

ð

WWDC Release

May 1996
© Apple Computer, Inc. 1992 - 1996

ð

I N S I D E M A C I N T O S H

File Navigation and Access

Draft.



 Apple Computer, Inc. 4/30/96

ð

Apple Computer, Inc.
© 1992–1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
UNIX is a trademark of UNIX
System Laboratories, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO

WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures vii

Chapter 1 File Navigation and Access Overview 1-1

The Mac OS 8 Files Environment 1-3
The Mac OS 8 File Manager 1-3

Speed 1-4
Reentrancy 1-4
Support for Volume-Format Plug-ins 1-4
Use of Notification Services 1-5
International String Support 1-5
Virtual Memory and Microkernel Integration 1-6
File Manager Tasks 1-6

Navigation Services 1-6
The Translation Manager 1-8
The Folder Manager 1-9
The Alias Manager 1-9
Standard C Library File I/O 1-10

File System Objects Architecture 1-10
Data Organization 1-10
Properties 1-12
Object Iteration 1-14

System 7 File Manager Compatibility 1-15
Preparing Your Product for the Mac OS 8 File Manager 1-16

Chapter 2 File Manager Reference 2-1

About the File Manager 2-7
Using File System Object References 2-7
Using the Property Structure and its Constants 2-8
Getting and Setting Simple Properties 2-9
Getting and Setting Fork Properties 2-9
iii
Draft.  Apple Computer, Inc. 4/30/96

Iterating Through Objects 2-10
File Manager Data Types and Constants 2-11

Basic Data Types 2-12
File System Object Information Structures 2-18
File System Object Data Types 2-22
Volume Set and Volume Types 2-24
Property Structure 2-29
Property Creators 2-30
Property Selectors 2-31
Property Attributes 2-40
Property Tag Data Types and Macros 2-42
Date and Text Formats 2-48
Property Value Constants 2-51

Universe Property Constants 2-53
Boot Volume Set Property Constants 2-53
File Manager Property Constants 2-54
User Experience Property Constants 2-56

Fork-Related Data Types 2-57
Object Privileges 2-61
Mapped-File and Stream-Related Data Types 2-62
Object Iterator Data Types 2-63

File Manager Functions 2-66
Using File System Object References 2-66
Using File System Objects 2-75
Creating Files and Folders 2-81
Getting and Setting Properties 2-83
Getting File System Object Information 2-86
Using Stream Access Methods 2-89
Using Memory-Mapped File Access Methods 2-99
Iterating Over File System Objects 2-104
Cross Referencing Object References and FSSpec File Specifications 2-111
Resolving Pathnames 2-114

File Manager Result Codes 2-115
Basic Error Types 2-115
Error Mask Types 2-116
Mac OS-Aliased Exceptions 2-116
General Exceptions - Sharable by Different Modules 2-118
FSAgent Interface Exceptions 2-119
iv
Draft.  Apple Computer, Inc. 4/30/96

BTree Module Exceptions 2-119
Cache Module Exceptions 2-121
Control Blocks Module Exceptions 2-121
Object Reference Exceptions 2-122
Range Lock Module Exceptions 2-122
Utilities Module Exceptions 2-123
Volume Exceptions 2-123
FSIterator Exceptions 2-123
FSProperty Exceptions 2-123
FSDispatch Errors 2-124
General File Manager Errors 2-126

Glossary GL-1
v
Draft.  Apple Computer, Inc. 4/30/96

vi
Draft.  Apple Computer, Inc. 4/30/96

Figures

Chapter 1 File Navigation and Access Overview 1-1

Figure 1-1 Standard Navigation Services Save dialog box 1-8
Figure 1-2 Every file system object is a container 1-11
Figure 1-3 Iterating through file system objects 1-15
vii
Draft.  Apple Computer, Inc. 4/30/96

viii
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

Contents

Draft.



 Apple Computer, Inc. 4/30/96

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 File Navigation and Access
Overview
The Mac OS 8 Files Environment 1-3
The Mac OS 8 File Manager 1-3

Speed 1-4
Reentrancy 1-4
Support for Volume-Format Plug-ins 1-4
Use of Notification Services 1-5
International String Support 1-5
Virtual Memory and Microkernel Integration 1-6
File Manager Tasks 1-6

Navigation Services 1-6
The Translation Manager 1-8
The Folder Manager 1-9
The Alias Manager 1-9
Standard C Library File I/O 1-10

File System Objects Architecture 1-10
Data Organization 1-10
Properties 1-12
Object Iteration 1-14

System 7 File Manager Compatibility 1-15
Preparing Your Product for the Mac OS 8 File Manager 1-16
1-1

C H A P T E R 1

1-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview 1

This chapter introduces the file navigation and access components of the new
files environment available with Mac OS 8. These components support the
improved user interface available with Mac OS 8 and provide many new
capabilities. The components include

■ Mac OS 8 File Manager

■ Navigation Services

■ Folder Manager

■ Alias Manager

■ Standard C I/O

■ Translation Manager

You should read this chapter if your product manages or manipulates files. If
your software product creates, opens, closes, saves, or renames files, it can take
advantage of the Mac OS 8 File Manager features for improved performance. If
your product provides access to volume formats other than HFS (for example,
a standard format such as DOS FAT or a custom format optimized for your
customers’ particular needs), the Mac OS 8 volume-format plug-ins simplify
your product development.

This chapter briefly describes the features of the files environment components
and introduces aspects of the Mac OS 8 files architecture.

The Mac OS 8 Files Environment 1

This section describes the features of the Mac OS 8 application programming
interfaces to the File Manager and the benefits of the new functions in other
Mac OS 8 files environment components to users and developers.

The Mac OS 8 File Manager 1

The Mac OS 8 File Manager application programming interface contains about
half as many functions as the System 7 File Manager, yet it provides a more
powerful interface. The Mac OS 8 File Manager is designed to

■ run fast and efficiently
The Mac OS 8 Files Environment 1-3
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview

■ be fully reentrant

■ be concurrent; that is, be able to run multiple requests simultaneously

■ support a variety of volume formats

■ make extensive use of the Mac OS 8 event notification system

■ support international filenames by using text objects as well as text strings

■ work closely with the virtual memory system and microkernel

Speed 1

The Mac OS 8 File Manager provides significant performance improvements
over previous versions of the File Manager.

■ Increased efficiency. Better algorithms improve the performance of the
Mac OS 8 File Manager. For example, the Mac OS 8 File Manager can
perform several operations concurrently, and it dispatches and schedules
many threads of execution to complete its work as quickly as possible.

■ High-performance paging and memory cache. The Mac OS 8 File Manager
is integrated with the Mac OS 8 virtual memory system to provide high-
performance paging and a new cache architecture, both of which take
advantage of the I/O subsystem in Mac OS 8. This integration results in
dramatic improvements in memory use.

■ Multitasking. By taking advantage of the Mac OS 8 multitasking
capabilities, your application can create secondary tasks to efficiently
perform file I/O processing in the background.

Reentrancy 1

The Mac OS 8 files environment is fully reentrant. You can call the File
Manager from any task; you are not restricted to calling it from main tasks of
cooperative programs.

Support for Volume-Format Plug-ins 1

The Mac OS 8 File Manager does not include code that is specific to a particular
volume format. Instead, it dispatches messages to plug-ins that handle the I/O
for a specific volume format. To facilitate support for different volume types,
1-4 The Mac OS 8 Files Environment

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview

Apple Computer provides several plug-ins for volume formats. The Mac OS 8
File Manager supports

■ HFS

■ AppleTalk Filing Protocol (AFP), which allows access to AppleShare and
Personal FileShare volumes

■ DOS FAT

■ These common CD-ROM formats:

n High Sierra
n ISO 9960
n Photo CD
n Audio CD

■ Other third-party formats, such as Novell’s NetWare

Use of Notification Services 1

Mac OS 8 provides an event notification system that allows code modules to
publish the occurrence of particular events. Other code modules can subscribe
to be notified when specific events occur. Notification of events may be
exchanged among the following files-related code modules:

■ File Manager

■ volume-format plug-ins

■ clients of the File Manager (applications, servers, and so forth)

■ the block storage, SCSI, and other I/O families

International String Support 1

The Mac OS 8 File Manager uses text objects in addition to Pascal and C text
strings to handle volume, folder, and file names and comments. Text objects
include information about the language system, the text encoding system used,
and the character codes used to represent text. Text objects can use any system
of character codes, including Unicode. The use of text objects allows the File
Manager to properly interpret file, folder, and volume names in any 1-byte or
2-byte language.
The Mac OS 8 Files Environment 1-5
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview

Virtual Memory and Microkernel Integration 1

The File Manager and virtual memory system in Mac OS 8 are closely
integrated to provide highly efficient virtual memory paging.

Similarly, the microkernel works directly with the File Manager to clean up
after the unexpected termination of a process or other exceptional condition.

File Manager Tasks 1

The Mac OS 8 File Manager manages the organization, reading, and writing of
data located on persistent media. To do so, the File Manager can perform tasks
such as those listed here:

■ creating, moving, and renaming file and folder objects

■ opening and closing files

■ getting and setting simple properties

■ using stream or memory-mapped file access methods to get and set fork
properties

■ copying files and directories

■ establishing a position in an opened file

■ allocating and deallocating storage

■ obtaining information about specific file, folder, or volume objects

■ iterating over file system objects such as files and folders to get information
about them or to perform operations on them

■ changing the scope of an iteration and directing the iteration’s movement
through the objects in folders or volumes

■ manipulating memory-mapped files

■ resolving pathnames and resolving object references for a given volume

Navigation Services 1

The Mac OS 8 Navigation Services provides an improved user experience that
is consistent with other features of the Mac OS 8 human interface. Although
calls to the Standard File Package continue to work in Mac OS 8, Navigation
1-6 The Mac OS 8 Files Environment

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview

Services provides a better and more easily customizable browsing interface and
better access to document-specific information from within an application.

Here are some of the improvements in the Mac OS 8 human interface that make
document management easier for the user:

■ In Mac OS 8, when a user chooses the New command from the File menu,
the new document is saved to disk when it is first created. Users can set a
default location for new documents using the Default Location control
panel. The first time they choose the Save command for a new untitled
document, users are given an opportunity to change its name and location.

■ In Mac OS 8, the Save As command in the File menu becomes the Save A
Copy command. The behavior of the Save A Copy command is more readily
understood by users.

■ The Find Document command gives users access to the Mac OS 8 Finder’s
improved Find facility from within an application.

■ The Open, Save, and Save A Copy commands use an intuitive navigation
browser that you can customize for your application. The Navigation
Browser makes it easy for users to access favorite items quickly, create new
folders, and perform other common tasks that are not supported by the
Standard File Package.

■ The Document Info command in the Edit menu invokes a document
information panel, similar to the current Get Info window in the Finder, that
allows the user to manipulate document-specific information without
switching contexts. The same document information panel also appears in
the Open and Save dialog boxes. These panels also support Open Doc parts,
providing a special set of Open Doc–specific subpanels.

■ Users can define their “favorite items” list, which provides a visual menu of
choices. These items can include servers, folders, applications, and files.
There is also improved rebounding to allow users to access the last folder
used and other recently selected items.

■ There are alternative Save dialog boxes. There is a simple dialog box that
saves a document by using default location settings or by allowing a user to
select a favorite item as a location. The customized expanded Save dialog
box allows users much greater flexibility and provides a degree of
progressive disclosure as the user begins to make choices.

Figure 1-1 shows the Navigation Browser and one of several document
information panels as they appear in the Save dialog box. You can easily
The Mac OS 8 Files Environment 1-7
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview

specify filters for the files displayed and let the user choose among available
filters with a pop-up menu at the bottom of the Navigation Browser. You can
also add specialized document information panels for your application’s
documents that permit editing and display of document information such as
file type, author, keywords, colors, and dimensions.

Figure 1-1 Standard Navigation Services Save dialog box

Navigation Services also makes it much easier for applications to display an
Open or Save dialog box with just one call, specifying options by using
parameters rather than separate calls.

The Translation Manager 1

The Translation Manager’s services allow your application to open documents
created by other applications (possibly running on other operating systems)
1-8 The Mac OS 8 Files Environment

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
and to import data from other applications with better fidelity than previously
possible. For example, the Translation Manager provides

■ automatic translation of a document opened from the Finder if the
application that created it is not available

■ automatic translation of documents opened by applications that use
Navigation Services

■ batch desktop translation of documents

■ automatic translation of data in editions or data pasted from the Clipboard

■ background translations, with a mechanism for displaying the progress of
the translation to the user

There are also translation extensions that can translate documents (data in files)
and scraps (data in memory) in certain situations. These extensions are
dynamically loadable code modules with a specific interface for describing
their translation capabilities, identifying documents, and performing
document, scrap and text object stream translations.

The Folder Manager 1

The Folder Manager is an extensible mechanism for defining the location of
special folders known to the system, such as the Extensions and the Control
Panels folders. The Folder Manager allows system software and third-party
software to specify routing rules to be followed by the Finder and other clients.
Such a rule would specify, for example, that whenever an extension is dragged
to the System Folder, it is to be placed in the Extensions Folder.

The Alias Manager 1

The Alias Manager establishes and resolves data structures that describe file
system objects such as files, folders (or directories), and volumes. Users can use
the Alias Manager to create one of these data structures, called alias records, to
identify a file system object that they might need to locate again. The Alias
Manager has algorithms for using aliases to find files that have been moved,
renamed, copied, or restored from backup.
The Mac OS 8 Files Environment 1-9
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
Standard C Library File I/O 1

The file system in Mac OS 8 provides a dynamically linked library that includes
all the standard C library file I/O functions, optimized to use the Mac OS 8 File
Manager.

File System Objects Architecture 1

This section discusses how the File Manager organizes information into
containers, how you can access different types of information, and how you
can iterate through the objects in a given container.

Data Organization 1

A file system must store persistent information in a manner that is efficient to
access, where information includes everything from a user’s data to the code
modules of the File Manager itself. To do this, the File Manager in Mac OS 8
uses a hierarchical model for information storage in which every file system
object is a container for information. Figure 1-2 shows how data is organized in
this model.
1-10 File System Objects Architecture

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
Figure 1-2 Every file system object is a container

The basic principles are as follows:

■ Everything in the model is a container. For example, a folder can contain
files and other folders; a volume can contain folders and files; and files can
contain properties.

■ All data is stored as properties of an object.

■ Files, folders, and volumes are objects, containing properties and other
objects.

Property File Universe
Volume and

Volume SetFolder
File System Objects Architecture 1-11
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
■ The broadest, outermost container is a universe. There is only one universe.

The universe represents the user’s computer system and includes all mounted
volumes. Because the universe is transient, existing only while the system is
running and changing every time the user mounts or unmounts a volume or
reconfigures the system in some other way, the properties contained in the
universe are transient and are created by the File Manager each time the
computer starts up.

Properties 1

In the past, file systems—such as the Macintosh HFS—have defined a specific
set of properties that are associated with each file. In HFS, for example, a call to
the PBGetCatInfo function returns a predetermined set of parameters that
describe a file. The File Manager in Mac OS 8, on the other hand, defines a file
simply as a collection of data items of any size or content. It is up to each
specific file system to determine the meaning and content of each data item.
This more generalized definition of a file allows the File Manager to support
such diverse file systems as HFS, UNIX®, and DOS FAT.

As you can see in Figure 1-2, every type of file system object in the Mac OS 8
file system environment contains one or more properties. A property is a data
item or a set of data that is stored by the file system. Properties can be simple
data items, such as dates, file types, and icon definitions; or they can be
expandable sets of data, such as the data fork and resource fork of a file. Each
property has a value, and the value of the property has an actual size and a
certain amount of allocated space. A property cannot exist by itself; it must be
contained in a file system object. The properties contained by an object define
the object and make it identifiable to the File Manager.

Typically, a file system object has several properties, and there are predefined
structures and constants to simplify the getting and setting of properties. For
example, in the predefined set of object properties assigned to the file
information structure (FSFileInformation) for use by the
FSObjectGetInformation function, a file object has these properties:

■ a set of flags

■ Finder information

■ extended Finder information

■ creation date
1-12 File System Objects Architecture

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
■ modification date

■ data fork size

■ resource fork size

Each of these properties, as defined by a property structure (defined by the
FSProperty data type), has a set of attributes. Currently seven attributes have
been defined, and the three most commonly used are

■ value attribute

■ size attribute

■ type attribute

What this means is that each property has at least three property structures that
describe it. Each of these objects has the same creator and selector, but different
attributes. So, for example, a file’s creation date has at least three properties,
each with a different attribute: one giving its value, one with its size, and a
third identifying its type. All three have the same File Manager creator and the
creation date selector . To describe all of the attributes and properties of a file
can take as many as 49 distinct property structures.

There are two kinds of attributes: simple attributes and the fork attribute. All
attributes except the fork property’s value attribute are simple attributes. The
value attribute of a fork property is the only fork attribute; all other attributes of
a fork property, such as the fork property’s size and type are considered simple
attributes.

Note
For ease of terminology, properties with simple attributes
are referred to as simple properties. The distinction
between attributes and properties is further blurred by
functions such as FSObjectGetOneProperty that actually
gets one attribute of one property. Often what is referred to
as a property is actually the value attribute of the property. ◆

The salient difference between simple and fork attributes is that you can get
and set simple attributes directly. There are several File Manager functions that
allow you to get or set a single or a predefined set of attributes. When you use
these functions, you get the entire attribute at once. For example, you get the
entire creation date (actually the value attribute of the creation date property)
at once; you can’t get just the month or the year.
File System Objects Architecture 1-13
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
You can, however, get or set specific portions of fork data, but you must use
specific stream or memory-mapped file access methods to do so.

Object Iteration 1

The Mac OS 8 File Manager provides the ability to obtain information about
one or more file system objects by accessing all available objects that match
criteria that you can set. For example, you can direct the File Manager to return
only the files or only the folders that match your criteria, or you can have all of
both types of objects returned. You can also direct the File Manager to go inside
any embedded containers to obtain any matching objects. This ability to access
a series of file system objects methodically according to certain criteria is called
object iteration.

Object iteration allows you to access one object at a time or to perform the same
operation on all of the objects in one container. The latter case, known as bulk
iteration, can significantly reduce network traffic when you want to iterate over
objects on a volume mounted over a network. The concept of the universe
makes it possible to iterate across volumes with a single function call.

Figure 1-3 shows some of the ways you can expand or limit the scope of an
iteration.
1-14 File System Objects Architecture

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
Figure 1-3 Iterating through file system objects

System 7 File Manager Compatibility 1

The File Manager in Mac OS 8 provides complete support for almost all of the
System 7 File Manager functions used strictly in the manner documented in
Inside Macintosh: Files. (The AddDrive and GetDrvQHdr procedures are not
supported.) In this way, the Mac OS 8 File Manager provides backward
compatibility with existing software, but since the new Mac OS 8 File Manager
is easier to use and executes faster than the System 7 File Manager functions,
you should not use the System 7 File Manager for any new development.

If your application uses System 7 File Manager functions (except for AddDrive
and GetDrvQHdr) and their associated data structures to manage files and
volumes and does not directly manipulate the data structures or low-memory

Traverse containers, include files

and folders

= 9 hits

Traverse containers, include files

=6 hits

Include files

=2 hits
System 7 File Manager Compatibility 1-15
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
global variables used by the System 7 File Manager, it is compatible with the
Mac OS 8 File Manager. (Specific instances of when your application might not
be compatible with the Mac OS 8 File Manager—as well as specific
recommendations about what you can do now to prepare your application to
support the Mac OS 8 File Manager—are described in the next section.)

In Mac OS 8, the File Manager is implemented as dynamically linked libraries
(DLLs) so that only the code you actually use is loaded into memory. Whereas
the System 7 Files library consists of a fairly large block of code that translates
the System 7 File Manager calls into messages understood by the Mac OS 8 File
Manager, the new File Manager functions map much more directly into File
Manager messages and require much less code in memory. The new functions
are also simpler, easier to use, and more powerful than those in the System 7
File Manager.

Note also that Navigation Services replaces the System 7 Standard File
Package, and whereas applications using the old Standard File Package will
continue to work under Mac OS 8, they will look dated and will not offer the
full Mac OS 8 user experience.

So that Apple Computer can respond more quickly and easily to your future
needs, it has designed flexibility and extensibility into the Mac OS 8 File
Manager. The Mac OS 8 File Manager will continue to be supported in future
releases of system software, but Apple Computer is not committed to
supporting System 7 file-related functions past Mac OS 8.

Note also that Navigation Services replaces the System 7 Standard File
Package, and whereas applications using the old Standard File Package will
continue to work under Mac OS 8, they will look dated and will not offer the
full Mac OS 8 user experience.

Preparing Your Product for the Mac OS 8 File Manager 1

The following recommendations are offered to assist you in preparing your
software product now to take advantage of the File Manager in Mac OS 8.

■ Make your application native for PowerPC™-based computers.

■ Don’t assume 31-character filenames. Many volume formats have shorter or
longer names.
1-16 Preparing Your Product for the Mac OS 8 File Manager

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
■ Depending on the amount of memory you have and the speed of the device
you are using, consider reading and writing file data in multiples of 16 KB.
You have less overhead if you read an entire file into a buffer with one call
instead of using multiple calls.

■ Isolate data storage methods.

■ Keep reads and writes block aligned.

■ Set the following when compiling your code:

OLDROUTINENAME=0
OLDROUTINELOCATION=0

■ Preallocate forks before writing file data.

■ Use 64-bit math for operations on all file system size data.

■ Use the FSSpec structure to specify files and directories because use of partial
pathnames is limited on the File Manager in Mac OS 8.

■ Use the noCacheBit flag in the ioPosMode field of the parameter block. Don’t
cause other blocks of the cache to be flushed out to make room for data if
you’re not going to reread it.

■ Isolate information calls. That is, write your own functions to get the data
you need. For example, put wrappers around calls to PBGetCatInfo to define
the information you require (for example, to get a file’s type or creator).

■ Do not pass ioRefNum values between processes or your results will be
unpredictable.

■ Do not “walk” low memory structures. The Mac OS 8 file system is more
dynamic than the System 7 file system, and changes to the state of the file
system may occur asynchronously with respect to System 7 applications.
Other than the VCB list, no global data is available through legacy low
memory variables and data structures.

■ Do not make any assumptions about the state of the Mac OS 8 file system or
about the state of other processes based on inferences from the System 7 File
Manager or low memory variables and data structures.

To improve I/O performance, the Mac OS 8 File Manager provides concurrent
processing of file processing requests. This has two important implications that
you must consider when preparing your software product for Mac OS 8.
Preparing Your Product for the Mac OS 8 File Manager 1-17
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
■ Your software cannot read or write any data after passing it to the File
Manager because your application cannot depend on the state of that data.

■ If your code extends the File Manager, it must also be reentrant and able to
handle concurrent requests.

As mentioned at the beginning of this chapter, your application will be
compatible with the File Manager if it uses System 7 File Manager functions
(except for AddDrive and GetDrvQHdr) and their associated data structures to
manage files and volumes, and if it does not directly manipulate the data
structures or low-memory global variables the File Manager uses in System 7.
Even if you do not take advantage of the new Mac OS 8 File Manager
functions, you should make sure that your System 7 application runs on
Mac OS 8. You will most likely have compatibility problems with the File
Manager in Mac OS 8 if your System 7 software product does any of the
following:

■ creates or modifies data stored in file control blocks (FCBs) or modifies the
file control block list

■ relies on fields in an FCB other than fcbFlNum, fcbCrPs, fcbVPtr, fcbFType,
fcbDirID, and fcbCName

■ creates or modifies data stored in volume control blocks (VCBs) or modifies
the volume control block queue

■ relies on fields in a VCB other than vcbFlags, vcbSigWord, vcbCrDate,
vcbLsMod, vcbAtrb, vcbNmFls, vcbNmAlBlks, vcbAlBlkSiz, vcbFreeBks, vcbVN,
vcbDrvNum, vcbDRefNum, vcbFSID, vcbVRefNum, vcbVolBkUp, vcbFilCnt,
vcbDirCnt, and vcbFndrInfo

■ relies on the vcbDrvNum and vcbDRefNum VCB fields for anything other than to
indicate whether a volume is mounted or unmounted and online or offline

■ relies on or modifies any low-memory global variables maintained by the
System 7 File Manager, such as FSQHdr, FSBusy, FSQueueHook, ExtFSHook,
ToExtFS, CkdDB, CurDB, NxtDB, FSCallAsync, MaxDB, FlushOnly, RegRsrc,
FLckUnlck, FrcSync, NewMount, NoEject, DrMstrBlk, HFSStkTop, RgSvArea,
HFSVars, HFSStkPtr, XRgSvArea1, HFSFlags, CacheFlag, SysCRefCnt, XRgSvArea2,
SysBMCPtr, SysVolCPtr, SysCtlCPtr, XRgSvArea3, PMSPPtr, HFSTagData,
XRgSvArea5, HFSDSErr, CacheVars, HFSVarEnd, CacheCom, XRgSvArea6,
HFSDefaults, FmtDefaults, ErCode, Params, FSTemp8, FSTemp4, FSIOErr, and
FSVarsPtr
1-18 Preparing Your Product for the Mac OS 8 File Manager

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
■ relies on data returned by the PBGetFCBInfo function other than that returned
in the FCBPBRec fields ioNamePtr, ioVRefNum, ioRefNum, ioFCBFlNm, ioFCBFlags,
ioFCBEOF, ioFCBPLen, ioFCBCrPs, ioFCBVRefNum, and ioFCBParID

The File Manager in Mac OS 8 provides only limited support for the System 7
patching mechanism. To give your application greater control over the
functions that it absolutely needs to modify, Mac OS 8 provides new
mechanisms for patching.
Preparing Your Product for the Mac OS 8 File Manager 1-19
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 1

File Navigation and Access Overview
1-20 Preparing Your Product for the Mac OS 8 File Manager

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

Contents

Draft.  Apple Computer, Inc. 4/30/96

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 File Manager Reference
About the File Manager 2-7
Using File System Object References 2-7
Using the Property Structure and its Constants 2-8
Getting and Setting Simple Properties 2-9
Getting and Setting Fork Properties 2-9
Iterating Through Objects 2-10

File Manager Data Types and Constants 2-11
Basic Data Types 2-12

FSOffset 2-12
FSSize 2-12
FSDate 2-12
FSName 2-13
ConstFSName 2-13
FSFileSystemKind 2-13
FSBlockCount 2-14
FSBlockNum 2-14
FSCount 2-14
FSAgentObjID 2-14
FSAccessIdentity 2-15
FSInfoVersion 2-15
FSPathnameType 2-16
FSFileFlags 2-16
FSFolderFlags 2-17
FSVolumeFlags 2-17

File System Object Information Structures 2-18
FSObjectInformation 2-19
FSFileInformation 2-19
2-1

C H A P T E R 2
FSFolderInformation 2-20
FSVolumeInformation 2-21

File System Object Data Types 2-22
FSObjectRef 2-23
FSUserExperienceApplicationInfo 2-23
FSObjectType 2-23

Volume Set and Volume Types 2-24
FSVolumeFormat 2-24
FSVolumeObjID 2-25
FSVolumeSetObjID 2-25
FSVolumeCapabilities 2-26
FSMountAccessConstraints 2-28

Property Structure 2-29
FSProperty 2-29

Property Creators 2-30
FSPropertyCreator 2-30
FSPropertyDistinguishedCreators 2-30

Property Selectors 2-31
FSPropertySelector 2-31
FSForkPropertyDistinguishedSelector 2-32
FSVolumeSetDistinguishedSelector 2-32
FSUniverseDistinguishedSelectors 2-32
FSFileManagerDistinguishedSelectors 2-33
FSUserExperienceDistinguishedSelectors 2-38

Property Attributes 2-40
FSPropertyAttribute 2-40
FSPropertyDistinguishedAttributes 2-40

Property Tag Data Types and Macros 2-42
FSPropertyTag 2-42
FSForkPropertyTag 2-43
FSFileManagerSimplePropertyTag 2-43
FSFileManagerPropertyInstances 2-44
FSFileManagerPropertyTagVersion 2-44
FSObjectDatePropertyTag 2-45
FSObjectNamePropertyTag 2-46
FSIconPropertyTag 2-46
FSApplicationInfoPropertyTag 2-47
FSObjectCommentPropertyTag 2-47
2-2 Contents

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2
M_AssignStructToFileManagerSimplePropertyTag 2-48
M_AssignStructToFileManagerForkPropertyTag 2-48

Date and Text Formats 2-48
FSObjectDateType 2-49
FSObjectNameType 2-50
FSObjectCommentType 2-51

Property Value Constants 2-51
FSSimplePropertyValueType 2-51

Universe Property Constants 2-53
Boot Volume Set Property Constants 2-53
File Manager Property Constants 2-54
User Experience Property Constants 2-56

Fork-Related Data Types 2-57
FSForkType 2-58
FSForkPositionDescriptor 2-58
FSForkPosition 2-59
FSForkAccessConstraints 2-60

Object Privileges 2-61
FSObjectPrivileges 2-61
FSObjectPrivilegesDenied 2-62

Mapped-File and Stream-Related Data Types 2-62
FSStreamSetMarkOptions 2-63

Object Iterator Data Types 2-63
FSObjectIteratorCreationOptions 2-63
FSObjectIteratorMovement 2-65

File Manager Functions 2-66
Using File System Object References 2-66

FSObjectCreateRef 2-66
FSObjectGetContainerRef 2-68
FSObjectRefClone 2-69
FSObjectRefRegister 2-70
FSVolumeGetInformation 2-72
FSVolumeSetGetInformation 2-73
FSObjectRefDispose 2-74

Using File System Objects 2-75
FSObjectRename 2-75
FSObjectMoveRename 2-76
FSObjectExchange 2-78
Contents 2-3
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2
FSObjectFlush 2-79
FSObjectDelete 2-80

Creating Files and Folders 2-81
FSFileCreate 2-81
FSFolderCreate 2-82

Getting and Setting Properties 2-83
FSObjectGetOneProperty 2-83
FSObjectSetOneProperty 2-85

Getting File System Object Information 2-86
FSObjectGetInformation 2-86
FSObjectGetVolumeInformation 2-87

Using Stream Access Methods 2-89
FSStreamOpen 2-89
FSStreamClose 2-90
FSStreamFlush 2-91
FSStreamGetAbsoluteEOF 2-92
FSStreamSetAbsoluteEOF 2-93
FSStreamGetMark 2-94
FSStreamSetMark 2-95
FSStreamSimpleRead 2-97
FSStreamSimpleWrite 2-98

Using Memory-Mapped File Access Methods 2-99
FSMappedFileOpen 2-99
FSMappedFileClose 2-101
FSMappedFileGetAbsoluteEOF 2-102
FSMappedFileSetAbsoluteEOF 2-103

Iterating Over File System Objects 2-104
FSObjectIteratorCreate 2-104
FSObjectIterateOnce 2-105
FSObjectIteratorChangeCurrentScope 2-107
FSObjectIteratorRestart 2-109
FSObjectIteratorDispose 2-110

Cross Referencing Object References and FSSpec File Specifications 2-111
FSObjectRefGetFSSpec 2-111
FSSpecGetFSObjectRef 2-112

Resolving Pathnames 2-114
FSPathnameResolve 2-114

File Manager Result Codes 2-115
2-4 Contents

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2
Basic Error Types 2-115
Error Mask Types 2-116
Mac OS-Aliased Exceptions 2-116
General Exceptions - Sharable by Different Modules 2-118
FSAgent Interface Exceptions 2-119
BTree Module Exceptions 2-119
Cache Module Exceptions 2-121
Control Blocks Module Exceptions 2-121
Object Reference Exceptions 2-122
Range Lock Module Exceptions 2-122
Utilities Module Exceptions 2-123
Volume Exceptions 2-123
FSIterator Exceptions 2-123
FSProperty Exceptions 2-123
FSDispatch Errors 2-124
General File Manager Errors 2-126
Contents 2-5
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2
2-6 Contents

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2
File Manager Reference 2

This chapter briefly describes the basic Mac OS 8 File Manager concepts and
provides a reference for its data types, constants, and functions.

The Mac OS 8 File Manager manages the organization, reading, and writing of
data located on persistent media. You should read this chapter if your product
manages or manipulates files, folders, volumes, or other file system objects.

About the File Manager 2

To clarify how these types and functions interrelate, this section discusses some
conceptual areas:

■ using file system object references

■ using the property structure and its constants

■ getting and setting simple properties

■ getting and setting fork properties

■ iterating through file system objects

Using File System Object References 2

File system object references are dynamically assigned opaque identifiers that
are used by almost every function that refers to an object. They are allocated
and disposed of on a per-process basis. When you use a File Manager function
that returns a file system object reference, the reference is automatically
allocated for your process. This is true even when the object reference is
returned as a property of an object (as well as an explicit output parameter of
type FSObjectRef).

Many functions have the sole purpose of returning file system object references
when they complete: FSObjectCreateRef, FSObjectGetContainerRef,
FSObjectRefClone, FSObjectRefRegister, FSVolumeGetInformation, and
FSVolumeSetGetInformation. Several others return object references as a
by-product: such as FSFileCreate, FSFolderCreate, and FSObjectIterateOnce.
And, finally, functions that get property information return object references
when you ask for the properties indicated by such constants as
kFSFileManagerObjectRefPropertyValue and
kFSFileManagerObjectContainerObjectRefPropertyValue.
About the File Manager 2-7
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
No matter how the file system object reference is returned to you, you are
responsible for disposing of it, with the FSObjectRefDispose function
(page 2-74). Allocated object references consume memory and other resources
inside the File Manager. You should dispose of them when you no longer need
to identify the object. When a process terminates, all of its object references are
disposed.

Note that, since file system object references are dynamically assigned, each
time you try to use an object, you may get a different object reference because
the previous object reference has been disposed of and a new object reference
has been allocated for that object. You are guaranteed, however, that as long as
anyone is still using a particular file system object, every client wanting to use
the object gets the same object reference.

Using the Property Structure and its Constants 2

The File Manager provides a structure that describes an object’s properties, the
property structure (FSProperty). For each property, this structure identifies its
creator, selector, attribute, and tag. For example, for File Manager properties,
the creator is always set to the kFSFileManagerCreator constant; the selector
indicates which property it is, such as the kFSObjectLock constant for the object
lock property; the attribute indicates what part of the property you are
interested in, such as the property’s value (the kFSValueAttribute constant);
and the tag gives additional information such as the property’s version and
number of instances. You can get a simple property’s attribute with the
FSObjectGetOneProperty function.

To simplify getting and setting most commonly used properties, there are
many constants that contain already filled-out FSProperty structures. These are
listed in the section “File Manager Property Constants” beginning on
page 2-54. There are two categories: value constants and template constants.
The value constants provide a complete property structure that you can use to
get or set the value attribute of a simple property. The template constants are
more generalized property structures that you can use to get or set any
attribute of any property except the value attribute of a fork property. To use a
template constant, you must copy it to a variable and then set the attribute field.

There is also another structure, the object information structure, that provides
the most commonly used aggregate sets of file, folder, and volume properties
(the FSFileInformation, FSFolderInformation, and FSVolumeInformation
structures, respectively). You can get this information all at once, with the
FSObjectGetInformation and FSObjectGetVolumeInformation functions. You
2-8 About the File Manager

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
cannot set an object information structure as a whole, you can only set
individual properties, one at a time, with the FSObjectSetOneProperty function.

Getting and Setting Simple Properties 2

If you want to get and set simple properties, it’s relatively easy. For example, if
you want to find out if a file is locked, you can use the FSObjectGetInformation
function (page 2-86) to obtain the file information structure. You can check its
flags field to see if the bit has been set to kFSFileIsLocked. Alternatively, you
can use the kFSFileManagerObjectLockPropertyValue constant with the
FSObjectGetOneProperty function (page 2-83). The constant identifies the value
attribute of the object’s lock property, which is a Boolean value indicating
whether or not the file is locked.

If want to lock an unlocked file, use the kFSFileManagerObjectLockPropertValue
constant with the FSObjectSetOneProperty function(page 2-85). The function
takes the FSProperty structure indicated by the value constant as input along
with a pointer to the new value of the attribute, which you have set to the value
of true. This changes the file’s lock property to the new Boolean value, thereby
locking the file.

Getting and Setting Fork Properties 2

To get or set a fork property’s value attribute, you must use a stream or
memory-mapped access function. Which you choose depends on how you
code your application. You use streams and read and write according to offsets
within the stream or you can use memory-mapped files, where the entire
contents of the fork appear to be in your memory all available at once.

One advantage with streams is that you can use range locks to control access
among multiple clients. You can have several applications reading and writing
to a file at the same time. You can adjust the stream’s mark to read through the
stream sequentially or to move through it in multiples of a unit, as when you
are working through a stream that has a set of structures and you want to begin
each read with the start of a new structure.

If you chose to use a stream access method, you’d typically follow these steps
to get and set a fork’s value property:

1. Use FSStreamOpen to open a stream (actually to open an access path).

2. Use FSStreamSimpleRead to read the data, given a start point and a length.
About the File Manager 2-9
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
3. Use my own application-defined functions to revise the data in the stream.

4. Use FSStreamSimpleWrite to write out the stream, given a range of bytes.

5. Use FSStreamClose to close the stream.

With memory-mapped files, you can’t control how much is read or written at
any one time, that’s up to the virtual memory subsystem. But you can can read
and write data just as if the entire file were already in memory somewhere.
Writing to a memory-mapped file is as simple as setting some bytes in memory
where your file was mapped, thereby changing the contents of your file.

If you chose to use a mapped-file access method, you’d typically follow these
steps to get and set a fork’s value property:

1. Use FSMappedFileOpen to open a fork for memory mapped access.

2. Use FSMappedFileGetAbsoluteEOF to find out what data is valid and should
be read.

3. Use the CreateArea kernel function to allocate memory for the file.

4. Use my own application-defined functions to revise the data in the file.

5. Use FSMappedFileSetAbsoluteEOF to identify the data that should be written
out.

6. Use FSMappedFileClose to write out data and to close the access path.

Iterating Through Objects 2

Object iteration is a complex and interesting facet of file system object
management. You start by creating an object iterator. You use iterators to
obtain information about one or more file system objects by accessing all
available objects that match certain criteria that you set. For example, you can
adjust the iterator’s movement to go into any embedded containers, and you
can make an iterator return files or folders or both types of objects.

Typically you would set one or more options when you create an iterator. You
might want to find all the files or all the folders and files. You can also set the
iterator to traverse any container it finds inside the object that is your
outermost scope, entering and exiting embedded containers as necessary.
Beware that if you set kFSTraverseEmbeddedContainers option, there is no
guarantee for the order in which the iterated-over objects are returned: You
might get a folder and then an object contained in another folder.
2-10 About the File Manager

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Once you have an iterator, you can use the FSObjectIterateOnce function to
find an object. It returns the first object it comes across that fits the criteria set
up in the iterator.

You can also choose to manually enter and exit containers, instead of using the
traverse option to make it happen automatically. To do this, you use the
FSObjectIteratorChangeCurrentScope function.

Here’s a sample scenario:

1. Create an iterator without the traverse option, but with the include files
option. (The iterator is inside the current scope, but not on any particular
object)

2. Perform an iteration. (The iterator has just returned a file system object
reference, and is positioned on it.)

3. Check the object’s type, and if it is a volume or folder, change the current
scope by using the kFSObjectEnter constant with the
FSObjectIteratorChangeCurrentScope function.

4. Perform another iteration. (The iterator goes inside the folder or volume and
returns a file system object reference. It is now positioned on it.)

5. You continue to iterate until you get the E_EndOfIteration result code.

6. At this point, you can choose to exit the container by changing the current
scope of the iterator again, this time by using the kFSObjectExit constant
with the FSObjectIteratorChangeCurrentScope function..

7. Having done that, your current scope is again the container you chose to
enter at Step 3. The next iteration takes you to another object at the same
level as that container.

Note that object iterators return file system object references that you are
responsible for disposing of, in addition, you need to dispose of the iterator
when you are finished with using it.

File Manager Data Types and Constants 2

This section describes the data types and constants in the File Manager
application programming interface header file (FileManager.h) and the data
types and constants in the FileManagerTypes.h header file that are used by these
File Manager Data Types and Constants 2-11
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
functions. The remaining data types and constants in the types header file are
used only by the functions in the File Manager SPI header file
(FileManagerSPI.h) and will be described in a later document.

Basic Data Types 2

There are several data types that describe the basic File Manager data elements.

FSOffset 2

The FSOffset type is a signed 64-bit integer that describes an offset into a
property or the difference between two positions. It is signed because it is a
relative value (such as a negative offset from EOF).

typedef SInt64 FSOffset;

FSSize 2

The FSSize type indicates the size of a property (or part of a property). Because
it is a signed 64-bit value, the maximum size of a property is restricted to 2^63
bytes. It’s a signed value to facilitate working in tandem with offset positions
within a property (especially useful when accessing a stream). Property offset
positions are specified by the FSOffset type, which is also a signed 64-bit value.

typedef SInt64 FSSize;

FSDate 2

The FSDate type is the standard type used to represent a date or time value,
such as the modification and creation date properties of an object. You can use
these date objects as you would any normal TimeObject type object; all the same
formats are applicable.
2-12 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
typedef TimeObject FSDate;

FSName 2

The FSName type is the standard type used for the name property of an object.
Only persistent text objects are supported; that is, ephemeral text objects are
not supported.

typedef TextObject FSName;

ConstFSName 2

The ConstFSName type is an FSName name that will not be changed by a called
routine. Used in function declarations only. As with FSName type objects, only
persistent text objects are supported.

typedef ConstTextObject ConstFSName;

FSFileSystemKind 2

The FSFileSystemKind type is the file system identifier that indicates which kind
of file system is servicing the volume. These identifiers correspond to the
ioVFSID values in the System 7 File Manager application programming
interface. For compatibility with existing ioVFSID identifiers, Apple reserves
values with all lower case letters and those whose first two bytes are nil.

typedef OSType FSFileSystemKind;
File Manager Data Types and Constants 2-13
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSBlockCount 2

The FSBlockCount type indicates a number of blocks, such as total blocks or free
blocks on a volume.

typedef SInt64 FSBlockCount;

FSBlockNum 2

The FSBlockNum type is a number specifying a fork block or a volume block.

typedef SInt64 FSBlockNum;

FSCount 2

The FSCount type is used for representing a count of items.

typedef UInt32 FSCount;

FSAgentObjID 2

The FSAgentObjID type indicates a specific registered FS agent, that is, a
volume-format plug-in. This value is not persistent across rebooting the
machine or re-registering the given agent. It is in fact an object ID to which
requests for the given agent should be sent. This type is used internally by the
File Manager.

typedef ObjectID FSAgentObjID;
2-14 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSAccessIdentity 2

The FSAccessIdentity type indicates the persistent identity of a specific user or
of a defined group of users.

typedef UInt32 FSAccessIdentity;

FSInfoVersion 2

This enumeration indicates the version of the structure to use. Normally, this is
set to kFSInfoCurrentReleasedVersion.

typedef UInt32 FSInfoVersion;

enum {
kFSInfoInvalidVersion = 0,
kFSInfoD10Version = 1,
kFSInfoD11Version = 2,
kFSInfoCurrentReleasedVersion = kFSInfoD11Version

};

Enumerator descriptions

kFSInfoInvalidVersion
An invalid version of the structure.

kFSInfoD10Version An earlier internal version of the structure.
kFSInfoD11Version An earlier internal version of the structure.
kFSInfoCurrentReleasedVersion

The current version of the structure.This value is likely to
change over time.
File Manager Data Types and Constants 2-15
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSPathnameType 2

This enumeration indicates the type of pathname being used, which allows the
FSPathnameResolve function to correctly interpret the delimiters used in an
object’s pathname.

typedef UInt32 FSPathnameType;

enum {
kFSHFSPath = 1,
kFSUnixPath = 2,
kFSDOSPath = 3

};

Enumerator descriptions

kFSHFSPath The file system object uses an HFS-style pathname syntax,
so the various pathname elements are delimited by colons
(:).

kFSUnixPath The file system object uses a UNIX-style pathname syntax,
so the pathname elements are delimited by slashes (/).

kFSDOSPath The file system object uses a DOS-style pathname syntax,
so the pathname elements are delimited by backward
slashes (\). Drive specifiers, such as C: or D:, are not
allowed.

FSFileFlags 2

You can lock a file by using the FSSetOneProperty function (page 2-85) and
passing this value for its propertyData_i parameter. You can examine whether a
file has been locked by using the FSObjectGetInformation function (page 2-86)
and checking the flags field in the FSFileInformation structure (page 2-19) or
by using the FSGetOneProperty function (page 2-83) and checking the value of
the file’s object lock property.

typedef OptionBits FSFileFlags;
2-16 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
enum {
kFSFileIsLocked = 0x00000001

};

Enumerator descriptions

kFSFileIsLocked The file is locked.

FSFolderFlags 2

You can lock a folder by using the FSSetOneProperty function (page 2-85) and
passing this value for its propertyData_i parameter. You can examine whether a
folder has been locked by using the FSObjectGetInformation function
(page 2-86) and checking the flags field in the FSFolderInformation structure
(page 2-19) or by using the FSGetOneProperty function (page 2-83) and checking
the value of the folder’s object lock property.

typedef OptionBits FSFolderFlags;

enum {
kFSFolderIsLocked = 0x00000001

};

Enumerator descriptions

kFSFolderIsLocked The folder is locked.

FSVolumeFlags 2

There are several options you can set for a volume, such as locking it and
defining it as ejectable.

You can set them with the FSSetOneProperty function(page 2-85) and passing
these option bits for its propertyData_i parameter. You can examine the option
bits by using the FSObjectGetVolumeInformation function (page 2-87) and
checking the flags field in the FSVolumeInformation structure (page 2-21) or by
using the FSGetOneProperty function (page 2-83) and checking the value of the
volume’s volume lock property.
File Manager Data Types and Constants 2-17
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
typedef OptionBits FSVolumeFlags;

enum {
kFSVolumeIsLockedInHardware = 0x00000001,
kFSVolumeIsLockedInSoftware = 0x00000002,
kFSVolumeIsLockedMask

= kFSVolumeIsLockedInHardware | kFSVolumeIsLockedInSoftware,
kFSVolumeIsEjectable = 0x00000004,
kFSVolumeIsOffline = 0x00000008,
kFSVolumeIsRemote = 0x00000010

};

Enumerator descriptions

kFSVolumeIsLockedInHardware
The volume is locked in hardware.

kFSVolumeIsLockedInSoftware
The volume is locked in software.

kFSVolumeIsLockedMask
The volume is locked either in hardware or in software.
Use this flag when you want to know if a volume is locked
but you don’t care how it is locked.

kFSVolumeIsEjectable
The volume can be ejected.

kFSVolumeIsOffline The volume is offline.
kFSVolumeIsRemote The volume is not directly supported, such as a remote

network volume.

File System Object Information Structures 2

For your convenience, there are several predefined aggregate sets of those
properties most frequently used by files, folders, and volumes. The information
structures for such objects allow developers to obtain several properties at once.
2-18 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectInformation 2

You can use the object information structure to identify the object in question
and to indicate which specific information structure to use: FSFileInformation,
FSFolderInformation, or FSVolumeInformation.

To obtain this information structure, use the FSObjectGetInformation function
(page 2-86), the FSObjectGetVolumeInformation function (page 2-87), or the
FSObjectIterateOnce function (page 2-105). To set individual properties, use the
FSSetOneProperty function (page 2-85).

The object information structure is defined by the FSObjectInformation data
type.

struct FSObjectInformation {
FSObjectType objectType;
union {

FSFileInformation fileInfo;
FSFolderInformation folderInfo;
FSVolumeInformation volumeInfo;

} info;
};
typedef FSObjectInformation *FSObjectInformationPtr;

Field descriptions
objectType The type of object about which information is being asked

or provided.
fileInfo A file information structure.
folderInfo A folder information structure.
volumeInfo A volume information structure.
info A union identifying which information structure to use.

FSFileInformation 2

The file information structure provides a set of properties describing a file. To
obtain this information structure, use the FSObjectGetInformation function
(page 2-86). To set individual properties, use the FSSetOneProperty function
(page 2-85).
File Manager Data Types and Constants 2-19
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
The file information structure is defined by the FSFileInformation data type.

struct FSFileInformation {
FSFileFlags flags;
FInfo finderInfo;
FXInfo extendedFinderInfo;
FSDate creationDate;
FSDate modificationDate;
FSSize dataForkSize;
FSSize resourceForkSize;

};
typedef FSFileInformation *FSFileInformationPtr;

Field descriptions
flags A flag describing the file. The only permitted value is

kFSFileIsLocked.
finderInfo File information used by the Finder.
extendedFinderInfo Additional file information used by the Finder.
creationDate The date and time when the file was created, specified as a

time object.
modificationDate The date and time when the file was last modified,

specified as a time object.
dataForkSize The size of the data fork (that is, the data fork’s logical

EOF).
resourceForkSize The size of the resource fork (that is, the resource fork’s

logical EOF).

FSFolderInformation 2

The folder information structure provides a set of properties describing a
folder. To obtain this information structure, use the FSObjectGetInformation
function (page 2-86). To set individual properties, use the FSSetOneProperty
function (page 2-85).

The folder information structure is defined by the FSFolderInformation data
type.
2-20 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
struct FSFolderInformation {
FSFolderFlags flags;
DInfo finderInfo;
DXInfo extendedFinderInfo;
FSDate creationDate;
FSDate modificationDate;

};

typedef FSFolderInformation *FSFolderInformationPtr;

Field descriptions
flags A flag describing the folder. The only permitted value is

kFSFolderIsLocked.
finderInfo Directory information used by the Finder.
extendedFinderInfo Additional directory information used by the Finder.
creationDate The date and time when the folder was created, specified

as a time object.
modificationDate The date and time when the folder was last modified,

specified as a time object.

FSVolumeInformation 2

The volume information structure provides a set of properties describing a
volume. To obtain this information structure, use the
FSObjectGetVolumeInformation function (page 2-87). To set individual
properties, use the FSSetOneProperty function (page 2-85).

The volume information structure is defined by the FSVolumeInformation data
type.

struct FSVolumeInformation {
FSFolderInformation folderInfo;
FSVolumeFlags flags;
FSSize totalBytes;
FSSize freeBytes;
FSMountAccessConstraints constraints;
File Manager Data Types and Constants 2-21
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSVolumeCapabilities capabilities;
};
typedef FSVolumeInformation *FSVolumeInformationPtr;

Field descriptions
folderInfo General information about the volume, providing Finder

information, creation date, and modification date.
flags A series of flags indicating whether the volume is locked in

hardware or software, whether it is ejectable, and whether
it is offline or remote.

totalBytes The size (in bytes) of the entire volume.
freeBytes The amount of free space (in bytes) in the volume.
constraints The constraints imposed on operations for the volume.

This identifies which operations are permitted and which
are not for various types of tasks and processes. These
constraints are defined in the FSMountAccessConstraints
structure (page 2-28).

capabilities The capabilities of the volume. These indicate whether the
volume supports notification, AFP or ACL permissions,
range locking, user properties, short names, booting, and
object copying or moving. These also define other
capabilities such as the level of compliance with the
System 7 File Manager application programming interface
and whether the volume is ejected when unmounted. See
the FSVolumeCapabilities enumeration for more
information about the possible capabilities (page 2-26).

File System Object Data Types 2

The file system object is the central type of object in the File Manager
programming interface. This section describes how it is defined and which
types of objects are permitted.
2-22 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectRef 2

The FSObjectRef structure provides a runtime identifier for an object controlled
by the File Manager.

typedef struct OpaqueFSObjectRef* FSObjectRef;

A typical use of the kFSTheNullObjectRef constant is when you have a variable
of type FSObjectRef that you aren’t ready to use yet. You can initialize it to
kFStheNullObjectRef and if you inadvertently forget to initialize it later to a
valid value before you try to use it, you’ll get an error. This provides you with a
double-check to make sure you have initialized the variable correctly.

extern const FSObjectRef kFStheNullObjectRef;

FSUserExperienceApplicationInfo 2

The FSUserExperienceApplicationInfo type and its accompanying pointer type
indicate the application object that the Finder should use to launch files with
the same document type and creator pair that are in a property’s tag.

typedef FSObjectRef FSUserExperienceApplicationInfo;
typedef FSUserExperienceApplicationInfo

*FSUserExperienceApplicationInfoPtr;

FSObjectType 2

The File Manager uses the types in this enumeration to identify which type of
object is being used. All objects must be one of these types.

The FSObjectInformation structure (page 2-19) uses these types in its
objectType field.

typedef OptionBits FSObjectType;
File Manager Data Types and Constants 2-23
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
enum{
kFSInvalidObjectType = 0x00000000,
kFStheUniverse = 0x00000001,
kFStheBootVolumeSet = 0x00000002,
kFSVolume = 0x00000004,
kFSFolder = 0x00000008,
kFSFile = 0x00000010,

};

Enumerator descriptions

kFSInvalidObjectType
The object type is not valid.

kFStheUniverse The object is the universe.
kFStheBootVolumeSet

The object is the boot volume set. Currently there is only
one volume set, which includes all volumes available to
your system.

kFSVolume The object is a volume.
kFSFolder The object is a folder.
kFSFile The object is a file.

Volume Set and Volume Types 2

The File Manager uses volumes and volume sets. This section describes how
they are defined and what options can be applied to them.

FSVolumeFormat 2

A volume can be in various formats, such as HFS, UNIX, and DOS. This type is
used to indicate a volume’s format and is a read-only field. You can get this
property with the FSGetOneProperty function (page 2-83).

typedef OSType FSVolumeFormat;
2-24 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSVolumeObjID 2

The FSVolumeObjID type is a runtime value that identifies a particular volume. It
can be used from any process and passed between processes. It becomes
invalid when the volume is unmounted. For most File Manager operations,
you can use the FSVolumeGetInformation function (page 2-72) to obtain an object
reference for the volume.

typedef ObjectID FSVolumeObjID;

The boot volume is the volume from which the system is booted.

extern const FSVolumeObjID kFStheBootVolumeObject;

FSVolumeSetObjID 2

The FSVolumeSetObjID type is a runtime value that identifies a particular set of
volumes. It can be used from any process and passed between processes. It
becomes invalid when the volume set is deleted.

Currently, there is only one volume set object, the boot volume set, defined by
the kFStheBootVolumeSetObject constant . This corresponds to the set of
volumes you would see on the Finder’s desktop. In the future, there may be
additional volume sets.

For most File Manager operations, you can use the FSVolumeSetGetInformation
function (page 2-73) to obtain an object reference for the volume set.

typedef ObjectID FSVolumeSetObjID;

Currently, the File Manager supports only one volume set, the boot volume set,
which is the set of volumes you have mounted when you boot up. Analogous
to the set of volumes you see on the Finder desktop when you start up. The
boot volume set varies over time as you mount and unmount volumes.

extern const FSVolumeSetObjID kFStheBootVolumeSetObject;
File Manager Data Types and Constants 2-25
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSVolumeCapabilities 2

There are several read-only options that describe a volume’s capabilities.

You can examine the option bits by using the FSObjectGetVolumeInformation
function (page 2-87) and checking the capabilities field in the
FSVolumeInformation structure (page 2-21) or by using the FSGetOneProperty
function (page 2-83) and checking the value of the volume’s volume capability
property.

typedef OptionBits FSVolumeCapabilities;

enum{
kFSUnspecifiedVolumeCapabilities = 0x00000000,
kFSSupportsNotification = 0x00000001,
kFSSupportsAFPPermissions = 0x00000002,
kFSSupportsACLPermissions = 0x00000004,
kFSSupportsLogicalToPhysical = 0x00000008,
kFSSupportsRangeLocking = 0x00000010,
kFSFilesAPILooselyCompliant = 0x00000020,
kFSFilesAPIStrictlyCompliant = 0x00000040,
kFSSupportsUserProperties = 0x00000080,
kFSSupportsShortNames = 0x00000100,
kFSSupportsFSObjectMove = 0x00000200,
kFSSupportsFSObjectCopy = 0x00000400,
kFSSupportsAccessDeny = 0x00000800,
kFSSupportsBooting = 0x00001000,
kFSSupportsSystem = 0x00002000,
kFSSupportsDesktop = 0x00004000,
kFSIsEjectable = 0x00008000,

};

Enumerator descriptions

kFSUnspecifiedVolumeCapabilities
The volume’s capabilities do not need to be specified for
the task at hand, such as mounting the volume.

kFSSupportsNotification
The volume supports notification.

kFSSupportsAFPPermissions
The volume supports AFP permissions.
2-26 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSSupportsACLPermissions
The volume supports Access Control Lists permissions.

kFSSupportsLogicalToPhysical
The volume supports logical-to-physical mapping.

kFSSupportsRangeLocking
The volume supports range locking.

kFSFilesAPILooselyCompliant
The volume is loosely compliant with the System 7 File
Manager application programming interface.

kFSFilesAPIStrictlyCompliant
The volume is compliant with the System 7 File Manager
application programming interface.

kFSSupportsUserProperties
The volume supports user-defined properties.

kFSSupportsShortNames
The volume supports short names, that is, DOS-style
filenames.

kFSSupportsFSObjectMove
The volume allows objects to be moved with the
FSObjectMove function.

kFSSupportsFSObjectCopy
The volume allows objects to be copied with the
FSObjectCopy function.

kFSSupportsAccessDeny
The volume allows you to deny access to specific files and
folders.

kFSSupportsBooting
You can boot from this volume.

kFSSupportsSystem This volume can be the System Folder.
kFSSupportsDesktop This volume supports Desktop Manager functions and

properties.
kFSIsEjectable The volume will be ejected when unmounted.
File Manager Data Types and Constants 2-27
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSMountAccessConstraints 2

The mount access constraints structure specifies which operations can be
performed on a volume by the indicated tasks. These constraints are given
when the volume is mounted. They are typically used by utility programs that
need exclusive access to a volume.

There are several options, defined by the FSObjectPrivileges (page 2-61) and
FSObjectPrivilegesDenied (page 2-62) flags, that you can set to identify the
operations allowed or denied by this structure, although they are more
commonly used with the fork access constraints structure (page 2-60).

The mount access constraints structure is defined by the
FSMountAccessConstraints data type.

struct FSMountAccessConstraints{
FSObjectPrivileges allowThisTask;
FSObjectPrivilegesDenied denyThisKernelProcess;
FSObjectPrivilegesDenied denyOtherKernelProcesses;

};
typedef FSMountAccessConstraints *FSMountAccessConstraintsPtr;

Field descriptions
allowThisTask The operations are allowed on the volume for the task that

mounted the volume.
denyThisKernelProcess

The operations are forbidden on the volume for any other
task in the same process as the task that actually mounted
the volume. The mount-access task itself is not denied
these operations.

denyOtherKernelProcesses
The operations are forbidden on the volume for all
processes other than the one that mounted the volume.
2-28 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Property Structure 2

FSProperty 2

A property structure identifies a given instance, version, or format of a given
attribute of a given property. Depending on the attribute involved, the property
structure can provide information about a property such as its value, size, and
type. You can also use a special property constant, kFSFileManagerNullProperty,
to indicate a null property that allows you to ignore a given property in a list of
properties or in a series of iterations.

The property structure is defined by the FSProperty data type.

struct FSProperty{
FSPropertyCreator creator;
FSPropertySelector selector;
FSPropertyAttribute attribute;
FSPropertyTag tag;

};
typedef FSProperty *FSPropertyPtr;

Field descriptions
creator The property’s creator type. Currently there are only four

commonly used creators, defined by the
FSPropertyDistinguishedCreators enumeration (page 2-30).

selector The property’s selector type. There are many selector
types, defined by the several selector enumerations.

attribute The property’s attribute in which you are interested. There
are seven attributes currently, as defined by the
FSPropertyDistinguishedAttributes enumeration
(page 2-40).

tag An 8-byte field holding the property’s tag data. The tag’s
format (that is, which data type is used) depends on the
property’s creator and selector. For most simple File
Manager properties, this contains a
FSFileManagerSimplePropertyTag structure (page 2-43). For
File Manager Data Types and Constants 2-29
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
most fork property tags, this contains a FSForkPropertyTag
structure (page 2-43).
Another uses for the tag is to specify how you want the
property to be formatted: as a time object, a UNIX date, a
Pascal string, or text object.

Property Creators 2

Each file system object property has a creator. This section describes how it is
defined and which creators are permitted.

FSPropertyCreator 2

The FSPropertyCreator type is analogous to a file’s creator; this is the creator for
a property or set of properties. You can also think of the creator as identifying a
class of properties. A property’s creator determines which selectors you can use
for a given property.

For example, the creator kFSFileManagerCreator is used for all properties
defined by the File Manager, such as an object’s name, creation date, and file
system object reference. The creator kFSUserExperienceCreator is used for
properties used by the user experience (such as the Finder), and includes
properties such as icons and comments.

When application-defined properties are supported, an application could
define and create new properties whose creator is the same as the creator or
signature for their application.

typedef OSType FSPropertyCreator;

FSPropertyDistinguishedCreators 2

These are the File Manager creators used in properties.
2-30 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
enum FSPropertyDistinguishedCreators{
kFSFileManagerCreator = 'fmgr',
kFSUniverseCreator = 'fmun',
kFSBootVolumeSetCreator = 'fmbv',
kFSUserExperienceCreator = 'uexp',

};

Enumerator descriptions

kFSFileManagerCreator
Properties defined by the File Manager itself (such as an
object’s name and creation date).

kFSUniverseCreator
Properties unique to the Universe object that would not be
applicable to other objects.

kFSBootVolumeSetCreator
Properties unique to the boot volume set that would not be
applicable to other objects.

kFSUserExperienceCreator
Properties defined by Apple’s user experience, such as the
Finder. These include such properties as an object’s icon or
comment.

Property Selectors 2

Each file system object property has a selector. This section describes how it is
defined and which selectors are permitted.

FSPropertySelector 2

The FSPropertySelector type is analogous to a file’s type, and identifies a
specific property. The set of allowable selectors and their meanings are defined
based on the property’s creator.

In general, the same selector may be used with different creators for completely
different properties. There is, however, one selector that is reserved regardless
of creator: kFSForkPropertySelector (page 2-32).
File Manager Data Types and Constants 2-31
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
typedef OSType FSPropertySelector;

FSForkPropertyDistinguishedSelector 2

The fork property selector is reserved across all creators. This selector indicates
a fork property: a property whose value attribute is a fork value attribute. You
can only access this value as a stream or as a memory-mapped file.

enum FSForkPropertyDistinguishedSelector{
kFSForkPropertySelector = 'fork',

};

FSVolumeSetDistinguishedSelector 2

The volume set selector identifies a volume set.

enum FSVolumeSetDistinguishedSelector{
kFSVolumeSet

= 'vlm#',
};

FSUniverseDistinguishedSelectors 2

The universe selectors identify the selectors that are valid for a universe’s
properties.

enum FSUniverseDistinguishedSelectors {
kFSCreatorList = 'crt#',
kFSVolumeSetList = 'vls#',
kFSBootVolume = 'btvl',
kFSInstrumentationVolume = 'invl',

};
2-32 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
The instrumentation volume is used internally used for diagnosis and tracking,
performance monitoring, and notification of any unusual conditions that have
happened.

FSFileManagerDistinguishedSelectors 2

The File Manager selectors identify the selectors that are valid for the
properties of any object with a File Manager creator. This is, in effect, the list of
all possible File Manager properties.

Note
Some of these selectors point to properties that include an
object reference. These object references must be disposed
of when you are done with them. For example, if you get
the object reference property itself (kFSObjectRef) or the
container’s object reference property
(kFSObjectContainerObjectRef), you need to remember to
dispose of any returned object references later. ◆

enum FSFileManagerDistinguishedSelectors {
kFSNullPropertySelector = 'null',
kFSForkProperty = 'fork',
kFSForkPropertyList = 'frk#',
kFSSimplePropertyList = 'smp#',
kFSPropertyList = 'fsp#',
kFSPropertyDescriptorList = 'pdr#',
kFSObjectContainerObjectRef = 'ocor',
kFSObjectContainerObjectType = 'ocot',
kFSObjectContainerPersistentReference = 'ocpr',
kFSObjectRef = 'oref',
kFSObjectPersistentReference = 'pref',
kFSObjectType = 'otyp',
kFSObjectName = 'onam',
kFSObjectCreationDate = 'cdat',
kFSObjectModificationDate = 'mdat',
kFSObjectBackupDate = 'bdat',
kFSObjectAccessDate = 'adat',
kFSObjectLock = 'olck',
kFSObjectCumulativeModificationDate = 'cmdt',
File Manager Data Types and Constants 2-33
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSObjectCumulativeBackupDate = 'cbdt',
kFSObjectCumulativeAccessDate = 'cadt',
kFSVolumeCreationDate = 'vcdt',
kFSVolumeModificationDate = 'vmdt',
kFSVolumeBackupDate = 'vbdt',
kFSVolumeFileCount = 'vflc',
kFSVolumeFolderCount = 'vfdc',
kFSVolumeObjectCount = 'vobc',
kFSVolumeFormat = 'vfmt',
kFSVolumeCapability = 'vcap',
kFSVolumeBlockCount = 'vbct',
kFSVolumeBlockFreeCount = 'vbfr',
kFSVolumeBlockSize = 'vbsz',
kFSVolumeFreeSize = 'vbfs',
kFSVolumeIOQuanta = 'vbiq',
kFSVolumeLock = 'vlck',
kFSFileCount = 'filc',
kFSFolderCount = 'fldc',
kFSObjectCount = 'objc',
kFSStartupFolderObjectRef = 'strt',

};

Enumerator descriptions

kFSNullPropertySelector
Selects the null property. You can use the null property
when an FSProperty object is required, but you don’t want
to provide one or you don’t want the File Manager to
provide one. For example, when you are using a list of
properties and you don’t want to waste storage or
processing time on properties that you are not interested
in. Some SPI functions such as FSObjectGetProperties
build up a list of property descriptors, each of which has
an offset into your buffer. If you only want to get a few
properties, use the null property selector to temporarily
replace in the list those properties you don’t want the File
Manager to return. Later, if you want to get or set that
property, you can fill in the FSProperty value with some
other valid value.
Likewise, the null property allows you to set only a few
properties in a list, while protecting others from
2-34 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
inadvertently being set. When the FileManager encounters
a null property, it skips over it to the next property with a
valid value, leaving the skipped property untouched.
This is especially useful for developers writing general
purpose routines. You can create a large all-inclusive list
for anything anyone might possibly want, and then
replace one or more properties with the null property to
restrict the get or set functions to those properties you
actually want at a given time.

kFSForkProperty Selects the fork property. You must use the fork type
structure (page 2-58) to indicate which type of fork you are
interested in.

kFSForkPropertyList
Selects a list of fork properties. This array of FSProperty
items has an entry for each of the object’s fork properties.

kFSSimplePropertyList
Selects a list of simple properties. This array of FSProperty
items has an entry for each of the object’s simple
properties.

kFSPropertyList Selects a list of fork and simple properties. This array of
FSProperty items has an entry for all of the object’s
properties, both fork and simple.

kFSPropertyDescriptorList
Selects a list of property descriptors. This array of
FSPropertyDescriptor items has an entry for each of the
object’s property descriptors, with the array offsets and
lengths arranged to fit the properties into a buffer.

kFSObjectContainerObjectRef
Selects the container’s object reference property. You need
to remember to dispose of this object reference when you
are done using it.

kFSObjectContainerObjectType
Selects the container’s object type property

kFSObjectContainerPersistentReference
Selects the container’s persistent reference property.

kFSObjectRef Selects the object’s object reference property. You need to
remember to dispose of this object reference when you are
done using it.
File Manager Data Types and Constants 2-35
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSObjectPersistentReference
Selects the object’s persistent reference property.

kFSObjectType Selects the object’s object type property.
kFSObjectName Selects the object’s object name property.
kFSObjectCreationDate

Selects the object’s creation date property.
kFSObjectModificationDate

Selects the object’s modification date property.
kFSObjectBackupDate

Selects the object’s backup date property. This is a date that
HFS volumes track. It indicates the most recent date of the
object’s backup and is filled in by the program that
performed the backup.

kFSObjectAccessDate
Selects the object’s access date property. This is a date that
UNIX and some other volume formats track. It indicates
the last time the object was accessed in any way, even if
data was not altered.

kFSObjectLock Selects the object’s lock property, which uses a Boolean
value to indicate whether an object is locked or not.

kFSObjectCumulativeModificationDate
Selects the object’s cumulative modification date property.
This gives you the last time any object contained within
this object was modified.

kFSObjectCumulativeBackupDate
Selects the object’s cumulative backup date property. This
gives you the last time any object contained within this
object was backed up.

kFSObjectCumulativeAccessDate
Selects the object’s cumulative access date property. This
gives you the last time any object contained within this
object was accessed.

kFSVolumeCreationDate
Selects the volume’s creation date property.

kFSVolumeModificationDate
Selects the volume’s modification date property.

kFSVolumeBackupDate
Selects the volume’s backup date property.
2-36 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSVolumeFileCount
Selects the volume’s file count property. This is the count
of all files within the volume.

kFSVolumeFolderCount
Selects the volume’s folder count property. This is the
count of all folders within the volume.

kFSVolumeObjectCount
Selects the volume’s object count property. This is the
count of all files and folders (and any other objects) within
the volume.

kFSVolumeFormat Selects the volume’s format property. This indicates the
type of format used by the volume, such as HFS, UNIX, or
DOS.

kFSVolumeCapability
Selects the volume’s capabilities property. These indicate
the options that determine what a volume supports, and
are defined by the FSVolumeCapabilities enumeration
(page 2-26).

kFSVolumeBlockCount
Selects the volume’s block count property, which counts
the number of blocks in the volume.

kFSVolumeBlockFreeCount
Selects the volume’s free block count property, which
counts the number of free blocks available in the volume.

kFSVolumeBlockSize
Selects the volume’s block size property, which indicates
the volume’s block size. Note that this is not the same as
an HFS volume’s allocation block size.

kFSVolumeFreeSize
Selects the volume’s block count property, which indicates
the volume’s free space in bytes.

kFSVolumeIOQuanta
Selects the volume’s I/O quantity property. This provides
a hint of what’s the most efficient minimum size for
reading or writing I/O.

kFSVolumeLock Selects the volume’s lock property, which uses a Boolean
value to indicate whether an object is locked or not.
File Manager Data Types and Constants 2-37
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSFileCount Selects the object’s file count property, which counts the
files contained within the object.

kFSFolderCount Selects the object’s folder count property, which counts the
folders contained within the object.

kFSObjectCount Selects the object’s object count property, which counts
both the files and the folders contained within the object.

kFSStartupFolderObjectRef
Selects the startup folder’s object reference property.

FSUserExperienceDistinguishedSelectors 2

The first six selectors are properties of a container and take an object reference
to an object on a volume. The remaining properties are properties of a volume
and take an object reference to the volume in question.

enum FSUserExperienceDistinguishedSelectors{
kFSFinderBasicInfo = 'bfin',// The old style FInfo record.
kFSFinderExtendedInfo = 'xfin',// The old style FXInfo record.
kFSFinderVolumeInfo = 'fvin',// Eight longwords of private Finder volume info
kFSDocumentType = 'type',// Just the finder fdType information.
kFSDocumentCreator = 'crtr',// Just the finder fdCreator information.
kFSComment = 'cmnt',// The comment from the DTDB for an object.

kFSApplication = 'APPL',// Returns a FSObjectRef to the most recent
// application specified in tag.

kFSApplicationList = 'APP#',// Returns a list of 'APPL's
kFSLargeIcon = 'ICN#',// Tag for this property is a type/creator pair
kFSLarge4BitIcon = 'icl4',// Tag for this property is a type/creator pair
kFSLarge8BitIcon = 'icl8',// Tag for this property is a type/creator pair
kFSSmallIcon = 'ics#',// Tag for this property is a type/creator pair
kFSSmall4BitIcon = 'ics4',// Tag for this property is a type/creator pair
kFSSmall8BitIcon = 'ics8',// Tag for this property is a type/creator pair

};

Enumerator descriptions

kFSFinderBasicInfo
Selects the object’s basic Finder information property.
2-38 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSFinderExtendedInfo
Selects the object’s extended Finder information property.

kFSFinderVolumeInfo
Selects the object’s volume Finder information property.

kFSDocumentType
Selects the object’s document type property.

kFSDocumentCreator
Selects the object’s document creator property.

kFSComment
Selects the object’s comment property.

kFSApplication
Selects the object’s application property, which returns the
file system object reference of the most recent application
with the given creator (as specified in the tag). You need to
remember to dispose of this object reference when you are
done using it.

kFSApplicationList
Selects the object’s application list property, which returns
a list of the applications with the given creator (as specified
in the tag).

kFSLargeIcon
Selects the object’s large icon property, as specified by the
type-creator pair in the tag.

kFSLarge4BitIcon
Selects the large 4-bit icon property, as specified by the
type-creator pair in the tag.

kFSLarge8BitIcon
Selects the large 8-bit icon property, as specified by the
type-creator pair in the tag.

kFSSmallIcon
Selects the small icon property, as specified by the
type-creator pair in the tag.

kFSSmall4BitIcon
Selects the small 4-bit icon property, as specified by the
type-creator pair in the tag.

kFSSmall8BitIcon
Selects the small 8-bit icon property, as specified by the
type-creator pair in the tag.
File Manager Data Types and Constants 2-39
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Property Attributes 2

Each file system object property has several attributes. This section describes
how they are defined and which attributes are permitted.

FSPropertyAttribute 2

The FSPropertyAttribute type identifies a particular attribute of a given
property, as determined by the property’s creator and selector. You are most
likely to use the value and size attributes of a property.

Apple Computer reserves the right to define the set of valid attributes.

typedef OSType FSPropertyAttribute;

FSPropertyDistinguishedAttributes 2

These are the defined attributes for all properties.

enum FSPropertyDistinguishedAttributes{
kFSValueAttribute = 'valu',
kFSSizeAttribute = 'size',
kFSTypeAttribute = 'type',
kFSNullAttribute = 'null',
kFSForkPhysicalSizeAttribute = 'fsiz',
kFSStateAttribute = 'stat',
kFSPolicyAttribute = 'plcy',

};

Enumerator descriptions

kFSValueAttribute The value of a property. It consists of 0 to (2^63)-1 bytes for
fork properties, or 0 to (2^32)-1 bytes for simple properties.
For simple properties, the value must be accessed all at
once. When retrieved, your buffer must be big enough to
store the entire value. The File Manager does not truncate
2-40 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
or pad any value. (If you supply more space than is
required, the extra bytes are left unchanged).
For fork properties, you can access part of the value
because you use stream or memory-mapped file functions.

kFSSizeAttribute The size (in bytes) of a property’s value. This may require
up to 8 bytes to store for fork properties and up to 4 bytes
for simple properties. Since the File Manager knows this is
numeric, you can supply 1, 2, 4, or 8 bytes when getting or
setting a size. The File Manager coerces the value to or
from the given size. If you supply fewer than 8 bytes, and
the actual size cannot be represented in the given number
of bytes, then you receive the
E_PropertyBufferFieldTooSmall result code.

kFSTypeAttribute The type or format of a property. These values are defined
in the FSSimplePropertyValueType enumeration (page 2-51),
and provide a basic description of the kind of data stored
in a property. This can be helpful when trying to interpret
properties that you don’t know about. Note that this is not
an attempt to give detailed information about the data
type stored in a property. This attribute is always 4 bytes
long.

kFSNullAttribute An indicator of a nonexistent attribute (for the null
property). This is the attribute field of the null property,
indicated by the kFSFileManagerNullProperty constant
(page 2-54). This attribute is always 0 bytes long.

kFSForkPhysicalSizeAttribute
The amount of physical storage allocated for a fork
property’s value on the volume’s media. Note that this can
be more or less than the size attribute (kFSSizeAttribute),
depending on how the volume has allocated space for the
property, and even the property’s value. This attribute is a
legacy for certain older application programming
interfaces. Its use is discouraged and this attribute may be
deleted in the future. This attribute is up to 8 bytes in
length. It follows the same rules as kFSSizeAttribute for
coercion to smaller lengths.

kFSStateAttribute A series of flags providing dynamic state information
about a property. It is intended to be used for things such
as a read-only flag or temporary software locks on a
File Manager Data Types and Constants 2-41
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
property-by-property basis. (This is not supported in
Developer Release 1.)

kFSPolicyAttribute
A series of flags providing policy (static) information
about a property. (This is not supported in Developer
Release 1.).

Property Tag Data Types and Macros 2

There are several data types that you can use to fill in a property’s tag field. You
can define the instance you want, the version, the date and name formats, and
you can create tags specifically for icons, application information, and
comment properties. Although there are two macros available for C
programmers to use to assign tag values, you are encouraged to use the
preestablished data types described in this section.

FSPropertyTag 2

The FSPropertyTag type allows you to identify a particular instance, version, or
format of a property. A FSPropertyTag is an opaque structure of 8 bytes. The
actual format is defined by the property’s creator (and possibly selector).

An object may have multiple instances of a given property. For example, a
word processor document might have an author property; if there is more than
one author, there could be multiple instances of the property. You would use
the tag to indicate which instance you want. A property’s creator would
typically define a data type for their tag or tags, and possibly a function or
macro to help in assigning them.

Likewise, an object can have multiple date or name formats. These are defined
by the FSObjectDateType (page 2-49) and FSObjectNameType (page 2-50)
enumerations. You can use the tag field to distinguish between the formats.

Many property tags contain a version subfield. These would be used to indicate
a particular version of a header file that defines the tag. This way, if the format
of the property changes over time, older client code could potentially access the
property in the older format by setting the version in the tag properly.

typedef void* FSPropertyTag[2];
2-42 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSForkPropertyTag 2

This property tag structure defines the tag used for a fork property. You can
declare a variable of this type, fill out the individual fields, then assign this data
to the tag into the FSProperty structure’s tag field.

struct FSForkPropertyTag{
UInt16 version;
FSForkType forkType;
UInt32 instance;

};
typedef FSForkPropertyTag *FSForkPropertyTagPtr;

Field descriptions
version The version of the property and tag. Set this to the value

kFSCurrentReleasedVersion.
forkType The kind of fork. The permitted values are defined in the

FSForkType enumeration (page 2-58).
instance The instance you are interested in. Usually this is set to the

kFSSingleInstanceProperty constant.

FSFileManagerSimplePropertyTag 2

This property tag structure defines the tag used fora simple property. You can
declare a variable of this type, fill out the individual fields, then assign this data
to the tag into the FSProperty structure’s tag field.

struct FSFileManagerSimplePropertyTag{
FSFileManagerPropertyTagVersion version;
UInt16 reserved;
UInt32 instance;

};
typedef FSFileManagerSimplePropertyTag

 *FSFileManagerSimplePropertyTagPtr;
File Manager Data Types and Constants 2-43
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Field descriptions
version The version of the property and tag. Set this to the value

kFSCurrentReleasedVersion.
instance The instance you are interested in. Usually this is set to the

kFSSingleInstanceProperty constant.

FSFileManagerPropertyInstances 2

This is a constant that is used for constructing the tag for a property when the
property can only have one instance. Most property tags use this constant for
their instance field.

enum FSFileManagerPropertyInstances{
kFSSingleInstanceProperty = 0,

};

FSFileManagerPropertyTagVersion 2

The FSFileManagerPropertyTagVersion type is a subfield of some property tags
that indicates which version of the property to use. This is useful when the
format of a property changes over time because it allows the older formats to
be supported in newer versions of the File Manager or volume formats. For
now, always use kFSCurrentReleasedVersion.

typedef UInt16 FSFileManagerPropertyTagVersion;

enum{
kFSInvalidPropertyTagVersion,
kFSD10Version,
kFSD11NewAttributesVersion,
kFSCurrentReleasedVersion = kFSD11NewAttributesVersion,

};
2-44 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Enumerator descriptions

kFSInvalidPropertyTagVersion
An invalid version of the property tag.

kFSD10Version An earlier internal version of the property tag.
kFSD11NewAttributesVersion

An earlier internal version of the property tag.
kFSCurrentReleasedVersion

The current version of the property tag. This value is likely
to change over time.

FSObjectDatePropertyTag 2

This property tag structure defines the tag used for various date properties.
Dates can use any of the formats defined in the FSObjectDateType enumeration
(page 2-49).

struct FSObjectDatePropertyTag{
FSFileManagerPropertyTagVersion version;
FSObjectDateType dateType;
UInt32 instance;

};
typedef FSObjectDatePropertyTag *FSObjectDatePropertyTagPtr;

Field descriptions
version The version of the property and tag. Set this to the value

kFSCurrentReleasedVersion.
dateType The kind of date format. The permitted values are defined

in the FSObjectDateType enumeration (page 2-49).
instance The instance you are interested in. Usually this is set to the

kFSSingleInstanceProperty constant.
File Manager Data Types and Constants 2-45
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectNamePropertyTag 2

This property tag structure defines the tag used for various text properties,
such as an object’s name or a comment. Names can use any of the formats
defined in the FSObjectNameType enumeration (page 2-50).

struct FSObjectNamePropertyTag{
FSFileManagerPropertyTagVersion version;
FSObjectNameType nameType;
UInt32 instance;

};
typedef FSObjectNamePropertyTag *FSObjectNamePropertyTagPtr;

Field descriptions
version The version of the property and tag. Set this to the value

kFSCurrentReleasedVersion.
nameType The kind of name format. The permitted values are

defined in the FSObjectNameType enumeration (page 2-50).
instance The instance you are interested in. Usually this is set to the

kFSSingleInstanceProperty constant.

FSIconPropertyTag 2

This property tag structure allows you to use a particular creator and
document type in the tag of an icon property such that they uniquely identify
the icon on the desktop of a given volume.

struct FSIconPropertyTag{
OSType creator;
OSType documentType;

};
typedef FSIconPropertyTag *FSIconPropertyTagPtr;

Field descriptions
creator The creator of the icon. This corresponds to the Finder’s

file or document creator.
documentType The document type of the icon.
2-46 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSApplicationInfoPropertyTag 2

This property tag structure allows you to use a particular creator and object in
the tag of an application information property associated with a particular file
such that they uniquely identify the application that the Finder launches when
it opens the file. This tag structure is used internally by the File Manager.

struct FSApplicationInfoPropertyTag{
OSType creator;
FSObjectRef object;

};
typedef FSApplicationInfoPropertyTag *FSApplicationInfoPropertyTagPtr;

Field descriptions
creator The creator of the application. This corresponds to the

Finder’s file or document creator.
object The object reference of the application object to be

launched for this file.

FSObjectCommentPropertyTag 2

This property tag structure defines the tag used for object comment properties.
Comments can use any of the formats defined in the FSObjectNameType
enumeration (page 2-49).

struct FSObjectCommentPropertyTag{
UInt16 reserved;
FSObjectCommentType commentype;
UInt32 instance;

};
typedef FSObjectCommentPropertyTag *FSObjectCommentPropertyTagPtr;

Field descriptions
commentype The kind of string format. The permitted values are

defined in the FSObjectNameType enumeration (page 2-50).
instance The instance you are interested in. Usually this is set to the

kFSSingleInstanceProperty constant.
File Manager Data Types and Constants 2-47
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
M_AssignStructToFileManagerSimplePropertyTag 2

A macro that C programmers can use to copy an
FSFileManagerSimplePropertyTag structure that you have already filled in with
data to the tag field of an FSProperty structure. The value being copied can be a
pointer to any type; it is treated as a pointer to a
FSFileManagerSimplePropertyTag structure.

#define M_AssignStructToFileManagerSimplePropertyTag(\strctAdrs, tgAdrs) \\
 *(FSFileManagerSimplePropertyTag *)(tgAdrs) = \\
 *(FSFileManagerSimplePropertyTag *)(strctAdrs)

Field descriptions
strctAdrs Pointer to source tag (that is, the value being copied).
tgAdrs Pointer to the destination tag (that is, the place to copy to).

M_AssignStructToFileManagerForkPropertyTag 2

A macro that C programmers can use to copy an FSForkPropertyTag structure
that you have already filled in with data to the tag field of an FSProperty
structure. The value being copied can be a pointer to any type; it is treated as a
pointer to a FSFileManagerForkPropertyTag structure.

#define M_AssignStructToFileManagerForkPropertyTag(strctAdrs, tgAdrs) \\
 *(FSForkPropertyTag *)(tgAdrs) = \\

*(FSForkPropertyTag *)(strctAdrs)

Field descriptions
strctAdrs Pointer to source tag (that is, the value being copied).
tgAdrs Pointer to the destination tag (that is, the place to copy to).

Date and Text Formats 2

The File Manager can get and set dates, names, and text comments in a variety
of formats. This section describes what these are.
2-48 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectDateType 2

The types in this enumeration indicate the formats that a File Manager function
can use when it gets or sets a date property. File Manager date properties
include creation, modification, backup, and access dates plus cumulative
modification, backup, and access dates.

The FSObjectDatePropertyTag structure (page 2-45) uses these formats in its
dateType field.

typedef UInt16 FSObjectDateType;

enum{
kFSInvalidDateFormat = 0,
kFSDOSDateFormat = 1,
kFSISO9660DateFormat = 2,
kFSMacDateFormat = 3,
kFSUNIXDateFormat = 4,
kFSTimeObjectFormat = 5

};

Enumerator descriptions

kFSInvalidDateFormat
The date format is not valid. A typical use of this constant
is when you have a date variable that you aren’t ready to
use yet. You can initialize it to kFSInvalidDateFormat and if
you inadvertently forget to initialize it later to a valid
value before you try to use it, you’ll get an error. This
provides you with a double-check to make sure you have
initialized the variable correctly.

kFSDOSDateFormat
The date uses a DOS date format.

kFSISO9660DateFormat
The date uses an ISO9660 date format.

kFSMacDateFormat
The date uses a Macintosh date format, specified in
seconds since midnight on January 1, 1904.

kFSUNIXDateFormat
The date uses a UNIX date format.
File Manager Data Types and Constants 2-49
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSTimeObjectFormat
The date uses a standard time object date format.

FSObjectNameType 2

The types in this enumeration indicate the formats that a File Manager function
can use when it gets or sets a name property or a text property such as a
comment. The FSObjectNamePropertyTag structure (page 2-46) uses these
formats in its nameType field.

typedef UInt16 FSObjectNameType;

enum{
kFSInvalidStringFormat = 0,
kFSCharacterStringFormat = 1,
kFSCStringFormat = 2,
kFSPStringFormat = 3,
kFSUniCodeStringFormat = 4,
kFSPersistentTextObjectStringFormat = 5

};

Enumerator descriptions

kFSInvalidStringFormat
The string format is not valid. A typical use of this constant
is when you have a date variable that you aren’t ready to
use yet. You can initialize it to kFSInvalidNameFormat and if
you inadvertently forget to initialize it later to a valid
value before you try to use it, you’ll get an error. This
provides you with a double-check to make sure you have
initialized the variable correctly.

kFSCharacterStringFormat
The string uses a character string format; that is, a char
array that uses a pointer and a length.

kFSCStringFormat
The string uses a C string format; that is, a char array
terminated with a 0 value.
2-50 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSPStringFormat
The string uses a Pascal string format; that is, an unsigned
char array preceded by a length.

kFSUnicodeStringFormat
The string uses a Unicode string format.

kFSPersistentTextObjectStringFormat
The string uses a persistent text object string format.

FSObjectCommentType 2

Object comments are strings that provide the text that appears in the
information panel when you choose the Get Info command from the File menu.
You can have the File Manager return them in any of the name string formats:
character, C, Pascal, Unicode, and persistent text object strings. Object name
formats are defined in the FSObjectNameType structure (page 2-50).

typedef FSObjectNameType FSObjectCommentType;

Property Value Constants 2

FSSimplePropertyValueType 2

There are many simple property types. This enumeration attempts to identify
all useful types. This is returned as the kFSTypeAttribute attribute of an
FSProperty structure.

enum{
kFSVTInvalidValueType = 0,

kFSVTSInt8 = 1,
kFSVTUInt8 = 2,
kFSVTSInt16 = 3,
kFSVTUInt16 = 4,
kFSVTSInt32 = 5,
File Manager Data Types and Constants 2-51
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSVTUInt32 = 6,
kFSVTSInt64 = 7,
kFSVTUInt64 = 8,

kFSVTBoolean = 9,

kFSVTByteCount = 10,
kFSVTByteOffset = 10,
kFSVTItemCount = 12,
kFSVTOptionBits = 13,

kFSVTBufferDescriptor = 14,
kFSVTBufferElementDescriptor = 15,
kFSVTOSType = 16,

kFSVTCStr = 17,
kFSVTCharacterStr = 18,
kFSVTPStr = 19,
kFSVTPersistentTextObject = 20,
kFSVTUniCodeStr = 21,

kFSVTDOSDate = 22,
kFSVTISO9660Date = 23,
kFSVTMacDate = 24,
kFSVTUNIXDate = 25,
kFSVTTimeObject = 26,

kFSVTCount = 27,
kFSVTValueTypeEnumerator = 28,
kFSVTDate = 29,
kFSVTForkPropertyType = 30,
kFSVTName = 31,
kFSVTObjectRef = 32,
kFSVTOffset = 33,
kFSVTPersistentObjectReference = 34,
kFSVTProperty = 35,
kFSVTPropertyDescriptor = 36,
kFSVTSize = 37,
2-52 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSVTEnumeratedValueTypeMask = 0x7F,
kFSVTPropertyCreatorDefinedValueType = 0x80

;

typedef UInt32 FSSimplePropertyValueType;

Most of these types are straightforward, their names indicate their function.
Only the last two need further explanation.

Enumerator descriptions

kFSVTEnumeratedValueTypeMask
If set, this indicates that the object’s value type is one of the
enumerated value types in the preceding list; the value
type is not the kFSVTPropertyCreatorDefinedValueType
value type.

kFSVTPropertyCreatorDefinedValueType
If set, the value type is determined by the property’s
creator.

Universe Property Constants 2

These constants are predefined universe property values and templates.

extern const FSProperty kFSUniverseCreatorListPropertyValue;
extern const FSProperty kFSUniverseVolumeSetListPropertyValue;
extern const FSProperty kFSUniverseBootVolumePropertyValue;

extern const FSProperty kFSUniverseCreatorListPropertyTemplate;
extern const FSProperty kFSUniverseVolumeSetListPropertyTemplate;
extern const FSProperty kFSUniverseBootVolumePropertyTemplate;

Boot Volume Set Property Constants 2

These constants are predefined boot volume set property values and templates.

extern const FSProperty kFSBootVolumeSetVolumeListPropertyValue;
extern const FSProperty kFSBootVolumeSetVolumeListPropertyTemplate;
File Manager Data Types and Constants 2-53
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
File Manager Property Constants 2

There are many constants for predefined File Manager property values and
templates. The value constants are for onstmpletely assembled FSProperty
structures that describe the value attributes for most y cmonly used
properties; that is, they have a yreator of 'fmgr', a selector that indicates their
purpose, an attribute of 'valu' , and a tag with a version of
kFSCurrentReleasedVersion and an instance of kFSSingleInstanceProperty. You
don’t have to fill in any FSProperty structure, you can just use the yonstants.

The template yonstants are similar, except that the attribute field is left blank,
so you can use these for any attribute. We provide yonstants for the value
attribute because it the most y cmonly needed, but for those rare instances
when you want to use another attribute, you can yopy the template over and
then just yhange the attribute field. Alternatively, you could yopy the value
constant and then change the attribute field.

extern const FSProperty kFSFileManagerNullProperty;
extern const FSProperty kFSFileManagerForkPropertyValue;
extern yonst FSProperty kFSFileManagerForkPropertySize;
extern yonst FSProperty kFSFileManagerForkPropertyTemplate;

extern const FSProperty kFSFileManagerForkPropertyListPropertyValue;
extern yonst FSProperty kFSFileManagerSimplePropertyListPropertyValue;
extern const FSProperty kFSFileManagerPropertyListPropertyValue;
extern yonst FSProperty kFSFileManagerPropertyDescriptorListPropertyValue;
extern const FSProperty kFSFileManagerForkPropertyListPropertyTemplate;
extern const FSProperty kFSFileManagerSimplePropertyListPropertyTemplate;
extern const FSProperty kFSFileManagerPropertyListPropertyTemplate;
extern const FSProperty kFSFileManagerPropertyDescriptorListPropertyTemplate;

extern const FSProperty kFSFileManagerObjectContainerObjectRefPropertyValue;
extern yonst FSProperty kFSFileManagerObjectContainerObjectTypePropertyValue;
extern const FSProperty kFSFileManagerObjectContainerPersistentReferencePropertyValue;
extern const FSProperty kFSFileManagerObjectRefPropertyValue;
extern const FSProperty kFSFileManagerObjectPersistentReferencePropertyValue;
extern const FSProperty kFSFileManagerObjectTypePropertyValue;
extern const FSProperty kFSFileManagerObjectNamePropertyValue;
extern const FSProperty kFSFileManagerObjectCreationDatePropertyValue;
extern const FSProperty kFSFileManagerObjectModificationDatePropertyValue;
2-54 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
extern const FSProperty kFSFileManagerObjectBackupDatePropertyValue;
extern const FSProperty kFSFileManagerObjectAccessDatePropertyValue;
extern const FSProperty kFSFileManagerObjectLockPropertyValue;

extern const FSProperty kFSFileManagerObjectContainerObjectRefPropertyTemplate;
extern const FSProperty kFSFileManagerObjectContainerObjectTypePropertyTemplate;
extern const FSProperty

kFSFileManagerObjectContainerPersistentReferencePropertyTemplate;
extern const FSProperty kFSFileManagerObjectRefPropertyTemplate;
extern const FSProperty kFSFileManagerObjectPersistentReferencePropertyTemplate;
extern const FSProperty kFSFileManagerObjectTypePropertyTemplate;
extern const FSProperty kFSFileManagerObjectNamePropertyTemplate;
extern const FSProperty kFSFileManagerObjectCreationDatePropertyTemplate;
extern const FSProperty kFSFileManagerObjectModificationDatePropertyTemplate;
extern const FSProperty kFSFileManagerObjectBackupDatePropertyTemplate;
extern const FSProperty kFSFileManagerObjectAccessDatePropertyTemplate;
extern const FSProperty kFSFileManagerObjectLockPropertyTemplate;

extern const FSProperty kFSFileManagerObjectCumulativeModificationDatePropertyValue;
extern const FSProperty kFSFileManagerObjectCumulativeBackupDatePropertyValue;
extern const FSProperty kFSFileManagerObjectCumulativeAccessDatePropertyValue;
extern const FSProperty kFSFileManagerObjectCumulativeModificationDatePropertyTemplate;
extern const FSProperty kFSFileManagerObjectCumulativeBackupDatePropertyTemplate;
extern const FSProperty kFSFileManagerObjectCumulativeAccessDatePropertyTemplate;

extern const FSProperty kFSFileManagerVolumeCreationDatePropertyValue;
extern const FSProperty kFSFileManagerVolumeModificationDatePropertyValue;
extern const FSProperty kFSFileManagerVolumeBackupDatePropertyValue;
extern const FSProperty kFSFileManagerVolumeFileCountPropertyValue;
extern const FSProperty kFSFileManagerVolumeFolderCountPropertyValue;
extern const FSProperty kFSFileManagerVolumeObjectCountPropertyValue;
extern const FSProperty kFSFileManagerVolumeFormatPropertyValue;
extern const FSProperty kFSFileManagerVolumeCapabilityPropertyValue;
extern const FSProperty kFSFileManagerVolumeBlockCountPropertyValue;
extern const FSProperty kFSFileManagerVolumeBlockFreeCountPropertyValue;
extern const FSProperty kFSFileManagerVolumeBlockSizePropertyValue;
extern const FSProperty kFSFileManagerVolumeSizePropertyValue;
extern const FSProperty kFSFileManagerVolumeFreeSizePropertyValue;
extern const FSProperty kFSFileManagerVolumeIOQuantaPropertyValue;
extern const FSProperty kFSFileManagerVolumeLockPropertyValue;
File Manager Data Types and Constants 2-55
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
extern const FSProperty kFSFileManagerVolumeCreationDatePropertyTemplate;
extern const FSProperty kFSFileManagerVolumeModificationDatePropertyTemplate;
extern const FSProperty kFSFileManagerVolumeBackupDatePropertyTemplate;
extern const FSProperty kFSFileManagerVolumeFileCountPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeFolderCountPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeObjectCountPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeFormatPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeCapabilityPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeBlockCountPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeBlockFreeCountPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeBlockSizePropertyTemplate;
extern const FSProperty kFSFileManagerVolumeSizePropertyTemplate;
extern const FSProperty kFSFileManagerVolumeFreeSizePropertyTemplate;
extern const FSProperty kFSFileManagerVolumeIOQuantaPropertyTemplate;
extern const FSProperty kFSFileManagerVolumeLockPropertyTemplate;

extern const FSProperty kFSFileManagerFileCountPropertyValue;
extern const FSProperty kFSFileManagerFolderCountPropertyValue;
extern const FSProperty kFSFileManagerObjectCountPropertyValue;
extern const FSProperty kFSFileManagerFileCountPropertyTemplate;
extern const FSProperty kFSFileManagerFolderCountPropertyTemplate;
extern const FSProperty FSFileManagerObjectCountPropertyTemplate;

extern const FSProperty kFSFileManagerStartupFolderObjectRefValue;
extern const FSProperty kFSFileManagerStartupFolderObjectRefTemplate;

User Experience Property Constants 2

There are many constants for predefined user experience property values and
templates. The value constants are for completely assembled FSProperty
structures that describe the value attributes for most commonly used
properties; that is, they have a creator of 'uexp', a selector that indicates their
purpose, an attribute of 'valu' , and a tag with a version of
kFSCurrentReleasedVersion and an instance of kFSSingleInstanceProperty. You
don’t have to fill in any FSProperty structure, you can just use the constants.

The template constants are similar, except that the attribute field is left blank,
so you can use these for any attribute. We provide constants for the value
attribute because it the most commonly needed, but for those rare instances
when you want to use another attribute, you can copy the template over and
2-56 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
then just change the attribute field. Alternatively, you could copy the value
constant and then change the attribute field.

extern const FSProperty kFSUserExperienceFinderBasicInfoPropertyValue;
extern const FSProperty kFSUserExperienceFinderExtendedInfoPropertyValue;
extern const FSProperty kFSUserExperienceFinderVolumeInfoPropertyValue;
extern const FSProperty kFSUserExperienceDocumentTypePropertyValue;
extern const FSProperty kFSUserExperienceDocumentCreatorPropertyValue;
extern const FSProperty kFSUserExperienceCommentPropertyValue;
extern const FSProperty kFSUserExperienceFinderBasicInfoPropertyTemplate;
extern const FSProperty kFSUserExperienceFinderExtendedInfoPropertyTemplate;
extern const FSProperty kFSUserExperienceFinderVolumeInfoPropertyTemplate;
extern const FSProperty kFSUserExperienceDocumentTypePropertyTemplate;
extern const FSProperty kFSUserExperienceDocumentCreatorPropertyTemplate;
extern const FSProperty kFSUserExperienceCommentPropertyTemplate;

extern const FSProperty kFSUserExperienceApplicationPropertyValue;
extern const FSProperty kFSUserExperienceApplicationPropertyTemplate;
extern const FSProperty kFSUserExperienceApplicationListPropertyValue;
extern const FSProperty kFSUserExperienceApplicationListPropertyTemplate;

extern const FSProperty kFSUserExperienceLargeIconPropertyValue;
extern const FSProperty kFSUserExperienceLarge4BitIconPropertyValue;
extern const FSProperty kFSUserExperienceLarge8BitIconPropertyValue;
extern const FSProperty kFSUserExperienceSmallIconPropertyValue;
extern const FSProperty kFSUserExperienceSmall4BitIconPropertyValue;
extern const FSProperty kFSUserExperienceSmall8BitIconPropertyValue;
extern const FSProperty kFSUserExperienceLargeIconPropertyTemplate;
extern const FSProperty kFSUserExperienceLarge4BitIconPropertyTemplate;
extern const FSProperty kFSUserExperienceLarge8BitIconPropertyTemplate;
extern const FSProperty kFSUserExperienceSmallIconPropertyTemplate;
extern const FSProperty kFSUserExperienceSmall4BitIconPropertyTemplate;
extern const FSProperty kFSUserExperienceSmall8BitIconPropertyTemplate;

Fork-Related Data Types 2

There are several data types related to fork properties. This section describes
what types of fork are permitted, how you can manipulate your position in a
fork for reading or writing data, and how you can restrict fork access.
File Manager Data Types and Constants 2-57
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSForkType 2

The fork types enumeration is a list of the defined types of the File Manager’s
fork property. You use these values in the forkType field of the property tag for
a fork. Remember, there is only one fork property selector; you have to use this
enumeration to indicate which kind of fork you want.

typedef UInt16 FSForkType;

enum{
kFSInvalidForkType = 0,
kFSDataFork = 1,
kFSResourceFork = 2

};

Enumerator descriptions

kFSDataFork The data fork. This is corresponds to the data fork in the
System 7 File Manager application programming interface
or the normal file contents of single-forked file systems
such as DOS or UNIX.

kFSResourceFork The resource fork. This is the same as the resource fork in
the System 7 File Manager application programming
interface.

FSForkPositionDescriptor 2

Several stream functions use fork position descriptor structures to indicate
their location in a stream. The FSStreamSetMark function (page 2-95) sets a new
position for the current stream mark, and the FSStreamSimpleRead (page 2-97)
and FSStreamSimpleWrite (page 2-98) functions use the descriptors to identify
what to read from and write to the stream.

The fork position descriptor structure is defined by the
FSForkPositionDescriptor data type.
2-58 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
struct FSForkPositionDescriptor{
FSOffset positionOffset;
FSForkPosition positionMode;

};
typedef FSForkPositionDescriptor *FSForkPositionDescriptorPtr;

Field descriptions
positionOffset The offset to use in calculating the position.
positionMode The mode of the position. The permitted values are

defined in the FSForkPosition enumeration (page 2-59).

FSForkPosition 2

The fork position enumeration indicates the position mode of the fork position
descriptor.

typedef UInt32 FSForkPosition;

enum{
kFSAtMark = 0,
kFSFromStart = 1,
kFSFromLEOF = 2,
kFSFromMark = 3,

};

Enumerator descriptions

kFSAtMark Ignore the value in the positionOffset field of the fork
position descriptor structure, and locate the fork position
at the current mark.

kFSFromStart Start at the beginning of the fork and add in the value in
the positionOffset field of the fork position descriptor
structure to calculate the fork position.

kFSFromLEOF Start at the logical EOF of the fork and add in the value in
the positionOffset field of the fork position descriptor
structure to calculate the fork position.

kFSFromMark Calculate the fork position to a position relative to the
current mark by adding or subtracting the value in the
File Manager Data Types and Constants 2-59
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
positionOffset field of the fork position descriptor
structure to the current mark’s value.

FSForkAccessConstraints 2

The fork access constraints structure controls multi-user access by specifying
which operations can be performed on a fork. These constraints are defined
when the fork is opened initially for mapped-file or stream access. They are
typically used by utility programs that need exclusive access to a fork.

There are several options, defined by the FSObjectPrivileges (page 2-61) and
FSObjectPrivilegesDenied (page 2-62) flags, that you can set to identify the
operations allowed or denied by this structure.

The fork access constraints structure is defined by the FSForkAccessConstraints
data type.

struct FSForkAccessConstraints{
FSObjectPrivileges allowThisTask;
FSObjectPrivilegesDenied denyThisKernelProcess;
FSObjectPrivilegesDenied denyOtherKernelProcesses;

};
typedef FSForkAccessConstraints *FSForkAccessConstraintsPtr;

Field descriptions
allowThisTask These operations are allowed on the fork for the task that

opened the fork.
denyThisKernelProcess

These operations are forbidden on the fork for any other
task in same process as the task that actually opened the
fork. The fork-opening task itself is not denied these
operations.

denyOtherKernelProcesses
These operations are forbidden on the fork for all
processes other than the one that opened the fork.
2-60 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Object Privileges 2

FSObjectPrivileges 2

There are several options you can set to describe which operations can be
performed on an open stream or memory-mapped file.

Some volume formats may not be able to control each of these operations
individually. You usually set or clear the kFSCanWriteForkProperty,
kFSCanExtendForkProperty and kFSCanTruncateForkProperty bits together.

typedef OptionBits FSObjectPrivileges;

enum{
kFSInvalidPrivileges = 0x00000000,
kFSCanReadForkProperty = 0x00000200,
kFSCanWriteForkProperty = 0x00000400,
kFSCanExtendForkProperty = 0x00000800,
kFSCanTruncateForkProperty = 0x00001000,

};

Enumerator descriptions

kFSInvalidPrivileges
The privileges are invalid. Do not use this enumerator
without setting some other bit as well; otherwise you get
an error.
You can use this constant much as you might use the
kFStheNullObjectRef constant: when you want to create a
variable but you don’t want to use it yet. You can set it to
this value as a placeholder, in effect. If you use it before
initializing it to a valid option value, the resulting error
code reminds you to initialize it correctly.

kFSCanReadForkProperty
For streams, allow read operations. For mapped files,
allow the file to be mapped such that the memory can be
read. Mapped files must be opened with this bit set; that is,
they must at least be read-only files.
File Manager Data Types and Constants 2-61
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSCanWriteForkProperty
For streams, allow write operations. For mapped files,
allow the file to be mapped such that the memory can be
written. If not set, then the memory can be mapped
read-only.

kFSCanExtendForkProperty
For streams, allow the fork to grow by using functions to
cause the EOF to become larger. For mapped files, allow
the memory area to grow, and allow changes to addresses
beyond the EOF to actually be written to the fork. This also
allows the FSMappedFileSetAbsoluteEOF function
(page 2-103) to set the EOF to a larger value.

kFSCanTruncateForkProperty
For streams, allow the fork to shrink by using functions to
cause the EOF to become smaller. For mapped files, allow
the FSMappedFileSetAbsoluteEOF function (page 2-103) to
change the EOF to a smaller value.

FSObjectPrivilegesDenied 2

FSObjectPrivilegesDenied is a set of flags that describes which operations
cannot be performed on an open stream or mapped file. These are the same
flags as FSObjectPrivileges, but the name of the data type is changed as a
reminder that the operations are denied for the indicated entity.

typedef FSObjectPrivileges FSObjectPrivilegesDenied;

Mapped-File and Stream-Related Data Types 2

The FSStreamObjID type represents the stream objects that are used by stream
access functions such as FSSteamOpen (page 2-89) and FSStreamFlush (page 2-91).

typedef ObjectID FSStreamObjID;

The FSBackingStoreObjID type represents the backing objects that are used by
memory-mapped file access functions such as FSMappedFileOpen (page 2-99)
and FSMappedFileGetAbsoluteEOF (page 2-102).
2-62 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
typedef BackingObjectID FSBackingStoreObjID

FSStreamSetMarkOptions 2

There is an option you can use to determine how a stream’s mark is set when it
would otherwise be positioned beyond the stream’s EOF.

typedef OptionBits FSStreamSetMarkOptions;

enum {
kFSMarkPinToEOF = 0x00000001,

};

Enumerator descriptions

kFSMarkPinToEOF
If a new mark’s position would exceed the EOF, then set
the mark to the EOF instead. Otherwise, the mark is not
changed and an error is returned.

Object Iterator Data Types 2

The FSObjectIteratorObjID type represents the iterator objects that are used by
object iteration functions such as FSObjectIterateOnce (page 2-105) and
FSObjectIteratorCreate (page 2-104).

typedef ObjectID FSObjectIteratorObjID;

FSObjectIteratorCreationOptions 2

There are several options you can set to define how an iterator can behave
during object iteration. You can set more than one bit at a time. You set these
options when you create the iterator with the FSObjectIteratorCreate function
(page 2-104).

typedef OptionBits FSObjectIteratorCreationOptions;
File Manager Data Types and Constants 2-63
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
enum{
kFSInvalidObjectIteratorCreationOptions = 0,
kFSIncludetheUniverse = 0x00000001,
kFSIncludetheBootVolumeSet = 0x00000002,
kFSIncludeVolumes = 0x00000004,
kFSIncludeFolders = 0x00000008,
kFSIncludeFiles = 0x00000010,
kFSTraverseEmbeddedContainers = 0x01000000,

};

Enumerator descriptions

kFSInvalidObjectIteratorCreationOptions
The option is invalid.

kFSIncludetheUniverse
The iterator can return the universe in its iteration.

kFSIncludetheBootVolumeSet
The iterator can return the boot volume set in its iteration.

kFSIncludeVolumes The iterator can return all volumes in its iteration.
kFSIncludeFolders The iterator can return all folders in its iteration.
kFSIncludeFiles The iterator can return all files in its iteration.
kFSTraverseEmbeddedContainers

As it iterates, the iterator automatically enters and exits
any and all containers within the outermost scope. If you
use this option, you cannot use the
FSObjectIteratorChangeCurrentScope function to change
the current scope.

Object Iteration Order
Objects are returned in a random order. The File Manager
cannot guarantee the sequence in which objects are
returned; it can only guarantee that, iteration-by-iteration,
all objects will ultimately be returned and none will be
returned twice, assuming the container does not change
during iteration.
2-64 File Manager Data Types and Constants

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectIteratorMovement 2

There are several options you can set to change an iterator’s current scope with
the FSObjectIteratorChangeCurrentScope function (page 2-107). The current
scope must be an object capable of containing other objects. You set before
performing an object iteration to make the iterator move into or out of
containers. An enter movement expands the current scope, and an exit
movement telescopes it.

For an enter movement to succeed, the iterator must be positioned “on” the
container. That is, it must have already done an iteration, which returned an
object. You are now positioned on that object. When the iterator does an enter
movement, it now enters the object that was most recently returned.

typedef UInt32 FSObjectIteratorMovement;

enum{
kFSInvalidObjectIteratorMovement= 0,
kFSObjectEnter = 1,
kFSObjectExit = 2,

};

Enumerator descriptions

kFSInvalidObjectIteratorMovement
This is an invalid movement option.

kFSObjectEnter Enter the container most recently returned by a previous
iteration.

kFSObjectExit Exit the container you are inside. If the outermost and
current scope are defined as the same object, and you exit
the current scope, your outermost scope is also redefined
to the new current scope object. That’s when you get the
E_ExitIteratorScope result code that tells you that your
outermost scope has expanded. You can continue using the
iterator.
File Manager Data Types and Constants 2-65
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
File Manager Functions 2

This section describes the functions in the File Manager application
programming interface header file (FileManager.h), not the more complex
functions in the File Manager SPI header file (FileManagerSPI.h). Occasionally,
there are references to SPI functions, but you do not need them to accomplish
the basic File Manager tasks. The SPI functions will be described in a later
document.

Using File System Object References 2

This section describes the File Manager functions that explicitly handle file
system object references as opposed to the objects themselves. Most File
Manager functions use object references in one way or another, some implicitly
creating object references and others using object references to identify objects.

You can clone, register, and dispose of file system object references. You can
also obtain object references for objects within containers and for the containers
themselves.

Note
Whenever a function returns an file system object
reference, it implicitly creates an object reference that you
are responsible for disposing of later. ◆

FSObjectCreateRef 2

Gets a file system object reference for a named object within a container.

OSStatus FSObjectCreateRef(
FSObjectRef container_i,
ConstFSName objectName_i,
FSObjectRef* objectRef_o);
2-66 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
container_i The file system object reference for the object that contains the
target object. You can get an object reference from several
functions, such as FSObjectCreateRef (page 2-66),
FSObjectGetContainerRef (page 2-68), and FSObjectIterateOnce
(page 2-105).

objectName_i The name of the target object.

objectRef_o A pointer to the file system object reference for the target object.
On output, the function returns this object reference. When you
are done using this object reference, you are responsible for
disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

You can use this function when you know the container and the name of an
object, but not the object’s object reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-67
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectGetContainerRef 2

Gets the file system object reference for the container of a given object.

OSStatus FSObjectGetContainerRef(
FSObjectRef objectRef_i,
FSObjectRef* containerRef_o);

objectRef_i The file system object reference for the object in question. You
can get an object reference from several functions, such as
FSObjectCreateRef (page 2-66), FSVolumeGetInformation
(page 2-72), and FSObjectIterateOnce (page 2-105).

containerRef_o
A pointer to the file system object reference for the target
container object. On output, the function returns this object
reference. When you are done using this object reference, you
are responsible for disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-68 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectRefClone 2

Clones a file system object reference.

OSStatus FSObjectRefClone(
FSObjectRef object_t,
FSObjectRef* clone_o);

object_t The file system object reference to be copied. You can get an
object reference from several functions, such as
FSObjectCreateRef (page 2-66), FSObjectGetContainerRef
(page 2-68), and FSObjectIterateOnce (page 2-105).

clone_o On output, a pointer to the cloned file system object reference, a
copy of object_t. When you are done using the copied object
reference, you are responsible for disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This function copies an object reference for use within the same kernel process.
There are now two object references that your process needs to dispose of: the
original object reference and the new copy.

You typically clone an object reference to balance a future call to the
FSObjectRefDispose function (page 2-74).

Some examples where you might use this function:

■ You have a function in your code that takes a file system object reference as
input, does something to the object, and disposes of it. If you wanted to use
that object reference after you called that function, you would need to clone
it first. In this way, the function can safely dispose of one of the object
references and you can continue to use the other copy until it disposes of it.

■ An object-oriented programming example is a situation where you want to
logically think of file system object references as being their own objects or
as embedded in some other object. In the constructor for an object you
would clone the object reference so that while that object exists you always
have a usable object reference, yet creator of the object can dispose of the
object reference whenever it likes. Then in the destructor for that object, you
File Manager Functions 2-69
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
would dispose of the object reference. You can think of it basically as two
separate entities within the same program that both have their own interest
in this object reference, and the clone gives you the opportunity to make that
other copy so you dispose of them independently.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To copy an object reference for another process to use, you need to register the
object reference with the FSObjectRefRegister function (page 2-70).

FSObjectRefRegister 2

Registers a file system object reference for another process.

OSStatus FSObjectRefRegister(
FSObjectRef senderObject_t,
KernelProcessID receiverPid_i);

senderObject_t
The file system object reference that is being registered. You can
get an object reference from several functions, such as
FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105). The receiver process is responsible for disposing
of its copy of this object reference.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-70 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
receiverPid_i
The receiver process–that is, other kernel process that will be
using the registered file system object reference. When the
receiver process is done using the registered object reference, it
is responsible for disposing of the reference. In effect, the File
Manager acts as if the senderObject_t object reference is
returned to the receiverPid_i process.

function result A result code. See “File Manager Result Codes” (page 1-50) for
a list of the result codes the File Manager can return.

DISCUSSION

This function is similar to the FSObjectRefClone function in that it copies a file
system object reference, but it provides an object reference that is valid for a
different kernel process.

This function is especially useful for the Code Fragment Manager (CFM) when
it launches an application. The application is going to come up in a different
process, so it will need an object reference that is valid in that process.

You might use this call if you have several processes where one process,
typically a server of some kind, obtains object references for use by other
processes, typically clients of that server. If the receiver process does not
actually directly call the File Manager with that object reference, then you don’t
need to register the object reference to that process.

It would also be possible to have the server process make all of the calls to the
File Manager. Object references can still be passed between client and server,
but if the clients never use the references directly, then there is no need to
register the references to those clients.
File Manager Functions 2-71
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To copy an object reference for the same process to use, you need to clone the
object reference with the FSObjectRefClone function (page 2-69).

FSVolumeGetInformation 2

Gets a volume’s file system object reference.

OSStatus FSVolumeGetInformation(
FSVolumeObjID volume_t,
FSObjectRef* object_o);

volume_t The volume’s object ID. You can use the constant
kFStheBootVolumeObject to get the boot volume’s object ID.

object_o A pointer to the volume’s file system object reference. On
output, the function returns this object reference. When you are
done using this object reference, you are responsible for
disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-72 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSVolumeSetGetInformation 2

Gets a volume set’s file system object reference.

OSStatus FSVolumeSetGetInformation(
FSVolumeSetObjID volumeSet_t,
Boolean* includesBootVolume_o,
FSObjectRef* object_o);

volumeSet_t The volume set’s object ID. You can use the constant
kFStheBootVolumeSetObject to get the boot volume set’s object
ID.

includesBootVolume_o
This has a value of true if the volume set includes the boot
volume. Currently, the boot volume set is the only permitted
volume set, so this should always be true.

object_o A pointer to the volume set’s file system object reference. On
output, the function returns this object reference. When you are
done using this object reference, you are responsible for
disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-73
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectRefDispose 2

Disposes of a file system object reference.

OSStatus FSObjectRefDispose (FSObjectRef object_t);

object_t The file system object reference to be disposed. You can get an
object reference from several functions, such as
FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105).

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

A process must dispose of all file system object references returned to it.

Object references can be returned as explicit output parameters or as
properties. If a reference is returned several times for a given object, it must be
disposed of separately for each time it was returned.

When all references to a given object are disposed of, the File Manager disposes
of any resources it allocated in order to operate on that object. The File
Manager automatically disposes of all references for a process when the
process terminates.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-74 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For references returned as properties (especially when iterating over multiple
objects), the more complex FSObjectRefDisposeBulk SPI function may be more
convenient. See the FileManagerSPI.h header file for details of this function.

Using File System Objects 2

This section describes the File Manager functions that explicitly handle objects
themselves as opposed to their file system object references. In order to use
these functions, you need to know an object’s object reference, but these
functions do not return object references as output. You can move, rename,
exchange, flush, and delete objects.

FSObjectRename 2

Renames a file or folder.

OSStatus FSObjectRename(
FSObjectRef sourceObjectRef_t,
ConstFSName newObjectName_i);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-75
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
sourceObjectRef_t
The file system object reference of the file or folder to rename.
You can get an object reference from several functions, such as
FSObjectCreateRef (page 2-66), FSObjectGetContainerRef
(page 2-68), and FSObjectIterateOnce (page 2-105).

newObjectName_i
The new name for the file or folder.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If another
file or folder already exists in the new parent container with the
same name as the renamed object’s new name, the function
returns the E_DuplicateName result code.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectMoveRename 2

Moves and renames a file or folder.

OSStatus FSObjectMoveRename(
FSObjectRef sourceObjectRef_t,
FSObjectRef destContainerRef_i,
ConstFSName newObjectName_i);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-76 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
sourceObjectRef_t
The file system object reference of the file or folder in question.
You can get an object reference from several functions, such as
FSObjectCreateRef (page 2-66), FSObjectGetContainerRef
(page 2-68), and FSObjectIterateOnce (page 2-105).

destContainerRef_i
The file system object reference of the container where the
moved object is to be placed.

newObjectName_i
The new name for the moved file or folder. This is an optional
parameter; pass a value of NULL if you don’t want to change the
name.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If another
file or folder already exists in the new parent container that has
the same name as the object or as the object’s new name, the
function returns the E_DuplicateName result code.

DISCUSSION

If you provided a new name for the file or folder object in the newObjectName_i
parameter, this function also renames the object. If you don’t want to change
the name, pass a value of NULL for the newObjectName_i parameter.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-77
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectExchange 2

Exchanges the properties of two objects.

OSStatus FSObjectExchange(
FSObjectRef object1_i,
FSObjectRef object2_i);

object1_i The file system object reference of one object. You can get an
object reference from several functions, such as
FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105).

object2_i The file system object reference of the object to exchange it with.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This call is used to allow a “safe save” that preserves an object’s persistent
reference. For example, you might want to save an updated set of properties to
a temporary object so that any errors while saving result in the original object
being unchanged; but, you also want the object’s persistent reference to remain
unchanged so that aliases still work.

What you do is create a second object somewhere (in a temporary folder, for
example). Write out its properties, both unchanged and changed, to the second
object. When done saving, call the FSObjectExchange function; the fork
properties and the modification date of the two objects are swapped in such a
way that the original object has the new properties but retains its old persistent
reference.
2-78 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectFlush 2

Flushes any data cached for an object.

OSStatus FSObjectFlush (FSObjectRef object_t);

object_t The file system object reference of the object to be flushed. You
can get an object reference from several functions, such as
FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105)..

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

If the object is a file, then any data written to it by a stream or backing store is
written by the File Manager to its underlying device. If the object is a volume,
then the volume-level metadata for that volume is flushed.

Any changes to the object’s properties are flushed, regardless of the object’s
type. Data about the object, or contained in the object, can still reside in the File
Manager’s caches, but any changes are written out.

Note that the underlying device’s driver, or the device itself, may cache some
data, so the File Manager cannot guarantee that all data has actually been
written to the underlying media.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-79
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectDelete 2

Deletes an object.

OSStatus FSObjectDelete (FSObjectRef object_t);

object_t The object to be deleted. You can get a file system object
reference from several functions, such as FSObjectCreateRef
(page 2-66) and FSObjectIterateOnce (page 2-105).

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This function does not dispose of object’s file system object reference; you must
still dispose it yourself. Further attempts to use the object reference return an
E_ObjectNotFound result code.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-80 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Creating Files and Folders 2

FSFileCreate 2

Creates a new named file.

OSStatus FSFileCreate(
FSObjectRef containerRef_t,
ConstFSName fileName_i,
OSType fileCreator_i,
OSType fileType_i,
FSObjectRef* fileRef_o);

containerRef_t
The file system object reference of the object to contain the new
file. You can get an object reference from several functions, such
as FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105).

fileName_i The name of the new file as a persistent text object.

fileCreator_i
The new file’s Finder creator.

fileType_i The new file’s Finder file type.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-81
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
fileRef_o A pointer to the file system object reference of the new file. On
output, the function returns this object reference. When you are
done using this object reference, you are responsible for
disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If another
file already exists in that container with the same name, creator,
and type, the function returns the E_DuplicateName result code.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSFolderCreate 2

Create a new named folder within a specified folder.

OSStatus FSFolderCreate(
FSObjectRef containerRef_t,
ConstFSName folderName_i,
FSObjectRef* folderRef_o);

containerRef_t
The file system object reference of the object to contain the new
folder. You can get an object reference from several functions,
such as FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105).

folderName_i The name of the new folder as a persistent text object.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-82 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
folderRef_o A pointer to the file system object reference of the new folder.
On output, the function returns this object reference. When you
are done using this object reference, you are responsible for
disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If another
folder already exists with the same name in that container, the
function returns the E_DuplicateName result code.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Getting and Setting Properties 2

FSObjectGetOneProperty 2

Gets a simple property attribute of an object.

OSStatus FSObjectGetOneProperty(
FSObjectRef objectRef_t,
const FSProperty* property_i,
ByteCount propertySize_i,
LogicalAddress property_o);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-83
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
objectRef_t The file system object reference of the object in question. You
can get an object reference from several functions, such as
FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105).

property_i A pointer to the property attribute to get.

propertySize_i
The size (in bytes) of the property attribute data specified by the
property_o parameter.

property_o The address of a buffer in which to return the requested
property data. You are responsible for allocating an adequately
large buffer.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

You can use this function to get the value of a simple property as well as any
other attributes of all properties such as size, type, and state. You cannot use
this function to get the value attribute of a fork property; for this you must use
stream or memory-mapped file access functions, such as FSStreamSimpleRead
(page 2-97) and FSMappedFileOpen (page 2-99).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-84 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectSetOneProperty 2

Sets a property attribute of an object.

OSStatus FSObjectSetOneProperty(
FSObjectRef objectRef_t,
const FSProperty* property_i,
ByteCount propertySize_i,
ConstLogicalAddress propertyData_i);

objectRef_t The file system object reference of the object in question. You
can get an object reference from several functions, such as
FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105).

property_i A pointer to the property attribute to set. The attribute to get is
specified by property_i->attribute.

propertySize_i
The size (in bytes) of the property attribute data specified by the
propertyData_i parameter.

propertyData_i
The address of the buffer that holds the new property data.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

You can use this function to set the value of a simple property as well as any
other attributes of all properties such as size, type, and state. You cannot use
this function to set the value attribute of a fork property; for this attribute, you
must use stream or memory-mapped file access functions, such as
FSStreamSimpleWrite (page 2-98) and FSMappedFileOpen (page 2-99).
File Manager Functions 2-85
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Getting File System Object Information 2

This section describes the functions that return an object information structure,
as defined by the FSObjectInformation data type (page 2-19), which provides
separate information structures for files, folders, and volumes. These structures
contain a predefined set of aggregate property data such as the object’s option
flags and Finder information.

FSObjectGetInformation 2

Gets an object information structure for a file or folder.

OSStatus FSObjectGetInformation(
FSObjectRef objectRef_t,
FSInfoVersion infoVersion_i,
FSObjectInformation* objectInfo_o,
FSName objectName_o);

objectRef_t The file system object reference of the object in question. You
can get an object reference from several functions, such as
FSObjectCreateRef (page 2-66) and FSObjectIterateOnce
(page 2-105).

infoVersion_i
The version of the object information structure specified by the
objectInfo_o parameter. Use the constant

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-86 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
kFSInfoCurrentReleasedVersion for this parameter to specify the
latest version of the object information structure. This
parameter is ignored if objectInfo_o is omitted.

objectInfo_o A pointer to the object information structure being returned.
This is an optional parameter; pass a null pointer if you don’t
want the File Manager to provide this structure on output.

objectName_o The name of the specified object. If you specify this, it must
reference a preinitialized persistent text object of sufficient size
to contain the object’s name. This is an optional parameter; pass
a value of NULL if you don’t want the File Manager to provide
the name on output.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectGetVolumeInformation 2

Gets an object information structure for a volume.

OSStatus FSObjectGetVolumeInformation(
FSObjectRef volumeItemRef_t,
FSInfoVersion infoVersion_i,
FSObjectInformation* volumeInfo_o,
FSObjectRef* volumeObjectRef_o,
FSName volumeName_o);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-87
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
volumeItemRef_t
The file system object reference of a volume item such as a file
or folder or the object reference for the volume itself. You can
get an object reference from several functions, such as
FSObjectCreateRef (page 2-66), FSObjectGetContainerRef
(page 2-68), and and FSObjectIterateOnce (page 2-105).

infoVersion_i
The version of the object information structure specified by the
volumeInfo_o parameter. Use the constant
kFSInfoCurrentReleasedVersion for this parameter to specify the
latest version of the object information structure. This
parameter is ignored if volumeInfo_o is omitted.

volumeInfo_o A pointer to the object information structure being returned.
This is an optional parameter; pass a null pointer if you don’t
want the File Manager to provide this structure on output.

volumeObjectRef_o
A pointer to the object reference of the volume. This is an
optional parameter; pass a null pointer if you don’t want the
File Manager to provide this object reference on output.

volumeName_o The name of the specified volume. If you specify this, it must
reference a preinitialized persistent text object of sufficient size
to contain the object’s name. This is an optional parameter; pass
a value of NULL if you don’t want the File Manager to provide
the name on output.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This function is functionally equivalent to the FSObjectGetInformation function
when the target object reference is the volume’s object reference.
2-88 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Using Stream Access Methods 2

You must use stream or memory-mapped file access methods to get and set the
value attribute of a fork property.

FSStreamOpen 2

Opens a file fork for stream access.

OSStatus FSStreamOpen(
FSObjectRef fileObjectRef_i,
FSForkType fork_i,
FSStreamObjID* stream_o);

fileObjectRef_i
The file system object reference of the file you wish to open.

fork_i The type of fork to open. The only allowable values are
kFSDataFork and kFSResourceFork.

stream_o A pointer to the new stream ID. On output, the function returns
the stream ID.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If the file is
locked or is open on another stream with conflicting access
constraints, then the function returns the E_PermissionViolation
result code.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-89
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
[••• Review query: Which error code is this? •••]

DISCUSSION

This function attempts to open the fork with exclusive read/write access.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To specify particular access constraints, the more complex
FSStreamOpenWithConstraints SPI function may be more convenient. See the
FileManagerSPI.h header file for details of this function.

FSStreamClose 2

Closes a stream.

OSStatus FSStreamClose (FSStreamObjID stream_t);

stream_t The object ID of the stream to be closed.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-90 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
DISCUSSION

This function closes a stream that had been previously opened with the
FSStreamOpen function (or the FSStreamOpenWithConstraints SPI function).

Any data written to the stream is flushed, as with the FSStreamFlush function
(page 2-91), before the stream is closed. The File Manager disposes of any
resources allocated for use by this stream, releases any range locks, and makes
invalid the stream ID specified by the stream_t parameter.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSStreamFlush 2

Flushes any data written to a stream.

OSStatus FSStreamFlush (FSStreamObjID stream_t);

stream_t The object ID of the stream to be flushed.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

Typically you would use this function when you want to continue to use a
stream, keeping it open, but you want to make sure its contents are
occasionally written out. (If you are finished with the stream, you would use
the FSStreamClose function (page 2-90) instead.)

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-91
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Stream data can still reside in the File Manager’s caches, but any changes are
written out by the File Manager. Note that the underlying device’s driver, or
the device itself, may cache some data, so the File Manager cannot guarantee
that all data has actually been written to the underlying media.

Any volume-level data needed to access the stream is flushed, but other
information about the object (such as its modification date) might not be
flushed by this function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSStreamGetAbsoluteEOF 2

Gets the logical EOF of an open stream.

OSStatus FSStreamGetAbsoluteEOF(
FSStreamObjID stream_t,
FSOffset* currentEOF_o);

stream_t The object ID of the stream in question.

currentEOF_o A pointer to the stream’s logical end-of-file (EOF). On output,
the function returns the EOF.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-92 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSStreamSetAbsoluteEOF 2

Sets the logical EOF of an open stream.

OSStatus FSStreamSetAbsoluteEOF(
FSStreamObjID stream_t,
const FSOffset* eof_i);

stream_t The object ID of the stream in question.

eof_i A pointer to the stream’s new logical end-of-file (EOF).

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

If there is not enough space on the volume to set the stream’s
EOF to the offset specified by the eof_i parameter, then the EOF
is not changed and the function returns the E_DiskFull result
code.

DISCUSSION

This function sets the logical end of file, which allows you to adjust the size of
the fork. You could use this function to extend a fork before writing out
additional data or you could use the function to shorten a fork from which you
have just deleted data to release the unused space. For purposes of range locks,
changing the EOF acts as a write between the old and new EOF.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-93
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSStreamGetMark 2

Gets a stream’s current mark.

OSStatus FSStreamGetMark(
FSStreamObjID stream_t,
FSOffset* currentMark_o);

stream_t The object ID of the stream in question.

currentMark_o
A pointer to the stream’s current mark–that is, the current
position offset. On output, the function returns the current
mark.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This function returns the offset from the start of the file that would be
equivalent to using a FSForkPositionDescriptor whose positionOffset is 0, and
whose positionMode is kFSFromMark. A stream’s mark is automatically set by the
File Manager to the byte following the last read or write, or you can set it
manually with the FSStreamSetMark function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-94 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSStreamSetMark 2

Sets a stream’s mark to a new position.

OSStatus FSStreamSetMark(
FSStreamObjID stream_t,
const FSForkPositionDescriptor* newPosition_i,
FSStreamSetMarkOptions options_i,
FSOffset* originalMark_o,
FSOffset* currentMark_o);

stream_t The object ID of the stream in question.

newPosition_i
The new position of the stream’s mark.

options_i The options set for this function. Currently, the only valid
options are 0 and kFSMarkPinToEOF.

originalMark_o
A pointer to the stream’s previous mark–that is, the offset that
is being changed by this function. On output, the function
returns the previous mark.

currentMark_o
A pointer to the stream’s new current mark–that is, the current
position offset relative to the start of the stream. On output, the
function returns the current mark.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-95
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. Otherwise,
an error is returned.

If the options_i parameter is set to the kFSMarkPinToEOF constant
and the new mark position specified by newPosition_i exceeds
the stream’s current EOF, then the function sets the mark to the
stream’s EOF and returns the E_EndOfFileErr result code.
Otherwise, an E_PosOutOfRange result code is returned. The
mark can never be set past the end of the stream.

DISCUSSION

A stream’s mark is usually used for sequential access to a stream or to establish
a position relative to the ending position of the last operation on a stream. This
function lets you explicitly set the mark for future operations that will operate
relative to the current mark. A situation where this is especially useful is when
you are working with a large or complex structure: you can set the mark to
accomodate entire structures, so that the next read or write is positioned at the
beginning of the next structure.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-96 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSStreamSimpleRead 2

Reads data from an open stream.

OSStatus FSStreamSimpleRead(
FSStreamObjID stream_t,
ByteCount requestLength_i,
const FSForkPositionDescriptor* position_i,
LogicalAddress data_o,
ByteCount* actualLength_o,
FSOffset* currentMark_o);

stream_t The object ID of the stream in question.

requestLength_i
The number of bytes to read from the stream.

position_i A pointer to the starting position for the read operation.

data_o The address where the requested data is to be returned. On
output, the function returns the data.

actualLength_o
A pointer to the actual number of bytes read from the stream.
This is an optional parameter; pass a null pointer for this
parameter when you don’t want the File Manager to provide
this length value on output.

currentMark_o
A pointer to the stream’s mark position after the read operation.
This is an optional parameter; pass a null pointer for this
parameter when you don’t want the File Manager to provide
this mark value to you on output. The stream mark is, however,
always positioned after the last byte read by a successful
FSStreamSimpleRead function.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If you try
to read beyond the stream’s EOF, then the function sets the
mark to the EOF, fills in the actualLength_o parameter with the
number of bytes actually read, and returns the E_EndOfFileErr
result code. If you are already at the EOF, then the
actualLength_o parameter is set to 0, and you get the
E_EndOfFileErr result code.
File Manager Functions 2-97
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSStreamSimpleWrite 2

Writes data to an open stream.

OSStatus FSStreamSimpleWrite(
FSStreamObjID stream_t,
ByteCount requestLength_i,
ConstLogicalAddress data_i,
const FSForkPositionDescriptor* position_i,
ByteCount* actualLength_o,
FSOffset* currentMark_o);

stream_t The object ID of the stream in question.

requestLength_i
The number of bytes to write to the stream.

data_i The address of a buffer containing the data to write.

position_i A pointer to the starting position for the write operation.

actualLength_o
A pointer to the actual number of bytes written to the stream.
This is an optional parameter; pass a null pointer for this
parameter when you don’t want the File Manager to provide
this length value on output.

currentMark_o
A pointer to the stream’s mark position after the write
operation. This is an optional parameter; pass a null pointer for

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-98 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
this parameter when you don’t want the File Manager to
provide this length value to you on output. The stream mark is,
however, always positioned after the last byte written by a
successful FSStreamSimpleWrite function.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If you try
to write beyond the stream’s EOF, then the function moves the
EOF to the byte following the last written byte.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Using Memory-Mapped File Access Methods 2

You must use stream or memory-mapped file access methods to get and set the
value attribute of a fork property.

FSMappedFileOpen 2

Opens a file fork for memory-mapped access.

OSStatus FSMappedFileOpen(
FSObjectRef fileObjectRef_t,
FSForkType fork_i,
FSBackingStoreObjID* backingStore_o);

fileObjectRef_t
The file system object reference of the file to open.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-99
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
fork_i The type of fork to open. The only allowable values are
kFSDataFork and kFSResourceFork.

backingStore_o
A pointer to the object ID of the backing store used to access the
fork. On output, the function returns the object ID. This is the
value you pass to the kernel CreateArea function as its
backingObject parameter in order to create memory for your
backing store object.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.If the file is
locked or is open on another stream with conflicting access
constraints, then the function returns the E_PermissionViolation
result code.

DISCUSSION

This function attempts to open the fork with exclusive read/write access.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To specify particular access constraints, the more complex
FSMappedFileOpenWithConstraints SPI function may be more convenient. See
the FileManagerSPI.h header file for details of this function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-100 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSMappedFileClose 2

Closes an access path to a file used for backing store.

OSStatus FSMappedFileClose (FSBackingStoreObjID backingStore_t);

backingStore_t
The object ID of the backing store to be closed.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This function closes a backing store that had been opened with the
FSMappedFileOpen function (or the FSMappedFileOpenWithConstraints SPI
function).

Any data written to this backing store by writing to pages backed by this store
is flushed (that is, written out by the File Manager) before the backing store is
closed. The File Manager disposes of any resources allocated for use by this
backing store and makes invalid the the backing store ID specified by the
backingStore_t parameter.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To open a file with particular access constraints, you need to use the more
complex FSMappedFileOpenWithConstraints SPI function. See the
FileManagerSPI.h header file for details of this function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-101
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSMappedFileGetAbsoluteEOF 2

Gets the EOF of the fork being accessed by a backing store.

OSStatus FSMappedFileGetAbsoluteEOF(
FSBackingStoreObjID backingStore_t,
FSOffset* currentEOF_o);

backingStore_t
The object ID of the backing store used to access the fork.

currentEOF_0 A pointer to the fork’s current EOF–that is, the fork’s size (in
bytes). On output, the function returns the EOF.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

Since memory-mapped file access to a fork is accomplished by directly
accessing memory pages, the virtual memory system must read and write
entire pages. If any data on the last page is modified, the entire page is written,
resulting in the fork size being rounded up to a multiple of a page size. This
also true for access to pages beyond the fork’s EOF.

You can set the fork’s EOF implicitly by writing to backed pages or explicitly
by using the FSMappedFileSetEOF function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-102 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSMappedFileSetAbsoluteEOF 2

Sets the EOF of the fork being accessed by a backing store.

OSStatus FSMappedFileSetAbsoluteEOF(
FSBackingStoreObjID backingStore_t,
const FSOffset* eof_i,
FSOffset* currentEOF_o);

backingStore_t
The object ID of the backing store used to access the fork.

eof_i A pointer to the fork’s new EOF.

currentEOF_o A pointer to the fork’s current EOF–that is, the fork’s size (in
bytes). On output, the function returns the EOF.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

Since access to a fork via a backing store (that is, memory-mapped file access) is
accomplished by directly accessing memory pages, the virtual memory system
must read and write entire pages. If anything on the last page is modified, the
entire page is written, resulting in the fork size being rounded up to a multiple
of a page size. Similarly for access to pages beyond the fork’s EOF.

This call would typically be used when a fork has been memory mapped to
enable convenient access to a file’s data structures as if it were completely in
memory. You would make all changes to the data structures, then use this call
to indicate the number of bytes that are valid and should be written to the fork.

This call allows the EOF to be explicitly set for a fork being accessed via a
backing store. Any data beyond the EOF is not actually written to the fork and
the File Manager has no way to detect access to pages beyond the EOF.
File Manager Functions 2-103
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Iterating Over File System Objects 2

This section describes the File Manager functions that create and use object
iterators, that change an iterator’s current scope, and that restart and dispose of
iterators.

FSObjectIteratorCreate 2

Creates an iterator.

OSStatus FSObjectIteratorCreate(
FSObjectRef outermostScope_t,
FSObjectIteratorCreationOptions options_i,
FSObjectIteratorObjID* iterator_o);

outermostScope_t
The object reference of the object that is the outermost scope.
Initially, the outermost and current scopes are set to the same
object. The outermost and current scope objects must be objects
that can contain other objects–that is, the universe, a volume
set, a volume, or a folder, but not a file.

options_i A series of options that control how an iterator behaves: which
kinds of objects it returns and whether or not it traverses
embedded containers. These options are defined in the
FSObjectIteratorCreationOptions enumeration (page 2-63).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-104 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
iterator_o A pointer to the object ID of the iterator. On output, the
function returns the object ID. When you have finished using an
iterator, call the FSObjectIteratorDispose function to dispose of
it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

When you create an iterator, it is not positioned on any object, although it is
inside its current scope (and, since they are initially the same, it is inside its
outermost scope also). It is in a state of kFSIteratorSOI (start of iteration)
meaning that all objects in the current scope have yet to be returned.

There are several options that you can use to determine an iterator’s behavior
when it iterates. These are defined by the FSObjectIteratorCreationOptions
enumeration (page 2-63).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectIterateOnce 2

Iterates once to the next object.

OSStatus FSObjectIterateOnce(
FSObjectIteratorObjID iterator_t,
FSInfoVersion objectInfoVersion_i,

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-105
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSObjectInformation* objectInfo_o,
FSObjectRef* objectRef_o,
FSName objectName_o);

iterator_t The object ID of the iterator.

objectInfoVersion_i
The version of the object information structure specified by the
objectInfo_o parameter. Use the constant
kFSInfoCurrentReleasedVersion for this parameter to specify the
latest version of the object information structure. This
parameter is ignored if objectInfo_o is omitted.

objectInfo_o A pointer to the object information structure being returned.
This is an optional parameter; pass a null pointer if you don’t
want the File Manager to return this structure on output.

objectRef_o A pointer to the file system object reference of the current
iterator object. This is an optional parameter; pass a null pointer
if you don’t want the File Manager to return this structure on
output.

objectName_o The name of the specified object. If you specify this, it must
reference a preinitialized persistent text object of sufficient size
to contain the object’s name. This is an optional parameter; pass
a value of NULL if you don’t want the File Manager to return
this name on output.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return. If the
iterator has already returned all the appropriate objects in its
current scope, then the function returns the E_EndOfIteration
result code.
If, however, any container in the scope stack (between the
outermost and current scopes has been moved or deleted, you
get the E_IteratorScopeException result: You are no longer
where you thought you were. You cannot continue to use the
iterator until you recreate it with the FSObjectIteratorRecreate
SPI function or dispose of it with the FSObjectIteratorDispose
function (page 2-110).
2-106 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
DISCUSSION

This function attempts to return information for the next object that meets all
the currently established iteration criteria: the options you set when you
created the iterator with the FSObjectIteratorCreate function (page 2-104), and
any changes you have made to the current scope with the
FSObjectIteratorChangeCurrentScope function (page 2-107).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectIteratorChangeCurrentScope 2

Changes an object iterator’s current scope.

OSStatus FSObjectIteratorChangeCurrentScope(
FSObjectIteratorObjID iterator_t,
FSObjectIteratorMovement movement_i);

iterator_t The object ID of the iterator.

movement_i The direction of movement for the iterator: into or out of a
container. These are defined in the FSObjectIteratorMovement
enumeration (page 2-65).

If the movement is set to kFSObjectEnter, then the iterator will
be positioned inside the container object last returned by the
most recent iteration, but not on any particular object. In fact,
the container could be empty. That container object becomes the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-107
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
new current scope of the iterator and the iterator is put into a
state of kFSIteratorSOI (start of iteration) meaning that all
objects in the current scope have yet to be returned.

If the movement is set to kFSObjectExit, then the current scope
moves out of the current container to become the object that
contains this container. That is, if folder A (previous current
scope) is in inside the folder WrapsA, and you want to exit the
current scope, then the WrapsA folder becomes the new current
scope.

If the current scope and the outermost scope were the same
before the iteration, then the outermost scope also changes to
the new current scope and the function returns the
E_ExitIteratorScope result code so that you realize your next
iteration will be outside the scope that you used to create the
iterator. The iterator remains usable.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

If any object in the scope stack (that is, any object between the
outermost scope and the current scope) is moved, the iterator is
invalidated and the function returns the
E_IteratorScopeException result code until it has been explicitly
fixed (by the SPI function FSObjectIteratorRecreate) or
disposed of by the FSObjectIteratorDispose function
(page 2-110). This function adds or removes objects from the
scope stack.

SPECIAL CONSIDERATIONS

You cannot use this function if you created the iterator with the
kFSTraverseEmbeddedContainers option.
2-108 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To fix an invalidated iterator, you may need to use the SPI function
FSObjectIteratorRecreate. See the FileManagerSPI.h header file for details of
this function.

FSObjectIteratorRestart 2

Restarts an object iterator.

OSStatus FSObjectIteratorRestart (FSObjectIteratorObjID iterator_t);

iterator_t The object ID of the iterator.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

The iterator is put into an object iteration state of kFSIteratorSOI (start of
iteration), meaning that all objects in the current scope have yet to be returned.
The iterator is not positioned on any object; it is positioned before the first
object in the scope that was used to create the iterator (that is, the outermost
scope).

You use this function to completely restart iteration within the current scope,
ignoring any state information about objects previously returned in the current

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-109
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
scope. The outermost scope is not affected. State information about which
objects have been returned from scopes outside the current scope is unchanged.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSObjectIteratorDispose 2

Disposes of an object iterator.

OSStatus FSObjectIteratorDispose (FSObjectIteratorObjID iterator_t);

iterator_t The object ID of the iterator.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This functions prompts the File Manager to dispose of the iterator and release
any resources allocated to it. Further attempts to use the iterator will result in
an error.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-110 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Cross Referencing Object References and FSSpec File Specifications 2

FSObjectRefGetFSSpec 2

Gets an FSSpec file specification for a given file system object reference.

OSStatus FSObjectRefGetFSSpec(
FSObjectRef object_t,
FSSpec* fSSpec_o);

object_t A pointer to the file system object reference for which you wish
to obtain a FSSpec file specification.

fSSpec_o A pointer to the FSSpec file specification, suitable for use with
the System 7 File Manager application programming interface,
that corresponds to the given file system object reference. On
output, the function returns the FSSpec file specification.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

You can use this function if your code uses both the System 7 File Manager
application programming interface and the Mac OS 8 FileManager (or has
clients that use both types of file system software). For example, if you have a

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-111
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
piece of code that has a function that still uses the FSSpec data type, but that has
been converted internally to use the file system object references; you can use
this function to produce an FSSpec data type as an output for the preexisting
function.

Note
You are strongly recommended to provide an application
programming interface that uses file system object
references. ▲

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FSSpecGetFSObjectRef 2

Gets a file system object reference for an object corresponding to an FSSpec data
type.

OSStatus FSSpecGetFSObjectRef(
const FSSpec* theFSSpec_t,
FSObjectRef* theObject_o);

theFSSpec_t A pointer to the FSSpec file specification for which you wish to
obtain a file system object reference. The FSSpec file
specification must be fully normalized; that is, it must not
contain any working directories.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-112 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
theObject_o A pointer to the file system object reference for the File
Manager object that corresponds to the file or directory
specified by the FSSpec file specification. On output, the
function returns the object reference. When you are done using
the object reference, you are responsible for disposing of it.

function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

You can use this function if your code uses both the System 7 File Manager
application programming interface and the Mac OS 8 File Manager (or has
clients that use both types of file system software). For example, if you have a
piece of code that has a function that still uses the FSSpec data type, but that has
been converted internally to use the object references; you can use this function
to convert an FSSpec data type into an object reference for use internally.

Note
You are strongly recommended to provide an application
programming interface that uses file system object
references. ▲

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Functions 2-113
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Resolving Pathnames 2

FSPathnameResolve 2

Gets the file system object reference for an object with a given pathname.

OSStatus FSPathnameResolve(
FSObjectRef container_i,
const char* path_i,
ByteCount pathLength_i,
FSPathnameType pathType_i,
FSObjectRef* objectRef_o);

container_i The object reference for the path’s parent container. If the
pathType_i parameter is set to the constant kFSHFSPath and the
path_i parameter is a full HFS path, then the object identified
by the container_i parameter is ignored.

path_i A pointer to the partial pathname identifying where the
container is located. This is a list of names separated by the
delimiters appropriate for the path type specified in the
pathType_i parameter. This function follows this path down
through every container in the path until it comes to the
uniquely identified object within the last container.

pathLength_i The length (in bytes) of the pathname.

pathType_i The type of path to use in constructing the input path, such as
HFS. This tells the File Manager how to interpret a pathname.
For example, HFS paths use colons (:) as delimiters, UNIX paths
use slashes (/), and DOS paths use backwards slashes (\). The
permitted values are defined by the FSPathnameType structure
(page 2-16).

objectRef_o A pointer to the file system object reference for the object
ultimately identified by the container-pathname combination.
On output, the function returns the object reference. When you
are done using the object reference, you are responsible for
disposing of it.
2-114 File Manager Functions

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
function result A result code. See “File Manager Result Codes” (page 2-115) for
a list of the result codes the File Manager can return.

DISCUSSION

This function is useful for porting existing programs or writing new programs
that need to be able to handle different notations and delimiters for pathnames.
Note that the File Manager does not support drive specifiers such as C: in DOS
path and root specifiers in UNIX paths. In such cases, this function starts at the
parent container specified in the container_i parameter and parses the
indicated path from there.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

File Manager Result Codes 2

The File Manager returns many different result codes. This section provides the
current set of result codes. The list is subject to change is later releases.

Basic Error Types 2

enum{
FSFilesAPIErrorBias = 0xF4000000L,

// the upper short that identifies a file system error
FSErrorBias = 0xF5000000L,

// the upper short that identifies a file system error

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
File Manager Result Codes 2-115
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
FSErrorBiasMask = 0xFF000000L,
// how to discriminate non-FileManager errors

FSAgentErrorBias = 0xF6000000L
// the upper short that identifies an agent error

};

Error Mask Types 2

enum{
FSFilesAPIErrorMask = FSFilesAPIErrorBias | 0xFFFF,

// how to convert from old error codes to new ones
FSErrorMask = FSErrorBias | 0xFFFF,

// how to convert from old error codes to new ones
FSAgentErrorBiasMask = FSAgentErrorBias | 0xFFFF

// how to discriminate non-agent errors
};

Mac OS-Aliased Exceptions 2

enum {
E_NoErr = (noErr&FSErrorMask),
E_NoError = E_NoErr, // alias for noErr
E_ParamErr = (paramErr&FSErrorMask),

// alias for paramErr in Errors.h
E_FolderFulErr = (dirFulErr&FSErrorMask), // folder full
E_DirFulErr = E_FolderFulErr, // directory full
E_DskFulErr = (dskFulErr&FSErrorMask), // disk full
E_DiskFull = E_DskFulErr,
E_NSVErr = (nsvErr&FSErrorMask), // no such volume
E_VolumeNotFound = E_NSVErr,
E_IOErr = (ioErr&FSErrorMask), // I/O Err
E_BdNamErr = (bdNamErr&FSErrorMask),

// there may be no bad names in the final system!
E_BadName = E_BdNamErr,
E_FnOpnErr = (fnOpnErr&FSErrorMask), // file not open
E_FileNotOpen = E_FnOpnErr,
E_EofErr = (eofErr&FSErrorMask), // end of file
2-116 File Manager Result Codes

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
E_EndOfFileErr = E_EofErr,
E_PosErr = (posErr&FSErrorMask),

// tried to position to before start of file (r/w)
E_PosOutOfRange = E_PosErr,

// position is invalid (before start of file,
// or out of range for filesystem)

E_MFulErr = (mFulErr&FSErrorMask),
// memory full (open) or file won't fit (load)

E_MemFullErr = E_MFulErr,
E_TMFOErr = (tmfoErr&FSErrorMask), // too many files open
E_FnfErr = (fnfErr&FSErrorMask), // file not found
E_FileNotFound = E_FnfErr,
E_WPrErr = (wPrErr&FSErrorMask), // diskette is write protected.
E_WriteProtected = E_WPrErr,
E_FLckdErr = (fLckdErr&FSErrorMask), // file is locked
E_FileLocked = E_FLckdErr,
E_VLckdErr = (vLckdErr&FSErrorMask), // volume is locked
E_VolumeLocked = E_VLckdErr,
E_FBsyErr = (fBsyErr&FSErrorMask), // file is busy (delete)
E_FileInUse = E_FBsyErr,
E_DupFNErr = (dupFNErr&FSErrorMask), // duplicate filename (rename)
E_DuplicateName = E_DupFNErr,
E_OpWrErr = (opWrErr&FSErrorMask),

// file already open with with write permission
E_WriteAccessDenied = E_OpWrErr,
E_RfNumErr = (rfNumErr&FSErrorMask), // refnum Err
E_BadObjectID = E_RfNumErr,
E_GfpErr = (gfpErr&FSErrorMask), // get file position Err
E_GetFilePosition = E_GfpErr,
E_VolOffLinErr = (volOffLinErr&FSErrorMask),// volume not on line Err
E_VolumeOffline = E_VolOffLinErr,
E_PermErr = (permErr&FSErrorMask), // permissions Err
E_PermissionViolation = E_PermErr,
E_VolOnLinErr = (volOnLinErr&FSErrorMask),

// drive volume already on-line at MountVol
E_NSDrvErr = (nsDrvErr&FSErrorMask),

// no such drive (tried to mount a bad drive num)
E_NoMacDskErr = (noMacDskErr&FSErrorMask),

// not a Mac diskette (sig bytes are wrong)
E_ExtFSErr = (extFSErr&FSErrorMask),

// volume in question belongs to an external fs
File Manager Result Codes 2-117
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
E_FSRnErr = (fsRnErr&FSErrorMask), // file system internal Err
E_BadMDBErr = (badMDBErr&FSErrorMask), // bad master directory block
E_WrPermErr = (wrPermErr&FSErrorMask), // write permissions Err
E_DirNFErr = (dirNFErr&FSErrorMask), // directory not found
E_FolderNotFound = E_DirNFErr,
E_DirectoryNotFound = E_FolderNotFound,
E_TMWDOErr = (tmwdoErr&FSErrorMask), // no free WDCB available
E_BadMovErr = (badMovErr&FSErrorMask), // move into offspring Err
E_IllegalMove = E_BadMovErr,
E_WrgVolTypErr = (wrgVolTypErr&FSErrorMask),// wrong volume type Err
E_VolGoneErr = (volGoneErr&FSErrorMask),

// Server volume has been disconnected.
E_FIDNotFound = (fidNotFound&FSErrorMask),// no file thread exists.
E_FIDExists = (fidExists&FSErrorMask), // file ID already exists
E_NotAFileErr = (notAFileErr&FSErrorMask),// non-file object specified
E_DiffVolErr = (diffVolErr&FSErrorMask), // files on different volumes
E_CatChangedErr = (catChangedErr&FSErrorMask),

// the catalog has been modified
E_DesktopDamagedErr = (desktopDamagedErr&FSErrorMask),

// desktop database files are corrupted
E_SameFileErr = (sameFileErr&FSErrorMask),

// can't exchange a file with itself
E_BadFidErr = (badFidErr&FSErrorMask),

// file ID is dangling or doesn't match the file number
E_AfpItemNotFound = (afpItemNotFound&FSErrorMask),// information not found
E_AfpIconTypeError = (afpIconTypeError&FSErrorMask),

// sizes of new icon and one it replaces don't match
};

General Exceptions - Sharable by Different Modules 2

enum{
E_MissingParameter = FSErrorBias | 0x0001,

// one or more mandatory parameters missing
E_InvalidMsg = FSErrorBias | 0x0002,// invalid message

// reserved = FSErrorBias | 0x0003,
E_InvalidForkType = FSErrorBias | 0x0004,

// fork type not recognized or not supported
E_ForkInUse = FSErrorBias | 0x0005, // fork is currently in use
2-118 File Manager Result Codes

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
E_PropertyNotFound = FSErrorBias | 0x0006, // requested Property not found
E_ObjectNotFound = FSErrorBias | 0x0007, // requested Object not found
E_MemoryFull = E_MemFullErr, // PoolAllocate returned nil
E_NotAFileOrFolder = FSErrorBias | 0x0008,

// given object is not a file or a Folder
E_TooManyParameters = FSErrorBias | 0x0009,

// one or another parameter, but not both
E_PatternNotFound = FSErrorBias | 0x000A,

// couldn't find pattern in buffer
E_BufferLength = FSErrorBias | 0x000B, // illegal buffer size
E_InvalidDirectoryNum = FSErrorBias | 0x000C, // invalid Directory Number
E_IllegalFileOperation = FSErrorBias | 0x000D,
E_IllegalFolderOperation = FSErrorBias | 0x000E,
E_IllegalVolumeOperation = FSErrorBias | 0x000F,
E_InvalidRelationship = FSErrorBias | 0x0010,

// relationship is invalid in context of operation
E_UnknownRelationship = FSErrorBias | 0x0011, // relationship is undefined
E_DoesNotMatch = FSErrorBias | 0x0012,

};

FSAgent Interface Exceptions 2

These result codes are used internally by volume-format plug-ins.

enum{
E_NoGetBlockProc = FSErrorBias | 0x0101,
E_NoReleaseBlockProc = FSErrorBias | 0x0102,
E_NoSetEndOfForkProc = FSErrorBias | 0x0103,
E_NoSetBlockSizeProc = FSErrorBias | 0x0104,
E_NoReadBlockProc = FSErrorBias | 0x0105,
E_NoWriteBlockProc = FSErrorBias | 0x0106,
E_NoForkMapBlockProc = FSErrorBias | 0x0107,
E_NoReadRangeProc = FSErrorBias | 0x0108,
E_NoWriteRangeProc = FSErrorBias | 0x0109,

};

BTree Module Exceptions 2

These result codes are used internally by the File Manager.
File Manager Result Codes 2-119
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
enum{
E_AccessMethodStart = FSErrorBias | 0x0200,

// BTree Module Errors

E_BadHeader = FSErrorBias | 0x0300,
E_BadRotate = FSErrorBias | 0x0301,
E_NotOpenAsBTree = FSErrorBias | 0x0302, // no BTreeCB allocated for fork
E_AlreadyOpenAsBTree = FSErrorBias | 0x0303,
E_NoBTreeIterator = FSErrorBias | 0x0308,
E_BTreeIsEmpty = FSErrorBias | 0x030A,
E_NoMoreMapNodes = FSErrorBias | 0x030B,
E_BadNodeSize = FSErrorBias | 0x030C,
E_BadNodeType = FSErrorBias | 0x030D,
E_BadMaxKeyLength = FSErrorBias | 0x030E,
E_BadKeyDescriptor = FSErrorBias | 0x030F,
E_MinimumKeyTooLong = FSErrorBias | 0x0310,
E_RecordWontFit = FSErrorBias | 0x0311,

// Existing BTree Errors

E_BeforeBeginingOfFile = FSErrorBias | 0x0353,
E_PastEndOfFile = FSErrorBias | 0x0354,
E_UnknownBTreeVersion = FSErrorBias | 0x0355,
E_NoKeyCompareProc = FSErrorBias | 0x0356,
E_TreeTooDeep = FSErrorBias | 0x0357,
E_NoKeyDescriptor = FSErrorBias | 0x0358,
E_Reserved = FSErrorBias | 0x0359,
E_BadUserID = FSErrorBias | 0x035A,
E_UnknownKeyDescType = FSErrorBias | 0x035B,
E_BadKeyDescLength = FSErrorBias | 0x035C,
E_PlaceMarkerInvalid = FSErrorBias | 0x035D,
E_BadKeyField = FSErrorBias | 0x035E,
E_BadKeyAttribute = FSErrorBias | 0x035F,
E_BadKeyLength = FSErrorBias | 0x0360,
E_RecordNotFound = FSErrorBias | 0x0361,
E_RecordExists = FSErrorBias | 0x0362,
E_NoSpaceLeft = FSErrorBias | 0x0363,
E_RecordTooBig = FSErrorBias | 0x0364,
E_BadNode = FSErrorBias | 0x0365,
2-120 File Manager Result Codes

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
E_NotABTree = FSErrorBias | 0x0366,
E_LastBTreeError = FSErrorBias | 0x03FF,

};

Cache Module Exceptions 2

These result codes are used internally by the File Manager.

enum{
E_NonExist = FSErrorBias | 0x0400,// cache block does not exist
E_BufferInUse = FSErrorBias | 0x0401,// cache buffer is in use
E_MissingCacheCB = FSErrorBias | 0x0402,

// cache CB is missing from Fork/Vol CB
E_CorruptCacheCB = FSErrorBias | 0x0403,

// cache CB associated with Fork/Vol CB is corrupt
E_BufferHeaderOverflow = FSErrorBias | 0x0404,

// cache buffer header is larger than page size
E_SGListOverflow = FSErrorBias | 0x0405,

// scatter-gather list's address range is not big
// enough to accomodate the entire block range

E_InvalidBlockSize = FSErrorBias | 0x0406,
// volume/fork block size is not of the kind 512,1K,2K,4K…

E_NoPageToRelinquish = FSErrorBias | 0x0407,
// cache release Q is empty; can't relinquish a page to VM

E_NoEmptyBufferHeaders = FSErrorBias | 0x0408,
// no more empty buffer headers left; time to create more

E_AlreadyInCache = FSErrorBias | 0x0409,
// all blocks asked for are already in cache

E_NoPagesToClean = FSErrorBias | 0x040A,
// no more pages to clean by page cleaner

};

Control Blocks Module Exceptions 2

These result codes are used internally by the File Manager.

enum{
E_NoCBPtr = FSErrorBias | 0x0501,// CBPtr is nil
E_NoSuchPath = FSErrorBias | 0x0502,
File Manager Result Codes 2-121
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
E_NoSuchFork = FSErrorBias | 0x0503,
E_NoSuchFile = FSErrorBias | 0x0504,
E_NoSuchVolume = FSErrorBias | 0x0505,
E_NoSuchFSAgent = FSErrorBias | 0x0506,
E_InvalidCBType = FSErrorBias | 0x0507,
E_InvalidCBPtr = FSErrorBias | 0x0508,
E_InvalidParent = FSErrorBias | 0x0509,
E_NoFSAgents = FSErrorBias | 0x050A,
E_NoQHeadPtr = FSErrorBias | 0x050B,
E_ChildStillQueued = FSErrorBias | 0x050C,
E_LastCBError = FSErrorBias | 0x05FF, // Last error for Control Blocks Module

};

Object Reference Exceptions 2

enum{
E_UndefinedObjectRef = FSErrorBias | 0x0601,
E_ObjectRefAlreadyInitialized = FSErrorBias | 0x0602,
E_ObjectRefAlreadyExists = FSErrorBias | 0x0603,
E_InvalidObjectRef = FSErrorBias | 0x0604,

// kFStheNullObjectRef was passed
};

Range Lock Module Exceptions 2

enum{
E_RangeNotLocked = FSErrorBias | 0x0701,

// tried to unlock a range that wasn't locked
E_NoAsyncLock = FSErrorBias | 0x0702,

// tried to cancel an async lock, not pending
E_LockedByOther = FSErrorBias | 0x0703,

// conflicting lock owned by different path
E_LockedBySelf = FSErrorBias | 0x0704,

// conflicting lock owned by same path
E_LockedForRead = FSErrorBias | 0x0705,

// conflicting read lock (owner unknown)
};
2-122 File Manager Result Codes

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
Utilities Module Exceptions 2

These result codes are used internally by the File Manager.

enum{
E_UtilitiesStart = FSErrorBias | 0x0800

};

Volume Exceptions 2

enum{
E_MajorOfflineChange = FSErrorBias | 0x0901,
E_MinorOfflineChange = FSErrorBias | 0x0902,
E_VolumeInUse = FSErrorBias | 0x0903,

};

FSIterator Exceptions 2

enum{
E_InvalidIterationObjectType = FSErrorBias | 0x0A01,// can't enter a file object
E_ExitIteratorScope = FSErrorBias | 0x0A02,// iterator exited the scope
E_IteratorScopeException = FSErrorBias | 0x0A03,

// iterator is undefined due to error or
// movement of scope locality

E_UnknownIterationMovement = FSErrorBias | 0x0A04,
// iterator movement is not defined

E_InvalidIterationMovement = FSErrorBias | 0x0A05,
// iterator movement invalid in current context

E_IteratorOwnership = FSErrorBias | 0x0A06,// wrong client process ID
E_EndOfIteration = FSErrorBias | 0x0A07,

// no objects left to return on iteration
};

FSProperty Exceptions 2

These result codes are used internally by the File Manager.
File Manager Result Codes 2-123
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
enum{
E_PropDescrOffsetRangeErr = FSErrorBias | 0x0B01,

// property descriptor list offset out of range
E_PropDescrOverrunLengthErr = FSErrorBias | 0x0B02,

// PropOverrun bitmap is too short
// reserved = FSErrorBias | 0x0B03,

E_PropDescrNotFoundLengthErr = FSErrorBias | 0x0B04,
// PropNotFound bit map is too short

E_PropDescrReadOnlyFailLengthErr = FSErrorBias | 0x0B05,
// PropDescrReadOnlyFail bitmap too short

E_PropBufferShort = FSErrorBias | 0x0B06,
// buffer too short for properties.

E_PropertyBufferFieldTooSmall = FSErrorBias | 0x0B07,
// from pt of view of supplied buffer field

// PropertiesGet: field not adequate to hold Property. field is truncated.(Overrun)
E_PropertyException = FSErrorBias | 0x0B08,
E_PropertyBufferFieldTooLarge = FSErrorBias | 0x0B09,

// from pt of view of supplied buffer field
// PropertiesGet: field is larger than needed to hold properties. (Underflow)

E_CanNotFindDesktopDatabase = FSErrorBias | 0x0B0A,
// either desktopDB or desktopDF not found

E_CanNotFindPDSFile = FSErrorBias | 0x0B0B,// cannot find PDS
E_CanNotFindEDSFile = FSErrorBias | 0x0B0C,// cannot find EDS
E_PropertyAlreadyExists = FSErrorBias | 0x0B0D,

// property already exists in desktop database
E_PropertyTypeError = FSErrorBias | 0x0B0E,

// error getting/setting property in desktop database
E_PropertyError = FSErrorBias | 0x0B0F,

// error getting/setting pProperty in desktop database
E_PropertyReadOnly = FSErrorBias | 0x0B10,

// attempt to set read-only property
};

FSDispatch Errors 2

These result codes are used internally by the File Manager.
2-124 File Manager Result Codes

Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
enum{
E_UnknownRequest = FSErrorBias | 0x1001,

// request command ID not defined
E_VolRecognized = E_NoError,

// agent was able to recognize the Volume
E_VolNotRecognized = FSErrorBias | 0x1002,

// agent was NOT able to recognize the Volume
E_CanInitialize = E_NoError,

// agent is able to initialize Volume
E_CanNotInitialize = FSErrorBias | 0x1003,

// agent is NOT able to initialize Volume
E_NotAPath = FSErrorBias | 0x1004,// ID used was not for a Path
E_NotAFork = FSErrorBias | 0x1005,// ID used was not for a Fork
E_NotAFile = FSErrorBias | 0x1006,// ID used was not for a File
E_NotAVolume = FSErrorBias | 0x1007,// ID used was not for a Volume
E_NotAnAgent = FSErrorBias | 0x1008,// ID used was not for an Agent
E_NotAnObjectIterator = FSErrorBias | 0x1009,

// ID used was not for an Object Iterator
E_NotAPropertyIterator = FSErrorBias | 0x100A,

// ID used was not for a Property Iterator
E_AgentIncomplete = FSErrorBias | 0x100B,

// agent did not finish instalation protocol
E_QueueOverflow = FSErrorBias | 0x100C,

// a notification queue has overflowed the user's size
E_QueueEmpty = FSErrorBias | 0x100D,// notification queue is Empty

// the message length is either larger than the size from the messaging
// services, or is smaller than implied by the variable data needs

E_MessageLength = FSErrorBias | 0x100E,
E_NoVolumeSpecified = FSErrorBias | 0x100F,

// no volume was specified for PathnameResolve
// dispatch or request processing task

E_MessageMustBeAtomic = FSErrorBias | 0x1010,
E_MessageMustNotBeAtomic = FSErrorBias | 0x1011,
E_MessageSentToWrongObject = FSErrorBias | 0x1012,

E_InvalidVolumeSet = FSErrorBias | 0x1013,
// VolumeSetGetInformation: volume set not recognized
File Manager Result Codes 2-125
Draft.  Apple Computer, Inc. 4/30/96

C H A P T E R 2

File Manager Reference
E_FSShutdown = FSErrorBias | 0x10F1,
// terminated because system was shutting down

};

General File Manager Errors 2

enum{
E_Unimplemented = FSErrorBias | 0xFFFF // feature unimplemented

};
2-126 File Manager Result Codes

Draft.  Apple Computer, Inc. 4/30/96

Glossary
file A collection of data items of any size
or content. It is up to each specific file
system running under the File Manager to
determine the meaning and content of each
data item. This more generalized definition
of a file allows the File Manager to support
such diverse file systems as HFS, UNIX,
and DOS FAT.

file system object The basic unit in the
Mac OS 8 files environment. Every file,
folder, and volume is a file system object,
and every file system object is a container
for information. For example, volumes can
contain folders, files, and properties; folders
can contain files, folders, and properties;
and files contain properties.

file system object reference A
dynamically assigned opaque identifier that
is used by almost every File Manager
function that refers to an object. Object
references are allocated and disposed of on
a per-process basis. When you use a File
Manager function that returns a file system
object reference, the object reference is
automatically allocated for your process,
and you are responsible for disposing of it.

fork attribute The value attribute of a fork
property is the only fork attribute; all other
attributes of a fork property, such as the
fork property’s size and type are considered
simple. To get or set specific portions of a
fork’s data, you must use specific stream or
memory-mapped file access methods.

object information structure A structure
that provides the most commonly used
aggregate sets of file, folder, or volume
properties. You can get this information all
at once, with the FSObjectGetInformation
and FSObjectGetVolumeInformation
functions. You cannot set an object
information structure as a whole, you can
only set individual properties, one at a time,
with the FSObjectSetOneProperty function.

object iteration The ability to obtain
information about one or more file system
objects by accessing all available objects that
match criteria that you can set. You use
object iterators to perform an iteration. See
also object iterator.

object iterator An object that you use to
obtain information about one or more file
system objects by accessing all available
objects that match your criteria. For
example, you can adjust the iterator’s
movement to go into any embedded
containers, and you can make an iterator
return files or folders or both types of
objects.

property A data item or a set of data that
is stored by the file system. Properties can
be simple data items, such as dates, file
types, and icon definitions; or they can be
expandable sets of data such as the data
fork and resource fork of a file. Each
property has a value, and the value of the
property has an actual size and a certain
amount of allocated space. A property
GL-1
Draft.  Apple Computer, Inc. 4/30/96

G L O S S A R Y
cannot exist by itself; it must be contained
in a file system object. The properties
contained by an object define the object and
make it identifiable to the File Manager.

property structure A structure that
describes a property of an object. For each
property, this structure identifies its creator,
selector, attribute, and tag. Each attribute of
every property is described by a property
structure.

simple attribute Any attributes of any
property except the fork property’s value
attribute. To get or set a simple attribute,
you access the data directly, but you get or
set all of the value at once. For example,
you would get a file’s entire creation date as
a unit; you couldn’t get just the year or
month.

simple property The same as a property
with a simple attribute. See simple
attribute.

template constant A constant that
provides a more generalized property
structure that you can use to get or set any
attribute of any property except the value
attribute of a fork property.

universe A file system object that
represents the user’s computer system
including all mounted volumes. Because
the universe is transient, existing only while
the system is running and changing every
time the user mounts or unmounts a
volume or reconfigures the system in some
other way, the properties contained in the
universe are transient and are created by
the File Manager each time the computer
starts up.

value constant A constant that provides a
complete property structure that you can
use to get or set the value attribute of a
simple property.
GL-2
Draft.  Apple Computer, Inc. 4/30/96

	File Navigation and Access
	Contents
	Figures
	File Navigation and Access Overview
	The Mac�OS�8 Files Environment
	The Mac OS 8 File Manager
	Speed
	Reentrancy
	Support for Volume-Format Plug-ins
	Use of Notification Services
	International String Support
	Virtual Memory and Microkernel Integration
	File Manager Tasks

	Navigation Services
	The Translation Manager
	The Folder Manager
	The Alias Manager
	Standard C Library File I/O

	File System Objects Architecture
	Data Organization
	Properties
	Object Iteration

	System 7 File Manager Compatibility
	Preparing Your Product for the Mac�OS�8 File Manag...

	File Manager Reference
	About the File Manager
	Using File System Object References
	Using the Property Structure and its Constants
	Getting and Setting Simple Properties
	Getting and Setting Fork Properties
	Iterating Through Objects

	File Manager Data Types and Constants
	Basic Data Types
	File System Object Information Structures
	File System Object Data Types
	Volume Set and Volume Types
	Property Structure
	Property Creators
	Property Selectors
	Property Attributes
	Property Tag Data Types and Macros
	Date and Text Formats
	Property Value Constants
	Universe Property Constants
	Boot Volume Set Property Constants
	File Manager Property Constants
	User Experience Property Constants

	Fork-Related Data Types
	Object Privileges
	Mapped-File and Stream-Related Data Types
	Object Iterator Data Types

	File Manager Functions
	Using File System Object References
	Using File System Objects
	Creating Files and Folders
	Getting and Setting Properties
	Getting File System Object Information
	Using Stream Access Methods
	Using Memory-Mapped File Access Methods
	Iterating Over File System Objects
	Cross Referencing Object References and FSSpec Fil...
	Resolving Pathnames

	File Manager Result Codes
	Basic Error Types
	Error Mask Types
	Mac OS-Aliased Exceptions
	General Exceptions - Sharable by Different Modules...
	FSAgent Interface Exceptions
	BTree Module Exceptions
	Cache Module Exceptions
	Control Blocks Module Exceptions
	Object Reference Exceptions
	Range Lock Module Exceptions
	Utilities Module Exceptions
	Volume Exceptions
	FSIterator Exceptions
	FSProperty Exceptions
	FSDispatch Errors
	General File Manager Errors

	Glossary

