United States Patent [
Saulpaugh et al.

US005590334A
117 Patent Number: 5,590,334
451 Date of Patent: Dec. 31, 1996

[54] OBJECT ORIENTED MESSAGE PASSING
SYSTEM AND METHOD

[75] Inventors: Thomas E. Saulpaugh, San Jose; Bill
M. Bruffey, Cupertino; Russell T,
Williams, San Jose, all of Calif.

[73] Assignee: Apple Computer, Inc, Cupertino, Calif.
[211 Appl. No.: 618,404
[22] Filed: Mar. 19, 1996

Related U.S. Application Data

[63] Continuation of Ser. No. 220,043, Mar. 30, 1994, aban-

doned.

[51] Imt. CL® GO6F 13/14
[52] US.CL ... 395/683; 395/600; 395/200.1;
3951733
[58] Field of Search 395/200, 700,
3957775, 600, 200.1; 364/DIG. 1, 228.5,
228.8

[56] References Cited

U.S. PATENT DOCUMENTS

5,142,683 8/1992 Burkhardt et al.ccccormeennenen. 395/725

5,230,051 7/1993 QUAN ...ceevrveceemecerreene e 395/700
5,265,206 11/1993 Shackelford et al. .. 395/200
5,305,461 4/1994 Feigenbaum et al. .. 395/775
5,315,709 5/1994 Alston, Ir. et al.coceveevrenneee. 395/600

5,317,746 5/1994 Watanabecccovmivevninnvinnen, 395/700
5,329,619 7/1994 Pagé et al. ..covomerrveneieinnnanenens 3957200
5,333,269 7/1994 Calvignac et al. ..ceveceeneneee, 3957200
5,371,850 12/1994 Belsan et al. ..ccveerenerenreennee. 395200

FOREIGN PATENT DOCUMENTS

0425420 5/1991 European Pat. Off. .
0483036 4/1992 European Pat. Off. 9/44

OTHER PUBLICATIONS

Tripathi, A. et al. “Type Management System In The Nexus
Distributed Programming Environment,” 5 Oct. 1988, pp.
170-177.
Hong-Tai Chou et al. “Versions and Change Notification in
an Object—Oriented Database System,” 12 Jun. 1988, pp.
275-281.

52

J
Message
Object
Message
32 Object

D. V. Pitts et al. “Object Memory and Storage Managcment
in the Clouds Kermel,” 13 Jun. 1988, pp. 10-17.

D. C. Robinson et al. “Domain—Based Access Control for
Distributed Computing Systems” in Software Engineering
Journal, Sep. 1988, pp. 161-170, vol. 3, No. 5.

U. Ramachandran et al. “A Measurement—Based Study of
Hardware Support for Object Invocation” in Sofiware Prac-
tice & Experience, Sep. 1989, pp. 809-828, vol. 19, No. 9.
M. Ancona. “Persistent Heaps,” 21 Mar. 1990, pp. 324-331.
G Pathak et al. “Object eXchange Service for an Object-O-
riented Database System,” 6 Feb. 1989, pp. 27-34.

Primary Examiner—Kevin A. Kriess
Assistant Examiner—Majid A. Banankhah
Attorney, Agent, or Firm—Carr, DeFilippo & Ferrell

[57] ABSTRACT

An object oriented message passing system for transferring
messages between a client task and a server task comprises
an object database, an object management unit, a message
transaction unit, and a locking unit. The object management
unit creates a port object and one or more associated
message objects. The message transaction unit maiches a
send message request issued by a client task with an accep-
tance function or with a receive message request issued by
a server task. In response to a send message request, the
message transaction unit creates a send message conirol
block. In response to a receive message request, the message
transaction unit creates a delivery message control block if
the receive message request matches the send message
control block, or creates a receive message control block if
the receive message request does not match the send mes-
sage contro] block. The locking unit locks a message object
such that send message requests directed to the message
object are not eligible to be matched to receive message
requests until the message object is unlocked.

An object oriented message passing method comprises the
steps of: creating a port object; creating a message object
associated with the port object; generating a unique message
ID in response to a message transaction initiated by a send
message request; creating a send message control block; and
matching the send message control block to a corresponding
receive message request. '

15 Claims, 23 Drawing Sheets

Server Task(s)

Receive

Reply

34 34

U.S. Patent Dec. 31, 1996 Sheet 1 of 23 5,590,334

Server Task

Client Task

CG——f1 "
Reieive
Reply

(Prior Art)

FIG. 1

U.S. Patent Dec. 31, 1996 Sheet 2 of 23 5,590,334

Server Task

Client Task Port
Com >—
Queue
of
Messages
- v,
(Prior Art)

FIG. 2A

U.S. Patent Dec. 31, 1996 Sheet 3 of 23 5,590,334

Server Task

Client Task Port Set

Co D= [

Queue
Mes of
Messages

(Prior Art)

FIG. 2B

10

U.S. Patent Dec. 31, 1996 Sheet 4 of 23 5,590,334
14 16
= External
Processing Input Output Storage 18
Unit Device Device Device
12 S 29
T g
1 + | ™
Client - : - Server
Object Oriented | Operating
Task Message System Task
L_\32 * Passing Unit ML 40 L_,34
P
30 Memory
FIG. 3

U.S. Patent Dec. 31, 1996 Sheet 5 of 23 5,590,334

T
; Object Message Locking Object E
i | Management Transaction Unit Database '
! Unit Unit '
I (w— — o - i
; 42 44 46 48 i
oo - - C_: ---

40

FIG. 4

52

o

Message
Object

Port
Object

Message /
32 Object \
o

FIG. 5

54

Server Task(s)

34 34

yuAed ‘SN

9661 ‘I€ 20

£€C JO 9 199§

PEE06S°S

U.S. Patent Dec. 31, 1996 Sheet 7 of 23 5,590,334

Message Object ID

Message Object Reference
Constant

Port Object Address

Client Team ID

Next Message Object Associated
with Same Port Object

-

52

FIG. 6

U.S. Patent |

Dec. 31, 1996 Sheet 8 of 23

Next and Previous Port Objects

List of Message Objects

List of Locked Message Objects

Pending Send Message List

Pending Receive Message List

Pending Reply Message List

Acceptance Function Information

Asynchronous Send Storage

Asynchronous Receive Storage

Port Object ID

Statistical Information

c

54

FIG.7

3,590,334

U.S. Patent

Dec. 31, 1996 Sheet 9 of 23

Message Object ID

Port Object ID

Next and Previous Pending Send
Message List Entries

Client Task ID

Message Address

Message Length

Message Type

Message ID

Send Options

Matching Receive MCB

Server Task ID

Delivery Status

Message Object Lock State

Reply Buffer Address

Reply Buffer Size

Client Task Blocking State

Maximum Time Interval

)

FIG. 8A

3,590,334

U.S. Patent

Dec. 31, 1996 Sheet 10 of 23

Message Obiject ID

Port Object ID

Next and Previous Pending Send
Message List Entries

Client Task ID

Message Address

Message Length

Message Type

Message ID

Send Options

Matching Receive MCB

Server Task ID

Delivery Status

Message Object Lock State

Reply Buffer Address

Reply Buffer Size

Event Notification Information

3

FIG. 8B

3,590,334

U.S. Patent Dec. 31, 1996 Sheet 11 of 23 5,590,334

Port Object ID

Next and Previous Pending
Receive Message List Entries

Server Task ID

Message Buffer Address

Message Buffer Size

Message Type

Send MCB

Maximum Time Interval

o
70

FIG. 9A

U.S. Patent

Dec. 31, 1996 Sheet 12 of 23

5,590,334

Port Object ID

Next and Previous Pending
Receive Message List Entries

Server Task 'ID

Message Buffer Address

Message Buffer Size

Message Type

Send MCB

Receive Message ID

Event Notification Information

~

72

FIG. 9B

U.S. Patent Dec. 31, 1996 Sheet 13 of 23 5,590,334

Message ID

Reference Constant

Send Options

Message Type

Message Location

Message Length

Reply Buffer Address

Reply Buffer Size

’

80

FIG. 10

U.S. Patent

Dec. 31, 1996

100

Sheet 14 of 23

5,590,334

Create/
odify/Examine
Delete Port

Create/Modify /Examine /
Delete Port Object

102
| S

Object?

Delete Message

Create/Modify/Examine/

5106

Object?

Lock
Message

Object?

Unlock
Message
Obiject?

Delete Message Object
110
Lock Message Object ——S
114
Unlock Message Object | S

116

Register Yes
Acceptance

Function?

Register Acceptance Function

5118

FIG. 11A

U.S. Patent

FIG. 11B

Dec. 31, 1996

120

Sheet 15 of 23

5,590,334

Send
Message
Request?

Yes

Request

122
Respond to Send Message ;

124

Receive
Message
Request?

Yes

Respond to Receive
Message Request

126
<

Perform Reply
Operations

132

Combined
Receive
and Reply
?

Perform Reply
Operations

5134

v

Respond to Receive
Message Request

S‘ 136

U.S. Patent Dec. 31, 1996 Sheet 1

6 of 23 5,590,334

Decode Message Obiject ID

52!1)

204
"2 Return lnvalid ID
Error

Message
Object
Locked?

208
Block Sending Client 5
Task Until Message
Object Unlocked

210

Lock
Indicated in
Request?

Yes

212
Lock Message Object —5

Generate Message 1D and
Create Send MCB

216

214

atching
Acceptance
Function?

Yes

218
Create Delivery MCB in 5
Client Task's Address Space

atching
Receive
Request?

Send MCB in Pending
Send Message List

FIG. 12A

Insert Reference to 5226

:

Pass Location of Delivery 5 220
MCB to Acceptance
Function

:

Insert Reference to 5222
Send MCB in Pending
Reply Message List

U.S. Patent Dec. 31, 1996 Sheet 17

of 23 5,590,334

Create Delivery MCB at 5" 230
Address Indicated in Receive »

Message Request

:

MCB in Pending Reply
Message List

234

Insert Reference to Send 5‘ 232

Synchronous
Receive?

Deliver Message to

Receiving Server Task

5236

I

;238

240
1 Unblock Receiving Notify Receiving
Server Task Server Task
-
Delete Receive MCB

and Remove Reference

from Pending Receive
Message List

FIG. 12B

U.S. Patent Dec. 31, 1996 Sheet 18 of 23 5,590,334

252
Return Message ID 5

Synchronous to Sender

Send?

254
Block Sending 5
Client Task

258
Z Return Timeout
Status

Reply
Issued?

262
Perform Reply 5
Operations

FIG. 12C

U.S. Patent

FIG. 13A

Dec. 31, 1996

Decode Port Object ID

Matching
Send?

Sheet 19 of 23

5300

Return Invalid

5,590,334

304

ID Error

Create Receive MCB and Insert
Reference in Pending Receive
Message List

5308

Synchronous
Receive?

S

311

to Server Task

Return Receive ID |

;312
Block Server Task .

316

S

Return Timeout
Status

Generate Message

and Create Send MCB

320
D | <

U.S. Patent Dec. 31, 1996

330
Insert Reference to 5
Send MCB in Pending
Reply Message List

:

Sheet 20 of 23 5,590,334

Create Delivery MCB at
Address Indicated in
Receive Message Request

5332

334

Synchronous

Receive?

340
2 Notify Receiving
Server Task

:

Server Task
Blocked?

338
S

Unblock Receiving
Server Task

32 Z Deliver Message on
Behalf of Sending Client
Task

<

344

Receive
MCB
Created?

Delete Receive MCB and
Corresponding Reference in
Pending Receive Message List

5346

FIG. 13B

U.S. Patent

Dec. 31, 1996 Sheet 21 of 23 5,590,334

400
Decode Message ID _S

'

402
Deliver Reply Status to ;
Client Task

Reply Buffer
Indicated?

406
Deliver Reply Buffer 5

408

No

Message
Object Unlocking
Required?

410
2 Unlock Message Object

:

412 > |
Delete Message ID j—

:

414
"2 Delete Send MCB

FIG. 14

U.S. Patent Dec. 31, 1996 Sheet 22 of 23 5,590,334

502
Return Invalid _5’
1D Error

Message
Object ID
Valid?

504

Already
Locked?

506 Wait for Reply to be Issued for Each
1 Send MCB Referenced in Pending

Reply Message List that Specifies
Message Object Targeted

v

5508
Lock Message Object

510

Add Reference to Issuer of

Lock Request to Semaphore :

512

Next to Receive
Ownership?

514

Unlock
Request
Issued?

5516
Respond to Unlock Request

l 518
FIG. 1 5) Return Control to Issuer ;

of Lock Request

U.S. Patent Dec. 31, 1996 Sheet 23 of 23 5,590,334

600

602
Y

Message
Object ID
Valid?

Return Invalid
ID Error

604

606
Return Lock State 5

Error

Currently
Locked?

Another
Task Waiting to Own
Message Object's
Lock?

Yes

5610
Unlock Message Object

612
Remove Reference to 5
Waiting Task from j€——

Semaphore

I

614
Return Control to Issuer 5
of Unlock Request

End h 4

FIG. 16

5,590,334

1

OBJECT ORIENTED MESSAGE PASSING
SYSTEM AND METHOD

RELATED APPLICATIONS

This is a continuation of application Ser. No. 08/220,043
filed on Mar. 30, 1994 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to systems and
methods for intra-computer communication, and more par-
ticularly to systems and methods for message-based client-
server communication. Still more particularly, the present
invention is an object oriented message passing system and
method.

2. Description of the Background Art

In intra-computer communications, a client task requires
a service provided by a server task. For example, a client
task may require window creation or file deletion services.
The particular service that the client task requires is per-
formed by an appropriate server task, such as a window
manager or a file system. A message is the unit of commu-
nication interchange between a client and a server. Thus, in
order to inform a server that a particular service is required,
the client task sends or issues an appropriate message. Upon
receiving an issued message, the server task performs the
required actions. Message passing systems and methods
determine the manner in which a message that has been
issued by a client task is delivered to a server task.

In the prior art, message passing systems and methods
have relied upon a task-based message passing model, a
port-based message passing model, or a port-set-based mes-
sage passing model. Referring now to FIG. 1, a block
diagram of a task-based message passing model is shown. In
the task-based message passing model, when a client task
requires a particular service, the client task sends a message
directly to a server task that performs types of services
related to the particular service required. Because multiple
client tasks may require a service provided by the same
server task, cach server task present must support message
queuing and message dispatch, both of which introduce an
undesirable level of server task complexity. Moreover,
because server tagks must support message queuing and
message dispatch, memory beyond that required to imple-
ment a set of services must be available to each server task.
An additional drawback associated with the task-based
message passing model is that a client task and a corre-
sponding server task are bound together in an inflexible
manner, with each server task being dedicated to only one
type of service. The inflexible binding found in the task-
based message passing model also introduces an undesirable
level of complexity when the behavior of the client task or
the server task is to be modified or evolved.

Referring now to FIG. 2A, a block diagram of a port-
based message passing model is shown. In the port-based
message passing model, a message port represents a type of
service available to a client task. Client tasks send messages
to message ports rather than directly to server tasks. Mes-
sages sent to a given message port are queued within the
message port by the operating system. Thus, to a server task,
each message port represents a message queue. Multiple
server tasks can compete 1o receive and process messages
from any message port, thereby decoupling client tasks from
server tasks. Client tasks commonly require many different

15

20

25

30

35

40

45

50

55

60

65

2

types of services; hence, multiple message ports are
required. Each message port requires a significant amount of
memory to implement. Some prior art operating systems
require that a unique port be present for each client task
present.

Within a computer system, a message passing system
generally resides within an operating system, which in turn
resides within the computer system’s memory. The total
amount of memory available in the computer system is
limited, and the memory must therefore be treated as a
shared resource. It is thus highly desirable to have an
operating system that occupies as little memory as possible.
Message passing systems and methods that are based upon
the port-based message passing model are undesirable
because the memory required to implement each port sig-
nificantly adds to the operating system’s memory require-
ments. In personal computer systems, less memory is typi-
cally available than in other computer systems. Hence,
message passing systems and methods that rely upon the
port-based message passing model are particularly undesir-
able in personal computer systems.

Commonly, client tasks and server tasks function in
different address spaces. In prior art message passing sys-
tems and methods that rely upon the port-based message
passing model, when a client task and a server task operate
in different address spaces, the message passing system or
method must perform a mapping between address spaces
prior to transferring a message from the client task to the
server task. Afier the mapping between address spaces has
been performed, the server task performs the required ser-
vice. Often, particular services, such as input/output (I/O)
operations, must be performed as rapidly as possible. The
mapping between address spaces performed by prior art
message passing systems and methods that rely upon the
port-based message passing model undesirably increases the
amount of time required to complete the service. Thus, prior
art systems and methods that rely upon the port-based
message passing model are undesirable in time-critical situ-
ations when client tasks and server tasks function in different
address spaces.

Referring now to FIG. 2B, a block diagram of a port-set-
based message passing model is shown. The port-set-based
message passing model is a variant of the port-based mes-
sage passing model described above. In the port-set-based
message passing model, one or more message ports are
associated to form a common port set. Each port set repre-
sents a particular type of service, and each individual
message port represents a particular resource that can utilize
the service associated with the port set to which it belongs.
Client tasks therefore view individual message ports as
resources to which messages can be sent. The additional
level of structural granularity provided by the port-set-based
message passing model significantly simplifies message
decoding and message prioritization operations that must be
performed by server tasks. As in the case of the port-based
message passing model, however, each message port
requires a significant amount of memory to implement.
Therefore, message passing systems and methods that rely
upon the port-set-based message passing model require even
more memory than those that rely upon the port-based
message passing model. Prior art message passing systems
and methods that rely upon the port-set-based message
passing model also suffer from the address space translation
drawbacks described above in relation to the port-based
message passing model.

What is needed is a means for message passing that
provides a high level of structural granularity, that mini-

5,590,334

3

mizes memory requirements, and that can reduce the time
requircd to perform time-critical operations when client
tasks and server tasks function in different address spaces.

SUMMARY OF THE INVENTION

The present invention is an object oriented message
passing system and mecthod. The system of the present
invention comprises an object oriented message passing
unit. The object oriented message passing unit creates and
maintains a set of message objects and one or more port
objects. Each message object is associated with a particular
port object, and each message object represents a resource
that corresponds Lo a service provided by a server task. Each
port object represents a message receptacle from which a
server task can receive messages. Message objects require
significantly less memory to implement than port objects.
Through the use of message objects and port objects, the
present invention provides an object-oriented message pass-
ing model that exhibits a high level of structural granularity
and that requires significantly less memory than any mes-
sage passing model supported in the prior art.

The object oriented message passing unit associates an
acceptance function with a port object upon request, where
the acceptance function provides a means for performing
one or more services within the context and address space of
the client task. Acceptance functions significantly reduce the
amount of time required to complete time-critical services
by climinating the need for mapping between address spaces
and context switching.

A client task sends a message to a message object by
issuing a send message request that includes a reference to
a message object, a reference to a message, and a message
type. The message referenced in the send message request
itself indicates a required service. A server task receives a
message from a port object by issuing a receive message
request that includes a reference to a port object and a
message type. In response to a send message request, the
object oriented message passing unit creates a corresponding
send message control block (MCB), where the send MCB
includes the reference to the message. After creating the
send MCB, the object oriented message passing unit first
attempts to match the send message request with an accep-
tance function. If a matching acceptance function is present,
the object oriented message passing unit ensures that the
message referenced in the send MCB is transferred to the
acceptance function. The acceptance function then performs
the required service within the context and address space of
the client task. If no matching acceptance function is
present, the object oriented message passing unit matches
the send message request to a receive message request. The
object oriented message passing unit ensures that the mes-
sage referenced in the send MCB is transferred to the server
task that issued the receive message request, and provides
any required mapping between address spaces. After the
server task has received the message, the server task per-
forms the required service.

Once an acceptance function or a server task has per-
formed a required service, the acceptance function or the
server task, respectively, preferably issues a reply to the
message. The issuance of a send message request, followed
by the matching of a send message request to an acceptance
function or to a receive message request, followed by the
issuance of a reply is referred to herein as a message
transaction. In response to a reply, the object oriented
message passing unit performs reply operations that deliver

15

20

25

30

35

40

45

50

55

60

65

4

status information and possibly data to the client task that
initiated the message transaction.

The object oriented message passing unit locks and
unlocks message objects upon request. After a message
object is locked, send message requests directed to the
message object are not eligible to be matched to an accep-
tance function or to a receive message request until the
message object is unlocked. Message object locking and
unlocking provide a means to guarantee that a parameter
value associated with a given message object remains
unchanged while a message transaction is in progress.

The method of the present invention comprises the steps
of: creating a port object; creating a message object asso-
ciated with the port object; optionally associating an accep-
tance function with the port object; matching a send message
request directed to the message object with the acceptance
function or with a matching receive message request; match-
ing areceive message request directed to the port object with
a send message request; and performing reply operations
following a server task’s reply to a message.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram of a task-based message passing
model of the prior art;

FIG. 2A is a block diagram of a port-based message
passing model of the prior art;

FIG. 2B is a block diagram of a port-set-based message
passing model of the prior art;

FIG. 3 is a block diagram of a preferred embodiment of
the object oriented message passing system constructed in
accordance with the present invention;

FIG. 4 is a block diagram of a preferred embodiment of
an object oriented message passing unit in the system of the
present invention;

FIG. 5 is a block diagram of an object oriented message
passing model provided by the system of the present inven-
tion;

FIG. 6 is a block diagram of a preferred embodiment of
a message object;

FIG. 7 is a block diagram of a preferred embodiment of
a port object;

FIG. 8A is a block diagram of a synchronous send
message control block in the present invention;

FIG. 8B is a block diagram of an asynchronous send
message control block in the present invention;

FIG. 9A is a block diagram of a synchronous receive
message control block in the present invention;

FIG. 9B is a block diagram of an asynchronous receive
message control block in the present invention;

FIG. 10 is a block diagram of a delivery message control
block in the present invention;

FIGS. 11A and 11B are a flowchart of a preferred object
oriented message passing method in accordance with the
present invention;

FIGS. 12A, 12B, and 12C are a flowchart of a preferred
method for responding to a send message request in the
present invention;

FIGS. 13A and 13B are a flowchart of a preferred method
for responding to a receive message request in the present
invention;

FIG. 14 is a flowchart of a preferred reply method in the
present invention;

5,590,334

5

FIG. 15 is a flowchart of a preferred method for respond-
ing to a lock request in the present invention; and

FIG. 16 is a flowchart of a preferred method for respond-
ing to an unlock request in the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring now to FIG. 3, a block diagram of a preferred
cmbodiment of an object oriented message passing system
10 constructed in accordance with the present invention is
shown. The system 10 comprises a processing unit 12, an
input device 14, an output device 16, an external storage
device 18, and a memory 20 wherein an operating system
30, a client task 32, and a server task 34 reside. In the
preferred embodiment, the operating system 30 is a micro-
kernel operating system 30 capable of maintaining multiple
address spaces. An object oriented message passing unit 40
resides within the operating system 30. Each element of the
system 10 has an input and an output coupled to a common
system bus 29. In an exemplary embodiment, the system 10
of the present invention is an Apple Macintosh computer
system made by Apple Computer, Inc., of Cupertino, Calif.,
and having a Motorola MC68030 microprocessor and 8
Mbytes of Random Access Memory (RAM) wherein a
microkernel operating system 30 that includes the object
oriented message passing unit 40 resides.

In the present invention, a client task 32 is preferably a set
of program instructions that requires a given service, for
example, the creation of a window or the deletion of a file.
The provider of a required service is referred to herein as a
server task 34. Preferably, each server task 34 is also a set
of program instructions. In the preferred embodiment, a
given server task 34 can function as a client task 32 when the
given server task 34 itself requires a particular service that
is performed by another server task 34. The microkernel
operating system 30 preferably maintains a task context for
each client task 32 and each server task 34 in a conventional
manner, where the task context is a set of data structures and
information specific to the client or server task 34, 34 with
which it is associated. The microkernel operating system 30
also preferably associates with each client task 32 and with
each server task 34 an address space specifying a set of
memory addresses accessible to the client task 32 and server
task 34, respectively. Each address space preferably includes
a microkernel-accessible address area that is common to all
address spaces. A complete description of an exemplary
microkernel operating system 30 and the functionality pro-
vided by the present invention is given in Appendix A.

The object oriented message passing unit 40 facilitates
communication between client tasks 32 and server tasks 34.
Referring now to FIG. 4, a block diagram of a preferred
embodiment of the object oriented message passing unit 40
of the present invention is shown. The object oriented
message passing unit 40 comprises an object management
unit 42, a message transaction unit 44, a locking unit 46, and
an object database 48. Each element of the object oriented
message passing unit 40 has an input and an output coupled
to the common system bus 29. In the preferred embodiment,
the object oriented message passing unit 40 comprises
computer program steps that are selectively executed by the
processing unit 12.

The object management unit 42 creates and maintains
data structures in the object database 48 that provide a client
task communication interface between client tasks 32 and
the object oriented message passing unit 40, and that provide

20

25

30

35

40

45

50

55

60

65

6

a server task communication interface between server tasks
34 and the object oriented message passing unit 40. Through
the client task communication interface and the server task
communication interface, the object management unit 42
provides an object oriented message passing model 50.
Referring now to FIG. 5, a block diagram of a preferred
object oriented message passing model 50 provided by the
present invention is shown. In the preferred object oriented
message passing model 50, one or more message objects 52
form the client task communication interface, and one or
more port objects 54 form the server task communication
interface. Each message object 52 is associated with at least
one client task 32. The set of client tasks 32 associated with
a given message object 52 are referred to herein as a client
team 33. Each message object 52 represents the behavior of
a resource that is under the control of a given server task 34,
and preferably refiects how client tasks 32 use a particular
service provided by the server task 34. To invoke the
behavior associated with a given message object 52, a client
task 32 sends a message to the message object 52 by issuing
a send message request, where each send message request
specifies a message and a message type. The send message
requests will be described in more detail below.

In the preferred object-oriented message passing model
50, each port object 54 serves as a receptacle for messages
directed from client tasks 32 to message objects 52 that are
associated with the port object 54. Server tasks 34 receive
messages from a port object 54 by issuing receive message
requests as will be described in more detail below. After
receiving a given message, a server task 34 implements the
behavior associated with the message object 52 to which the
message was sent, according to details supplied in the
message itself. The server task 34 then issues a reply to the
given message that the client task 32 sent, where the reply
provides the client task 32 with status information and
possibly data. Herein, the sending of a given message by a
client task, followed by a server task’s receipt of the given
message, followed by the server task’s reply to the given
message is referred to as a message transaction.

Referring now to FIG. 6, a block diagram of a preferred
embodiment of a message object 52 is shown. The object
management unit 42 creates a message object 52 and gen-
eraies a unique message object identification (ID) in
response to a server task’s issuance of a message object
creation request. The message object creation request pref-
erably includes a reference constant specifying an initial
state of the message object 52; a reference to a given port
object 54 with which the message object 52 is to be
associated; and a client team ID specifying a set of client
tasks 32 with which the message object 52 is to be associ-
ated. Within each message object 52, a first data field stores
the message object ID generated by the object management
unit 42 that uniquely identifies the message object 52; a
second data field stores the reference constant supplied by
the server task, where the reference constant corresponds to
the initial state of the message object 52; a third data field
references the given port object 54 indicated in the message
object creation request; a fourth data field specifies the client
team ID included in the message object creation request; and
a fifth data field references a next message object 52
associated with the given port object 54. The object man-
agement unit 42 does not assign a value to the fifth data field
until a next message object 52 has been created.

Referring now to FIG. 7, a block diagram of a preferred
embodiment of a port object 54 is shown. The object
management unit 42 creates a port object 54 and generates
a unigue port object ID in response to a port object creation

5,590,334

7

request from a server task 34. In the port object 54, a first
data field specifies a next port object and a previous port
object. The ohject management unit 42 therefore links port
objects 52 together via their respective first data fields. A
second data field in the port object 54 provides a list of those
message objects 52 that are associated with the port object
54. When the object management unit 42 creates a new
message object 52, the object management unit 42 adds the
corresponding new message object ID to the list in the
second data field of the port object 54 with which the newly
created message object 52 is associated. A third data field in
the port object 54 provides a list of each associated message
object 52 that has been “locked” in response to a lock
request. When a given message object 52 is locked, any send
message requests issued by client tasks 32 and directed to
the given message object 52 are not available to be received
by a server task 34 until unlocking operations have been
performed. Message object locking and unlocking opera-
tions are performed by the locking unit 46 and will be
described in detail below.

In the port object 54, a fourth data field is used to store a
pending send message list that specifies those message that
client tasks 32 have sent to a message object 52 associated
with the port object 54, but that have not yet been received
by a server task 34. A fifth data field in the port object 54 is
used to store a pending receive message list that specifies
those receive message requests that have been issued to the
port object 54 by server tasks 34, but that have not yet been
matched to a corresponding message sent by a client task 32.
A sixth data field in the port object 54 is used to store a
pending reply message list that specifies each message that
server tasks 34 have received but for which a reply has not
yet been issued. When the object management unit 42
creates the port object 54, the fourth, fifth, and sixth data
fields are empty. As will be described below, the lists stored
in the fourth, fifth, and sixth data fields are maintained by the
message transaction unit 44.

A seventh data field in the port object 54 optionally
specifies an acceptance function. The acceptance function
comprises a set of instructions that directly implements a
subset of services provided by a server task 34 within the
task context of a client task 32. The acceptance function uses
the microkernel-accessible address area that is common to
the address space of the client task 32, and therefore
effectively functions within the address space of the client
task 32. Acceptance functions thus eliminate the need for
context switching and mapping between address spaces.
Performance of a given service via an acceptance function
therefore requires much less computational time than per-
formance of the same service via a server task 34. Accep-
tance functions provide a means for minimizing the amount
of time required to perform time-critical operations. The
seventh data field in the port object 54 also specifies a set of
message types for which the acceptance function is capable
of providing a service. Preferably, the seventh data field is
empty when the object management unit 42 first creates the
port object 54. The object management unit 42 stores or
registers a reference to an acceptance function and the set of
message types in response to a server task registration
request that identifies a particular acceptance function and
the set of message types.

In an exemplary situation in which acceptance functions
might be used beneficially, disk input/output (I/O) opera-
tions may require services provided by a first server task 34
associated with a file system. The first server task 34 may
selectively require particular services provided by a second
server task 34 associated with a disk driver, which may in

10

15

20

30

35

40

45

50

55

60

65

8

turn selectively require particular services provided by a
third server task 34 associated with a small computer
systems interface (SCSI) manager. If the second server task
34 and the third server task 34 issue appropriate registration
requests, the object management unit 42 will register an
acceptance function for the second server task 34 and an
acceptance function for the third server task 34, respectively.
Those disk I/O operations that require the particular services
corresponding to the acceptance functions registered will
occur within the task context and within the address space of
the first server task 34, eliminating the need for mapping
between address spaces and context switching. This in turn
will greatly reduce the time required to perform these disk
1/O operations.

In the preferred embodiment, client tasks 32 can send
messages synchronously or asynchronously. In a like man-
ner, server tasks can issue message receive requests syn-
chronously or asynchronously. Synchronous and asynchro-
nous operations will be described in more detail below. An
eighth data field in the port object 54 specifies an amount of
storage available for messages sent asynchronously, and a
ninth data field in the port object 54 specifies an amount of
storage available for asynchronous message receive
requesis.

A tenth data field in the port object 54 is used to store the
unique port object ID generated by the object management
unit 42. Finally, an eleventh data field in the port object 54
is used to store statistical information such as the total
number of messages sent to message objects 52 associated
with the port object 54 since the port object’s creation. In the
preferred embodiment, each message object 52 is associated
with a particular port object 54. Therefore, a port object 54
must be created in the preferred embodiment before a
corresponding message object 52 is created.

In addition to creating message objects 52 and port
objects 54, the object management unit 42 provides t0 a
server task 34 information associated with a given message
object 52 in response to a message object examination
request. The information provided includes the client team
ID specified in the given message object, a port object ID
specifying the port object 54 with which the given message
object 52 is associated, and the current value of the message
object’s reference constant. The object management unit 42
extracts the client team ID and the current value of the
reference constant from the message object 52 itself, and
uses the port object address within the message object 52 to
retrieve the port object ID from the port object 54 with
which the message object 52 is associated. The object
management unit 42 also modifies the above information in
response to a message object modification request, and
deletes a given message object 52 in response to a client
team termination message. In a manner analogous to the
operations provided for message objects 52, the object
management unit 42 provides information related to a port
object 54 in response to a port object examination request
from a server task 34, modifies data fields within the port
object 54 in response to a port object modification request,
and deletes port objects 52 in response to a port object
deletion request.

In the preferred embodiment, the object management unit
42 can associate multiple message objects 52 with a single
port object 54. The memory storage requirements for each
message object 52 are significantly less than the memory
storage requirements for each port object 54. In an exem-
plary embodiment, each port object 54 occupies 128 bytes
within the memory 20, while each message object occupies
as little as 24 bytes. In the present invention, because a given

5,590,334

9

server task 34 can register an acceptance function that is to
provide onc or more services, the given server task 34 is
simpler and requires less memory to implement. Moreover,
because an acceptance function executes within the task
context of a client task 32, no additional memory is required
for context switching when an acceptance function performs
a service. Thus, the object oriented message passing model
50 provided by the present invention requires significantly
less memory space than that required by any message
passing model provided by prior art message passing sys-
tems, while providing a higher level of structural granularity
for a given amount of available memory.

The message transaction unit 44 performs the operations
required o carry out message transactions. In particular, the
message transaction unit 44 performs the operations
required to support the sending of messages to message
objects 52 from client tasks 32, the issuance of receive
message requests by server tasks 34, the matching of mes-
sages sent to issued receive message requests, the selective
delivery of a message to an acceptance function or to a
server task 34 to perform a service indicated by a message,
and the transfer of replies from acceptance functions and
server tasks 34 to client tasks 32.

The message transaction unit 44 requires that client tasks
32 send messages to message objects 52 by issuing send
message requests. In the preferred embodiment, each send
message request is either 1) a synchronous send message
request; 2) a synchronous send-and-receive message
request; 3) an asynchronous send message request; or 4) an
asynchronous send-and-receive message request. As will be
described in detail below, in response to either type of
synchronous send message request, the message transaction
unit 44 blocks the client task 32 until the message transac-
tion has completed, thereby preventing the client task 32
from performing other operations while the message trans-
action is in progress. In contrast, the message transaction
unit 44 allows the client task 32 to continue other operations
in response to either type of asynchronous send message
request. Each type of send message request preferably
specifies a message object ID; a reference to a starting
memory location at which a message begins; message length
information; a message type that provides a categorization
of the message; send options that indicate whether the
message is to be delivered to an acceptance function or to a
server task 34 by reference or by value; and a flag to indicate
whether the message object 52 io which the send message
request is directed is to be locked in response to the send
message request and subsequently unlocked after an accep-
tance function or a server task 34 has replied to the message.
Both synchronous and asynchronous send-and-receive mes-
sage requests additionally specify a reply buffer address at
which a server task can store a reply message or data, and
a reply buffer size. In the preferred embodiment, the mes-
sage type is a 32-bit number.

Each type of synchronous send message request also
specifies a maximum time intervatl that the client task 32 can
remain idle while the message transaction occurs. In addi-
tion to the information common to every send message
request, each type of asynchronous send message request
additionally specifies an address at which the message
transaction unit 44 can store a message ID signal corre-
sponding to the asynchronous send message request, and
event notification information that indicates how the mes-
sage transaction unit 44 is to notify the client task 32 when
the message transaction is complete. In the description that
follows, the message ID signal is simply referred to as the
message ID.

10

15

20

25

30

35

40

45

50

55

60

€5

10

In response to a given client task’s issuance of a send
message request, the message transaction unit 44 creates a
send message control block (MCB) according to whether the
send message request is synchronous or asynchronous. In
response to a synchronous send message request or a syn-
chronous send-and-receive message request, the message
transaction unit 44 creates a synchronous send MCB 60.
Referring now to FIG. 8A, a block diagram of a preferred
embodiment of a synchronous send MCB 60 is shown. The
synchronous send MCB 60 is a data structure including a
first data field specifying the message object ID correspond-
ing to the message object 52 to which the synchronous send
message is directed; a second data field providing the port
object ID identifying the port object 54 with which the
message object 52 specified in the first data field is associ-
ated; a third data field providing a reference to a next and to
a previous entry in the port object’s pending send message
list; a fourth data field specifying the client task ID corre-
sponding to the client task 32 that issued the synchronous
send message request; a fifth data field providing the starting
address in the memory 20 at which an associated message is
stored; a sixth data field providing the length of the message;
a seventh data field indicating the message type specified in
the synchronous send messagc request; an eighth data field
wherein the message ID is stored; a ninth data field speci-
fying the send options indicated in the synchronous send
message request; a tenth data field that the message trans-
action unit 44 uses to reference an MCB corresponding to a
matching receive message request; an eleventh data field in
which the message transaction unit 44 stores a server task ID
after delivering the message to a server task 34; a twelfth
data field indicating whether the message corresponding to
the synchronous send message request has been delivered to
a server task; a thirteenth data field indicating whether the
message object 52 identified in the synchronous send request
is locked; a fourteenth data field specifying the address of a
reply buffer in the event that the send message request is a
synchronous send-and-receive message request; a fifteenth
data field providing a reply buffer size in the event that the
send message request is a synchronous send-and-receive
message request; a sixteenth data field indicating whether
the sending client task 32 has been blocked as a result of a
blocking request; and a seventeenth data field specifying the
maximum time interval that the sending client task 32 can
remain idle during the message transaction. The message
transaction unit 44 stores the synchronous send MCB 60 in
the object database 48.

If the send message request is an asynchronous send
message request or an asynchronous send-and-receive mes-
sage request, the message transaction unit 44 creates an
asynchronous send MCB 62 rather than a synchronous send
MCB 60. Referring now to FIG. 8B, a block diagram of an
asynchronous send MCB 62 is shown. The asynchronous
send MCB 62 is a data structure including a first through a
fifteenth data field, each of which specifies information
analogous to that specified in the first through fifteenth data
fields in the synchronous send MCB 60 described above. In
addition, the asynchronous send MCB 62 includes a six-
teenth data field wherein the message transaction unit 44
stores the event notification information specified in the
asynchronous send message request or asynchronous send-
and-receive message request. As in the case of the synchro-
nous send MCB 60, the message transaction unit 44 stores
the asynchronous send MCB 62 in the object database 48.

The message transaction unit 44 requires that a server task
34 issue a receive message request to receive a message
from a given port object 54. Receive message requests are

5,590,334

11

either synchronous receive message requests, or asynchro-
nous receive message requests. Each type of receive mes-
sage request specifies a port object 54; a message type
indicating a category of message the server task 34 is to
receive; a reference to a memory location at which a
message buffer begins; and a message buffer size. In the
preferred embodiment, the message type is a 32-bit number.
A synchronous receive message request further includes a
maximum time interval the issuing server task 34 can remain
idle prior to the delivery of a message by the message
transaction unit 44. In addition to the information common
to both synchronous and asynchronous reccive message
requests, an asynchronous receive message request further
specifies a message address at which a receive ID corre-
sponding to the asynchronous receive message request can
be stored; and event notification information that the mes-
sage transaction unit 44 uses to notify the issuing server task
34 that a message corresponding to the asynchronous
receive message request has been delivered.

In response to a receive message request, the message
transaction unit 44 creates a receive MCB if no send MCB
having a message type that matches the message type given
in the receive message request is present. In other words, the
message transaction unit 44 creates a receive MCB if the
receive message request cannot be immediately matched to
a previously-issued send message request. The receive MCB
created by the message transaction unit is either a synchro-
nous or an asynchronous receive MCB 70, 72, according to
whether the receive message request is a synchronous or an
asynchronous receive message request, respectively. Refer-
ring now to FIG. 9A, a block diagram of a preferred
embodiment of a synchronous receive MCB 70 is shown.
The synchronous receive MCB 70 is a data structure includ-
ing a first data field specifying the port object ID corre-
sponding to the port object 54 to which the synchronous
receive message request is directed; a second data field
referencing a next and a previous entry in the pending
receive message list of the port object 54 indicated in the
first data field; a third data field wherein the message
transaction unit 44 stores a server task 1D corresponding to
the server task 34 that issued the request; a fourth data field
specifying the message buffer address included in the syn-
chronous receive message request; a fifth data field speci-
fying the message buffer size contained in the synchronous
receive message request; a sixth data field providing the
message type included in the synchronous receive message
request; a seventh data field that the message transaction unit
44 uses to reference an MCB corresponding to a send
message request that matches the synchronous receive mes-
sage request according to message type; and an eighth data
field wherein the message transaction unit 44 stores the
maximum time interval the issuing server task 34 can remain
idle as specified in the synchronous receive message request.
The message transaction unit 44 stores the synchronous
receive MCB 70 in the object database 48.

Referring now to FIG. 9B, a block diagram of a preferred
embodiment of an asynchronous receive MCB 72 is shown.
The asynchronous receive MCB 72 is a data structure
including a first through a seventh data field that specify
information analogous to that detailed for the synchronous
receive MCB 70. The asynchronous receive MCB 72 also
includes an eighth data field wherein the message transac-
tion unit 44 stores the receive ID, and a ninth data field
wherein the message transaction unit 44 stores the event
notification information specified in the asynchronous
receive message request. As in the case of each synchronous

5

15

20

25

30

35

40

45

50

35

60

65

12

receive MCB 70, the message transaction unit 44 stores each
asynchronous receive MCB 72 in the object database 48.

In the preferred embodiment, each MCB described above
60, 62, 70, 72 is implemented as a general MCB structure
(not shown) plus one or more data fields that supply request-
specific information. The general MCB structure includes
data fields for specifying a port object 54; a client or server
task 32, 34; references to other corresponding MCB struc-
tures; and state information specifying whether the general
MCB structure corresponds to a synchronous or asynchro-
nous request and whether the general MCB structure corre-
sponds to a send or receive request. Those skilled in the art
will be able to determine the specific additional data fields
necessary to implement a synchronous MCB 60, an asyn-
chronous send MCB 62, a synchronous receive MCB 70,
and an asynchronous receive MCB 72 according to the
descriptions provided above.

The message transaction unit 44 selectively matches a
receive message request with a send message request, and
selectively matches a send message request either with an
acceptance function or a receive message request. Matching
occurs according to the message types specified in a send
message request and a receive message request, or according
to the message type specified in a send message request and
the set of message types associated with an acceptance
function. In the preferred embodiment, the message trans-
action unit 44 performs a logical AND operation to deter-
mine whether message types match.

In response to a given send message request, the message
transaction unit 44 may determine that the send message
request can be immediately serviced by a matching accep-
tance function or that the send message request can be
immediately serviced by a matching pending receive mes-
sage request. The message transaction unit 44 may also
determine that the send message request cannot be imme-
diately serviced and must therefore become a pending send
message request. The message transaction unit 44 catego-
rizes the send message request as pending by inserting a
reference to the corresponding send MCB into the pending
send message list of the port object 54 identified in the send
MCB. The message transaction unit 44 preferably maintains
the pending send message list of the port object 54 as a
doubly-linked list in first-in first-out (FIFO) order.

In response to a given receive message request, the
message transaction unit 44 may determine that the receive
message request can be immediately matched to a pending
send message request; or that the receive message request
cannot be immediately matched to a send message request
and must therefore become a pending receive message
request. The message transaction unit 44 categorizes a
receive message request as pending by creating a receive
MCB and by inserting a reference to the corresponding
receive MCB in the pending receive message list of the port
object 54 identified in the receive MCB. As with the pending
send message list, the message transaction unit 44 preferably
maintains the pending receive message list as a doubly-
linked list in FIFO order. When the message transaction unit
44 categorizes a synchronous receive message request as
pending, the message transaction unit 44 also blocks the
execution of the server task 34 that issued the synchronous
receive message request until a matching send message
request arrives.

The detailed operations that are performed by the message
transaction unit 44 in response to send message requests and
receive message requests are now considered. The detailed
operations are also discussed as individual method steps in
FIGS. 11 through 16, ’

5,590,334

13

Send Message Requests

In response to a send message request, the message
transaction unit 44 initially decodes the message object ID
specified in the send message request. If the message object
ID is invalid, the message transaction unit 44 issues an
invalid ID error to the client task 32 that issued the send
message request, and does not further consider the send
message request. If the send message request specifies a
valid message object ID, the message transaction unit 44
next obtains the address of the port object 54 with which the
message object 52 is associated from the message object’s
fourth data field. By inspecting the list of locked message
objects within the port object 54 specified at the port object
address obtained, the message transaction unit 44 next
determines whether the send message request is directed to
2 locked message object 52. If the message object 52 is
locked, the message transaction unit 44 blocks the client task
32 that issued the send request until the message object 52
is unlocked by preventing the client task 32 from performing
further operations. If the message object 52 is not locked, or
after the message object 52 is unlocked, the message trans-
action unit 44 inspects the send message request and deter-
mines if the message object 52 is to be locked in response
to this send message request. If the message object 52 is to
be locked, the message transaction unit 44 issues a lock
request to the locking unit 46, which performs the required
locking as will be described in detail below.

After any required message object locking has been
performed, the message transaction unit 44 generates a
unique message ID signal, referred to herein as the message
ID, to correspond to the message transaction initiated by the
send message request. The message transaction unit 44 then
creates a synchronous send MCB 60 or an asynchronous
send MCB 62 according to whether the send message
request is synchronous or asynchronous, respectively. The
message transaction unit 44 associates the send MCB with
the message ID, such that the send MCB can be uniquely
identified and located by the message ID. When the message
transaction unit 44 creates the send MCB, the message
transaction unit 44 preferably indicates via the fourteenth
data field in the send MCB whether the message object 52
to which the send message request is directed has been
locked in response to the send message request. After the
send MCB has been created, the message transaction unit 44
determines whether an acceptance function has been regis-
tered in the port object 54 associated with the message object
52 to which the send message request was directed. Prefer-
ably, the message transaction unit 44 determines whether an
acceptance function has been registered by inspecting the
port object’s seventh data field. The message transaction unit
44 then compares the message type indicated in the send
message request with the each message type within the set
of message types specified in the port object’s seventh data
field, thereby determining whether the acceptance function
is applicable to the send message request. In the preferred
embodiment, each comparison is made through a logical
AND operation. If a message type match occurs, the mes-
sage transaction unit 44 creates a delivery MCB 80 using
information specified in the send MCB.

Referring now to FIG. 10, a block diagram of a preferred
embodiment of a delivery MCB 80 is shown. The delivery
MCB 80 is created from a subset of the data fields within the
send MCB. The delivery MCB 80 includes a first data field
in which the message ID specified in the send MCB is
stored; a second data field specifying the reference constant
of the message object 52 specified in the send MCB; a third
data field in which the send options specified in the send

15

20

25

30

35

40

45

50

55

60

65

14

MCB are stored; a fourth data field providing the message
type given in the send MCB; a fifth data field in which the
message location specified in the send MCB is stored; a sixth
data field in which the message length specified in the send
MCB is stored; a seventh data field in which any reply buffer
address specified in the send MCB is stored; and an eighth
data field in which any reply buffer size specified in the send
MCB is stored. Preferably, when a matching acceptance
function is present, the message transaction unit 44 creates
and stores the delivery MCB 80 in the microkernel-acces-
sible address area within the client task’s address space.
After creating the delivery MCB 80, the message transaction
unit 44 transfers the location of the delivery MCB 80 to the
acceptance function. The acceptance function subsequently
obtains the message specified within the delivery MCB 80
and performs the service indicated by the message. The
acceptance function executes within the task context and
address space of the client task 32 that issued the send
message request. In the preferred embodiment, the accep-
tance function can return a notification to the message
transaction unit 44 indicating that the required service is in
progress and that a reply will be issued upon completion of
the service. If an acceptance function completes a service
without explicitly issuing a reply, the message transaction
unit 44 automatically issues a reply on behalf of the accep-
tance function, thereby providing the client task 32 that
issued the send message request with status information and
possibly data.

The message transaction unit 44 next sets the delivery
status specified in the send MCB to indicate that the message
has been delivered. The message transaction unit 44 then
inserts a reference to the send MCB at the end of the port
object’s pending reply message list. The pending reply
message list indicates those messages that have been
received either by an acceptance function or a server task 34
but that have not been issued a reply. In the preferred
embodiment, the message transaction unit 44 maintains the
pending reply message list as a doubly-linked list arranged
in FIFO order.

After inserting the reference to the send MCB in the
pending reply message list, the message transaction unit 44
returns the message ID to the client task 32 that issued the
send message request if the send MCB is an asynchronous
send MCB 62. If the send MCB is a synchronous send MCB
60, the message transaction unit 44 blocks the operation of
the client task 32 until the acceptance function either issues
a reply to the message specified in the delivery MCB 80 or
completes the required service without issuing a reply. If the
maximum time interval is exceeded while the client task 32
is blocked, the message transaction unit 44 returns a timeout
status to the client task 32 and informs the acceptance
function that the message is to be canceled. Once the
acceptance function has issued a reply or has completed the
required service, the message transaction unit 44 performs
reply operations as will be detailed below.

If the message transaction unit 44 determines that an
acceptance function capable of servicing the send message
request is not present, the message transaction unit 44
subsequently determines whether a receive MCB having a
message type that matches that specified in the send message
request is referenced in the port object’s pending receive
message list. If a matching receive MCB exists, the message
transaction unit 44 inserts a reference to the matching
receive MCB in the tenth data field in the send MCB. In a
like manner, the message transaction unit 44 inserts a
reference to the send MCB in the seventh data field of the
matching receive MCB. Next, the message transaction unit

5,590,334

15

44 creates a delivery MCB 80 at the message buffer address
specified in the reccive MCB. The message transaction unit
44 then inserts a reference to the send MCB into the pending
teply message list within the port object 54 specified in the
send MCB. Next, the message transaction unit 44 deter-
mines whether the receive MCB is a synchronous receive
MCB 70 or an asynchronous receive MCB 72. If the receive
MCB is a synchronous receive MCB 70, the message
transaction unit 44 unblocks the server task 34 that issued
the synchronous receive message request. The message
transaction unit 44 then deletes the synchronous receive
MCB 70.

If the message transaction unit 44 determines that the
receive MCB is an asynchronous receive MCB 72, the
message transaction unit 44 transfers the message referenced
in the send MCB to a region within the message buffer
referenced by the asynchronous receive MCB 72. The
message transaction unit 44 supports the transfer of mes-
sages by reference or by value, and also performs any
required mapping between address spaces. In the preferred
embodiment, the message transaction unit 44 transfers the
message by calling a message delivery function. Next, the
message transaction unit 44 notifies the server task 34 that
issued the asynchronous receive message request according
to the event notification information provided in the asyn-
chronous receive MCB 72. Following the notification of the
server task 34, the message transaction unit 44 deletes the
asynchronous receive MCB 72.

After the deletion of the synchronous receive MCB 70 or
the asynchronous receive MCB 72, the message transaction
unit 44 returns the message ID to the client task 32 that
issued the send message request if the send MCB is an
asynchronous send MCB 62. If the send MCB is a synchro-
nous send MCB 60, the message transaction unit 44 blocks
the operation of the client task 32 by preventing the client
task 32 from performing further operations.

If the message transaction unit 44 determines that no
matching acceptance function and no matching receive
MCB exists for the send message request, the message
transaction unit 44 inserts a reference to the send MCB in the
pending send message list of the port object 54 specified by
the send message request. The pending message send list
thus specifies each send message request that has not yet
been matched to a corresponding receive message request.
Following the insertion of the reference to the send MCB
into the pending send message list, the message transaction
unit 44 returns the message 1D to the client task 32 that
issued the send message request if the send MCB is an
asynchronous send MCB 62. If the send MCB is a synchro-
nous send MCB 60, the message transaction unit 44 blocks
the client task 32 by preventing the client task 32 from
performing further operations.

Receive Message Requests

In response to a receive message request, the message
transaction unit 44 first decodes the port object ID specified
in the receive message request. Next, the message transac-
tion unit 44 determines whether the port object ID identifies
an existing port object 54. If the port object ID does not
identify an existing port object 54, the message transaction
unit 44 returns an invalid ID error to the server task 34 that
issued the receive message request, and does not consider
the receive message request further. If the port object ID
identifies an existing port object 54, the message transaction
unit 44 determines whether a send MCB having a message
type matching that specified in the receive message request
is present in the port object’s pending send message list. If

10

20

25

30

45

50

55

60

65

16

no matching send MCB is present, the message transaction
unit 44 next creates an appropriate type of receive MCB as
described ahove to correspond to the receive message
request. The message transaction unit 44 also inserts a
reference to the receive MCB in the port object’s pending
receive message list. If the receive MCB created is an
asynchronous receive MCB 72, the message transaction unit
44 does not perform additional operations. If the receive
MCB created is a synchronous receive MCB 70, the mes-
sage transaction unit 44 blocks the server task 34 that issued
the synchronous receive message request until a matching
send message request arrives. If the maximum time interval
specified in the synchronous receive message request is
exceeded while the server task 34 is blocked, the message
transaction unit 44 returns a timeout status to the server task
34, and cancels the synchronous receive message request by
deleting the synchronous receive MCB 70 created.

When a matching send message request arrives, the
message transaction unit 44 creates the appropriate type of
send MCB, and then inserts a reference to the matching send
MCB in the receive MCB’s seventh data field, and inserts a
reference to the receive MCB in the tenth data field of the
matching send MCB. The message transaction unit 44 then
inserts a reference to the send MCB in the pending reply
message list in the port object 54. After inserting the
reference to the send MCB in the pending reply message list,
the message transaction unit 44 creates a delivery MCB at
the message buffer address specified in the receive MCB. If
the receive MCB is an asynchronous receive MCB 72, the
message transaction unit 44 notifies the server task 34 that
issued the asynchronous receive message request according
to the event notification specified in the asynchronous
receive MCB 72. The message transaction unit 44 then
delivers the message referenced in the send MCB to the
server task 34 within the message buffer indicated in the
asynchronous receive MCB 72, according to the send
options specified in the matching send MCB. In the pre-
ferred embodiment, the message transaction unit 44 supports
the delivery of messages by reference or by value, and
performs any required mapping between the client task’s
address space and the server task’s address space. To deliver
the message, the message transaction unit 44 preferably calls
a message delivery function. Following the delivery of the
message, the message transaction unit 44 deletes the receive
MCB that had been created and removes the reference to the
receive MCB from the pending receive message list.

If the receive MCB created is a synchronous receive MCB
70, the message transaction unit 44 unblocks the server task
34 rather than notifying the server task 34 as described
above. After unblocking the server task 34, the message
transaction unit 44 performs the same message delivery and
receive MCB deletion operations as described above.

If the message transaction unit 44 determines that a
matching send MCB is present in the pending send message
list immediately after determining that the port object ID is
valid, the message transaction unit 44 does not create a
receive MCB. Rather, the message transaction unit 44 inserts
a reference to the matching send MCB in the pending send
message list, and then creates a delivery MCB as described
above. If the receive message request is an asynchronous
receive message request, the message transaction unit 44
next notifies the server task 34 according to the event
notification information specified in the matching send
MCB. If the receive message request is a synchronous rather
than an asynchronous receive message request, the message
transaction unit 44 does not have to perform an unblocking
operation as described above because the server task 34 had

5,590,334

17

not been blocked. Regardless of the type of receive message
request, the message transaction unit 44 next delivers the
message referenced in the send MCB to the message buffer
specified in the receive message request, according to the
send options specified in the send MCB.

After a server task 34 has performed the service indicated
by a message, the server task 34 issues a reply to the
message. After an acceptance function has performed a
service indicated by a message, the acceptance function may
explicitly issue a reply to the message. If the acceptance
function does not explicitly issue a reply, the message
transaction unit 44 automatically issues a reply on behalf of
the acceptance function after execution of the acceptance
function has completed. In the preferred embodiment, a
reply includes the message ID and status information. The
reply may also include a reference to a reply buffer. In
response to a reply, or when issuing a reply on behalf of an
acceptance function, the message transaction unit 44
decodes the message ID specified in the reply to locate the
appropriate send MCB. Next, the message transaction unit
44 delivers the status information to the client task 32
specified in the send MCB. If a reply buffer is indicated in
the reply, the message transaction unit 44 delivers a copy of
the contents of the reply buffer to the client task 32. The
message transaction unit 44 then issues an unlock request to
the locking unit 46 if the fourteenth data field in the send
MCB indicates that the message object 52 had been locked
in response to the client task’s send message request. Mes-
sage object unlocking will be described in detail below.
Next, the message transaction unit 44 deletes the message
ID, and finally deletes the send MCB. The message trans-
action that had been associated with the message ID is now
complete.

Preferably, server tasks 34 issue receive message requests
on a periodic basis, or immediately following the perfor-
mance of a service. This ensures that server tasks 34 do not
remain idle and also guarantees that each send message
request issued by a client task 32 will be serviced by a server
task 34. In the preferred embodiment of the present inven-
tion, in response to a receive-and-reply message request
issued by a server task 34, the message transaction unit 44
performs reply operations associated with the reply portion
of the receive-and-reply message request, and immediately
thereafter responds to the receive portion of the receive-and-
reply message request. Preferably, the receive-and-reply
message request includes the information separately speci-
fied above for receive message requests and for reply
operations. The message transaction unit 44 functions
according to the above descriptions when performing the
reply operations and when responding to the receive portion
specified in the receive-and-reply request. Because the mes-
sage transaction unit 44 supports receive-and-reply message
requests, the message transaction unit 44 ensures that each
server task 34 is utilized as efficiently as possible.

The locking unit 46 performs message object locking and
unlocking operations. Send message requests directed to a
particular message object 52 after the message object 52 has
been locked are not eligible to be matched to an acceptance
function or to a receive MCB until unlocking operations
have been performed. The locking unit 46 performs locking
operations in response to a lock request. In the preferred
embodiment, lock requests can be issued by a server task 34,
or by the message transaction unit 44 on behalf of a client
task 32 as a result of a send message request. Preferably,
each lock request specifies the message object ID of a
message object 52 targeted for locking.

In response to a lock message object request, the locking
unit 46 determines if the message object 1D specified is

10

15

20

25

30

35

40

55

60

65

18

valid. If the message object ID is not valid, the locking unit
42 returns an invalid ID error to the issuer of the lock
message object request, and does not consider the request
further. If the message object ID is valid, the locking unit 46
determines if the targeted message object 52 is already
locked by inspecting the list of locked message objects
within the port object 54 with which the targeted message
object 52 is associated. In the preferred embodiment of the
present invention, each element in the list of locked message
objects is a lock structure that specifies a message object ID
and a semaphore. If the targeted message object 52 is
referenced in the list of locked message objects, the targeted
message object 52 is already locked. Preferably, the sema-
phore provides & lock wait list that sequentially indicates
each task that is waiting to lock the targeted message object
52 in FIFO order.

If the locking unit 46 determines that the targeted message
object 52 is already locked, the locking unit 46 adds the ID
of the client task 32 or server task 34 responsible for
initiating the lock request to the end of the lock wait list. The
locking unit 46 then waits until the currently-considered
client task ID or server task ID is at the front of the lock wait
list and a corresponding unlocking request directed to the
targeted message object 52 has been received. The locking
unit 46 then performs unlocking operations as will be
described below.

If the message object 52 is not already locked, the locking
unit 46 inspects the pending reply message list within the
port object 54 to determine how many send message control
blocks currently referenced specify the targeted message
object 52. If no send MCB referenced specifies the targeted
message object 52, the locking unit 46 inserts a new lock
structure containing the targeted message object ID into the
list of locked message objects, thereby locking the targeted
message object 52, Once the targeted message object 52 is
locked, the client task 32 or the server task 34 associated
with the locked message object 52 1s referred to herein as the
“owner” of the targeted message object’s lock. After locking
the targeted message object 52, the locking unit 46 returns
control to the issuer of the lock request.

If one or more send message control blocks currently
referenced in the pending reply message list specify the
targeted message object 52, the locking unit waits until the
reference to each such send MCB has been removed from
the pending reply message list due to a reply or a message
cancellation. After the reference to each send MCB that
specifies the targeted message object 52 has been removed
from the pending reply message list, the locking unit 46
inserts a new lock structure containing the targeted message
object ID into the list of locked message objects, thereby
locking the targeted message object 52. After locking the
targeted message object 52, the locking unit 46 returns
control to the issuer of the lock request. While the reference
to each send MCB that specifies the targeted message object
52 is being removed from the pending reply message list, the
targeted message object 52 is referred to herein as being in
a “locking” state.

Preferably, an unlock request specifies the message object
ID of a targeted message object 52. In the preferred embodi-
ment, an unlock request can be issued by a server task 34,
or by the message transaction unit 44 during reply opera-
tions as described above. In response to an unlock request,
the locking unit 46 determines whether the message object
1D is valid. If the message object ID is not valid, the locking
unit 46 returns an invalid ID error to the issuer of the unlock
request, and does not consider the unlock request further. If
the message object ID is valid, the locking unit 46 deter-

5,590,334

19

mines whether the targeted message object 52 is currently
locked. If the targeted message object 52 is not currently
locked, the locking unit 46 returns a lock state error to the
server task 34, and does not consider the unlock request
further.

In the event that the targeted message object 52 is
currently locked, the locking unit 46 determines whether
another client task 32 or server task 34 is waiting to lock the
targeted message object 52 by inspecting the lock wait list
provided by the semaphore. If another client task 32 or
server task 34 is waiting to lock the targeted message object
52, the locking unit 46 removes the corresponding client task
ID or server task ID, respectively, from the top of the lock
wait list, and returns control to the issuer of the lock request.
In this manner, the locking unit 46 transfers “ownership” of
the targeted message object’s lock to the next successive
client task 32 or server task 34 indicated in the semaphore
without altering the list of locked message objects.

If the locking unit 46 determines that no other client task
32 or server task 34 is waiting to lock the targeted message
object 52, the locking unit 46 unlocks the targeted message
object 52 by removing the corresponding lock structure from
the list of locked objects within the port object 54 associated
with the targeted message object 52. After unlocking the
targeted message object 52, the locking unit 46 returns
control to the issuer of the unlock request.

Because the present invention provides for message
object locking and unlocking, the value of the reference
constant associated with a message object 52 can be guar-
anteed to remain unchanged throughout a message transac-
tion if the message object 52 is locked at the outset of the
message transaction. The use of a message object’s refer-
ence constant in this manner is particularly useful when the
reference constant directly references a particular memory
address. In an exemplary situation, a message object’s
reference constant could be used to specify an address at
which a file control block for a given data file is stored.
Those skilled in the art will recognize that in the exemplary
situation, the use of message object locking in response to a
send message request cnsures that a file deletion operation
will not invalidate a previously pending file read operation
because the address of the file control block remains valid
throughout the message transaction associated with the file
read operation.

Referring now to FIG. 11, a flowchart of a preferred object
oriented message passing method in accordance with the
present invention is shown. The preferred method passing
method begins in step 100 with the object management unit
42 determining whether a port object 54 is to be created,
modified, examined, or deleted in response to a correspond-
ing server task request. If a port object 54 is to be created,
modified, examined, or deleted, the object management unit
42 performs the appropriate operation indicated by the
server task request in step 102. After step 102 or after step
100, the object management unit 42 determines in step 104
whether a message object 52 is to be created, modified,
examined, or deleted in response to a corresponding server
task request. If so, the object management unit 42 performs
the action indicated by the server task request in step 106.
Following step -106 or step 104, the locking unit 46 deter-
mines in step 108 whether a message object 52 is to be
locked in response to a server task lock request. If so, the
locking unit 46 performs the locking operations indicated in
the server task request in step 110. If in step 108 the locking
unit 46 determines that no message object 52 is to be locked,
or after step 110, the locking unit 46 next determines in step
112 whether a message object 52 is to be unlocked in

15

20

25

30

35

40

45

50

55

60

65

20

response to a server task unlock request. If so, the locking
unit 46 performs the unlocking operations in response to the
unlock request in step 114. If no message ohject unlocking
is required in step 112, or following step 114, the object
management unit 42 determines in step 116 whether an
acceptance function is to be registered for a port object 54
in response to a server task request. If an acceptance
function is to be registered, the object management unit 42
registers the acceptance function with the port object 54
specified in the server task request in step 118.

Following step 118, or after step 116 if the object man-
agement unit 42 determines that no acceptance function is to
be registered, the message transaction unit 44 determines in
step 120 whether a client task 32 has issued a send message
request. If so, the message transaction unit 44 responds to
the send message request in step 122. After step 122, or after
step 120 if no send message request has been issued, the
message transaction unit 44 determines in step 124 whether
a server task has issued a receive message request. If a server
task 34 has issued a receive message request, the message
transaction unit 44 responds to the receive message request
in step 126. If in step 124 the message transaction unit 44
determines that no receive message request has been issued,
or after step 126, the message transaction unit 44 determines
in step 128 whether a reply has been issued. If so, the
message transaction unit performs reply operations in step
130. Following step 130, or following step 128 if no reply
has been issued, the message transaction unit 44 determines
whether a server task 34 has issued a combined receive-
and-reply message request in step 132. If so, the message
transaction unit 44 performs the reply operations indicated
in the receive-and-reply message request in step 134, after
which the message transaction unit 44 responds to the
receive portion of the receive-and-reply message request in
step 136. After step 136, or after step 132 if step 134 is not
performed, the message transaction unit 44 determines
whether operation is to terminate. If operation is to continue,
the preferred method proceeds to step 100. Otherwise, the
preferred method ends.

Referring now to FIGS. 12A, 12B, and 12C, a flowchart
of a preferred method for responding to a send message
request is shown. The preferred message passing method
begins in step 200 with the message transaction unit 44
decoding the message object ID specified in the send mes-
sage request. Next, in step 202, the message transaction unit
44 determines whether the message object ID is valid. If the
message object ID is invalid, the message transaction unit 44
returns an invalid ID error to the client task 32 that issued the
send message request in step 204, after which the preferred
method ends. If the message object ID is valid, the message
transaction unit 44 proceeds to step 206 and determines
whether the message object 52 to which the send message
request is directed is locked. If the message object 52 is
locked, the message transaction unit 44 blocks the sending
client task 32 until the message object 52 is unlocked in step
208. The blocking performed by the message transaction
unit 44 prevents the client task 32 from performing further
operations. After step 208, or after step 206 if step 208 is not
performed, the message transaction unit 44 determines in
step 210 whether the send message request specifies that the
message object is to be locked as a result of the message
transaction initiated. If so, the message transaction unit 44
issues a corresponding lock request to the locking unit 46 in
step 212. After step 212, or after step 210 if step 212 is not
performed, the message transaction unit 44 generates a
unique message ID to correspond to the message transaction
initiated by the send message request, and creates a send

5,590,334

21

MCB corresponding in type to the send message request
type in step 214.

Next, in step 216, the message transaction unit 44 deter-
mines whether an acceptance function specifying a message
type that matches the message type in the send MCB has
been registered with the port object 54. If an acceptance
function has been registered, the message transaction unit 44
creates a delivery MCB 80 in the client task’s address space
in step 218. Preferably, the delivery MCB 80 is created in the
microkernel-accessible portion of the client task’s address
spacc. Following step 218, the message transaction unit 44
passes a pointer to the delivery MCB 80 to the acceptance
function in step 220. Next, the message transaction unit 44
inserts a reference to the send MCB in the pending reply
message list within the port object 54 in step 222.

After step 222, the message transaction unit 44 deter-
mines whether the send MCB created is a synchronous send
MCB 60 in step 250. If not, the message transaction unit 44
returns the message ID to the client task 32 that issued the
send message request in step 252, after which the preferred
method ends. If the send MCB is a synchronous send MCB
60, the message transaction unit 44 next prevents the send-
ing client task 32 from performing further operations, that is,
blocks the sending client task 32, in step 254. Next, in step
256, the message transaction unit 44 determines whether the
maximum time interval specified in the send MCB has been
exceeded. If so, the message transaction unit 44 returns a
timeout status to the sending client task 32, after which the
preferred method ends. If the maximum time interval has not
been exceeded, the message transaction unit 44 determines
whether a reply has been issued to the message indicated in
the send message request in step 260. If no reply has been
issued, the preferred method returns to step 256. If in step
260 the message transaction unit 44 determines that a reply
has been issued, the message transaction unit 44 performs
reply operations in step 262. Following step 262, the pre-
ferred method ends.

If in step 216 the message transaction unit 44 determines
that a matching acceptance function is not present, the
message transaction unit next determines whether a match-
ing receive MCB is present in the port object’s pending
receive message list in step 224. If a matching receive MCB
is not present, the message transaction unit 44 inserts a
reference to the send MCB in the pending send message list
in step 226, after which the preferred method proceeds to
step 250. If the message transaction unit 44 determines that
a matching receive MCB is present in step 224, the message
transaction unit 44 creates a delivery MCB at the message
buffer address specified within the matching receive MCB in
step 230. Next, the message transaction unit 44 inserts a
reference to the send MCB in the pending reply message list
in step 232. Following step 232, the message transaction unit
44 determines in step 234 whether the receive MCB is a
synchronous receive MCB 70. If so, the message transaction
unit 44 unblocks the receiving server task 34 that issued the
corresponding receive message request in step 240. If the
message transaction unit 44 determines that the receive
MCB is not a synchronous receive MCB 70, the message
transaction unit 44 delivers the message referenced in the
send MCB to the server task 34 identified in the asynchro-
nous receive MCB 72 in step 236. Following step 236, the
message transaction unit 44 notifies the receiving server task
34 according to the event notification information specified

. in the asynchronous receive MCB 72 in step 238. After step
238, or after step 240, the message transaction unit 44
deletes the receive MCB and its corresponding pending
receive message list reference in step 242. Following step
242, the preferred method proceeds to step 250.

10

15

20

25

30

35

40

45

55

60

65

22

Referring now to FIGS. 13A and B, a flowchart of a
preferred method for responding to a receive message
request is shown. The preferred method begins in step 300
with the message transaction unit 44 decoding the port
object ID specified in the receive message request. Next, the
message transaction unit 44 determines whether the port
object ID is valid in step 302. If the port object ID is not
valid, the message transaction unit 44 returns an invalid ID
error to the server task 34 that issued the receive message
request in step 304, after which the preferred method ends.
If the port object ID is valid, the message transaction unit 44
next determines whether a matching send MCB is present in
the port object’s pending send message list in step 306. If a
maitching send MCB is not present, the message transaction
unit 44 creates a receive MCB according to the type of
receive message request issued, and inserts a reference to the
receive MCB in the pending receive message request list in
step 308. Following step 308, the message transaction unit
44 determines whether the receive message request is syn-
chronous in step 310. If not, the message transaction unit 44
returns the receive ID to the server task 34 that issued the
asynchronous receive message request in step 311, after
which preferred method ends. If the receive message request
is synchronous, the message transaction unit blocks the
server task 34 that issued the receive message request in step
312. Next, in step 314, the message transaction unit 44
determines whether the maximum time interval specified in
the receive MCB has been exceeded. If so, the message
transaction unit 44 returns a timeout status to the server task
34 in step 316, after which the preferred method ends. If the
maximum time interval has not been exceeded, the message
transaction unit next determines whether a matching send
message request has been issued in step 318. If not, the
preferred method returns to step 314. If a matching send
message request has been issued, the message transaction
unit 44 generates a unigue message ID and creates a corre-
sponding send MCB in step 320.

Following step 320, or following step 306 if a matching
send MCB is present, the message transaction unit 44 inserts
a reference to the send MCB in the port object’s pending
reply message list in step 330. The message transaction umnit
44 then creates a delivery MCB 80 at the address specified
in the receive message request or in the receive MCB in step
332. After step 332, the message transaction unit 44 deter-
mines whether the receive message request is a synchronous
receive message request in step 334. If the receive message
request is synchronous, the message transaction unit 44
determines whether the server task 34 that issued the receive
message request is blocked in step 336. If so, the message
transaction unit 44 unblocks the server task 34 in step 338.
If the message transaction unit 44 determines in step 334 that
the receive message request is an asynchronous receive
message request rather than a synchronous receive message
request in step 334, the message transaction unit 44 notifies
the server task 34 that issued the asynchronous receive
message request in step 340. Following step 340, or after
step 338, or after step 336 if step 338 is not performed, the
message transaction unit 44 delivers the message specified
in the send MCB to the message buffer specified in the
receive message request in step 342. After step 342, the
message transaction unit 44 determines whether a receive
MCB corresponding to the receive message request had
been created in step 344. If so, the message transaction unit
44 deletes the receive MCB and its corresponding reference
in the pending receive message list in step 346. After step
346, or after step 344 if step 346 is not performed, the
preferred method ends.

5,590,334

23

Referring now to FIG. 14, a flowchart of a preferred reply
mcthod is shown. The preferred method begins in step 400
with the message transaction unit 44 decoding the message
ID specified in the reply to locate the send MCB associated
with the message transaction. Next, in step 402, the message
transaction delivers the reply status to the client task 32
indicated in the send MCB. The message transaction unit 44
then determines in step 404 whether a reply buffer was
indicated in the reply. If so, the message transaction unit 44
delivers a copy of the contents of the reply buffer to the
client task 32 in step 406. After step 406, or after step 404
if no reply buffer is indicated in the reply, the message
transaction unit 44 determines in step 408 whether the
message object 52 indicated in the send MCB is to be
unlocked upon completion of the message transaction. If so,
the message transaction unit 44 issues a corresponding
unlock request to the locking unit 46 in step 410. After step
410 or after step 408, the message transaction unit 44 deletes
the message ID representing the message transaction in step
412. Finally, the message transaction unit 44 deletes the send
MCB in step 414, after which the preferred method ends.

Referring now to FIG. 15, a flowchart of a preferred
method for responding to a lock request is shown. The
preferred method begins in step 500 with the locking unit 46
determining whether the message object ID specified in the
lock request is valid. If the message object ID is not valid,
the locking unit 46 returns an invalid ID error to the issuer
of the lock request in step 502, after which the preferred
method ends. If the message object ID is valid, the locking
unit 46 next determines in step 504 whether the message
obiject 52 targeted by the lock request is already locked. If
not, the locking unit 46 waits for a reply to be issued for each
send MCB referenced in the associated port object’s pending
reply message list that specifies the targeted message object
52 in step 506. Preferably, the locking unit 46 performs step
506 by first counting the number of send message control
blocks referenced in the pending reply message list that
specify, the targeted message object 52, after which the
locking unit 46 waits for each of the references counted to
be removed from the pending reply message list. After step
506, the locking unit 46 locks the targeted message object 52
by inserting a new lock structure containing the correspond-
ing message object ID into the list of locked message
objects. Next, the locking unit 46 returns control to the issuer
of the lock request in step 518, after which the preferred
method ends.

If the locking unit 46 determines in step 504 that the
targeted message object 52 is already locked, the locking
unit 46 next adds a reference to the lock request issuer to the
corresponding lock structure semaphore in the list of locked
message objects in step 510. Preferably, the semaphore
provides a FIFO-ordered lock wait list that indicates the
client task ID or the server task ID of each task that is
waiting to lock the targeted message object 52. After step
510, the locking unit 46 determines in step 512 whether the
issuer of the currently-considered lock request is next to
receive ownership of the targeted message object’s lock. In
the preferred method, the locking unit 46 performs step 512
by determining whether the ID of the issuer of the currently-
considered lock request is at the {ront of the lock wait list.
If the issuer of the currently-considered lock request is not
next to receive ownership of the targeted message object’s
lock, the preferred method remains at step 512.

Once the issuer of the currently-considered lock request is
next to receive ownership of the targeted message object’s
lock, the locking unit 46 determines whether an unlocking
request has been issued in step 514. If no unlocking request

15

20

25

30

35

45

50

55

60

65

24

has been issued, the preferred method remains at step 514.
After an unlocking request has been issued, the locking unit
46 responds to the unlock request by performing unlocking
operations in step 516. Following step 516, the preferred
method returns control to the issuer of the currently-consid-
ered lock request in step 518, after which the preferred
method ends.

Referring now to FIG. 16, a flowchart of a preferred
method for responding to an unlock request is shown. The
preferred method begins in step 600 with the locking unit 46
determining whether the message object ID of the message
object 52 targeted in the unlock request is valid. If the
message object ID is not valid, the locking unit 46 returns an
invalid ID error to the issuer of the unlocking request in step
602, after which the preferred method ends. If the message
object ID is found to be valid in step 600, the focking unit
46 next determines whether the targeted message object 52
is currently locked in step 604. Preferably, the locking unit
46 determines whether the targeted message object 52 is
currently locked by inspecting the associated port object’s
list of locked message objects. If the targeted message object
52 is not currently locked, the locking unit 46 returns a lock
state error to the issuer of the unlocking request in step 606,
after which the preferred method ends.

If the targeted message object 52 is currently locked, the
locking unit 46 next determines whether another task is
waiting to assume ownership of the targeted message
object’s lock in step 608. The locking unit 46 preferably
performs step 608 by inspecting the semaphore associated
with the targeted message object 52. If no other task is
waiting to assume ownership, the locking unit 46 removes
the corresponding lock structure from the corresponding
port object’s list of locked message objects in step 610,
thereby unlocking the targeted message object 52. After step
610, the locking unit 46 returns control to the issuer of the
unlock request in step 614, after which the preferred method
ends. If anther task is waiting to assume ownership of the
targeted message object’s lock in step 608, the locking unit
46 removes the reference to the client task 32 or server task
34 at the front of the semaphore’s lock wait list in step 612.
Following step 612, the preferred method proceeds to step
614,

While the present invention has been described with
reference to certain preferred embodiments, those skilled in
the art will recognize that various modifications may be
provided. For example, the message transaction unit 44
could maintain the pending send message list, the pending
receive message list, or the pending reply message list
without maintaining FIFO order. This and other variations
upon and modifications to the preferred embodiments are
provided for by the present invention, which is limited only
by the following claims.

[O

25

5,590,334

APPENDIX A

“NuKERNEL ERS” March 28, 1994

26

PATENT

5,590,334
27 28

NuKernel ERS

Preliminary and Confidential

Macintosh System Software
Apple Computer, Inc.

Revision: Alpha 0.22
Edited: March 28, 1994

Direct comments to the NuKernel Team:

Manager: Bill Bruffey
Address Space Management: David Harrison
Agents, IDs, Pools, Teams: Russell Williams
Messaging, SCSL: Tom Sauipaugh

Tasking, Events, & Interrupts: Wayne Meretsky

Copyright 1992, 1993, 1994 Apple Computer, Inc.Need to Know Confidential

5,590,334

29 30
ADOUE NUKEIEL ... ottt et sttt e 2
Kernel Objects AN IDS ec.oirmiiceceee e ieis et ettt eeen e enena 3
NAMUNG oot renre e 5
Execution - Tasking And Interrupts.. .0
About Execution6
About Tasksccceeeeee 7
About Task Scheduling ..o e 8
About Software INEIMUPLSo.oroeoece et 9
About Privileged Execution .. .9
About Synchronization 10
About Interrupts 10
Teams ... 12
Address Space Management13
About Addressingccoeeevenerenens 13
The System 7 Addressing Model14
The NuKernel Addressing Model14
Multiple Address Spaces...... .15
ATEAS et ettt e s e e e e e er e 15
PaBINZ ittt ettt cetr et s e s n e sr e e 15
The Kernel Band 16
Global Areas 16
VO Coordinationcecceee .. 16
Addressing And Execution17
Inter-Address Space Access.... .17
Synchronization - Event Groups 18
Messagingccoeevereererneeeenninn, .. 19
Messages 19
Client-Server19
Transactions 19
MOVING Data .ceveeeiiie et stre e e e .. 20
Ports And OBJECESoiueiiiiicierice e ret e .21
Sending Messages22
Receiving Messages 22
Replying To messages23
MesSage TYPES covoriiiiieencriicec it .23
Canceling Asynchronous Message Operationsc.ooeeoioiianininie e 24
Locking Message ObJECLS o..evuururecemierieen e rercerie e cve et sereneceeomeveseocsenassseens 25
Filtering Object Messages..... .27
Filter Names 28
Filter Ordering....28
Kernel Agents ..ocoeeverveiivciiiiiens .. 30
ACCesSINg AZENIS v neresssieice o ..30
Kinds Of Agents......cccoooiiieimmvnecn e ... 30
Installing Agentscceeeee. .31
‘Writing And Linking Agents31
Timing & Timers ...ccccccvioveoeeecoencnas .32
Measuring Elapsed Time32
Suspending EXECULIOMocvoiiiiccciecccecee e st s s h s eremass e nenes 32

March 29, 1994 Copyright 1992 Apple Computer, Inc.

5,590,334

31 32
Asynchronous THDETS ... et 32
Realizing the VALUE ...t e ebeas e e anb s s 33

Phased REIEASES ..vcvvveieeri ettt setee et es e e enme e e rnee 33
ADOUL ThE AP ot e saa s e e e e eaan s 36
M68000 Calling Conventionsccccoceevienne et e 36
PowerPC Calling ConventionS......c.ooiovii et oot ereaisee e ereen e enenae 37
Stack SpPace ..o e 37
Addressing e 37
Some Basic Types e 39
Miscellaneous TYDPEScoooiiiiiic ettt s s emcn e 39
Parameter BIOCK VerSiOnS ...ocovooiiiei e e et 39
L3 1 (o) O OSSPSR PREPSS 39
I e e et ettt et e et eae ettt n s s sennoa 40
Rt e ettt et e e emte e et a e eane e e et e e 40
KerneIID ..ottt e e enenea 40
|53 011 135 12 05 OO OO O RSO RUUUPUOo 41
EITOTS core ettt ettt ettt ettt et et e ene et ant e ene e en e meene et eeesara e 43
GENETIC EITOTS c.vivvivieiieri e rtetciantesretn s se et et san e cseas st ssen s ea e ameaetsinaa e e ee 43
SPECITIC BITOIS ittt e e e o sceme s e e 43
Team ManagemEnlo.c.oiiiiiciree e iecesicsceeraaseess b s e crs s saasans sanns s ra s saen s eensear 44

Creating TEAIMIS .oviciereerivinie it ecere e e s e te e e essesa e e esennene I 44

DEleting TEAIIIS o.viuiieeicriieic et et ee ottt eessser s bt ere e e e s aeneea 44
Obtaining The Current Team ID .. .45
Task ManQZemENLc.cccrreieirerierrienescrire et ettt esererteeaesereareseresentere sesesarssemeescrensassineens 46
About Task HIErarchycocccoeeni it ieiceee e sae e cne s e s 46
About Task Scheduling 46

About Task Parameters and Results. .. 47

About Task Termination 47

The Tasking SERVICEs 49
Creating TasKsS......cooverveesvierveecivieceinan, .. 49
Setting a Task's Static COntext.......ccevrcvnrervrernnnn. .30

Starting A Task That Was Created Suspended51

Terminating A Specific Task ..o .. 51
Obtaining The ID Of The Current Task........ .51
Determining The Amount Of Stack Space51
Obtaining Information About A Task........... .32
Setting A Task's Execution Priority 33
Iterating Over Task IDs...c.cccovvininnnn. .93
EXCePUONS v.vvveeveeeeeee v ceeee e)
About Exception Handlerscc.coocroveeeasne. e 35
Exceptions Within Exception Handlers ... 36
Exception Handler Declarations ... e 56
Installing Exception Handlers ... 56
SOftWare INEITUDEScovuerrmiemtens oo caee s cce e e ean s nas 57
Controlling Software INteImuPLsovveviiiiiiie i 57
Querying The Level Of EXECULON ..cc.oovivui oo 57
Software Interrupt Hanglers ..o vceeceen it v e 58
Specifying Software INTeITUDLS «.....ocoiiiiiieie et 58
Sending SOftware INIEITUPLS .vvmieieein e e 58
Deleting A Software INEITUPL.....cococviiricii et 59

ii Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
33 34

Hardware TREEITUDES cvovv.veer i ettt s a ettt ee e eeeeeeon
About Interrupt Handlers
Designating Interrupt Sources......couwevreens
Exceptions Caused By Interrupt Handlers ..
Execution Context Of Interrupt Handlers ...
Arbitrating for Interrupts..........cooeevvuieeene
Parameters To Interrupt Handlers ...
Installing Interrupt Handlers
Removing Interrupt Handlers....

Secondary Interrupt Handlersccoveeeveeenne
About Secondary Interrupt Handlers
Exceptions In Secondary Interrupt Handlers .
Queuing Secondary Interrupt Handlers..........
Calling Secondary Interrupt Handlers.....occoceoeeevvvrieane

Event Flags ..ot e
Creating Event Flag Groups...
Deleting Event Flag Groups...
Setting Event Flagsocoovvuee
Clearing EVent FIAgsot sssenes s
Examining The Value Of Event FIagsccccoevviveieseeviinnirieeneirceescevceeereseaenes
Waiting For Event Flags To Become Set....
Using Event Flags As Semaphores
The Processing Of SetEvents...........

Event Notificationcoceevieeens
Event Notification

Timing Servicesc...c....
Timer Accuracy...........
About The Time Base .
Timing Latency
Timer Overhead
Obtaining The TIMIE ...coiuiieieicceee et abe st r et s ses e e e e s sesseseeressesses
Setting Timers To Expire In The Past........ccoooiieommnnesienie oo
Synchronous TImerscccooccevivcriiicrncnceereen

Synchronous Timers With Absolute Times
Synchronous Timers With Relative Times
ASynchronous TIMETS ...c.eeeeevrevieeiiesreceeeerieenereeenns
Intermupt TIMETS ...ooo e et et e e e en s
Canceling Asynchronous Or Interrupt TIMErS ...veveiveincriciiieereeeseieieeeeeerneenas

Address Space Managementcceevvrivieecsirsrecnnnnenens

Basic TYPeS ...veevrireeierieeere e
Static Logical Addresses......
Address Space Control.............cc......
Creating Address Spaces......
Deleting Address SPaces.......cocecevveriiieriacmrceceeconenens
Obtaining Information About An Address Space..... 77
Iterating Over All Address Spaces.......cccocecervivmeccnne .78
Logical Page Size oo e eneae e ave s .. 18
ATEA COMUIOL ettt .79
Creating ATCAS .coveviiiinieiis i ettt eein e eae e e resscneee .19
DEleting ATEAS ..cvvi ettt e e 31

March 29, 1994 Copyright 1992 Apple Computer, Inc. 1ii

5,590,334

35 36
Obtaining Information About Anl AT€acoeerieuiueieereeereeeecr e 81
Tterating Over All Areas Within An Address Space82
Changing The Access Level Of An Area.....cccccueen... .83
Finding The Area That Contains A Particular Logical Address83
Using Areas To Access Large Backing Storescooieenaes ... 84

MemOTy COMIOL...... ceeueeiier e creesierirese e vereresae s ten e reeres e e asresrenens e ... 84
Obtaining Information About A Range of Logical Memory84
Data-To-Code. ...t .85
Preventing Unnecessary Backing Store Activity86

Memory Control In Association With /O Operations....... ... 86
Preparing For O ..o ... 87
Finalizing I/O90

Memory Sharing91
GlObal ATAS ..uviueeeieeeeeee e e .91
Client-Server Areas.....ceceeiiieecneenne. .91
Mapped Access To Other Address Spaces91
Copying Data Between Address Spaces93

MemOry RESEIVATIONSveoeieeeeeieeieieieieeeeemieieeaessessnsnesmeas e e esseeaesnns ens ...94
Creating Memory Reservations94
Deleting Memory Reservationsc.ooceoveiovvcrmieniercnins .95

Obtaining Information About A Memory Reservation........occvoeeiiovenne 95
Tterating Over All Memory Reservations Within An Address
Space ...
Memory Exceptions
Backing Object Providers
REGISIIAION ..ot e e e
Acquiring A Physical Memory Page From The Memory System.......... 99
Returning A Physical Memory Page To The Memory System 100
Unmapping A Physical Page.....ocoovieiiiinniineiii
Backing Object Messagescccouvvennene.
General Message Format
ATCA CIEAION ..ttt et e
ATA DELBHION ...
Request To Relinquish Physical Memory Page. ... 104
Opening A Scratch Backing Object......cccce.eee. ... 105
Closing A Backing Objectcccovuennne. ... 106
Reading From A Backing Object......c.occevminniciiimneniieeciinis e 107
Writing To A Backing Object........oovieeiviveriieieiciiaseeee e ... 108
Page Aging Notification........... ... 109
POOIS v e 111
Creating Memory Pools 1
Allocating Memory From Pools .. .112
Returning Memory To Pools... . L1112
Obtaining Information About A Pool . 112
Using The Kernel POOLSccoooiiiic et 113
Growing A POOL ot e et st e e 114
MESSAZING .vvovvevnieiiriiirc et e 115

Message Port Management ..o iericieuiirinimi et ees et 115
Creating Message POITS v vviimiimniins e 115
Deleting MeSSAZE POTTS .o.u.cuurereierieeienreres i eremeecrassiessiassne s ssnninsnes 116

iv Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334

37 38
Changing The Asynchronous Operation Limits Of A Port...ccc..coccoo.. 116
Obtaining Information About A POIt ..o 116
Iterating Over Message Portsoevee. 118
Message Object Management ..o v eovoeeeieceeeeieieeiee st enete et e e v s 118

Creating Message ODJECESvoveerirererreciecrereeierte et ere e s eerea 119
Deleting Message Objects.... s 119
Locking Message ODBJECtS ...cooviviriiicicciiiee et e e 120
Unlocking Message Objects.........ccccocoen. e 120
Obtaining Information About An Object ... 120
Changing Information About An Object ... 121
Tterating OVEr ODJECLS wovvvceiriesinisesimmisrsnsitisesties s eeseseseressssrnsesrens 121
Message Filter Management 123
Installing Filters 123

Removing Filters........ccccooeiiciciiinnns . 124
Obtaining Information About A Filter 124
Iterating Over FIHErs .. .oooiiiie it cceie sttt 125
About Message Transactionsooeeeevvirinieriesini e e 125
Message IDs.................. e 125
Message Types.... et bRt ene 126
Kernel MESSAZESviovveeeriee e e et seee s e e e 126
Sending MESSAZESouiieinieteirerieree e eeercre e e e et eeeesae b e e et e bt e netens 127

Send Options
Synchronous Sends ...

Asynchronous Sends 130
Receiving MESSAZES ..v..virieemcieie et e 131
RECEIVE OPUONS 1enviiiieiis it 132
Message Control BIOCKScvivnieoemiicmieieeninscinne e 132
Receiving Messages Synchronouslycoiiicnennmincrccene s 134
Receiving Messages Asynchronously ... 135
ACCEPUNE MESSAZES ... oot st st 135
Replying To MeESSAZES ...eeouiemieeeeiciii et s e e 138
Replying To A Message And Receiving Another ..o 139
Forwarding MESSAZES ...t ittt 139
Continuing MESSAZESveereevecrmcrrrecescremierrins it et et e cnceresee e meneenaenneas 140
Canceling Message REGUESLS ..c.oiciiiimimiiiins e e 140
Send Cancellation ..o e 141
Receive Cancellation. ... e 142
Client Initiated Cancellation MesSagesccocoriiecneecie e, 142
Client Termination NOUICAION ..cceuvecurerieerirint it e sttt e ees 143
Registering An Object’s Client.... 143
Client Termination MesSagescouvuemeriormieseriei et 143
.. 144
InS1AlliNg AZEROLS ...oreirevieririrririnssre e s eseeas s et e s aeaesrb s s as e rane e 144
REMOVING AZERNLS vt et s st b et b b sbea e be s 146
R Ty ettt e c et et em e caen e e n s e b s ebeaareon et re e sen e en e A
Setting the Registry Object ID oot A
Getting the Registry Object ID ... A
Restrictions On Using Kernel Services..........oocicniiies B
Services That Can Be Called From Task Level
Services That CANNOT Be Called By Non-Privileged Tasks......ccocoevvieeinenn, B

March 29, 1994 Copyright 1992 Apple Computer, Inc. v

Compatibility

Vi

5,590,334
39 40

Services That Can Be Called From Secondary Interrupt Handlers B
Services That Can Be Called From Hardware Interrupt LevelD
.. -.E
24-Bit Addressing E
Debug UtilitiesE
Delay .o, ...E
The Device Manager.. ...F
Exceptionsce.e. ...F
Interrupts ..o ...G
Memory ManagementG
Power Management........... .G
Privileged Instructions H
The SCSI Manager............ el
Stack Checking K
The Time Manager.......ccceeceneee. . K
The Vertical Retrace Managercoceveeeieieeremrenee e M
Vinual MEemOry . oocvoe e e ceesn oo ED/I
Naming...... .0
Security0
Booting.....coooeeee ...0O
POITable SYSIEIMS ...ecciiiciiriecei e s st e se e .0
SCST et e et b e e e 0

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
41 42

NuKernel Overview

March 29, 1994 Copyright 1992 Apple Computer, Inc.

5,590,334
43 44

ABOUT NUKERNEL

NuKernel is a modern micro kernel designed expressly towards the medium- to long-term
needs of the Macintosh operating system.

Within the last five years, the micro kernel approach to system implementation has been
used successfully throughout the industry to provide a small OS core that is highly
portable in its implementation while also presenting a machine independent interface to
all other system and application software. This approach allows successful porting to
various platforms with minimal impact on the non-kernel portions of the operating
system, ToolBox, and application investment.

Micro-kernel design is, by definition, a minimalist approach. If a given feature is not
required to be part of the kernel it is implemented elsewhere in the system. File systems,
dynamic linked libraries, device drivers and other fairly high level OS components are
implemented on top of the kernel's features.

Unlike El Kabong, QuickTime®, Cube-E and others, NuKernel is neither a reference
release nor an extension to System 7. Rather, it is a set of enabling technologies that.
when integrated into the system, satisfy a number of growing market needs and concerns
for both developers and end-users.

NuKernel provides support for modern operating system features including:
* Preemptive multi-tasking
* Synchronization primitives

Multiple large, sparse address spaces

Memory mapped files

Demand paged virtual memory

Memory protection

Object based message system

Timing services

The effort required to integrate NuKernel with System 7 in a meaningful way is the
subject of several investigations throughout MSAD. Approaches and methods of
integrating System 7 and NuKerne! are not discussed here per-se. The NuKernel design
team did, however, have many of the integration issues in mind while designing and
implementing NuKernel. Where appropriate, those issues are discussed if they help to
clarify the usefulness of a particular feature.

This document is presented at three levels. First is an overview of the major features and
concepts of NuKernel. This is followed by a comprehensive technical presentation of the
kernel's interfaces. Finally, there are appendices that cover remaining issues and
compatibility.

D

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
45 46

KERNEL OBJECTS AND IDS

Most interfaces to NuKernel fall in to one of three categories; those that create
something, those that manipulate something previously created, and those that delete
something. These things are collectively referred to as kernel objects.

The kernel objects include:

* Address spaces
Address areas
Memory backing objects
Tasks
Teams
Timers
Event groups
Software interrupts
Message Objects
Message Filters
Message Ports
Messages
Agents

e & % 5 2 8 e 8 & 0 g

This document describes how to create kernel objects of various types. It describes their
properties and behaviors. It discusses how to manipulate and destroy kernel objects and
describes when they are destroyed as the side effect of some other operation.

You cannot directly manipulate kernel objects because the underlying data structures are
not a part of the programmatic interface {API) to the kernel. In certain implementations,
the objects themselves may not be directly addressable to software other than the kernel.

When the kernel creates a kernel object it generates an identifier (ID) for that object. 1Ds
are 32-bit values that uniquely designate a particular object. Functions that create an
object return the ID of the newly created object. Functions that act upon or destroy an
object require that you pass the ID of the kernel object that is to be acted upon or
destroyed.

IDs are completely opaque. The techniques used to associate an ID with the underlying
object are private to the kernel. IDs cannot be used to access the underlying data
structures. The actual memory used to store kernel objects is not necessarily in the same
address space as kernef clients.

Presently, marketing input does not require NuKernel to implement any sort of low level
OS security, IDs, although opague, can be forged by simply trying to use every possible
combination of 32-bit values in conjunction with a particular kernel function call.
However, ignoring clandestine programs, IDs do allow some limited security because
only the creator of a kernel object has the ID of the object and the creator can, therefore,
limit aceess to the object by controlling access to the ID.

Because NuKernel does not support persistent objects (objects that survive across system
boots), it has no need for persistent IDs. IDs are unique only for the duration of a

March 29, 1994 Copyright 1992 Apple Computer. Inc. 3

5,590,334
47 48

particular boot. Additionally, IDs are unique only to a given kind of kernel object. That
is 1o say there is a separate flat ID space for each kind of kernel object. If you create two
separate kinds of kernel objects (e.g., a task and a message port), it is possible that the
same ID value will be returned for each of them. It is the responsibility of the
programmer to ensure that the ID of a particular kind of kernel object (e.g., task) is used
only in conjunction with operations on that kind of object. If you perform message
operations on task IDs there is a slight chance that, because the task ID is also a valid
message ID, undesirable side effects may result.

Using an ID after the underlying object has been implicitly or explicidy deleted is
erroneous. Typically, the kernel detects such usage and returns an error. However, IDs
arc subject to reuse when the kernel object to which the ID was originally assigned is
reclaimed. Every effort is made to minimize the amount of reuse to assist in the detection
of programming errors and to improve system robustness.

The mechanisms for the generation and decoding of IDs that are employed by NuKernel
are not available to its clients. Exposing the interface to the ID implementation would
compromise the limited security currently available and prevent the addition of additional
security in the future.

4 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
49 50

NAMING

The kernel's consistent use of IDs is motivated by the desire to isolate the underlying data
structures for reasons of both robustness and security. One problem with this approach
concerms entities that must be well known throughout the system. Historically, solutions
to this problem have one of two forms: place the IDs of these entities in well known
lacations (i.e., low memorv) or provide a service whereby the IDs can be found through
soIme naming conventions.

The design of NuKernel has always presumed the inclusion of some sort of name based
registry into which these distinguished IDs would be placed at the time they are created.
The registry would support operations to create, delete, and lookup entries.

Various issues. including the topology of the name space and the international problems
caused by any sort of naming, have caused this issue to be deferred from the functional
interface of NuKernel for the present time. This section of this document will be
completed when these issues are resolved.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 5

5,590,334
51 52

EXECUTION - TASKING AND INTERRUPTS

The tasking and interrupt mechanisms of NuKernel formalize the environments for
execution of software by the processor. This section provides an overview of these
concepts.

About Execution

Much of the confusion about System 7 programming is a result of ad-hoc rules governing
execution environments. In System 7, applications have one set of rules while their VBL
tasks, Time Manager tasks, /O completion routines, etc., all have different rules. A
significant amount of the NuKernel design is devoted to the manner in which code gets
executed. Considerable effort has been spent on normalizing these environments and
ensuring that high-level language software can be used directly with no interfacing glue.
This part of the design is largely intangible in that there is little or no implementation part
behind the design. Mostly, the design details the environments in which execution
happens. These environments include:

. Task Leve] - This is where nearly all code 13 executed. Application
programmers typically are only concerned with task level execution. The
processor is executing at task level whenever it is not processing interrupt
level code.

. Hardware Interrupt Level - This is usually of concemn only to driver
writers and certain internal OS software developers. Hardware interrupt
level execution happens as a direct result of a hardware interrupt request.

. Secondary Interrupt Level - This is similar to the deferred task concept in
System 7, it is sandwiched between hardware interrupt jevel and task
level. The secondary interrupt queue is filled with requests to execute
subroutines that are posted for execution by hardware interrupt handlers
that need to perform certain actions but chose to defer the execution of
those actions in the interests of minimizing interrupt level execution.
Unlike hardware interrupt handlers that can nest, the execution of
secondary interrupt handlers is always serialized. For synchronization
purposes, task level execution may also post secondary interrupt handlers
for execution; these are processed synchronously from the perspective of
task level, but are serialized with all other secondary interrupt handlers.

. Kernel Level - The rules and guidelines for certain portions of the kernel
are different from those of any exported environment. The kernel's
environment will be covered in other internal documents and is not
discussed further here.

Each of these execution environments has common attributes. For example, whenever
any software is executing at task level it will be using the stack created for that task at the
time the task was created. A particular target processor's runtime model is fully
supported at all execution levels. For example, on M68000 based implementations, the

6 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
53 54

A5 addressing model (static data and jump table) is completely supported at all levels of
execution. This means that when you install an interrupt handler, the kernel records not

only the PC of the interrupt handler but aiso the current value of AS. When vour handler
is invoked, due to an interrupt, A5 will be updated to that recorded value. Thus, a single
consistent runtime model is enjoyed by all software regardless of execution level.

Of course different execution levels have different restrictions. Task level execution may
make use of nearly any NuKernel, OS, or ToolBox service. Secondary interrupt and
hardware interrupt handlers are allowed only a subset of those services. Furthermore,
only task level execution is allowed to access memory that is not physically resident:

page faults at either hardware interrupt level or secondary interrupt ievel are illegal and
system fatal.

About Tasks

The primary unit of execution within NuKerne! is called a task. This term is frequently
interchanged with the term #iread in other operating system and/or kernel architectures.

Tasks are used to virtualize the existence of the physical processor and provide the
illusion of many processors. each performing a different kind of work at the same time.
In a NuKernel based system, a separate task exists for each application. Additionally,
applications are free to create additional tasks if it is desirable to do so. The NuKernel

I/O system is also based upon tasks with a separate task potentially used for each device
driver.

The processing resources available to a task are called the task's context. Context
includes general purpose registers (D0, A0, FPO, etc.) and special purpose registers
(CCR, FPSR, PC, etc.). Note that task context is processor dependent. A machine with a
floating point co-processor has more task context than a machine without; a PowerPC®
based machine has different context than a M68000 based machine.

Along with processor context, a task requires the presence of certain other resources.
These include the task control block and the task stack(s). The task control block is an
internal data structure that describes the task to the kernel; it is only accessible to the
kernel and is always referred to by a task ID. In addition each task has at least one stack
(stack utilization is described later in this document).

The process of ceasing the execution of one task and beginning the execution of a
different task involves saving the context of the former task and restoring the context of
the latter task. This combination of a context save and a context restore is called a
context switch.

The mechanics of context switching is relatively simple. However, the decision
regarding when to context switch and whom to context switch, collectively termed
scheduling, is rather complex. Scheduling logic is a key differentiating factor between
differcnt operating systemm/kernel architectures.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 7

5,590,334
55 56

About Task Scheduling

NuKernel employs an event-driven, priority based, preemptive scheduler. Although that
sounds like a mouthful, it is really fairly simple.

Event-driven means that scheduling decisions are made coincidentaily with certain key
events that occur within the system. Interrupts are one example of an event that drives
the scheduling process. Others include setting or waiting for a semaphore and sending or
waiting for a message. Note that these scheduling events are different from the OS,
ToolBox, and EPPC events which drive applications.

Priority based scheduling implies that each task's importance is used when selecting a
task for execution. A task's relative importance is specified by its priority. NuKernel
tasks have a priority between 1 and 31; the larger the value the higher the priority. Every
task is given a priority at the time it is created and a task's priority may be increased or
decreased at any time.

A task is eligible for execution whenever it is not waiting for some operation to complete.
These waits can be either explicit as in the case of synchronous /O operations or implicit
as in the case of page faults. Tasks that are not eligible for execution are said to be
blocked upon some event. Many tasks may be eligible for execution but only one can be
executing at any instance. Under NuKemel, the task with the highest priority that is
eligible for execution is guaranteed to be the task that is executing.

Preemptive scheduling, as opposed to cooperative scheduling, conveys that it is the
system, not the currently executing task, which controls when scheduling happens. In
System 7, the scheduling of applications is purely cooperative and the resultant system
requires well-behaved applications if it is to function in a fashion that is pleasing to the
user; if an application fails to cooperate it can interfere with the operation of the entire
system. A preemptive system alleviates most of the need for cooperation. When the
event upcn which a task is biocked occurs, that task is again made eligible for execution.
If that task has a priority greater than the currently executing task, a context switch is
performed and the higher priority task immediately resumes execution from the point at
which it was blocked.

Beyond preemptive scheduling, the NuKernel scheduler provides time-slice scheduling of
tasks at equal priority. If several tasks are eligible for execution at the highest priority,
each is allowed to execute for an internally specified time called a time-slice. When its
time slice has expired, the currently executing task is context saved and the next task at
that same priority is context restored. Each task at this highest priority is given access to
the CPU in a round-robin fashion. No single task can starve the others unless it is the
only task at the highest priority.

Of course, time-slicing never interferes with the otherwise priority based scheduling
algorithms; it only has affect when several tasks are all eligible for execution at the same
priority and no higher priority tasks are eligible. If a higher priority task becomes eligible
for execution it will always get immediate access to the CPU.

8 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
57 58

NuKermel scheduling does not include specific support for real-time scheduling. You
cannot specify that a task is to execute next or that a task should execute at a certain time
or that a task should receive a certain percentage of CPU time. The NuKernel scheduler
does not contain support for deadline scheduling. Currently, a task's priority is never
adjusted implicitly by the kernel as is done by the Windows NT® Boost/Decay
scheduling policy.

About Software Interrupts

In addition to the scheduling of multiple tasks on a single processor, the NuKernel
scheduler provides a mechanism used primarily for the execution of asynchronous
completion routines.

In System 7, an I/O completion routine associated with an asynchronous VO request is
usually run at interrupt level and is completely asynchronous to the execution of the
application that started the I/O. Unfortunately, this means that the completion routine
runs in a completely different environment than the initiator of the request. The
completion Foutine gets parameters in registers rather than on the stack. The completion
routine cannot access static vartables or the jump table because AS is not setup by the
system. Finally, the invocation of the completion routine is in no way related to the
importance of the requestor. Because the invocation happens at hardware interrupt time,
application code gets invoked in a completely uncontrolled fashion.

The software interrupt feature of the NuKernel scheduler allows a specified subroutine,
with specified parameters, to be executed within the context of a given task, but
asynchronously to that task's otherwise normal execution. A NuKernel based system uses
software interrupts to implement many hardware interrupt driven features of System 7
such as VBLs, Timers, /O completion routines, ADB, etc.

Within a given task context, software interrupts are processed on a first-in, first-out basis;
they do not nest. When a software interrupt handler finishes and no other software
interrupts to that task are pending, the task simply resumes execution at the point prior to
the software interruption. A given task may enable and disable its ability to receive
software interrupts and interrupts are queued to the task until they can be delivered.
Software interrupts do not affect the scheduling policies of a given task with respect to
other tasks.

Any task can send a software interrupt to any other task and this mechanism is used
throughout the kernel to inform clients of request completion.

About Privileged Execution

Most software in a NuKernel based system is non-privileged. Non-privileged software
executes with the CPU in user mode. All applications run in user mode. Some kinds of
software (E.g., device drivers) are best executed in supervisor mode and are, therefore,
privileged. Privileged software has complete access to the machine with no sacrifice in

March 29, 1994 Copyright 1992 Apple Computer, Inc. 9

5,590,334
59 60

performance. Execution mode is an attribute of tasks; when a task is created you must
specify whether it is to be privileged or non-privileged.

Privileged tasks always execute in supervisor mode. They have a single stack for all
execution and local variable storage. Non-privileged tasks may execute in either user
mode or superviser mode. Most all of their execution takes place in user mode.
However, because the kernel always runs in supervisor mode, when a user mode task
calls the kernel the kernel's execution takes place in supervisor mode. Therefore. non-

privileged tasks have two stacks; one for use in user mode and one for use in supervisor
mode.

About Svnchronization

The preemptive nature of task scheduling requires explicit attention to task
synchronization. Synchronization of accesses to shared memory or I/O devices is
frequently the most difficult aspect of programming in a multi-tasking environment.
NuKernel provides Event Groups to allow the synchronization of tasks around critical
sections. Event Groups are simular to semaphores and can be used to implement
traditional semaphores. Event groups are discussed later in this overview.

About Interrupts

Interrupt handlers are subroutines that are invoked by the kernel in response 1o a
particular hardware interrupt request. Interrupt handlers execute in supervisor mode and
have access to a single interrupt stack. The possibility of nested interrupts can cause
several interrupt handlers to each be activated on the interrupt stack simultaneously.

Interrupt handlers are formally registered with the kernel. You do not install them
directly into a vector table. Only a single handler may be registered for any given
interrupt source and you cannot install a handler without first removing the previously
installed handler.

Interrupt sources are designated by a hardware dependent vector number. This number is
not related to the processor architecture’s vectoring scheme. It is a simple enumeration of
the interrupt sources. Currently, a single enumeration is used for all Macintosh systems
supported by NuKernel. A second, different, enumeration will probably be created for
use with PowerPC based Macintosh systems.

The kernel's interrupt system design philosophy is driven by the desire to minimize
interrupt latency and, therefore, maximize responsiveness. This goal will not only enable
better real-time response but also allows greater /O throughput.

On M68000 based Macintosh systems, the priority interrupt system disables a subset of
interrupt sources whenever processing any interrupt. This means that the hardware
prioritization of devices governs the software prioritization of service. Unfortunately, the
desirable prioritization is seldom that which seems appropriate when designing the
hardware and frequently changes from application to application.

10 Copyright 1992 Apple Computer. Inc. March 29. 1994

5,590,334
61 62

NuKernel provides a mechanism for performing real-time processing, in response to
interruptions, outside of interrupt level. This mechanism is called the secondary interrupt
handler. Secondary interrupt handlers are similar to deferred tasks in System 7. .
Secondary interrupt handlers are queued by hardware or primary interrupt handlers.
When you queue a secondary interrupt handler you specify the handler and a set of
parameters with which it is to be invoked. The handler is not called immediately, rather
the information is placed into the secondary interrupt queue.

In order to synchronize with interrupt level execution yet avoid disabling hardware
interruptions. task level software may also insert subroutines into the secondary interrupt
handling queue. The queue is always processed first-in, first-out and the execution of the
queued handlers is always serialized. Although hardware interrupts remain enabled and

hardware interrupt handlers will preempt secondary interrupt handlers, secondary
interrupt handlers cannot preempt one another.

The secondary interrupt handler queue is always emptied prior to running any task level
software.

When writing device drivers that handle hardware interrupts, it is important to balance the
amount of processing done within your primary and secondary interrupt handlers along
with that done by your driver's task. You should make every effort to push processing
time out of primary interrupt level into secondary interrupt level and, similarly, push
secondary interrupt level processing into your driver's task. Doing this allows the system
to be tuned so that your driver's processing time is balanced with the needs of other
drivers and applications.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 11

5,590,334
63 64

TEAMS

During the execution lifetime of any software, that software will allocate and deallocate
many kernel objects. When that software goes away, either normally or abnormally, the
system should reclaim any of the kernel objects that were not deallocated.

The locus of resource allocation and reclamation within NuKernel is called a team. This
term is frequently interchanged with the term process in other operating system and/or
kernel architectures. We choose team over process because the term process is already
used and well understood in System 7 Process Manager nomenclature.

A team is composed of tasks and other kernel resources. The execution of those tasks
may create and destroy additional kernel resources (including other tasks) during their
lifetime. Each of these resources is said to belong to the team. Teams are completely
passive. Teams do not execute instructions; tasks execute instructions and tasks belong
to a specific team.

Teams also designate a set of memory locations and associated values, collectively
termed an address space (the details of creating and controlling address spaces are
described later). Each team has access to exactly one address space. However, a single
address space may be shared by several teams. A given task, belonging to a given team,
executes within the address space of that team. The task can only access memory
locations associated with its team's address space. [n this way, teams provide not only
resource reclamation but also memory protection.

The creation of a team returns a team ID. All subsequent operations upon the team
require that the team be specified by ID. When the team is reclaimed, all resources that
belong to the team are also reclaimed. Teams are reclaimed either explicitly (possibly by
their creator) or implicitly when all tasks with the team have terminated. In this fashion,
problems of garbage generation are handled in a well controlled and easily understood
manner.

Extensions to NuKernel for protection, accounting and auditing mechanisms would apply
at the team level. That is, teams could be protected from each other, accounting limits
(CPU time, memory size. etc.) could be imposed on individual teams, and audit trails
could be maintained for teams.

12 . Copyright 1992 Appie Computer, Inc. March 29. 1994

5,590,334
65 : 66

ADDRESS SPACE MANAGEMENT

Addressing is such a basic concept in computer systems that it is frequently taken entirely
for granted. However, as operating system and application software grow in complexity,
the manner in which memory is utilized becomes increasingly important.

A significant portion of NuKernel is devoted to implementing a rich set of addressing and
memory management mechanisms. These mechanisms provide the foundation for many
of the high level features desired in Macintosh systems: memory protection, memory
mapped files, and high performance virtual memory.

About Addressing

Because so much about addressing is taken for granted, a brief overview of terminology
and concepts follows.

An address space is the domain of addresses that can be directly referenced by the
processor at any given moment. A logical address specifies a location within an address
space. Logical addresses are unsigned in nature; the lower bound of a logical address is
zero, and the upper bound is the size of the address space minus one. For example, in a 4
GB address space there are 2% (4 GB) distinct logical addresses for bytes, ranging from
zero to 2% - 1. The number of bits required to represent logical addresses (the size of the
address) is often used to denote the size of the address space. For example. a 4 GB
address space can also be called a 32-bit address space.

Some systems provide a single address space that is in effect for all software. Others
provide distinct address spaces for different software entities. This so-called multiple
address space model provides isolation of software and restricted access to hardware
{collectively termed protecrion). When combined with the ability to use secondary
storage, usually hard disk . as an extension to a computer's physical memory (a technique
called virtual memory) the resultant memory model offers many advantages. These
include the ability to address large amounts of protected memory at a cost that in terms of
both performance and dollars is quite low.

There is an association between logical addresses and hardware. When the processor
references a given logical address there is an effect on the hardware. Usually, the
hardware is RAM, and the effect is to acquire and/or modify data in that RAM.
Alternatively, the hardware may be a device that provides some auxiliary function (such
as network access) and the effect is to control that device's operation. In simple memory
models, the association of logical addresses with hardware is statically determined by
how the hardware is wired to the processor. In the relatively more complex models
implemented by virtual memory systems, the association is made dynamically. Further,
the association can be extended to hardware not directly accessible by the processor, such
as secondary storage. Forming an association for a range of logical addresses is called
mapping. A range that has an association is said to be mapped, and one that does not is
said to be not mapped.

March 29, 1994 Copyright 1992 Apple Computer. Inc. 13

5,590,334
67 68

Virtual memory systems require specialized hardware support for mapping. For
architectural reasons, this support hardware always forms mappings based on address
ranges rather than on a per-address basis. These ranges become the unit of mapping. If
those units are fixed-sized, as is the case for both M68000 and PowerPC architectures,
they are called pages or logical pages. To provide address spaces with sizes greater than
the amount of RAM, the virtual memory system uses the support hardware to shuffle
RAM among different logical pages. Doing this on an as-needed basis is referred to as
demand-paging.

A reference to a Jogical address that 1s mapped to secondary storage. but whose data is
not immediately available in RAM, is referred to as a page faulr. Inresponse to a page
fault, the kernel initiates the appropriate transactions to obtain the contents of the logical
page and then maps that page into the address space. With the fault repaired, the kernel
causes the execution of the faulting software to resume at the point of the fault. The
entire effect of the page fault is transparent to the software that caused the fault.

The System 7 Addressing Model

System 7 provides an addressing model that is molded around a single, completely open
address space that provides no protection of software or hardware. Originally, this space
was shared by the systern and one application; now it is shared by the system and
multiple applications. The Virtual Memory introduced by System 7 did not change this.
For compatibility reasons, Virtual Memory was not allowed to provide separate address
spaces or protection, and was forced to settle for extending the existing single address
space by about a factor of two. Virtual Memory’s purpose is confined to preventing users
from having to buy more RAM. Internally, its method for RAM management
complicates the model for non-application sofiware and introduces substantial address
space overhead.

Logical addresses may be either 24- or 32-bits, on a per-system boot basis. This
coexistence complicates both the internal workings of the system software and the
implementation of third-party software, but has been considered necessary for backward
compatibility.

The simultaneous execution of multiple applications within a single, limited address
space means contention for memory among those applications. The Temporary Memory
scheme was introduced by MultiFinder (an earlier version of the Process Manager) to
provide an outlet for applications that need “emergency” dynamic memory allocations.
This is possible because, often, there is more memory where MultiFinder gets it.
Temporary Memory is really just a stop-gap measure because applications have no other
way to fully utilize the address space.

The NuKernel Addressing Model

The NuKernel addressing mode! is designed with modern hardware and software
architecture in mind.

14 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
69 70

Maultiple Address Spaces

NuKernel provides operations to create and destroy address spaces. The contents of a
newly created address space are based upon a template maintained by the kernel. This
template causes Slot Space, Frame Buffers, ROM, and the Kernel to be mapped into each

address space with appropriate access protection. The remainder of the address space is
devoid of content.)

Areas

A range of logical address space that is mapped is called an area. Areas begin and end
on page boundaries. Operations are provided to create and destroy areas. The area
creator must specify the size of the area, how the memory content of the area is to be
derived and maintained and what access rights are available to various clients.

Areas can be derived from disk files or their initial contents may be unspecified. In either
case, the memory management system provides support for clearing the contents of the
area on a per-page basis when the page is first accessed. Areas can be maintained in a
manner that causes each logical page within the area to always be physically resident or
to be paged in and out of physical memory as needed. Area attributes govern the ability
of privileged and non-privileged execution to read and/or write the area and for the area
to be shared among multiple address spaces.

When an area is created it can be surrounded by guard pages. These guard pages are
excluded pages in the address space that assist with detecting accesses beyond the area.
Guard pages can be used to detect stack overflow in typical cases.

Paging

The sum of the pages in all areas in all address spaces typically exceeds the amount of
physical memory. This shortfall is made up by using secondary storage or backing
storage to store that data which cannot be physically resident.

The kernel is responsible for the movement of data between backing store and memory.
The page replacement policies utilized by NuKernel attempt to minimize the frequency of
page faults by retaining the most recently used pages in physical memory and allowing
infrequently used pages to migrate to backing storage.

Paging performance is further enhanced because the software involved in resolving page
faults is limited to the kernel itself and those drivers involved in accessing the paging
device. Therefore, only a small number of logical pages must be held in physical
memory allowing a much greater number of physical pages to be used for frequently
accessed data.

All /O performed by the kernel to satisfy page faults is performed through Backing
Objects. Backing objects are message objects that respond to messages specified by the
kerne! and perform the appropriate /O operations. Backing objects isolate the kernel
from the mechanics of finding the appropriate data on the storage device. Page faults can

March 29, 1994 Copyright 1992 Apple Computer, Inc. 15

5,590,334
71 72

therefore be satisfied from nearly any [/O device including networks, hard disks, tape,
etc.

The Kernel Band

As described above, each newly created address space contains common areas created
from the kernel-maintained template. These areas each appear at the same logical address
in every address space and are shared between address spaces. Among these areas is a
distinguished set of areas collectively called the Kernel Band. This area contains all
code and data that is ever accessed by the processor when execution is at hardware
interrupt or secondary interrupt level. The kernel band also contains all code and data
associated with the kernel and kernel agents (kernel agents are extensions to the kernel
and are described later). The kernel band is protected with attributes that allow access
only in supervisor mode.

The kernel band is an important concept because it allows the kernel to execute in the
addressing context of its clients. This allows the kernel to access client memory in a
natural manner without having to create alternate mappings as is done in some operating
systems.

Global Areas

Sharing certain resources, especially code, among many clients is an important concept in
modern software. NuKerne!l provides effective, efficient support for sharing code and/or
data between clients in separate address spaces.

When creating an area, the globalArea option causes the contents of the area to be
addressable in every address space. The contents disappear from all address spaces when
the area is destroyed. Global areas have the protection attributes specified at the time of
their creation regardless of the address space from which a reference is performed.

Because global areas are visible to all address spaces, space in every address space must
be available to create any global area. The kernel sets aside a predetermined amount of
space in every address space for use by global areas. Once exhausted, no additional
global areas can be created until others have been deleted. The amount of address space
set aside for global areas is unspecified.

/O Coordination

When I/O operations are performed between an external device and memory, several
aspects of the memory's contents must be coordinated. Typically, the logical contents
must be made physically resident so that they may be accessed at hardware interrupt or
secondary interrupt level where page faults are not allowed. Additionally, the coherency
of any data and/or instruction caches must be maintained to ensure that the data being
moved is not stale and that the effects of the data movement are observed by the
processor.

16 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
73 74

When using DMA hardware to perform the /O operation, it is also necessary to translate
the logical address range into set of physical address ranges. This set of physical address
ranges is called a scatter-gather list.

NuKernel provides efficient support to prepare a range of addresses for an /O operation
and to cleanup that same range when the operation is finished. Through the use of
appropriate parameters, all cache manipulations are performed, the data is made
physically resident, and a scatter gather list is generated. The client need not be
concerned with the cache topology or any other aspect of the hardware as the kernel
provides complete isolation.

Addressing And Execution

The relationship of execution to addressing is at the team level. When a team 1s created
an address space must be designated for that team. Any tasks created within that team
will see this logical address space. Several teams may all share a single address space,
however, they will not be protected from one another.

Inter-Address Space Access

During normal execution, a given task has access to only the memory that is mapped into
its team’s address space. It is possible, however, to gain access to the logical memory of
other address spaces. The general mechanism for shared memory is to map the same
backing store data into the various clients' address spaces. Further routines enable
straightforward data copying and cross-address space mapping. An additional facility i3
provided to arbitrate sharing memory at the same location in each address space.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 17

5,590,334
75 76

SYNCHRONIZATION - EVENT GROUPS

Event groups are the synchronization mechanism of choice for task level execution. An
event group 1s a set of 32 individual semaphores that may be acted upon individually or
in combination.

Event groups are created explicitly. There is no limit upon the number of ¢vent groups
that may be active in the system at one time. Each event group is referenced by an ID
and contains 32 unique event flags (semaphores).

Once created, any task can operate on a given event group. Operations on the group
manipulate one or more of the group's event flags. The operations are read. set, clear, and
wait.

Reading an event group simply returns the value of the 32 event flags. This operation has
no side effects upon the task that is reading the flags or any other task.

Clearing event flags is done by specifying an event group and a 32-bit mask. Each flag
that is set in the mask is cleared n the event group. This operation does not effect the
clearing task or any other tasks in the system.

Setting event flags is done by specifying an event group and a 32-bit mask. Each flag
that is set in the mask is set in the event group. This operation may cause other tasks that
are waiting upon the event group to become executable.

Waiting for event flags is done by specifying the group, a mask of flags to wait for, and a
waiting operation. The mask contains 32 bits and indicates, in conjunction with the
operation, a condition for which the calling task wishes to wait. The operation specifies
whether the condition is satisfied by any of the events in the mask becoming set or only
when a{l of the events in the mask become set. Additionally, the operation indicates if
the events, specified by the mask, are to be cleared when the condition is satisfied.

Wait operations can include a time limit. This limits the time the calling task is willing to
wait for the specified condition to occur. If the time limit is exceeded, the task is made
executable even though the condition has not been satistied.

Event groups may be used to implement many styles of semaphores. The ability to wait

upon a combination of events may be used to prevent many deadlock situations that occur
when only binary semaphores are available.

18 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
77 78

MESSAGING

As system software has become more modular, the flow of information between modules
has become critical to both robustness and performance. The inclusion of NuKernel
features such as preemption and multiple address spaces add significantly to the inter-
module communications dilemma. Problems of synchronization must be overcome and
the ability to communicate across address space boundaries is required. The NuKernel
message system provides this support.

Messages

A message is the unit of information interchange. The kernel is not concerned with the
contents of the message; it does not examine or interpret the contents ot the messages.
Rather, it assists in movement of the message from the originator to the recipient,
providing the ability to control and prioritize the flow of information. The message
system is suited for the exchange of control and status information as well as for the
exchange of data.

Client-Server

The NuKernel message system presumes a client-server model of communications. In
this model, a service is provided by a server. Software that wishes to make use of a
service is called a client of the service. The message system simply allows data to be
transported from a client to a server and for the server to notify the client of the results.

Transactions

When a client makes a request of a server it does so by sending a message. The server
must actively participate by attempting to receive messages from its clients. When a
server has received a message it performs the implied work and then notifies the client by
replying to the message. This combination of send, receive, and reply is termed a
message transaction. The kernel provides all transaction support including
synchronization and address space mapping operations that may be required. The
following figure illustrates these concepts:

March 29, 1994 Copyright 1992 Apple Computer, Inc. 19

5,590,334
79 80

Message Transaction

Client

Receive

Process

Reply

Moving Data

The data that flows between the client and server usually conforms to semantics specified
by the server. The data may flow from client to server and/or server to client. All data is
described to the kernel through the use of address/byte count pairs. The data flowing
from client to server is called the message contents. The data which flows from server
back to the client is called the reply dara.

Thecontents and reply data address/byte count pairs are conveyed to the server at the time
the server receives the message. If the message is sent across address space boundaries,
the kernel may, at the client's discretion, either map the message contents directly into the
server's address space or copy the contents into the server’s address space. The kernel
may also choose to map the reply data buffer into the server's address space.

No data is ever buffered in the kernel. Therefore, the client must not attempt to modify or

deallocate either the message contents or reply data buffers until the transaction is
complete.

Some messages, specified as part of the send operation, include addresses of other data
that is associated with the message. This is common when reading data. Read requests
typically indicate the source of the data (E.g., a file offset) and specify the address of a
client buffer into which the server should place the data. These other regions of memory,
associated with the message by both client and server, are unknown to the kernel. It is
the responsibility of the server to ensure that these additional regions of memory are
addressable by the server. Kernel services are available to perform the mapping or copy
operations needed to implement such services.

20 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
81 82

Ports And Objects

Message objects are abstract entities that represent varjous resources 1o message system
clients. These objects may represent devices, files, windows, etc. Clients send messages
to objects.

Message ports are abstract entities that represent a service. These ports may represent a
device driver, a file system, or a window manager. Servers receive messages from ports.

Objects are said to belong 10 a port. A message sent to an object is received from that
object’s port. The client is usually unaware of the port associated with a particular object.

The duality of objects and ports allows efficient support in situations where a number of
separate entities, all conceptually different from the client's perspective, are served by a
single server and with identical actions.

Ports and Objects

Client Object Port
Server

s N .

I

Receive

Reply

N

Ports and objects are created by the message system on behalf of a server. The creation
of an object requires designating a port from which messages sent to the object will be
received. Therefore, ports must be created prior to their objects. Once created, an object
may be migrated from one port to another. This allows servers to control port utilization
for whatever reasons they choose. For example, objects that are highly utilized can be
migrated to a port that is served by several tasks within the server.

Objects contain a single 32-bit value, specified at creation time, that is used by the server

to identify the object. This value, called a refcon, allows the server to associate any per-
object information with the message. When receiving messages from a port, the server is

March 29, 1994 Copyright 1992 Apple Computer, Inc. 21

5,590,334
83 84

provided with not only the message but also the refcon from the object to which the
message was sent. The server can use these refcons for any purpose; they are not
examined or interpreted by the kernel. Typically, the refcon is the address of a control
block for the object; a file object's refcon could be the address of the file control block for
that file. The refcon of an object may be examined and changed at any time.

Ports and objects are referenced by IDs.

Sending Messages

The process of sending a message can be either synchronous or asynchronous.
Synchronous sends block the client until the server has acted upon and replied to the
message. Asynchronous sends allow the client to continue execution while the server is
processing the message.

Synchronous send operations return a status value that indicates the success or failure of
the message transaction. Errors may be returned by either the kernel or by the server.

‘When a message is sent synchronously, the sender may specify a time limit. The value of
the time limit controls how long the sender is willing to wait for the transaction to
complete. Should the time limit be exceeded, the message is canceled by the kernel.
Cancellation is described below.

Asynchronous send operations yield two separate status results. The send status is
returned at the time the asynchronous send call returns from the kernel back to the sender.
The reply status is delivered asynchronously to the client's execution when the server has
finished processing the request.

The client may receive notification that the server has finished processing an
asynchronously sent message in any or all of three different ways. First, the client can
specify a memory location that is to be updated with the 32-bit message reply status.
Second, the client can specify an event flag group and set of flags within that group that
should be set. Finally, the client can specify a software interrupt that should be delivered.

Receiving Messages

Servers receive messages from ports. Servers can receive messages in three separate
ways: synchronous receives, asynchronous receives, and acceptance functions. All three
methods of receiving messages requires that the server explicitly designate a port from
which the messages are to be taken.

Synchronous receives block the execution of the server task until a message arrives at the
port. The server may limit the length of time that the server remains blocked waiting for
messages. [f the time limit is exceeded, the server again begins to execute and is
informed of the time-out.

3]
to

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
85 86

Asynchronous receive requests inform the kernel that the server wishes to be notified
when the next message arrives at the port. Asynchronous receives do not cause the server
to block. The server can request that the notification be delivered in any or all of three
ways: memory location update, event flag update, or software interrupt delivery. These
are the same as the notifications described above for asynchronous sends.

The third method of receiving messages is By registering an acceptance function.
Acceptance functions are simply subroutines that are called in-line in the context of the
sender at the time the message is sent. Acceptance functions are always called in
supervisor mode and, therefore, not all servers can register them. They are intended for
use by kernel agents.

Numerous synchronous and asynchronous receives may be made of a single port but only
one acceptance function may be registered. When a message is sent it is given to only
one receiver. The process of matching a sent message to a receiver is governed by
message type. These message types are described below.

Regardless of the manner in which a message is received (synchronously.
asynchronously, or acceptance). the server is provided with more than just the message.
The refcon of the object to which the message was sent and an ID for the message, are
also returned to the server. The refcon allows the server to associate information about
the object with the message. The message ID is used by the server to notify the client
that processing of the message is complete.

Replying To messages

When a server has finished processing a message it must inform its client. The process of
notifying the client is called a reply. When a server replies to a message it provides both
the message ID it got when it received the message and a 32-bit result or message status.
The kernel does not interpret the status in any way. Rather, the status is interpreted by
the client in a way defined by the interface between client and server.

Servers must reply to all messages they receive. Synchronous senders remain blocked
until the server replies. Servers can implement time limits upon their transactions to
prevent the system from becoming deadlocked.

Message Tvpes

All message send and receive operations require that you specify a message type.
Message types are 32-bit values. The message system does not interpret the type directly
but uses it to match senders with receivers.

A message type is associated with each message at the time the message is sent.; the type
must be specified with all send operations. When a server makes a receive request, it also
specifies a message type. The two message types are used to match sent messages with
recervers.

March 29, 1994 Copyright 1992 Apple Computer, Inc.

|18}
)

5,590,334
87 88

Receivers are matched with messages by ANDing the message type specified by the
sender with the message type specified by the receiver. If the result of the AND is non-
zero, the message is given to that receiver. When scanning the receivers looking for
compatible message types, acceptance functions are checked first. If no acceptance
function matches the message type, then the synchronous and asynchronous receivers are
checked. If no receiver can be matched with the message then the message remains in the
port until a receive operation is performed that matches the message type.

A receive operation that specifies a message type value of OxFFFFFFFF receives all
messages, regardless of type. This includes messages sent with a type value of zcro.

One bit of the message type is used by NuKernel for certain special system-generated
messages. Messages of this type are defined by Apple and your server should support
them. Clients should, however, refrain from doing so. The kemnel message type and the
pre-defined messages are covered in the detailed description of the message services.

Canceling Asynchronons Message Operations

‘When using asynchronous services, it is occasionally desirable to withdraw operations
that have been started but have not yet completed. The act of withdrawing these requests
15 termed canceling the outstanding request.

The asynchronous send and receive services each return a transaction ID that remains
valid until the request becomes satisfied. These IDs may be used, when appropriate, to
cancel the pending send or receive.

Cancellation of asynchronous send requests is handled in one of two ways. If the send
has not yet been matched with a receive request from the server, the send is simply
withdrawn and the server is not affected in any way. If, on the other hand, the server has
already received the request then the server is sent a special message (designated by use
of the kernel message type) that indicates that the client wants the request canceled. This
special message includes the ID of the transaction so that the server knows which request
is being canceled.

Canceling asynchronous receive requests simply removes the pending receive from the
message port. These operations have no side affects.

24 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
89 9

Locking Message Objects

At times, a server may want to prevent messages from being sent through an object and
arriving at the object's port. This is especially true when the server needs to manipulate
an object synchronously to the use of that object by clients or multiple server tasks. For
this purpose, the kernel provides services that lock and unlock message objects.

Ports, Objects, and Locks

Client Object Port
r ™

Multi-threaded Server

Lock List

N

Message objects are said to be in one of three states: Unlocked, Locking, and Locked. A
message object is Unlocked until an attempt is made to lock the object by using the
LockObject service. At this time the message object enters the Locking state. While in
the Locking state, message sent to an object do not reach that object's port. Instead they
pile up at the object and are not eligible to be received by the port's server. Messages that
had been sent through the object to the port but had not yet been received by the port's
server are removed from the port and placed back at the object. These messages are
similarly not eligible to be received by the port's server. Messages that had been sent
through the object to the port and had been received by the port's server prior to the lock
request are not affected in any way.

An option to the LockObject service allows the caller to specify that the Locking to
Locked transition should occur with either zero or one received but unreplied messages.
The caller of the LockObject service is blocked until this condition is reached. Once the
condition is reached, the task is unblocked and the message object is said to be Locked.

In the Locked state, newly sent messages continue to pile up at the message object. They

are not eligible to be received. The task that made the LockQbject service request should
perform whatever actions are appropriate and then either unlock or delete the Locked

March 29, 1994 Copyright 1992 Apple Computer. Inc. 25

5,590,334
91 92

object. Until the object is unlocked or deleted, clients of the object could be waiting for
messages to be processed through the object.

While in the Locking or Locked state, cancel requests for messages sent to the object are
processed normally. This means that the cancel requests may be placed in the object's
port.

Once a Locked object is Unlocked, any messages that had been sent while the object was
Locked will pass through the object and arrive at the object's port and may be received.
These messages will contain the Refcon value from the object at the time the
UnlockObject service is called.

Only one client can lock a given object at any time. If a request is made to lock an object
that 1s either Locking or Locked, that request is blocked until the object becomes
Unlocked.

26 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
93 94

Filtering Object Messages

A message filrer is a pair of objects used to screen another object's messages. An object
with filters is called a rarget . The set of installed filters on a target is called the filter
chain..)

Installed filters are designated by ID. The ID may be used to later remove the filter, or
retrieve its installation information.

Once installed, filters are completely ransparent to both clients and servers. However,
servers have complete control over which of its objects may become a target.

If the target is deleted, all installed filters are automatically removed. If the target is
locked, the lock applies to the entire filter chain. A target object’s filter chain may be
examined using an iterator service.

There is no limit to the number of filters or the number of objects which can be filtered.

Filter objects can share a single port; however, a filter can only screen a single object's
messages.

Message Filters

The "A’ Filter

SEND e (GONE ON(E A Tareet e Ca

Object

Pre-Processors Post-Processors

Two kinds of message objects may be used in a filter. The first kind of object screens
messages before they arrive at the target and is called a pre-processor. The second kind
of object screens messages as they leave the target and is called a post-processor. A filter
may be composed of just a pre-processor, or just a post-processor.

March 29, 1994 Copyright 1992 Apple Computer. Inc. 27

5,590,334
95 96

A single message is passed through each filter and target object. The message is given
first to the pre-processors, then the target, and finally the post-processors.

The SendMessage, SendMessageAsync, and ForwardMessage services invoke an object's
pre-processors. The ReplyToMessage and Cancel AsyncMessage services invoke its post-
processors. The ContinueMessage service may be used by any object to pass the
message to the next object in the chain.

The ForwardMessage service stacks the remaining post-processors in the current filter
chain before routing the message to a new target. Once the new target and its filters have
completing processing, the stack of remaining post-processors is activated.

A pre-processor object may issue a ReplyToMessage to jump over the target and begin
post-processing, starting with the its nwin . Any per-message state generated by a pre-
processor object can be cleaned up by its twin.

The format of an object’s message contents must be published if content modification

filters are to be accommodated. Message content version numbers are recommended so
that filters may track format evolution.

Filter Names

All filters are named. Filters attached to the same target must have a unique name.
Filters installed on separate targets may share names.

A filter name consists of a service and signature type. The service type identifies the
functionality provided by the filter. The signature type identifies the provider of the
service.

Filter Name

Service Type Signature Type

For example, an Apple supplied encryption filter might be named: ‘ENCR’,”APPL’. The
registration and allocation of signature types is to be managed by Apple Computer Inc.

Filter Ordering

Some filters require a guaranteed order of invocation with respect to other filters,
Ordering requirements are specified as a set of two rules. The first rule names a filter
before and the second rule names a filter after the desired location in the filter chain. The
combination of a before and after rule determines the placement within the filter chain.

23 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
97 98

Filter Ordering

Before Rule Service Type Signature Type

After Rule Service Type Signature Type

Strict adjacency requirements are also supported by specifying an installation option. A
filter may specify that it must be placed directly after or directly before another filter.

Two forms of wildcard name marching is supported. The first form always matches any
service or signature type. The second form never matches a service of signature type.
Using wildcard ordering rules allows a filter to be placed after all filters (last) or before
all filters (first); for example.

A filter will not install properly if its ordering rules cannot be met, nor if the new filter
will violate an existng filter's rules.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 29

5,590,334
99 100

KERNEL AGENTS

NuKernel agents allow customized extensions to the kernel. Agents are just one way in
which the system can be extended but they are the only method of extending the kernel.
Only through use of agents can privileged code be added to the system. This section

discusses the properties of agents as well as how to write them and how to install them.

Agents were designed with the following goals:

* Provide a way for user mode code 1o install additional functionality into NuKernel
and remove it when no longer needed.

= Put agents in the kernel band to protect them from applications.
* Share agent code among multiple agent installations.
« Do common case initialization so most agents are simpler to write

* Minimize code changes to port to PowerPC. The kernel trap calls and arguments are
the same across platforms. Agent static data is automaiically initialized so that no
explicit call to _Datalnit is needed on the 68K.

* Make simple cases simple and complex cases possible.

Accessing Agents

The agent system is message based. To communicate with an agent you send a message
to an object that is served by that agent. Using the message system means that you can
make synchronous or asynchronous requests to any agent. The agent's implementation
will govern whether a particular request is truly asynchronous.

Kinds Of Agents

Agents can have their own task. This task is created at the time the agent is installed.
These agents execute asynchronously to and in parallel with their clients. These agents
are termed server agents because they fit directly into the client-server model. Server
agents use the message Receive/Reply primitives to serve a message port to which clients
send messages.

Agents that have no need for asynchronous access or parallelism can instead execute in
the task context of their client. These agents are called in-line agents. In-line agents have
no dedicated task context, but are instead called directly in the task context of their client.
In-line agents use the message system Accept/Reply primitives to serve a message port to
which clients send messages. The message send becomes, in effect, a subroutine call.

30 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
101 102

Agents are idea!l for use as loadable device drivers, network protocol layers, etc. Because
they can be task based, agents can have execution priorities. A high priority agent can
respond in real time to device requests. A low priority agent can use otherwise-idle CPU
cycles to anticipate the user without slowing system performance.

Installing Agents

Installation of agents involves allocating storage within the kernel band for the agent's
code and static data. If the agent is task based, the installation includes creating a task for
the agent. Installation also creates a message system port and object for use in
communication with the agent. All of these actions are performed by the kernel; you
don't have to worry about them when writing an agent or when using an agent.

Writing And Linking Agents

Agents can be written in a high level language or assembly language. The kemel only
requires that the main entry point conform to the 'C' calling conventions. The main entry
point must be callable as either a task entry point (in the case of a server style agent) or an
acceptor function (in the case of an in-line style agent). Agents must be linked with an
Apple supplied object module that assists with the initialization of the agent.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 31

5,590,334
103 104

TIMING & TIMERS

The timing services enable the precise measurement of elapsed time. The timer services
of the kernel allow tasks to suspend their execution until a given time or 0 cause a
specified subroutine to be called at a given time.

Measuring Elapsed Time

Measurement of elapsed time is done by simply obtaining the time before and after the
event to be timed. The difference of these two values indicates the elapsed time of the
event. Time, in this context refers to a 64-bit count, maintained by the kernel, with each
unit equal to one microsecond. The count is set to zero by the kernel during its
initialization at system startup time. Using this technique, elapsed times as short as one
microsecond or as long as 584,542 years can be measured.

Suspending Execution

A given task may chose to suspend its execution until a specified time in the future. This
process is termed delaying. When this time is reached, the task again becomes eligible
for execution. The task will not actually execute until it is scheduled for execution
according to its priority and the priorities of the other eligible tasks. In any case, the task
will never execute prior to the time specified.

When a task uses a delay service, it may specify the time at which it should resume
execution in either relative or absolute terms. Relaiive times allow the programmer to
indicate that execution should resume, for example. five minute from now. Absolute
times allow the programmer to indicate that execution should resume ai, for example,
three o'clock. Absolute times are a bit more cumbersome to use but allow periodic timing
with no long term drift.

Asvnchronous Timers

Asynchronous timing services cause notification at a given time. The notification can be
delivered in any or all of three ways. First, a specified memory location can be altered.
Second, one or more event flags within a single event flag group can be set. Third, a
specified subroutine can be run as a software interrupt.

Once set, an asynchronous timer remains in effect until it is either canceled or expires.
Cancellation may be done at any time prior to expiration, using the ID of the timer
returned by the kernel when the timer was set. Expiration of the timer causes the
notification, described above, to be delivered.

Asynchronous timers always specify absolute expiration times.

32 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
105 106

REALIZING THE VALUE

The NuKernel design team believes the features described above can be utilized by the
Macintosh System Software to build a software platform that is richer and more robust
than Systemn 7 while providing real value to both software developers and end users.

Launching an application involves creating an address space, a team and a task. The
address space contains three areas: code, heap, and stack. The code area is write
protected and mapped directly to the application file's code; no pre-loading of code is
done at launch time, rather the application faults itself in during execution. The heap and
stack areas are backed by swapping space. They are spread apart within the logical
address space to allow expansion as needed.

The application is free to allocate kernel resources during its execution including, if
desirable, other tasks. Application scheduling involves only the scheduling of tasks and
is performed completely by the kernel. Key OS and ToolBox routines may adjust the
priority of the current task to ensure system responsiveness.

Running in separate address spaces, applications can not interfere with each other or with
the kernel. Gross application errors cannot corrupt the system or other appiications.
Upon termination, either normal or abnormal, the team and all associated kernel resources
would be reclaimed.

Device management functions are largely subsumed by the message system. Device
drivers are kernel agents that service message ports. The Device Manager is used to
resolve device names and return message object IDs. /O requests are made by sending
messages to the device objects. Synchronous and asynchronous I/O is provided by the
message system without additional consideration on behalf of the device driver writer.
Drivers no longer have any constraints regarding order of request processing or
limitations regarding the number of concurrent requests processed at a time. Of course,
writing drivers that handle multiple concurrent requests requires additional code.

Other than the kernel and certain agents. no locked memory is required in the system. A
much larger percentage of real memory is available to applications enabling better end-
user perceived performance.

Phased Releases

The current ToolBox and the application programming model itself are not capable of
supporting separate address spaces, preemption, and true asynchrony. Furthermore, there
are no immediate plans in MSSW to take advantage of some of the key features of
NuKernel. Consequently, the system described above will be reached through a series of
releases.

The first version of a NuKernel based system will have a memory model much like that
presented by System 7.0 Virtual Memory. The use of tasking will be limited. There will
be a single 32-bit address space shared by all software. Only a subset of the
programming interface will be used. One consolation is that all privileged code,

12

March 29, 1994 Copyright 1992 Apple Computer, Inc. 33

5,590,334
107 108

including the kernel, privileged agents, secondary interrupt routines and interrupt service
routines will be protected from direct access by any non-privileged software. This release
can be integrated into the existing system with minimal change to the system, but may
not be suitable for all CPUs (e.g., portables do not work well with active paging). Little
real value will be provided but laying this groundwork is important. Application
developers can begin to use tasking in a limited fashion while preparing for the
inevitability of concurrency and true preemption.

Subsequent releases will include larger subsets of the programming interface, including
support for multiple address spaces and file mapping. These releases will require greater
degrees of NuKernel/OS/ToolBox integration, and might result in incompatibilities with
today’s software. System and application developers should be forewarned.

34 Copyright 1992 Apple Computer, Inc. March 29, 1994

109

March 29, 1994

5,590,334

Using NuKernel

Copyright 1992 Apple Computer, Inc.

110

5,590,334
111 112

ABOUT THE AP!

The programmatic interface (API) to the kernel is completely formalized through
function calls. There are no exported data structures or low-memory locations,

Unlike other Macintosh system software, the NuKernel API cannot be patched with
GetTrapAddress/SetTrapAddress. In fact, calling the kernei does not involve the use of
an A-Line instruction. Rather, the kemel is called by executing a TRAP #C instruction.
This departure from other system interfaces, combined with memory protection, allows
the kernel to be protected from the application domain.

All NuKernel interfaces age provided in 'C' header files. The calling conventions required
by the kernel are those of the 'C' runtime model used by Apple on the machine in
question.

Most kernel functions return an error indication. You should check these error
conditions. NuKernel makes every effort to validate all paramneters to each function call
prior to beginning any additional work.

Many kernel functions have "out" parameters. These are addresses that you pass to the
function. The contents of the address are modified by the kernel call. Passing null as the
address of an out parameter tells the kernel you don't want that value returned. These nuil
values do not generate an error. When a call to the kernel fails, the kernel clears any
output parameters of that particular function.

M68000 Calling Conventions

On M68000 Macintosh systems, NuKernel conforms to the MPW 'C' parameter and
register conventions.

Registers DO, D1, D2, A0, and Al are volatile and destroyed by any call to the kernel.
Registers D3-D7, A2-A7 are non-volatile and, therefore, preserved across any call to the
kernel. When calling the kernel, parameters are pushed right to left. Scalar parameters
are right justified in a single 32-bit stack word. A 32-bit selector value is loaded into
register DO; this value determines which kernel function is desired. Finally a TRAP #C
instruction (opcode 4E4C hex) is executed.

Upon return from the kernel, register DO contains a function resuit. This is typically an
OSStatus value and indicates which, if any errors, occurred during the processing of the
kerne} call. At the time of return, the parameters passed to the kernel are still on the
calling stack. They must be deallocated by the caller.

Some kernel functions use the contents of register A5 as an implicit parameter. In
general, whenever you supply the address of any code (a procedure parameter) to a kernel
service, the kernel retains not only that address but also the value which was in A5 at the
time the kernel was called. When the service is uitimately invoked, that retained A5
value will be placed into register AS5. This treatment of AS allows complete use of the

36 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
113 114

M68000 Macintosh runtime model, including jump table and static data, from
applications and their asynchronous components.

Be aware that the kernel's treatment of the Macintosh runtime model does not include
consistency with respect to the ToolBox and OS usage of low memory and other
machine/system state. Those aspects of Macintosh execution are still controlled by the
OS and ToolBox as in System 7.

PowerPC Calling Conventions

On PowerPC Macintosh systems, calls to NuKernel are performed using the shared
library mechanisms of the PowerPC runtime moedel. All conventions used by the kernel
are described in the PowerPC Runtime ERS.

Note: Once control has transferred into the shared library, execution is
considered to be within the kernel. The shared library code. aithough
within the address space of the client, is considered to part of the kernel's
implementation. None of this software, including the trapping
mechanisms, are documented. They are subject to change at any time.

Stack Space

Most clients of the kernel execute in user mode. These clients need not be concerned
about the amount of stack space used by the kernel because the kernel's execution never
takes place on user mode stacks. Each user mode task has a separate kernel stack that is
used by the kernel when the kernel is called.

Privileged software, (i.e, drivers, agents, etc.) always execute in supervisor mode. These
clients of the kernel must be aware that the kernel does use stack space. The amount of
stack storage is not currently documented. The kernel's design goals are to require less
than 4K bytes of stack storage.

Certain design decisions can lead to kernel stack space exhaustion. In-line style agents or
other software that makes use of the message system's acceptance function features, all
run on the supervisor mode stack of their client. It is the responsibility of these entities to
perform stack checks prior to using stack storage. Stack checking may be performed
using the NuKernel CurrentStackSpace service.

NuKernel performs stack checks on behalf of its clients at certain times. If stack

overflow is detected, a stack overflow exception is generated. Exceptions are described
in the Exceptions section of this document.

Addressing

Within NuKernel, all addressing is 32-bit clean. Don't even think about using the upper
or lower bits of an address as flags or tags.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 37

5,590,334
115 116

MMU hardware and the contents of the underlying page tables are owned entirely by the
kernel. They must not be manipulated directly. The kernel provides support for many of
the operations that have historically required direct manipulation of the MMU. See the

Memory Management section for descriptions of these services

38 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
117 118

SOME BASIC TYPES

This section introduces some basic types which are used throughout the API. They are
presented here, in no particular order, to avoid confusion later.

Miscellaneous Types
The following type declarations are self-explanatory:

cypedef unsigned lonag ByteCount;
cyvpedef long ItemCount;
typedef long osStatus;

typedef unsigned long OptionBits;

The symbol nilOptions is provided for clarity.
enum
{

nilOptions =0
Y

Parameter Block Versions

Any kernel service that operates upon a parameter block requires that you pass a
parameter block version in the service's parameter list. This version number allows the
kernel to provide backwards compatibility. Each parameter block type definition has an
associated, named, version constant. As long as you always use the named constant your
source is guaranteed to be correct and your object code will be supported.

typedef unsigned long PBVersicn;

Duration

Many interfaces allow the caller to specify a time relative to the present. These values
are of the type Duration.

typedef long Duration;

Values of type duration are 32-bits. They are interpreted in a manner consistent with the
System 7 Time Manager as follows: positive values are in units of milliseconds, negative
values are in units of microseconds. Therefore the value 1500 is 1.500 milliseconds or
1.5 seconds while the value -8000 is 8,000 microseconds or 8 milliseconds. Notice that
many values can be expressed in two different ways. For example, 1000 and -1000000
both represent exactly one second. When two representations have equal value they may
be used interchangeable, neither is preferred or inherently more accurate,

March 29, 1994 Copyright 1992 Apple Computer, Inc. 35

5,590,334
119 120

Values of type duration may express times as short as one microsecond or as long as 24
days. However, two values of duration are reserved and have special meaning. The
value zero, (0) specifies exactly the present time. A value of Ox7FFFFFFF, the largest
positive 32-bit value, specifies an infinite time from the present.

The following definitions are provided for use with values of type Duration:

enum

{
durationMicrosecond
durationMillisecond

4
-1,
q

1000,

durationsSecond =
durationMinute = 1000 * 60,
duraticnHour = 1000 ~ 60 * &G,
durationbay = 1000 * 60 * 6C * 24
durationForever = Ox7FFFFFFF,
duracionImmediate = 0,

I

Time

A second data type is used to specify absolute times. These values are of the type
AbsoluteTime. They are in units of microseconds and are 64-bits in width.

typedef struct AbscluteTime
{
unsigned leng high:
unsigned long low;
} AbsoluteTime;

Ref

Many interfaces to the kernel require that you pass the address of something as a
parameter. In fact, these parameters need not be addresses. These parameters are of type
Ref.

typedef wvoid * Ref;

Because they are derived from the predefined type void, Refs need not be coerced when
passed into the kernel.

KernellD

IDs are used whenever you create, manipulate, or destroy a kernel object. All IDs are
derived from the type KernellD.

40 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
121 122

typedef Ref KernellD;

You should used the derived types whenever possible as they will make your code more
readable.

The value invalidlD is reserved to mean “no ID.”

enum
{
invalidiD =0

}:

Kernellterator

The Kernel provides several iteration functions that allow the client to obtain the IDs of
all kernel objects within a specified domain. For example, you can iterate over all the
tasks within a given team or all of the message objects associated with a given message
port.

Each of these functions acts upon a Kernellterator provided to the kemel by the client.

typedef struct Kernellterator

{
ItemCount totalltems;
ItemCount validltems;
IteratoxrKey IterationKey;
KernellID theltems {1];

} Kernel Iterator;

Each iteration function provided by the kernel requires at least three parameters. These
are theCount, skipCount, and theltems. The first two are integer values that tell the
kernel how many items you want information about and how many items to ignore prior
to those items. The third parameter is the address of a Kernellterator that is to be filled in
with the information. Additional parameters may be needed to describe the iteration
domain.

Imagine that you wanted to iterate over all of the tasks in a particular team and that you
want to get the IDs of those tasks in groups of ten at a time. Your first call to the kernel
would specify 10 and zero for theCount and skipCount respectively. The second call
would specify 10 and 10 indicating that you want information about the second group of
10 tasks. The third would specify 10 and 20, etc.

The kernel fills in the Kemellterator you provide with information. In the same example
as above, you would provide a Kernellterator that had enough room for 10 task IDs. That
iterator would be filled in as follows:

+ totalltemns indicates the total number of tasks in the team.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 41

5,590,334
123 124

validltems indicates the number of task IDs that were returned by this call to the
kernel. This is always between zero and the value of theCount parameter.

IterationKey is a value that changes whenever the domain through which you are
iterating has changed. In this example, if any tasks have been created or terminated
within the specified team, the key value will change.

theltems contains the IDs of the items described by skipCount and validlterns.

Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
125 126

ERRORS

As with all system interfaces, you should check the OSStatus code returned by each
kerne! service you call. OSStatus values are 32-bits wide. However, to remain
compatible with System 7, all values currently returned by the kernel are in the range of
negative 16-bit values.

typedef long OSSTATUS;

-Error codes returned by the kernel fall into one of two categories. Some error codes are
generic in nature and could be returned by nearly any kernel service; these include
paramErr or memErmr. Other error codes are specific in nature and may only be retrned
by a specific service.

Whenever possible, the kernel returns an error rather than causing an exception.
However, in certain cases, erroneous calls to the kernel may result in exceptions. For
example, if you pass an invalid address vou may receive either paramErr or incur an
access violation exception.

Generic Errors
Described here are the error codes that could be returned by any kernel service. The
meanings given apply only to the meaning of that error code when it is returned by a

kernel service. Other system software may use that same error code to indicate some
other error.

» paramErr indicates that a parameter value is out of range or that a combination of
parameters passed to the service are illegal.

« memFulErr indicates that the kernel could not allocate the resources necessary to
satisfy the service request.

* kernelPrivilegeErr indicates that the caller of a kemnel service is non-privileged and
cannot use the service in question.

Specific Errors
« TBD

March 29, 1994 Copyright 1992 Apple Computer, Inc. 43

5,590,334
127 128

TEAM MANAGEMENT

Teams arc created through explicit requests to the kemel. Teams are deleted through
cither explicit request or implicitly, when, during task termination processing, it is
determined that the team has no additional tasks.

Tasks that belong to a specific team can allocate various kernel resources including
messages, event flag groups, message ports, message objects, other tasks, etc. If, at the
time the team is being deleted, these resources have not been deallocated they will be
reclaimed as part of the team deletion process.

Teams, when newly created, contain no tasks. Because automatic team deletion is a side
effect of task termination, teams that never have tasks are never automatically deleted. If
you create a team you must be careful that you either create a task within that team or
explicitly delete the team.

Deleting a team causes the termination of all tasks within that team and reclamation of all
resources that belong to the team. The team may or may not be deleted by the time the
DeleteTeam service returns to the caller. A Team is never deleted until ali its member
tasks have terminated. Task termination is discussed in the Task Management chapter of
this document.

If, as the result of deleting a team, that team's address space is no longer accessible from
any team, the address space is also deleted. Address space deletion is discussed in the
Address Space Management chapter of this document.

Creating Teams
OSStatus CreateTeam (AddressSpaceID theAddressSpace,
TeamiID * theTeam) ;
theAddressSpace is the ID of the address space that is to be addressable by the team's
tasks. A value of currentAddressSpacelD specifies that the team is to be created in the

current team's address space.

theTeam is updated with the ID of the newly created team.

Deleting Teams

OSstatus DeleteTeam (TeamlD theTeamn,
Boclean immediate):

theTeam 1s the ID of the tearn to be deleted.

44 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
129 130

immediate is used in conjunction with the TerminateTask service when terminating the
teamn's tasks. See a description of TerminateTask in the Task Management chapter of this
document.

Obtaining The Current Team ID

You can obtain the ID of the current team whenever executing at task level.

TeamlD CurrentTeamID (void);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 45

5,590,334
131 132

TASK MANAGEMENT

About Task Hierarchy

Tasks are found within conceptually enclosing environments called Teams. All tasks
within a team share the same address space. Additionally, tasks live within a parent-child
hierarchy. Tasks with no parent, called orphans, live at a root of a task tree within their
team. By default, a task is the child of the task which caused its creation; a task's creator
is termed its parent. During task creation you can specify that the created task should be
an orphan rather than a child.

The TaskRelationship type is used in conjunction with certain operations that affect more
than one task.

typedef unsigned long TaskRelationship;
enum
taskOnly
taskandChildren
taskFamily
taskTeam

L B D

nogooon

* TaskOnly means just that.

* TaskAndChildren means that the operation should be applied to the task and each of
its children and each of their children, etc.

* TaskFamily requires that the kernel must first find the ancestor of the specified task
which is an orphan and then perform the operation as if that orphan had been
specified and the relationship had been TaskAndChildren.

* TaskTeam causes the operation to be applied to each task within the team of the
specified task.

Tasking operations which can affect more than one task through use of a
TaskRelationship do not operate on those tasks in any particular order.

About Task Scheduling

Tasks are scheduled for execution based only upon their CPU priority. No consideration
is given to the team to which a task belongs or to the priorities of the task's parent or
children. The initial priority of a task is specified by 11s creator but may be subsequently
changed.

46 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
133 134

Tasks are scheduled with either a run-til-block or time-slice pelicy depending upon their
priority. Tasks with priorities of 24 or greater are run-til-block while tasks with priorities
less than 24 are time-skiced. Time slicing is only used to provide CPU time to tasks of
equal priority. The execution of a higher priority task is never preempted to allow a
lower priority task to execute.

About Task Parameters and Results

When you create a task you specify a subroutine which is to be executed within the
context of the newly created task. That routine should conform to the TaskProc
declaration.

typedef 0SStatus (*TaskProc) (Ref p):

The parameter P is specified at the time of creation and may be used for any purpose.
The result returned by the task at the time it terminates will be returned to its creator as
specified by the TerminationEvent parameter to the CreateTask call. Should the task
terminate abnormally, for example due to an unhandled exception, the system will
provide a suitable result value.

About Task Termination

Task execution can be terminated either implicitly, when the main routine of the task
returns, or explicitly through use of the TerminateTask service. In either case, the effect
of termination is similar. First, the task is marked as "terminating"; this causes operations
on the task to behave as if the task were in fact terminated. The termination process
requires execution of kernel code on behalf of the task which is being terminated.
Therefore, the termination does not proceed until the task becomes eligible for execution
and does in fact execute.

Note: Tasks of low priority can take awhile to terminate under normal
conditions. Tasks which are deadlocked will not terminate until they are
released from the deadlocking condition or the Immediate termination
option is used (see below).

The Immediate parameter to TerminateTask will force the to-be-terminated task to
become eligible for execution immediately.

Note: This may have side effects on other system code that is maintaining data
structures (i.e, open files) on behalf of the task being terminated.

Once the task begins to execute, a check is made to see if it has children. If children are
present no further actions are taken until they terminate. This allows children which have
references to their parent's resources (such as pointers into the stack) to continue normal
execution. Finally, when no children remain, any remaining resources including all
stacks and control blocks internal to the kernel are reclaimed.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 47

5,590,334
135 136

Finally, the task’s TerminationEvent, if any, is delivered. The termination event is
specified by the task's creator and is the only kernel-provided method of learning of a
task's termination. See the EventNotification section for a complete description of how
this notification is delivered.

If, as the result of task termination, that task’s team contains no tasks, the team is

implicitly deleted. Team deletion is discussed in the Team Management chapter of this
document.

48 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
137 138

THE TASKING SERVICES

Tasks are always referenced by their IDs.

typedef KernelID TaskID;

Creating Tasks

typedef unsigned long TaskOptions;

typedef OSType TaskName;
enum
{
taskIsPrivileged = 0x0080300C,
taskIsOrphan = {x0040000¢,
taskCreateSuspended = 0x0020000C,
taskPriorityMask = 0Ox0D00GOFF
};
OSStatus CreateTask (TaskName theName,
TeamID theTeamn,
TaskProc theEntryPoint,
Ref theParameter,
Ref stackBase,
ByteCount stackSize,
EventNotification * terminationEvent,
TaskCptions theOptions,
TaskID * theTask) :

CreateTask creates a task subject to the parameters provided.

theName specifies a four character name that may be useful for subsequent debugging.
The name is stored by the kernel in association with the task. This name is not used by
the kernel for any purpose and can be obtained using GetTaskInformation.

theTeam specifies an existing Team to which the task will belong. A value of zero causes
the task to be created within the Team of the caller. Tasks created in Teams other than
that of the caller will be orphans within the specified Team.

theEntryPoint is the address of a subroutine and will become the initial PC of the task
created. This address must be within the address space of the team specified by theTeam,

theParameter is a single 32-bit parameter which will be passed to EntryPoint when the
task begins its execution. The value and interpretation of Parameter are of no concern to
the kernel and may be used to convey information between the creator and created task.

stackBase is the optional address of memory to be used for the task's user mode stack.

This parameter is ignored for privileged tasks. If the value is Null, a stack will be created
for the task by the kernel. If non-null, the caller guarantees that StackSize bytes are

March 29, 1994 Copyright 1992 Apple Computer, Inc. 49

5,590,334
139 140

available to the task at this address and will remain available for use by the task until it
has terminated.

stackSize indicates the size of the stack desired for the task. Although the kernel may
detect certain stack overflow situations, it is the responsibility of the task to ensure it does
not run out of stack space. Kernel detected stack overflows are converted into stack
overflow exceptions. If the task is non-privileged the stackSize parameter specifies the
size of the user-mode stack. If the task is privileged it indicates the number of bytes of
kernel stack which should be allocated for the task; this value is in addition to the kernel's
requirements on this stack.

terminationEvent allows the creator to be notified upon the termination of the task being
created. If a value of Null is passed, no netification is given of its termination. If an
Event is specified it is delivered at the time the task finishes its termination. The status
value provided with the notification is either that from the return statement of the main
routine of a task, or that value supplied in a TerminateTask call that caused the task to
terminate.

theOptions is used to control various aspects of task creation.

= The tasklIsPrivileged bit, when set, causes the task to be privileged and to execute in
supervisor mode.

* taskIsOrphan, when set, specifies that the task being created should not be a child of
the creator, but rather should live at the root of the team to which it belongs; this
affects the termination relationship between the creator and createe.

» taskCreateSuspended indicates that the task should not begin its execution upon
creation. Such tasks commence execution when the StartTask kernel service is
called.

« The TOPriority field indicates the initial CPU priority of the task and is used by the
scheduler. CPU priorities range from 1 to 31 with larger numbers signifying higher
scheduling priority. Specifying a priority of zero causes the created task to inherit
the priority of its creator.

theTask is updated with the ID of the task thus created.

Setting a Task's Static Context

A task's static context is inherited from its parent. For 68K systems this is the initial AS
value which will be active during the task's execution. For POWER/PC systems this is
the initial TOC which will be active during the execution of the task.

50 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
141 142

Starting A Task That Was Created Suspended

The StartTask service is used to cause tasks which were created with the
taskCreateSuspended option to begin executing.

Using this service in conjunction with a task which has either already been started or was
not created with the CreateSuspended options will result in an error being returned.

0SStatus StartTask (TaskID :theTask);

Terminating A Specific Task

0SStatus TerminateTask (TaskID theTask,
TaskRelationship theScope,
Boolean immediate,
0OSStatus theResult);

TerminateTask forces one or more tasks to terminate. See the About Task Termination
section.

theTask is the task ID of the task to be terminated.
theScope indicates what other tasks should also be terminated.

immediate governs whether the task termination takes place immediately. See the About
Task Termination section.

the Result will be used to in conjunction with the TerminationEvent of tasks which, prior
to the TerminateTask call, have not yet begun to terminate.

Obtaining The ID Of The Current Task

OSStatus CurrentTaskID (TaskID * theTask};

When called from a task TheTask is updated with the ID of the current task. If called
from either an interrupt handler or secondary interrupt handler, an error is returned.

Determining The Amount Of Stack Space

ByteCount CurrentStackSpace (void);

March 29, 1994 Copyright 1992 Apple Computer. Inc. 51

5,590,334
143 144

CurrentStackSpace returns the amount of stack space available on the current stack. It
may be called from any execution level.

Obtaining Information About A Task

You can obtain information about a given task by using the GetTaskInformation service.
The information returned reflects the state of the task at the time the GetTaskinformation
service is made. Due to the preemptive nature of the kernel, this information may be
obsolete even before the GetTaskInformation service returns to its caller. The
information that is available is returned in the form of a TaskInformation record with the
following type definition:

typedef OSType SchedulersState;

typedef struct TaskInformation
{

TaskName theName;

TeamID theTeam;
TaskPriority thePriority;
SchedulerState caskState;
SchedulerState swiState;

Boolean isTerminating;
ItemCount softwarelnterrupts;
Ref programCounter;
AbsoluteTime creationTime;
AbsoluteTime cpuTime;

} TaskInformation;
The various fields of the TaskInformation record have the following meanings:
= theName indicates the four character name provided when the task was created
« theTeam indicates the ID of the team to which the task belongs
= thePriority indicates the CPU priority of the task
< taskState is a four character abbreviation of the scheduler state of the task

» swiState is a four character abbreviation of the scheduler state of software interrupts
for the task

* isTerminating, if true, indicates that the task is in the process of terminating

- softwarelnterrupts indicates the number of software interrupts that have been
processed by the task. It does not indicate how many software interrupts are
pending execution by that task.

+ programCounter is the logical address at which the task will execute next. This

value may be used for histogramming. If the task is executing in the kernel. this
value will be the logical address of the instruction following the kernel call. If a

52 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
145 146

value of zero is returned, this indicates that the kernel could not obtain the
programCounter of the task.

« creationTime indicates the time at which the task was created. Subtracting this
value from the value returned by the UpTime service will yield the amount of wall-
clock time that has passed since the task was created.

+ cpuTime indicates the amount of CPU time that the task has consumed. This
includes all task execution time in the kernel as well as that consumed by processing
software interrupts. Also included is the time spent processing hardware and
secondary interrupts incurred while the task was running.

enum

tagskInformationVersion = 0

J;

OSStatus GetTaskInformation (TaskID theTask,
PBVersion theVersicn,
TaskiInformation * thelnfo);

GetTaskInformation returns information about the specified task to the caller.

theTask specifies the ID of the task about which information is to be returned.

theVersion specifies the version number of TaskInformation to be returned. This

provides backwards compatibility. taskInformationVersion is the version of
TaskInformation defined in the current interface.

thelnfo is the address of a TaskInformation record. This record is filled in by the kernel
with information about the designated task.

Setting A Task's Execution Prioritv

You can alter the priority of a task. Note that the priority of a task does not change until
it is next made eligible to execute. This means, for example, that a lower priority task
which is waiting for an event flag will not have its priority in the wait queue adjusted
until after it has acquired the flag or the wait operation has timed out. The effect of
SetPriority is immediately seen by GetTaskInformation even though the task's priority
change may not as yet have taken effect.

OSStatus SetPriority {TaskID theTask,
long theNewPriority);

Iterating Over Task IDs

March 29, 1994 Copyright 1992 Apple Computer, Inc. 53

5,590,334
147 148

OSStatus GetTasksInTeam {TeamID cheTeam,
TtemCount theCount,
ItemCount skipCount,

Kernellterator * theTasks);
GetTasksInTeam allows the caller to find the IDs of all tasks within a particular Team.
For additional information about using itcration functions see the Some Basic Types
section of this document.
theTeam indicates the team of interest. A value of zero indicates the callers team.

theCount indicates the maximum number of task IDs that should be returned. This
indicates the size of the Kernellterator that is passed.

skipCount indicates the number of tasks within theTeam that should be ignored.

theTasks is a Kernellterator that is filled in with the IDs of the tasks within theTeam.

54 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
149 150

EXCEPTIONS

Exceptions are synchronous alterations in program flow which arise from exceptional
conditions caused by normal instruction execution. Certain exceptions, such as page
faults, are handled entirely by the kernel. Other exceptions, such as illegal instruction,
are presented to the client for resolution; the handling of these exceptions by the client 13
covered here.

Different processor families support different exception models and cause exceptions
under varying circumstances. For examnple, the M68000 family of processors generate
exceptions when any of the integer divide instructions attempts to divide by zero whereas
the POWER/PC family of processors indicates this condition by setting the OV bit in the
condition code register.

Exceptions are, therefore, processor specific in nature. The kinds of exceptions, the
information made available at the time of the exception, and the ability to resume
execution after an exception are all processor specific. NuKernel attempts to isolate these
processor dependencies by presenting a processor independent model for the registration
and invocation of exception handlers. However, exception handlers that want to correct,
rather than simply report, an exception must, by definition, be processor dependent.

Exceptions can arise during processing at any execution level: task, secondary interrupt,
or hardware interrupt. This section covers only exceptions that occur during task level

execution. See the Interrupt Handling and Secondary Interrupt Handlers sections for
details about handling exceptions during non-task level. execution.

About Exception Handlers

NuKemel provides support for catching, resolving, and proceeding from exceptions,
subject to the specifics of the processor. Exception handling is performed within the
context of the task which incurred the exception. Exception handlers are installed for a
given task and do not inherently affect other tasks in any way.

Exception Handlers are not nested. Each task can have only a single handler. Installing
an exception handler overrides any previous exception handler installed for that task.
When a handler is installed, the previous handler for that task is returned. This allows a
routine to temporarily install an exception handler and then restore the previous handler.

At the time of an exception, the exception handler is provided with information about the
nature of the exception and the state of the processor at the time of the exception. The
type ExceptionInformation is machine dependent and therefore described in the NuKernel
implementation guide for each product.

Exception handlers may resume execution either by returning to the kernel or by
transferring control using longjmp or similar mechansims. If a handler chooses to return
to the kernel, it must supply a result indicating what action should be taken by the kernel.
A value of noErr indicates that the exception has been cured and that execution should

March 29, 1994 Copyright 1992 Apple Computer. Inc. 55

5,590,334
151 152

resume based upon the information. Any other value indicates that the exception handler
could not cure the exception and that the task should be terminated.

Exceptions Within Exception Handlers

Exception handlers are invoked on the stack of the task which caused the exception and
synchronously to that task's execution. Exception handlers which incur exceptions
simply cause exception processing to begin recursively. Exception handlers may be
preempted by software interrupts which may in turn cause exceptions leading to the
invocation of an exception handler yet again.

Exception Handler Declarations

All exception handlers should conform 1o the ExceptionHandler declaration.

typedef OSStatus (*ExceptionHandlexr)
(ExceptionIinformation * theException);

Installing Exception Handlers

No implicit exception handling is provided by NuKernel. Tasks which incur exceptions
and have not installed an exception handler are terminated as a result of the exception.

ExceptionHandler InstallExceptionHandler (ExceptionHandler theHandler);
theHandler specifies a subroutine which becomes the active exception handler for the

task. Specifying Null indicates that no exception handler should be installed. The
previously active handler is returned as the function result.

56 . Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
153 154

SOFTWARE INTERRUPTS

The software interrupt mechanism allows a given subroutine to be run asynchronously to
a given task's normal flow of control yet still be within the context of that task. Software
interrupts are said to be sent to a task by either a different task, a secondary interrupt
handler, or in some cases, the task itself. Once sent, software interrupts are said to be
pending until actually activared .

The execution of a software interrupt happens on the same stack and with the same
addressing context which the task typically executes. Software interrupts can be handled
by a task even when its normal execution has been suspended. At completion of a
software interrupt, the interrupted task will resume execution at the point of interruption.
If the task was not executable prior to delivery of the software interrupt it will, again,
become blocked upon whatever event it was awaiting prior to the interruption.

Software interrupts are serialized. If a task is executing a software interrupt routine and is
sent a second software interrupt, it will finish processing the first interruption prior to
beginning the processing associated with the second. This is true even if the first
software interrupt handler performs some blocking operation such as waiting for an event
flag or initiating a synchronous I/O operation.

The presence of a pending software interrupt or the invocation of a software interrupt

handler does not inherently change the execution priority of the associated task or affect
the scheduling of that task or any other tasks in any way.

Controiling Software Interrupts

Software interruptions to given task may be enabled and disabled programmatically by

using EnableSoftwarelnterrupts and DisableSoftwareInterrupts. These operations nest

automatically so every call to DisableSoftwarelnterrupts must be matched with a call to

EnableSoftwareinterrupts. Calls to either of these services have no effect when the task
is processing a software interrupt.

void DisableSoftwareInterrupts {void) ;
void EnableSoftwareInterrupts (void);

Querying The Level Of Execution

A task may check whether it is executing at software interrupt level through use of the
InSoftwarelnterruptHandler service.

Boolean InScftwarelnterruptHandler {(void):;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 57

5,590,334
155 156

Software Interrupt Handlers

A software interrupt handling routine must conform to the prototype definition
SoftwarelnterruptHandler. The meanings of the parameters, P1 and P2, are specified by
the creator and sender of the particular software interrupt, respectively.

typedef void (*SoftwarelnterruptHandier) ({(Ref
Ref

g g
NP

Specifving Software Interrupts

Software interrupts are specified by a software interrupt ID. These IDs are created by
using the CreateSoftwarelnterrupt service. Software interrupt IDs are instances of
potential interrupt requests. The ID of a software interrupt is valid undl it is released by
either the invocation of the software interrupt handler, which occurs sometime after a call
to SendSoftwarelnterrupt, or deleting it using DeleteSoftwarelnterrupt.

typedef KernellID SoftwarelInterrupclD:;

0SStatus CreateSoftwareInterrupt
{SoftwareInterruptHandler theHandler,

TaskID forTask,

Ref theParameter,

Boolean persistent,
SoftwarelnterruptID * theScftwarelntexrrupt) ;

theHandler is the routine address of the software interrupt handling routine. The address
of this routine must be within the Team of the caller.

forTask is the ID of a task which will receive the software interrupt. If Null, the current
task will receive the interrupt. This task must be within the same task Team as the calling
task.

theParameter is the value that will be passed to TheHandler as its pl parameter.
persistent indicates whether the ID of the software interrupt should be consumed when
the software interrupt is activated or should persist until explicitly deleted by
DeleteSoftwareInterrupt. These persistent software interrupts may each be sent multiple
times but only once per activation; that is, the software interrupt must run before it can be
re-sent. See Sending Software Interrupts, below.

theSoftwareInterrupt is updated with the ID of the created software interrupt.

Sending Software Interrupts

You can send a software interrupt to a specific task by calling SendSoftwarelnterrupt.
The software interrupt will be activated when the designated task becomes eligible for

58 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
157 158

execution with software interrupts enabled and all software interrupts previously sent to
the designated task have been processed. Attempts to send a single software interrupt
more than once result in errors. Persistent software interrupts can only be re-sent after
they have been activated.

0OSStatus SendSoftwareInterrupt
(SoftwarelnterruptID theSoftwarelnterrupt,
Ref theParameter);

TheSoftwarelnterrupt specifies a software interrupt previously created by
CreateSoftwareInterrupt.

theParameter is the value that will be passed to TheHandler as its p2 parameter.

Deleting A Software Interrupt
You can delete a software interrupt by calling DeleteSoftwareInterrupt. The software

interrupt and its ID will be consumed immediately. Software interrupts that are pending
can be deleted; they will never be activated.

OSStatus DeleteScftwarelnterrupt
{SofrwarelInterruptIl theSofrtwarelnterrupt) ;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 59

5,590,334
159 160

HARDWARE INTERRUPTS

About Interrupt Handlers

NuKernel provides support for installing and removing hardware interrupt handlers.
Interrupt handlers are invoked by the kernel in response to an external interrupt. Interrupt
handlers execute on a special stack dedicated to interrupt processing. Interrupt handlers
must operate within the restrictions of the interrupt execution model by not causing page
taults, and not using certain system services.

To ensure maximum system performance interrupt handlers should perform only those
actions which must be synchronized with the external device that caused the interrupt and
then queue a secondary interrupt handler 1o perform the remainder of the work associated
with the interruption.

NuKerne! services pertaining to hardware interrupts are only available to privileged
clients.

Designating Interrupt Sources

Interrupts are designated by use of a 32-bit vector number. This is not related in any way
to the interrupt vector defined by the processor. These vector numbers will be assigned
by Apple and described in the NuKernel implementation guide for each product.

typedef unsigned long InterruptVector:

Exceptions Caused By Interrupt Handlers

Whenever you register an interrupt handler, you can specify an exception handler. That
exception handler will gain control should an exception be incurred by the interrupt
handler. Additional exception handlers can not be installed nor can any exception
handlers be removed during processing at hardware interrupt level.

Should an exception arise, control will be transferred to the exception handler as
described in the Exceptions chapter of this document. The handler can affect a transfer of
control using longjmp or similar mechanisms or return to the kernel. If the handler
returns to the kernel indicating that the exception was handled. control will resurne
according to the exception state information provided by the handler. If, however, the
handler returns to the kernel with status indicating that the exception was not handled, the
system will crash.

‘When registering an interrupt handler, you may request that no exception handler be
installed during the activation of that interrupt handler. Specifying a value of Null causes

60 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
161 162

no exception handler to be installed. Should an exception arise with no exception handler
installed, the system will crash.

Execution Context Of Interrupt Handlers

Interrupt handlers are invoked with the appropriate addressing context (A5 or TOC) as
determined at the time they are installed. However, all data and code references
generated during the processing of a hardware interrupt must be to physically resident
pages. Access to non-resident pages cause access error exceptions.

Arbitrating for Interrupts

Installation of interrupt handlers can only succeed if no other handler 1s currently
installed. Removal of interrupt handlers requires that you know the handler which is
active (see Removing [nterrupt Handlers). In short, it is not possible to usurp control of
an interrupt which is already under control of some other handier. The policies for such
arbitration are beyond the scope of the kernel.

Parameters To Interrupt Handlers

When an interrupt handler is invoked it is supplied with two 32-bit parameters. The first
indicates the source of the interruption, and is the same vector number supplied at
instaliation time. This allows a single interrupt handler installed for multiple sources to
determine the source of the current invocation. The second parameter to an interrupt

handler is the reference constant value, parameter pl, that was passed to
InstallInterruptHandler.

typedef void (*InterruptHandler) (InterruptVector theVecter, Ref pil);

Installing Interrupt Handlers

OssStatus InstalllnterruptHandlex
(InterruptVector theVector,
InterruptHandler theHandler,
ExceptionHandler theExceptionHandler,
Ref pl);

If no other handler is currently installed, the specified handler is installed for the logical
interrupt source. If a handler is already installed for this vector, no actions are taken and
an error is returned.

theVector specifies the interrupt vector source for which the handler is to be invoked.

March 29, 1994 Copyright 1992 Apple Computer, Inc, 6l

5,590,334
163 164

theHandler is the subroutine that is the interrupt handler, It will be invoked with a single
parameter whose value is theVector.

theExceptionHandler is an exception handler which will be invoked if an exception
oceurs during an invocation of theHandler. If Null, exceptions during an invocation of
the handler will be system fatal.

pl is a refcon that is passed to the interrupt handler whenever it is invoked.

Removing Interrupt Handlers

OSStatus RemovelInterruptHandler {InterruptVector cheVector,
InterruptHandler theHandlex);

If the handler specified is currently installed at the vector specified, it is removed along
with any associated exception handler. If theHandler is not the active handler for this
vector, no action is taken and an error is returned. Once a handler is removed,
interruptions from the source will cause fatal system errors unless a new handler has been
installed.

theVector specifies the interrupt vector source of the handler to be removed.

theHandler specifies the handler which must be currently active for the operation to
succeed.

62 Copyright 1992 Apple Computer, Inc. March 29,1994

5,590,334
165 166

SECONDARY INTERRUPT HANDLERS

Secondary interrupt handlers are the primary synchronization mechanism used within the
kernel and its extensions. Secondary interrupt handlers must conform to the interrupt
execution environment rules which include: no page faults, severe restrictions on using
system services, etc. Secondary interrupt handlers run on a special stack reserved just for
this purpose. They may not make any presumptions about the task context in which they
execute.

The special characteristic of secondary interrupt handlers which makes them useful is that
the kernel guarantees that at most one handler is active at any time. This means that if
you have a data structure which requires complex update operations and each of the
operations utilize secondary interrupt handlers to access or update the data structure, then
all access to the data structure will be atomic even though hardware interrupts are enabled
during the access.

Note: Although interrupts are taken during the execution of secondary interrupt
handlers, no task level execution takes place. This can lead to severely
degraded system responsiveness. Use the Secondary Interrupt facility
only when necessary.

NuKernel services pertaining to secondary interrupts are available only to privileged
clients.

About Secondary Interrupt Handlers

Secondary interrupt handlers are simple procedures. They have between zero and four
parameters and return no result. A separate prototype describes each of the five flavors of
secondary interrupt handler.

typedef OSStatrus {*SecondaryInterruptHandlerProc) {(void) ;
typedef OSStatus (*SecondarylInterruptHandlerProcl) (Ref pl);
typedef OSStatus (*SecondaryInterruptHandlerProc2) (ReZ pl,
Ref p2);
typedef OSStatus (*SecondaryInterruptHandlerProc3) (Ref pl,
Ref D2,
Ref p3);
typedef 0OSStatus (*SecondaryInterruptHandlerProcd) (Ref pl,
Ref P2,
Ret p3.
Ref pd);

Exceptions In Secondary Interrupt Handlers

Whenever you queue or call a secondary interrupt handler, you can specify an exception
handler. That exception handler will gain control should an exceptions be incurred by the

March 29, 1994 Copyright 1992 Apple Computer, Inc. 63

5,590,334
167 168

secondary interrupt handler. Additional exception handlers can not be installed nor can
any exception handlers be removed during processing at secondary interrupt level.

Should an exception arise, control will be transferred to the exception handler as
described in the Exceptions chapter of this document. The handler can affect a transter of
controf using longjmp or similar mechanisms or return to the kernel. If the handler
returns to the kernel indicating that the exception was handlied, control will resume
according to the exception state information provided by the handler. If, however, the
handler returns to the kernel with status indicating that the exception was not handled, the
system will crash.

When queueing or calling a secondary interrupt handler, you may request that no
exception handler be installed during the activation of that secondary interrupt handler.
Specifying a value of Null causes no exception handler to be installed. Should an
exception arise with no exception handler installed, the system will crash.

Queuing Secondary Interrupt Handlers

Queueing secondary interrupt handlers is usually done during the processing of a
hardware interrupt. The secondary interrupt handler's execution will be deferred until
execution is about to transition back to task level. You may, however, queue secondary
interrupt handlers from secondary interrupt level. In this case, the enqueued handler will
be run after all other such queued handlers, including the current handler, have finished
executing. Only one flavor of secondary interrupt handler, those with two parameters,
Igay be quened. You must specify the values of the two parameters at the time you queue
the handler.

Secondary interrupts handlers that are queued from hardware interrupt handlers consume
kernel rescurces from the time they are queued until the time they begin to execute.
These resources are finite. You should make every attempt to limit the number of
simultaneously queued secondary interrupt handlers.

0SStatus QueueSecondaryInterruptHandler

(SecondaryInterruptHandierProc2 theHandlex,
ExceptionHandlexr theExceptionhandler,
Ref pl,

Ref ©2);

Calling Secondary Interrupt Handlers

Secondary interrupt handlers can be called synchronously through use of the
CallSecondaryInterruptHandler .. CallSecondarylnterruptHandler4 routines. These
services may be used from either task level or secondary interrupt level but not from
hardware interrupt level. The secondary interrupt handler is invoked immediately in
response to calls to these services; they are never queued.

64 Copyright 1992 Apple Computer, Inc. March 29, 1994

169

0SStatus

OSStatus

OSStatus

OSstatus

0SStatus

March 29, 1994

5,590,334

CallSecondaryInterruptHandler
(SecondaryInterruptBandlerProcl
ExceptionHandler

CallSecondaryinterruptHandlerl
(SecondaryInterruptHandlexProcl
ExceptionHandler
lcong

CallSecondaryInterruptHandler
{SecondaryInterruptHandl
ExceptionHandler
long
long

2
er?roc

CallSecondaryInterruptHandlers
(SecondarxyInterruptEandlerProc3
ExceptionHandler
Long
long
long

CallSecondaryInterruptHandierd
{SecondaryInterruptEandlerProcd
ExceptionHandler
long
long
long
long

170

theHandler,
cheExceptionHandler) ;

theHandler,
theExceptionHandler,
pl};

theHandler,
theExceptionHandler,
ol.

D2);

theHandler,
theExceptionHandler,
pl,

p2,

p3):

cheHandler,
theExceptionHandler,
pl,

o2,

p3,

pd);

Copyright 1992 Apple Computer, Inc.

5,590,334
171 172

EVENT FLAGS

Event Flags are primarily used for synchrenizing operations among tasks and are similar
to classical semaphores. Event Fiags come in groups, each group containing 32 separate
flags or semaphores. The kernel provides a set of operations which Create and Delete
Event Flag Groups and operate upon one or more of the flags within a specified group.
As with most abstract types provided by the kernel you cannot get access to the
underlying data of an event group; it is maintained within the kernel's address space and
you may only reference it by the ID returned when the group is created.

typedef KernellD EventGroupID;
In addition to operations which aliow the creation and deletion of event flag groups, other
operations allow you to Set, Clear, Test, and Wait for one or more tlags within a group.

These operations require that you specify a mask value which is used to manipulate the
flags within the group.

typedef unsigned long EventMask;

Creating Event Flag Groups
Osstatus CreateBventFlagGroup (EventGrouplID * theGroup) ;

CreateEventFlagGroup creates an event flag group returns the group's ID. Each flag
within the group is cleared. The group of flags will persist until it is explicitly deleted.

Deleting Event Flag Groups

0Sstatus DeleteEventFlagGroun (EventGrouplD theGroup);

DeleteEventFlagGroup destroys the specified event flag group. Any tasks waiting upon
flags within the group are made executable and the result of their wait operation will be a
kernellncompleteErr.

Setting Event Flags

OSStatus SetEvents (EventGrouplD theGroup,
BEventMask theMask) :

66 . Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
173 174

SetEvents sets specified flags in the specified event flag group. As a result of setting
flags, tasks waiting upon those flags will become eligible for execution. See
WaitForEvents below.

theGroup specifies the event flag group.

theMask specifies zero or more event flags to set.

Clearing Event Flags

O$Status ClearEvents (EventGroupll theGroup,
EventMask theMask) ;

ClearEvents clears specifted flags in the specified event flag group. Clearing event flags

does not have any scheduling side effects.
theGroup specifies the event flag group.

theMask specifies zero or more event flags to clear.

Examining The Value Of Event Flags

CgStatus ReadEvents {(EventGroupll theGroup,
EventMask * thevValue) ;

ReadEvents returns the values of the event flags in the specified event flag group.
theGroup specifies the event flag group.

theValue specifed where 10 return the values of the event flags.

Waiting For Event Fiags To Become Set

typedef unsigned long EventFlagOperation;

enum

{
eventFlagAll
eventFlagAny
eventFlagAlliClear
eventFlagAnyClear

oo
(R SIS

}:

OSStatus WaltForEvents (EventGrouplD <heGroup,
Duration timelimit,

March 29, 1994 Copyright 1992 Apple Computer, Inc.

67

5,590,334

EventMask theMask,
EventFlagOperation theOperation,
EventMask * thevalue);

‘WaitForEvents waits for the flag(s) specified by theMask to become set within theGroup.
It you want to wait for any one of several flags to become set use the eventFlagAny
operation. If you want to wait for multiple flags to ali become set use the eventFlagAll
operation. You can optionally cause the flags for which you were waiting to be cleared
by using either eventFlagAllClear or eventFlagAnyClear rather than eventFlagAny or
eventFlagAll respectively. The maximum amount of time spent waiting is controlled by
the timelLimit parameter and may range from zero to infinite. theValue represents the
value of the flags when either the condition is satisfied or the timeLimit is exceeded.

Using Event Flags As Semaphores

Event flags may be used to implement traditional semaphores. To acquire a semaphore
simply use the WaitForEventFlag with theOperation set to eventFlagAllClear. To release
a semaphore which you have acquired, just use the SetEvents operation. Note, however,
that the initial state of flags within an event flag group (cleared) causes them to be in the
acquired state. They must be released (set) priot 10 being subsequently acquired.

SetEvents (theGroup, theMask); 7/ V (8) - Release
WaitFerEvents {theGroup, S/ P {8) - Acguire
durationForever,
theMask,

eventFlagaAllClear,
nily;

The Processing Of SetEvents

SetEvents is of most interest because it can cause one or more task scheduling operations
if any corresponding WaitForEvents requests become satisfied.

At the time of a Set operation, zero or more tasks are waiting for flags with the specified
group to become set.

After the flag group has been updated to reflect the effect of the Set operation, the set of
waiting tasks is scanned in an order dependent upon the priority of the waiting tasks.
Higher priority tasks are considered before lower priority tasks. Within a single priority,
tasks that have been waiting longer are considered prior to those which have been waiting
for a shorter time. If the condition, specified by a given wait request, is satisfied the task
is made executable and it is removed from the list of waiting tasks. Otherwise, the task
remains on the list. If the condition is satisfied and the clear option was specified
(EventFlag AnyClear or EventFlagAllClear), the effect of the ciear happens before any
other task's conditions are evaluated. The evaluation of the list continues until all tasks in
the list have been processed.

68 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
177 178

EVENT NOTIFICATION

Many services provided by the kernel have forms that aillow them to take place in parallel
with the execution of the task making the request. These services are said to be
asynchronous. NuKernel supports three mechanisms indicating when these
asynchronous requests have completed: memory location update, Event Flags and
Software Interrupts.

Asynchronous services allow you to specify an EventNotification which governs how
you'll be informed of the request's completion. An EventNotification aliows you to select
any or all of the notification schemes. EventNotitications are used in conjunction with
various address space, timer, task, and message operations.

When an asynchronous kernel service finally completes, those services deliver the
notification. Notification delivery is defined as the following actions in order:

+ Placing the service's result into a specific memory location.
* Setting one or more event flags within a specific event group.

» Sending a specific software interrupt. The service's result is used as the value of the
second parameter to the software interrupt handler.

Delivery of a notification is completely asynchronous to the execution of the task that is
being notified.

Every kernel service that makes use of the event notification mechanism has a
notification parameter. This parameter is the address of an EventNotification record. If
you pass the Nuil address, no notification will be delivered. Although event notification
records are passed by address, the kernel makes a complete copy of the record that you
supply at the time that you call the service. The record that you supply is not referenced
at the time the service completes and the notification is delivered.

Event Notification
Below is the type declaration of an EventNotification.

typedef struct EventNotification

{

O0SStatus * theStatus;
EventGroupID “heGroup;
EventMask theMask;

SoftwareInterruptId theSwi;
} EventNotification;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 69

5,590,334
179 180

TIMING SERVICES

The kernef's timing services provides four different kinds of timers in addition to services
that allow you to determine the timer accuracy of the hardware and to get the current
time.

Three of the timer services are used when tasks need to either delay for a period of time
or receive notification at a particular time. The fourth timer service allows you to specify
a secondary interrupt handler that is to be run at a particular time.

Timer Accuracy

e accuracy of timer operations is quite good. Every attempt is made to ensure the
Th y of t perat quite good. Every attemp de th
quality of timed operations. However, certain limitations are inherent in the timing
mechanisms and these are described below.

About The Time Base

Timer hardware within the system is clocked at a rate that is model dependent. This rate
is called the Time Base. The timer services isolate you from the time base by
representing all times in microseconds. However, the times that you specify are
converted from microseconds into the units supported by the underlying hardware when
hardware timers are actually programmed. This conversion can introduce errors. These
errors are typically limited to one unit of the time base.

When performing sensitive timing operations, it can be important to know the underlying
time base. For example, if the time base is 10 milliseconds, there is not much value in
setting timers for 1 millisecond. You can determine the hardware time base by using the
following service:

void TimeBase {(unsigneé long * Numerator,
unsigned long * Denominazor);

Representing the time base is difficult. The value is typically an irrational number.
NuKernel solves this problem by returning a representation of the time base in fractional
form; two 32-bit integer values, a numerator and denominator, are returned. The result of
dividing the numerator by the denominator is a value that is equal to the number of
hardware ticks per microsecond.

For example, if the hardware time base increments the hardware timer once every 1.2
microseconds then a call to TimeBase will return a numerator of 12 and a denominator of
10. 1In this example, numerator/denominator values of 120/100 or 6/5 would be equally
valid.

70 Copyright 1992 Apple Computer, Inc. March 29. 1994

5,590,334
181 182

Timing Latency

Timing latency is the amount of time which passes between when a timer should expire
and when the notification of its expiration is received. Timing latency within the system
1s not deterministic. The effects of scheduling operations triggered by timer expiration do
not necessarily occur immediately. Hardware interrupt handlers, secondary interrupt
handlers, and tasks of greater or equal CPU priority will all contribute to the perceived
latency of these timing services. Latency, by its nature, is not constant over time. Under
some conditions, such as servicing a page fault when invoking the timer handler, latency
may be larger than the requested time interval. If you avoid installing many timers that
all expire at nearly the same time, timer latency should be acceptable.

Timer Overhead

When setting a timer, the time you specify is used directly to program the timing
hardware. NuKemel does not attempt to account for either the overhead of setting up the
timer or the overhead of notifying a client of the timer's completion. As a result, a timed
operation of one millisecond may actually require, for example, .1 milliseconds.
Overhead is different from latency because it is constant.

Obtaining The Time

You can read the internal representation of time to which all timer services are

referenced. This value starts at zero during kernel! initialization and increases throughout
the system's lifetime.

void UpTime (AbsoluteTime * theTime);

Setting Timers To Expire In The Past

Several of the timer services allow you to specify an absolute time at which the timer is to
expire. It is, therefore, possible that the ime you specify has already occurred. The
kernel does not attempt to optimize these cases. Timers set at times in the past will
expire within a very short period of time, perhaps instantly, perhaps not. You should not
depend upon the exact behavior of such timers.

Synchronous Timers
Synchronous timers cause the calling task to stop executing until a specific time is

reached. NuKernel provides synchronous timers that specify time in both absolute and
refative terms.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 71

5,590,334
183 184

Synchronous Timers With Absolute Times
volid DelayUntil (AbsoluteTime * expirationTime);

The calling task is blocked until expirationTime at which point the task is again made
eligible for execution. Unless called with software interrupts disabled or from within a
software interrupt handler, software interrupts may be received while the task is
otherwise sleeping. Because DelayUntil allows you to specify an absolute expiration
time, you can perform periodic work at intervais which have no long term drift.

Following is an example of a task that performs some work at one second intervals with
no long term drift.

OSStatus DriftFreeWorker (Ref work)
{

TimeFormat nextWorkTime:

UpTime (&nextWorkTime) ; :/ Get the time reference

do

{
DoTheWork (work) // Do the work
AddOneSecond (&nextWorkTime}; // Calculacte next time to work
DelayUntil (&nextWorkTime); // Delay until that zime

} while (true);

Synchronous Timers With Relative Times
void DelayFor ({Duration thebelay) ;

The calling task is blocked for the amount of time specified. DelayFor allows the caller
to delay for a time relative to when the service is called. You cannot achieve drift free
timing by using repeated calls to DelayFor.

Following is an example of a task that performs some work at one second intervals with
unpredictable long term drift.

O0Sstatus DriftingWorker (Rei work)
{
do
{
DoTheWork {work) ; // Do the work
DelayFor (durationSeccend); // Delay for one second
} while (true);

72 Copytight 1992 Apple Computer, Inc. March 29, 1994

5,590,334
185 186

Asvnchronous Timers

Asynchronous timers cause the task to be notified when a specified time is reached.
Starting an asynchronous timer yields an ID which may be used to cancel the timer prior
to its expiration. Notification of timer expiration is done through vse of the
EventNotification mechanism.

typedef KernelID TimerID;

0SStatus SetTimer (AbsoluteTime * expirationTime,
EventNotification * theNotification,
TimerID * theTimer) ;

A timer is set and upon expiration a notification is delivered.

expirationTime specifies the absolute time at which the notification should be generated.
theNotification specifies the manner in which the caller wishes to be notified upon
expiration of the timer. See the Event Notification chapter of this document for
additional details.

theTimer is updated to reflect the ID of the timer thus created. This ID may only be used

to cancel the timer prior to its expiration. The TimerID becomes invalid when either a
CancelTimer operation is performed or the timer expires.

Interrupt Timers

Each of the timing operations previously discussed are only pertinent to task level
execution. This aspect of those timers is not acceptable to certain device drivers and
other low level software. These clients may require timers that have less latency or can
be set from hardware interrupt handlers. Interrupt timers fulfill both of these
requirements.

Interrupt timers allow you to specify a secondary interrupt handler that is to be run when
the timer expires. They are asynchronous in nature. You can set an interrupt timer from
a hardware interrupt handler, a secondary interrupt handler, or a privileged task.

Interrupt timers require the use of preallocated kernel resources; a finite number of these
timers are available. They should be used only when no alternative exists.

0SStatus SetInterruptTime (AbsoluteTime * expirationTime,
SecondaryInterruptBandler theHandler,
Ref pl,
TimerID * theTimer) ;

expirationTime is the absolute time at which the timer is to expire.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 73

5,590,334
187 188

theHandler is the address of a secondary interrupt handler that is to be run when the
specified time is reached.

pl is the value that will be passed as the first parameter to the secondary interrupt handler
when the timer expires. The value of the second parameter passed to the secondary
interrupt handler is undefined.

theTimer is updated with the ID of the timer that is created. This ID may be used in
conjunction with CancelTimer.

Canceling Asvnchronous Or Interrupt Timers

Outstanding asynchronous timers can be canceled. This prevents the notification from
being delivered. When you attempt to cancel an asynchronous timer a race condition
begins between your cancellation request and expiration of the timer. It is, therefore,
possible that the timer will expire and that your cancellation attempt will faii even though
the timer had not yet expired at the instant the cancellation attempt was made.

Attempts to cancel interrupt timers that are made at interrupt level are slightly less
deterministic. The kernel cannot cancel the actual timer until secondary interrupt time.
So it is possible that the timer will expire and the secondary interrupt handler associated
with the timer is run even though the timer was canceled. However, if the hardware
interrupt handler that cancels the interrupt timer queues a secondary interrupt handler
after it has made the canceliation request, the kernel guarantees that the interrupt timer
will have either run or been canceled before that secondary interrupt handler executes.

OSstatus CancelTimer (TimerID theTimer);

Cance[Timer cancels a previously created timer. An error is returned if the timer has
either already expired or been canceled.

74 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
189 190

ADDRESS SPACE MANAGEMENT

Address Space Management is the creation, deletion, and maintenance of logical address
spaces. Address spaces are composed of memory ranges, called areas, that possess a set
of common attributes including backing store and protection level. Maintenance services
include those for copying data between address spaces and for controlling access to and
paging of areas within a particular address space.

Commonalities in address space management services are noted in the following list.
Deviations are mentioned in the descriptions of individual services.

» The kernelIDErr error is returned when the specified address space or area does not
exist. :

« When a logical address range (base and length) is specified, that range must lie
entirely within a single area. Although some range operations need to be
implemented in a page-aligned fashion, it is never required that the base and length
be specified page-aligned. Further, these calls require that area be based in RAM.
not in ROM or 10 space.

Basic Types
This section defines some types and values that are fundamental to address space

management. The significance of the items mentioned is clarified by the descriptions of
the services that use them.

Values of type LogicalAddress represent location in an address space or area.
typedef Ref LogicalAddress;

Values of type PhysicalAddress represent location in physical memory. They are used
primarily with backing object and DMA VO operations.

typedef Ref PhysicalAddress;

Address spaces are referred to by values of type AddressSpaceID. The value
currentAddressSpacelD refers to the current address space.

typedef XernellD AddressSpaceld;
enum
{

currenthAddressSpacelID =C

}i

Areas are referred to by values of type ArealD. The value noArealD refers to an area that
does not exist.

typedef KernellID ArealD;
enum

March 29, 1994 Copyright 1992 Apple Computer, Inc. 75

5,590,334
191 192

{
noArealbd = 0

}i

Values of type MemoryAccessLevel represent allowable accesses to some portion of
Memory.

typedef unsigned iong MemoryAccessLevel;

enum

{
memoryExeluded
memoryReadOnly
memoryReadWrite
memoryCopyOnWrite

W N = O

owonon

+ memoryExcluded specifies that no accesses at all, including instruction fetches, are
allowed.

+ memoryReadOnly specifies that read and instruction fetch operations are allowed.

+ memoryReadWrite specifies that read, write and instruction fetch operations are
allowed.

+ memoryCopyOnWrite specifies that read, write and instruction fetch operations are
allowed, but that modifying data in the area does not alter data in the backing store.
Note that there is no means provided to revert modified copy-on-write pages back to
their original state.

typedef UnsignedWide BackingAddress;

Values of type BackingAddress are used to specify offsets within backing objects. They

are 64-bit integer values in anticipation of file systems that provide support for files larger
then 4 GB.

Static Logical Addresses

It is sometimes necessary to access the physical pages through logical addresses
regardless of whether the physical page is mapped into the current address space. To
enable this, the memory system keeps a static mapping of physical pages such that
physical pages are mapped into the kernel band at all times. The logical address in the
static mapping corresponding to a given physical address is called the static logical
address of the page. Static logical addresses are kept in variables of type
LogicalAddress. They are valid for access by privileged software only.

Address Space Control

The following services support the creation and deletion of address spaces. Others allow
the caller to obtain information about the address spaces already in existence.

76 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
193 194

Creating Address Spaces

Address spaces can be created 1o provide additional addressing and protection.
OSStatus CreateAddressSpace (AddressSpacelID * theAddressSpace)

CreateAddressSpace builds a new address space and returns an AddressSpacelD forit. A
new address space automatically contains any existing global areas and range
reservations (see CreateArea and CreateMemoryReservation, respectively).

theAddressSpace is an output parameter indicating the address space identifier that can be
used for subsequent operations on the created address space. A value of invalidID will be
returned if Create AddressSpace fails.

Deleting Address Spaces
0O5Status DeleteAddressSpace (AddressSpacell theAddressSpace) ;

DeleteAddressSpace destroys the specified address space. All non-global areas mapped
into that space are also destroyed.

Note: Care should be taken to prevent references to the deleted address space.

theAddressSpace specifies the address space to destroy.

Obtaining Information About An Address Space

typedef struct SpaceInformation

{
AddressSpaceID identity;
ByteCount logicalRaAMSize;
ByteCount pageSize;

} SpaceInformation;

enum
{
spaceInformationversion = 0

}i

0SStatus GetSpaceInformation (AddressSpacelD theAddressSpace,
PBVersion theVersion,
Spaceinformation * theSpacelInfol;

GetSpaceInformation returns information about the specified address space.

theAddressSpace specifies the address space for which to get the information. A value of
currentAddressSpacelD specifies the current address space.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 77

5,590,334
195 196

theVersion specifies the version number of SpaceInformation to be returned. This
provides backwards compatibility. spacelnformationVersion is the version of
Spacelnformation defined in the current interface.
theSpacelnfo specifies where to return the information.
The fields of a SpaceInformation structure are:

= identity - the AddressSpacelD of the address space.

» logicalRAMSize - the number of bytes of mappable space within the address space.

* pageSize - the size, in bytes, of all logical pages in an address space. All address
spaces use the same page size.
Iterating Over All Address Spaces
Tasks can obtain the AddressSpacelD's of all the existing address spaces.
OSStatus GetiddressSpacesInSystem (ItemCount theCount,
ItemCount skipCount,

Kernellterator * theAddressSpaces);

GetAddressSpacesInSystem allows the caller to iterate over all address spaces within the
systern.

theCount specifies the maximum number of AddressSpacelDs to return.

skipCount specifies the number of address spaces to ignore prior to returning any
AddressSpaceiDs.

the AddressSpaces specifies the Kernellterator in which to return the AddressSpacelD

mnformation. This Kernellterator must be large enough to store at least theCount
AddressSpacelDs.

Logical Page Size

#define gestaliLogicalPageSize 'pgsz’
The Gestalt function includes the gestaltLogicaiPageSize selector for acquiring the

number of bytes in a logical page. The logical page size is constant for any given boot of
the system. This information is also available from the GetSpacelnformation service.

78 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
197 198

Area Control

The following operations provide support for creating and deleting areas within address
spaces. Others allow the caller to obtain information about the areas already in existence.

Creating Areas

typedef OptionBits AreaOptions;

enum
{
zeroFill = 0x000G0001,
residentArea = 0x00000002,
sparselArea = 0x00000004,
placedArea = Ox00C00008,
globalArea = 0x00000019
b
O0SStatus CreateArea (AddressSpacelID theAddressSpace,

SackingObjectID theBackingObject,
BackingAddress = theBackingBase,

ByteCount theBackingLength,
MemoryAccessLevel theAccessLevel,
MemoryAccessLevel thePrivilegedhccesslevel,

ByteCount theGuardLength,
Arealptions theOptions,
LogicalAddress * theAreaBase,
ArealD * theArea) ;

CreateArea creates a mapping between the specified address space and the specified
backing store. The ArealD of the newly created area and the logical address of that area's
origin are both returned to the caller. The logical address has meaning only within the
context of the area’s owning address space.

the AddressSpace specifies the address space in which to create the area.

theBackingObiject specifies the backing store whose content is to be mapped. Specifving
noBackingObjectID for this parameter implies that a scratch backing store file should be

used. If either the residentArea option is specified, or if all access to the area is excluded,
theBackingObject must be noBackingObjectID.

theBackingBase specifies the offset within theBackingObject that is to correspond to the
lowest address in the area. Note that this parameter is the address of the actual
BackingAddress parameter. theBackingBase being nil specifies a BackingAddress of
zero. The range of possible BackingAddress values is not constrained by the memory
system. Backing objects themselves may place restrictions (e.g. on a block-oriented
device, the base might need to be a2 whole multiple of the block size). If the residentArea
option is specified, theBackingBase must be specified as nil.

theBackingLength specifies the number of bytes to map from theBackingObject, starting
at theBackingBase. It will be rounded up to a multiple of the logical page size. This

March 29, 1994 Copyright 1992 Apple Computer, Inc. 79

5,590,334
199 200

implies that more backing store than was specified may be mapped in. Backing store
data is not allocated by CreateArea. Rather, it is added on-demand (also, backing object
providers may opt to implement a message to acquire the backing store).
theBackinglength must be non-zero.

the AccessLevel and thePrivilegedAccessLevel specity the kinds of memory references
that non-privileged and privileged software are allowed to make in the area, respectively.
References made in violation of the access level result in exceptions at the time of the
access. See the Memory Exceptions section of this chapter. If thePrivilegedAccessLevel
Is more restrictive than the AccessLevel, thePrivilegedAccesslLevel will be made equal to
the AccessLevel.

theGuardiength specifies the size, in bytes, of the excluded logical address ranges to
place adjacent to each end of the area. The ranges, called area guards, are excluded to
both privileged and non-privileged software. References to those addresses resuit in
exceptions. See the Memory Exceptions section of this chapter. theGuardLength will be
page-aligned, if necessary. This means that the excluded ranges may be larger than is
specified.

theOptions specifies desired characteristics of the area being created. Values for this
parameter are defined by the AreaOptions type.

* zeroFill specifies that memory in this area should be initialized to zero. This option
applies only to scratch areas (i.e. noBackingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified).

= residentArea specifies that the data for this area must always be physically resident.
These areas are never paged between memory and backing storage. This option is
available only to privileged callers.

* sparseArea specifies that the resources for the area be allocated on-demand. This
option applies only to scratch areas (i.e. noBackingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified). For scratch areas, sparseness means that the scratch backing object will
be sparse, if possible, For resident areas, sparseness means that the physical
memory will be allocated by page faulting.

= placedArea specifies that theAreaBase specifies where to create the area.
theAreaBase and theBackingLength will be page-aligned. This means that the area
may be larger than was specified. CreateArea fails and an error is returned if the
area can not be so positioned. theArcaBase will be set to the actual beginning of the
area.

Note: Care should be taken when using the placedArea option, as the specified
location be part of a memory reservation unknown to the caller. It is
advisable to create a reservation for the range in which the area will be
placed, prior to creating the area. Reservations can be made either for a
specific address space. or globally. Sce CreateMemoryReservation.

80 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
201 202

+ globalArea specifies that the data for this area is to be addressable from any address
space. All address spaces will get access in accordance with the privileged and non-
privileged access levels specified. The created area appears at the AreaBase 1n every
address space. When this option is specified theAddressSpace parameter has no
effect; a value of nil should be passed.

theAreaBase is an ouput parameter indicating the beginning logical address of the
mapped memory. If the placedArea option is specified, theAreaBase is also an input
specifying where to position the area. See the description of placedArea, above.

theArea is an output parameter indicating the area identifier that can be used for

subsequent operations on the created area. A value of noArealD will be returned if
CreateArea fails.

Deleting Areas

OSstatus DeleteArea (AreaID theArea):

Delete Area removes the specified area. If the area is global, it is deleted from all address

spaces. Further references to the logical addresses previously mapped will result in

memory exceptions. Non-global areas are also deleted if the address space containing

them is deleted.

Note: DeleteArea has no formal interactions with other pieces of system

software. Care should be taken to prevent potential references to the
deleted area.

theArea specifies the area to destroy.

Obtaining Information About An Area

typedef struct Arealnformation
(

AddressSpaceiD addressSpace;
LogicalAddress base;
ByteCount length;

MemoryAccessLevel accesslevel;
MemoryAccessLevel privilegedAccessLevel;

AreaUsage usage;
BackingObijectID backingObiject;
BackingAddress backingBase;
AreaOptions options:

} AreaInformation;

enum
{
arealnformationVersion = 0

}:

March 29, 1994 Copyright 1992 Apple Computer, Inc, 31

5,590,334
203 204

OSStatus GetArealnformation (ArealD thearea,
PBVersion theVexrsion,
Arealnfiormation * theArxealnfo);

GetArealnformation returns information about the specified area.

theArea specifies the area for which to return information.

theVersion specifies the version number of Arealnformation to be returned. This
provides backwards compatibility. arealnformationVersion is the version of
Arealnformation defined in the current interface.

theArealnfo specifies where to return the information.

The fields of an Arealnformation structure are:

= addressSpace - the address space that contains the area. This value will be
currentAddressSpacelD if the area is global to all address spaces.

* base - the logical address of the area.

» length - the size, in bytes, of the area.

¢ accesslLevel - the kinds of references allowed by non-privileged execution.

» privilegedAccessLevel - the kinds of references allowed by privileged execution.

» backingObject - the object providing backing store for the area. The value
noBackingObjectID is returned if there is no backing object .

* backingBase - the area’s base address within the backingObject.
* options - the options that were specified at the time the area was created.

See the description of CreateArea, above, for further information about access levels and
area options.

Iterating Over All Areas Within An Address Space

QSStatus GetAreasInAddressSpace (AddressSpacelD theAddressSpace,
ItemCount theCount,
ItemCount skipCount,

KernelIterator * theAreas):

GetAreaslnAddressSpace returns the ArealDs of areas contained within the specified
address space.

theAddressSpace specifies the address space from which to return areas. A value of
currentAddressSpaceID specifies the current address space.

82 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
205 206

theCount indicates the maximum number of ArealDs to return.
skipCountindicates the number of areas to ignore prior to returning any ArealDs.

theAreas is filled in with the ArealDs of the areas specified by theCount and skipCount.
This Kernellterator must be large enough to store at least theCount ArealDs.

Changing The Access Level Of An Area

It is sometimes useful to change the kind of accesses that are allowed to an area. For
example, a code loader might need to make an area read-write while initializing it. then
change it to read-only when the area is ready to use.

0SStatus SetArealAccess (ArealID theArea,
MemoryAccessLevel theAccessLevel,
MemoryAccessLevel thePrivilegedAccessLevel);

SetAreaAccess changes the allowed accesses to an area.
theArea specifies the ArealD of the area in which to change the access.

theAccessLevel and thePrivilegedAccessLevel specify the kinds of memory references
that non-privileged and privileged software are allowed to make in the area, respectively.
References made in violation of the access level result in exceptions at the time of the
access. See the Memory Exceptions section of this chapter. If thePrivilegedAccessLevel

Is more restrictive than theAccessLevel, thePrivilegedAccessLevel will be made equal to
theAccessLevel.

Finding The Area That Contains A Particular Logical Address

0SStatus GetAreaFromAddress (AddressSpacelD “heAddressSpace,
LogicalAdcéress theAddress,
ArealID * theArea) ;

GetAreaFromAddress returns the ArealD of the area associated with the specified logical
address.

theAddressSpace specifies the address space containing the logical address in question.
A value of currentAddressSpacelD specifies the current address space.

the Address specifies the logical address to look up.

the Area is an output parameter where the ArealD of the logical address is returned.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 83

5,590,334
207 208

Using Areas To Access Large Backing Stores

Some backing stores are too large to view in their entirety in the space available to a
single address space. A common way to deal with this is to create a limited-size mapping
(area), then adjust where in the backing store that mapping corresponds.

OSStatus SetAreaBackingBase (ArealD thedrea,
BackingAddress * theBackingBase;;

SetAreaBackingBase sets the specified BackingAddress as the base for the specified area.
An area's base BackingAddress and length determine which portion of the BackingObject
is mapped to the area. Changing an area's base BackingAddress is an effective method
for accessing numerous parts of a large backing store through a relatively small logical
address range.

theArea specified the area in which to change the backing store base.

theBackingBase specifies the offset within theBackingObject that is to correspond to the
lowest address in the area. Note that this parameter is the address of the actual
BackingAddress parameter. theBackingBase being nil specifies a BackingAddress of
zero. The range of possible BackingAddress values is not constrained by the memory
system. Backing objects themselves may place restrictions (e.g. on a block-oriented
device, the base might need to be a whole multiple of the block size).

Memory Control

Obtaining Information About A Range of Logical Memory

You can obtain usage information for each logical page within a range of logical
addresses. This information may be useful when performing certain runtime operations
such as garbage collection and/or heap compaction.

enum
{

rageInformationVersion = 0
}:

typedef unsigned long PageStatelnformation;

enum

{
ragelsProtected = 0x00000001,
pagelsModified = 0x000000Q2,
vagelsReferenced = 0x00000004,
pagelsLocked = 0x00000008,
pagelsResident = 0x00000010,
pageIsShared = 0x00000020

84 Copyright 1992 Appie Computer, Inc. March 29, 1994

5,590,334
209 210

typedef struct Pagelnformation
{
ArealD thehrea;
ItemCount theCount;
PageStateInformation theInformation [1]:
} PageInformation;

OSStatus GetPageInformation (AddressSpacelD theAddressSpace,
LogicalAddress theBase,
ByteCount theLength,
PBVersion <heVersion,

Pagelniormation * thePagelnfo);

GetPagelnformation returns nformation about each logical page in the specified range.

theAddressSpace specifies the address space containing the range of interest.
theBase is the first logical address of interest.

theLength specifies the number of bytes of logical address space, starting at theBase,
about which information is to be retumned.

theVersion specifies the version number of PageInformation to be returned. This
provides backwards compatibility. pageInformationVersion is the version of
Pagelnformation defined in the current interface.

thePagelnfo is filled in with information about each logical page. This buffer must be
large enough to contain information about the entire range. Page information is as
follows:

+ theArea indicates the ArealD of the area associated with the range.

* theCount indicates the number of enties in which information was returned.

» thelnformation contains one entry for each logical page with bits to indicate whether
the page is write protected, modified. referenced, locked, physically resident, and/or

shared.

Data-To-Code

Placing executable data in memory requires synchronization with the processor’s data

and instruction caches. The details are specific to the processor and the internal operation

of the memory system. Consequently, the memory system provides services that
encapsulate the necessary operations.

0SStatus DataToCode (AddressSpaceIDl theAddressSpace,
LogicalAddress theBase,
ByteCount thelength);

DataToCode performs the operations necessary for the specified memory range to be
treated as processor instructions instead of simple data. This is required. for example,

March 29, 1994 Copyright 1992 Apple Computer, Inc.

85

5,590,334
21 212

when reading instructions into scratch memory, or when generating instructions “on the
fly.”

theAddressSpace specifies the address space containing the range to be treated as code.
theBase specifies the start of the range to be treated as code.

theLength specifies the number of bytes in the range to be treated as code.

The beginning and end of the range will be adjusted, if necessary, so that the range begins

and ends on logical page boundaries. This means that more memory than was specified
may be affected.

Preventing Unnecessary Backing Store Activity

OSStatus ReleaseData {AddressSpaceID theAdcressSpace.
Logicaladdress theBase,
ByteCount : thelLength) ;

ReleaseData informs the memory sysiem that the data values in the specified range are no
longer needed. It is an optimizing hint to prevent writing the data to the backing store.
The backing store, if any, remains allocated to the range. This is useful, for example,
when deallocating dirty heap blocks.

Note: If the released range is subsequently accessed, the values in memory will
be unpredictable. This includes data in areas with memoryCopyCOnWrite

access: that is, the data is not guaranteed to revert to its original,
unmodified, state.

theAddressSpace specifies the address space containing the range to release.
theBase specifies the start of the range to release.

theLength specifies the number of bytes in the range to release.

The beginning and end of the range will be adjusted, if necessary, so that the range

released begins and ends on logical page boundaries. This means that less memory than
was specified may be released.

Memory Control In Association With I/O Operations

Memory usage in a demand paged, multi-tasking system 1s both highly dynamic and
highly complex. It follows that data transfers to and from memory require close
cooperation with the memory system to ensure proper operation.

The first consideration is that physical memory must remain assigned to the I/O buffer for

at least the duration of the transfer (and, for logical /O operations, that memory accesses
do not page fault).

86 Copyright 1992 Apple Computer. Inc. March 29, 1994

5,590,334
213 214

The second consideration is memory coherency. On output, it is essential that data in the
processor's data cache be included in the transfer. On input, it is essential that the caches
(both data and code) not be left with any out-of-date information, and it is desireable if
the data cache can contain at least some of the data that was transferred. Furthermore,
cache architectures vary from processor to processor, so it is also desirable to minimize or
eliminate processor dependencies in the /O drivers.

The kernel provides /O support services that, when used properly, ensure that these
considerations are met.

The most common I/O transaction envisioned 1s one-shot transfer where the /O buffer
belongs to the driver's client, such as handling a page fault by reading data directly into
the user's page. The design also allows for multiple transactions to occur upon a single
buffer. An example of this is a network driver whose transactions consist of reading data
into its own buffer, processing the data, then copying the data off to a client's buffer. In
this case, the driver re-uses the same buffer for an indefinite number of transactions.

The two services the kerne! provides are PrepareMemoryForIO and CheckpointIO.
PrepareMemoryForlO informs the kernel that a particular buffer will be used for VO
transfers. It assigns physical memory to the buffer and, optionally, prepares the
processor's caches for a transfer. CheckpointlO informs the kernel that the previously
started transfer, if any, is complete, whether there will be more transfers, and optionally
the direction of the next transfer. It finalizes the caches and, if the next /O direction is
specified, prepares the caches for that transfer. If its parameters specify that no more
transfers will be made, CheckpointIO deallocates the kernel resources associated with the
buffer preparation: subsequent I/O operations on this range of memory will again need to
begin with a call to PrepareMemoryForlO.

In the one-shot scenario, a PrepareMemoryForlO call prior to the transfer and a single
CheckpointIO call following the wansfer are used. The PrepareMemoryForlO parameters
would specify the buffer location and the VO direction, the CheckpointlO parameters
would specify that no more transfers will be made.

In the multiple transfer scenario, a PrepareMemoryForIO when the buffer is allocated, a
CheckpointlO prior to each transfer, and a CheckpointIO when the buffer is deallocated
are used. The PrepareMemoryForlO parameters would specify the buffer location, but
might or might not specify the /O direction. The I/O direction is omitted if the transfer is
not imminent, because the cache preparation would be wasted. The CheckpointIO calls
before each transfer would specify the direction of the transfer and that more transfers
will be made (not needed before the first transfer, if the PrepareMemoryForlO parameters
specified an /O direction). The final CheckpointlOQ parameters would specify that no
more transfers will be made.

Note: Failure to properly use these I/O related kernel services can result in data
corruption and/or fatal system errors. Correct system behavior is the
responsibility of the kernel and all /O components including drivers,
managers, and hardware.

Note: The descriptions here are not. generally, sufficient to allow the reader to
write a correct, high performance /O driver. Guidelines for writing [/O

March 29, 1994 Copyright 1992 Apple Computer, Inc. 87

5,590,334
215 216

drivers, including correct usage of the kernel services dedicated to I/O
support, are beyond the scope of this document.

Preparing For 1/0O
typedef KernelID IOPreparationID;

typedef OptionBits IQOPreparationOptions;

enum

{
icIsInput = 0x00000001,
ioIsOutput = 0x00000002,
ioAddressIsLogicai = 0x0000000¢,
ioCoherentDataPath = 0x00000008,
ioTransferIsLogical = 0x0000G010

Yi

typedef struct LogicaladdressRange
{
LogicalAddress theAddress:
ByteCount theCount;
} LogicalAddressRange;

typedef struct AddressRange

{
Ref theAddress;
BvteCount theCount;

} AddressRange;

cypedef struct MappingTable
{

AddressSpaceID addressSpace;
LogicaladdressRange logical;
ItemCount table&ntryCount;
AddressRange rangeEntries [1);

} MappingTable;

OSStatus PrepareMemoryForTO (AddressSpacelID theAddressSpace,
Ref theBase,
ByteCount thelLength,
I0PreparationOptions theOptions,
ItemCount theEntryCount,
MappingTable * theMappingTable,
IOPreparationID * thePreparationlD) ;

PrepareMemoryForlO enables device input/output on the specified range to occur in a
manner coordinated with the memory system. Preparation includes ensuring that
physical memory is assigned, and remains assigned, to the range at least until
CheckpointIO relinquishes it. Depending upon the I/O direction and data path coherence
that are specified, the kernel manipulates the contents of the processor's data caches, if
any, and may make the underlying physical memory non-cachable.

33 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
217 218

/O preparation must be done prior to the actual data movement. For typical operations
such as those to block oriented devices, the preparation should be done just prior to
moving the data, typically in the driver.

For operations upon buffers, such as memory shared between the main processor and a
co-processor, frame buffers, or buffers internal to a driver, the preparation may be best
performed when the buffer is allocated.

theAddressSpace specifies the address space containing the specified range. Note that
logical /O need not be performed in that address space. See the description of
theMappingTable, below.

theBase specifies the start of the range to prepare. Either a logical or a physical address
may be specified, as indicated by the ioAddressIsLogical. The manner in which the
address is specified is entirely independent of the manner in which the I/O operation will
be performed. For example, a physical address may be supplied even though the
operation will be done using logical (programmed) I/O.

thelLength specifies the number of bytes in the range to prepare.

theOptions control certain aspects of the operation. This value comains bits with the
following meanings:

iolsInput indicates that data will be moved into main memory.
i0IsOutput indicates that data will be moved out of main memory.

ioAddressIsLogical indicates that theBase address is a logical address. In the
absence of this option, theBase is presumed to be a physical address. When a
physical address is specified. the kernel must create a mapping of the physical
memory into the logical address space so that the logical /O operation can proceed.
The address of this mapping is returned in theLogicaiBase.

ioCoherentDataPath indicates that the data path that will be used to access memory
during the I/O operation is fully coherent with the main processor’s data caches.
Coherency with the main processor's instruction cache is never presumed. When in
doubt, do not specify this option.

1oTransferIsLogical indicates that the operation reads/writes through the main
processor's MMU and data caches. Such operations are performed with devices that
fall into the Programmed I/O category of /O devices. In the absence of the
ioTransferIsLogical option, the }/O operation is assumed to bypass the processor’s
MMU and data caches. Such operations are performed with devices that fall into the
DMA category of I/O devices. Among other things, this option determines whether
the MappingTable will contain logical or physical addresses.

Note: PrepareMemoryForlO guarantees that the underlying physical memery
remains assigned to the range at least until CheckpointIO relinquishes it.
However, it does not guarantee that the original logical address range
remains mapped. In particular, the controlling area may be deleted before

March 29, 1994 Copyright 1992 Apple Computer, Inc. 89

5,590,334
219 220

CheckpointlIO. If the caller can not somehow guarantee that the area will
continue to exist, logical address references to the underlying physical
memory must be made through the logical addresses provided in the
mapping table.

Note that iolsInput and ioIsOutput are completely independent. You may specify either,
both, or neither at preparation time.

theEntryCount specifies the maximum number of AddressRanges in theMappingTable
that PrepareMemoryForlO may fill in. An error is returned if this number is not
sufficient. Note that the upper bound on required entries is equal to the number of
distinct logical pages in the range. This parameter is ignored if theMappingTable is nil.

theMappingTable specifies the address at which the PrepareMemoryForlO should return
a scafter-gather buffer representing the specified address range. A nil value for this
parameter specifies that the scatter-gather buffer not be returned. If the
ioTransferlsLogical option is specified, the address ranges will be logical ones valid in
every address space. This is useful, for example, when the logical I/0 will be performed
in a different address space than the one containing the specified logical address range If
the ioTransferIsLogical option is absent, the address ranges will be physical ones. This is
useful for DMA. MappingTable fields have the following meanings:

 addressSpace indicates the address space containing the logical address range in the
logical field. If the ioAddressIsLogical option was specified, this is the
AddressSpacelD of the specified address space. Otherwise, it is the constant
currentAddressSpacelD.

* logical indicates a contiguous logical range. If the ioAddressIsLogical option was
specified, this is the originaily specified base and length. Otherwise, this is a static
logical address range for the specified physical range.

* entryCount indicates the number of valid entries in rangeEntries.

« rangeEntries is an array of address ranges corresponding to the original range. The
entries will be static logical address ranges if the ioTransferIsLogical option is
specified. The entries will be physical address ranges if the ioTransfer{sLogical
option is absent. Each entry represents an extent, so a given entry may indicate a
length of one or more pages.

thePreparationID is an output parameter identifier that represents the /O transaction.
When the /O operation has been completed or aborted this [OPreparationID is used to
finish the transaction. See Finalizing I/O, below.

Note: Memory must be prepared and finalized for the benefit of the system and
other users of the memory and backing store, even if the caller does not
need any of the information provided by PrepareMemoryForlO.

Note: Calls to PrepareMemoryForlO should be matched with calls to
CheckpointlO, even if the I/O was aborted. In addition to applying

90 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
221 222

finishing operations to the memory range, CheckpointlO deallocates
kernel resources used in preparing the range.

Finalizing I/O
typedef OptionBits IOPreparationOptions;
anum
{
nextIsInput = 0xQ0000001,
nextIsQutput = 0x00000002,
moreTransfers = 0x00000004
1
0SStatus CheckpointIO (IOPreparationID thePreparationID,

IOPreparationOptions theOptions):

CheckpointIO performs the necessary follow-up operations for the specified device
input/output transfer, and optionally prepares for a new transfer or reclaims the kernel
resources associated with the preparation. See the above section “Memory Control In
Assaciation With I/O Operations” for an overview.

thePreparationID is the IOPreparationID made for the input/output, as returned by a
previous call to PrepareMemoryForlO. This ID is invalid following CheckpointlO if the
moreTransfers option is not specified.

theOptions specifies optional operations. Values for this field are defined by the
IOPreparationOptions type, as follows:

» nextsInput specifies that the buffer be prepared for impending data input.
* nextIsOuput specifies that the buffer be prepared for impending data output.

« moreTransfers specifies that further O transfers will occur to or from the buffer. It
is especially useful when the caller is unable to specify which direction the next
transfer will be (i.e. neither nextlsInput nor nextIsOutput is specified), but is needed
even if the next transfer direction is specified. If moreTransfers is not specified, all
kernel resources associated with thebuffer preparation are reclaimed, including
thePreparationlD.

Note: Call CheckpointIO even if the [/O is aborted. The kernel resources need
to be reclaimed.

Note: Multiple concurrent preparations of memory ranges or portions of memory
ranges are supported. In this case, cache actions are appropriate and
individual pages are not unlocked until all transactions have been
finalized.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 91

5,590,334
223 224

Memory Sharing

Memory sharing is a common requirement in device drivers, debuggers, and in client-
server computing. The underlying method for sharing memory is to create areas that map
the same backing store data into the various clients' address spaces. Because of the
inherent memory caching, areas created this way use the same physical memory as well
as the same backing store. Changes made to the memory in one address space are
immediately present in the other address space(s). The kernel provides various services
to share memory urtilitizing this method, each with its own merits and applications.

Global Areas

A “global area” is an area that appears in every address space, at the same location and
with the same attributes, and is automatically added to new address spaces. Global areas
are useful, for example, for mapping shared library code that needs to be equally
available in all address spaces. They are made by specifying the globalArea option (one
of the AreaOptions) when creating the area.

Client-Server Areas

Certain servers benefit by providing their clients read-only access to the server's read-
write data structures. This is simplified if the data appears at the same location in both
the server's and the clients’ address spaces, but with different memory access levels in
each. The main hurdle is finding a location for the data that is available in the server and
in all clients, present and future. “Memory reservations” address this problem.
Reservations cordon off an address range such that areas will not be created there unless
they are specifically placed there. See the Memory Reservations section, below.

Mapped Access To Other Address Spaces

Tt is sometimes useful to have on-going access to data in other address spaces. Although
this can often be accomplished by creating an area with the same BackingObject and
backing store offset as the area in the other space, this takes several kernel caiis and
furthermore is impossible for areas without BackingObjects, such as resident areas. The
memory system provides a routine so that cross-address space mapping can be
established easily and for all types of areas.

QOSStatus CreateAreaForRange

{AddressSpacelID theAddressSpace,
AddressSpacelD theOtherSpace,
LogicalAddress theOtherBase,
ByteCount thelength,

MemoryAccessLevel theAccessLevel,
MemoryAccessLevel thePrivilegedAccesslLevel,

ByteCount cheGuardlLength,
AreaOptions theOptions,
Logicalhaddress * theBaselnirea,
ArealDd * cheArea);

92 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
225 226

Create AreaForRange maps a logical address range from one space into another address
space.

theAddressSpace specifies the address space in which to create the area.
theOtherSpace specifies tha address space containing the range to map.
theOtherBase specifies the start of the range in theOtherSpace.

theLength specifies the number of bytes in the range. It must be non-zero.

theOtherBase and theLength will be page-aligned. This means that a bigger range than
was specified may be mapped.

theAccessLevel and thePrivilegedAccessLevel specify the kinds of memory references
that non-privileged and privileged software are allowed to make in the area, respectively.
References made in violation of the access level result in exceptions at the time of the
access. See the Memory Exceptions section of this chapter. If thePrivilegedAccessLevel
is more restrictive than theAccessLevel, thePrivilegedAccessLevel will be made equal to
theAccessLevel. Note that the underlying backing object may disallow certain access
levels.

theGuardl ength specifies the size, in bytes, of the excluded logical address ranges to
place adjacent to each end of the area. The ranges, called area guards, are excluded to
both privileged and non-privileged software. References to those addresses result in
exceptions. See the Memory Exceptions section of this chapter. theGuardLength will be
page-aligned. if necessary. This means that the excluded ranges may be larger than is
specified.

theOptions specifies desired characteristics of the area being created. Values for this
parameter are defined by the AreaOptions type. Note that some of these options will be
inherited from the area containing the range being mapped, so they will ignored by
CreateAreaForRange.

= zeroFill specifies that memory in this area should be initialized to zero. This option
applies only to scratch areas (i.e. noBackingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified). This option is inherited from the range being mapped.

» residentArea specifies that the data for this area must always be physically resident.
These areas are never paged between memory and backing storage. This option is
available only to privileged callers. This option is inherited from the range being
mapped.

+ sparseArea specifies that the resources for the area be allocated on-demand. This
option applies only to scratch areas (i.e. noBackingObject is specified in
theBackingObject) and non-pageable areas (i.e. the residentArea option is
specified). For scratch areas, sparseness means that the scratch backing object will
be sparse, if possible, For resident areas, sparseness means that the physical

March 29, 1994 Copyright 1992 Apple Computer, Inc. 93

5,590,334
227 228

memory will be allocated by page faulting. This option is inherited from the range
being mapped.

+ placedArea specifies that theBaselnArea specifies where to create the area. The area
will begin on the page specified by theBaseInArea. CreateAreaForRange fails and
an error is returned if the area can not be so positioned. The address corresponding
to the beginning of the range will be returned in theBaseInArea. Note that this will
be exactly as specified only if theBaseInArea and theOtherBase have the byte offset
into their respective logical pages.

Note: Care should be taken when using the placedArea option, as the specified
location be part of a memory reservation unknown to the caller. Itis
advisable to create a reservation for the range in which the area will be
placed, prior to creating the area. Reservations can be made either for a
specific address space, or globally. See CreateMemoryReservation.

* globalArea specifies that the data for this area is to be addressable from any address
space. All address spaces will get access in accordance with the privileged and non-
privileged access levels specified. The created area appears at theBaselnArea in
every address space. When this option is specified theAddressSpace parameter has
no effect; a value of nil should be passed.

theBaseInArea is an ouput parameter indicating the address in the area corresponding to
the beginning of the specified range. If the placedArea option is specified,
theBaseInArea is also an input specifying where to position the area. See the description
of placedArea, above.

theArea is an output parameter indicating the area identifier that can be used for
subsequent operations on the created area. A value of noArealD will be returned if
Create AreaForRange failed.

Copying Data Between Address Spaces

It is sometimes useful to simply read or write data in another address space. For example,
a debugger might need to display or set data in the debugged address space. The memory
system provides a routine to achieve this without the overhead of setting up a mapping.

OSStatus InterspaceBlockCopy (AddressSpacelD theSourceAddressSpace,
AddressSpaceID theTargetAddressSpace,
LogicalAddress theSourceBase,
Logicaladdress theTargetBase,
ByteCount theLength) ;

InterspaceBlockCopy copies bytes from the specified source address space and range to
the specified destination address space and range. Note that neither address space needs
to be the current address space.

theSourceAddressSpace specifies the address space containing the source range.

94 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
229 230

theTargetAddressSpace specifies the address space containing the destination range.
theSourceBase specifies the start of the source range in theSource AddressSpace.
theTargetBase specifies the start of the destination range in theTargetAddressSpace

thelength specifies the length, in bytes, of the range.

Memory Reservations

Certain servers benefit by providing their clients read-only access to the server's read-
write data structures. This is simplified if the data appears at the same location in both
the server’s and the clients' address spaces, but with different memory access levels in
each. The main hurdle is finding a location for the data that is available in the server and
in all clients, present and future. “Memory reservations” address this problem.
Reservations cordon off an address range such that areas will not be created there unless
they are specifically placed there. Reservations can be made either for a specific address
space, or giobally.

Creating Memory Reservations

typedef XernellD MemoryReservationID;
typedef OptionBi:s ReservationOptions;
enum
(

placedReservation 0x00000001,

globalReservation 0x00000002

Y

OSStatus CreateMemoryReservation

(AdcressSpacelDd cheAddressSpace,
LogicalAddress * theBase,
ByteCount theLength,
ReservationOotions theOptions,
MemoryReservationlD * theReservation);

CreateMemoryReservation reserves a logical address range such that no areas will be
created within that range unless they are specified to be there. Areas are created at
specific locations by using the placedArea option (one of the AreaOptions).

the AddressSpace specifies the address space in which to reserve the range.
theBase is an ouput parameter indicating the beginning logical address of the reservation.

If the placedReservation option is specified. theBase is also an input specifying where to
position the reservation. See the description of placedReservation, below.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 95

5,590,334
231 232

theLength is the number of bytes to reserve. It will be rounded up to a muitiple of the
logical page size. This means that the reservation may be larger than was specified.

theOptions specifies desired characteristics of the reservation being created. Values fer
this parameter are defined by the ReservationOptions type.

+ placedReservation specifies thai theBase specifies where to create the reservation.
theBase and theLength will be page-aligned. This means that the reservation may
be larger than was specified. CreateMemoryReservation fails and an error is
returned if the reservation can not be so positioned. theBase will be set to the actual
beginning of the reservation.

 globalReservation specifies that the reservation is to apply across all existing and
futurc address spaces. The reservation appears at theBase in every address space.
When this option is specified theAddressSpace pararmeter has no effect; a value of
nil should be passed. Note that although the reservation is across all spaces. creating
a non-global area in a reserved range adds the area just to the specified space.

Global reservations, like global areas, are automatically added to new address
spaces. This assures the server that the range will be available when a client in the
new address space initializes its connection to the server.

theReservation is an output parameter indicating the reservation identifier that can be

used for subsequent operations on the reservation. A value of invalidID will be returned
if CreateMemoryReservation fails.

Deleting Memory Reservations
OSstatus DeleteMemoryReservation (MemoryReservationID theReservation);
DeleteMemoryReservation destroys the specified memory reservation.

theReservation specifies the reservation to delete.

Obtaining Information About A Memory Reservation

typedef struct ReservationInformation

({

MemoryReservationiD identity;
AddressSpacelD addressSpace;
Logicalhaddress base;
ByteCount length;
ReservationOptions options;

} ReservationInformation;

enum
{
reservationlInformationversion = 0

}i

96 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
233 234

0OSStatus GetReservationInformation

(MemoryReservationID theReservation,
PBVersion theVersion,
ReservationiInformation * theReservationInfo);

GetReservationInformation returns information about the specified memory reservation.
theReservation specifies the memory reservation for which to get the information.
theVersion specifies the version number of ReservationInformation to be returned. This
provides backwards compatibility. reservationInformationVersion is the version of
ReservationInformation defined in the current interface.

theReservationInfo specifies where to return the information.

The fields of a ReservationInformation structure are:

+ identity - the MemoryReservationID of the reservation.

+ addressSpace - the address space in which the reservation exists. This value will be
currentAddressSpacelD if the reservation is global to all address spaces.

* base - the logical address of the reservation.
< length - the size, in bytes, of the reservation.

+ options - the options that were specified at the time the reservation was created.

Iterating Over All Memory Reservations Within An Address Space

0O8Status GetReservationsInAddressSpace

{AddressSpacelDl theAddressSpace,
ItemCount theCount,
ItemCount skipCount,

Kernellterator * theReservations);
GetReservationsInAddressSpace allows the caller to iterate over the memory reservations

that apply to the specified address space, inciuding the global reservations that apply 10
all address spaces.

the AddressSpace specifies the address space from which to return reservations. A value
of currentAddressSpacelD specifies the current address space.

theCount specifies the maximum number of MemoryReservationIDs to return.

skipCount specifies the number of reservations to ignore prior to returning any
MemoryReservationIDs.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 97

5,590,334
235 236

theReservations specifies the Kernellterator in which to return the MemoryReservationID
information. This Kernellterator must be large enough to store at least theCount
MemoryReservationIDs.

Memory Exceptions

The kernel provides a mechanism to present exceptional hardware and software
conditions to higher level software for resolution (see the Exceptions section of this
document). The memory system employs this mechanism for address space related errors
to be handled outside the memory system.

In particular, an address space related error results in an exception that can then be
processed by an appropriate exception handler. The relevant ExceptionKinds are
accessException, unmappedMemoryException, excludedMemoryException,
readOnlyMemoryException, and unresolvablePageFaultException. The
MemoryExceptionlnformation structure defines additional information included in these
exceptions. The Exceptions section indicates how this structure is relayed to the handler.

typedef struct MemorvExceptioninformation
{

ArealD thelArea;
LogicalAddress theAddress;
OSStatus theError;

MemoryReferencekKind theReference;
} MemoryExceptionInformation;

cypedef unsigned long MemoryReferenceKind;

enum MemoryReferenceKind
{

writeReference = 0,
readReference = 1,
fetchReference = 2

Yi
The fields of a MemoryException structure are:

= theArea - the area containing the logical address of the exception. This will be
kNoArealD if the reference was made to an unmapped range of the address space.

Note: The value of this field is unpredictable if the memory access spanned area
boundaries. The use of area guards reduces the probability of such
accesses.

* theAddress - the logical address of the exception.
» theError - the status for unresoivablePageFault.

« theReference - the type of memory reference that resulted in the exception.

The address space related values of the ExceptionKind type are:

98 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
237 238

* accessException - reference resulted in a page fault because the physical address
was not accessible (i.e. it was a “hard fault”).

+ unmappedMemoryExceptjon - reference was to an address which is not part of any
area in the address space.

+ excludedMemoryException - reference was to an area whose access level prevents
any access (the ExcludedMemory access level), or to an area guard.

« readOnlyMemoryException - reference was to an area whose access level prevents
write accesses (the ReadOnlyMemory access level).

* unresolvablePageFaultException - reference resulted in a page fault that could not
be resolved. theError field in the \/IemoryExcepnonInformanon indicates why the
fault was not resolved.

The values of the MemoryReferenceKind type are:

* WriteReference - reference was an attempt to modify data.

* ReadReference - reference was an attempt to acquire data.

» FetchReference - reference was an attempt to acquire a processor instruction.

Note: The ability to distinguish instruction fetches from read references is

processor dependent. Consequently, some implementations may report
instruction fetches as ReadReferences.

Backing Object Providers

Backing object providers require a few specialized services.

Registration

Backing object providers must register with the kernel so they can be properly involved
in the operation of the memory system.

typedef OptionBits BackingObjectProviderOptions:
enum

{
noScratchBackingObjects = 0x00000001
}i

0SStatus RegisterBackingObjectProvidex

(ObjectID theCbject,
BackingObjectProviderOptions theOptions);

March 29, 1994 Copyright 1992 Apple Computer, Inc. 99

5,590,334
239 240

RegisterBackingObjectProvider registers the specified message system object as being
associated with a backing object provider. The kernel will send messages to this object
as necessary for the operation of the memory system. The messages are described in the
Backing Object Messages section.

theObject specifies the ObjectID of the backing object provider.

theOptions specifies properties of the backing object provider. Undefined options should
be specified as zero, for upward compatibility. Values for this parameter are defined by
the BackingObjectProviderOptions type.

» noScratchBackingObjects specifies that the provider is incapable of supporting
scratch backing objects. This would be the case, for examplie. if the provider only
manages backing store on CD-ROM (because CD-ROM 1is read-only). In general,
providers are expected to support scratch backing objects. Scratch backing objects
are requested with the OpenScratchBackingObject message.

Acquiring A Physical Memory Page From The Memory System

Backing object providers can acquire physical memory pages in which to place backing
store data.

OSStatus GetFreePage {CbjectID theBackingObjectProvider,
PhysicalArddress * thePageiddress,
LogicalAddress * theStaticLogicalAddress):

GetFreePage allocates a physical memory page. The page will be considered “in use,”
and not be allocated to anyone else, until it is returned to the kernel using the
PutFreePage kernel service.

This service may result in RelinquishPage messages being sent 1o the registered backing
object providers. RelinquishPage is described in the Backing Object Messages section.

theBackingObjectProvider specifies the ObjectID of a single backing object provider to
which to not send the RelinquishPage message. It is expected that the caller of
GetFreePage is a backing object provider, and that it is better not to ask the caller to
relinquish a page for itself. Therefore, the caller should specify its own registered
backing object provider ObjectID (see RegisterBackingObjectProvider). The caller
should treat failure of GetFreePage with the same seriousness as an “urgent”
RelinquishPage message: dig deep to replace a physical page out of its own cache. A
value of invalidID specifies that the caller does not wish to be skipped.

thePage Address specifics where to return the physical memory address.

theStaticL.ogicalAddress specifies where to return a static logical address for
thePageAddress.

100 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
241 242

Returning A Physical Memory Page To The Memory System

Backing object providers need to give back physical memory pages to the memory
system as soan the pages are no longer needed to hold backing store data. This is
preferable to each provider maintaining private free page lists, because it adapts better to
changes in memory requirements system-wide.

OSStatus PutFreePage {PhysicalAddress thePageAddress) ;

PutFreePage returns the specified physical memory page to the memory system,
surrendering the current use of the page.

thePageAddress specifies the physical memory page being recycled.

Unmapping A Physical Page

Backing object providers can unmap a physical page from all the logical pages in which
the physmal page is mapped. This is useful as part of mak.mg a page eligible for
replacement or when expelling a page from the cache.

QSstatus UnmapMemoxy (Physicaladdress thePhysicalAddress,
PageStateInformation * theState);

UnmapMemory undoes all logical mappings of the specified physical page, and returns
page state information for further processing (for example, modified pages might need to -
be written to backing store). UnmapMemory fails if the page is currently locked in
memory (pages are locked, for example, during [/O).

thePhysical Address specifies the physical page to unmap.

theState specifies where to return the page state information. If multiple mappings
(aliases) existed, theState is a conservative combination of the page states and
pagelsShared is indicated. In particular, pagelsModified is indicated if any of the

mappings indicated “modified.” See the description of the GetPagelnformation service
for details of the PageStateInformation type.

Backing Object Messages

There is a small set of messages sent from the Memory System to backing object
providers. Some of the messages are sent to the BackingObjectID, the remainder are sent
to the provider's registered ObjectID, as noted in the individual message descriptions.

General Message Format

Each backing object message contains an operation code. The defined operations are:

enum

March 29, 1994 Copyright 1992 Apple Computer, Inc. 101

5,590,334
243 244

AreaCreated

AreaDeleted
RelinquishPage
OpenScratchBackingObject
OpenBackingObject =
CloseBackingObject ' =
ReadBackingObject =
WriteBackingObject
AgeBackingObject

n

n

W) oYU s W PO

3

Each backing object message contains 2 version number. The version number listed in
the interface file corresponds to the message format described in that file.

enum
{
AreaCreatedVersion =
reaDeletedVersion =
RelinguishPageVersion =
OpenScratchBackingObjeccVersion =
OpenBackingObjectVersion =
CloseBackingOhjectVersion =
ReadBackingObjectVersion =
WriteBackingObjectVersion =
AgeBackingObjectVersion =
¥

OO OO0 DO

Messages related to page faulting are specially typed so providers can receive them
differently than non-page fault messages. The messages having the type
PageFaultlOType are: RelinquishPage, ReadBackingObject, WriteBackingObject, and
AgeBackingObject.

enum
{

PageFaultIOType =
}i

o

A given message is a variation on the BackingObjectMessage. The operation code is
specified in the theOperation field. The version number is in the theVersion field. The
remainder of the message is specific to the particular message operation.

typedef union BackingControl
{

AreaCreatedControl areaCreatedMessage;
AreaDeletedControl areaDeletedMessage;
RelingquishControl relinguishMessage;
BackingOpenScratchControl openScratchMessage:
BackingOpenControl openMessage;
BackingCloseControl closeMessagde;
RackingReadControl readMessage;
BackingWriteControl writeMessage;
BackingAgeControl agingMessage:

102 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
245 246

} BackingControl;

typedef struct BRackingObjectMessage
{

BackingOperation theOperation;
PBVersion theVersion;
BackingControl theBackingControl;

} BackingObjectMessage;

Area Creation
Backing object providers participate in area creation.

typedef OptionBits AreaCreatedCptions;

typedef struct AreaCreatedControl
{

AreaCreatedOptions theOptions;

AreaID theArea;

MappingTable * thePhysicalMappingTablie;
MappingTable * theStaticLogicalMappingTable;

} AreaCreatedControl;

Request to use the backing object to map a new area. The area has been created, but the
area creator has not yet been given the area address or ArealD. GetArealnformation and
other kemel services work. The provider should verify that the backing object is being
used appropriately. For example, it should check that the access level and area base are
reasonable. If the returned status indicates an error, the area is destroyed and the area
creation call is failed with that status.

This message is sent to the provider's registered ObjectID, with AreaCreated specified in
the operation code field.

theOptions specifies optional actions and/or properties. Undefined options should be
specified as zero, for upward compatibility. There are currently no defined options, so
this field is a placeholder and a value of nilOptions should be specified.

theArea indicates the ArealD.

thePhysicalMappingTable indicates the mapping of the area to physical addresses. A nil
value indicates that there are no physical addresses yet mapped in. This information is
provided so that the backing object provider can properly manage its backing store
caches. The MappingTable fields have the following meanings:

» addressSpace indicates the AddressSpaceID of the address space containing the
area.

= logical indicates the logical address range of the area.

= entryCount indicates the number of valid entries in rangeEntries.

March 29, 1594 Copyright 1992 Apple Computer, Inc. 103

5,590,334
247 248

+ rangeEntries is an array of physical address ranges corresponding to the area's
logical range. Each entry represents an extent, so a given entry may indicate a
length of one or more pages.

theStaticLogicalMappingTable is the static logical addressing equivalent of

thePhysicalMappingTable. The only difference between the two tables is that the
rangeEntries of theStaticLogicalMappingTable contain static logical address ranges.

Area Deletion
Backing object providers participate in area deletion.
typedef OptionBits AreaDeletedOptions;

typedef struct UnmappedPagelnformation
{

PageStateInformation theState;
PhysicalAddress thePhysicalAddress;
Logicaladdress theStaticLogicalAddress;
Backingaddress theBackingAddress;

} UnmappedPageInformation;

typedef struct UnmappedPagelist
{
ItemCount theCount;
UnmappedPageInformation thelnformation {1]:
} UnmappedPagelist;

typedef struct AreaDeletedControl
It

AreaDeletedOptions theOptions;
AddressSpacelD thedAddressSpace;
AyrealD theArea;
UnmappedPagelist * thePagelist;

} AreabDeletedControel;

Notification that the area has been deleted. All the pages in the area have been
unmapped. Likely action is to write the dirty pages, and make all pages eligible for
replacement.

This message is sent to the provider's registered ObjectID, with AreaDeleted specified in
the operation code field.

theOptions specifies optional actions and/or properties. Undefined options should be
specified as zero, for upward compatibility. There are currently no defined options. so
this field is a placeholder and a value of nilOptions should be specified.
theAddressSpace indicates the address space containing the area that was deleted.

theArea indicates the area that was deleted.

104 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
249 250

thePageList is the address of a list of the pages that were resident in the area when the
area was deleted.

The fields of the UnmappedPageList structure are:
« theCount indicates the number of entries in the array of page descriptions
+ thelnformation is an array of page descriptions

The ficlds of the UnmappedPagelnformation structure are:

« theState indicates the state information of the page when the area was deleted. See
the description of the GetPageInformation service for details of the
PageStatelnformation type.

+ thePhysicalAddress indicates the physical address that was mapped into the page

+ theStaticLogicalAddress indicates the static logical address for thePhysicalAddress.

+ theBackingAddress indicates the corresponding backing store address

Note: The physical page that was mapped into a given logical page may still be
mapped into other logical pages. In this case, the “likely action” should
not include writing the page or making it eligible for replacement. Such

pages are identified by having the pagelsShared indication in the
PageStateInformation.

Request To Relinquish Physical Memory Page

The Memory System sometimes needs to request backing object providers to give up
physical memory pages from their caches. The need can be mild or it can be urgent.

typedef OptionBits ReiinquishOptions;
enum
{

relinquishNeedIsUrgent = 0x00000001

}:

typedef struct RelinquishControl
{
RelinquishOptions theOptions;
Physicaladdress thePhysicalPage;
} RelinguishControl;

Request to return a physical memory page to the memory system.

This message is sent to the provider's registered ObjectID, with RelinquishPage specified
in the operation code field, and having the message type PageFaultiOType.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 105

5,590,334
251 252

theOptions specifies optional operations. Values for this field are defined by the
RelinguishOptions type, as follows:

« relinquishNeedlsUrgent indicates that the Memory System has exhausted normal
means of acquiring a physical memory page, and system failure might result if this
request is denied. The provider is strongly encouraged to dig deep. If
relinquishNeedIsUrgent is not indicated, the provider need not go to extremes (a
likely choice would be a physical memory page from the set of eligible pages).

thePhysicalPage is the field in which the provider returns the physical memory page
address.

Opening A Scratch Backing Object

The Memory System opens scratch backing objects when, for example, creating scraich
areas. Opening scratch backing objects, however, is an operation that some non-kernel
entities will need to do, also. The message described here suits the Memory System’s
purposes, but is might not be suitable for general use.

Note: This message is not suitable for mapping an existing file. There are two
reasons for this. First, such an operation is not needed by the kernel or
Memory System. Second, the manner in which files are specified depends
entirely upon the backing object provider. At some point, backing object
providers need to provide a file-mapping service(complete with a call to
create the area), or at least a service that makes a BackingObjectID for a
specified file.

typedef OptionBits BackingOpenScratchOptions:
enum
{
sparseBackingObject = 0x0000CC0L,
zeroFillBackingObject = 0x00000002
}i
typedef UnsignedWide BackingLength;

typedef struct BackingOpenScratchControl

{
BackingOpenScratchQptions theOptions;
BackingLength thelength;
BackingCbjectID theBackingObject;

} BackingOpenContzrol;

Request to make a scratch backing object suitabie for mapping a scratch area.

This message is sent to the provider's registered ObjectID, with
OpenScratchBackingObject specified in the operation code field.

106 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
253 254

theOptions specifies optional operations or characteristics. Values for this field are
defined by the BackingOpenScratchOptions type, as follows:

- sparseBackingObject specifies that backing store be allocated only as-needed. Non-
sparse backing objects have backing store allocated even for ranges that have not
been accessed.

« zeroFillBackingObject specifies that the initial value of the backing store data be
zero. That s, the first read of any backing store page yields a page filled with
ZEroes.

theLength specifies the size, in bytes, of the BackingObject.

theBackingObject is the field in which the provider returns a BackingObjectID that can
be used to create a scratch area,

Closing A Backing Object

Backing objects are closed, for example, when the backing store no longer needs to be
mapped in.

typedef OptionBits BackingCloseOptions;
enum
{

backingCloseDeleteObject = 0xC0000002

Y

typedef struct BackingCloseControli
{

BackingCloseOptions theOptions;
} BackingCloseControl:

Request to eliminate the specified backing store mapping. Optionally deletes the backing
store.

This message is sent to the BackingObjectID, with CloseBackingObiject specified in the
operation code field.

theOptions specifies optional operations. Values for this field are defined by the
BackingCloseOptions type, as follows:

* backingCloseDeleteObject indicates to delete the backing store.

Reading From A Backing Object

Backing object providers are responsible for reading data from backing store into
memory.

typedef OptionBits BackingReadOptions;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 107

255

enum
{
backingReadHasFreePage

b

typedef OptionBits

enum

{
lockedPage
writeProtectedPage
modifiedPage
nonCachablePage

i

5,590,334
256

= 0x00000001
PageAttributes;

0x00000001,
0200000002,
0x00000004,
0x00000008

howon

typedef struct BackingReadControl
¢

1
BackingReadQOptions
BackingAddress
ByteCount
PageAttributes
PhysicalAddress
LogicalAddress
PhysicalAddress

} BackingReadControl:

theCptions;
theBackingAddress;
theLength;

theAttribures;
theFreePhysicalPage;
theFreeStarcicLogicalAddress:
thePhysicalPage;

Request to make the specified backing store data available in memory.

This message is sent to the BackingObjectID, with ReadBackingObject specified in the
operation code field, and having the message type PageFaultiOType.

theOptions specifies optional operations. Values for this field are defined by the
BackingReadOptions type, as follows:

» backingReadHasFreePage indicates that message contains an available physical
memory page address in the theFreePhysicalPage field.

theBackingAddress specifies the location in the backing object from which to start the

read.

thel.ength specifies the number of bytes to read.

theAttributes indicates the attributes that the memory system will use when it maps the
physical address into logical memory. This is supplied for the provider's information.
Note that any or all of these attributes may change after the page is mapped.

*+ lockedPage indicates that the page will be mapped into memory such that it is
ineligible for replacement (i.e. it won't be paged out).

» writeProtectedPage indicates that the page will be read-only. Note that this applies
to, among others, unmodified pages in areas with memoryCopyOnWrite access.

108 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
257 258

+ modifiedPage indicates that the contents of the physical page are known to be
different from what is in backing store.

» nonCachablePage indicates that the access to data on the page will bypass the
processor’s caches.

theFreePhysicalPage indicates the address of an available physical memory page, if and
only if the backingReadHasFreePage option is set. Using this page, if available, obviates
calling the GetFreePage kernel service.

theFreeStaticLogical Address is a static logical address for theFreePhysicalPage.

thePhysicalPage is the ficld in which the provider returns the physical address into which
the backing store data was read.

Writing To A Backing Object

Backing object providers are responsible for writing data from physical addresses into
backing store.

typedef COptionBits BackingWriceOptions;

typedef struct BackingWriteControl

(

BackingWriteOptions theOptions;
BackingAddress theBackingAddress;
ByteCount thelbength;
PhysicalAddress thePhysicalPage;
Logicaladdress theStaticLogicalAddress;

} BackingWriteControl;
Request to write the specified data to backing store.

This message is sent to the BackingObjectID, with WriteBackingObject specified in the
operation code field, and having the message type PageFaultfOType.

theOptions specifies optional actions and/or properties. Undefined options should be
specified as zero, for upward compatibility. There are currently no defined options, so
this field is a placeholder and a value of nilOptions should be specified.
theBackingAddress specifies the location in the backing object at which to start the write.
theLength specifies the number of bytes to write.

thePhysicalPage specifies the physical address from which to start the write. Note that
this address is probably already known to the provider as part of the cache information,
but is provided in the message anyway, to eliminate the cache lookup overhead.

theStaticLogicalAddress is the static logical address for thePhysicalPage.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 109

5,590,334
259 260

Page Aging Notification

Backing object providers receive notification when pages in backing objects they control
have remained unreferenced long enough that they appear unlikely to be referenced in the
near future.

cypedef OptionBits AgingOptions:

typedef struct BackinghgeControl
{

AgingOptions theOptions;
PhysicalAddress . thePhysicalPage;
LogicalAddress theStaticlogicalAddress;
BackingAddress theBackingAddress;
ByteCount thelength;

ItemCount theEligibleCount:

} BackingAgeControl;

Notification that a page has crossed the aging threshold. If the provider decides that the
page should be made eligible for replacement, the provider must unmap the page (using
the UnmapMemory kernel service) prior to writing it (if dirty) and make it eligible. This
way, the provider finds out when the page “becomes young again” (i.e. is accessed) by
receiving a ReadBackingObject message for it, and can make the page ineligible for
replacement.

This message is sent to the BackingObjectID, with AgeBackingObject specified in the
operation code field, and having the message type PageFaultiOType.

theOptions specifies optional actions and/or properties. Undefined options should be
specified as zero, for upward compatibility. There are currently no defined options, so
this field is a placeholder and a value of nilOptions should be specified.

thePhysicalPage indicates the physical address of the page in question.
theBacking Address indicates the backing store address mapped into the page.
thelength indicates the number of bytes in the page.

theEligibleCount is the field in which the provider returns the number of pages in its
cache that it considers eligible for replacement. The Memory System uses this
information as feedback for the aging mechanism.

Note: A fact of life in multi-tasking environments is that state can change
asynchronously with respect to any given thread of execution.
Accordingly, it is possible that the provider has relinquished the physical
page for another purpose by the time the aging message is processed.
Therefore, the processing of the aging message must ascertain whether the
physical page still corresponds to the indicated BackingAddress of the
backing object to which the message was sent. The aging message must
be ignored if this correspondence no longer exists.

110 Copyright 1992 Apple Computer, Inc. March 29, 1994

261

March 29, 1994

5,590,334

Copyright 1992 Apple Computer, Inc.

262

111

5,590,334
263 264

POOLS

The kernel pool manager provides the ability to allocate and deallocate variable length
chunks of memory from abstract entities called pools. Previously, system software,
drivers, DA's, INIT's, and applications had only the system heap and the application heap
as alternatives for the allocation of dynamic memory. The pool manager allows c¢lients to
utilize memory in either of two kernel pools or to create and utilize pools of thier own.

NuKemel services pertaining to pools are available only to privileged clients.

Creating Memory Poois

typedef struct GrowPoollnio

{

Ref pooladdress;
ByteCount spacaleeded;
ByteCount currentPoolSize;
ByteCount maximumPoolSize;
} GrowPoollinfo;
typedef ByteCount (*GrowPoolProc) (GrowPoolInio *growInio):

typedei unsigned long PoolOptions;

enum
{
poollsPageable =1

}i

0SStatus CreatePocl (Ref theAddress,
ByteCount maximumPoolSize,
ByteCount initialPoolSize,
GrowPoolProc theGrowProc,
PoolOptions theOptions);

Creates a memory pool for subsequent allocations.

the Address specifies the logical address at which the pool should be formed. It is the
responsibility of the client to ensure the associated memory remains accessible
throughout the lifetime of the pool.

maximumPoolSize specifies the maximum number of bytes of memory that could
become available starting at theAddress.

initialPoolSize specifies the number of bytes of memory that are presently available
starting at theAddress.

112 Copyright 1992 Apple Comptter, Inc. March 29, 1994

5,590,334
265 266

theGrowProc specifies the procedure to call when the pool becomes exhausted. This
procedure may chose to increase the size of the pool, deallocate previously allocated
items within the pool, or do nothing. See the section on Growing Pools below.
theOptions specifies optional properties of the pool.

Note: No operation is necessary to delete pools, because CreatePool operates
without allocating anything requiring deallocation.

Allocating Memory From Pools

Ref PooliAllocate (Ref thePool,
ByteCount byteSize,
Boolean clear);

Allocates from the specified pool a chunk of memory byteSize in length. The memory
address is returned as the result of the call. A nil result indicates that the GrowProc was
called and the pool is exhausted.

thePool specifies the address of the memory pool. This must be the same value passed to
CreatePool.

byteSize specifies the number of bytes of memory to allocate.

clear specifies whether the allocated memory is to be zeroed.

Returning Memory To Pools

OSStatus PoolDeallocate (Ref theAddress) ;

The chunk of memory at theAddress specified is returned to the pool from which it was
allocated.

Obtaining Information About A Pool

ernum

{

poolInformationVersion = 0

)i

typedef struct Poollnformation
{
GrowPoolProc growProc;
PoolOptions options;
ByteCount currentSize;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 113

5,590,334

267 268
ByteCount maximumSize;
ByteCount allocatedBytes;
ByteCount freeBytes;
ByteCount largestFreeChunk;
P
0SStatus GetPoolInformation (Ref thePool,
PBVersion theVersion,

PoolInformation * thelnfo);

GetPoollnformation returns information about the specified memory pool.
thePool specifies the logical address of the beginning of the pool.
theVersion specifies the version number of Poollnformation to be returned. This
provides backwards compatibility. poolInformationVersion is the version of
PoolInformation defined in the current interface.
theinfo specifies where to return the information.
The fields of a Poollnformation structure are:

» growPoolProc indicates the procedure to call when the pool becomes exhausted.

* options indicates the optional properties of the pool.

+ currentSize indicates the number of bytes of memory, starting at thePool, that are
currently part of the pool.

* maximumSize is the maximum pool size value specified when the pool was created.

* allocatedBytes indicates the number of bytes of memory which are currently
allocated from the pool, including overhead.

+ freeBytes is the total number of bytes of storage currently available for allocation
within the Pool.

= largestFreeChunk is the size of the largest allocation which could be performed
without extending the Pool.

Note that all of the information returned by GetPoollnformation indicates the current state

of the pool. An allocation from the pool which is larger than largestFreeChunk may well
succeed if the pool was created in a manner which allows it to grow.

Using The Kernel Pools
You can use the preallocated kernel pools when allocating vour data. Two such kernel

pools exist. One is always physically resident, the other is pageable. These pools may be
used by specifying either of the following values for thePool parameter to PoolAllocate.

114 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
269 270

enum

{

i
1S

systemResidentPool
systemPageablePool

Growing A Pool

When PoolAllocate is called and thePool does not contain sufficient memory to satisty
the allocation, the GrowProc is called. The GrowProc is provided with information
describing the current size of the pool, the size of the allocation, and the maximum size to
which the pool is allowed to grow,

The GrowProc returns a ByteCount indicating the results of its efforis. The meaning of
the ByteCount and the actions taken by the Pool Manager are as follows.

If the GrowProc returns a value of zero the PoolAllocate request fails and control returns
to the caller of PoolAllocate.

If the GrowProc returns a value that is equal to the pool's current size (the same value
provided to the GrowProc) the allocation is retried with the presumption that the
GrowProc deallocated some of the pool's contents and that the allocation may now
succeed. Should the subsequent allocation fail, the GrowProc will be called again.

If the GrowProc returns a value that is larger than the pool's current size (the value
provided to the GrowProc) then the pool is grown to that new size and the allocation is
retried with this new pool size. Should the subsequent allocation fail, theGrowProc will
be called again.

The GrowProc should never return a value between zero and the current size of the pool.
Similarly, it should never return a value that is greater than the maximum size of the pool.
Finally, if the GrowProc cannot either grow the pool or free some of the contents of the
pool, it must return a value of zero. Failure to return a value of zero will cause the
allocation and the call to the GrowProc to repeat forever.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 115

5,590,334
271 272

MESSAGING

For the purposes of discussion, the message system is decomposed into sections on the
management of message ports, objects, filters, and finally, the messaging operations
themselves, namely send, receive, reply, cancel, forward, and continue.

Message Port Management

Message ports are abstract entities used to receive messages. The kernel provides
operations for the creation, deletion, and maintenance of message ports.

Ports, like other kernel objects are referenced by ID.

typedef KernellID PortID;

Creating Message Ports

When a message port is created, it contains all kernel resources needed to receive and
reply to messages that are sent synchronously. Additional resources are needed by the
kernel for each asynchronous operation (sends and receives) that occur simultaneously.

The creator of the message port must specify how many concurrent asynchronous sends
and concurrent asynchronous receive operations the port will be capable of handling. If
these limits are exceeded during subsequent asynchronous send and receive operations,
those operations will block until such time as the port's resources become available.
Senders and receivers can request, at the time an asynchronous send or receive request is
made, that if these limits are exceeded and they are about to be blocked, that an error is
instead returned and the request not be fulfilled.

typedef long AsyncOperationCount;

0SStatus CreatePort {(PortOptions theOptions,
AsyncOperationCount asyncReceiveLimit,
AsyncOperationCount asyncSendLimit,

PortID * thePort) ;

theOptions control the details of port creation. Currently no options are supported and a
value of nilOptions should be specified.

asyncReceiveLimit specifies the maximum number of simultaneous asynchronous
receive operations that can be handled by the port.

asyncSendLimit specifies the maximum number of simultaneous asynchronous send
operations that can be handled by the port.

thePort is updated with the ID of the newly created message port.

116 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
273 274

Deleting Message Ports

Deletion of a message port deletes all associated message objects. As a result of deleting
the associated objects, any outstanding send requests to those objects, and therefore the
port, are completed with appropriate status. Further, any outstanding receive requests to
the port are similarly completed with appropriate status.

After deletion, the port's ID becomes invalid and subsequent attempts to use it result in an
CITOTI.

OSStatus DeletePort {(PortID thePort);

Changing The Asynchronous Operation Limits Of A Port

You can adjust the number of concurrent non-blocking asynchronous send and receive
operations that a given port can handle. If this service is used to reduce the number of
simultaneously available resources, and those resources are aiready in use, the caller is
blocked until the resources are free and they can be deallocated.

OSStatus AdjustPortAsyncLimits (PortID thePort,
AsyncOperationCount asyncReceivelLimit,
AsyncQOperationCount asyncSendLimit,
Boolean isAbsolute):

thePort specifies the port to adjust.

asyncReceiveLimit is either an absolute or relative number of asynchronous receive
operations that the port is to become capable of handling.

asyncReceiveLimit is either an absolute or relative number of asvnchronous send
operations that the port is to become capable of handling.

isAbsolute controls whether the asyncReceiveCount and asyncSendLimit are absolute or
relative values. If true, those values become the new limits. If false, those values are
added to the present limit (negative values decrease the limits and positive values
increase the limits).

Obtaining Information About A Port

You can request information about a given port. Various information regarding the
current state of the message port and how it was created are returned.

typedef struct MessagePortInformaticn
{
TeamID owningTeam;
ItemCount objectCount:

March 29, 1994 Copyright 1992 Apple Computer, Inc. 117

5,590,334
275 276

AsyncOperationCount asyncReceiveLimix;
AsyncOperationCount asyncSendLimit;

ItemCount pendingReceives;
ItemCount pendingSends;
ItemCount pendingReplies;
ItemCount transactionCount:

AsyncOperationCount blockedAsyncSenders;
AsyncOperationCount blockedAsyncReceivers;
} MessagePortInformation;

OSstatus GetPortInformation (PortID thePort,
PBVersion theVersion,
MessagePortInformation thelInfo):

thePort is the ID of a message port about which you want information.

theVersion specifies the version number of PortInformation to be returned. This provides
backwards compatibility. portInfoVersion is the version of PortInformation defined in
the current interface.

thelnfo is the address of a MessagePortInformation record that will be filled in with
information about the message port.

After a call to GetPortInformation, your MessagePortInformation is filled in with the
following information:

* owningTeam is the ID of the team that created the message port.

» objectsCount is the number of message objects that are currently associated with the
message port.

* asyncReceiveLimit is the number of simultaneous asynchronous receive operations
that the port is capable of handling. This is the value that was specified when the
port was created or by a subsequent call to AdjustPortAsyncLimits.

asyncSendLimit is the number of simultaneous asynchronous send operations that
the port is capable of handling. This is the value that was specified when the port
was created or by a subsequent call to AdjustPortAsyncLimits.

» pendingReceives indicates the number of receive requests that have been made of
the port but have not yet been matched with any message.

» pendingSends indicates the number of send reguests that have been made to
message objects associated with the port but have not yet been matched to any
receive request.

* PendingReplies indicates the number of send requests that have been made to

message objects associated with the port and have been received but to which no
reply has been issued.

118 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
277 278

= transactionCount is the total number of send-receive-reply transactions that have
taken place across this message port since the time it was created.

+ blockedAsyncSenders indicates the number of asynchronous senders that have
issued requests but been blocked because of the asyncSendLimit.

» blockedAsyncRecievers indicates the number of asynchronous receivers that have
issues requests but been blocked because of the asyncReceiveLimit,

Iterating Over Message Ports

You can find all the message ports in the systern by using the following function.

0OSStatus GetPortsInSystem (ItemCount theCount,
ItemCount skipCount,
Kernellterator * thePorts);

theCount indicates the maximum number of message port IDs to return.

skipCount indicates the number of message port IDs to ignore prior to returning any
message port IDs.

thePorts is filled in with the IDs of the ports specified by theCount and skipCount. This
Kemellterator must be large enough to store at least theCount port IDs.

Message Object Management

Message objects are the abstract entities to which messages are sent. Objects are
associated with exactly one port. This association may be changed. Messages sent to
objects are received from the object's associated port.

Message objects contain a reference constant. This reference constant, typically a control
block address, is copied from the object into the message at the time a message is sent
through the object to a port.

Message objects may have a designated client teamn. Newly created message objects have
no such client designated. Part of the processing performed by the keme! during team
termination includes sending messages to any objects whose client is the terminating
team This ability allows servers to reclaim message objects whose clients have
terminated.

The kernel provides services for the creation, deletion, and maintenance of message
objects.

Like all kernel objects, message objects are referenced by ID.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 119

5,590,334
279 280

typedef KernellID ObjectID;

Creating Message Objects

Creation of message objects requires that you specify a port with which the object is
initially associated. You must also specify an initial value for the object’s refcon. Once
created, the message object is immediately eligible to be the target of send requests.

OSStatus CreateObject (PorcID tnebort,
ObjectRefcon theRefcon,
ObjectOptions theOpbtions,
ObjectID * theObject);

thePort indicates the port with which the message object is to be associated. Messages
sent to the object being created will appear at this port.

theRefcon indjcates the value of the message object's refcon. This value will be copied
from the object being created into messages at the time they are sent through the object
and placed into the object's port.

theOptions is used to specify special object attributes. The following options are
supported:

typedef QptionBits ObjectOpticns;

enum
{
objectForbidsFilters = 0x00000001,
objectIsFilter = 0x00000002

}:
theObject is updated with the newly created message object’s ID.
objectForbidsFilters indicates that the object may not be the target of a filter.

objectIsFilter indicates that the object can be used as part of a filter (i.e. a preprocessor or
postprocessor).

Deleting Message Objects

Deletion of a message object implies replying to any messages that have been sent 10 the
object but have not as yet been received from the object's port. These send requests are
made to complete with appropriate status. After deletion, the object's ID becomnes invalid
and subsequent attempts to use it are erroneous. Such attempts usually result in errors.
Deletion of a message object also unlocks the object. Any tasks waiting for the lock are
given an error result.

0SStatus Deletelbject (ObjectID theDhject);

120 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
281 282

Locking Message Objects

Message objects can be locked. Once locked, messages sent to the object cannot be
received until the object is unlocked. Multiple tasks may attempt to lock an object.
However, only one task is granted the lock. Any other tasks are blocked in priority order
awaiting the lock.

typedef OptionBits ObjectLockOpticons;

enum
{
lockObjectWichOneMessage = 0x00000001
}i
0SStatus LockObject (CbjectID theObject,
ObjecrLockOptions theOptions,
Duration timelimit):

theObject is the ID of the message object to be locked.

theOptions. control the behavior of the request to lock the designated object. The
lockObjectWithOneMessage option controls the number of messages that have been
received but not replied when the lock request is satisfied. If this option is specified the
number of such messages is exactly one; in the absence of this options the number of
such messages is exactly zero.

timeLimit places a maximum waiting limit on the LockObject operation. If the timeLimit
1s exceeded, LockObject fails and returns an error.

Unlocking Message Objects
The UnLockObject service is used to release the lock on a message object.
OSStatus UnLockObject (ObjectID theObject);

theObject specifies the locked object that is to be unlocked.

Obtaining Information About An Object

Given the ID of a message object, you can obtain the ID of the port with which it is
currently associated, the Team which is the Object's client, and the Refcon currently
associated with the Object. :

Q0SStatus GetObjectInformation (ObjectID theCbject,
TeamID * theClienc,
PortID ~ thePort,

ObjectRefcon * theRefcon):

March 29, 1994 Copyright 1992 Apple Computer, Inc. 121

5,590,334
283 284

theObject is the ID of an object about which information is to be returned.
theClient is updated to indicate the current client team of the object.
thePort is update to indicate the ID of the Port to which this object belongs.

theRefcon is updated to indicate the object’s current Refcon.

Changing Information About An Object

enum

{
setObjectClient = 0x00000001,
setObjectPort = 0x00000002,
setObjectRefcon = 0x00000004

) .

typedef unsigned long SetObjectOptions;

OSStatus SetObjectInformation {ObjectID theObject,
SetObjectOptions theOptions,
TeamID theClient,
PortID thePort,
ObjectRefcon theRefcon) ;

theObject is the ID of an object about which information is to be returned.

theOptions controls which, if any, of the objects information is changed. This value is a
mask formed by ORing together the values setObjectClient, setObjectPort, and
setObjectRefcon.

theClient is the ID of a team to be associated with the object. A kernel message will be
sent to the object when this team is terminated. This value is only used if theOptions
includes the setObjectClient bit.

thePort is the ID of a port to which this object will be moved. This value is only used if
theOptions includes the setObjectPort bit. Changing an object's port causes any un-
received messages to be forwarded from the old to new port.

theRefcon is the Refcon value that will be associated with the object. This value is only
used if theOptions includes the setObjectRefcon bit.

Iterating Over Objects

You can iterate over all of the message objects associated with a particular message port.

OSStatus GetObjectsInPort (PortiID thePoxt,
ItemCount theCount,

122 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
285 286

ItemCount skipCount,
Kernellterator * thePorts);

thePort specifies the ID of the message port whose objects are to be returned.
theCount indicates the maximum number of message object IDs that are to be returned.

skipCount indicates the number of message object IDs to ignore prior to returning any
message object IDs.

thePorts is filled in with the IDs of the object specified by theCount and skipCount. This
Kernellterator must be large enough to store at least theCount object IDs.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 123

5,590,334
287 288

Message Filter Management

Message filters screen an object's messages. An installed filter is designated by ID.
typedef KernellID FilteriID;

Installing Filters

The following specification is used to install a filter.

typedef OSType FilterService;

cypedef OSTvpe FilterSignature;

ernum

{
MatchAnyFilterService = IwwEx
MatchAnyFilterSignature = EEwx

DoNotMatchAnyFilterService = e—e
DoNotMatchAnyFilterSignature = '--=--'

typedei struct FilterName

FilterService theService;
FilterSignature theSignature;
} FiltexrName;

typedef struct FilterOrder
{
FilterName aFilterBefore;
FilterName aFilterAfter;
} FilterOxder;

typedef struct FilterObjectPair
{
CbjectiD thePreProcessor;
ObjectID thePostProcessor;
} PilterObjectPair;

typedef struct FilterSpecification
{

FilterNeme theName;
MessageType theTypesToFilter;
FilterOrder thepPlacement;

FilterCbjectPair thelObjects:
} FilterSpecification:

124 Copyright 1992 Apple Computer, Inc. March 29,

1994

5,590,334
289 290

Installation of filters requires that you provide a target object ID and a filter specification.
Once installed, the message filter is immediately eligible to screen messages bound for
the target. The result of a successful installation is a filter ID.

OSStatus InstallFilter (ObjectID ctheTargetObject,
FilterOptions theOptions,
FilterSpecification * theFilter,
FiltexrID * theFilterID);

theTargetObject indicates the object with which the message filter is 10 be associated.

theOptions indicates any special installation requirements. The following filter
placement options are supported:

enum

{
filterIsRightBefore = 0x000QQQ00L,
filterIsRightAfter = 0x00000002

)i
typedef OptionBits FilterOptions;

The option filterIsRightBefore causes the new fiiter to be installed directly adjacent and
before the specified "aFilterBefore” filter.

The option filterIsRightAfter causes the new filter to be installed directly adjacent and
after the specified "aFilterAfter” filter.

theFilter is the address of a filter specification.

theFilterID gets the resulting ID of the installed filter.

Removing Filters

The RemoveFilter service is used to eliminate an installed filter.
OSStatus RemoveFilter (FilterID theFilterID);

theFilterID specifies the fiiter to eliminate.

Obtaining Information About A Filter

Given the ID of a filter, you can obtain the ID of the target object and the specification
used to install the filter.

0SStatus GetFilterInformation (FilterID theFilterID,
ObjectID * theTargetObject,
FilterSpecification *theFilter):

March 29, 1994 Copyright 1992 Apple Computer, Inc. 125

5,590,334
291 292

theFilterID is the ID of a filter about which information is to be returned.
theTargetObject is updated to indicate the ID of the filter's target object.

theFilter is updated to contain the specification used during installation.

Iterating Over Filters

You can iterate over all of the filters associated with a message object. Filters are
returned in the order they appear in the chain, not in the order of installation,

0SStatus LookupFilters {ObjectID theTargetObiect,
ItemCount theCount,
ItemCount skipCount,

Kexrnellterator * theFfilters);
theTargetObject specifies the ID of the message object whose filters are to be returned.
theCount indicates the maximum number of filter IDs that are to be returned.
skipCount indicates the number of filter IDs to ignore prior to returning any filter IDs.

theFilters is filled in with the IDs of the filter specified by theCount and skipCount. This
Kernellterator must be large enough to store at least theCount filter IDs.

About Message Transactions

A message transaction is begun with a send. Once begun, the transaction is in-progress
until it completes. Transactions are completed by either a reply or by cancellation of the
send request.

At the time a reply is issued for a previously received message, the receiver supplied a
status indication that is returned to the sender of the message. This status value is called
the reply status.

Message IDs

All message transactions can be identified by a particular message ID. The ID of an
mdividual message transaction is used to query or alter the state of a transaction. Every
message system operation {with the exception of the synchronous send operation) either
requires that you specify a message ID or returns a message ID.

typedef KernellD MessagelD;

126 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
293 294

Message Types

Each message that is sent is accompanied by a message type. When a server makes
receive requests it may indicate that it only wants to receive messages of a certain type.
These message types help to classify the message in a manner agreed upon between the
client and server. You can use message types to prioritize message importance,
differentiate between kinds of requests, or other purposes.

Message types are 32-bit values which are interpreted as an array of 32 bits. A sender
specifies the type of message being sent by passing a message type with one or more bits
set. A receiver specifies the type of message it wishes to receive by specifying a message
type with one or more bits set. A particular receive request will only be satisfied if the
logical AND of the sender's message type and the receiver's message type is non-zero.

typedef unsigned long MessageType;

Notice that a message sent with a message type value of zero, cannot maich any receiver
using the rules described above. However, a receive request that specifies a message type
value of OxFFFFFFFF will match any message, even those with a type value of zero.

Kernel Messages

NuKernel reserves the most significant bit of the message type parameter to indicate that
the message is a kernel message. All messages sent by the kernel are of the kernel
message type. These messages are used to perform various system management
functions including the initialization and finalization of agents as well as canceling
requests. The use of these messages is discussed in the Message Cancellation section of
this chapter and the chapter on Agents.

Note: Clients of the kernel should refrain from sending messages with the kemel
message type.

enum

{
kernelMessageType = 0x80000000,
allMessages = OXFFFFFFFF

}i

Each kernel message begins with a common header that allows the various messages to
be distinguished. Individual kernel messages are described throughout this document.
Some definitions useful when handling kernel messages are:

typedef struct KernelMessageHeader
{

unsigned long messageCode;
} KernelMessageHeader;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 127

5,590,334
295 296

Sending Messages

Clients request actions by sending messages to objects. For example, if you want to read
ten bytes of data from serial port A you send a message to the object which represents
serial port A. The message describes the nature of the actions you waat the object to
perform, in this case the message would indicate a read request with a byte count of ten.

Messages, from the perspective of the kernel, are simply a set of memory locations
described by a single address/byte count pair. It i3 the responsibility of the sender to
insure that, from the time the send is initiated until the time the send completes, the
contents of those memory locations remain intact. This means, for example, that a
message that is sent asynchronously should not be allocated on the stack of the sender
unless the sender can gnarantee that the contents of the stack frame will remain valid until
a reply is received or the send is canceled.

The descriptive nature of messages form an agreement between client and server, they are
not examined or interpreted by the kernel.

Send Options

When you send a message, you may control certain aspects of the message transmission
through use of the SendOptions parameter. These options are described below:

typedef OptionBits SendOptions;

enum

{
sendByReference = 0x00000001,
sendByValue = 0x00000002,
sendNonBlocking = 0x00000004,
sendIsPrivileged = 0x00000008,
sendIsAtomic = 0x0000001C

* The sendByReference option causes just the address of the sender's message to be
placed into the receiver's buffer. If the message sender is in an address space
different from that of the message receiver, this option causes the message to be
mapped into the receivers address space. Such mappings are eliminated when the
transaction, initiated by the send, compietes, or the message is forwarded to a
receiver in another address space. This option must be specified if the intent of the
transaction is for the sender to receive data in the message buffer.

* The sendByValue option causes the kernel 1o copy the contents of the sender’s buffer
into the receiver's buffer.

+ By default, asynchronous send operations will block if the limit on concurrent
asynchronous sends is exceeded on the object's message port. If you specify the
sendNonBlocking option on an asynchronous send and the message port to which
the message will be queued has exceeded its concurrent asynchronous send limit,
you will not be blocked but rather receive an immediate error indication.

128 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
297 298

* The sendlsPrivileged option bit is set by the kernel on behalf of a privileged sender
task. If a non-privileged sender attempts to set this option bit, the kernel will clear it
before passing the message to a receiver.

» The sendlsAtomic option bit causes the kernel to lock the object until a Reply or
Forward is issued.

Synchronous Sends

Synchronous message sends behave like a subroutine call. An optional time-out value
may be used by the sender to place an upper limit on the overall transaction.
Synchronous sends cause the sending task context to block until the receiver has issued a
reply or the request has timed out.

Should the time limit be exceeded, the message system will cancel the incomplete
message transaction. If the message has not yet been received a. If the message has
been received, the effect of the cancellation is up to the receiver. Cancellation is
described in the Canceling Message Reqguests section of this chapter.

Synchronously sent messages are placed at the end of the message queue of the port
associated with the object to which the message is sent. The message will be processed

when it is matched to a receiver. This matching is controlled by message type and order
within the queue.

Synchronous send requests cannot be explicitly canceled. They are only canceled
. implicitly as a result of a timeout.

The kernel may decide to map the sender's reply and contents buffers into the receiver's
address space. Any such mapping is eliminated upon reply.

QOSStatus SendMessage {ObiectcID theCbiject,
MessageType theType,
Ref theMessage,
ByteCount theMessageSize,
Ref theReplyBuffer,
ByteCount * theReplyBufferSize,
SendOptions theOptions,
Duration cimeLimic);

theObject specifies the destination object.
theType specifies the type of message.

theMessage specifies the address of the outgoing message data. A Null value indicates
no contents. The sender should not access this buffer until the transaction completes.

theMessageSize specifies the length of the outgoing message data.

theReplyBuffer specifies the address of a buffer to be used for the server's reply data. A
Null value indicates no reply data is desired. The kernel may choose to map this buffer

March 29, 1994 Copyright 1992 Apple Computer, Inc. 129

5,590,334
299 300

into the receiver's address space. The sender should not access this buffer until the
transaction completes.

theReplyBufferSize specifies the size of the reply buffer. This parameter is both an in
and out value. On input it specifies the size of the sender’s reply buffer. Upon
completion of the send, it holds the number of bytes transferred into the reply buffer.

theOptions specifies a bit mask of send options. These options are passed along to the
server at the time it receives the message.

timeLimit specifies a time after which an automatic canceflarion is performed by the
message system. A time-out value of durationForever specifies no such automatic
cancellation. A time-out value of durationlmmediate specifies that a cancellation take
place if the message cannot be immediately matched to a receiver; if such a match is
possible then no further time constraint is placed upon the transaction. A complete
description of the type Duration is given in the section Basic Types.

130 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
301 302

Asynchronous Sends

An asynchronous send allows the sending task context to continue execution while the
transaction remains incomplete. You'll receive notification that the transaction has
completed in a manner governed by the EventNotification you provide at the time you
send the message.

Asynchrenously sent messages are placed into the message queue of the port associated
with the object to which the message is sent. The message will be processed when it is

matched to a receiver. This matching is controlled by message type and order within the
queue.

The kernel may decide to map the sender's reply buffer into the receiver's address space.
Any such mapping is eliminated upon reply.

08Status SendMessagedAsync (ObjectID theCbject,
MessageType theType,
Ref theMessage,
ByteCount theMessageLength,
Ref theReplyBuifier,
ByteCount theReplyBufferSize,
SendOptions theOptions,
EventNotificiation * theNotification,
MessageID * theMessagelID);

theObject specifies the destination object.

theType specifies the type of message.

theMessage specifies the address of the message data.

theMessageSize specifies the length of the message data.

theReplyBuffer specifies the address of a buffer to be used for the server's reply data. A
Null value indicates no reply data is desired. The kernel may choose to map this buffer
into the receiver's address space. The sender should not access this buffer until the
transaction completes.

theReplyBufferSize specifies the size of the reply buffer. This parameter is both an in
and out value. On input it specifies the size of the sender’s reply buffer. Upon

completion of the send, it holds the number of bytes transferred into the reply buffer.

theOptions specifies a bit mask of send options. These options are passed along to the
server at the time it receives the message.

theNotification specifies an asynchronous event completion record. This event will be
delivered when the transaction completes.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 131

5,590,334
303 304

theMessageID specifies the address of a message id. The message system stores an [D
for the transaction at this address. This ID may be used by the sender to cancel the
transaction.

Receiving Messages

Servers must inform the message system that they want to receive messages. This is
done jn one of three ways: synchronous receives, asynchronous receives, or message
acceptance functions.

Synchronous and asynchronous receives are requests for a single message of one or more
message types. The receive request is satisfied if a message of suitable type is already
present in the queue at the time the receive request is made or arrives in the queue within
the time limit, if any. Once the match between sent message and receive request has been
made, processing of the message happens in the context of the task that made the receive
request, To receive subsequent messages the receiver must make additional receive
requests.

Multiple receives, either synchronous or asynchronous, may be pending upon a single
port simultaneously. These requests may be for separate message types or for the same
message type. When new messages arrive at the port, receivers are matched in the order
that their receive requests were made.

Message acceptance is quite different from either synchronous or asynchronous receive

requests. When you register a message acceptance function with a message port, that

function will be called for every message sent to that port so long as the message type
specified by the sender maiches the message type specified by the receiver. When you no
lfonger want 10 accept messages from the port you must unregister your acceptance
unction.

Note: Unlike synchronous or asynchronous receive requests, an acceptance
function never sees messages which were in the port's message queue prior
to the time the function was registered. For this reason it is strongly
suggested that the server register any acceptance function just after
creating the port and prior to creating any message objects. This will
ensure that no messages are queued prior 1o the registration of the
acceptance function.

Acceptance functions are always called in the task context of the sending or forwarding
task. The function executes in supervisor mode on the kernel stack of the current task.
Because of this, the acceptance function and everything it calls must reside within the
kernel band so that it can be addressed successfully.

Note: This may only be accomplished if the acceptance function is part of an

Agent as agents are the only mechanism for loading code into the kernel
band.

132 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
305 306

Receive Options

When you receive a message, you may control certain aspects of the message
transmission through use of the ReceiveOptions parameter. These options are described
below:

typedef OptionBits ReceiveOptions;

enum

(
receiveBufferNoBlock = 0x0000C001,
receiveNoAddressTranslation = 0x00000002,
receivePeekOnly = 0x00000004,

Y

* By default, asynchronous receive operations will cause the receiver to block if the
limit on concurrent asynchronous receives is exceeded on the message port. If the
receiveNonBlocking option is specified on an asynchronous receive request and the
message port has exceeded its concurrent asynchronous receive limit, the receiver
will not be blocked but rather received an immediate error indication.

* By default, the message system makes the sender's message addressable by the
receiver. This may involve either mapping or copying the message contents if the
sender and receiver reside in different address spaces. To prevent either of these
operations, the receiver can specify the receiveNoAddressTranslation option. In this
case, the receiver must, prior to accessing the message, insure that its contents are
addressable.

» By default, when a message is received it is removed from the queue of sent
messages, will not be seen by subsequent receive operations. and must be replied to.
When the receivePeekOnly option is specified, the message is not removed from the
queue of sent messages, will be seen by subsequent receive operations and must not
be replied to. Peeking at messages allows a receiver to determine whether messages
of a certain type are present prior to actually receiving them. Note that the contents
of the message is never returned when the receivePeekOnly option is specified.
Only the MessageControlBlock is given to the receiver.

Message Control Blocks

When you actually receive a message, the message system provides you with a control
biock which describes the message you've received. This control block indicates both
the address and length of the senders message and also provides additional information
including the message type, options specified by the sender, etc.

The control block is built in different places depending on the kind of receive operation
you make. Synchronous and asynchronous receives cause the control block to be
constructed in a buffer you must supply when you make the receive request. Acceptance
function receives cause the control block to be constructed within the kernet prior to
calling your function.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 133

typ
(

5,590,334
307 308

edef struct MessageControlBlock

MessagelD thelD;
AddressSpacelID theAddressSpaceliD:
AddressSpacelID theTeamlD;
ObjectRefcon theRefcon;

SendOptions theOptions;
MessageType theType:
OSstatus theCurrentResults;
ByteCount theSize;
Ref theMessageContents;
ByteCount theReplyBufferSize;
Ref theReplyBuffer;
long resexved;

} MessageControlBlock;

134

thelD is an ID that represents this send-receive-reply transaction. As the receiver of
a message, you use this ID to reply to the message. If the message was sent
asynchronously, this is the same ID returned to the sender at the time of the send.
The sender can use the ID to cancel the send. As the receiver of a message you
should be prepared to handle cancel requests for messages that you have received
but to which you have not yet replied; you'll need this ID to process such cancel
requests. Cancellation of messages is discussed later in this document. This ID may
also be used to continue or forward the message.

the AddressSpacelD is the ID of the sending task's address space. This 1s provided
for servers wishing to map portions of the sender's address space.

theTeamlID is the ID of the sending task's team, This is provided for servers wishing
to verify object permissions and clients.

theRefcon is the refcon of the object to which the sender sent the message.
theOptions are the send options as specified by the sender.
theType is the message type as specified by the sender.

theCurrentResuits is the status supplied by a RepiyToMessage. Post-processing
filters may use this field to distinguish a cancel from a reply.

theSize is the message size, in bytes, as specified by the sender.
theVlessageContents is the address at which you can find the message. This will
either point to the sender's original message or into the buffer you specified at the
time you made the receive request.

theReplyBufferSize is the size of the sender's reply buffer specified in the

SendMessage service. A zero value indicates that the sender does not have a reply
buffer.

Copyright 1992 Apple Computer, Inc, March 29, 1994

5,590,334
309 310

» theReplyBuffer is the address at which you can find the sender's reply buffer. This
will either point to the sender's original reply buffer or be nil. A nil value indicates
that the sender either doesn't have a reply buffer, or the kernel chose not to map it.
If the reply buffer exists (theReplyBufferSize is not zero), the server can use the
ReplyToMessage service to copy back the reply data.

Receiving Messages Synchronously

Synchronous receives cause the receiving task to block until a message arrives at the
specified port that can be matched to the receive request. An optional time-out value may
be used to place an upper limit upon the time that the receive waits for incoming
messages. Should this time limit be exceeded. the message system removes the request
and unblocks the calling task. In this case, you'll receive an indication that no messages
of suitable type arrived and that the request was terminated.

085tatus ReceiveMessage (PortID thePort,
MessageType theType,
MessageControlBlock * theBuffer,
ByteCount theBufferSize,
ReceiveOptions theOptions,
Duration timeLimit);

thePort specifies the port from which you wish to receive messages.
theType specifies the type of message you wish to receive.

theBuffer specifies the address of a receive buffer. The message control block describing
the message you've received will be built in this buffer when a svitable message is
matched to your receive request. Additionally, if the message sender did not specified the
sendContentsByReference option, the contents of the senders message may be copied
into this buffer.

theBufferSize specifies the total size of the receive buffer. When the receive completes,
the actual number of bytes received is placed in the message header. Note that the
theBufferSize must be at least the size of a message control block and must be larger than
a message control block to actually receive the message from the sender.

theOptions specifies a bit mask of available receive options.

timeLimit specifies a time after which an automatic cancellation is performed by the
message system. A time-out value of durationForever specifies that no such automatic
cancellation should take place. A time-out value of durationlmmediate specifies that a
cancellation should take place if the receive request cannot be immediately matched with
a message already at the port. A complete description of the type Duration is given in
the section Basic Types.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 135

5,590,334
3 312

Receiving Messages Asynchronously

An asynchronous receive allows the receiving task context to continue execution while
awaiting the arrival of a message. You'll receive notification of a suitable message in a
manner governed by the EventNotification you provide at the time you make the request.

When you make asynchronous receive requests you'll receive an ID that may be used at a

later time to cancel the request. This ID will remain valid until you either receive a
message or cancel the receive request.

typedef KernelID ReceivelD;

OSStatus ReceiveMessagehAsync (PortID thebPort,
MessageType theType,
MessageControlBlock * theBuffer,
ByteCount cheBufferSize,
ReceivelOptions theOptions,
EventNotification * cheNotification,
ReceiveID * theReceiveID) ;

thePort specifies the port from which you wish to receive messages.
theType specifies the type of message to you wish to receive.

theBuffer specifies the address of a receive buffer. The message control block describing
the message you've received will be built in this buffer when a suitable message is
matched to your receive request. Additionally, if the message sender did not specified the
sendContentsByReference option, the contents of the senders message may be copied
into this buffer.

theBufferSize specifies the total size of the receive buffer. When the receive completes,
the actual number of bytes received is placed in the message header. Note that the
TheBufferSize must be at least the size of a message control block and must be larger
than a message control block to actually receive any of the message from the sender.

theOptions specifies a bit mask of available receive options.

theNotification specifies an EventNotification that will be delivered when the receive
request completes.

theReceive specifies the address of receive ID. The message system stores the ID of the
in-progress receive at this address. The receiver may use this ID to cancel the in-progress
receive operation.

Accepting Messages

Accepting messages establishes an acceptance function as the recipient of all messages of
a given type that are sent to a specific message port. At the time a message arrives at a

136 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
313 314

port, the port is examined for eligible receivers. If an acceptance function has been
registered and matches the type of the sent message it is called, in the context of the
sending task, in lieu of any of other receivers which may be present. At most, one
acceptance function may be registered with a given message port.

When the message acceptance function is called it is provided with a single parameter, a
pointer to the message control block that describes the message. The function is called in
supervisor mode and runs on the kernel mode stack of the sending or forwarding task.
Therefore, such routines must be loaded into the kernel band of the logical address space.
This is only possible if the subroutine is part of a NuKernel Agent.

Just like other message receivers, the message acceptor must reply to the sent message.
Acceptance functions can use the ReplyToMessage kernel service to explicitly reply to
the message (ReplyToMessage is described later).

Acceptance functions can cause an implicit reply to the message being processed by
returning any OSStatus value other than kernellncompleteErr. The status returned will be
used by the kernel as if it were passed in an explicit call to ReplyToMessage.

If, at the time the acceptor function returns, no explicit reply has been generated and the
status value returned is kernellncompleteErr, then the sending task will be blocked if the
send operation was synchronous. Under these conditions, the sending task will not
become eligible for execution until either a reply is issued or the time limit specified by
the sender is exhausted.

While an acceptance function is executing, the sending or forwarding task is still
preemptable. This means that a separate task could perform another send operation
which causes the acceptance function to be re-entered. Because of this, your acceptance
function, and all other software it calls, must be reentrant.

When implementing lightweight services that must be serialized, it is frequently the case
that upon accepting a message the acceptance function transfers control to secondary
interrupt level to serialize requests. As a further optimization the message system allows
you to specify that your acceptance function should be called at secondary interrupt level.
This option is specified at the time that you register your acceptance function with the
message port.

Whenever an acceptance function is registered for a particular port, an exception handler
must also be registered. This exception handler will be invoked should an exception arise
during the processing performed by the acceptance function. This handler receives
control in lieu of the sending task's handler.

typedef 0SStatus (*MessageAcceptor) (MessageControlBlock * theMessage);

enum
{

acceptAsSecondaryInterruptHandler = 0x00000001
Y

typedef unsigned long AcceptOptions;

March 29, 1994 Copyright 1992 Apple Computer, Inc. 137

5,590,334
315

OSStatus AcceptMessage (PortID thepPor:,
MessageType theType,
HMessageAcceptor theProc,
ExceptionHandler theHandler,

AcceptOptions theOptions);

thePort specifies a port from which messages are to be accepted.
theType specifies a bit mask of acceptable message types.

theAcceptor specifies an acceptance function.

316

theHandler specifies an exception handling routine that will receive control should the

acceptance function cause an exception.

theOptions specifies a bit mask of available accept options. The only supported option,
acceptAsSecondaryInterruptHandler, causes your acceptance function to be called at

secondary interrupt level.

138 Copyright 1992 Apple Computer, Inc.

March 29, 1994

5,590,334
317 318

Replying To Messages

After a message has been sent and received, the receiver performs the request implied by
the message. When the request has been processed, or the receiver decides it cannot
complete the request for whatever reasons, the receiver must inform the sender of the
transaction's status. This is done by replying to the message. Replying to a message
completes a message transaction.

You must identify the message to which you are replying; this is done by passing the
message ID to reply. The message ID is provided to a receiver in the message control
block.

In addition to the ID, the server must supply a status value. This status is pot examined
or interpreted by the message system. Rather. it is passed back to the sender.

As a result of a reply, the message system takes several actions. If the send was
performed syochronously, the status value is stored in the requested location and the
sending task is unblocked. If the send was performed asynchronously, then the requested

notification is delivered. Finally, any message buffer mapping that was created is
eliminated.

If a reply buffer was specified by the sender, the kernel may choosg to supply its address
and size in the MessageControlBlock. If the sender's reply buffer address is supplied by .
the kernel, the receiver may use it to directly transfer the result data. If the sender's reply
buffer address is not supplied by the kernel, the receiver can use reply to copy the reply
data back to the sender.

OSStatus ReplyToMessage {(MessagelID theMessage,
OsStatus theResults,
Ref theReplyBuifer,
ByteCount theReplyBufferSize)

theMessage specifies the ID of a message.

theStatus specifies the status value to return to the sender. If the message was sent
synchronously, theStatus becomes the return value to SendMessage. If the message was

sent asynchronously, theStatus is returned through the event notification record's status
field.

theReplyBuffer specifies the address of the reply data. The kernel will copy the data
from receiver to sender. A nil value indicates no reply data should be delivered to the
sender.

theReplyBufferSize indicates the size of the reply data. If theReplyBufferSize is greater
than the size of the sender’s reply buffer, the reply data is truncated to the sender's size.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 139

5,590,334
319 320

Replying To A Message And Receiving Another

A special purpose service combining reply with a synchronous receive is also provided.
The reply 1s performed first, followed by the synchronous receive. All parameters hehave
as described in ReplyToMessage and ReceiveMessage sections of this document. A
MessagelD of nil will inform the kernel to skip the reply step.

OSStatus ReplyToMessageAndRecelve(MessagelD rheMessage,
OSStatus theResults,
Rel theReplyBufifer,
ByteCount theReplyBufferSize,
PortID thePor<,
MessageType <“heType,
MessageControlBlock *theBuifer,
ByteCount cheBufferSize,
ReceiveCptions theOptions,
Duration timelimit);

Forwarding Messages

The process of passing the message along is called forwarding the message. Forwarding
moves a message to another message object. Forwarding 1s primarily used as a dynamic
message routing aid. In fact, the entire message filtering mechansim is built upon the
forward operation.

There are no restrictions upon the number of times a message may be forwarded. No

audit trail of forwarders is kept unless remaining postprocessor filter objects require
processing. All remaining postprocessors are activated upon ReplyToMessage. The
original sender of a message is not notified that the message has been forwarded.

Once a message has been forwarded no further actions should be performed upon that
message by the receiver. Received messages should be either replied to or forwarded but

not both. When a message is forwarded, any message buffer mapping that was performed
for the receiver is eliminated.

OSStatus ForwardMessage (MessageID cheMessage,
ObjectlID theObject)
SendOptions theOptions):
theMessage specifies the message to forward.
theObject specifies the destination object to which the message should be forwarded.

theOptions specifies the new send options to use.

140 Copyright 1992 Apple Compuiter, Inc. March 29, 1994

5,590,334
321 322

Continuing Messages

The process of passing a message along to the next object in a filter chain is called
continuing the message. ContinueMessage acts as an automatic forward. However, the
ContinueMessage service will issue a ReplyToMessage if all objects in the chain have
processed the message.

0SStatus ContinueMessage {MessagelDd theMessage,
SendOptions theOptions,
Qsstatus theResults,
Ref theReplyBuffer,
3yteCount theReplyBufferSize);

theMessage specifies the message (o continue.

theOptions specifies the new send options to use when forwarding the message to the
next object in the filter chain.

theStatus specifies the status value to return to the sender. If the message was sent
synchronously, theStatus becomes the return value to SendMessage. If the message was
sent asynchronously, theStatus is returned through the event notification record's status
field. .

theReplyBuffer specifies the address of the reply data. The kernel will copy the data
from receiver to sender. A nil value indicates no reply data should be delivered to the
sender.

theReplyBufferSize indicates the size of the reply data. If theReplyBufferSize is greater
than the size of the sender’s reply buffer, the reply data is truncated to the sender's size.

Canceling Message Requests

At times it becomes necessary to withdraw pending asynchronous send or receive
requests. This is frequently done when a particular service is shutting down its operation.
Withdrawing these requests is termed Canceling them.

Because you may have several pending requests simultaneously, you must indicate the
particular request you wish to cancel. The ID returned at the time the request was made
is used to cancel that particular request.

Cancellation of either a send or receive request causes the request to complete with an

error indication. The error indication is supplied along with the ID. The kernel does not
interpret the error indication.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 141

5,590,334
323 324

Cancellation of any request causes an implicit race condition between the client and the
server. It is possible that the server completes the request at the same time as the client
attempts 10 cancel the request. It is also possible for servers to ignore cancellation
requests and finish the original request. In either case, it is the responsibility of the client
to correctly handle these race conditions and understand that cancellation may result in
either normal or abnormal completion of the request being canceled.

Send and receive requests are canceled by the kernel as a side effect of some other
operations. These are:

+ Deletion of a message port causes all receive requests of that port to be canceled.

+ Deletion of a message port causes all messages sent to objects associated with the
port to be canceled.

+ Deletion of a message object causes all unreceived messages sent to that object to be
canceled.

+ Termination of a task causes all messages sent by that task, that have not as yet been
replied to, to be canceled

« Termination of a task causes all recetve requests made by that task to be canceled.
» Timeour of a message send request causes that request to be canceled.
+ Timeout of a message receive request causes that request to be canceled.

» Explicit cancellation requests cause the associated request to be canceled.

Send Cancellation

Cancellation of a send request proceeds in one of two different ways. If the message has
not yet been matched to a receiver no special actions are taken. In this case, the message
is removed from the port. The sender is notified that the send operation has completed
with status that indicates the send was €anceled.

If the message has been matched with a receiver but has not as yet been replied to, the
cancellation process is quite different. In this case, a kernel message is sent. This kemnel
message is placed in the message queue of the port from which the message was received.
The kernel message contains the ID of the message being canceled.

It is up to the receiver to process the kernel message appropriately. If the receiver has
replied to the message being canceled prior to receiving the cancellation kernel message,
the cancel message is removed from the queue and never seen by the receiver.

If, however, the cancellation message is received prior to the time the receiver replies to
the message, every attempt should be made to abort whatever work is in progress on that
message. Once processing has stopped for the message being canceled, replies must be
issued for both the canceled message and the kernel message.

142 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
325 326

The status given when replying to a canceled message should convey that the request was
canceled. The status given when replying to the kemnel message should indicate that the
cancellation was handled successfully. If desired, you can reply to only the kernel
message with the status value kernelCanceledErr. This value causes the message system
to reply to the canceled message with the kernelCanceledErr status value, saving you the
effort of replying to both messages.

The kernel service that cancels a message send operation is synchronous. It does not
return to the caller until that send operation has completed.

OsStatus CancelMessageSend (MessagelD cheMessage,
OSStatus theReason) ;

theMessage is the ID of the send request that is to be canceled.

theReason is the status value with which the send is to complete. This is the value that
the asynchronous notification, if any, will be delivered.

Receive Cancellation

Cancellation of a receive request simply removes that request from the port. The receive
request, by definition, has not been matched with a message so no special actions are
required. The receive request is compieted with status that indicates the cancellation.
The receiver must check the status to disambiguate the receive being canceled from
receiving a message.

OSStatus CancelMessageReceive (RecelveID theReceive);

theReceive is the ID of a pending receive operation to be canceled.

Client Initiated Cancellation Messages

Servers must be prepared to receive cancellation messages in case their client's decide to
cancel requests. These messages are generated by the kernel in response to calls to
CancelMessageSend NuKernel service. Cancellation messages, like any other kernel
message, begin with a header that describes the kernel message. The remainder of the
message contains the ID of the message being canceled and a reason for cancellation.
The reason, a 32-bit value, is not used by the kernel. Its meaning is part of the client-
server interface.

enum
(

cancelMessageCode = 3
1.

i

typedef struct CanceiMessage

March 29, 1994 Copyright 1992 Apple Computer, Inc. 143

5,590,334
327 328

KernelMessageHeader theHeader;

MessagelD theMessage;

OsStatus theReason;
} CancelMessage;

Client Termination Notification

In most cases, servers can benefit from knowing when the client of an object has
terminated. At least, the object and underlying information can be reclaimed. The
message system allows a given object to be associated with a client team; the team is said
to be the object's client. When a team terminates, a kernel message is sent to every object
whose client is that terminating team.

Registering An Object's Client

Newly created objects have no client team associated with them. Unless a client is
associated with the object, no client termination message will be sent to the object. Use
the SetObjectInformation service to associate a particular team with a given message
object. Each message object is capable of having at most one client. Setting the client
overrides any previous client association.

Client Termination Messages

Following are the type declarations associated with the kernel messages sent for client
termination notification. These kernel messages are sent while the client team still exists
but while it is in the process of terminating. In response to these messages the server
should refrain from creating additional kerne! resources in the client team. As with all
messages, the server must reply to the client termination messages.

enum
{

announceClientTermination = 4
¥

typedef struct ClientTerminationMessage
{
kernelMessageHeader theHeader;
TeamlID theTeam;
} ClientTerminationMessage:

144 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
329 330

AGENTS

Agents are extensions to the kemel. They are accessed through the message system.
Agents reside within the kernel band and execute in supervisor mode.

Agents must be explicitly installed into the kernel. At the time they are installed you
must specify attributes of the agent including the kind of agent (In-line or Server),
whether or not the agent is memory resident, etc in addition to providing the agent's code.
These attributes are collectively called the Agent Descriptor.

Once installed, the agent can send and receive messages. The agent will exist until it is
explicitly removed.

Installing Agents

Installation of an agent yields two separate values: the ID of an object and the ID of the
agent itself. The object is a newly created object attached to a newly created port which
is being serviced by the agent. You send messages to this object to communicate with the
agent. The agent's ID may be used to remove the agent at a later time.

‘When you call InstallAgent, many steps are undertaken by the kernel to load, register,
and activate the agent. The installation process only succeeds if each of these steps is
successful. Failure at any point causes the kernel to undo the previous steps and return
the failure indication.

The agent loading process involves copying the agent's code into the kernel band and
performing whatever relocation and static initialization are necessary. The code is
described in a CPU dependent fashion. M68000 code is described as a set of code
resources. Prior to installing an agent, you must load these resources into memory and
lock them. Once the agent has been installed, you may unlock and release the resources;
the installation copies the code so these resources won't be used by the agent's execution.

Once loaded, a message port and a message object on that port are created for the agent.
The number of concurrent asynchronous sends and receives that this pre-created port can
handle are controlled by the appropriate fields in the Agent Descriptor. The ID of this
pre-created object is one of the results returned by the kernel to the installer of the agent.
This message object is used to send messages to the agent; it is the only means of
establishing communications with the agent when it is first loaded. The object's refcon is
set to the object’s own ID. The object's refcon may be changed with the SetObjectRefcon

service described in the Object Management section of the Messaging chapter of this
document.

Once the port and object have been created, the agent is activated. The activation of
server agents is different than the activation of in-line agents. Activating a server agent
implies creation of a task. The task's scheduling priority and stack size are both specified
by the Agent Descriptor. The task is created with an initial parameter that is the [D of
the port previously described. Server agents shouid begin receiving messages from this
port soon after their creation.

March 29, 1994 Copyright 1992 Apple Computer, Inc. 145

5,590,334
331 332

The activation of an in-line agent simply registers its entry point as an acceptance
function for the agent's pre-created message port. The options specified for this accept
come from the Agent Descriptor.

Once activated, a kernel message is sent to the agent's pre-created object. The agent must
receive this message and perform any required initialization; failure to process and reply
to this kernel message will cause the installation system call to hang. The agent can
create any necessary control block required for the pre-created object. The agent can find
the object because the object's refcon, provided in the message control block during the
receive, is the object's ID.

If the same agent is installed muitiple times. only one copy of the agent's code is copied
into the kernel band. Each installation resulls in a unigue port-object pair. Each
installation creates separate static data. The agents act in complete isolation from each
other; only the code is shared.

Following are the kernel services and types associated with agent installation:

enum

{
agentIsTask = 0x00000001,
agentIsResident = 0x00000002

}i

typedef struct AgentDescriptor
{

PBVersion version;
Ref codeDescriptor,
TaskName theName,

AsyncQperationCount asyncReceivelLimic;
AsyncOperationCount asyncSendbimit;

ByteCount stackSize;
OptionBits acceptorTaskOptions;
OptionBits agentOptions;

} AgentDescriptor;

The fields of an AgentDescriptor are:

* version specifies the version number of AgentDescriptor being supplied. This
provides backwards compatibility. agentDescriptorVersion is the version of
AgentDescriptor defined in the current interface. You should always specify a value
of agentDescriptorVersion.

* codeDescriptor is a code descriptor generated by the appropriate OS trap.

+ taskName is passed to CreateTask as the task name (if the agent is a task).

* asyncReceiveLimit and asyncSendLimit are used as values for the parameters of the
same names to the CreatePort call that is part of installing the agent.

146 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
333 334

+ stackSize specifies the size, in bytes, of the stack for the task created for a server
agent. This value is ignored for in-line agents and should be zero.

» acceptOrTaskOptions is interpreted differently for Server Agents than for In-Line
Agents. For server agents, this value is passed as the options parameter to
CreateTask when the server's task is being created. For in-line agents, this value is
passed as the options parameter to AcceptMessage when the in-line agent is being
registered with the message system.

* agentOptions specifies the kind of agent to be created as well as other attributes of
the agent. Presently two options are supported. The first controls whether the agent
is a server agent or an in-line agent. The second controls whether the agent's code,
static data, and stack (for server agents only) will be created in pageable or non-
pageable areas within the kernel band.

0SStatus InstallAgent (AgentDescriptor * theDescriptor,
ObjectID ~ theObject,
AgentID * theAgent) ;

theDescriptor is a descriptor (see above) of the agent being installed. This descriptor
controls the manner in which the agent is created and initialized.

theObject is updated with the ID of the agent's pre-created object.

theAgent is updated with the ID of the agent. This ID can be used to remove the agent.

enum
{
initializeAgentCode = 1

}i

typedef struct AgentInitializationMessage
{

KernelMessagedeader theHeader;
} AgentInitializationMessage;

Removing Agents

The code and other kernel resources associated with an agent are reclaimed only through
explicit requests to the kernel. You do this by using the agent's ID that was returned
when the agent was installed. When the kernel removes an agent, it first sends that agent
a kermnel message so that the agent can clean up and deallocate any resources prior to its
removal. This kernel message is sent to the agent's pre-created object. In addition to
internal cleanup, the agent must perform the following actions: First, any asynchronous
receive operations must be canceled. Second, the acceptance function, if any, must be
removed. Third, all objects must be deleted, fourth, the port must be deleted. Finally, the

March 29, 1994 Copyright 1992 Apple Computer, Inc. 147

5,590,334
335 336

agent should reply to the system removal message and then, in the case of a server agent,
terminate.

The agent must always be ready for a removal message. Failure to receive and reply to
removal messages causes the remove request to hang. If the agent is not ready to
terminate it may reply to the removal request with an error status indicating the reason for
its refusal to terminate. This status is not interpreted by the kernel but is part of the
interface between client and server.

Should the pre-created object have been previously deleted. the removal request will fail.
This may indicate that the agent has already been removed. In any case, if the pre-created
object is not available, agent deietion cannot succeed.

Following are the kernel services and types associated with agent removal

0SStatus RemoveAgent (AgentID theAgent):

enum
{
finalizeAgentCode = 2

}i

typedef struct FinalizeAgentMessage
{

KernelMessageHeader theHeader;
} FinalizeAgentMessage;

148 Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
337 338

REGISTRY

A registry is a naming service for kernel resources. It solves the problem of how to locate
a resource whose kernellD is unknown. IDs are not generally known because they are
created dynamically and their values are unpredictable.

The NuKernel registry is implemented by a server outside the kernel and accessed
through library routines that send messages to the registry server. The kernel supplies two

calls so that the registry kbrary can find the registry server. These calls are meant for use
only by the registry software; no other software should call these routines.

Setting the Registry Object TD

SetRegistryObjectID causes the kernel to remember the ID passed as an argument and
return it when GetRegistryObject]D is called. It's like a registry that can remember
exactly one thing, and it’s meant to be used to remember the ID of a more flexible
registry. If it is called multiple times it remembers the most recent value; no errors are
possible.

void SetRegistryCbjectID (ObjectID newRegistryID);

Getting the Registry Object ID

GetRegistryObjectID returns the most recent value passed to SetRegistryObjectID

ObjectIb GetRegistryObjectID {);

March 29, 1994 Copyright 1992 Apple Computer, Inc. A

5,590,334
339 340

RESTRICTIONS ON USING KERNEL SERVICES

NuKernel provides three separate execution levels: task level, hardware interrupt level,
and secondary interrupt level. Additionally, task level execution may be decomposed
into execution of privileged tasks and non-privileged tasks. Various restrictions are
placed on which kernel services can be called from each of these execution levels. The
following sections define which services are available from each execution level.

Services That Can Be Called From Task Level

All NuKernel services may be called from task level. However, not all kernel services
are available to non-privileged tasks. These services are listed in the following section.

Services That CANNOT Be Called By Non-Privileged Tasks

+ PoolAllocatePageable

¢ PoolAllocateResident

* CallSecondaryInterruptHandlerQ
+ CallSecondaryInterruptHandler!
» CallSecondaryInterruptHandler2
 CallSecondarylnterruptHandler3
+ CallSecondaryInterruptHandler4
* QueueSecondaryInterruptHandler
* InstalllnterruptHandler

* RemovelnterruptHandler

+ UnmeapMemory

« AcceptMessage

Services That Can Be Called From Secondary Interrupt Handlers

* PoolAllocate

+ PoolAllocateResident

B Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334
341 342

+ PoolDeallocate

* GetPoollnformation

* SetEvents

* ClearEvents

* ReadEvents

+ StackSpace

* GetTaskInformation

* SetPriority

* CreateSoftwarelnterrupt

» SendSoftwarelnterrupt

* DeleteSoftwarelnterrupt

» CallSecondarylnterruptHandlerO
* CallSecondaryinterruptHandlerl
» CallSecondaryInterruptHandler2
+ CallSecondaryInterruptHandler3
» CallSecondaryinterruptHandlerd
* QueueSecondaryinterruptHandler
* UpTime

» SetlnterruptTimer

= CancelTimer

* TimeBase

« CheckpointlO

« UnmapMemory

* UnLockObject

* GetRegistryObjectID

March 29; 1994 Copyright 1992 Apple Computer, Inc.

5,590,334
343 344

* SetRegistryObjectID

* ReplyToMessage

Services That Can Be Called From Hardware Interrupt Level

* SendSoftwarelnterrupt

* QueueSecondaryinterruptHand]er
* UpTime

* SetlnterruptTimer

« TimeBase

D Copyright 1992 Apple Computer, Inc. March 29, 1994

5,590,334

345

What is claimed is:

1. A computer-implemented message passing method for
a computer system having a processing trait and a memory
wherein a plurality of client tasks, a plurality of server tasks
and a message passing unit reside, each client task compris-
ing a sequence of program instructions that require a service,
cach server task comprising a sequence of program instruc-
tions capable of providing a service, the message passing
unit comprising a sequence of program instructions that
manages the transfer of messages between client tasks and
server tasks, each client task, each server task, and the
message passing unit executable by the processing unit, the
message passing method comprising the steps of:

creating a plurality of message object data structures with
the message passing unit, each message object data
structure corresponding to a type of service provided by
at least one server task within the plurality of server
tasks, each message object data structure serving as a
message destination from the perspective of a client
task within the plurality of client tasks and to which a
client task within the plurality of client tasks issues a
send message request for the purpose of requesting a
particular type of service be performed upon a mes-
sage;

creating a port object data structure with the message
passing unit, the port object data structure associated
with the plurality of message data structures, the port
object data structure corresponding to a receptacle for
messages directed to each message object data structure
within the plurality of message object data structures
and to which each server task within the plurality of
server tasks issues a receive message request for the
purpose of polling for a message;

issuing a send message request with a first client task
within the plurality of client tasks, the send message
request including a reference to a first message and a
reference to a message object data structure within the
pturality of message object data structures;

receiving the send message request with the message
passing unit;

transferring the first message to the port object data
structure with the message passing unit;

polling the port object data structure with a first server
task within the plurality of server tasks; and

transferring the first message to the first server task with
the message passing unit.

2. The method of claim 1, wherein the step of transferring

the first message to the port object comprises the steps of:

generating a unique message identification signal with the
message passing unit;

creating a send message control block with the message
passing unit, the send message control block corre-
sponding to the message identification signal, the send
message control block storing the reference to the first
message; and

storing a reference to the send message control block in a
data field of the port object with the message passing
unit.

3. The method of claim 2, further comprising the steps of:

determining with the message passing unit whether the
send message request specifies that execution of the
first client task by the processing umit is to be tempo-
rarily prevented; and

preventing execution of the first client task with the
message passing unit until the first server task has

20

25

30

35

40

45

50

60

65

346

issued a reply corresponding to the message identifi-
cation signal.
4. The method of claim 2, wherein the step of transferring

the first message to the first server task comprises the steps
of:

determining with the message passing unit whether the
first server task has issued a receive message request
that matches the send message control block; and

issuing a signal to the first server task with the message
passing unit to initiate a service corresponding to the
send message request in the event that the receive
message request matches the send message control
block.

5. The method of claim 4, further comprising the steps of:

creating a receive message control block associated with
the receive message request with the message passing
unit if the receive message request does not match the
send message control block; and

storing a reference to the receive message control block in
a data field of the port object with the message passing
unit.

6. The method of claim §, further comprising the steps of:

determining with the message passing unit whether the
receive message request specifies that execution of the
first server task by the processing unit is to be tempo-
rarily prevented; and

preventing execution of the first sever task with the
message passing unit until a send message control
block that matches the receive message request has
been created.

7. The method of claim 4, further comprising the step of

transferring reply information to the first client task with the
message passing unit in response to the first server task
issuing a reply corresponding to the message identification
signal.

8. The method of claim 2, further comprising the steps of:

storing a reference to an acceptance function in a data
field of the port object with the message passing unit,
the acceptance function comprising a sequence of pro-
gram instructions capable of providing a service within
a memory address space associated with at least one
client task within the plurality of client tasks;

determining with the message passing unit whether the
send message control block matches the acceptance
function; and :

if the send message control block matches the acceptance
function, issuing a signal to the acceptance function
with the message passing unit to initiate a service
corresponding to the send message request.

9. A computer-implemented means for passing messages

between a plurality of server tasks and a plurality of client
tasks within a computer system having a processing unit and
a memory, the means for passing messages comprising:

means. for creating a plurality of message object data
structures, each message object data structure corre-
sponding to a type of service provided by at least one
server task within the plurality of server tasks, each
message object data structure serving as a unique
message destination from the perspective of a client
task within the plurality of client tasks and to which a
client task within the plurality of client tasks issues a
send message request for the purpose of requesting a
particular type of service be performed upon a mes-
sage;

means for creating a port object data structure associated
with the plurality of message data structures, the port

5,590,334

347

object data structure corresponding to a receptacle for
messages directed to each of its associated message
object data structures and to which each server task
within the plurality of server tasks issues a receive
message request for the purpose of polling for a mes-
sage;

means for transferring a first message associated with a
first client task within the plurality of client tasks to the
port object data structure; and

means for transferring the first message from the port
object data structure o a first server task within the
plurality of server tasks.

10. The system of claim 9, further comprising:

means for generating a unique message identification
signal in response to the generation of a send message
request by the first client task;

means for creating a send message control block corre-
sponding to the message identification signal, the send
message control block storing a reference to the first
message;

means for determining whether a receive message request
generated by the first server task matches the send
message control block; and

means for issuing a signal to the first server task to initiate
a service corresponding 1o the send message request.

11. The system of claim 9, further comprising a means for
issuing a signal to an acceptance function associated with
the port object Lo initiate the performance of a service within
a memory address space associated with the first client task.

12. The system of claim 9, further comprising a means for
transferring reply information to the first client task in
response to a reply issued by the first server task.

13. An object oriented message passing system for pass-
ing messages between a plurality of client tasks and a
plurality of server tasks, the object oriented message passing
system comprising:

a memory having an input and an output for storing data
and commands, the memory including an object man-
agement unit for creating a port object data structure
and a plurality of message object data structures asso-
ciated with the port object data structure, the port object
data structure corresponding to a message receptacle to
which a sever task within the plurality of server tasks
issues a receive message request for the purpose of
polling for a message, each message object data struc-
ture corresponding to a type of service provided by the
server task, each message object data structure serving
as a message destination from the perspective of a
client task within the plurality of client tasks and to
which a client task within the plurality of client tasks
issues a send message request for the purpose of
requesting a particular type of service be performed

10

15

20

25

30

35

40

45

348

upon a message, the memory additionally including an
object database for storing the port object data structure
and each message ohject data structure, and a message
transaction unit for matching a send message request
issued by a client task within the plurality of client tasks
with a receive message request issued by a server task
within the plurality of server tasks, each of the object
management unit and the message transaction umit
comprising program instructions that form a portion of
a computer operating system; and

a processing unit having an input and an output, for
processing data and executing commands under control
of program instructions stored in the memory, the input
of the processing unit coupled to the output of the
memory, and the output of the processing unit coupled
to the input of the memory.

14. The method of claim 1, wherein the object oriented

message passing unit forms a portion of a microkernel
operating system.

15, A computer-readable medium storing program

instructions for performing the steps of:

creating.a plurality of message object data structures with
a message passing unit, each message object data
structure corresponding to a type of service provided by
at least one server task within a plurality of server tasks,
cach message object data structure serving as a mes-
sage destination from the perspective of a client task
within the plurality of client tasks and to which a client
task within a plurality of client tasks issues a send
message request for the purpose of requesting a par-
ticular service be performed upon a message;

creating a port object data structure with the message
passing unit, the port object data structure associated
with the plurality of message data structures, the port
object data structure corresponding to a receptacle for
messages directed to each message object data structure
within the plurality of message object data structures
and to which each server task within the plurality of
server tasks issues a receive message request for the
purpose of polling for a message;

receiving a send message request issued by a first client
task, the send message request including a reference to
a first message and a reference to a message object data
structure within the plurality of message object data
structures;

transferring the first message to the port object data
structure with the message passing unit; and

transferring the first message to a first server task with the
message passing unit in response to the first server task
polling the port object data structure.

LI S S T

	Front Page
	Drawings
	Specification
	Claims

