shell scripts, shell
scripts run with the s h command, and series of commands
enclosed in parentheses are executed in a subshell. The current
shell invokes a child shell that executes the commands and then
returns control to the parent shell. Only the values in your
environment are available to these processes .

• Commands and executable scripts run with the exec command
execute in place of the current shell.

If the NUX command or program name does not specify a pathname,
the environment variable PATH is used to determine what directories
should be searched for the command. The only exception to this is
built-in commands.

For more information about the execution of shell scripts, see
"Executing Shell Scripts."

13.3 Exit status: the value of the command
If a command executes successfully, its exit value is usually zero (0).
If it terminates abnormally, its exit value is often nonzero. The shell
saves the exit value of a command. These are used primarily in shell
scripts.

To check the exit status of a command, use the command

exit $?

See "Parameters and Variables Set by the Shell" for more
information. See the manual entry for the command in question in
A/UX Command Reference or A/UX System Administrator's Reference
for exit status values.

14. Defining functions
You can use a function definition to assign a name to a command or
list of commands. After you have defined a function, typing the
function name (and any required arguments) causes the commands in
command-list to be executed by the current shell.

The form of a function definition can be

name () { command-list;}

Bourne Shell Reference 2-37

or

name () {
command-list
}

The first brace ({) must be followed by a space or newline; the second
must be preceded by a semicolon or newline. There cannot be a
semicolon between the parentheses and the first brace.

For example, a function maintaining a daily log of users could be
written as follows:

or

users() { date»log; who»log;}

users () {
date»log;who»log
}

The function would first append the date and then the listing provided
by the who command to the file named log.

Functions are commonly defined in the . profile file, although they
can also be defined at the terminal or in a shell script.

Functions execute in the current shell, not in a subshell. During
execution, any arguments become the positional parameters. After
execution, they are reset to their former values, if any. This means that
if a function is defined and used inside a shell script, the parameters of
functions will not conflict with the parameters of the script.

Because they are executed in the current shell, functions share their
variables with this shell and can create, alter, and assign shell and
environment variables, as well as create new environment variables via
export. Functions themselves, however, cannot be exported. This
means that they are available only in the shell where they were defined
(for example, the login shell if they are defined in the .profile file)
and that a function defined in a particular shell will be available only to
shell scripts run with the dot command (.) in that shell.

The return command in a function definition causes a function to
terminate with the exit status specified by n. For example,

2-38 A/UX User Interface

users () {
date»logiwho»log
return 1

causes the function to tenninate normally with a return value of 1. If
the n is omitted from the return command, the exit status is that of
the last command executed.

To speed up execution of functions, you can set the - h shell option:

set -h

This option causes the shell to rem em ber the location of the function
when it is defined rather than locating it every time it is executed.

To list the text of the defined functions, use the set command without
arguments. (This will list the values of all variables currently set in the
shell, including functions.) To remove a function, use the unset
command followed by the name of the function.

15. Positional parameters and shell variables
A shell script may use two types of variables:

Positional parameters: These are string variables referred to by the
numbers [0-9]. These numbers refer to the position of the parameter
on the command line. Positional parameters are set on the command
line and contain the arguments to the script. If more than ten positional
parameters are required, the s h i f t command can be used to discard
old values.

Shell variables: These are string variables referred to by name. They
may be assigned on the command line or inside the script itself.

The relationship between variables inside a shell script and existing
shell variables depends on how the script is run. See' 'Executing Shell
Scripts. " In all cases, shell scripts have access to the variables and
values in the environment.

15.1 Positional parameters
Positional parameters may be referred to by the numbers [0-9] and set
as arguments on a command line. When you enter a command at the
prompt, the shell stores the elements of the command line in

Bourne Shell Reference 2-39

parameters: the command name is stored in parameter 0, the first
argument is stored in parameter 1, the second argument in parameter 2,
and so forth. Thus, for the command

diff letterl letter2

parameter 0 is diff, parameter 1 is letter1, and parameter 2 is
letter2. For the command

echo "not a directory"

parameter 0 is echo and parameter 1 is "not a directory".

A shell script may refer to parameters by number; for example,

echo $1
echo $2

These will be substituted by the arguments given in that position on the
command line; for example, for the command

myscript arg1 arg2

parameter 0 is myscript, parameter 1 is arg1, and parameter 2 is
a rg2. This prints

arg1
arg2

15.1.1 Setting values in a script
The set command creates a new sequence of positional parameters
and assigns them values. After execution, all the old parameters are
lost. For example, the command

set *
creates a sequence of positional parameters set to the names of the files
in the current directory (parameter 1 is the first filename, parameter 2 is
the next filename, and so on). A subsequent command,

set hi there

creates new positional parameters, discarding the old values. This time
there will be only two values set; the other positional parameters will
have no values. A subsequent command,

2-40 AlUX User Interface

echo $2 $1

displays

there hi

The command

echo $3

would have no effect, because there is no longer a parameter 3.

To set a positional parameter to a string of words separated by blanks,
the entire string must be enclosed in double quotes. For example,

set "this is one positional parameter"

sets this entire string to the first positional parameter. Without the
quotes, the phrase would be set, one word at a time, to the first five
positional parameters.

Because the set command creates a new series of parameters, it is
impossible to set only one parameter in a series. If only one parameter
is set, it will be the first, and the remaining parameters will be lost.

The set command can also be used within a script to create positional
parameters if none are given on the command line. Such parameters
can then be used as a one-dimensional array.

After the set command is used to reset positional parameters, the
internal shell variable -#, which contains the number of positional
parameters, is reset to reflect the new number of parameters. For
details on the internal shell variables, see "Parameters and Variables
Set by the Shell. "

15.1.2 Changing parameter positions
The s h i f t command shifts positional parameters one or more
positions to the left, discarding the value in the first position(s). The
syntax is

shift [n]

If n is omitted, it defaults to 1. If n is specified, the shift takes place at
the position n+ 1. For example,

Bourne Shell Reference 2-41

shift 6

moves parameter 7 into position 1, parameter 8 into position 2, and so
on, discarding the values that were stored in positions 1 through 6.

This can be useful, for example, when working through a list of files.
After each file is processed, a shift can be performed, letting the next
filename become parameter 1.

15.1.3 Number of parameters
The current number of positional parameters is stored in the system­
maintained variable =11=. See' 'Parameter and Variable Substitution"
and "Parameters and Variables Set by the Shell."

15.2 Shell variables
Shell variables are named string variables. These variables can be
assigned values anywhere in the script or on the command line.
Variable names begin with a letter and consist of letters, digits, and
underscores. Environment variables, which we have already
encountered, are simply special kinds of shell variables (namely, shell
variables that are available to all subshells).

15.2.1 Assigning values
Shell variables are assigned values with the syntax

name=value [name=value] ...

Note that there cannot be spaces surrounding the equal sign; this is
required.

All values are stored as strings. Pattern-matching is performed. To set
a variable to a string of words separated by blanks, the entire string
must be quoted; for example,

longvar="this is a long variable"

After the variable assignments

user="fred stone" box='???' acct=18999

the following values are assigned:

2-42 AlUX User Interface

user
box
acct

= fred stone
???
18999

Because the Bourne shell supports only string variables, all of these
values (including 18999) will be strings of characters. Note that the
question mark metacharacters must be quoted with single quotes to
prevent pattern matching.

A variable may be set to the null string with the syntax

variable=

Shell variables may be set at the shell prompt to provide abbreviations
for frequently used strings; for example,

b=/usr/fred/bin
mv file $b

moves file from the current directory to the directory
/usr/fred/bin.

An argument to a shell program of the form name=value, which
precedes the command name, causes value to be assigned to name
before execution begins. The value of name in the invoking shell is not
affected. For example,

user=fred com~nd

will execute com~nd with user set to fred.

Mter variable assignments, any additional arguments are assigned to
the positional parameters.

The - k flag causes arguments of the form name=value to be
interpreted in this way anywhere in the argument list. See "Special
Environments.' ,

15.2.2 Removing shell variables
You can remove shell variables by using the unset command
followed by the name of the variable:

unset name

The variable and its value will be removed.

Bourne Shell Reference 2-43

15.3 Setting constants
Names whose values are intended to remain constant may be declared
read-only. The form of this command is

readonly name ...

Subsequent attempts to assign values to read-only variables are illegal.

15.4 Parameter and variable substitution
Positional parameters and shell variables are referenced and their
values are substituted when the identifier (the variable name or
positional parameter number) is preceded by a dollar sign ($):

$ identifier

For example,

$j1 $1 $8 $version

For variables, identifier can be any valid name; for positional
parameters, identifier must be a digit between 0 and 9 inclusive.
Additional positional parameters must be moved into this range with
the shift command described above, referenced with the $ * notation
described below, or accessed through the for construct.

Another notation for substitution uses braces to enclose identifier:

echo $ {identifier}

This is equivalent to $ identifier. Braces are generally used when you
may want to append a letter or digit to identifier. For example,

tmp=/tmp/ps
ps a >$ {tmp}a

substitutes the value of the variable tmp and directs the output of ps to
the file / tmp / p sa, whereas

ps a >$tmpa

causes the value of the variable tmpa to be substituted.

A special shell parameter, *, can be used to substitute for all positional
parameters (except 0, which is reserved for the name of the file being
executed). The notation @ is the same as * except when it is quoted.
Thus,

2-44 A/UX User Interface

echo "$*"

prints all values of all the positional parameters, and

echo "$@"

passes the positional parameters, unevaluated, to echo and is
equivalent to

echo "$1" "$2" ...

15.5 Testing assignment and setting defaults
If a parameter or variable is not set, then the null string is substituted
for it. For example, if the variable d is not set,

echo $d

or

echo ${d}

prints a blank line.

The following structures allow you to test whether variables or
parameters are set and not null, and provide default values or messages.
In these structures, string is evaluated only if it is to be substituted
(command substitution, another variable, and so forth). If the colon is
omitted, the shell checks only that the variable has been set; no action
is taken if the variable or parameter is currently null.

$ {identifier: -string}
If the parameter or variable whose name is represented by
identifier is set and is non-null, substitute its value; otherwise
substitute string. The value of the variable or parameter is not
changed. For example, if the variable test is null or unset, then

${test:-unset}

returns the string unset; otherwise the value of test is returned.

$ { identifier: + string}
If identifier is set and is non-null, substitute string; otherwise
substitute nothing. The value of the variable or parameter is not
changed. For example, if the variable test was null or unset,
then

Bourne Shell Reference 2-45

${test:+unset}

returns nothing.

$ { variable: =string }
If variable is not set or is null, set it to string .. then substitute the
new value. Positional parameters may not be assigned in this
way. For example,

$ {HOME:=/user/doc}

tests the environmental variable HOME to see if it had a non-null
value. If it did not, it would be assigned the value /user / doc
and this value would be substituted. Otherwise the original value
of HOME would be returned.

$ {identifier: ? string}
If identifier is set and is non-null, substitute its value; otherwise
print string and exit from the shell. If string is omitted, the
message

filename: identifier: parameter null or not set

prints. For example, a shell script named distribute that
requires the parameter directory to be set might start as
follows:

echo ${directory:?"distribution directory not set"}

If directory was not set, the script would immediately exit
with the message

distribute: directory: distribution directory not set

15.6 Parameters and variables set by the shell
Except for the exclamation mark (!), the following parameters are
initially defined by the shell; the! is defined only after a background
task is executed. These parameters can be referenced anywhere
identifier or variable appears in the standard forms described in the
previous section; for example echo $?

? The exit status of the last command as a decimal string. Most
commands return a zero exit status if they complete
successfully; otherwise a nonzero exit status is returned. This is
used in the if and while constructs for control of execution.

2-46 AlUX User Interface

The number of positional parameters in decimal. For example,
this notation is used in a script to refer to the number of
arguments. An example of this use appears in the case
section.

* All the positional parameters (arguments) of a shell script. For
example,

for i in $*
do

echo $i
done

The above shell subroutine prints all the positional parameters.

$ The process ID of this shell in decimal. Because process IDs
are unique among all existing processes, this string is frequently
used to generate unique temporary filenames. For example,

ps a > /tmp/ps$$
command-list
rm /tmp/ps$$

The process ID of the last process run in the background.

The current shell flags, such as -x and -v.

16. Control-flow constructs
The shell has a variety of ways of controlling the flow of execution.
The actions of the for loop and the case branch are determined by
data available to the shell. The actions of the while or until loop
and "i f then e 1 s e " branch are determined by the exit status
returned by commands or tests. Control-flow constructs can be used
together and loops can be nested.

In the following constructs, reserved words like do and done are only
recognized following a newline or semicolon. command-list is a
sequence of one or more simple commands separated or terminated by
a new line or a semicolon.

16.1 for loOpS
To repeat the same set of commands for several files or arguments, use
the for loop:

Bourne Shell Reference 2-47

for name in word1 word2
do

command-list
done

Note: The words for, do, and done must follow a newline or
semicolon.

An example of such a procedure is tel, which searches a file of
telephone numbers, /usr / lib/telnos, for the various names given
as arguments to the command and passed as positional parameters.
The text of tel is

for i
do

grep $i /usr/lib/telnos
done

Note that the "f 0 r i" notation is shorthand for "f a r i in $ * " .
The command

tel fred

sets i to the name f red and prints those lines in the file
/usr / lib/telnos that contain the string fred. It is equivalent to

for i in fred
do

grep $i /usr/lib/telnos
done

The command

tel fred bert

prints those lines containing f red followed by those for be rt.

To terminate a loop before the condition fails (or is met), or to continue
a loop and cause it to reiterate before the end of command-list is
reached, use the loop-control commands:

2-48 AlUX User Interface

break [n]
continue [n]

These commands can appear only between the loop delimiters do and
done. The break command terminates execution of the current loop;
execution resumes after the nearest done. The continue command
causes execution to resume at the beginning of the current loop.

For both break and continue, the optional n indicates the number
of levels of enclosing loops at which execution should resume or
continue. For example, the break 2 in

for i in 0 1
do

for j in 0 1
do

done

for k in 0 1 2 3
do

done

echo ij$k
break 2

done

causes execution to resume two levels above the current loop.

16.2 case statements
The form of the cas e statement is

case word in
pattern) command-list;;

pattern) command-list;;
esac

Each command-list except the last must end with " ; ; ". (The
semicolons after the last command-list are optional.) This breaks out of
the case statement after execution. After execution of command-list,
the case is complete and control passes to the command following
esac.

Patterns may include filename expansion metacharacters. However,
unlike filenames, the initial dot, slashes, and a dot following a slash do

Bourne Shell Reference 2-49

not have to be matched explicitly. Different patterns to be associated
with the same command-list are separated by the OR operator, the
vertical bar (I). To be used literally, pattern-matching metacharacters
must be quoted. Because an asterisk (*) matches any sequence of
characters, it can be used to set up a default case. However, be careful
in setting up the default; there is no check to ensure that only one
pattern matches the case argument. The first match found defines the
set of commands to be executed. In the next example, the commands
following the first (*) will never be executed because the first (*)
matches everything it receives.

case $# in
*) exit ;;
0) echo "no arguments given"

exit ;;
esac

The following is an example of a case statement within a script
named append that appends files:

case $# in
1) cat »$1 ;;
2) cat $1»$2 ;;
*) echo 'usage: append [from] to' ff

esac

When called with one argument, as in

append file

the system-set variable # is assigned the value 1 (the number of
parameters in the call); and the standard input is appended (copied)
onto the end of file using the cat command:

append file1 file2

Then the value of # is 2 and the command appends the contents of
file1 onto file2. If the number of arguments supplied to append
(that is, the value of $#) is greater than 2 or is 0, then the shell prints an
error message indicating proper usage.

The following example illustrates the use of alternative patterns
separated by a vertical bar (I):

2-50 A/UX User Interface

case $i in
-x I-y) command;;

esac

The same effect could be had by using the bracket metacharacters ([
and]), as in

case $i in
- [xy]) command; ;

esac

When using metacharacters, the usual quoting conventions apply so
that

case $i in
\?) echo "input is ?" ;;

esac

matches the character ? for the first pattern.

A common use of the case construct is to distinguish between
different forms of an argument. The following example is a fragment
of a script that uses a case statement inside a for loop:

for i
do

case $i in
-[ocs])
-*) echo "unknown flag $i" ;;
* . c) / lib / cO $ i ... ;;
*) echo "unexpected argument $i" ;;

esac
done

16.3 whi.l.e loops
The while and until commands cause the program to loop
depending on whether or not a certain condition is met.

A while loop has the form

Bourne Shell Reference 2-51

while command-listl
do

command-list2
done

Note: The words while, do, and done must follow a newline
or semicolon.

The while command tests the exit status of the last simple command
in command-listl. Each time round the loop, command-listl is
executed. If the last command executes successfully (a zero [true] exit
status is returned), then command-list2 is executed; otherwise the loop
terminates. If the last command executes successfully but returns a
nonzero exit status, the while loop will think it is false and terminate.
For example, the script

while test $1
do

command-list
shift

done

loops through all the positional parameters. For each iteration of the
loop, the test command is used to determine if the parameter exists.
If it does, then test returns a zero (true) exit status and the following
commands execute.

The shi f t command is used to rename the positional parameters $ 2,
$ 3, . .. as $1, $ 2, ... , and remove the first one, $1. This entire loop
is equivalent to

for i
do

command-list
done

To create an endless nonconditional while loop, use the A/UX true
command, which always returns a zero exit status.

2-52 A/UX User Interface

16.4 until. loops
The un til loop has the fonn

un til command-list1
do

command-list2
done

Note: The words until, do, and done must follow a newline
or semicolon.

It works the same way as a while loop, except that the termination
condition is reversed. Each time round the loop, command-list1
executes; if the last command does not execute successfully (returns a
nonzero [false] exit status), then command-list2 is executed.

A common use for an until loop is to wait until some external event
occurs and then run some commands. For example,

until test -f file
do

sleep 300
done
commands

will loop untilfile exists. Each time round the loop, it waits for 5
minutes (300 seconds) before trying again. (Presumably, another
process will eventually create the file.)

To terminate a loop before the condition fails (or is met), or to continue
a loop and cause it to reiterate before the end of the command list is
reached, use the loop-control commands:

break [n]
continue [n]

These commands can appear only between the loop delimiters do and
done, as in the for loop. See "for Loops" for more information on
using the break and continue commands.

For both while and until loops, the exit status of the loop is that of
the last command executed in command-list2. If no commands in

Bourne Shell Reference 2-53

command-list2 are executed, then a zero exit status is returned.

To create an endless nonconditional until loop, use the NUX
false command. See true(l) inA/UX Command Reference for
details.

16.5 if then else
The form of the "if then else" conditional branch is

if command-list1
then

command-list2
[else

command-list3]
fi

In this structure, else and command-list3 are optional. The if
command tests the exit status of the last simple command in
command-list1. If the last command executes successfully (a zero
[true] exit status is returned), then command-list2 is executed;
otherwise command-list3, if present, is executed. For example, the if
command can be used with the t est command to test for the existence
of a file, as below:

if test -f file
then

command-list1
else

command-list2
fi

People find it natural to name test files test, which makes it awkward
(and dangerous) to use the test command as well. A harmless
alternative is the [] construct:

if [-f file]
then

command-listl
else

command-list2
fi

2-54 NUX User Interface

Multiple conditions can be tested with a nested if command:

if conditionl
then

command-listl
else

fi

if condition2
then

command-list2
else

fi

if condition3
command-list3

fi

Note that each of the nested if commands requires its own fi. You
can also use a single if construct to achieve this effect:

if conditionl
then

command-listl
elif condition2
then

command-list2
elif condition3

command-list3
fi

Note that this is a single if construct with only one terminating fi.

An example of the if statement can be found in the following script,
which updates the last modified time for a list of files.

Bourne Shell Reference 2-55

flag=
for i
do

case $i in
-c) flag=N;;

*) if test -f $i
then

touch $i
elif test $flag
then

>$i
else

echo "file $i does not exist"

esac
done

fi

The - c flag in this command forces subsequent files to be created if
they do not already exist Without the -c flag, an error message prints
if the file does not exist The shell variable f lag is set to some non­
null string if the -c argument is encountered.

The exit status of the if command is the exit status of the last
command following a then or else. If no such commands are
executed, then the exit status is zero.

Conditional execution of commands can also be achieved with the
symbols & & and I I. See' 'Conditional Execution" for details.

16.6 exit
A shell script terminates when it reaches eof. The exit status of the
script is that of the last command executed. The built-in exi t
command can cause the script to terminate with exit status set to n. If n
is omitted, exit status is that of the last command executed before
exi t was encountered.

2-56 A/UX User Interface

17. Input and output
17.1 1/0 redirection
All forms of input and output redirection are allowed in shell scripts. If
input or output redirection (using < or » is done in any of the control­
flow commands, the entire command is executed in a subshell. This
means that any values assigned during execution of the command will
not be available after the command is over and control returns to the
parent shell. If necessary, you can change the shell's standard input
and output. See "Changing the Shell's Standard Input and Output."

17.1.1 Redirection with file descriptors
The A/UX system considers standard input, standard output, and
standard error output as files, and associates a file descriptor with each
of them.

File descriptors are numbers used to identify files. File descriptors run
from ° to (OPEN_MAX-1) (see intro(2) inA/UX Programmer's
Reference). By default, the file descriptors 0, 1, and 2 have the
following associations:

• ° is associated with standard input.

• 1 is associated with standard output.

• 2 is associated with standard error output.

Thus, standard input can be referenced via file descriptor 0, standard
output can be referenced via file descriptor 1, and standard error can be
referenced via file descriptor 2.

Input and output redirection uses the syntax

[x]< filename

and

[x]> filename

where x is an optional file descriptor number indicating a file; > and <
are redirection operators; and filename is a file containing input, or to
which output will be directed. The simple forms omit the file
descriptor x and use the defaults listed above. If no descriptor appears,
it is assumed to be ° for input redirection and 1 for output redirection.

Bourne Shell Reference 2-57

Standard error output must be redirected explicitly using a numeric file
descriptor as documented below. The > > form may be used to append
output to an existing file rather than overwrite the file's contents.

All file descriptors can be used with redirection characters in a
command line, immediately preceding the redirection symbo1. For
example,

cc x.c 2>&1 I more

redirects standard error on top of standard output and pipes the result
through more. Note that there must be no spaces between the
characters in "2> & 1 " .

In all forms, specifications are evaluated by the shell from left to right
as they appear in the command. Filenames are subject to variable and
command substitution only. No filename expansion or blank
interpretation takes place; for example, the command

cat testfile > *.c

simply writes testfile into a file named "*. coo.

17.1.2 File descriptors red irecting input
The default file descriptor for redirecting standard input is O. This may
be specified as

cat O<filename

Because this is the default file descriptor, it may be omitted as follows:

cat <filename

17.1.3 File descriptors red irecting output
The default file descriptor for redirecting output is 1. This may be
specified as

cat l>filename

Because this is the default file descriptor, it may be omitted as follows:

cat >filename

17.1.4 Combining standard error and standard output
The default file descriptor for redirecting standard error output is 2. If
you want to direct the error output of a command to a file (to save the

2-58 A/UX User Interface

error messages), use the syntax

Is filename 2>errors

This saves error output (for example, "filename not found") in a
file named e r ro r s. If you want to save the command output and
error output in separate files, use the syntax

Is filename >output 2>errors

To print the output and the error output in the same file, use the syntax

Is filename >output 2>&1

This writes both standard output and error output in the file out pu t.
Note that 2>& 1 references the output file because you have already
redirected standard output (file descriptor 1) to this file.

For example, to save the output and the error output of the make
command in a file named make. log, use the command

make> make.log 2>&1

17.1.5 Changing the shell's standard input and output
To associate standard input or standard output with a file, use the exec
command:

exec >filename (for standard output)
exec <filename (for standard input)

Output will be written to, or input taken from, the file specified until
further redirection is done with the exec command. This can be
useful if all output is to be taken from a file or written to a file. This
construct is unlike normal shell redirection with> and < in that the
redirection remains in effect until you log out or explicitly reset the
standard I/O files.

To return output and input to the terminal, use the commands

exec> /dev/tty (for output)
exec < / dev / tty (for input)

Reassignment can be used to avoid the problems involved in
redirecting output or input in a control-flow structure.

Bourne Shell Reference 2-59

17.1.6 Associating file descriptors with other files
The exec command can also be used to associate file descriptors with
specific files. This can be an advantage in shell scripts that need to
read or write a file line by line (see also "Reading Input"), because
writing output to a file descriptor cannot overwrite a file's contents.
The command syntax

exec x<filename

where x is a number [3 to (OPEN _MAX-I)], associates filename with x
(see in t ro(2) in AIUX Pro grammer's Reference for a definition of
OPEN_MAX). For example, the commands

exec 4<filel
exec 5<file2

associate file descriptor 4 with filel and file descriptor 5 with
file2. After these commands, the syntax

command <&4

takes input from filel and

command >&5

writes output to file2. Using the ampersand (&) prevents the shell
from creating or looking for a file named 4 or 5 in these examples.

The following example shows how the >&n file descriptor syntax may
be used:

$ exec 4>file2
$ echo hello >&4
$ cat file2
hello
$ echo bye >&4
$ cat file2
hello
bye

Note that this file descriptor syntax can be repeated in a loop without
overwriting the contents of file2.

2-60 AlUX User Interface

17.2 Reading input
The built-in read command reads a line of input from the terminal or
a file and assigns it to the variables specified. The form of the read
command is

read [name ... J

One line is read from the standard input and the first word is assigned
to the first name, the second word to the second name, and so on, with
leftover words assigned to the last name. If only one name is specified,
the entire line read will be assigned to that name. The exit status is
zero while there is data to be read. If an eo! or an interrupt is
encountered, the exit status is nonzero.

For example, you could use the read command to take input from the
terminal as follows:

$ read first middle last abbreviations
Alyssa Elizabeth Lynch Dr. Ph.D.

This would result in the following variables assignments:

first=Alyssa
middle=Elizabeth
last=Lynch
abbreviations=Dr. Ph.D.

The read command can also take input from a file, but will always
read the first line. If you wish to move sequentially through a file,
reading it line by line, you must first use the exec command to make
the file standard input as follows:

exec < name. list
while read first middle last abbreviations
do

command-list
done
exec < /dev/tty

In the above example, the exec command is used to reassign standard
input to the file "name .list". The while loop then uses the read
command to read each line of the file into the variables first,
middle, last, and abbreviations, and execute command-list.

Bourne Shell Reference 2-61

When read reaches the end of the file, it will return a nonzero exit
status and the while loop will terminate. The final exec command
then assigns standard input back to the terminal. For information about
reassignment with the exec command, see the preceding section.

The NUX line command functions exactly like the read command,
except that a whole line is read into a single variable. The line will be
terminated with a newline.

17.3 Taking input from scripts
Input to a shell script can be embedded inside the script itself. This is
called a here document. The information in a here document is
enclosed as follows:

«[-] word
information

word

The first word may appear anywhere on a line; the second must appear
alone on a line, that is, it cannot be indented. The words must be
identical and should not be anything that will appear in information.
The second word is the end-of-file for the here document. Variable and
command substitution will occur on information. Normal quoting
conventions apply, so that $ can be escaped with \. To prevent all
substitution, quote any character of the first instance of word. (If
substitution is not required, this is more efficient.)

To strip leading tabs from word and information, precede the first
instance of word with the optional hyphen (-), as follows:

«-word

Note: If you intend to indent your code, you must use the
hyphen preceding word unless the commands you use can
tolerate leading tabs.

For example, a shell procedure could contain the lines

2-62 AlUX User Interface

for i
do

grep $i /usr/lib/telnos
done

Here the grep command looks for the pattern specified by $ i in the
file /usr / lib/telnos. This file could contains the lines

fred rnh0123
bert rnh0789

An alternative to using an external file would be to include this data
within the shell procedure itself as a here document:

for i
do

grep $i «!

fred rnh0123
bert rnh0789

done

In this example, the shell takes the lines between < <! and ! as the
standard input for grep. The second! represents the eof. The choice
of ! is arbitrary. Any string can be used to open and close a here
document, provided that the string is quoted if white space is present
and the string does not appear in the text of the here document.

Here documents are often used to provide the text for commands to be
given for interactive processes, such as an editor, called in the middle
of a script. For example, suppose you have a script named change
that changes a product name in every file in a directory to a new name,
as follows:

Bourne Shell Reference 2-63

for i in *
do
echo $i
ed $i «!
g/oldproduct/s//newproduct/g
w

!
done

(Note that ed commands will not tolerate leading tab characters and
there is no hyphen preceding the first word, therefore the code is not
indented.) The metacharacter * is expanded to match all filenames in
the current directory, so the for loop executes once for each file. For
each file, the ed editor is invoked. The editor commands are given in
the here document between < <! and !. They direct the editor to
search globally for the string oldproduct and each time it is found
substitute the string newproduct. After the substitution is made, the
editor saves the new copy of the file with the w command.

You could make the change script more general by using parameter
substitution, as follows:

for i in *
do
echo $i
ed $i «!
g/$1/s//$2/g
w

done

Now the old and new product names (or any other strings) can be given
as positional parameters on the command line:

change string1 string2

Substitution of individual characters can be prevented by using a
backslash (\) to quote the special character $, as in

2-64 A/UX User Interface

for i in *
do
echo $i
ed $i «!
1,\$s/$1/$2/g
w

done

This version of the script is equivalent to the first, except that the
substitution is directed to take place on the first to the last lines of the
file (1, $) instead of "globally" (g) as in the first example. This way
of giving the command has the advantage that the editor will print a
question mark (?) if there are no occurrences of the string $1.

Substitution can be prevented entirely by quoting the first instance of
the terminating string; for example,

ed $i «\!

Note that backslash, single quotes and double quotes all have the same
effect in this context: they tum off variable expansion and filename
expansion.

To prevent leading tabs from becoming part of the here document,
precede the first word with a hyphen, as follows:

for i in *
do

echo $i
ed $i «-!

1,\$s/$1/$2/g
w

done

17.4 Using command substitution
Command substitution can occur in all contexts where variable
substitution occurs. You can use command substitution in a shell script
to avoid typing long lists of filenames. For example,

Bourne Shell Reference 2-65

ex 'grep -1 TRACE *.c'

runs the ex editor, supplying as arguments those files whose names end
in . c and that contain the string TRACE. Another example,

for i in 'Is -t'
do

command-list $ i
done

sets the variable i to each consecutive filename in the current
directory, with the most recent filename first.

Command substitution is also used to generate strings. For example,

set 'date'; echo $6 $2 $3, $4

first sets the positional parameters to the output of the date command
and then will print; for example,

1986 Nov 1, 23:59:59

Another common example of command substitution uses the
basename command. basename removes the suffix from a string,
so

basename main.c .c

prints the string main. The following fragment illustrates its
application in a command substitution:

case $A in

*.c) B='basename $A .c'

esac

Here B is set to the part of $A with the suffix. c stripped off.

17.5 Writing to standard output
The echo command is used to write to standard output (by default, the
terminal). The form of the echo command is

echo arguments escapes

The arguments are what is written. They are evaluated like the

2-66 A/UX User Interface

arguments of any other command with variable and command
substitution, filename expansion, and blank interpretation. Normal
quoting conventions apply. Strings containing blanks must be enclosed
in double quotes. The arguments will be written sequentially separated
by blanks, and by default they will be tenninated with a new line. If
there are no arguments or the arguments are unset or null variables, a
blank line will be returned.

The escapes indicate how the arguments should be printed. The
possible escapes are

\ b backspace

\ c print line without newline

\f form feed

\n newline

\ r carriage return

\t tab

\ v vertical tab

\ \ backslash

\n the 8-bit character whose ASCII code is the 1-,2-, or 3-digit octal
number n, which must start with a zero

The backslash in each escape must be quoted; that is, it must appear
twice or be enclosed in quotes. Escapes can occur anywhere among
the arguments. For example, to produce two lines of output with a
single echo command, you could give the command

echo "line one"\\n"line two"

To print the value of a variable and keep the cursor in the same line,
you could give the command

echo $jj\\c

See echo(l) in A/UX Command Reference for more information.

Bourne Shell Reference 2-67

18. Other features
18.1 Arithmetic and expressions
The Bourne shell has no built-in arithmetic. The A/UX expr
command can be used for integer arithmetic, logical operations,
comparison, and some pattern matching and creation of substrings.

Integers and operands are passed to the expr command as separate
arguments, which means that they must be separated by spaces as
follows:

expr 1 + 1

Shell metacharacters such as the asterisk (*), must be quoted with the
backslash (\). For instance, to have the shell compute the value of 5
factorial (in symbols: 5!), you could enter

expr 5 * 4 * 3 * 2

The following are some of the operators allowed in expr expressions,
in increasing precedence:

+

\> \>= \< \<= !=
These symbols return the result of an integer comparison if both
arguments are integers; otherwise they return the result of a
lexical comparison.

These symbols return the result of addition or subtraction of
integer-valued arguments.

* / %
These symbols return the result of multiplication or division, or
the remainder of the integer-valued arguments.

For a complete list, see expr(l) in AIUX Command Reference.

The primary use of expr is in command substitution to set variables.
For example, to count the iterations of a loop, you could increment the
variable a as follows:

a='expr $a + 1 '

The expr command can also be used to pick apart strings and do
pattern matching. To perform floating-point calculation, use awk or

2-68 AlUX User Interface

be. SeeAIUX Programming Languages and Tools, Volwne 2 for
details.

18.2 File status and string comparison
The built-in test command evaluates an expression and returns a zero
(true) exit status if the expression is true, and a nonzero (false) exit
status if the expression is false or there is no argument It is often used
in the shell control-flow constructs.

For example,

test -f file

returns zero exit status if file exists and nonzero exit status otherwise.
Some of the more frequently used test arguments are given below.
See "Summary of Bourne Shell Commands" at the end of this chapter
for a complete list.

Note: Because people often name test programs test, you
may obtain unpredictable results using the test command as
well. A harmless alternative is the [] construct, such as

if [-f file]
then

command-list
fi

test s True if s is not the null string.

test sl = s2 True if sl and s2 are identical.

test sl != s2 True if sl and s2 are not identical.

test -f file True if file exists.

test -r file True if file exists and is readable.

test -w file True if file exists and is writable.

test -d file True if file exists and is a directory.

Bourne Shell Reference 2-69

test nl -eq n2 True if the integers nl and n2 are algebraically
equal. Any of the comparisons -ne, -gt,
-ge, -1 t, and -Ie may be used in place of
-eq.

In addition, there are the following operators:

the unary negation operator

-a binary AND operator

-0 binary OR operator

The -a operator has higher precedence than -0.

All the operators and flags are separate arguments to test.
Parentheses can be used for grouping, but must be escaped with the
backslash.

The following is a typical use of the t est command in a shell script:

if test -d foo
then

echo "foo is a directory"
fi

This prints the message "foo is a directory" if foo is found
to be a directory when the t est command is run.

There is also an alternate name for the test command, the left
bracket, [. When invoked under this name, the following form works
identically to the example above:

if [-d foo]
then

echo "foo is a directory"
fi

Be sure to surround each bracket with spaces, or they will not be
recognized as a command.

18.3 The null command (:)
The null command (:) does nothing and returns a zero exit status. The
form of the command is

2-70 AlUX User Interface

: args

This command can also be used wherever t rue can be used; for
example,

while : args

19. Error handling
The treatment of errors detected by the shell depends on the type of
error and on whether the shell is being used interactively.

Execution of a command may fail for any of the following reasons:

• I/O redirection may fail if a file does not exist or cannot be
created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus
error or memory fault signal.

• The command terminates normally but returns a nonzero exit
status.

In most cases, the shell will print an error message and go on to
execute the next command. An interactive shell will return to read
another command from the terminal. If the command is a shell script,
nonzero exit status or abnormal termination of a command may allow
the script to continue on to execute the next command.

Other types of errors, such as failed I/O redirection, command not
found, syntax errors such as "i f then done", an interrupt signal
that was not trapped, or failure of any of the built-in commands usually
cause a script to terminate.

The shell flag -e causes the shell to terminate if an error is detected.

19.1 Fault handling and Interrupts
The A/UX system uses signals to communicate between processes.
Most signals indicate an interrupt, termination, error condition, or other
break in processing. See s ignal(3) in A/UX Pro grammer's
Reference for more information.

The signals that are likely to be of interest in fault handling are

Bourne Shell Reference 2-71

• 1, hangup

• 2, interrupt

• 3, quit

• 14, alarm clock

• 15, software termination (kill)

When a process receives a signal, it can handle it in one of three ways:

• Signals can be ignored. Some signals will cause a core dump if
they are not caught.

• Signals can be caught, in which case the process must decide
what action to take when the signal is received.

• Signals can be left to cause termination of the process without
further action.

Note: The built-in trap command is suitable only for simple
signal handling (for example, catching an interrupt from the
keyboard in order to terminate the script). Functions requiring
complex signal handling should be implemented as a C
program. SeeAIUX Programming Languages and Tools,
Volume 1 for more information about the C programming
language and associated library routines.

The built-in trap command allows you to detect error signals and
indicate what action should be taken. The command has the form

trap [command] [number] ...

command is a command string that is read and executed when the shell
receives signals whose numbers are given in number. command is
scanned once when the trap is set and once when the trap is executed.
trap commands are executed in order of signal number. Any attempt
to set a trap on a signal that was ignored on entry to the current shell is
ineffective. An attempt to trap on signal 11 (memory fault) produces
an error.

The trap command with numbers but without any arguments resets
the corresponding signals to their original values. If command is the

2-72 A/UX User Interface

null string, the signal whose number is given is ignored by the shell and
by the commands it invokes. If number is 0, commands are executed
on normal termination from the shell script. The t rap command with
no arguments prints a list of commands associated with each signal
number.

For example,

trap 'rm -f /tmp/junk; exit' 0 1 2 3 15

sets a trap for the specified signals and if anyone of these signals is
received, it will execute the following commands:

rm -f /tmp/junk; exit

It removes the temporary file / tmp / junk and then exits from the
script. (exit is a built-in command that terminates execution of a
shell procedure.) The exit is required; otherwise after the trap has
been taken, the shell will resume executing the procedure at the place
where it was interrupted.

The use of t rap is illustrated in the following script:

flag=
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do

case $i in
-c) flag=N, ,

*) if test -f $i
then

In $i junk$$; rm junk$$
elif test $flag
then

echo "file '$i' does not exist"
else

esac
done

>$i
fi ;;

The cleanup action is to remove the file junk$$. (This file is named
after the process ID of the script, which is kept in the

Bourne Shell Reference 2-73

system-maintained variable $; see "Parameters and Variables Set by
the Shell.") The trap command appears before the creation of the
temporary file; otherwise it would be possible for the process to die
without removing the file.

A procedure may itself elect to ignore signals by specifying the null
string as the argument to trap. The fragment

trap " 1 2 3 15

causes the system hangup, interrupt, quit, and software termination
signals to be ignored both by the procedure and by invoked commands.
These settings could be listed with the t rap command without
arguments, and reset by entering

trap 1 2 3 15

which resets the traps for the corresponding signals to their default
values.

The following s can procedure is an example of using t rap where
there is no exit in the t rap command:

d='pwd'
for i in *
do

if test -d $d/$i
then

cd $d/$i
while echo "$i:" && trap exit 2 && read x
do

fi
done

trap : 2
eval $x

done

This procedure steps through each directory in the current directory,
prompts with its name, and then executes commands entered at the
terminal until an eo! or an interrupt is received. Interrupts are ignored
while executing the requested commands but cause termination when
s can is waiting for input.

2-74 A/UX User Interface

19.2 Debugging a shell script
Several shell options can be set that will help with debugging shell
scripts. These are

-e e (error) causes the shell to exit immediately if any command
exits with a nonzero exit status. (This can be dangerous in
scripts involving until loops and other constructs where
nonzero exit status is desired.)

-n n (no execute) prevents execution of subsequent commands.
Commands will be evaluated but not executed. This is usually
combined with the -v option when used for debugging. (Note
that typing set -n at a terminal will render the terminal useless
until an eo! is entered.)

-u u (unset) causes the shell to treat unset variables as an error
condition.

-v v (verbose) causes lines of the procedure to be printed as read.
Use this to help isolate syntax errors.

-x x provides an execution trace. Following parameter substitution,
each command is printed as it is executed.

These execution options can be turned on with the set command:

set -option

either inside the script or before its execution (except -n, which will
freeze the terminal until you send an eo}). Options can be turned off by
typing

set +option

Alternatively, they can be turned on with the sh command if the script
is executed this way. The current setting of the shell flags is available
as $-.

20. Summary of Bourne shell commands
Input/output redirection is permitted for these commands. File
descriptor 1 is the default output location.

No effect; the command does nothing. A zero exit code is
returned. See "The Null Command (:)."

Bourne Shell Reference 2-75

· file
Read and execute commands fromfile and return. The search
path specified by PATH is used to find the directory containing
file. Note that the dot command does not spawn a subshell. See
"Executing Shell Scripts."

break [n]
Exit from the enclosing for or while loop, if any. If n is
specified, break n levels. See' 'Control-Flow Constructs."

cd [arg]
Change the current directory to argo The environment variable
HOME is the default argo The environment variable CDPATH

defines the search path for the directory containing argo If arg
begins with /, the search path is not used. Otherwise each
directory in the path is searched for argo See "The
Environment. "

continue [n]
Resume the next iteration of the enclosing for or while loop.
If n is specified, resume at the nth enclosing loop. See
"Control-Flow Constructs."

eval [arg ...]
Read arguments as input to the shell and execute the resulting
commands. See' 'Forcing More Than One Pass of Evaluation."

exec [arg ...]
Execute the command specified by the arguments in place of this
shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given, cause the shell
input/output to be modified. See' 'Command Execution."

exit [n]
Cause the shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. (An
eo/will also cause the shell to exit.) See "Working With More
Than One Shell."

export [name ...]

2-76

Mark names for automatic export to the environment of
subsequently executed commands. If no arguments are given, a

AlUX User Interface

list is printed of all names exported in the current shell. Function
names may not be exported. See' 'The Environment.' ,

hash [-r] [name ...]
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell.
The - r option causes the shell to forget all locations. If no
arguments are given, hits and cost about remembered commands
are presented. hits is the number of times a command has been
invoked by the shell process. cost is a measure of the work
required to locate a command in the search path. There are
certain situations that require that the stored location of a
command be recalculated. Commands for which this will be
done are indicated by an asterisk (*) adjacent to the hits
information. cost will be incremented when the recalculation is
done. See' 'Writing Efficient Shell Scripts. "

newgrp [arg ...]

pwd

Equivalent to "exec newgrp arg ... ". This built-in version
executes faster than the NUX command but is otherwise
identical. See newgrp(l) in AIUX Command Reference for
usage and description.

Print the current working directory. This built-in version
executes faster than the NUX command but is otherwise
identical. See pWd(l) in AIUX Command Reference for usage
and description.

read [name . ..]
Read one line from the standard input and assign the first word to
the first name, the second word to the second name, and so on,
with leftover words assigned to the last name. The exit status is
o unless an eof is encountered. See' 'Writing Interactive Shell
Scripts."

readonly [name . ..]
Mark names read-only. The values of these names cannot be
changed by subsequent assignment. If no arguments are given, a
list of all read-only names is printed. See" Setting Constants. ' ,

Bourne Shell Reference 2-77

return [n]
Cause a function to exit with the return value specified by n. If n
is omitted, the exit status is that of the last command executed.
See' 'Defining Functions."

set [[-][-aefhkntuvx][arg ...]]

-a Mark variables that are modified or created for export.

-e Exit immediately if a command terminates with a nonzero
exit status.

- f Disable filename expansion.

- h Locate and remember function commands as functions that
are defined (function commands are normally located
when the function is executed).

- k Place all keyword arguments in the environment for a
command, not just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current
set of flags may be found in $ -. The remaining arguments are
positional parameters and are assigned, in order, to $1, $ 2, and
so on. If no arguments are given, the values of all names are
printed. See "The Environment" and "Shell Execution
Options."

shift [n]

2-78

Change the names of the positional parameters $ n + 1 ... to $1
... If n is not given, it is assumed to be 1. See "Changing
Parameter Positions. "

A/UX User Interface

test [expr]
Evaluate conditional expressions. test evaluates the
expression expr and, if its value is true, returns a zero (true) exit
status; otherwise, a nonzero (false) exit status is returned. test
also returns a nonzero exit status if there are no arguments. The
superuser is always granted execute permission even though (1)
execute permission is meaningful only for directories and regular
files, and (2) exec requires that at least one execute mode bit be
set for a regular file to be executable.

The following primitives are used to construct expr:

-rfile

-w file

-x file

-f file

-dfile

-cfile

-bfile

-pfile

-ufile

-g file

-kfile

-s file

-t [tildes]

-z sl

-n sl

sl =s2

True if file exists and is readable.

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True iffile exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True if file exists and is a named pipe (FIFO).

True if file exists and its set user ill bit is set.

True if file exists and its set group ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number
is fildes (1 by default) is associated with a
terminal device.

True if the length of string sl is zero.

True if the length of the string sl is nonzero.

True if strings sl and s2 are identical.

Bourne Shell Reference 2-79

sl != s2

sl

nl -eq n2

True if strings sl and s2 are not identical.

True if sl is not the null string.

True if the integers nl and n2 are algebraically
equal. Any of the comparisons -ne, -gt, -ge,
-It, and -Ie may be used in place of -eq.

These primaries may be combined with the
following operators:

-a

-0

(expr)

unary negation operator

binary AND operator

binary OR operator (-a has higher
precedence than -0)

parentheses for grouping

Notice that all the operators and flags are separate arguments to
test. Notice also that parentheses are meaningful to the shell
and, therefore, must be escaped.

test is typically used in shell scripts, as in the following
example, which prints the message "faa is a
directory" if it is found to be one when test is run:

if test -d faa
then

echo "faa is a dir"
fi

times
Print the accumulated user and system times for processes run
from the shell. See' 'Writing Efficient Shell Scripts."

trap [arg] [n] ...

2-80

Read the command arg and execute when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) trap commands are executed
in order of signal number. Any attempt to set a trap on a signal
that was ignored on entry to the current shell is ineffective. An
attempt to trap on signal 11 (memory fault) produces an error. If
arg is absent, all trap(s) n are reset to their original values. If arg

A/UX User Interface

is the null string, this signal is ignored by the shell and by the
commands it invokes. If n is 0, the command arg is executed on
exit from the script. See' 'Fault Handling and Interrupts. ' ,

umask nnn
Set the file-creation mask to nnn. The three octal digits refer to
read/write/execute permissions for owner, group, and others
respectively (see chrrwd(2) and umask(2)). The value of each
specified digit is subtracted from the corresponding "digit"
specified by the system for the creation of a file (see creat(2)).
For example, umask 022 removes group and others write
permission (files normally created with mode 777 become mode
755; files created with mode 666 become mode 644). If the
argument nnn is omitted, the current value of the mask is printed.

Bourne Shell Reference 2-81

Chapter 3

Korn Shell Reference

Contents

1. The Kom shell prompt
1.1 The secondary shell prompt •
1.2 The tertiary shell prompt •
1.3 Changing the prompt character •

2. Types of commands • • • • •
2.1 Learning about built-in commands .

3. The parts of a command • • • • • .

4. Interactive use. • • • • • •• ••••
4.1 Command termination character. . • • • • •
4.2 Impossible commands. . • • . • • • • •
4.3 Background commands • • • • • •

4.3.1 Checking command status • • • •
4.3.2 Logging out. • •• •••••

4.4 Canceling commands • • • • • . • • • •
4.4.1 Before you press RETURN • ••••
4.4.2 While a command is running. • • • • •
4.4.3 Canceling background commands

5. Editing and reusing commands •
5.1 The vi option • • . •

5.1.1 The editor window •
5.1.2 Command history •
5.1.3 Moving the cursor on the command

line • • • • • • • • • •
5.1.4 Changing and inserting text in the command

line • • • . . . • • . • • • •
5.1.5 Deleting text from the command

line • • • . • • • • •

- i -

1
1
1
1

2
2

3

4
4
4
4
5
5
5
6
6
7

8
9
9

10

11

12

13

5.1.6 Copying and moving text within the command
line • • • • • • • •

5.1.7 Specialized editing commands
5.1.8 Printing and executing edited

commands • • • • • • •
5.2 The emacs (and gmacs) options

5.2.1 The emacs input edit commands
5.2.2 The emacs cursor motion

commands • • • • • • •
5.2.3 The emacs history commands
5.2.4 The emacs text modification

commands • • • • . •
5.2.5 Other emacs editing commands .•••

5.3 Using fc or r
5.3.1 Editing and reexecuting previous

commands • •
5.3.2 Listing previous commands

6. Using shell metacharacters • • • • •
6.1 Shortcuts in working with directories

6.1.1 Specifying home directories •
6.1.2 Current and previous directories
6.1.3 Substituting directory names • • •

6.2 Specifying filenames with metacharacters •
6.3 Input and output redirection • • • • •
6.4 Combining commands: pipelines
6.5 Connecting a command to standard input and

output •••••• • • • • •
6.6 Command grouping • • • • • • •
6.7 Conditional execution. • • . • • •
6.8 Quoting • • • • • • • • • • •

7. Working with more than one shell •
7.1 Changing to a new shell
7.2 Changing your default shell •

8. The environment • • • • •
8.1 Listing existing values ••••
8.2 Assigning values to environment

variables. • • • • • • • • • • •

- ii -

13
13

14
14
15

15
15

16
17
18

18
20

21
23
23
23
24
24
27
28

29
30
31
32

33
34
34

34
35

36

8.3
8.4
8.5
8.6
8.7

Removing environment variables • • • •
Commonly used environment variables ..•.
The environment and new shell instances •
Special environments • • • . • •
The default environment on your system

9. The .profile file • • • •
9.1 A sample . profile file

9.1.1 Locating commands
9.1.2 Shortcuts in changing directories
9.1.3 Receiving mail • • • • • • • •
9.1.4 Your editing environment. .

9.2 Customizing your login procedure

10. The . kshrc file • • • • • • •
10.1 A sample. kshrc file

10.1.1 Changing history variables
10.2 Changing the ENVfilename • •

11. Aliases for commonly used commands
11.1 Defining an alias
11.2 Listing and removing aliases •
11.3 Tracking with aliases
11.4 Default aliases . • • •

36
36
39
40
41

42
43
43
44
45
45
45

46
46
46
47

47
48
49
49
50

12. Shell execution options • • • • • • • 50
12.1 Options that affect the environment. 51
12.2 Options for invoking new shells • 51

13. Job control • • • • • • • • • • 52
13.1 Suspending a job • • • . 52
13.2 Listing jobs • • • • • • 53
13.3 Changing the status of stopped jobs • 53
13.4 Blocked jobs • • • • • • • • • 55
13.5 Canceling jobs • • • • • 55
13.6 Logging out with stopped jobs 56

14. Using shell layering • • • •

15. Overview of shell programming
15.1 Writing shell programs
15.2 Executing shell scripts

- iii -

56

56
57
58

15.3 Comments
15.4 Writing interactive shell scripts •
15.5 Canceling a shell script
15.6 Writing efficient shell scripts. •

16. Command evaluation. • • • . •
16.1 Forcing more than one pass of evaluation •
16.2 Command execution • • . . •
16.3 Exit status: the value of the command

17. Defining functions

59
59
60
60

61
63
63
64

64

18. Positional parameters and shell variables • 66
18.1 Positional parameters • • • • 67

18.1.1 Setting values in a script • 67
18.1.2 Changing parameter positions 68
18.1.3 Number of parameters . • • • • 69

18.2 Shell variables • • • • 69
18.2.1 Assigning values 69
18.2.2 Arrays of strings 70
18.2.3 Assigning values and types to

variables ••• • . • 70
18.2.4 Assigning values on the command

line • • • • . • . 76
18.2.5 Removing shell variables • 76

18.3 Setting constants • • • • • 76
18.4 Parameter and variable substitution 77
18.5 Referencing arrays. • • • • 78
18.6 Testing assignment and setting defaults •..• 79
18.7 Creating substrings in substitution 80
18.8 Parameters and variables set by the

system

19. Control-flow constructs •
19.1 for loops
19.2 select statements
19.3 case statements
19.4 while loops • • • •
19.5 until loops . • • •
19.6 if then else .
19.7 exit

- iv -

81

82
83
84
85
87
88
89
91

20. Input and output • • • • • . • • •
20.1 I/O redirection . • • • • • . . . • • •

20.1.1 Redirection with file descriptors . . • • .
20.1.2 File descriptors redirecting input
20.1.3 File descriptors redirecting output
20.1.4 Combining standard error and standard

output • •
20.1.5 Changing the shell's standard input and

output • . • •
20.1.6 Associating other files with file

descriptors . • .
20.2 Reading input . • • • •
20.3 Taking input from scripts. • • . . . • • .
20.4 Using command substitution •
20.5 Writing to the standard output
20.6 Creating and reading a menu. •

21. Other features • • • • • • . •
21.1 Arithmetic evaluation • • • .
21.2 File status and string comparison • • • •
21.3 The null command (:) ••••..•••

22. Error handling. • • • • •
22.1 Fault handling and interrupts .
22.2 Debugging a shell script • . • • .

23. Summary of Korn shell commands

Tables

Table 3-1. Listing functions, aliases, and
variables • • • • . • •

-v-

92
92
92
93
93

93

94

95
95
97

100
101
103

105
105
107
109

109
110
113

114

35

Chapter 3

Korn Shell Reference

1. The Korn shell prompt
The Korn shell is a program that interprets commands and arranges for
their execution. The Korn shell displays a character called the prompt
(or primary shell prompt) whenever it is ready to begin reading a new
command from the terminal. By default, the Korn shell prompt
character is set to the dollar sign ($).

1.1 The secondary shell prompt
If you press the RETURN key when the shell expects further input, you
will see the secondary shell prompt. By default, this prompt character
is set to the greater-than sign (». Like the primary shell prompt, this
can be redefined.

The secondary prompt will appear, for example, if you enter a multiline
construct (such as a function definition) at the primary shell prompt.
The secondary prompt will appear at each line until you give the final
delimiter. Whenever you have a secondary prompt (either because you
are using a multiline construct or because of an error), an interrupt will
stop the process and issue a primary prompt ($) for another command.
See "Canceling Commands" for information about the interrupt on
your system.

1.2 The tertiary shell prompt
If you use the select command to set up a menu, the tertiary shell
prompt displays on lines that prompt for a user selection. By default,
the tertiary shell prompt is set to "-#?" •

1.3 Changing the prompt character
You may change the primary prompt character by redefining the
environment variable P S 1 to any other character or string of
characters. Similarly, the secondary shell prompt can be redefined, if
desired, by changing the environmental variable PS2, and the tertiary
prompt, by changing the setting of PS3. See "Commonly Used
Environment Variables."

Korn Shell Reference 3-1

2. Types of commands
The shell works with three types of commands:

Built-in shell commands: Built-in commands are written into the
shell itself and are generally used for writing shell programs. Each
NUX shell has a slightly different set of built-in commands. The
built-in Kom shell commands are listed under "Summary ofKom
Shell Commands."

A1UX commands: Every shell can invoke all A/UX commands (see
"Command Summary by Function" in A/UX Command Reference for
a complete list of these). NUX commands are executable programs
stored in system directories such as /bin and /usr/bin. When you
enter an A/UX command (for example, ls), the shell searches all
directories specified by your PATH variable (see "Locating
Commands' ') to locate the program and invoke it.

User-defined commands: You can combine built-in shell commands
and A/UX commands to define your own shell programs (see
"Overview of Shell Programming"). Shell programs can be typed in
at the shell prompt or entered in a file. A shell program contained in a
file is generally called a shell script. Once a shell script is defined,
with certain limitations, it can be used like any other command or
program.

You can also write your own commands in a high-level language such
as C (seeA/UX Programming Languages and Tools, Volume 1 for
more information.) The names of user-defined commands should not
be the same as any existing shell or A/UX command.

2.1 Learning about built-in commands
To learn about any Kom shell built-in command, use the whence
command:

whence [-v] built-in

For example,

whence r

tells you about the Kom shell r command. It prints

fc -e -

3-2 NUX User Interface

Use the -v option for a more verbose report. For example.

whence -v r

prints

r is an exported alias for fc -e -

In addition. the full pathnames of commands are given. For example.

whence more

prints

/bin/more

3. The parts of a command
Whenever you see a shell prompt, you can enter a command by typing
the command name. Most A/UX commands have one or more 8ag
options, which follow the command name to modify the way the
command operates. These are usually composed of a hyphen followed
by one or more characters; for example, -1 modifies the 1 s command:

Is -1

In this case, the -1 changes the way the 1 s command operates,
producing a "long" listing that contains more information than the
standard Is output. For the options that apply to a particular A/UX
command, see the manual page entry for that command in AIUX
Command Reference. For options to the Kom shell built-in commands.
see "Summary ofKom Shell Commands."

Many A/UX commands also expect one or more arguments, which
pass information to the command. An argument may be any data
expected by the command; for example, a directory name may follow
the Is command:

Is /bin

In this case, the directory name /bin specifies which directory the Is
command should list.

The entire command name, including any options and arguments, is
called the command line. A command line is terminated by RETURN.

For example, in the command line

Korn Shell Reference 3-3

Is -1 /bin

Is is the command name, -1 is a flag option (specifying a "long"
listing), and /bin is an argument (specifying which directory to list).

To give a command longer than one line, you must precede RETURN

with a backslash (\). This prevents the shell from interpreting RETURN
as the end of a command. You can continue this for several lines; the
shell will wait for a plain RETURN (not preceded by a backslash) to
execute the multiline command.

Commands can also be combined; see' 'Command Grouping."

4. Interactive use
4.1 Command termination character
When you are entering commands interactively, the shell will not begin
executing a command until you press the RETURN key. Therefore, if
you mistype something, you can back up and correct the mistake before
pressing RETURN. When the shell recognizes the RETURN, it executes
the command line; when the process completes, a new prompt will be
printed on the screen. The shell is now ready to accept further
commands.

4.2 Impossible commands
If you give an impossible command (a command or command line that
doesn't exist or uses improper syntax), the shell will print an error
message and return the prompt for another command.

4.3 Background commands
You can direct the shell to execute commands in the "background"
while you continue to work at the shell prompt (the "foreground").
To run background processes, end the command line with an
ampersand (&) before the final RETURN. For example,

cat smallfile1 smallfile2 > bigfile &
[1] 1234

The number in [] is the job number (for job control). The other
number is the process ID (PID) associated with the sample cat
command as long as it is executing. After the process ID is displayed,
the shell returns the prompt so you can use the terminal immediately
for other work.

3-4 A/UX User Interface

Note: To save the output from the job you are running in the
background, you must redirect it into a file or pipe it to a
printer. If you do not redirect the output, any output produced
by the command will appear on your screen and will not be
saved.

To suspend processes that require input from the keyboard (such as an
editor or a remote login across a network), use shell layering (see
"Using Shell Layering") or job control (see "Job Control").

4.3.1 Checking command status
To check on the status of a background command, use

ps

This command shows the process status of all your commands; they
are identified by process number and by name. See ps(l) in AIUX
Command Reference for details.

You can use the built-in command jobs to get the status of your
current jobs.

4.3.2 Logging out
The shell terminates all processes when you log out of the system. To
make sure that a process will continue to execute after you log out, use
the nohup command (which stands for "no hang up") as follows:

nohup command &

See nohup(1) in AIUX Command Reference for details.

nohup is on by default for background processes on the Macintosh II;
other machines should use the command form above.

4.4 Canceling commands
A number of special control sequences come into play when canceling
commands. The A/UX standard distribution defines these sequences as
follows:

Korn Shell Reference 3-5

Name

interrupt
quit
erase
Idll
eof
swtch
susp

A/UX standard distribution

CONTROL-C
CONTROL-I
DELETE

CONTROL-u
CONTROL-d
CONTROL- ,
CONTROL-z

You may reassign any of these sequences, however, using the s tty
command. See stty(l) inAIUX Command Reference for more
information.

4.4.1 Before you press RETURN

If you type part of a command and then decide you do not want to
execute it, you can send an interrupt or kill to the system at any point in
the command line.

4.4.2 While a command is running
There are several ways to stop a command that is executing:

3-6

• Send the interrupt signal.

For example, the output of a command such as

cat /etc/termcap

will scroll by on your terminal. If you want to terminate the
process, you can send the interrupt signal. Because the cat
command does not take any precautions to avoid or otherwise
handle this signal, the interrupt will (eventually) cause it to
terminate .

• Use CONTROL-S to suspend scrolling output.

The A/UX control-flow keys are CON1ROL-S (suspend scrolling
output) and CONTROL-q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a
screenful again. CONTROL-S and CONTROL-q cannot be redefined
using stty; however, stty can enable and disable control­
flow.

A/UX User Interface

• Send an eof character.

Many programs (including the shell) terminate when they get an
eof character from their standard input. You could accidentally
terminate the shell (which would log you off the system) if you
enter eof at a prompt or, in terminating some other program, if
you send an eof one time too many.

• Wait for the eofcondition from a file.

If a command has its standard input redirected from a file, then it
will terminate normally when it reaches the end of that file. If
you give the command

mail ellen < note

(where note is an existing file), the mail program will
terminate when it detects the eof condition from the file.

• Send the quit signal.

If you run programs that are not fully debugged, it may be
necessary to stop them abruptly. You can stop programs that
hang or repeat inappropriately using quit. This will usually
produce a message such as

Quit (Core dumped)

indicating that a file named co re has been created containing
information about the state of the running program when it
terminated because of the quit signal. You can examine this file
yourself, or forward information to the person who maintains the
program telling him or her where the core file is.

• Send a suspend signal.

If you are using shell layering, you can type suspend to stop
jobs temporarily that are running on a shell layer. You can then
resume the job with a special shl command. See Chapter 5,
"Shell Layering. "

4.4.3 Canceling background commands
If you have a job running in the background and decide you do not
want the command to finish executing, use the kill command.

Korn Shell Reference 3-7

When a job is running in the background, it ignores interrupt and break
signals. To terminate a background command, use

kill process-ID

The kill command takes the process ID as an argument. See
kill(1) and ps(1) in AIUX Command Reference for details.

You can also kill by job number, as in the C shell. For example,

kill %1

kills your first job.

5. Editing and reusing commands
The Korn shell provides access to an inline editor to edit your current
command line or to edit past commands for reexecution. The inline
editor option may be set at the shell prompt using the command

set -0 option-name

where option-name may be

v i This option provides a window for the current command line and
editing syntax similar to vi.

emacs or gmacs
Either of these options provide a window for the current
command line and editing syntax similar to the emacs editor.
The only difference between the emacs and gmacs inline
editors is the way they handle CONlROL-t.

If you set the value of the ED I TOR environment variable to vi,
ema c s, or gma c s, the name of the inline editor will be taken from the
environment automatically. See "The Environment" for more
information.

Once you have supplied one of the above option names, you can
invoke the inline editor on your current command line by pressing
ESCAPE. The vi and emacs inline editors each have their own way of
accessing your previous commands from a file named
$HOMEI • sh_history.

The Korn shell automatically saves the text of your past commands in
the $ HOME I . s h _ his tory file, which is not an ordinary text file but

3-8 AlUX User Interface

a special data file that can be read very quickly by the shell. Its
contents are not lost when you log out. You can specify a special name
for the history file with the environment variable HISTFILE, and the
number of past commands you wish to access in the history file with
the environment variable HISTSIZE. See "Commonly Used
Environment Variables."

Alternatively, you can use the fc command to access past commands
and perform substitutions on them:

"fc -e -" or r

The fc command with the -e flag is aliased to r. You can use this
command to perform substitutions on previous commands.

5.1 The vi option
Invoke the vi inline editor by pressing ESCAPE. If you have already
started to enter a command when you press ESCAPE, the command will
be displayed and the cursor will be on the last character you entered.

To exit the inline command editor and return to the shell prompt, press
CONlROL-d. This will cancel the current command (the command in
the editor window).

5.1.1 The editor window
While you are using the vi inline editor, your command line becomes
a one-line editing screen. All of the vi commands listed below are
available to you for editing commands, searching your command
history, moving the cursor, and so on. There are several additional
commands (not available in the full-screen vi editor) to perform
filename generation, append arguments to previous commands, and so
on.

The width of the screen will be 80 characters, unless you have set the
eOLS environment variable to some other width (see "Commonly
Used Environment Variables").

Command-line editing can be illustrated as follows:

1. Type in the command

cat defs chap.l I traff -Tpsc -rom > L.2

Korn Shell Reference 3-9

2. Now you realize that you typed the wrong filename; it should be
chap.2.

3. Press EsCAPE; then, using normal editing commands, move the
cursor to the 1. (The quickest way to do this is by typing flo)
Now change the 1 to a 2. (The quickest way to do this is by
typing r2.)

4. Now press RETURN. The command will execute as desired.

If the command is too long to fit in the window, the window will scroll
with the cursor so that you can reach either end of the command. You
will see a greater-than sign (» on the right end of the command and a
less-than sign «) on the left end of the command. If both ends of the
command are out of the window, you will see an asterisk (*).

5.1.2 Command history
The following commands give you access to your command history
from command-line editing mode. Most take place as soon as they are
typed; the search commands terminate with RETURN.

Note that the following commands may be preceded by a number to
indicate how many times the command should execute (that is, if
preceded by a number n, the command will execute the nth previous
command, and so on).

k Recall and print the most recent command. Each time k is
entered, an earlier command is recalled. If preceded by a
number n, the nth previous command is printed.

Equivalent to k .

j Recall and print the next command in your history. Each
time j is entered, a later command is recalled. If preceded
by a number n, the nth next command is printed.

+ Equivalent to j .

[n]G Recall command number n. If you don't supply the G

command with a command number n, it defaults to a
command number of one (1).

3-10

(Underscore) Insert the last argument of the most recent
command to the current command and enter insert mode.

A/UX User Interface

/ string

?string

n

N

Search backward in the history file for a previous
command containing string and, if found, print it. string is
terminated by RETURN. If string is null, the preceding
string will be used.

Search forward in the history file for the next command
containing string and, if found, print it. string is
terminated by RETURN. If string is null, the preceding
string will be used.

Search for the next occurrence of the last string searched
for with / or ?

Search for the most recent occurrence of the last string
searched for with / or ? .

5.1.3 Moving the cursor on the command line
These commands move the cursor around the current command line
(the command line in the editor window). They take effect as soon as
you enter them.

Note that the arrow keys cannot be used to move the cursor during
inline editing.

The following commands may be preceded by a number to indicate
how many times the command should execute (that is, if preceded by a
number n, the command will move n spaces, n words, n lines, and so
on, in that direction).

h Move the cursor backward (left) one character.

1 Move the cursor forward (right) one character.

w Move the cursor forward one alphanumeric word.

W Move the cursor to the beginning of the next word that
follows a blank.

e Move the cursor to the end of the current word.

E Move the cursor to the end of the word (ignoring quotes
and other punctuating characters).

b Move the cursor backward one word.

Korn Shell Reference 3-11

B Move the cursor to the preceding word (ignoring quotes
and other punctuating characters).

o Move the cursor to the start of the line. (This cannot be
preceded by n.)

Move the cursor to the first nonblank character in the line.
(This cannot be preceded by n.)

$ Move the cursor to end of the line. (This cannot be
preceded by n.)

f c Search to the right for the next character c in the current
line.

Fe Search to the left for the next character c in the current
line.

Repeat the last single character find (f or F) command.

Reverse the last single character find (f or F) command.

5.1.4 Changing and Inserting text In the command line
These commands are used to replace characters in the current line and
to add characters. Once the command is given, you can simply start
typing the text you want. End the text you type with ESCAPE.

a Append text after the cursor.

A Append text after the end of the line.

i Insert text before the cursor.

I Insert text before the beginning of the line.

emotion Change text. This command deletes from the current
character through the character specified by the motion
command (see the preceding section) and inserts the new
characters typed. If n is included (preceding the e
command or the motion command), the deletion covers the
number of motions indicated.

ee Change the entire line. If n follows this command, then n
lines are discarded.

3-12 A/UX User Interface

C Delete from the cursor to the end of the line and replace
with the characters typed.

rc Replace the current character with c.

5.1.5 Deleting text from the command line
These commands are used to delete characters in the current command
line. These commands take place as soon as they are typed.

D Delete from the cursor through the end of the line.

dmotion Delete the current character through the character
indicated by motion. If n is included (preceding the d
command or the motion command), the deletion covers the
number of motions indicated.

dd Delete the entire line. If n follows this command, then the
deletion should cover the number of lines indicated.

x Delete the current character. If preceded by n, n characters
are deleted.

5.1.6 Copying and moving text within the command line

P Place the last text modified before the cursor.

p Place the last text modified after the cursor.

5.1.7 Specialized editing commands
These commands take place as soon as they are entered.

Repeat the most recent text modification command. If
preceded by n, repeat the nth previous command that
modified text.

Invert the case of the current character and advance the
cursor.

u Undo the last text-modifying command.

U Undo all the text-modifying commands performed on the
line.

* Append an * to the current word and attempt filename
generation. If no match is found, the bell rings. Otherwise
the word is replaced by the matching pattern and insert

Korn Shell Reference 3-13

mode is entered.

5.1.8 Printing and executing edited commands
These commands take place as soon as you enter them. After they
execute, you are returned to the Korn shell prompt.

CONTROL-I

RETURN

CONTROL-j

CONTROL-m

=It

(ell, not one) (form feed) Line feed and print the
current line. This takes effect only when you are not
entering text.

Execute the current command line.

(line feed) Execute the current command line.

(RETURN) Execute the current command line.

Insert the character =It as the first character in the
command line. The =It is the comment character, and
everything after it will be ignored. This is useful for
inserting the current line in history without being
executed (although you will have to delete the initial
=It to reuse the command). This takes effect only
when you are not entering text (that is, after you
have pressed ESCAPE).

5.2 The emacs (and gmacs) options
The only difference between the emacs and the gmacs modes is the
way they handle CONTROL-t. After you have enabled emacs mode
(using" set -0 emacs" or setting the value of the EDITOR

variable), you can enter the emacs inline editor by pressing ESCAPE.
You can then move the cursor to the point needing correction in your
current command line and insert or delete characters or words as
needed. All the editing commands are control characters or escape
sequences. The notation for control characters is CONTROL-letter,
where letter is a single (lowercase) character.

The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced "Meta f") is entered by pressing ESCAPE
(ASCII 033) and then pressing "f". (M-F would be the notation for
ESCAPE followed by "SHIFT" (uppercase) "F".)

All edit commands operate from any place on the line (not just at the
beginning). You do not press RETURN after editing commands except

3-14 AlUX User Interface

where noted.

5.2.1 The emacs input edit commands
By default, the emacs editor is in input mode.

erase The erase character (see stty(l)). Delete previous
character.

eof The eofcharacter (see stty(l)). Terminate the shell if
the current line is null.

\ Escape next character. Editing characters and the erase,
Idll, and interrupt characters may be entered in a
command line or in a search string if preceded by a \.
The \ removes the next character's editing features (if
any).

CONIROL-v Display version of the shell.

5.2.2 The emacs cursor motion commands
The following commands move the cursor:

CONIROL-f Move the cursor forward (right) one character.

M-f Move the cursor forward one word. (A word is a string
of characters consisting of only letters, digits, and
underscores.)

CONIROL-b Move the cursor backward (left) one character.

M-b Move the cursor backward one word.

CONIROL-a Move the cursor to the start of the line.

CONIROL-e Move the cursor to the end of the line.

CONIROL-] char
Move the cursor to character char on the current line.

CONIROL-xCONIROL-x
Interchange the cursor and mark.

5.2.3 The emacs history commands
These commands access your command history:

CONIROL-p Fetch the previous command. Each time CONIROL-p is
entered, the previous command back in time is accessed.

Korn Shell Reference 3-15

M-< Fetch the least recent (oldest) history line.

M-> Fetch the most recent (youngest) history line.

CONlROL-n Fetch the next command. Each time CONlROL-n is
entered, the next command forward in time is accessed.

CONlROL-r string
Search backward in the history file for a previous
command line containing string. If a parameter of zero
is given, the search is forward. string is terminated by a
RETURN or newline character. If string is omitted, then
the next command line containing the most recent string
is accessed. In this case, a parameter of zero reverses
the direction of the search.

CONlROL-O Execute the current line and fetch the next line relative
to the current line from the history file.

M-letter

M-.

M-_

M-*

M-EsCAPE

Search the alias list for an alias by the name "_letter",
and if an alias of this name is defined, insert its value on
the input queue. letter may not be one of the above
metafunctions.

Insert the last word of the previous command on the
line. If preceded by a numeric parameter, the value of
this parameter determines which word to insert rather
than the last word.

Same as "M-.".

Attempt filename generation on the current word. An
asterisk is appended if the word does not contain any
special pattern characters.

SameasM-*.

M -= List files matching current word pattern if an asterisk
was appended.

5.2.4 The emacs text modification commands
These commands modify the line:

CONIROL-d Delete the current character.

3-16 AlUX User Interface

M -d Delete the current word.

M -CoNlROL-h
(Meta-backspace) Delete the previous word.

M-h Delete the previous word.

M-interrupt (Meta-interrupt) Delete the previous word. Note that if
your interrupt character is DELETE, this command will
not work.

CONlROL-t Transpose the current character with the next character
in emacs mode. Transpose two previous characters in
gmacs mode.

CONlROL-c Capitalize the current character.

M -c Capitalize the current word.

M-I Change the current word to lowercase.

CONlROL-k Kill from the cursor to the end of the line. If given a
parameter of zero, kill from the start of line to the
cursor.

CONlROL-W Kill from the cursor to the mark.

kill The kill character (CONlROL-U in the A/UX standard
distribution). Kill the entire current line. If two kill
characters are entered in succession, all kill characters
from then on cause a line feed (useful when using paper
terminals) .

CONlROL-y Restore last item removed from line. (Yank item back
to the line.)

5.2.5 Other emacs editing commands
These miscellaneous commands are also available:

CONlROL-I Line feed and print the current line.

CONlROL-@ (null character) Set mark.

M-(space) (meta-space) Set mark.

CONlROL-j (newline) Execute the current line.

Korn Shell Reference 3-17

CONlROL-m (return) Execute the current line.

M-p

M-digits

Push the region from the cursor to the mark on the stack.

(escape) Define numeric parameter; the digits are taken
as a parameter to the next command. The commands
that accept a parameter are ., CONTROL-f, CONTROL-b,
erase, CONTROL-d, CONTROL-k, CONTROL-r, CONTROL­
p, CONTROL-n, M-., M-_, M-b, M-c, M-d, M-f, M-h, and
M -CONTROL-h.

CONlROL-u Multiply parameter of next command by 4.

5.3 Using fc or r
Another way to access and edit the commands listed in your
. s h _ his tory file is to use the f c command. The f c command uses
the value of the FCEDIT environment variable as its editor; this is set
to /bin/ ed by default. See' 'Commonly Used Environment
Variables" for more information.

5.3.1 Editing and reexecuting previous commands
In the command

f c -e - string=new-string

the option "-e -" means that you wish to execute a command
indicated either by string or by its number. If it is indicated by string.
the most recent command with those characters will be selected. If
string=new-string is included, new-string replaces string before
execution. If the command is specified by number and it does not
include string. the shell displays the message

bad substitution

and the f c command fails. For example, the command

fc -e - vi

reexecutes your most recent vi command. If you want to substitute
another filename to your most recent vi command, you can use a
command such as

fc -e - chapl=chap2 vi

An abbreviated form of

3-18 AlUX User Interface

fc -e - ...

is the command

r old=new command

This command works exactly like the f c command and is provided
simply because it is easier to type. For example, to edit and reexecute
the vi command discussed above, you type

r chapl=chap2 vi

The command

r command >file

reexecutes command with the output directed into file.

To edit command(s) with fc, use the form

fc first last
fc string

The command(s) specified by the range first to last (or the command
that begins with string) are copied into a temporary file, and the editor
named by the FCEDIT variable is invoked.

Once you are in the editor, you can use any of its commands. When
you exit, your edited command or commands are read by the Kom
shell and executed. As each command is executed, it is printed at the
terminal.

For example, to edit and reexecute the list of commands

15 cp chapl chapl.bck
16 Ip chapl
17 mv chap 1 /printed

you give the command

fc 15 17

After this command, you see these commands displayed and can edit
them as you desired with any editor command (for example, replacing
the 1 in chap 1 with the number 2). When you exit the editor, the new
commands are executed and entered in the history file.

Korn Shell Reference 3-19

Likewise, to edit and reexecute the last diff command you gave, you
can use the command

fc diff

Finally, you can also use the fc command without using an editor.
This can be useful when you want to reexecute a command without
changing it, or when you wish to make a simple change and do not
want to spend the time necessary to use an editor.

5.3.2 Listing previous commands
With the -1 option, f c accepts command numbers or strings as
arguments. With command numbers

f c -1 first last

f c prints a list of commands, where first is the oldest command you
wish to review and last is the most recent. For example,

fc -1 10 12

first and last may also be negative numbers:

fc -1 -10

A negative number is interpreted as the nth previous command. Iffirst
is given but not last, then commands from first through the current
command are listed. If no numbers are specified, the 16 most recent
commands are listed.

If you ask for commands that are not available, either because the
command is too old (remember that only the number of commands
given in HISTSIZE are saved) or because you have not given that
many commands, the shell will display the message

Bad number.

, 'f c -1" can be combined with two other options:

- r List specified commands from most recent to oldest.

-n List specified commands without command numbers.

For example, the command

fc -lr 10 12

3-20 A/UX User Interface

prints command numbers 10, 11, and 12 from your history file in
reverse order. The output might look like this:

12 vi chap2.ksh
11 Is chap*
10 rm chap2.bck

With string as an argument to fc -1:

fc -1 string

you can search for and print a list of commands beginning with a
command containing string. For example, to obtain a list from your
most recent rm command to your current command, you could type

fc -1 rm

6. Using shell metacharacters
Shell metacharacters are characters that perform special functions in
the shell. This section discusses how to use these metacharacters. The
following are the Kom shell metacharacters:

A tilde is used as the first part of a directory name. It is replaced
with either your home directory (if it is used alone or followed
by a pathname below your home directory such as
-/project/phasel) or the home directory of another user (if
it is followed by the login name of that user, such as -lori).
See "Specifying Home Directories" for details.

& An ampersand at the end of a command line causes the shell to
run the command(s) in the background and prints the process
ID(s).

? A question mark used as part of a file or directory name causes
the shell to match any single character (except a leading period).

* An asterisk used as part of a file or directory name causes the
shell to match zero or more characters (except a leading period).

[] Brackets around a sequence of characters (except the period)
cause the shell to match each character one at a time.

A hyphen used within brackets to designate a range of characters
(for example, [A-Z]) causes the shell to match each character in

Korn Shell Reference 3-21

the range.

< A less-than sign following a command and preceding a filename
causes the shell to take the command's input from that file.

> A greater-than sign following a command and preceding a
filename causes the shell to redirect the command's standard
output into the file. See "Input and Output" for a description of
how this metacharacter is used to redirect error output.

> > Two greater-than signs following a command and preceding a
filename cause the shell to append the command's output to the
end of an existing file.

A vertical bar between two commands on a command line causes
the shell to redirect the output of the first command to the input
of the second command. This can occur multiple times on a
command line, forming a pipeline.

I & A vertical bar and ampersand at the end of a command cause the
shell to connect this background command to the parent shell
(and the terminal, if this shell's output and input is connected to
the terminal). Output and input can be read and written to the
background process. See "Connecting a Command to Standard
Input and Output. "

A semicolon between two commands on a command line causes
the shell to execute the commands sequentially in the order in
which they appear.

() Parentheses around a pipeline or sequence of pipelines cause the
whole series to be treated as a simple command (which may in
turn be a component of a pipeline), and a subshell to be spawned
for the commands' execution.

Braces around a series of commands group the output of the
commands.

\ A backslash prevents the shell from interpreting the
metacharacter that follows it.

, , Single quotes around a command, a command name and
argument, or an argument prevent the shell from interpreting the
enclosed metacharacters.

3-22 AlUX User Interface

" " Double quotes around a command, a command name and
argument, or an argument prevent the shell from interpreting the
enclosed metacharacters, but only as follows: file, wildcard, and
command substitution will take place, but filename expansion
and interpretation of blanks will not.

, , Back quotes around a command cause the characters in that
command to be replaced with the output from that command.

6.1 Shortcuts In working with directories

6.1.1 Specifying home directories
You can use the tilde (-) as the initial character in a filename or
pathname to avoid typing the absolute or relative pathnames of home
(login) directories. An initial tilde in a pathname, for example,

-/chapter2

indicates a file below your own home directory. When the command is
executed, the tilde is replaced by the value of your environmental
variable HOME. A tilde followed by the login name of another user, for
example,

-virginia

indicates the login name of that user, and will be replaced by the
absolute pathname of that user's home directory.

You can use this notation when giving a pathname as an argument to
any command; for example,

cp -virginia/memo! -/memos/virginia.memo

6.1.2 Current and previous directories
The tilde can also be used to represent your current and previous
working directories. A tilde followed by a plus sign (+) represents the
current working directory (the value of the parameter PWD); tilde
followed by a minus sign (-) is replaced by the most recent working
directory (the value of the parameter OLDPWD).

For example, use the cd command to return to your most recent
working directory with the command

cd --

Korn Shell Reference 3-23

You can toggle between two directories by repeating this command
several times.

6.1.3 Substituting directory names
The Korn shell also allows substitution on directory names as
arguments to the cd command

cd old new

where the new directory name replaces old in the full pathname of the
current working directory (the parameter PWD). For example, suppose
you had the directories

/users/doc/anne/manuals/drafts
/users/doc/anne/manuals/reviewl
/users/doc/steve/manuals/reviewl

After the command

cd /users/doc/anne/manuals/drafts

you could go to /users/doc/anne/manuals/reviewl with the
command

cd drafts reviewl

From there, you could then go on to

/users/doc/steve/manuals/reviewl

with the command

cd anne steve

Each time you change to a directory using "cd substitution," the full
pathname of the new directory is displayed.

6.2 Specifying filenames with metacharacters
Using the filename expansion metacharacters (also called
"wildcards' ') will spare you the job of typing long lists of filenames in
commands, looking to see exactly how a filename is spelled, or
specifying several filenames that differ only slightly.

These metacharacters are interpreted and take effect when the shell
evaluates commands. At this point, the word incorporating the
metacharacter(s) is replaced by an alphabetic list of filenames, if any

3-24 A/UX User Interface

are found that match the pattern given. Filename expansion
metacharacters can be used in any type of command; however, in the
case of filenames given for input and output redirection, filename
expansion may cause unexpected results if the metacharacter usage
expands into more than a single filename. To tum off the special
meaning of metacharacters and use them as ordinary letters, they must
be quoted. See "Quoting."

The following are filename expansion metacharacters in the Korn shell:

? A question mark matches any single character in a filename. For
example, if you have files named

a bb ccc dddd

the command

print ???

matches a sequence of any three characters and returns

ccc

* An asterisk matches any sequence of characters, including the
empty sequence, in a filename. (It will not, however, match the
leading period in such files as . prof ile.) To list the sequence
of files named

chap chap1 chap2 chap3 chap3A chap12

you can use the notation

Is chap*

The files are listed as

chap chapl chap12 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the
null sequence composed of no characters.

[] Brackets enclosing a set of characters match any single
character, one at a time, from the set of enclosed characters.
Thus,

Is chap. [12]

Korn Shell Reference 3-25

matches the filenames

chap.1 chap.2

Note that this does not match chap .12. To match filenames
chap .10, chap .11, and chap .12, use the notation

chap.1[012]

You can also place a hyphen (-) between two characters in
brackets to denote a range. For example,

Is chap. [1-5]

is the equivalent of

chap. [12345]

A range of characters can also be indicated in brackets. The
notation [a - z] matches any lowercase character, [A - Z]

matches any uppercase character, and [a - zA - Z] matches any
character, regardless of case.

To match anything except a certain character or range of
characters, use the exclamation point inside the brackets. When
the first character following the left bracket ([) is an exclamation
character (!), any character not enclosed in the brackets is
matched. For example,

[!b]

matches any filename composed of one letter, except a file
namedb.

None of these metacharacters will match the initial period at the
beginning of special files such as . prof ile. These must be matched
explicitly. Periods that do not begin a filename can be matched by
metacharacters.

If you use these metacharacters and the shell fails to match an existing
filename, it displays a message such as

ksh: *: not found.

3-26 A/UX User Interface

6.3 Input and output redirection
An executing command may expect to accept input and create output,
possibly including error output (error messages). In the A/UX system,
there are default locations set for input and output:

• Standard input is taken from the terminal keyboard.

• Standard output is printed on the terminal screen.

• Standard error output is printed on the terminal screen.

These defaults can be changed using the following metacharacters (also
called redirection symbols). The redirection metacharacters are a way
of using file descriptors, described in detail in "Redirection With File
Descriptors. "

< A less-than sign followed by a filename "redirects standard
input" (takes command input from a file or device other than the
keyboard). For example,

mail ellen < note

uses a file named note instead of a message typed from the
keyboard as the input to rna i 1.

> A greater-than sign followed by a filename' 'redirects standard
output" (prints command output in a file or to a device other
than the terminal screen). If a file by that name already exists, its
previous contents are overwritten; otherwise a new file is created.
For example,

sort filel > file2

uses a file for the output of the sort command. When sort
completes,file2 contains the sorted contents offilel.

See "Input and Output" for information on redirecting standard
error output using file descriptors.

> > Two greater-than signs followed by a filename append the output
of a command to a file. If no file by that name exists, one is
created. For example,

who » log

Korn Shell Reference 3-27

appends the output of the who command to the end of the
existing file log.

6.4 Combining commands: pipelines
You can send the output of one command as input to another command
by using the vertical bar or "pipe" (I). When two or more commands
are joined by a pipe, the command line may be considered a pipeline.

For example, to see which files in a directory contain the sequence old
in their names, you can use a pipeline as follows:

Is I grep old

The pipe character (I) tells the shell that output from the first command
(the list of files produced by the Is command) should be used as input
to the grep command. The output of the pipeline (filenames in the
current directory containing the string old) prints on standard output
(unless you redirect it to a file).

Pipelines may consist of more than two commands; for example,

Is I grep old I we -1

prints the number of files in the current directory whose names contain
the string old.

Pipelines may also be executed in the background. For example, to
avoid the time-consuming process of waiting for a very large file to be
sorted and printed, you could give the following pipeline:

sort mail.list I Ip &

This pipeline would sort the contents of a file named mail. list and
send the sorted information to the 1 p program to be placed on the
printer queue. The shell would respond with the process ID of the last
command in the pipeline.

The tee command is a "pipe fitting"; it can be put anywhere in a
pipeline to copy the information passing through the pipeline to a file.
See tee(l) in AIUX Command Reference for more information.

A filter is a program or a pipeline that transforms its input in some
way, writing the result to the standard output. For example, the grep
command finds those lines that contain some specified string and prints
them as output.

3-28 AlUX User Interface

grep 'correction' draft1

prints only the lines in draft1 that contain the string correction.

Filters are often used in pipelines to transform the output of some other
command. For example,

who I grep jon

prints

jon ttyp8 Jul 21 12:25

if a user whose login name is j on is currently logged into the system
on ttyp8.

6.5 Connecting a command to standard input and
output

In the Kom shell, the input and output of a command or pipeline
running in the background can be connected to standard input and
output by ending the command line with I &. This establishes a two­
way pipe with the shell.

Output created by the background process can then be read using the
read -p command as follows:

read -p variable

The input line from the pipe will be read into variable and then used as
desired.

Input for the pipe can be inserted with the print -p command:

print -p arguments

The arguments are written onto the pipe for use by the background
process.

Only one background process connected to the shell with I & can be
running at a time. For example,

Korn Shell Reference 3-29

cat 1&
[1] 6420

print -p "hello"
print -p "goodbye"
read -p var
echo $var

hello
read -p var

echo $var
goodbye

where the indented lines show output printed on the terminal.

6.6 Command grouping
You can use the following metacharacters to group commands
together:

Group several commands on one command line by separating
one command from another with a semicolon (;). The
commands will be executed sequentially in the order in which
they appear. For example, the command line

cd test; Is

will change to the test directory and then list its contents.

& Group background commands on a single line by separating
them with ampersands (&) and then ending the line with another
ampersand. The background commands will exit independently
while the shell continues to accept new commands in the
foreground.

{ } Use braces to group commands for functions and control-flow
constructs (see "Defining Functions" and "Control-Flow
Constructs"). You can also use braces to group the output from
several sequential commands, which is then used as the input to a
following command in a pipeline. Braces used in the latter way
are recognized only when they are the first word of a command
or are preceded by a semicolon or newline, and when the first
brace is followed by a space. For example, to put the date and
the list of users into one file (log), you can give the command

3-30 A/UX User Interface

{ date; who;} I cat> log

Note the space following the first brace and the semicolon
following the last command in braces; these are required. If you
type a newline before closing with another brace, you will see
the secondary prompt until you give the closing brace. Note that
commands enclosed in braces are executed by the current shell
(that is, a new instance of the shell is not invoked to execute
them).

() Enclose a group of commands in parentheses to execute them as
a separate process in a subshell (a new instance of the shell). For
example,

(cd test; rm junk)

first invokes a new instance of the shell. This shell changes the
directory to test and then removes the file junk. After this.
control is returned to the parent shell. where the current directory
is not changed. Thus. when execution of the commands is over.
you are still in your original directory.

The commands

cd test; rm junk

(without the parentheses) are executed in the current shell and
have the same effect but leave you in the directory test.

6.7 Conditional execution
You can use the following symbols to indicate that your command
should be executed only if some condition is met:

& & The command form

convnandl & &convnand2

means "If commandl executes successfully (returns a zero exit
status). then execute convnand2."

I I The command form

convnandl I I convnand2

does the reverse. This form means' 'If commandl does not

Korn Shell Reference 3-31

execute successfully (returns a nonzero exit status), then execute
command2.' ,

For exit status, see "Exit Status: The Value of the Command. "
Conditional execution is also available in joining pipelines. For other
ways of obtaining conditional execution, see "Control-Flow
Constructs. "

6.8 Quoting
If you need to use the literal meaning of one of the shell metacharacters
or control the type of substitution allowed in a command, use one of
the following quoting mechanisms:

\ A backs lash preceding a metacharacter prevents the shell from
interpreting the metacharacter. For example, to use the print
command to display a question mark, you must precede the
question mark with a single backslash (\). Thus,

, ,

" "

3-32

print \?

prints

?

Without the backslash, the print command would generate a
list of all one-character filenames in the current directory. If
there are none, the command returns

?

Single quotes prevent the shell from interpreting any
metacharacters in the enclosed string. The command

print '$EDITOR'

prints

$EDITOR

Within double quotes, parameter substitution and command
substitution occur, but filename expansion and the interpretation
of blanks do not. For example, the command

print "$EDITOR"

prints

A/UX User Interface

, ,

/bin/ed

Here parameter substitution filled in the value of the
environmental variable EDITOR.

Double quotes can also be used to give a multiword argument to
commands; for example,

print "type a character"

For more information on parameter substitution, see' 'Positional
Parameters and Shell Variables." You can also suppress
filename expansion universally by setting the shell option -f; see
, 'Shell Execution Options."

A command name enclosed in back quotes is replaced by the
output from that command. This is called command
substitution. For example, if the current directory is
/users/marilyn/bin, the command

i='pwd'

is equivalent to

i=/users/marilyn/bin

If a back quote occurs within the command to be executed, you
must escape it with a backslash (\ '); otherwise the usual quoting
conventions apply within the command.

Command substitution takes place before the filenames are
expanded. If the output of substituted command is likely to be
more than one word, the command must be enclosed in double
quotes as well as back quotes; for example,

a="'head -1 /dev/tty'"

where the command head -1 (read the first line of input) might
yield more than one word.

7. Working with more than one shell
When you wish to use another NUX shell, you can use one of the
following commands:

Korn Shell Reference 3-33

sh This spawns an instance of the Bourne shell.

ksh This spawns another instance of the Kom shell.

csh This spawns an instance of the C shell.

You can type these at your shell prompt; for example,

ksh

In this case, your new shell will run as a subshell or "child" of your
current one. You can use the exit command or the eof sequence to
return to your original login shell whenever you wish. (If you
accidentally give the exi t command or send an eof in your login shell,
you will be logged out of the system altogether.)

7.1 Changing to a new shell
You can also obtain a new shell using the exec command; for
example,

exec csh

If you use the exec command, the C shell program csh replaces your
current shell. You cannot return to your original shell; it has
disappeared.

Generating new instances of a shell affects the environment settings for
each shell. See "The Environment and New Shell Instances" for more
information.

7.2 Changing your default shell
To change your default shell from the Kom shell to the Bourne or C
shell, use the chsh command. For example,

chsh login.name /bin/ csh

(where login.name is your login name on this system) changes your
default login shell to the C shell. See chsh(l) in A/UX Command
Reference for more information.

8. The environment
The environment is a list of variables, aliases, and functions that is
available to all programs (including subshells) invoked from the shell.
A shell inherits the environment that was active when it started, and
passes that environment (including any modifications) to all programs

3-34 AlUX User Interface

it invokes.

If you assign values to variables using the typeset command at the
shell prompt (or within a shell script), these remain local to the shell in
which you assigned them. If you use the typeset -x command (or
set the -a shell option; see "Shell Execution Options"), these changes
will be passed on to any subshells you invoke and to executing
commands.

Note: Modifying the environment in a subshell (for example, in
a shell script) never changes the parent shells or their
environments. Because these changes are made to a copy of the
parent shell's environment, the parent shell's environment is
never affected by changes in a subshell, even if you use the
expo rt command. When a subshell terminates, its
environment no longer exists.

In general, the most essential variables are assigned default values
during login or by the shell every time you invoke it. The Korn shell
also defines a number of default aliases (see "Aliases for Commonly
Used Commands"). Convenient but inessential variables are simply
left unassigned. Thus a default environment is created for you. You
can modify the default environment by defining new environment
variables and aliases.

8.1 Listing existing values
Table 3-1 shows commands you can use to list existing values in the
environment.

Table 3·1. Listing functions, aliases, and variables

Command

set
env
export
typeset
typeset option
typeset -f

Output

lists everything defined
lists exported variables
lists exported and read-only variables
lists all variables
lists variables of option type
lists functions

Korn Shell Reference 3-35

typeset -x
alias
alias -x

lists exported variables and functions
lists aliases
lists exported aliases

8.2 Assigning values to environment variables
Setting up your own customized environment is not necessary, but it
can make your work easier and more efficient. To customize your
working environment, you may change the default values assigned to
some of your environment variables and add others that have not been
included.

Unless you have set the -a shell execution option (which tells the shell
to export all variables automatically; see "Shell Execution Options"),
you assign a value to an environment variable using the command

typeset -x name=value

This command sets the variable name to value and automatically
inserts the variable and its value in the environment. Thus, for
example, to assign and export the variable HIS TF I LE you could give
the command

typeset -x HISTFILE=/users/daphne/hist

In addition to the typeset -x command, the Korn shell also
recognizes the Bourne shell syntax:

name=value
export name

This is the form that should be used in . profile if you are ever
going to log into the Bourne shell.

8.3 Removing environment variables
The command

unset name

removes the specified variable.

8.4 Commonly used environment variables
The following variables are typically inserted into the environment. By
convention, environment variable names are uppercase. Some of these
variables are assigned default values at login or by the shell at

3-36 AlUX User Interface

invocation. All of them can be reset by the user.

The variables used only by the Kom shell are as follows:

co L S This variable defines the width of the edit window for
the in line editing. The default is 80 columns.

EDITOR This variable and the VISUAL variable specify the
editor for inline editing of commands. The default is
ed. This is the same as setting the option -0 ed with
the set command.

ENV This variable specifies the name of the Kom shell
environment file. If this variable is set to a filename and
exported in the /etc/profile system file (it is
initially set to $HOME/ . kshrc and exported on NUX
systems), then all subsequent instances of the Kom shell
read the specified filename when the shell starts up. The
ENV file is typically used to set up inline command
editing and command reuse, and for alias and
function definitions. Command and parameter
substitution are performed in referencing this variable.

FCEDIT This variable specifies the editor for the command
reentry with the f c command. The default editor is ed.

HIS TF I LE This variable gives the pathname of the file to be used to
store command history for command reentry. The
default filename is $HOME/ . sh_history, that is, a
file named. sh_history in your home directory.

HISTSIZE This variable specifies the number of previously entered
commands that will be saved for command reentry.

P S 3 This variable gives the prompt to be used by the
select command after a menu is given. The default is
"41=?".

VISUAL This variable specifies the visual editor to use in line­
editing mode. Initially, this variable is unset.

The variables used by all shells follow:

Korn Shell Reference 3-37

CDPATH

EXINIT

HOME

IFS

MAIL

The value of this variable should contain a list of
pathnames (separated by colons) that you use
frequently. The shell uses this variable when you give
an argument to the cd command that is not a relative or
absolute pathname. This variable is usually set in the
.profile file; otherwise its default value is the
current directory.

This variable indicates various options for your editing
environment when you are using the ex or v i text
editing program (see "Using ex" and "Using vi" in
AIUX Text Editing Tools).

This variable specifies your home directory. The login
procedure sets the value of this variable to the pathname
of your login directory.

The shell uses this variable to interpret blanks. The
default values of this variable are space, tab, and
newline, specifying the characters used to separate the
parts of commands. You can reset this to include any
data delimiters.

The shell uses this variable as the pathname of the file
where your mail is delivered. This variable is typically
set in the file .profile in the user's login directory.

MAILCHECK This variable specifies how often (in seconds) the shell
will check for the arrival of mail in the file specified in
MAIL. The default value is 600 seconds (10 minutes).
If set to 0, the shell will check before each prompt.

PATH The value of this variable should be a series of
pathnames separated by colons (:). The shell uses the
value of PATH executable programs whenever you give
a command. If the directory containing the command is
not specified, the shell will display the message

3-38

Command not found.

PATH is usually set in the . profile file. For
efficiency, the list of directories in the PAT H variable
should be in order from the directories containing

A/UX User Interface

PSl

PS2

SHELL

TERM

TZ

commands most often used to those least often used.
The default value for PATH is the current directory,
Ibin, and lusr/bin.

This variable specifies the primary prompt string (the
prompt you see when the shell is waiting for you to give
a command). The default setting is the dollar sign ($).

This variable specifies the secondary prompt string (the
prompt you see when the shell is waiting for more
information for a command you have already started).
The default setting is is the greater-than sign (».

This variable specifies your login shell. It is set at login
to the value found in the let c I pa s s wd file. If no
shell is specified in letc/passwd, the value of
SHELL is Ibinl sh. For instructions on how to change
your login shell, see chsh(l) in AIUX Command
Reference.

This variable specifies the type of terminal you are
using. The default value is mac2. You can find out
what your current terminal type is with the command

print $TERM

This variable indicates your time zone. It is set at login.

8.5 The environment and new shell instances
If the ENV variable is set and exported, the Kom shell reads the
contents of the file (initially set to $HOMEI • kshrc) every time it
starts up. Thus, the values you have defined there are available to
every new instance of the Kom shell. Any values you have assigned
using the typeset -x command are in the environment and will be
available to new shell instances.

If you have assigned values to variables using the set command at the
shell prompt (or within a shell script), these remain local to the shell in
which you assigned them. Because these changes are made to a copy
of the parent shell's environment, the parent shell's environment is
never affected by changes in a subshell, even if you use the typeset
-x command in the subshell. Note, however, that changes made using
typeset -x in a subshell will be passed on to new instances invoked

Korn Shell Reference 3-39

from the subshell. When a subshell terminates, its environment no
longer exists.

Note that the . prof ile file is read only once, at login. Thus, if you
have changed the value of an environment variable, the subshell will
inherit the new value, not the value set routinely in .profile. You
can force a new instance of the shell to read. profile by using the
"dot" command (.); see "Executing Shell Scripts."

8.6 Special environments
Normally, the environment for a command is the complete
environment of the shell where the command was given. You can
change the environment used by a command in three ways:

• Augment the environment by inserting additional variables and
new values into the environment. This is done by preceding the
command with one or more assignments to variables on the
command line. For example,

a=b command

Note that because parameter substitution occurs before the
environment is changed, you cannot assign environment
variables whose values are then immediately referenced on the
command line. For example, the sequence of commands

x=5
x=3 print $x

prints

5

not

3

because the value of x is inserted into the command line before
the environment is changed.

• Set the - k shell option using the command

set -k

3-40

When set, this shell option inserts variables and values given on
the command line into the environment for a particular

AJUX User Interface

command. For example, if the - k option is not set, the command

print a=b c

prints

a=b c

After -k has been set, a=b is interpreted as a variable
assignment instead of an argument, and the same command
prints

c

Note that because values are substituted for variables before the
environment is changed, this is subject to the same limitation
documented above .

• Use the A/UX command

env [-] [name=value .. .][command] [args]

to set the environment for the command. With this command,
you can not only add things to the environment inherited by a
command, but also exclude the current environment. To add
variables and their values to the current environment, give the
variables and values before the command name. For example, to
run a subshell with a changed PATH environment variable, you
could give the command

env P ATH=directory-list sh

For the duration of the new shell (and its subshells), the PATH

variable would be set to the directories in the list

To set up a completely new environment, first give the option -,
which excludes the current environment, and then assign the
variables and values you want. These (and only these) will be
available in the environment for the new command.

8.7 The default environment on your system
Whenever you log in, the following procedures occur:

• The login program sets the variables HOME and SHELL from
the information in the system file / etc/passwd.

Korn Shell Reference 3-41

• The login program then checks the file /etc/profile to
find out the default environment to set up for all users. This file
may contain default settings for PATH, TZ, and TERM.

• The login shell (the shell that is automatically invoked when you
log in) assigns default values to PSI (the primary prompt), PS2
(the secondary prompt), PS3 (the prompt for the select
command), MAILCHECK, and IFS (Input Field Separator, which
can be blank characters and/or tabs).

When you invoke new instances of the shell (for example, using the
ksh command), the new shell checks the environment for any new
values you may have placed there for these variables. If it doesn't find
any values in the environment, it assigns the default values.

Then the new shell reads your .profile file. If you have assigned
new values there, it uses your values instead of the defaults.

If the ENV variable is assigned a filename and exported, whether in the
/ etc/profile system file or in the . profile file in your home
directory, the new shell reads the contents of that file and sets the
values you have assigned there.

• The Kom shell reads the. prof ile file when you log in; if
appropriate, it shares the variable assignments with the Bourne
shell.

• If the ENV variable is assigned a filename and exported, whether
in the / etc/profile system file or in the . profile file in
your home directory, the Kom shell reads the contents of that file
every time it starts up. This is initially set to $HOME/ . kshrc
on most systems; in this case, use the . kshrc file in your home
directory to set the environment variables unique to the Kom
shell and to define aliases you wish to be available across
invocations of the shell.

9. The . profile file
The . prof ile file is simply a text file (created with a text editor). It
contains a series of commands typed exactly as you would type them at
the shell prompt. Every time you log in, the shell looks in your home
directory for a file named .profile and executes all the commands
found there before issuing the shell prompt and taking commands. If

3-42 AlUX User Interface

no . profile file exists~ your environment will simply be the default
environment created by the shell at login.

9.1 A sample .profi.le file
The following is a sample. prof ile file:

typeset -x PATH=:/bin:/usr/bin:$HOME
typeset -x CDPATH=:/users/elaine/revisions
typeset -x MAILCHECK=O
typeset -x EXINIT="set wm=10"
date
ls

Note: You may also use the Bourne shell style .profile
using the set and export commands. See" A Sample
. profile File" in Chapter 2~ "Bourne Shell Reference."

The variables and commands in this file are discussed in the sections
that follow. In theory ~ any A/UX command or shell script may be
invoked in the . profile; typically~ however~ you should include
commands that customize your login shell or perform login
initialization routines (such as listing the contents of the current
directory~ or reading your mail). Commands you want to affect all
subshells of the login shell should be put into the file assigned to the
ENV variable (usually the . kshrc file). See "The. kshrc File."

9.1.1 Locating commands
The PATH environment variable lists the directories (separated by
colons) where the shell will look for the executable files that are A/UX
(or user-defined) commands. Each time you give a command~ the shell
searches the directories listed in the order specified. Most A/UX
commands are located in the /bin or /usr /bin directory. When
you assign a value to PATH~ be sure to include these directories.

If the shell cannot find the file in one of the directories specified~ the
command cannot be executed and you will see the message

Command not found.

Korn Shell Reference 3-43

The directories listed in the PATH variable are specified by their
absolute pathnames, separated by colons. If the list of directories
begins with a colon, the path search begins in the current directory. At
login, the PATH variable might be set as follows:

PATH=:/bin:/usr/bin:/usr/ucb

This assignment sets the PATH variable to the current directory and the
system directories /bin, /usr/bin, and /usr/ucb.

To reset the PATH variable in .profile, insert lines such as

typeset -x PATH=:/bin:/usr/bin:/usr/ucb:$HOME

The typeset -x command is discussed in "Customizing Your
Environment. "

If you include the pathnames of personal directories that contain shell
programs you have written, these will be accessible to the shell no
matter what your current directory is. If you wish to execute a
command or shell program that is not in one of the directories in your
PATH variable, simply give the absolute path name of the directory
where the command or shell program is to be found.

For information on referencing variables using the $ syntax (as in
$HOME above), see "Parameter and Variable Substitution." For more
information about pathnames, see the glossary in A/UX System
Overview.

9.1.2 Shortcuts in changing directories
If CDPATH is set, you can use the cd command with a simple directory
name that is neither an absolute nor a relative pathname. The shell then
searches for that directory in all the directories listed in CDPATH. The
directories are searched in the order specified. If CDPATH is not set,
only the current directory is searched.

If the directory you specify is not found in any of the directories given
in CDP ATH, you will see the message

Bad directory.

3-44 A/UX User Interface

Mter CDP ATH is set, you can still, of course, give the relative or
absolute pathname of any directory you wish. When you give an
absolute or relative pathname in the cd command, CDP ATH is not
used.

9.1.3 Receiving mail
The MAl LCHECK environment variable specifies how often (in
seconds) the shell should check for new mail. When you log in, the
shell sets MAlLCHECK to 600 seconds (10 minutes). You can change
this to whatever period you wish using the command

typeset -x MAlLCHECK=O

This command assigns and exports the value of the MAlLCHECK as O.
When MAlLCHECK is 0, the shell checks for new mail before each
prompt.

9.1.4 Your editing environment
The EXlNlT environment variable tells the shell how to initialize the
vi or ex editing program. This variable is set to a series of editor
commands that should be run every time the editor is called before any
commands are read from the terminal. In the sample .profile
above, for example, the command

typeset -x EXlNlT="set wm=10"

assigns and exports the value of EXlNlT as the command

set wm=10

which sets the word-wrap margin so that the editor will automatically
break lines ten spaces before the right margin. The command is
enclosed in double quotes because the entire string must be treated as
one "word" and not divided up.

For details on EXlNIT, seeAIUX Text Editing Tools. For the use of
double quotes, see "Quoting."

9.2 Customizing your login procedure
You can also use your. profile file to customize your login
procedure. In the sample. prof ile above, the commands

Korn Shell Reference 3-45

date
ls

direct the shell to display the date and time and then list all the files in
the current directory before displaying the shell prompt. These will be
executed at login.

You can include any commands you wish in .profile, including
your own functions and shell scripts.

10. The . kshrc file
A/UX systems use the jete/profile system file to define the ENV
variable to a filename and export this variable. On NUX systems this
is initially set to $ HaME / . kshre, but this may be changed to another
filename by modifying the value of the ENV variable. See' 'Changing
the N arne of the ENV File. "

If this variable is set to any filename and exported, that file will be read
whenever the Kom shell starts up. Thus, any definitions you include in
the file narned as the ENV file (initially $HaME/ . kshre) will be
available to every instance of the Kom shell. You can create a
. kshre file in your home directory and use it to define variables,
aliases, and functions that are applicable only to the Kom shell.

Note: If the ENV variable is not defined as $HaME/ . kshre
and exported, the Kom shell will not read your. kshre file.

For information on aliases, see" Aliases for Commonly Used
Commands." For functions, see "Defining Functions."

1 0.1 A sample . kshrc file
The following is a sample. kshre file:

typeset -x HISTFILE=/users/neal/my.history
typeset -x HISTSIZE=lS

These commands are described below.

10.1.1 Changing history variables
The sample. kshre file resets the following variables:

3-46 AlUX User Interface

HIS TF I LE This variable specifies where the text of past commands
should be stored. The default file is . sh _history in
your home directory. The command

typeset -x HISTFILE=/users/neal/my.history

assigns and exports the value of the HISTFILE as the
file named my. history in the directory
/users/neal.

HISTSIZE This variable specifies how many past commands should
be saved. The command

typeset -x HISTSIZE=15

assigns and exports the value of the HISTSIZE as 15.
Mter this command, only 15 past commands would be
saved.

10.2 Changing the ENV filename
The NUX system defines the ENV variable to $HOME/ . kshre in the
system file fete/profile. This assigns this variable a value when
you log in.

To change the name of this file, you can reset ENV in your .profile
file; for example,

or

typeset -x ENv=filename

ENV=filename
expo rt filename

11. Aliases for commonly used commands
The Korn shell alias command renames existing commands or
creates a name for a long command line. Aliases may be defined at the
shell prompt or in the . kshre file.

Note: The Kom shell also provides a facility for defining
functions. This is similar to aliasing and may be preferable for
some of your tasks. See' 'Defining Functions. "

Korn Shell Reference 3-47

The Korn shell keeps a list of aliases. Each time you give a command,
the first word of the command is compared with the list. If it is an alias
name, then it is replaced with the definition of that alias. You can use
an alias to redefine any shell or A!UX command; however, you cannot
redefine keywords such as if or done.

11.1 Defining an alias
You define an alias with the command

alias name=definition

where name may begin with any printable character, but the rest of the
characters must be letters, digits, or underscores (generally it is a good
idea to avoid using /, ; , *,? and so on); = cannot be surrounded by
blank spaces; and definition may contain any valid commands,
including shell scripts and metacharacters. Note that definition cannot
include another alias. If definition includes spaces, the whole
command must be inclosed in quotes.

For example, the alias

alias ls='ls -C'

causes the 1 s command to produce output as if you had typed

Is -C

which displays its output in columns. The alias definition is quoted
because it contains a blank. In the example above, every time you type
Is, you will get Is -C, and this may not be desirable. It is
recommended that you invent a new command name, as in

alias Ie = 'Is -C'

This allows you to use both Is (in any form desired) and Ie.

Alias definitions can also include all shell metacharacters, variables,
positional parameters, command substitution, and so forth.

For example,

alias prtsort='sort *.list'

creates a command prtsort. When you type

3-48 AlUX User Interface

prtsort

the command line

sort *.list

executes, sorting files in the current directory that end in the characters
".list".

When you create aliases at the shell prompt, they are not exported to
the environment unless you use the -x option:

alias -x lc='ls -C'

Exported aliases remain in effect for subshells but must be reinitialized
for separate invocations of the shell. To make aliases available to
every invocation of the Kom shell or any script run with a separate
shell, put their definitions in the . kshrc file, which is read every time
a Kom shell is started up.

Note: Aliasing is performed when scripts are read, not while
they are executing. Therefore, for an alias to take effect, the
ali a s command has to be executed before the command that
references the alias is read.

11.2 Listing and removing aliases
The alias command with no arguments lists all aliases that have been
defined in your environment. To list the text of exported aliases, use
the alias -x command.

Aliases can be removed with the command

unalias name(s)

11.3 Tracking with aliases
Aliases invoked with the -t option are used to reduce the amount of
time the shell spends searching the directories specified by the PATH

variable for a particular command. This is called tracking: when you
use a "tracked" command, it is treated like an alias that corresponds to
the full pathnames of that particular command. For example, if you
give the command

Korn Shell Reference 3-49

alias -t sort

the shell interprets sort as an alias for the full pathname of the sort
command (lbin/ sort). After you have used the above command,
sort is defined as the following alias:

alias sort=/bin/sort

This allows the shell to substitute the full pathname and bypass the
directory search specified in your PATH variable.

Note that the same effect can be produced for all NUX commands
using the -h option of the set command. This makes each command
name a tracked alias.

The value of all tracked aliases becomes undefined each time the PATH

variable is reset. Another subsequent reference to the command will
once again reset the alias.

11.4 Default aliases
The following aliases are compiled into the Kom shell. They may be
unset or redefined at any time:

false='let 0'
history='fc -1'
integer='typeset -i'
r='fc -e -'
true='let l'
type='whence -v'
hash='alias -t'
functions='typeset -f'
nohup=nohup

12. Shell execution options
The shell is a program like other NUX commands, and it too has a
variety of options used to control how it executes. All shell execution
options can be set using the set command as follows:

set -opt[opt ... J

Or they can be specified on the command line when you invoke a new
shell or run a shell script with the ksh command:

3-50 AlUX User Interface

ksh -opt[opt ...] name

Use the set command to set new options in your current shell. Use
the ksh command to invoke a subshell with the options specified or to
run a script with options.

To turn options off. precede the option with a plus (+) instead of a
minus (-).

The variable $ - contains a list of all the options set. For example. if
you have the a and x shell execution options set. the command

print $­

returns

ax

12.1 Options that affect the environment

-a When the -a shell option is set. all variable assignments result in
that variable and its value being inserted in the environment.
You do not need to use the expo rt command to insert new
values.

- k The shell execution option - k can be used to insert variables and
values into the environment for a particular command; see
"Special Environments."

12.2 Options for Invoking new shells
In addition to the options available with the set command. there are
four options that can be used only when a new shell is invoked with the
ksh command.

-c string
If the -c flag is present, string is executed. After execution.
control is returned to the parent shell. This command is often
used to execute shell scripts.

- s If the - s flag is present or if no arguments remain. commands
are read from the standard input.

- i If the - i flag is present, the shell is interactive. The terminate
signal is ignored (so that kill 0 does not kill an interactive
shell), and the interrupt signal is caught and ignored (so that

Korn Shell Reference 3-51

wai t is interruptible). In all cases, the quit signal is ignored by
the shell.

- r If the - r flag is present, the shell invoked is a restricted shell.
Restricted shells cannot change directories, alter the value of the
PATH environment variable, redirect output, or specify path or
command names containing the symbol /. See' 'Restricted
Shells" in Chapter 2, "Bourne Shell Reference."

13. Job control
Korn shell job control allows you to suspend current jobs, move a
foreground job to the background (and vice versa), check on the status
of background jobs, refer to specific background jobs by number and
change their status, and receive notification when a job is done.

Every job you run in the Korn shell is associated with a job number;
for example, when you give a background command

diff filel file2 »file3 &

the job number (in brackets) displays before the process ID:

[3] 12345

Job numbers are assigned sequentially, so your first job is 1, the second
job is 2, and so forth.

13.1 Suspending a Job
To suspend your current foreground job, type the current suspend
character. Typically this is set to CONTROL-z, but if that does not work,
you may need to set your suspend character:

stty susp A Z

(If you also intend to use shell layering, see "Using Shell Layering"
on resolving possible conflicts in use of CONfROL-Z.) Once the
suspend character is set, typing it sends an immediate stop signal to the
current job; pending output and unread input are discarded.

When the shell interprets CONfROL-Z, it prints a message in the form

[job-number] + Stopped name

where job-number is the job number of the current job; + indicates that
it is the current job; and name is the command name of the stopped job.

3-52 AlUX User Interface

For example,

[2] + Stopped diff

13.2 Listing Jobs
You can list your jobs with the command

jobs

Your jobs will be listed, and their status as running or stopped will be
indicated like this:

[3] + Running 1p chapter1 &
[2] - Stopped vi chapter2
[1] Running diff fi1e1 fi1e2 > diff.fi1e &

The + indicates the current job, and the - indicates the preceding job.

If you include the -1 option, as in

jobs -1

process IDs will be shown as well as the job numbers.

13.3 Changing the status of stopped jobs
Once you have a stopped job, you can give another command at the
shell prompt (leaving the job suspended), resume the job in the
foreground, resume another stopped job, or continue the command
processing in the background.

To leave a job suspended, do nothing. When you give the command

jobs

you will see it listed as Stopped. To run a stopped job in the
background, give the command

bg %number

For example,

bg %2

The bg command with no argument

bg

puts the current (most recent) stopped job in the background to

Korn Shell Reference 3-53

continue executing. If a job number is given as an argument to bg, it
must be preceded by a percent sign (%). The following notation is
available for job numbers:

% number refers to a specific job by number

% + refers to the current job

% - refers to the preceding job

% string refers to the most recent stopped job that began with those
characters

Thus, if you had a current stopped Ip job whose job number was 4,
you could resume this job in the background with any of the following
commands:

bg
bg %+
bg %4
bg %lp

After one of these commands, you would be shown the command line
of the job that was being put in the background, and then the shell
prompt would be returned.

A job running in the background will stop if it tries to read from the
terminal. Background jobs are nonnally allowed to send output to the
terminal, but this can be disabled by giving the command

stty tostop

This causes background jobs to stop when they try to send output, just
as they do when they try to read input.

If a background job needs neither input nor output and completes
execution in the background, the shell displays a message in the fonn

[number] + Done name

For example,

[2] + Done diff

You can bring a job to the foreground with the command

3-54 A/UX User Interface

fg %number

The same conventions for referring to a stopped job given above under
the bg command work for the f g command. The f g command works
exactly like bg. Once your job is in the foreground, you can continue
working as before.

13.4 Blocked Jobs
The Korn shell learns immediately whenever a process changes state.
It normally informs you whenever a job becomes blocked, so that no
further progress is possible. For example, a job may become blocked if
you execute the following sequence of commands:

CONTROL-z
bg
fg

If the shell is busy with another process when it learns about a blocked
job, it will wait until it is about to print another prompt before
displaying a message.

13.5 Canceling jobs
To cancel a job, use the command

kill [%]number

number can be either a process ID, or a job number preceded by a
percent sign (%). The rules about job numbers that apply to bg and fg
also apply to the kill command. Using the kill command with
process IDs to cancel jobs is discussed in "Canceling Background
Commands." Thus if you had a current background lp job whose job
number was 4, you could cancel this job with any of the following
commands:

kill %+
kill %4
kill %lp

The shell will display a message that the job has been terminated:

[4] + Terminated lp bigfile &

Korn Shell Reference 3-55

13.6 Logging out with stopped jobs
If you try to log out while any of your jobs are stopped, you will be
warned with

You have stopped jobs.

If you use the jobs command to see what the stopped jobs are, or if
you immediately try to log out again, the shell will not warn you a
second time. The stopped jobs will be terminated.

The same process will occur if you attempt to log out while you have
background jobs running that are not preceded by nohup. You will be
warned once with

You have running jobs.

14. USing shell layering
Before using shell layering, you should make sure the swtch and susp
characters are defined to different control sequences. Otherwise, job
control will function correctly in the shell layer you invoke, but the
shl program will be inaccessible. The A/UX standard distribution
sets swtch to CONlROL-" and susp to CON1ROL-z. To check that these
are defined to different control sequences on your system, enter the
command

stty -a

at the shell prompt. This displays the settings for various user­
definable sequences. See s t t y{l) in AIUX Command Reference for
additional details.

For more information on the shl program, see Chapter 5 "Shell
Layering".

15. Overview of shell programming
A shell program is simply a list of commands. These commands can
be entered at the prompt or inserted in a file. They may contain

• variables and assignments

• typing of variables, including integer, uppercase and lowercase,
justified, and so on

3-56 AlUX User Interface

• one-dimensional arrays

• integer arithmetic

• control-flow statements (for example, if, for, case, or
while)

• built-in shell commands

• any A/UX command

Input for the shell program can be read from the keyboard (this is the
default standard input), taken from files, or embedded in the program
itself (using here documents). The Kom shell also allows you to create
menus that may provide input for a shell script (see "Creating and
Reading a Menu").

Shell programs can write output to the terminal screen (the default
standard output), to files, or to other processes (via pipes).

When the shell program executes, each command is executed until the
shell encounters either an end-of-file character or a command delimiter
that directs it to stop. During execution, you can trap errors and take
appropriate action.

15.1 Writing shell programs
You can enter a shell program at the prompt. When you use a built-in
shell command that expects a delimiter (such as done) or a certain
type of input, the secondary shell prompt appears after you press
RETURN. This prompt (> by default) appears at each line until you give
the expected delimiter; for example,

$ for i in *
> do
> cat $i
> done
$

Note that you can send an interrupt to cancel the script and return to
the primary prompt.

You can also write a shell program in a text file (using a text editor),
and then execute it (see "Executing Shell Scripts"). These program
files are often called shell scripts. Note that all shell programs may be

Korn Shell Reference 3-57

entered at the shell prompt or inserted in a file. This does not affect
their actions. Hereafter" shell scripts" will be used to refer to shell
programs that reside in a file.

15.2 Executing shell scripts
There are several ways to execute a shell script; these differ mostly in
terms of which instance of the shell is used for the execution.

• You can use the ksh command to read and execute commands
contained in a file. The script will be run in a subshell, which
means that it will have access only to the values set in the
environment and will be unable to alter the parent shell. The
command

ksh filename args ...

causes the shell to run the script contained in filename, taking the
args given as positional parameters. Shell scripts run with the
ksh command can be invoked with all the options possible for
the set command.

• You can change the mode of the shell script file to make it
executable. For example,

chmod +x filename

makes filename executable. Note that you may want to modify
your PATH variable to include a personal directory (for example,
$HOME/bin) containing your shell scripts. When you have
done this, you can use your script names as ordinary commands,
regardless of your current location in the file system.

Then the command

filename args ...

has the same effect as using the ksh command. The arguments
become the positional parameters; the script is run in a subshell,
which means that it will have access only to the values set in the
environment and will be unable to alter the parent shell.

• You can run a shell script inside the current shell by using the
"dot" command (.). The "dot" command (.) tells the current
shell to run the script; no subshell is invoked. This should be

3-58 A/UX User Interface

used if you wish to use local shell variables or functions, or
modify the current shell:

. filename args ...

Note that there must be a space between the dot and the filename.
Because the commands are executed in the current shell, this is
the way to run a script that is to change values in the shell. The
arguments become positional parameters. Otherwise the
positional parameters are unchanged .

• You can run an executable shell script with the exec command.
This should be used when the shell script program is an
application designed to execute in place of the shell and replace
interaction with it:

exec filename args ...

In this case, the shell script replaces the current shell. This
means that when the script is over, control will not return to the
shell. If you were in a login shell, you will be logged out.

15.3 Comments
A word beginning with a number sign (#) causes that word and all the
following characters up to a newline to be ignored.

15.4 Writing Interactive shell scripts
A shell script can invoke an interactive program such as the vi editor.
If standard input is attached to the terminal, vi will read commands
from the terminal and execute them just as if invoked from an
interactive shell. After the session with viis finished, control will pass
to the next line in the script In a similar manner, a script can invoke
another copy of a shell (using sh, csh, or ksh), which will interpret
commands from the terminal until you send an eof. Control will be
returned to the script. You can use this to create a special environment
for certain tasks by setting environment variables in a shell script and
then invoking a new subshell.

You can also write interactive shell scripts by using the read and
eval commands (documented below), prompting users to enter
commands:

Korn Shell Reference 3-59

read command
eval $command

The first line will read the user's command line into the variable
command. The eval command will then cause the command to
execute.

15.5 Canceling a shell script
You can cancel a shell script just like an ordinary A/UX command. If
the script is running in the background, use the kill command. See
"Canceling Commands" for details on kill and various types of
interrupts that can stop a command.

Note: Interrupts can be trapped and handled within the script
using the trap command. See "Fault Handling and
Interrupts. "

15.6 Writing efficient shell scripts
In general, built-in commands execute more efficiently than A/UX
commands. See" Summary of Korn Shell Commands" at the end of
this chapter for a complete list of these commands. The following
built-in commands are useful in constructing efficient shell scripts:

hash This causes the shell to remember the search path of the
command named.

u 1 imi t This can be used to set a limit on files written by processes.

time s This prints the accumulated user and system times for
processes.

You can also set the - h shell execution option using

set -h

This will locate and remember functions as they are defined, instead of
when they are invoked.

Careful setting (or resetting inside a shell script) of the PATH and
CDPATH environment variables make sure that the most frequently
used directories are listed first This also improves efficiency.

3-60 AlUX User Interface

16. Command evaluation
When you give a command, the shell evaluates the command in one
pass and then executes it To force more than one pass of evaluation,
use the eval command described below.

While evaluating the command, the shell performs the following
substitutions on variables:

• Alias substitution. This checks the first word of every command
to see if it is an alias, that is, a user-defined name for another
command or group of commands. If an alias is found, it is
replaced by the text of the alias. Only one check for aliases is
made, so that an alias itself cannot contain an alias. The second
alias will not be detected. For information on aliases, see
"Aliases for Commonly Used Commands."

• Tilde substitution. This replaces an initial tilde with a directory
name (see "Shortcuts in Working With Directories"). The
following forms are recognized:

This is replaced by the value of the HOME variable.

-name This is replaced by the home directory of another
user (where name is the user's login name).

-+ This is replaced by your current working directory.

This is replaced by your last working directory.

• Variable substitution. This replaces variables preceded with $
(for example, $user) with their values. Only one pass of
evaluation is made. For example, if the value of the variable
user is daphne, then the command

print $user

prints

daphne

However, if the value of the variable user is $name, then the
command

print $user

prints

Korn Shell Reference 3-61

$name

The second variable is never evaluated and the value is not
substituted. See "Parameter and Variable Substitution" for
more information.

• Command substitution. The shell replaces a command enclosed
in back quotes with the command's output. For example, if the
current directory is /users/ doc/virginia, then the
command

print 'pwd'

prints

/users/doc/virginia

• Blank interpretation. The shell breaks the characters of the
command line into words separated by delimiters (called
"blanks"). The delimiters that are interpreted as blanks are set
by the shell variable IFS; by default, they are blank spaces, tabs,
and newlines. The null string is not regarded as a word unless it
is quoted; for example,

print "

passes the null string as the first argument to print, whereas
the commands

print

and

print $null

(where the variable n u 11 is not set or set to the null string) pass
no arguments to the print command.

• Filename expansion. The shell scans each word for filename
expansion metacharacters (see "Using Shell Metacharacters")
and creates an alphabetical list of filenames that are matched by
the pattern(s). Each filename in the list is a separate argument.
Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated with a for
loop.

3-62 A/UX User Interface

16.1 Forcing more than one pass of evaluation
Sometimes more than one pass of evaluation is necessary for a
command to be interpreted correctly. For example, suppose that the
following two lines occur near the beginning of a shell script:

err_33='echo $name: user not found'
name=elaine

If you give the command

$err_33

you get

$name: user not found

(which is not quite what you want). In cases like this, you can use the
built-in command eval. So, the command

eval $err_33

forces two evaluations of the variable err _ 33. Thus, it prints

elaine: user not found

In general, the eval command evaluates its arguments (as do all
commands) and treats the result as input to the shell. The input is read
and the resulting command(s) executed.

There is an easier way to do what the above example intended, which
does not require the use of eval. If you use double quotes (n), you
have the following:

name=eli
err l=necho $name n

Then the command

eli

16.2 Command execution
Mter all substitution has been carried out, commands are executed as
follows:

Korn Shell Reference 3-63

• Built-in commands, functions, and shell scripts run with the dot
command (.) are executed in the current shell. The command
has available all current shell execution options, the values of
shell variables, environment variables, and functions defined in
the current shell.

• A/UX commands, programs, executable shell scripts, shell
scripts run with the ksh command, and series of commands
enclosed in parentheses are executed in a subshell. The current
shell invokes a child shell that executes the commands and then
returns control to the parent shell. Only the values in your
environment are available to these processes.

• Commands and executable scripts run with the exec command
execute in place of the current shell.

If the A/UX command or program name does not specify a pathname,
the environment variable PATH is used to determine which directories
should be searched for the command. The only exceptions to this are
built-in commands.

For more information about the execution of shell scripts, see
"Executing Shell Scripts. ,.

16.3 Exit status: the value of the command
If a command executes successfully, in general its exit value is zero
(0). If it terminates abnormally, its exit value is nonzero. The shell
saves the exit value of a command. These are used primarily in shell
scripts. See signal(3), exit(2), and wai t(2) in A/UX
Programmer's Reference for the values of various exit statuses.

17. Defining functions
You can use a function definition to assign a name to a command or
list of commands. Kom shell function definitions may use the
following syntax:

funct ion name { command-list;}

or the Bourne shell syntax:

name () { command-list;}

3-64 AlUX User Interface

In either syntax. the first brace ({) must be followed by a space or
newline. and the second brace must be preceded by a semicolon or
newline. See Chapter 2. "Bourne Shell Reference." for more
information about the Bourne shell syntax above.

Using the function keyword. a function maintaining a daily log of
users could be written as follows:

or

function users { date»log; who»log;}

function users {
date»log; who»log
}

Note that when you use the multiline form at the shell prompt. the shell
prints the secondary prompt at each line after the opening brace ({)
until you enter the final brace (}).

After you have defined a function. you can use the command syntax

name [args]

For example.

users

This causes the commands in command-list to be executed.

Korn shell functions are read in and stored in the shell. Alias names
are resolved when the function is read. Functions are executed like
commands. with the arguments passed as positional parameters (see
"Positional Parameters and Shell Variables").

Functions behave like shell procedures. except for the ability to share
data. Normally. the calling program and the function share variables.
You can use the typeset command inside a function to define local
variables for the function; these variables will exist only while that
function (and any functions it calls) is executing.

You can cause a function to return before reaching the end of
command-list using the command

return n

Korn Shell Reference 3-65

n sets the exit status of the function. If n is not set, the exit status is the
status of the last command executed.

Functions are not typically available to an executing shell script. There
are two separate ways of making a function available to an executing
script. If the shell script is executing in the current shell, use the
command

typeset -xf na~

at the shell prompt. Functions that need to be defined across separate
invocations of the shell should be defined in the . kshrc file (that is,
the file named by the ENV variable).

To list the functions you have defined, use the command

typeset -f

without arguments. This displays function names and the text of
functions you have entered at the keyboard.

To undefine a function, use the command

unset -f na~

where na~ is the name of the function you want to remove.

18. Positional parameters and shell variables
A shell script may use two types of variables:

Positional parameters: These are string variables referred to by the
numbers [0-9]. These numbers refer to the position of the parameter
on the command line. Positional parameters are set on the command
line and contain the arguments to the script. Positions greater than 9
must be enclosed in braces, for example, {12}, or accessed by means
of shift (see "Changing Parameter Positions").

Shell variables: These are string variables referred to by name. They
may be assigned on the command line or inside the script itself.

The relationship between variables inside a shell script and existing
shell variables depends on how the script is run. See' 'Executing Shell
Scripts. ' , In all cases, shell scripts have access to the variables and
values in the environment.

3-66 A/UX User Interface

18.1 Positional parameters
Positional parameters may be referred to by the numbers [0-9] and set
as arguments on a command line. When you enter a command at the
prompt, the shell stores the elements of the command line in
parameters: the command name is stored in parameter 0, the first
argument is stored in parameter 1, the second argument in parameter 2,
and so forth. Thus, for the command

diff letter1 letter2

parameter 0 is diff, parameter 1 is letter1, and parameter 2 is
letter2. For the command

print "not a directory"

parameterOisprint and parameter 1 is "not a directory".

A shell script may refer to parameters by number; for example,

print $1
print $2

These will be substituted by the arguments given in that position on the
command line; for example, for the command

myscript arg1 arg2

parameter 0 is myscript, parameter 1 is arg1, and parameter 2 is
arg2. This prints

arg1
arg2

18.1.1 Setting values in a script
The set command creates a new sequence of positional parameters
and assigns them values. After execution, all the old parameters are
lost. For example, the command

set *
creates a sequence of positional parameters set to the names of the files
in the current directory (parameter 1 is the first filename, parameter 2 is
the next filename, and so on). A subsequent command,

set hi there

Korn Shell Reference 3-67

creates new positional parameters, discarding the old values. This time
there will be only two values set; the other positional parameters will
have no values. A subsequent command,

print $2 $1

displays

there hi

The command

print $3

would print a blank line, because there is no longer a parameter 3.

To set a positional parameter to a string of words separated by blanks,
the entire string must be enclosed in double quotes. For example,

set "this is one positional parameter"

sets this entire string to the first positional parameter. Without the
quotes, the phrase would be set, one word at a time, to the first five
positional parameters.

Because the set command creates a new series of parameters, it is
impossible to set only one parameter in a series. If only one parameter
is set, it will be the first, and the remaining parameters will be lost.

The set command can also be used within a script to create positional
parameters if none are given on the command line. Such parameters
can then be used as a one-dimensional array.

After the set command is used to reset positional parameters, the
system-maintained variable i, which contains the number of positional
parameters, is reset to reflect the new number of parameters. For
details on the system-maintained variables, see "Parameters and
Variables Set by the System."

18.1.2 Changing parameter positions
The shift command shifts positional parameters one or more
positions to the left, discarding the value in the first position(s). The
syntax is

shift [n]

3-68 AlUX User Interface

If n is omitted, it defaults to 1. If n is specified, the shift takes place at
the position n+ 1. For example,

shift 6

moves parameter 7 into position 1, parameter 8 into position 2, and so
on, discarding the values that were stored in positions 1 through 6.

This can be useful, for example, when working through a list of files.
After each file is processed, a shift can be performed, letting the next
filename become parameter 1.

18.1.3 Number of parameters
The current number of positional parameters is available, stored in the
system-maintained variable *. See "Parameter and Variable
Substitution" and "Parameters and Variables Set by the System."

18.2 Shell variables
Shell variables are named string variables. These variables can be
assigned values anywhere in the script or on the command line.
Variable names begin with a letter and consist of letters, digits, and
underscores. Environment variables, which we have already
encountered, are simply special kinds of shell variables (namely, shell
variables that are available to all subshells).

18.2.1 Assigning values
Shell variables are assigned values with the syntax

name=value [name=value ...]

Note that there cannot be any spaces surrounding the equal sign.

All values are stored as strings. Pattern-matching is performed. To set
a variable to a string of words separated by blanks, the entire string
must be quoted; for example,

longvar="this is a long variable"

After the variable assignments

user="fred stone" box='???' acct=18999

the following values are assigned:

Korn Shell Reference 3-69

user = fred stone
box ???
acct 18999

Because the Korn shell supports only string variables, all of these
values (including 18999) will be strings of characters. Note that the
question mark metacharacters must be quoted to prevent pattern
matching, and that the value for user must be quoted because it
contains a blank. Either single or double quotes may be used to
enclose such values, provided the types are not mixed within a single
value enclosure.

A variable may be set to the null string with the syntax

variable =

Shell variables may be set at the shell prompt to provide abbreviations
for frequently used strings; for example,

b=/users/fred/bin
mv file $b

moves file from the current directory to the directory

/users/fred/bin

See "Assigning Values on the Command Line" for more information.

18.2.2 Arrays of strings
The shell supports a limited one-dimensional array facility. An
element of an array parameter is referenced by a subscript, as follows:

variable [number]

number can be any arithmetic expression. The subscripts must be in
the range of 0 through 511. The first subscript will be O.

Arrays do not need to be declared. Any reference to a variable with a
valid subscript is legal, and an array will be created if necessary.

The elements of an array are assigned just like individual variables; see
the next section.

18.2.3 Assigning values and types to variables
Korn shell variables and arrays and array elements can be assigned in
two ways:

3-70 NUX User Interface

• with an equal sign (=); for example,

name=diane
list[l]=first
line[lO]="Please include your number"

• with the Korn shell typeset command

The typeset command is used

• to assign values

• to assign types

• to create constants (read-only variables)

• to export variables and functions

• to create and assign local variables within functions

This section covers using the typeset command to assign values,
types, variables, arrays, and constants. For information on using the
typeset command to export values to the environment, see
"Customizing Your Environment. " For information on using the
typeset command with functions, see "Defining Functions."

The form of the typeset command is

typeset [-HLRZfilprtux[n][name[=value]] ...]

Types may be assigned using the flag options. For name, you can give
a variable name, the name of an array, or an indexed array element.
All elements of an array must be of the same type. The value you give
will depend on the type(s) chosen. There are no spaces around the
equal sign. If no value is given, then name is simply given the type(s)
specified.

The following type(s) are possible. They can be combined. If a
variable (or array) that has already been assigned values changes the
type from uppercase (-u) to lowercase (-1), for example, its value will
usually be altered to the new type.

- H Provides A/UX-to-hostname file mapping on non-UNIX®
machines.

Korn Shell Reference 3-71

-L Left justify and remove leading blanks from value. The width of
the field remains the width assigned with the typeset
command. When the variable is assigned a value, the value is
either filled on the right with blanks or truncated as necessary to
fit. Leading zeros are removed if the - z option is also set. The
- L option turns off the - R option. For example, you could set
the width of the variable las t to seven left-justified places as
follows:

typeset -L last=1234567

or

typeset -L7 last

If last was then set to Elizabeth, which has nine characters,
the last two characters (th) would be lost, as in the following
example:

last=Elizabeth
print $last
Elizabe

If you set last to Mary, this name would be inserted in the first
four places on the left and followed by three spaces.

- R Right justify and fill with leading blanks. The width of the field
remains the width assigned with the typeset command. When
the variable is assigned a value, the field is left-filled with blanks
or truncated from the end as necessary to fit. This option is the
reverse of the - L option above. The - R option turns off the - L

option. Just as with the -L option, you can abbreviate the -R

option (for example, typeset -R7 last).

-z Used alone, or in conjunction with the -R option, the field is
right justified and filled with leading zeros. Used in conjunction
with the - L option, the field is left justified and any leading zeros
are removed. Note that the - Z option does not override any - R

or - L options already in use. The following examples illustrate
the use of the - z option with both right- and left-justified fields:

3-72 AJUX User Interface

typeset -R5 f1 #right justify with leading blanks
f1=22
periods=" "
print "$f1"
print $periods

prints

22

typeset -z f1 #right justify with leading zeros
print "$f1"
print $periods

prints

00022

and

typeset -L f1 #left justify, remove leading zeros
print "$f1"
print $periods

prints

22

Note: Quotation marks are necessary around the fields
formatted with the typeset command to preserve the
field interpretation you requested. If not quoted, these
fields are printed without the requested justification or
blank filling.

-f names refer to function names rather than parameter names. No
assignments can be made and the only other valid option is
-x. See "Defining Functions" for details.

Korn Shell Reference 3-73

- i The variable name is an integer. Declaring variables to be
integers makes arithmetic done with the Kom shell let
command much faster. A variable declared to be an integer
cannot be assigned anything but an integer value. The alias

integer

is equivalent to

typeset -i

Thus,

integer total average

is the same as

typeset -i total average

The first assignment to an integer variable determines the output
base. This base will be used whenever the variable is printed.
The base is shown in numeric constants as

base # number

For instance, to specify that the variable row always be output in
base two, you can define it as follows:

integer row=2#110lOOlO

You should be sure that there are no spaces before the number
sign (#); otherwise it is interpreted as the beginning of a
comment. If no base is given, it is assumed to be 10.

-1 Convert uppercase characters to lowercase. The flag -u is
tumedoff.

-p Write the output of this typeset command, if any, to the two­
way pipe created for a background command ending with "& I ".
For this type of background command connected to the terminal,
see' 'Connecting a Command to Standard Input and Output."

-r Mark name read-only. Read-only variables cannot be changed
while they are this type.

-t Tag the named parameters. Tags are user-definable and have no
special meaning to the shell.

3-74 NUX User Interface

-u Convert lowercase characters to uppercase. The flag -1 is
turned off.

-x Mark name for automatic export to the environment. Exported
parameters pass values and types to subshells but pass only
values to the environment.

Using + rather than - causes certain flags to be disabled. Thus, the
command

typeset -r OLD

makes the variable OLD a read-only variable, and the command

typeset +r OLD

removes this status.

Flags that may be used with + include rxtifZRL. Note that if a
variable's only attribute is -z, -R, or -L, use of +Z, +R, or +L will
have the same effect as unset.

If the typeset command is given with options but no arguments, the
variables that have these options are listed with their values. If no
arguments or options are given, all variables are listed with their types.

If used inside a function, the typeset command creates variables
local to that function. See "Defining Functions."

Use the unset command to remove variables.

The following is an example of the use of the typeset command to
format data:

typeset -RulO f1dl
typeset -LS f1d2
typeset -R16 f1d3
typeset -LZS fld4
f1dl="ABCdef"
f1d2="002"
f1d3="GHIjk1"
f1d4=n007 n

print n$fldl $fld2 $f1d3 $f1d4"

Korn Shell Reference 3-75

This sequence of commands will line up four columns of data and
print it. In the first column will be up to ten uppercase characters,
right justified; in the second column will be up to five characters, left
justified; in the third column will be up to six lowercase characters,
right justified; and in the fourth column will be up to five characters,
left justified, with leading zeros removed. For example, if you put
these commands into a file format, you could give the following
command:

ksh format

which prints

ABCDEF 002 ghijkl 7

18.2.4 Assigning values on the command line
An argument to a shell procedure of the form name=va[ue, which
precedes the command name, causes value to be assigned to name
before execution begins. The value of name in the invoking shell is not
affected. For example,

user=fredcommand

executes command with user set to fred.

After variable assignments, any additional arguments are assigned to
the positional parameters.

The - k flag causes arguments of the form name=value to be
interpreted in this way anywhere in the argument list. See" Special
Environments" for more information.

18.2.5 Removing shell variables
Shell variables are removed using the unset command followed by
the name of the variable:

unset name

The variable and its value will be removed.

18.3 Setti ng constants
In the Kom shell, read-only variables whose value is intended to
remain constant are declared with the command

3-76 A/UX User Interface

typeset -r name=value

The variable whose name is given is set to value. Attempts to change
value are illegal as long as the variable remains read-only. See
" Assigning Values and Types to Variables" for details.

In addition, the older form,

readonly name ...

may be used.

18.4 Parameter and variable substitution
Positional parameters and shell variables are referenced and their
values are substituted when the identifier (the positional parameter
number or variable name) is preceded by a dollar sign ($):

$ identifier

For example,

$j1 $1 $8 $version

For variables, identifier can be any valid name; for positional
parameters, identifier must be a digit between 1 and 9 inclusive, or else
the identifier must be enclosed in braces (for example, $ { 12 }).

Another notation for substitution uses braces to enclose identifier:

echo $ {identifier}

This is equivalent to $identifier. Braces are used when you may want
to append a letter or digit to identifier. For example,

tmp=/tmp/ps
ps a >$ {tmp} a

substitutes the value of the variable tmp and directs the output of p s to
the file /tmp/psa, whereas

ps a >$tmpa

causes the value of the variable tmpa to be substituted.

A special shell parameter, *, can be used to substitute for all positional
parameters (except 0, which is reserved for the name of the file being
executed). The notation @ is the same as * except when quoted. Thus,

Korn Shell Reference 3-77

print "$*"

prints all values of all the positional parameters, and

print "$@"

passes the positional parameters, unevaluated, to p r in t and is
equivalent to

print "$1" "$2" ...

18.5 Referencing arrays
If the variable is subscripted, the variable name and subscript must be
enclosed in the braces indicated as optional above. Thus the simple
variable done would be referenced as

$done

and the second element of the subscripted array variable todo would
be referenced as

$ {todo [2] }

Referencing an array without giving a subscript is equivalent to
referencing the first element, or

array [0]

because array subscripting starts with O.

The subscript [*] references all the elements in an array. The number
of elements in an array can be found with

$ { =It=array-name [*] }

Thus, for example, if you have the array

name[O]=first name [l]=second name[2]=last

you can give the following sequence of commands and shell responses:

$ print ${name[*]}
first second last
$ print ${=It=name[*]}
3

3-78 A/UX User Interface

18.6 Testing assignment and setting defaults
If a parameter or variable is not set, then the null string is substituted
for it. For example, if the variable d is not set,

print $d

or

print ${d}

prints a blank line.

The following structures allow you to test whether variables or
parameters are set and not null, and provide default values or messages.
In these structures, string is evaluated only if it is to be substituted
(command substitution, another variable, and so forth). If the colon is
omitted, the shell checks only that the variable has been set; no action
is taken if the variable or parameter is currently null.

$ {identifier: -string}
If the parameter or variable whose name is represented by
identifier is set and is non-null, substitute its value; otherwise
substitute string. The value of the variable or parameter is not
changed. For example, if the variable te s t is null or unset, then

${test:-unset}

returns the string unset; otherwise the value of test is
returned.

$ {identifier: +string}
If identifier is set and is non-null, substitute string; otherwise
substitute nothing. The value of the variable or parameter is not
changed. For example, if the variable test was null or unset,
then

${test:+unset}

returns nothing:,.

$ {variable: =string }
If variable is not set or is null, set it to string .. then substitute the
new value. Positional parameters may not be assigned in this
way. For example,

Korn Shell Reference 3-79

${HOME:=/user/doc}

tests the environmental variable HOME to see if it had a non-null
value. If it did not, it would be assigned the value / use r / do c
and this value would be substituted. Otherwise the original value
of HOME would be returned.

$ {identifier: ? string}
If identifier is set and is non-null, substitute its value; otherwise
print string and exit from the shell. If string is omitted, the
message

filename: identifier: parameter null or not set

prints. For example, a shell script named distribute that
requires the parameter directory to be set might start as
follows:

echo ${directory:?"distribution directory not set"}

If directory was not set, the script would immediately exit
with the message

distribute:directory:distribution directory not set

18.7 Creating substrings In substitution
Substrings can be created during variable substitution or they can be
created with the built-in substring command. The forms of variable
substitution used to create substrings are

$ {name#pattern} (for stripping off first characters)
$ {name%pattern} (for stripping off last characters)

name is the variable to be truncated. pattern specifies the characters to
be removed. pattern can contain any typed characters as well as the
metacharacters *, ?, and [...].

If pattern does not match any characters in the value of name or is null,
then the original value is substituted. If pattern does match the
beginning (with #) or ending (with %) characters, the value of name
with the matched characters deleted is substituted. In no case is the
original value of name changed.

For example, to substitute the filename that is the value of variable
called filename with its extension removed, you could use the

3-80 A/UX User Interface

following variable substitution:

${filename%.*}

18.8 Parameters and variables set by the system
Except for the question mark (?), the following variables are initially
set by the shell; the ? is set by each command that executes. These
variables can be referenced with the standard forms discussed above.

The last argument of the preceding command.

PP ID The process number of the parent of the shell.

PWD The present working directory set by the cd command.

OLDPWD The preceding working directory set by the cd command.

RANDOM Each time this parameter is referenced, a random integer is
generated. The sequence of random numbers can be
initialized by assigning a numeric value to RANDOM.

REPLY This parameter is set by the select statement and by the
read special command when no arguments are supplied.

SECONDS The number of seconds elapsed since login (or since the
present shell was created).

?

*

The exit status of the last command executed as a decimal
string. Most commands return a zero exit status if they
complete successfully; otherwise a nonzero exit status is
returned. This is used in the if and while constructs for
control of execution.

The number of positional parameters in decimal. For
example, this notation is used in a script to refer to the
number of arguments. An example of this use appears in
the case section.

All the positional parameters (arguments) of a shell script,
evaluated. For example,

Korn Shell Reference 3-81

for i in $*
do

print $i
done

The above shell subroutine prints the values of all the
positional parameters.

@ Synonym for *, except when quoted. The meaning of $ *
and $ @ is identical when not quoted or when used as a
parameter assignment value or as a filename. When used
as a command argument. however. "$ *" is equivalent to
"ld2d ... ". where d is the first character of the IFS
parameter, whereas" $@" is equivalent to "$1", "$ 2 ",
and so on.

$ The process ID of this shell in decimal. Because process
numbers are unique among all existing processes, this
string is frequently used to generate unique temporary
filenames. For example,

ps a > /tmp/ps$$
command-list
rm /tmp/ps$$

The process ID (in decimal) of the last process run in the
background.

(hyphen) The current shell flags, such as -x and -v.

19. Control-flow constructs
The shell has a variety of ways of controlling the flow of execution.
The actions of the for loop and the case branch are determined by
data available to the shell. The actions of the while or until loop
and" if then else" branch are determined by the exit status
returned by commands or tests. Control-flow constructs can be used
together and loops can be nested.

In the following constructs, reserved words like do and done are
recognized only following a newline or semicolon. command-list is a
sequence of one or more simple commands separated or terminated by
a newline or a semicolon.

3-82 AlUX User Interface

19.1 for loOps
To repeat the same set of commands for several files or arguments, use
the for loop:

for name in word] word2
do

command-list
done

An example of such a procedure is tel, which searches a file of
telephone numbers, /usr / lib/telnos, for the various names given
as arguments to the command and passed as positional parameters.
The text of tel is

for i
do

grep $i /usr/lib/telnos
done

The command

tel fred

sets i to the name f red and prints those lines in the file
/usr / lib/telnos that contain the string fred. It is equivalent to
the form

for i in fred
do

grep $i /usr/lib/telnos
done

The command

tel fred bert

prints those lines containing f red followed by those for be rt.

To terminate a loop before the condition fails (or is met), or to continue
a loop and cause it to reiterate before the end of command-list is
reached, use the loop-control commands:

break [n]
continue [n]

Korn Shell Reference 3-83

These commands can appear only between the loop delimiters do and
done. The break command terminates execution of the current loop;
execution resumes after the nearest done. The continue command
causes execution to resume at the beginning of the current loop.

For both break and continue, the optional n indicates the number
of levels of enclosing loops at which execution should resume or
continue. For example, the break 2 in

for i
do

for
do

in 0 1

j in 0 1

for k in 0 1 2 3
do

print ij$k
break 2

done
done

done

causes execution to resume two levels above the current loop, printing

000
100

19.2 se1ect statements
A variant form of the for loop is the select loop. Its format is

select identifier [in word .. .] do list done

A select command prints, on standard error (file descriptor 2), the
set of words, each preceded by a number. If in word . .. is omitted,
the positional parameters are used instead (see' 'Positional
Parameters"). The PS3 prompt is printed and a line is read from the
standard input. If this line consists of the number of one of the listed
word s, the value of the parameter identifier is set to the word
corresponding to this number. If this line is empty, the selection list is
printed again. Otherwise the value of the parameter identifier is set to
null. The contents of the line read from standard input are saved in the
parameter REPLY. list is executed for each selection until a break or
end-of-file is encountered.

3-84 A/UX User Interface

The select command is especially useful for the generation of
menus, as it sends its menu text to standard error output, leaving
standard output free, so you can save replies in a file. An example of
this use is given in "Creating and Reading a Menu."

19.3 case statements
The form of the case statement is

case word in
pattern} command-list;;

pattern) command-list;;
esac

Each command-list except the last must end with " ; ; ". (The
semicolons after the last command-list are optional.) This breaks out of
the case statement after execution. After execution of command-list,
the case is complete and control passes to the command following
esac.

Patterns may include filename expansion metacharacters. However,
unlike filenames, the initial dot, slashes, and a dot following a slash do
not have to be matched explicitly. Different patterns to be associated
with the same command-list are separated by the OR operator, the
vertical bar (I). To be used literally, pattern-matching metacharacters
must be quoted. Because an asterisk (*) matches any sequence of
characters, it can be used to set up the default case. Be careful in
setting up the default, however; there is no check to ensure that only
one pattern matches the case argument. The first match found defines
the set of commands to be executed. In the next example, the
commands following the second pattern (0) will never be executed
because the first pattern (*) executes everything it receives. The
commands following the first pattern will always be executed.

case $* in
*} ... "

0) print "no arguments given"
exit; ;

esac

The following is an example of a case statement in a script named
append that appends files:

Korn Shell Reference 3-85

case $* in
1) cat »$1 II

2) cat $1 »$2 ;;
*) print 'usage: append [from] to' ;;

esac

When called with one argument, as in

append file

the system-set variable * is assigned the value 1 (the number of
parameters in the call); and the standard input is appended (copied)
onto the end of file using the cat command.

When called with two arguments, as in

append file1 file2

the value of * is 2 and the command appends the contents of file1
onto file2. If the number of arguments supplied to append (that is,
the value of $ *) is greater than 2, then the shell prints an error message
indicating proper usage.

The following example illustrates the use of alternative patterns
separated by a vertical bar (I):

case $i in
-x I-y) command;;

esac

The same effect could be had by using the bracket metacharacters ([
and J), as in

case $i in
- [xy]) command;;

esac

When using metacharacters, the usual quoting conventions apply, so
that

case $i in
\?) echo "input is ?" ;;

esac

3-86 NUX User Interface

matches the character ? for the first pattern.

A common use of the case construct is to distinguish among different
forms of an argument. The following example is a fragment of a script
that uses a case statement inside a for loop:

for i
do

case $i in
-[ocs]) ;;
-*) print 'unknown flag $i' ;;
* . c) / 1 ib / c 0 $ i ... ;;
*) print 'unexpected argument $i' II

esac
done

19.4 wh:i.1e loops
The while and until commands cause the program to loop
depending on whether or not a certain condition is met.

A while loop has the form

while command-listl
do

command-list2
done

The while command tests the exit status of the last simple command
in command-listl. Each time round the loop, command-listl is
executed. If the last command executes successfully (a zero [true] exit
status is returned), then command-list2 is executed; otherwise the loop
terminates. For example, the script

while test $1
do

command-list
shift

done

loops through all the positional parameters. For each iteration of the
loop, the test command is used to determine if the parameter exists.
If it does, then test returns a zero (true) exit status and the following
commands execute.

Korn Shell Reference 3-87

The shift command is used to rename the positional parameters $2,
$ 3, . .. as $1, $ 2, ... , and remove the first one, $1. This entire loop
is equivalent to

for i
do

command-list
done

For both while and until loops, the exit status of the loop is that of
the last command executed in command-list2. If no commands in
command-list2 are executed, then a zero exit status is returned.

To create an endless nonconditional while loop, use the built-in
t rue command, which always returns a zero exit status.

19.5 unt.il. loops
The un til loop has the form

until command-listl
do

command-list2
done

It works the same way as a while loop, except that the termination
condition is reversed. Each time round the loop, command-list1
executes; if the last command does not execute successfully (returns a
nonzero [false] exit status), then command-list2 is executed.

A common use for the un til loop is to wait until some external event
occurs and then run some commands. For example,

until test -f file
do

sleep 300
done
command-list

will loop untilfile exists. Each time round the loop, it waits for 5
minutes (300 seconds) before trying again. (Presumably, another
process will eventually create the file.)

To terminate a loop before the condition fails (or is met), or to continue
a loop and cause it to reiterate before the end of the command list is

3-88 A/UX User Interface

reached, use the loop-control commands:

break [nJ
continue [nJ

These commands can appear only between the loop delimiters do and
done, as in the for loop. See "for Loops" for more information on
using the break and cant inue commands.

For both while and until loops, the exit status of the loop is that of
the last command executed in command-list2. If no commands in
command-list2 are executed, then a zero exit status is returned.

To create an endless nonconditional until loop, use the built-in
false command. See true(l) inAIUX Command Reference for
details.

19.6 if then el.se
The form of the "if then else" conditional branch is

if command-listl
then

command-list2
[else

command-list3]
fi

In this structure, else and command-list3 are optional. The if
command tests the exit status of the last simple command in
command-listl. If the last command executes successfully (a zero
[true] exit status is returned), then command-list2 is executed;
otherwise command-list3, if present, is executed. For example, the if
command can be used with the test command to test for the existence
of a file, as below:

if test -f file
then

command-listl
else

command-list2
fi

Korn Shell Reference 3-89

Multiple conditions can be tested with a nested if command:

if condition}
then

command-listl
else

fi

if condition2
then

command-list2
else

fi

if condition3
then command-list3
fi

Note that each of the nested if commands requires its own fi.
Nested ifs can also be written as

if condition}
then

command-listl
elif condition2
then

command-list2
elif condition3
then command-list3
fi

Note that this is a single if construct, with only one terminating f i.

An example of the if statement can be found in the following script.
This uses the NUX t ouch command, which updates the last modified
time for a list of files.

3-90 NUX User Interface

flag=
for i
do

case $i in
-c) flag=N, ,

*) if test -f $i
then

esac
done

touch $1
elif test $flag
then

>$i :It create it
else

echo "file $i does not exist"
fi ;;

The -c flag in this command forces subsequent files to be created if
they do not already exist. Without the -c flag, an error message prints
if the file does not exist. The shell variable f lag is set to some non­
null string if the -c argument is encountered. The In and rm
commands make a link to the file and then remove it.

The exit status of the if command is the exit status of the last
command following a then or else. If no such commands are
executed, then the exit status is zero.

Conditional execution of commands can also be achieved with the
symbols & & and I I. See' 'Conditional Execution" for details.

19.7 exit
A shell script terminates when it reaches end-of-file. The exit status of
the script is that of the last command executed. The built-in exit
command can cause the script to terminate with exit status set to n. If n
is omitted, exit status is that of the last command executed before
exi t was encountered.

Korn Shell Reference 3-91

20. Input and output
20.1 1/0 redirection
All forms of input and output redirection are allowed in shell scripts. If
input or output redirection (using < or » is done in any of the control­
flow commands, the entire command is executed in a subshell. This
means that any values assigned during execution of the command will
not be available after the command is over and control returns to the
parent shell. If necessary, you can change the shell's standard input
and output. See "Changing the Shell's Standard Input and Output."

20.1.1 Redirection with file descriptors
The A/UX system considers standard input, standard output, and
standard error output as files, and associates a file descriptor with each
of them.

File descriptors are numbers [0 to OPEN _MAX-I] used to identify
files. By default, the file descriptors 0, I, and 2 have the following
associations:

• 0 is associated with standard input.

• I is associated with standard output.

• 2 is associated with standard error output.

Thus, standard input can be referenced via file descriptor 0, standard
output can be referenced via file descriptor I, and standard error can be
referenced via file descriptor 2.

Input and output redirection uses the syntax

[x]< filename

and

[x]> filename

where x is an optional file descriptor number indicating a file; > and <
are redirection operators; and filename is a file containing input, or to
which output will be directed. The simple forms omit the file
descriptor x and use the defaults listed above. If no descriptor appears,
it is assumed to be 0 for input redirection and I for output redirection.

3-92 NUX User Interface

Standard error output must be redirected explicitly using either >& or a
numeric file descriptor as documented below. The» form may be
used to append output to an existing file rather than overwrite the file's
contents.

All file descriptors can be used with redirection characters in a
command line, immediately preceding the redirection symbol. For
example,

... 2>&1 I more

redirects standard error on top of standard output and pipes the result
through more.

In all forms, specifications are evaluated by the shell from left to right
as they appear in the command. Filenames are subject to parameter
and command substitution only. No filename expansion or blank
interpretation takes place; for example, the command

cat test file > *.c

simply writes testfile into a file named "* . c".

20.1.2 File descriptors redirecting input
The default file descriptor for redirecting standard input is O. This may
be specified as

cat O<filename

Because this is the default file descriptor, it may be omitted asfollows:

cat <filename

20.1.3 File descriptors redirecting output
The default file descriptor for redirecting output is 1. This may be
specified as

cat l>filename

Because this is the default file descriptor, it may be omitted as follows:

cat >filename

20.1.4 Combining standard error and standard output
The default file descriptor for redirecting standard error output is 2. If
you want to direct the error output of a command to a file (to save the

Korn Shell Reference 3-93

error messages), use the syntax

ls filename 2>errors

This saves error output (in this case, "filename not found") in a
file named errors. If you want to save the command output and
error output in separate files, use the syntax

ls filename >output 2>errors

To print the output and the error output in the same file, use the syntax

ls filename >output 2>&1

This writes both standard output and error output in the file output.
Note that 2>&1 references the output file because you have already
redirected standard output (file descriptor 1) to this file.

For example, to save the output and the error output of the rna ke
command in a file named make .log, use the command

make> make. log 2>&1

20.1.5 Changing the shell's standard input and output
To associate standard input or standard output with a file, use the exec
command:

exec >filename (for standard output)
exec <.filename (for standard input)

Output will be written to, or input taken from, the file specified until
further redirection is done with the exec command. This can be
useful if all output is to be taken from a file or written to a file. This
construct is unlike normal shell redirection with > and < in that the
redirection remains in effect until you either explicitly reset the
standard I/O files, log out, or exit the current instance of the shell (shell
scripts often use this feature for funny tricks).

To return output and input to the terminal, use the commands

exec> /dev/tty (for output)
exec < /dev/tty (for input)

Reassignment can be used to avoid the problems involved in
redirecting output or input in a control-flow structure.

3-94 AlUX User Interface

20.1.6 Associating other files with file descriptors
The exec command can also be used to associate files with specific
file descriptors. This can be an advantage in shell scripts that need to
read or write a file line by line (see also' 'Reading Input' '), because
writing output to a file descriptor cannot overwrite a file's contents.
The command

exec x<.filename

where x is a number [3 to OPEN_MAX-l], associates filename withx.
For example, the commands

exec 4<filel
exec 5<file2

associate file descriptor 4 with filel and file descriptor 5 with
file2. Mter these commands, the syntax

command <&4

takes input from filel, and

command >&5

writes output to file2. For example,

$ exec 4>my.file
$ echo hello >&4
$ cat my. file
hello
$ echo bye >&4
$ cat my. file
hello
bye

Note that this file descriptor syntax can be repeated in a loop without
overwriting the contents of file2.

20.2 Reading input
The built-in read command reads a line of input from the terminal or
a file and assigns it to the variables specified. The form of the read
command is

read [opt [opt] .. .][name ...]

Korn Shell Reference 3-95

One line is read from the standard input and the first word is assigned
to the first name, the second word to the second name, and so on, with
leftover words assigned to the last name. If only one name is specified,
the entire line read will be assigned to that name. The exit status is
zero while there is data to be read. If an end-of-file or an interrupt is
encountered, the exit status is nonzero.

For example, you could use the read command to take input from the
terminal as follows. Enter the lines

$read first middle last abbreviations
Alyssa Elizabet~ Lynch Dr. Ph.D.

This would result in the following variable assignments:

first=Alyssa
middle=Elizabeth
last=Lynch
abbreviations=Dr. Ph.D.

The read command can also take input from a file, but will always
read the first line. If you wish to move sequentially through a file,
reading it line by line, you must first use the exec command to make
the file standard input as follows:

exec < name. list
while read first middle last abbreviations
do

command-list
done
exec < /dev/tty

In the above example, the exec command is used to reassign standard
input to the file name .list. The while loop then uses the read
command to read each line of the file into the variables fir s t,
middle, last, and abbreviations, and execute command-list.
When read reaches the end of the file, it will return a nonzero exit
status and the while loop will terminate. The final exec command
then assigns standard input back to the terminal. For information about
reassignment with the exec command, see the preceding section.

The read command takes the following options:

3-96 AlUX User Interface

-p Take input from the input pipe of the background process
connected to the parent shell with I &.

- r While reading input, \ does not indicate line continuation.

-unumber
Take input from the file whose file descriptor is given by
number. Files and file descriptors are associated with the exec
command. The default number is 0, the terminal.

The line command functions exactly like the read command, except
that a whole line is read into a single variable. The line will be
terminated with a newline.

20.3 Taking input from scripts
Input to a shell script can be embedded inside the script itself. This is
called a here document. The information in a here document is
enclosed as follows:

«[-] word
information

word

The first word may appear anywhere on a line; the second must appear
alone and first on a line. The words must be identical and should not be
anything that will appear in information. The second word is the end­
of-file for the here document. Parameter and command substitution
will occur on information. Normal quoting conventions apply, so that
$ can be escaped with \. To prevent all substitution, quote any
character of the first instance of word. (If substitution is not required,
this is more efficient.) (The type of quotes used is relevant: if word is
single-quoted, all metacharacter expansion will be suppressed. If it is
double-quoted, file, wildcard, and command substitution will take
place.)

To strip leading tabs and blanks from word and information, precede
the first instance of word with the optional hyphen (-), as follows:

«-word

Note: If you intend to indent your code, you must use the
hyphen preceding word unless the commands you use can

Korn Shell Reference 3-97

tolerate leading tabs and blanks.

For example, a shell procedure could contain the lines

for i
do

grep $i /usr/lib/telnos
done

Here the grep command looks for the pattern specified by $i in the
file /usr / lib/telnos. This file could contains the lines

fred mh0123
bert mh0789

An alternative to using an external file would be to include this data
within the shell procedure itself as a here document:

for i
do

grep $i «!

fred mh0123
bert mh0789

done

In this example, the shell takes the lines between < <! and ! as the
standard input for grep. The second! represents the end-of-file. The
choice of ! is arbitrary. Any string can be used to open and close a
here document, provided that the string is quoted if white space is
present and the string does not appear in the text of the here document.

Here documents are often used to provide the text for commands to be
given for interactive processes, such as an editor, called in the middle
of a script. For example, suppose you have a script named change
that changes a product name in every file in a directory to a new name,
as follows:

3-98 NUX User Interface

for i in *
do
echo $i
ed $i «!
g/oldproduct/s//newproduct/g
w

done

(Note that ed commands will not tolerate leading tab characters and
there is no hyphen preceding the first word, therefore the code is not
indented.) The metacharacter * is expanded to match all filenames in
the current directory, so the for loop executes once for each file. For
each file, the ed editor is invoked. The editor commands are given in
the here document between < <! and !. They direct the editor to
search globally for the string oldproduct and each time it is found
substitute the string newproduct. After the substitution is made, the
editor saves the new copy of the file with the w command.

You could make the change script more general by using parameter
substitution, as follows:

for i in *
do
echo $i
ed $i «!
g/$1/s//$2/g
w

done

Now the old and new product names (or any other strings) can be given
as positional parameters on the command line:

change string1 string2

Substitution of individual characters can be prevented by using a
backslash (\) to quote the special character $, as in

Korn Shell Reference 3-99

for i in *
do
echo $i
ed $i «!
1,\$s/$1/$2/g
w

done

This version of the script is equivalent to the first, except that the
substitution is directed to take place on the first to the last lines of the
file (1, $) instead of "globally" (g) as in the first example. This way
of giving the command has the advantage that the editor will print a
question mark (?) if there are no occurrences of the string $1.

Substitution can be prevented entirely by quoting the first instance of
the terminating string; for example,

ed $i «\!

Note that backslash and single quotes have the same effect in this
context: all metacharacter expansion will be suppressed. Double
quotes, however, will not work to prevent substitution.

To use leading tabs, precede the first word with a hyphen, as follows:

for i in *
do

echo $i
ed $i «-!

1,\$s/$1/$2/g
w

done

20.4 Using command substitution
Command substitution can occur in all contexts where parameter
substitution occurs. You can use command substitution in a shell script
to avoid typing long lists of filenames. For example,

ex 'grep -1 TRACE *.c'

3-100 AlUX User Interface

runs the ex editor, supplying as arguments those files whose names end
in . c and that contain the string TRACE. Another example,

for i in 'Is -t'
do

command-list
done

sets the variable i to each consecutive filename in the current
directory, with the most recent filename first.

Command substitution is also used to generate strings. For example,

set 'date'; print $6 $2 $3, $4

first sets the positional parameters to the output of the da te command
and then will print; for example,

1986 Nov 1, 23:59:59

Another common example of command substitution uses the
basenarne command. basenarne removes the suffix from a string so

basenarne rnain.c .c

prints the string rna in. The following fragment illustrates its
application in a command substitution:

case $A in

*.c) B='basenarne $A .c'

esac

Here B is set to the part of $A with the suffix. c stripped off.

20.5 Writing to the standard output
The print command is used to write to standard output (by default,
the screen). The form of the print command is

print [options] arguments [escapes]

The arguments are what is written. They are evaluated like the
arguments of any other command with parameter and command
substitution, filename expansion, and blank interpretation. Normal
quoting conventions apply. Strings containing blanks must be enclosed

Korn Shell Reference 3-101

in double quotes. The arguments will be written sequentially separated
by blanks, and by default they will be terminated with a newline. If
there are no arguments or the arguments are unset or null variables, a
blank line will be returned.

The escapes indicate how the arguments should be printed. The
possible escapes are

\b backspace

\ c print line without newline

\f form feed

\n newline

\ r carriage return

\t tab

\ v vertical tab

\ \ backslash

\n the 8-bit character whose ASCII code is the 1-,2-, or 3-digit
octal number n, which must start with a zero

The backslash in each escape must be quoted; that is, it must appear
twice or be enclosed in quotes. Escapes can occur anywhere among
the arguments. For example, to produce two lines of output with a
single print command, you could give the command

print "line one"\\n"line two"

You could also give the command

print "line one\nline two"

To print the value of a variable and keep the cursor on the same line,
you could give the command

print $jj\\c

print is also useful for inserting a few lines of data into a pipe.

The options to the pr int command indicate how the arguments
should be printed. These include

3-102 AlUX User Interface

This option has the same effect as no options at all and allows the
first argument to begin with a dash or hyphen.

-n This option causes the output to be written without a final
newline (same effect as \c).

-p This option causes the arguments to be written onto the input
pipe of the background process connected to the parent shell via
1&.

- r This option causes the escape sequences listed above to be
ignored.

-unumber
This option causes the output to be written on the file whose file
descriptor is given by number. Files and file descriptors are
associated with the exec command. The default number is 1,
the terminal.

20.6 Creating and reading a menu
The Korn shell select command is used to create a menu, read the
response, and then execute commands (see "select Statements").
The form of the select command is

select choice in word ...
do

command-list
done

The select command first creates a menu by printing the list of
words specified on standard error output, by default the terminal. (This
is to avoid writing a menu on the output, which may be going to a file.)
Each word is preceded by its number. The variable PS3 is then printed
below the menu as a prompt.

When the user types a response followed by RETURN, the line is read
into the shell variable REP L Y and checked to see if it corresponds to
one of the menu numbers given with words. If REPLY begins with a
number corresponding to a word, then the variable whose name is
given as choice is set to the word whose number is given. Otherwise
choice is set to null.

Korn Shell Reference 3-103

In any case, after the REP LY, command-list is executed. If the line
typed for REPLY is empty, the selection menu is redisplayed.

command-list continues to be executed until a break or end-of-file is
encountered.

For example, the commands

PS3="Give number of your choice "
select activity in add delete print view stop
do

case $activity in
add) commands;;
delete) commands;;
print) commands;;
view) commands;;
stop) break;;
*) print "try again";;

esac
done

print the following on the screen:

1) add
2) delete
3) print
4) view
5) stop
Give number of your choice

The cursor is left on the space after choice. When the user types the
number of the activity he or she wishes, the commands associated with
that activity in the case statement are executed.

For example, if the user types 2, the commands for delete are
carried out. If the user types 5, for stop, the select command
terminates with break. If the user types something not given on the
menu, he or she is prompted to try again. As long as the user continues
to give some REPLY, then after each activity as completed, the PS3
prompt is redisplayed and he or she is given a new choice. The menu
is not redisplayed.

3-104 AJUX User Interface

If the user presses RETURN without specifying an activity, the menu is
redisplayed along with the prompt.

Note that the final space after the string given for P S 3 is necessary to
avoid the user's response from following directly after the prompt.

Note: If $activityisreplaced with $REPLYin the example
above, the user may enter his selection as a string (It add" ,
"delete", ...) instead of a number.

21. Other features

21.1 Arithmetic evaluation
The built-in let command allows you to perform integer arithmetic.
Evaluations are performed using long arithmetic. The form of the let
command is

let expressions

For example, a simple let command could be used to increment a
counter as follows:

let i=i+l

expressions will be evaluated. They can contain constants, variables,
and one or more of the following operators, listed in decreasing order
of precedence:

unary minus

logical negation

* / %
multiplication, division, remainder (modulus)

+ - addition, subtraction

<= >= < >
comparison

!=
equality, inequality

Korn Shell Reference 3-105

arithmetic assignment

The order of precedence can be varied by enclosing sUbexpressions in
parentheses. These will be evaluated first. The order of evaluation
within a precedence group is from right to left for the = operator and
from left to right for the others. The operators that have special
meaning to the shell (*, <, and» must be quoted.

Variable names must be valid identifiers. (An identifier is a sequence
of letters, digits, or underscores, beginning with a letter or underscore.)
When a variable is encountered, its value is substituted and expression
evaluation resumes. Up to nine levels of recursion are permitted.

For an example of variable substitution,

for var in 1 2 3
do print $var
done

prints

1
2
3

The secondary shell prompt precedes the lines beginning with do and
done when this example is entered interactively within the Korn shell.

Constants are of the form

base -# number

where base is a decimal number between 2 and 36 representing the
arithmetic base, and number is a number in that base. If base is
omitted, then base lOis used unless number is preceded by 0 for base 8
or Ox for base 16.

Multiple evaluations can be made with a single let command, as long
as the expressions to be evaluated are separated by spaces. For
example,

let average=(top+bottom)/2 "j=j*lO"

The second expression is quoted to remove the special meaning of the
character *. In addition, any individual expressions that contain spaces

3-106 A/UX User Interface

must be enclosed in quotes.

The let command does not need to include an assignment. A
standard use for the let command is for conditions in the if and
while statements. The exit code of the let command is ° if the
value of the last expression is nonzero, and 1 otherwise. Thus the
comparison «=, >=, < and » and equal operators (== and ! =) can be
used as follows:

while let "time>20"

As long as the variable time has a value greater than 20, the let
command will return an exit status of 0. When time is less than 20,
the exit status will become 1. (For the while statement, see "while
Loops.")

An internal integer representation of a named variable can be specified
with the -i option of the typeset special command. When this
attribute is selected, the first assignment to the parameter determines
the arithmetic base to be used when parameter substitution occurs.

Because many of the arithmetic operators require quoting, an
alternative form of the let command is provided. For any command
that begins with a ((, all the characters until a matching)) are treated
as a quoted expression. More precisely,

« ...))
is equivalent to

let" ... "

21.2 File status and string comparison
The built-in test command evaluates an expression and returns a zero
(true) exit status if the expression is true and a nonzero (false) exit
status if the expression is false or if there is no argument. It is often
used in the shell control-flow constructs.

For example,

test -f file

returns zero exit status if file exists and nonzero exit status otherwise.
Some of the more frequently used test arguments are given below.

Korn Shell Reference 3-107

See "Summary of Kom Shell Commands" for a complete list of t est
arguments.

test -L file True iffile is a symbolic link:.

test filel -nt file2 True iffilel is newer thanfile2.

test filel -ot file2 True iffilel is older thanfile2.

test filel -ef file2 True iffilel has the same device and i-node

test -f file

test -r file

test -w file

test -d file

test s

test sl = s2

test sl != s2

test nl -eq n2

number asfile2.

True if file is a regular file.

True if file is readable.

True if file is writable.

True if file is a directory.

True if s is not the null string.

True if sl and s2 are identical.

True if sl and s2 are not identical.

True if the integers nl and n2 are algebraically
equal. Any of the comparisons -ne, -gt,
-ge, -It, and -le may be used in place of
-eq.

In addition, there are the following operators:

the unary negation operator

- a binary AND operator

-0 binary OR operator

The -a operator has higher precedence than -0.

All the operators and flags are separate arguments to test.
Parentheses can be used for grouping, but must be escaped with the
backslash.

A typical use of the test command in a shell script is the following,
which prints the message "foo is a directory" if it is found to
be one when the test command is run.

3-108 NUX User Interface

if test -d faa
then

print "faa is a directory"
fi

People find it natural to name test files test, which makes it awkward
(and dangerous) to use the test command as well. A harmless
alternative is the [] construct, such as

if [-f file]
then

command-listl
else

command-list2
fi

The [] construct takes all the same arguments as test.

21.3 The null command (:)
The null command (:) does nothing and returns a zero exit status. The
form of the command is

: args

The null command is therefore equivalent to the command true.
Because it does nothing, this command can be used to introduce
comments. It is generally better, however, to use the number sign (#)
as a comment indicator, as back quotes and parentheses retain their
meaning.

22. Error handling
The treatment of errors detected by the shell depends on the type of
error and on whether the shell is being used interactively.

Execution of a command may fail for any of the following reasons:

• Input/output redirection may fail, for example, if a file does not
exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus
error or memory fault signal.

Korn Shell Reference 3-109

• The command terminates normally but returns a nonzero exit
status.

In all of these cases, the shell will go on to execute the next command.
An interactive shell will return to read another command from the
terminal. If a shell script is being executed, the next command in the
script will be read. Except for the last case, an error message will be
printed by the shell.

All other types of errors cause the shell to exit from a shell script. Such
errors include

• Syntax errors, for example, "i f then done".

• A signal such as interrupt. The shell waits for the current
command, if any, to finish execution and then either exits or
returns to the terminal.

• Failure of any of the built-in commands.

The shell flag -e causes the shell to terminate if an error is detected.

22.1 Fault handling and interrupts
The A/UX system uses signals to communicate between processes.
Most signals indicate an interrupt, termination, error condition, or other
break in processing. See s ignal(3) in A/UK Programmer's
Reference for more information.

The signals that are likely to be of interest in fault handling are

• 1, hangup

• 2, interrupt

• 3, quit

• 14, alarm clock

• 15, software termination (S IGKILL sent by another process)

When a process receives a signal, it can handle it in one of three ways:

• Signals can be ignored. Some signals will cause a core dump if
they are not caught.

• Signals can be caught, in which case the process must decide
what action to take when the signal is received.

3-110 A/UX User Interface

• Signals can be left to cause termination of the process without
further action.

Note: The built-in trap command is only suitable for simple
signal handling (for example, catching an interrupt from the
keyboard in order to terminate the script). Functions requiring
complex signal handling should be implemented as a C
program. SeeAIUX Programming Languages and Tools,
Volume 1 for more information about the C language and
associated library routines.

The built-in t rap command allows you to detect error signals and
indicate what action should be taken. The command has the form

trap [command] [number] ...

command is a command string to be read and executed when the shell
receives signals whose numbers are given in number. command is
. scanned once when the trap is set and once when the trap is executed.
trap commands are executed in order of signal number. Any attempt
to set a trap on a signal that was ignored on entry to the current shell is
ineffective. An attempt to trap on signal 11 (memory fault) produces
an error.

The t rap command with numbers but without any arguments resets
the signals whose numbers are given to their original values. If
command is the null string, the signal whose number is given is ignored
by the shell and by the commands it invokes. If number is 0,
commands are executed on normal termination from the shell script.
The t rap command with no arguments prints a list of commands
associated with each signal number.

For example,

trap 'rm -f /tmp/junk; exit' 2

sets a trap for the interrupt signal (2). If this signal is received, then the
commands enclosed in quotes will be executed:

rm -f /tmp/junk; exit

Korn Shell Reference 3-111

This removes the temporary file / tmp / junk and then exits from the
script. (exit is a built-in command that terminates execution of a
shell procedure.) The exit is required; otherwise after the trap has
been taken, the shell will resume executing the procedure at the place
where it was interrupted.

The use of trap is illustrated in the following script:

flag=
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do

case $i in
-c) flag=N;;

*) if test -f $i
then

In $i junk$$; rm junk$$
elif test $flag
then

>$i
else

print "file '$i' does not exist"
fi ;;

esac
done

The cleanup action is to remove the file junk $ $. (This file is named
after the process ID of the script, which is kept in the system­
maintained variable $; see "Parameters and Variables Set by the
System.") The trap command appears before the creation of the
temporary file; otherwise it would be possible for the process to die
without removing the file.

A procedure may itself elect to ignore signals by specifying the null
string as the argument to trap. The fragment

trap " 1 2 3 15

causes the system hangup, interrupt, quit, and software termination
signals to be ignored both by the procedure and by invoked commands.
These settings could be listed with the t rap command without
arguments, and reset by entering

3-112 A/UX User Interface

trap 1 2 3 15

which resets the traps for the corresponding signals to their default
values.

The following scan procedure is an example of using trap where
there is no exit in the t rap command:

d='pwd'
for i in *
do

if test -d $d/$i
then

cd $d/$i
while print "$i:" && trap exit 2 && read x
do

fi
done

trap : 2
eval $x

done

This procedure steps through each directory in the current directory,
prompts with its name, and then executes commands entered at the
terminal until an end-of-file or an interrupt is received. Interrupts are
ignored while executing the requested commands but cause termination
when scan is waiting for input.

22.2 Debugging a shell script
Several shell options can be set that will help with debugging shell
scripts. These are

-e e (error) causes the shell to exit immediately if any command
exits with a nonzero exit status. (This can be dangerous in
scripts involving un til loops and other constructs where
nonzero exit status is desired.)

-n n (no execute) prevents execution of subsequent commands.
Commands will be evaluated but not executed. (Note that typing
set -nat a terminal will render the terminal useless until an
eo/is entered.)

Korn Shell Reference 3-113

-u u (unset) causes the shell to treat unset variables as an error
condition.

-v v (verbose) causes lines of the procedure to be printed as read.
Use this to help isolate syntax errors.

-x x provides an execution trace. Following parameter substitution,
each command is printed as it is executed.

These execution options can be turned on with the set command:

set -option

either inside the script or before its execution (except -n, which will
freeze the terminal until you send an eot>. Options may be turned off
by typing

set +option

Alternatively, they can be turned on with the ksh command if the
script is executed this way. The current setting of the shell flags is
available as $ -.

23. Summary of Korn shell commands
Input/output redirection is permitted for these commands. File
descriptor 1 is the default output location. The commands

cd
shift

are treated specially as follows:

• Parameter assignment lists preceding the command remain in
effect when the command completes .

• The commands are executed in a separate process when used
within command substitution.

The commands

3-114 A/UX User Interface

eval
exec
export
fc
newgrp
readonly
return
typeset

are treated specially in the following ways:

• Parameter assignment lists preceding the command remain in
effect when the command completes.

• The commands are executed in a separate process when used
within command substitution.

• Errors in these commands cause the script that contains them to
abort.

The following is a complete summary of Korn shell built-in commands:

: [arg ... J

The command only expands parameters. A zero exit code is
returned. This is equivalent to true, so that while : is
equivalent to while true. For example,

while : 'echo hi > /dev/tty'
do

done

Note that expressions in back quotes or parentheses may have
side effects when used as arguments. See "while Loops."

. file [arg . .. J
Read and execute commands from file and return. The
commands are executed in the current shell environment. The
search path specified by PATH is used to find the directory
containing file. If any arguments are given, they become the
positional parameters. Note that this differs from sh(1).
Otherwise, the positional parameters are unchanged. See

Korn Shell Reference 3-115

..

"Executing Shell Scripts."

alias [-tx][name[=value]] ...
With no arguments, print the list of aliases in the form
name = value on standard output. An alias is defined for each
name whose value is given. A trailing space in value causes the
next word to be checked for alias substitution.

value may not contain an alias. For example, if you set the
following aliases:

alias 1 = Is
alias 11 = 1

then the command

1

is translated into Is and a listing of files appears. If, however,
you give the commmand

11

this prints

ksh: 1: not found

as no further translation (or alias evaluation) takes place.

Note: Aliases may not contain aliases.

The -t flag is used to set and list tracked aliases. The value of a
tracked alias is the full pathname corresponding to the given
name. value becomes undefined when the value of PATH is
reset, but the aliases remained tracked. Without the -t flag, for
each name in the argument list for which no value is given, the
name and value of the alias is printed.

The -x flag is used to set or print exported aliases. An exported
alias is defined across subshell environments. alias returns
true unless a name is given for which no alias has been defined.
See' 'Defining an Alias."

3-116 A/UX User Interface

bg [%job]
If job is specified, put it into the background; otherwise put the
current job in the background. See" J ob Control. "

break [n]
Exit from the enclosing for, while, until, or select loop,
if any. If n is specified, break n levels. See" for Loops."

cd [arg]

cd old new
This command can be in either of two forms. In the first form, it
changes the current directory to arg. If arg is --, the directory is
changed to the previous directory. The shell parameter HOME is
the default argo The parameter PWD is set to the current
directory. The shell parameter CDPATH defines the search path
for the directory containing argo Alternative directory names are
separated by a colon (:). The default path is <null>
(specifying the current directory). Note that the current directory
is specified by a null pathname, which can appear immediately
after the equal sign or between the colon delimiters anywhere
else in the path list. If arg begins with /, the search path is not
used. Otherwise each directory in the path is searched for argo

The second form of cd substitutes the string new for the string
old in the current directory name, PWD, and tries to change to this
new directory.

See" Shortcuts in Working With Directories."

continue [n]
Resume the next iteration of the enclOSing for, while, until,
or select loop. If n is specified, resume at the nth enclosing
loop. See "for Loops."

echo [-n][arg ...]
The built-in echo command writes its arguments (separated by
blanks and terminated by a RETURN) on the standard output (see
also print). If the -n flag is used, no newline is added to the
output. echo is useful for producing diagnostics in shell
programs and for writing constant data on pipes. To send

Korn Shell Reference 3-117

diagnostics to the standard error file, do

echo ... 1>&2

eval [arg ...]
Read arguments as input to the shell and execute the resulting
commands. See' 'Command Evaluation."

exec [arg ...]
If arg is given, execute the command specified by the arguments
in place of this shell without creating a new process.
Input/output arguments may appear and affect the current
process. If no arguments are given, the effect of this command is
to modify file descriptors as prescribed by the input/output
redirection list. In this case, any file descriptor numbers greater
than 2 that are opened with this mechanism are closed when
invoking another program. See' 'Executing Shell Scripts."

exit [n]
Cause the shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. An
eo! will also cause the shell to exit, unless the shell has the
ignoreeof option turned on (see set). See "Fault Handling
and Interrupts."

export [name ...]
Mark names for automatic export to the environment of
subsequently executed commands. See' 'The Environment. ' ,

fc [-e ename][-nlr][jirst] [last]

fc -e -[old=new][command]
In the first form, a range of commands from first to last is
selected from the last HISTSIZE commands that were typed at
the terminal. The arguments first and last may be specified as a
number or as a string. A string is used to locate the most recent
command starting with the given string. A negative number is
used as an offset to the current command number. If the flag -1
is selected, the commands are listed on standard output.
Otherwise the editor program ename is invoked on a file
containing these keyboard commands. If ename is not supplied,
the value of the parameter FCEDIT (default /bin/ed) is used

3-118 AlUX User Interface

as the editor. When editing is complete, the edited commands
are executed. If last is not specified, it will be set to first. Iffirst
is not specified, the default is the preceding command for editing
and -16 for listing. The flag - r reverses the order of the
commands, and the flag -n suppresses command numbers when
listing.

In the second form, the command is reexecuted after the
substitution old=new is performed. See' 'Editing and Reusing
Commands.' ,

fg [%job]

hash

If job is specified, bring it to the foreground; otherwise bring the
current job into the foreground. See "Job Control."

This causes the shell to remember the search path of the
command named. See' 'Writing Efficient Shell Scripts."

jobs [-1]
List the active jobs. Given the -1 option, list process IDs in
addition to the normal information. See "Job Control."

kill [-sig] process ...
Send either the terminate signal or a specified signal to the
specified jobs or processes. Signals are given either by number
or by name (as given in signal(3) inAIUX Programmer's
Reference stripped of the prefix S IG). The signal numbers and
names can be listed by typing

kill -1

If the signal being sent is S IGTERM or S IGHUP, the job or
process will be sent a continue signal if it is stopped. process
can be either a process ID or a job number. See "Canceling a
Background Command" and "Job Control."

let arg ...
Each arg is an arithmetic expression to be evaluated. All
calculations are done as long integers and no check for overflow
is performed. Expressions consist of constants, named
parameters, and operators. The following set of operators, listed
in order of precedence, has been implemented:

Korn Shell Reference 3-119

unary minus

logical negation

* / %
multiplication, division, remainder (modulus)

+ - addition, subtraction

<= >= < >
comparison

!=
equality, inequality

arithmetic assignment

Subexpressions in parentheses, (), are evaluated first and can be
used to override the above precedence rules. The evaluation
within a precedence group is from right to left for the = operator
and from left to right for the others.

A parameter name must be a valid identifier. When a parameter
is encountered, the value associated with the parameter name is
substituted and expression evaluation resumes. Up to nine levels
of recursion are permitted.

The return code is 0 if the value of the last expression is nonzero,
and 1 otherwise. See "Arithmetic Evaluation."

newgrp [arg ...]
Equivalent to

exec newgrp arg ...

See newgrp(l) in A/UX Command Reference.

print [-Rnprsu[n]] [arg ...]
The shell output mechanism. With no flags or with flag -, the
arguments are printed on standard output as described by echo.
In raw mode, -R or -r, the escape conventions of echo are
ignored. The - R option will print all subsequent arguments and
options other than -no The -p option causes the arguments to be
written onto the pipe of the process spawned with I & instead of

3-120 NUX User Interface

pwd

standard output. The - s option causes the arguments to be
written onto the history file instead of standard output. The-u
flag can be used to specify a one-digit file descriptor unit number
n on which the output will be placed. The default is 1. If the flag
-n is used, no newline is added to the output.

Print the current working directory. This is equivalent to

print -r -$PWD

read [-prsu[n]][name?prompt][name .. .]
The shell input mechanism. One line is read and broken up into
words using the characters in IF S as separators.

In raw mode, - r, a \ at the end of a line does not signify line
continuation. The first word is assigned to the first name, the
second word to the second name, and so on, with leftover words
assigned to the last name.

The -p option causes the input line to be taken from the input
pipe of a process spawned by the shell using I &. If the - s flag is
present, the input will be saved as a command in the history file.
The flag -u can be used to specify a one-digit file descriptor unit
to read from. The file descriptor can be opened with the exec
special command.

The default value of n is O. If name is omitted, REPLY is used as
the default name. The return code is 0 unless an end-of-file is
encountered. An end-of-file with the -p option causes cleanup
for this process so that another can be spawned. If the first
argument contains a ?, the remainder of this word is used as
prompt when the shell is interactive. If the given file descriptor
is open for writing and is a terminal device, prompt is placed on
this unit. Otherwise prompt is issued on file descriptor 2. The
return code is 0 unless an end-of-file is encountered. See
"Reading Input."

readonly [name ...]
Mark the given names read-only. These names cannot be
changed by subsequent assignment. See "Setting Constants."

Korn Shell Reference 3-121

return [nJ
Cause a shell function to return to the invoking script with the
return status specified by n. If n is omitted, the return status is
that of the last command executed. If ret urn is invoked while
not in a function or a script, it is the same as exi t. See
"Defining Functions."

set [-aefhkmnopstuvx][-0 option ...][arg ... J

-a Automatically export all subsequent parameters that are
defined.

-e If the shell is noninteractive and if a command fails,
execute the ERR trap, if set, and exit immediately. This
mode is disabled while reading profiles.

- f Disable filename generation.

- h Each command whose name is an identifier becomes a
tracked alias when first encountered.

- k Place all parameter assignment arguments in the
environment for a command, not just those that precede
the command name.

-m Run background jobs in a separate process group and print
a line upon completion. The exit status of background jobs
is reported in a completion message. On systems with job
control, this flag is turned on automatically for interactive
shells.

-n Read commands but do not execute them. Ignored for
interactive shells.

-0 The following arguments can be one of the following
option names:

allexport Same as -a.

errexit Same as -e.

bgnice All background jobs are run at a lower
priority.

3-122 A/UX User Interface

ignoreeof The shell will not exit on eo/. The exi t
command must be used.

keyword Same as -k.

rna r kdi r s All directory names resulting from
filename generation have a trailing I
appended.

rnoni tor Same as -rn.

noexec Same as -no

noglob Same as -f.

nounset Same as -u.

protected Same as -po

verbose Same as -v.

trackall Same as -h.

vi Puts you in insert mode of a vi-style in­
line editor until you press ESCAPE, which
puts you in move mode. A RETURN sends
the line.

vir a w Each character is processed as it is typed
in vi mode.

xtrace Same as -x.

If no option name is supplied, the current option settings
are printed.

-p Reset the PATH variable to the default value, disable
processing of the $HOMEI • profile file, and use the file
/etc/ suidyrofile instead of the ENV file. This
mode is automatically enabled whenever the effective user
ID (group ID) is not equal to the real user ID (group ID).

- s Sort the positional parameters.

-t Exit after reading and executing one command.

Korn Shell Reference 3-123

-u Treat unset parameters as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Turn off -x and -v flags and stop examining arguments
for flags.

Do not change any of the flags. This is useful in setting $1
to a value beginning with -. If no arguments follow this
flag, the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These flags
can also be used upon invocation of the shell. The current set of flags
may be found in $ -. The remaining arguments are positional
parameters and are assigned, in order,

$1 $2 ...

If no arguments are given, the values of all names are printed on the
standard output. See' 'The Environment."

shift [n]
Rename the positional parameters from

$n+1 ...

to

$1 ...

The default n is 1. The parameter n can be any arithmetic
expression that evaluates to a non-negative number less than or
equal to $ #. See' 'Changing Parameter Positions."

test [expr]
Evaluate conditional expression expr. See' 'File Status and
String Comparison." The arithmetic comparison operators are
not restricted to integers. They allow any arithmetic expression.
Four additional primitive expressions are allowed:

-L file
true if file is a symbolic link

3-124 A/UX User Interface

filel -n t file2
true iffilel is newer thanfile2

filel -at file2
true iffilel is older thanfile2

filel -ef file2
true if filel has the same device and i-node number as file2

Note that the left bracket, [, is a synonym for test, but
must be matched by a right bracket,] .

See "File Status and String Comparison."

times
Print the accumulated user and system times for the shell and for
processes run from the shell. See' 'Writing Efficient Shell
Scripts."

trap [arg][sig] ...
arg is a command to be read and executed when the shell
receives signal(s) sig. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Each sig can be
given as a number or as the name of the signal. t rap
commands are executed in order by signal number. Any attempt
to set a trap on a signal that was ignored on entry to the current
shell is ineffective.

If arg is omitted or is -, then all sigs are reset to their original
values. If arg is the null string, this signal is ignored by the shell
and by the commands it invokes.

If sig is ERR, arg will be executed whenever a command has a
nonzero exit code. This trap is not inherited by functions. If sig
is 0 or EXIT and the trap statement is executed inside the body
of a function, the command arg is executed after the function
completes. If sig is 0 or EXIT for a trap set outside any function,
the command arg is executed on exit from the shell. The trap
command with no arguments prints a list of commands
associated with each signal number. See "Fault Handling and
Interrupts. "

Korn Shell Reference 3-125

typeset [-HLRZfilprtux[n][name[=value]] ...]
When invoked inside a function, create a new instance of the
parameter name. The parameter value and type are restored
when the function completes. The following attributes may be
specified:

-H Provide A/UX-to-hostname file mapping on non-A/UX
machines.

- L Left justify and remove leading blanks from value. If n is
nonzero, it defines the width of the field; otherwise the
width is determined by the width of the value of the first
assignment. When the parameter is assigned value, it is
filled on the right with blanks or truncated if necessary to
fit into the field. Leading zeros are removed if the - Z flag
is also set. The - Rand/or - Z flags are turned off.

- R Right justify and fill with leading blanks. If n is nonzero, it
defines the width of the field; otherwise the width is
determined by the width of the value of the first
assignment. The field is left filled with blanks or truncated
from the end if the parameter is reassigned. The - L flag is
turned off.

- Z Right justify and fill with leading zeros if the first nonblank
character is a digit and the - L flag has not been set. Used
in conjunction with the - L option, the field is left justified
and any leading zeros are removed. If n is nonzero, it
defines the width of the field; otherwise the width is
determined by the width of the value of the first
assignment.

- f name refers to function name rather than parameter name.
No assignments can be made, and the only other valid flags
are -t, which turns on execution tracing for this function,
and -x, which allows the function to remain in effect
across shell procedures executed in the same process
environment.

- i Make parameter an integer. This makes arithmetic faster.
If n is nonzero, it defines the output arithmetic base;
otherwise the first assignment determines the output base.

3-126 A/UX User Interface

-1 Convert all uppercase characters to lowercase. The
uppercase flag, -u, is turned off.

-p Write output of the command, if any, to the two-way pipe.

-r Mark the given names read-only. These names cannot be
changed by subsequent assignment.

-t Tag the named parameters. Tags are user definable and
have no special meaning to the shell.

-u Convert all lowercase characters to uppercase. The
lowercase flag, -1, is turned off.

-x Mark the given names for automatic export to the
environment of subsequently executed commands.

Using + rather than - causes these flags to be turned off. If no name
arguments are given but flags are specified, the typeset command
prints a list of names (and optionally values) of the parameters that
have these flags set. (Using + rather than - keeps the values to be
printed.) If no names and flags are given, the names and attributes of
all parameters are printed. See" Assigning Values and Types to
Variables. ' ,

u1imit [-fHn]

-f Impose a size limit of n 512-byte blocks on files written by
child processes (files of any size may be read). If no
option is given, -f is assumed. If n is not given, the
current limit is printed.

See' 'Writing Efficient Shell Scripts."

umask [nnn]
Set the user file-creation mask nnn. (See umask(2) in AIUX
Programmer's Reference). If nnn is omitted, the current value of
the mask is printed.

una1ias name ...
Remove the parameters given by the list of names from the alias
list. See' 'Listing and Removing Aliases."

unset [-f] name ...
The parameters given by the names are unassigned; that is, their

Korn Shell Reference 3-127

values and attributes are erased. Read-only variables cannot be
unset If the flag - f is set, the names refer to function names.
See "Removing Shell Variables."

wait [n]
Wait for the specified child process and report its termination
status. If n is not given, all currently active child processes are
waited for. The return code from this command is that of the
process waited for. (See wait(2) inAIUX Programmer's
Reference .)

whence [-v] name ...
For each name, indicate how it would be interpreted if used as a
command name. The flag -v produces a more verbose report.
See "Learning About Built-in Commands."

3-128 NUX User Interface

Chapter 4

C Shell Reference

Contents

1. The C shell prompt. • • . • •
1.1 The secondary shell prompt
1.2 Changing the prompt character

2. Types of commands

3. The parts of a command

4. Interactive use • . • .
4.1 Command termination character
4.2 Impossible commands • • •
4.3 Background commands. • •

4.3.1 Checking command status • • • • .
4.3.2 Logging out . • • •

4.4 Canceling commands
4.4.1 Before you press RETURN • • • • •
4.4.2 While a command is running • • • .
4.4.3 Canceling background commands

5. Listing and reusing commands
5.1 Listing previous commands
5.2 Reusing a previous command •
5.3 Changing text in the most recent command

line. • • • . • • . • • • .
5.4 Editing and reexecuting previous commands
5.5 Reusing parts of previous command lines
5.6 Using modifiers with your command history
5.7 Other uses for command history

6. Using shell metacharacters
6.1 Specifying home directories

- i -

1
1
1

1

2

3
3
3
4
4
4
5
5
5
7

7
8
8

9
10
12
13
15

16
18

6.2 Specifying filenames with metacharacters
6.3 I/O redirection • • • •
6.4 Combining commands: pipelines
6.5 Command grouping. •
6.6 Conditional execution
6.7 Quoting

7. Working with more than one shell
7.1 Changing to a new shell .••••••
7.2 Changing your default shell

8. The environment •••.••••••
8.1 Global environment variables •

8.1.1 Listing existing values
8.1.2 Adding environment variables and modifying

values. • • • . •
8.1.3 Removing environment variables •
8.1.4 Commonly used environment

variables • • .. .••.
8.2 C shell variables • • • •

8.2.1 Listing existing values ••
8.2.2 Adding C shell variables and 'modifying

values. • • . . .
8.2.3 Removing C shell variables
8.2.4 C shell variables • .

8.3 The environment and new shell instances
8.4 Special environments
8.5 The default environment on your system

9. The . login file
9.1 A sample . login file . .

9.1.1 Locating commands •
9 .1.2 Your editing environment

9.2 Customizing your login procedure

10. The . cshrc file •••.
10.1 A sample. cshrc file . . .

10.1.1 Using history numbers as your prompt
10.1.2 Protection against unintentional

logout. • • • .

- ii -

18
21
23
24
25
25

27
28
28

28
29
29

30
30

30
32
32

32
33
33
37
37
38

38
39
39
40
40

41
41
41

42

11. Aliases for commonly used commands . 42
11.1 Defining an alias. . . • • . . • . • 42
11.2 Listing and removing aliases 44
11.3 Aliases that take arguments • 44

12. Shell execution options

13. Job control
13.1 Suspending a job ••••.•..
13.2 Listing jobs .••••
13.3 Changing the status of stopped jobs
13.4 Blocked jobs • • . • • .
13.5 Canceling jobs . . . • • . . • .
13.6 Logging out with stopped jobs .••.

14. Using shell layering

15. Overview of shell programming
15.1 Writing shell programs •
15.2 Executing shell scripts .
15.3 Comments ..••
15.4 Writing interactive shell scripts
15.5 Canceling a shell script. . •
15.6 Writing efficient shell scripts .

16. Command evaluation
16.1 Command execution
16.2 Exit status: the value of the command

17. Arguments and shell variables
17.1 Arguments • . • .
17.2 Shell variables

17.2.1 Assigning values • ..•.
17.2.2 Changing position of elements .
17.2.3 Removing shell variables

17 .3 Variable substitution
17.4 Testing assignment • • . •
17 .5 Variables set by the system

18. Control-flow constructs • • • • •
18.1 foreach loops • • . • •

- iii -

a "

45

46
47
47
47
49
49
50

50

51
51
52
53
53
53
54

54
56
57

57
58
58
59
60
60
61
64
64

65
65

18.2 switch statements . · · · 66
18.3 while loops • · 66
18A if then else · . · 67
18.5 goto . 67
18.6 exit · 68

19. Input and output 68
19.1 Standard error and output files 68
19.2 Reading input · · · 69
19.3 Taking input from scripts 69
19A Using command substitution 72
19.5 Writing to the standard output • 73

20. Other features . · · · 73
20.1 Arithmetic evaluation 73
20.2 Expressions · · · · 74
20.3 File status • · · · · · 75

21. Error handling · · · 76
21.1 Fault handling and interrupts · 76
21.2 Debugging a shell script · · · 77

22. Summary of C shell commands · 77

- iv-

Chapter 4

C Shell Reference

1. The C shell prompt
The C shell is a program that interprets commands and arranges for
their execution. The C shell displays a character called the prompt (or
primary shell prompt) whenever it is ready to begin reading a new
command from the terminal. By default, the C shell prompt character
is set to the percent sign (%).

1.1 The secondary shell prompt
If you press the RETURN key when the shell expects further input, you
will see the secondary shell prompt. By default, this prompt character
is set to the question mark (?). Like the primary shell prompt, this can
be redefined.

When you enter a multiline construct (such as a foreach loop) at the
shell prompt, the question mark appears as the first character of each
line until you give the final delimiter. When you see a ? as a prompt
(either because you are using a multiline construct or because of an
error), an interrupt will stop the process and issue the primary shell
prompt (%) for another command. See "Canceling Commands" for
information about the interrupt on your system.

1.2 Changing the prompt character
You may change the primary shell prompt character by redefining the
local environment variable prompt to any other character or string of
characters. See' 'C Shell Variables."

2. Types of commands
The shell works with three types of commands:

Built-in shell commands: Built-in commands are written into the
shell itself and are generally used for writing shell programs. Each
NUX shell has a slightly different set of built-in commands. The
built-in C shell commands are listed under "Summary ofC Shell

C Shell Reference 4-1

Commands."

AlUX commands: Every shell can also invoke all A/UX commands
(see "Command Summary by Function" in AIUX Command Reference
for a complete list of these). A/UX commands are executable
programs stored in system directories such as /bin and / us r /bin.
When you enter an NUX command (for example, Is), the shell
searches all directories specified by your PATH variable (see "Locating
Commands") to locate the program and invoke it.

User-defined commands: You can combine built-in shell commands
and NUX commands to define your own shell programs (see
"Overview of Shell Programming"). Shell programs can be typed in
at the shell prompt or entered in a file. A shell program contained in a
file is generally called a shell script. Once a shell script is defined,
with certain limitations, it can be used like any other command or
program.

You can also create your own commands using a high-level language
such as C. SeeAIUX Programming Languages and Tools. Volume 1
for more information.

3. The parts of a command
Whenever you see a shell prompt, you can enter a command by typing
the command name. Most NUX commands have one or more flag
options, which can follow the command name to modify the way the
command operates. Flag options are usually a hyphen followed by one
or more characters; for example, -1 is a flag option to the Is
command:

Is -1

In this case, the -1 is a flag option that modifies the way the 1 s
command operates, producing a "long" listing that contains more
information than the standard Is output. For the flag options that
apply to a particular NUX command, see the manual page entry for
that command in AIUX Command Reference. For options to the C shell
built-in commands, see "Summary ofC Shell Commands."

Many NUX commands also expect one or more arguments, which
pass information to the command. An argument may be any parameter

4-2 NUX User Interface

expected by the command; for example, a directory name may be an
argument to the 1 s command:

Is /bin

In this case, the directory name /bin is an argument that specifies
which directory the 1 s command should list.

The entire command specification, including any options and
arguments, is called the command line. A command line is terminated
by RETURN. For example, in the command line

Is -1 /bin

Is is the command name, -1 is a flag option (specifying a "long"
listing), and /bin is an argument (specifying which directory to list).

To give a command longer than one line, you must precede the final
RETURN with a backslash (\). This prevents the shell from interpreting
RETURN as the end of a command. You can continue this for several
lines; the shell will wait for a plain RETURN (not preceded by a
backslash) to execute the multiline command.

Commands can also be combined; see' 'Command Grouping."

4. Interactive use

4.1 Command termination character
When you are entering commands to the shell interactively, the shell
will not begin executing the command until you press the RETURN key.
Therefore, if you mistype something, you can backspace and correct
the mistake before pressing RETURN. When the shell recognizes the
RETURN, it executes the command line; when the process completes, a
new prompt will be printed on the screen. The shell is now ready to
accept further commands.

4.2 Impossible commands
If you give an impossible command (a command or command line that
doesn't exist or uses improper syntax), the shell will print an error
message and return the prompt for another command.

C Shell Reference 4-3

4.3 Background commands
You can direct the shell to execute commands in the "background"
while you continue to work at the shell prompt (the "foreground").
To run background processes, end the command line with an
ampersand (&) before the final RETURN. For example,

cat filel file2 > bigfile &

[1] 1234

The number shown in brackets below the command line is the job
number; the other number is the process ID (PID) associated with the
sample cat command as long as it is executing. After the process ill
is displayed, the shell returns the prompt so you can use the terminal
immediately for other work.

Note: To save the output from a job you are running in the
background, you must redirect it into a file or pipe it to a
printer. If you do not redirect the command output, it will
appear on your screen and will not be saved. In addition,
remember that the output of a background command is not
complete until the command has finished. The presence of a
prompt does not mean that the output is ready for use.

To suspend processes that require input from the keyboard (such as an
editor or a remote login across a network), you can simply send a
suspend to temporarily stop the job. See "Job Control" for more
information.

4.3.1 Checking command status
To check on the status of a background command, use

jobs

This command shows the process status of all your commands; they
are identified by job number, process ID, and by name. See "Job
Control" for more details.

4.3.2 Logging out
If you are logged out of the system while running a foreground job (for
example, if a telephone connection is lost or the get t y process on

4-4 A/UX User Interface

your terminal is disconnected), the shell terminates your foreground
processes. You can prevent this by using the nohup command (which
stands for "no hang up") as follows:

nohup command

This also applies if you stop a foreground job using a suspend signal,
and then log out. If you ran the foreground job with nohup, the job
will remain (stopped) after you log out.

If you are running a job in the background, you do not need to use
nohup; your background process will continue to run after you log out
(see "Background Commands"). See nohup(l) in AIUX Command
Reference for details.

4.4 Canceling commands
A number of special control sequences come into play when canceling
commands. The A/UX standard distribution defines these sequences as
follows:

Name

interrupt
quit
erase
kill
eof
swtch
susp

A/UX standard distribution

CON1ROL-C

CON1ROL-1

DELETE

CON1ROL-u

CON1ROL-d
CON1ROL- ,

CON1ROL-z

However, you may reassign any of these sequences using the stty
command. See stty(l) in AIUX Command Reference for more
information.

4.4.1 Before you press RETURN

If you type part of a command and then decide you do not want to
execute it, you can send an interrupt or kill to the system at any point in
the command line.

4.4.2 While a command is running
There are several ways to stop a command that is executing:

C Shell Reference 4-5

4-6

• Send the interrupt signal.

For example, the output of a command such as

cat /etc/termcap

will scroll by on your terminal. If you want to terminate the
process, you can send the interrupt signal. Because the cat
command does not take any precautions to avoid or otherwise
handle this signal, the interrupt will cause it to terminate.

• Use CONfROL-S to suspend scrolling output.

The NUX control-flow keys are CONlROL-S (suspend scrolling
output) and CONfROL-q (resume scrolling output). You can use
these to stop a screenful of output, resume scrolling, and stop a
screenful again. CONfROL-S and CONlROL-q cannot be redefined
using s tty; however, s tty can enable and disable control­
flow.

• Send an eo! character.

Many programs (including the shell) terminate when they get an
eo! from their standard input. You could accidentally terminate
the shell (which would log you off the system) if you enter eo! at
a prompt or, in terminating some other program, if you send an
eo! one time too many. See "C Shell Variables" for information
about the ignoreeof option; when this option is set, the shell
will not terminate when it receives an eo/.

• Wait for the end-of-file condition from a file.

If a command has its standard input redirected from a file, then it
will terminate normally when it reaches the end of that file. If
you give the command

mail ellen < note

(where note is an existing file), the mail program will
terminate when it detects the end-of-file condition from the file.

• Send the quit signal.

If you run programs that are not fully debugged, it may be

NUX User Interface

necessary to stop them abruptly. You can stop programs that
hang or repeat inappropriately by using quit. This will usually
produce a message such as

Quit (Core dumped)

indicating that a file named core has been created containing
information about the state of the running program when it
terminated because of the quit signal. You can examine this file
yourself, or forward information to the person who maintains the
program telling him or her where the core file is .

• Send a suspend signal.

You can send a suspend signal to temporarily stop commands
that are executing. You can then resume the job or cause it to
run in the background. See "Job Control" for more information.

4.4.3 Canceling background commands
If you have a job running in the background and decide you do not
want the command to finish executing, use the kill command.

When a job is running in the background, it ignores interrupt and break
signals. To terminate a background command, use

kill process-ID

The kill command takes as an argument the process ID or the job
number preceded by a percent sign (%). See "Job Control" and
"Summary of C Shell Commands" for information on the kill
command.

5. Listing and reusing commands
The C shell retains your most recent n commands in accordance with
the setting of the his tory variable. In the / et c / c s h rc file in the
NUX standard distribution, this variable is set to 200. You can change
the number of commands the shell remembers by setting the history
variable to another number. See "C Shell Variables" for more
information.

The exclamation mark (!) invokes the C shell history substitution
mechanism. The! may be preceded by the \ escape character to

C Shell Reference 4-7

prevent it from being interpreted with this special meaning.

History substitution allows you to reexecute previous commands or
reuse words from a previous command as portions of a new command.
History substitutions begin with the ! character and may begin
anywhere in the command line. (Note, however, that you cannot nest
history substitutions by using more than one ! character on a command
line.)

History substitutions also occur when an input line begins with the
caret (A). See "Changing Text in the Most Recent Command Line."

5.1 Listing previous commands
To see the list of your previous commands, type

history

This prints a numbered list of commands, from your 50th (or nth)
previous command to your most recent. For example,

101 mail
102 vi note
103 mail ellen < note
104 date
105 Is
106 cd revisions/additions
107 Is
108 vi prog.c
109 wc prog.c
110 cd /usr/source/information
111 history

5.2 Reusing a previous command
The exclamation mark (!) character is used to reexecute previous
commands. To reexecute your most recent command, use the
command

, ,
This will echo the previous command line on the screen and reexecute
it.

4-8 A/UX User Interface

The ! character can also be followed by a command number or a string
that identifies the beginning of a previous command line. For example,
the command

!108

echoes and reexecutes command number 108 from the list above.

You may also reuse a command by specifying a string that identifies it;
for example, in the history list above, the command

!v

echoes and invokes

vi prog.c

The exclamation mark (!) may be used in the following notations:

I I Repeat the most recent command.

! n Repeat the nth command, where n is the (history) number
of a previous command. This is illustrated above.

! s Repeat the most recent command beginning with the string
s. s is one or more characters. For example, you could
repeat the cd command number 106 by typing

!cd

! -n Repeat the command that occurred n commands preceding
this command line (current line -n).

! ?s? Repeat the most recent command that contains the string s
anywhere in the command line.

5.3 Changing text In the most recent command line
You may also edit previous command lines. In the simplest case,
where you are modifying the text of the most recent command, use the
shorthand notation

~old~ new~

This is useful for correcting typing errors in a long command (where
old identifies the typing error and new is the corrected spelling) or for
modifying the most recent command to run with a different parameter

C Shell Reference 4-9

(such as filename).

Note: The caret (~) shorthand only works on the most recent
command. It must be used on the command line that
immediately follows the command you wish to modify. In
addition, this shorthand only works on one instance of a string;
it will not be propagated to every instance of the replaced string
in the command line. Including a few extra characters to obtain
a unique string guarantees that the substitution occurs at the
place you intended.

For example, if you enter the erroneous command line

cs /usr/bin/new.file /usr/personal/new.file

the shell prints the message

Command not found.

At the next shell prompt, you can change your command line as
follows:

cs~cp

This substitutes the correct command (cp) for the misspelled version,
and executes the correct command line.

5.4 Editing and reexecuting previous commands
When you want to reexecute a previous command with a slightly
different command line, you may invoke and edit a command line
using the following notations:

! {identifier} x

4-10

Repeat the most recent command specified by identifier with x
appended to it directly without intervening space. identifier may
be the history number of a command or the string beginning a
command. x may be a character or a string. For example,

more filel

may be reinvoked on filelA with the notation

AlUX User Interface

! {m}A

This invokes the command

more file1A

The braces may be omitted if the string to be appended (x) begins
with a space or if the resulting string unambiguously picks out a
command from the history list. For example, if the current
history list is as follows:

261 mail
262 vi note
263 mail fred < note
264 rm note
265 Is
266 cd manual/texts
267 Is -1

268 vi chap.1
269 make chap.1
270 more chap.1
271 history

In this situation the history substitution

!ma

will reinvoke command number 269, not the command

more chap.1a

as you might have expected. To invoke this latter command, you
could have given

! {m}a

!n:s/x/y/
Repeat the nth command and substitute y for x. x and y may be
characters or strings. This has the same effect as the up-arrow
command discussed above, except it can be done on any
previous command. For example,

cat filel I Ip

C Shell Reference 4-11

may be edited using the notation

!cat:s/file1/file2/

This invokes the command

cat file2 I Ip

!n:gs/x/y/
Repeat the nth command and replace every instance of x with y.
x and y may be characters or strings. Where x is a string, this is
global substitution. For example,

nroff file1 > outfile1 &

may be edited using the notation

! ! :gs/file1/file2/

This invokes the command

nroff file2 > outfile2 &

Where x is a character, only the first instance of x per word will
be replaced by y. For example, if the command

echo 111 2211

is edited using the notation

! ! :gs/1/3/

This invokes the command

echo 311 2231

When you use the ! notation, a character or characters following a
colon (as in : s or : gs) are called modifiers. They are used to modify
previous command lines. See "Using Modifiers With Your Command
History." Another use of modifiers is described in "Variable
Substitution.' ,

5.5 Reusing parts of previous command lines
The following history notations use special notations or numeric
modifiers to refer to parts of a command line:

4-12 A/UX User Interface

! $ Refers to the last word on the preceding command line.
For example, after the command

mv fi1e1 /usr/bin

you may use the notation

cd !$

to invoke the command

cd /usr/bin

! n : x Refers to the xth argument of the nth command, where n is
the (history) number of a previous command. For
example, if the following command is number 5 in your
history listing:

nroff fi1e1 > outfile.1&

the first argument of the command line (the filename) may
be referred to using the notation

we -1 !5:1

(where 5 is the history number). This invokes the
command

we -1 fi1e1

because fi1e1 is the first argument to the nroff
command referenced by the number 5. (The command
name nroff is the zero-th argument here.)

! n A Refers to the first argument of the nth command, where n
is the history number of a previous command. This is the
equivalent of

!n:1

5.6 USing modifiers with your command history
The C shell provides modifiers that can be used to modify previous
command lines. A modifier is a colon followed by one or more
characters. The sections show how to use modifiers to substitute text or
refer to parts of a previous command line. This section describes

C Shell Reference 4-13

modifiers that perform a variety of other functions, including changing
arguments and affecting how the shell evaluates your new command.

The following are possible modifiers:

: h Remove the last pathname component, leaving the head.
See "Variable Substitution" for examples of how to use
this modifier.

: t Remove all leading pathname components, leaving the tail.
See "Variable Substitution" for examples of how to use
this modifier.

: r Remove an extension filename component (. xxx), leaving
the root name. See "Variable Substitution" for examples
of how to use this modifier.

: e Remove all but the extension filename component (.xxx).
This modifier does not work in conjunction with the
history command; see "Variable Substitution" for
examples of how to use it.

: s / x/y / Substitute the string y for x. See "Editing and
Reexecuting Previous Commands."

: & Repeat the most recent substitution.

: g This modifier must be followed by one of the substitution
modifiers (s or &). It indicates that the substitution will be
applied globally. See' 'Editing and Reexecuting Previous
Commands.' ,

: p Print the command but do not execute it. For example,

4-14

!v:p

prints your most recent v i command but does not
reexecute it. You can use the : p modifier to determine the
effect of editing a command; for example, to change a
previous v i command to an 1 s command and print the
command instead of executing it:

!vi:s/vi/ls/:p

A/UX User Interface

The shell prints

1s prog.e

This becomes your "most recent command" and you may
execute it using the notation

! !

: q Quote substituted words and prevent further substitution.
See "Variable Substitution" for examples of how to use
this modifier.

: x Quote substituted words but allow blank interpretation.
See "Variable Substitution" for examples of how to use
this modifier.

These modifiers can be combined with each other, as with the: gs and
: g& global modifiers, or with the : p no-execute modifier. The: h,
: t, : r, and : e modifiers may also be used in combination with one
another. For instance, if command number 15 in the history list is

cat /ete/termeap

Then

cd !15:1:h
cat !15:1:t
Is !15:1:h:t

expands to
expands to
expands to

5.7 Other uses for command history

cd fete
cat termcap
Is etc

You can use the history mechanism (!) to set your C shell prompt so it
will increment sequentially at each command, beginning at one. See
the explanation of the prompt variable under "C Shell Variables" for
details.

You can also use the command

repeat n command

to repeat command n times. command must be a simple command, not
a pipeline, a command list, or a parenthesized command list (see
"Using Shell Metacharacters" for an explanation of these terms).
Input and output redirection occurs once, even if n is O. For example,

C Shell Reference 4-15

to execute the date command three times, you can use the command

repeat 3 date

If you use a large number by mistake and the command starts repeating
many times, you can send an interrupt to stop the process.

6. Using shell metacharacters
Shell metacharacters are characters that perform special functions in
the shell. This section discusses how to use these metacharacters. The
following are the C shell metacharacters:

An exclamation mark invokes the history mechanism. See
"Listing and Reusing Commands."

A tilde is used as the first part of a directory name. It is replaced
with either your home directory (if it is used alone or followed
by a pathname below your home directory such as
-/project/phasel) or the home directory of another user (if
it is followed by the login name of that user, such as -lori).
See "Specifying Home Directories" for details.

& An ampersand at the end of a command line causes the shell to
run the command(s) in the background and prints the process
ID(s).

? A question mark used as part of a file or directory name causes
the shell to match any single character (except a leading period).

* An asterisk used as part of a file or directory name causes' the
shell to match zero or more characters (except a leading period).

[] Brackets around a sequence of characters (except the period)
cause the shell to match each character one at a time. The shell
will not match a leading period, even if the period is included
within the brackets.

A hyphen used within brackets to designate a range of characters
(for example, [A - Z]) causes the shell to match each character in
the range.

{ } Braces around a series of filenames cause the shell to perform an
action on each file in the series. The filenames must be separated

4-16 A/UX User Interface

by commas.

< A less-than sign following a command and preceding a filename
causes the shell to take the command's input from that file.

> A greater-than sign following a command and preceding a
filename causes the shell to redirect the command's standard
output into the file. When followed by an ampersand (>&), it
causes the shell to redirect the command's standard error output
to the same file as standard output. See' 'Input and Output" for
a description of how to redirect standard output and standard
error output using> and >&.

> > Two greater-than signs following a command and preceding a
filename cause the shell to append the command's output to the
end of an existing file. When followed by an ampersand (»&),
they cause the shell to redirect the command's standard error
output to the end of the same file as standard output. See "Input
and Output Redirection" for a description of how to redirect
standard output using ».

A vertical bar between two commands on a command line causes
the shell to redirect the output of the first command to the input
of the second command. This can occur multiple times on a
command line, forming a pipeline.

A semicolon between two commands on a command line causes
the shell to execute the commands sequentially in the order in
which they appear.

() Parentheses around a pipeline or sequence of pipelines cause the
whole series to be treated as a simple command (which may in
tum be a component of a pipeline), and a subshell to be spawned
for the commands' execution.

\

, ,

A backslash prevents the shell from interpreting the
metacharacter that follows it.

Single quotes around a command, a command name and
argument, or an argument prevent the shell from interpreting the
enclosed metacharacters.

C Shell Reference 4-17

" "

, ,

Double quotes around a command, a command name and
argument, or an argument prevent the shell from interpreting the
enclosed metacharacters. Parameter substitution and command
substitution are still performed. See' 'Quoting."

Back quotes around a command cause the characters in that
command to be replaced with the output (via standard output)
from that command.

6.1 Specifying home directories
You can use the tilde (-) as the initial character in a filename or
pathname to avoid typing the absolute or relative pathnames of home
(login) directories. An initial tilde in a pathname, for example,

-/chapter2

indicates a file below your own home directory. When the command is
executed, the tilde is replaced by the value of your environmental
variable HOME. A tilde followed by the login name of another user, for
example,

-virginia/chapter2

indicates the login name of that user and will be replaced by the
absolute pathname of that user's home directory.

You can use this notation when giving a pathname as an argument to
any command; for example,

cp -virginia/memol -/memos/virginia.memo

6.2 Specifying filenames with metacharacters
Using the filename expansion metacharacters (also called
"wildcards' ') will spare you the job of typing long lists of filenames in
commands, looking to see exactly how a filename is spelled, or
specifying several filenames that differ only slightly.

These metacharacters are interpreted and take effect when the shell
evaluates commands. At this point, the word incorporating the
metacharacter(s) is replaced by an alphabetic list of filenames, if any
are found that match the pattern given. Filename expansion
metacharacters can be used in any type of command, except in the
filenames given for input and output redirection. To tum off the special

4-18 NUX User Interiace

meaning of metacharacters and use them as ordinary letters, they must
be quoted. See "Quoting."

The following are filename expansion metacharacters in the C shell:

? A question mark matches any single character in a filename. For
example, if you have files named

a bb ccc dddd

the command

echo ???

matches a sequence of any three characters and returns

ccc

* An asterisk matches any sequence of characters, including the
empty sequence, in a filename. (It will not, however, match the
leading period in such files as . login.) To list the sequence of
files named

chap chap1 chap2 chap3 chap3A chap12

you can use the notation

Is chap*

The files are listed as

chap chap1 chap12 chap2 chap3 chap3A

Note that in the first file listed, chap, the asterisk matched the
null sequence composed of no characters.

[] Brackets enclosing a set of characters match any single
character, one at a time, from the set of enclosed characters.
Thus,

Is chap. [12]

matches the filenames

chap.1 chap.2

Note that this does not match chap .12. To match filenames

C Shell Reference 4-19

chap .10, chap .11, and chap .12, use the notation

chap.1[012]

You can also place a hyphen (-) between two characters in
brackets to denote a range. For example,

Is chap. [1-5]

is the equivalent of

chap. [12345]

A range of characters can also be indicated in brackets. The
notation [a - z] matches any lowercase character, [A - Z]

matches any uppercase character, and [a - zA - Z] matches any
character, regardless of case.

{ } Braces specify that the enclosed strings (separated by commas)
are to be consecutively substituted into the containing characters.
For example,

4-20

A{xxx,yyy,zzz}B

expands to

AxxxB AyyyB AzzzB

This expansion occurs before any other filename expansion, and
the results of each expanded string are sorted separately,
preserving left-to-right order. A typical use of this would be

mkdir -/{work,home,consult}

to make the subdirectories work, home, and consul t in your
home directory. This notation may also be nested. For example,
the following command provides a quick way to see what
executable programs are located in the usual places on an NUX
system:

Is /{bin,usr/{bin,games}}

A/UX User Interface

None of these metacharacters will match the initial period at the
beginning of special files such as . login. These must be matched
explicitly. Periods that do not begin a filename can be matched by
metacharacters.

If you use these metacharacters and the shell fails to match an existing
filename, it displays the message

No match.

6.3 I/O redirection
An executing command may expect to accept input and create output,
possibly including error output (error messages). In the NUX system,
there are default locations set for input and output:

• Standard input is taken from the terminal keyboard.

• Standard output is printed on the terminal screen.

• Standard error output is printed on the terminal screen.

These defaults can be changed using the following metacharacters (also
called redirection symbols).

< A less-than sign followed by a filename "redirects standard
input" (takes command input from a file or device other than the
keyboard). (The name of the file has variable, command, and
filename expansion performed on it first.) For example,

mail ellen < note

uses a file named note instead of a message typed from the
keyboard as the input to rna i l.

« word
Two less-than signs followed by a word make the shell read
input up to a line that is identical to word. Filename expansion,
variable substitution, and command substitution are not
performed on word, and each input line is compared to word
before any substitutions are done on this input line. Unless a
quoting mechanism (\, ", ' , or ') appears in word, variable and
command substitution are performed on the intervening lines,
allowing \ to quote $, \, and '. Commands that are substituted

C Shell Reference 4-21

have all blanks, tabs, and new lines preserved, except for the final
newline, which is dropped. The resulting text is placed in an
anonymous temporary file, which is given to the command as
standard input.

> A greater-than sign followed by a filename' 'redirects standard
output" (prints command output in a file or to a device other
than the terminal screen). If a file by that name does not exist, a
new file is created; otherwise the file's previous contents are
overwritten. For example,

sort filel > file2

uses a file for the output of the sort command. When sort
completes,file2 contains the sorted contents offilel. Several
variants are also available. For the> symbol, if the variable
noclobber is set, then the file must not exist or be a character
special file (for example, a terminal or / dev /null), or an error
results. This helps prevent accidental destruction of files. In this
case, the>! form can be used to suppress this check. The form
>& routes the diagnostic output into the specified file as well as
the standard output. The form > & ! both suppresses
noclobber and routes the diagnostic (as well as the standard)
output into the specified file. In all these forms, name is
expanded in the same way as < input filenames are.

See "Input and Output" for more information on redirecting
standard error output.

» Two greater-than signs followed by a filename append the output
of a command to a file. If no file by that name exists, one is
created. For example,

4-22

who » log

appends the output of the who command to the end of the
existing file log. Again, variants are available. If the variable
noclobber is set, then it is an error for the file not to exist
unless one of the ! forms, either> >! (put at end of file and
clobber) or > > & ! (put, with diagnostics, at end of file and
clobber) is given. The »& form puts error (as well as standard)

NUX User Interface

output at the end of the named file. Otherwise, all these fonns
are similar to >.

6.4 Combining commands: pipelines
You can send the output of one command as input to another command
by using the vertical bar (I). When two or more commands are joined
by a vertical bar, the command line is called a pipeline.

For example, to see which files in a directory contain the sequence old
in their names, you can use a pipeline as follows:

ls I grep old

The pipe character (I) tells the shell that output from the first command
(the list of files produced by the ls command) should be used as input
to the grep command. The output of the pipeline (filenames in the
current directory containing the string old) prints on standard output
(unless you redirect it to a file).

Pipelines may consist of more than two commands; for example,

ls I grep old I we -1

prints the number of files in the current directory whose names contain
the string old.

Pipelines may also be executed in the background. For example, to
avoid the time-consuming process of waiting for a very large file to be
sorted and printed, you could give the following pipeline:

sort mail.list I lp &

This pipeline would sort the contents of a file named ma i 1 . 1 i stand
send the sorted information to the 1 p program to be placed on the
printer queue. The shell would respond with the process ID of the last
command in the pipeline.

The tee command is a "pipe fitting"; it can be put anywhere in a
pipeline to copy the information passing through the pipeline to a file.
See tee(l) in AIUX Command Reference for more information.

A filter is a program or a pipeline that transforms its input in some
way, writing the result to the standard output. For example, the grep
command finds those lines that contain some specified string and prints

C Shell Reference 4-23

them as output.

grep 'correction' draft1

prints only the lines in draft1 that contain the string correction.

Filters are often used in pipelines to transform the output of some other
command. For example,

who I grep jon

prints

jon ttyp8 Jul 21 12:25

if a user whose login name is jon is currently logged into the system
on ttyp8.

6.5 Command grouping
You can use the following metacharacters to group commands:

Group several commands on one command line by separating
one command from another with a semicolon (;). The
commands will be executed sequentially in the order in which
they appear. For example, the command line

cd test; Is

changes to the test directory and then lists its contents.

& Group background commands on a single line by separating
them with ampersands (&) and then ending the line with another
ampersand. The background commands will exit independently
while the shell continues to accept new commands in the
foreground.

() Enclose a group of commands in parentheses to execute them as
a separate process in a subshell (a new instance of the shell). For
example,

4-24

(cd test; rm junk)

first invokes a new instance of the shell. This shell changes the
directory to test and then removes the file junk. After this,
control is returned to the parent shell, where the current directory

A/UX User Interface

has not changed. Thus, when execution of the commands is
over, you are still in your original directory.

The commands

cd test; rm junk

(without the parentheses) are executed in the current shell and
have the same effect but leave you in the directory test.

6.6 Conditional execution
You can use the following symbols to indicate that your command
should be executed only if some condition is met:

& & The command form

conunandl & &conunand2

means "If command1 executes successfully (returns a zero exit
status), then execute command2."

I I The command form

command1 I I conunand2

does the reverse. This form means' 'If command1 does not
execute successfully (returns a nonzero exit status), then execute
command2. "

For exit status, see "Exit Status: The Value of the Command."
Conditional execution is also available in joining pipelines. For other
ways of obtaining conditional execution, see "Control-Flow
Constructs. ' ,

6.7 Quoting
If you need to use the literal meaning of one of the shell metacharacters
or control the type of substitution allowed in a command, use one of
the following quoting mechanisms:

\ A backslash preceding a metacharacter prevents the shell from
interpreting the metacharacter. For example, to use the echo
command to display a question mark, you must precede the
question mark with a single backslash (\). Thus,

C Shell Reference 4-25

, ,

4-26

echo \?

prints

?

Without the backslash, the echo command would generate a list
of all one-character filenames in the current directory. If there
are none, the command returns

?

Single quotes prevent the shell from interpreting any
metacharacters in the enclosed string. The command

echo '*test'

prints

*test

while the command

echo *test

attempts to list all the files in your current directory ending with
the characters test. If there are none, the command returns

*test

Within double quotes, variable substitution and command
substitution occur, but filename expansion and the interpretation
of blanks do not. For example, if you have the variable
messagel with the value "this is a test", the
command

echo n$messagel n

prints

this is a test

Double quotes can also be used to give a multiword argument to
commands; for example,

AJUX User Interface

, ,

echo "type a character"

For infonnation on variable substitution, see "Arguments and
Shell Variables.' , You can also suppress filename expansion
universally by setting the noglob environment variable. See
"C Shell Variables."

A command name enclosed in back quotes is replaced by the
output from that command. This is called command
substitution. For example, if the current directory is
/users/marilyn/bin, the command

set i='pwd'

is equivalent to

set i=/users/marilyn/bin

If a back quote occurs within the command to be executed, you
must escape it with a backslash (\ '); otherwise the usual quoting
conventions apply within the command.

Command substitution takes place before the filenames are
expanded. If the output of substituted command is likely to be
more than one word, the command must be enclosed in double
quotes as well as back quotes; for example,

set a="'head -1' /dev/tty"

where the head command might yield more than one word. The
double quotes in this example preserve the blank spaces from the
input.

7. Working with more than one shell
When you wish to use another NUX shell, you can use one of the
following commands:

sh This spawns an instance of the Bourne shell.

k s h This spawns an instance of the Kom shell.

csh This spawns another instance of the C shell.

C Shell Reference 4-27

You can type these at your shell prompt; for example,

csh

In this case, your new shell will run as a subshell or "child" of your
current one. You can use the exi t command or the eof sequence to
return to your original login shell whenever you wish. (If you have the
ignoreeof C shell variable set, you must use the exit command;
the eof sequence will not work to exit the C shell. See' 'C Shell
Variables. ")

7.1 Changing to a new shell
You can also obtain a new shell using the exec command; for
example,

exec sh

If you use the exec command, the Bourne shell program sh replaces
your current shell. You cannot return to your original shell; it has
disappeared. You can, of course, use the command

exec csh

to get a new copy of the C shell.

Generating new instances of a shell affects the environment settings for
each shell. See "The Environment and New Shell Instances" for more
information.

7.2 Changing your default shell
To change your default shell from the C shell to the Bourne or Korn
shell, use the chsh command. For example,

chsh login.name /bin/ksh

(where login.name is your login name on this system) changes your
default login shell to the Korn shell .. See chsh(1) in AIUX Command
Reference for more information.

8. The environment
The environment is a list of variables and other data that is available to
all programs (including subshells) invoked from the shell. A shell
inherits the environment that was active when it started, and passes the

4-28 A/UX User Interface

environment (including any modific~tions you make to the
environment) to all programs it invokes.

You can modify the environment using the setenv command (see
"Adding Environment Variables and Modifying Values.")

Note: Modifying the environment in a subshell (for example, in
a shell script) never changes the parent shells or their
environments. Values in the environment are copied to
subshells' environment, and any changes there are made only to
the copies.

The most essential environment variables are assigned default values
during login or by the shell every time you invoke it. Convenient but
inessential variables are simply left unassigned. Thus a default
environment is created, which you can redefine by resetting the default
values or adding new elements.

8.1 Global environment variables
The C shell maintains a list of environment variables that are required
by the A/UX shells. In addition, any variable that you create or modify
using the setenv command is part of the environment and is passed
to new instances of the shells (see "Adding Environment Variables and
Modifying Values").

Note: Global environment variables in the C shell pass among
instances of all three NUX shells (the C shell, the Bourne shell,
and the Kom shell).

8.1.1 Listing existing values
To print a list of your current environment, use the command

printenv

This prints a list such as

C Shell Reference 4-29

HOME=/users/doc/elaine
PATH=/bin:/usr/bin:
EXINIT=set wm=10
LOGNAME=elaine
SHELL=/bin/csh
MAIL=/usr/mail/elaine
TERM=mac2

8.1.2 Adding environment variables and modifying values
You may create new environment variables or modify the value of
existing ones using the command

setenv name value

For example,

setenv j 22

creates an environment variable (j) with the value 22. This variable
can be referenced and used in the current shell and its subshells.

Environment variables can be modified using setenv at the shell
prompt or in your . login file (see "The .login File.") For
example, to modify your PATH variable to include more pathnames,
use the command

setenv PATH /etc:/usr/bin:/bin:/usr/ucb

8.1.3 Removing environment variables
You can remove environment variables in the C shell using the
command

unsetenv name ...

8.1.4 Commonly used environment variables
The following variables are typically inserted into the environment. By
convention, environment variable names are uppercase. Some of these
variables are assigned default values at login or by the shell at
invocation. All of them can be reset by the user.

HOME

4-30

At login this variable is set to the pathname of your home
directory. Its value is the default argument (home
directory) for the cd command. - is another name for

A/UX User Interface

PATH

$HOME.

The default value for PATH is the current directory, Ibin,
and lusr Ibin. A valid PATH value is a list of directory
names separated by colons. Whenever you give a
command, the shell checks the directories specified by
your PATH variable to locate the command and execute it.
If the directory containing the command file is not
specified, the shell will not locate the command. PATH is
usually set in the . login file. For efficiency, the list of
directories in the PATH variable should be in order from
the directories containing commands most often used to
those least often used. If you add a command to one of the
directories in PATH other than the current directory, you
must give the rehash command, or the shell will not be
able to find the commands. See" A Sample . login
File" for an example.

EXINIT The value of this variable can be set to various options for
your editing environment when you are using the ex or vi
text editing program. See "Using ex" and "Using vi"
inA/UX Text Editing Tools, and "A Sample. cshrc
File."

LOGNAME This variable contains your login name.

MAIL

SHELL

TERM

The value of this variable is set to the pathname of the file
where your mail is received. This variable is typically set
in the file .login in the user's home directory.

The value of this variable indicates the shell that is
invoked when you log in (your login shell). It is set at
login using the information found in the /etc/passwd
system file. In A/UX, if no shell is specified in
etc/passwd, the default shell is the Bourne shell. For
instructions on how to change your login shell, see
chsh(l) inA/UX Command Reference.

This variable specifies the type of terminal you are using.
For A/UX systems, the default is set to mac2. You can
see the value of your TERM variable using the command

C Shell Reference 4-31

echo $TERM

8.2 C shell variables
The C shell also maintains variables that are only relevant to the C shell
(and will be ignored by the other shells). If these variables are created
or modified at the shell prompt, they are valid only for the current shell.
However, if they are assigned a value in the . cshrc file, they will be
available to all new instances of the C shell.

Note: Because the C shell reads your. cshrc file every time a
new instance of the C shell is invoked without the - f flag
option, variables that have been set in your. cshrc file will be
available in new instances. Although they are not technically
"in the environment," they will still be in effect for every
instance of the C shell with the value specified in the. cshrc
file.

See "Shell Variables" for more information on using variables in the
C shell.

8.2.1 Listing existing values
The command

set

lists the value of all your current C shell variables.

8.2.2 Adding C shell variables and modifying values
C shell variables are set using the command:

set name [=vaiue]

For example,

set history=200

If you use the set command at the shell prompt to modify a value or
create a new variable, your variable assignments remain local to the
shell you are currently working in (see" Adding Environment
Variables and Modifying Values").

4-32 A/UX User Interface

The following metasequences are provided for introducing variable
values into the shell input Except as noted, it is an error to reference a
variable that is not set. The following substitutions may not be
modified with : modifiers:

$? 0 Substitutes 1 if the current input filename is known, 0 if it is not.

$< Substitutes a line from the standard input, with no further
interpretation thereafter. It can be used to read from the
keyboard in a shell script.

8.2.3 Removing C shell variables
Any C shell variable can be removed using the unset command:

unset name

8.2.4 C shell variables
The following variables are typically assigned a value in the . cshrc
file. This makes them available to all instances of the C shell. Some of
these variables are assigned default values at login or by the shell at
invocation. All of them can be reset by the user.

argv

cdpath

cwd

echo

Set to the arguments given to the shell. It is from
this variable that arguments are substituted; that is,
$1 is replaced by $ a rgv [1] , and so forth.

set cdpath=path
Lists alternate directories searched to find
subdirectories in chdir commands.

set cwd=path
Lists the full pathname of the current directory. This
variable is set by the shell to cwd= 'pwd '.

set echo
Causes each command and its arguments to be
printed on the screen just before execution. For
user-defined commands, all expansions occur before
printing. Built-in commands are printed before
command and filename substitution, because these
substitutions are then done selectively. Set when
csh's -x command line option is given.

C Shell Reference 4-33

histchars set histchars string1 string2
Changes the characters used in history substitution:
string1 replaces ! and string2 replaces A.

history set history=n
The value of this variable is a number specifying
how many previous command lines are saved. In
the NUX standard distribution, history is given
an initial value of 200. If you assign a very large
number to this variable (for example, 500), it will
use up a lot of memory.

home set home=&r
Contains the home directory of the invoker,
initialized from the environment. The filename
expansion of - refers to this variable.

ignoreeof set ignoreeof
If set, the shell ignores an eo! from the keyboard.
This prevents shells from accidentally being killed
by typing the eo! character.

ignoreexit set ignoreexit
If set, the shell ignores an exit from the keyboard.

mail set mail=[n] mailfile ...
mailfile is the file the shell checks for mail. By
default, it checks for mail every ten minutes after
producing a shell prompt. If mailfile has been
modified since you last accessed it, it prints the
message "You have new mail." Supplying a
number (n) before mailfile specifies a new interval
(in seconds) to wait before checking for mail. If you
have more than one mailfile, your mail message
reads "New mail in mailfile."

noclobber set noclobber
Restrictions are placed on output redirection to
ensure that files are not accidentally overwritten or
destroyed, and that» redirections refer to existing
files.

4-34 NUX User Interface

noglob

nonomatch

notify

path

prompt

set noglob
If set, filename expansion is inhibited. This is most
useful in shell scripts that are not dealing with
filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

set nonomatch
If set, it is not an error for a filename expansion to
not match any existing files; rather the primitive
pattern is returned. It is still an error for the
primitive pattern to be malformed.

set notify
Notifies you when your background job completes,
without waiting until the next prompt.

set path=path ...
Each path specifies a directory to search to execute
commands. A null path specifies the current
directory. If you don't specify a path variable,
only full pathnames execute. The default search
path is ., /bin, /usr/bin, and /usr/ucb. The
default path for the superuser is / etc, /bin,
/usr/bin, and /usr /ucb. If you start the shell
without the -c or -t flag option, it will hash the
contents of the directories in the path variable after
reading. cshrc and each time you reset the path
variable. If you add new commands to these
directories while the shell is active, you may have to
give the rehash command before these commands
are found.

set prompt=string
The value of this variable is string. This string is
printed at the beginning of a line, indicating that the
shell is ready to receive input. By default, this is set
to %. If this variable is set to \! the prompt will be
the history number of the current command line; this
is usually set the in . cshrc file. If you do not
define the prompt variable in your . cshrc file, it

C Shell Reference 4-35

savehist

shell

status

time

verbose

4-36

will be set by the / etc/ cshrc file in the A/UX
standard distribution. See "Using Your. cshrc
File. "

set savehist=n
Saves n entries from the history list in the file
- / . history when you log out. This is read into
your history list when you next log in. If n is too
large, it slows down the shell during startup.

set shell=file
file contains the default shell to use for executing
shell files. This is used in forking shells to interpret
files that have execute bits set but are not executable
by the system. Note that this will only affect scripts
starting with the number sign (-#), because others are
passed to the Bourne shell.

set status=n
Returns the status of the last command. 0 indicates
success of a built-in command, 1 indicates failure of
a built-in command, and 0200 is added to the status
of a command terminated abnormally. Note that this
variable is almost never set explicitly. The exi t(2)
system call sets it, as does the exi t built-in
command.

set time=n
Prints the execution statistics at the completion of
any command running over n CPU seconds. These
statistics include user, system, and real times, and
the ratio of user plus system times to real time.
There is also a corresponding time command that
can be used to time a given command or shell.

csh -v
Causes the words of each command to be printed
after history substitution. Set when the csh
command line option is given.

AlUX User Interface

8.3 The environment and new shell Instances
Because the C shell reads the . cshrc file each time it starts up, the
values you have defined there are available to the new C shell. Any
values you have assigned using the setenv command will also be
available in a new instance of the C shell (invoked without the - f flag
option).

If you have assigned values to variables using the set command at the
shell prompt (or within a shell script), these remain local to the shell in
which you assigned them. Because these changes are made to a copy
of the parent shell's environment. the parent shell's environment is
never affected by changes in a subshell, even if you use the setenv
command. Note, however, that changes made using setenv in a shell
will be passed on to subsequent new instances of the shell. When a
subshell terminates, its environment no longer exists.

Note that the . login file is read only once, at login. Thus, if you
have changed the value of an environment variable, the subshell will
inherit the new value, not the value set routinely in . login. You can
force a new instance of the shell to read . login by using the source
command; see "Executing Shell Scripts."

8.4 Special environments
Normally, the environment for a command is the complete
environment of the shell where the command was given. You can
change the environment used by a command with the NUX command

env [-] [name=value ...] [command] [args]

to set the environment for command. With this command, you can not
only add things to the environment inherited by a command, but also
exclude the current environment. To add variables and their values to
the current environment, give the variables and values before the
command name. For example, to run a subs hell with a changed PATH

environment variable, you could give the command

env PATH=directory-list sh

For the duration of the new shell (and its subshells), the PATH variable
would be set to the directories in the list.

C Shell Reference 4-37

To set up a completely new environment, first give the option -, which
excludes the current environment, and then assign the variables and
values you want. These (and only these) will be available in the
environment for the new command.

8.5 The default environment on your system
Whenever you log in, the following procedures occur:

• The login program sets the variables HOME and SHELL from the
information in the system file / etc/passwd.

• The login program then checks the / etc/ cshrc file to find out
the default environment to set up for all users.

• The login shell (the shell that is automatically invoked when you
log in) assigns default values (for example, to prompt and
history).

When you invoke new instances of the shell (for example, using the
csh command), the new shell checks the environment for any new
values you may have placed there for these variables. If it doesn't find
any values in the environment, it assigns the default values.

Then the new shell reads your. cshrc and .login files. If you have
assigned new values there, it uses your values instead of the defaults.

• The C shell reads the . cshrc file every time it starts up, not
only at login. Use the. cshrc file to set C shell variables and to
define aliases you wish to be available across all invocations of
the C shell. All variables and aliases set in this file are available
to new instances of the C shell as if their values were in the
environment. However, none of the local values set in this file
are available to instances of the Bourne shell or Korn shell.

• The C shell reads the . login file when you log in. This file
usually contains values for environment variables that should be
available to all instances of the shell, including Bourne shell and
Korn shell.

9. The . login file
The . login file is simply a text file. It contains a series of commands
typed exact! y as you would type them at the shell prompt. When you

4-38 NUX User Interiace

log in, the C shell looks in your home directory for files named
. cshrc (see "The. cshrc File") and . login. When the shell
finds one or both of these files, it executes all the commands found
there before issuing the shell prompt. If no . login or . cshrc file
exists, your environment will simply be the default environment
created by the shell at login.

9.1 A sample .1ogin file
The following is a sample. login file:

setenv PATH :/bin:/usr/bin:/etc:/usr/new:-/bin
setenv EXINIT "set wm=10"
date
ls

The variables and commands in this file are discussed in the sections
that follow.

9.1.1 Locating commands
The PATH environment variable lists the directories where the shell
wi11look for the executable files that are NUX (or user-defined)
commands. Each time you give a command, the shell searches the
directories listed in the order specified. Most A/UX commands are
located in the Ibin or lusr Ibin directory. When you assign a
value to PATH, be sure to include these directories.

If the shell cannot find the file in one of the directories specified, the
command cannot be executed and you will see the message

Command not found.

If you do not know the directory containing a particular A/UX
command, see whereis(1) inA/UX Command Reference.

A valid PATH value is a list of directory names (specified by absolute
pathnames), separated by colons. If the list of directories begins with a
colon, the path search begins in the current directory. At login, the
PATH variable is set as follows:

setenv PATH :/bin:/usr/bin:/usr/ucb

This assignment sets the PATH variable to the current directory and the
system directories Ibin, lusr/bin, and lusr/ucb.

C Shell Reference 4-39

To reset the PATH variable in the .login file, insert a line such as

setenv PATH :/bin:/usr/bin:/usr/ucb:/etc:/usr/new:-/bin

The setenv command is discussed under "Adding Environment
Variables and Modifying Values. ' ,

If you include the pathnames of personal directories that contain shell
programs you have written, these will be accessible to the shell no
matter what your current directory is. If you wish to execute a
command or shell program that is not in one of the directories in your
PATH variable, simply give the absolute pathname of the directory
where the command or shell program is to be found.

For information on referencing variables using the $ syntax (as in
$HOME above), see "Variable Substitution." For more information
about pathnames, see the glossary in A/UX System Overview.

9.1.2 Your editing environment
The EXINIT environment variable tells the shell how to initialize the
vi or ex editing programs. It is set to a series of editor commands that
should be run every time the editor starts up. In the sample . login
above, for example, the command

setenv EXINIT "set wm=10"

assigns the value of EXINIT as the command

set wm=lO

This command sets the word-wrap margin so that the editor will
automatically break lines ten spaces before the right margin. The
command is enclosed in double quotes because the entire string must
be treated by the C shell as one "word" and not divided up.

For details on EXINIT, seeA/UX Text Editing Tools. For the use of
double quotes, see "Quoting."

9.2 Customizing your login procedure
You can also use your . login file to customize your login procedure.
In the sample . login above, the commands

4-40 A/UX User Interface

date
Is

direct the shell to display the date and time and then list all the files in
the current directory before displaying the shell prompt. These will be
executed at login.

You can include any commands you wish in . login, including your
own shell scripts.

10. The . cshrc file
The . cshrc file is similar to the . login file, but is normally read at
every invocation of the C shell. Thus, any definitions you include in
this file will be available to every instance of the C shell.

10.1 A sample . cshrc file
The following is a sample. eshre file:

set prompt='\!: '
set ignoreeof
alias Ie Is -C

These commands are described below.

10.1.1 Using history numbers as your prompt
The C shell history mechanism keeps track of your command lines by a
number, automatically incrementing the number each time you give a
command. If you use this number as your prompt, it is more
convenient to refer to previous commands by number (see' 'Listing and
Reusing Commands").

In your. eshre file, the command

set prompt='\!: '

sets your C shell prompt to the history character ! followed by a colon
and a blank space. This will print as a shell prompt a number that
increments with each command:

1 :
2: ...

C Shell Reference 4-41

Note: The ! must be escaped (preceded by a backs lash) and
enclosed in single quotes to keep the shell from interpreting it at
the wrong time, for example, when it reads and executes your
. cshrc file.

10.1.2 Protection against unintentional logout
The shell terminates, logging you out of the system, when it recognizes
the eo/ sequence. This can cause you to log out inadvertently when
sending mail or using any other program that also terminates when you
type an eof.

To prevent this, you may set the ignoreeof variable in your
. cshrc file. This causes the shell to ignore eo/from the keyboard.

When this variable is set, you must use the logout or exit
command to log out.

11. Aliases for commonly used commands
The C shell ali a s command renames existing commands or creates a
name for a long command line. Aliases can be defined at the shell
prompt or in the . cshrc file.

The C shell keeps a list of aliases. Each time you give a command, the
first word of the command is compared with the list. If it is an alias
name, then it is replaced with the definition of that alias. You can use
an alias to redefine any shell or NUX command except ali as;
however, it is not advisable to redefine keywords such as foreach or
while.

11.1 Defining an alias
You define an alias with the command

alias name definition

where name may begin with any printable character, but the rest of the
characters must be letters, digits, or underscores (generally it is a good
idea to avoid using /, ; , *, ?, and so on), and definition may contain
any valid commands, including shell scripts and metacharacters. Note
that definition cannot include another alias. If definition includes
spaces, the whole command must be inclosed in quotes.

4-42 NUX User Interface

For example, the alias

alias le 'ls -C'

causes the 1 e command to produce output as if you had typed

ls -C

which displays its output in columns. The alias definition is quoted
because it contains a blank.

Note that the invention of a new command name, le, allows you to use
both ls (in any form desired) and le.

Alias definitions can also include all shell metacharacters, variables,
arguments, command substitution, and so forth.

For example,

alias prtsort 'sort *.list'

creates a command p rt sort. When you type

prtsort

the command line

sort *.list

executes, sorting files in the current directory that end in the characters
" .list".

The use of double quotes in an alias definition allows certain
expansions to occur at the time the alias is defined. For example, the
definition

alias lshome "ls $HOME"

allows for the variable expansion of $HOME. Then if you type

lshome

you see a listing of your home directory.

When you create aliases at the shell prompt, they are not exported to
the environment. To make aliases available to every invocation of the
C shell or any script run with separate shell, put their definitions in the

C Shell Reference 4-43

· c shrc file, which is nonnally read every time a C shell starts up.

11.2 Listing and removing aliases
The alias command with no arguments lists all aliases that have been
defined in your environment.

Aliases can be removed with the command

unalias name(s)

11.3 Aliases that take arguments
It is also possible to define aliases that accept arguments and contain
multiple commands or pipelines. The following alias definition
instructs the shell to invoke an Is command after any cd (change
directory) command. This alias will accept an argument (a directory
name or pathname) where \ ! * occurs in the alias.

alias cdl 'cd \!* ; Is '

The history notation for accepting an argument is explained as follows:

\ ! The history character (!) is preceded by a backslash (\) to
prevent its default meaning when the command is invoked.

\ ! * The (\ ! *) here indicates that an argument will be substituted at
this place in the command and that it is not considered an error if
no argument is given.

The alias command uses history substitution and modifiers in a
variety of ways. Because the cd command will function without an
argument (changing to the user's login directory), the correct notation
in our example is "\ ! *". If you use either "\ ! : 1" or "\ ! ~", the
alias will require an argument in order to execute without an error
message. For example,

% alias j 'echo my favorite pastime is \! :1'
% j walking
my favorite pastime is walking

However, it is an error if you omit the argument using the \ ! : 1
notation:

4-44 NUX User Interface

% j
bad ! arg selector

If you use the \ ! * notation, the argument is optional. If you supply an
argument to the alias, it works as you would expect:

% alias j 'echo my favorite pastime is \!*'
% j walking
my favorite pastime is walking

It is not an error if you omit the argument in this case:

% j
my favorite pastime is

12. Shell execution options
The shell is a program like other A/UX commands, and it too has a
variety of options used to control how it executes. All shell execution
options can be specified on the command line when you invoke a new
shell or run a shell script with the csh command

csh -opt[opt ...] [file]

This invokes a subshell or runs a script (file) with the options specified.

The C shell execution options are as follows:

-c Commands are read from the (single) following argumentfile,
which must be present. Any remaining arguments are placed in
a rgv. This cannot be nested.

-e The shell exits if any invoked command terminates abnormally
or yields a nonzero exit status.

-f The shell will start faster, because it doesn't search for or
execute commands from the . cshrc file in your home
directory. Some scripts may fail if executed using the -f option
because of aliases and variables that will not be read from
.cshrc.

- i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Without this option, a shell is
interactive if its standard input and standard output are a

C Shell Reference 4-45

terminal.

-n Commands are parsed, but not executed. This may aid in
syntactic checking of shell scripts.

- s Command input is taken from the standard input stream.

-t A single line of input is read and executed. A \ may be used to
escape the newline at the end of this line and continue onto
another line.

-v The verbose variable is set, with the effect that command
input is printed after history substitution.

-x The echo variable is set, so that commands are printed
immediately before execution.

-v The verbose variable is set even before. cshrc is executed.

-x The echo variable is set even before. cshrc is executed.

If arguments remain after the execution options are processed (but you
did not specify the -c, -i, -s, or -t option), the first argument is
taken as the name of a file containing commands to be executed. The
shell opens this file and saves its name for possible resubstitution by
$ O. Remaining arguments initialize the variable a rgv.

13. Job control
C shell job control allows you to suspend current jobs, move a
foreground job to the background (and vice versa), check on the status
of background jobs, refer to specific background jobs by number,
change ajob's status, and receive notification when a job is done.

Every job you run in the C shell is associated with ajob number; for
example, when you give a background command, such as

diff filel file2 »file3 &

the job number (in brackets) displays before the process ID:

[3] 12345

Job numbers are assigned sequentially, so the first job is 1, the second
job is 2, and so forth.

4-46 A/UX User Interface

13.1 Suspending a job
To suspend your current foreground job, type the suspend character.
See "Canceling Commands" for the A/UX standard distribution
suspend character. When you type the suspend character, it sends an
immediate stop signal to the current job; pending output and unread
input are discarded.

When the shell interprets suspend, it prints a message in the form

[job-numberJ + Stopped name

where job-number is the job number of the current job; + indicates that
it is the current job; and name is the command name of the stopped job.
For example,

[2J + Stopped diff

13.2 Listing jobs
You can list your jobs with the command

jobs

Your jobs will be listed and their status (running or stopped) will be
indicated like this:

[3J + Running Ip chapter1 &
[2J - Stopped vi chapter2
[1] Running diff file1 file2 > diff.file &

The + indicates the current job, and the - indicates the preceding job.

If you include the -1 option, process IDs will be shown as well as the
job numbers:

jobs -1

13.3 Changing the status of stopped jobs
Once you have a stopped job, you can give another command at the
shell prompt (leaving the job suspended), resume the job in the
foreground, resume another stopped job, or continue the command
processing in the background.

To leave a job suspended, do nothing. When you give the command

C Shell Reference 4-47

jobs

you will see it listed as Stopped. To run a stopped job in the
background, give the command

bg %job-number

For example,

bg %2

The bg command with no argument

bg

puts the most recent stopped job in the background to continue
executing. If a job number is given as an argument to bg, it must be
preceded by a percent sign (%). The following notation is available for
job numbers:

%job-number

%+

%-

% string

refers to a specific job by number

refers to the current job

refers to the preceding job

refers to the most recent stopped job that began with
those characters

As a shorthand notation, just naming a job, with an ampersand,
resumes that job in the background. In addition, % * & resumes all
stopped jobs in the background.

Thus, if the most recently stopped job was an 1 p command whose job
number was 4, you could resume this job in the background with any of
the following commands:

bg
bg %+
bg %4
bg %lp
%4&

After one of these commands, you would be shown the command line
of the job that was being put in the background, and then the shell

4-48 A/UX User Interface

prompt would be returned.

A job running in the background will stop if it tries to read from the
terminal. Background jobs are normally allowed to send output to the
terminal, but this can be disabled by giving the command

stty tostop

This causes background jobs to stop when they try to send output, just
as they do when they try to read input.

If a background job needs neither input nor output and completes
execution in the background, the shell displays a message in the form

[job-numberJ + Done name

For example,

[2J + Done diff

You can bring a job to the foreground with the command

fg %job-number

The same conventions for referring to a stopped job given above under
the bg command work for the f g command. The f g command works
exactly like bg. Just naming a job brings it into the foreground, so
saying % 1 brings job 1 to the foreground. Similarly, saying % * brings
all stopped jobs to the foreground. Once your job is in the foreground,
you can continue working as before.

13.4 Blocked jobs
This shell learns immediately whenever a process changes state. It
normally informs you whenever a job becomes blocked so that no
further progress is possible. If the shell is busy with another process
when it learns about a blocked job, it will wait until it is about to print
another prompt before displaying a message.

13.5 Canceling jobs
To cancel a job, use the command

kill [%]number

number can be either a process ill, or ajob number preceded by a
percent sign (%). The rules about job numbers that apply to bg and fg

C Shell Reference 4-49

also apply to the kill command. Using the kill command with
process IDs to cancel jobs is discussed in "Canceling Background
Commands." Thus if you had a current background lp job whose job
number was 4, you could cancel this job with any of the following
commands:

kill %+
kill %4
kill %lp

The shell will display a message that the job has been terminated:

[4] + Terminated lp bigfile &

13.6 Logging out with stopped jobs
If you try to log out while your jobs are stopped, you will be warned
with

You have stopped jobs.

If you use the jobs command to see what the stopped jobs are, or if
you immediately try to log out again, the shell will not warn you a
second time. The stopped jobs will be terminated.

14. Using shell layering
Many C shell users will not wish to use shell layering, since job control
performs essentially the same functions while maintaining your
environment. However, if you do wish to use shell layering with the C
shell, you should make sure the swtch and susp characters are defined
to different control sequences. Otherwise job control will function
correctly in the shell layer you invoke, but the shl program will be
inaccessible. The NUX standard distribution sets swtch to CON1ROL-'
and susp to CONTROL-z. To check that these are defined to different
control sequences on your system, enter the command

stty -a

at the shell prompt. This displays the settings for various user­
definable sequences. See s t t y(1) in A/UX Command Reference for
additional details.

4-50 A/UX User Interface

See Chapter 5, "Shell Layering," for more information.

15. Overview of shell programming
A shell program is simply a list of commands. These commands can
be entered at the prompt or inserted in a file. They may contain

• variables and assignments

• control-flow statements (for example, if, for, case, or
while)

• built-in shell commands

• any A/UX command

Input for the shell program may be read from the keyboard (this is the
default standard input), taken from files, or embedded in the program
itself (see "Taking Input From Scripts").

Shell programs may write output to the terminal screen (the default
standard output), to files, or to other processes (via pipes).

When the shell program executes, each command is executed until the
shell encounters either an eo! character or a command delimiter that
directs it to stop. During execution, you can trap errors and take
appropriate action.

15.1 Writing shell programs
You can enter a shell program at the prompt. When you use a built-in
shell command that expects a delimiter (such as end) or a certain type
of input, a question mark appears after you press RETURN, on each line
until you give the expected delimiter; for example,

% foreach i ([A-Z]*)
? cat $i
? end
%

Note that you can send an interrupt to cancel the script and return to
the primary prompt.

You can also write a shell program in a text file (using a text editor),
and then execute it (see "Executing Shell Scripts"). These program

C Shell Reference 4-51

files are often called shell scripts. Note that all shell programs may be
entered at the shell prompt or inserted in a file. This does not affect
their actions. Hereafter "shell scripts" will be used to refer to shell
programs that reside in a file.

15.2 Executing shell scripts
There are several ways to execute a shell script; these differ mostly in
terms of whether or not a new instance of the shell is invoked.

• You can use the c s h command to read and execute commands
contained in a file. The script will be run in a "subshell," which
means that it will have access to only the values set in the
environment and will be unable to alter the parent shell. The
command

csh filename args ...

causes the shell to run the script contained infilename. Shell
scripts run with the csh command can be invoked with all the
options possible for the set command.

• You can change the mode of the shell script file to make it
executable. For example,

chmod +x filename

makes filename executable. Then the command

filename args ...

has the same effect as using the csh command. The script is run
in a Bourne subshell, which means that it will have to use Bourne
shell syntax. See Chapter 2, "Bourne Shell Reference." If your
script uses C shell built-in commands, it will not execute
successfully in the Bourne shell. If the first line of your shell
script is a # and your current shell is the C shell, the script will
be run in the C shell.

• You can run a shell script inside the current shell by using the
source command. The source command tells the current
shell to run the script; no subshell is invoked. This should be
used if you wish to use local shell variables or functions, or
modify the current shell:

4-52 A/UX User Interface

sourcefilename args ...

Because the commands are executed in the current shell, this is
the way to run a script that is to change values in the shell.

• You can run executable shell scripts or A/UX commands with
the exec command. This should be used when the shell script
program is an application designed to execute in place of the
shell and replace interaction with it:

exec filename args ...

In this case, the script or command replaces the current shell.
This means that when the script is over, control will not return to
the shell. If you were in a login shell, you will be logged out.

15.3 Comments
A word beginning with a number sign (:JI:) causes that word and all the
following characters up to a newline to be ignored.

15.4 Writing interactive shell scripts
A shell script can invoke an interactive program such as the vi editor.
If standard input is attached to the terminal, vi will read commands
from the terminal and execute them just as if invoked from an
interactive shell. After the session with vi is finished, control will pass
to the next line in the script. In a similar manner, a script can invoke
another copy of a shell (using sh, csh, or ksh), which will interpret
commands from the terminal until it receives an eo! Control will be
returned to the script. You can use this to create a special environment
for certain tasks by setting environment variables in a shell script and
then invoking a new subshell.

You can also write interactive shell scripts by using the line and
echo commands. See "Reading Input" and "Writing to the Standard
Output."

15.5 Canceling a shell script
You can cancel a shell script just like an ordinary NUX command. If
the script is running in the background, use the kill command. See
"Canceling Commands" for details on kill and various types of
interrupts that can stop a command.

C Shell Reference 4-53

Note: Interrupts can be handled within the script using the
onintr command. See "Fault Handling and Interrupts."

15.6 Writing efficient shell scripts
In general, built-in commands execute more efficiently than A/UX
commands. See "Summary of C Shell Commands" at the end of this
chapter for a complete list of these commands. The following built-in
commands are useful in constructing efficient shell scripts:

rehash This causes the shell to remember the search path of any new
commands.

time s This prints the accumulated user and system times for
processes.

You can also set the - f shell execution option using

csh -f script

This will prevent the new shell instance from reading. cshrc. You
should only use this if your script does not require any of the settings in
.cshrc.

Careful setting (or resetting inside a shell script) of the PATH

environment variable make sure that the most frequently used
directories are listed first. This also improves efficiency.

16. Command evaluation
When you give a command, the shell evaluates the command in one
pass and then executes it. To force more than one pass of evaluation,
use the eval command described in "Summary ofC Shell
Commands.' ,

While evaluating the command, the shell performs the following
substitutions on variables:

• History substitution. This checks every word of the command
for a word beginning with ! and replaces that word with the
elements of history specified. For more information, see
"Listing and Reusing Commands."

4-54 AlUX User Interface

• Alias substitution. This checks the first word of every command
to see if it is an alias (a user-defined name for another
command). If an alias is found, it is replaced by the text of the
alias. Only one check for aliases is made, so that an alias itself
cannot contain an alias. For information on aliases, see "Aliases
for Commonly Used Commands. "

• Tilde substitution. This replaces an initial tilde with a directory
name (see "Specifying Home Directories"). The following
forms are recognized:

This is replaced by the value of the HOME variable.

-name This is replaced by the home directory of another
user (where name is the user's login name).

• Variable substitution. This replaces variables preceded with $
(for example, $user) with their values. Only one pass of
evaluation is made. For example, if the value of the variable d is
daphne, then the command

echo $d

prints

daphne

However, if the value of the variable d is $ name, then the
command

echo $d

prints

$name

The second variable is never evaluated and the value is not
substituted. See "Variable Substitution" for more information.

• Command substitution. The shell replaces a command enclosed
in back quotes with the command's output. For example, if the
current directory is /users/doc/virginia, then the
command

C Shell Reference 4-55

echo 'pwd'

prints

/users/doc/virginia

• Blank interpretation. The shell breaks the characters of the
command line into words separated by blank spaces or tabs. The
null string is not regarded as a word unless it is quoted; for
example,

echo "

passes the null string as the first argument to echo, whereas the
commands

echo

and

echo $nu11

(where the variable null is not set or set to the null string) pass
no arguments to the echo command.

• Filename expansion. The shell scans each word for filename
expansion metacharacters (see "Using Shell Metacharacters")
and creates an alphabetical list of filenames that are matched by
the pattern(s). Each filename in the list is a separate argument.
Patterns that match no files are left unchanged.

These evaluations also occur in the list of words associated with a
foreach loop.

16.1 Command execution
Mter all substitution has been carried out, commands are executed as
follows:

• Built-in commands and shell scripts run with the source
command are executed in the current shell. The command has
available all current shell execution options, the values of
variables and environment variables, and functions defined in the
current shell.

4-56 A/UX User Interface

• NUX commands, programs, executable shell scripts, shell
scripts run with the c s h command, and series of commands
enclosed in parentheses are executed in a subshell. The current
shell invokes a child shell that executes the commands and then
returns control to the parent shell. Only the values in your
environment are available to these processes .

• Commands and executable scripts run with the exec command
execute in place of the current shell.

If the NUX command or program name does not specify a pathname,
the environment variable PATH is used to determine what directories
should be searched for the command. The only exception to this is
built-in commands.

For more information about the execution of shell scripts, see
"Executing Shell Scripts. "

16.2 Exit status: the value of the command
Although there are exceptions, in general a command's exit value is
zero (0) if it executes successfully, and its exit value is nonzero if it
terminates abnormally. In some cases, a command exits with a
nonzero exit status with a normal termination; for example, the di f f

command returns nonzero exit status if it finds no differences between
two versions of a file. The shell saves the exit value of the commands
in the variable status. The exit status is used primarily in shell
scripts as $status. See signal(3), exit(2), and wait(2) inA/UX
Programmer's Reference for the values of various exit statuses.

17. Arguments and shell variables
A shell script may use two types of variables:

Arguments: Arguments given on the command line are stored as
elements in the special variable a rgv, and as the parameters $1, ...
$n.

Shell variables: Shell variables may be simple strings or arrays of
strings. These variables can be assigned on the command line or inside
the script.

C Shell Reference 4-57

The relationship between variables inside a shell script and existing
shell variables depends on how the script is run. See' 'Executing Shell
Scripts. t t In all casest shell scripts have access to the variables and
values in the environment.

17.1 Arguments
The shell stores the arguments you give to a script sequentially as
elements of the one-dimensional array a rgv.

When you enter any command at the prompt, the shell stores the
elements of the command line as follows: the command name is stored
in a rgv [°] , the first argument is stored in a rgv [1] , the second
argument in a rgv [2] , and so forth. Thus, for the command

diff letter1 letter2

argv [1] is the word letter1 and argv [2] is the word
letter2. For the command

echo "not a directory"

the phrase

not a directory

is assigned to a rgv [1] , whereas the command

echo not a directory

assigns each word to a position in a rgv.

This means that the arguments (for example, filenames) used in the
script can be given on the command line when the script is run. For
example, the command line

script arg1 arg2

assigns argv [0] to script, argv [1] to arg1, and argv [2] to
arg2. These may also be referenced as $0, $1, and $2, respectively.
To refer to all a rgv values, you may use $ *, which is equivalent to
argv [*].

17.2 Shell variables
The C shell supports only string variables. Variables can be simple
strings or arrays of strings. They can be assigned values anywhere in

4-58 AlUX User Interface

the script. Variable names begin with a letter and consist of letters,
digits, and underscores.

17.2.1 Assigning values
You can assign values to variables using the set command with the
syntax

set name=value

Blanks and/or tabs may surround the equal sign. All values are stored
as strings. Command substitution and filename expansion will be
performed on value. It is an error to attempt to use a variable that has
not been set.

To set a variable to a string of words separated by blanks, the entire
string must be enclosed in double quotes; for example.

set longvar="this is a long variable"

The double quotes prevent the shell from carrying out blank
interpretation and breaking up the phrase to be assigned into its
constituent words. Without the quotes. the phrase would be considered
five words and could not all be assigned to one variable.

After the variable assignments

set user="fred stone" set box='???' set acct=18999

the following values are assigned:

user
box
acct

= fred stone
???
18999

Because the C shell supports only string variables. all of these values
(including 18999) will be strings of characters. Note that the question
mark metacharacters must be quoted with single quotes to prevent
pattern matching.

A variable may be set to the null string with the syntax

set name

Arrays are initially set with the command

C Shell Reference 4-59

set name = (word ...)

The array is created and its elements are set to the words inside the
parentheses. The first element of the array is assigned word1, the
second element is assigned word2, and so forth. Subscripting of
elements begins with 1. The words must be separated by spaces. They
are treated like the values assigned simple string variables. If a word
itself is to contain spaces, it must be quoted.

Existing individual elements of arrays already assigned values with the
set command can be assigned new values with the command

set array [subscript] = value

The array element whose subscript is given is assigned value.
Subscripts begin with 1. value is treated just like the values assigned to
simple string variables.

Shell variables can be set and used interactively to provide
abbreviations for frequently used strings. For example, the sequence of
commands

set b=/usr/fred/bin
mv file $b

moves file from the current directory to the directory
/ us r / fred/bin.

17.2.2 Changing position of elements
The command

shift [name]

renumbers the elements of the array whose name is given. Elements 2,
3,4 ... are renumbered as 1,2,3 ... , and so forth. The first element is
discarded. This can be useful, for example, when working through a
list of files. After each file is processed, a shift is performed and the
next filename becomes argument 1.

If name is not given, shift operates on argv.

17.2.3 Removing shell variables
Remove variables using the unset command followed by the name of
the variable:

4-60 NUX User Interface

unset name

The variable and its value will both be removed.

17.3 Variable substitution
Variables, arrays, and the special variable a rgv are referenced and
their values are substituted when the identifier (the variable name or
array or argv element) is preceded by a dollar sign ($):

$ identifier

Here identifier is one of the following:

variable-name
This can be the name of any simple string variable; for example,

$j1 $1 $8 $version

This will substitute the value of the variable. For example, after
the command

set form=last

the command

echo $form

prints

last

array-name
This can be the name of any array; the entire array will be
substituted. For example, after setting up the array address
with

set address=(333 Delaney St)

the command

echo $address

prints

333 Delaney St

C Shell Reference 4-61

subscripted-array-element
Subscripted names of an array or argv elements in the form

name [subscript]

print the value of that element. subscript can be another
variable, a number, or a range of numbers separated by -, where
the first number, if omitted, will be assumed to be 1 and the
second number will be assumed to be the last element. For
example,

$argv[l] $names[1-3] $argv[-12]
$names[l-] names [$choice]

A special shell variable, *, can be used to substitute for all
elements of arrays or a rgv. Note that this differs from the usual
"filename expansion" usage of the asterisk character (*).

number
A $ followed simply by a digit will be taken as referring to that
element of a rgv. For example,

$1

refers to the first element of a rgv.

* A $ followed simply by * will be taken as referring to all
elements of a rgv.

$ * name
This substitutes the number of elements (words) in the variable
whose name is given.

The form

$ { identifier}

is equivalent to $identifier and can be used with all of the above forms.
It is used when the identifier is followed by a letter or digit. For
example,

set tmp=/tmp/ps
ps a >${tmp}a

substitutes the value of the variable tmp and directs the output of p s to

4-62 NUX User Interface

the file /tmp/psa, whereas

ps a >$tmpa

causes the value of the variable tmpa to be substituted.

For all forms of substitution, you can use the following modifiers. The
modifiers are shown below in examples that assume the following
variable substitution:

set i=/usr/mail/marilyn
echo $i
/usr/mail/marilyn

: h Remove trailing pathname, leaving only the head.

% echo $i:h
/usr/mail

: t Remove leading pathname, leaving only the tail.

% echo $i:t
marilyn

: e Remove root filename, leaving only the extension.

% set a=oem.address
% echo $a:e
address

: r Remove filename extension, leaving only the root.

% echo $a:r
oem

: q Quote substituted words, prevent further substitution.

% set a='t*'
% ls $a
t.l t.2 t.3 t.4
% ls $a:q
t* not found.

: x Quote substituted words, but allow blank interpretation.

C Shell Reference 4-63

% set a='echo *,
% $a
chap.l chap.2 t.l t.2 t.3 t.4
% $a:q
echo *: command not found.
% $a:x

*
The modifiers: h, : t, and : r can be prefixed with g (: gh) for global
modification. If braces are used, the modifiers must be inside. Only
one modifier is allowed for each substitution. Substitutions of
environment variables may not include modifiers.

17.4 Testing assignment
If a variable is not set, an error will be reported. For example, if the
variable d is not set,

echo $d

or

echo ${d}

prints

d: Undefined variable

The following structures allow you to test whether variables are set and
not null.

$?name
$ {?name}

For both of these, the value 1 is substituted if name is set; and 0 is
substituted if name is not set.

17.5 Variables set by the system
The following variables are set by the C shell during execution:

status

4-64

The exit status of the last command executed as a decimal string.
Most commands return a zero exit status if they complete
successfully; otherwise they return a nonzero exit status. This is
used in the if and while constructs for control of execution.

AlUX User Interface

$ The process ID of this shell in decimal. Because process IDs are
unique among all existing processes, this string is frequently used
to generate unique temporary filenames. For example,

ps a > /tmp/ps$$
commands
rm /tmp/ps$$

18. Control-flow constructs
The shell has a variety of ways of controlling the flow of execution.
The actions of the foreach loop and the switch branch are
determined by data available to the shell. The actions of the while
loop and" i f then else" branch are determined by the exit status
returned by commands or tests. Control-flow constructs can be used
together and loops can be nested.

In the following constructs, reserved words such as end are only
recognized following a newline or semicolon. command-list is a
sequence of one or more simple commands separated or terminated by
a new line or a semicolon.

18.1 foreach loops
To repeat the same set of commands for several files or arguments, use
the foreach loop:

foreach name (word ...)
command-list

end

For each iteration of the loop, name is set to the next word and then
command-list is executed. If no word is given, the elements of argv
are used.

To terminate a loop before the end of word, or to continue a loop and
cause it to reiterate before the end of command-list is reached, use the
loop-control commands

break
continue

These commands can appear only between the loop delimiters. The
break command terminates execution of the current loop; execution

C Shell Reference 4-65

resumes after the nearest subsequent end. The continue command
causes execution to resume at the beginning of the current loop.

18.2 sw.itch statements
A multiway conditional branch is provided by the switch command,
whose form is

switch (word)
case pattern:

command-list
breaksw

case pattern:
command-list

breaksw
default pattern:

command-list
breaksw

endsw

word is matched against each pattern. If a match is found, command­
list after that pattern is executed. Otherwise command-list after
default (if provided) is executed.

Each command-list must end with breaksw; this breaks out of the
case statement after execution.

Patterns may include filename expansion metacharacters. To be used
literally, pattern-matching metacharacters must be quoted.

18.3 wh.ile loops
The while command allows a loop that depends on whether or not a
certain condition is met.

A while loop has the form

while expression
command-list1

end
command-list2

4-66 AlUX User Interlace

The value tested by the while command is the exit status of
expression. Each time expression returns a status of zero (true),
command-list1 is executed. The loop terminates when expression
returns a nonzero exit status; then command-list2 is executed.

To terminate a loop otherwise, or to proceed to the next loop test before
the end of command-list1 is reached, use the loop-control commands

break
continue

These commands can appear only between the loop delimiters. The
break command terminates execution of the current loop; execution
resumes after the nearest subsequent end. The continue command
causes execution to resume at the beginning of the current loop.

18.4 if then el.se
A general conditional branch is also available in the C shell, with the
forms

if expression command

(The command in this form is a simple command.)

if expression then
command-list1

[else if expression then
command-list2]

[else
command-list3]

endif]

The if command tests expression to see if it is not negative. If it is not
(that is, if it is true), the commands following the if are executed;
otherwise the commands following the else (if present) are executed.

Conditional execution of commands can also be achieved with the
symbols & & and I I. See' 'Conditional Execution" for details.

18.5 qoto
The command

C Shell Reference 4-67

goto label

causes the shell to continue execution after the line consisting of label,
which has the form

word:

label must be the only text on the line. It can be preceded by spaces or
tabs.

18.6 exi.t
Shell scripts normally end when an eofis encountered. The exit status
is that of the last command executed. The command

exi t [expression]

can be used to cause termination. Exit status is set to expression. If
expression is omitted, the exit status is that of the last command
executed before exit was encountered.

19. Input and output
All forms of input and output redirection are allowed in shell scripts. If
input or output redirection (using < or » is done in any of the control­
flow commands, the entire command is executed in a subshell. This
means that any values assigned during execution of the command will
not be available after the command is over and control returns to the
parent shell. To avoid any problems this may cause, you can change
standard input and output before the command begins with the exec
command.

19.1 Standard error and output files
If you want to direct the error output of a command to a file (to save the
error messages), use the syntax

Is filenames >& output

This writes both standard output and error output in the file output.
If you want to save the command output and error output in separate
files, use the syntax

(Is filenames > output) >& errors

4-68 NUX User Interface

19.2 Reading Input
The C shell does not have a built-in function for reading data from
standard input; however, the line program can be used to provide this
capability. Used in conjunction with the C shell set command, data
from standard input can be stored in C shell variables. In the following
example, the C shell variable "a" will contain the string "hello,
world" after executing line to read data from standard input:

% set a = 'line'
hello, world
% echo $a
hello, world

See line(1) in AIUX Command Reference for more information.

19.3 Taking input from scripts
Input to a shell script can be embedded inside the script itself. This is
called a here document. The information in a here document is
enclosed as follows:

«[-] word
information

word

The first word may appear anywhere on a line; the second must appear
alone and first on a line. The words must be identical and should not be
anything that will appear in information. The second word is the eof
for the here document.

Variable and command substitution will occur on information. Normal
quoting conventions apply, so that $ can be escaped with \. To
prevent all substitution, quote any character of the first instance of
word. (If substitution is not required, this is more efficient.) The
choice of double or single quotes will be reflected in the resulting
action.

To strip leading tabs and blanks from word and information, precede
the first instance of word with the optional hyphen (-), as follows:

«-word

C Shell Reference 4-69

Note: If you intend to indent your code, you must use the
hyphen preceding word unless the commands you use can
tolerate leading tabs and blanks.

For example, a shell procedure could contain the lines

foreach i
grep $i /usr/Iib/telnos

end

Here the grep command looks for the pattern specified by $i (in this
case, the elements of a rgv) in the file / u s r / lib / t e Ino s. This file
could contains the lines

fred mh0123
bert mh0789

An alternative to using an external file would be to include this data
within the shell procedure itself as a here document:

foreach i
grep $i «!

fred mh0123
bert mh0789

end

In this example, the shell takes the lines between < <! and ! as the
standard input for grep. The second! represents the eof. The choice
of ! is arbitrary. Any string can be used to open and close a here
document, provided that the string is quoted if white space is present
and the string does not appear in the text of the here document.

Here documents are often used to provide the text for commands to be
given for interactive processes, such as an editor, called in the middle
of a script. For example, suppose you have a script named change
that changes a product name in every file in a directory to a new name,
as follows:

4-70 A/UX User Interface

foreach i (*)
echo $i
ed $i «!
g/oldproduct!s!/newproduct/g
w

end

(Note that ed commands will not tolerate leading tab characters and
there is no hyphen preceding the first word, therefore the code is not
indented.) The metacharacter * is expanded to match all filenames in

, the current directory, so the foreach loop executes once for each file.
For each file, the ed editor is invoked. The editor commands are given
in the here document between < <! and !. They direct the editor to
search globally for the string oldproduct and each time it is found
substitute the string newproduct. After the substitution is made, the
editor saves the new copy of the file with the w command.

You could make the change script more general by using parameter
substitution as follows:

foreach i (*)
echo $i
ed $i «!
g/$1/s//$2/g
w

end

Now the old and new product names (or any other strings) can be given
as arguments on the command line:

change string1 string2

Substitution of individual characters can be prevented by using a
backslash (\) to quote the special character $, as in

C Shell Reference 4-71

foreach i
echo $i
ed $i «!
1,\$s/$1/$2/g
w

end

This version of the script is equivalent to the first, except that the
substitution is directed to take place on the first to the last lines of the
file (1, $) instead of "globally" (g) as in the first example. This way
of giving the command has the advantage that the editor will print a
question mark (?) if there are no occurrences of the string $1.

Substitution can be prevented entirely by quoting the first instance of
the terminating string; for example,

ed $i «\!

Note that backslash, single quotes and double quotes all have the same
effect in this context: they turn off variable substitution and filename
expansion.

To use leading tabs, precede the first word with a hyphen, as follows:

foreach i
echo $i
ed $i «-!

1,\$s/$1/$2/g
w

end

19.4 Using command substitution
Command substitution can occur in all contexts where variable
substitution occurs. You can use command substitution in a shell script
to avoid typing long lists of filenames. For example,

ex 'grep -1 TRACE *.c'

runs the ex editor, supplying as arguments those files whose names end
in . c and that contain the string TRACE.

4-72 AlUX User Interface

Another example,

foreach i ('ls -t')
command-list

end

sets the variable i to each consecutive filename in the current
directory, starting with the file that was most recently created or
modified. The commands specified in command-list are then
performed once for each file.

19.5 Writing to the standard output
The echo command is used to write to standard output (by default, the
screen). The form of the echo command is

echo [-n] argument . ..

The arguments are written to the standard output. They are evaluate<,l
like the arguments of any other command with variable and command
substitution, filename expansion, and blank interpretation. Normal
quoting conventions apply. Strings containing tabs or multiple blanks
must be enclosed in double quotes. The arguments will be written
sequentially separated by blanks, and unless the -n flag option is
specified, they will be terminated with a new line.

If there are no arguments or the arguments are null variables, no output
other than a blank line will ensue. If the arguments are unset, an error
message will be printed.

If the -n flag option is specified, the output is written without a final
newline.

20. Other features

20.1 Arithmetic evaluation
The C shell command @ is used for integer arithmetic and to set
variables to arithmetic expressions. The form of the @ command is

@ variable = expression

variable can be a simple variable name or the subscripted element of an
array. The possible expressions are listed in the next section. Each
element in an expression must be surrounded by spaces. A simple

C Shell Reference 4-73

example of the @ command would be to increment a counter as
follows:

@ i = $i + 1

20.2 Expressions
The C shell has operators similar to C, with the same precedence.
These expressions are used in the @, exit, if, and while
commands. The following operators are available in increasing
precedence:

I I logical (bit-wise) OR

&& logical (bit-wise) AND

binary OR

binary exclusive OR

& binary AND

!= !-
equal, not equal, equal, not equal

<= >= < >
comparison

< < > > left shift, right shift

+ addition, subtraction

* / % multiplication, division, modulus

logical negation

binary inversion or binary NOT

Note that many of these do not work with the @ construct.

Parentheses can be used to change operator precedence. The ==, ! =,
=-, and ! - operators compare their arguments as strings; all others
operate on numbers. The operators =- and ! - are like ! = and ==
except that the right-hand operand is a pattern (containing, for example,
* S, ? s, and instances of brackets ([]) against which the left-hand
operand is matched. This reduces the need for use of the switch
statement in shell scripts when all that is really needed is pattern

4-74 NUX User Interface

matching.

Strings that begin with 0 are considered octal numbers. Null or missing
arguments are considered O. The result of all expressions are strings,
which represent decimal numbers. Elements of expressions should be
separated by spaces. The operators &, & &, I, I I, <, >, (, and) should
be quoted to avoid interpretation by the shell.

Also available in expressions as primitive operands are commands
enclosed in braces. (Note that the command must be surrounded by
white space, for example" { Is }".) Commands execute
successfully, returning true (that is, 1) if the command exits with status
zero; otherwise they fail, returning false (that is, 0). If more detailed
status information is required, then the command should be executed
outside an expression and the variable status examined.

20.3 File status
The C shell allows inquiries about the status of files of the form

option name

Possible options are

-r read access

-w write access

-x execute access

-e existence

-0 ownership

-z zero size

-f plain file

-d directory

Command and filename expansion are performed on the specified name
and then it is tested to see if it has the specified relationship to the real
user. If the file does not exist or is inaccessible, then all inquiries
return false (0). For example, the form

C Shell Reference 4-75

-e employees

will return a true value (1) if the file employees exists; otherwise it
will return O.

21. Error handling
The treatment of errors detected by the shell depends on the type of
error and on whether the shell is being used interactively.

Execution of a command may fail for any of the following reasons:

• I/O redirection may fail if a file does not exist or cannot be
created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a bus
error or memory fault signal.

• The command terminates normally but returns a nonzero exit
status.

In all of these cases, the shell will go on to execute the next command.
An interactive shell will return to read another command from the
terminal. If a shell script is being executed, the next command in the
script will be read. Except for the last case, the shell will print an error
message.

All other types of errors cause the shell to exit from a shell script. Such
errors include

• Syntax errors, for example, "if then done".

• A signal such as interrupt. The shell waits for the current
command, if any, to finish execution and then either exits or
returns to the terminal.

• Failure of any of the built-in commands.

The shell flag -e causes the shell to terminate if an error is detected.

21.1 Fault handling and interrupts
You can catch interrupts given to a shell script with the command

4-76 A/UX User Interface

onintr label

When an interrupt is detected, execution will be transferred to the
command following the line consisting of label, which has the form

word:

label must be the only text on the line. It can be preceded by spaces or
tabs.

For example, onintr can be useful if you wish to clean up temporary
files created by a shell script. After label, the commands to remove the
temporary files and execute an exit command should be invoked.

21.2 Debugging a shell script
Several shell options can be set that will help with debugging shell
scripts. These are

-e e (error) causes the shell to exit immediately if any command
exits with a nonzero exit status. (This can be dangerous in
scripts involving constructs where nonzero exit status is desired.)

-n n (no execute) prevents execution of subsequent commands.
Commands will be evaluated but not executed. (Note that typing
csh -n at a terminal will render the terminal useless until an
eo/is entered.)

-u u (unset) causes the shell to treat unset variables as an error
condition.

-v v (verbose) causes the shell to print lines of a procedure as it
reads them. Use this to help isolate syntax errors.

-x x (execution) provides an execution trace. Following variable
substitution, each command is printed as it is executed.

The execution options can be turned on with the csh command if the
script is executed as follows:

/bin/ csh -option script

22. Summary of C shell commands
Input/output redirection is permitted for these commands. File
descriptor 1 is the default output location.

C Shell Reference 4-77

alias [nameHword-list]
Print aliases. With no arguments, this prints all aliases. The
second form prints the alias for name. The final form assigns the
specified word-list as the alias of name; word-list is command
and filename substituted. name is not allowed to be ali a s or
unalias. See "Aliases for Commonly Used Commands."

bg [%job ...]
Put the current or specified jobs in the background, continuing
them if they were stopped. See "Changing the Status of Stopped
Jobs. "

break
Cause execution to resume after the end of the nearest enclosing
foreach or while. The remaining commands on the current
line are executed. Multilevel breaks are thus possible by writing
them all on one line. See "foreach Loops" and "while
Loops."

breaksw
Cause a break from a switch, resuming after the endsw. See
"switch Statements."

case [label:]
A label in a switch statement, as discussed below. See
" switch Statements."

cd [name]
If no argument is given, change to the home directory of the user.
In the second form, change the shell's working directory to
directory name. If name is not found as a subdirectory of the
current directory (and does not begin with /, . / , or .. /), each
component of the variable cdpa th (see "List of C Shell
Variables") is checked to see if it has a subdirectory name.
Finally, if all else fails but name is a shell variable whose value
begins with / , this is tried to see if it is a directory .

chdir [name]
Another form of the cd command.

4-78 AlUX User Interface

continue
Continue execution of the nearest enclosing while or
foreach. The rest of the commands on the current line are
executed. See "foreach Loops" and "while Loops."

default:

dirs

Label the default case in a s wit ch statement. The default
should come after all case labels. See "switch Statements."

Print the directory stack. The top of the stack is at the left, and
the first directory in the stack is the current directory.

echo [-n] [word-list]

else

end

Write the specified words to the shell's standard output,
separated by spaces and terminated with a newline unless the-n
option is specified. See' 'Writing to the Standard Output."

See the description of the if statement.

See the description of the foreach and while statements.

endif
See the description of the if statement.

endsw
See the description of the s wit ch statement.

eval [arg ...]
args are read as input to the shell and the resulting command(s)
execute in the context of the current shell. This is usually used to
execute commands generated by command or variable
substitution, because parsing occurs before these substitutions.
See' 'Command Evaluation."

exec [command]
Execute the specified command in place of the current shell. See
"Executing Shell Scripts" and "Changing to a New Shell."

exit [expr]
Cause the shell to exit either with the value of the s tat u s

C Shell Reference 4-79

variable (first form) or with the value of the specified expr
(second form). See exit under "Control-Flow Constructs;"
also see "Protection Against Unintentional Logout" and
"Working With More Than One Shell."

fg [%job ...]
Bring the current of specified jobs into the foreground,
continuing them if they were stopped. See' 'Changing the Status
of Stopped Jobs. "

foreach name [(word-list)]

end
Set the variable name successively to each member of word-list
and execute the sequence of commands between this command
and the matching end. (Both foreach and end must appear
alone on separate lines.)

When the foreach command is read from the terminal, the
loop is read up once, prompting with? before any statements in
the loop are executed. If you make a mistake typing in a loop at
the terminal, you can interrupt it. The built-in command
continue may be used to jump to the next cycle of the loop,
ignoring any subsequent commands in the loop. The built-in
command break may be used to leave the loop immediately,
discarding any remaining members of word-list. See
"foreach Loops."

glob [word-list]
Similar to the echo -n command (see "Writing to the Standard
Output"), but no \ escapes are recognized and words are
delimited by null characters in the output. Useful for programs
that use the shell to filename expand a list of words.

goto [word]

4-80

The specified word is filename and command expanded to yield a
string of the form label. The shell rewinds its input as much as
possible and searches for a line of the form label: , possibly
preceded by blanks or tabs. Execution continues after the
specified line. See goto under "Control-Flow Constructs."

A/UX User Interface

hashstat
Print a statistics line indicting how effective the internal hash
table has been at locating commands (and avoiding exec's). An
exec is attempted for each component of the pa th where the
hash function indicates a possible hit, and in each component that
does not begin with a / .

history [n] [-h] [-r]
Display the history event list. Specifying n prints only the n most
recent events. The - h flag option prints the history list without
leading numbers. This produces files suitable for sourcing using
the -h flag option to source. The -r flag option reverses the
order of the printout to most recent first rather than oldest first.
See "Listing and Reusing Commands," "Listing Previous
Commands," and history under "C Shell Variables."

if [(expr)][command]
If the specified expression evaluates true, the single command
with arguments is executed. Variable substitution on command
happens early, at the same time it does for the rest of the if
command. command must be a simple command, not a pipeline,
a command list, or a parenthesized command list. Input/output
redirection occurs even if expr is false, when command is not
executed. Note that expr may be enclosed in parentheses.

if [expr] then

else if [expr2] then

else

endif
If the specified expr is true, the commands to the first e 1 s e are
executed; else if expr2 is true, the commands to the second e 1 s e
are executed; and so on. Any number of else-if pairs are
possible; only one endif is needed. The else part is likewise
optional. (The words else and endif must appear at the
beginning of input lines; the if must appear at the beginning of
its input line or after an else.) See "Control-Flow
Constructs. ' ,

C Shell Reference 4-81

jobs [-1]
List the active jobs. The -1 flag option also lists process IDs.
See "Job Control," "Logging Out With Stopped Jobs,"
"Checking Command Status," "Listing Jobs," and' 'Changing
the Status of Stopped Jobs."

kill [-sig] [%job] [Pid] [-1]
Send either the terminate signal or the specified signal to the
specified jobs or processes. Signals are given either by number
or by name (as in signal(3) inA/UX Programmer's Reference,
stripped of the prefix "SIG"). kill -1 lists the signal names.
There is no default; typing kill does not send a signal to the
current job. If the signal being sent is terminate or hang up, the
job or process is sent a continue signal as well. See' 'Canceling
Commands," "Job Control," "Canceling Background
Commands," and "Summary ofC Shell Commands."

login [name]
Terminate a login shell, replacing it with an instance of
/bin/ login. This is one way to log out, included for
compatibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeof is set.
See' 'Protection Against Unintentional Logout."

nice[[+][-] number] [command]]

4-82

Without an argument, lower the run priority for this shell to 4.
The form

nice +number

or

nice -number

sets nice to the given number. The forms

nice command

and

A/UX User Interface

nice +numbercomnwnd

run comnwnd at priority 4 and priority number, respectively.
The superuser may increase a command's run priority by using

nice -numbercomnwnd

commahd is always executed in a subshell, and the restrictions
place on commands in simple if statements apply. See
nice(l) in A/UX Command Reference for more information.

nohup [command]
Without an argument, cause hangups to be ignored for the
remainder of the script. The second form causes the specified
command to be run with hangups ignored. All processes running
in the background with & are effectively run nohup. See
"Logging Out. "

notify [%job]
Notify you when the current or specified job completes without
waiting for a prompt. The notify variable sets this
automatically. See "List of C Shell Variables."

onintr[-][label]
Control the action of the shell on interrupts. Without an
argument, onintr restores the default action of the shell on
interrupts, which is to terminate shell scripts or to return to the
terminal command input level. The form

onintr -

causes all interrupts to be ignored. The form

onintr label

causes the shell to execute a

goto label

when an interrupt is received or a child process terminates
because it was interrupted (see the label command in this
summary and "Fault Handling and Interrupts" for a description
of the valid form of label) In any case, if the shell is running
detached and interrupts are being ignored, all forms of onintr

C Shell Reference 4-83

have no meaning and interrupts continue to be ignored by the
shell and all invoked commands.

popd [+n]
Pop the directory stack, returning to the new top directory. With
an argument +n, popd discards the nth entry in the stack. The
elements for the directory stack are numbered from 0 starting at
the top.

pushd [name][+n]
With no arguments, exchange the top two elements of the
directory stack. Given a name argument, pushd changes to the
new directory (as in cd) and pushes the old current working
directory (as in cwd) onto the directory stack. With a numeric

. argument, rotates the nth argument of the directory stack around
to be the top element and changes to it. The members of the
directory stack are numbered from the top starting at O.

rehash
Cause the internal hash table of the contents of the directories in
the pa t h variable to be recomputed. This is needed if new
commands are added to directories in the pa th while you are
IG>gged in. This should only be necessary if you add commands
to one of your own directories, or if someone changes the
contents of one of the system directories. See' 'Writing Efficient
Shell Scripts."

repea t [count command]
Execute the specified command, which is subject to the same
restrictions as command in the one-line if statement above,
count times. I/O redirections occur exactly once, even if count is
O. See "Other Uses for Command History."

set [na~[index]=word]

4-84

Without an argument, show the value of all shell variables.
Variables that have a value other than a single word print as a
word list in parentheses. The form

set name

sets name to the null string. The form

AlUX User Interface

set name=word

sets name to the single word. The form

set name [index] =word

sets the indexth component of name to word; this component
must already exist. The form

set name=word-list

sets name to the list of words in word-list. In all cases the value
is command and filename expanded. These arguments can be
repeated to set multiple values in a single set command. Note,
however, that variable expansion happens for all arguments
before any setting occurs. See "C Shell Variables."

setenv name value
Set the value of environment variable name to be value, a single
string. The variable PATH is automatically imported to and
exported from the csh variable path; there is no need to use
setenv for this. See "Adding Environment Variables and
Modifying Values. "

shift [variable]
Shift the members of a rgv to the left, discarding a rgv [1]. It
is an error for a rgv not to be set or to have less than one word
as a value. The second form performs the same function on the
specified variable. See' 'Changing Position of Elements. ' ,

source [-h[name]]
Read commands from name. source commands may be
nested; if they are nested too deeply, the shell may run out of file
descriptors. An error in a source at any level terminates all
nested source commands. Input during source commands is
never placed on the history list. Normally input during source
commands is not placed on the history list; the - h flag option
causes the commands to be placed in the history list without
being executed. See' 'Command Execution," "Executing Shell
Scripts," and "The Environment and New Shell Instances."

C Shell Reference 4-85

stop [%job]
Stop the current or specified job that is executing in the
background.

suspend
Cause the shell to stop in its tracks, much as if it had been sent a
suspend signal. This is most often used to stop shells started by
su (see su(l) inAIUX Command Reference). You cannot
suspend your login shell.

switch ([string])
case str1:

breaksw

default:

breaksw
endsw

Match each case label successively with the specified string,
which is first command and filename expanded. The file
metacharacters *, ?, and [...] may be used in the case labels,
which are variable expanded. If none of the labels match before
a default label is found, the execution begins after the default
label. Each case label and the default label must appear at the
beginning of a line, and string must be enclosed in parentheses.
The command breaksw causes execution to continue after the
ends w. Otherwise control may fall through case labels and
default labels as in the C programming language. If no label
matches and there is no default, execution continues after the
endsw. See "switch Statements."

time [command]

4-86

With no argument, print a summary of time used by this shell
and its children. If arguments are given, the specified simple
command is timed and a time summary as described under the
time variable is printed. If necessary, an extra shell is created
to print the time statistic when the command completes.

NUX User Interface

umask [value]
Display the file creation mask (first form) or set to the specified
value (second form). The mask is given in octal. Common
values for the mask are 002, giving all access to the group and
read and execute access to others, and 022, giving all access
except no-write access to users in the group or others.

unalias [pattern]
Discard all aliases whose names match the specified pattern.
Thus all aliases are removed by

unalias *
See "Listing and Removing Aliases."

unhash
Disable use of the internal hash table to speed location of
executed programs.

unset [pattern]
Remove all variables whose names match pattern. Thus all
variables are removed by

unset *
See' 'Removing C Shell Variables."

unsetenv [pattern]

wait

Remove all variables whose name matches pattern from the
environment. See also setenv above and printenv(l) in
A/UX Command Reference. See' 'Removing Environment
Variables. ' ,

Wait for all background jobs. If the shell is interactive, an
interrupt can disrupt the wait, at which time the shell prints
names and job numbers of all jobs known to be outstanding.

while [(expr)]

end
While the specified expression evaluates nonzero, evaluate the

C Shell Reference 4-87

commands between the while and the matching end. break
and continue may be used to terminate or continue the loop
prematurely. (The while and end must appear alone on their
input lines.) Prompting occurs here the first time through the
loop, as for the foreach statement, if the input is a terminal.
See "while Loops."

%job-number[&]
Bring the specified job into the foreground. Followed by an
ampersand, continues the specified job into the background. See
"Job Control."

@ [name [index] =expr]

4-88

Without an argument, print the values of all the shell variables.
The form

@ name=expr

sets the specified name to the value of expr. If the expression
contains <, >, &, or I, at least this part of the expression must be
placed within parentheses. The form

@ name [index] =word

assigns the value of word to the indexth argument of name. Both
name and its indexth component must already exist.

The operators *=, +=, and so on are available as in the C
programming language. The space separating the name from the
assignment operator is optional. Spaces are, however,
mandatory in separating components of expr that would
otherwise be single words.

Special postfix ++ and -- operators increment and decrement
name, respectively. For instance, one way to increment a
variable i is

@ i++

A/UX User Interface

Chapter 5

Shell Layering

Contents

1. Invoking the shl program

2. Creating a shell layer . .

3. Suspending and resuming shell layers

4. Learning the status of shell layers

5. Deleting shell layers . . .

6. Summary of shl commands

- i -

1

2

2

3

3

4

Chapter 5

Shell Layering

The shl program allows you to create up to seven labeled subshells
called shell layers within your login shell. These layers can then be
referred to by name (or number), suspended and resumed, deleted, and
so on. Each of these layers appears like your login shell, but can be
used to run a process while you switch to another layer. This provides
a management scheme for multiple concurrent processes.

When you are using the shl program, you can suspend a shell layer
(and the process you are running in that layer) by sending a swtch
character. This returns you to the shl prompt where you can list other
shell layers, resume a layer, delete a layer, and so on.

Note: If you are using the Kom shell or the C shell, you should
make sure the swtch and susp characters are defined to different
control sequences. Otherwise, job control will function
correctly in the shell layer you invoke, but the shl program
will be inaccessible. The A/UX standard distribution sets swtch
to CONlROL-' and susp to CONlROL-z. To check that these are
defined to different control sequences on your system, enter the
command

stty

at the shell prompt. This displays the settings for various user­
definable sequences. See stty(1) inA/UX Command
Reference for additional details.

1. Invoking the shl program
To invoke the shell-layering facility, use the command

shl

You will then see the shl prompt:

»>

Shell Layering 5-1

2. Creating a shell layer
At the shl prompt, you can create a new shell with the create
command. Like all shl commands, this can be abbreviated to the
first letter of the command:

c [name]

This creates a new shell, where name may be a sequence of
characters delimited by a blank, tab, or newline; only the first eight
are significant. If you don't specify a name, the system will assign
the number 1 for the first shell, 2 for the second, and so on, up to 7.
Because the digits 1 through 7 are used for system -assigned names,
they cannot be used for user-assigned names.

It is a good idea to name shells after the process you intend to run.
For example, you can create a shell

c vi

in which you intend to use vi, and another shell

c machine . name

for a continuing rlogin session with another machine.

3. Suspending and resuming shell layers
The new shell layer uses the name you assigned it as a shell
prompt. If you did not specify a name, it uses the number assigned
by the system. When you see this prompt, you can begin working
just as in your regular login shell.

To temporarily stop working in that shell, enter the swtch sequence
at the beginning of a line. (If you enter a swtch in the middle of a
line, the remainder of the information on that line will be
discarded.)

You may use swtch at the shell layer's prompt, or in the middle of
an interactive job such as vi. Whatever you are doing in that layer
will immediately be suspended, and the s h 1 prompt will be
returned:

»>

5-2 A/UX User Interface

To continue working in a layer that you have stopped with swtch,
use the command

r name

For example,

r vi

brings your vi job back into the foreground. The shell layer
resumes at the point where you suspended it. If you were in vi, it
resumes vi at the same point in the file. However, you may need
to use the vi CONTROL-I command to redraw your screen.

Note: When resuming a shell layer, you will not see a new
prompt until you enter a second RETURN. If you give the
re s ume command without an argument, the last layer you
were working in will be resumed.

4. Learning the status of shell layers
You can obtain a listing of the current layers and their status by
using the command

1

This returns output that looks something like

vi (02445) executing or awaiting input

where the number is a process ID. Used with the -1 option, this
command produces a listing similar to the p s command.

5. Deleting shell layers
When you delete a shell layer , all processes running in that layer
are killed. If you are finished using a particular shell layer , you can
remove it by leaving that layer using the exi t command or eo!
instead of swtch. Or you can remove a shell layer from the shl
prompt by using the delete command:

d name

Shell Layering 5-3

6. Summary of shl commands
The following are the commands you can enter in response to the
sh1 prompt. You can use either the full command name or just the
first letter.

c[reate] [name]
Create a layer called name and make it the current layer. If
you don't specify name, a layer will be created and assigned
a digit between 1 and 7.

b[lock] name [name ...]
For each name, block the output of the corresponding layer
when it is not the current layer.

d[elete] name [name ...]
For each name, delete the corresponding layer. All
processes in the process group of the layer are killed (sent
the hangup signal).

h[elp] or ?
Print the syntax of the shl commands.

l[ayers] [-1] [name ...]
For each name, list the layer name and its process group.
The -1 option produces a listing similar to the ps
command. If no arguments are given, information is
presented for all existing layers.

r[esume] [name]
Make the layer referenced by name the current layer. If no
argument is given, the last existing current layer will be
resumed.

t[oggle]
Resume the layer that was current before the last current
layer.

u[nb1ock] name [name ...]

5-4

For each name, do not block the output of the corresponding
layer when it is not the current layer.

A/UX User Interface

q[uit]

name

Exit the shl program and return to the original login shell.
All layers are killed (sent the hangup signal). After you exit
the shl program, you will once again see the shell prompt.

Make the layer referenced by name the current layer.

Shell Layering 5-5

Appendix A

Additional Reading

UNIX Shell Programming
Stephen G. Kochan and Patrick H. Wood
Hayden Books, 1985

Additional Reading A-1

'"/ I /

