
United States Patent [19J

Saulpaugh et al.

[54] OBJECT ORIENTED MESSAGE PASSING
SYSTEM AND METHOD

[75] Inventors: Thomas E. Saulpaugh, San Jose; Bill
M. Bruffey, Cupertino; Russen T.
Williams, San Jose, all of Calif.

[73] Assignee: Apple Computer, Inc, Cupertino, Calif.

[21] Appl. No.: 618,404

[22] Filed: Mar. 19, 1996

Related U.S. Application Data

[63] Continuation of Ser. No. 220,043, Mar. 30, 1994, aban
doned.

[51] Int. Cl.6
.. G06F 13/14

[52] U.S. Cl 395/683; 395/600; 395/200.1;
3951733

[58] Field of Search 395/200, 700,

[56]

5,142,683
5,230,051
5,265,206
5,305,461
5,315,709
5,317,746
5,329,619
5,333,269
5,371,850

3951775, 600, 200.1; 364/DIG. 1, 228.5,
228.8

References Cited

U.S. PATENT DOCUMENTS

8/1992 Burkhardt et al 395n25
711993 Quan 395noo

11/1993 Shackelford et al. 395/200
4/1994 Feigenbaum et al. 395n75
5/1994 Alston, Jr. et al 395/600
5/1994 Watanabe 395noo
7/1994 Page et al 395/200
7/1994 Calvignac et al. 395/200

12/1994 Beisan et al. 395/200

FOREIGN PATENT DOCUMENTS

0425420 5/1991 European Pat. Off ..
0483036 4/1992 European Pat. Off. 9/44

OTHER PUBLICATIONS

Tripathi, A. et al. "Type Management System In Tue Nexus
Distributed Programming Environment," 5 Oct. 1988, pp.
170-177.
Hong-Tai Chou et al. "Versions and Change Notification in
an Object-Oriented Database System," 12 Jun. 1988, pp.
275-281.

32

32

32

Message
Object

Message
Object

52

111
US005590334A

[lll Patent Number:

[45] Date of Patent:

5,590,334
Dec. 31, 1996

D. V. Pitts et al. "Object Memory and Storage Management
in the Clouds Kernel," 13 Jun. 1988, pp. 10-17.
D. C. Robinson et al. "Domain-Based Access Contra! for
Distributed Computing Systems" in Software Engineering
Journal, Sep. 1988, pp. 161-170, vol. 3, No. 5.
U. Ramachandran et al. "A Measurement-Based Study of
Hardware Support for Object lnvocation" in Software Prac
tice & Experience, Sep. 1989, pp. 809-828, vol. 19, No. 9.
M. Ancona. "Persistent Heaps," 21 Mar. 1990, pp. 324-331.
G Pathak et al. "Object eXchange Service for an Object-0-
riented Database System," 6 Feb. 1989, pp. 27-34.

Primary Examiner-Kevin A. Kriess
Assistant Examiner-Majid A. Banankhah
Attomey, Agent, or Finn-Carr, DeFilippo & Ferrell

[57] ABSTRACT

An object oriented message passing system for transferring
messages between a client task and a server task comprises
an object database, an object management unit, a message
transaction unit, and a locking unit. Tue object management
unit creates a port object and one or more associated
message objects. Tue message transaction unit matches a
send message request issued by a client task with an accep
tance function or with a receive message request issued by
a server task. In response to a send message request, the
message transaction unit creates a send message control
block. In response to a receive message request, the message
transaction unit creates a delivery message control block if
the receive message request matches the send message
control block, or creates a receive message control block if
the receive message request does not match the send mes
sage control block. Tue locking unit locks a message object
such that send message requests directed to the message
object are not eligible to be matched to receive message
requests until the message object is unlocked.

An object oriented message passing method comprises the
steps of: creating a port object; creating a message object
associated with the port object; generating a unique message
ID in response to a message transaction initiated by a send
message request; creating a send message control block; and
matching the send message control block to a corresponding
receive message request.

Port
Object

54

15 Claims, 23 Drawing Sheets

Server Task(s)

34 34

U.S. Patent

Client Task

Dec. 31, 1996 Sheet 1of23 5,590,334

(Prior Art)

FIG.1

Server Task

,,
Receive

t
Reply

U.S. Patent

Client Task

. Send

Dec. 31, 1996

Port

Queue
of

Messages

(Prior Art)

FIG. 2A

Sheet 2 of 23 5,590,334

Server Task

Receive

t

U.S. Patent Dec. 31, 1996 Sheet 3 of 23 5,590,334

Server Task

Client Task Port Set

Send

Q
Queue

Me of

Receive

t
Messages Reply

(Prior Art)

FIG. 2B

U.S. Patent Dec. 31, 1996 Sheet 4 of 23 5,590,334

d_ ..c::!.. External r>-1s Processing Input Output Storage

14 16

1 25
Unit Device Device Device

__c!29

...... 11-
] l

20

Client Server Object Oriented Operating
Task Message System Task

L......32
, Passing Unit

h..40 34
?
30 Memory

/
10

FIG. 3

U.S. Patent Dec. 31, 1996 Sheet 5 of 23 5,590,334

'1-29

„- --------- ------------------ ------------------ ------------------ ---------

Object Message Locking Object
Management Transaction Unit Database

Unit Unit
--c::::- -c::: -c:: --c::::-

42 44 46 48

---------c..:..::.--
40

FIG. 4

32

32

32

50/

Message
Object

Message
Object

52

FIG. 5

Port
Object

54

Server Task(s)

Receive

~

34 34

Cj
•
rJJ.
•
~ e.
~

= """'"

~
~

ri
w
!--"
~

!--"
'-= '-= =-.

r.l'J. =~ a
=-.
Q,

~

01
01
\C =
w
w
~

U.S. Patent Dec. 31, 1996 Sheet 7 of 23 5,590,334

Message Object ID

Message Object Reference
Constant

Port Object Address

Client Team ID

Next Message Object Associated
with Same Port Object

?
52

FIG. 6

U.S. Patent Dec. 31, 1996 Sheet 8 of 23 5,590,334

Next and Previous Port Objects

List of Message Objects

List of Locked Message Objects

Pending Send Message List

Pending Receive Message List

Pending Reply Message List

Acceptance Function Information

Asynchronous Send Storage

Asynchronous Receive Storage

Port Object ID

Statistical Information

?
54

FIG. 7

U.S. Patent Dec. 31, 1996 Sheet 9 of 23 5,590,334

Message Object ID

Port Object ID

Next and Previous Pending Send
Message List Entries

Client Task ID

Message Address

Message Length

Message Type

MessageID

Send Options

Matching Receive MCB

Server Task ID

Delivery Status

Message Object Lock State

Reply Buffer Address

Reply Buffer Size

Client Task Blocking State

Maximum Time Interval

~
60

FIG. SA

U.S. Patent Dec. 31, 1996 Sheet 10 of 23 5,590,334

Message Object ID

Port Object ID

Next and Previous Pending Send
Message List Entries

Client Task ID

Message Address

Message Length

Message Type

Message ID

Send Options

Matching Receive MCB

Server Task ID

Delivery Status

Message Object Lock State

Reply Buffer Address

Reply Buffer Size

Event Notification Information
;_J.

62

FIG. 8B

U.S. Patent Dec. 31, 1996 Sheet 11 of 23 5,590,334

Port Object ID

Next and Previous Pending
Receive Message List Entries

Server Task ID

Message Buffer Address

Message Buffer Size

Message Type

Send MCB

Maximum Time Interval

~
70

FIG. 9A

U.S. Patent Dec. 31, 1996 Sheet 12 of 23 5,590,334

Port Object ID

Next and Previous Pending
Receive Message List Entries

Server Task ID

Message Buffer Address

Message Buffer Size

Message Type

Send MCB

Receive Message ID

Event Notification Information

~
72

FIG. 9B

U.S. Patent Dec. 31, 1996 Sheet 13 of 23 5,590,334

Message ID

Reference Constant

Send Options

Message Type

Message Location

Message Length

Reply Buffer Address

Reply Buffer Size

?
80

FIG. 10

U.S. Patent Dec. 31, 1996

Start

FIG. llA

Sheet 14 of 23 5,590,334

Create/Modify /Examine/
Delete Port Object

Create/Modify /Examine/
Delete Message Object

Lock Message Object

Unlock Message Object

Register Acceptance Function

102

106

110

114

118

U.S. Patent Dec. 31, 1996

FIG. llB End

Sheet 15 of 23 5,590,334

Yes >----1" Respond to Send Message
Request

Yes

Yes

Yes

No

Respond to Receive
Message Request

Perform Reply
Operations

Perform Reply
Operations

Respond to Receive
Message Request

122

126

130

134

136

U.S. Patent

21)4
Return Invalid ID

Error

FIG. 12A

Dec. 31, 1996 Sheet 16 of 23 5,590,334

Dernde \le:..~age ~ject ID

Generate Message ID and
Create Send MCB

Block Sending Client
Task Until Message

Object Unlocked

Lock Message Object

214

Create Delivery MCB in
Client Task's Address Space

Pass Location of Delivery
MCB to Acceptance

Function

Insert Reference to
Send MCB in Pending

Reply Message List

Insert Reference to 226
Send MCB in Pending

Send Message List

208

212

218

220

222

U.S. Patent Dec. 31, 1996 Sheet 17 of 23 5,590,334

Create Delivery MCB at
i----.i Address Indicated in Receive

240

Message Request

Insert Reference to Send
MCB in Pending Reply

Message List

Yes

Unblock Receiving
Server Task

No

230

232

Deliver Message to
Receiving Server Task

242

Noti.fy Receiving
Server Task

Delete Receive MCB
and Remove Reference
from Pending Receive

Message List

..., _____ __,

FIG. 12B

236

238

U.S. Patent

258

Dec. 31, 1996 Sheet 18 of 23 5,590,334

252 No
~--..i Return Message ID

to Sender

Block Sending
Client Task

Yes

Perform Reply
Operations

End

FIG. 12C

254

262

U.S. Patent

Start

FIG. 13A

Dec. 31, 1996 Sheet 19 of 23 5,590,334

300
Decode Port Object ID

304
No

>----1.i Return Invalid
ID Error 1------

306

Create Receive MCB and Insert
Reference in Pending Receive

Message List

308

311

>-N-o~~ Return Receive ID .____. ...

Block Server Task

Yes

to Server Task

312

316

Return Timeout
Status

Generate Message ID
and Create Send MCB

320

U.S. Patent Dec. 31, 1996 Sheet 20 of 23 5,590,334

Insert Reference to
t---91 Send MCB in Pending

Reply Message List

Create Delivery MCB at
Address Indicated in

Receive Message Request

Yes

No

330

336

340

342

Notify Receiving
Server Task

Deliver Message on

Unblock Receiving
Server Task

Behalf of Sending Client ..., ___________ _.

344

Task

No

End

Yes Delete Receive MCB and
Corresponding Reference in

Pending Receive Message List

FIG. 13B

346

U.S. Patent Dec. 31, 1996

410

412

414

FIG. 14

Sheet 21 of 23

Start

Decode Message ID

Deliver Reply Status to
Client Task

Deliver Reply Buffer

Yes

Unlock Message Object

Delete Message 10

Delete Send MCB

End

5,590,334

400

402

406

U.S. Patent

FIG. 15

Dec. 31, 1996 Sheet 22 of 23

Start

506 Wait for Reply tobe Issued for Each
Send MCB Referenced in Pending
Reply Message List that Specifies

Message Object Targeted

Lock Message Object

Add Reference to Issuer of
Lock Request to Semaphore

Respond to Unlock Request

508

510

516

5,590,334

Return Invalid
ID Error

End

502

,___,...

Unlock Message Object

Remove Reference to
Waiting Task from

Semaphore

Return Control to lssuer
of Unlock Request

End

FIG. 16

Yes

610

612

614

5,590,334
1

OBJECT ORIENTED MESSAGE PASSING
SYSTEM AND METHOD

RELATED APPLICATIONS

This is a continuation of application Ser. No. 08/220,043
filed on Mar. 30, 1994 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to systems and

methods for intra-computer eommunication, and more par
ticularly to systems and methods for message-based dient
server communieation. Still more partieularly, the present
invention is an objeet oriented message passing system and
method.

2. Deseription of tbe Background Art

In intra-eomputer communications, a dient task requires

2
types of services; hence, multiple message ports are
required. Each message port requires a significant amount of
memory to implement. Some prior art operating systems
require that a unique port be present for each dient task
present.

Within a computer system, a message passing system
generally resides within an operating system, which in turn
resides within the computer system' s memory. The total
amount of memory available in the computer system is

10 limited, and the memory must tberefore be treated as a
shared resource. lt is thus highly desirable to have an
operating system that occupies as little memory as possible.
Message passing systems and methods that are based upon
the port-based message passing model are undesirable

15
because the memory required to implement each port sig
nificantly adds to tbe operating system's memory require
ments. In personal computer systems, less memory is typi
cally available than in other computer systems. Hence,
message passing systems and methods that rely upon the
port-based message passing model are particularly undesir-

20 able in personal computer systems. a service provided by a server task. For example, a dient
task may require window creation or file deletion services.
The particular service that the dient task requires is per
formed by an appropriate server task, such as a window
manager or a file system. A message is the unit of commu-

25
nication interchange between a dient and a server. Thus, in
order to inform a server that a particular service is required,
the dient task sends or issues an appropriate message. Upon
receiving an issued message, the server task performs the
required actions. Message passing systems and methods 30
determine the manner in which a message that has been
issued by a dient task is delivered to a server task.

Commonly, dient tasks and server tasks function in
different address spaces. In prior art message passing sys
tems and methods that rely upon the port-based message
passing model, when a dient task and a server task operate
in different address spaces, tbe message passing system or
method must perform a mapping between address spaces
prior to transferring a message from the dient task to the
server task. After the mapping between address spaces has
been performed, the server task performs the required ser
vice. Often, particular services, such as input/output (I/0)
operations, must be performed as rapidly as possible. The
mapping between address spaces performed by prior art
message passing systems and methods that rely upon the

In the prior art, message passing systems and methods
have relied upon a task-based message passing model, a
port-based message passing model, or a port-set-based mes
sage passing model. Referring now to FIG. 1, a block
diagram of a task-based message passing model is shown. In
the task-based message passing model, when a dient task
requires a particular service, the dient task sends a message
directly to a server task that performs types of services
related to the particular service required. Because multiple
dient tasks may require a service provided by the same
server task, each server task present must support message
queuing and message dispatch, both of which introduce an
undesirable level of server task complexity. Moreover,
because server tasks must support message queuing and
message dispatch, memory beyond that required to imple
ment a set of services must be available to each server task.
An additional drawback associated with the task-based
message passing model is that a dient task and a corre
sponding server task are bound together in an inflexible
manner, with each server task being dedicated to only one
type of service. The inflexible binding found in the task
based message passing model also introduces an undesirable
level of complexity when the behavior of the dient task or
the server task is to be modified or evolved.

Referring now to FIG. 2A, a block diagram of a port
based message passing model is shown. In the port-based
message passing model, a message port represents a type of
service available to a dient task. Client tasks send messages
to message ports rather than directly to server tasks. Mes
sages sent to a given message port are queued within the
message port by the operating system. Thus, to a server task,
each message port represents a message queue. Multiple
server tasks can compete to receive and process messages
from any message port, thereby decoupling dient tasks from
server tasks. Client tasks commonly require many different

35
port-based message passing model undesirably increases the
amount of time required to complete the service. Thus, prior
art systems and methods that rely upon the port-based
message passing model are undesirable in time-critical situ
ations when dient tasks and server tasks function in different

40
address spaces~

Referring now to FIG. 2B, a block diagram of a port-set
based message passing model is shown. Tue port-set-based
message passing model is a variant of the port-based mes
sage passing model described above. In the port-set-based

45 message passing model, one or more message ports are
associated to form a common port set. Each port set repre
sents a particular type of service, and each individual
message port represents a particular resource that can utilize
the service associated witb tbe port set to which it belongs.

50 Client tasks therefore view individual message ports as
resources to which messages can be sent. The additional
level of structural granularity provided by the port-set-based
message passing model significantly simplifies message
decoding and message prioritization operations that must be

55 performed by server tasks. As in the case of the port-based
message passing model, however, each message port
requires a significant amount of memory to implement.
Therefore, message passing systems and methods that rely
upon the port-set-based message passing model require even

60 more memory than tbose tbat rely upon the port-based
message passing model. Prior art message passing systems
and methods that rely upon the port-set-based message
passing model also suffer from tbe address space translation
drawbacks described above in relation to the port-based

65 message passing model.
What is needed is a means for message passing that

provides a high level of structural granularity, that mini-

5,590,334
3

mizes memory requirements, and that can reduce the time
requircd to perform time-critical operations when client
tasks and scrver tasks function in different address spaces.

SUMMARY OF THE INVENTION
5

4
status information and possibly data to the client task that
initiated the message transaction.

The object oriented message passing unit locks and
unlocks message objects upon request. After a message
object is locked, send message requests directed to the
message object are not eligible to be matched to an accep
tance function or to a recei ve message request until the
message object is unlocked. Message object locking and
unlocking provide a means to guarantee that a parameter

10 value associated with a given message object remains
unchanged while a message transaction is in progress.

The present invention is an object oriented message
passing system and mcthod. Thc system of the present
invention comprises an object orientcd message passing
unit. The object oriented message passing unit creates and
maintains a set of message objccts and one or more port
objects. Each message object is associated with a particular
port object, and each message object represents a resource
that corresponds to a service provided by a server task. Each
port object represents a message receptacle from which a 15

server task can receive messages. Message objects require
significantly less memory to implement than port objects.
Through the usc of message objects and port objects, the
present invention provides an object-oriented message pass
ing model that exhibits a high level of structural granularity 20

and that requires significantly less memory than any mes
sage passing model supported in the prior art.

The object oriented message passing unit associates an
acceptance function with a port objeet upon request, where

25
the acceptance function provides a means for perforrning
one or more services within the context and address space of
the client task. Acceptance functions significantly reduce the
amount of time required to complete time-critical services
by eliminating the need for mapping between address spaces

30
and context switching.

A client task sends a message to a message object by
issuing a send message request that includes a reference to
a message object, a reference to a message, and a message
type. The message referenced in the send message request 35
itself indicates a required service. A server task recei ves a
message from a port object by issuing a receive message
request that includes a reference to a port object and a
message type. In response to a send message request, the
object oriented message passing unit creates a corresponding 40
send message control block (MCB), where the send MCB
includes the refcrence to the message. After creating the
send MCB, the object oriented message passing unit first
attempts to match the send message request with an accep
tance function. If a matching acceptance function is present, 45
the object oriented message passing unit ensures that the
message referenced in the send MCB is transferred to the
acceptance function. The acceptance function then performs
the required service within the context and address space of
the client task. If no matching acceptance function is 50
present, the object oriented message passing unit matches
the send message request to a receive message request. The
objeet oriented message passing unit ensures that the mes
sage referenced in the send MCB is transferred to the server
task that issued the receive messagc request, and provides 55
any required mapping between address spaces. After the
server task has received the message, the server task per
forms the required service.

The method of the present invention comprises the steps
of: creating a port object; creating a message object asso
ciated with the port object; optionally associating an accep
tance function with the port object; matching a send message
request directed to the message object with the acceptance
function or with a matching receive message request; match
ing a recei ve message request directed to the port object with
a send message request; and perforrning reply operations
following a server task's reply to a message.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a task-based message passing
model of the prior art;

FIG. 2A is a block diagram of a port-based message
passing model of the prior art;

FIG. 2B is a block diagram of a port-set-based message
passing model of the prior art;

FIG. 3 is a block diagram of a preferred embodiment of
the object oriented message passing system constructed in
accordance with the present invention;

FIG. 4 is a block diagram of a preferred embodiment of
an object oriented message passing unit in the system of the
present invention;

FIG. 5 is a block diagram of an object oriented message
passing model provided by the system of the present inven
tion;

FIG. 6 is a block diagram of a preferred embodiment of
a message object;

FIG. 7 is a block diagram of a preferred embodiment of
a port object;

FIG. SA is a block diagram of a synchronoils send
message control block in the present invention;

FIG. SB is a block diagram of an asynchronous send
message control block in the present invention;

FIG. 9A is a block diagram of a synchronous receive
message control block in the present invention;

FIG. 9B is a block diagram of an asynchronous receive
message control block in the present invention;

FIG. 10 is a block diagram of a delivery message control
block in the present invention;

FIGS. llA and llB are a f!owchart of a preferred object
oriented message passing method in accordance with the
present invention;

Once an acceptance function or a server task has per
formed a required service, the acceptance function or the
server task, respectively, preferably issues a reply to the
message. The issuance of a send message request, followed

60 FIGS. 12A, 12B, and 12C are a f!owchart of a preferred
method for responding to a send message request in the
present invention;

by the matching of a send message request to an acceptance
function or to a receive message request, followed by the
issuance of a reply is referred to herein as a message
transaction. In response to a reply, the object oriented
message passing unit performs reply operations that deliver

FIGS. 13A and 13B are a f!owchart of a preferred method
for responding to a receive message request in the present

65 in vention;
FIG. 14 is a f!owchart of a preferred reply method in the

present invention;

5,590,334
5

FIG. lS is a fiowchart of a preferred method for respond
ing to a lock rcquest in the prescnt invention; and

FIG. 16 is a fiowchart of a preferred method for respond
ing to an unlock request in the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring now to FIG. 3, a block diagram of a preferred
cmbodiment of an object oriented message passing system

6
a server task communication interface between server tasks
34 and the object oriented message passing unit 40. Through
the dient task communication interface and the server task
communication interface, the object management unit 42
provides an object oriented message passing model SO.
Referring now to FIG. S, a block diagram of a preferred
object oriented message passing model SO provided by the
present invention is shown. In the preferred object oriented
message passing model SO, one or more message objects S2

10
form the client task communication interface, and one or
more port objects S4 form the server task communication
interface. Each message object S2 is associated with at least
one client task 32. The set of dient tasks 32 associated with
a given message object S2 are referred to herein as a dient

10 constructed in accordance with the present invention is
shown. The system 10 comprises a processing unit 12, an
input device 14, an output device 16, an extemal storage
devicc 18, and a mcmory 20 wherein an operating system
30, a dient task 32, and a server task 34 reside. In the 15

preferred embodiment, the operating system 30 is a micro
kemel operating system 30 capable of maintaining multiple
address spaces. An object oriented message passing unit 40
resides within the operating system 30. Each element of the
system 10 has an input and an output coupled to a common 20

system bus 29. In an exemplary embodiment, the system 10

team 33. Each message object S2 represents the behavior of
a resource that is under the control of a given server task 34,
and preferably reftects how client tasks 32 use a particular
service provided by the server task 34. To invoke the
behavior associated with a given message object S2, a client
task 32 sends a message to the message object S2 by issuing
a send message request, where each send message request
specifies a message and a message type. The send message

of the present invention is an Apple Macintosh computer
system made by Apple Computer, Inc., of Cupertino, Calif.,
and having a Motorola MC68030 microprocessor and 8
Mbytes of Random Access Memory (RAM) wherein a 25

microkemel operating system 30 that indudes the object
oriented message passing unit 40 resides.

requests will be described in more detail below.
In the preferred object-oriented message passing model

SO, each port object S4 serves as a receptacle for messages
directed from client tasks 32 to message objects S2 that are
associated with the port object S4. Server tasks 34 receive
messages from a port object S4 by issuing receive message
requests as will be described in more detail below. After In the present invention, a dient task 32 is preferably a set

of program instructions that requires a given service, for
cxample, the creation of a window or the deletion of a file.
The provider of a required service is referred to herein as a
server task 34. Preferably, each server task 34 is also a set
of program instructions. In the preferred embodiment, a
given server task 34 can function as a dient task 32 when the
given server task 34 itself requires a particular service that
is performed by another server task 34. The microkemel
operating system 30 preferably maintains a task context for
each dient task 32 and each server task 34 in a conventional

30
receiving a given message, a server task 34 implements the
behavior associated with the message object S2 to which the
message was sent, according to details supplied in the
message itself. The server task 34 then issues a reply to the
given message that the client task 32 sent, where the reply

35
provides the client task 32 with status information and
possibly data. Herein, the sending of a given message by a
dient task, followed by a server task's receipt of the given
message, followed by the server task's reply to the given
message is referred to as a message transaction.

Referring now to FIG. 6, a block diagram of a preferred
embodiment of a message object S2 is shown. The object
management unit 42 creates a message object S2 and gen
erates a unique message object identification (ID) in
response to a server task's issuance of a message object

manner, where the task context is a set of data structures and
40

information specific to the dient or server task 34, 34 with
which it is associated. The microkemel operating system 30
also preferably associates with each dient task 32 and with
each server task 34 an address space specifying a set of
memory addresses accessible to the dient task 32 and server
task 34, respectively. Each address space preferably indudes

45 creation request. The message object creation request pref
erably includes a reference constant specifying an initial
state of the message object S2; a reference to a given port
object S4 with which the message object S2 is to be
associated; and a client team ID specifying a set of dient

a rnicrokemel-accessible address area that is common to all
address spaces. A complete description of an exemplary
microkemel operating system 30 and the functionality pro
vided by the present invention is given in Appendix A.

The object oriented message passing unit 40 facilitates
communication between dient tasks 32 and server tasks 34.
Referring now to FIG. 4, a block diagram of a preferred
cmbodiment of the object oriented message passing unit 40
of the present invention is shown. The object oriented
message passing unit 40 comprises an object management
unit 42, a message transaction unit 44, a locking unit 46, and
an object database 48. Each element of the object oriented
message passing unit 40 has an input and an output coupled
to the common system bus 29. In the preferred embodiment,
the object oriented message passing unit 40 comprises
computer program steps that are selectively executed by the
processing unit 12.

50 tasks 32 with which the message object S2 is to be associ
ated. Within each message object S2, a first data field stores
the message object ID generated by the object management
unit 42 that uniquely identifies the message object S2; a
second data field stores the reference constant supplied by

55 the server task, where the reference constant corresponds to
the initial state of the message object S2; a third data field
references the given port object S4 indicated in the message
object creation request; a fourth data field specifies the client
team ID induded in the message object creation request; and

60 a fifth data field references a next message object S2
associated with the given port object S4. The object man
agement unit 42 does not assign a value to the fifth data field
until a next message object S2 has been created.

The object management unit 42 creates and maintains
data structures in the object database 48 that provide a client 65

task communication interface between client tasks 32 and
the object oriented message passing unit 40, and that provide

Referring now to FIG. 7, a block diagram of a preferred
embodiment of a port object S4 is shown. The object
management unit 42 creates a port object S4 and generates
a unique port object ID in response to a port object creation

5,590,334
7

rcquest from a server task 34. In thc port object 54, a first
data field spccifies a next port object and a previous port
object. The ohject managcment unit 42 therefore links port
objects 52 together via their respective first data fields. A
second data ficld in the port object 54 provides a !ist of those 5
message objects 52 that are associated with the port object
54. When the object management unit 42 creates a new
message object 52, the object management unit 42 adds the
corresponding ncw message object ID to the !ist in the
second data field of the port object 54 with which the newly

10 created messagc object 52 is associated. A third data field in
the port object 54 provides a !ist of each associated message
object 52 that has been "locked" in response to a lock
request. When a given message object 52 is locked, any send
message requests issued by client tasks 32 and directed to
thc given message object 52 are not available tobe received 15

by a server task 34 until unlocking operations have been
pcrformed. Message object locking and unlocking opera
tions are performed by the locking unit 46 and will be
described in detail below.

8
turn selectively require particular services provided by a
third server task 34 associated with a small computer
systems interface (SCSI) manager. If the second server task
34 and the third server task 34 issue appropriate registration
requests, thc object management unit 42 will register an
acceptance function for the second server task 34 and an
acceptance function for the third server task 34, respectively.
Those disk 1/0 operations that require the particular services
corresponding to the acceptance functions registered will
occur within the task context and within the address space of
the first server task 34, eliminating the need for mapping
between address spaces and context switching. This in turn
will greatly reduce the time required to perform these disk
1/0 operations.

In the port object 54, a fourth data field is used to store a
pending send message list that specifies those message that
client tasks 32 have sent to a message object 52 associated
with thc port objcct 54, but that have not yet been received

In the preferred embodiment, client tasks 32 can send
messages synchronously or asynchronously. In a like man
ner, Server tasks can issue message receive requests syn
chronously or asynchronously. Synchronous and asynchro
nous Operations will be described in more detail below. An
eighth data field in the port object 54 specifies an amount of

20 storage available for messages sent asynchronously, and a
ninth data field in the port object 54 specifies an amount of
storage available for asynchronous message receive
requests.

by a servcr task 34. A fifth data field in the port objcct 54 is
used to store a pending recei ve message list that specifies
those receive mcssage requests that have been issued to the
port objcct 54 by server tasks 34, but that have not yet been
matched to a corresponding message sent by a client task 32.

25
A tenth data field in the port object 54 is used to store the

unique port object ID generated by the object management
unit 42. Finally, an eleventh data field in the port object 54
is used to store statistical information such as the total
number of messages sent to message objects 52 associated

30
with the port object 54 since the port object' s creation. In the
preferred embodiment, each message object 52 is associated
with a particular port object 54. Therefore, a port object 54
must be created in the preferred embodiment before a

A sixth data field in the port object 54 is used to store a
pending reply message !ist that specifies each message that
server tasks 34 have received but for which a reply has not
yet been issued. When the object management unit 42
creates the port object 54, the fourth, fifth, and sixth data
fields are empty. As will be described below, the lists stored

35
in the fourth, fifth, and sixth data fields are maintained by the
message transaction unit 44.

corresponding message object 52 is created.
In addition to creating message objects 52 and port

objects 54, the object management unit 42 provides to a
server task 34 information associated with a given message
object 52 in response to a message object examination
request. The inforrnation provided includes the client team
ID specified in the given message object, a port object ID
specifying the port object 54 with which the given message
object 52 is associated, and the current value of the message
object's reference constant. The object management unit 42
extracts the client team ID and the current value of the

A seventh data field in the port object 54 optionally
specifies an acceptance function. Thc acceptance function
comprises a set of instructions that directly implements a 40
subset of services provided by a server task 34 within the
task context of a client task 32. The acceptance function uses
the microkernel-accessible address area that is common to
the address space of the client task 32, and therefore
effectively functions within the address space of the client
task 32. Acceptance functions thus eliminate the need for
context switching and mapping between address spaces.
Performance of a given service via an acceptance function
therefore requires much less computational time than per
formance of the same service via a server task 34. Accep
tance functions provide a means for minimizing the amount

45 reference constant from the message object 52 its~lf, and
uses the port object address within the message object 52 to
retrieve the port object ID from the port object 54 with
which the message object 52 is associated. The object
management unit 42 also modifies the above inforrnation in

of time required to perform time-critical operations. The
seventh data field in the port object 54 also specifies a set of
message types for which the acceptance function is capable

50 response to a message object modification request, and
deletes a given message object 52 in response to a client
team terrnination message. In a manner analogous to the
operations provided for message objects 52, the object
management unit 42 provides information related to a port

55 object 54 in response to a port object exarnination request
from a server task 34, modifies data fields within the port
object 54 in response to a port object modification request,
and deletes port objects 52 in response to a port object

of providing a service. Preferably, the seventh data field is
empty when the object management unit 42 first creates the
port object 54. The object management unit 42 stores or
registcrs a reference to an acceptance function and the set of
message typcs in response to a server task registration
request that identifies a particular acceptance function and 60
the set of message types.

deletion request.
In the preferred embodiment, the object management unit

42 can associate multiple message objects 52 with a single
port object 54. The memory storage requirements for each
message object 52 are significantly less than the memory
storage requirements for each port object 54. In an exem-

In an exemplary situation in which acceptance functions
might be used beneficially, disk input/output (l/O) opera
tions may require services provided by a first server task 34
associated with a file system. The first server task 34 may
selectively require particular services provided by a second
server task 34 associated with a disk driver, which may in

65 plary embodiment, each port object 54 occupies 128 bytes
within the memory 20, while each message object occupies
as little as 24 bytes. In the present invention, because a given

5,590,334
9

scrver task 34 can register an acceptance function that is to
providc onc or morc services, thc given server task 34 is
simpler and requires less memory to implement. Moreover,
becausc an acceptance function executes within the task
context of a dient task 32, no additional memory is required
for context switching when an acceptance function performs
a servicc. Thus, the object oriented message passing model
50 provided by the present invention requires significantly
lcss memory space than that required by any message
passing model provided by prior art message passing sys-

10 tcms, while providing a higher level of structural granularity
for a given amount of available memory.

Thc message transaction unit 44 performs the operations
rcquired to carry out message transactions. In particular, the
message transaction unit 44 performs the operations

15
rcquired to support the sending of messages to message
objects 52 from dient tasks 32, the issuance of receive
message requests by server tasks 34, the matching of mes
sagcs sent to issued receive message requests, the selective
delivery of a message to an acceptance function or to a

20
servcr task 34 to perform a service indicated by a message,
and the transfer of replies from acceptance functions and
server tasks 34 to dient tasks 32.

10
In response to a given client task's issuance of a send

message request, the message transaction unit 44 creates a
send message control block (MCB) according to whether the
send message request is synchronous or asynchronous. In
response to a synchronous send message request or a syn
chronous send-and-receive message request, the message
transaction unit 44 creates a synchronous send MCB 60.
Referring now to FIG. SA, a block diagram of a preferred
embodiment of a synchronous send MCB 60 is shown. The
synchronous send MCB 60 is a data structure induding a
first data field specifying the message object ID correspond-
ing to the message object 52 to which the synchronous send
message is directed; a second data field providing the port
object ID identifying the port object 54 with which the
message object 52 specified in the first data field is associ
ated; a third data field providing a reference to a next and to
a previous entry in the port object's pending send message
!ist; a fourth data field specifying the client task ID corre
sponding to the client task 32 that issued the synchronous
send message request; a fifth data field providing the starting
address in the memory 20 at which an associated message is
stored; a sixth data field providing the length of the message;
a seventh data field indicating the message type specified in
the synchronous send messagc rcqucst; an eighth data field The messagc transaction unit 44 requires that client tasks

32 send messages to message objects 52 by issuing send
message requests. In the prefcrred embodiment, each send
mcssage request is either 1) a synchronous send message
request; 2) a synchronous send-and-receive message
request; 3) an asynchronous send message request; or 4) an
asynchronous send-and-receive message request. As will be
described in detail below, in response to either type of
synchronous send message request, the message transaction
unit 44 blocks the client task 32 until the message transac
tion has completed, thereby preventing the dient task 32
from perforrning other operations while the message trans
action is in progress. In contrast, the message transaction
unit 44 allows the client task 32 to continue other operations

25 wherein the message ID is stored; a ninth data field speci
fying the send options indicated in the synchronous send
message request; a tenth data field that the message trans
action unit 44 uses to reference an MCB corresponding to a
matching receive message request; an eleventh data field in

in response to either type of asynchronous send message
request. Each type of send message request preferably
spccifies a message object ID; a reference to a starting
memory location at which a message begins; message length
information; a message type that provides a categorization

30 which the message transaction unit 44 stores a server task ID
after delivering the message to a server task 34; a twelfth
data field indicating whether the message corresponding to
the synchronous send message request has been delivered to
a server task; a thirteenth data field indicating whether the

35
message object 52 identified in the synchronous send request
is locked; a fourteenth data field specifying the address of a
reply buffer in the event that the send message request is a
synchronous send-and-receive message request; a fifteenth
data field providing a reply buffer size in the event that the

40 send message request is a synchronous send-and-receive
message request; a sixteenth data field indicating whether
the sending client task 32 has been blocked as a result of a
blocking request; and a seventeenth data field specifying the
maximum time interval that the sending client task 32 can

of the message; send options that indicate whether the
message is tobe delivered to an acceptance function or to a
server task 34 by reference or by value; and a ftag to indicate
whether the message object 52 to which the send message
request is directed is to be locked in response to the send
mcssage request and subsequently unlocked after an accep
tance function or a server task 34 has replied to the message.
Both synchronous and asynchronous send-and-receive mes- 50
sage requests additionally specify a reply buffer address at
which a server task can store a reply message or data, and

45 remain idle during the message transaction. The message
transaction unit 44 stores the synchronous send MCB 60 in
the object database 4S.

If the send message request is an asynchronous send
message request or an asynchronous send-and-receive mes
sage request, the message transaction unit 44 creates an
asynchronous send MCB 62 rather than a synchronous send
MCB 60. Referring now to FIG. SB, a block diagram of an
asynchronous send MCB 62 is shown. The asynchronous
send MCB 62 is a data structure including a first through a

a reply buffer size. In the preferred embodiment, the mes
sagc type is a 32-bit number.

55 fifteenth data field, each of which specifies information
analogous to that specified in the first through fifteenth data
fields in the synchronous send MCB 60 described above. In
addition, the asynchronous send MCB 62 indudes a six
teenth data field wherein the message transaction unit 44

Each type of synchronous send message request also
specifies a maximum time interval that the client task 32 can
remain idle while the message transaction occurs. In addi
tion to the information common to every send message
request, each type of asynchronous send message request
additionally specifies an address at which the message
transaction unit 44 can store a message ID signal corre
sponding to the asynchronous send message request, and
event notification information that indicates how the mes
sage transaction unit 44 is to notify the client task 32 when
the message transaction is complete. In the description that 65

follows, the message ID signal is simply referred to as the
message ID.

60 stores the event notification information specified in the
asynchronous send message request or asynchronous send
and-receive message request. As in the case of the synchro
nous send MCB 60, the message transaction unit 44 stores
the asynchronous send MCB 62 in the object database 4S.

The message transaction unit 44 requires that a server task
34 issue a receive message request to receive a message
from a given port object 54. Receive message requests are

5,590,334
11

either synchronous receive message requests, or asynchro
nous receive message requests. Each type of receive mes
sage request specifies a port object 54; a message type
indicating a category of message the server task 34 is to
receive; a reference to a memory location at which a 5

message buffer begins; and a message buffer size. In the
preferred embodiment, the message type is a 32-bit number.

12
receive MCB 70, the message transaction unit 44 stores each
asynchronous receive MCB 72 in the object database 48.

In the prefcrred embodiment, each MCB described above
60, 62, 70, 72 is implemented as a general MCB structure
(not shown) plus one or more data fields that supply request
specific information. The general MCB structure includes
data fields for specifying a port object 54; a client or server
task 32, 34; references to other corresponding MCB struc
tures; and state information specifying whether the general

A synchronous receive message request further includes a
maximum time interval the issuing server task 34 can remain
idle prior to the delivery of a message by the message
transaction unit 44. In addition to the information common
to both synchronous and asynchronous reccive message
requests, an asynchronous rcceive message request further
specifies a message address at which a receive ID corre
sponding to the asynchronous receive message request can
be stored; and event notification information that the mes
sage transaction unit 44 uses to notify the issuing server task
34 that a message corresponding to the asynchronous
receive message request has been delivered.

10 MCB structure corresponds to a synchronous or asynchro
nous request and whether the general MCB structure corre
sponds to a send or receive request. Those skilled in the art
will be able to determine the specific additional data fields
necessary to implement a synchronous MCB 60, an asyn
chronous send MCB 62, a synchronous receive MCB 70,

15

In response to a receive message request, the message
transaction unit 44 creates a receive MCB if no send MCB
having a message type that matches the message type given

20

and an asynchronous receive MCB 72 according to the
descriptions provided above.

The message transaction unit 44 selectively matches a
receive message request with a send message request, and
selectively matches a send message request either with an
acceptance function or a receive message request. Matching
occurs according to the message types specified in a send
message request and a receive message request, or according
to the message type specified in a send message request and
the set of message types associated with an acceptance

in the receive message request is present. In other words, the
message transaction unit 44 creates a receive MCB if the
receive message request cannot be immediately matched to 25 function. In the preferred embodiment, the message trans

action unit 44 performs a logical AND operation to deter
mine whether message types match.

a previously-issued send message request. The receive MCB
created by the message transaction unit is either a synchro
nous or an asynchronous receive MCB 70, 72, according to
whether the receive message request is a synchronous or an
asynchronous receive message request, respectively. Refer
ring now to FIG. 9A, a block diagram of a preferred
embodiment of a synchronous receive MCB 70 is shown.
The synchronous receive MCB 70 is a data structure includ
ing a first data field specifying the port object ID corre
sponding to thc port object 54 to which the synchronous
receive message request is directed; a second data field
referencing a next and a previous entry in the pending
receive message !ist of the port object 54 indicated in the
first data field; a third data field wherein the message
transaction unit 44 stores a server task ID corresponding to
the server task 34 that issued the request; a fourth data field
specifying the mcssage buffer address included in the syn
chronous receive message request; a fifth data field speci
fying the message buffer size contained in the synchronous
receive message request; a sixth data field providing the 45

message type included in the synchronous receive message
rcquest; a seventh data field that the message transaction unit

In response to a given send message request, the message
transaction unit 44 may determine that the send message

30 request can be immediately serviced by a matching accep
tance function or that the send message request can be
immediately serviced by a matching pending receive mes
sage request. The message transaction unit 44 may also
deterrnine that the send message request cannot be imme-

35 diately serviced and must therefore become a pending send
message request. The message transaction unit 44 catego
rizes the send message request as pending by inserting a
reference to the corresponding send MCB into the pending
send message !ist of the port object 54 identified in the send

40 MCB. The message transaction unit 44 preferably maintains
the pending send message !ist of the port object 54 as a
doubly-linked !ist in first-in first-out (FIFO) order.

In response to a given receive message request, the
message transaction unit 44 may determine that the receive
message request can be immediately matched to a pending
send message request; or that the receive message request
cannot be immediately matched to a send message request
and must therefore become a pending receive message
request. The message transaction unit 44 categorizes a
receive message request as pending by creating a receive
MCB and by inserting a reference to the corresponding
receive MCB in the pending receive message !ist of the port
object 54 identified in the receive MCB. As with the pending
send message !ist, the message transaction unit 44 preferably

44 uses to reference an MCB corresponding to a send
message request that matches the synchronous receive mes
sage request according to message type; and an eighth data 50

field wherein the message transaction unit 44 stores the
maximum time interval the issuing server task 34 can remain
idle as specified in the synchronous recei ve message request.
The message transaction unit 44 stores the synchronous
receive MCB 70 in the object database 48. 55 maintains the pending receive message !ist as a doubly

linked !ist in FIFO order. When the message transaction unit
44 categorizes a synchronous receive message request as
pending, the message transaction unit 44 also blocks the
execution of the server task 34 that issued the synchronous

Referring now to FIG. 9B, a block diagram of a preferred
embodiment of an asynchronous receive MCB 72 is shown.
The asynchronous receive MCB 72 is a data structure
including a first through a seventh data field that specify
information analogous to that detailed for the synchronous
receive MCB 70. The asynchronous receive MCB 72 also
includes an eighth data field wherein the message transac
tion unit 44 stores the receive ID, and a ninth data field
wherein the message transaction unit 44 stores the event
notification information specified in the asynchronous
receive message request. As in the case of each synchronous

60 receive message request until a matching send message
request arrives.

The detailed operations that are performed by the message
transaction unit 44 in response to send message requests and
receive message requests are now considered. The detailed

65 operations are also discussed as individual method steps in
FIGS. 11 through 16.

5,590,334
13

Send Message Requests
In response to a send message request, the message

transaction unit 44 initially decodes the message object ID
spccified in the send message request. lf the message object

14
MCB are stored; a fourth data field providing the message
type given in the send MCB; a fifth data field in which the
message location specified in the send MCB is stored; a sixth
data field in which the message length specified in the send
MCB is stored; a seventh data field in which any reply buffer
address specified in the send MCB is stored; and an eighth
data field in which any reply buffer size specified in the send
MCB is stored. Preferably, when a matching acceptance
function is present, the message transaction unit 44 creates

ID is invalid, the message transaction unit 44 issues an s
invalid ID error to the client task 32 that issued the send
message request, and does not further consider the send
message request. lf the send message request specifies a
valid message object ID, the message transaction unit 44
next obtains the address of the port object 54 with which the
mcssage object 52 is associated from the message object's
fourth data field. By inspecting the !ist of locked message
objccts within the port object 54 specified at the port object
addrcss obtained, the message transaction unit 44 next
determincs whether the send message request is directed to

10
and stores the delivery MCB 80 in the microkemel-acces
sible address area within the client task's address space.
After creating the delivery MCB 80, the message transaction
unit 44 transfers the location of the delivery MCB 80 to the
acceptance function. The acceptance function subsequently
obtains the message specified within the delivery MCB 80

15 and performs the service indicated by the message. The
acceptance function executes within the task context and
address space of the client task 32 that issued the send
message request. In the preferred embodiment, the accep
tance function can retum a notification to the message

a locked message object 52. If the message object 52 is
locked, the message transaction unit 44 blocks the client task
32 that issued the send request until the message object 52
is unlocked by preventing the client task 32 from performing
further operations. lf the message object 52 is not locked, or
after the message object 52 is unlocked, the message trans
action unit 44 inspects the send message request and deter
mines if the message object 52 is to be locked in response
to this send message request. lf the message object 52 is to
be locked, the message transaction unit 44 issues a lock
request to the locking unit 46, which performs the required
locking as will be described in detail below.

20 transaction unit 44 indicating that the required service is in
progress and that a reply will be issued upon completion of
the service. If an acceptance function completes a service
without explicitly issuing a reply, the message transaction
unit 44 automatically issues a reply on behalf of the accep-

25 tance function, thereby providing the dient task 32 that
issued the send message request with status information and
possibly data. After any required message object locking has been

performed, the message transaction unit 44 generates a
unique message ID signal, referred to herein as the message 30
ID, to correspond to the message transaction initiated by the
send messagc request. The message transaction unit 44 then
creatcs a synchronous send MCB 60 or an asynchronous
send MCB 62 according to whether the send message
request is synchronous or asynchronous, respectively. Tue 35
message transaction unit 44 associates the send MCB with
the message ID, such that the send MCB can be uniquely
identified and located by the message ID. When the message
transaction unit 44 creates the send MCB, the message
transaction unit 44 preferably indicates via the fourteenth 40
data field in the send MCB whether the message object 52
to which the send message request is directed has been
locked in response to the send message request. After the
send MCB has been created, the message transaction unit 44
determines whether an acceptance function has been regis- 45
tered in the port object 54 associated with the message object
52 to which thc send message request was directed. Prefer
ably, the message transaction unit 44 deterrnines whether an
acceptance function has been registered by inspecting the
port object' s seventh data field. Tue message transaction unit 50
44 then compares the message type indicated in the send
mcssagc request with the each message type within the set
of message types specified in the port object's seventh data
field, thereby determining whether the acceptance function
is applicable to the send message request. In the preferred 55
embodiment, each comparison is made through a logical
AND operation. lf a message type match occurs, the mes
sagc transaction unit 44 creates a delivery MCB 80 using
information specified in the send MCB.

Rcferring now to FIG. 10, a block diagram of a preferred 60

embodiment of a delivery MCB 80 is shown. Tue delivery
MCB 80 is created from a subset of the data fields within the
send MCB. The delivery MCB 80 includes a first data field
in which the message ID specified in the send MCB is
stored; a second data field specifying the reference constant 65

of the message object 52 specified in the send MCB; a third
data field in which the send options specified in the send

The message transaction unit 44 next sets the delivery
status specified in the send MCB to indicate that the message
has been delivered. Tue message transaction unit 44 then
inserts a reference to the send MCB at the end of the port
object's pending reply message !ist. Tue pending reply
message !ist indicates those messages that have been
received either by an acceptance function or a server task 34
but that have not been issued a reply. In the preferred
embodiment, the message transaction unit 44 maintains the
pending reply message !ist as a doubly-linked !ist arranged
in FIFO order.

After inserting the reference to the send MCB in the
pending reply message !ist, the message transaction unit 44
retums the message ID to the client task 32 that issued the
send message request if the send MCB is an asynchronous
send MCB 62. If the send MCB is a synchronous send MCB
60, the message transaction unit 44 blocks the operation of
the client task 32 until the acceptance function either issues
a reply to the message specified in the delivery MCB 80 or
completes the required service without issuing a reply. If the
maximum time interval is exceeded while the client task 32
is blocked, the message transaction unit 44 retums a timeout
status to the client task 32 and informs the acceptance
function that the message is to be canceled. Once the
acceptance function has issued a reply or has completed the
required service, the message transaction unit 44 performs
reply operations as will be detailed below.

lf the message transaction unit 44 deterrnines that an
acceptance function capable of servicing the send message
request is not present, the message transaction unit 44
subsequently determines whether a receive MCB having a
message type that matches that specified in the send message
request is referenced in the port object's pending receive
message !ist. If a matching receive MCB exists, the message
transaction unit 44 inserts a reference to the matching
receive MCB in the tenth data field in the send MCB. In a
like manner, the message transaction unit 44 inserts a
reference to the send MCB in the seventh data field of the
matching receive MCB. Next, the message transaction unit

5,590,334
15 16

no matching send MCB is present, the message transaction
unit 44 next creates an appropriate type of receive MCB as
described ahove to correspond to the receive message
request. The message transaction unit 44 also inserts a
reference to the receive MCB in the port object's pending
receive message !ist. If the receive MCB created is an
asynchronous receive MCB 72, the message transaction unit
44 does not perform additional operations. If the receive
MCB created is a synchronous receive MCB 70, the mes-

44 creates a delivcry MCB 80 at thc message buffcr addrcss
specified in the reccivc MCB. The message transaction unit
44 then inserts a reference to the send MCB into the pending
rcply message !ist within the port object 54 specified in the
send MCB. Next, the messagc transaction unit 44 deter- 5

mines whether the receive MCB is a synchronous receive
MCB 70 or an asynchronous receive MCB 72. If the reccive
MCB is a synchronous receive MCB 70, the message
transaction unit 44 unblocks the server task 34 that issued
the synchronous receive message rcquest. The message
transaction unit 44 then deletes the synchronous receive
MCB 70.

10 sage transaction unit 44 blocks the server task 34 that issued
the synchronous receive message request until a matching
send message request arrives. If the maximum time interval
specified in the synchronous recei ve message request is
exceeded while the server task 34 is blocked, the message
transaction unit 44 retums a timeout status to the server task

If the message transaction unit 44 determines that thc
receive MCB is an asynchronous receive MCB 72, the
message transaction unit 44 transfers the message referenced 15 34, and cancels the synchronous receive message request by

deleting the synchronous receive MCB 70 created. in the send MCB to a region within the message buffer
referenced by the asynchronous receive MCB 72. The
message transaction unit 44 supports the transfer of mes
sages by refercnce or by value, and also performs any
required mapping between address spaces. In the preferrcd 20

embodiment, the message transaction unit 44 transfers the
message by calling a message delivery function. Next, the
message transaction unit 44 notifies the server task 34 that
issued the asynchronous receivc message request according
to the event notification information provided in the asyn- 25

chronous receive MCB 72. Following the notification of the
server task 34, the message transaction unit 44 deletes the
asynchronous receive MCB 72.

After the deletion of the synchronous receive MCB 70 or
the asynchronous receive MCB 72, the message transaction 30

unit 44 retums the message ID to the client task 32 that
issued the send message request if the send MCB is an
asynchronous send MCB 62. If the send MCB is a synchro
nous send MCB 60, the message transaction unit 44 blocks
the operation of the client task 32 by preventing the client 35

task 32 from performing further operations.

When a matching send message request arrives, the
message transaction unit 44 creates the appropriate type of
send MCB, and then inserts a reference to the matching send
MCB in the receive MCB's seventh data field, and inserts a
reference to the receive MCB in the tenth data field of the
matching send MCB. Tue message transaction unit 44 then
inscrts a reference to the send MCB in the pending reply
message !ist in the port object 54. After inserting the
reference to the send MCB in the pending reply message !ist,
the message transaction unit 44 creates a delivery MCB at
the message buffer address specified in the receive MCB. If
the receive MCB is an asynchronous receive MCB 72, the
message transaction unit 44 notifies the server task 34 that
issued the asynchronous receive message request according
to the event notification specified in the asynchronous
receive MCB 72. The message transaction unit 44 then
delivers the message referenced in the send MCB to the
server task 34 within the message buffer indicated in the
asynchronous receive MCB 72, according to the send
options specified in the matching send MCB. In the pre-
ferred embodiment, the message transaction unit 44 supports
the delivery of messages by reference or by value, and

40
performs any required mapping between the client task's
address space and the server task' s address space. To deliver
the message, the message transaction unit 44 preferably calls
a message delivery function. Following the delivery of the
message, the message transaction unit 44 deletes the receive

If the message transaction unit 44 determines that no
matching acceptance function and no matching receive
MCB exists for the send message request, the message
transaction unit 44 inserts a reference to the send MCB in the
pending send message !ist of the port object 54 specified by
the send message request. The pending message send !ist
thus specifies each send message request that has not yet
been matched to a corresponding receive message request.
Following the insertion of the reference to the send MCB
into the pending send message !ist, the message transaction
unit 44 retums the message ID to the client task 32 that
issued the send message request if the send MCB is an
asynchronous send MCB 62. If the send MCB is a synchro-

50
nous send MCB 60, the message transaction unit 44 blocks
the client task 32 by preventing the client task 32 from
performing further operations.

Receive Message Requests
In response to a receive message request, the message

transaction unit 44 first decodes the port object ID specified
in the receive message request. Next, the message transac
tion unit 44 determines whether the port object ID identifies
an existing port object 54. If the port object ID does not
identify an existing port object 54, the message transaction
unit 44 retums an invalid ID error to the server task 34 that
issued the receive message request, and does not consider
the receive message request further. If the port objeet ID
identifies an existing port object 54, the message transaction
unit 44 determines whether a send MCB having a message
type matching that specified in the receive message request
is present in the port object' s pending send message !ist. If

45 MCB that had been created and removes the reference to the
receive MCB from the pending receive message !ist.

Ifthe receive MCB created is a synchronous receive MCB
70, the message transaction unit 44 unblocks the server task
34 rather than notifying the server task 34 as described
above. After unblocking the server task 34, the message
transaction unit 44 performs the same message delivery and
receive MCB deletion operations as described above.

If the message transaction unit 44 determines that a
matching send MCB is present in the pending send message

55 !ist immediately after determining that the port object ID is
valid, the message transaction unit 44 does not create a
receive MCB. Rather, the message transaction unit 44 inserts
a reference to the matching send MCB in the pending send
message !ist, and then creates a delivery MCB as described

60 above. If the receive message request is an asynchronous
receive message request, the message transaction unit 44
next notifies the server task 34 according to the event
notification information specified in the matching send
MCB. Ifthe receive message request is a synchronous rather

65 than an asynchronous receive message request, the message
transaction unit 44 does not have to perform an unblocking
operation as described above because the server task 34 had

5,590,334
17

not been blocked. Regardless of the type of receive message
request, the message transaction unit 44 next delivers the
message referenced in the send MCB to the message buffer
specified in the receive message request, according to the
send options specified in the send MCB.

After a server task 34 has performed the service indicated
by a message, the server task 34 issues a reply to the
message. After an acceptance function has performed a
service indicated by a message, the acceptance function may
explicitly issue a reply to the message. If the acceptance 10
function does not explicitly issue a reply, the message
transaction unit 44 automatically issues a reply on behalf of
the acceptance function after execution of the acceptance
function has completed. In the preferred embodiment, a
reply includes the message ID and status information. The

15 reply may also include a reference to a reply buffer. In
response to a reply, or when issuing a reply on behalf of an
acceptance function, the message transaction unit 44
decodes the message ID specified in the reply to locate the
appropriate send MCB. Next, the message transaction unit
44 deli vers the status information to the client task 32 20
specified in the send MCB. If a reply buffer is indicated in
the reply, the message transaction unit 44 delivers a copy of
the contents of the reply buffer to the client task 32. The
message transaction unit 44 then issues an unlock request to
the locking unit 46 if the fourteenth data field in the send 25
MCB indicates that the message object 52 had been locked
in response to the client task's send message request. Mes
sage object unlocking will be described in detail below.
Next, the message transaction unit 44 deletes the message
ID, and finally deletes the send MCB. The message trans- 30
action that had been associated with the message ID is now
complete.

Preferably, server tasks 34 issue receive message requests

18
valid. If the message object ID is not valid, the locking unit
42 retums an invalid ID error to the issuer of the lock
message object request, and does not consider the request
further. If the message object ID is valid, the locking unit 46
deterrnines if the targeted message object 52 is already
locked by inspecting the !ist of locked message objects
within the port object 54 with which the targeted message
object 52 is associated. In the preferred embodiment of the
present invention, each element in the !ist of locked message
objects is a lock structure that specifies a message object ID
and a semaphore. If the targeted message object 52 is
referenced in the !ist of locked message objects, the targeted
message object 52 is already locked. Preferably, the sema
phore provides a lock wait !ist that sequentially indicates
each task that is waiting to lock the targeted message object
52 in FIFO order.

If the locking unit 46 deterrnines that the targeted message
object 52 is already locked, the locking unit 46 adds the ID
of the client task 32 or server task 34 responsible for
initiating the lock request to the end of the lock wait !ist. The
locking unit 46 tllen waits until the currently-considered
client task ID or server task ID is at the front of the lock wait
!ist and a corresponding unlocking request directed to the
targeted message object 52 has been reeeived. The Jocking
unit 46 then performs unlocking operations as will be
described below.

If the message object 52 is not already locked, the locking
unit 46 inspects the pending reply message !ist within the
port object 54 to deterrnine how many send message control
blocks currently referenced specify the targeted message
object 52. If no send MCB referenced specifies the targeted
message object 52, the locking unit 46 inserts a new lock
structure containing the targeted message object ID into the
!ist of locked message objeets, thereby locking the targeted on a periodic basis, or immediately following the perfor

mance of a service. This ensures that server tasks 34 do not
remain idle and also guarantees that each send message
request issued by a client task 32 will be serviced by a server
task 34. In the preferred embodiment of the present inven
tion, in response to a receive-and-reply message request
issued by a server task 34, the message transaction unit 44
performs reply operations associated with the reply portion

35
message objeet 52. Onee the targeted message object 52 is
locked, the client task 32 or the server task 34 associated
with the locked message object 52 is referred to herein as the
"owner" of the targeted message object' s lock. After locking
the targeted message object 52, the locking unit 46 returns

40
control to the issuer of the lock request.

of the receive-and-reply message request, and immediately
thereafter responds to the receive portion of the receive-and
reply message request. Preferably, the receive-and-reply
message request includes the information separately speci- 45
fied above for receive message requests and for reply
operations. The message transaction unit 44 functions
according to the above descriptions when perforrning the
reply operations and when responding to the receive portion
specified in the receive-and-reply request. Because the mes-

50
sage transaction unit 44 supports receive-and-reply message
requests, the message transaction unit 44 ensures that each
server task 34 is utilized as efficiently as possible.

The locking unit 46 performs message object locking and
unlocking operations. Send message requests directed to a 55
particular message object 52 after the message object 52 has
been locked are not eligible to be matched to an acceptance
function or to a receive MCB until unlocking operations
have been performed. The locking unit 46 performs locking
operations in response to a lock request. In the preferred 60
embodiment, lock requests can be issued by a server task 34,

If one or more send message control blocks currently
referenced in the pending reply message !ist specify the
targeted message objeet 52, the loeking unit waits until the
reference to each such send MCB has been removed from
the pending reply message !ist due to a reply or a message
eancellation. After the reference to each send MCB that
specifies the targeted message objeet 52 has been removed
from the pending reply message !ist, the loeking unit 46
inserts a new lock structure containing the targeted message
object ID into the !ist of locked message objects, thereby
locking the targeted message object 52. After locking the
targeted message object 52, the locking unit 46 returns
control to the issuer of the lock request. While the reference
to each send MCB that specifies the targeted message object
52 is being removed from the pending reply message !ist, the
targeted message object 52 is referred to herein as being in
a "locking" state.

Preferably, an unlock request specifies the message object
ID of a targeted message object 52. In the preferred embodi
ment, an unloek request can be issued by a server task 34,
or by the message transaction unit 44 during reply opera-
tions as described above. In response to an unlock request,
the locking unit 46 deterrnines whether the message object
ID is valid. If the message object ID is not valid, the locking

or by the message transaction unit 44 on behalf of a client
task 32 as a result of a send message request. Preferably,
each lock request specifies the message object ID of a
message object 52 targeted for locking. 65 unit 46 returns an invalid ID error to the issuer of the unlock

In response to a lock message object request, the locking
unit 46 detennines if the message object ID specified is

request, and does not consider the unlock request further. If
the message object ID is valid, the locking unit 46 deter-

5,590,334
19

mines whethcr the targeted mcssage objcct 52 is currently
locked. If the targeted messagc object 52 is not currently
lockcd, the locking unit 46 retums a lock state error to the
servcr task 34, and does not considcr the unlock request
further.

In the event that the targeted message object 52 is
currently locked, the locking unit 46 determines whether
another client task 32 or server task 34 is waiting to lock the
targeted mcssage object 52 by inspecting the lock wait !ist
provided by the semaphore. If another client task 32 or
servcr task 34 is waiting to lock thc targeted message object
52, the locking unit 46 removes the corresponding client task
ID or server task ID, respectively, from thc top of the lock
wait !ist, and retums control to the issuer of the lock request.
In this manner, the locking unit 46 transfers "ownership" of
the targeted message object' s lock to the next successive
client task 32 or server task 34 indicated in the semaphore
without altering thc !ist of locked message objects.

If the locking unit 46 deterrnines that no other client task
32 or server task 34 is waiting to lock the targeted message
object 52, the locking unit 46 unlocks thc targeted message
object 52 by removing the corresponding lock structure from
thc !ist of locked objects within the port object 54 associated
with the targeted message object 52. After unlocking the
targeted message object 52, the locking unit 46 retums
control to the issuer of the unlock request.

5

20
response to a server task unlock request. If so, the locking
unit 46 performs the unlocking operations in response to the
unlock request in step 114. If no message object unlocking
is required in step 112, or following step 114, the object
management unit 42 deterrnines in step 116 whether an
acceptance function is to be registered for a port object 54
in response to a server task request. If an acceptance
function is to be registered, the object management unit 42
registers the acceptance function with the port object 54

10
specified in the server task request in step 118.

Following step 118, or after step 116 if the object man
agement unit 42 deterrnines that no acceptance function is to
be registered, the message transaction unit 44 deterrnines in
step 120 whether a client task 32 has issued a send message

15 request. If so, the message transaction unit 44 responds to
the send message request in step 122. After step 122, or after
step 120 if no send message request has been issued, the
message transaction unit 44 determines in step 124 whether
a server task has issued a recei ve message request. If a server

20 task 34 has issued a receive message request, the message
transaction unit 44 responds to the receive message request
in step 126. If in step 124 the message transaction unit 44
deterrnines that no receive message request has been issued,
or after step 126, the message transaction unit 44 deterrnines

25 in step 128 whether a reply has been issued. If so, the
message transaction unit performs reply operations in step
130. Following step 130, or following step 128 if no reply
has been issued, the message transaction unit 44 deterrnines
whether a server task 34 has issued a combined receive-

Because the present invention provides for message
object locking and unlocking, the value of the reference
constant associated with a message object 52 can be guar
anteed to remain unchanged throughout a message transac
tion if the message object 52 is locked at the outset of the
messagc transaction. The use of a message object's refer
ence constant in this manner is particularly useful when the
reference constant directly rcferences a particular memory
address. In an exemplary situation, a message object's
refercnce constant could be used to specify an address at
which a file control block for a given data file is stored.
Those skilled in the art will recognize that in the exemplary
situation, the use of message object locking in response to a
send message request cnsures that a file deletion operation 40
will not invalidate a previously pcnding file read operation
because the address of the file control block remains valid
throughout the message transaction associated with the file
read operation.

30 and-reply message request in step 132. If so, the message
transaction unit 44 performs the reply operations indicated
in the receive-and-reply message request in step 134, after
which the message transaction unit 44 responds to the
receive portion of the receive-and-reply message request in

35 step 136. After step 136, or after step 132 if step 134 is not
performed, the message transaction unit 44 deterrnines
whether operation is to terminale. If operation is to continue,
the preferred method proceeds to step 100. Otherwise, the
preferred method ends.

Referring now to FIGS. 12A, 12B, and 12C, a flowchart
of a preferred method for responding to a send message
request is shown. The preferred message passing method
begins in step 200 with the message transaction unit 44
decoding the message object ID spccified in the send mes-

Referring now to FIG. 11, a flowchart of a preferred object
oriented message passing method in accordance with the
present invention is shown. The preferred method passing
method begins in step 100 with the object management unit
42 deterrnining whether a port object 54 is to be created,
modified, examined, or deleted in response to a correspond
ing server task request. If a port object 54 is to be created,
modified, examined, or deleted, the object management unit
42 performs the appropriate operation indicated by the
server task request in step 102. After step 102 or after step
100, the object management unit 42 deterrnines in step 104
whether a message object 52 is to be created, modified,
examined, or deleted in response to a corresponding server
task request. If so, the object management unit 42 performs
the action indicated by the server task request in step 106.
Following stcp 106 or step 104, the locking unit 46 deter
mines in step 108 whether a message object 52 is to be
locked in response to a server task lock request. If so, the
locking unit 46 performs the locking operations indicated in
the server task request in step 110. If in step 108 the locking
unit 46 deterrnines that no message object 52 is tobe locked,
or after step 110, the locking unit 46 next determines in step
112 whether a message object 52 is to be unlocked in

45 sage request. Next, in step 202, the message transaction unit
44 determines whether the message object ID is valid. If the
message object ID is invalid, the message transaction unit 44
retums an invalid ID error to the client task 32 that issued the
send message request in step 204, after which the preferred

50 method ends. If the message object ID is valid, the message
transaction unit 44 proceeds to step 206 and deterrnines
whether the message object 52 to which the send message
request is directed is locked. If the message object 52 is
locked, the message transaction unit 44 blocks the sending

55 client task 32 until the message object 52 is unlocked in step
208. Tue blocking performed by the message transaction
unit 44 prevents the client task 32 from perforrning further
operations. After step 208, or after step 206 if step 208 is not
performed, the message transaction unit 44 deterrnines in

60 step 210 whether the send message request specifies that the
message object is to be locked as a result of the message
transaction initiated. If so, the message transaction unit 44
issues a corresponding lock request to the locking unit 46 in
step 212. After step 212, or after step 210 if step 212 is not

65 performed, the message transaction unit 44 generates a
unique message ID to correspond to the message transaction
initiated by the send message request, and creates a send

5,590,334
21

MCB corresponding in type to the send message request
type in step 214.

Next, in step 216, the message transaction unit 44 deter
mines whether an acceptance function specifying a message
type that matches the message type in the send MCB has 5

been registered with the port object 54. If an acceptance
function has been registered, the message transaction unit 44
creates a delivery MCB 80 in the client task's address space

22
Referring now to FIGS. 13A and B, a flowchart of a

preferred method for responding to a receive message
request is shown. The preferred method begins in step 300
with the message transaction unit 44 decoding the port
object ID specified in the receive message request. Next, the
message transaction unit 44 deterrnines whether the port
object ID is valid in step 302. If the port object ID is not
valid, the message transaction unit 44 retums an invalid ID
error to the server task 34 that issued the receive message in step 218. Preferably, the deli very MCB 80 is created in the

microkemel-accessible portion of the client task's address
spacc. Following step 218, the message transaction unit 44
passes a pointer to the delivery MCB 80 to the acceptance
function in step 220. Next, the message transaction unit 44
inserts a reference to the send MCB in the pending reply
message !ist within the port object 54 in step 222.

10 request in step 304, after which the preferred method ends.
If the port object ID is valid, the message transaction unit 44
next determines whether a matching send MCB is present in
the port object's pending send message list in step 306. lf a
matching send MCB is not present, the message transaction

15 unit 44 creates a receive MCB according to the type of
receive message request issued, and inserts a reference to the
receive MCB in the pending receive message request !ist in
step 308. Following step 308, the message transaction unit
44 determines whether the receive message request is syn-

After step 222, the message transaction unit 44 deter
mines whether the send MCB created is a synchronous send
MCB 60 in step 250. If not, the message transaction unit 44
retums the message ID to the client task 32 that issued the
send message request in step 252, after which the preferred
method ends. If the send MCB is a synchronous send MCB
60, the message transaction unit 44 next prevents the send
ing client task 32 from perforrning further operations, that is,
blocks the sending client task 32, in step 254. Next, in step
256, the message transaction unit 44 deterrnines whether the
maximum time interval specified in the send MCB has been 25
exceeded. If so, the message transaction unit 44 retums a
timeout status to the sending client task 32, after which the
prcferred mcthod ends. If the maximum time interval has not
been exceeded, the message transaction unit 44 deterrnines
whether a reply has been issued to the message indicated in 30

the send message request in step 260. If no reply has been
issued, the preferred method retums to step 256. If in step
260 the message transaction unit 44 deterrnines that a reply
has been issued, the message transaction unit 44 performs
reply operations in step 262. Following step 262, the pre- 35
ferred method ends.

20 chronous in step 310. If not, the message transaction unit 44
retums the receive ID to the server task 34 that issued the

If in step 216 the message transaction unit 44 deterrnines
that a matching acceptance function is not present, the
message transaction unit next deterrnines whether a match
ing receive MCB is present in the port object's pending 40

receive message !ist in step 224. If a matching receive MCB
is not present, the message transaction unit 44 inserts a
reference to the send MCB in the pending send message !ist
in step 226, after which the preferred method proceeds to
step 250. If the message transaction unit 44 determines that 45
a matching receive MCB is present in step 224, the message
transaction unit 44 creates a delivery MCB at the message
buffer address specified within the matching receive MCB in
step 230. Next, the message transaction unit 44 inserts a
reference to the send MCB in the pending reply message !ist 50

in step 232. Following step 232, the message transaction unit
44 deterrnines in step 234 whether the receive MCB is a
synchronous receive MCB 70. If so, the message transaction
unit 44 unblocks the receiving server task 34 that issued the
corresponding receive message request in step 240. If the 55

message transaction unit 44 deterrnines that the receive
MCB is not a synchronous receive MCB 70, the message
transaction unit 44 delivers the message referenced in the
send MCB to the server task 34 identified in the asynchro
nous receive MCB 72 in step 236. Following step 236, the 60

message transaction unit 44 notifies the receiving server task
34 according to the event notification information specified

. in the asynchronous receive MCB 72 in step 238. After step
238, or after step 240, the message transaction unit 44
deletes the receive MCB and its corresponding pending 65

receive message !ist reference in step 242. Following step
242, the preferred method proceeds to step 250.

asynchronous receive message request in step 311, after
which preferred method ends. Ifthe receive message request
is synchronous, the message transaction unit blocks the
server task 34 that issued the receive message request in step
312. Next, in step 314, the message transaction unit 44
deterrnines whether the maximum time interval specified in
the receive MCB has been exceeded. If so, the message
transaction unit 44 returns a timeout status to the server task
34 in step 316, after which the preferred method ends. Ifthe
maximum time interval has not been exceeded, the message
transaction unit next deterrnines whether a matching send
message request has been issued in step 318. If not, the
preferred method retums to step 314. If a .matching send
message request has been issued, the message transaction
unit 44 generates a unique message ID and creates a corre
sponding send MCB in step 320.

Following step 320, or following step 306 if a matching
send MCB is present, the message transaction unit 44 inserts
a reference to the send MCB in the port object's pending
reply message !ist in step 330. The message transaction unit
44 then creates a delivery MCB 80 at the address specified
in the receive message request or in the receive MCB in step
332. After step 332, the message transaction unit 44 deter
mines whether the receive message request is a synchronous
receive message request in step 334. lf the receive message
request is synchronous, the message transaction unit 44
deterrnines whether the server task 34 that issued the receive
message request is blocked in step 336. If so, the message
transaction unit 44 unblocks the server task 34 in step 338.
If the message transaction unit 44 deterrnines in step 334 that
the receive message request is an asynchronous receive
message request rather than a synchronous receive message
request in step 334, the message transaction unit 44 notifies
the server task 34 that issued the asynchronous receive
message request in step 340. Following step 340, or after
step 338, or after step 336 if step 338 is not performed, the
message transaction unit 44 delivers the message specified
in the send MCB to the message buffer specified in the
receive message request in step 342. After step 342, the
message transaction unit 44 deterrnines whether a receive
MCB corresponding to the receive message request had
been created in step 344. If so, the message transaction unit
44 deletes the receive MCB and its corresponding reference
in the pending receive message !ist in step 346. After step
346, or after step 344 if step 346 is not performed, the
preferred method ends.

5,590,334
23

Refening now to FIG. 14, a flowchart of a preferred reply
mcthod is shown. The prcferred method bcgins in step 400
with the message transaction unit 44 decoding the messagc
ID specified in the reply to locate the send MCB associated
with the message transaction. Next, in step 402, the message 5
transaction delivers the reply status to the dient task 32
indicated in thc send MCB. The message transaction unit 44
then determines in step 404 whether a reply buffer was
indicated in the reply. If so, the message transaction unit 44
delivers a copy of the contents of the reply buffer to the

10 client task 32 in step 406. After step 406, or after step 404

24
has been issued, the preferred method remains at step 514.

After an unlocking request has been issued, the locking unit

46 responds to the unlock request by performing unlocking

operations in step 516. Following step 516, the preferred

method returns control to the issuer of the currently-consid

ered lock request in step 518, after which the preferred

method ends.

Refening now to FIG. 16, a flowchart of a preferred

method for responding to an unlock request is shown. The

preferred method begins in step 600 with the locking unit 46

if no reply buffer is indicated in the reply, the message
transaction unit 44 determines in step 408 whether the
message object 52 indicated in the send MCB is to be
unlocked upon completion of the message transaction. If so,
the message transaction unit 44 issues a corresponding
unlock request to the locking unit 46 in step 410. After step
410 or after step 408, the message transaction unit 44 deletes

determining whether the message object ID of the message
15 object 52 targeted in the unlock request is valid. If the

the message ID representing the message transaction in step
412. Finally, the message transaction unit 44 deletes the send
MCB in step 414, after which the preferred method ends.

Refening now to FIG. 15, a flowchart of a preferred
method for responding to a lock request is shown. The
preferred method bcgins in stcp 500 with the locking unit 46
determining whether the message object ID specified in the
lock request is valid. If the message object ID is not valid,
the locking unit 46 returns an invalid ID error to the issuer
of the lock request in step 502, after which the preferred
method ends. If the message object ID is valid, the locking

message object ID is not valid, the locking unit 46 returns an

invalid ID error to the issuer of the unlocking request in step

602, after which the preferred method ends. If the message
20

object ID is found to be valid in step 600, the locking unit

46 next determines whether the targeted message object 52

is currently locked in step 604. Preferably, the locking unit

25
46 determines whether the targeted message object 52 is

currently locked by inspecting the associated port object's

!ist oflocked message objects. Ifthe targeted message object

52 is not currently locked, the locking unit 46 returns a lock
unit 46 next determines in step 504 whether the message 30 state error to the issuer of the unlocking request in step 606,
object 52 targeted by the lock request is already locked. If
not, the locking unit 46 waits for a reply tobe issued for each
send MCB referenced in the associated port object's pending
reply message !ist that specifies the targeted message object
52 in stcp 506. Preferably, the locking unit 46 performs step
506 by first counting the numbcr of send message control
blocks referenced in the pending reply message !ist that
spccify, the targeted message object 52, after which the
locking unit 46 waits for each of the references counted to
be removed from the pending reply message !ist. After step

after which the preferred method ends.

lf the targeted message object 52 is currently locked, the

locking unit 46 next determines whether another task is

35 waiting to assume ownership of the targeted message

object's lock in step 608. The locking unit 46 preferably

performs step 608 by inspecting the semaphore associated

with the targeted message object 52. If no other task is

506, the locking unit 46 locks the targeted message object 52 40 waiting to assume ownership, the locking unit 46 removes
by inserting a new lock structure containing the correspond
ing message object ID into thc !ist of locked message
objects. Next, the locking unit 46 returns control to the issuer
of the lock request in step 518, after which the preferred
method ends.

45

the corresponding lock structure from the corresponding

port object's !ist of locked message objects in step 610,

thereby unlocking the targeted message object 52. After step

610, the locking unit 46 returns control to the issuer of the

unlock request in step 614, after which the preferred method

ends. If anther task is waiting to assume ownership of the

If the locking unit 46 determines in step 504 that the
targeted message object 52 is already locked, the locking
unit 46 next adds a reference to the lock request issuer to the
corresponding lock structure semaphore in the !ist of locked
message objects in step 510. Preferably, the semaphore
provides a FIFO-ordered lock wait !ist that indicates the
client task ID or the server task ID of each task that is

targeted message object's lock in step 608, the locking unit
50

46 removes the reference to the client task 32 or server task

34 at the front of the semaphore's lock wait !ist in step 612.

waiting to lock the targeted message object 52. After step
510, the locking unit 46 determines in step 512 whether the 55
issuer of the currently-considered lock request is next to
receive ownership of the targeted message object' s lock. In
the preferred method, the locking unit 46 performs step 512

Following step 612, the preferred method proceeds to step

614.

While the present invention has been described with

reference to certain preferred embodiments, those skilled in

the art will recognize that various modifications may be
by determining whether the ID of the issuer of the currently
considered lock request is at the front of the lock wait !ist.
If the issuer of the currently-considered lock request is not
next to receive ownership of the targeted message object's
lock, the preferred method remains at step 512.

provided. For example, the message transaction unit 44
60

Once the issuer ofthe currently-considered lock request is
next to receive ownership of the targeted message object's 65

lock, the locking unit 46 determines whether an unlocking
request has been issued in step 514. If no unlocking request

could maintain the pending send message !ist, the pending

receive message !ist, or the pending reply message !ist

without maintaining FIFO order. This and other variations

upon and modifications to the preferred embodiments are

provided for by the present invention, which is limited only

by the following claims.

1

2

3

4

25
5,590,334

APPENDIX A

"NuKERNEL ERS" March 28, 1994

- 44 -

26

PATENT

27
5,590,334

NuKernel ERS
Preliminary and Confidential

Macintosh System Software
Apple Computer, Inc.

Revision: Alpha 0.22
March 28, 1994 Edited:

Direct comments to the NuKernel Team:
Manager: Bill Bruffey
Address Space Management: David Harrison
Agents, IDs, Pools, Teams: Russell Williams
Messaging, SCSI: Tom Saulpaugh
Tasking, Events, & Interrupts: Wayne Meretsky

28

Copyright 1992, 1993, 1994 Apple Computer, Inc.Need to Know Confidential

5,590,334
29 30

About Nu Kernel .. 2
Kernel Objects And IDs .. 3
Naming .. 5
Execution - Tasking And Interrupts .. „ 6

About Execution „ ... 6
About Tasks .„ .. „ „ „ 7
About Task Scheduling .. „ 8
About Software Interrupts ... 9
About Privileged Execution .. 9
About Synchronization „ .. 10
About Interrupts .. 10

Teams .. 12
Address Space Management ... 13

About Addressing .. „ 13
The System 7 Addressing Model .. 14
The NuKernel Addressing Model ... 14

Multiple Address Spaces ... 15
Areas ... 15
Paging.„ ... 15
The Kernel Band ... 16
Global Areas ... „ 16
IJO Coordination ... 16
Addressing And Execution ... 17
Inter-Address Space Access .. 17

Synchronization - Event Groups ... 18
Messaging ... „ 19

Messages ... 19
Client-Server ... 19
Transactions .. 19
Moving Data ... 20
Ports And Objects ... 21
Sending Messages ... 22
Receiving Messages .. 22
Replying To messages .. „ 23
Message Types ... „ 23
Canceling Asynchronous Message Operations „ •••••••••••••••••••••• 24
Locking Message Objects „ ... 25
Filtering Object Messages „ „ ... 27

Filter Names „ „ .. 28
Filter Ordering ... 28

Kernel Agents .. „ ... 30
Accessing Agents .. „ .. 30
Kinds Of Agents „ .. 30
Installing Agents ... „ 31
W riting And Linking Agents „ .. 31

Timing & Timers .. 32
Measuring Elapsed Time .. 32
Suspending Execution ... 32

March 29, l 994 Copyright 1992 Apple Computer. Inc.

5,590,334
31 32

Asynchronous Timers ... 32
Realizing the Value „ „ „„ .. „ „ „ ... „ „ ... „ „.„ „ 33

Phased Releases „ „ .. „ „ „.„ 33
About the API „ „„.„.„„ „ „„.„„„.„„.„ .. „ „ .. „„„„„.„„„„„.„„.„„„„„„ 36

M68000 Calling Conventions „ „„ „ .. „ ... „ 36
PowerPC Calling Conventions„„ „„„ „.„„„„.„„.„ .. „„„ „ „. 37
Stack Space „ ... „ ... „ „ „ „„ „ „ .. „ „. 37
Addressing „ „ ... „ „ „ .. „ 37

Some Basic Types „.„.„. „ „.„ „ „ ... „ „. „ „. „„ „„„„ „„ „„ „„ „ ... „. „„„ ... 39
Miscellaneous Types „.„ .. „„„.„ „ „„ ... „„ „„„„„„ „ „ 39
Parameter Block Versions .. „ „ „ 39
Duration „ .. 39
Time .. 40
Ref „ ..•••... „ ... 40
KemclID„ „„ „ „„ „ .. „ „ „„ „.„ 40
Kemelltcrator „ „ „ „„ „ „ „ „ „. „ „. „ „„ „ ... „ „ „„ „ „ .. „. „ ... „ „. „ ... „. „ .. 41

Errors .. „ „ „ „ „ 43
Gencric Errors .. „„„„„„ .. „.„.„„„„.„.„„„„ .. „„„.„„„.„ „„„.„ ... „ „ 43
Specific Errors ... 43

Team Management „„ ... „ „ 44
Creating Teams „ „ „ „ ... 44
Deleting Teams „.„.„ .. „ „ „ „ „ 44
Obtaining The Current Team ID „„„.„„.„ „ „ „.„„„„.„ .. „ „„ „ „ .. „.„.„„„ „ ... 45

Task Management „„„.„ ... „ „ „ „„ „ .. „ ... „ 46
About Task Hierarchy „„„ „.„ .. „ .. „ ... „ „ „ ... „„. „„ .. „ „„„„.„.„.„. „„ „. 46
About Task Scheduling „„ .. „ ... „.„„ „ ... „.„ „„.„ „ .. „ „. 46
About Task Parametersand Results„„„„„ „.„„„ „ 47
About Task Termination „.„ „ „ „. „ „ 4 7

The Tasking SERVICEs „„„„ .. „ ... „ „.„.„ ... „„ .. „ „ ... „„„ „ .. „ „.„ „„ 49
Creating Tasks „ „.„ ... „.„ „ „ „ 49

Setting a Task's Static Context...„„„„„„„„.„ .. „ .. „„„ .. „ „„„ „.„.„ 50
Starting A Task That Was Created Suspended „.„„ „ 51

Terminating A Specific Task „„ ... „„.„.„ „„„„„„„„ .. „„.„.„ ... „.„„.„„„„„ .. „ ... 51
Obtaining The ID OfThe Current Task „.„.„„ .. „„ „ „ .. „ 51
Detennining The Amount Of Stack Space „ „ ... „ „ 51
Obtaining Information About A Task „„.„„ .. „.„„„„„„.„„„.„„ „„.„„„„.„„ .. „ 52
Setting A Task's Execution Priority „ „„ „.„ „.„.„„ .. „ .. „„ „„. 53
Iterating Over Task IDs „„.„„ .. „„„„„ „.„.„„ „.„ „„ ... „ „„„ 53

Exceptions „ „„ ... „ ... „.„ „ „„ ... „ „ „ 55
About Exception Handlers ... „.„.„ „ ... „ ... „„ „ „„.„.„ „ ... „ 55
Exceptions Within Exception Handlers .„„„„„ .. „ .. „„.„„.„„ ... „ .. „„„„ „„. 56
Exception Handler Declarations ... „ „ „ „ „. 56
Installing Exception Handlers „ „„. „„„„.„. „„„„ .„„ „ „ 56

Software Interrupts „„.„ „ „ „ 57
Controlling Software Interrupts „ „.„.„ .. „ „„ ... „ „ „ „ „ 57
Querying The Level Of Execution „ ... „ ... „ ... „„ „.„ „ „„ 57
Software Interrupt Handlers „.„ „ „„ „. „ ... „ „ „ .. „.„ 58
Specifying Software Interrupts „„ „„ „ .. „„.„ „ .. „„„ „ 58
Sending Software Interrupts„ „ .. 58
Deleting A Software Interrupt... „.„ „.„. „„„ „„. „ „ .. „ „ „„ .. „ „ „. 59

11 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
33 34

Hardware Interrupts „ ... „ .. „„ „ ... „ .. „„.„ .. „„ .. „„ „ „ .. „ ... 60
About Interrupt Handlers .„„ ... „.„„„.„ „„„„.„„ ... „„ „.„„„ .. „„ „„„ .. „„„„„„„„ „.„ 60
Designating Interrupt Sources „„„„„„„„„„„„ „„ „„ „„„„ „„„„ „„„.„„„„„ ... „„ „.„ 60
Exceptions Caused By Interrupt Handlers „„„„„.„„.„ .. „ .. „ .. „.„ „ .. „„„„„„. 60
Execution Context Of Interrupt Handlers „„„ „„„„„„„.„ „„„ „„„„„„„ „„„„.„„ ... 61
Arbitrating for Interrupts „„„„„„„„„„.„„„.„„. „ .„„„„ „„„„„„„„„.„„„ „„„„„„„„ 61
Parameters To Interrupt Handlers „„„.„„.„„.„„ .. „„„„.„„„„„„„„„.„„„„„.„.„„„ 61
Installing Interrupt Handlers „ „.„. „„„„„ „„.„„ „.„„„.„„„„„„ .„„.„. „.„„.„„ „„.„„ 61
Removing Interrupt Handlers .. „„.„ „ „„ „.„ „ „ „. 62

Secondary Interrupt Handlers .„.„„„ „ .. „ „. „.„„„ .. „.„„ „ „„„ .. „ „. „. „ ... „„ .. „„.„ „. 63
About Secondary Interrupt Handlers . „„„„„„.„„ „„„„„.„„ .. „„„.„„.„„ „.„ „„„ „„ 63
Exceptions In Secondary Interrupt Handlers „ .„ „ „ „„ „ .. „.„„„„„„„ 63
Queuing Secondary Interrupt Handlers.„„„.„„„.„.„.„„„„„„„.„„„ ... „„„„„„ .. „„ 64
Calling Secondary Interrupt Handlers„„„„„„.„ ... „„„„.„.„.„„„„.„„.„„„„„„„.„. 64

Event Flags „„.„.„ „ ... „„„.„„„.„ „.„„.„ „ .. „ ... „ „ „ .. „ „ .. 66
Creating Event Flag Groups.„„„„„„.„.„.„„„„„ ... „„„„„.„„„„„„ „„„.„.„„.„ .. 66
Deleting Event Fiag Groups ... „„„„„„„„„„„.„„„„„„„„„„„.„„„ „„„.„„„„„ 66
Setting Event Flags „„„„„„„.„„„„.„„. „.„„„„„ .. „.„„„„.„.„.„„.„ „ „„„. „„. „„„ 66
Clearing Event Flags. „„.„„„„„„„„„„. „„„„„„„ .„„ ... „„.„ .. „„„„.„ .„ „„„„.„„„ 67
Examining The Value Of Event Flags „„.„„„.„„„„„„„„„„„„ „„.„.„„„„ .. „„ 67
Waiting For Event Flags To Become Set.„„„.„„„.„„„„.„„.„„„„.„.„„„.„„„„„„ 67
Using Event Flags As Semaphores „„„„„„„„.„„„ .„„„„„„„„„„.„„. „„„„„„„„„. 68
The Processing Of SetEvents „„„„„„„„„„„„„„ „„„„.„„„„„„ „.„„„„„„„„.„„ .. „. 68

Event Notification „ .. „ „„ „„„.„.„.„.„ .. „.„„„„„„ .. „ „.„ „ ... „ „„.„ .. „„. 69
Event Notification .. „ ... „„„„„.„„„„„ „ .. „„„„ „ ... „„ .. „ „ „ .. „ ... „ .. 69

Timing Services „„ ... „.„ .. „.„ ... „„„.„ „ .. „„ ... „„„„.„ „ „.„ „ „ .. 70
Timer Accuracy ... „. „„.„ .. „.„ ... „ ... „.„ „„„.„ „ „„.„ .. „.„ „ .. „. 70
About The Time Base „„.„„„„„„.„„„ „„.„„.„„„„„.„„„„„.„„.„„„ „„„„ .„„.„„„„ 70
Timing Latency . „ .. „ „ ... „ .. „ „ „ „ „ „ ... „. „. „ „ „ „. „ .. 7 1
Timer Overhead . „. „. „.„. „ „„ „„„ .. „„. „ „ „ .„ „ .„ „„ „„ „„ „„„ „ „„. „ „ .. „. „. „„ „. „„ „ „ 7 1
Obtaining The Time „ „„ „ „ „. „.„ „„ „„ „ „ „ „ „„ „ „„. „ „ „ „ .„ „ „. „. „ ... „ „. „ „ „ „. „„ „. „ 71
Setting Timers To Expire In The Past.„„„„„.„„.„„.„„„„„„„„„„„„„.„„.„„„„„. 71
Synchronous Timers ... „„„ .. „.„.„ ... „ ... „„.„„ .. „ ... „ ... „ .. „„ ... „ .. „ „ .. „ „ ... 7 1

Synchronous Timers With Absolute Times „„.„„„„„„„„„„„„.„„„.„„„. 72
Synchronous Timers With Relative Times .„„„„„„„„„„„„„„„.„„„„.„„ T2

Asynchronous Timers .. „.„ .. „ „ „ ... „ .. „ „.„ ... „ .. „ „ „ .„ .. „.„ .. „ 73
Interrupt Timers „„.„ „„„„„ ... „„ .. „„.„.„„ „.„ „„ ... „ .. „ „ „.„„ ... „. 73
Canceling Asynchronous Or Interrupt Timers „.„„.„„„.„.„„.„.„„.„„„.„„ .. „„ .. „ 74

Address Space Management „ .. „ .. „„„„„.„„ „.„„.„ „ .. „ „.„„ .. „ „ „.„ 75
Basic Types ... „„ ... „ .. „.„ ... „.„„ .. „„„ „„.„„„„„ .. „„ „„„ .. „ .. „ „ .. „ ... „ 75

Static Logical Addresses „ .. „„„.„„„„.„ .. „„„„„„„.„„„„„„„„„„„„„„„„„ 76
Address Space Control .. „ ... „ „„ .. „ „.„ .. „„ „„„ „„.„ .. „ ... „ ... „ 76

Creating Address Spaces „„ „ „ „ „ .. „„ „„.„„ .. „. 77
Deleting Address Spaces .„„„„„. „„.„ „ ... „„.„„ .. „. „„„. „ „„„„.„.„.„„„ 77
Obtaining Information About An Address Space .„.„„„„.„ .. „„.„.„„.„„. 77
Iterating Over All Address Spaces „ .. „ „.„ „.„„.„ „.„„„„ „„. 78
Logical Page Size .„„„.„„„.„.„„„„„„ .. „ ... „.„„„„„.„.„„„„„„„ .. „ .. „„„.„. 78

Area Control. „.„„„„„„„ „ „ .„. „.„„.„„„„„„ .„„„ „ „„„.„„ „ „ „„.„„„„ .. „ 79
Creating Areas „ .. „ ... „ „ „.„ ... „ „ „ „. 79
Deleting Areas„„„.„„„„„„„„„„„„„„.„.„„„.„.„„.„„„„.„.„„„.„„„„„„„„ 81

March 29, 1994 Copyright 1992 Apple Computer, Inc. III

5,590,334

35 36

Obtaining Information About An Area „ 81
Iterating Over All Areas Wirhin An Address Space „ .„ 82
Changing The Access Level Of An Area ... „„ „ „ .. „ 83
Finding The Area That Contains A Particular Logical Address „. 83
Using Areas To Access Large Backing Stores „ „„ „.„ ... „. 84

Memory Control .. 84
Obtaining Information About A Range of Logical Memory „ „ 84
Data-To-Code „ .. 85
Preventing Unnecessary Backing Store Activity „ „ „ 86

Memory Control In Association With I/O Operations„„ „.„ „ „ 86
Preparing For I/O .. „„„ „ .. „ ... „.„„„„„.„ .. „.„ .. „„„.„„„„„ .. „„„.„„„.„ 87
Finalizing I/O .„ .. „„„„.„„„.„„„ „ ... „.„„„„ „ „.„„ „ „„„„„„„. „„„. „ „.„„ .„„ 90

Memory Sharing .„.„„„ .. „„„„. „.„„. „.„ „ „„. „.„.„ ... „ „.„ „ .„„ „ .. „. „ .„. „ .. „ „. 91
Global Areas „„„.„„„ „„„„ .. „ .. „„„. „ 91
Client-Server Areas „ „.„„„„„„ „„.„„.„.„„.„„ ... „ .. „„„„.„„.„„„„.„. 91
Mapped Access To Other Address Spaces „„„„„„„„ „„„„„„„ .. „ .. „ 91
Copying Data Between Address Spaces „.„„.„„„„„.„„„.„„„.„„„„.„„„. 93

Memory Reservations ... „ „„„„„„„ ... „„ „.„. „„. „ .. „„. „„„ ... „.„.„. „ ... „. „. „ „. „ .. „.„ 94
Creating Memory Reservations „„ .„„„ „„„„„„.„„ .. „ ... „.„„ „ .„ „ „. „ „ .„„. 94
Deleting Memory Reservations „„„.„„„„.„ ... „„„„ „„„„.„„ „ .„ .. „. „„„.„. 95
Obtaining Information About A Memory Reservation „„„„„„„„„„.„„„ 95
Iterating Over All Memory Reservations Within An Address
Space .„ .. „ .. „ „ „ „ „ .. „ „ „.„ „ „ 96

Memory Exceptions „ .. „ ... „.„.„ „ „.„.„.„.„„ .„ .. „ ... „ „ „ „ 97
Backing Object Providers „„ „„„„ .. „.„ „ .. „„. „.„„.„ „ „ .. „„„„„„„„ .„ ... „„ „ ... 98

Registration ... „ ... „ ... „ .. „ „.„„ „ ... „ „ „ „ „ .. „ „ 98
Acquiring A Physical Memory Page From The Memory System .„„„„. 99
Retuming A Physical Memory Page To The Memory System .. „.„.„„„ 100
Unmapping A Physical Page„.„„„„„„„„„„„„„„.„„.„.„„„„„„„.„„ .. „.„. 100

Backing Object Messages „.„„„ „ .. „ ... „„.„„.„„.„.„.„„„.„.„.„.„„„„„„„.„.„ .. 100
General Message Format . „„ „.„ „„„„„„„ ... „„„ ... „„„.„ „„.„ „„„ „ 10 l
Arca Creation ... „„.„„.„„„„„„. „„ „ ... „ ... „ ... „. „„„ „ „„ .. „ .„„„„. „. „„ .. „ 102
Area Deletion .„„„„ ... „ „„.„„„.„„„„„„ .. „„„„.„ .. „„.„„.„„„ „.„.„ ... „ 103
Request To Relinquish Physical Memory Page ... „ ... „ .. „.„„„„„ „.„„ .. 104
Opening A Scratch Backing Object „„„„„„ „.„. „.„ .„„ „„„„„ .„ .„„„ .„„ ... 105
Closing A Backing Object .. „„„„„„ .. „„„„„.„„„„„ ... „ .. „„„„.„„.„„ „„ 106
Reading From A Backing Object „ „ „ .. „„„„„ .. „.„„.„„ „„.„„„.„.„„„ .. l 07
Writing To A Backing Object...„ .. „„„ .. „„ .. „„„„„ .. „„„.„„.„ .. „„.„„„.„„ 108
Page Aging Notification„.„„„ .. „ ... „.„.„.„.„„„„ ... „„„„„„„.„„ .. „„.„.„„ .. 109

Pools „„„„.„ .. „ „„ „ .. „.„ .. „„.„ .. „ .. „ „ .. „.„ ... „ „ „„„.„. J 11
Creating Memory Pools „„„„„„„„„ .. „„ .. „„ „.„„„ „.„„.„„„„„„„„„„ .. „„. „„„„„ „ 11 1
Allocating Memory From Pools .. „„.„„„„„„„ „.„ .. „„ .. „„„„„ ... „.„„„„„„„„„. 112
Retuming Memory To Pools„.„„.„„„„.„.„„.„.„„„„„„„„ ... „.„.„.„„„„„„„„„„„. 112
Obtaining Information About A Pool „„„„„.„„ .. „„„ .. „ ... „ .. „ „„„„„„.„ .. „„„. 112
Using The Kernel Pools „„ .. „.„„„„„ .. „„ .. „„„„ „„„„ .. „„.„ ... „„.„ .. „.„.„„„„„„ 113
Growing A Pool ... „„„„„ .. „ .. „ „„ .. „„.„„„„.„„„„„„„ „„„„.„.„„„„„„„„„„ 114

Messaging „„.„.„„„ „ .. „„ „ .„„„ .. „ „.„ „ „„.„„„„„.„„„.„.„ .„. „.„ „„ ... „.„ „. „ „. „„ .. „ .. „ 115
Message Port Management „„ .. „„.„„.„„.„.„„„„. „„„„„„.„„„„ ... „„„„ .. „„ „„.„ .„ 115

Creating Message Ports „„„ .. „.„ ... „ „„„ .. „„.„„ „„ „ .. „„ 1 15
Deleting Message Ports .„.„.„„„ .. „ „.„„„„„„„.„.„„.„„ .. „„„.„ „ .„.„ „„ .„„ 116

IV Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
37 38

Changing The Asynchronous Operation Limits Of A Port 116
Obtaining Information About A Port „ „ „ „. 116
Iterating Over Message Ports „ „ ... „ ... „„ „ „„„.„ 118

Message Object Management „ „„ „„ „.„.„„ „ „ ... „.„.„ .. „„ .. 118
Creating Message Objects.„ „ ... „„„ „ „.„ .. „ „ .. „„.„ .. „ 119
Deleting Message Objects „ .. „ ... „.„ „ „ „ ... „ 119
Locking Message Objects „ „ „ „„„ 120
Unlocking Message Objects „.„ „ „ 120
Obtaining Information About An Object..„ „.„ „ 120
Changing Information About An Object .. „.„„„ „.„ l21
Iterating Over Objects „ .. „ ... „.„„„ .. „„ „ „ .. „ „„ 121

Message Filter Management „„„ .. „„ .. „ „ ... „ „ „ „„„.„ „ 123
Installing Filters .. 123
Removing Filters „ „ „.„„ „ ... „ „ „ 124
Obtaining Information About A Filter „ „.„„„„.„ „ .. „ „ „„. 124
Iterating Over Filters „ „ ... „ „„.„ „ 125

About Message Transactions „ „.„„.„ .. „.„ „ „ „ .. „ .. „ .. 125
Message IDs .. „.„„ .. „„„ „ „.„„ ... „„„ „„ 125
Message Types „„ ... „„ .. „.„„„.„„„.„„ ... „„„„„ .. „„ „.„„.„„.„„„.„„„„„. 126
Kernel Messages ... „„„.„ „ „ „ „„ „ ... „ „ .. „ 126

Sending Messages „ „ „ ... 127
Send Options „„ „ .. „„ .. „„ „„ .. „„„„.„ „ „ „ „ 127
Synchronous Sends ················-·········-···-·-·· 128
Asynchronous Sends „„ ... „ „ .. „ „„„„.„„ ... „ ... „ „ 130

Receiving Messages „ .. 131
Receive Options .„„„ .. „„„„„„„ .. „ .. „.„„ .. „„ ... „„ ... „„.„„ .. „.„.„ „„ 132
Message Control Blocks „.„.„.„ „ „ „ .. „ ... „ „„ .. „„„„ „ 132
Receiving Messages Synchronously „„ „„.„„„„.„„„ ... „„„„„ ... „„.„ .. „ 134
Receiving Messages Asynchronously „ 135

Accepting Messages „ „ •......•.••....•....•.....•.•••••••••••••••••••••••••• 135
Replying To Messages „„„.„.„ „.„„ „„„ „ ... „„.„ .. „„ „.„ .. „.„. 138
Replying To A Message And Receiving Another „.„ „ „.„ 139
Forwarding Messages „ ... „ 139
Continuing Messages „ .. „ ... „ .• „ „ „ .. 140
Canceling Message Requests „ „„„„„„„„„„.„.„„.„„„„.„ .. „„ .. „ 140

Send Cancellation „ ... „„ „.„.„ .. „„ „.„ ... „ „ .. „„.„„„ 141
Receive Cancellation „ „ „ .. „ „ 142
Client Initiated Cancellation Messages „ .. „„„.„ ... „ 142

Client Termination Notification .. „ „„„ „„„ ... „„ „ „ „ 143
Registering An Object's Client....„ „.„ „ ... „„ .. „„„ ... „ ... „„ .. „.„. 143
Client Termination Messages„.„.„„.„ „ .. „ „ „ „„„. 143

Agems .. „„„ „.„ „ „ ... „ „„.„ „ „ 144
Installing Agents .. „ .. „ .. „ „ „ .. „ .. „ 144
Removing Agents .. „.„ ... „„„„„„ .. „ „ .. „ : .. 146

Registry .„ „.„.„.„ „.„ „.„.„„.„ ... „ ... „ .. „ „ „ „„.„„ ... „ A
Setting the Registry Object ID „ .. „„ „ „„„„„ .. „„„„„„.„„„ .. „„.„„„.„„.„„ A
Getting the Registry Object ID „„.„„„„„„„„„.„„„„„„„„„„„„ .. „„„„„„ „ .. „ A

Restrictions On Using Kernel Services„ ... „„.„.„„.„„.„ ... „„„.„ .. „.„.„„ ... „„.„.„„„„.„„„ B
Services That Can Be Called From Task Level „ „„„ .. „ .. „„„„.„.„ B
Services That CANNOT Be Called By Non-Privileged Tasks„„ „„„.„„.„ .. „ B

March 29, 1994 Copyright 1992 Apple Computer. Inc. V

5,590,334

39 40

Services That Can Be Called From Secondary Interrupt Handlers B
Services That Can Be Called From Hardware Interrupt Level D

Compatibility .. E
24-Bit Addressing „„ ••• „„„„„.„.„„„„„.„„„.„„ ... „ „„.„ „„.„. E
Debug Utilities „„„.„.„ .•............... „„ „„.„„.„„„.„ „ „ „ ... E
Delay „„„• „•.•.•.... „ „ ..•..• „„ „•......... E
The Device Manager ... „ „„ „„ .. „ „ „ „• „„„„„„„ F
Exceptions .. „. „ „„ ... „. „ „ „. „ „ .. F
Interrupts „ „ „ ... G
Memory Management ... „ .. „ „ G
Power Management ... G
Privileged Instructions „„„„ .. „ „ •........................... „ „ „ „ ... H
The SCSI Manager .. „„ .. „ „ „„ „ l
Stack Checking .. „ „ „ K
The Time Manager ... „ ... K
The Vertical Retrace Manager „„„ „ .. „ „ ... „ ... „„ .. „ „„„ M
Virtual Memory „ „„„ „„„„ .•......................... „„ M

Issues „ .•.••. „ ... „ •.•..•••. „•. „.„•...............................•.... „ „ „ .. 0
Naming „ •.. „ „• „ „••....... „ ... „ „ O
Security ... „ .. 0
Booting „ „„„„ „„„„ „ „ „ 0
Portable Svstems „ ... 0
SCSI .„„ .. :.„„.„„.„ .. „ ..•...... „„ .• „„„.„„„„„„ „ „ .. „ „„.„ .•. „„„„ .. „ 0

vi Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
41 42

NuKemel Overview

March 29, 1994 Copyright 1992 Apple Computer, Inc.

5,590,334
43 44

ABOUT NUKERNEL

NuKernel is a modern micro kerne! designed expressly towards the medium- to long-term
needs of the Macintosh operating system.

Within thc last five years, the micro kerne! approach to system implementation has been
used successfully throughout the industry to provide a small OS core that is highly
portable in its implementation while also presenting a machine independent interface to
all other system and application software. This approach allows successful porting to
various platforms with minimal impact on the non-kerne! portions of the operating
system, ToolBox, and application investment.

Micro-kemel design is, by definition, a minimalist approach. If a given feature is not
required tobe part of the kerne! it is implementcd elsewhere in the system. File systems,
dynamic linked libraries, device drivers and other fairly high level OS components are
implemented on top of thc kernel's features.

Unlike El Kabong, QuickTime®, Cube-E and others. ;\luKernel is neither a reference
release nor an extension to System 7. Rather, it is a set of enabling technologies that.
when integrated into the system, satisfy a number of growing market needs and concems
for both developers and end-users.

NuKernel provides support for modern operating system features including:
Preemptive multi-tasking
Synchronization primitives
Multiple !arge, sparse address spaces
Memory mapped files
Demand paged virtual memory
Memory protection
Object based message system
Timing services

The effort required to integrate NuKernel with System 7 in a meaningful way is the
subject of several investigations throughout MSAD. Approaches and methods of
integrating System 7 and :'.'luKemel are not discussed here per-se. The NuKernel design
team did, however, have many of the integration issues in mind while designing and
implementing NuKernel. Where appropriate, those issues are discussed if they help to
clarify the usefulness of a particular feature.

This document is presented at three levels. First is an overview of the major features and
concepts of N uKernel. This is followed by a comprehensive technical presentation of the
kernel's interfaces. Finally, there are appendices that cover remaining issues and
compatibility.

2 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
45 46

KERNEL OBJECTS AND 105

Most interfaces to N uKernel fall in to one of three categories; those that create
something, those that manipulate something previously created, and those that delete
something. These things are collectively referred to as kemel objects.

The kerne] objects include:
Address spaces
Address areas
Memory backing objects
Tasks
Teams
Timers
Event groups
Software interrupts
Message Objects
Message Filters
Message Ports
Messages
Agents

This document describes how to create kerne] objects of various types. lt describes their
properties and behaviors. It discusses how to manipulate and destroy kerne! objects and
describes when they are destroyed as the side effect of some other operation.

You cannot directly manipulate kerne! objects because the underlying data structures are
not apart of the programmatic interface (API) to the kerne!. In certain implementations,
the objects themselves may not be directly addressable to software other than the kerne!.

When the kerne! creates a kerne] object it generates an identifier (ID) for that object. IDs
are 32-bit values that uniquely designate a particular object. Functions that create an
object return the ID ofthe newly created object. Functions that act upon or destroy an
object require that you pass the ID of the kerne] object that is to be acted upon or
destroyed.

IDs are completely opaque. The techniques used to associate an ID with the underlying
object are private to the kerne!. IDs cannot be used to access the underlying data
structures. The actual memory used to store kerne] objects is not necessarily in the same
address space as kerne! clients.

Presently, marketing input does not require NuKernel to implement any sort of low level
OS security. IDs, although opaque, can be forged by simply trying to use every possible
combination of 32-bit values in conjunction with a particular kerne! function call.
However, ignoring clandestine programs, IDs do allow some limited security because
only the creator of a kerne! object has the ID of the object and the creator can, therefore,
limit access to the object by controlling access to the ID.

Because NuKernel does not support persistent objects (objects that survive across system
boots), it has no need for persistent IDs. IDs are unique only for the duration of a

March 29, 1994 Copyright 1992 Apple Computer. Inc. 3

5,590,334
47 48

particular boot. Additionally, IDs are unique only to a given kind of kerne! object. That
is to say there is a separate flat ID space for each kind of kerne! object. If you create two
separate kinds of kerne! objects (e.g., a task and a message port), it is possible that the
same ID value will be returned for each of them. It is the responsibility of the
programmer to ensure that the ID of a particular kind of kerne! object (e.g., task) is used
only in conjunction with operations on that kind of object. If you perform message
operations on task !Ds there is a slight chance that, because the task ID is also a valid
message ID, undesirable side effects may result.

Using an ID at'ter the underlying object has been implicitly or explicitly deleted is
erroneous. Typically, the kerne! detects such usage and returns an error. However, !Ds
arc subject to reusc when the kerne! object to which the lD was originally assigned is
reclaimed. Every effort is made to minimize the amount of reuse to assist in the detection
of programming errors and to improve system robustness.

The mechanisms for the generation and decoding of IDs that are employed by NuKernel
are not available to its clients. Exposing the interface to the ID implementation would
compromise the limited security currently available and prevent the addition of additional
security in the future.

4 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
49 50

NAMING

The kernel's consistent use of !Ds is motivated by the desire to isolate the underlying data
structures for reasons of both robustness and security. One problem with this approach
concems entities that must be well known throughout the system. Historically, solutions
to this problem have one of two forms: place the !Ds of these entities in weil known
locations (i.e., low memory) or provide a service whereby the IDs can be found through
some naming conventions.

The design ofNuKemel has always presumed the inclusion of some sort of name based
registry imo which these distinguished !Ds would be placed at the time they are created.
The registry would support operations to create, delete, and lookup entries.

V arious issues, including the topology of the name space and the international problems
caused by any sort of naming, have caused this issue to be deferred from the functional
interface of NuKemel for the present time. This section of this document will be
completed when these issues are resolved.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 5

5,590,334
51 52

EXECUTION -TASKING AND INTERRUPTS

The tasking and interrupt mechanisms of NuKemel formalize the en vironments for
execution of software by the processor. This section provides an overview of these
concepts.

About Execution

Much of the confusion about System 7 programrning is a result of ad-hoc rules governing
execution environments. In System 7, applications have one set of rules while their VBL
tasks, Time Manager tasks, I/O completion routines, etc., all have different rules. A
significant amount of the NuKernel design is devoted to the manner in which code gets
executed. Considerable effort has been spent on normalizing these environments and
ensuring that high-level language software can be used directly with no interfacing glue.
This part of the design is largely intangible in that there is littlc or no implementation part
behind thc design. Mostly, the design details lhe environments in which execution
happens. These environments include:

Task Level - This is where nearly all code is executed. Application
programmers typically are only concerned with task level execution. The
processor is executing at task level whenever it is not processing interrupt
level code.

Hardware Interrupt Level - This is usually of concem only to driver
writers and certain intemal OS software developers. Hardware interrupt
level execution happens as a direct result of a hardware interrupt request.

Secondary Interrupt Level - This is similar to the deferred task concept in
System 7; it is sandwiched between hardware interrupt level and task
level. The secondary interrupt queue is filled with requests to execute
subroutines that are posted for execution by hardware interrupt handlers
that need to perform certain actions but chose to defer the execution of
those actions in the interests of minimizing interrupt level execution.
Unlike hardware interrupt handlers that can nest, the execution of
secondary interrupt handlers is always serialized. For synchronization
purposes, task level execution may also post secondary interrupt handlers
for execution; these are processed synchronously from the perspective of
task level, but are serialized with aJI other secondary interrupt handlers.

Kernel Level - The rules and guidelines for certain portions of the kerne!
are different from those of any exported environment. The kernel's
environment will be covered in other internal documents and is not
discussed further here.

Each of these execution environments has common attributes. For example, whenever
any software is executing at task level it will be using the stack created for that task at the
time the task was created. A particular target processor's runtime model is fully
supported at all execution levels. For example, on M68000 based implementations, the

6 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334

53 54

AS addressing model (static data andjump table) is completely supported at all levels of
execution. This means that when you install an interrupt handler, the kerne! records not
only the PC of the interrupt handler but also the current value of AS. When your handler
is invoked, due to an interrupt, A5 will be updated to that recorded value. Thus, a single
consistent runtime model is enjoyed by all software regardless of execution level.

Of course different execution levels have different restrictions. Task level execution mav
make use of nearly any NuKernel, OS, or Too!Box service. Secondary interrupt and ·
hardware interrupt handlers are allowed only a subset of those services. Furthermore,
only task level execution is allowed to access memory that is not physically resident:
page faults at either hardware interrupt level or secondary interrupt level are illegal and
system fatal.

About Tasks

The primary unit of execution within NuKernel is called a task. This term is frequently
interchanged with the term thread in other operating system and/or kerne! architectures.

Tasks are used to vinualize the existence of the physical processor and provide the
illusion of many processors. each perforrning a different kind of work at the same time.
In a NuKernel based system, a separate task exists for each application. Additionally,
applications are free to create additional tasks if it is desirable to do so. The NuKernel
VO system is also based upon tasks with a separate task potentially used for each device
driver.

The processing resources available to a task are called the task's context. Context
includes general purpose registers (DO, AO, FPO, etc.) and special purpose registers
(CCR, FPSR, PC, etc.). Note that task context is processor dependent. A machine with a
floating point co-processor has more task context than a machine without; a PowerPC®
based machine has different context than a M68000 based machine.

Along with processor context, a task requires the presence of certain other resources.
These include the task control block and the task stack(s). The task control block is an
internal data structure that describes the task to the kerne!; it is onlv accessible to the
kerne! and is always referred to by a task ID. In addition each task has at least one stack
(stack utilization is described later in this document).

The process of ceasing the execution of one task and beginning the execution of a
different task involves saving the context of the forrner task and restoring the context of
the latter task. This cornbination of a context save and a context restore is called a
context switch.

The mechanics of context switching is relatively simple. However, the decision
regarding when to context switch and whom to context switch, collectively termed
scheduling, is rather complex. Scheduling logic is a key differentiating factor between
different operating system/k.ernel architectures.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 7

5,590,334
55 56

About Task Scheduling

NuKemel employs an event-driven, priority based, preemptive scheduler. Although that
sounds like a mouthful, it is really fairly simple.

Event-driven means that scheduling decisions are made coincidentally with certain key
events that occur within the system. Interrupts are one example of an event that drives
the scheduling process. Others include setting or waiting for a semaphore and sending or
waiting for a message. Note that these scheduling events are different from the OS,
ToolBox, and EPPC events which drive applications.

Priority based scheduling implies that each task's importance is used when selecting a
task for execution. A task's relative importance is specified by its priority. NuKemel
tasks have a priority bctween l and 31; the !arger thc value the higher the priority. Every
task is given a priority at the time it is created and a task's priority may be increased or
decreased at any time.

A task is eligible for execution whenever it is not waiting for somc operation to complete.
These waits can be either explicit as in the case of synchronous VO operations or implicit
as in the case of page faults. Tasks that are not eligible for execution are said to be
blocked upon some event. Many tasks may be eligible for execution but only one can be
executing at any instance. Under NuKemel, the task with the highest priority that is
eligible for execution is guaranteed to be the task that is executing.

Preemptive scheduling, as opposed to cooperative scheduling, conveys that it is the
system, not the currently executing task, which controls when scheduling happens. In
System 7, the scheduling of applications is purely cooperative and the resultant system
requires well-behaved applications if it is to function in a fashion that is pleasing to the
user; if an application fails to cooperate it can interfere with the operation of the entire
system. A preemptive system alleviates most of the need for cooperation. When the
event upon which a task is blocked occurs, that task is again made eligible for execution.
If that task has a priority greater than the currently executing task, a context switch is
performed and the higher priority task immediately resumes execution from the point at
which it was blocked.

Beyond preemptive scheduling, the NuKemel scheduler provides time-slice scheduling of
tasks at equal priority. If several tasks are eligible for execution at the highest priority,
each is allowed to execute for an intemally specified time called a time-slice. When its
time slice has expired, the currently executing task is context saved and the next task at
that sarne priority is context restored. Each task at this highest priority is given access to
the CPU in a round-robin fashion. No single task can starve the others unless it is the
only task at the highest priority.

Of course, time-slicing never interferes with the otherwise priority based scheduling
algorithms; it only has affect when several tasks are all eligible for execution at the same
priority and no higher priority tasks are eligible. Tf a higher priority task becomes eligible
for execution it will always get immediate access to the CPU.

8 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
57 58

NuKemel scheduling does not include specific support for real-time scheduling. You
cannot specify that a task is to execute next or that a task should execute at a certain time
or that a task should receive a certain percentage of CPU time. Thc NuKernel scheduler
does not contain support for deadline scheduling. Currently, a task's priority is never
adjusted implicitly by the kerne! as is done by the Windows NT® Boost/Decay
scheduling policy.

About Software Interrupts

In addition to the scheduling of multiple tasks on a single processor, the NuKernel
scheduler provides a mechanism used primarily for the execution of asynchronous
completion routines.

In System 7, an 1/0 completion routine associated with an asynchronous 1/0 request is
usually run at interrupt level and is completely a5ynchronous to the execution of the
application that started the 1/0. Unfortunately, this means that the completion routine
runs in a completely different environment than the initiator of the request. The
completion routine gets parameters in registers rather than on the stack. The completion
routine cannot access static variables or the jump table because AS is not sctup by the
system. Finally, the invocation of the completion routine is in no way related to the
importance of the requestor. Because the invocation happens at hardware interrupt time.
application code gets invoked in a completely uncontrolled fashion.

The software interrupt feature of the NuKernel scheduler allows a specified subroutine,
with specified parameters, to be executed within the context of a given task, but
asynchronously to that task's otherwise normal execution. A NuKernel based system uses
software interrupts to implement many hardware interrupt driven features of System 7
such as VBLs. Timers, 1/0 completion routines, ADB, etc.

Within a given task context, software interrupts are processed on a first-in, first-out basis;
they do not nest. When a software interrupt handler finishes and no other software
interrupts to that task are pending, the task simply resumes execution at the point prior to
the software interruption. A given task may enable and disable its ability to receive
software interrupts and interrupts are queued to the task until they can be dclivered.
Software interrupts do not affect the scheduling policies of a given task with respect to
other tasks.

Any task can send a software interrupt to any other task and this mechanism is used
throughout the kerne! to inform clients of request completion.

About Privileged Execution

Most software in a NuKernel based system is non-privileged. Non-privileged software
executes with the CPU in user mode. All applications run in user mode. Some kinds of
software (E.g., device drivers) are best executed in supervisor mode and are, therefore,
privileged. Privileged software has complete access to the machine with no sacrifice in

March 29, 1994 Copyright 1992 Apple Computer, Inc. 9

5,590,334

59 60

performance. Execution mode is an attribute of tasks; when a task is created vou rnust
specify whether it is to be privileged or non-privileged. ,

Privileged tasks always execute in supervisor modc. They have a single stack for all
execution and local variable storage. Non-privileged tasks may execute in either user
mode or supervisor rnode. Most all of their execution takes place in user mode.
However, because the kerne] always runs in supervisor mode, when a user mode task
calls the kerne! the kernel's execution takes place in supervisor mode. Therefore. non
privileged tasks have two stacks; one for use in user mode and one for use in supervisor
mode.

About Svnchronization

The preemptive nature of task scheduling requires explicit attention to task
synchronization. Synchronization of accesses to shared memory or I/O devices is
frequently the most difficult aspect of programrning in a multi-tasking environrnem.
NuKemel provides Event Groups to allow the synchronization of tasks around critical
sections. Event Groups are similar to semaphores and can be used to implement
traditionaJ semaphores. Event groups are discussed later in this overview.

About Interrupts

Interrupt handlers are subroutines that are invoked by the kerne! in response to a
particular hardware interrupt request. Interrupt handlers execute in supervisor rnode and
have access to a single interrupt stack. The possibility of nested interrupts can cause
several interrupt handlers to each be activated on the imerrupt stack sirnultaneously.

Interrupt handlers are forrnally registcred with the kernel. You do not install them
directly into a vector table. Only a single handler may be registered for any given
interrupt source and you cannot install a handler without first removing ehe previously
installed handler.

Interrupt sources are designated by a hardware dependent vector number. This number is
not related to the processor architecture's vectoring scheme. It is a simple enumeration of
the interrupt sources. Currently, a single enumeration is used for all Macintosh systems
supported by NuKernel. A second, different, enumeration will probably be created for
use with PowerPC based Macintosh systems.

The kernel's interrupt system design philosophy is driven by the desire to minimize
interrupt latency and, therefore. maximize responsiveness. This goal will not only enable
better real-time response but also allows greater 1/0 throughput.

On M68000 based Macintosh systems, the priority interrupt system disables a subset of
imerrupt sources whenever processing any interrupt. This means that the hardware
prioritization of devices governs the software prioritization of service. Unfortunately, thc
desirable prioritization is seldom that which seems appropriate when designing the
hardware and frequently changes from application to application.

10 Copyright 1992 Apple Computer. Inc. March 29. 1994

5,590,334
61 62

NuKernel provides a mechanism for performing real-time processing, in response to
interruptions, outside of interrupt level. This mechanism is called the secondary interrupt
handler. Secondary interrupt handlers are similar to deferred tasks in System 7.
Secondary interrupt handlers are queued by hardware or primary interrupt handlers.
When you queue a secondary interrupt handler you specify the handler and a set of
parameters with which it is tobe invoked. The handler is not called immediately, rather
the information is placed into the secondary interrupt queue.

In order to synchronize with interrupt level execution yet avoid disabling hardware
interruptions. task level software may also insert subroutines into the secondary interrupt
handling queue. The queue is always processed first-in, first-out and the execution of the
queued handlers is always serialized. Although hardware interrupts remain enabled and
hardware interrupt handlers will preempt secondary interrupt handlers, secondary
interrupt handlers cannot preempt one another.

The secondary interrupt handler queue is always emptied prior to running any ta~k level
software.

When writing device drivers that handle hardware interrupts, it is important to balance the
amount of processing done within your primary and secondary interrupt handlers along
with that done by your driver's task. You should make every effort to push processing
time out of primary interrupt level into secondary interrupt Jevel and. similarly, push
secondary interrupt level processing into your driver's task. Doing this allows the system
to be tuned so that your driver's processing time is balanced with the needs of other
drivers and applications.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 11

5,590,334

63 64

TEAMS

During the execution lifetime of any software, thar software will allocate and deallocate
many kerne! objects. When that software goes away, either normally or abnormally, the
system should reclaim any of thc kerne! objects that were not deallocated.

The locus of resource allocation and reclamation within NuKemel is called a team. This
term is frequently interchanged with the term process in other operating system and/or
kerne! architectures. We choose team over process because the term process is already
used and weil understood in System 7 Process Manager nomenclature.

A team is composed of tasks and other kerne! resources. The execution of those tasks
may create and destroy additional kerne! resources (including other tasks) during their
lifetime. Each of these resources is said to belang to the team. Teams are completely
passive. Teams da not execute instructions; tasks execute instructions and tasks belang
to a specific team.

Teams also designate a set of memory locations and associated values, col!ectively
termed an address space (the details of creating and controlling address spaces are
described later). Each team has access to exactly one address space. However, a single
address space may be shared by several teams. A given task, belonging to a given team,
executes within the address space of that team. The task can only access memory
locations associated with its team's address space. In this way, teams provide not only
resource reclamation but also memory protection.

The creation of a team retums a team ID. All subsequent operations upon the team
require that the team be specified by ID. When the team is reclaimed, all resources that
belang to the team are also reclaimed. Teams are reclaimed either explicitly (possibly by
their creator) or implicitly when all tasks with the team have terrninated. In this fashion,
problems of garbage generation are handled in a weil contro!led and easily understood
manner.

Extensions to NuKernel for protection, accounting and auditing mechanisms would apply
at the team level. That is, teams could be protected from each other, accounting limits
(CPU time, mernory size. etc.) could be imposed on individual teams, and audit trails
could be maintained for teams.

12 Copyright 1992 Apple Computer. Inc. March 29. 1994

5,590,334
65 66

ADDRESSSPACEMANAGEMENT

Addressing is such a basic concept in compurer systems that it is frequently taken entirely
for granted. However, as operating system and application software grow in cornplexity,
the manner in which rnemory is utilized becornes increasingly irnportant.

A significant portion of Nu Kernel is devoted to implementing a rich set of addressing aml
memory management rnechanisrns. These rnechanisrns provide the foundation for rnany
of the high level features desired in Macintosh systems: memory protection, memory
mapped files, and high perforrnance virtual memory.

About Addressing

Because so much about addressing is taken for granted, a brief ovei-View of terminology
and concepts follows.

An address space is the domain of addresses that can be directly referenced by the
processor at any given rnoment. A logical address specifies a location within an address
space. Logical addresses are unsigned in nature; the lower bound of a logical address is
zero, and the upper bound is the size of the address space minus one. For exarnple, in a 4
GB address space there are 232 (4 GB) distinct logical addresses for bytes, ranging from
zero to 232 - 1. The number of bits required to represent logical addresses (the size of the
address) is often used to denote the size of the address space. For example. a 4 GB
address space can also be called a 32-bit address space.

Some systems provide a single address space that is in effect for all software. Others
provide distinct address spaces for different software entities. This so-called multiple
address space rnodel provides isolation of software and restricted access to hardware
(collectively termed protecrion). When combined with the ability to use secondary
storage, usually hard disk, as an extension to a computer's physical rnemory (a technique
called virrual memory) the resultant memory model offers many advantages. These
include the ability to address !arge amounts of protected rnemory at a cost that in terrns of
both perforrnance and dollars is quite low.

There is an association between logical addresses and hardware. When the processor
references a given logical address there is an effect on the hardware. Usually, the
hardware is RAM, and the effect is to acquire and/or modify data in that RAM.
Alternatively, the hardware rnay be a device that provides some auxiliary function (such
as network access) and the effect is to control that device's operation. In simple memory
models, the association of logical addresses with hardware is statically determined by
how the hardware is wired to the processor. In the relatively more complex models
implemented by virtual memory systems, the association is made dynamically. Further.
the association can be extended to hardware not directly accessible by the processor, such
as secondary storage. Forming an association for a range of logical addresses is called
mapping. A range that has an association is said tobe mapped, and one that does not is
said to be not mapped.

March 29, 1994 Copyright 1992 Apple Computer. Inc. 13

5,590,334
67 68

Virtual memory systems require specialized hardware support for mapping. For
architectural reasons, rhis support hardware always forms mappings based on address
ranges rather than on a per-address basis. These ranges become the unit of mapping. If
those units are fixed-sized, as is the case for both '.\168000 and PowerPC architecrures,
they are called pages or logical pages. To provide address spaces with sizes greater than
the amount of RAM, the virtual memory system uses the support hardware to shuffle
RAM among different logical pages. Doing this on an as-needed basis is referred to as
demand-paging.

A reference to a logical address that is mapped to secondary storage. but whose data is
not immediately available in RAM. is referred to as a page fault. In response to a page
fault, the kerne! initiates the appropriate transactions to obtain the cornerns of the logical
page and then maps that page into the address space. With the fault repaired, the kerne!
causes the execution of the faulting software to resume at the point of the fault. The
entire effect of the page fault is transparent to the software that caused the fault.

The System 7 Addressing Model

System 7 provides an addressing model that is molded around a single, completely open
address space that provides no protection of software or hardware. Originally, this space
was shared by the system and one application; now it is shared by the system and
multiple applications. The Virtual Memory introduced by System 7 did not change this.
For compatibility reasons. Virtual Memory was not allowed to provide separate address
spaces or protection, and was forced to settle for extending the existing single address
space by about a factor of two. Virtual Memory's purpose is confined to preventing users
from having to buy more RAM. Internally, its method for RAM management
complicates the model for non-application software and introduces substantial address
space overhead.

Logical addresses may be either 24- or 32-bits, on a per-system boot basis. This
coexistence complicates both the intemal workings of the system software and the
implementation of third-party software, but has been considered necessary for backward
compatibility.

The simultaneous execution of multiple applications within a single, limited address
space means contention for memory among those applications. The Temporary Memory
scheme was introduced by MultiFinder (an earlier version of the Process Manager) to
provide an outlet for applications that need "emergency" dynamic memory allocations.
This is possible because, often, there is more memory where MultiFinder gets it.
Temporary Memory is really just a stop-gap measure because applications have no other
way to fully utilize the address space.

The NuKernel Addressin2 Model

The NuKemel addressing model is designed with modern hardware and software
architecture in mind.

14 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
69 70

Multiple Address Spaces

NuKemel provides operations to create and destroy address spaces. The contents of a
newly created address space are based upon a template maintained by the kerne!. This
template causes Slot Space, Frame Buffers, ROM, and the Kernel to be mapped into each
address space with appropriate access protection. The remainder of the address space is
devoid of content. ·

Areas

A range of logical address space that is mapped is called an area. Areas begin and end
on page boundaries. Operations are provided to create and destroy areas. The area
creator must specify the size of the area, how the memory content of the area is to be
derived and maintained and what access rights are available to various clients.

Areas can be derived from disk files or their initial contents may be unspecified. In either
case, the memory management system provides support for clearing the contents of the
area on a per-page basis when the page is first accessed. Areas can be maintained in a
manner that causes each logical page within the area to always be physically resident or
to be paged in and out of physical memory as needed. Area attributes govern the ability
of privileged and non-privileged execution to read and/or write the area and for the area
to be shared among multiple address spaces.

When an area is created it can be surrounded by guard pages. These guard pages are
excluded pages in the address space that assist with detecting accesses beyond the area.
Guard pages can be used to detect stack overflow in typical cases.

Paging

The sum of the pages in all areas in all address spaces typically exceeds the amount of
physical memory. This shortfall is made up by using secondary Storage or backing
storage to store that data which cannot be physically resident.

The kerne! is responsible for the movement of data between backing store and memory.
The page replacement policies utilized by NuKernel attempt to minimize the frequency of
page faults by retaining the most recently used pages in physical memory and allowing
infrequently used pages to migrate to backing Storage.

Paging performance is further enhanced because the software involved in resolving page
faults is limited to the kerne! itself and those drivers involved in accessing the paging
device. Therefore, only a small number of logical pages must be held in physical
memory allowing a much greater number of physical pages to be used for frequently
accessed data.

All I/O performed by the kerne! to satisfy page faults is performed through Backing
Objects. Backing objects are message objects that respond to messages specified by the
kerne! and perforrn the appropriate I/O operations. Backing objects isolate the kerne!
frorn the mechanics of finding the appropriate data on the storage devicc. Page faults can

March 29, 1994 Copyright 1992 Apple Computer, Inc. 15

5,590,334

71 72

therefore be satisfied from nearly any UO device including networks, hard disks, tape.
etc.

The Kernel Band

As described above, each newly created address space contains common areas created
from the kernel-maintained template. These areas each appear at the same logical address
in every address space and are shared between address spaces. Among these areas is a
distinguished set of areas collectively called the Kernel Band. This area contains all
code and dma that is ever accessed by the processor when execution is at hardware
interrupt or secondary interrupt level. The kerne! band also contains all code and data
associated with the kerne! and kerne! agents (kerne! agents are extensions to the kerne!
and are described later). The kerne] band is protected with attributes that allow access
only in supervisor rnode.

The kerne! band is an important concept because it allows the kerne] to execute in the
addressing contcxt of its clients. This allows the kerne! to access client memory in a
natural manner without having to creare alternate mappings as is done in some operating
systems.

Global Areas

Sharing certain resources. especially code, among many clients is an important concept in
modern software. NuKernel provides effective, efficient support for sharing code and/or
data between clients in separate address spaces.

When creating an area, the globalArea option causes the contents of the area to be
addressable in every address space. The contents disappear from all address spaces when
the area is destroyed. Global areas have the protection attributes specified at the time of
their creation regardless of the address space from which a reference is performed.

Because global areas are visible to all address spaces, space in every address space must
be available to create any global area. The kerne! sets aside a predetermined amount of
space in every address space for use by global areas. Once exhausted, no additional
global areas can be created until others have been deleted. The arnount of address space
set aside for global areas is unspecified.

IIO Coordination

When UO operations are performed between an external device and memory, several
aspects of the memory's contents must be coordinated. Typically, the logical contents
must be made physically resident so that they may be accessed at hardware interrupt or
secondary interrupt level where page faults are not allowed. Additionally. the coherency
of any data and/or instruction caches must be maintained to ensure that the data being
moved is not stale and that the effects of the data movement are observed by the
processor.

16 Copyright 1992 Apple Computer, Inc. March 29, I 994

5,590,334
73 74

When using DMA hardware to perform the I/O operation, it is also necessary to translate
the logical address range into set of physical address ranges. This set of physical address
ranges is called a scatter-gather /ist.

N uKernel provides efficient support to prepare a range of addresses for an I/O operation
and to cleanup that same range when the operation is finished. Through the use of
appropriate parameters, all cache manipulations are performed, the data is made
physically resident, and a scatter gather !ist is generated. The client need not be
concemed with the cache topology or any other aspect of the hardware as the kerne!
provides complete isolation.

Addressing And Execution

The relationship of execution to addressing is at the team level. When a team is created
an address space must be designated for that team. Any tasks created within that tearn
will see this logical address space. Several teams may all share a single address space,
however, they will not be protected from one another.

Inter-Address Space Access

During normal execution, a given task has access to only the memory that is mapped into
its tearn's address space. It is possible, however, to gain access to the logical memory of
other address spaces. The general mechanism for shared memory is to map the same
backing store data into the various clients' address spaces. Further routines enable
straightforward data copying and cross-address space mapping. An additional facility is
provided to arbitrate sharing memory at the same location in each address space.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 17

5,590,334
75 76

SYNCHRONIZATION - EVENT GROUPS

Event groups are the synchronization mechanism of choice for task level execution. An
event group is a set of 32 individual semaphores that rnay be acted upon individually or
in cornbination.

Event groups are created explicitly. There is no limit upon the number of event groups
that may be active in the systern at one time. Each event group is referenced by an ID
and contains 32 unique event flags (semaphores).

Once created, any task can operate on a given event group. Operations on the group
manipulate one or more of the group's event fiags. The operations are read, set, clear, and
wait.

Reading an event group simply returns the value of the 32 event flags. This operation has
no side effects upon the task that is reading the flags or any other task.

Clearing event flags is done by specifying an event group and a 32-bit mask. Each flag
that is set in the mask is cleared in the event group. This operation does not effect the
clearing task or any other tasks in the system.

Setting event f!ags is done by specifying an event group and a 32-bit mask. Each f!ag
that is set in the mask is sct in the event group. This operation may cause other tasks that
are waiting upon the event group to become executable.

Waiting for event flags is done by specifying the group, a mask of flags to wait for, and a
waiting operation. The mask contains 32 bits and indicates, in conjunction with the
operation, a condition for which the calling task wishes to wait. The operation specifies
whether the condition is satisfied by any of the events in the rnask becorning set or only
when all of the events in the mask become set. Additionally, the Operation indicates if
the events, specified by the mask, are tobe cleared when the condition is satisfied.

Wait operations can include a time iirnit. This limits the time the calling task is willing to
wait for the specified condition to occur. If the time limit is exceeded, the task is made
executable even though the condition has not been satisfied.

Event groups may be used to implemcnt many styles of semaphores. The ability to wait
upon a cornbination of events may be used to prevent many deadlock situations that occur
when only binary semaphores are available.

18 Copyright 1992 Apple Computer, lnc. March 29, 1994

5,590,334

77 78

MESSAGING

As system software has become more modular, the flow of information between modules
has become critical to both robustness and performance. The inclusion of NuKernel
features such as preemption and multiple address spaces add significantly to the inter
module communications dilemma. Problems of svnchronization must be overcome and
the ability to communicate across address space boundaries is required. The NuKernel
message system provides this support.

Messages

A message is the unit of information interchange. The kerne! is not concerned with the
contents of the message; it does not exarnine or interpret the contents of the messages.
Rather, it assists in movement of the message from the originator to the recipient,
providing the ability to control and prioritize the flow of information. The message
system is suited for the exchange of control and status information as well as for the
exchange of data.

Client-Server

The NuKemel message system presumes a client-server model of communications. In
this model, a service is provided by a server. Software that wishes to make use of a
service is called a dient of the service. The message system simply allows data to be
transported from a dient to a server and for the server to notify the dient of the results.

Transactions

When a client makes a request of a server it does so by sending a message. The server
must actively participate by attempting to receive messages from its clients. When a
server has received a message it performs the implied work and then notifies the client by
replying to the message. This combination of send, receive, and reply is termed a
message transaction. The kerne! provides all transaction support including
synchronization and address space mapping operations that may be required. The
following figure illustrates these concepts:

March 29, 1994 Copyright 1992 Apple Computer. lnc. 19

5,590,334
79 80

Message Transaction

Client Server

Send

Moving Data

The data that flows between the dient and server usually conforms to semamics specified
by the server. The data may flow from dient to server and/or server to dient. All data is
described to thc kerne! through thc use of address/byte count pairs. The data flowing
from dient to server is called the message contems. The data which flows from server
back to the dient is called the reply data.

Thecontents and reply data address/byte count pairs are conveyed to the server at the time
the server receives the message. lf the message is sent across address space boundaries,
the kerne! may, at the client's discretion, either map the message contents directly into the
server's address space or copy the contents into the server' s address space. The kerne!
rnay also choose to rnap the reply data buffer into the server's address space.

No data is ever buffered in the kerne!. Therefore, the dient must not atternpt to rnodify or
deallocate either the messagc contents or reply data buffers until the transaction is
complete.

Some messages, specified as part of the send operation. include addresses of other data
that is associated with the message. This is common when reading data. Read requests
typically indicate the source of the data (E.g., a file offset) and specify the address of a
dient buffer into which the server should place the data. These other regions of memory,
associated with the message by both client and server, are unknown to the kerne!. lt is
the responsibility of the server to ensure that these additional regions of memory are
addressable by the server. Kernel services are available to perform the mapping or copy
operations needed to implement such services.

20 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
81 82

Ports And Objects

Message objects are abstract entities that represent various resources to message system
clients. These objects may represent devices, files, windows, etc. Clients send messages
to objects.

Message ports are abstract entities that represent a service. These ports may represent a
device driver, a file system. or a window manager. Servers receive messages fromports.

Objects are said to belang to a port. A message sent to an object is received from that
object's port. The client is usually unaware of the port associated with a particular object.

The duality of objects and ports allows efficient support in situations where a number of
separate entities, all conceptually different from the client's perspective, are served by a
single server and with idenrical actions.

Ports and Objects

Client Object Port
Server

Ports and objects are created by the message system on behalf of a server. The creation
of an object requires designating a port from which messages sent to the object will be
received. Therefore, ports must be created prior to their objects. Once created, an object
may be migrated from one port to another. This allows servers to control port utilization
for whatever reasons they choose. For example, objects that are highly utilized can be
migrated to a port that is served by several tasks within the server.

Objects contain a single 32-bit value, specified at creation time, that is used by the server
to identify the object. This value, called a refcon. allows the server to associate any per
object information with the message. When receiving messages from a port. the servcr is

March 29, 1994 Copyright l 992 Apple Computer, Inc. 21

5,590,334
83 84

provided with not onl y the message but also the refcon from the object to which the
message was sent. The server can use these refcons for any purpose; they are not
examined or interpreted by the kerne!. Typically, the refcon is the address of a control
block for the object; a file object's refcon could be the address of the file control block for
that file. The refcon of an object may be examined and changed at any time.

Ports and objects are referenced by IDs.

Sending Messages

Thc process of sending a message can be either synchronous or asynchronous.
Synchronous sends block the client until the server has acted upon and replied to the
message. Asynchronous sends allow the client to continue execution while the server is
processing the message.

Synchronous send operations retum a status value that indicates the success or failure of
the message transaction. Errors may be returned by either the kerne! or by the server.

When a message is sent synchronously, the sender may specify a time limit. The value of
the time limit controls how long the sender is willing to wait for the transaction to
complete. Should the time limit be exceeded. the message is canceled by the kerne!.
Cancellation is described below.

Asynchronous send operations yield two separate status results. The send status is
returned at the time the asynchronous send call returns from the kerne! back to the sender.
The reply status is delivered asynchronously to the client's execution when the server has
finished processing the request.

The client may receive notification that the server has finished processing an
asynchronously sent message in any or all of three different ways. First, the client can
specify a memory location that is tobe updated with the 32-bit message reply status.
Second, the dient can specify an event flag group and set of flags within that group that
should be set. Finally, the dient can specify a software interrupt that should be delivered.

Receiving Messages

Servers receive messages from ports. Servers can receive messages in three separate
ways: synchronous receives, asynchronous receives, and acceptance functions. All three
methods of receiving messages requires that the server explicitly designate a port from
which the messages are to be taken.

Synchronous receives block thc execution of the server task until a message arrives at the
port. The server may limit the length of time that the server remains blocked waiting for
messages. If the time Iimit is exceeded, the server again begins to execute and is
informed of the time-out.

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
85 86

Asynchronous receive requests inform the kerne! that the server wishes to be notified
when the next message arrives at the port. Asynchronous receives do not cause the server
to block. The server can request that the notification be delivered in any or all of three
ways: memory location update, event flag update, or software interrupt delivcry. These
are the same as the notifications described above for asynchronous sends.

The third method of receiving messages is by registering an acceptance function.
Acceptance functions are simply subroutines that are called in-line in the context of the
sender at the time the message is sent. Acceptance functions are always called in
supervisor mode and, therefore, not all servers can register them. They are intended for
use by kerne! agents.

Numerous synchronous and asynchronous receives may be made of a single port but only
one acceptance function may be registered. When a message is sent it is given to only
one receiver. The process of matching a sent message to a receiver is governed by
message type. These message types are described below.

Regardless ofthe manner in which a message is received (synchronously.
asynchronously, or acceptance). the server is provided with more than just the message.
The refcon of the object to which the message was sent and an ID for the message, are
also returned to the server. The refcon allows the server to associate inforrnation about
the object with the message. The message ID is used by the server to notify the dient
that processing of the message is complete.

Replying To messages

When a server has finished processing a message it must inform its dient. The process of
notifying the client is called a reply. When a server replies to a message it provides both
the message ID it got when it received the message and a 32-bit result or message status.
The kerne! does not interpret the status in any way. Rather, the status is interpreted by
the dient in a way dcfined by the interface between client and server.

Servers must reply to all messages they receive. Synchronous senders remain blocked
until the server replies. Servers can implement time limits upon their transactions to
prevent the system from becoming deadlocked.

Message Tvpes

All message send and receive operations require that you specify a message type.
Message types are 32-bit values. The message system does not interpret the type directly
but uses it to match senders with receivers.

A message type is associated with each message at the time the message is sent.; the type
must be specified with all send operations. When a server makes a receive request, it also
specifies a message type. The two message types are used to match sent messages with
receivers.

March 29, 1994 Copyright 1992 Apple Computer. lnc.

5,590,334
87 88

Receivers are matched with messagcs by ANDing the message type specified by the
sender with the message type specified by the receiver. If the result of the AND is non
zero, the message is given to that receiver. When scanning the receivers looking for
compatible message types, acceptance functions are checked first. If no acceptance
function matches the message type, then the synchronous and asynchronous receivers are
checked. If no receiver can be matched with the message then the message remains in the
port until a receive operation is performed that matches the message type.

A receive operation that specifies a message type value of OxFFFFFFFF receives all
messages, regardless of type. This includes messages sent with a type value of zcro.

One bit of the message type is used by NuKernel for certain special system-generated
messages. Messages of this type are defined by Apple and your server should support
thern. Clients should, however, refrain from doing so. The kerne! message type and the
pre-defined messages are covered in the detailed description of the message serviccs.

Canceling Asynchronous Message Operations

When using asynchronous services, it is occasionally desirable to withdraw operations
that have been started but have not yet completed. The act of withdrawing these requests
is termed canceling the outstanding request.

The asynchronous send and receive services each return a transaction ID that remains
valid until the request becomes satisfied. These IDs may be used, when appropriate. to
cancel the pending send or receive.

Cancellation of asynchronous send requests is handled in one of two ways. If thc send
has not yet been matched with a receive request from the server, the send is simply
withdrawn and the server is not affected in anv wav. If, on the other hand, the server has
already received the request then the server is.sent'a special message (designated by use
of the kerne] message type) that indicates that the dient wants the request canceled. This
Special message includes the ID of the transaction so that the server knows which request
is being canceled.

Canceling asynchronous receive requests simply removes the pending receive from the
message port. These operations have no side affects.

24 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
89 90

Locking Message Objects

At times. a server may want to prevent messages from being sent through an object and
arriving at the object's port. This is especially true when the server needs to rnanipulate
an object synchronously to the use of that object by clients or multiple server tasks. For
this purpose, the kerne! provides services that lock and unlock message objects.

Ports. Objects, and Locks
Client Object Port Multi-threaded Server

Lock List

Lock

Message objects are said tobe in one of three states: Unlocked, Locking, and Locked. A
rnessage object is ünlockcd umil an atternpt is rnade to lock the object by using the
Lockübject service. At this time the message object enters the Locking state. While in
the Locking state, rnessage sent to an object do not reach that object's port. Instead they
pile up at the object and are not eligible tobe received by the port's server. Messages that
had been sent through the object to the port but had not yet been received by the port's
server are removed from the port and placed back at the object. These rnessages are
similarly not eligible tobe received by the port's server. Messages that had been sent
through the object to the port and had been received by the port's server prior to the lock
request are not affected in any way.

An option to the LockObject service allows the caller to specify that the Locking to
Locked transition should occur with either zero or one received but unreplied messages.
The caller of the Lockübject service is blocked until this condition is reached. Once the
condition is reached, the task is unblocked and the message object is said tobe Locked.

In the Locked state, newly sent messages continue to pile up at the rnessage object. They
are not eligible tobe receivcd. Thc task that made the Lockübject scrvice rcquest should
pcrform whatever actions are appropriatc and then either unlock or delete thc Locked

March 29, 1994 Copyright 1992 Apple Computer. Inc. 25

5,590,334
91 92

objcct. Until the object is unlocked or deleted, clients of thc object could be waiting for
messages to be processed through the objcct.

Whi!e in the Locking or Locked statc, cancel requests for messages sent to the object are
processed normally. This mcans that the cancel requests may be placed in the object's
port.

Once a Lockcd object is Unlocked, any messages that had been sent while the object was
Locked will pass through the object and arrive at the object's port and may be received.
These messages will contain the Refcon value from the object at the time the
Unlockübject service is called.

Only one client can lock a given object at any time. If a request is made to lock an object
that is either Locking or Locked, that request is blocked until the object becomes
Unlocked.

26 Copyright l 992 Apple Computer, Inc. March 29. 1994

5,590,334
93 94

Filtering Object Messages

A message filter is a pair of objects used to screen another object's messages. An object
with filters is called a target . The set of installed filters on a target is called the filter
chain.. ·

Installed filters are designated bv ID. The ID may be used to later rcmove the filter, or
retrieve its installation information.

Once installed, filters are completely transparent to both clients and servers. However,
servers have complete control over which of its objects may become a target.

If the target is deleted, all installed filters are automatically removed. If the target is
locked, the lock applies to the entire filter chain. A target object's filter chain may be
examined using an iterator service.

There is no limit to the number of filters or the number of objects which can be filtered.
Filter objects can share a sing!e port; however, a filter can only screen a single object's
messages.

SEND

Message Filters

Pre-Processors

Tlze 'A' Filter

Target
Obiect

Post-Processors

Two kinds of message objects may be used in a filter. The first kind of object screens
messages before they arrive at the target and is called a pre-processor. The second kind
of object screens messages as they /eave the target and is ca!led a post-processor. A filter
may be composed of just a pre-processor, or just a post-processor.

March 29. 1994 Copyright 1992 Apple Computer. Inc. 27

5,590,334
95 96

A sing!e message is passed through each filter and target object. The message is gi ven
first to the pre-processors, then the target, and finally the post-processors.

The SendMessage, SendMessageAsync, and ForwardMessage services invoke an object's
pre-processors. The ReplyToMessage and Cance!AsyncMessage services invoke its post
processors. The ContinueMessage service may be used by any object to pass the
message to the next object in the chain.

The ForwardMessage service Stacks the remaining post-processors in the current filter
chain before routing the messagc to a new target. Once the new target and its filters have
completing processing, the stack of remaining post-processors is activated.

A pre-processor object may issue a ReplyToMessage to jump over the target and begin
post-processing, staning with the its twin . Any per-message state generated by a pre
processor object can be cleaned up by its twin.

The format of an object's message contents must be published if content modification
filters are tobe accommodated. Message content version numbers are recommended so
that filters may track formal evolution. -

Filter Names

All filters are named. Filters attached to the same target must have a unique name.
Filters installed on separate targets may share names.

A filter name consists of a service and signature type. The service type identifies the
functionality provided by the filter. The signature type identifies the provider of the
service.

Filter Name

Service Type 1 Signature Type

For example, an Apple supplied encryption filter might be named: 'ENCR ·,' APPL'. The
registration and allocation of signature types is to be managed by Apple Computer Inc.

Filter Ordering

Some filters require a guaranteed order of invocation with respect to other filters.
Ordering requirements are specified as a set of two rules. The first rule names a filter
before and the second rule names a filter after the desired location in the filter chain. The
combination of a before and after rule deterrnines the placement within the filter chain.

28 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
97 98

Filter Ordering

Before Rule Service Type Signature Type

After Rule Service Type Signature Type

Strict adjacency requirements are also supported by specifying an installation option. A
filter may specify that it must be placed directly after or direcrly before another filter.

Two forrns of wildcard name marching is supported. The first form always matches any
service or signature type. The second form never matches a service of signature type.
Using wildcard ordering rules allows a filter tobe placed after all filters (last) or before
all filters (first); for example.

A filter will not install properly if its ordering rules cannot be met, nor if the new filter
will violate an existing filter's mies.

March 29, 1994 Copyright 1992 Apple Computer, lnc. 29

5,590,334
99 100

KERNEL AGENTS

NuKernel agents allow customized extensions to the kerne!. Agents are just one way in
which the system can be extended but they are the only method of extending the kerne!.
Only through use of agents can privileged code be added to the system. This section
discusses the properties of agents as weil as how to write them and how to install them.

Agents were designed with the following goals:

• Provide a way for user modc code to install additional functionality into NuKernel
and remove it when no longer needed.

• Put agents in the kcrncl band to protect them frorn applications.

• Share agem code among multiple agem installations.

• Do common case initializalion so most agents are simpler to write

• Minimize code changes to port to PowerPC. The kerne! trap calls and arguments are
the same across platforms. Agent static data is automatically initialized so that no
explicit call to _Datalnit is needed on the 68K.

• Make simple cases simple and complex cases possible.

Accessini: A~ents

The agent system is message based. To communicate with an agent you send a message
to an object that is served by that agent. Using the message system means that you can
make synchronous or asynchronous requests to any agent. The agent's implementation
will govem whether a particular request is truly asynchronous.

Kinds Of Agents

Agents can have their own task. This task is creatcd at the time the agent is installed.
These agents execute asynchronously to and in parallel with their clients. These agents
are termed server agents because they fit directly into the client-server model. Server
agents use the message Receive/Reply primitives to serve a message port to which clients
send messages.

Agents that have no need for asynchronous access or parallelism can instead execute in
the task context of their client. These agents are called in-line agents. In-line agents have
no dedicated task context, but are instead called directly in the task context of their client.
In-line agents use the message system Accept/Reply primitives to serve a message port to
which clients send messages. The message send becomes, in effect, a subroutine call.

30 Copyright 1992 Apple Computer, Inc. \farch 29. 1994

5,590,334
101 102

Agents are ideal for use as loadable device drivers, network protocol layers, etc. Because
they can be task based, agents can have execution priorities. A high priority agent can
respond in real time to device requests. A low priority agent can use otherwise-idle CPU
cycles to anticipate the user without slowing system performance.

Installing Agents

Installation of agents involves allocating Storage within the kerne! band for the agent's
code and static data. If the agent is task based, the installation includes creating a task for
the agent. Installation also creates a message system port and object for use in
communication with the agent. All of these actions are performed by the kerne!; you
don't have to worry about them when writing an agent or when using an agent.

Writing And Linking Agents

Agents can be written in a high level language or assembly language. The kerne! only
requires that the main entry point conform to the 'C' calling conventions. The main entry
point must be callable as either a task entry point (in the case of a server style agent) or an
acceptor function (in the case öf an in-line style agent). Agents must be linked with an
Apple supplied object module that assists with the initialization of the agent.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 31

5,590,334
103 104

TIMING & TIMERS

The timing services enable the precise measurement of elapsed time. The timer services
of the kernet allow tasks to suspend their execution until a given time or to cause a
specified subroutine tobe called at a given time.

Measuring Elapsed Time

Measurement of elapsed time is done by simply obtaining the time before and after the
event tobe timed. The difference of these two values indicates the elapsed time of the
event. Time. in this context refers to a 64-bit count, maintained by the kerne!, with each
unit equal to one microsecond. The count is sel to zero by the kerne! during its
initialization at system startup time. Using this technique, elapsed times as short as one
microsecond or as long as 584.542 years can be measured.

Suspending Execution

A given task may chose to suspend its execution until a specified time in the future. This
process is termed de/aying. When this time is reached, the task again becomes eligible
for execution. The task will not actually execute until it is scheduled for execution
according to its priority and the priorities of the other eligible tasks. In any case, the task
will never execute prior to the time specified.

When a task uses a delay service, it may specify the time at which it should resume
execution in either relative or absolute terms. Relative times allow the programmer to
indicate that execution should resume, for example. five minute from now. Absolute
times allow the programmer to indicate that execution should resume at. for example,
three o'clock. Absolute times are a bit more cumbersome to use but allow periodic timing
with no long term drift.

Asynchronous Timers

Asynchronous timing services cause notification at a given time. The notification can be
delivered in any or all of three ways. First, a specified memory location can be altered.
Second, one or more event flags within a single event flag group can be set. Third, a
specified subroutine can be run as a software interrupt.

Once set, an asynchronous timer remains in effect until it is either canceled or expires.
Cancellation may be done at any time prior to expiration, using the ID of the timer
returned by the kerne! when the timer was set. Expiration of the timer causes the
notification, described above, to be delivcred.

Asynchronous timers always spccify absolute expiration times.

32 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
105 106

REALIZING THE VALUE

The NuKernel design team believes the features described above can be utilized by the
Macintosh System Software to build a software platform that is richer and more robust
than System 7 while providing real value to both software developers and end users.

Launching an application involves creating an address space, a team and a task. The
address space contains three areas: code, heap, and stack. The code area is write
protected and mapped directly to the application fi!e's code; no pre-loading of code is
done at launch time, rather the application faults itself in during execution. The heap and
stack areas are backed by swapping space. They are spread apart within the logical
address space to allow expansion as needed.

The application is free to allocate kerne! resources during its execution including, if
<lesirable, other tasks. Application scheduling involves only the scheduling of tasks and
is performed completely by the kerne!. Key OS and Too!Box routines may adjust the
priority of the current task to ensure system responsiveness.

Running in separate address spaces, applications can not interfere with each other or with
the kerne!. Gross application errors cannot corrupt the system or other applications.
Upon termination, either normal or abnormal, the team and all associated kerne! resources
would be reclaimed.

Device management functions are largely subsumed by the message system. Device
drivers are kerne! agents that service message ports. The Device Manager is used to
resolve device names and return message object IDs. UO requests are made by sending
messages to the device objects. Synchronous and asynchronous I/O is provided by the
message system without additional consideration on behalf of the device driver writer.
Drivers no langer have any constraints regarding order of request processing or
limitations regarding the number of concurrent requests processed at a time. Of course.
writing drivers that handle multiple concurrent requests requires additional code.

Other than the kerne! and certain agents. no locked memory is required in the system. A
much !arger percentage of real memory is available to applications enabling better end
user perceived performance.

Phased Releases

The current Too!Box and the application programming model itself are not capable of
supporting separate address spaces, preemption, and true asynchrony. Furtherrnore, there
are no immediate plans in MSSW to take advantage of some of the key features of
NuKernel. Consequently, the system described above will be reached through a series of
releases.

The first version of a NuKernel based system will have a memory model much like that
presented by System 7 .0 Virtual Memory. The use of tasking will be limited. There will
be a single 32-bit address space shared by all software. Only a subset of the
programming interface will be used. One consolation is that all privileged code,

March 29, 1994 Copyright 1992 Apple Computer, Inc. 33

5,590,334

107 108

including the kerne!, privileged agents, secondary interrupt routines and interrupt service
routines will be protected from direct access by any non-privileged software. This release
can be integrated into the existing system with minimal change to the system, but may
not be suitable for all CPUs (e.g., portables do not work weil with active paging). Little
real value will be provided but laying this groundwork is important. Application
developers can begin to use tasking in a limited fashion while preparing for the
inevitability of concurrency and true preemption.

Subsequent reJeases will include !arger subsets of the programming interface, including
support for multiple address spaces and file mapping. These reJeases will requirc greatcr
degrees of NuKernel/OSrroolBox integration, and might result in incompatibilities with
today's Software. System and application developers should be forewarned.

34 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
109 110

U sing NuKernel

March 29, 1994 Copyright 1992 Apple Computer, Inc. 35

5,590,334
111 112

ABOUT THE API

The programmatic interface (API) to the kerne! is completely formalized through
function calls. There are no exported data structures or low-memory locations.

Unlike other Macintosh system software, the NuKernel API cannot be patched with
GetTrapAddress/SetTrapAddress. In fact, calling the kerne! does not involve the use of
an A-Line instruction. Rather, the kerne! is called by executing a TRAP #C instruction.
This departure from other system interfaces, combined with memory protection, allo\vs
the kerne! to be protected from the application domain.

All NuKernel interfaces are provided in 'C' header files. The calling conventions required
by the kerne! are those of the 'C' runtime model used by Apple on the machine in
question.

Most kerne! functions retum an error indication. You should check these error
conditions. NuKernel makes every effort to validate all parameters to each function call
prior to beginning any additional work.

Many kerne! functions have "out" parameters. These are addresses that you pass to the
function. The contents of the address are modified by the kerne! ca!L Passing null as the
address of an out parameter tells the kerne! you don't want that value returned. These null
values do not generate an error. When a call to the kerne! fails, the kerne! clears any
Output parameters of that particular function.

M68000 Callin!! Conventions

On M68000 Macintosh systems, NuKernel conforms to the MPW 'C' parameter and
register conventions.

Registers DO, Dl, D2, AO, and Al are volatile and destroyed by any call ro the kerne!.
Registers D3-D7, A2-A 7 are non-volatile and, therefore, preserved across any call to the
kerne!. When calling the kerne!, parameters are pushed right to left. Scalar parameters
are right justified in a single 32-bit stack word. A 32-bit selector value is loaded into
register DO; this value determines which kerne! function is desired. Finally a TRAP #C
instruction (opcode 4E4C hex) is executed.

Upon return from the kerne!, register DO contains a function result. This is typically an
OSStatus value and indicates which, if any errors, occurred during the processing of the
kerne! ca!!. At the time of return, the parameters passed to the kerne! are still on the
calling stack. They must be deallocated by the caller.

Some kerne! functions use the contents of register AS as an implicit parameter. In
general, whenever you supply the address of any code (a procedure parameter) to a kerne!
service, the kerne! retains not only that address but also the value which was in AS at the
time the kerne! was called. When the service is ultimatelv invoked, that retained AS
value will be placed into register AS. This treatment of ÄS allows complete use of the

36 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
113 114

M68000 Macintosh runtime model, including jump tablc and static data, from
applications and their asynchronous components.

Be aware that the kernel's treatment of the Macintosh runtime model does not include
consistency with respect to the Too!Box and OS usage of low memory and other
machine/system state. Those aspects of Macintosh execution are still controlled by the
OS and Too!Box as in System 7.

PowerPC Callini: Conventions

On PowerPC Macintosh systems, calls to NuKernel are performed using the shared
library mechanisms of the PowerPC runtime model. All conventions used by the kerne!
are described in the PowerPC Runtime ERS.

Note: Once control has transferred into the shared librarv, execution is
considered to be within the kerne!. The shared library code. although
within the address space of the client, is considered to part of the kernel's
implementation. None of this software, including the trapping
mechanisms. are documented. They are subject to change at any time.

Stack Space

Most clients of the kerne! execute in user mode. These clients need not be concerned
about the amount of stack space used by the kerne! because the kemel's execution never
takes place on user mode stacks. Each user mode task has a separate kerne! stack that is
used by the kerne! when the kerne! is called.

Privileged software, (i.e, drivers, agents, etc.) always execute in supervisor mode. These
clients of the kerne! must be aware that the kerne! does use stack space. The amount of
stack storage is not currently documented. The kernel's design goals are to require less
than 4K bytes of stack storage.

Certain design decisions can lead to kernel stack space exhaustion. In-line style agems or
other software that makes use of the message system's acceptance function features, all
run on the supervisor mode stack of their dient. lt is the responsibility of these entities to
perform stack checks prior to using stack storage. Stack checking may be performed
using the NuKemel CurrentStackSpace service.

NuKernel performs stack checks on behalf of its clients at certain times. lf stack
overflow is detected, a stack overflow exception is generated. Exceptions are described
in the Exceptions section of this document.

Addressini:

Within NuKernel, all addressing is 32-bit clean. Don't even think about using the upper
or !ower bits of an address as flags or tags.

March 29, 1994 Copyright 1992 Apple Computer, lnc. 37

5,590,334
115 116

MMU hardware and the contents of the underlying page tables are owned entirely by the
kerne!. They must not be manipulated directly. The kerne! provides support for many of
the operations that have historically required direct manipulation of the MMU. See the
Memory Management section for descriptions of these services

38 Copyright 1992 Apple Computer, lnc. March 29. 1994

5,590,334
117 118

SOME BASIC TYPES

This section introduces some basic types which are used throughout the API. They are
presented here, in no particular order, to avoid confusion later.

Miscellaneous Tvpes

The following type declarations are self-explanatory:

t:ypedef unsigned lor.g ByteCount:;
typedef lang ::temCount;
typeäef long OSStatus;
typedef unsigned long OptionBits;

The symbol ni!Options is provided for clarity.

enurn

nilüpt:ions ~ 0
) ;

Parameter Block Versions

Any kerne! service that operates upon a pararneter block requires that you pass a
parameter block version in the service's parameter !ist. This version number allows the
kerne! to provide backwards compatibility. Each parameter block type definition has an
associated, narned, version constant. As lang as you always use the named constant your
source is guaranteed to be correct and your object code will be supported.

typedef unsigned lang ?BVersicn;

Duration

Many interfaces allow the caller to specify a time relative to the present. ·These values
are of the type Duration.

typedef long Duration;

Values of type duration are 32-bits. They are interpreted in a manner consistent with the
System 7 Time Manager as follows: positive values are in units of milliseconds, negative
values are in units of microseconds. Therefore the value 1500 is 1.500 milliseconds or
1.5 seconds while the value -8000 is 8,000 microseconds or 8 milliseconds. Notice that
many values can be expressed in two different ways. For exarnple, 1000 and-1000000
both represent exactly one second. When two representations have equal value they may
be used interchangeable, neither is preferred or inherently more accurate.

March 29, 1994 Copyright 199'.?. Apple Computer, Inc. 39

5,590,334
119 120

Values of type duration may express times as short as one microsecond or as lang as 24
days. However, rwo values of durarion are reserved and have special meaning. The
value zero, (0) specifies exacrly the present time. A value of Ox7FFFFFFF, the largest
positive 32-bit value, specifies an infinite time from the present.

The following definitions are provided for use with values of type Duration:

e~urn

f

} ;

durationMicr8second
duraCionMillisecond
durationsecond
durat.ionMinute
durat.ionHour
durationDay
durat.ionForeve:c
dura~ionirrunediate

-1,

1000,
1000 * 60,
l:JOO • 60 * 5C.
1000 * 60 * 60 * 24,
Ox/FFFF!='FF,
0.

A second data type is used to specify absolute times. These values are of the type
AbsoluteTime. They are in units of microseconds and are 64-bits in width.

t}'Pedef struct AbsoluceTirne
{

unsigned lang high:
unsigned long low;

.ZlillsoluteTime;

Many interfaces to the kerne! require that you pass the address of something as a
pararneter. In fact, these parameters need not be addresses. These pararneters are of type
Ref.

typedef void * Ref;

Because they are derived from the predefined type void, Refs need not be coerced when
passed into the kerne!.

KernelID

IDs are used whenever you create, manipulate, or destroy a kerne! ObJeCl. All IDs are
derived from the type Kemel!D.

40 Copyright 1992 Apple Computer, lnc. March 29, 1994

5,590,334
121 122

t:ypedef Ref KernelID;

You should used the derived types whenever possible as they will make your code more
readable.

The value invalidlD is reserved to mean "no ID."

enum

invalidID 0
} ;

Kernellterator

The Kernel provides several iteration functions that allow the client to obtain the IDs of
all kerne! objects within a specified domain. For example, you can iterate over all the
tasks within a given teum or all of the message objects associated with a given message
port.

Each of these functions acts upon a Kerne!Iterator provided to the kerne! by the client.

typedef struct Kernel:terator
{

I:ernCount ~otal:tems;

ItemCount validitems;
IteratorKey IterationKey;
KernelID ~heitems [1];

Kernel Iterator;

Each iteration function provided by the kerne! requires at least three parameters. These
are theCount, skipCount, and theltems. The first two are integer values that teil the
kerne! how many items you want information about and how many items to ignore prior
to those items. The third parameter is the address of a Kernellterator that is to be filled in
with the information. Additional parameters may be needed to describe the iteration
domain.

Imagine that you wanted to iterate over all of the tasks in a particular tearn and that you
want to get the IDs of those tasks in groups of ten at a time. Y our first call to the kerne!
would specify 10 und zero for theCount and skipCount respectively. The second call
would specify 10 and 10 indicating that you want information about the second group of
10 tasks. The third would specify 10 and 20, etc.

The kerne! fills in the Kemellterator you provide with information. In the same example
as above, you would provide a Kernellterator that had enough room for 10 task !Ds. That
iterator would be filled in as follows:

• totalltems indicates the total number of tasks in the team.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 41

5,590,334

123 124

• va!idltems indicates the number of task IDs that were returned by this call to the
kerne!. This is always between zero and the value of theCount parameter.

• IterationKey is a value that changes whenever the domain through which you are
iterating has changed. In this example, if any tasks have been created or tenninated
within the specified team, the key value will change.

• theltems contains the IDs of the items described by skipCount and validltems.

42 Copyright 1992 Apple Computer, lnc. March 29. 1994

5,590,334
125 126

ERRORS

As with all system interfaces, you should check the OSStatus code retumed by each
kerne] service vou call. OSStatus values are 32-bits wide. However, to remain
cornpatible with System 7, all values currently retumed by the kerne! are in the range of
negative 16-bit values.

typeäef long OSSTA'.:'US;

-Error codes retumed by the kerne! fall into one of two categories. Some error codes are
generic in nature and could be returned by nearly any kerne! service; these include
pararnErr or memErr. Other error codes are specific in nature and may only be returned
by a specific service.

Whenever possible, the kerne! returns an error rather than causing an exception.
However, in certain cases, erroneous calls to the kerne! may result in exceptions. For
example, if you pass an invalid address you may receive either pararnErr or incur an
access violation exception.

Generic Errors

Described here are the error codes that could be returned by any kerne! service. The
meanings given apply only to the meaning of that error code when ir is returned by a
kerne! service. Other system software may use that same error code to indicate some
other error.

• paramErr indicates that a parameter value is out of range or that a combination of
parameters passed to the service are illegal.

• memFu!Err indicates that the kerne! could not allocate the resources necessarv to
satisfy the service request. ·

• keme!PrivilegeErr indicates that the caller of a kerne! service is non-privileged and
cannot use the service in question.

Specific Errors

• TBD

March 29, 1994 Copyright 1992 Apple Computer, Inc. 43

5,590,334
127 128

TEAM MANAGEMENT

Teams are created through explicit requests to the kerne!. Teams are deleted through
either explicit request or implicitly, when, during task termination processing, it is
determined that the team has no additional tasks.

Tasks that belong to a specific team can a!locate various kerne! resources including
messages, event flag groups, message ports, message objects, other tasks, etc. If, at the
time the team is being deleted, these resources have not been deallocated they will be
reclaimed as part of the team deletion process.

Teams, when newly created, contain no tasks. Because automatic team deletion is a side
effect of task termination, teams that never have tasks are never automaticallv deleted. If
you create a team you must be careful that you either create a task within thai team or
explicitly delete the team.

Deleting a team causes the termination of all tasks within that team and reclamation of all
resources that belang to the team. The team may or may not be deleted by the time the
DeleteTeam service returns to the caller. A Team is never deleted until all its member
tasks have terminated. Task termination is discussed in the Task Management chapter of
this document.

If, as the result of deleting a team, that team's address space is no langer accessible from
any team, the address space is also deleted. Address space deletion is discussed in the
Address Space Management chapter of this document.

Creating Teams

OSStatus CreaceTeam (AddressSpaceID theAddressSpace,
Team::LD * the1'eam};

theAddressSpace is the ID of the address space that is tobe addressable by the team's
tasks. A value of currentAddressSpacelD specifies that the team is tobe created in the
current team's address space.

theTeam is updated with the ID of the newly created team.

Deleting Teams

OSStatus DeleteTeam (TeamID theTeam,
Boolean immediate) ;

theTeam is the ID of the team tobe deleted.

44 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
129 130

immediate is used in conjunction with the TerminateTask service when terminating the
tearn's tasks. See a description of TerrninateTask in the Task Management chapter of this
docurnent.

Obtaining The Current Team ID

Y ou can obtain the ID of the current team whenever executing at task level.

TearnID CurrentTearnI~ (void);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 45

5,590,334
131 132

TASK MANAGEMENT

About Task Hierarchy

Tasks are found within conceptually enclosing environments called Teams. All tasks
within a team share the same address space. Additionally, tasks live within a parent-child
hierarchy. Tasks with no parent, called orphans, live at arnot of a task tree within their
team. By default, a task is thc child of the task which caused its creation; a task's creator
is termed its parent. During task creation you can specify that the created task should be
an orphan rather than a child.

The TaskRelationship type is used in conjunction with certain operations that affect more
than one task.

~ypedef unsigned lang TaskRelationship;
enurn

j;

taskünly 0,
taskAndChildren 1,
taskFamily 2.
taskTeam

• Taskünly means just that.

• TaskAndChildren rneans that the operation should be applied to the task and each of
its children and each of their children, etc.

• TaskFarnily requires that the kerne! rnust first find the ancestor of the specified task
which is an orphan and then perform the operation as if that orphan had been
specified and the relationship had been TaskAndChildren.

• Task Team causes the operation to be applied to each task within the team of the
specified task.

Tasking operations which can affect more than one task through use of a
TaskRelationship do not operate on those tasks in any particular order.

About Task Schedulin2

Tasks are scheduled for execution based only upon their CPU priority. No consideration
is given to the team to which a task belongs or to the priorities of the task's parent or
children. The initial priority of a task is specified by its creator but may be subsequently
changed.

46 Copyright 1992 Apple Computer, Inc. :Ylarch 29, 1994

5,590,334
133 134

Tasks are scheduled with either a run-til-block or time-slice policy depending upon their
priority. Tasks with priorities of 24 or greater are run-til-block while tasks with priorities
less than 24 are time-sliced. Time slicing is only used to provide CPU time to tasks of
equal priority. The execution of a higher priority task is never preempted to allow a
lower priority task to execute.

About Task Parameters and Results

When you create a task you specify a subroutine which is tobe executed within the
context of the newly created task. That routine should conform to the TaskProc
declaration.

typeäef OSStatus (*TaskProc) (Ref pi;

The parameter P is specified at the time of creation and may be used for any purpose.
The result retumed by the task at the time it terminates will be returned to its creator as
specified by the TerminationEvent parameter to the CreateTask call. Should the task
terminate abnormally, for example due to an unhandled exception, the system will
provide a suitable result value.

About Task Termination

Task execution can be terminated either implicitly, when the main routine of the task
retums, or explicitly through use of the TerminateTask service. In either case, the effect
of termination is similar. First, the task is marked as "terminating"; this causes operations
on the task to behave as if the task were in fact terminated. The termination process
requires execution of kerne! code on behalf of the task which is being terminated.
Therefore, the termination does not proceed until the task becomes eligible for execution
and does in fact execute.

Note: Tasks of low priority can take awhile to terminate under normal
conditions. Tasks which are deadlocked will not terminate umil thev are
released from the deadlocking condition or the Immediate termination
option is used (see below).

The Immediate parameter to TerminateTask will force the to-be-terminated ta~k to
become eligible for execution immediately.

Note: This may have side effects on other system code that is maintaining data
structures (i.e, open files) on behalf of the task being terminated.

Once the task begins to execute, a check is made to see if it has children. If children are
present no further actions are taken until they terminale. This al!ows children which have
references to their parent's resources (such as pointers into the stack) to continue normal
execution. Finally, when no children rernain, any remaining resources including all
stacks and control blocks internal to the kerne! are reclaimed.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 47

5,590,334
135 136

Finally, the task's TerminationEvent, if any, is delivered. The termination event is
specified by the task's creator and is the only kernel-provided method of learning of a
task's termination. See the EventNotification section for a complete description of how
this notification is delivered.

lf, as the result of task termination, that task's team contains no tasks, the team is
implicitly de!eted. Team deletion is discussed in the Team Management chapter of this
document.

48 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334

137

THE TASKING SERVICES

Tasks are always referenced by their IDs.

typedef KernelID TaskI~;

Creatin~ Tasks

typedef unsigned long TaskOptions;
typedef OSType TaskName;
enum

} ;

taskisPrivileged
taskisOrphan
taskCreateSuspended
taskPriorityMask

Ox00800000,
Ox00400000,
Ox00200000,
OxOOOOOOFF

OSStatus CreateTask (TaskName
TeamID
TaskProc
?.ef
F.ef
ByteCount
EventNoti!:icatio~ *
TaskOptions
Task:::D *

theName,
theTeam,
theEntryPoint,
theParameter,
stackBase,
stackSize,
terminat~onEvent,

theOptions,
theTask);

CreateTask creates a task subject to the parameters provided.

138

theName specifies a four character name that may be useful for subsequent debugging.
The name is stored by the kerne! in association with the task. This name is not used by
the kemel for any purpose and can be obtained using GetTask.Information.

theTeam specifies an existing Team to which the task will belong. A value of zero causes
the task tobe created within the Team of the caller. Tasks created in Teams other than
that of the caller will be orphans within the specified Team.

theEntryPoint is the address of a subroutine and will become the initial PC of the task
created. This address must be within the address space of the team specified by theTeam.

theParameter is a single 32-bit parameter which will be passed to EntryPoint when the
task begins its execution. The value and interpretation of Parameterare of no concern to
the kernel and may be used to convey information between the creator and created task.

stackBase is the optional address of memory to be used for the task's user mode stack.
This parameter is ignored for privileged tasks. If the value is Null, a stack will be created
for the task by the kerne!. lf non-null. the caller guarantees that StackSize bytes are

March 29. 1994 Copyright 1992 Apple Computer, Inc. 49

5,590,334

139 140

available to the task at this address and will remain :i.vailable for use bv the task until it
has terminated. -

stackSize indicates the size of the stack desired for the task. Although the kerne! may
detect certain stack overflow situations, it is the responsibility of the task to ensure it does
not run out of stack space. Kernel detected stack overflows are converted into stack
overflow exceptions. If the task is non-privileged the stackSize parameter specifies the
size of the user-mode stack. If the task is privileged it indicates the number of bytes of
kerne! stack which should be allocated for the task; this value is in addition to the kernel's
requirements on this stack.

terminationEvent allows the creator tobe notified upon the termination of the task being
created. If a value of Null is passed, no norification is given of its termination. If an
Event is specified it i~ delivered at the time the task finishes its termination. The status
value provided with the notification is either that from the return statement of the main
routine of a task, or that value supplied in a TerminateTask call that caused the task to
terminale.

theüptions is used to control various aspects of task crcation.

• The tasklsPrivileged bit, when set, causes the task to be privi!eged and to execute in
Supervisor mode.

• tasklsürphan, when set, specifies that the task being created should not be a child of
the creator, but rather should live at the root of the team to which it belongs; this
affects the termination relationshi p between the creator and createe. ~

• taskCreateSuspended indicates that the task should not begin its execution upon
creation. Suchtasks commence execution when the StartTask kerne! service is
called.

• The TOPriority field indicates the initial CPU priority of the task and is used by the
scheduler. CPU priorities range from l to 31 with !arger numbers signifying higher
scheduling priority. Specifying a priority of zero causes the created task to inherit
the priority of its creator.

theTask is updated with the ID of the task thus created.

Setting a Task's Static Context

A task's static context is inherited from its parent. For 68K systems this is the initial A5
value which will be active during the task's execution. For POWER/PC systems this is
the initial TOC which will be active during the execution of the task.

50 Copyright l 992 Apple Computer, Inc. March 29. 1994

5,590,334
141

Starting A Task That Was Created Suspended

The StartTask service is used to cause tasks which were created with the
taskCreateSuspended option to begin executing.

142

Using this service in conjunction with a task which has either already been started or was
not created with the CreateSuspended options will result in an error being returned.

OSStatus StartTask (TaskID ~he?ask);

Terminating A Specific Task

OSStatus TerminateTask (TaskID
TaskRelationship
Boolean
OSStatus

theTask,
theScope,
immediate,
theResul t) ;

TerminateTask forces one or more tasks to terminate. See the About Task Termination
section.

theTask is the task ID of the task tobe tenninated.

theScope indicates what other tasks should also be terrninated.

immediate governs whether the task terrnination takes place imrnediately. See the About
Task Termination section.

the Result will be used to in conjunction with the TerrninationEvent of tasks which, prior
to the TerminateTask call, have not yet begun to terminate.

Obtainini: The ID Of The Current Task

OSStatus CurrentTaskID (TaskID * ::heTask);

When called from a task TheTask is updated with the ID of the current task. If called
from either an interrupt handler or secondary interrupt handler, an error is retumed.

Determining The Amount Of Stack Space

ByteCount Currer.tStackSpace (void);

March 29, 1994 Copyright 1992 Apple Computer. Inc. 51

5,590,334
143 144

CurrentStackSpace retums the amount of stack space available on the current stack. lt
may be called from any execution level.

Obtaining Information About A Task

You can obtain information about a given task by using the GetTaskinformation service.
The information retumed reflects the state of the task at the time the GetTaskinformation
service is made. Due to the preemptive nature of the kerne!, this information may be
obsolete even before thc GetTasklnformation service returns to its caller. The
information that is available is rerurned in the form of a Taskinformation record with the
following type definition:

typedef OSType ScheciulerStcte;

ty-pedef s~ruct Taskinfor~a~ion
{

r:iasJr-..Name
TearnID
TaskPriority
SchedulerState
SchedulerState
Boolean
ItemCour.t
Ref
AbsoluteTirne
AbsoluteTirne

Taskinformation;

theNa::te;
theTeam;
thePriority;
taskState;
sw~State;

isTer:n:.nat:.ing;
sof~wareinterrupt.s;

progra!11Counter;
creationTime;
cpuTirne;

The various fields of the Taskinformation record have the following meanings:

• theName indicates the four character name provided when the task was created

• theTeam indicates the ID of the team to which the task belongs

• thePriority indicates the CPU priority of the task

• taskState is a four character abbreviation of the scheduler state of the task

• swiState is a four character abbreviation of the scheduler state of software interrupts
for the task

52

• isTerminating, if true, indicates that the task is in the process of terminating

• softwarelnterrupts indicates the number of software interrupts that have been
processed by the task. lt does not indicate how many software interrupts are
pending execution by that task.

• programCounter is the logical address at which the task will execute next. This
value may be used for histogramming. If the task is executing in the kerne!. this
value will be the logical address of the instruction following the kerne! ca!!. If a

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
145 146

value of zero is retumed, this indicates that the kerne! could not obtain the
programCounter of the task.

• creationTime indicates the time at which the task was created. Subtracting this
value from the value returned by the UpTime Service will yield the amount of wall
clock time that has passed since the task was created.

• cpuTime indicates the amount of CPU time that the task has consumed. This
includes all task execution time in the kerne! as weil as that consumed by processing
software interrupts. Also included is the time spent processing hardware and
secondary interrupts incurred while the task was running.

enum
{

tasklnforrnation Version = 0
);

OSStatus GetTaskinformation (Task:D tr.eTask,
P3Vers~on theVersion,
Taskin=ormation * ~heinfo) ;

GetTasklnforrnation returns information about the specified task to the caller.

theTask specifies the ID of the task about which information is to be returned.

theVersion specifies the version nurnber ofTasklnforrnation tobe retumed. This
provides backwards compatibility. tasklnformationVersion is the version of
Tasklnformation defined in the current interface.

thelnfo is the address of a Tasklnformation record. This record is filled in by the kerne!
with information about the designated task.

Setting A Task's Execution Prioritv

Y ou can alter the priority of a task. Note that the priority of a task does not change until
it is next made eligible to execute. This means, for example, that a lower priority task
which is waiting for an event flag will not have its priority in the wait queue adjusted
until after it has acquired the flag or the wait operation has timed out. The effect of
SetPriority is irnmediately seen by GetTasklnformation even though the task's priority
change may not as yet have taken effect.

OSStatus SetPriority (TaskID the'I'ask,
lang theNewPriori~y);

Iterating Over Task IDs

March 29, 1994 Copyright 1992 Apple Computer, Inc. 53

5,590,334

147 148

OSStatus Gec'l'asksinTeam ITeamID '.:heTeam,
ItemCount theCount,
ItemCount skipCount,
Kerneliterator • theTasks);

GetTasksln Team allows the caller to find the IDs of all tasks within a particular Team.
For additional information about using itcration functions see the Same Basic Types
section of this document.

thcTeam indicates thc team of interest. A value of zero indicates thc callers team.

theCount indicates the maximum number of task IDs that should be retumed. This
indicates the size of the Kerne!Iterator that is passed.

skipCount indicates the number of tasks within theTeam that should be ignored.

theTasks is a Kerne!Iterator that is filled in with the IDs of the tasks within theTeam.

54 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
149 150

EXCEPTIONS

Exceptions are synchronous alterations in program flow which arise from exceptional
conditions caused by normal instruction execution. Certain exceptions, such as page
faults, are handled entirely by the kemel. Other exceptions, such as illegal instruction,
are presented to the client for resolution; the handling of these exceptions by the client is
covered here.

Different processor families support different exception models and cause exceptions
under varying circumstances. For example, the M68000 family of processors generate
exceptions when any of the integer divide instructions attempts to divide by zero whereas
the POWERJPC family of processors indicates this condition by setting the OV bit in the
condition code register.

Exceptions are, therefore, processor specific in nature. The kinds of exceptions, the
information made available at the time of the exception, and the ability to resume
execution after an exception are all processor specific. NuKemel attempts to isolate these
processor dependencies by presenting a processor independent model for the registration
and invocation of exception handlers. However, exception handlers that want to correct,
rather than simply report, an exception must, by definition, be processor dependent.

Exceptions can arise during processing at any execution Ievel: task, secondary interrupt,
or hardware interrupt. This section covers only exceptions that occur during task level
execution. See the Interrupt Handling and Secondary Interrupt Handlers sections for
details about handling exceptions during non-task level. execution.

About Exception Handlers

NuKemel provides support for catching, resolving, and proceeding from exceptions,
subject to the specifics of the processor. Exception handling is performed within the
context of the task which incurred the exception. Exception handlers are installed for a
given task and do not inherently affect other tasks in any way.

Exception Handlers are not nested. Each task can have only a single handler. Installing
an exception handler overrides any previous exception handler installed for that task.
When a handler is installed, the previous handler for that task is returned. This allows a
routine to temporarily install an exception handler and then restore the previous handler.

At the time of an exception, the exception handler is provided with information about the
nature of the exception and the state of the processor at the time of the exception. The
type Exceptionlnformation is machine dependent and therefore described in the NuKemel
implementation guide for each product.

Exception handlers may resume execution either by retuming to the kerne! or by
transferring control using longjmp or similar mechansims. If a handler chooses to return
to the kerne!, it must supply a result indicating what action should be taken by the kerne!.
A value of noErr indicates that the exception has been cured and that execution should

March 29, 1994 Copyright 1992 Apple Computer. Inc. 55

5,590,334
151 152

resume based upon the information. Any other va!ue indicates that the exception handler
could not eure the exception and that the task should be terminaled.

Exceptions Within Exception Handlers

Exception handlers are invoked on the stack of the task which caused the exception and
synchronously to that task's execution. Exception handlers which incur exceptions
simply cause exception processing to begin recursively. Exception handlers may be
preempted by software interrupts which may in turn cause exceptions leading to the
invocation of an exception handler yet again.

Exception Handler Declarations

All exception handlers should conform to the ExceptionHandler declaration.

typedef OSStatus l*ExceptionHandler)
(2xcept~oninformation ~ theExcept~on);

Installing Exception Handlers

No implicit exception hand!ing is provided by NuKernel. Tasks which incur exceptions
and have not installed an exception handler are terminated as a result of the exception.

ExceptionHandler Instal~ExceptionHandler (ExceptionHandler ~heHand:er);

theHandler specifies a subroutine which becomes the acti ve exception handler for the
task. Specifying Null indicates thac no exception handler should be installed. The
previously active handler is returned as the function result.

56 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
153 154

SOFTWARE INTERRUPTS

The software interrupt mechanism allows a given subroutine tobe run asynchronously to
a given task's normal flow of control yet still be within the context of that task. Software
interrupts are said to be sent to a task by either a different task, a secondary interrupt
handler, or in some cases, the task itself. Once sent, software interrupts are said to be
pending until actually activated.

The execution of a software interrupt happens on the same stack and with thc same
addressing context which the task typically executes. Software interrupts can be handled
by a task even when its normal execution has been suspended. At completion of a
software interrupt, the imerrupted task will resume execution at the point of interruption.
If the cask was not executable prior to delivery of the software interrupt it will, again,
become blocked upon whatever event it was awaiting prior to the interruption.

Software interrupts are serialized. If a task is executing a software interrupt routine and is
sent a second software interrupt, it will finish processing the first interruption prior to
beginning the processing associated with the second. This is true even if the first
software interrupt handler performs some blocking operation such as waiting for an event
flag or initiating a synchronous I/O operation.

The presence of a pending software interrupt or the invocation of a software interrupt
handler does not inherently change the execution priority of the associated task or affect
the scheduling of that task or any other tasks in any way.

Controlling Software Interrupts

Software interruptions to given task may be enabled and disabled programmatically by
using EnableSoftwarelnterrupts and DisableSoftwarelnterrupts. These operations nest
automatically so every call to DisableSoftwarelnterrupts must be matched with a call to
EnableSoftwareinterrupts. Calls to either of these services have no effect when the task
is processing a software interrupt.

void DisableSoftwareinterrupts
void EnableSoftwareinterrupts

(void);
(void);

Ouerying The Level Of Execution

A task may check whether it is executing at software interrupt level through use of the
InSoftwareinterruptHandler service.

Boolean InSoftwareinterruptHandler (void) ;

March 29, 1994 Copyright 1992 Apple Computer, lnc. 57

5,590,334
155 156

Software Interrupt Handlers

A software interrupt handling routine must conform to the prototype definition
SoftwarelnterruptHandler. The meanings of the parameters, PI and P2, are specified by
the creator and sender of the particular software interrupt, respectively.

typedef void (*SoftwareinterruptHand:i.er) (Ref pl,
Ref p2);

Specifying Software Interrupts

Softwareinterrupts are specified by a software interrupt ID. These IDs are created by
using the CreateSoftwarelnterrupt service. Software interrupt IDs are instances of
potential interrupt requests. The ID of a software interrupt is valid until it is released by
either the invocation of the software interrupt handler, which occurs sometime afrer a call
to SendSoftwarelnterrupt, or deleting it using DeleteSoftwarelnterrupr.

typedef KernelID Sof::wareinterrupcI:J;

OSStatus CreateSoftwareinterrupt
(SoftwareinterruptHandler
Task..!::J
Ref
Boolean
Softwareinte~ruptID *

cheHandler,
forTask,
theParameter,
persistent,
theSoftwareinterrupt);

theHandler is the routine address of the software interrupt handling routine. The address
of this routine must be within the Team of the caller.

forTask is the ID of a task which will receive the software interrupt. If Null, the current
task will receive the interrupt. This task must be within the same task Team as the calling
task.

theParameter is the value that will be passed to TheHandler as its p 1 parameter.

persistent indicares whether the ID of the sofrware interrupt should be consumed when
the software interrupt is activated or should persist until explicitly de!eted by
DeleteSoftwareinterrupt. These persistent software interrupts may each be sent multiple
times but only once per activation; that is, the software interrupt must run before it can be
re-sent. See Sending Software Interrupts, below.

theSoftwareinterrupt is updated with the ID of the created sofrware inrerrupt.

Sending Software Interrupts

You can send a software interrupt to a specific task by calling SendSoftwarelntcrrupt.
The software interrupt will be activated when the designated task becomes eligible for

58 Copyright l 992 Apple Computer, lnc. March 29, 1994

5,590,334
157 158

execution with software interrupts enabled and all software interrupts previously sent to
the designated task have been processed. Attempts to send a single software interrupt
more than once result in errors. Persistent software interrupts can only be re-sent after
they have been activated.

OSStatus SendSof twareinterrupt
(Sof;::wareinterruptID theSoftware:':=iterrupc,
F.ef thePararneter) ;

TheSoftwarelnterrupt specifies a software interrupt previously created by
CreateSoftwareinterrupt.

theParameter is the value that will be passed to TheHandler as its p2 parameter.

Deletin2 A Software Interrupt

You can delete a software interrupt by calling DeleteSoftwareinterrupt. The software
interrupt and its ID will be consumed immediately. Softwareinterrupts that are pending
can be deleted; they will never be activated.

OSStatus DeleteSof twareinterrupc
(SofcwareinterruptID theSoft:wareinterrupt);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 59

5,590,334

159 160

HARDWARE INTERRUPTS

About Interrupt Handlers

NuKernel provides support for installing and removing hardware interrupt handlers.
Interrupt handlers are invoked by the kerne! in response to an external interrupt. Interrupt
handlers execute on a special stack dedicated to interrupt processing. Interrupt handlers
must operate within the restrictions of the interrupt execution model by not causing page
faults, and not using certain system services.

To ensure maximum system performance interrupt handlers should perform only those
actions which must be synchronized with the external device that caused the interrupt and
then queue a secondary interrupt handler to perform the remainder of the work associated
with the interruption .

.:--luKernel services pertaining to hardware intcrruprs arc only available to privileged
clients.

Designating Interrupt Sources

Interrupts are designated by use of a 32-bit vector number. This is not related in any way
to the interrupt vector defined by the processor. These vector numbers will be assigned
by Apple and described in the NuKernel implementation guide for each product.

typedef unsigned lang InteyruptVector;

Exceptions Caused By Interrupt Handlers

Whenever you registcr an interrupt handler, you can specify an exception handlcr. That
exception handler will gain control should an exception be incurred by the interrupt
handler. Additional exception handlers can not be installed nor can any exception
handlers be removcd during processing at hardware imerrupt leveL

Should an exception arise, control will be transferred to the exception handler as
described in the Exceptions chapter of this document. The handler can affect a transfer of
control using longjmp or similar mechanisms or return to the kerne!. If the handler
returns to the kerne! indicating that the exception was handled, control will resume
according to the exception state information provided by the handler. If, however, the
handler returns to the kerne! with status indicating that the exception was not handled, the
system will crash.

When rcgistering an interrupt handler, you may reguest that no exception handler be
installed during the activation of that interrupt handler. Specifying a value of Null causes

60 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
161 162

no exception handler to be installed. Should an exception arise with no exception handler
installed, the system will crash.

Execution Context Of Interrupt Handlers

Interrupt handlers are invoked with the appropriate addressing context (AS or TOC) as
determined at the time they are installed. However, all data and code references
generated during the processing of a hardwarc interrupt must be to physically resident
pages. Access to non-resident pages cause access error exceptions.

Arbitrating for Interrupts

Installation of interrupt handlers can only succeed if no other handler is currently
installed. Removal of interrupt handlers requires that you know the handler which is
active (see Removing Interrupt Handlers). In short, it is not possible to usurp control of
an interrupt which is already under control of some other handler. The policies for such
arbitration are beyond the scope of the kerne!.

Parameters To Interrupt Handlers

When an interrupt handler is invoked it is supplied with two 32-bit parameters. The first
indicates the source of the interruption, and is the same vector number supplied at
installation time. This allows a single interrupt handler installed for multiple sources to
determine the source of the current invocation. The second parameter to an interrupt
handler is the reference constant value, parameter p 1, that was passed to
InstalllnterruptHandler.

typedef void (*:nterruptHandler) (InterruptVector

Installini: Interrupt Handlers

OSStatus InstallinterruptHandler
(InterruptVector
InterruptHandler
ExceptionHandler
Ref

~heVec~or, Ref pl)i

theVectoo:-,
theHandler,
theExceptionHandler,
pl);

If no other handler is currently installed, the specified handler is installed for the logical
interrupt source. If a handler is already installed for this vector, no actions are taken and
an error is returned.

the Vector specifies the interrupt vector source for which the handler is to be invoked.

March 29, 1994 Copyright l 992 Apple Computer, Inc. 61

5,590,334
163 164

theHandler is the subroutine that is the interrupt handler. lt will be invoked with a single
parameter whose value is theVector.

theExceptionHandler is an exception handler which will be invoked if an exception
occurs during an invocation of theHandlcr. If Null, exceptions during an invocation of
the handler will be systern fatal.

p l is a refcon that is passcd to the interrupt handler whenever it is invoked.

Removing Interrupt Handlers

OSStatus Removeinterruptl'!andler (Inter:cuptVector ::heVector.
Interr'...IptHandler ~heHandle:-) ;

If the handler specified is currently installed at the vector specified, it is removed along
with any associated exception handler. If theHandler is not the acti ve handler for this
vector, no action is taken and an error is retumed. Once a handler is removed,
interruptions from the source will cause fatal system errors unless a new handler has been
installed.

the Vector specifies the interrupt vector source of the handler to be removed.

theHandler specifies the handler which rnust be currently active for the operation to
succeed.

62 Copyright 1992 Apple Computer, lnc. March 29, 1994

5,590,334
165 166

SECONDARY INTERRUPT HANDLERS

Secondary interrupt handlers are the primary synchronization mechanism used within the
kernel and its extensions. Secondary interrupt handlers must conform to the interrupt
execution environment rules which include: no page faults, severe restrictions on using
system services, etc. Secondary interrupt handlers run on a special stack reserved just for
this purpose. They may not make any presumptions about the task context in which they
execute.

The special characteristic of secondary interrupt handlers which makes them useful is that
the kerne! guarantees that at most one handler is active at any time. This means that if
you have a data structure which requires complex update operations and each of the
operations utilize secondary interrupt handlers to access or update the data structure, then
all access to the data structure will be atomic even though hardware interrupts are enabled
during the access.

Note: Although interrupts are taken during the execution of secondary interrupt
handlers, no task level execution takes place. This can lead to severely
degraded system responsiveness. Use the Secondary Interrupt facility
only when necessary.

NuKernel services pertaining to secondary interrupts are available only to privileged
clients.

About Secondary Interrupt Handlers

Secondary interrupt handlers are simple procedures. They have between zero and four
parameters and return no result. A separate prototype describes each of the five flavors of
secondary interrupt handler.

typedef OSStat:us (*SeconC.aryint:errupt:HandlerProcO)
typedef OSStatus (*Seconäaryinterrupt:HandlerProcl)
typedef OSStatus (*SecondaryinterruptHandlerProc2)

typedef OSStatus (*SecondaryinterruptHandlerProc3)

typedef OSStatus l*Secondaryinterrupt:HanälerProc4)

Exceptions In Secondarv Interrupt Handlers

lvoid);
(Ref pl);
IRef pl,
Ref p2);

lRef pl,
Ref p2,
Ref p3);

(Ref pl,
Ref p2,
Ref p3,
Ref p4);

Whenever you queue or call a secondary interrupt handler, you can specify an exception
handler. That exception handler will gain control should an exceptions be incurred by the

March 29, 1994 Copyright 1992 Apple Computer, Inc. 63

5,590,334

167 168

secondary interrupt handler. Additional exception handlers can not be installed nor can
any exception handlers be removed during processing at secondary interrupt level.

Should an exception arise, control will be transferred to the exception handler as
described in the Exceptions chapter of this document. The handler can affect a transfer of
control using longjmp or similar mechanisms or retum to the kerne!. If the handler
retums to the kerne! indicating that the exception was handled, control will resume
according to the exception state information provided by the handler. IL however, the
handler returns to the kerne! with status indicating that the exception was not handled, the
system will crash.

When queucing or calling a secondary interrupt handler, you may request that no
exception handler be installed during thc activation of that secondary interrupt handler.
Specifying a value of Null causes no exception handler tobe installed. Should an
exception arise with no exception handler installed, the system will crash.

Oueuin:;: Secondary Interrupt Handlers

Queueing secondary intcrrupt handlers is usual!y done during the processing of a
hardware interrupt. The secondary interrupt handler's execution will be deferred until
execution is about to transition back to task level. Y ou may, however, queue secondary
interrupt handlers from secondary interrupt level. In this case, the enqueued handler will
be run after all other such queued handlers, including the current handler, have finished
executing. Only one flavor of secondary interrupt handler, those with two parameters,
may be queued. You must specify the values ofthe two parameters at the time you queue
the handler.

Secondary interrupts handlers that are queued from hardware interrupt handlers consurne
kerne! resources from the time they are queued until the time they begin to execute.
These resources are finite. You should make every atternpt to lirnit the number of
simultaneously queued secondary interrupt handlers.

OSStatus QueueSecondaryinterrupt~a~äler
(SecondaryinterruptHandlerProc2
ExceptionHandler
Ref
Ref

Callini: Secondary Interrupt Handlers

theHandler,
theExceptionhandle~.

pl,
p2);

Secondary interrupt handlers can be called synchronously through use of the
Cal!SecondaryinterruptHandler .. Ca11SecondarylnterruptHandler4 routines. These
services may be used from either task level or secondary interrupt level but not from
hardware interrupt level. The secondary interrupt handler is invoked immediately in
response to calls to these services; they are never queued.

64 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
169

OSStatus CallSecondaryinterruptHandler
(SecandaryinterruptHandlerPracD
ExceptionHandler

OSStatus Cal:SecandaryinterruptHandlerl
(SecondaryinterruptHandlerProcl
ExceptianHandler
lang

OSStatus Cal:Secandary:nterruptHand~er2
(SecandaryinterruptHandler?rac2
ExceptianHandler
lang
lang

OSStatus CallSecandaryinterruptHandler3
(SecondaryinterruptHandlerPrac3
ExceptianHandler
~ang

lang
lang

OSStatus CallSecandarylnterruptHandler4
(SecandaryinterruptHandlerPrac4
ExceptianHandler
lang
lang
lang
lang

170

::heHar,dler,
::heExceptianHandler);

theHandler,
theExceptianHandler,
pl);

theHandle:<:",
theExcept.ionHandler,
pl.
p2);

theHandler,
~heExceptionHandler,

pl,
p2,
p3);

::heHandler,
theExceptionHandler,
pl,

p2'
p3'
p4);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 65

5,590,334
171 172

EVENTFLAGS

Event Flags are primarily used for synchronizing operations among tasks and are sirnilar
to classical semaphores. Event Flags come in groups, each group containing 32 separate
flags or scmaphores. The kerne! provides a set of operations which Create and Delete
Event Flag Groups and operate upon one or more of the flags within a specified group.
As with most abstract types provided by the kerne! you cannot get access to the
underlying data of an event group; it is maintained within the kernel's address space and
you may only reference it by the ID returned when the group is created.

typedef KernelID Eve~tGroup:D;

In addition to operations which allow the creation and deletion of event flag groups, other
operations al!ow you to Set, Clear, Test, and Wait for one or more t1ags within a group.
These operations require that you specify a mask value which is used to manipulate the
t1ags within the group.

typedef unsigned lang Event!~ask;

Creating Event Flai: Groups

OSStatus CreateEventFlagGroup (EventGroupID * theGroup);

CreateEventFlagGroup creates an event flag group returns the group's ID. Each flag
within the group is cleared. The group of flags will persist until it is explicitly deleted.

Deletini: Event Fla~ Groups

OSStatus DeleteEventFlagGroup (EventGroupID theGroupl;

DeleteEventFlagGroup destroys the specified event flag group. Any tasks waiting upon
flags within the group are made executable and the result of their wait operation will be a
kerne!IncompleteErr.

Setting Event Flags

OSStatus SetEvents (EventGroupID
Svent.Mask

theG!:Ol.!p,
theMask) ;

66 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
173 174

SetEvents sets specified flags in the specified event flag group. As a result of setting
flags, tasks waiting upon those flags will become eligible for execution. See
WaitForEvents below.

theGroup specifies the event flag group.

theMask specifies zero or more event flags to set.

Clearing Event Flags

OSStatus ClearEvents (:2:ventGroupI:'l
EventMask

theGroup,
theMask);

ClearEvents clears specified flags in the specified event flag group. Clearing event flags
does not have any scheduling side effects.

theGroup specifies the event flag group.

theMask specifies z.ero or more event flags to clear.

Examining The Value OfEvent Flags

OSStatus ReadEvents (EventGroupID
EventMask *

theGroup,
theValue);

ReadEvents retums the values of the event flags in the specified event flag group.

theGroup specifies the event flag group.

the V alue specifed where to return the values of the event flags.

Waiting For Event Flags To Become Set

typedef unsigned long EventFlagOperation;
enum

} ;

eventFlagAll J,

eventFlagAny ~.

eventFlagAllClear 2,
eventFlagAnyClear

OSStatus WaitForEvents {EventGroup!D
Du::::-ation

~heGroup,

~imeLimit,

March 29, 1994 Copyright 1992 Apple Computer. Inc. 67

175
5,590,334

EventMask
EventFlagOperation
EventMask *

theMask,
theüperacion,
theValue);

176

WaitForEvents waits for thc flag(s) specified by theMask to become set within theGroup.
If you want to wait for any one of several flags to become set use the eventF!agAny
operation. If you want to wait for multiple flags to all become set use the eventFlagAll
operation. You can optionally cause the flags for which you were waiting tobe cleared
by using either eventFlagAl!Clear or eventF!agAnyC!ear rather than eventFlagAny or
eventFlagAll respectively. The maximum amount of time spent waiting is controlled by
the tirneLimit parameter and rnay range from zero to infinite. theValue represents the
value of the flags when either the condition is satisfied or the timeLimit is exceeded.

Usin~ Event Flags As Semaphores

Event flags rnay be used to implement traditional semaphores. To acquire a semaphore
simply use the WaitForEventFlag with theOperation set to eventF!agAl!Clear. To release
a semaphore which you have acquired, just use the SetEvents operation. Note, however,
that the initial state of flags within an event flag group (cleared) causes them to be in the
acquired state. They must be released (set) prior to being subsequently acquired.

SetEvents (theGroup, theMask);

WaitForEve!l.tS (theGroup,
dura~ionForever,

theMask,
eventFlagAl:Clear,
ni:.J;

The Processing Of SetEvents

'! V (S) - Release

„. / P {S) - Acquire

SetEvents is of most interest because it can cause one or more task scheduling operations
if any corresponding WaitForEvems requests become satisfied.

At the time of a Set operation, zero or more tasks are waiting for flags with the specified
group to become set.

After the flag group has been updated to reflect the effect of the Set operation, the set of
waiting tasks is scanned in an order dependent upon the priority of the waiting tasks,
Higher priority tasks are considered before lower priority tasks. Within a single priority,
tasks that have been waiting longer are considered prior to those which have been waiting
for a shorter time. If the condition, specified by a given wait request, is satisfied the task
is made executable and it is removed from the !ist of waiting tasks. Otherwise, the task
remains on the !ist. If the condition is satisfied and the clear option was specified
(EventF!agAnyClear or EventF!agA!IClear), the effect ofthe clear happens before any
other task's conditions are evaluated. The evaluation of the !ist continues until all tasks in
the Jist have been processcd.

68 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
177 178

EVENT NOTIFICA TION

Many services provided by the kerne! have forms that allow them to take place in parallel
with the execution of the task making the request. These services are said to be
asynchronous. NuKernel supports three mechanisms indicating when these
asynchronous requests have completed: memory location update, Event Flags and
Software Interrupts.

Asynchronous services allow you to specify an EventNotification which governs how
you'll be informed of the request's completion. An EventNotification allows you to select
any or all of the notification schemes. EventNotifications are used in conjunction with
various address space, timer, task, and message operations.

When an asynchronous kerne! service finally completes, those services deliver the
notification. Notification delivery is defined as the following actions in order:

• Placing the service's result into a specific memory location.

• Setting one or more event flags within a specific event group.

• Sending a specific software interrupt. The service's result is used as the value of the
second parameter to the software interrupt handler.

Delivery of a notification is completely asynchronous to the execution of the task that is
being notified.

Every kerne! service that makes use of the event notification mechanism has a
notification parameter. This parameter is the address of an EventNotification record. If
you pass the Null address, no notification will be delivered. Although event notification
records are passed by address, the kerne! makes a complete copy of the record that you
supply at the time that you call the service. The record that you supply is not referenced
at the time the service completes and the notification is delivered.

Event Notification

Below is the type declaration of an EventNotification.

typedef struct EventNotification
(

OSStatus *
EventGroupID
EventMask
Softwareinterruptid

EventNotification;

theStatus;
::heGroup;
theMask;
theSwi;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 69

5,590,334
179 180

TIMING SERVICES

The kernel's timing services provides four different kinds of timers in addition to services
that allow you to determine the timer accuracy of the hardware and to get the current
time.

Three of the timer services are used when tasks need to either delay for a pcriod of time
or receive notification at a particular time. The fourth timer service allows you to specify
a sccondary interrupt handler that is to be run at a particular time.

Timer Accuracy

The accuracy of timer opcrations is quite good. Every attempt is madc to ensure the
quality of timed operations. However, certain limitations are inherent in the timing
mechanisms and these are described below.

About The Time Base

Timer hardware within the system is clocked at a rate that is model dependent. This rate
is called the Time Base. The timer services isolate you from the time base by
representing all times in microseconds. However, the times that you specify are
converted from microseconds into the units supported by the underlying hardware when
hardware timers are actually programmed. This conversion can introduce errors. These
errors are typically limited to one unit of the time base.

When performing sensitive timing Operations, it can be important to know the underlying
time base. For example, if the time base is J 0 milliseconds, there is not much value in
setting timers for 1 millisecond. Y ou can determine the hardware time base by using the
following service:

void TimeBase \unsigned long * Nurr.erator,
unsigned lang * Denomina~or);

Representing the time base is difficult. The va!ue is typically an irrational number.
NuKernel solves this problem by returning a representation ofthe time base in fractional
form; two 32-bit integer values, a numerator and denominator, are returned. The result of
dividing the numerator by the denominator is a value that is equal to the number of
hardware ticks per microsecond.

For example, if the hardware time base increments the hardware timer once every 1.2
microseconds then a call to TimeBase will return a numerator of 12 and a denominator of
10. In this example, numerator/denominator values of 1201100 or 6/5 would be equally
valid.

70 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
181 182

Timing Latency

Timing htency is the amount of time which passes between when a timer should expire
and when the notification of its expiration is received. Timing latency within the system
is not deterministic. The effects of scheduling operations triggered by timer expiration do
not necessarily occur immediately. Hardware interrupt handlers, secondary interrupt
handlers, and tasks of greater or equal CPU priority will all contribute to the perceived
latency ofthese timing services. Latency, by its nature, is not constant over time. Under
some conditions, such as servicing a page fault when invok.ing the timer handler, latency
may be !arger than the requested time interval. lf you avoid installing rnany tirners that
all expire at nearly the sarne time, timer latency should be acceptable.

Timer Overhead

When setting a timer, the time you specify is used directly to program thc timing
hardware. Nu Kernel does not attempt to account for either the overhead of setting up the
timer or the overhead of notifying a dient of the timer's completion. As a result, a timed
operation of one millisecond may actually require, for example, 1.1 milliseconds.
Overhead is different from latency because it is constant.

Obtaining The Time

You can read the internal representation of time to which all timer services are
referenced. This value starts at zero during kerne! initialization and increases throughout
the system's lifetime.

void UpTime (AbsoluteTime * theTime);

Setting Timers To Expire In The Past

Several of the timer services allow you to specify an absolute time at which the timer is to
expire. It is, therefore, possible that the time you specify has already occurred. The
kerne! does not attempt to optimize these cases. Timers set at times in the past will
expire within a very shon period of time, perhaps instantly, perhaps not. You should not
depend upon the exact behavior of such timers.

Synchronous Timers

Synchronous timers cause the calling task to stop executing until a specific time is
reached. NuKemel provides synchronous timers that specify time in both absolute and
relative terms.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 71

5,590,334
183 184

Synchronous Timers With Absolute Times

void DelayUntil IAbsoluteTime * expirationTime);

The calling task is blocked until expirationTime at which point the task is again made
eligible for execution. Unless called with software interrupts disabled or from within a
software interrupt handler, software interrupts may be received while the task is
otherwise sleeping. Because DelayUntil allows you to specify an absolute expiration
time, you can perform periodic work at intervals which have no long term drift.

Fol!owing is an example of a task that performs some work at one second intervals with
no long term drift.

OSStatus DriftFreeWorker (Ref work)
(

TimeFormat nextWork'l1ime;

UpTime (&nextWorkTime);
da
{

DoTheWork
AddOneSecond
DelayUntil

while ltrue);

lwork)
{ &nextWorkTime} ;
l&nextWorkTime);

·; Get the time refe~ence

r'/ Da the work
Calculace next time to work

/ / Delay u~u:il that ::ime

Synchronous Timers With Relative Times

void DelayFor (Duration theDelayl;

The calling task is blocked for the amount of time specified. DelayFor allows the caller
to delay for a time relative to when the service is called. You cannot achieve drift free
timing by using repeated calls to DelayFor.

Following is an example of a task that performs some work at one second intervals with
unpredictable lang term drift.

OSStatus Drifting\'lorker (Ref wori<)
{

do
(

DoTheWork lwork);
DelayFor ldurationSecond);

while 1 true) ;

II Do the work
// Delay for one second

72 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
185 186

Asynchronous Timers

Asynchronous timers cause the task to be notified when a specified time is reached.
Starting an asynchronous timer yields an ID which may be used to cancel the timer prior
to its expiration. Notification of timer expiration is done through use of the
EventNotification mechanism.

typedef KernelID TimerID;

OSStatus SetTimer (AbsoluteTime * expirationTime,
EventNotificat~on * theNotificacion,
Tirne~ID * theTimer);

A timer is set and upon expiration a notification is delivered.

expirationTime specifies the absolute time at which the notification should be generated.

theNotification specifies the manner in which the caller wishes tobe notified upon
expiration of the timer. See the Event Notification chapter of this document for
additional details.

theTimer is updated to reflect the ID of the timer thus created. This ID may only be used
to cancel the timer prior to its expiration. The TimerID becomes invalid when either a
CancelTimer operation is performed or the timer expires.

Interrupt Timers

Each of the timing operations previously discussed are only peninent to task level
execution. This aspect of those timers is not acceptable to cenain device drivers and
other low level software. These c!ients may require timers that have less latency or can
be set from hardware interrupt handlers. Interrupt timers fulfill both of these
requirements.

Interrupt timers allow you to specify a secondary interrupt handler that is to be run when
the timer expires. They are asynchronous in nature. Y ou can set an interrupt timer from
a hardware interrupt handler, a secondary interrupt handler, or a privileged task.

Interrupt timers require the use of preallocated kerne] resources; a finite number of these
timers are available. They should be used only when no alternative exists.

OSStatus SetinterruptTime (Absolute~ime * expiratio~~ime,

Secondary:nterruptHandler theHandler,
Ref pl,
~imerID * the~imer) ;

expirationTime is the absolute time at which the timer is to expire.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 73

5,590,334

187 188

theHandler is the address of a secondary interrupt handler that is to be run when the
specified time is reached.

p 1 is the value that will be passed as the first parameter to the secondary interrupt handler
when the timer expires. The value of the second parameter passed to the secondary
interrupt handler is undefined.

theTimer is updated with the ID of the timer that is created. This ID may be used in
conjunction with Cance!Timer.

Canceling Asvnchronous Or Interrupt Timers

Outstanding asynchronous timers can be cance!ed. This prevents the notification from
being delivered. When you attempt to cancel an asynchronous timer a race condition
begins between your cancellation request and expiration of the timer. It is, therefore,
possible that the timer will expire and that your cancellation attempt will fail even though
the timer had not yet expired at the instant the cancellation attempt was made.

Attemprs to cancel interrupt timers that are made at interrupt level are slightly less
deterministic. The kerne! cannot cancel the actual timer until secondary interrupt time.
So it is possible that the timer will expire and the secondary interrupt handler associated
with the timer is run even though the timer was canceled. However, if the hardware
interrupt handler that cancels the interrupt timer queues a secondary interrupt handler
after it has made the c:mcellation request, the kerne! guarantees that the interrupt timer
will have either run or been canceled before that secondary interrupt handler executes.

OSStatus CancelTimer (TimerID theTimer);

CancelTimer cancels a previously created timer. An error is returned if the timer has
eithcr already expired or been cance]ed.

74 Copyright l 992 Apple Computer, Inc. March 29, 1994

5,590,334
189 190

ADDRESS SPACE MANAGEMENT

Address Space Management is the creation, deletion, and rnaintenance of logical address
spaces. Address spaces are composed of memory ranges, called areas, that possess a set
of common attributes including back:ing store and protection level. Maintenance services
include those for copying data between address spaces and for controlling access to and
paging of areas within a particular address space.

Commonalities in address space management services are noted in the following !ist.
Deviations are mentioned in the descriptions of individual services.

• The kernelIDErr error is returned when the specified address spacc or area does not
exist.

• When a logical address range (base and length) is specified, !hat range rnust lie
entirely within a single area. Although some range operations need to be
implemented in a page-aligned fashion, it is never required that the base and length
be specified page-aligned. Further, these calls require that area be based in RAM.
not in ROM or 10 space.

Basic Types

This section defines some types and values that are fundamental to address space
management. The significance of the items mentioned is clarified by the descriptions of
the services that use them.

Values of type Logica!Address represent location in an address space or area.

typedef Ref LogicalAädress;

Values of type Physica!Address represent location in physical memory. They are used
primarily with back:ing object and DMA 1/0 operations.

typedef Ref PhysicalAddress;

Address spaces are referred to by values of type AddressSpaceID. The value
currentAddressSpacelD refers to the current address space.

typedef KernelID
enum

AddressSpaceI:J;

currentAddressSpaceID
} ;

Areas are referred to by values of type ArealD. The value noAreaID refers to an area that
does not exist.

typedef KernelID
enum

March 29, 1994

.".reaID;

Copyright 1992 Apple Computer, lnc. 75

5,590,334
191 192

noAreaID 0
) ;

Values of type Memory AccessLevel represent allowable accesses to some portion of
memory.

typedef unsigned long Memo:r-yP..ccessLevel;
enum

) ;

rnernoryExcluded 0,
rnernoryReadOnly 1,
rnernoryReadWrite 2,
mernoryCopyOnWrite 3

• memoryExcluded specifies that no accesses at all, including instruction fetches, are
allowed.

• memoryReadOnly specifies that read and instruction fetch operations are allowed.

• memoryReadWrite specifies that read, write and instruction fetch operations are
allowed.

• memoryCopyOnWrite specifies that read, write and instruction fetch operations are
allowed, but that modifying data in the area does not alter data in the backing store.
Note that there is no means provided to revert modified copy-on-write pages back to
their original state.

typedef U~signedWide Bac~ingAddress;

Values of type BackingAddress are used to specify offsets within backing objects. They
are 64-bit integer values in anticipation of file systems that provide support for files !arger
then 4 GB.

Static Logical Addresses

lt is sometimes necessary to access the physical pages through logical addresses
regardless of whether the physical page is mapped into the current address space, To
enable this, the memory system keeps a static mapping of physical pages such that
physical pages are mapped into the kerne! band at all times. The logical address in the
static mapping corresponding to a given physical address is called the static logical
address of the page. Static logical addresses are kept in variables of type
LogicalAddress. They are valid for access by privileged software only.

Address Space Control

The following services support the creation and deletion of address spaces. Others allow
the caller to obtain information about the address spaces already in existence.

76 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
193 194

Creating Address Spaces

Address spaces can be created to provide additional addressing and protection.

OSStatus CreateAädressSpace (AääressSpaceID * theAddressSpace);

CreateAddressSpace builds a new address space and retums an AddressSpaceID for it. A
new address space automatically contains any ex.isting global areas and range
reservations (see CreateArea and CreateMemoryReservation, respectively).

theAddressSpace is an output parameter indicating the address space identifier that can be
used for subsequent operations on the created address spacc. A value of invalid!D will be
retumed if CreateAddressSpace fails.

Deleting Address Spaces

OSStat'-!s DeleteAääressSpace (AddressSpaceIG theAddressSpace);

DeleteAddressSpace destroys the specified address space. All non-global areas mapped
into that space are also destroyed.

Note: Care should be taken to prevent references to the deleted address space.

theAddressSpace specifies the address space to destroy.

Obtaining Information About An Address Space

typedef struc~ Spaceinfo~ation
(

AädressSpace:D iäentity;
ByteCount logicalRAMSize;
ByteCount pageSize;

Spaceinformation;

enum

spaceinforrnationVersion 0
} ;

OSStatus GetSpaceinformation (AääressSpaceID
PBVersion
Spaceinformation *

theAddressSpace,
theVersion,
theSpacelnfo) ;

GetSpacelnformation returns information about the specified address spacc.

theAddressSpace specifies the address space for which to get the information. A value of
currentAddressSpaceID specifies the current address space.

March 29, 1994 Copyright 1992 Apple Computer, lnc. 77

5,590,334
195 196

theVersion specifies the version number of Spaceinformation tobe returned. This
provides backwards compatibility. spaceinfonnationVersion is the version of
Spacelnformation defined in the current interface.

theSpacelnfo specifies where to return the informarion.

The fields of a Spacelnformation structure arc:

• identity - the AddressSpaceID of the address space.

• logicalRAMSize - the number of bytes of mappable space within the address space.

• pageSize - the size, in bytes. of all logical pages in an address space. All address
spaces usc the same page size.

Iterating Over All Address Spaces

Tasks can obtain the AddressSpaceID's of all the existing address spaces.

OSStatus Get.l\.ddressSpacesinSystem 1 Ite"'.Count theCount,
ItemCount skipCount,
Kernellterator • theAddressSpaces);

GetAddressSpaceslnSystem allows the caller to iterate over all address spaces within the
system.

theCount specifies the maximum number of AddressSpaceIDs to return.

skipCount spccifies the number of address spaces to ignore prior to returning any
AddressSpaceIDs.

theAddressSpaces specifies the Kerne!Iterator in which to return the AddressSpace!D
information. This Kernellterator must be !arge enough to store at least theCount
AddressSpaceIDs.

Logical Page Size

#define gestaltLogicalPageSize 'pgsz'

The Gestalt function includes the gestaltLogica!PageSize selector for acquiring the
number of bytes in a logical page. The logical page size is constant for any given boot of
the system. This information is also available from the GetSpacelnformation service.

78 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
197 198

Area Control

The following operations provide support for creating and deleting areas within address
spaces. Others allow the caller to obtain information about the areas already in existence.

Creating Areas

typeäef OptionBits AreaOptions;
enum

} ;

zeroFill
resiäentArea
sparseArea
placedArea
globalArea

OSStatus CreateArea

OxOOCOOOOl,
Ox00000002,
Ox00000004,
Ox00000008,
OxOOOOOOlO

1 .".ädressSpaceID
3acking0bjectID
Backir.gAdäress •
Syt:eCount
MemoryAccessLevel
MemoryAccessLevel
SyteCount
AreaOptions
LogicalAääress *
AreaID *

theAddressSpace,
theBackingObject,
theBackingBase,
theBackingLengt:h,
theAccessLevel,
thePrivilegedAccessLevel,
theGuardLength,
theOptions,
theAreaBase,
theArea);

CreateArea creates a mapping between the specified address space and the specified
backing store. The ArealD of the newly created area and the logical address of that area's
origin are both returned to the caller. The logical address has meaning only within the
context of the area's owning address space.

theAddressSpace specifies the address space in which to create the area.

theBackingObject specifies the backing store whose content is to be mapped. Specifying
noBackingObjectID for this parameter implies that a scratch backing store file should be
used. If either the residentArea option is specified, or if all access to the area is excluded,
theBackingübject must be noBackingObjectID.

theBackingBase specifies the offset within theBackingübject that is to correspond to the
lowest address in the area. Note that this parameter is the address of the actual
BackingAddress parameter. theBackingBase being nil specifies a BackingAddress of
zero. The range of possible BackingAddress values is not constrained by the memory
system. Backing objects themselves may place restrictions (e.g. on a block-oriented
device, the base might need tobe a whole multiple of the block size). If the residentArea
option is specified, theBackingBase must be specified as nil.

theßackingLength specifies the number ofbytes to map from theßackingObject, starting
at theBackingBase. It will be rounded up to a multiple of the logical page size. This

March 29, 1994 Copyright 1992 Apple Computer, Inc. 79

5,590,334
199 200

implies that more backing store than was specified may be mapped in. Backing store
data is not allocated by CreateArea. Rather, it is added on-demand (also, backing object
providers may opt to implement a message to acquire the backing store).
theBack.ingLength must be non-zero.

theAccessLevel and thePrivilegedAccessLevel specify the k.inds of memory references
that non-privileged and privileged software are allowed to make in the area, respectively.
References made in violation of the access level result in exceptions at the time of the
access. See the Memory Exceplions section of this chapter. If thePrivilegedAccessLevel
is more restrictive than theAccessLevel, thePrivilegedAccessLevel will be made equal to
theAccessLevel.

theGuardLength specifies the size, in bytes, of the excluded logical address ranges to
place adjacent to each end of the area. The ranges, called area guards, are excluded to
both privileged and non-privileged software. References to those addresses result in
exceptions. See the Memory Exceptions section of this chapter. theGuardLength will be
page-aligned, if necessary. This means that the excluded ranges may be !arger than is
specified.

theOptions specifies desired characteristics of the area being created. Values for this
parameter are defined by the Areaüptions type.

• zeroFill specifies that memory in this area should be initialized to zero. This option
applies only to scratch areas (i.e. noBack.ingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified).

• residentArea specifies that the data for this area must always be physically resident.
These areas are never paged between memory and backing storage. This option is
available only to privileged callers.

• sparseArea specifies that the resources for the area be allocated on-demand. This
option applies only to scratch areas (i.e. noBackingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified). For scratch areas, sparseness means that the scratch backing object will
be sparse, if possible, For resident areas, sparseness means that the physical
memory will be allocated by page faulting.

• placedArea specifies that theAreaBase specifies where to create the area.
theAreaBase and theBackingLength will be page-aligned. This means that the area
may be !arger than was specified. CreateArea fails and an error is retumed if the
area can not be so positioned. theAreaBase will be set to the actual beginning of the
area.

80

Note: Care should be taken when using the placedArea option, as the specified
location be part of a memory reservation unknown to the caller. lt is
advisable to creatc a reservation for the range in which the area will be
placed, prior to creating the area. Reservations can be made either for a
specific address space. or globally. See CreateMemoryReservation.

Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334

201 202

• globalArea specifies that the data for this area is to be addressable from any address
space. All address spaces will get access in accordance with the privileged and non
privileged access levels specified. The created area appears at theAreaBase in every
address space. When this option is specified theAddressSpace parameter has no
effect; a value of nil should be passed.

theAreaBase is an ouput parameter indicating the beginning logical address of the
mapped memory. If the placedArea option is specified, theAreaBase is also an input
spccifying where to position the area. See the description of placedArea. above.

theArea is an output parameter indicating the area identifier that can be used for
subsequent operations on the created area. A value of noArealD will be retumed if
CreateArea fails.

Deleting Areas

OSStatus DeleteArea (AreaID theArea) ;

DeleteArea removes the specified area. If the area is global, it is deleted from all address
spaces. Further references to the logical addresses previously mapped will result in
memory exceptions. Non-global areas are also deleted if the address space containing
them is deleted.

Note: DeleteArea has no formal interactions with other pieces of system
software. Care should be taken to prevent potential references to the
deleted area.

theArea specifies the area to destroy.

Obtaining Information About An Area

typedef struct Areainfor~ation
(

AddressSpace:D
LogicalAddress
ByteCount
MemoryAccessLevel
MemoryAccessLevel
AreaUsage
BackingObjectID
BackingAddress
AreaOptions

Areainformation;

enum

addressSpace;
base;
length;
accessLevel;
privi:egedAccessLevel;
asage;
backingObject;
backingBase;
options;

areainformationVersion 0
} ;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 81

5,590,334

203 204

OSStatus GetAreainformatior. (AreaID theArea.
PBVersion theVersion,
Areainformation " theAreainfo);

GetArealnformation returns information about the specified area.

theArea specifies the area for which to return information.

theVersion specifies the version number of Arealnformation tobe retumed. This
provides backwards compatibiliry. arealnformation Version is the version of
Arealnformation defined in the current interface.

theAreainfo specifies where to return the information.

The fields of an Arealnformation strucrure are:

• addressSpace - the address space that contains the area. This value will be
currentAddressSpaceID if the area is global to all address spaces.

• base - the logical address of the area.

• length - the size, in bytes, of the area.

• accessLevel - thc kinds of references allowed by non-privileged execution.

• privilegedAccessLevel - the kinds of references allowed by privi!eged execurion.

• backingübject - the object providing backing store for the area. The value
noBackingObjectID is retumed if there is no backing object .

• backingBase - the area' s base address within the backingObject.

• options - the options that were specified at the time the area was created.

See the description of CreateArea, above, for further information about access levels and
area options.

Iterating Over All Areas Within An Address Space

OSStatus GetAreasinAddressSpace (AddressSpaceID theAddressSpace,
ItemCo~nt theCount,
:temCount. skipCount.,
Ke!:"nel:r.erator ,.. theA::::eas i ~

GetAreaslnAddressSpace returns the AreaIDs of areas contained within the specified
address space.

theAddressSpace specifies the address space from which to return areas. A value of
currentAddressSpaceID specifies the current address space.

82 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334

205 206

theCount indicates the maximum number of AreaIDs to return.

skipCount'indicates the number of areas to ignore prior to returning any Area!Ds.

theAreas is filled in with the Area!Ds of the areas specified by theCount and skipCount.
This Kerneliterator must be large enough to store at least theCount Area!Ds.

Changing The Access Level Of An Area

lt is sometimes useful to change the kind of accesses that are allowed to an area. For
example, a code loader might need to make an area read-write while initializing it. then
change it to read-only when the area is ready to use.

OSStatus SetAreaAccess (AreaID theArea,
MernoryAccessLevel theAccessLevel,
MemoryAccessLevel thePrivilegedi'.ccessLevel);

SetAreaAccess changes the allowed accesses to an area.

theArea specifies the AreaID of the area in which to change the access.

theAccessLevel and thePrivilegedAccessLevel specify the kinds of memory references
that non-privileged and privileged software are allowed to make in the area, respectively.
References made in violation of the access level result in exceptions at the time of the
access. See the Memorv Exceptions section of this chapter. If thePrivilegedAccessLevel
is more restrictive than theAccessLevel, thePrivilegedAccessLevel will be made equal to
theAccessLevel.

Finding The Area That Contains A Particular Logical Address

OSStatus GetAreaFro~Address IAddressSpaceID
LogicalAddress
AreaID *

-:.heAddressSpace,
theAddress,
theArea);

GetAreaFromAddress retums the AreaID of the area associated with the specified logical
address.

theAddressSpace specifies the address space containing the logical address in question.
A value of currentAddressSpaceID specifies the current address space.

theAddress specifies the logical address to look up.

theArea is an output parameter where the AreaID of the logical address is returned.

March29, 1994 Copyright 1992 Apple Computer, Inc. 83

5,590,334
207 208

Using Areas To Access Large Backing Stores

Same backing stores are too !arge to view in their entirety in the space available to a
single address space. A common way to deal with this is to create a limited-size mapping
(area), then adjust where in the backing store that mapping corresponds.

OSStatus SetAreaBackingBase (Areal~ theArea,
3ackingAddress"" theBackingBasel;

SetAreaBackingBase sets the specified BackingAddress as the base for the specified area.
An area's base BackingAddress and length determine which portion of the Backingübject
is mapped to the area. Changing an area's base BackingAddress is an effective method
for accessing numerous parts of a !arge backing store through a relatively small logical
address range.

theArea specified the area in which to change the backing store base.

theBackingBase specifies the offset within theBackingObject that is to correspond to the
lowest address in the area. Note that this parameter is the address of the actual
BackingAddress parameter. theBackingBase being nil specifies a BackingAddress of
zero. The range of possible BackingAddress values is not constrained by the memory
system. Backing objects themselves may place restrictions (e.g. on a block-oriented
device, the base might need to be a whole multiple of the block size).

Memory Control

Obtaining Information About A Range of Logical Memory

You can obtain usage information for each logical page within a range of logical
addresses. This information may be useful when perforrning certain runtime operations
such as garbage collection and/or heap compaction.

enurn

pageinformationVersion 0
} ;

typedef unsigned lang PageStateinformation;

enu.."n

} ;

84

pageisProtected
pageisModi:'ied
pageisReferenced
pageisLocked
pageisResident
pageisShared

OxODOOOOOl,
OxODOOODD2,
OxüD000004,
DxDOOOODOS,
OxODOOOOlO,
Ox0000002D

Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
209

typedef struct Pageinformation
(

AreaID theArea;
ItemCount theCount;
PageStateinfor:nation theinformation [1];

Pageinforrnation;

210

OSStatus GetPageinformation (AddressSpaceID theAddressSpace,
LogicalAddress theBase 1

ByteCount theLength,
PBVersion ~heVers~o~.

?ageinöor:nation * thePageinöo);

GetPagelnformation returns nformation about each logical page in the specified range.
theAddressSpace specifies the address space containing the range of interest.

theBase is the first logical address of interest.

theLength specifies the number of bytes of logical address space, starting at theBase,
about which information is to be retumed.

the Version specifies the version number of Pagelnformation to be returned. This
provides backwards compatibility. pagelnformationVersion is the version of
Pagelnformation defined in the current interface.

thePageinfo is filled in with information about each logical page. This buffer must be
!arge enough to contain information about the entire range. Page information is as
follows:

• theArea indicates the Area!D of the area associated with the range.

• theCount indicates the number of enties in which information was returned.

• thelnformation contains one entry for each logical page with bits to indicate whether
the page is write protected, modified, referenced, locked, physically resident, and/or
shared.

Data-To-Code

Placing executable data in memory requires synchronization with the processor's data
and instruction caches. The details are specific to the processor and the internal 6peration
of the memory system. Consequently, the memory system provides services that
encapsu!ate the necessary operations.

OSStatus DataToCode (AddressSpaceID theAddressSpace,
LogicalAddress cheBase,
ByteCount theLength) ;

DataToCode performs the opcrations necessary for the specified memory range to bc
treated as processor instructions instead of simple data. This is required. for example,

March 29, 1994 Copyright 1992 Apple Computer, Inc. 85

5,590,334
211 212

when reading instructions into scratch memory, or when generating instructions ··an the
fly."

theAddressSpace specifies the address space containing the range tobe treated as code.

theBase specifies the start of the range to be treated as code.

theLength specifies the number of bytes in the range to be treated as code.

The beginning and end of the range will be adjusted, if necessary, so that the range begins
and ends on logical page boundaries. This means that more memory than was specified
may be affected.

Preventing Unnecessary Backing Store Activity

OSStatus ?.eleaseData (AddressSpace::i
Log:CcalAddress
ByteCount

'.:.heAdC.ressSpa.ce,
the3ase,
theLe!'lgth);

ReleaseData informs the memory system that the data va!ues in the specified range are no
langer needed. lt is an optimizing hint to prevent writing the data to the backing store.
The back.ing store, if any, remains allocated to the range. This is useful, for example,
when deallocating dirty heap blocks.

Note: If the released range is subsequent!y accessed, the values in memory will
be unpredictable. This includes data in areas with memoryCopyOnWrite
access: that is, the data is not guaranteed to revert to its original,
unmodified, state.

theAddressSpace specifies the address space containing the range to release.

theBase specifies the stan of the range to release.

theLength specifies the number of bytes in the range to release.

The beginning and end of the range will be adjusted, if necessary, so that the range
released begins and ends on logical page boundaries. This means that less memory than
was specified may be released.

Memorv Control In Association With I/O Operations

Memory usage in a demand paged, multi-tasking system is both highly dynamic and
highly complex. lt fo!lows that data transfers to and from memory require close
cooperation with the memory system to ensurc proper operation.

The first consideration is that physical memory must remain assigned to the I/O buffer for
at least the duration of the transfer (and, for logical I/O operations, that memory accesses
do not page fault).

86 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
213 214

The second consideration is memory coherency. On output, it is essential that data in the
processor's data cache be included in the trnnsfer. On input, it is essential that the caches
(both data and code) not be left with any out-of-date information, and it is desireable if
the data cache can contain at least some of the data that was transferred. Furthermore,
cache architectures vary from processor to processor, so it is also desirable to minimize or
eliminate processor dependencies in the I/O drivers.

The kerne! provides I/O support services that, when used properly, ensure that these
considerations are met.

The most common IJO transaction envisioned is one-shot transfer where the I/O buffer
belongs to the driver's client, such as handling a page fault by reading data directly into
the user's page. The design also allows for multiple transactions to occur upon a single
buffer. An example of this is a network driver whose transactions consist of reading data
into its own buffer, processing the data, then copying the data off to a client's buffer. In
this case, the driver re-uses the same buffer for an indefinite number of transactions.

The two services the kerne! provides are PrepareMemoryForlO and CheckpointIO.
PrepareMemoryForIO informs the kerne! that a particular buffer will be used for I/O
transfers. lt assigns physical memory to the buffer and, optionally, prepares the
processor's caches for a transfer. CheckpointIO informs the kerne! that the previously
started transfer, if any, is complete, whether there will be more transfers, and optionally
the direction of the next transfer. lt finalizes the caches and, if the next I/O direction is
specified, prepares the caches for that transfer. If its parameters specify that no more
transfers will be made, CheckpointIO deallocates the kerne! resources associated with the
buffer preparation: subsequent IJO operations on this range of memory will again need to
begin with a call to PrepareMemoryForIO.

In the one-shot scenario, a PrepareMemoryforIO ca!! prior to the transfer and a single
CheckpointlO call following the transfer are used. The PrepareMemoryforIO parameters
would specify the buffer location and the I/O direction, the CheckpointIO parameters
would specify that no morc transfers will be made.

In the multiple transfer scenario, a PrepareMemoryForIO when the buffer is allocated, a
Checkpoint!O prior to each transfer, and a CheckpointlO when the buffer is deallocated
are used. The PrepareMemoryForlO parameters would specify the buffer location, but
might or might not specify the UO direction. The I/O direction is omitted if the transfer is
not imminent, because the cache preparation would be wasted. The CheckpointIO calls
before each transfer would specify the direction of the transfer and that more transfers
will be made (not needed before the first transfer, if the PrepareMemoryForlO parameters
specified an l/O direction). The final CheckpointIO parameters would specify that no
more transfers will be made.

Note: Failure to properly use these I/O related kerne! services can result in data
corruption and/or fatal system errors. Correct system behavior is the
responsibility of the kerne! and all I/O components including drivers,
managers, and hardwarc.

Note: The descriptions here are not, generally, sufficient to allow the reader to
write a correct, high performance I/O driver. Guidclines for writing I/O

March 29, 1994 Copyright 1992 Apple Computer, lnc. 87

5,590,334
215 216

drivers, including correct usage of the kernel services dedicated to 1/0
support, are beyond the scope of this document.

Preparing For 1/0

typedef KernelID IOPreparationID;

typedef OptionBits IOPreparationOptions;
enurn

} ;

ioisinput
ioisOutput
ioAädressisLogical
ioCoherentDataPath
ioTransferisLogical

OxOOOOOOOl,
Ox00000002,
Ox00000004,
Ox00000008,
OxOOOOOOlO

typedef struct LogicalAddressRange
(

LogicalAddress theAddress;
ByteCount theCount;

LogicalAddressRange;

typedef struct AddressRange
{

Ref
ByteCount

AddressRange;

theAddress;
theCount;

t:ypedef struct MappingTable
(

AddressSpaceID
LogicalAddressRange
It.emCount
AddressRange

MappingTable;

OSStatus PrepareMemoryForIO

addressSpace;
logical;
tableEntryCount;
rangeEntries [1);

(AddressSpaceID
Ref
ByteCount
IOPreparat.ionOptions
ItemCoun::
MappingTanle •
IOPreparationID *

theAddressSpace,
:.heBase,
theLength,
theüptions,
theEntryCount,
theMappingTable,
thePreparationID) ;

PrepareMemoryForIO enables device input/output on the specified range to occur in a
manner coordinated with the memory system. Preparation includes ensuring that
physical memory is assigned, and remains assigned, to the range at least until
CheckpointIO relinquishes it. Depending upon the 1/0 direction and data path coherence
that are specified, the kerne! manipulates the contents of the processor's data caches, if
any, and may make the underlying physical memory non-cachable.

88 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
217 218

I/O preparation must be done prior to the actual data movement. For typical operations
such as those to block oriented devices, the preparation should be done just prior to
moving the data, typical!y in the driver.

For operations upon buffers, such as memory sbared between the main processor and a
co-processor, frame buffers, or buffers internal to a driver, the preparation may bebest
performed when the buffer is allocated.

tbeAddressSpace specifies the address space containing the specified range. Note that
logical 1/0 nced not be performcd in that address space. See the description of
theMappingTable, below.

theBase specifies the starr of the range to prepare. Either a logical or a physical address
may be specified, as indicated by the ioAddresslsLogical. The manner in which the
address is specified is entirely independent of the manner in which the I/O operation will
be performed. For example, a physical address may be supplied even though the
operation will be done using logical (programmed) 1/0.

theLength specifies the number of bytes in the range to prepare.

theüptions control certain aspects of the operation. Tbis value contains bits with the
following meanings:

• ioisinput indicates that data will be moved into main memory.

• ioisOutput indicates that data will be moved out of main memory.

• ioAddressisLogical indicates that theBase address is a logical address. In tbe
absence of this option, theBase is presumed to be a physical address. When a
physical address is specified, the kerne! must create a mapping of the physical
memory into the logical address space so that the logical 1/0 operation can proceed.
The address of this mapping is returned in theLogica!Base.

• ioCoherentDataPath indicates that the data patb tbat will be used to access memory
during the 1/0 operation is fully coherent with tbe main processor' s data caches.
Coberency with the main processor's instruction cache is never presumed. When in
doubt, do not specify this option.

• ioTransferlsLogical indicates that the operation reads/writes through the main
processor's MMU and data caches. Such operations are performed with devices that
fall into the Programmed 1/0 category of 1/0 devices. In the absence of the
ioTransferlsLogical option, the I/O operation is assumed to bypass tbe processor' s
MMU and data caches. Suchoperationsare performed with devices that fall into the
DMA category of 1/0 devices. Among other things, this option determines whether
the MappingTable will contain logical or pbysical addresses.

Note: PrepareMemoryForIO guarantees tbat tbe underlying physical memory
remains assigned to the range at least until CheckpointIO relinquishes it.
However, it does not guarantee tbat the original logical address range
remains mapped. In particular, the controlling area may be deleted before

March 29, 1994 Copyright 1992 Apple Computer, Inc. 89

5,590,334
219 220

CheckpointIO. If the caller can not somehow guarantee that the area will
continue to exist, logical address references to the underlying physical
memory must be made through the logical addresses provided in the
mapping table.

Note that iolslnput and iolsOutput are completely independent. You may specify either,
both, or neither at preparation time.

thcEntryCount specifics the maximum number of AddressRanges in theMappingTable
that PrepareMemoryForlO may fill in. An error is returned if this number is not
sufficient. Note that the upper bound on required entries is equal to the number of
distinct logical pages in the range. This parameter is ignored if theMappingTable is nil.

theMappingTable specifics the address at which the PrepareMemoryForIO should return
a scatter-gather buffer representing the specified address range. A nil value for this
parameter specifies that the scatter-gather buffer not be returned. If the
ioTransferlsLogical option is specified, the address ranges will be logical ones valid in
every address space. This is useful. for example, when the logical 1/0 will be performed
in a different address space than the one containing the specified logical address range lf
the ioTransferisLogical option is absent, the address ranges will be physical ones. This is
useful for OMA. MappingTable fields have the following meanings:

• addressSpace indicates the address space containing the logical address range in the
logical field. If the ioAddresslsLogical option was specified, this is the
AddressSpacelD of the specified address space. Otherwise. it is the constant
currentAddressS paceID.

• logical indicates a contiguous logical range. lf the ioAddresslsLogical option was
specified, this is the originally specified base and length. Otherwise, this is a static
logical address range for the specified physical range.

• entryCount indicates the number of valid entries in rangeEntries.

• rangeEntries is an array of address ranges corresponding to the original range. The
entries will be static logical address ranges if the ioTransferlsLogical option is
specified. The entries will be physical address ranges if the ioTransferlsLogical
option is absent. Each entry represents an extent. so a given entry may indicate a
length of one or more pages.

thePreparationlD is an output parameter identifier that represents the VO transaction.
When the VO operation has been completed or aborted this IOPreparationID is used to
finish the transaction. See Finalizing VO. below.

90

Note: Memory must be prepared and finalized for the benefit of the system and
other users of the memory and backing store, even if the caller does not
need any of the information provided by PrepareMemoryForIO.

Note: Calls to PrepareMemoryForIO should be matched with calls to
CheckpointlO, even if the 1/0 was aborted. In addition to applying

Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
221 222

finishing operations to the memory range, CheckpointIO deallocates
kerne! resources used in preparing the range.

Finalizing 1/0

typeäef OptionBits IOPreparationOptions;
enum

} ;

nextisinput
nextisOutput
moreTransfers

OSStatus CheckpointIO

OxOOOOOOOl.
Ox00000002,
Ox00000004

(IOPreparationID thePreparationID,
IOPreparationOptions theOptionsl;

CheckpointIO performs the necessary follow-up operations for the specified device
input/output transfer, and optionally prepares for a new transfer or reclaims the kerne!
resources associated with the preparation. See the above section "Memory Control In
Association With I/O Operations" for an overview.

thePreparationID is the IOPreparationID made for the input/output, as recurned by a
previous call to PrepareMemoryForIO. This ID is invalid following CheckpointlO if the
moreTransfers option is not specified.

theOptions specifies optional operations. Values for this field are defined by the
IOPreparationOptions type, as follows:

• nextisinput specifies that the buffer be prepared for impending data input.

• nextlsOuput specifies that the buffer be prepared for impending data output.

• more Transfers specifies that further I/O transfers will occur to or from the buffer. lt
is especially useful when the caller is unable to specify which direction the next
transfer will be (i.e. neither nextlslnput nor nextlsüutput is specified), but is needed
even if the next transfer direction is specified. If moreTransfers is not specified, all
kerne! resources associated with thebuffer preparation are reclaimed, including
thePreparationID.

Note: Call CheckpointIO even if the I/O is aborted. The kerne! resources need
to be reclaimed.

Note: Multiple concurrent preparations of memory ranges or portions of memory
ranges are supported. In this case, cache actions are appropriate and
individual pages are not unlocked until all transactions have been
finalized.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 91

5,590,334
223 224

Memory Sharing

Memory sharing is a common requirement in device drivers, debuggers, and in client
server computing. The underlying method for sharing memory is to create areas that map
the same backing store data into the various clients' address spaces. Because of the
inherent memory caching, areas created this way use the same physical memory as well
as the same backing store. Changes made to the memory in one address space are
immediately present in the other address space(s). The kerne! provides various Services
to share memory militizing this method, each with its own merits and applications.

Global Areas

A "global area" is an area that appears in every address space, at the sarne location and
with the same attributes, and is automatically added to new address spaces. Global areas
are useful, for example, for mapping shared library code that needs to be equally
available in all address spaces. They are made by specifying the globa!Area option (one
of the Areaüptions) when creating the area.

Client-Server Areas

Certain servers benefit by providing their clients read-only access to the server's read
write data structures. This is simplified if the data appears at the sarne location in both
the server's and the clients' address spaces, but with different memory access levels in
each. The main hurdle is finding a location for the data that is available in the server and
in all clients, present and future. "Memory reservations" address this problem.
Reservations cordon off an address range such that areas will not be created there unless
they are specilically placed there. See the Memory Reservations section, below.

Mapped Access To Other Address Spaces

It is sometimes useful to have on-going access to data in other address spaces. Although
this can often be accomplished by creating an area with the same BackingObject and
backing store offset a.s the area in the other space, this takes several kerne! calls and
furthermore is impossible for areas without Backingübjects, such as resident areas. The
memory systcm provides a routine so that cross-address space mapping can be
established easily and for all types of areas.

OSStatus CreateAreaForRa~ge

92

(AddressSpaceID theAddressSpace,
AddressSpaceID theOthe~Space,

LogicalAddress theOtherBase,
ByteCount theLength,
MernoryAccessLevel theAccessLevel,
MemoryAccessLevel thePrivileged.P.ccessLevel,
ByteCount ~heGuardLength,

AreaOptions theOptions,
~cgicalAddress * theBaseinArea,
AreaI::> t.'.:1eArea) ;

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334

225 226

CreateAreaForRange maps a logical address range from one space into another address
space.

theAddressSpace specifies the address space in which to create the area.

theOtherSpace specifies tha address space containing the range to map.

theOtherBase specifies the start of the range in theOtherSpace.

theLength specifies the number of bytes in tbe range. It must be non-zero.

theOtherBase and theLength will be page-aligned. This means that a bigger range than
was specified may be mapped.

theAccessLevel and thePrivilegedAccessLevel specify the kinds of memory references
that non-privileged and privileged Software are allowed to make in the area, respectively.
References made in violation of tbe access Jevel result in exceptions at the time of the
access. See the Memory Exceptions section of this chapter. If thePrivilegedAccessLevel
is more restrictive than theAccessLevel, thePrivilegedAccessLevel will be made equal to
theAccessLevel. Note that the underlying backing object may disallow certain access
levels.

theGuardLength specifies the size, in bytes, of the excluded Iogical address ranges to
place adjacent to each end of the area. The ranges, called area guards, are excluded to
both privileged and non-privileged software. References to those addresses result in
exceptions. See the Memorv Exceptions section of this chapter. theGuardLength will be
page-aligned, if necessary. This means that the excluded ranges may be !arger than is
specified.

theOptions specifies desired characteristics of the area being created. V alues for this
parameter are defined by the AreaOptions type. Note tbat some of these options will be
inherited from the area containing the range being mapped, so they will ignored by
CreateAreaForRange.

• zeroFill specifies that memory in this area should be initialized to zero. This option
applies only to scratch areas (i.e. noBackingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified). This option is inherited from the range being mapped.

• residentArea specifies that the data for this area must always be physically resident.
These areas are never paged between memory and backing storage. This option is
available only to privileged callers. This option is inherited from the range being
mapped.

• sparseArea specifies that the resources for the area be allocated on-demand. This
option app!ies only to scratch areas (i.e. noBackingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified). For scratch areas, sparseness means that thc scratch backing object will
be sparse, if possible, For resident areas, sparseness means that the physical

March 29, 1994 Copyright 1992 Apple Computer, Inc. 93

5,590,334
227 228

memory will be allocated by page faulting. This option is inherited from the range
being mapped.

• placedArea specifies that theBaselnArea specifies where to create the area. The area
will begin on the page specified by theBaselnArea. CreateAreaForRange fails and
an error is returned if the area can not be so positioned. The address corresponding
to the beginning of the range will be returned in theBaselnArea. Note that this will
be exact!y as specified only if theBaselnArea and theOtherBase have the byte offset
into their respective logical pages.

Note: Care should be taken when using the placedArea option, as the specified
location be part of a memory reservation unknown to the caller. lt is
advisable to create a reservation for the range in which the area will be
placed, prior to creating the area. Reservations can be made either for a
specific address space, or globally. See CreateMemoryReservation.

• globalArea specifies that the data for this area is to be addressable from any address
space. All address spaces will get access in accordance with the privileged and non
privileged access Levels specified. The created area appears at theBaselnArea in
every address space. When this option is specified theAddressSpace parameter has
no effect; a va!ue of nil should be passed.

theBaselnArea is an ouput parameter indicating the address in the area corresponding to
the beginning of the specified range. If the placedArea option is specified,
theBaselnArea is also an input specifying where to position the area. See the description
of placedArea, above.

theArea is an output parameter indicating the area identifier that can be used for
subsequent operations on the created area. A value of noAreaID will be retumed if
CreateAreaForRange failed.

Copying Data Between Address Spaces

lt is sometimes useful to simply read or write data in another address space. For exarnple.
a debugger might need to display or set data in the debugged address space. The memory
system provides a routine to achieve this without the overhead of setting up a mapping.

OSStatus lnterspaceBlockCopy (AddressSpaceID
AddressSpaceID
LogicalAddress
LogicalAddress
ByteCount

theSourceAddressSpace,
theTargetAddressSpace,
::heSourceBase,
theTargetBase.
theLength l ;

InterspaceBlockCopy copies bytes from the specified source address space and range to
the specified destination address space and range. Note that neither address space needs
to be the current address space.

theSourceAddrcssSpace specifies the address space containing the source range.

94 Copyright 1992 Apple Computer, lnc. March 29, 1994

5,590,334
229 230

theTargetAddressSpace specifies the address space containing the destination range.

theSourceBase specifies the start of the source range in theSourceAddressSpace.

theTargetBase specifi.es the start ofthe destination range in theTargetAddressSpace

theLength specifies the length, in bytes, of the range.

Memory Reservations

Certain servers benefit by providing their clients read-only access to the server's read
write data structures. This is simplified if the data appears at the same location in both
the server's and the clients' address spaces, bm with different memory access levels in
each. The main hurdle is finding a location for the data that is available in the server and
in all clients, present and future. "Memory reservations" address this problem.
Reservations cordon off an address range such that areas will not be created there unless
they are specifically placed there. Reservations can be made either for a specific address
space, or globally.

Creating Memory Reservations

typedef KernelID

typedef OptionBits
enum

} ;

placedReservation
globalReservation

MemoryReservat~onID;

Reservatio~Opt~ons;

OxOOOOOOOl,
Ox00000002

OSStatus CreateMemoryReservat~on
(AddressSpaceID
LogicalAddress *
ByteCount
Reservat~onOpt~ons

Memor-JReservationID *

theAädressSpace,
theBase,
theLength,
theOptions,
theReservation) ;

CreateMemoryReservation reserves a logical address range such that no areas will be
created within that range unless they are specified to be there. Areas are created at
specific locations by using the placedArea option (one of the AreaOptions).

theAddressSpace specifies the address space in which to reserve the range.

theBase is an ouput parameter indicating the beginning logical address of the reservation.
If the placedReservation option is specified. theBase is also an input specifying where to
position the reservation. See the description of placedReservation, below.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 95

5,590,334
231 232

theLength is the number of bytes to reserve. lt will be rounded up to a multiple of the
logical page size. This means that the reservation may be !arger than was specified.

theüptions specifies desired characteristics of the reservation being created. Values for
this parameter are defined by the Reservationüptions type.

• placedReservation specifies that theBase specifies where to create the reservation.
theBase and theLength will be page-aligned. This means that the reservation may
be !arger than was specified. CreateMemoryReservation fails and an error is
returned if the reservation can not be so positioned. theBase will be set to the actual
beginning of the reservation.

• globa!Reservation specifies that the reservation is to apply across all existing and
Future address spaces. The reservation appears at theBase in every address space.
When this option is specified theAddressSpace parameter has no effect; a value of
nil should be passed. Note that although the reservation is across all spaces. creating
a non-global area in a reserved range adds the area just to the specified space.

Global reservations, like global areas, are automatically added to new address
spaces. This assures the server that the range will be available when a client in the
new address space initializes its connection to the server.

theReservation is an output parameter indicating the reservation identifier that can be
used for subsequent operations on the reservation. A value of invalidID will be returned
if CreateMemoryReservation fails.

Deleting Memory Reservations

OSStatus DeleteMemoryReservatior: (MernoryR.eservationID theReservation) ;

DeleteMemoryReservation destroys the specified memory reservation.

theReservation specifies the reservation to delete.

Obtaining Information About A Memory Reservation

typedef struct Reservat:..onlnforrnation
(

MemoryReservation:D
AddressSpaceID
LogicalAddress
3yteCoun::

i.äentity;
addressSpace;
base;
length;

Reservationüptions options;
Reservationinforrnation;

enum

reservationI:ifor:nationVersion 0
} ;

96 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
233 234

OSStatus GetReservationinforrnation
(MernoryReservationID
PBVersion
Reservationinforrnation *

theReservation,
theVersion,
theReservationinfo);

GetReservationlnforrnation returns information about the specified memory reservation.

theReservation specifies the memory reservation for which to get the information.

the Version specifies the version number of Reservationlnformation to be retumed. This
provides backwards compatibility. reservationlnformation Version is the version of
Reservationlnformation defined in the current interface.

theReservationinfo specifies where to retum the information.

The fields of a Reservationinforrnation structure are:

• identity - the MemoryReservationID of the reservation.

• addressSpace - the address space in which the reservation exists. This value will be
currentAddressSpaceID if the reservation is global to all address spaces.

• base - the logical address of the reservation.

• length - the size, in bytes, of the reservation.

• options - the options that were specified at the time the reservation was created.

Iterating Over All Memory Reservations Within An Address Space

OSStatus GetReservationsinAddressSpace
(AddressSpaceID
:ternCount
:ternCount
Kerneliterat:or •

theAddressSpace,
theCount,
skipCount,
theReservations);

GetReservationsinAddressSpace allows the caller to iterate over the memory reservations
that apply to the specified address space, including the global reservations that apply to
all address spaces.

theAddressSpace specifies the address space from which to retum reservations. A value
of currentAddressSpaceID specifies the current address space.

theCount specifies the maximum number of MemoryReservationlDs to retum.

skipCount specifies the number of reservations to ignore prior to returning any
MemoryReservationIDs.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 97

5,590,334
235 236

theReservations specifies the Kernellterator in which to retum the MemoryReservationID
information. This Kemeliterator must be !arge enough to store at least theCount
MemoryReservationIDs.

Memory Exceptions

The kerne! provides a mechanism to present exceptional hardware and software
conditions to higher level software for resolution (see the Exceptions section of this
document). The memory system employs this mechanism for address space related errors
to be handled outside the memory system.

In particular, an address space related error results in an exception that can then be
processed by an appropriate exception handler. The relevant ExceptionKinds are
accessException, unmappedMemoryExceprion, excludedMemoryException,
readünlyMemoryException, and unreso!vablePageFaultException. The
MemoryExceptionlnformation structure defines additional information included in these
exceptions. The Exceptions section indicates how this structure is relayed to the handler.

typedef struct HernoryExceptiorrinfonnatior:.
{

AreaID theArea;
LogicalAddress theAddress;
OSStatus theError;
MemoryReferenceK~nd theReference;

MemoryExceptioninformation;

typedef unsigneä long MemoryReferenceKi~d;
enum HemoryReferenceKind

} ;

writeReference 0,
readReference 1,
fetchReference 2

The fields of a MemoryException structure are:

• theArea - the area containing the logical address of the exception. This will be
kNoAreaID if the reference was made to an unmapped range of the address space.

Note: The value of this field is unpredictable if the memory access spanned area
boundaries. The use of area guards reduces the probability of such
accesses.

• theAddress - the logical address of the exception.

• theError - the starus for unresolvablePageFault.

• theReference - the type of memory reference that resulted in the exception.

The address space related values of the ExceptionKind type are:

98 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
237 238

• accessException - reference resulted in a page fault because the physical addrcss
was not accessible (i.e. it was a "hard fault").

• unmappedMemoryException - reference was to an address which is not part of any
area in the address space.

• excludedMemoryException - reference was to an area whose access level prevents
any access (the ExcludedMemory access level), or to an area guard.

• readOnlyMemoryException - reference was to an area whose access level prevents
write accesses (the ReadOnlyMemory access level).

• unresolvablePageFaultException - reference resulted in a page fault that could not
be resolved. theError field in the MemoryExceptioninformation indicates why the
fault was not resolved.

The values of the MemoryReferenceKind type are:

• WriteReference - reference was an attempt to modify data.

• ReadReference - reference was an attempt to acquire data.

• FetchReference - reference was an attempt to acquire a processor instruction.

Note: The ability to distinguish instruction fetches from read references is
processor dependent. Consequently, some implementations may report
instruction fetches as ReadReferences.

Backin~ Object Providers

Backing object providers require a few specialized services.

Registration

Backing object providers must register with the kerne! so they can be properJy involved
in the operation of the memory system.

typedef OptionBits BackingObjectProviderOptions:
enurn

noScratchBackingObjects ~ OxOOOOOOOl
} :

OSStatus RegisterBackingObjectProvider
(ObjectID
BackingObjectProviderOptions

theObject,
theOptions);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 99

5,590,334
239 240

RegisterBackingübjectProvider registers the specified message system object as being
associated with a backing object provider. Tue kerne! will send messages to this object
as necessary for the operation of the memory system. The messages are described in the
Backing Object Messages section.

theObject specifies the ObjectID of the backing object provider.

theüptions specifies properties of the backing object provider. U ndefined options should
be specified as zero, for upward compatibility. Values for this parameter are defined by
the BackingObjectProviderOptions type.

• noScratchBackingObjects specifies that the provider is incapable of supporting
scratch backing objects. This would be the case, for example, if the provider on!y
managcs backing store on CD-ROM (because CD-ROM is read-only). In general,
providers are expected to support scratch backing objects. Scratch backing objects
are requested with the OpenScratchBackingObject message.

Acquiring A Physical Memory Page From The Memory System

Backing object providers can acquire physical memory pages in which to place backing
store data.

OSStatus GetFreePage (ObjectID theBackingObjectProvider,
PhysicalAddress * thePageAddress,
LogicalAddress * theStaticLogicalAddressl;

GetFreePage allocates a physical memory page. The page will be considered "in use,"
and not be allocated to anyone eise, until it is returned to the kerne! using the
PutFreePage kerne! service.

This service may result in RelinquishPage messages being sent to the registered backing
object providers. RclinquishPage is described in the Backing Object Messages section.

theBackingObjectProvider specifies the ObjectID of a single backing object provider to
which to not send the RelinquishPage message. lt is expected that thc caller of
GetFreePage is a backing object provider, and that it is better not to ask the caller to
relinquish a page for itself. Therefore, the caller should specify its own registered
backing object provider ObjectID (see RegisterBackingObjectProvider). The caller
should treat failure of GetFreePage with the same seriousness as an "urgent"
RelinquishPage message: dig deep to replace a physical page out of its own cache. A
value of invalidID specifies that the caller does not wish tobe skipped.

thePageAddress specifics where to retum the physical memory address.

theStaticLogica!Address specifies where to return a static logical address for
thePageAddress.

100 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
241 242

Returning A Physical Memory Page To The Memory System

Backing object providers need to give back physical memory pages to the memory
system as soon the pages are no langer needed to hold backing store data. This is
preferable to each provider maintaining private free page lists, because it adapts better to
changes in memory requirements system-wide.

osstatus PutF:ceePage (PhysicalAddress thePageAddress);

PutFreePage returns the specified physical memory page to the mernory systern.
surrendering the current use of the page.

thePageAddress specifies the physical memory page being recycled.

Unmapping A Physical Page

Backing object providers can unmap a physical page from all the logical pages in which
the physical page is rnapped. This is useful as part of making a page eligible for
replacement or whcn expelling a page from the cache.

OSStatus UnmapMemory (PhysicalAddress thePhysicalAddress,
PageStateinfonnation * theState} ;

UnmapMemory undoes all logical mappings of the specified physical page, and returns
page state inforrnation for further processing (for example, modified pages might need to
be written to backing store). UnmapMemory fails if the page is currently locked in
memory (pages are locked, for example, during I/0).

thePhysica!Address specifies the physical page to unmap.

theState specifies where to retum the page state information. If multiple mappings
(aliases) existed, theState is a conservative combination of the page states and
page!sShared is indicated. In particular, pagelsModified is indicated if any of the
mappings indicated "modified." See the description of the GetPagelnformation service
for details of the PageStatelnforrnation type.

Backini.: Object Messages

There is a small set of messages sent from the Memory System to backing object
providers. Some of the messages are sent to the BackingObjectID, the remainder are sent
to the provider's registered ObjectlD, as noted in the individual message descriptions.

General Message Format

Each backing object message contains an operation code. The defined operations are:

enum

March 29, 1994 Copyright 1992 Apple Computer, Inc. 101

} ;

243

AreaCreated
AreaDeleted
RelinquishPage
OpenScratchBackingObject
OpenBackingObject
CloseBackingObject
ReadBackingObject
WriteBackingObject
AgeBackingObject

5,590,334

0,
l,
2,

" "'
4,
5,

6'
7'
8

244

Each backing object message contains a version number. The version number listed in
the interface file corresponds to the message format described in that file.

enwn

AreaCreatedVersion 0,
AreaDeletedVersion 8,
RelinquishPageVersion 0,
OpenScratchBackingObjectVersion 0,
OpenBackingObjectVersion 0,
CloseBackingObjectVersion 0,
ReadBackingObjectVersion 0,
WriteBackingObjectVersion 0,
AgeBackingObjectVersion 0

} ;

Messages related to page faulting are specially typed so providers can receive them
differently than non-page fault messages. The messages having the type
PageFaultlOType are: RelinquishPage, ReadBackingübject, WriteBackingObject, and
AgeBackingObject.

enurn

PageFaultIOType
} ;

A given message is a variation on the BackingObjectMessage. The operation code is
specified in the theOperation field. The version number is in the theVersion field. The
remainder of the message is specific to the particular message operation.

typedef union BackingControl
{

AreaCreatedControl
AreaDeletedControl
RelinquishControl
BackingOpenScratchControl
BackingOpenControl
BackingCloseControl
BackingReadControl
BackingWriteControl
BackingAgeControl

areaCreated.Message;
areaDeletedMessage;
relinquishMessage;
openScratchMessage;
openMessage;
c:!.oseMessage;
read.Message;
writeMessage;
agingMessage;

102 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
245

l BackingControl;

typedef struct Back~ngObjectMessage
(

Backingüperation
PBVersion
BackingConto:-ol

BackingübjectMessage;

Area Creation

theüperation;
theVersion;
theBackingControl;

Backing object providers participate in area creation.

typedef OptionBits AreaCo:-eatedOptions;

typedef struct AreaCreatedControl
(

theüptions;

246

AreaCreatedOptions
AreaID
MappingTable *
MappingTable *

theArea;
thePhysicalMappingTable;
theStaticLogicalMappingTable;

AreaCreatedControl;

Request to use the backing object to map a new area. The area has been created, but the
area creator has not yet been given the area address or AreaID. GetArealnformation and
other kerne! services work. The provider should verify that the backing object is being
used appropriately. For example, it should check that the access level and area base are
reasonable. If the retumed Status indicates an error, the area is destroyed and the area
creation call is failed with that Status.

This message is sent to the provider's registered ObjectID, with AreaCreated specified in
the operation code field.

theOptions specifies optional actions and/or propenies. Undefined options should be
specified as zero, for upward compatibility. There are currently no defined options, so
this field is a placeholder and a value of ni!Options should be specified.

theArea indicates the AreaID.

thePhysica!MappingTable indicates the mapping of the area to physical addresses. A nil
value indicates that there are no physical addresses yet mapped in. This information is
provided so that the backing object provider can properly manage its backing store
caches. The MappingTable fields have the following meanings:

• addressSpace indicates the AddressSpaceID of the address space containing the
area.

• logical indicates the logical address range of the area.

• entryCount indicates the number of valid entries in rangeEntries.

March 29, 1994 Copyright 1992 Apple Computer. Inc. 103

5,590,334
247 248

• rangeEntries is an array of physical address ranges corresponding to the area's
logical range. Each entry represents an extent, so a given entry may indicate a
length of one or more pages.

theStaticLogica!MappingTable is the static logical addressing equivalent of
thePhysica!MappingTable. The only difference between the two tables is that the
rangeEntries of theStaticLogicalMappingTable contain static logical address ranges.

Area Deletion

Backing object providers participate in area deletion.

typedef OptionBits AreaDeletedOptions;

typedef struct UrunappedPageinformation

PageStateinforrnation
PhysicalAddress
LogicalAddress
BackingAddress

UrunappedPageinf orrna tion;

theState;
thePhysicalAddress;
theStaticLogicalAddress;
theBackingAddress;

typedef struct UrunappedPageList
{

IternCount theCount;
UrunappedPageinfor.nation theinfonnation (l];

UrunappedPageList;

typedef struct AreaDeletedControl
(

AreaDeletedOptions
l>.ddressSpaceID
AreaID
UrunappedPageList •

AreaDeletedControl;

theOptions;
theAddressSpace;
theArea;
thePageList;

Notification that the area has been deleted. All the pages in the area have been
unmapped. Likely action is to write the dirty pages, and make all pages eligible for
replacement.

This message is sent to the provider's registered ObjectID, with AreaDeleted specified in
the operation code field.

theOptions specifies optional actions and/or properties. Undefined options should be
specified as zero, for upward compatibility. There are currently no defined options, so
this field is a placeholder and a value of ni!Options should be specified.

theAddressSpace indicates the address space containing the area that was deleted.

theArea indicates the area that was deleted.

104 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
249 250

thePageList is the address of a list of the pages that were resident in the area when the
area was deleted.

The fields of the UnmappedPageList structure are:

• theCount indicates the number of entries in the array of page descriptions

• thelnformation is an array of page descriptions

The ficlds of the UnmappedPagelnformation structure are:

• theState indicates the state information of the page when the area was deleted. See
the description of the GetPageinformation service for details of the
PageStatelnformation type.

• thePhysica!Address indicates the physical address that was mapped into the page

• theStaticLogica!Address indicates the static logical address for thePhysica!Address.

• theBack.ingAddress indicates the corresponding back.ing store address

Note: The physical page that was mapped into a given logical page may still be
mapped into olher logical pages. In this case, the "likely action" should
not include writing the page or mak.ing it eligible for replacement. Such
pages are identified by having the pagelsShared indication in the
PageStatelnformation.

Request To Relinquish Physical Memory Page

The Memory System sometimes needs to request back.ing object providers to give up
physical memory pages from their caches. The need can be mild or it can be urgent.

typedef OptionBits
enum

RelinquishOptions;

relinquishNeedisUrgent = OxOOOOOOOl
} ;

typedef struct RelinquishControl
(

RelinquishOptions
PhysicalAddress

RelinquishControl;

theOptions;
thePhysicalPage;

Request to return a physical memory page to the memory system.

This message is sent to the provider's registered ObjectlD, with RelinquishPage specified
in the operation code field, and having the message type PageFaultIOType.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 105

5,590,334
251 252

theüptions specifies optional operations. Values for this field are defined by the
Relinquishüptions type, as follows:

• relinquishNeedlsUrgent indicates that the Memory System has exhausted normal
means of acquiring a physical memory page, and systern failure might result if this
request is denied. The provider is strongly encouraged to dig deep. If
relinquishNeedlsUrgent is not indicated, the provider need not go to extremes (a
likely choice would be a physical rnemory page from the set of eligible pages).

thcPhysica!Page is the field in which the provider returns the physical mernory page
address.

Opening A Scratch Backing Object

The Memory System opens scratch back.ing objects when, for example. creating scratch
areas. Opening scratch backing objects, however. is an Operation that some non-kerne!
entities will need to do, also. The message described here suits the Memory System's
purposes, but is might not be suitable for general use.

Note: This rnessage is not suitable for rnapping an existing file. There are two
reasons for this. First, such an operation is not needed by the kerne! or
Memory System. Second, the manner in which files are specified depends
entirely upon the back.ing object provider. At some point, backing object
providers need to provide a file-mapping service(complete with a call to
create the area), or at least a service that makes a BackingObjectID for a
specified file.

typedef OptionBits
enurn

} ;

sparseBackingObject
zeroFillBackingObject

typedef UnsignedWide

BackingOpenSc"atcr.options;

OxOOOOOOO:,
Ox00000002

BackingLength;

typedef struct BackingOpenScratchControl
(

BackingOpenScratchOptions theOptions;
BackingLength theLe~gth;

BackingObjectID theBackingObject;
BackingOpenCont"ol;

Request to make a scratch backing object suitable for mapping a scratch area.

This message is sent to the provider's registered ObjectID, with
OpenScratchBackingObject specified in the operation code field.

106 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
253 254

theOptions specifies optional operations or characteristics. V alues for this field are
defined by the BackingOpenScratchOptions type, as follows:

• sparseBackingObject specifies that backing store be allocated only as-needed. Non
sparse backing objects have backing store allocated even for ranges that have not
been accessed.

• zeroFillBackingObject specifies that the initial value of the backing store data be
zero. Thal is, the first read of any back.ing store page yields a page filled with
zeroes.

theLength specifies the size, in bytes, of the Back.ingObject.

theBackingObject is the field in which the provider retums a BackingObjectID that can
be used to create a scratch area.

Closing A ßacking Object

Backing objects are closed, for exarnple, when the backing store no longer needs to be
mapped in.

typedef Option3its
enum

backingCloseDeleteObject
} ;

BackingC~oseOptions;

= oxooooooo:

typedef struct 3ackingCloseControl
{

3ackingCloseOptions
} BackingCloseControl;

theOptions;

Request to eliminate the specified backing store mapping. Optionally deletes the backing
store.

This message is scnt to the BackingObjectID, with CloseBackingObject specified in the
operation code field.

theOptions specifies optional operations. Values for this field are defined by the
BackingCloseOptions type, as follows:

• backingC!oseDeleteObject indicates to delete the backing store.

Reading From A ßacking Object

Backing object providers are responsible for reading data from backing store into
memory.

typedef OptionBics 3ack~ngRead0ptions;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 107

255

enum

backingReadHasFreePage
) ;

typedef OptionBits
enum

) ;

lockedPage
write?rotectedPage
modifiedPage
nonCachablePage

5,590,334

OxOOOOOOOl

PageAttributes;

OxOOOOOOOl,
Ox00000002,
Ox00000004,
OxOOOOOOOB

cypedef struct BackingReadControl

BackingReaäOptions
BackingAddress
Byt:eCount
PageAttributes
PhysicalAddress
LogicalAddress
PhysicalAddress

BackingReadControl;

L..heOptions;
theBackingAddress;
theLe:igt!-1;
the.i\t-cribut.es;
theFreePhysicalPage;
theF-,,eeStacicLogicalAddress;
thePhysicalPage;

Request to mak:e the specified backing store data available in memory.

256

This message is sent to the BackingObjectlD, with ReadBackingObject specified in the
operation code field, and having the message type PageFaultIOType.

theüptions specifies optional operations. Values for this field are defined by the
BackingReadOptions type, as follows:

• backingReadHasFreePage indicates that message contains an available physical
memory page address in the theFreePhysicalPage field.

theBackingAddress specifies the location in the back.ing object from which to Start the
read.

theLength specifies the number of bytes to read.

theAttributes indicates the attributes that the memory system will use when it maps the
physical address into Jogical memory. This is supplied for the provider's information.
Note that any or all of these attributes may change after the page is mapped.

• lockedPage indicates that the page will be mapped into memory such that it is
ineligible for replacement (i.e. it won't be paged out).

• writeProtectedPage indicates that the page will be read-only. Note that this applies
to, among others, unmodified pages in areas with memoryCopyOnWrite access.

108 Copyright 1992 Apple Computer. Inc. March 29. 1994

5,590,334
257 258

• modifiedPage indicates that the contents of the physical page are known to be
different from what is in backing store.

• nonCachablePage indicates that the access to data on the page will bypass the
processor's caches.

theFreePhysica!Page indicates the address of an available physical memory page, if and
only if the backingReadHasFreePage option is set. Using this page, if available, obviates
calling the GetFreePage kerne! service.

theFreeStaticLogica!Address is a static logical address for theFreePhysicaiPage.

thePhysicaiPage is the ficid in which the provider returns the physical address into which
the backing store data was read.

Writing To A Backing Object

Backing object providers are responsible for writing data from physical addresses into
backing store.

typedef OptionBits BackingWriteOptions;

typedef struct EackingWriteControl
(

BackingWriteOptions
BackingAddress
ByteCount
PhysicalAddress
LogicalAddress

BackingWriteControl;

theOptions;
theBackingAddress;
theLength;
thePhysicalPage;
theStaticLogicalAddress;

Rcquest to write the specified data to backing store.

This message is sent to the BackingObjectID, with WriteBackingObject specified in the
operation code field, and having the message type PageFaultlOType.

theüptions specifies optional actions and/or properties. Undefined options shouid be
specified as zero, for upward compatibility. There are currently no defined options, so
this field is a placeholder and a value of ni!Options should be specified.

theBackingAddress specifies the iocation in the backing object at which to start the write.

theLength specifies the number of bytes to write.

thePhysicaiPage specifies the physical address from which to start the write. Note that
this address is probably already known to the provider as part of the cache information,
but is provided in the message anyway, to eliminate the cache lookup overhead.

theStaticLogicalAddress is the static logical address for thcPhysicalPage.

March 29, 1994 Copyright 1992 Apple Computer, lnc. 109

5,590,334
259 260

Page Aging Notification

Backing object providers recei ve notification when pages in backing objects they control
have remained unreferenced long enough that they appear unlikely tobe referenced in the
near future.

typedef OptionBics AgingOptions:

typedef styuct BackingAgeControl
{

Agingüptions
PhysicalAddress
LogicalAddress
BackingAddress
ByteCount
ItemCounc

BackingAgeControl;

theOptions;
thePhysicalPage;
theStaticLogicalAddress:
theBackingAddress;
theLength;
theEligibleCount:

Notification that a page has crossed the aging threshold. If the provider decides that the
page should be made eligible for replacement, the provider must unmap the page (using
the UnmapMemory kerne! service) prior to writing it (if dirty) and make it eligible. This
way, the provider finds out when the page "becomes young again" (i.e. is accessed) by
receiving a ReadBackingObject message for it, and can make the page ineligible for
replacement.

This message is sent to the BackingObjectlD, with AgeBackingObject specified in the
Operation code field, and having the message type PageFaultIOType.

theOptions specifies optional actions and/or properties. Undefined options should be
specified as zero, for upward compatibility. There are currently no defined options, so
this field is a placeholder and a value of ni!Options should be specified.

thePhysica!Page indicates the physical address of the page in question.

theBack.ingAddress indicates the backing store address mapped into the page.

theLength indicates the number of bytes in the page.

theEligibleCount is the field in which the provider returns the number of pages in its
cache that it considers eligible for replacement. The Memory System uses this
information as feedback for the aging mechanism.

110

Note: A fact of life in multi-tasking environments is that state can change
asynchronously with respect to any given thread of execution.
Accordingly, it is possible that the provider has relinquished the physical
page for another purpose by the time the aging message is processed.
Therefore, the processing of the aging message must ascertain whether the
physical page still corresponds to the indicated BackingAddress of the
backing object to which the message was sent. The aging message must
be ignored if this correspondence no langer exists.

Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
261 262

March 29, 1994 Copyright 1992 Apple Computer, Inc. 111

5,590,334
263 264

POOLS

The kerne! pool manager provides the ability to allocate and deallocate variable length
chunks of memory from abstract entities called pools. Previously, system software,
drivers, DA's, INIT's, and applications had only the system heap and the application heap
as alternatives for the allocation of dynamic memory. The pool manager allows clients to
utilize memory in either of two kerne! pools or to create and utilize pools of thier own.

NuKernel Services pertaining to pools are availablc only to privileged clients.

Creatin~ Memory Pools

typedef struct GrowPoolrn:o
(

Ref
ByteCount
ByteCount
ByteCount

poolAddress;
spaceNeedeC.;
currentPoolSize;
maximurnPoolSize;

GrowPoolinfo;
typedef ByteCount (-..-GrowPoolProc) (GrowPoo::.In:::o *growinfo} ;

typedef unsigned lang Poolüptions;
enum

poolisPageable 1
} ;

OSStatus CreatePool (Ref
ByteCount
EyteCount
GrowPoolP::-oc
Poolüptions

the.O,.ddress,
maximurn?oolSize,
initialPoolSize,
theGrowP::-oc,
theOptions) ;

Creates a memory pool for subsequent allocations.

theAddress specifies the logical address at which the pool should be formed. It is the
responsibility of the dient to ensure the associated memory remains accessible
throughout the lifetime of the pool.

maximumPoo!Size specifies the maximum number of bytes of memory that could
become available starting at theAddress.

initia!Poo!Size specifies the number of bytes of memory that are presenrly available
starting at theAddress.

112 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
265 266

theGrowProc specifies the procedure to call when the pool becomes exhausted. This
procedure may chose to increase the size of the pool, deallocate previously allocated
items within the pool, or do nothing. See the section on Growing Pools below.

theOptions specifies optional properties of the pool.

Note: No operation is necessary to delete pools, because CreatePool operates
without allocating anything requiring deallocation.

Allocatini: Memory From Pools

Ref PoolAllocate IRef
ByteCount
Boolean

thePool,
byteSize,
clea!");

Allocates from the specified pool a chunk of memory byteSize in length. The memory
address is retumed as the result of the ca!!. A nil result indicates that the GrowProc was
called and the pool is exhausted.

thePool specifies the address of the memory pool. This must be the same value passed to
CreatePool.

byteSize specifies the number of bytes of memory to allocate.

clear specifies whether the allocated memory is to be zeroed.

Returning Memorv To Pools

OSStatus PoolDeallocate (Ref theAddress);

The chunk of memory at theAddress specified is retumed to the pool from which it was
allocated.

Qbtaining Information About A Pool

enurn

poollnformationVersion 0
l ;

typedef struct Poollnformation
{

GrowPoolProc
PoolOptions
ByteCount

March 29, 1994

growProc;
opt:..ons;
CU!:'rentSize;

Copyright 1992 Apple Computer, Inc. 113

J;

267

ByteCount
ByteCount
ByteCount
ByteCount

5,590,334

maximumSize;
allocatedEytes;
fo:-eeBytes;
largestFreeChunk;

268

OSStacus GetPoolinf or:nation (Ref thePool,
?BVersion ~heVersion,

?oolinformation * theinfo);

GetPoollnformation returns information about thc specified memory pool.

thePool specifies the logical address of the beginning of the pool.

theVersion specifies the version number of Poollnformation tobe returned. This
provides backwards compatibility. poollnformationVersion is the version of
Poollnformation defined in the current interface.

theinfo specifies where to return the information.

The fields of a Poollnformation structure are:

• growPoolProc indicates the procedure to call when the pool becomes exhausted.

• options indicates the optional propenies of the pool.

• currentSize indicates the number of bytes of memory, staning at thePool, that are
currently part of the pool.

• maximumSize is the maximum pool size value specified when the pool was created.

• allocatedBytes indicates the number of bytes of memory which are currently
allocated from the pool, including overhead.

• freeBytes is the total number of bytes of storage currently available for allocation
within the Pool.

• largestFreeChunk is the size of the largest allocation which could be performed
without extending the Pool.

Note that all of the information retumed bv GetPoollnformation indicates the current state
of the pool. An allocation from the pool ,_,:;hich is !arger than largestFreeChunk may weil
succeed if the pool was created in a manner which allows it to grow.

Usin~ The Kernel Pools

You can use the prcallocated kerne] pools when allocating your data. Two such kerne!
pools exist. One is always physically resident, the other is pageable. These pools may be
used by specifying either of the following values for thePool parameter to PoolAl!ocate.

114 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
269 270

enurn

systemResidentPool l,
systernPageablePool

} ;

Growing A Pool

When PoolAllocate is called and thePool does not contain sufficient memory to satisfy
the allocation, the GrowProc is called. The GrowProc is provided with information
describing the current size of the pool, the size of the allocation, and the maximum size to
which the pool is allowed to grow.

The GrowProc returns a ByteCount indicating the results of its efforts. The meaning of
the ByteCount and the actions taken by the Pool Manager are as follows.

If the GrowProc returns a value of zero the Poo!Allocate request fails and control remrns
to the caller of Poo!Allocate.

If the GrowProc returns a value that is equal to the pool's current size (the same value
provided to the GrowProc) the allocation is retried with the presumption that the
GrowProc deallocated some of the pool's contents and that the allocation may now
succeed. Should the subsequent allocation fail, the GrowProc will be called again.

If the GrowProc returns a value that is !arger than the pool's current size (the value
provided to the GrowProc) then the pool is grown to that new size and the allocation is
retried with this new pool size. Should the subsequent allocation fail, theGrowProc will
be called again.

The GrowProc should never retum a value between zero and the current size of the pool.
Similarly, it should never return a value that is greater than the maximum size of the pool.
Finally, if the GrowProc cannot either grow the pool or free some of the contents ofthe
pool, it must return a value of zero. Failure to return a value of zero will cause the
allocation and the call to the GrowProc to repeat forever.

March 29, 1994 Copyright 1992 Apple Computer. Inc. 115

5,590,334
271 272

MESSAGING

For the purposes of discussion, the message system is decornposed into sections on the
management of message ports, objects, filters, and finally, the messaging operations
themselves, namely send, receive, reply, cancel, forward, and continue.

Message Port Management

Message ports are abstract entities used to receive messages. The kerne! provides
operations for the creation, deletion, and maintenance of message ports.

Ports, like other kerne! objects are referenced by ID.

typedef KernelID PortID;

Creating Message Ports

When a message port is created, it contains all kerne! resources needed to receive and
reply to messages that are sent synchronously. Additional resources are needed by the
kerne] for each asynchronous operation (sends and receives) that occur simultaneously.

The creator of the message port must specify how many concurrent asynchronous sends
and concurrent asynchronous receive Operations the port will be capable of handling. If
these limits are exceeded during subsequent asynchronous send and receive operations,
those operations will block until such time as the port's resources become available.
Senders and receivers can request, at the time an asynchronous send or receive request is
made, that if these limits are exceeded and they are about to be blocked, that an error is
instead returned and the request not be fulfilled.

typedef long AsyncOperationCount;

OSStatus CreatePort (PortOptions theOptions,
AsyncOperationCount asyncReceiveLimit,
AsyncOperationCount asyncSendLirnit,
PortID • thePort);

theOptions control the details of port creation. Currently no options are supported and a
value of ni!Options should be specified.

asyncReceiveLimit specifies the maximum number of simultaneous asynchronous
receive operations that can be handled by the port.

asyncSendLimit specifies the maximum number of simultaneous asynchronous send
operations that can be handled by the port.

thePort is updated with the ID of the newly created message port.

116 Copyright 1992 Apple Computer, lnc. March 29, 1994

5,590,334
273 274

Deleting Message Ports

Deletion of a message port deletes all associated message objects. As a result of deleting
the associated objects, any outstanding send requests to those objects, and therefore the
port, are completed with appropriate status. Further, any outstanding receive requests to
the port are similarly completed with appropriate status.

After deletion, the port's ID becomes invalid and subsequent attempts to use it result in an
error.

OSStatus DeletePort (PortID thePortl;

Changing The Asynchronous Operation Limits Of A Port

You can adjust the number of concurrent non-blocking asynchronous send and receive
operations that a given port can handle. If this service is used to reduce the number of
simultaneously available resources, and those resources are already in use. the caller is
blocked until the resources are free and they can be deallocated.

OSStatus AdjustPortAsyncLimits (PortID
AsyncOperacionCount
AsyncOperationCount
Boolean

thePort,
asyncReceiveLirnit,
asyncSendLimit,
isAbsolute);

thePort specifies the port to adjust.

asyncReceiveLimit is either an absolute or relative number of asynchronous receive
operations that the port is to become capable of handling.

asyncReceiveLimit is either an absolute or relative number of asvnchronous send
operations that the port is to become capable of handling. ·

isAbsolute controls whether the asyncReceiveCount and asyncSendLimit are absolute or
relative values. If true, those values become the new limits. If false, those values are
added to the present limit (negative values decrease the limits and positive values
increase the limits).

Obtaining Information About A Port

Y ou can request information about a given port. V arious inforrnation regarding the
current state of the message port and how it was created are retumed.

typedef struct MessagePortinformation
{

TeamID
ItemCount

March 29, 1994

ownir..gTeam;
objectCoun:::;

Copyright 1992 Apple Computer, Inc. 117

275

AsyncOperationCount
AsyncOperationCount
ItemCount
ItemCount
ItemCount
ItemCount

5,590,334

asyncReceiveLimi~;

asyncSendLimit;
pendingReceives;
pendingSends;
pendingReplies;
t~ansactionCount;

AsyncOperationCount blockedAsyncSenders;
AsyncOperationCount blockedAsyncReceivers;

MessagePortinformation;

276

OSStatus GetPortinformation (PortID thePort,
PBVersion theVersion,
MessagePort:Information theinfo 1 ;

thePort is thc ID of a message port about which you want information.

theVersion specifies the version number of Portlnformation tobe retumed. This provides
backwards compatibility. portlnfo Version is the version of Portlnformation defined in
the current interface.

thelnfo is the address of a MessagePortlnformation record that will be filled in with
information about the message port.

After a call to GetPortlnformation, your MessagePortinforrnation is filled in with the
following information:

owningTearn is the ID of the team that created the message port.

• objectsCount is the number of message objects that are currently associated with the
message port.

• asyncReceivcLimit is the number of simultaneous asynchronous receive operations
that the port is capable of handling. This is the value that was specified when the
port was created or by a subsequent call to AdjustPortAsyncLimits.

• asyncSendLimit is the number of simultaneous asynchronous send operations that
the port is capable of handling. This is the value that was specified when the port
was created or by a subsequent ca!! to AdjustPortAsyncLimits.

• pendingReceives indicates the number of receive requests that have been made of
the port but have not yet been matched with any message.

• pendingSends indicates the number of send requests that have been made to
message objects associated with the port but have not yet been matched to any
receive request.

• PendingReplies indicates the number of send requests that have been made to
message objects associated with the port and have been received but to which no
reply has been issued.

118 Copyright 1992 Apple Computer, lnc. March 29, 1994

5,590,334
277 278

• transactionCount is the total number of send-receive-reply transactions that have
taken place across this message port since the time it was created.

• blockedAsyncSenders indicates the number of asynchronous senders that have
issued requests but been blocked because of the asyncSendLimit.

• blockedAsyncRecievers indicates the number of asynchronous receivers that have
issues requests but been blocked because of the asyncReceiveLimit.

Iterating Over Message Ports

You can find all the message ports in the system by using the following function.

OSStatus GetPortsinSystern (IternCount theCount,
ItemCount skipCount,
Kerne~Iterator ~ thePorts);

theCount indicates the maximum number of message port IDs to return.

skipCount indicates the number of message port IDs to ignore prior to returning any
message port IDs.

thePorts is filled in with the IDs of the ports specified by theCount and skipCount. This
Kernellterator must be !arge enough to store at least theCount port IDs.

Messa2e Object Mana\!ement

Message objects are the abstract entities to which messages are sent. Objects are
associated with exactly one port. This association may be changed. Messages sent to
objects are received from the object's associated port.

Message objects contain a reference constant. This reference constant, typically a control
block address, is copied from the object into the message at the time a message is sent
through the object to a port.

Message objects may have a designated client team. Newly created message objects have
no such client designated. Part of the processing performed by the kerne! during team
termination includes sending messages to any objects whose client is the terminating
team This ability allows servers to reclaim message objects whose clients have
terminated.

The kerne! provides services for the creation, deletion, and maintenance of message
objects.

Likc all kerne! objects, message objects are referenced by ID.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 119

5,590,334
279 280

typedef KernelID ObjectID;

Creating Message Objects

Creation of message objects requires that you specify a port with which the object is
initially associated. You must also specify an initial value for the object's refcon. Once
created, the message object is immediately eligible tobe the target of send requests.

OSStatus CreateObject (PortID
ObjectRefcon
ObjectOptions
ObjectID *

the!?ort,
t!:eRefcon,
t!'"'-eüptions,
theübjectl;

thePort indicates the port with which the message object is tobe associated. Messages
sent to the object being created will appear at this port.

theRefcon indicates the value of the message object's refcon. This value will be copied
from the object being created into messages at the time they are sent through the object
and placed into the object's port.

theOptions is used to specify special object attributes. The following options are
supported:

typedef OptionBits
enum

Objectüptions;

) ;

objectForbidsFilters
objectisFilter

OxOOOOOOOl,
Ox00000002

theObject is updated with the newly created message object's ID.

objectForbidsFilters indicates that the object may not be the target of a filter.

objectlsFilter indicates that the object can be uscd as part of a filter (i.e. a preprocessor or
postprocessor).

Deleting Message Objects

Deletion of a messagc object implies replying to any messages that have been sent to the
object but have not as yet been received from the object's port. These send requests are
made to complete with appropriate status. After deletion, the object's ID becomes invalid
and subsequent attempts to use it are erroneous. Such attempts usually result in errors.
Deletion of a message object also unlocks the object. Any tasks waiting for the lock are
gi ven an error result.

OSStatus DeleteObJect (ObjectID theObj ec'O) ;

120 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334

281 282

Locking Message Objects

Message objects can be locked. Once locked, messages sent to the object cannot be
received until the object is unlocked. Multiple tasks may attempt to lock an object.
However, only one task is granted the lock. Any other tasks are blocked in priority order
awaiting the lock.

typedef OptionBits
enum

ObjectLockOptions;

lockObjectWithüneMessage OxOOOOOOOl
) ;

OSStatus Lockübject (ObjectID theübject,
ObjectLockOptions theüptions,
Duration timeLimit) ;

theObject is the ID of the message object tobe locked.

theOptions control the behavior of the request to lock the designated object. The
lockObjectWithOneMessage option controls the number of messages that have been
received but not replied when the lock request is satisfied. lf this option is specified the
number of such messages is exactly one; in the absence of this options the number of
such messages is exactly zero.

timeLirnit places a maximum waiting lirnit on the LockObject operation. If the timeLirnit
is exceeded, LockObject fails and returns an error.

Unlocking Message Objects

The UnLockObject service is used to release the lock on a message object.

OSStatus UnLockObject (ObjectID theübject);

theObject specifies the locked object that is to be unlocked.

Obtaining Information About An Object

Given the ID of a message object, you can obtain the ID of the port with which it is
currently associated, the Team which is the Object's dient, and the Refcon currently
associated with the Object.

OSStatus Getübjectlnformation (Objec~ID theObject,
TeamID * theClient,
PortI~ ~ thePort,
ObjectRefcon * theRefcon);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 121

5,590,334
283

theObject is the ID of an object about which inforrnation is to be rcturned.

theClient is updated to indicate the current dient team of the object.

thePort is update to indicate the ID of the Port to which this object belongs.

theRefcon is updated to indicate the object's currenL Refcon.

Changing Information About An Object

enum

} ;

setObjeci::Client
setobjeci::Port
setObjectRefcon

OxOOOOOOOl,
Ox00000002,
Ox00000004

typedef unsigned lang SetObjectOptions;

OSStatus SetObjectinformation (Object:D theObject,
SetObjectOptions theOptions,
TearnID theClient,
PortID
ObjectRefcon

thePort,
theRefcon);

theObject is the ID of an object about which information is tobe returned.

284

theOptions controls which, if any, of the objects inforrnation is changed. This value is a
mask formed by ORing together the values setObjectClient, setObjectPort, and
setObjectRefcon.

theClienL is the ID of a team to be associated with the object. A kerne! message will be
sent to the object when this team is terminated. This value is only used if theOptions
includes the setObjectClient bit.

thePort is the ID of a port to which this object will be moved. This value is only used if
theOptions includes the setObjectPort bit. Changing an object's port causes any un
received messages to be forwarded frorn the old to new port.

theRefcon is the Refcon value that will be associated with the object. This value is only
used if theOptions includes the setObjectRefcon bit.

Iterating Over Objects

You can iterate over all of the message objects associated with a particular message port.

OSStatus GetObjectsinPort (Port:D
ItemCount

thePo:::t,
theCount,

122 Copyright 1992 Apple Computer, Inc. March 29, !994

5,590,334
285 286

Itemcount skipCount,
Kernellterator • thePorts);

thePort specifies the ID of the message port whose objects are tobe returned.

theCount indicates the maximum number of message object !Ds that are to be returned.

skipCount indicates the number of message object IDs to ignore prior to returning any
message object !Ds.

thePorts is filled in with the IDs of the object specified by theCount and skipCount. This
Kerne!Iterator must be !arge enough to store at least theCount object IDs.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 123

5,590,334
287 288

Message Filter Management

Message filters screen an object's messages. An installed filter is designated by ID.

typedef KernelID FilterID;

Installing Filters

The following specijication is used to install a filter.

typedef OSType
typedef OSType

Fi2.terservice;
Fi:..terSignature:

enum

} ;

MatchAnyFilterService
MatchAnyFilterSignature
DoNotl1atchAnyFilt:erService
DoNotl1atchAnyi"ilterSignature

typedef struct ?ilterName
(

Filterservice
Filt.erSignature

FilterName;

theService;
theSignature;

typedef st:ruct FilterOrder
{

FilterName
FilterName

Filte!"Order;

a.FilterBefore;
aFilterAfter;

typedef struct FilterObject:Pair
(

ObjectID
ObjectID

FilterObject:Pair;

theP::::-eProcessor;
thePostProcessor;

typedef struct Filt:erSpecification
(

FilterName theNarne;
MessageType theTypesToFi~ter;

Filt:erOräer thePlacement;
FilterObjectPair theObjects;

FilterSpecification;

124 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
289 290

Installation of filters requires that you provide a target object ID and a filter specification.
Once installed, the message filter is immediately eligible to screen messages bound for
the target. The result of a successful installation is a filter ID.

OSStatus InstallFilter (ObjectID
Fi.lterOptions
FilterSpecif~cation •
FilterID *

theTargetObject,
theOpt:ions,
t:.heFilter,
t.heFilterID);

theTargetObject indicates the object with which the message filter is Lo be associated.

theOptions indicates any special installation requirements. The following filter
placernent options are supported:

enum
(

l ;

f~lterisRightBefore

filterisRightAfter
OxOOOOOOO:!.,
Ox00000002

typedef OptionBits F~lterOpt:ions;

The option filterisRightBefore causes the new fi!ter to be installed directly adjacent and
before the specified "aFilterBefore" filter.

The option filterlsRightAfter causes the new filter tobe insralled directly adjacent and
after the specified "aFilterAfter" filter.

thefilter is the address of a filter specification.

theFilterID gets the resulting ID of the installed filter.

Removing Filters

The RernoveFilter service is used to eliminate an installed filter.

OSStat:us RernoveFilter (FilterID theFilterID);

theFilterID specifies the filter to eliminate.

Obtaining Information About A Filter

Given the ID of a filter, you can obtain the ID of the target object and the specification
used to install the filter.

OSStatus GetFilterinfor.nat~on (F~lterID theFilterID,
ObjectID * theTargetObject,
FilterSpecification *theFilter);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 125

5,590,334
291 292

theFilterID is the ID of a filter about which information is tobe retumed.

theTargetObject is updated to indicate the ID of the fi!ter's target object.

theFilter is updated to contain the specification used during installation.

Iterating Over Filters

You can iterate over all of the filters associated with a message object. Filters are
retumed in the order they appear in the chain, not in the order of installation.

OSStatus LookupFilters (Obj ect:ID the':'argetObjec:,
I~emCount t~eCounc,

Itemcount sKipCount,
Ker~eliterator * ~he?ilters);

theTargetObject specifies the ID of the message obiect whose filters are to be returned.

theCount indicates the maximum number of filter IDs that are to be retumed.

skipCount indicates the number of filter IDs to ignore prior to returning any filter IDs.

theFilters is filled in with the IDs of the filter specified by theCount and skipCount. This
Kemellterator must be !arge enough to srore at least theCount filter IDs.

About Messai:;e Transactions

A message transaction is begun with a send. Once begun, the transaction is in-progress
until it completes. Transactions are completed by either a reply or by cancellation of the
send request.

At the time a reply is issued for a previously received message, the receiver supplied a
status indication that is retumed to the sender of the messa!!e. This status value is called
the reply Status. ~

Message IDs

All message transactions can be identified by a particular message ID. The ID of an
individual message transaction is used to query or alter the state of a transaction. Every
message system operation (with the exception of the synchronous send operation) either
requires that you specify a message ID or retums a message ID.

typedef KernelID MessageID;

126 Copyright 1992 Apple Computer. Inc. March 29. 1994

5,590,334
293 294

Message Types

Each message that is sent is accompanied by a message type. When a server makes
receive requests it may indicate that it only wants to receive messages of a certain type.
These message types help to classify the message in a manner agreed upon between the
dient and server. Y ou can use message types to prioritize message importance,
differentiate between kinds of requests, or other purposes.

Message types are 32-bit values which are interpreted as an array of 32 bits. A sender
specifies the type of message being sent by passing a message type with one or more bits
set. A receiver specifies the type of message it wishes to receive by specifying a message
type with one or more bits set. A particular receive request will only be satisfied if the
logical AND of the sender's message type and the receiver's message type is non-zero.

typedef unsigned lang Message'!'ype;

Notice that a message sent with a message type value of zero, cannot match any receiver
using the mies described above. However, a receive request that specifies a message type
value of OxFFFFFFFF will match any message, even those with a type value of zero.

Kernel Messages

NuKernel reserves the most significant bit of the message type parameter to indicate that
the message is a kerne/ message. All messages sent by the kerne! are of the kerne!
message type. These messages are used to perform various system management
functions including the initialization and finalization of agents as weil as canceling
requests. The use of these messages is discussed in the Message Cancel!ation section of
this chapter and the chapter on Agents.

Note: Clients of the kerne! should refrain from sending messages wich the kerne!
message type.

enum
{

} ;

kernelMessageType
allMessages

OxBOOOOOOO,
OxFFFFFFFF

Each kerne! message begins wich a common header that allows the various messages to
be distinguished. Individual kerne! messages are described throughouc this document.
Some definitions useful when handling kerne! messages are:

typedef struct KernelMessageHeader
{

unsigned lang messageCode;
} KernelMessageHeader;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 127

5,590,334
295 296

Sending Messages

Clients request actions by sending messages to objects. For example, if you want to read
ten bytes of data from serial port A you send a message to the object which represcnts
serial port A. Tbc message describes the nature of the actions you want the object to
perform, in this case the message would indicate a read request with a byte count of ten.

Messages, from the perspective of the kernel, are simply a set of memory locations
described by a single address/byte count pair. It is thc responsibility of the sender to
insure that, from the time the send is initiated until the time the send completes, the
contents of those memorv locations remain intact. This means, for example. that a
message that is sent asynchronously should not be allocated on the stack of the sender
unless the sender can guarantee that the contents of the stack frame will remain valid until
a reply is received or the send is canceled.

The descriptive nature of messages form an agreement between client and server. they are
not examined or interpreted by the kernel.

Send Options

When you send a message, you may control certain aspects of the message transmission
through use of the Sendüptions paramcter. These options are described below:

typedef OptionBits SendOptions;
enurn
{

} ;

sendByReference
sendByValue
sendNonBlocking
sendisPrivileged
sendisAtomic

OxOOOOOOOl,
Ox00000002,
Ox00000004,
Ox00000008,
Ox0000001C

• The sendByReference option causes just the address of the sender's message to be
placed into the receiver's buffer. If the message sender is in an address space
different from that of the message receiver. this option causes the message tobe
mapped into the receivers address space. Such mappings are eliminated when the
transaction. initiated by the send, completes, or the message is forwarded to a
receiver in another address space. This option must be specified if the intent of the
transaction is for the sender to receive data in the message buffer.

• The sendBy Value option causes the kerne! to copy the contents of the sender's buffer
into the receiver's buffer.

• By default, asynchronous send operations will block if the limit on concurrent
asynchronous sends is exceeded on the object's message port. lf you specify the
sendNonBlocking option on an asynchronous send and the message port to which
the rnessage will be queued has exceeded its concurrent asynchronous send limit.
you will not be blocked but rather receive an immediate error indication.

128 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
297 298

• The sendlsPrivileged option bit is set by the kerne! on behalf of a privileged sender
task. If a non-privileged sender atternpts to set this option bit, the kerne! will clear it
before passing the rnessage to a receiver.

• The sendlsAtomic option bit causes the kerne! to lock the object until a Reply or
Forward is issued.

SynchronousSends

Synchronous rnessage scnds behave like a subroutine call. An optional time-out value
may be used by the sender to place an upper limit on the overall transaction.
Synchronous sends cause the sending task context to block until the receiver has issued a
reply or the request has timed out.

Should the time lirnit be exceeded. the message system will cancel the incomplete
message transaction. If the message has not yet been received a . If the message has
been received, the effect of the cancellation is up to the receiver. Cancellation is
described in the Canceling Message Requests section of this chapter.

Synchronously sent messages are placed at the end of the message queue of the port
associated with the object to which the message is sent. The message will be processed
when it is matched to a receiver. This matching is controlled by message type and order
within the queue.

Synchronous send requests cannot be explicitly cance!ed. They are only cance!ed
implicitly as a result of a timeout.

The kerne! may decjde to map the sender's reply and contents buffers into the receiver's
address space. Any such mapping is elirninated upon reply.

OSStatus SenciMessage

theübject specifies the destination object.

theType specifies the type of message.

(Object::D
MessageType
Ref
Byt:eCount
Ref
ByteCount
SendOptions
Duration

theObject,
theType,
theMessage,
theMessageSize,
theReplyBuffer,
theReplyBufferSize,
theOptions,
timeLimi t) ;

theMessage specifies the address of the outgoing message data. A Null value indicates
no contents. The sender should not access this buffer until the transaction completes.

theMessageSize specifies the length ofthe outgoing message data.

theReplyBuffer specifies the address of a buffer tobe used for the server's reply data. A
Null value indicates no reply data is desired. The kerne! may choose to map this buffer

March 29. 1994 Copyright 1992 Apple Computer, Inc. 129

5,590,334
299 300

into the receiver's address space. The sender should not access this buffer until the
transaction completes.

theReplyBufferSize specifies the size of the reply buffer. This parameter is both an in
and out value. On input it specifies the size of the sender's reply buffer. Upon
completion of the send, it holds the number of bytes transferred into the reply buffer.

theüptions specifies a bit mask of send options. These options are passed along to the
server at the time it receives the message.

timeLimit specifies a time after which an automatic cancellation is performed by the
message system. A time-out value of durationForever specifies no such automatic
cancellation. A time-out value of durationlmmediate specifies that a cance!lation take
place if the message cannot be immediately matched to a receiver; if such a match is
possible then no further time constraint is placed upon the transaction. A complete
description of the type Duration is given in the section Basic Types.

130 Copyright 1992 Apple Computer, lnc. March 29, 1994

5,590,334
301 302

AsynchronousSends

An asynchronous send allows the sending task context to continue execution while the
transaction remains incomplete. You'll receive notification that the transaction has
completed in a manner govemed by the EventNotification you provide at the time you
send the message.

Asynchronously sent messages are placed into the message queue of the port associated
with the object to which the message is sent. The message will be processed when it is
matched to a receiver. This matching is controlled by message type and order within the
queue.

The kerne! may decide to map the sender's reply buffer into the receiver's address space.
Any such mapping is elirninated upon reply.

OSStat:us SendMessageAsync (Object::CD
MessageType
Ref
ByteCounc
Ref
Bycecount.
SendOptions
EventNot~ficiat:ion *
MessageID *

theObject specifies the destination object.

theType specifies the type of message.

theMessage specifies the address of the rnessage data.

theMessageSize specifies the length of the rnessage data.

t.heObject.,
theType,
theMessage,
theMessageLength,
theReplyBuf::er,
theReplyBuf:erSize,
theüptions,
theNotification,
theMessageIDI ;

theReplyBuffer specifies the address of a buffer eo be used for the server's reply data. A
Null value indicates no reply data is desired. The kerne! may choose to map this buffer
into the receiver's address space. The sender should not access this buffer until the
transaction cornpletes.

theReplyBufferSize specifies the size of the reply buffer. This parameter is both an in
and out value. On input it specifies the size of the sender's reply buffer. Upon
completion of the send, it holds the nurnber of bytes transferred into the reply buffer.

theOptions specifies a bit mask of send options. These options are passed along to the
server at the time it receives the message.

theNotification specifies an asynchronous event completion record. This event will be
delivered when the transaction completes.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 131

5,590,334
303 304

theMessageID specifies the address of a message id. The message system stores an ID
for the transaction at this address. This ID may be used by the sender to cancel the
transaction.

Receivin~ Messa~es

Servers rnust inforrn the message system that they want to receive rnessages. This is
done in one of three ways: synchronous receives, asynchronous receives, or message
acceptance functions.

Synchronous and asynchronous receives are requests for a single message of one or more
message types. The receive request is satisfied if a message of suitable type is already
present in the queue at the time the receive request is made or arrives in the queue within
the time limit, if any. Once the match between sent message and receive request has been
made, processing of the message happens in the context of the task that made the receive
request. To receive subsequent messages the receiver must make additional receive
requests.

Multiple receives, either synchronous or asynchronous, may be pending upon a single
port simultaneously. These requests may be for separate message types or for the same
message type. When new messages arrive at the port, receivers are matched in the order
that their receive requests were made.

Message acceptance is quite different from either synchronous or asynchronous receive
requests. When you register a message acceptance function with a message port, that
function will be called for every message sent to that port so long as the message type
specified by the sender matches the message type specified by the receiver. When you no
longer want to accept messages from the port you must unregister your acceptance
function.

Note: Unlike synchronous or asynchronous receive requests, an acceptance
function never sees messages which werc in the port's message queue prior
to the time the function was registered. For this reason it is strongly
suggested that the server register any acceptance function just after
creating the port and prior to creating any message objects. This will
ensure that no messages are queued prior to the registration of the
acceptance function.

Acceptance functions are al ways called in the task context of the sending or forwarding
task. The function executes in supervisor mode on the kerne] stack of the current task.
Because of this, the acceptance function and everything it calls must reside within the
kerne] band so that it can be addressed successfully.

132

Note: This may only be accomplished if the acceptance function is part of an
Agent as agents are the only mcchanism for loading code into the kerne!
band.

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
305 306

Receive Options

When you· receive a message, you may control certain aspects of the message
transmission through use of the ReceiveOptions parameter. These options are described
below:

typedef OptionBits ReceiveOptions;
enum

} ;

receiveBufferNoBlock
receiveNoAddressTranslation
receivePeekOnly

OxOOOOOOOl,
Ox00000002,
Ox00000004,

• By default. asynchronous receive operations will cause the receiver to block if the
limit on concurrent asynchronous receives is exceeded on the message port. If the
receiveNonBlocking option is specified on an asynchronous receive request and the
message port has exceeded its concurrent asynchronous receive limit, the receiver
will not be blocked but rather received an immediate error indication.

• By default, the message system makes ehe sender's message addressable by the
receiver. This may involve either mapping or copying the message contents if the
sender and receiver reside in different address spaces. To prevent either of these
operations, the receiver can specify the receiveNoAddressTranslation option. In this
case, the receiver must, prior to accessing the message, insure that its contents are
addressable.

• By default, when a message is received it is removed from the queue of sent
messages. will not be seen by subsequent receive operations. and must be replied to.
When the receivePeekOnly option is specified, the message is not removed from the
queue of sent messages, will be seen by subsequent receive operations and must not
be replied to. Peeking at messages allows a receiver to determine whether messages
of a certain type are present prior to actually receiving them. Note that the contents
of the message is never returned when the receivePeekOnly option is specified.
Only the MessageContro!Block is given to the receiver.

Message Control Blocks

When you actually receive a message, the message system provides you with a control
block which describes the message you've received. This control block indicates both
the address and length of the senders message and also provides additional inforrnation
including the message type, options specified by the sender, etc.

The control block is built in different places depending on the kind of receive operation
you make. Synchronous and asynchronous receives cause the control block to be
constructed in a buffer you must supply when you make the receive request. Acceptance
function receives cause the control block to be constructed within the kerne! prior to
calling your function.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 133

5,590,334

307

typedef struct MessageControlBlock
{

MessageID
AddressSpaceID
AddressSpaceID
ObjectRefcon
SendOptions
MessageType
OSStatus
ByteCount
Ref
ByteCount
Ref

theID;
theAddressSpace~D;

theTeamID;
theRefcon;
theOptions;
theType;
theCurrentResults;
theSize;
the~lessageContents;

theReplyBufferSize;
cheReplyBuffer;

long reserved;
MessageControlBlock;

308

• theID is an ID that represents this send-receive-reply transaction. As the receiver of
a message, you use this ID to reply to the message. If the message was sent
asynchronously, this is the same ID returned to the sender at the time of the send.
The sender can use the ID to cancel the send. As the receiver of a message you
should be prepared to handle cancel requests for messages that you have received
but to which you have not yet replied; you'll need this ID to process such cancel
requests. Cancellation of messages is discussed later in this document. This ID may
also be used to continue or forward the message.

• theAddressSpaceID is the ID of the sending task's address space. This is provided
for servers wishing to map portions of the sender's address space.

theTearnID is the ID of the sending task's team. This is provided for servers wishing
to verify object pennissions and clients.

• theRefcon is the refcon of the object to which the sender sent the message.

• theOptions are the send options as specified by the sender.

• theType is the message type as specified by the sender.

• theCurrentResults is the status supplied by a ReplyToMessage. Post-processing
filters may use this field to distinguish a cancel from a reply.

• theSize is the message size, in bytes, as specified by the sender.

• theMessageContents is the address at which you can find the message. This will
either point to the sender's original message or into the buffer you specified at the
time you made the receive request.

• theReplyBufferSize is the size of the sender's reply buffer specified in the
SendMessage service. A zero value indicates that the sender does not have a reply
buffer.

134 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
309 310

• theReplyBuffer is the address at which you can find the sender's reply buffer. This
will either point to the sender's original reply buffer or be nil. A nil value indicates
that the sender either doesn't have a reply buffer, or the kerne! chose not to map it.
If the reply buffer exists (theReplyBufferSize is not zero), the server can use the
ReplyToMessage service to copy back the reply data.

Receiving Messages Synchronously

Synchronous receives cause the receiving task to block until a message arrives at the
specified port that can be matched to the receive request. An optional time-out va!ue may
be used to place an upper lirnit upon the time that the receive waits for incoming
messages. Should this time limit be exceeded. the message system removes the request
and unblocks the calling task. In this case, you'll receive an indication that no messages
of suitable type arrived and that the request was terrninated.

OSStatus ReceiveMessage (PortID
Message Type
MessageControlBlock •
ByteCount
ReceiveOptions
Duration

::hePort,
theType,
theBuffer,
theBufferSize,
theOptions,
t:imeLimi t) ;

thePort specifies the port from which you wish to receive messages.

theType specifies the type of message you wish to receive.

theBuffer specifies the address of a receive buffer. The message control block describing
the rnessage you've received will be built in this buffer when a suitable message is
rnatched to your receive request. Additionally, if the message sender did not specified the
sendContentsByReference option, the contents ofthe senders message rnay be copied
into this buffer.

theBufferSize specifies the total size of the receive buffer. When the receive completes,
the actual number ofbytes received is placed in the message header. Note that the
theBufferSize must be at least the size of a message control block and rnust be !arger than
a rnessage control block to actually receive the rnessage from the sender.

theOptions specifies a bit mask of avai!ab!e receive options.

timeLirnit specifies a time after which an autornatic cancellation is performed by the
message system. A time-out value of durationForever specifies that no such automatic
cancellation should take place. A time-out value of durationlmmediate specifies that a
cancellation should take place if the receive request cannot be imrnediately rnatched with
a message already at the port. A complete description of the type Duration is given in
the section Basic Tvpes.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 135

5,590,334
311 312

Receiving Messages Asynchronously

An asynchronous receive allows the receiving task context to continue execution while
awaiting the arrival of a message. You'll receive notification of a suitable message in a
manner governed by the EventNotification you provide at the time you make the request.

When you make asynchronous receive requests you'll receive an ID that may be used at a
later time to cancel the request. This ID will remain valid until you either receive a
message or cancel the receive request.

t:ypedef KernelID ReceiveID;

OSStatus ReceiveMessageAsyr.c (PortID
MessageType
MessageControlBlock *
ByteCount
ReceiveOptions
EventNotification ~

ReceiveID *

thePort,
theType,
theBuffer,
theBufferSize,
theOptior.s,
theNotification,
theReceiveID);

thePort specifies the port from which you wish to receive messages.

theType specifies the type of message to you wish to receive.

theBuffer specifies the address of a receive buffer. The message control block describing
the message you've received will be built in this buffer when a suitable message is
matched to your receive request. Additionally, if the message sender did not specified the
sendContentsByReference option, the contents of the senders message may be copied
into this buffer.

theBufferSize specifies the total size of the receive buffer. When the receive completes,
the actual number of bytes received is placed in the message header. Note that the
TheBufferSize must be at least the size of a message control block and must be !arger
than a message control block to actually receive any of the message from the sender.

theOptions specifies a bit mask of available receive options.

theNotification specifies an EventNotification that will be delivered when the receive
request completes.

theReceive specifies the address of receive ID. The message system stores the ID of the
in-progress receive at this address. The receiver may use this ID to cancel the in-progress
receive operation.

Acceptini:- Messai:es

Accepting messages establishes an acceptance function as the recipient of all messages of
a given type that are sent to a specific message port. At the time a message arrives at a

136 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
313 314

port, the port is examined for eligible receivers. If an acceptance function has been
registered and matches the type of the sent mcssage it is called, in the context of the
sending task, in lieu of any of other receivers which may be present. At most, one
acceptance function may be registered with a given message port.

When the message acceptance function is called it is provided with a single parameter, a
pointer to the message control block that describes the message. The function is called in
supervisor mode and runs on the kerne! mode stack of the sending or forwarding task.
Therefore, such routines must be loaded into the kerne! band of the logical address space.
This is only possible if the subroutine is part of a NuKemel Agent.

Just like other message receivers, the message acceptor must reply to the scnt message.
Acceptance functions can use the ReplyToMessage kerne! service to explicitly reply to
the message (ReplyToMessage is described later).

Acceptance functions can cause an implicit reply to the message being processed by
retuming any OSStatus value other than kemellncompleteErr. The status returned will be
used by the kerne! as if it were passed in an explicit call to ReplyToMessage.

If, at the time the acceptor function retums, no explicit reply has been generated and the
status value returned is kerne!IncompleteErr, then the sending task will be blocked if the
send operation was synchronous. Under these conditions, the sending task will not
become eligible for execution until either a reply is issued or the time limit specified by
the sender is exhausted.

While an acceptance function is executing, the sending or forwarding task is still
preemptable. This means that a separate task could perforrn another send operation
which causes the acceptance function to be re-entered. Because of this, your acceptance
function, and all other software it calls, must be reentrant.

When implementing lightweight services that must be serialized, it is frequently the case
that upon accepting a message the acceptance function transfers control to secondary
interrupt level to serialize requests. As a further optimization the message system allows
you to specify that your acceptance function should be called at secondary interrupt level.
This option is specified at the time that you register your acceptance function with the
message port.

Whenever an acceptance function is registered for a particu!ar port, an exception handler
must also be registered. This exception handler will be invoked should an exception arise
during the processing performed by the acceptance function. This handler receives
control in lieu of the sending task's handler.

typedef OSStatus (*MessageAcceptor) (MessageControlBlock * theMessage);

enum

acceptAsSecondaryinterruptHandler OxOOOOOOOl
} ;

typedef unsigned long AcceptOptions;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 137

5,590,334
315 316

OSStatus AcceptMessage (PortID thePor~,

MessageType theType,
MessageAcceptor theProc,
ExceptionHanöler theHanöler,
AcceptOptions theOptions);

thePort specifies a port from which messages are to be accepted.

theType specifies a bil mask of acceptable message types.

theAcceptor specifies an acceptance function.

theHandler specifies an exception handling routine that will receive comrol should the
acceptance function cause an exception.

theüptions specifies a bit mask of available accept options. The only supported option,
acceptAsSecondary InterruptHandler, causes your acceptance function to be called at
secondary interrupt level.

138 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
317 318

Replying To Messages

After a message has been sent and received, the receiver performs the request implied by
the message. When the request has been processed, or the receiver decides it cannot
complete the request for whatever reasons, the receiver must inform the sender of the
transaction's status. This is done by replying to the message. Replying to a message
completes a message transaction.

You must identify the message to which you are replying; this is done by passing the
message ID to reply. The message ID is provided to a receiver in the message control
block.

In addition to the ID, the server must supply a status value. This status is not examined
or interpreted by the message system. Rather. it is passed back to the sender.

As a result of a reply, the message system takes several actions. If the send was
performed synchronously, the status value is stored in the requested location and the
sending task is unblocked. If the send was performed asynchronously, then the requested
notification is delivered. Finally, any message buffer mapping that was created is
eliminated.

If a reply buffer wa'i specified by the sender, the kerne! may choose to supply its address
and size in the MessageControlBlock. If the sender's reply buffer address is supplied by
the kerne!, the receiver may use it to directly transfer the result data. If the sender's reply
buffer address is not supplied by the kerne!, the receiver can use reply to copv the reply
data back to the send er.

OSStatus Reply'I'oMessage

theMessage specifies the ID of a message.

(MessageID
OS Status
Ref
ByteCount

theMessage,
theResults,
theReplyEuffer,
theReplyBufferSize):

theStatus specifies the status value to retum to the sender. If the message was sent
synchronously, theStatus becomes the retum value to SendMessage. If the message was
sent asynchronously, theStatus is returned through the event notification record's status
field.

theReplyBuffer specifies the address of the reply data. The kerne! will copv the data
from receiver to sender. A nil value indicates no reply data should be delivered to the
sender.

theReplyBufferSize indicates the size of the reply data. If theReplyBufferSize is greater
than the size of the sender's reply buffer, the reply data is truncated to thc sender's size.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 139

5,590,334

319 320

Replying To A Message And Receiving Another

A special purpose service combining reply with a synchronous receive is also provided.
The reply is performed first, followed by the synchronous receive. All parameters hehave
as described in ReplyToMessage and ReceiveMessage sections of this document. A
MessageID of nil will inform the kerne! to skip the reply step.

OSStatus ReplyToMessageAndReceivelMessageID
OSStatus

t'1e!1essage,
:.:ieResults,

Re: theReplyBuf=e~,

ByteCount theReplyBuf:erSize.
Port:D t~ePor~.

MessageType the'I'ype,
~essageControlBlock *theEuf:er,
3yteCou~t. ~heBuffe~Size,

ReceiveOptions theOptions,
Duration t.i:neLirnit) ;

Forwarding Messages

The process of passing the messagc along is calledfonvarding the message. Forwarding
moves a message to another message object. Forwarding is primarily used as a dynarnic
message routing aid. In fact, the entire message filtering mechansim is built upon the
forward operation.

There are no restrictions upon the number of times a message may be forwarded. No
audit trail of forwarders is kept unless rcmaining postprocessor Filter objects reguire
processing. All remaining postprocessors are activated upon ReplyToMessage. The
original sender of a message is not notified that the message has been forwarded.

Oncc a message has been forwarded no further actions should be performed upon that
message by the receiver. Received messages should be either replied to or forwarded but
not both. When a message is forwarded, any message buffer mapping that was performed
for the receiver is eliminated.

OSStatus ForwarclMessage (MessageID cheMessage,
ObjectID theübject);
Sendüptions theüptionsl;

theMessage specifies the message to forward.

theübject specifies the destination object to which the message shou!d be forwarded.

theOptions specifies the new send Options to use.

140 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
321 322

Continuing Messai:es

The process of passing a message along to the next object in a filter chain is called
continuing ·the message. ContinueMessage acts as an automatic forward. However, the
ContinueMessage service will issue a ReplyToMessage if all objects in the chain have
processed the message.

OSStatus ContinueHessage (:·lessage!D
SendOptions
OSStatus
Ref
3yteCount

theMessage,
theOptior.s,
theResults,
theReplyBuffe:c,
theReplyEuffe:cSizel;

theMessage specifies the message to continue.

theOptions specifies the new send options to use when forwarding the message to the
next object in the fi!ter chain.

theStatus specifies the status value to return to the sender. If the message was sent
synchronously, theStatus becomes the retum value to SendMessage. If the message was
sent asynchronously, theStatus is retumed through the event notification record's status
field.

theReplyBuffer specifies the address of the reply data. The kerne! will fQro'. the data
from receiver to sender. A nil value indicates no reply data should be delivered to the
sender.

theReplyBufferSize indicates the size of the reply data. lf theReplyBufferSize is greater
than the size of the sender's reply buffer, the reply data is truncated to the sender's size.

Cancelin~ Messa~e Reguests

At times it becomes necessary to withdraw pending asynchronous send or receive
requests. This is frequently done when a particular service is shutting down its operation.
Withdrawing these requests is termed Canceling them.

Because you may have several pending requests simultaneously, you must indicate the
particular request you wish to cancel. The ID retumed at the time the request was made
is used to cancel that particular request.

Cancellation of either a send or receive request causes the request to complete with an
error indication. The error indication is supplied along with the ID. The kerne! does not
interpret the error indication.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 141

5,590,334
323 324

Cancellation of any request causes an implicit race condition between the dient and the
server. lt is possible that the server completes the request at the same time as the client
attempts to cancel the request. lt is also possible for servers to ignore cancellation
requests and finish the original request. In either case, it is the responsibility of the client
to correctly handle these race conditions and understand that cancellation may result in
either normal or abnormal completion of the request being canceled.

Send and receive requests are canceled by the kerne! as a side effect of some other
operations. These are:

• Deletion of a message port causes all receive requests of that port tobe canceled.

• Deletion of a message port causes all messages sent to objects associated with the
port to be canceled.

• Deletion of a message object causes all unreceived messages sent to that object to be
canceled.

• Termination of a task causes all messages sent by that task, that have not as yet been
replied to, to be canceled

• Termination of a task causes all receive requests made by that task tobe canceled.

• Timeout of a message send request causes that request to be canceled.

• Timeout of a message receive request causes that request to be canceled.

• Explicit cancellation requests cause the associated request tobe canceled.

Send Cancellation

Cancellation of a send request proceeds in one of two different ways. If the message has
not yet been matched to a receiver no special actions are taken. In this case, the message
is removed from the port. The sender is notified that the send operation has completed
with status that indicates the send was .eanceled.

If the message has been matched with a receiver but has not as yet been replied to, the
cancellation process is quite different. In this case, a kerne! message is sent. This kerne!
message is placed in the message queue of the port from which the message was received.
The kernel message contains the ID of the message being cance!ed.

lt is up to the receiver to process the kerne! message appropriately. Ifthe receiver has
replied to the message being canceled prior to receiving the cancellation kerne! message,
the cancel message is removed from the queue and never seen by the receiver.

If, however, the cancellation message is received prior to the time the receiver replies to
the message, every attempt should be made to abort whatever work is in progress on that
message. Once processing has stopped for the message being canceled, replies must be
issued for both the canceled message and the kerne] message.

l42 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
325 326

The status given when replying to a canceled message should convey that the request was
canceled. The status given when replying to the kerne! message should indicate that the
cancellation was handled successfully. If desired, you can reply to only the kerne!
message with the status value keme!CanceledErr. This value causes the message system
to reply to the canceled message with the kerne!CanceledErr status value, saving you the
effort of replying to both messages.

The kerne! service that cancels a message send operation is synchronous. lt does not
return to the caller until that send operation has completed.

OSStatus CancelMessageSend (MessageID
OSStatus

::heMessage,
::heReason);

theMessage is the lD of the send request that is to be canceled.

theReason is the status value with which the send is to complete. This is the value that
the asynchronous notification, if any, will be delivered.

Receive Cancellation

Cancellation of a receive request simply removes that request from the port. The receive
request, by definition, has not been matched with a message so no special actions are
required. The recei ve request is compieted with status that indicates the cancellation.
The receiver must check the status to disambiguate the receive being canceied from
receiving a message.

OSStat:us Cancell1essageReceive IReceiveID cheRecei ve) ;

theReceive is the ID of a pending receive operation to be canceled.

Client Initiated Cancellation Messages

Servers must be prepared to receive cancellation messages in case their client's decide to
cancel requests. These messages are generated by the kerne! in response to calls to
Cance!MessageSend NuKernel service. Cancellation messages, like any other kerne!
message, begin with a header that describes the kerne! message. The remainder of the
message contains the ID of the message being canceled and a reason for cancellation.
The reason, a 32-bit value, is not used by the kerne!. lts meaning is part of the client
server interface.

enum

cancelMessageCode 3
} i

typedef struct CancelMessage

March 29, 1994 Copyright 1992 Apple Computer, Inc. 143

5,590,334
327 328

KernelMessageHeader theHeader;
MessageID theMessage;
OS Status theReason;

CancelMessage;

Client Termination Notification

In most cases, servers can benefit from knowing when the client of an object has
terminated. At least, the object and underlying information can be reclaimed. The
message system allows a given object to be associated with a client team; the team is said
to be the object's client. When a team terminates, a kerne! message is sent to every object
whose dient is that terminating team.

Registering An Object's Client

Newly created objects have no client team associated with them. Unless a dient is
associated with the object, no client termination message will be sent to the object. Use
the SetObjectlnformation service to associate a particular team with a given message
object. Each message object is capable of having at most one client. Setting the client
overrides any previous client association.

Client Termination Messages

Following are the type declarations associated with the kerne! messages sent for dient
termination notification. These kerne! messages are sent while the client team still exists
but while it is in the process of terminating. In response to these messages the server
should refrain from creating additional kerne! resources in the dient team. As with all
messages, thc server must reply to the dient termination messages.

enum

announceClientTennination 4
} ;

typedef struct ClientTerrninationMessage

kernelMessageHeader theHeader;
TeamID theTeam;

ClientTerminationl1essage;

144 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
329 330

AGENTS

Agents are extensions to the kerne!. They are accessed through the message system.
Agents residc within the kerne! band and execute in supervisor mode.

Agents must be explicitly installed into the kerne!. At the time they are installed you
must specify attributes of the agent including the kind of agent (ln-line or Server),
whether or not the agent is memory resident, etc in addition to providing the agent's code.
These attributes are collectively called the Agent Descriptor.

Once installed, the agent can send and receive messages. The agent will exist until it is
explicitl y removed.

Installing Agents

Installation of an agent yields two separate values: the ID of an object and the ID of the
agent itself. The object is a newly created object attached to a newly created port which
is being serviced by the agent. Y ou send messages to this object to communicate with the
agent. The agent's ID may be used to remove the agent at a later time.

When you call InstallAgent, many steps are undertaken by the kerne! to load, register,
and activate the agent. The installation process only succeeds if each of these steps is
successful. Failure at any point causes the kerne! to undo the previous steps and return
the failure indication.

The agent loading process involves copying the agent's code into the kerne! band and
performing whatever relocation and static initialization are necessary. The code is
described in a CPU dependent fashion. M68000 code is described as a set of code
resources. Prior to installing an agent, you must load these resources into memory and
lock them. Once the agent has been installed, you may unlock and release the resources;
the installation copies the code so these resources won't be used by the agent's execution.

Once loaded, a message port and a message object on that port are created for the agent.
The number of concurrent asynchronous sends and receives that this pre-created port can
handle are controlled by the appropriate fields in the Agent Descriptor. The ID of this
pre-created object is one of the results returned by the kerne! to the installer of the agent.
This message object is used to send messages to the agent; it is the only means of
establishing communications with the agent when it is first loaded. The object's refcon is
set to the object's own ID. The object's refcon may be changed with the SetObjectRefcon
service described in the Object Management section of the Messaging chapter of this
document.

Once the port and object have been created, the agent is activated. The activation of
server agents is different than the activation of in-line agents. Activating a server agent
implies creation of a task. The task's scheduling priority and stack size are both specified
by the Agent Descriptor. The task is created with an initial parameter that is the ID of
the port previously described. Server agents should begin receiving messages from this
port soon after their creation.

March 29, l 994 Copyright 1992 Apple Computer, Inc. 145

5,590,334
331 332

The activation of an in-line agent simply registers its entry point as an acceptance
function for the agent's pre-created message port. The options specified for this accept
corne from the Agent Descriptor.

Once activated, a kernel rnessage is sent to the agent's pre-created object. The agent must
receive this message and perforrn any required initialization; failure to process and reply
to this kernel rnessage will cause the installation system call to hang. The agent can
create any necessary control block required for the pre-created object. The agent can find
the object because the object's refcon, provided in the message control block during the
receive, is the object's ID.

If the same agent is installed multiple times. only one copy of the agent's code is copied
into the kerne! band. Each installation results in a unique port-object pair. Each
installation creates separate static data. The agcnts act in complete isolation from each
other; only the code is shared.

Following are the kerne! services and types associated with agent installation:

enum

} ;

agentisTask
agentisResident

OxOOOOOOOl,
Ox00000002

typedef struct AgentDescriptor

PBVersion
Ref
TaskName
As~cOperationCount

AsyncOperationCount
ByteCount
OptionBits
OptionBits

AgentDescriptor;

version;
codeDescriptor,
theName,
asyncReceiveLimi~;

asyncSendLimit;
stackSize;
acceptor~askOptions;

agentOptions;

The fields of an AgentDescriptor are:

• version specifies the version number of AgentDescriptor being supplied. This
provides backwards compatibility. agentDescriptorVersion is the version of
AgentDescriptor defined in the current interface. You should always specify a value
of agentDescriptorVersion.

• codeDescriptor is a code descriptor generated by the appropriate OS trap.

• taskNarne is passed to CreateTask as the task name (if the agent is a task).

• asyncRecciveLirnit and asyncSendLimit are used as values for the parameters of the
sarne names to the CreatePort call that is part of installing the agent.

146 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334

333 334

• stackSize specifies the size, in bytes, of the stack for the task created for a server
agent. This value is ignored for in-line agents and should be zero.

• acceptOrTaskOptions is interpreted differently for Server Agents than for In-Line
Agents. For server agents, this value is passed as the options parameter to
CreateTask when the server's task is being created. For in-line agents, this value is
passed as the options parameter to AcceptMessage when the in-line agent is being
registered with the message system.

• agentüptions specifies the kind of agent tobe created as weil as other attributes of
the agent. Presently two options are supported. The first controls whether the agent
is a server agent or an in-line agent. The second controls whether the agent's code,
static data, and stack (for server agents only) will be created in pageable or non
pageable areas within the kerne! band.

OSStatus InstallAgent (AgentDescriptor * theDescriptor,
ObjectID • t~eObject,

AgentID * theAgent);

theDescriptor is a descriptor (see above) of the agent being installed. This descripwr
controls the manner in which the agent is created and initialized.

theübject is updated with the ID of the agent's pre-created object.

theAgent is updated with the ID of the agent. This ID can be used to remove the agent.

enum

initializeAgentCode 1
} ;

typedef struct AgentinitializationMessage
(

KernelMessageHeader theHeader;
} AgentinitializationMessage;

Removing Agents

The code and other kerne! resources associated with an agent are reclaimed only through
explicit requests to the kerne!. Y ou do this by using the agent's ID that was returned
when the agent was installed. When the kerne! removes an agent, it first sends that agent
a kerne! message so that the agent can clean up and deallocate any resources prior to its
removal. This kerne! message is sent to the agent's pre-created object. In addition to
internal cleanup, the agent must perform the following actions: First, any asynchronous
receive operations must be canceled. Second, the acceptance function, if any, must be
removed. Third, all objects must be deleted, fourth, the port must be deleted. Finally, the

March 29, 1994 Copyright 1992 Apple Computer, Inc. 147

5,590,334
335 336

agent should reply to the system removal message and then, in the case of a server agent,
terminate.

The agent must always be ready for a removal message. Failure to receive and reply to
removal messages causes the remove request to hang. If the agent is not ready to
terminate it may reply to the removal request with an error status indicating the reason for
its refusal to terminate. This status is not interpreted by the kerne! but is part of the
interface between dient and server.

Should the pre-created object have been previously deleted. the rcmoval requcst will fail.
This may indicatc that the agent has already been removed. In any case, if the pre-created
object is not available, agent deletion cannot succeed.

Following are the kerne] services and types associated wirh agent removal

OSStatus RernoveAgent (AgentID theAgent);

enum

finalizeAgentCode 2
} ;

typedef stYuct FinalizeAgentMessage
[

KernelMessageHeadeY theHeaäer;
FinalizeAgentMessage;

148 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
337 338

REGISTRY

A registry is a naming service for kernel resources. lt solves the prob lern of how to locate
a resource whose kernelID is unknown. IDs are not generally known because they are
created dynamically and their values are unpredictable.

The NuKernel registry is implemented by a server outside the kerne! and accessed
through library routines that send messages to the registry server. The kerne! supplies two
calls so that the registry library can find the registry server. These calls are meant for use
only by the registry software; no other software should call these routines.

Settin2 the Registry Object ID

SetRegistryObjectlD causes the kerne! to remember the ID passed as an argument and
return it when GetRegistryObjectJD is called. It's like a registry that can remember
exactly one thing, and it' s meant tobe used to remember the ID of a more flexible
registry. If it is called multiple times it remembers the most recent value; no errors are
possible.

void SetRegistryObjectID (ObjectID newRegis~ryID);

Gettin2 the Registrv Object ID

GetRegistryObjectID retums the most recent value passed to SetRegistryObjectID

ObjectID GetRegistryObjectID ();

March 29, 1994 Copyright 1992 Apple Computer, Inc. A

5,590,334
339 340

RESTRICTIONS ON USING KERNEL SERVICES

NuKemel provides three separate execution leve!s: task level, hardware interrupt level,
and secondary interrupt level. Additionally, task level execution may be decomposed
into execution of privileged tasks and non-privileged tasks. V arious restrictions are
placed on which kerne! services can be called from each of these execution levels. The
following sections define which services are available from each execution level.

Services That Can Be Called From Task Level

All NuKernel services may be called from task level. However, not all kerne! services
are available to non-privileged tasks. These services are listed in the following section.

Services That CANNOT Be Called By Non-Privileged Tasks

• PoolAllocatePageable

• PoolAllocateResident

• Cal!Secondary InterruptHandlerO

• CallSecondarylnterruptHandler l

• CallSecondarylnterruptHandler2

• CallSecondarylnterruptHandler3

• CallSecondary InterruptHandler4

• QueueSecondaryinterruptHandler

• Instal!InterruptHandler

• RemovelnterruptHandler

• UnmapMemory

• AcceptMessage

Services That Can Be Called From Secondary Interrupt Handlers

• PoolAllocate

• PoolA!locateResident

B Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
341 342

• Poo!Deallocate

• GetPoollnformation

• SetEvents

• ClearEvents

• ReadEvents

• StackSpace

• GetTasklnformation

• SetPriority

• CreateSoftwarelnterrupt

• SendSoftwarelnterrupt

• DeleteSoftwarelnterrupt

• CaJISecondarylnterruptHandlerD

• CaJISecondarylnterruptHandler 1

• CaJJSecondarylnterruptHandler2

• Cal!Secondary InterruptHandler3

• CallSecondary InterruptHandler4

• QueueSecondarylnterruptHandler

• UpTime

• SetlnterruptTimer

• Cance!Timer

• TimeBase

• CheckpointIO

• UnmapMemory

• UnLockObject

• GetRegistryObjectID

March 29, 1994 Copyright 1992 Apple Computer, Inc. c

5,590,334
343 344

• SetRegistryObjectID

• ReplyToMessage

Services That Can Be Called From Hardware Interrupt Level

• SendSoftwareinrerrupt

• QueueSecondaryinterruptHandler

• UpTime

• SetlnterruptTimer

• TimeBase

D Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
345

What is daimed is:
1. A computer-implemented message passing method for

a computcr system having a processing trait and a memory
wherein a plurality of dient tasks, a plurality of server tasks
and a message passing unit reside, each dient task compris
ing a sequence of pro gram instructions that require a service,
cach server task comprising a sequence of program instruc
tions capable of providing a service, the message passing
unit comprising a sequencc of program instructions that
manages the transfer of messages between dient tasks and 10
servcr tasks, each dient task, each server task, and the
message passing unit executable by the processing unit, the
message passing method comprising the steps of:

creating a plurality of message object data structures with
the message passing unit, each message object data 15
structure corresponding to a type of service provided by
at least one server task within the plurality of server
tasks, each message object data structure serving as a
message destination from the perspective of a dient
task within the plurality of dient tasks and to which a 20
dient task within the plurality of dient tasks issues a
send message request for the purpose of requesting a
particular type of service be performed upon a mes
sage;

creating a port object data structure with the message 25

passing unit, the port object data structure associated
with the plurality of message data structures, the port
object data structure corresponding to a receptade for
messages directed to each message object data structure
within the plurality of message object data structures 30

and to which each server task within the plurality of
server tasks issues a receive message request for the
purpose of polling for a message;

346
issued a reply corresponding to the message identifi
cation signal.

4. The method of daim 2, wherein the step of transferring
the first message to the first server task comprises the steps
of:

deterrnining with the message passing unit whether the
first server task has issued a recei ve message request
that matches the send message control block; and

issuing a signal to the first server task with the message
passing unit to initiale a service corresponding to the
send message request in the event that the receive
message request matches the send message control
block.

5. The method of daim 4, further comprising the steps of:
creating a receive message control block associated with

the receive message request with the message passing
unit if the receive message request does not match the
send message control block; and

storing a reference to the receive message control block in
a data field of the port object with the message passing
unit.

6. The method of daim 5, further comprising tbe steps of:
deterrnining with the message passing unit whether the

receive message request specifies that execution of the
first server task by the processing unit is to be tempo
raril y prevented; and

preventing execution of the first sever task with the
message passing unit until a send message control
block tbat matches the receive message request has
been created.

7. The method of daim 4, further comprising the step of
transferring repl y information to the first dient task with the
message passing unit in response to the first server task
issuing a reply corresponding to the message identification issuing a send message request with a first dient task

within the plurality of dient tasks, the send message
request induding a reference to a first message and a
reference to a message object data structure within the
plurality of message object data structures;

35 signal.

receiving thc send message request with the message
passing unit; 40

transferring the first message to the port object data
structurc with the message passing unit;

polling the port object data structure with a first server
task within the plurality of server tasks; and

transferring the first message to the first server task with
thc message passing unit.

45

2. The mcthod of daim 1, whercin the step of transferring
thc first message to the port object comprises the steps of:

generating a unique message identification signal with the 50

message passing unit;
crcating a send message control block with the message

passing unit, the send message control block corre
sponding to the message identification signal, the send
message control block storing the reference to the first 55

message; and

storing a reference to the send message control block in a
data field of the port object with the message passing
unit. 60

3. The method of daim 2, further comprising the steps of:
deterrnining with the message passing unit whether the

send message request specifies that execution of the
first dient task by the processing unit is to be tempo
rarily prevented; and

preventing execution of the first dient task with the
message passing unit until the first server task has

65

8. The method of daim 2, further comprising the steps of:
storing a reference to an acceptance function in a data

field of the port object with the message passing unit,
the acceptance function comprising a sequence of pro
gram instructions capable of providing a service within
a memory address space associated with at least one
dient task within the plurality of dient tasks;

deterrnining with the message passing unit whether thc
send message control block matches tbe acceptance
function; and

if the send message control block matches the acceptance
function, issuing a signal to the acceptance function
with the message passing unit to initiate a service
corresponding to the send message request.

9. A computer-implemented means for passing messages
between a plurality of server tasks and a plurality of dient
tasks within a computer system having a processing unit and
a memory, the means for passing messages comprising:

means for creating a plurality of message object data
structures, each message object data structure corre
sponding to a type of service provided by at least one
server task within the plurality of server tasks, each
message object data structure serving as a unique
message destination from the perspective of a dient
task within the plurality of dient tasks and to which a
dient task within the plurality of dient tasks issues a
send message request for the purpose of requesting a
particular type of service be performed upon a mes
sage;

means for creating a port object data structure associated
with the plurality of message data structures, tbe port

5,590,334
347

objcct data structurc corresponding to a reccptade for
messages dirccted to each of its associatcd message
objcct data structures and to which each server task
within thc plurality of server tasks issues a receive
message rcquest for the purpose of polling for a mes- 5
sage;

mcans for transferring a first message associated with a
first client task within the plurality of dient tasks to the
port object data structure; and

mcans for transferring the first message from the port 10

object data structure to a first server task within the
plurality of server tasks.

10. The system of daim 9, further comprising:
means for generating a unique message identification

15
signal in response to the gcneration of a send message
request by the first dient task;

mcans for creating a send message control block corre
sponding to the message identification signal, the send
message control block storing a reference to the first 20
messagc;

means for deterrnining whethcr a receive message request
generated by the first server task matches thc send
message control block; and

means for issuing a signal to the first server task to initiate 25

a service corresponding to the send messagc request.
11. The system of daim 9, further comprising a means for

issuing a signal to an acceptance function associated with
the port object to initiate the performance of a service within
a memory address space associated with the first dient task. 30

12. The systcm of daim 9, further comprising a mcans for
transferring rcply inforrnation to the first dient task in
response to a reply issued by the first server task.

13. An objcct oriented messagc passing system for pass
ing messagcs between a plurality of dient tasks and a 35

plurality of scrver tasks, the object oriented messagc passing
system comprising:

a memory having an input and an output for storing data
and commands, the mcmory induding an object man
agement unit for creating a port object data structure 40

and a plurality of message object data structures asso
ciated with the port object data structure, the port object
data structure corresponding to a message receptade to
which a scver task within the plurality of server tasks
issues a receive message request for the purpose of 45

polling for a message, each message object data struc
ture corresponding to a type of service provided by the
server task, each message object data structure serving
as a message destination from the perspective of a
dient task within the plurality of dient tasks and to 50

which a client task within the plurality of dient tasks
issues a send message request for the purpose of
requcsting a particular type of service be perforrned

348
upon a message, the memory additionally induding an
object database for storing thc port object data structure
and each message object data structure, and a message
transaction unit for matching a send message request
issued by a dient task within the plurality of dient tasks
with a receive message request issued by a server task
within the plurality of server tasks, each of the object
management unit and the message transaction unit
comprising program instructions that form a portion of
a computer Operating system; and

a processing unit having an input and an output, for
processing data and executing commands under control
of pro gram instructions stored in the memory, the input
of the processing unit coupled to the output of the
memory, and the output of the processing unit coupled
to the input of the memory.

14. The method of daim 1, wherein the object oriented
message passing unit forms a portion of a microkernel
operating system.

15. A computer-readable medium storing program
instructions for perforrning the steps of:

creating a plurality of message object data structures with
a message passing unit, each message object data
structure corresponding to a type of service provided by
at least one server task within a plurality of server tasks,
each message object data structure serving as a mes
sage destination from the perspective of a dient task
within the plurality of dient tasks and to which a dient
task within a plurality of dient tasks issues a send
message request for the purpose of requesting a par
ticular service be performed upon a message;

creating a port object data structure with the message
passing unit, the port object data structure associated
with the plurality of message data structures, the port
object data structure corresponding to a receptade for
messages directed to each message object data structure
within the plurality of message object data structures
and to which each server task within the plurality of
server tasks issues a receive message request for the
purpose of polling for a message;

recei ving a send message request issued by a first dient
task, the send message request including a reference to
a first message and a reference to a message object data
structure within the plurality of message object data
structures;

transferring the first message to the port object data
structure with the message passing unit; and

transferring the first message to a first server task with the
message passing unit in response to the first server task
polling the port object data structure.

* * * * *

	Front Page
	Drawings
	Specification
	Claims

