

ð

Draft

Developer Press



 Apple Computer, Inc. 1995

ð

Copland Technical Overview

This document was created with FrameMaker 4.0.4

Draft. Confidential.



 Apple Computer, Inc. 5/5/95

ð

Apple Computer, Inc.



 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleShare, AppleTalk, GeoPort,
HyperCard, ImageWriter,
LaserWriter, LocalTalk, Macintosh,
MacTCP, PowerBook, Power
Macintosh, PowerTalk, QuickTime,
TrueType, and WorldScript are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
AppleScript, Balloon Help, Chicago,
Finder, Geneva, Mac, Mac OS logo,
OpenDoc, and QuickDraw are
trademarks of Apple Computer, Inc.

Adobe Photoshop is a trademark of
Adobe Systems Incorporated, which
may be registered in certain
jurisdictions.
Palatino is a registered trademark of
Linotype Company.
IBM is a registered trademark of
International Business Machines
Corporation.
MacPaint and MacWrite are
registered trademarks, and
Clarisworks is a trademark, of Claris
Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state..

This document was created with FrameMaker 4.0.4

iii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Preface

About Copland

ix

Chapter 1

About the Copland Human Interface and Toolbox

1-1

Compatibility—Backward and Forward 1-4
Design Goals for the Copland Human Interface 1-5
About the Copland Human Interface 1-6

Appearance and Customization 1-6
Themes 1-7
The Appearance Control Panel 1-10
Standard Human Interface Elements and Primitives 1-11
Multiple Workspaces 1-12

Active Assistance 1-14
Apple Guide Enhancements 1-16
Delegated Tasks 1-18

Information Access 1-23
About the Copland Toolbox 1-25

Overview of the Copland Toolbox 1-25
Opacity and Consistency 1-25
Integrated Support for International Text 1-26
Extensible Data Structures 1-27
Extensible Designs 1-27

Summary of New Toolbox Features 1-29
Appearance Manager 1-29
Desktop Animation Manager 1-32
Panels 1-33
Menu Manager 1-35
Window Manager 1-36
Control Manager 1-38
Dialog Manager 1-39
Scrap Manager, Clipboard Manager, and Drag Manager 1-40
Icon Utilities 1-41

This document was created with FrameMaker 4.0.4

iv

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Chapter 2

About Copland Imaging

2-1

Compatibility—Backward and Forward 2-3
Design Goals for Copland Imaging 2-4

Graphics Systems Integration 2-4
Text Objects 2-5
Font Handling 2-6

Preparing Your Application for Copland 2-7

Chapter 3

About Copland Processes

3-1

System 7 Application Compatibility 3-4
Design Goals for Copland Process Management 3-4
Processes 3-4

Cooperative Processes 3-5
Server Processes 3-7

Tasks 3-8
Cooperative Threads and Preemptive Tasks 3-9
Task Scheduling 3-10
Task Communication 3-11
Task Synchronization 3-12

Copland Execution Environments 3-14
Task Level 3-15
Software Interrupt Level 3-15
Secondary Interrupt Level 3-16
Hardware Interrupt Level 3-17
Exceptions 3-18

Chapter 4

About the Copland Runtime Environment

4-1

Compatibility—Backward and Forward 4-3
Design Goals for the Copland Runtime Environment 4-4
Fragments 4-5
Shared Libraries 4-6
Memory Organization 4-9

Memory Protection 4-11

v

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Virtual Memory 4-13
Heap Management 4-15
Extending the System 4-19

Chapter 5

About the Copland I/O Architecture

5-1

Introduction 5-4
Families 5-7
Plug-ins 5-10

Design Goals for the Copland I/O Architecture 5-12
Short-Term Design Goals 5-12
Long-Term Design Goals 5-13

Architectural Features 5-15
Driver Loader Library 5-15
Driver Services Library 5-15
Booting Services 5-16
Power Management 5-16
User Activity Monitor 5-17
Support for Hot Swappable Devices 5-18

A Closer Look 5-18
Families 5-18

Family Programming Interfaces 5-19
Family Communications 5-20

Plug-ins 5-21
Extending Family Programming Interfaces 5-21
Sharing Code and Data Between Plug-ins 5-23

Activation Models 5-24
Single-Task Model 5-25
Task-per-Plug-in Model 5-27
Task-per-Request Model 5-30
Family Programming Issues 5-32

Name Registry 5-33
Compatibility—Backward and Forward 5-34

If You Develop Device Drivers 5-35
Separation of Application and Device Driver Interfaces 5-37
Common Packaging of Loadable Software 5-37

vi

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

If You Develop Applications 5-38
Device Manager Compatibility 5-39

Chapter 6

About the Copland File Manager

6-1

Compatibility—Backward and Forward 6-3
Design Goals for the Copland File Manager 6-4
Features of the Copland File Manager 6-4

Increased Speed 6-4
An Improved HFS Volume Format 6-5
Support for Third-Party Volume Formats 6-6
Ease of Development 6-6

Clearer and More Streamlined APIs 6-6
Event Notification 6-7

New Concepts Behind the Copland File Manager 6-7
FSProperties 6-7
FSObjects 6-8
FSLinks 6-9
Future Plans 6-11

Preparing Your Product for the Copland File Manager 6-11

Chapter 7

About Copland Networking

7-1

Compatibility—Backward and Forward 7-3
Design Goals for Open Transport 7-4
Cross-Platform Standards 7-6
Preparing Your Application for Copland 7-7

Chapter 8

About the Copland PowerTalk Environment

8-1

Compatibility—Backward and Forward 8-3
Design Goals for PowerTalk on Copland 8-4

New Features for PowerTalk 8-4
Operating System Integration 8-5

Preparing Your Application for Copland 8-5

vii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Glossary

GL-1

viii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

ix

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

P R E F A C E

About Copland

Copland is the development name for the next major release of the Mac OS.
This document presents an overview of the design of Copland, describes many
of the benefits that its implementation offers to the users of your software or
hardware products, and discusses how your products can take advantage of
Copland’s new features.

With Copland, Apple Computer is redesigning the core of the Mac OS to
provide concurrency, higher performance, and enhanced stability. Featuring a
modular, microkernel design, this new OS provides

■

preemptive task scheduling

■

memory protection for critical system code and data, such as device drivers
and file system extensions

■

improved virtual memory

■

a shared, dynamically loaded, file-mapped version of the Mac OS

■

a concurrent and more flexible File Manager

■

a new, higher performance, concurrent I/O architecture

Copland also delivers dramatic improvements in ease of use and new
customizing capabilities. Significant improvements to the Macintosh user
experience include

■

coordinated sets of designs—affecting the appearance of onscreen human
interface elements, such as windows, menus, fonts, and controls—with
which users can personalize their computers

■

the ability for multiple users to individually customize and share a single
computer

■

visual and behavioral consistency among commonly implemented human
interface elements, such as floating windows, slider controls, and tear-off
menus

■

better access to documents and related information from within an
application and from the Finder

This document was created with FrameMaker 4.0.4

x

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

P R E F A C E

■

a system for helping users achieve their goals instead of teaching them
merely how to manipulate applications and system software

■

user assistance in automating repetitive tasks

Making refined new versions of essential Macintosh technologies available to
all of its users, Copland includes as standard features

■

the object-based flexibility of OpenDoc

■

the integration and unification of the graphics, text, and printing capabilities
of QuickDraw, QuickDraw GX, QuickDraw 3D, and WorldScript

■

network transport transparency and independence through Open Transport

■

integrated collaboration services with PowerTalk

In addition to improving user productivity with these technologies, Copland
offers noteworthy speed increases to users of PowerPC-based computers,
because its OS and Toolbox have been rewritten as native implementations on
PowerPC processors.

Many of the benefits of Copland are available to your application (and its
users) regardless of whether it adopts the new Copland APIs, because Copland
offers a high-degree of compatibility with System 7 applications. However, for
increased performance, additional functionality, and future extensibility in
your product, you should consider adopting the Copland APIs as quickly as
possible. (As you might guess, decreasing numbers of System 7 APIs will be
supported in versions of the Mac OS beyond Copland.) So adopting Copland
APIs in your application helps ensure a smooth development path to future
versions of the Mac OS.

Just as Copland provides many improvements for users, so too does it offer
new opportunities for you as a developer. For example, the modular design of
the OS makes it much easier for Mac OS licensees to port Copland to their own
hardware platforms, increasing the market for all other Mac-related products.
Copland simplifies product development in many other significant ways. For
example, the new, structured I/O architecture simplifies device driver
development; the flexible new File Manager makes it easier for your product to
support industry-standard volume formats in addition to an improved version
of the hierarchical file system (HFS); and the new Toolbox supplies extensible
user-interface features demanded by application developers.

The chapters in this document explain in general how the Copland architecture
supports these features for users and developers. Note that because of the

xi

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

P R E F A C E

preliminary nature of this document, many of the terms and names used
within it, as well as interface elements shown in its figures, are subject to
change. As in the past, however, Apple Computer will strive to provide you
with the most up-to-date information possible through its many developer
products and offerings.

We look forward to helping you run your software products on Copland.

xii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

P R E F A C E

C H A P T E R 1

Contents

1-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 About the Copland Human
Interface and Toolbox

Compatibility—Backward and Forward 1-4
Design Goals for the Copland Human Interface 1-5
About the Copland Human Interface 1-6

Appearance and Customization 1-6
Themes 1-7
The Appearance Control Panel 1-10
Standard Human Interface Elements and Primitives 1-11
Multiple Workspaces 1-12

Active Assistance 1-14
Apple Guide Enhancements 1-16
Delegated Tasks 1-18

Information Access 1-23
About the Copland Toolbox 1-25

Overview of the Copland Toolbox 1-25
Opacity and Consistency 1-25
Integrated Support for International Text 1-26
Extensible Data Structures 1-27
Extensible Designs 1-27

Summary of New Toolbox Features 1-29
Appearance Manager 1-29
Desktop Animation Manager 1-32
Panels 1-33
Menu Manager 1-35
Window Manager 1-36
Control Manager 1-38
Dialog Manager 1-39

This document was created with FrameMaker 4.0.4

C H A P T E R 1

1-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Scrap Manager, Clipboard Manager, and Drag Manager 1-40
Icon Utilities 1-41

C H A P T E R 1

1-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About the Copland Human Interface and Toolbox 1

This document describes the new human interface features in Copland and
related changes to the Mac Toolbox.

The major human interface improvements introduced by Copland include

■

a more consistent human interface

■

more options for customization by users

■

a new form of onscreen assistance that allows users to set up and perform
complex tasks by answering a few simple questions

■

improved access to information, including a flexible replacement for the
Standard File Package

The Toolbox has been rewritten for Copland to support the new human
interface features and run native on PowerPC processors. From a
programmer’s point of view, the most important architectural changes to the
Toolbox fall into four categories:

■

Improved opacity.

 Toolbox managers have been simplified and integrated to
provide a complete programming model that doesn’t require direct
manipulation of underlying data structures.

■

Integrated support for globalized software.

 The Toolbox takes advantage of
the new systemwide text objects APIs to provide flexible support for
multilingual text throughout the human interface.

■

Data extensibility.

 The Toolbox uses the Collection Manager to support the
addition of arbitrary tagged data to Toolbox data structures without
manipulating the structures directly.

■

Design extensibility.

 The Toolbox includes a comprehensive set of standard
windows, menus, controls, and other human interface elements that can be
used as is or extended by developers to support specialized application
needs.

By supporting the Copland human interface and Toolbox, you can create
applications that look and behave more consistently and reliably and take
advantage of the new customization, assistance, and information access
features.

This document was created with FrameMaker 4.0.4

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-4

Compatibility—Backward and Forward

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Compatibility—Backward and Forward 1

Code written to the Copland APIs not only ensures compatibility with Copland
but also lays the foundation for new capabilities that will be introduced in
future Mac OS enhancements.

Like any major system software revision, Copland introduces features that
aren’t backward compatible with earlier systems. However, most applications
written to System 7.5 APIs can run on Copland, even though they may not be
able to take advantage of all its features. For example, clients of standard
System 7.5 definition procedures (defprocs) work correctly and inherit the
Copland human interface appearance. Custom defprocs written for System 7.5
also work correctly on Copland but do not inherit the Copland appearance.

Here are some general compatibility guidelines for System 7.5 applications:

■

Don’t assume that dialog box backgrounds are white. The Copland human
interface supports a variety of background colors.

■

For floating windows, use the standard floating window definition (ID 124)
introduced in System 7.5. This window definition works correctly on
Copland and inherits the Copland appearance.

■

Don’t hard code any assumptions about the precise locations of human
interface elements such as close boxes, zoom boxes, and window titles
within the noncontent areas of windows or dialog boxes.

■

Don’t hard code any assumptions about the precise locations of any human
interface elements in the Save and Open dialog boxes. Use the relative
position of the standard elements to determine the locations of new ones.

■

Always use low-memory accessor functions.

■

Use data structure accessor functions where they exist. For example, use

SetMenuItemText

 and

GetMenuItemText

 to manipulate menu item text
rather than accessing the data structure directly.

■

If data structure accessor functions aren’t available, isolate the code that
accesses data structures directly. Copland provides accessor functions for all
data structures, and it is easier to take advantage of them if you have
isolated the code that needs to be updated.

C H A P T E R 1

About the Copland Human Interface and Toolbox

Design Goals for the Copland Human Interface

1-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

Don’t manipulate the window list directly. Use the

BringToFront

 and

SendBehind

 functions instead.

■

Compile your application with the

STRICT

 compiler option to ensure that
your application can be supported as Copland migrates to future versions of
the Mac OS.

Design Goals for the Copland Human Interface 1

After careful analysis of customer priorities, Apple has established these design
goals for the Copland human interface and related Toolbox capabilities:

■

Provide a more consistent human interface for system software and for all
Copland applications. For example, pop-up menus in different applications
should work the same way and should match the appearance of other
human interface elements.

■

Support customization by individual users, including the appearance of
human interface elements, the scaling (complexity) of available features, and
separate work areas for users who share a single computer. For example,
multiple users of one computer should be able to set up their own
computing environments—including the details of systemwide appearance,
application preferences, the organization of the desktop, and the complexity
of available features—and let the computer handle the details of switching
between one environment and the other.

■

Support “do it for me” behavior and provide a new high-level assistance
mechanism that allows users to concentrate on achieving goals rather than
learning how to manipulate applications and system software.

■

Provide better access to documents and related information from within an
application and from the Finder.

■

Provide more comprehensive APIs that are consistent across all Toolbox
managers and shield applications from the details of the underlying system
data structures.

■

Provide better support for globalized software, including localization of
human interface elements and multilingual text; making it possible, for
example, to use multilingual text easily within a menu or a window title.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-6

About the Copland Human Interface

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

Support a larger number of commonly used human interface elements, such
as sliders, pop-up menus, modifier keys in menus, and tear-off menus, and
facilitate the reuse of standard code for customized elements.

About the Copland Human Interface 1

Copland makes the Macintosh human interface more flexible from a user’s
point of view and at the same time makes it easier for a developer to
implement. The major areas of change include a new approach to appearance
and customization, new forms of assistance, and improved access to
information.

Appearance and Customization 1

As Macintosh applications have become more powerful and more complex,
developers have tended to circumvent various parts of system software to
implement new capabilities. This has led to idiosyncratic solutions to common
problems. For example, the appearance and behavior of pop-up menus, dialog
boxes, icon buttons, and sliders tend to differ from one application to another.

Inconsistent human interface implementations lead to user frustration, higher
training costs, and reduced productivity. Improved consistency is therefore one
of the major design goals for the Copland human interface.

However, consistency should not come at the price of flexibility. Users want to
be able to customize their computing environments to suit the specific tasks
they perform. Users also want to be able to share their computers easily with
others while retaining separate customized environments.

The Copland Toolbox addresses these demands for improved consistency and
customization by supporting these key features of the Copland human
interface:

■

Users can select different

themes

 or styles—that is, coordinated sets of human
interface designs that determine the appearance and behavior of human
interface elements on a systemwide basis. For example, a teacher might
want to use a theme with bright colors, animated menus, and sounds,
whereas a businessperson might prefer a more conservative, classic theme.
Regardless of the theme, the core Macintosh experience remains the same,

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface

1-7

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

and users can switch themes without having to learn new human interface
metaphors.

■

Users can select different

workspaces

 or desktops—that is, separate
customized environments for a single computer. Each workspace can have
its own theme, control panel options, desktop arrangement, screen saver
settings, application preferences, and so on. For example, a user with a home
office could set up one password-protected workspace for business tasks
and several additional workspaces for use by other members of the family. If
desired, each user’s access to available system and application features can
be controlled, or

scaled,

 according to the user’s skill level, and each
workspace can be password-protected.

■

Developers can use standard code and graphic designs for a variety of
human interface elements in your application, including many elements that
must be created from scratch in System 7.5. At the same time, it’s much
easier to customize the standard elements or, if necessary, to create new ones
without replacing large chunks of code provided by the system. These
capabilities depend on

interface definition objects (IDOs),

 which are
SOM-based replacements for the defprocs used in System 7.5.

IMPORTANT

The terms

theme,

workspace,

 and others noted elsewhere in
this chapter are preliminary names for use during Copland
development. These names are likely to change.

▲

The sections that follow introduce the Copland human interface capabilities
from a user’s point of view. For information about Toolbox support for these
features, see “About the Copland Toolbox,” beginning on page 1-25.

Themes 1

A

theme

 is a coordinated set of designs that determines the appearance of all
human interface elements on the screen, including alert icons, controls,
background colors, dialog boxes, menus, screen savers, state transitions,
system font, and windows. Apple plans to supply several standard themes
with Copland and will encourage third-party theme development in the future.
Users can choose among the themes available to the system with the
Appearance control panel. Eventually users will be able to buy and install
additional themes. One theme, the Apple Default theme, is permanently built
into the system.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-8

About the Copland Human Interface

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

In addition to supporting user customization, themes and the underlying IDO
mechanism insulate your application from future changes to the human
interface. They free you from relying on hardwired appearances for standard
elements while making it easier to create customized elements. Because
Copland allows you to deal with appearance abstractions rather than specific
details, your application can support not only the new human interface designs
in Copland but also future design enhancements. Themes are designed to
support future growth of the Mac OS as well as customization by users.

Figure 1-1 shows a preliminary design for the Apple Default theme. This
design provides a standard 3-D appearance appropriate for a business or
professional user. The Apple Default theme resembles the appearance of the
System 7.5 human interface more closely than other themes supplied by Apple.

Figure 1-1

Preliminary design for the Apple Default theme

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface

1-9

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 1-2 shows another preliminary design for a theme.

Figure 1-2

Another potential theme

IMPORTANT

The designs shown in Figure 1-1, Figure 1-2, and other
figures in this chapter are preliminary and likely to
change.

▲

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-10

About the Copland Human Interface

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

The Appearance Control Panel 1

The Appearance control panel allows users to specify the current theme and
other aspects of their computing environment’s appearance. It also replaces the
Desktop Patterns and Color control panels in System 7.5.

As shown in Figure 1-3, the Appearance control panel displays the themes that
are currently installed in the system. It also displays several panels—that is,
groups of related settings—that allow users to adjust specific appearance
attributes of each theme.

Figure 1-3

Preliminary design for the Appearance control panel

Each theme supports four built-in panels and can also display additional
theme-specific panels. The pop-up menu in Figure 1-4 lists the panels available
for the Apple Default theme.

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface

1-11

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 1-4

Pop-up menu listing the panels available for the Apple Default theme

Note

The panels available in the Appearance control panel, the
Save dialog box, and elsewhere in the Copland human
interface are in turn composed of smaller panels that
encapsulate individual human interface elements. For
more information, see “Panels,” beginning on page 1-33.

◆

Standard Human Interface Elements and Primitives 1

The Copland Toolbox provides a much broader variety of standard behaviors
and standard human interface elements than System 7.5, including ready-made
menus, dialog boxes, radio buttons, sliders, and other controls. Unlike standard
elements in earlier versions of system software, those provided by Copland can
be easily customized without wholesale duplication of system code. “Summary
of New Toolbox Features,” beginning on page 1-29, introduces some of the
standard elements provided by each Toolbox manager.

Copland also provides a mechanism for specifying bevels, fills, window
headers, and other basic shapes that you can combine to create custom,
theme-compatible visual elements for specialized purposes or to coordinate
content areas (for example, background fills) with the current theme. These
capabilities are described in “Appearance Manager,” beginning on page 1-29.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-12

About the Copland Human Interface

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Whenever possible, you should use the standard windows, menus, controls,
and so on provided by the Copland Toolbox. This is the easiest way to support
themes. If you need to create custom elements, you have two choices:

■

Customize standard elements.

 You can modify just those characteristics of a
standard element that you wish to implement differently while maintaining
compatibility with the current theme.

■

Implement your own theme-compatible elements.

 You can assemble
custom human interface elements from primitives and fills that maintain
compatibility with the current theme.

An application’s content areas are entirely under the application’s control.
Apple encourages developers to support themes wherever it makes sense for
an application to be coordinated visually with the rest of the Macintosh human
interface. For more information about Toolbox support for themes and custom
human interface elements, see “Appearance Manager,” beginning on page 1-29.

Multiple Workspaces 1

Many Macintosh computers are shared by multiple users. Although a single
user can customize a single computer in many ways—including the
arrangement of files and folders on the desktop, system preferences, and
application preferences—System 7.5 can keep track of only one set of
customizations at a time.

Copland allows users to set up several different workspaces for a single
computer. A

workspace

 maintains an entire user context, including

■

application and system preferences

■

icons (other than mounted volumes) on the desktop and open Finder
windows

■

Apple menu items

■

control panels

■

startup and shutdown items

■

user’s name and password

■

user level, or

scaling

—that is, the complexity of available menus and
features

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface

1-13

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Workspaces make it much easier for several users to share a single computer,
thus meeting one of the primary design goals for the Copland human interface.

If a system is configured for more than one workspace, the user is asked to
choose a workspace either at startup or when switching workspaces. During
startup, for example, a dialog box like that shown in Figure 1-5 appears.

Figure 1-5

Dialog box for choosing a workspace

Each workspace is associated with a specific user name. If the workspace has a
password, the user is prompted for it after choosing a name. A similar dialog
box allows a user to switch workspaces after startup. Switching workspaces
doesn’t require restarting the computer, but it does cause all currently running
applications to quit.

Copland includes a Preferences Manager. Using the Preferences Manager hides
the details of preference management from your application and enhances its
capabilities in a multiple-workspace environment; for example, by providing
user variables and global variables.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-14

About the Copland Human Interface

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Active Assistance 1

The human interface for most personal computers tends to place the computer
in a passive role. Users accomplish tasks primarily by manipulating user
interface elements directly, and they tend to discover new features through trial
and error. As a result many users don’t take advantage of the most powerful
capabilities of their software and hardware.

Apple Guide in System 7.5, the Copland Assistance Manager, and related
Copland features represent the first steps along a new path for the Mac OS
human interface, a path that will eventually transform the computer from a
purely passive tool to a cooperative partner that actively helps the user get
work done. Instead of focusing on how to manipulate applications, users
should be able to focus on how to accomplish their goals. The Copland Toolbox
provides integrated support throughout the system for

active assistance,

which extends the capabilities of Apple Guide to assist the user actively. For
example, active assistance makes it possible to present high-level questions to
the user and make decisions based on the answers.

Using the Copland Toolbox APIs as recommended by Apple helps to ensure
that your application can support active assistance. If you are working on a
System 7.5 application, providing a Guide file is an important first step toward
supporting active assistance on Copland.

The Copland Assistance Manager supports two additional capabilities that
underlie active assistance: automation and delegation.

Automation

 is

the
ability to create a sequence of actions, or task, in a form that can be used to
control operations automatically. Instructional designers and scripters can use
various automation technologies to generate tasks for the user.

Delegation

 is
the ability to trigger tasks at a specified time or when a specified event occurs.
Delegation allows the computer to be productive even when the user isn’t
present.

Copland features that support automation, delegation, and related assistance
mechanisms include the following:

■

Quick Assist

 provides user-defined key combinations that, as long as the
specified keys are pressed, enable balloons or context-sensitive access to
Apple Guide files.

■

Apple Guide 3.0

includes enhanced access and presentation windows,
improved support for performing actions on the user’s behalf, and support
for interview sequences that collect information about the user’s goals.

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface 1-15
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

■ Task Lister is an application for viewing and managing automated tasks.

■ Task Log is a window for reviewing a log of automated task activities and
messages.

■ Finder objects related to assistance include a new Assistance folder and a
new kind of file for storing information related to automated tasks.

Note
The terms automation, delegation, Task Lister, and Task Log
are preliminary names that are likely to change. ◆

Figure 1-6 shows the Assistance menu, which extends the Guide menu in
System 7.5 to support access to active assistance. The Guide menu item is
always available and invokes the Guide file provided by the active application
or by the Finder. The Assistants menu item provides access to specific kinds of
high-level active assistance that also vary according to the context. The Tips
menu item is similar to the Shortcuts menu item in System 7.5, except that it
permits more user interaction and lets users choose to have tips present
themselves in contexts where they are likely to be helpful.

Figure 1-6 The Assistance menu while the Finder is frontmost

From a developer’s point of view, the most important aspects of active
assistance are the enhancements to Apple Guide and the mechanisms for
delegating and automating tasks. These are discussed in the sections that
follow.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-16 About the Copland Human Interface

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Apple Guide Enhancements 1

As shown in Figure 1-7, an Apple Guide 3.0 access window presents a list of
questions, problems, and tasks determined by the author of the guide file being
displayed. Users can view potential topics with the aid of the Topics, Index,
and Look For buttons and select the topic that best fits their needs, just as they
can in earlier versions of Apple Guide.

Figure 1-7 Apple Guide 3.0 access and presentation windows

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface 1-17
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Apple Guide 3.0 also provides two buttons at the bottom of the Apple Guide
access window that allow users to select from the types of assistance available
for the selected task:

■ Guide me initiates step-by-step instructions with coachmarking and context
checking provided for each step. This is the style of instruction provided by
Apple Guide in System 7.5. It is appropriate when users want to learn how
to accomplish a task.

■ Do it for me leads the user through a path that provides as much
automation as possible, streamlining the steps required to complete the task.
As the user moves between panels in an Apple Guide presentation window,
Apple Guide automates as many steps as possible and takes the user directly
to key interface elements when user input is required.

Additional enhancements to Apple Guide and to the Guide Maker authoring
application include

■ support for authoring interview sequences that gather the information
required for assistants (introduced in the next section)

■ context-sensitive filtering of topics in response to a Quick Assist key or from
within Apple Guide

■ support in Guide Maker for standard Copland panels, including buttons,
PICT images, QuickTime movies, sounds, text input areas, pop-up menus,
scrolling lists, and sliders (see “Panels”, beginning on page 1-33)

■ improved keyboard focus in Apple Guide windows

■ support for printing the text of an individual task sequence

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-18 About the Copland Human Interface

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Delegated Tasks 1

Delegated tasks in Copland involve three key concepts:

■ A task is a persistent representation of a sequence of actions that can be
triggered programmatically, including actions within an application. The
actions can be performed by running a script, sending a series of Apple
events, executing a code fragment, or by combinations of these and other
methods. A task is created from a task definition in a manner analogous to
the way a document is created from an application.

■ A task definition defines how a particular kind of task is to be performed.
Combined with information about the parameters for a specific task, such as
filenames or other details and a condition, a task definition can be used by
an assistant or directly by a user to create a specific task. A single task
definition can be used to create many tasks. You can create your own task
definitions; for example, to create tasks that automatically fetch mail from an
on-line service.

■ An assistant conducts an interview to determine the user’s high-level goals
and, based on the user’s replies, either performs one or more actions
immediately or employs a task definition to create one or more tasks to be
performed at a later time. You can create your own assistants, such as an
assistant that uses a task definition to create a document layout.

You can provide task definitions and assistants for use either within a
particular application or as stand-alone tools. For example, a spreadsheet
application could include a charting assistant that helps the user create a chart
quickly; and a network management assistant could be a separate product that
helps administrators manage a network.

Tasks 1

Every task includes three kinds of information:

■ The condition for a task is the set of events or states that trigger it.
Conditions can be based on specific times, time intervals, or a variety of
other events or states that can be determined programmatically. You can
specify custom conditions, such as a condition that triggers a task every time
an e-mail application receives mail.

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface 1-19
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

■ The action for a task defines both the objects and the activities that make the
task unique, such as the names of folders to back up, the name of a folder to
watch on the network, or a list of people to whom a message should be sent.
Tasks can perform virtually any actions that a user can perform manually.

■ The notification for a task defines how to notify the user when the task runs
and determines whether to log its execution for later review. You can create
custom notifications, such as a notification that pages the user via a
commercial paging system when a task is completed.

The Task Lister application (shown in Figure 1-8) allows users to view,
duplicate, change, enable, disable, and remove the tasks that are currently
available to the system. Task Lister also lets users modify the details of
conditions, actions, and notifications for individual tasks. However, users are
more likely to begin setting up tasks with the aid of assistants, which can make
many detailed decisions about individual tasks on behalf of the user.

Figure 1-8 Preliminary design for the Task Lister application

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-20 About the Copland Human Interface

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Note
The tasks listed in Figure 1-8 are preliminary examples of
the kinds of tasks that may ship with Copland. They are
likely to change. ◆

You can create dedicated task definitions for use by your application. The
Assistance Manager manages task definitions, task files, and other aspects of
active assistance. Task definitions can be registered with the Assistance
Manager in two ways: as a file placed in the Assistance folder or as resources
within an application that are registered via the Assistance Manager API.

Assistants 1

When a user chooses Assistants from the Assistance menu, a window like that
shown in Figure 1-9 displays the assistants available for the current context.
The user can view brief descriptions of each assistant and click the Assist Me
button to initiate the one that’s currently selected.

Figure 1-9 Preliminary design for the Assistants window

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface 1-21
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Note
The assistants listed in Figure 1-9 are preliminary
examples of the kinds of assistants that may ship with
Copland. They are likely to change. ◆

After the user clicks Assist Me, the selected assistant presents a series of
windows like those shown in Figure 1-10 that let the user make high-level
choices about the goals the assistant is designed to help achieve.

Figure 1-10 Excerpts from a preliminary design for an interview sequence

The last window presented by an assistant (for example, the lower-left window
in Figure 1-10) includes an Action Items button and a Go Ahead button. Some
assistants don’t create tasks; instead, clicking Go Ahead simply initiates the
actions the assistant is designed to perform, and the Action Items button is
dimmed. For assistants that create tasks, clicking Go Ahead creates and

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-22 About the Copland Human Interface

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

schedules one or more tasks; and clicking Action Items presents a list of those
tasks as they appear in the Task Lister application, allowing the user to
fine-tune the details of each task.

If requested by the user during the interview sequence, a message window like
the lower-right example in Figure 1-10 appears when a task defined by the
assistant runs successfully.

Assistants provide the foundation for a new secondary human interface that
frees users from detailed decisions about how to make the computer perform
specific actions. Instead, assistants make decisions on the user’s behalf and use
the application’s primary human interface—its menus, windows, tools, and so
on—to execute those decisions. Users still have the option of dealing directly
with the primary interface, but assistants’ default decisions are fine for many
routine tasks.

In some respects the secondary interface provided by assistants permits more
flexibility than the primary interface. For example, e-mail applications such as
AppleLink often include a mechanism for automatically dialing the phone,
establishing a connection, and retrieving messages, but such mechanisms
require that the application already be running. When this kind of service is
implemented as an assistant, the assistant can launch the application when
necessary and combine mail retrieval with other tasks such as sorting mail or
unpacking compressed files.

Copland provides a variety of ready-made Apple assistants to help users
achieve common high-level goals. Those under consideration include assistants
for installing software, sorting mail, performing housekeeping chores such as
backups and virus checks, and establishing network connections. Developers
can create additional assistants for a variety of purposes. This involves using
Guide Maker and Apple Guide to create and present the interview sequence
and the Assistance Manager to manage the scheduling and execution of tasks.

For application developers, assistants provide a way of performing complex
operations without first requiring the user to learn complex details of the
application’s human interface. For scripters and consultants, assistants provide
a way to automate specialized tasks involving multiple applications.

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Human Interface 1-23
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Information Access 1

Copland includes a replacement for Standard File Package called Navigation
Services. Unlike the Standard File Package, which provides limited browsing
capabilities and is difficult to customize, Navigation Services provide a better
browsing interface, more structured customization, and better access to
document-specific information from within an application.

Navigation Services support these changes in the human interface for
document management:

■ The New command in the File menu for Copland applications should save a
new document to disk when it first creates the document. Users can set the
default location for new documents with the Default Location control panel.
The first time they choose the Save command for a new untitled document,
they are given an opportunity to change its name and location.

■ The Save As command in the File menu should be replaced in Copland
applications by the Save A Copy command, which subsumes the old Save
As behavior with a more intuitive human interface.

■ The Find Document command in the Copland File menu allows users to
access the Copland Finder’s improved Find facility from within an
application.

■ The Open, Save, and Save A Copy commands employ an intuitive
Navigation Browser that you can easily customize. The Navigation Browser
makes it easy for users to access favorite items quickly, create new folders,
and perform other common tasks not supported by the Standard File
Package.

■ The new Document Info command in the Edit menu invokes a document
information panel, similar to the current Get Info window in the Finder,
that allows the user to manipulate document-specific information without
switching contexts. The same document information panel also appears in
the Open and Save dialog boxes.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-24 About the Copland Human Interface

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Figure 1-11 shows the Navigation Browser and one of several document
information panels as they appear in the Save dialog box. You can easily
specify filters for the files displayed and let the user choose among available
filters with a pop-up menu at the bottom of the Navigation Browser. You can
also add specialized document information panels for your application’s
documents that permit editing and display of document information such as
file type, author, keywords, colors, and dimensions.

Figure 1-11 Standard Navigation Browser and General Information panel in the
Save dialog box

The Navigation Services API also makes it much easier for applications to
display an Open or Save dialog box with just one call, specifying options by
means of parameters rather than with separate calls.

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-25
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

About the Copland Toolbox 1

Copland simplifies the Toolbox architecture by providing consistent APIs that
shield you from implementation details and facilitate the use of standard
human interface elements. This introduction to the changes in the Copland
Toolbox begins with an overview of the architectural changes that affect all the
Toolbox managers, followed by brief descriptions of some of the new managers
and of specific changes to some of the existing managers.

Overview of the Copland Toolbox 1

The Copland Toolbox lays the foundation for future versions of the Mac OS
human interface. It repairs a number of inconsistencies and weaknesses in the
System 7.5 APIs and provides built-in, extensible support for a variety of
features that previously required extensive coding, such as slider controls,
modifier key equivalents of all kinds for menu items, and live control tracking.

The Copland architecture affects most Toolbox managers in similar ways. From
a developer’s point of view, the most important Toolbox-wide changes involve
more consistent APIs and improved opacity with respect to underlying data
structures; support for international text; extensible data structures; and
ready-made, extensible designs.

Opacity and Consistency 1

In addition to the Toolbox APIs, Apple has in the past published descriptions of
system data structures and other implementation details of the Toolbox
managers. It’s therefore possible to manipulate data structures directly, and
many developers have done so to implement features that aren’t supported by
the APIs.

The fact that developers often bypass the high-level APIs has created revision
locking problems for Apple. This practice also creates problems for developers
and users. Custom implementations take a lot of time to develop, are
inconsistent with similar implementations in other applications, and tend to
work less reliably with the rest of the system than standard implementations
based on the high-level APIs.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-26 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Copland addresses this problem by providing comprehensive APIs that work
consistently across all Toolbox managers, including

■ accessor functions for all data structures

■ blind references such as WindowRef and DialogRef that replace
WindowPtr, DialogPtr, and similar pointer-based data types

■ high-level APIs for capabilities that are available only via low-memory
accessor functions in System 7.5

■ support for a much wider variety of standard and custom human interface
elements

Integrated Support for International Text 1

Copland introduces a new systemwide text data type, called a text object, that
encapsulates the details of text encoding. Text objects replace both Pascal and C
strings, but they are not intended to serve as the data model for text editors.
They allow applications to manipulate multilingual text transparently without
dealing with the details of character encoding, which can be based on Unicode,
ASCII, traditional Macintosh, and other encoding systems.

The Copland Toolbox supports text objects for all uses of strings in the Mac OS
human interface, including menu item text, buttons, and window titles. This
pervasive support has several ramifications:

■ You can display multilingual text (in multiple scripts) in the same menu,
dialog box, or other human interface element.

■ Because you don’t have to keep track of the details of individual scripts and
encoding systems, localization of interface elements is greatly simplified.

■ Text objects are easier to maintain through several versions of a program
than text related to human interface elements has been in the past.

In addition to supporting text objects throughout the Toolbox APIs, Copland
provides standard human interface elements, such as left-growing windows
and automatically resizable dialog boxes, that support specific international
needs.

For more information about text objects, see “About Copland Imaging.”

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-27
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Extensible Data Structures 1

As mentioned earlier, system software limitations have frequently caused
developers to bypass the Toolbox APIs and manipulate data structures directly.
In many cases, such strategies stem from the need to associate application-
specific data with system data structures that don’t allow for it.

The Copland Toolbox eliminates the need for this kind of hardwired
modification of system data structures by providing a new mechanism that lets
developers attach arbitrary data to virtually any human interface element.
Based on the Collection Manager, which originally shipped with QuickDraw
GX, this mechanism can be used to associate data with a tag and ID, attach that
data to any Toolbox data structure, and retrieve it when necessary.

The Collection Manager is described in Inside Macintosh: QuickDraw GX:
Environment and Utilities. The Copland Toolbox supports the use of tagged
collection items throughout all its APIs and uses the same mechanism to
associate standard properties such as colors and icons with a variety of human
interface elements. You can easily extend existing collection items or add new
ones to any human interface elements.

Extensible Designs 1

Extensible human interface designs also help to ensure the consistency and
opacity of the Copland Toolbox. Copland provides two mechanisms for
extending human interface designs: IDOs and panels.

The standard definition procedures, or defprocs, used by the System 7.5 Toolbox
provide some modularity, but their programmatic interfaces are difficult to
customize or enhance. Developers must often duplicate the code in system
defprocs and then make small changes to achieve a desired appearance. For
example, the System 7.5 Menu Manager doesn’t support strike-through menu
items or modifier keys other than the Command key. To display these items in
menus, you must write your own 'MDEF' resource, duplicating the code in the
system 'MDEF' and copying the current system appearance. This not only
encourages inconsistent and often buggy implementations but also leads to
applications that are locked into a particular interface appearance.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-28 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

The Copland Toolbox provides an enhanced defproc mechanism that allows
you to customize the appearance of standard objects while shielding you from
the details of how they are drawn on the screen. IBM’s System Object Model
(SOM) provides the language-independent, object-oriented interface that
makes this possible. The Copland defprocs, called interface definition objects
(IDOs), replace the 'WDEF', 'CDEF', and 'MDEF' defprocs used in System
7.5. The Appearance Manager provides the underlying support for IDOs, and
the Window Manager, Menu Manager, and Control Manager provide standard
IDOs that implement both graphic design and behavior for their respective
human interface elements. You can use these standard elements in your
application just by calling the appropriate manager’s API.

Like System 7.5 defprocs, IDOs are essentially drawing engines that use the
inheritance characteristics of SOM to simplify the creation and customization of
human interface elements. They do not encapsulate data or track content in any
way and do not need to be reinstantiated for every interface object. For
example, the Window Manager can use single IDO to draw any number of
identical windows. To store specific data in an interface element, use the
Copland collection interface described in “Extensible Data Structures” on
page 1-27.

The Copland Toolbox also supports lightweight panels that provide a
universal, SOM-based interface for human interface elements. This mechanism
is described in “Panels,” beginning on page 1-33.

By supporting standard IDOs and panels, your application inherits not only
the Copland human interface designs but also new human interface designs in
future versions of the Mac OS. IDOs and panels also allow you to customize
the standard designs or create new ones without sacrificing compatibility. The
rest of this chapter introduces some of the extensible standard designs
provided by individual Copland Toolbox managers.

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-29
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Summary of New Toolbox Features 1

This section introduces some of the new high-level Toolbox managers and APIs
and the new features supported by the Copland revisions of existing Toolbox
facilities.

Appearance Manager 1

The Appearance Manager manages all aspects of themes and theme switching,
including a set of APIs for theme developers, the Appearance control panel,
support for a variety of color data (RGB colors, pixel patterns, and so on), and
support for animation and sound. It also supersedes System 7.5 color tables
such as 'cctb' and 'mctb' with a more abstract mechanism that allows you
to coordinate colors with the current theme.

Figure 1-12 illustrates the relationships among QuickDraw and QuickDraw
GX, the Appearance Manager, Toolbox managers such as the Window Manager
and Menu Manager, and applications.

Figure 1-12 High-level architecture of the Appearance Manager

Appearance Manager

Applications

UI-related Toolbox

managers

QuickDraw and QuickDraw GX

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-30 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

The Appearance Manager keeps track of all IDOs specified by the current
theme. When your application asks the Window Manager, Menu Manager, or
Control Manager to draw a particular human interface element, the manager
asks the Appearance Manager for the corresponding IDO and thenceforth uses
that IDO whenever it needs to draw that kind of element. When the user
switches themes, the Appearance Manager informs the manager that it needs
to request new IDOs.

You need to use the Appearance Manager directly only if you’re creating
custom human interface elements or if you want to draw in your application’s
content area in a manner that matches the current theme. The Appearance
Manager provides drawing utilities, drawing primitives, and patterns for such
purposes. For example, if you want to draw a line through a standard menu
item, you can ask the Appearance Manager for the current color of the menu
item text so you can use the same color for the line. Similarly, you can ask the
Appearance Manager for the current background color so you can coordinate
the appearance of your application’s content area with the current theme.

Figure 1-13 shows preliminary designs for some of the primitives provided by
the Appearance Manager as they might appear in the Apple Default theme. If
none of the standard human interface elements provided by a Toolbox
manager suit your purposes, you can use these primitives to assemble custom
objects that the Appearance Manager draws according to the current theme.

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-31
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Figure 1-13 Preliminary designs in the Apple Default theme for Appearance
Manager primitives

Editable text

frame

Primary group

box

Secondary group

box

Vertical

separator

Horizontal

separator

List box

frame

Placard

Example of use

Window

header

Example of use

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-32 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Desktop Animation Manager 1

The Desktop Animation Manager allows you to write desktop animation
modules, which can be invoked to draw the display when no keyboard or
mouse events occur within a specified period of time. From the point of view of
a desktop animation module, drawing to a screen-saving window is no
different from drawing to the desktop.

A desktop animation module can restrict its usage to desktop mode only (that
is, its only function is to maintain the appearance of the desktop background
exclusive of the menu bar and Finder icons), or to screen saver mode only (that
is, its only function is to act as a screen saver at the appropriate time), or it can
work in both modes. When working in desktop mode, the module draws a
static pattern PixMap specified with a 'ppat' resource.

To help manage desktop animation modules, Copland provides a mechanism
that allows the user to install multiple modules and select individual modules
for different purposes. When the user configures a desktop animation module
for both modes, the Desktop Animation Manager is responsible for notifying
the module that it needs to switch its mode. When the user configures a
different module for each mode, the Desktop Animation Manager is
responsible for switching between the modules at the appropriate time.

The Desktop Animation Manager cooperates with the Appearance Manager to
establish and maintain user preferences for a module. User preferences for a
module are stored in a module property. When the user changes a preference
for the running module via the Appearance control panel, the module receives
a message that tells it to comply with the change immediately.

The Desktop Animation Manager allows users of computers with multiple
monitors to select the module that runs on a particular monitor or to specify a
single module that spans all monitors. Users can configure modules using the
Appearance control panel.

The Desktop Animation Manager also supports screen saver demo capabilities
and password protection.

Note
The term desktop animation module is preliminary and likely
to change. ◆

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-33
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Panels 1

The Copland Toolbox includes support for panels, which are lightweight
objects that provide a SOM-based interface for human interface elements.
Panels are entirely responsible for their own behavior and thus don’t require a
traditional Toolbox manager.

Panels support several useful features for Copland developers:

■ Object-oriented behavior. You can use standard panel classes as is or
subclass them and override just the parts you need to change for your own
application.

■ Uniform programming interface. You can use the same programming
interface to communicate with any human interface element that uses the
panel mechanism.

■ Binary compatibility. As SOM objects, future versions of any panel can be
released without breaking existing versions.

■ Embedding. Panels that inherit from the EmbeddingPanel subclass can
automatically handle keyboard navigation and other standard behavior for
any other panels that they contain. This greatly simplifies the development
of sophisticated panels composed of multiple subpanels. For example, radio
button groups are EmbeddingPanel objects that contain multiple
embedded panels, all coordinated and maintained as a single unit.

■ Keyboard navigation. Panels know how to react to keystrokes and how to
display themselves with and without keyboard focus.

■ Collection items. Clients can attach arbitrary collection items to panels.

■ Drag Manager support. You can support drag and drop for any panel just
by overriding a few methods.

In addition to supporting the general panel mechanism, the Copland Toolbox
includes a set of concrete panel classes that developers can instantiate and use
as is. Developers, scripters, and consultants can also use standard object-
oriented programming (OOP) techniques to develop custom panels for their
own use or to sell to customers or other developers.

Figure 1-14 shows the class hierarchy for the standard Copland panels. These
panels can be used with the corresponding human interface elements to create
self-contained human interface elements that can be easily integrated and

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-34 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

maintained. You can use multiple inheritance techniques to subclass custom
panels for more specialized purposes.

Figure 1-14 Class hierarchy for standard panels

Although panels can be used within OpenDoc parts, they aren’t intended to be
as large or as powerful as parts. Instead, they facilitate the assembly of
integrated human interface elements from smaller, simpler objects.

The Copland Dialog Manager has been rewritten to take advantage of panels.
However, panels are independent of the Dialog Manager and can be used
anywhere within an application. For example, you can place panels in any
window, not just in a dialog box, and combine them to create toolbars and
other custom elements.

Panel

EmbeddingPanel

ControlPanel

RadioButtonGroupPanel

AbstractTextPanel
StaticTextPanel

EditTextPanel

SliderPanel

IconPanel

ListPanel

PicturePanel

VisualSeparatorPanel

ProgressIndicatorPanel

PopupMenuPanel

ButtonPanel

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-35
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

The Dialog Manager provides a convenient API for managing panels in a
dialog box. If you use panels directly, for example in a document window, you
must handle events yourself, keep track of the panels’ locations, and perform
other housekeeping tasks.

Menu Manager 1

The Copland Menu Manager allows you to

■ make any application menu or submenu a tear-off menu

■ provide custom content on an item-by-item basis rather than for an entire
menu at a time

■ choose from a rich set of standard menu item types and menu templates,
many of which aren’t supported in System 7.5

■ use collection items to add nonstandard menu types to any menu item

■ create custom grid menus containing colors, icons, and so on

■ use text objects to display any font in any language using any script in a
single menu item

■ display any modifier-key equivalent for any menu item

■ show and hide the menu bar

All Copland menus automatically support a “sticky menu” mode that allows
users to leave a menu or submenu open and choose menu items by clicking
them or from the keyboard.

Figure 1-15 shows a tear-off menu created with standard types and templates.
Standard types include pattern and color swatches, text items based on text
objects, and dividers. Standard templates support menu sections and grid
menus. It’s also possible to create custom types and templates.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-36 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Figure 1-15 Preliminary design for a tear-off menu created with standard Menu
Manager types and templates

Window Manager 1

The Copland Window Manager’s standard definition for a document window
produces a window like that shown in Figure 1-16 when the Apple Default
theme is selected.

Figure 1-16 Preliminary design for an active document window in the Apple Default
theme

Zoom box

Title bar icon

Collapse box

Close box

Grow box

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-37
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

The window in Figure 1-16 includes

■ A title bar icon that users can drag to a new volume to copy the document to
that volume. The behavior of the title bar icon is determined by you within
guidelines to be provided by Apple. The Window Manager determines its
appearance only.

■ A collapse box in the upper-right corner that integrates the WindowShade
behavior provided by System 7.5. You can also choose to replace the collapse
box with a gadget icon that implements application-specific behavior.

■ A zoom box next to the collapse box. The Copland Window Manager
includes built-in support for Finder-style zooming with multiple monitors.

The Window Manager also supports left-growable windows and multilingual
text in window titles (based on text objects), both of which greatly simplify
globalization.

Window content regions remain in the application domain. However, you can
use a pattern supplied by the Appearance Manager to define the content
region’s background appearance according to the current theme.

Other changes to the Window Manager that affect developers include the
following:

■ Layer management. The Copland Window Manager takes care of all layer
management automatically. To support this change, all windows are
classified as modal, floating, or normal.

■ New APIs for floating and modal windows. The Copland Window
Manager takes care of tracking floating and modal windows, which are
much easier to implement and customize than in System 7.5.

■ The window list. Copland Window Manager APIs that move windows in
the window list support floating windows. Essentially they work as they
always have except that they move a window only within the part of the
window list that contains windows of the same type.

■ Modal state. The Copland Window Manager takes responsibility for
determining when to call the Menu Manager to set the menu bar to a modal
state.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-38 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Control Manager 1

Figure 1-17 shows some of the standard controls provided by the Copland
Control Manager as they appear in the Apple Default theme when they are
active. These standard controls are more numerous and easier to create than the
standard controls provided in System 7.5.

Figure 1-17 Preliminary designs for some standard controls as they appear in the
Apple Default theme

Note that the radio buttons and check boxes in Figure 1-17 support a mixed
state between off and on.

Check

boxes

Radio

buttons

Scroll bars

Sliders

Pop-up menu

Little arrows

Progress

indicators

Disclosure triangle

Icon

buttons

Push button

Default

push button

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-39
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

The standard Copland controls simplify many tasks that previously required
custom coding:

■ Pop-up menus are much easier to implement and can be torn off and
navigated from the keyboard.

■ Live tracking is much easier to support because you can get a series of
control values back from a control while a user is still manipulating it. For
example, you can get control values back from a scroll bar that allow your
application to redraw the window’s contents while the user is dragging the
scroll box (live scrolling), or you can change the sound volume while the
user is still manipulating the slider rather than waiting until the user
releases it.

■ Control values are 32-bit values, thus avoiding the need to scale the values
used with large drawing areas.

All standard controls support keyboard focus, the use of text objects for
international text, and collection items. The Copland Control Manager also
makes it easier to create custom controls.

Dialog Manager 1

The Copland Dialog Manager includes a suite of standard elements, such as
radio button groups, visual separators, and lists, that make it much easier to
construct complex dialog boxes. The API has changed little compared to
System 7.5, but the underlying code has been rewritten as an interface layer for
manipulating panels and groups of panels. Although the filter functions used
with earlier versions of the Dialog Manager are still supported for
compatibility with System 7.5 code, filter functions have been superseded by
panels.

The elements provided by the Dialog Manager support tracking of keyboard
focus, management of groups of radio buttons, and other standard behavior. To
implement specialized behavior, you subclass from the standard elements and
override the appropriate SOM methods using OOP techniques.

Panels are completely independent of the Dialog Manager and can be used
anywhere within an application, not just in dialog boxes. When you use the
Dialog Manager to manage panels, it takes care of all event handling. When
you manage panels directly, you must take care of event handling yourself. For
more information, see “Panels,” beginning on page 1-33.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-40 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Scrap Manager, Clipboard Manager, and Drag Manager 1

The Scrap Manager used in System 7.5 has changed little since it was first
created as part of the software for the original Macintosh computer. It was
originally designed to handle a few lines of text or a 1-bit picture being copied
and pasted between MacPaint and MacWrite, not the large pieces of data, such
as QuickTime movies, sounds, and blocks of formatted text, that are common
today.

Copland replaces the original Scrap Manager with a new Clipboard Manager
and introduces an entirely new Scrap Manager that provides a generic
transport mechanism used by both the Clipboard Manager and the Drag
Manager. The Copland Scrap Manager permits the transport of data of any
size. It also supports collection items at three levels: the scrap as a whole,
individual items within the scrap, and the data within each scrap item. The
Clipboard Manager and the Drag Manager control access to their respective
scraps, while the Scrap Manager always controls reading from and writing to
the scrap.

There is only one Clipboard scrap, and you use the Clipboard Manager to lock
it. You then use the Scrap Manager to read and write information to the
Clipboard scrap and unlock the scrap when you’re through.

The Clipboard Manager also supports the concept of promises. If the data
copied or cut is large, you can choose to post a promise to the Clipboard scrap
instead of the data itself. When the user pastes, the Scrap Manager uses the
promise to retrieve the data from the application that did the copying. This
mechanism avoids data transfer until it is actually needed for a paste. It also
allows the original application to transfer the data using just the format
requested by the pasting application rather than duplicating the data in a
variety of possible formats.

Only one application can access the Clipboard scrap at a time. Because the
contents of this single Clipboard scrap is in global memory, not application
memory, you don’t need to worry about the Clipboard suddenly taking over all
your free memory. This arrangement takes care of many common copy and
paste problems and also supports background copying, for example by a script
that’s running in the background.

Because the Copland Clipboard Manager is closely modeled on the Copland
Drag Manager and both managers use the generic Copland Scrap Manager,
you can use the same source code to implement both copy and paste and drag

C H A P T E R 1

About the Copland Human Interface and Toolbox

About the Copland Toolbox 1-41
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

and drop. From the Scrap Manager’s point of view, references to the Clipboard
scrap and the Drag scrap are identical.

The Clipboard Manager takes care of synchronizing the behavior of
applications that use the System 7.5 Scrap Manager and Copland-savvy
applications that use the new mechanism, although the former won’t be able to
take advantage of the Copland’s improved performance and consistency.

Most of the System 7.5 Drag Manager API is no longer needed in Copland,
although it is still supported for applications that aren’t Copland-savvy. Like
the Copland Clipboard Manager, the Copland Drag Manager uses the Scrap
Manager API for all data transport. The Copland Drag Manager also displays
translucent icons during dragging rather than simple outlines.

Icon Utilities 1

The Copland Icon Utilities provide an extended API that allows you to obtain
the icon currently displayed in the Finder for a given file much more easily
than you can in System 7.5. Instead of having to examine a variety of possible
locations for standard application icons, custom icons, edition file icons, alias
icons, and so on, you just specify the file whose icon you want and the Icon
Utilities return the appropriate icon. Because the Copland Finder uses the same
mechanism to manage icons, you can be certain that the icon returned is the
same one displayed in the Finder.

Icon Utilities also provide systemwide icon caching, copying each icon into the
cache as it is requested. If the icon you request happens to be in the cache
already, it doesn’t have to be read into memory again. This approach avoids
reading duplicate icons into memory and thus improves performance.

C H A P T E R 1

About the Copland Human Interface and Toolbox

1-42 About the Copland Toolbox

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

C H A P T E R 2

Contents

2-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 About Copland Imaging

Compatibility—Backward and Forward 2-3
Design Goals for Copland Imaging 2-4

Graphics Systems Integration 2-4
Text Objects 2-5
Font Handling 2-6

Preparing Your Application for Copland 2-7

This document was created with FrameMaker 4.0.4

C H A P T E R 2

2-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 2

Compatibility—Backward and Forward

2-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About Copland Imaging 2

This chapter introduces Copland imaging, including graphics and text.
Copland streamlines the Mac OS graphics architecture by integrating all the
Macintosh graphics models. Copland offers a single set of graphics APIs that
share underlying code for increased system efficiency. Because the APIs and
code base for QuickDraw GX graphics and text and for QuickDraw 3D
graphics are included in Copland graphics, any development you do today
using QuickDraw GX and QuickDraw 3D will run without modification on
Copland.

Compatibility—Backward and Forward 2

The Copland graphics architecture uses the same base of graphics code to
implement QuickDraw, QuickDraw GX, and QuickDraw 3D. All of the
functions in all three APIs remain available. Thus, all of your graphics code
runs without modification on Copland while its performance improves due to
the increased efficiency of the new unified code base. This integration of
graphics models will continue on versions of the Mac OS beyond Copland, so
your graphics routines will continue to run and their performance will
continue to improve.

Although Copland continues to support the Printing Manager APIs for
backward compatibility, all native printing on Copland uses the QuickDraw
GX print model. In order to get the best performance on Copland and to ensure
that your print routines continue to work on versions of the Mac OS beyond
Copland, you should use QuickDraw GX for all your print routines now and in
the future.

You can continue to use your C and Pascal-string text routines on Copland.
However, by switching to the new text-object model, you can include encoding
information with the text, alleviating the problem of having to store
information about text encoding (that is, the script system) and text content
separately. The new text model makes it much easier to support international,
multilingual text. In addition, if you switch to the new text-object model now,
the transition to some new text encoding method in the future will be
transparent to your text-handling routines, requiring no recoding or
recompiling when the change occurs. In the future, text objects might contain
additional information, such as language and text-to-speech hints.

This document was created with FrameMaker 4.0.4

C H A P T E R 2

About Copland Imaging

2-4

Design Goals for Copland Imaging

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Design Goals for Copland Imaging 2

The design goals for Copland graphics include graphics system integration, the
implementation of text objects, and improved handling of fonts.

In System 7.5, you choose from among several graphics models when writing
your application:

■

QuickDraw for rendering onscreen graphics, drawing text, and printing
documents

■

Color QuickDraw for rendering color graphics

■

QuickDraw GX for rendering onscreen graphics, drawing text, and printing
documents

■

QuickDraw 3D for defining and rendering three dimensional graphics

■

WorldScript for managing text and font subsystems

The APIs for these existing graphics models are maintained in Copland. In fact,
they become standard, simplifying the implementation of these various
graphics models in system software. What’s more, Copland combines the code
from these graphics systems wherever possible, thus reducing redundancy,
increasing efficiency, and decreasing the size of the operating system.
Therefore, Copland provides a single print driver model, a single graphics code
base, and a single font cache. In addition, Copland provides a new text model,
based on text objects rather than Pascal or C strings. The new text model
greatly improves text encoding, making internationalization much easier.

Graphics Systems Integration 2

The various graphics systems available in System 7.5 each include code to
perform certain basic functions, such as displaying data on the screen and
caching fonts. Wherever the graphics code was redundant, Copland combines
the code so that all of the graphics systems use a common code base. At the
same time, Copland uses native code for the features that make each graphics
system unique. Each graphics system runs as efficiently as possible using
native code; none are emulated.

C H A P T E R 2

About Copland Imaging

Design Goals for Copland Imaging

2-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Copland’s integration of graphics implementations offers several advantages to
your application.

■

A single, ever-available set of APIs eliminates the need for redundant code
paths in your application.

■

A shared graphics code base providing services to QuickDraw, QuickDraw
GX, and QuickDraw 3D reduces system memory requirements and
improves performance.

■

A single print driver model (the QuickDraw GX model) allows the Finder to
present your users with a consistent metaphor for printing documents.

■

A unified font rendering and caching mechanism improves overall system
performance and minimizes RAM requirements. Furthermore, it allows any
font to be used with any API.

■

Integration of WorldScript I and II and the Language Kit Extensions into the
operating system simplifies international application development and
provides better international text support.

■

An improved version of TextEdit offers all users, regardless of their script
systems, improvements in systemwide text manipulation.

■

The powerful QuickDraw GX line layout technology is now part of the
standard system software installed on all users’ systems.

Using Copland’s unified graphics system in your application requires
negligible work on your part. Aimed at increasing performance—especially in
the areas of hardware acceleration and RAM resource allocation—most of
Copland’s improvements to the font cache and the graphics code base are at a
level below the public API. With Copland’s desktop printer icons, the single
(QuickDraw GX) print driver model improves your user’s experience in the
Finder. In addition, the QuickDraw GX–style print dialog boxes, which are
standard with Copland, improve the user’s experience with your application.

Text Objects 2

Although System 7.5 provides extensive support for international text, the
information about the encoding (that is, the script system) of the text must be
maintained separately from the text content. Programmers must introduce
additional complexity in their code to keep track of this separate data so that
the text is processed correctly by the system.

C H A P T E R 2

About Copland Imaging

2-6

Design Goals for Copland Imaging

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Apple’s goal is to shift the Mac OS from the current multiscript,
multiple-encoding model to one in which all scripts are handled in a consistent
fashion. To facilitate this transition, Copland introduces a new systemwide text
data type, called a text object, that hides the details of text encoding from the
programmer.

A

text object

 is an opaque data structure that contains information about both
text content and text encoding. Supplanting both Pascal and C strings, text
objects become the fundamental text data type in Copland. The use of text
objects greatly simplifies the handling of text encoding and removes most
limitations of both Pascal and C strings.

Text objects extend the capabilities of the basic string data type by allowing
arbitrary annotations to be made to the text. For example, in the future, text
objects might be annotated with pronunciation hints for text-to-speech
conversion. Text objects use a Unicode converter extension to manage
conversions between different text encodings. (Unicode is a fixed-width 16-bit
character-encoding system—part of the international standard ISO 10646—that
provides a code for every character in every major writing system.) The details
of these conversions will be handled by the text object, so most programmers
do not have to deal with the Unicode converter API directly.

Text objects allow applications and data to use multiple text encodings,
including Unicode and WorldScript.

Text objects are not intended to serve as the data model for text editors. Rather,
they allow applications to manipulate multilingual text transparently without
dealing with the details of character encoding, which can be based on Unicode,
ASCII, traditional Macintosh, or other encoding systems.

Font Handling 2

Copland introduces an open font architecture that allows developers to write
their own font scalers. Therefore, a font provider can provide a scaler that
makes a new font architecture available in a way that is completely transparent
to users. From the user’s point of view, all font types, whether Type 1,
TrueType, bitmapped, or some new type, are installed and used in exactly the
same way.

On Copland, font scalers run in their own memory partitions and are therefore
protected from application errors.

C H A P T E R 2

About Copland Imaging

Preparing Your Application for Copland

2-7

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Preparing Your Application for Copland 2

On Copland, every user has QuickDraw GX and QuickDraw 3D as part of their
basic system. Therefore, you should start using these powerful graphics models
now to make their features available to your users.

Because all native printing on Copland uses the QuickDraw GX print model,
and because later versions of the Mac OS will not support the Printing
Manager APIs, you should use QuickDraw GX for all your print routines now
and in the future.

The Copland text-object model makes it much easier for you to internationalize
your application and data. You should switch to the new text-object model
now, not only to take advantage of its ease of use, but also because as new text
encoding methods become available in the future, your text routines will
automatically benefit from the change without additional effort on your part.

C H A P T E R 2

About Copland Imaging

2-8

Preparing Your Application for Copland

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 3

Contents

3-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 About Copland Processes

System 7 Application Compatibility 3-4
Design Goals for Copland Process Management 3-4
Processes 3-4

Cooperative Processes 3-5
Server Processes 3-7

Tasks 3-8
Cooperative Threads and Preemptive Tasks 3-9
Task Scheduling 3-10
Task Communication 3-11
Task Synchronization 3-12

Copland Execution Environments 3-14
Task Level 3-15
Software Interrupt Level 3-15
Secondary Interrupt Level 3-16
Hardware Interrupt Level 3-17
Exceptions 3-18

This document was created with FrameMaker 4.0.4

C H A P T E R 3

3-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 3

3-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About Copland Processes 3

The Copland

microkernel

 is the part of the operating system that manages
processes. A

process

 consists of a set of one or more

tasks

—which are the basic
units of program execution in Copland—and the memory and other operating
system resources allocated to them by the microkernel. To share the processor
among all tasks, the microkernel can preempt the execution of one task and
start—or resume—the execution of another. (This form of processor sharing is
called

preemptive multitasking

.)

This chapter describes task and process management in Copland. You should
read this chapter if you are writing any kind of software product for Copland.
This chapter will help you understand and efficiently use Copland’s task and
process management features.

There are two types of processes in Copland:

■

cooperative processes

■

server processes

The

Process Manager

 is the part of Copland that launches, manages the
cooperative scheduling of, and terminates

cooperative processes.

 They are
called

cooperative

 because their tasks cooperate to share processor time. All Mac
OS applications that relinquish control of the processor by calling the

WaitNextEvent

,

GetNextEvent

, or

EventAvail

 function run as
cooperative processes. From all cooperative processes, the Process Manager
allows only one task at a time to have access to the processor. The microkernel,
in turn, preemptively schedules this task for execution.

Note

Because System 7 supports only one kind of process, the
cooperative process, the

Inside Macintosh

 suite of books
simply refers to cooperative processes as

processes

.

◆

The

Server Manager

, new in Copland, launches and terminates server
processes. In Copland, a

server process

is software that provides a service to
other processes on the same computer or a connected computer. The
microkernel can preempt the execution of a task within a server process
without the task calling a function like

WaitNextEvent

 to yield control.

This document was created with FrameMaker 4.0.4

C H A P T E R 3

About Copland Processes

3-4

System 7 Application Compatibility

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

System 7 Application Compatibility 3

Copland fully supports the Process Manager and Thread Manager APIs from
System 7.5. Copland also provides full compatibility with the System 7
methods of interprocess communication.

Design Goals for Copland Process Management 3

The design goals for Copland process management are to

■

increase the responsiveness and performance of Macintosh applications

■

increase system robustness

Copland increases application responsiveness and performance by providing a
preemptive multitasking environment rather than the System 7 cooperative
multitasking environment.

Copland increases system robustness by restricting applications and
completion routines from writing over critical system data. Copland also
protects code from corruption by preventing any software from writing over it.

Processes 3

Copland uses processes to track resource allocation and reclamation. When a
process is destroyed—for example, when an application exits or terminates
abnormally—the microkernel reclaims all associated operating system
resources, including stacks and underlying system data structures. (In this
chapter, use of the term

resource

 includes all physical and abstract resources,
such as memory, disk space, tasks, and timers; it is not limited to Resource
Manager resources.)

Each process has a set of memory locations and associated values, collectively
called an

address space.

 In Copland, all cooperative processes share a single
address space, and therefore are not inherently protected from each other.

C H A P T E R 3

About Copland Processes

Processes

3-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Every server process, on the other hand, runs in its own address space, thereby
protecting it from applications and other server processes (and, conversely,
protecting applications and other servers from it). Figure 3-1 illustrates how all
cooperative processes reside in one address space, and how each server process
has its own address spaces. (While processes in one address space have no
direct access to any other address spaces, all address spaces include globally
shared code and data, as described later.)

Note

In future versions of the Mac OS beyond Copland, every
application will have its own address space as well.

◆

Figure 3-1

Copland processes and their address spaces

The microkernel deletes a process when all tasks within the process have
terminated. After it deletes the process, the microkernel reclaims all associated
operating system resources.

Cooperative Processes 3

Like a System 7 process, a cooperative process in Copland is an instance of an
application being executed. When the Process Manager launches an
application, Copland

1. creates a new cooperative process

2. loads the application into the new process

Cooperative process

(application 3)

Address space 1 Address space 2 Address space 3

Server process

Server process

Cooperative process

(application 2)

Cooperative process

(application 1)

C H A P T E R 3

About Copland Processes

3-6

Processes

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

3. creates an application heap and stack

4. opens the application resource fork

5. creates a task, the

primary task

, within the process; this task runs the
application’s main routine, which can create additional tasks called

secondary
tasks

Cooperative processes present a human interface by using Toolbox managers,
such as the Window Manager and Control Manager. To maintain compatibility
with System 7 applications, the Toolbox managers are not reentrant. (A

reentrant service

can be safely called by several tasks at the same time, but a
non-reentrant service like the Window Manager can be safely called by only
one task at a time.)

Because only one task should use a Toolbox manager at time, the Copland
Process Manager ensures that from among all cooperative processes, only one
primary task is eligible to run at any one time. By rotating this eligibility
among all primary tasks, the Process Manager gives each primary task the
opportunity to be preemptively scheduled by the microkernel.

As in System 7, an application must yield control of the CPU to other
cooperative processes at frequent intervals by calling

WaitNextEvent

,

EventAvail

, or

GetNextEvent

.

Cooperative processes can terminate either normally or abnormally.
Cooperative process terminate normally when the following occurs:

1. The application performs the usual cleanup done in System 7, such as
checking for outstanding I/O requests, removing VBL tasks, removing any
remaining timers, and closing any network connections.

2. The application terminates any of its secondary tasks.

3. The primary task calls the

ExitToShell

 function.

If your application does not clean up properly, the system won’t crash as it can
in System 7. Instead, because the Copland microkernel tracks all resources
(such as, tasks, timers, and areas), it can reclaim them when it terminates the
process associated with your application.

When terminated abnormally, the primary task never calls the

ExitToShell

function. For example, if a process does not properly handle an exception (that
is, an access fault or some other special error detected by the microprocessor),
the process terminates without calling

ExitToShell

. However, even when a

C H A P T E R 3

About Copland Processes

Processes

3-7

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

process terminates abnormally, the microkernel terminates all tasks within the
process and reclaims all associated resources.

Server Processes 3

In Copland, a server process is software that provides a service to other
processes on the same computer or a connected computer. Copland uses many
server processes, such as the File Share server and Events server. Copland also
provides an API that allows you to create server processes of your own.

Server processes run in their own address spaces, separate from cooperative
processes and other server processes. This protection makes them more reliable
service providers. For example, the File Share Server provided by Copland can
continue to provide file access to remote users even when an application has
crashed on the computer that is serving the files.

Server processes should never use the non-reentrant services of the Toolbox
managers. Therefore, server processes should not perform any human interface
operations. Server processes may, however, interact with the user indirectly by
communicating with cooperative processes, which do perform human interface
operations. For example, a server process can communicate with a cooperative
process through Apple events.

Server processes may also perform minimal interaction with the user through
the Notification Manager. For example, a mail server can use the Notification
Manager to notify the user of incoming mail. The user must then use a mail
application to actually read and respond to mail. In System 7, you can provide
this service through a combination of an application (for the user interface) and
a system extension of type

'INIT'

 (for the background-only application). In
Copland, you provide this service by using a cooperative process and a server
process.

The Copland Server Manager is the part of the Mac OS that launches and
terminates server processes. The Copland microkernel starts the Server
Manager when all other system initialization tasks are complete. After it is
started, the Server Manager launches all server processes associated with a
workspace. Workspaces, described in the chapter “About the Copland Human
Interface and Toolbox,” allow multiple users to customize their work
environment on a single Macintosh.

When the Server Manager launches a server process, the Copland microkernel
creates the following items that are associated with that process:

C H A P T E R 3

About Copland Processes

3-8

Tasks

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

an address space

■

a task within the process

■

a stack for use by the task

Tasks 3

Processes are passive—that is, they do not execute instructions. Tasks execute
instructions. Each task has a stack and a set of registers. A task can share an
address space with many other tasks. The microkernel provides additional
processing resources to a task. These resources include general-purpose
registers (such as R0 and FP0) and special-purpose registers (such as CR and
FPSCR).

Tasks belong to processes. A

primary task

 corresponds to the execution of a
cooperative process. There is one primary task for each instance of an
application being executed. (Server processes do not have primary tasks.) Only
primary tasks should call

WaitNextEvent

 and such non-reentrant services as
the Toolbox managers, the Memory Manager, and the Resource Manager.

Your application or server software can create one or more

secondary tasks.

They should use only a restricted set of operating system services—those that
are reentrant, including all microkernel services (such as synchronization and
messaging), the File Manager, the Code Fragment Manager, the Server
Manager, the Notification Manager, the Apple Event Manager, device drivers,
and network facilities. In particular, secondary tasks should not use services
that deal with the human interface or that are graphical, such as QuickDraw
and the Window Manager.

Figure 3-2 shows the services that primary and secondary tasks should access.

C H A P T E R 3

About Copland Processes

Tasks

3-9

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 3-2

Operating system services accessible to primary and secondary tasks

You can improve the responsiveness and productivity of your application by
having the primary task perform user interface tasks and using secondary tasks
to process data and perform time-consuming I/O and compute-intensive
operations.

Because Copland runs many secondary tasks in addition to the set of primary
tasks associated with cooperative processes, it is crucial that primary tasks
avoid using “idle-time” scheduling models. If your application must perform
critical, computationally intensive execution, you should use a secondary task,
instead of having a primary task call

WaitNextEvent

 with a timeout of zero.

Cooperative Threads and Preemptive Tasks 3

In Copland, there are two ways for you to use multiple paths of execution in
your software: you can use the preemptively scheduled tasks previously
described in this chapter, or you can use the cooperatively scheduled

threads

first offered by the System 7.5 Thread Manager.

A task containing threads may call Toolbox managers from any of its threads,
because the Thread Manager, using the Process Manager, cooperatively
schedules access to the non-reentrant services of the Toolbox. This allows both
primary and secondary tasks to create threads.

Secondary task 1

Secondary task 2

Secondary task n

Reentrant OS services

Non-reentrant OS services

Primary task
Memory

Manager

Resource

Manager

Other

non-reentrant

services

File

Manager

Code

Fragment

Manager

Other

reentrant

services

Toolbox

Network

facilities

C H A P T E R 3

About Copland Processes

3-10

Tasks

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Note that while thread execution—under the control of the Thread Manager—
is scheduled within a task, task scheduling is made systemwide by the
microkernel. Task scheduling increases system throughput and allows a fine
degree of parallelism not available with threads. Secondary tasks are more
suitable than threads for performing I/O that is synchronous to the execution
of your application.

Task Scheduling 3

Copland’s microkernel schedules all tasks preemptively, based on their priority
and on other microkernel multitasking rules. A task is eligible for execution
whenever it is not waiting for some operation to complete, such as a
synchronous I/O operation or a page fault. Many tasks can be eligible for
execution, but only one can be executing at a time.

Under Copland, the highest priority task that is eligible for execution is
guaranteed to be the task that is executing. A task’s

priority

is based on its
relative importance. The Process Manager assigns the same priority to all
primary tasks. The code creating a secondary task assigns that task’s priority.
The Copland microkernel has varying priorities for servers, applications,
drivers, and real-time operations.

Tasks that are not eligible for execution are said to be

blocked

 on some event.
(For example, the Process Manager blocks all primary tasks but one. This
ensures that only one primary task is eligible for access to the Toolbox
managers.)

When a task is blocked on some event and that event occurs, the task becomes
eligible for execution again. If that task has a priority greater than the currently
executing task, the microkernel performs a

task

switch,

 where the execution of
one task is suspended while the execution of a different task is resumed from
the point at which it was blocked. A task switch saves the processor state of the
former task and restores the processor state of the latter task.

The microkernel performs a task switch when a task with a priority greater
than the currently executing task becomes eligible for execution or when the
currently executing task becomes blocked for some reason.

If several tasks have the highest priority and are all eligible for execution, the
microkernel allows each task to execute for an internally specified time called a

time slice.

 When a time slice expires, the microkernel switches to the next task
with the same priority. The microkernel uses this time-slice form of scheduling

C H A P T E R 3

About Copland Processes

Tasks

3-11

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

to give each task at this highest priority access to the CPU on a first-in, first-out
(FIFO) basis. No single task can starve the others unless it is the only task at the
highest priority.

The microkernel never uses time-slicing over its priority-based scheduling
algorithms; it uses time-slicing only when several tasks are all eligible for
execution at the same priority and no higher-priority tasks are eligible. If a
higher-priority task becomes eligible for execution, it will always get
immediate access to the CPU.

Task Communication 3

Tasks cannot move between processes. However, tasks can communicate with
each other, even when the tasks belong to different processes. Copland
supports communication between tasks in both cooperative and server
processes, and Copland provides full compatibility with the System 7 methods
of interprocess communication.

Copland provides a layered model for task communication, from high-level
communication services to low-level synchronization services. Depending on
your software’s needs, you can use any of the following:

■

Apple events.

 In Copland you can use Apple events to communicate
between all tasks in the system. This means that Apple events can be used
for communication between cooperative and server processes, between
cooperative processes, between server processes, as well as between tasks
within a process. In System 7, only applications (or processes that call

WaitNextEvent

) can use Apple events. Copland extends these services to
secondary tasks. In Copland, the Apple Event Manager provides secondary
tasks with the ability to send and receive Apple events, and secondary tasks
can take full advantage of the Apple Event Manager.

■

High-level events.

 Copland supports high-level events, but secondary tasks
cannot send high-level events other than Apple events. In most cases you
should use Apple events to communicate with other applications.

■

Events.

 Copland fully supports the System 7 Event Manager APIs. By
calling

WaitNextEvent

, an application’s primary task receives notice of
such events as update events, mouse events, and keyboard events.

■

PPC Toolbox services.

 Primary tasks can use the PPCBrowser mechanism
and the PPC Toolbox functions. Secondary tasks cannot use the PPCBrowser

C H A P T E R 3

About Copland Processes

3-12

Tasks

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

mechanism but can call all other PPC Toolbox functions. However, before
using the PPC Toolbox to send data between tasks, you should consider
whether any of the other interprocess communication methods are more
appropriate for your needs.

■

Microkernel messaging services.

 The messaging services can be used by
tasks to communicate with each other. If two tasks communicate using the
messaging services, they must agree on the protocol and conventions of the
information they exchange. The microkernel does not interpret the data, it
simply provides a mechanism for transporting the data from one task to
another. Both primary and secondary tasks can use the messaging services.
However, in most cases a primary task should use Apple events rather than
the messaging services. (Apple events provide for rich data content and
network capability, and thus are more suitable for communication between
applications.)

The messaging services are well-suited for use by server processes that
provide shared libraries or that provide other communication services. For
example, a client might use the API provided in a shared library; the actual
implementation of the API may use the messaging services to transport data
between the client and a server. In this case, the use of the messaging
services is transparent to the client.

■

Task synchronization.

 The microkernel provides various services that allow
you to synchronize access to shared resources by multiple tasks. These
services are described in the next section.

Task Synchronization 3

Because the Copland microkernel schedules tasks preemptively, it also supplies
services you can use to synchronize their execution to protect and control
access to shared resources.

Most applications don’t need to deal with synchronization in System 7, where
the current application can always assume that—except for code running at
interrupt and deferred task level—the application controls the computer. Even
when your application code needs to synchronize with code running at
interrupt level, such as during VBLs or completion routines, it can do so by
spin-looping on a global variable or by disabling interrupts.

C H A P T E R 3

About Copland Processes

Tasks 3-13
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Neither of these mechanisms provides advantages over Copland’s
preemptively multitasking microkernel. If your application takes advantage of
Copland’s microkernel services, such as preemptive tasks and messaging, you
need to be aware of synchronization issues and know how to protect your code
from synchronization errors.

Copland offers new APIs that provide the following synchronization services:

■ Atomic operations. Tasks can use atomic operations to modify a single,
32-bit aligned word of memory in any way without interference from other
tasks and interrupts. Atomic operations are simple subroutines that use the
processor’s built-in synchronization mechanisms; examples include
operations that increment, decrement, test and set, and compare and swap.

■ Read/write locks. Read/write locks protect resources that your application
can share some of the time and lock exclusively only some of the time. This
type of lock can have one writer and any number of readers.

■ Simple locks. Simple locks, a subset of read/write locks, ensure that an area
of memory or some other resource is accessed exclusively by one task.

■ Event groups. An event group consists of a set of 32 flag bits. Used for
synchronizing operations among tasks, these flags are similar to
semaphores, which have traditionally been available on other multitasking
systems.

■ Kernel queues. Similar in use to System 7 deferred tasks, kernel queues are
first-in, first-out queues of three-word entries. Your application can use
event queues as simple messaging mechanisms or as the lowest-level
synchronization mechanisms for indicating completion of asynchronous
events.

■ Secondary interrupts. Device drivers can use secondary interrupts,
available only in supervisor mode, as a sychronization mechanism because
they are always serialized. A secondary interrupt can be thought of as
non-reentrant code shared across the entire system.

■ Disabling hardware interrupts. Disabling hardware interrupts is one of the
few synchronization options available in System 7. This method is not
recommended in Copland and should be used only in device drivers when
no other mechanism works. In Copland, your application or server run in
user mode and therefore cannot disable hardware interrupts.

C H A P T E R 3

About Copland Processes

3-14 Copland Execution Environments

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Note
For more information about task communication and
synchronization, see Microkernel White Paper included on
this disk. ◆

Copland Execution Environments 3

Copland explicitly defines execution environments to minimize interrupt
latency, to maximize responsiveness, and to allow greater I/O throughput. An
execution environment refers to

■ the circumstances under which code executing in a given environment is
invoked

■ the routines that can be called

■ the type of memory access that is permitted

Copland supports four execution environments:

■ task level

■ software interrupt level

■ secondary interrupt level

■ hardware interrupt level

Each execution environment is partly characterized by the processor mode,
either supervisor or user.

Supervisor mode is the state of operation for the processor that allows
software to gain access to all memory, processor registers, and other critical
resources. When software executes while the processor is in supervisor mode,
the software can write to, and therefore corrupt, any address space.

IMPORTANT

Code running in supervisor mode has no access to the
Toolbox or to A-trap emulation; such code has access to
reentrant services only. ◆

User mode is the state of operation for the processor that allows software,
typically application software, to execute in an environment that protects

C H A P T E R 3

About Copland Processes

Copland Execution Environments 3-15
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

certain critical resources, such as portions of memory and certain processor
registers. When the processor is in user mode, software can write only to its
own address space.

Task Level 3

All tasks (primary and secondary tasks in either supervisor mode or user
mode) run at task level. Nearly all code is executed at task level—application
code, the Copland microkernel, and device drivers.

The processor executes task-level code whenever it is not executing at one of
the interrupt levels. The microkernel suspends task-level execution while any
hardware or secondary interrupt handlers execute. Then, the microkernel
schedules tasks preemptively according to their priority and internal rules for
time-slicing. When a task is eligible to continue executing, its normal
processing can be interrupted to run any software interrupt handlers sent to it.

Code executing at task level can call nearly all microkernel, OS, and Toolbox
services and it is allowed access to pageable memory.

To protect the rest of the system, you should design your software so that it
runs as much as possible at task level.

Software Interrupt Level 3

Software interrupt level, unlike the other execution environments, is
distinguished only by the circumstances under which code (a task or an
interrupt handler) is invoked, not the routines or memory to which the code
has access. Software interrupt handlers execute at software interrupt level. A
software interrupt handler is task-level software.

The conditions under which a completion routine in System 7 and a software
interrupt handler in Copland are invoked are very different. In System 7, a
completion routine is called as a result of a hardware interrupt and it executes
at hardware interrupt level.

Suppose a task makes an asynchronous I/O request. When it makes the
request, the task can create a software interrupt, specify a software interrupt
handler, and ask that the software interrupt be issued when the request
completes. The software interrupt contains the task’s identifier.

C H A P T E R 3

About Copland Processes

3-16 Copland Execution Environments

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

In servicing the request, hardware interrupt handlers and secondary interrupt
handlers are invoked. Only when they have completely finished servicing the
request is the software interrupt issued. When no hardware interrupt handlers
or secondary interrupt handlers are waiting to execute, the microkernel once
again schedules tasks to run. When the task that created the software interrupt
is eligible to run, its software interrupt handler is invoked.

Running a software interrupt handler in a task is like forcing the task to call a
specific subroutine immediately. When the handler exits, the task resumes
what it was doing. A software interrupt handler affects only the task in which it
is run; the task running the handler can still be preempted so that other tasks
can run. Those tasks in turn can run their own software interrupt handlers. A
task running a software interrupt handler can also be interrupted by hardware
interrupt handlers or secondary interrupt handlers. All software interrupt
handlers for a particular task are serialized—they don’t interrupt other
software interrupt handlers for the same task.

The software interrupt handler executes in the task using it: the handler runs in
the task’s address space, uses its stack and registers, has full access to the
Toolbox, can cause page faults, and so on. The system state is identical in the
task and in the software interrupt handler.

Both supervisor-mode and user-mode tasks can use software interrupt
handlers.

Secondary Interrupt Level 3

Secondary interrupt level is similar to the deferred task concept in System 7.
Hardware interrupt handlers that need to perform certain actions, but that
choose to defer the execution of those actions to minimize hardware interrupt
level execution, can append secondary interrupt handlers to the queue for
subsequent execution. Supervisor-mode tasks can also use secondary interrupt
handlers for synchronization purposes.

A secondary interrupt handler is a supervisor-mode routine that runs with
hardware interrupts enabled, but task switching disabled. Although hardware
interrupt handlers preempt secondary interrupt handlers, secondary interrupt
handlers cannot preempt one another. The secondary interrupt handler queue
is always processed in FIFO order and the execution of the queued handlers is
always serialized. The secondary interrupt handler queue is always emptied
prior to running any task-level software.

C H A P T E R 3

About Copland Processes

Copland Execution Environments 3-17
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Secondary interrupt handlers can use only a subset of microkernel and OS
services. No Toolbox services are available to them. Furthermore, they can only
access memory that is physically resident; page faults at secondary interrupt
level are illegal and system fatal.

Because all task execution is blocked while secondary interrupt handler
routines are running, your software shouldn’t remain at secondary interrupt
level for long.

Hardware Interrupt Level 3

Hardware interrupt level execution happens as a direct result of a hardware
interrupt request. When a device presents an interrupt to the system, the
microkernel calls a hardware interrupt handler, which always runs in
supervisor mode. Device drivers provide hardware interrupt handlers for their
devices. Hardware interrupt handlers, such as parts of device drivers, run at
hardware interrupt level.

Hardware interrupt handlers can use only a subset of kernel and OS services.
No Toolbox services are available to them. Furthermore, they can access only
memory that is physically resident; page faults at hardware interrupt level are
illegal and system fatal.

The microkernel provides an interface to the processor’s interrupt vectors. For
a PowerPC processor, the microkernel does not prioritize interrupts. As a
result, all hardware interrupt handlers on PowerPC-based computers are
serialized because hardware interrupts are disabled during execution of an
interrupt handler.

In System 7, I/O completion routines, VBLs, and Time Manager tasks run at
either hardware interrupt level or as deferred tasks. Copland runs them at
user-mode task level instead. Therefore, most code on the system, including
completion routines, is run at task level, and less at interrupt level or with
interrupts disabled, which provides the following benefits:

■ The microkernel doesn’t allow application code to be run at interrupt level,
because the code could cause page faults. Interrupt time is minimized.
Because applications never disable interrupts, interrupt latency is minimized
and the time available for applications to run is increased. Interrupt latency
is the time between when an interrupt is generated and the associated
interrupt handler is executed.

C H A P T E R 3

About Copland Processes

3-18 Copland Execution Environments

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

■ Page faults become invisible to application code, including completion
routines.

Exceptions 3

Each task, secondary interrupt handler, and hardware interrupt handler should
have its own exception handler for kernel and hardware detected exceptions.

Note
This is not the complete, high-level exception mechanism
available in the C++ language. ◆

The microprocessor detects exceptions—that is, errors or other special
conditions like addressing errors, arithmetic overflows, and illegal
instructions—in the course of program execution. When one of these
exceptions occurs, the microkernel tries to call a handler. The handler performs
its action, then the microkernel resumes execution from where the exception
occurred or transfers control as indicated by the exception handler.

If there’s no handler for the exception, the microkernel’s actions depend on the
execution environment. A debugger is called if one’s installed. If not, and the
exception occurred in a task or a software interrupt handler, the task is
terminated.

If no debugger is installed and the exception occurred in a secondary interrupt
handler or hardware interrupt handler, the exception is fatal to the system.
Therefore, secondary interrupt handlers and hardware interrupt handlers
should always have exception handlers if they might conceivably get an
exception—even if the handlers only jump to a safe exit point.

C H A P T E R 4

Contents

4-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 About the Copland Runtime
Environment

Compatibility—Backward and Forward 4-3
Design Goals for the Copland Runtime Environment 4-4
Fragments 4-5
Shared Libraries 4-6
Memory Organization 4-9

Memory Protection 4-11
Virtual Memory 4-13

Heap Management 4-15
Extending the System 4-19

This document was created with FrameMaker 4.0.4

C H A P T E R 4

4-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 4

Compatibility—Backward and Forward

4-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About the Copland Runtime Environment 4

This chapter describes the new runtime environment available with Copland.
A

runtime environment

 is a set of conventions that determine how code is
loaded into memory, where data is stored and how it is addressed, and how
functions call other functions and system software routines. The Mac OS
software and your software together determine the runtime environment
available on a particular Mac-compatible computer.

The Copland runtime model, based on fragments, consolidates System 7’s
many diverse mechanisms for loading and executing code. A

fragment

 is a
block of executable code and its associated data. Fragments are created by your
development system’s linker. The

Code Fragment Manager (CFM)

 loads
fragments into memory and prepares them for execution.

The Copland runtime environment is an evolution of the one introduced with
System 7.1.2 for PowerPC-based Mac-compatible computers (described in

Inside Macintosh: PowerPC System Software

). While the use of fragments is
evolutionary, Copland introduces a memory addressing and allocation model
that is entirely new on the Mac OS. This new architecture provides robust
memory protection at the operating-system level and expands the role of
virtual memory.

You should read this document if you are designing new software for Copland
or if you have existing software that you want to run on Copland. An
understanding of the Copland runtime environment can help you design your
software to take maximum advantage of the Copland OS.

Compatibility—Backward and Forward 4

Because it is fragment-based, PowerPC native code compiled for System 7 is
supported by the Copland runtime environment. All Code Fragment
Manager–based calling conventions in Copland remain consistent with those of
System 7. The Copland runtime environment also supports System 7 software
based on the use of the A-trap table—developed for the original 68K runtime
environment—by running this software under emulation on the PowerPC
processor.

Copland does

not

 support the use of system extensions of type

'INIT'

. To
support replacements for software of this type, Copland provides enhanced
system services, many of which also eliminate the need for the patching that
your application might have done in System 7.

This document was created with FrameMaker 4.0.4

C H A P T E R 4

About the Copland Runtime Environment

4-4

Design Goals for the Copland Runtime Environment

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

For System 7 compatibility, Copland supports the existing mechanism for
patching system software routines (for example, using the

GetTrapAddress

and

SetTrapAddress

 routines) with local effect. However, many system
services have been revised in Copland, and therefore your patch is not
guaranteed to produce the results you intend. Copland does not support the
use of the existing mechanism for boot-time or global patching.

Copland applications use the Memory Manager when allocating and releasing
memory space in their heaps, which are still used by the Toolbox. The Copland
Memory Manager fully supports the System 7 Memory Manager APIs.

Due to the number of changes in the addressing model introduced by Copland,
software that circumvents the System 7 Memory Manager functions may
require revision to run compatibly with Copland’s virtual memory.

Copland supports all System 7 Virtual Memory Manager functions except

LockMemoryContiguous

.

Design Goals for the Copland Runtime Environment 4

The Copland runtime environment is designed to

■

consolidate the mechanisms for loading and executing code

■

optimize software that uses the Code Fragment Manager

■

support extensibility

■

organize memory in a manner that offers flexible address mapping,
protection of allocated memory, and new facilities for sharing memory

The Copland runtime environment uses fragments as a unified mechanism for
loading and executing software. System 7 requires that you understand and
use many diverse code loading and executing mechanisms, including Code
Fragment Manager containers, HyperCard extensions (stored in resources of
type

'XCMD'

), Component Manager components, and driver resources (stored
in resources of type

'DRVR'

). You could be required to use several of them to
write a single System 7 application. Copland simplifies the knowledge base
required by having only one mechanism—fragments—to understand.

The Copland runtime environment optimizes the performance of software
based on the Code Fragment Manager over the performance of software based

C H A P T E R 4

About the Copland Runtime Environment

Fragments

4-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

on the use of the A-trap table. (By comparison, System 7 for PowerPC-based
computers emphasizes compatibility over performance.)

The design of the Copland runtime environment promotes extensibility in two
ways. First, many system services have extensibility mechanisms built into
them. You can easily extend them to meet the needs of your application.
Second, Copland provides the Patch Manager, which enables you to patch the
system when the extensibility of the system services doesn’t meet the needs of
your application.

Copland improves the mapping of virtual memory to physical storage by
allocating storage from a paging device only when software needs additional
memory.

Copland provides memory protection by assigning access permissions to
allocated memory and by placing all server processes in their own address
spaces, which are separate from the address space used by all cooperative
processes.

Fragments 4

In Copland, all executable code is packaged in Code Fragment Manager
fragments, hereafter referred to simply as fragments. The basic unit of
executable code in Copland is a

fragment

. Each fragment consists of its code,
static data, imported symbols, and exported symbols. Fragments that export
functions and variables to other fragments are called

shared libraries

. Because
all fragments are potentially sharable (although not all are actually shared), the
terms

fragments

 and shared

libraries

 are often used interchangeably. In general,
a shared library is used to resolve imported symbols during linking and also
during the loading and preparation of some other fragment.

A shared library that is dynamically linked at execution time is called a

dynamically linked library

. A dynamically linked library exports code or data
that can be referenced by another fragment. For example, during the linking
process, an application fragment can import a math library and the Window
Manager library. At execution time, those libraries are dynamically bound to
the application.

C H A P T E R 4

About the Copland Runtime Environment

4-6

Shared Libraries

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Do not confuse the use of the term

 shared library

 in this document with the
shared libraries specified by the Apple Shared Library Manager, which are not
part of the Copland runtime environment.

Using shared libraries for software development has many benefits, including
the following:

■

Having software in separate pieces simplifies development. For example, if
you need to enhance the spell-checking module of your application, you
need only to change and replace that shared library. You can distribute the
enhanced shared library as a replacement, instead of distributing a new
version of the application or a patch.

■

When two or more applications use the same shared library, memory is
saved because only one copy of the code is in memory.

Before the code or data in a fragment can be used, it must be loaded into
memory and prepared for execution. This process is usually handled
automatically by the Code Fragment Manager.

Copland supports the System Object Model (SOM), a new model for
developing and packaging object-oriented software. It makes object-oriented
shared libraries viable by providing release-to-release binary compatibility,
compiler and language independence, and a basic level of dynamic language
support. SOM is implemented as a layer on top of the Code Fragment Manager.

Shared Libraries 4

Copland provides all system services, including system software, through
shared libraries. In Copland, all fragment-based software gains access to
system services by directly calling shared libraries. System services also access
each other directly, one shared library to another.

For example, Figure 4-1 shows a fragment-based Copland application
accessing two shared libraries,

x

 and

y

, directly. The figure also shows shared
library

x

accessing shared library

y

directly.

C H A P T E R 4

About the Copland Runtime Environment

Shared Libraries

4-7

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 4-1

Access to system services in Copland

In System 7, all software accesses system services through the trap table.
A-trap-based software uses the trap table directly; fragment-based software
calls an interface library, which in turn, uses the trap table. Figure 4-2 shows
calls from a fragment-based application in System 7 to two shared libraries,
shared library

x

 and shared library

y

,

going through the interface library and
trap table. It shows the same process for shared library

x

 calling shared library

y

.

Fragment-based application

Shared library x Shared library y

C H A P T E R 4

About the Copland Runtime Environment

4-8

Shared Libraries

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 4-2

Access to system services in System 7

Software compiled as fragments for either a 68K or PowerPC processor can run
only on that processor. All native PowerPC software is fragment-based.
However, the Copland runtime environment also supports software that is
based on the use of the A-trap table. This software was developed for the
original 68K runtime environment. This software can run under emulation on
the PowerPC processor.

The Copland runtime environment supports A-trap-based software by
providing a trap table filled with routine descriptors that reference the system
shared libraries. A

routine descriptor

 is a data structure that describes the
address of a routine, its parameters, and its calling conventions. Copland
provides A-trap-based software support, shown in Figure 4-3, as an addition to
the runtime environment instead of making it the focus of the runtime
environment as in System 7.

Trap table
Interface

library

Fragment-based application

Shared library x Shared library y

C H A P T E R 4

About the Copland Runtime Environment

Memory Organization

4-9

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 4-3

Copland support for A-trap-based software

Copland takes full advantage of the capabilities of the Code Fragment Manager
by allowing system services to use a process’s static data. (Historically, this
per-process static data has been referred to as an application’s

global variables

.)
There is a separate copy of per-process static data in each process that uses a
shared library, and the static data of all libraries used by a process is shared by
all of the tasks in that process, making concurrent access possible. By
comparison, in System 7 the shared libraries of the operating system use only
shared static data.

Memory Organization 4

Unlike previous versions of the Mac OS, Copland supports multiple address
spaces and introduces functions for creating, deleting, and controlling areas of
memory. An

address space

 is the set of addresses that a process can reference.

System 7 and Copland both use a 32-bit address space, so that any address
between 0x0000 0000 and 0xFFFF FFFF is a valid logical address. Whereas
System 7 runs all software in a single 32-bit address space, Copland supports
multiple address spaces. As explained in the chapter “About Copland
Processes,” all cooperative processes share one address space and server
processes run in their own protected address spaces.

Trap table
Routine descriptor

Routine descriptor

Shared library x

Shared library y

A-trap-based application

C H A P T E R 4

About the Copland Runtime Environment

4-10

Memory Organization

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

In Copland, at least 1 gigabyte (out of a maximum of 4 GB) of contiguous
logical memory is available in each address space. The remaining logical
memory is used for global allocation or reserved for other uses, such as slot
space.

A

memory area

 is a range of addresses, within an address space, that share
common attributes, including:

■

access permissions for software running in either user or supervisor mode

■

whether the microkernel must hold the memory area resident in physical
RAM

■

whether the microkernel should allocate pageable memory on-demand, or
preallocate it for the entire area

■

whether the microkernel should initialize the contents of the memory area
by clearing it

You can create your own memory areas and specify their attributes to suit your
software’s needs.

Copland maps

global memory areas

 across all address spaces. In other words,
each address space can address all global areas. Global areas, such as those
occupied by system code, appear at the same location in every address space.

Figure 4-4 illustrates two different address spaces. The address space on the left
belongs to cooperative processes; the stack and heap for an application’s
primary task is shown in this map. The address space on the right belongs to a
server process; because secondary tasks have no heaps, only its stack is shown.
Both address spaces share identical global areas—for example, the code of the
shared libraries of the Copland File Manager. Both the application and server
software can quickly call these shared libraries without leaving their own
address spaces.

IMPORTANT

For illustrative purposes, the figures in this chapter show
global areas near the top of address spaces. However,
global areas are not necessarily in high memory, and you
should make no assumptions about their locations.

▲

C H A P T E R 4

About the Copland Runtime Environment

Memory Organization

4-11

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 4-4

A global area across two address spaces

Memory Protection 4

Copland’s facilities for memory protection reduce the possibility of a task
crashing the entire system.

A task cannot directly reference an address in an address space other than its
own. Therefore, software in different address spaces must use special system
services to communicate across address spaces. This protects server software
(as well as the microkernel) from applications.

Even within a single address space, Copland protects memory by assigning
one of three access levels to each memory area:

■

read/write,

 where read, write, and instruction-fetch operations are allowed

■

read-only,

 where only read and instruction-fetch operations are allowed

■

excluded,

 where no access is allowed

When Copland allocates a memory area, it assigns separate user mode and
supervisor mode permissions for that area. For example, memory areas
allocated for a device driver may allow read/write access to supervisor-mode

Low memory Low memory

High memory High memory

Address space

for a cooperative

process

Address space

for a server

process

Stack

Global code Global code

Stack

Heap

System heap

C H A P T E R 4

About the Copland Runtime Environment

4-12

Memory Organization

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

software but read-only access to user-mode software. If code attempts to access
memory to which it has insufficient access privileges, the processor generates
an exception. (Exception handling is described in the chapter “About Copland
Processes.”)

Access permissions for global memory areas are of particular concern because
global areas are visible to every task in the system. Executable code always
resides in global memory areas that are assigned read-only access for all
software. There are instances where a global area is assigned read/write
permission for both user-mode and supervisor-mode software; for example,
the video RAM is writable by all software.

This protection scheme does not cover all memory protection needs. In
particular, it cannot protect a memory area that has been created with
read/write access to user-mode software. Because all cooperative processes run
in the same address space, Copland cannot prevent one application from
corrupting another.

However, when Copland creates a memory area, it can place

guard pages

 of
memory at the beginning and end of the area. Copland allows no access
whatsoever to these guard pages; neither user nor supervisor mode software
can write to or read from these pages. Figure 4-5 illustrates a memory area
created with guard pages. If any software, even the software residing in the
area itself, attempts to access a guard page, the processor generates an
exception. This makes it possible for Copland to detect conditions like stack
overflows before they adversely affect surrounding areas.

Figure 4-5

A memory area with guard pages

An area

Guard page

Guard page

Accessible

memory

C H A P T E R 4

About the Copland Runtime Environment

Memory Organization

4-13

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Virtual Memory 4

Virtual memory is always present in Copland, and it operates transparently to
applications and other software executing in user mode. In Copland, virtual
address space is dynamically allocated when needed and is released when no
longer needed.

Note

Even while virtual memory is always in effect, any call to
the

Gestalt

 function on Copland using the System 7
selector

gestaltVMAttr

 shows virtual memory to be
off.

◆

Copland separates the recognition of a

page fault

 (that is, the need to page in
memory from backing storage to physical memory) from the software that
resolves the fault. The

 backing provider

 is a server process responsible for
transferring data between backing storage (for example, a hard disk) and
physical memory in response to page faults. Copland supplies a backing
provider to back physical memory to disk files.

In System 7, the user configures virtual memory through the Memory control
panel. The user must allocate the size of virtual memory in this panel and then
restart the computer for the changes to take effect. As shown in Figure 4-6,
backing providers in Copland can allocate memory from the backing storage
on an as-needed basis.

C H A P T E R 4

About the Copland Runtime Environment

4-14

Memory Organization

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 5/6/95

Figure 4-6 Virtual memory scheme on Copland

The microkernel signals the occurrence of a page fault in a message to a
backing provider; a backing provider transfers the data into physical RAM.
This separation allows the backing provider to use media other than local hard
disks. In fact, the backing provider need not use actual backing store at all. For
example, if a task needs to maintain a lookup table for a trigonometric function
in memory, it might be faster and more efficient for the backing provider
responsible for that memory allocation to recalculate the values of the table and
place them directly in physical memory to satisfy a page fault rather than read
them in from disk-based backing storage.

Backing messages include the following types of information from the
microkernel:

■ creation and deletion of memory areas

■ reading from and writing to backing providers

■ page aging and relinquishment

When the microkernel notifies a backing provider of the creation of a memory
area, it allows the area’s information to be checked by the backing provider
before the microkernel completes the area creation. For example, if the backing
storage used by a backing provider cannot be used as scratch storage (that is, it
is read-only storage), then the backing provider should check the potential

Area A Backing Storage

Area B Backing Object

Backing Object

C H A P T E R 4

About the Copland Runtime Environment

Heap Management 4-15
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

area’s information to ensure that the microkernel is requesting nonscratch
storage and read-only access permissions.

The kernel notifies a backing provider of memory area deletion, meaning that
backing storage can be deallocated.

The microkernel notifies a backing provider when memory needs to be read
from or written to backing storage. The backing provider is supplied with the
starting physical memory address, the starting location in the backing provider,
and the number of bytes involved.

A page aging message indicates that pages have remained untouched long
enough that they appear unlikely to be referenced in the near future. The
provider decides when to actually replace aged pages. A request for page
relinquishment signals the microkernel’s need to obtain physical memory from
the backing provider; the need can be signaled as mild or urgent.

Be aware that device drivers, interrupt handlers, and any other software that
cannot tolerate page faults must use Copland services to ensure that segments
of code or data remain resident in physical memory. Copland provides
functions to allocate physically resident memory and to change previously
allocated memory from pageable to physically resident.

Heap Management 4

Copland introduces a reentrant, pointer-based memory allocator called the
Pool Manager. Your software can use the Pool Manager to allocate memory for
your data. The areas from which you can allocate memory are called pools.

Similar to heaps and temporary memory, pools provide applications and server
software with memory. Unlike Memory Manager heaps, you can dynamically
increase the size of pools. Unlike temporary memory in System 7, memory that
you obtain from a pool can remain allocated throughout the lifetime of your
process without degrading Copland’s performance.

The Copland Memory Manager is a peer of the Pool Manager; both allocate
memory from areas. Applications continue to use the Memory Manager when
allocating and releasing memory space in their heaps, which are still used by
the Toolbox. Copland fully supports the System 7 Memory Manager APIs.

C H A P T E R 4

About the Copland Runtime Environment

4-16 Heap Management

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Secondary tasks, which don’t use the Toolbox, should always use the Pool
Manager instead of the Memory Manager. Advantages of the Pool Manager are
that

■ it’s fast

■ its pools can be dynamically grown

■ it’s pointer-based (therefore, you don’t need to lock and unlock handles)

■ it’s reentrant

Copland provides several preallocated pools to support use by cooperative
processes, server processes, device drivers, and Toolbox managers.

In System 7, system software, drivers, desk accessories, system extensions, and
applications have only the system heap and the application heap as
alternatives for the allocation of dynamic memory. System 7 uses a temporary
memory scheme useful mainly for emergency memory allocations that prevent
applications from crashing.

The kernel creates three memory pools for the system upon startup:

■ system resident pool

■ system pageable pool

■ system global pool

Device drivers and other supervisor-mode software commonly use the system
resident pool when the software cannot tolerate page faults. The kernel holds
memory allocated from this pool in physical RAM at all times. Only code
running in supervisor mode can allocate memory from this pool. The data
stored in the system resident pool is read-only for all user-mode software.

Supervisor-mode software that can tolerate page faults allocates memory from
the system pageable pool. The system pageable pool acts as the default pool
for supervisor-mode software. This pool, too, is read-only for all user-mode
software.

User- and supervisor-mode software can use the system global pool to allocate
memory that must be globally accessible to all code in every address space. Use
this pool sparingly—any code in the system can corrupt its contents.

Copland also creates a default pool for each process. User mode software can
allocate from this pool at will. You can think of the default pool as being
analogous to the application heap; it is pageable and nonglobal.

C H A P T E R 4

About the Copland Runtime Environment

Heap Management 4-17
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

To allocate per-process static data, the Code Fragment Manager allocates one
copy of a library’s static data from the default pool for each process that uses
that library.

Figure 4-7 illustrates how the data used by cooperative processes might be
arranged. In this figure, the white boxes represent allocated areas.

Figure 4-7 Data memory areas for two cooperative processes

Because the cooperative processes shown in this figure share the address space
of other processes that call the Toolbox, there is a system heap. Each process
has its own heap and stack, and each has access to the system global pool, as
shown in the figure. Copland also provides each process with a default pool
from which to allocate memory. Notice that the default pool for process b
consists of two discontiguous areas. Pools can be dynamically grown; when
they grow, they may appear in discontiguous areas.

High memory

Data memory for

process a

Data memory for

process b

Address space

Low memory

System heap

System global pool

Stack

Heap

High memory

Low memory

System heap

Heap

Default Pool

Stack

System global pool

Default pool

Default pool

C H A P T E R 4

About the Copland Runtime Environment

4-18 Heap Management

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

You may notice that the A5 worlds associated with A-trap-based code are
absent from this address space. The information from those worlds is either not
needed by fragment-based applications, or is maintained elsewhere (usually in
the process’s heap). Any software that makes assumptions about the
organization of an A5 world will not work in Copland. For information about
the new locations of the information formerly stored in A5 worlds, see Inside
Macintosh: PowerPC System Software.

Every server process has its own address space; there are no heaps in the
address space for a server process. There is a separate stack for every task in
the process, and a default pool shared by all the tasks in the process, as
illustrated in Figure 4-8.

Figure 4-8 Data memory areas for a server process with two tasks

The preallocated pools will generally meet your software’s needs. Each pool
uses a default grow function that provides a means for expanding the pool
should it become exhausted. However, if none of the preallocated pools suit
your software’s needs, you can use the Pool Manager to create a new pool.

High memory

Low memory

Default Pool

Stack (for task b)

Stack (for task a)

System global pool

C H A P T E R 4

About the Copland Runtime Environment

Extending the System 4-19
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Using the Pool Manager’s creation functions, you can create pools with

■ a specific size

■ specialized grow functions

You can use a specialized grow function to grow your pool when it runs out of
space; the default grow function allocates a new area for a pool that runs out of
space.

Your software can create its own memory areas and specify attributes suitable
for its needs. When you use the Pool Manager to create pools, they inherit the
attributes of the areas from which they were created.

Extending the System 4

Copland provides a variety of services that let you extend the system to meet
the specific needs of your application. Extensibility is incorporated into many
of the Copland operating-system services so that you will no longer need to
use system extensions or patches. For example, you can use preemptively
scheduled tasks, discussed in the chapter “About Copland Task and Process
Management,” to get system time instead of patching a regularly called system
routine such as SystemTask.

Many Copland services provide support for application extensions. These
application extensions use the Code Fragment Manager or SOM. Because SOM
supports object-oriented software, it is especially useful for software that
requires inheritance features.

If the extensibility of the Copland operating system doesn’t meet your needs,
Copland provides a controlled mechanism for patching, called the Patch
Manager. This new API enables you to perform such operations as naming,
ordering, enabling, and disabling patches. Also, the Patch Manager allows the
system to understand the relationships between patches and to determine
where conflicts might arise.

For compatibility with System 7 software, Copland supports system software
patching with the GetTrapAddress and SetTrapAddress functions.
However, for an application making such a patch, this will have an effect only
within that application’s process, and the execution of the patch will cause a
performance penalty.

C H A P T E R 4

About the Copland Runtime Environment

4-20 Extending the System

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Note
The GetTrapAddress and SetTrapAddress functions
will be removed from future versions of the Mac OS.
Indeed, even if you use the Copland Patch Manager, Apple
cannot ensure the future compatibility of your products. ◆

C H A P T E R 5

Contents

5-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 About the Copland I/O
Architecture

Introduction 5-4
Families 5-7
Plug-ins 5-10

Design Goals for the Copland I/O Architecture 5-12
Short-Term Design Goals 5-12
Long-Term Design Goals 5-13

Architectural Features 5-15
Driver Loader Library 5-15
Driver Services Library 5-15
Booting Services 5-16
Power Management 5-16
User Activity Monitor 5-17
Support for Hot Swappable Devices 5-18

A Closer Look 5-18
Families 5-18

Family Programming Interfaces 5-19
Family Communications 5-20

Plug-ins 5-21
Extending Family Programming Interfaces 5-21
Sharing Code and Data Between Plug-ins 5-23

Activation Models 5-24
Single-Task Model 5-25
Task-per-Plug-in Model 5-27
Task-per-Request Model 5-30
Family Programming Issues 5-32

Name Registry 5-33

This document was created with FrameMaker 4.0.4

C H A P T E R 5

5-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Compatibility—Backward and Forward 5-34
If You Develop Device Drivers 5-35

Separation of Application and Device Driver Interfaces 5-37
Common Packaging of Loadable Software 5-37

If You Develop Applications 5-38
Device Manager Compatibility 5-39

C H A P T E R 5

5-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About the Copland I/O Architecture 5

This chapter provides an overview of the Copland I/O architecture. The
Copland I/O architecture is designed to improve the user experience by
providing superior performance, better responsiveness, and increasingly
robust systems, and by supporting the advancements inherent in a
microkernel-based operating system. It improves the developer experience by
increasing the predictability of I/O responsiveness, by simplifying driver
development, and by providing an updated 68K driver interface and an
improved concurrent Device Manager.

You need to understand the framework that the I/O architecture provides for
innovation and how it affects compatibility with both hardware and software
products if you are one of the following types of developers:

■

If you are a Mac OS licensee, you need to understand the I/O architecture to
be certain that devices you incorporate into your hardware product will
operate with Copland and to understand how software can be loaded into
your product when it is turned on.

■

If you are a hardware vendor who makes NuBus



 or PCI cards, ADB
devices, GeoPort



 pods, or other hardware devices, you need to know how
to create software that allows access to your product.

■

If you are a system-extension author who produces software products such
as network protocol implementations, file system implementations, and
virtual device drivers to extend the capabilities of the system, or if you
develop system utilities such as driver installers, hard disk formatting and
partitioning packages, and emergency repair products, you need to
understand the I/O architecture to determine if you need to modify your
software product to run on Copland.

■

If you are an application developer whose application writes to or otherwise
manipulates devices, you need to understand how to take advantage of the
new features in the Copland I/O architecture and how to enhance your
application’s compatibility with future versions of Mac OS.

This chapter briefly introduces the Copland I/O architecture. Then it discusses

■

short- and long-term design goals of the I/O architecture

■

architectural features, such as the Driver Loader Library, the Driver Services
Library, booting services, power management, the user activity monitor, and
support for hot swappable devices

■

selected aspects of I/O families and plug-ins

This document was created with FrameMaker 4.0.4

C H A P T E R 5

About the Copland I/O Architecture

5-4

Introduction

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

family activation models

■

the Name Registry as it is used by the I/O system

■

compatibility issues for device driver writers and application developers

You’ll find this chapter easier to understand if you are familiar with certain
features of Copland, such as its tasking mechanisms, the defined execution
environments and execution modes, distinct address spaces, and microkernel
messaging. You can find information about these topics in previous chapters in
this document and in

Microkernel White Paper

.

Introduction 5

Copland changes how the lowest levels of the Mac OS work. It implements a
tasking model of process management, with address space protection for tasks
executing in supervisor mode. Drivers execute in supervisor mode. The
transition to a microkernel-based, preemptive, multitasking operating system
has significant implications for developers creating drivers and other I/O
services for the Mac OS and for applications that use them:

■

Applications running in user mode and driver software running in
supervisor mode have no direct access to each other’s data. Drivers are
protected from applications and vice versa. Access to driver services is
available only through an I/O family’s programming interface.

■

I/O devices are not directly accessible to application software, nor is it
vulnerable to application error. Applications have access to hardware
services only through an I/O family’s programming interface.

■

The context within which a driver runs and the method by which it interacts
with the system are defined by the I/O family to which it belongs.

You can find more information on these topics in the section “Compatibility—
Backward and Forward,” beginning on page 5-34.

The Copland I/O architecture introduces new terminology. An I/O

family

 is a
collection of software pieces that provide a single set of services to the system,
such as the SCSI family and its SCSI interface modules (SIMs) or the file
systems family and its installable file systems. Each family defines a family
programming interface (FPI) designed to meet the particular needs of that
family. An FPI provides access to a given family’s plug-ins.

C H A P T E R 5

About the Copland I/O Architecture

Introduction

5-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

A

plug-in

 is a dynamically loaded piece of software that provides an instance
of the service provided by a family. For example, within the file systems family
(File Manager), a plug-in implements file-system-specific services. Plug-ins are
a superset of device drivers—all drivers are plug-ins, but not all plug-ins are
drivers.

Figure 5-1 illustrates an example of the relationship between an application,
several I/O families, and their plug-ins. An application requests services
through an FPI, shown in the figure as the File Manager API. Typically, the
service requests flow as microkernel messages to FPI servers, shown in the
figure as gray arrows.

In this architecture, code that executes in supervisor mode, such as plug-ins,
family implementations, and the FPI servers, is

trusted

. A failure in one of these
software subsystems can cause complete system failure. However, failure of
any particular application does not affect the ability of the I/O system and
other microkernel-level services to continue serving other clients. The I/O
system is insulated from application error.

C H A P T E R 5

About the Copland I/O Architecture

5-6

Introduction

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Figure 5-1

High-level view of an application, I/O families, and plug-ins

Note that Figure 5-1 shows three I/O families that work together to complete a
service request. The application makes the service request which then moves
through the file system family, the block storage family, and the SCSI family.
However, this does not imply any hierarchical relationship among families. In
fact, all families are peers of each other.

In introducing the concepts of family and plug-in, the Copland I/O
architecture formalizes existing programming practices. For example, when an
application accesses the services of a video device through the Display
Manager, it is calling the display family. The Display Manager API is tailored to
the needs of video devices. Likewise, when an application calls the Sound

File

Manager

API

SCSI

Manager

FPI server

Block

Storage

FPI server

File

Manager

FPI server

SCSI

Manager

family

Block

storage

family

File

Manager

family

User mode

Supervisor mode

HFS

file

system

Disk

Driver SIM

C H A P T E R 5

About the Copland I/O Architecture

Introduction

5-7

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Manager, it is calling the sound family. The family concept in the Copland I/O
architecture explicitly acknowledges that devices of similar sorts share many
characteristics and needs. Therefore, it provides family programming interfaces
tailored to the needs of specific device families. These specially tuned sets of
services allow drivers for a given family to be as simple as possible.

Families and plug-ins are described in more detail in the next two sections.

Families 5

The notion of family is fundamental to the Copland I/O architecture. A family
provides a distinct set of services to the system. For example, the Open
Transport family and its Data Link Provider Interface (DLPI) device drivers
provide network services; the block storage family and its block storage drivers
provide access to a variety of block storage mediums. Often, a family is
associated with a set of devices that have similar characteristics, such as
display devices or ADB devices.

Apple will provide the following families in its first release of Copland:

You can create additional I/O families, extending the base system features and
APIs. Each family provides the following software pieces:

■

a family programming interface and its associated FPI library or libraries for
its clients

■

an FPI server

■

an activation model

■

a family expert

Device Manager family Open Transport family

ADB family Keyboard family

Pointing family Display family

SCSI family Sound family

PRAM family IDE family

Real time clock family PCI family

File systems family PCMCIA family

Block storage family NuBus family

C H A P T E R 5

About the Copland I/O Architecture

5-8

Introduction

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

a plug-in programming interface for its plug-ins

■

a family services library for its plug-ins

Figure 5-2 provides a high-level view of how selected family software pieces
are related.

Figure 5-2

Family software diagram

FPI

library

FPI server

Family

User mode

Family

programming

interface

Family

programming

interface

Function call

Kernel message

Kernel message

Function call

Function call

Plug-in

programming

interface

Supervisor mode

Plug-in

Application

C H A P T E R 5

About the Copland I/O Architecture

Introduction

5-9

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

The

family programming interface

 (

FPI

) provides access to the family’s
services to applications, to plug-ins from other families, and to system
software. The term

family programming interface

 distinguishes an I/O family’s
API from other APIs provided by Copland, such as microkernel APIs or
high-level Toolbox APIs. Each FPI is designed to provide callers with services
appropriate to a particular family.

The FPI library contains the code that passes requests for service to the family
FPI server. Typically, an FPI library maps FPI function calls into microkernel
messages and sends them to the family’s FPI server for servicing. To make
certain optimizations possible, a family may provide two versions of its FPI
library, one for user-mode clients and one for supervisor-mode clients.

An

FPI server

 runs in supervisor mode and responds to service requests from
family clients. How it responds to a request depends on the family’s activation
model. For instance, it may put a request in a queue or it may call a plug-in
directly to service the request. If the FPI library and the FPI server use
microkernel messaging to communicate, the FPI server supports a message
port. The choice of microkernel messages as a communication mechanism is
not visible to family clients. Clients use only the FPI to make requests of the
family and its plug-ins. This is a change from the existing Mac OS in which
both high-level and low-level interfaces to components of the operating system
are available.

An

activation model

 provides the runtime environment of the family and its
plug-ins. For information about activation models, see the section “Activation
Models,” beginning on page 5-24.

A

family expert

 (also referred to as a

high-level expert

) is the code within a
family that maintains knowledge of the set of family plug-ins within the
system. At system startup, and each time it’s notified of a change in the Name
Registry, the family expert scans the system’s Name Registry for plug-ins that
belong to its family. For example, a display family expert looks for display
device entries. When a family expert finds an entry for a family plug-in, it
instantiates the plug-in, making it available to clients of the family. The system
notifies the family expert on an ongoing basis about new and deleted nodes in
the Name Registry. As a result, the set of plug-ins known to and available
through the family remains current with changes in system configuration.

Family experts do not add or alter information in the Name Registry, nor do
they scan hardware. Families don’t care about how devices are connected to the
system—they are insulated from knowledge of physical connectivity. To learn

C H A P T E R 5

About the Copland I/O Architecture

5-10

Introduction

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

how device information gets into the Name Registry, see the section “Name
Registry,” beginning on page 5-33.

The

plug-in programming interface

 (

PPI

) provides a family-to-plug-in
interface that defines the entry points a plug-in must support so that it can be
called and a plug-in-to-family interface that defines the routines plug-ins must
call when certain events, such as an I/O completion, occur. In addition, a PPI
defines the path through which the family and its plug-ins exchange data.

A

family services library

 is a collection of routines that provide services to the
family’s plug-ins. The services are specific to a given family and may be
layered on top of services provided by the microkernel. Within a family, the
family services library implements the methods by which data is
communicated, memory is allocated, interrupts are registered and serviced,
and timing services are provided. Family services libraries also maintain state
information needed by a family to dispatch and manage requests.

For example, the services library for the display family provides routines that
deal with vertical blanking because display devices care need them. Likewise,
because SCSI device drivers must manipulate command blocks, the SCSI
family services library contains routines to do that easily. A family services
library that provides commonly needed routines simplifies the development of
that family’s plug-ins.

Plug-ins 5

A plug-in is a dynamically loaded piece of software that provides an instance
of the service provided by a family. For example, within the file systems family,
a plug-in implements file-system-specific services. The plug-ins understand
how data is formatted in a particular volume format such as HFS or DOS FAT.
But file systems family plug-ins don’t understand how to get data from a
physical device. To do that, a file system family plug-in talks to the block
storage family. Block storage plug-ins provide both media-specific drivers—
such as a tape driver, a CD-ROM driver, or a hard disk driver—and volume
plug-ins that represent partitions on a given physical disk.

With the first release of Copland, Apple will provide plug-ins for the families
listed on page 5-7. Third-party hardware developers are encouraged to develop
new plug-ins.

All plug-ins share the following characteristics:

C H A P T E R 5

About the Copland I/O Architecture

Introduction

5-11

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

They must conform to their family activation model.

■

They cannot call Toolbox routines.

■

They run in supervisor mode and have access to the microkernel’s protected
memory space.

■

They are packaged as Code Fragment Manager fragments.

■

They can be written in a high-level language.

■

They must be written in native PowerPC code.

■

They have a layered structure. Most of their work is done in a task. Some
small amount of work may be done by interrupt handlers. The layered
structure model for plug-in development allows code to be
compartmentalized so that it works well within the Copland environment.

The typical parts of a plug-in include

■

the main code section that runs as a supervisor-mode task. It is here that the
plug-in does most of its work.

■

a hardware interrupt handler that services hardware interrupts if the plug-in
responds to a physical device. Only essential work that cannot be done in
the task should be done by the hardware interrupt handler.

All plug-ins must have a main code section, but not all will have a hardware
interrupt handler.

Plug-in code executes in supervisor mode and responds to client service
requests made through the FPI. For example, Device Manager family plug-ins
(device drivers of family type

'ndrv'

) respond to the functions

Open

,

Close

,

Control

,

Prime

, and so on.

Plug-in code should make no assumptions about particular hardware settings
or configurations. The main code section should never attempt to obtain device
configuration information directly from APIs such as the Resource Manager or
the File Manager. A plug-in obtains configuration information in several ways.
It can read the static configuration information stored in the Name Registry.
Dynamically changing configuration information is communicated to a plug-in
through the plug-in programming interface; when a family client uses the
family’s programming interface to notify the family of a configuration change,
the family notifies the plug-in. In addition, a plug-in can call another family to
obtain some types of configuration information. For instance, a video plug-in

C H A P T E R 5

About the Copland I/O Architecture

5-12

Design Goals for the Copland I/O Architecture

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

may call the PRAM family programming interface to obtain video mode
information stored in PRAM prior to the last system reboot.

The hardware interrupt handler executes in supervisor mode and responds to
interrupts from a physical device. It should perform only essential functions,
deferring all other work to the plug-in task or a secondary interrupt handler.
The plug-in programming interface specifies how interrupts are managed
within a family.

Design Goals for the Copland I/O Architecture 5

The next two sections describe the short-term and long-term design goals of the
Copland I/O architecture.

Short-Term Design Goals 5

In the first release of Copland, the I/O architecture is targeted to meet the
following design goals:

■

End-user flexibility.

Mac OS provides end users with tremendous value
that is directly attributed to the flexibility and adaptability of its I/O system.
For example, its plug-and-play capability and dynamic monitor
configuration are features that are simply not possible with many I/O
architectures. The Copland I/O architecture is designed to provide these
end-user features and to retain the flexibility of the Mac OS.

■

Performance.

The architecture favors lower-latency responses over higher
bandwidths to provide greater responsiveness to users. To help achieve this
goal, all drivers and all their support services are native. Additionally, very
little code is permitted to run at the hardware-interrupt level. Although the
architecture does not guarantee the best performance for burst and
single-stream high-bandwidth clients, the Copland implementation will
produce much better throughput results than that available in System 7. The
I/O architecture provides support for the real-time needs of MIDI, Sound,
GeoPort, and QuickTime and enables implementations that meet or exceed
the performance of competing platforms.

■

PCI driver compatibility.

The Copland I/O architecture extends the
architecture for the I/O system on PCI-based Mac-compatible computers.

C H A P T E R 5

About the Copland I/O Architecture

Design Goals for the Copland I/O Architecture

5-13

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Drivers compliant with the specification for driver development contained
in the document

Designing PCI Cards and Drivers for Power Macintosh
Computers

 will continue to function well within the Copland I/O model. In
addition, Copland seeks to provide binary compatibility with PCI
ROM-based video and network drivers developed in accordance with the
specification for native drivers described in

Designing PCI Cards and Drivers
for Power Macintosh Computers

.

■

Reliability, availability, and serviceability.

In Copland, the I/O system
works as expected and continues to work acceptably in the face of failures of
particular subsystems. For instance, disk I/O continues to work if a failure
in the serial hardware occurs. When failures do occur, the I/O system
provides support for analysis and corrective measures by the user and by
support organizations.

■

Resource allocation and control.

Having limited resources, the
components of the Copland I/O system distribute those resources in a fair
and meaningful fashion among themselves. In particular, the first driver
loaded cannot consume resources such as memory, message ports, timers,
interrupt latency, or bus bandwidth in a way that prevents subsequent
drivers from loading or operating correctly. Configurations that cannot work
because their needs are mutually exclusive are recognized and reported in a
meaningful way.

■

Power management.

Obviously required for battery-powered systems
such as PowerBook



 computers, the need for integrated power
management is increasing for all systems. The I/O architecture provides an
infrastructure to enable optimal power management in diverse systems.

■

Extensibility.

The Copland I/O architecture enhances the ability of OEMs
to create Mac-compatible hardware and peripherals. It is intended that all
hardware-dependent software fall into one of two categories:

n

software based on clearly defined hardware invariants such as big-endian
addressing and the PowerPC 601, 603, and 604 processors

n

software that is dynamically loadable at system startup time, such as
drivers, the SCSI Manager, and SCSI interface modules

Long-Term Design Goals 5

In subsequent releases of Mac OS, the I/O architecture is targeted to meet these
additional design goals:

C H A P T E R 5

About the Copland I/O Architecture

5-14

Design Goals for the Copland I/O Architecture

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

Multiprocessor support.

High-quality support for a limited number of
tightly coupled, cache-coherent processors is a long-term goal of the
architecture. While revisions to the architecture may be desirable for
multiprocessor systems, conforming I/O components should be compatible
within multiprocessor versions of the architecture.

■

Real-time I/O support.

The architecture specifies basic support for
real-time I/O needs, largely as a subset of the resource allocation and control
mechanisms provided by the architecture. Families and plug-ins are
prioritized according to their needs to better support real-time clients.

■

Improved reliability, availability, and serviceability (RAS).

RAS is the
natural successor to the Mac OS plug-and-play capability. The addition of
RAS to Mac OS provides users, system administrators, and technicians with
a broad set of tools for maintaining a Mac OS system, resulting in lower
training and support costs. RAS is one of the mechanisms by which Mac OS
will maintain its lead as the easiest and most configurable system available.

■ Visual system administration. Enabling end users, system administrators,
and support staff to examine and manipulate the configuration of a specific
system is a natural extension to the benefits of RAS support.

■ Scalable to future technologies. Copland provides sufficient architectural
integrity to ensure that implementations of technologies that are not quite
available today are obtainable on desktop platforms. ATM and infrared
networking and Firewire bus connectivity are examples of such technologies.

■ Distributed computing. As system performance increases, it is
increasingly reasonable to provide access to devices that are not attached
directly to the CPU on which an application is running. For example, with
high-cost, high-speed networks, video capture via a frame-grabbing card
plugged into a computer in another office is possible today. As networking
costs decrease, distributed services become feasible on increasing numbers
of desktop systems. Distribution of I/O subsystems across a suitable
network is a long-term goal of this architecture.

■ Universal booting. A single system image that boots on all hardware
configurations that support Copland is a goal of the architecture. In
addition, these systems will support both minimal and third-party
customized installations of Mac OS.

C H A P T E R 5

About the Copland I/O Architecture

Architectural Features 5-15
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Architectural Features 5

This section describes several fundamental I/O system services provided by
the Copland I/O architecture. They are baseline services present in the system.
They are not specific services for different classes of devices such as serial
devices or video display monitors.

Driver Loader Library 5

The I/O architecture provides a Driver Loader Library. The Driver Loader
Library is a set of routines that all I/O families can use to locate and instantiate
their plug-ins. The routines work with all plug-ins regardless of whether the
plug-in is a driver and regardless of whether the driver touches hardware. The
services provided by the Driver Loader Library fall into three categories:

■ routines that provide family experts with an easy way to instantiate
plug-ins. All plug-ins are packaged as Code Fragment Manager fragments,
frequently referred to as shared libraries. This set of utility routines serves as
a wrapper around CFM functions. They hide CFM complexities, giving
family experts a simple set of functions to access the shared libraries they
need and load them into memory.

■ driver matching routines that help family experts locate a device driver for a
given piece of hardware. This makes driver replacement easy and provides
support to families that manage drivers for hot swappable devices.

■ routines that work with the Device Manager family. They install, remove,
and replace driver entries in the unit table.

Driver Services Library 5

The Driver Services Library provides basic driver services to families. It
contains all the base-level generic services needed by families and plug-ins,
such as interrupt registration, timing facilities, allocation and deallocation of
memory, and secondary interrupt-handling capabilities.

C H A P T E R 5

About the Copland I/O Architecture

5-16 Architectural Features

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

The Interrupt Manager is part of the Driver Services Library. It provides
routines that allow drivers to install the interrupt handlers that are invoked
when a device presents an interrupt to the system.

Families can extend the base system services in family-appropriate ways by
adding a family services library to augment the services available from the
Driver Services Library. In some cases, a family services library will replace the
Driver Services Library. For example, plug-ins belonging to the Open Transport
family don’t link to the Driver Services Library, because the Open Transport
family services library provides all the services they need.

Booting Services 5

The I/O architecture provides a method for loading and launching the system
software. The Copland microkernel booting architecture maintains the Mac OS
user experience at system startup. The user should not be required to build a
system tailored for the hardware that the system will run on. Many users may
choose to install hardware support for a large class of devices that might be
connected to their computers. For those users, the system finds the right
support software at startup time and configures that software into a runnable
system without user intervention.

Power Management 5

The I/O architecture provides mechanisms for power state transitions within
the system, such as bringing the system up the first time, shutting it down
completely, moving from low to high power, and maintaining a sleep state. It
provides APIs for power management at the application, plug-in, and system
levels.

There are at least three systemwide power states:

■ Full power-on mode. The core system is available for service requests.
Within this mode, some devices, applications, and services may manage
their power requirements independent of the system as a whole. Low-power
mode is a substate of full-power mode, in that it affects only those devices
that can continue to perform with less power.

■ Sleep mode. The contents of memory are preserved, but active processing
is halted.

C H A P T E R 5

About the Copland I/O Architecture

Architectural Features 5-17
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

■ Power-off mode. The entire system is powered down and no processing of
any sort is possible.

For the purposes of power management, there are three classes of devices and
services:

■ CPUs that have low-power modes in which some processing can still take
place.

■ Devices and services with a user interface that are therefore directly tied to
user actions, such as keyboards, screens, modems, applications, and
networks.

■ Devices without a user interface, such as hard disks that may be controlled
independently from user activity.

Given the fuzzy boundaries in the device and service categories and the
varying nature of each device, the I/O architecture provides mechanisms for
controlling power state transitions without setting policy for devices or
services. A centralized power management service provides coordinated
systemwide power state changes based on input from services and drivers.

The power state and power requirements of each device that is power
managed is maintained in the centralized power management service. This
power management service receives input from the User Activity Monitor
service and individual applications and services. It provides notification to
applications, drivers, and services, manages systemwide power state
transitions, and provides centralized administration of device power behavior.

User Activity Monitor 5

Power management requires the ability to detect when the user is doing
something with the computer. In Copland, the User Activity Monitor provides
the power management service with information about user activity so that it
can know when to put the system into sleep mode, turn a monitor down or off,
and so forth.

Copland uses an activity timer to detect idle periods. Activity is defined as
mouse motion or keyboard activity. Other events, such as the arrival of data on
a serial interface, can also be considered activity.

The User Activity Monitor accepts requests for notification from I/O
subsystems. Subsystems can request to be notified when a specified amount of

C H A P T E R 5

About the Copland I/O Architecture

5-18 A Closer Look

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

time elapses during which there is no user activity. Any of the events defined
as user activity cause the timer to be reset. Subsystems may also be notified
that activity has occurred. This is useful when subsystems have already
received notification of inactivity and powered down their hardware. Here are
some examples of why a subsystem should use the User Activity Monitor:

■ The screen backlight on a PowerBook computer needs to dim after a
user-controllable amount of time elapses with no activity.

■ The CPU should transition into low-power mode when no compute-bound
process is running and a user-controllable amount of time elapses with no
activity.

■ The entire computer needs to transition into sleep mode after a
user-controllable amount of time elapses with no activity.

The subsystems that can register activity must do so. They must tell the User
Activity Monitor that activity has occurred, causing it to reset its inactivity
timer and notify requesters (if any) of the event.

Support for Hot Swappable Devices 5

The Copland I/O architecture provides support for hot swappable devices
such as PCMCIA cards—that is, it can support dynamic changes in
connectivity to devices that may appear and disappear at any time. This feature
allows a user to insert and remove devices such as disk driver card or modem
card without powering down and restarting the computer. The family expert
code that locates and instantiates the family plug-ins remains resident for
families whose plug-ins exhibit dynamic plug-and-play characteristics.

A Closer Look 5

This section consists of selected topics concerning I/O families and plug-ins.

Families 5

The next sections discuss family programming interfaces and family
communication models.

C H A P T E R 5

About the Copland I/O Architecture

A Closer Look 5-19
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Family Programming Interfaces 5

A family provides either a user-mode or a supervisor-mode FPI library, or both,
to support the family’s FPI. Figure 5-3 illustrates an abstracted view of the
Copland I/O architecture. Each of the large blocks in the area below the thick
horizontal line represents an instance of a family. Boxes that share an edge
represent directly callable interfaces.

In the area above the thick horizontal line, the boxes labeled xlibu and zlibu
represent the FPI libraries that support the programming interfaces for families
x and z, and that are available to user-mode clients. In the area below the thick
horizontal line, the boxes labeled ylibk and zlibk represent the FPI libraries for
families y and z that are available to supervisor-mode clients. Typically, FPI
libraries map FPI functions into microkernel messages.

Both the user-mode and the supervisor-mode versions of the FPI libraries
present exactly the same interface to clients—a single FPI is the only way
family services can be accessed. Copland distinguishes between the user-mode
and supervisor-mode versions to permit optimization of the supervisor-mode
FPI libraries in some instances. For example, operations that must be
implemented in the user-mode library, such as copying data across address
space boundaries, may be unnecessary in the supervisor-mode library. In some
instances, the user-mode and supervisor-mode versions maybe the same.

An FPI server dispatches requests for services to the family. Typically, it does
this by receiving a microkernel message, mapping the message back into the
FPI function called by the client, and then calling the function. There is a
one-to-one correspondence between the FPI functions called by clients and the
functions called by FPI servers as a result. Take as an example the x family in
Figure 5-3. The box labeled x represents the interface presented to the FPI
server by the x family. It is exactly the same as the FPI available to applications
or other system software.

The box labeled x family implementation represents the family activation model
that defines how the request is actually serviced by family code and plug-in
code.

C H A P T E R 5

About the Copland I/O Architecture

5-20 A Closer Look

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Figure 5-3 A closer look at the Copland I/O architecture

Family Communications 5

Microkernel messaging is assumed to be the normal communication method
for I/O families—between the FPI libraries and the FPI server for a given
family, between different families, and between plug-in x and family z. That
doesn’t preclude the possibility of other communication mechanisms. The
choice is up to the family. Whatever the communication method, it is
completely opaque to a client requesting a family service.

Xlibu

z

FPI

server

y

FPI

server

x

FPI

server

z family

implem-

entation

y family

implem-

entation

x family

implem-

entation

Zlibu

User mode

Supervisor mode

x

Plug in

y

Plug in

z

Plug in

x y z

Ylibk Zlibk

C H A P T E R 5

About the Copland I/O Architecture

A Closer Look 5-21
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

The messaging model facilitates the development of families and plug-ins by
providing a very easy programming model. It is a straightforward interfamily
communication mechanism that fits well within Copland tasking mechanisms.
The use of microkernel messaging permits greater independence of family
activation models.

An added benefit to using microkernel messaging is that improvements in the
messaging and tasking performance of the microkernel are reflected in
corresponding performance improvements throughout the I/O system.

Plug-ins 5

Family plug-ins must operate within the activation model mandated by the
family and provide the code and data exports described by family
documentation. For example, Designing PCI Cards and Drivers for Power
Macintosh Computers contains descriptions of the required interfaces and
activation models for networking and video plug-ins. The required code and
data exports and the activation model for each of these two families of drivers
is family specific and different. The packaging for the two family driver types
is the same.

The standard family and plug-in definitions cover most cases of I/O
component development. However, there are exceptions to the model. The next
sections describe two; there may be more.

Extending Family Programming Interfaces 5

A plug-in may provide a plug-in-specific interface that extends its functionality
beyond that provided by its family. This feature is useful in a number of
situations. Take, for example, a block storage plug-in for a CD-ROM device. In
addition to the block storage plug-in interface required of the CD-ROM device,
many CD-ROM devices also present an interface that allows knowledgeable
application software to control audio volume and to play, pause, stop, and so
forth. Such added capabilities require a plug-in-specific API.

Most family interfaces provide some level of extensibility to the family’s
plug-ins. For example, the Device Manager allows extensible sets of control
and status selectors that may be used to gain device-specific information and
control. And Open Transport device drivers may receive special calls to extend
the device information and control. This kind of device extension within the

C H A P T E R 5

About the Copland I/O Architecture

5-22 A Closer Look

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

family framework is not changed with the Copland I/O architecture. If,
however, a device wishes to export extended functionality outside the family
framework, it needs to provide a separate message port and an interface library
for that portion of the device driver, as shown in Figure 5-4.

Figure 5-4 illustrates a plug-in module labeled z plug-in that extends beyond
the z family boundary. z plug-in is a plug-in with an extended API—it offers
features in addition to those available to clients through it’s family’s
programming interface. To make its extra services available, the plug-in must
provide the additional software shown in Figure 5-4:

■ dlibu: the interface library

■ d FPI server: the message port code

■ d: the code that implements the extra features

Figure 5-4 Extending a family programming interface

z

FPI

server

z family

implem-

entation

dlibu

User mode

Supervisor mode

d

d FPI

server

z

z

Plug in

C H A P T E R 5

About the Copland I/O Architecture

A Closer Look 5-23
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Sharing Code and Data Between Plug-ins 5

Two or more plug-ins can share data or code or both, regardless of whether the
plug-ins belong to the same family or to different families. Sharing code or data
is desirable when a single device driver wishes to subscribe to two or more
families. Such a driver needs a plug-in for each family. These plug-ins can share
libraries that contain information about the device state and common code.
Figure 5-5 illustrates two plug-ins that belong to separate families and that
share code and data.

Figure 5-5 Plug-ins that share code and data

Plug-ins can share code and data through Code Fragment Manager fragments,
(shared libraries). The Code Fragment Manager allows you to instantiate
independently plug-ins that share code or data without encountering problems
related to simultaneous instantiation. The first plug-in to be opened and
initialized gets access to the shared libraries, but it does not share access at that
point. When the second plug-in is opened and initialized, it establishes a new
connection to the shared libraries. From that point, the two plug-ins contend
with each other for access to the shared libraries.

Sharing code or data is also desirable in certain special cases. Some of the
special-case solutions provided on System 7 use two or more separate device
drivers that use shared data as a communication mechanism. Typically, special
case solutions install a set of devices and a set of special drivers. The closely
coupled devices use a high-speed data path to move data between them. For
example, a video input device puts video data in a shared buffer; subsequently,
a video compression device reads and compresses the data it finds in the
shared buffer. Access to the high-speed data path via the shared buffer is
synchronized by solution specific mechanisms. In essence, this solution is a

Family

a

Family

b

Plug-in

a

Plug-in

b

Shared code

and/or data

C H A P T E R 5

About the Copland I/O Architecture

5-24 Activation Models

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

vendor-supplied family, and its plug-ins are the device drivers that come with
the solution.

Activation Models 5

A family’s activation model defines how the family software is implemented
and the environment within which a family’s plug-ins execute. It defines the
relationship between family code and its plug-ins, including such things as

■ the tasking model a family uses

■ the opportunities the family plug-ins have to execute and the context of
those opportunities (for instance, are the plug-ins called at task level? at
secondary interrupt level? and so forth)

■ the knowledge about states and processes that a family and its plug-ins are
expected to have

■ the portion of the service requested by the client that is performed by the
family and the portion that is performed by the plug-ins

■ the required characteristics of plug-ins, such as whether the plug-in blocks
or returns an error when it encounters resource exhaustion

If you want to develop a new I/O family, you need to design and implement
an activation model that best suits the needs of your I/O family. If you want to
develop a new plug-in, you need to understand the activation model used by
the family to which your plug-in belongs.

This section describes three family activation models used in the Copland I/O
system. Each model provides a distinctly different environment for the plug-ins
to the family, and different implementation options for the family software. The
activation models discussed are

■ the single-task model

■ the task-per-plug-in model

■ the task-per-request model

Many variations of (and hybrid approaches to) the activation models discussed
here are possible and to be expected. The choice of activation model is left to

C H A P T E R 5

About the Copland I/O Architecture

Activation Models 5-25
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

the family designer. The selected models are simply examples of how you can
implement a family.

To provide the asynchronous or synchronous behavior desired by the family
client, the three activation models discussed here use microkernel messaging as
the interface between the FPI libraries that family clients link to and the FPI
servers. Within all activation models, asynchronous I/O requests are provided
a task context. In all cases, the implementation of the FPI server depends on the
family activation model.

The choice of activation model limits the plug-in implementation choices. For
example, the activation model defines the interaction between a driver’s
hardware interrupt handler and the family environment in which the main
driver code runs. A plug-in must conform to the activation model employed by
its family.

You cannot understand the discussion of activation models without some
understanding of Copland’s messaging system and the tasking and interrupt
mechanisms that define the environments in which software executes. You can
find information about these topics in earlier chapters in this document and in
Microkernel White Paper.

Single-Task Model 5

In the single-task activation model, the family runs as a single monolithic task
that is fed from above by a request queue and from below by interrupts
delivered by the plug-ins. Requests are delivered from the FPI library to an
accept function that queues the request for processing by the family’s
processing task and wakes the task if it is sleeping. Queuing, synchronization,
and communication mechanisms within the family follow a well-defined set of
rules specified by the family.

The interface between an FPI server and a family implementation using the
single-task model must be asynchronous. Regardless of whether the family
client called a function synchronously or asynchronously, the FPI server always
calls the family code asynchronously. The FPI server must maintain the set of
microkernel message IDs that correspond to messages to which the FPI server
has not yet replied.

Consider as an example the Open Transport family, which uses the single-task
activation model, shown in Figure 5-6. The Open Transport FPI server is an
accept function that executes on the thread of the calling client via the FPI

C H A P T E R 5

About the Copland I/O Architecture

5-26 Activation Models

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

library. An accept function, unlike message-receive-based microkernel tasks, is
able to access data within the user and microkernel bands directly. The accept
function messaging model requires that the Open Transport FPI server be
reentrant because the calling client task may be preempted by another Open
Transport client task making service requests.

Figure 5-6 Single-task activation model

Open

Transport

APIs

Open

Transport

FPI server

Open

Transport

streams

world

Protocol

Protocol

Protocol

User mode

Supervisor mode

Network

device

driver

Application

Accept

function

Single

task

C H A P T E R 5

About the Copland I/O Architecture

Activation Models 5-27
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

When an I/O request completes within the Open Transport environment, the
Open Transport stream’s completion notification trickles upstream until it
reaches the stream head and from there the Open Transport family’s FPI server
converts the completion into the appropriate microkernel message ID reply.
The Open Transport family implementation is insulated from the microkernel;
it has no microkernel structures, IDs, or tasking knowledge. On the other hand,
the relationship between the FPI server and the Open Transport family code is
rich, asynchronous, and has internal knowledge of Open Transport data
structures and communication mechanisms.

The single-task model is best for families of devices that have either of two
characteristics:

■ Each I/O request requires little CPU effort. This characteristic applies not
only to keyboard and mouse devices but also to DMA devices to the extent
that the CPU need only set up the transfer.

■ No more than one I/O request is ever handled at once. This characteristic
might apply to sound, for example, or to any device for which exclusive
access is required. It also applies to families that monitor their own
scheduling for the interleaving of family I/O processing, such as Open
Transport.

Here are the key questions to ask before deciding whether to choose this model:

■ Can the CPU initiate an I/O request rapidly and then not be involved until
the request completes?

■ Do supported devices implicitly allow only one I/O request to be completed
at a time or does the family provide for its own I/O scheduling?

If the answer to either question is yes, the single-task model is the right choice.

Task-per-Plug-in Model 5

In the task-per-plug-in activation model, for each plug-in instantiated by the
family, the family creates a task that provides the context within which the
plug-in operates. In Copland, the Device Manager family uses the
task-per-plug-in activation model. Figure 5-7 illustrates the task-per-plug-in
model using the Device Manager family as the representative family,

Typically with this model, the FPI server is a simple task-based
message-receive loop or an accept function that presents data to an event-based

C H A P T E R 5

About the Copland I/O Architecture

5-28 Activation Models

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

task loop. The FPI server receives requests from calling clients and passes those
requests to the family plug-ins. The FPI server is responsible for making the
data associated with a request available to the family, which in turn makes it
available to the plug-in that services the request. In some instances, buffers
associated with the original request message may need to be copied or mapped
once.

The family code consists in part of one or more tasks, one for each family
plug-in. The tasks act as wrappers for the family plug-ins—all tasking
knowledge is located in the family code.

When a plug-in’s task receives a service request (by whatever mechanisms the
family implementation uses), the task calls its plug-in’s entry points, waits for
the plug-in’s response, and then responds to the service request.

The plug-in performs the work to actually service the request. It doesn’t need
to know about the tasking model used by the family or how to respond to
event queues and other family mechanisms. It just needs to know how to
perform its particular function.

C H A P T E R 5

About the Copland I/O Architecture

Activation Models 5-29
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Figure 5-7 Task-per-plug-in model

For concurrent drivers, all queuing and state information describing an I/O
request is contained within the plug-in code and data and within any queued
requests. The FPI library forwards all requests regardless of the status of
outstanding I/O requests to the FPI server. When the client makes a
synchronous service request, the FPI library sends a synchronous microkernel
message. This message blocks the requesting client, but the plug-in’s task
continues to run within its own task context, permitting clients to make

Device

Manager

API

Device

Manager

FPI server

Device

Manager

family

User Mode

Supervisor Mode

Generic

driver

Wrapper

task

Application

C H A P T E R 5

About the Copland I/O Architecture

5-30 Activation Models

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

requests of this plug-in even while another client's synchronous request is
being processed.

For the Device Manager family, generic drivers can be either concurrent or
nonconcurrent; clients of the Device Manager family can make both
synchronous and asynchronous requests. The Device Manager FPI server
knows that nonconcurrent drivers cannot handle multiple requests
concurrently. Therefore, it provides a mechanism to queue client requests. It
makes no subsequent requests to a plug-in’s task until the task signals
completion of an earlier I/O request.

The FPI library makes sure both synchronous and asynchronous clients see
appropriate behavior. When a client calls a family function asynchronously, the
FPI library sends an asynchronous microkernel message to the FPI server and
returns to the caller. When a client calls a family function synchronously, the
FPI library sends a synchronous microkernel message to the FPI server and
does not return to the caller until the FPI server replies to the message, thus
blocking the caller’s execution until the I/O request is complete.

In either case, the behavior of the Device Manager FPI server is exactly the
same: for all incoming requests, it either queues the request or passes it to a
family task, depending on whether the target plug-in is busy. When the plug-in
signals that the I/O operation is complete, the FPI server replies to the original
microkernel message. When the FPI library receives the reply, it either returns
to the synchronous client, unblocking its execution, or it calls the asynchronous
client’s I/O completion routine.

The task-per-plug-in model is intermediate between the single-task and
task-per-request models in terms of the number of tasks it typically uses. It is
best used where the processing of I/O requests varies widely among the
plug-ins. In this model, the plug-in is insulated from microkernel tasking
mechanisms and from synchronization issues that result from system resource
contention and multiple client requests to a single plug-in.

Task-per-Request Model 5

The task-per-request model shares the following characteristics with the two
activation models already discussed:

■ The FPI library to FPI server communication provides the synchronous or
asynchronous calling behavior requested by family clients.

C H A P T E R 5

About the Copland I/O Architecture

Activation Models 5-31
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

■ The FPI library and FPI server use microkernel messages to communicate
I/O requests between themselves.

In the task-per-request model, the FPI server’s interface to the family
implementation is completely synchronous.

In this model, one or more internal family request server tasks, and, optionally,
an accept function, wait for messages on the family message port. An arriving
message containing information describing an I/O request awakens one of the
request server tasks, which calls a family function to service the request. All
state information necessary to handle the request is maintained in local
variables on the thread of execution of the request server task. The request
server task is blocked until the I/O request completes, at which time it replies
to the microkernel message from the FPI library to indicate the result of the
operation. After replying, the request server task waits for more messages from
the FPI library.

As a consequence of the synchronous nature of the interface between the FPI
server and the family implementation, code calling through this interface must
be running as a blockable task. This calling code is either the request server
task provided by the family to service the I/O (for asynchronous I/O requests)
or the task of the requester of the I/O (for certain optimized synchronous
requests).

The task-per-request model is best for a family where an I/O request can
require continuous attention from the CPU and multiple I/O requests can be in
progress simultaneously. A family that supports dumb, high-bandwidth
devices is a good candidate for this model. The Copland File Manager uses the
task-per-request model.

One problem associated with this activation model is tuning the number of
request server tasks to permit the desired level of concurrence. Tuning can be
done dynamically: When the family detects that performance could benefit
from more request server tasks to process more requests concurrently and there
are resources to permit it, new tasks can be created as needed. Similarly, when
resources become scarce or the number of concurrent requests is much smaller
than the number of request server tasks available to handle them, some tasks
can be destroyed, freeing their resources for other uses. This programming
model requires the family plug-in code to have microkernel tasking knowledge
and to use microkernel facilities to synchronize multiple threads of execution
contending for family and system resources.

C H A P T E R 5

About the Copland I/O Architecture

5-32 Activation Models

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Family Programming Issues 5

The choice of activation model is the biggest family programming issue. Each
of the models discussed previously has merit. Within each model, there are
issues to be addressed. The single-task and task-per-plug-in models require
state information to be stored either within the FPI libraries, the plug-ins, or the
family activation code, or within some combination of those. The
task-per-request model is the simplest model, but it will probably be the most
expensive model in terms of system overhead. It makes heavy use of
microkernel messaging and tasking resources.

Unless there are multiple task switches within a family, the tasking overhead is
identical within all of the activation models. The shortest task path from
application to I/O is completely synchronous because all code runs on the
caller’s task thread. For a long I/O path, through multiple families, the greater
the use of synchronous calls, the smaller the number of task switches.
However, using only synchronous calls decreases the responsiveness of the
application making the request— its activity stops pending the completion of
an outstanding I/O request. Providing at least one level of asynchronous call
between an application and an I/O request results in the best latency results
from the user perspective. Within the file system, the application task is not
used as the thread of completion for I/O. A task switch at the File Manager API
level allows a user-visible application, such as the Finder, to continue. The File
Manager creates an I/O task thread to handle the I/O request, and that task
might be used via synchronous calls by the block storage and SCSI families to
complete their part in I/O transaction processing.

This kind of short-cut communication between families requires a very clear
understanding of the relationships between the families, including the stack
needs of the called family, the activation model of the called family, and the
asynchronous and synchronous paradigms used by the called family. This is
part of the decision-making process in developing each family activation
model.

C H A P T E R 5

About the Copland I/O Architecture

Name Registry 5-33
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Name Registry 5

The Name Registry is a high-level Mac OS naming service that stores system
information. It is key to implementing several important features in the
Copland I/O architecture:

■ Effective driver replacement and overloading capability. This capability
allows you to release updates to drivers.

■ Dynamic driver loading and unloading. The Name Registry provides a
dynamic and flexible environment for identifying devices. This type of
capability is necessary for supporting devices such as hot swappable
PCMCIA cards.

■ Simplification of driver writing. You won’t need to follow different rules
for writing device drivers located on the main logic board, NuBus, the PCI
bus, or the PCMCIA bus.

■ Hardware-independent device drivers. The Name Registry provides the
layer of abstraction necessary for driver writers to remove conflicting device
identification and device information callouts (as occurred previously with
the Slot Manager) that prevented drivers from being portable to new
versions of Macintosh hardware.

The Name Registry is a tree-structured collection of entries, each of which can
contain an arbitrary number of name-value pairs called properties. Family
experts peruse the Name Registry to locate devices or plug-ins available to the
family. Low-level experts, described later in this section, describe platform
hardware by populating the Name Registry with device nodes.

The Name Registry contains a subtree pertinent to the I/O architecture: the
device portion of the Name Registry describes the configuration and
connectivity of the hardware in the system. Each entry in the device subtree
has properties that describe the hardware represented by the entry and may
contain a reference to the driver in control of the device.

A low-level expert, sometimes referred to as a bus expert or motherboard expert,
has specific knowledge of a piece of hardware such as a bus or a main logic
board. It knows how physical devices are connected to the system and it
installs and removes that information in the device portion of the Name
Registry.

C H A P T E R 5

About the Copland I/O Architecture

5-34 Compatibility—Backward and Forward

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

For example, a SCSI bus expert scans a SCSI bus for devices and installs an
entry into the device portion of the Name Registry for each device that it finds.
The SCSI bus expert knows nothing about a particular device for which it
installs an entry. As part of the installation, the SCSI bus expert invokes the
driver matching routines in the Driver Loader Library to associate a driver
with the entry. The driver knows the capabilities of the device and specifies
that the device belongs to a given family.

Low-level experts and family experts use the Name Registry notification
mechanism to recognize changes in the system configuration and to take
family-specific action in response to those changes.

Here’s an example of how family experts, low-level experts, and the Name
Registry service work together to stay aware of dynamic changes in system
configuration. Suppose that a Macintosh Duo is docked. The Duo motherboard
expert notices that a new bus, a new network interface, and a new video device
have appeared within the system. The Duo motherboard expert adds a bus
node, a network node, and a video node to the device portion of the Name
Registry. The Name Registry service notifies all software that registered to
receive notifications of these events.

Once notified that changes have occurred in the Name Registry, the networking
and video family experts scan the Name Registry and notice the new entry
belonging to their family type. Each instantiates the new entry within the
family.

The SCSI bus expert notices an additional bus, and probes for SCSI devices. It
adds a node to the Name Registry for each SCSI device that it finds. New SCSI
devices in the Name Registry result in perusal of the Registry by the block
storage family expert. The block storage expert notices the new SCSI devices
and loads the appropriate drivers, and then creates the appropriate volume
Registry entries to make these volumes available to the File Manager. The File
Manager receives notification of changes to the block storage family portion of
the Registry, and notifies the Finder that volumes are available. Those volumes
then appear on the user’s desktop.

Compatibility—Backward and Forward 5

The following sections discuss Copland compatibility issues for developers of
device drivers and applications.

C H A P T E R 5

About the Copland I/O Architecture

Compatibility—Backward and Forward 5-35
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

If You Develop Device Drivers 5

Copland and its I/O architecture introduce a new environment for device
drivers—one that is fundamentally different from that familiar to current
Macintosh driver developers. Although Copland places some restrictions on
drivers, it greatly increases system stability and protects drivers from
application error.

The System 7 I/O architecture is based on resources of type 'DRVR' and on the
Device Manager API. Many different types of software use these mechanisms.
Some types are affected by the changes introduced by Copland I/O and some
are not.

Copland employs a more restricted concept of driver software. In the Copland
I/O architecture, a driver is the native code that controls a physical device or
that manages a system service. (Code that controls a virtual device such as a
RAM disk may also be considered a driver in Copland.) This type of software
(that controls a physical device or manages a system service) is affected by the
new I/O architecture in Copland. Example of this type of software include

■ serial drivers (.AIn, .BOut)

■ protocol stacks (.MPP, .IPP)

■ network drivers (.ENET, ADEVs, MDEVs)

■ video drivers (.Display)

■ SCSI interface modules (SIMs)

Software that uses the 'DRVR' resource type and the Device Manager API to
provide application-level functionality is not directly affected by Copland I/O
changes. Examples of this type of software include:

■ desk accessories

■ print drivers

For backward compatibility, Copland supports, through the Device Manager,
emulated drivers of type 'DRVR' that do not touch hardware. Such software is
not a plug-in. It runs in user mode outside the I/O system and can exist only in
the traditional application environment that uses the WaitNextEvent
function and that has full access to the Toolbox.

The Copland I/O system is the first complete implementation of the I/O
architecture described in this chapter. A subset of the I/O architecture is

C H A P T E R 5

About the Copland I/O Architecture

5-36 Compatibility—Backward and Forward

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

implemented to support PCI devices on upcoming Power Macintosh models.
The document Designing PCI Cards and Drivers for Power Macintosh Computers
describes the capabilities provided to driver writers for the first PCI-based
Power Macintosh computers. If you write a PCI driver according to the
specifications there, PCI cards with ROM-based drivers will work unchanged
between the version of Mac OS delivered on upcoming PCI-based Power
Macintosh models and subsequent PCI-based hardware platforms running
Copland.

The Copland driver environment differs from the System 7 driver environment
in several ways:

■ The system distinguishes between software that runs in user mode or in
supervisor mode. In System 7, drivers run in the same environment as
applications in a single address space. In Copland, drivers run in supervisor
mode and have access to the microkernel’s protected memory space.
Applications can’t touch the hardware or the driver code or data directly.

■ Drivers are packaged as Code Fragment Manager fragments (shared
libraries).

■ Distinct execution environments are defined in which different sets of
services are available. Because drivers execute in supervisor mode, they
cannot call Mac OS Toolbox routines. On the other hand, by executing in
supervisor mode, drivers gain a fine granularity of control over devices and
overall system responsiveness. Drivers use microkernel, driver, and family
service libraries as appropriate. Families and their plug-ins are expected to
adhere to the rules appropriate to their execution environment.

■ The system employs new tasking and messaging mechanisms that allow
prioritizing of I/O processing and that make I/O latency predictable. These
mechanisms are the foundation for preemptive multitasking and memory
protection.

■ Drivers exist as plug-ins to a particular I/O family and must conform to the
activation model employed by that family. Therefore, when writing your
driver, you need to adhere to the plug-in programming interface and the
family’s implementation guidelines. I/O family provide libraries of
commonly needed routines, thus simplifying your development effort.

■ Drivers that touch hardware must be written in native PowerPC code. As a
result, Copland will deliver superior I/O performance. Emulated 68K
drivers that directly access hardware are not supported.

C H A P T E R 5

About the Copland I/O Architecture

Compatibility—Backward and Forward 5-37
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

As a result of these changes, you need to change the way you write a device
driver. With the exception of drivers written according to specifications for
PCI-based Macintosh computers, System 7 drivers that access hardware will
not run under Copland.

The next two sections give more information on the separation of application
and device driver interfaces and the packaging of driver software and they
describe benefits that result from these changes.

Separation of Application and Device Driver Interfaces 5

In System 7 there is only one kind of programming interface: the application
programming interface (API). This makes all Mac OS services available to all
varieties of software. Copland distinguishes between programming interfaces
available to applications and those available to device drivers. Programming
contexts become increasingly specialized in Copland.

In Copland, drivers have available to them plug-in programming interfaces
specifically tuned to the needs of different types of devices, such as display
devices or SCSI devices. The plug-in programming interfaces provide a fine
level of control over core operating system facilities such as paging and
interrupts. Use of plug-in programming interfaces is essential to your driver’s
portability in future Mac OS releases. These interfaces are guaranteed to be
common across OS releases.

Because drivers operate outside the application software context in Copland,
they do not have access to the rich set of APIs available to applications. If you
find that a service you depend on has been removed from the plug-in
programming interface for your driver, you should contact Apple at the
AppleLink address NEW.IO or new.io@applelink.apple.com.

Common Packaging of Loadable Software 5

In Copland, all drivers are created as Code Fragment Manager (CFM)
fragments (shared libraries). Each CFM fragment must export a driver
description structure that the system uses to locate, load, and initialize the
driver.

Copland drivers, therefore, are packaged differently from previous Macintosh
device drivers. Because they are CFM fragments, they are allowed to have
specific static data storage, and they can be written in a high-level language

C H A P T E R 5

About the Copland I/O Architecture

5-38 Compatibility—Backward and Forward

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

without assembly-language headers. Each instance of a single driver has
private static data and shares code with every other instance of that driver. A
device driver no longer locates its private data by means of a field in its Device
Unit Table entry.

One consequence of drivers as CFM fragments is that a single device driver no
longer controls multiple devices. Normally there is a driver instance for each
device, although only one copy of the driver’s code is loaded into memory.

If You Develop Applications 5

Adjusting to the architectural shift in the I/O system should be relatively easy
for the application developer. For compatibility with System 7 applications, the
Copland Device Manager supports all of the functions described in the chapter
“Device Manager” of Inside Macintosh: Devices. However, a smaller set of
devices will be available through the Device Manager; for them, the system
supports a compatibility layer that converts old function calls to new ones.
Thus, if your application calls the Device Manager, it will continue to run on
Copland, but it will incur a performance penalty going through the
compatibility layer.

For better performance and for access to services well suited to a given class of
device, you should update your application to use the FPI for that device rather
than the Device Manager. For example, if your application uses the Display
Manager, you benefit from a set of routines tuned to work with display devices.

In most cases, Copland FPIs will be the same as or very similar to existing
APIs, such as those provided by the File Manager, the Display Manager, and
Open Transport. If your application uses these higher-level APIs, it is insulated
from underlying changes in the Copland I/O architecture and Copland device
drivers and you shouldn’t have to change it to work with Copland.

In addition to benefiting from the more effective services available through
Copland FPIs, adopting the new FPIs now facilitates subsequent development
for versions of the Mac OS beyond Copland. APIs that Copland maintains for
compatibility may not be available with versions of the Mac OS beyond
Copland. For example, the networking paradigm for the Mac OS is changing,
moving in the direction of Open Transport. Although Copland will support
System 7 AppleTalk interfaces, later versions of the Mac OS will not. Versions
of the Mac OS beyond Copland will require you to use the Open Transport FPI.

C H A P T E R 5

About the Copland I/O Architecture

Compatibility—Backward and Forward 5-39
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

If your application ignores public APIs and instead uses nonstandard methods
to access a device, you’ll need to change your application. In Copland,
hardware is not mapped into application address space and attempts to touch
hardware will result in access violations. Devices and drivers are not directly
accessible to an application. The only access to their services is through a
family programming interface or an API maintained for compatibility.

Device Manager Compatibility 5

In Copland, the Device Manager functions described in the chapter “Device
Manager” of Inside Macintosh: Devices are supported. Drivers that provide their
services through the Device Manager API belong to the Device Manager family
and are called generic drivers. The Device Manager functions constitute the
FPI for the Device Manager family. The family has its own activation model
and set of services, but it is not tuned to the needs of a given type of device.

Although the Device Manager API is more limiting than that provided by
family FPIs, the Device Manager family offers a migration path to driver
developers who implement the basic changes required by Copland without
totally converting to the Copland I/O architecture.

If no family for a device exists, the Device Manager offers a way to use it in
Copland. Consider, for example, a PCI card that receives data, encrypts it, and
sends it back. An encryption family doesn’t currently exist. By writing the
driver according to the rules for drivers of family type 'ndrv' described in
Designing PCI Cards and Drivers for Power Macintosh Computers, the card is
supported in Copland as a plug-in to the Device Manager family.

To summarize, the Copland Device Manager supports drivers that have been
revised to run in Copland but that have not taken advantage of the enhanced
driver services available through Copland I/O families, or for which no family
exists. As a result, the Device Manager family’s plug-ins are likely to differ
quite a bit among themselves, rather than belonging to a general class of
devices such as video monitors. For example, Device Manager family plug-ins
may include drivers for instrumentation bus adapters, graphics devices,
encryption hardware, and so forth. Typically, plug-ins in the Device Manager
family are drivers that talk to hardware, but they can also talk to virtual
devices such as a RAM disk or loopback software.

C H A P T E R 5

About the Copland I/O Architecture

5-40 Compatibility—Backward and Forward

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

C H A P T E R 6

Contents

6-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 About the Copland File Manager

Compatibility—Backward and Forward 6-3
Design Goals for the Copland File Manager 6-4
Features of the Copland File Manager 6-4

Increased Speed 6-4
An Improved HFS Volume Format 6-5
Support for Third-Party Volume Formats 6-6
Ease of Development 6-6

Clearer and More Streamlined APIs 6-6
Event Notification 6-7

New Concepts Behind the Copland File Manager 6-7
FSProperties 6-7
FSObjects 6-8
FSLinks 6-9
Future Plans 6-11

Preparing Your Product for the Copland File Manager 6-11

This document was created with FrameMaker 4.0.4

C H A P T E R 6

6-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 6

Compatibility—Backward and Forward

6-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About the Copland File Manager 6

This chapter introduces the features of the new File Manager available with
Copland. The

File Manager

 defines the APIs that your application can use to
manage the organization, reading, and writing of data located on persistent
media. You should read this chapter if your product manages or manipulates
files. If your software product creates, opens, closes, saves, or renames files, it
can take advantage of Copland’s new File Manager features for improved
performance. If your product provides access to volume formats other than
HFS (for example, a standard format such as DOS FAT or a custom format
optimized for your customers’ particular needs), the Copland File Manager
simplifies your product development.

Compatibility—Backward and Forward 6

The Copland File Manager provides complete support for all System 7 File
Manager functions used strictly in the manner documented in

Inside Macintosh:
Files

.

If your application uses System 7 File Manager routines (and their associated
data structures) to manage files and volumes, and does not directly manipulate
the data structures or low-memory global variables used by the System 7 File
Manager, it is compatible with the Copland File Manager. (Specific instances of
when your application might not be compatible with the Copland File
Manager—as well as specific recommendations about what you can do now to
prepare your application to support the Copland File Manager—are described
at the end of this chapter.)

The Copland File Manager is based on function calls through a shared library.
In addition to supporting the System 7 File Manager APIs, Copland provides
new APIs that are both simpler and more functional than the older ones. The
new APIs are simpler because they do not use monolithic parameter blocks, but
rather use smaller, logical data types to carry shared data between calls. As a
result, the Copland File Manager has fewer than 80 entry points, while the
System 7 File Manager has more than 170. The Copland File Manager APIs also
offer support (for example, for large files and volumes) that the System 7 APIs
cannot provide.

So that Apple Computer can respond more quickly and easily to your future
needs, it has designed flexibility and extensibility into the Copland File

This document was created with FrameMaker 4.0.4

C H A P T E R 6

About the Copland File Manager

6-4

Design Goals for the Copland File Manager

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Manager. By adopting the Copland File Manager APIs instead of relying on the
parameter block-based APIs of System 7, your application can take advantage
of future improvements that Apple makes to the File Manager.

Design Goals for the Copland File Manager 6

The Copland File Manager is designed to

■

increase speed

■

support larger volumes and files

■

support a variety of volume formats in addition to an improved version of
the HFS volume format

■

simplify product development by providing a richer and simpler
programming interface

■

support international file names by using TextObjects

Features of the Copland File Manager 6

This section describes the features of the Copland File Manager and its benefits
to users and developers.

Increased Speed 6

The Copland File Manager provides significant performance improvements
over previous versions of the File Manager, even when applications use the
System 7 File Manager APIs.

■

Increased efficiency.

 Better algorithms improve the performance of the
Copland File Manager. For example, with the Copland APIs, your
application can specifically define the information it needs; the Copland File
Manager no longer creates—or inundates your application with—the
extraneous information produced by such parameter block-based functions
as

PBGetCatInfo

.

C H A P T E R 6

About the Copland File Manager

Features of the Copland File Manager

6-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

High-performance paging and memory cache.

 The Copland File Manager is
integrated with Copland’s virtual memory system to provide
high-performance paging and a new cache architecture, both of which take
advantage of the Copland I/O system. This new cache architecture also uses
Copland’s paging mechanism to take advantage of all available memory.

■

Multitasking.

 By taking advantage of Copland’s multitasking capabilities,
your application can create secondary tasks to efficiently perform file I/O
processing in the background. Because the Copland File Manager is fully
reentrant and takes advantage of the Copland microkernel to process
multiple requests concurrently, a user’s computer no longer wastes valuable
cycles doing nothing while waiting for a file system request to be executed.

An Improved HFS Volume Format 6

To take advantage of contemporary storage technology, the Copland File
Manager supports volumes and forks up to 8 exabytes (2

63

 bytes). Up to this
limit, the sizes of the volumes and forks that the File Manager can support are
limited only by the capabilities of a specific volume format.

A newly implemented HFS volume format, for example, supports 256-terabyte
(2

48

 byte) volumes and 2-gigabyte (2

31

 byte) forks.Table 6-1 compares the limits
of the HFS volume formats for System 7 and Copland.

Table 6-1

HFS volume and fork sizes

(Because HFS allocates storage in units called allocation blocks and accounts
for those with 16-bit values, the smallest unit of allocation in a volume is
1/65,536 the size of the volume. The size of an allocation block can be stored in
a 32-bit value, and the allocation block size field can go up to a volume size of
2 terabytes.)

System
version

Maximum
volume size

Maximum
fork size

Corresponding
minimum
allocation size

7.1 2 GB 2 GB 32 KB

7.5 4 GB 2 GB 64 KB

Copland 256 TB 256 TB 4 TB

C H A P T E R 6

About the Copland File Manager

6-6

Features of the Copland File Manager

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Support for Third-Party Volume Formats 6

The Copland File Manager is built around a message protocol designed to
support a wide variety of volume formats. The new message protocol is easily
extensible; this extensibility simplifies product development for you if you
provide support for your own volume formats.

In addition to HFS, the Copland File Manager initially supports

■

the AppleTalk Filing Protocol (AFP), which allows access to AppleShare and
Personal FileShare volumes

■

DOS FAT

■

These common CD-ROM formats:

n

High Sierra

n

ISO 9960

n

Photo CD

n

Audio CD

The Copland File Manager also provides a generalized iteration mechanism for
the searching and enumeration of files across different volumes and different
volume formats. It replaces the current functionality of both the

PBCatSearch

and

PBGetCatInfo

 functions with a mechanism that is both easier to
implement now and easier to evolve into the future.

Ease of Development 6

The Copland File Manager simplifies your product development in several
important ways.

Clearer and More Streamlined APIs 6

As previously mentioned, the Copland File Manager contains less than half as
many APIs as the System 7 File Manager, but those that are there provide
greater utility (such as access to large volumes). Instead of using the monolithic
parameter blocks of System 7, the Copland File Manager APIs accept and
return smaller, shared structures as parameters. Your application can reuse the
values in these parameters in its API calls. Moreover, you will find these APIs

C H A P T E R 6

About the Copland File Manager

New Concepts Behind the Copland File Manager

6-7

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

easier to use because the distinction between input and output values is much
more obvious than that for the System 7 APIs.

Event Notification 6

The Copland File Manager also provides notification for file system events,
eliminating the need for your application to poll or patch system software to
find out when there is a file system change. On Copland, your application can
accept and process file system notification events.

New Concepts Behind the Copland File Manager 6

Three basic concepts form the foundation of the Copland File Manager:
FSProperties, FSObjects, and FSLinks. These basic concepts are described in
this section.

FSProperties 6

An FSProperty is a value, such as the name of a file, that is associated with a
persistent structure in the file system. Each persistent structure in the file
system can have a variety of FSProperties associated with it. FSProperties
provide access to all of the system information that the Copland File Manager
maintains.

All FSProperties are owned by a property service that defines the name space,
allocation, and format standards for a set of FSProperties. Within each property
service, a property selector identifies individual FSProperties. An OSType
identifies each property service and each property selector.

The Copland File Manager is designed with the following expectations:

■

FSProperties will be numerous.

■

FSProperties will have small values that can be read and written as a unit.

■

FSProperties will be accessed frequently by software other than the software
that created them.

C H A P T E R 6

About the Copland File Manager

6-8

New Concepts Behind the Copland File Manager

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

This pattern of access applies to most uses of FSProperties. Some units of data,
however, do not fit this model. Many of the exceptions to this model involve
FSProperties that are few, large, accessed by partial reads and writes, and tend
to be accessed only by the software that created them. To support these
exceptions, the Copland File Manager defines the Fork property service.

The Fork property service defines the Fork FSProperty and allows the use of an
access method to open, read, and write forks. The Copland File Manager
supports two types of forks: one whose property selector is

'data'

 and one
whose property selector is

'rsrc'

. Other restrictions apply to forks. For
details, see the next section, “FSObjects.”

FSObjects 6

An FSObject is a group of FSProperties that can be manipulated as a unit. The
Copland File Manager supports four subclasses of FSObject:

■

File.

A file is a collection of FSProperties (including forks) that can be copied,
moved, deleted, and renamed atomically in a file system. Files represent the
largest collection of information that can easily be dealt with as a unit. While
a program can use the Copland File Manager API to access and manipulate
a finer granularity of information, the user views a file as a unit that is
manipulated as a whole. For the Copland File Manager, the file is the only
FSObject to which a fork can be added.

■

Directory.

 A directory is a

collection of files and directories. Directories
allow users to organize files so that files can be found and used. Users often
consider a file to be part of some group and want to name and access those
files in the context of that group.

■

Prototype.

A prototype is a repository of shared FSProperties. Consider a
group of related FSObjects that share a common set of values for certain
FSProperties. Because storing and updating the shared values individually
would be inefficient, the Copland File Manager provides Prototype objects
for holding shared values. The Copland File Manager supports prototypes
in a limited way: prototypes are based strictly a file’s type and creator code.

■

Volume.

 A volume is a unit of “availability” that contains directories and
files. For every computer, there is a large amount of available information.
Some of that information may be stored on hard disks attached to the
computer, some may be stored on removable disks and floppies, and some
may be stored on media that is only accessible across a network connection.

C H A P T E R 6

About the Copland File Manager

New Concepts Behind the Copland File Manager

6-9

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Of that information, only a subset is available at any given time. Volumes
represent the smallest collections of files and directories that are available a
unit. (Note that availability and access are different concepts: A volume may
be available to the computer, but the user may not have the privileges
required to access the data.)

Every FSObject can deliver a number, unique within a volume, by which it can
be identified for the duration of the current mount. Every FSObject also has a
name that is unique within certain contexts.

FSLinks 6

FSLinks are directional connections between FSObjects that associate related
objects and that provide a way to navigate the collection of FSObjects in a file
system. Every FSLink is owned by some FSRelationship that defines the
interpretation and standards for a set of FSLinks.

C H A P T E R 6

About the Copland File Manager

6-10

New Concepts Behind the Copland File Manager

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Two FSObjects named A and B can be linked in four ways:

■

A can be a “parent” of B.

■

A can be a “child” of B.

■

A can be a “sibling” of B if A and B are children of some other object
named C.

■

A can be a “spouse” of B if there is some object named C that is a child of
both A and B.

The topology of a collection of links is constrained by the relationships to
which the links belong. For instance, links belonging to some relationships are
guaranteed to be acyclic (that is, a link that begins with A cannot return to A),
while no such guarantee is made for links that belong to other relationships.

The Copland File Manager defines the following FSRelationships:

■

Hierarchy.

 The Hierarchy FSRelationship groups FSObjects on a Volume.
Hierarchical FSLinks are created from a directory to each of its content
objects. Thus, the contents of the “parent directory” are “children” of that
directory (with respect to the Hierarchy FSRelationship). The Hierarchy
FSRelationship is defined to be acyclic, and every FSObject in the volume is
defined to have a single hierarchical “parent.” For every volume, there is one
distinguished “root” directory from which all files and directories (but not
necessarily all prototypes) descend. All of the FSObjects that share a parent
must have mutually unique names. Files cannot have hierarchical children.

■

Prototype.

 The Prototype FSRelationship links one FSObject to a “parent”
prototypical FSObject from which certain shared FSProperties can be
obtained. The Prototype FSRelationship is defined to be acyclic, and every
FSObject (including Prototypes) can have multiple parents. Note, the
“inheritance” implied by a prototype link must always be invoked explicitly.
The Copland File Manager never follows such links automatically. The
Prototype relationship defines one distinguished “root” FSObject from
which all Prototypes are Hierarchical (not Prototype) descendants.

■

Metaroot.

 The Metaroot FSRelationship identifies the one universal object
within the file system. No actual links can be created for this relationship,
but the global and each per-volume distinguished objects for this
relationship all refer to the same metaroot object (which does not itself exist
on any volume). No named distinguished objects exist for the metaroot
relationship.

C H A P T E R 6

About the Copland File Manager

Preparing Your Product for the Copland File Manager

6-11

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

Volume.

 The Volume FSRelationship associates volume objects to the
metaroot object. The only links that belong to this relationship are links
created by the Copland File Manager that go from the metaroot object to
each volume object. The distinguished object for the volume relationship on
each volume is the volume object itself. There are no global or named
distinguished objects for the volume relationship.

The Copland File Manager does not support the association of an FSProperty
with an FSLink, nor does it support iteration over FSLinks.

Future Plans 6

The Copland File Manager is designed to be flexible and extensible for the
future. This release will support a limited set of predefined of FSProperties and
FSRelationships that will be supplemented in subsequent releases. Future
releases will expand the functionality of prototypes, will support additional
types of forks, and will support some kind of object that has both forks and
children.

Preparing Your Product for the Copland File Manager 6

The following recommendations are offered to assist you in preparing your
software product now to take advantage of the Copland File Manager.

■

Make your application native for PowerPC-based computers.

■

Don’t assume 31-character filenames. Many volume formats have shorter or
longer names.

■

Do not use newline mode, because in the System 7.5 File Manager, newline
mode is a mixed-mode switch. Instead, you should write your own function
to put data into a buffer, and then write another to get each line of data out.

■

Depending on the amount of memory you have and the speed of the device
you are using, consider reading and writing file data in multiples of 16 KB.
You have less overhead if you read an entire file into a buffer with one call
instead of using multiple calls.

C H A P T E R 6

About the Copland File Manager

6-12

Preparing Your Product for the Copland File Manager

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

Use the

noCacheBit

 flag in the

ioPosMode

 field of the parameter block.
Don’t cause other blocks of the cache to be flushed out to make room for
data if you’re not going to reread it.

■

Isolate data storage methods.

■

Isolate information calls. That is, write your own functions to get the data
you need. For example, put wrappers around calls to

PBGetCatInfo

 to
define the information you require (for example, to get a file’s type or
creator).

■

Keep reads and writes block aligned.

■

Set the following when compiling your code:

OLDROUTINENAME=0
OLDROUTINELOCATION=0

■

Preallocate forks before writing file data.

■

Use 64-bit math for operations on all file system size data.

■

Use the

FSSpec

 structure to specify files and directories, because use of
partial pathnames is limited on the Copland File Manager.

To improve I/O performance, the Copland File Manager provides concurrent
processing of file processing requests. This has two important implications that
you must consider when preparing your software product for Copland.

■ Your software cannot touch any data after passing it to the Copland File
Manager, because your application cannot depend on the state of that data.

■ If your code extends the File Manager, your code must also be reentrant and
able to handle concurrent requests.

As mentioned at the beginning of this chapter, your application will be
compatible with the Copland File Manager if your application uses System 7
File Manager routines (and their associated data structures) to manage files and
volumes, and if it does not directly manipulate the data structures or
low-memory global variables the System 7 File Manager uses. Even if you do
not take advantage of the new Copland File Manager APIs, you should make
sure that your System 7 application runs on Copland. You will most likely have
compatibility problems with the Copland File Manager if your System 7
software product does any of the following:

■ creates or modifies data stored in file control blocks (FCBs) or modifies the
file control block list

C H A P T E R 6

About the Copland File Manager

Preparing Your Product for the Copland File Manager 6-13
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

■ relies on fields in an FCB other than fcbFlNum, fcbFType, fcbCrPs,
fcbDirID, fcbVPtr, and fcbCName

■ creates or modifies data stored in volume control blocks (VCBs) or modifies
the volume control block queue

■ relies on fields in a VCB other than vcbFlags, vcbSigWord, vcbCrDate,
vcbLsMod, vcbAtrb, vcbNmFls, vcbNmAlBlks, vcbAlBlkSiz,
vcbFreeBks, vcbVN, vcbDrvNum, vcbDRefNum, vcbFSID, vcbVRefNum,
vcbVolBkUp, vcbFilCnt, vcbDirCnt, and vcbFndrInfo

■ relies on or modifies any low-memory global variables maintained by the
System 7 File Manager, such as FSQHdr, FSBusy, FSQueueHook,
ExtFSHook, ToExtFS, CkdDB, CurDB, NxtDB, FSCallAsync, MaxDB,
FlushOnly, RegRsrc, FLckUnlck, FrcSync, NewMount, NoEject,
DrMstrBlk, HFSStkTop, RgSvArea, hfsVars, HFSStkPtr, XRgSvArea1,
HFSFlags, CacheFlag, SysCRefCnt, XRgSvArea2, SysBMCPtr,
SysVolCPtr, SysCtlCPtr, XRgSvArea3, PMSPPtr, HFSTagData,
XRgSvArea5, HFSDSErr, CacheVars, HFSVarEnd, cacheCom,
XRgSvArea6, HFSDefaults, FmtDefaults, ErCode, Params, FSTemp8,
FSTemp4, FSIOErr, and FSVarsPtr

■ relies on data returned by GetFCBInfo other than that returned in the
FCBPBRec fields ioNamePtr, ioVRefNum, ioRefNum, ioFCBIndx,
ioFCBFlags (only bits 9 and 14), ioFCBEOF, ioFCBPLen, ioFCBCrPs,
ioFCBVRefNum, and ioFCBParID

A number of System 7 File Manager APIs are superfluous in Copland.
Therefore, these calls perform no action, and instead return the noErr result
code: PBDTCloseDown, PBDTDeleteAsync, PBDTDeleteSync,
PBDTRestAsync, PBDTResetSync, DILoad, DIUnload, and FInitQueue.
The functions PBDTGetPath and PBDTOpenInform return reference numbers
usable only by other PBDT calls.

The Copland File Manager provides only limited support for the System 7
patching mechanism. To give your application greater control over the APIs
that it absolutely needs to modify, Copland provides new mechanisms for
patching the File Manager. See the chapter “About the Copland Runtime
Environment” for information about these new mechanisms.

C H A P T E R 6

About the Copland File Manager

6-14 Preparing Your Product for the Copland File Manager

Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

C H A P T E R 7

Contents

7-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 About Copland Networking

Compatibility—Backward and Forward 7-3
Design Goals for Open Transport 7-4
Cross-Platform Standards 7-6
Preparing Your Application for Copland 7-7

This document was created with FrameMaker 4.0.4

C H A P T E R 7

7-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 7

Compatibility—Backward and Forward

7-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About Copland Networking 7

This chapter describes Open Transport, which is the networking component of
the Copland operating system.

Open Transport

 is a communications
architecture that can be used to implement any number of networking and
other communications systems. It replaces the AppleTalk, MacTCP, and Serial
Driver interfaces in use today.

This chapter introduces Open Transport to developers interested in writing
network applications for Copland. You should plan to use Open Transport
rather than the current AppleTalk or MacTCP APIs for any new networking
applications that require you to deal directly with the networking protocols.
Similarly, you should use Open Transport rather than the current Serial Driver
APIs for serial communication applications that call the serial drivers.

You should not use Open Transport if you can use one of the higher-level
interapplication communication or collaboration technologies—such as PPC,
Apple events, or PowerTalk—to achieve your goals.

Open Transport allows you to use a single set of APIs to implement any
networking protocol available on Mac-compatible computers. By supporting
industry standards at both the hardware and the software levels, Open
Transport offers you an attractive cross-development platform for your
products. Furthermore, it takes advantage of Copland technologies, including
protected memory, multitasking, and multithreading, to provide higher
performance for your network and communications products.

For more detailed information about Open Transport, see the Open Transport
folder on the WWDC CD.

Compatibility—Backward and Forward 7

Open Transport includes a full set of backward-compatible programming
interfaces for the AppleTalk and MacTCP protocol families. Therefore, any
network application that uses public APIs and that works today with
AppleTalk or MacTCP will continue to work.

However, unless you revise your application for Open Transport, your users
won’t get all of the advantages of Open Transport. For example, your users
won’t get the highest network performance on a Power Macintosh running
Open Transport until your application uses native PowerPC code as well as the
Open Transport interfaces.

This document was created with FrameMaker 4.0.4

C H A P T E R 7

About Copland Networking

7-4

Design Goals for Open Transport

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Applications written using Open Transport will continue to work on the
versions of the Mac OS beyond Copland. Later versions will not support the
current AppleTalk and MacTCP APIs.

The Open Transport serial interface is built on top of the existing serial drivers.
Therefore, device-driver (

PBControl

) calls to the serial drivers continue to
work in Copland. The Open Transport serial interface also provides backward
compatibility for the Communications Toolbox Connection Manager APIs.
However, if you switch to the Open Transport APIs, the interface to the serial
drivers is identical to that for any connection-oriented, transactionless protocol.
Therefore, you can integrate serial communications easily into a
communications application that also provides communications over a
network. In addition, Open Transport provides TCP/IP communcations over a
serial connection through implementation of the Point-to-Point Protocol (PPP).

The Communications Toolbox File Transfer Manager and Terminal Manager
APIs are supported by Copland without modification. On a Power Macintosh
computer, they run in native PowerPC code.

Open Transport does not support routers and bridges written using the older
AppleTalk or MacTCP protocol implementations. Users can continue to run
their old routers on Mac-compatible computers running the older protocol
implementations, or they can replace them with new routers written to use
Open Transport. Unless you are writing router or bridge software, this change
does not affect your development effort.

Design Goals for Open Transport 7

The design goals for Open Transport include many important features, among
them

■

transport independence

■

multihoming

■

multinodes

■

IP multicasting

■

DHCP configuration and address leases

■

improved human interface for configuration

C H A P T E R 7

About Copland Networking

Design Goals for Open Transport

7-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

■

address resolution

The Open Transport APIs are independent of the underlying network or
transport technology, a feature called

transport independence

. The set of
functions you call and the sequence of calls depend solely on the nature of the
communication; for example, you use one set of functions for any
connection-oriented, transactionless protocol, such as ADSP or TCP, and a
different set of functions for any connectionless, transactionless protocol, such
as UDP or DDP. Once you have determined the

type

 of protocol that is
appropriate for your application, you can write your networking code without
worrying about which protocol family will be used.

Multihoming is a key feature of Open Transport.

Multihoming

 allows multiple
Ethernet, token ring, FDDI, and other network interface controller (NIC) cards
to be active on a single node at the same time. (A

node

 is a device addressable
at the network-layer protocol level. Examples of network-layer protocols are IP
and DDP.) In addition to selecting the type of network connection, the user can
select a particular device to be used for the network connection. For example,
suppose a user has a LocalTalk LaserWriter in the office but uses it as a
personal printer. The user also connects to the Ethernet backbone for file access
and e-mail. Today, the user has to change the AppleTalk connection back and
forth. With multihoming, Open Transport maintains two separate but equally
useful connections. Yet there is no connection created between the networks.

Multinode architecture

 is an AppleTalk feature that allows an application to
acquire node IDs that are additional to the standard node ID assigned to the
system when the node joins an AppleTalk network. Multinode architecture is
provided to meet the needs of special-purpose applications that receive and
process AppleTalk packets in a custom manner instead of passing them directly
on to a higher-level AppleTalk protocol for processing. A multinode ID allows
the system running your application to appear as multiple nodes on the
network. Whereas the older implementation of AppleTalk supports multinode
architecture for use by Apple Remote Access (ARA) only, under Open
Transport any developer can use this feature.

Video, audio, and other real-time multimedia data on the Internet are based on
Internet Protocol (IP) multicast technology. An IP

multicast

 is a message that is
received by any number of TCP/IP hosts that are registered members of a
multicast group. Open Transport provides full support for IP multicasts and
multicast groups.

Dynamic Host Configuration Protocol (DHCP)

 is the emerging Internet
standard for managing end-node IP configuration. DHCP automates the

C H A P T E R 7

About Copland Networking

7-6

Cross-Platform Standards

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

configuration process by returning information about the TCP/IP network to
the user’s configuration control panel. Open Transport also supports DHCP
address leases, which allow a network administrator to configure a host’s IP
address to last for only a limited period of time. If the DHCP cannot renew the
address lease when it is about to expire, Open Transport closes down the
TCP/IP interface.

Open Transport provides a new, easier-to-use human interface. Apple
Computer led the way to plug-and-play networking with AppleTalk, but
TCP/IP has, for the most part, remained complex and hard to configure. One of
the requirements for Open Transport has been to make it easier for people to
use networking. This starts with making networking easier to install and
configure. The difficulty with installation is compounded by the increasing
mobility of computers. With today’s portable computers, users may in a single
day connect to several different networks, each with different configuration
requirements.

To make networking easier for users, Open Transport uses a consistent human
interface for configuring AppleTalk and TCP/IP networks (as well as for
networks using other Open Transport–based networking protocols). Open
Transport also clearly distinguishes between the protocol software and the
configuration data. Network configuration information is stored in a
preferences file. Auser can have multiple saved configurations, any of which
can be selected through the control panel. A user can even use the control panel
to export a configuration file that can be sent to a co-worker. In addition, Open
Transport gives users the ability to reconfigure and restart network services
without restarting their computers.

In developing your network and communication products, you can move away
from dealing with protocol addresses. Certain Open Transport functions can
accept host names, including AppleTalk names (based on NBP and ZIP) and
TCP/IP names (based on DNS and BIND) and resolve them to addresses
without further action by your application.

Cross-Platform Standards 7

Open Transport is based on three key standards: two from the X/Open
Group—the X/Open Transport Interface (XTI) and the Data Link Provider
Interface (DLPI)—and one, STREAMS, from UNIX



 System V.

C H A P T E R 7

About Copland Networking

Preparing Your Application for Copland

7-7

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

The Open Transport API is a superset of the XTI standard. Whereas XTI
specifies functions only for transactionless protocols, Open Transport also
includes functions for transaction-based protocols, such as ATP.

XTI complies with POSIX and XPG3, and it is at the “top” of the protocol stack.
Protocol developers work in the STREAMS environment. Because Open
Transport is a direct port of UNIX STREAMS, moving a protocol from UNIX to
the Mac OS is a very easy process involving a few lines of code and compiler
exports. (Within the STREAMS environment, Apple Computer is developing
new versions of AppleTalk, TCP/IP, and serial communications protocols, and
it is working closely with Novell to implement IPX protocols.) Hardware
developers use the DLPI to integrate their networking cards into the Copland
I/O architecture.

Preparing Your Application for Copland 7

Although Copland supports the older AppleTalk and MacTCP APIs, versions
of the Mac OS beyond Copland will not. What’s more, the Open Transport
APIs are easier to use than the older APIs and make your application more
transport independent. Therefore, you should use Open Transport for any new
networking development you do for Mac-compatible computers.

Open Transport’s support of standards—standard protocols, standard APIs,
and standard development tools and environments—is a key element of its
design. Because Open Transport takes a fully standards-based approach, you
will discover that it is much easier to find experienced programmers to assist
you in developing products. Moreover, because Open Transport uses a single
set of APIs for all protocols, you no longer have to choose protocols when
choosing an API. Instead, you can use the same set of APIs to run your
application over multiple protocols. This ability increases your potential return
on investment by both lowering development costs and offering access to
broader markets.

C H A P T E R 7

About Copland Networking

7-8

Preparing Your Application for Copland

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 8

Contents

8-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Contents

Figure 8-0
Listing 8-0
Table 8-0

8 About the Copland PowerTalk
Environment

Compatibility—Backward and Forward 8-3
Design Goals for PowerTalk on Copland 8-4

New Features for PowerTalk 8-4
Operating System Integration 8-5

Preparing Your Application for Copland 8-5

This document was created with FrameMaker 4.0.4

C H A P T E R 8

8-2

Contents

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

C H A P T E R 8

Compatibility—Backward and Forward

8-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

About the Copland PowerTalk Environment 8

This chapter describes the PowerTalk system software, which provides a full
set of electronic mail and collaborative services for the Mac OS. Using
PowerTalk, you can build high-performance, multithreaded applications that
access a wide range of collaboration and communication services. You can use
these services, for example, to add PowerTalk mailers to your documents, store
information in PowerTalk catalogs, send interapplication messages, and add
digital signatures to documents and parts of documents.

The

PowerTalk

 system software provides you with a consistent set of APIs to a
wide range of collaboration services. The PowerTalk APIs for Copland provide
you with three levels of services:

■

The Collaboration Package provides a high-level API that lets you add mail
and catalog services to your applications, and gives you access to the
universal mailbox and its contents.

■

Service access APIs allow for the development of gateways, catalog
providers, and other service access modules.

■

Low-level APIs provide you with detailed access to all of the collaboration
services, including messaging, catalog, and authentication services, and
digital signatures.

For a complete description of the PowerTalk system software that has already
been released, see

Inside Macintosh: AOCE Application Interfaces

and

 Inside
Macintosh: AOCE Service Access Modules

. The new PowerTalk mailbox API that
will be part of Copland is described in greater detail in other documentation on
one of the WWDC CDs. The Key Chain API will be documented in future
Copland developer releases.

Compatibility—Backward and Forward 8

Applications written with the current PowerTalk APIs will continue to work
without modification on Copland, as these APIs are not changing. The
collaboration system software takes advantage of improvements introduced
with Copland; therefore your application’s performance should improve
considerably on Copland. What’s more, if you have used the AOCE
Collaboration Package to add PowerTalk mailers to your application, the
mailers will automatically provide several new and improved features, such as
return receipts and mail status information.

This document was created with FrameMaker 4.0.4

C H A P T E R 8

About the Copland PowerTalk Environment

8-4

Design Goals for PowerTalk on Copland

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Design Goals for PowerTalk on Copland 8

The PowerTalk system software provided as part of Copland offers several
improvements over the original PowerTalk software. These improvements can
be grouped into two categories: new features and operating-system integration.

New Features for PowerTalk 8

Copland adds a number of new PowerTalk features and enhancements to meet
the demands of users and developers.

■

PowerTalk system software provides more e-mail features, such as return
receipt, “unsend,” “who’s read,” and folders in the mailbox.

■

The PowerTalk catalog, mailbox, and mailer are fully scriptable using
AppleScript.

■

PowerTalk system software extends connectivity to more mail systems and
to other collaborative technologies, such as pagers and faxes. Collaboration
services support enterprise networks, Macintosh work groups, mobile users,
and home offices.

■

The PowerTalk mailbox API (introduced as optional software before
Copland but integrated into Copland) provides access to all of the services
provided by the mailbox but formerly unavailable to developers. An
application can open a user’s mailbox, search or filter for a specific type of
message, open the message, act on the message’s content, open and search
the PowerTalk catalog, send a message or a fax, or even page the user.

■

Users can check their mail on any Mac-compatible computer running
Copland regardless of whether they are the principal user of the computer.

■

The PowerTalk Key Chain API allows developers to add services to the Key
Chain and to find out whether the Key Chain is locked.

C H A P T E R 8

About the Copland PowerTalk Environment

Preparing Your Application for Copland

8-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

Operating System Integration 8

Copland integrates the PowerTalk collaboration services into the operating
system in the following ways:

■

The new Copland human interface incorporates features first introduced
with PowerTalk to provide a consistent look and feel throughout the Finder.
For example, any folder in the Copland Finder can contain PowerTalk mail
and display mail properties, such as Sender and Priority. Users look through
folders, use active assistants, or use the Find function in exactly the same
way regardless of whether they are dealing with files or mail.

■

PowerTalk system software uses native PowerPC code on the Power
Macintosh platform, greatly improving performance.

■

PowerTalk uses the Copland file system for increased performance.

■

PowerTalk uses Open Transport for increased performance.

■

The PowerTalk Key Chain is further integrated to provide a single point of
authentication to system services.

This level of integration ensures improved performance and an easy migration
path for your existing collaboration applications to the Copland platform.

Preparing Your Application for Copland 8

Because PowerTalk will be part of every user’s HI once Copland is released,
and because PowerTalk mailers are becoming even more powerful and easier
to use, you should start adding PowerTalk mailers to your application
documents today. You should also consider incorporating PowerTalk catalogs,
store-and-forward messaging, and other services into active assistants to help
users accomplish any number of cooperative or collaborative tasks.

C H A P T E R 8

About the Copland PowerTalk Environment

8-6

Preparing Your Application for Copland

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

GL-1

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

The terms defined in this glossary are
preliminary and subject to change.

action

The objects and activities that make
a human interface task unique, such as the
names of folders to back up or a list of
people to whom a message should be sent.
See also

task

.

activation model

The tasking and
synchronization model mandated by an
I/O family. It consists of the code that
provides the runtime environment to the
family and its plug-ins. See

family, plug-in.

active assistance

General term for
Copland features that allow the computer
to assist the user actively. See also

automation, delegation, task, task
definition, assistant.

address space

The set of addresses that a
process can reference.

area

A logical extent of memory with
common attributes. Areas never overlap; a
particular address in an address space is
included in at most one area. See also

global area.

assistant

An entity that provides a specific
kind of active assistance in a given context
by asking the user questions and then
taking actions or creating human interface
tasks based on the answers.

automation

Automatically controlled
operations. In Copland, features that allow
the computer to create a series of actions, or
a human interface task, in a form that can
be repeated. See also

task.

backing provider

A server process
responsible for transferring memory
between backing storage (for example, a
hard disk) and physical memory in
response to page faults.

bus expert

See

low-level expert

.

CFM-based software

Software compiled
for execution in a runtime environment that
uses Code Fragment Manager (CFM)
fragments to organize executable code and
data in memory.

code fragment

See

fragment.

Code Fragment Manager

The part of the
Mac OS that loads fragments into memory
and prepares them for execution.

condition

The set of events or states that
trigger a human interface task. See also

task.

cooperative process

A process that has a
primary task created by the Process
Manager. The act of relinquishing control of
the processor at a well-defined time, such as
at a call to the

WaitNextEvent

 function, is
a defining characteristic of a cooperative
process. See

process, server process.

cooperative thread

See

thread.

Glossary

This document was created with FrameMaker 4.0.4

G L O S S A R Y

GL-2

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

delegation

General term for Copland
features that allow the computer to trigger
human interface tasks when a specified
condition occurs. See also

condition, task.

desktop animation module

A module
controlled by the Desktop Animation
Manager that can maintain the appearance
of the desktop background or act as a
screen saver when no keyboard or mouse
events occur within a specified period of
time.

Device Manager family

A Copland I/O
family to which two types of device drivers
belong: those that have not been revised to
run as a plug-in to another I/O family and
those for which no family exists. See

family,
plug-in.

DLL

See

dynamically linked library.

document information panel

A
composite panel, available via the
Document Info command in an
application’s File menu, that presents the
same information presented by the Get Info
command in the Finder’s File menu. The
document information panel also appears
in an application’s Save and Open dialog
boxes. See also

panel.

Driver Loader Library

A set of routines
that all I/O families can use to locate and
instantiate their plug-ins.

Driver Services Library

A set of routines
that provide basic driver services to
families, such as interrupt registration,
timing facilities, allocation and deallocation
of memory, and secondary-interrupt-
handling capabilities.

Dynamic Host Configuration Protocol
(DHCP)

An Internet standard for
managing end-node Internet Protocol (IP)
configuration. DHCP automates the
configuration process by returning
information about the TCP/IP network to
the user’s configuration control panel.

dynamically linked library (DLL)

A
shared library that is automatically loaded
by the Code Fragment Manager at runtime
in order to export code or data referenced
by another fragment.

exception

An error or other special
condition detected by the microprocessor in
the course of program execution.

execution environment

A set of
conventions regarding how code gets
activated and what services and memory
are available to it. See also

hardware
interrupt level, secondary interrupt level,
software interrupt level, task level.

expert

See

family expert, low-level
expert.

extent

Continuous memory space
reserved on backing storage or in physical
RAM for data or code.

family

(1) A collection of software pieces
that provide a single set of I/O services to
the system, such as the SCSI family and its
SCSI interface modules (SIMs) or the file
systems family and its installable file
systems. Often, a family is associated with a
set of devices that have similar
characteristics, such as display devices or
ADB devices. (2) A collection of devices that
provide the same kind of I/O services, for
example, the family of display devices.

G L O S S A R Y

GL-3

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

family expert

Code within a family that
maintains knowledge of the set of family
plug-ins within the system. It locates family
plug-ins in the Name Registry and
instantiates them. Sometimes referred to as
a

high-level expert

.

family programming interface (FPI)

An
I/O family’s API that provides applications,
other families, and system software with
access to the family’s services.

family server

 See

FPI server.

family services library

A set of services to
which a family’s plug-ins can subscribe.
Such services can include communicating
data, allocating memory, and registering
and servicing interrupts. It provides
services that supplement those available
from the microkernel.

FPI

See

family programming interface.

FPI server

Family software that runs in
supervisor mode and responds to service
requests from family clients.

fragment

 In Copland, the basic unit of
executable code and its data.

generic driver

A driver whose services
are available through the Device Manager.
Generic drivers are plug-ins to the Device
Manager family. See

plug-in.

global area

An area mapped to all address
spaces. Specifying this area attribute allows
software residing in different address
spaces to share data and code.

global family constants

A set of shared
family values.

guard pages

Inaccessible pages of
memory placed immediately before and
after the range of addresses specified by an
area. Copland does not actually allocate
backing storage or RAM for guard pages; it
merely marks the addresses in those pages
as inaccessible to user-level or supervisor-
level software.

hardware interrupt

An exception signaled
by a physical device to the processor,
notifying it of a change of condition of the
device, such as the reception of incoming
data.

hardware interrupt handler

Code that is
invoked as a direct result of a hardware
interrupt. Only essential work that cannot
be done elsewhere should be done in a
hardware interrupt handler. A hardware
interrupt handler always runs in supervisor
mode.

hardware interrupt level

The execution
environment in which a hardware interrupt
handler runs. Only a subset of microkernel
and OS services are available. No Toolbox
services are available. Only memory that is
physically resident is accessible; page faults
at hardware interrupt level are illegal and
system fatal. See

page fault.

high-level expert

See

family expert.

interface definition objects (IDOs)

Copland’s SOM-based replacements for the
definition procedures (defprocs) used in
System 7.5.

interrupt

 See

hardware interrupt,
secondary interrupt, software interrupt.

G L O S S A R Y

GL-4

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

interrupt handler

A routine that services
interrupts. See also

hardware interrupt
handler, secondary interrupt handler,
software interrupt

handler.

interrupt latency

The time between the
generation of an interrupt and the execution
of its associated interrupt handler.

kernel

See

microkernel

.

low-level expert

Code that has specific
knowledge of a piece of hardware, such as a
bus or a main logic board. It knows how
physical devices are connected to the
system, and it installs and removes that
information in the device portion of the
Name Registry. Sometimes referred to as a

motherboard

expert

.

memory area

A range of addresses,
within an address space, sharing common
attributes.

microkernel

The set of lowest-level
operating system services, including
memory management, task management,
synchronization primitives, interprocess
communication mechanisms, interrupt
handling, and basic timing services.

motherboard expert

See

low-level expert.

multicast

A message that is received by
any number of hosts that are registered
members of a group.

multihoming

A networking feature that
allows multiple network interface controller
(NIC) cards to be active on a single node at
the same time.

multinode architecture

An AppleTalk
feature that allows an application to acquire
node IDs that are additional to the standard

node ID assigned to the system when the
node joins an AppleTalk network.
Multinode architecture is provided to meet
the needs of special-purpose applications
that receive and process AppleTalk packets
in a custom manner, instead of passing
them directly on to a higher-level AppleTalk
protocol for processing. A multinode ID
allows the system running your application
to appear as multiple nodes on the network.

Name Registry

A high-level Mac OS
naming service that stores system
information.

network-layer protocol

The protocol level
directly above the data-link layer. The
network layer is responsible for routing
data between systems on the network.

node

A device addressable at the network-
layer protocol level.

non-reentrant code

Code that should be
executed by only one piece of software at a
time.

notification

The way in which a human
interface task notifies the user that a task
has been completed; for example, a
notification might write details to a log and
page the user via a commercial paging
system when a task is completed. See also

task

.

Open Transport

A communications
architecture that can be used to implement
any number of networking and other
communications systems. It replaces the
AppleTalk, MacTCP, and Serial Driver
interfaces with a single, transport-
independent interface.

G L O S S A R Y

GL-5

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

page fault

An exception that causes data
to be transferred between backing storage
(for example, a hard disk) and physical
memory.

panel

(1) A lightweight object that
provides a SOM-based interface for human
interface elements. (2) A hierarchy of
embedded panels that make up a larger
control panel, document information panel,
or other integrated set of human interface
elements. See also

document information
panel.

plug-in

A dynamically loaded piece of
software that provides an instance of the
service provided by a family. Within the file
systems family, for example, a plug-in
implements file-system-specific services.

plug-in programming interface

 (

PPI

) A
family–to–plug-in interface that defines the
entry points a plug-in must support so that
it can be called and a plug-in–to–family
interface that defines the routines plug-ins
must call when certain events occur. In
addition, a PPI defines the data request
path through which the family and its plug-
ins exchange data.

pool

A portion of logical memory from
which software can dynamically allocate
memory. A pool is contained in one or more
areas.

Pool

Manager

In Copland, a reentrant,
pointer-based heap allocator that allows
software to dynamically allocate memory
without impacting other areas of memory.

PowerTalk system software

Apple
Computer’s implementation of the AOCE
system software for use on Mac-compatible

computers. The PowerTalk system software
includes desktop services, as well as Mac
OS managers and utility functions that
provide APIs for catalog, messaging, and
security services.

primary human interface

The menus,
windows, and tools that allow a user to
control an application directly. See also

secondary human interface.

primary interrupt level

See

hardware
interrupt level.

primary task

A task created by the
Process Manager for an application when
the application is launched. Cooperative
scheduling of primary tasks is layered on
top of preemptive scheduling of all tasks.
The microkernel sees all primary and
secondary tasks as peers and schedules
them preemptively. The Process Manager
ensures that for all cooperative processes,
only one primary task is eligible to run at
any one time. See also

secondary task, task.

priority

The ranking of a task used by the
Copland microkernel for execution
scheduling. The microkernel provides
various symbolic priorities for applications,
drivers, servers, and real-time operations.

privileged software

See

supervisor-mode
software.

privileged task

A task that runs in
supervisor mode.

privilege level

An access state to
processor resources corresponding to the
mode of the processor. Code that has the
privilege to execute while the processor is
in supervisor mode is called

supervisor-mode

G L O S S A R Y

GL-6

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 5/6/95

software,

 and code that has the privilege to
execute only while the processor is in user
mode is called

user-mode software

.

process

A set of one or more tasks and the
memory and other operating system
resources allocated to those tasks. For
example, when Copland launches an
application, the system creates a process
that identifies the application’s primary
task, any tasks created by the application,
and the memory areas allocated to those
tasks. A process is specific to one address
space, but multiple processes can share the
same address space. Copland uses
processes to track resource allocation and to
reclaim resources. See also

cooperative
process, server process.

Process Manager

 In Copland, the part of
Mac OS that manages the scheduling of
cooperative processes and that controls
access to resources shared by those
processes.

reentrant services

Code written so that
the data it manipulates is kept logically
separate from the code itself, allowing it to
be safely called by several pieces of
software at the same time.

routine descriptor

 A data structure that
indicates the instruction set architecture of a
particular routine by describing the
routine’s address, its parameters, and its
calling conventions.

runtime environment

 The set of
conventions that determine how code is
loaded into memory, where data is stored
and how it is addressed, and how functions
call other functions and system software
routines.

scaling

The ability in Copland to control
the extent of a user’s access to system and
application features.

secondary human interface

A high-level
interface that frees users from detailed
decisions about how to make the computer
perform specific actions. For example,
assistants make decisions on the user’s
behalf and use the primary human interface
to carry them out. See also

assistant

,

primary human interface.

secondary interrupt

A signal sent to the
microkernel by a primary interrupt handler
or a privileged task requesting that a
secondary interrupt handler be queued for
execution.

secondary interrupt handler

A routine
that runs as a result of a secondary
interrupt. It always runs in supervisor
mode. A secondary interrupt handler can be
preempted only by hardware interrupt
handlers.

secondary interrupt level

The execution
environment in which a secondary
interrupt handler runs. Only a subset of
microkernel and OS services are available.
No Toolbox services are available. Only
memory that is physically resident is
accessible; page faults at secondary
interrupt level are illegal and system fatal.

secondary task

A task that uses only
reentrant operating-system services. See
also primary task, task.

semaphores Synchronization primitives
used to block (schedule or switch out) tasks
until a required resource becomes available.

G L O S S A R Y

GL-7
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

For example, a global semaphore could be
used to restrict access to the Toolbox to one
application at a time.

server (1) A computer and associated
software that provide a service to users and
that control access to that service, such as a
file server or a database server. (2) In
Copland, a process that provides a service
to other processes on the same or a
connected computer. See also server
process. (3) In the context of an I/O family,
software built on the client/server model,
but that has a single client. See also FPI
server.

server process A process that has its own
address space and whose task (or tasks)
uses only reentrant system services. See also
cooperative process.

shared library A fragment that exports
functions and variables to other fragments.
A shared library is used to resolve imported
symbols during linking and also during the
loading and preparation of some other
fragment. Some shared libraries are
dynamically linked; others must be
explicitly instantiated during execution. (2)
Any fragment.

software interrupt A signal sent to the
microkernel requesting that it invoke a
particular routine that, upon completion,
returns execution at the point where the
interrupt was sent.

software interrupt handler A routine that
runs in a particular task as a result of a
software interrupt. A software interrupt
handler can be preempted by other tasks,
secondary interrupt handlers, and

hardware interrupt handlers. Software
interrupt handlers can access virtual
memory.

software interrupt level The execution
environment in which a software interrupt
handler runs. All microkernel, OS, and
Toolbox services available at task level are
available at software interrupt level. See
also task level.

SOM See System Object Model.

supervisor mode A state of operation for
the PowerPC processor that allows software
to gain access to all of memory, all processor
registers, and other critical resources. Only
software with supervisor-mode privilege
can switch the processor between
supervisor mode and user mode. Compare
user mode.

supervisor-mode software Code that
executes while the processor is in
supervisor mode. Typically, only the
operating system and portions of device
drivers should run in supervisor mode in
Copland.

System Object Model (SOM) A
technology from International Business
Machines, Inc., that provides language- and
platform-independent means of defining
programmatic objects and handling method
dispatching dynamically at runtime.

task (1) In the Copland human interface, a
persistent representation of a sequence of
actions that can be triggered
programmatically. A task is created from a
task definition in a manner analogous to the
way a document is created from an
application. See also task definition. (2) In

G L O S S A R Y

GL-8
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

Copland system software, the basic unit of
program execution that is preemptively
scheduled by the microkernel. A task has its
own stack and set of registers and it may
share the same address space with other
tasks. A task executes in either user mode
or supervisor mode. In Copland, System 7
tasks such as Time Manager tasks and
deferred tasks are invisible to the
microkernel. See also primary task,
privileged task, secondary task.

task definition A definition of how a
particular kind of human interface task is to
be performed. Combined with information
about the parameters for a specific task,
such as filenames or other details and a
condition, a task definition can be used by
an assistant or directly by a user to create
one or more tasks. See also task.

task level The execution environment in
which all tasks run. Most microkernel, OS,
and Toolbox services are available at task
level. Task level software can access virtual
memory.

task switch The act of suspending one
task’s execution and resuming a different
task’s execution. In a task switch, the
microkernel saves the processor state for the
suspended task and restores the processor
state of the task resuming execution. The
microkernel performs a task switch based
on the priority of tasks that are eligible to
execute and its time-slicing mechanism. See
also priority, time slice.

text object A private data structure that
contains information about both text
content and text encoding and that takes
the place of both Pascal and C strings.

theme A coordinated set of human
interface designs that determine the
appearance and behavior of human
interface elements on a systemwide basis.

thread Within a task, a sequence of
instructions and the processor context to
execute it, including a register set, a
program counter, and a stack. In Copland,
all threads are cooperatively scheduled by
the Thread Manager.

time slice A defined interval of time
during which a task is allowed to execute.

transport independence A property of a
communications architecture that makes the
set and sequence of functions called by an
application independent of the underlying
network protocols used to transmit or
receive data. The set of functions called and
the sequence of calls depends solely on the
nature of the communication, not on the
protocol or protocol family used.

trusted software Code that executes in
supervisor mode and has access to the
microkernel’s protected memory space. See
supervisor-mode software.

user mode A state of operation for the
PowerPC processor that allows software,
typically application software, to execute in
an environment that protects certain critical
resources, such as portions of memory and
certain processor registers. Compare
supervisor mode.

user-mode software Code that executes
while the processor is in user mode. To
protect the state of the user’s system,
applications should typically execute as
user-level software.

G L O S S A R Y

GL-9
Draft. Preliminary, Confidential.  Apple Computer, Inc. 5/6/95

workspace One of several separate
custom user environments for a single
computer.

VBL See vertical retrace interrupt.

vertical blanking interrupt (VBL) See
vertical retrace interrupt.

vertical retrace interrupt An interrupt
generated by the video circuitry each time
the electron beam of a monitor’s display
tube returns from the lower-right corner of
the screen to the upper-left corner.

	Copland Technical Overview
	Contents
	About Copland
	About the Copland Human Interface and Toolbox
	Compatibility—Backward and Forward
	Design Goals for the Copland Human Interface
	About the Copland Human Interface
	About the Copland Toolbox

	About Copland Imaging
	Compatibility—Backward and Forward
	Preparing Your Application for Copland

	About Copland Processes
	System 7 Application Compatibility
	Design Goals for Copland Process Management
	Processes
	Tasks

	About the Copland Runtime Environment
	Compatibility—Backward and Forward
	Memory Organization
	Heap Management
	Extending the System

	About the Copland I/O Architecture
	Architectural Features
	A Closer Look
	Activation Models
	Name Registry
	Compatibility—Backward and Forward

	About the Copland File Manager
	Compatibility—Backward and Forward
	Design Goals for the Copland File Manager
	Features of the Copland File Manager
	New Concepts Behind the Copland File Manager
	Preparing Your Product for the Copland File Manager

	About Copland Networking
	Compatibility—Backward and Forward
	Design Goals for Open Transport
	Cross-Platform Standards
	Preparing Your Application for Copland

	About the Copland PowerTalk Environment
	Compatibility—Backward and Forward
	Design Goals for PowerTalk on Copland
	Preparing Your Application for Copland

	Glossary

