
WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

I N S I D E M A C I N T O S H

Human Interface Toolbox

Draft. „ Apple Computer, Inc. 4/30/96

Apple Computer, Inc.
© 1994–1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh,
and MPW are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Finder, Mac, and QuickDraw are
trademarks of Apple Computer, Inc.
SOM is a licensed trademark of IBM
Corporation.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Chapter 1 Introduction to the Mac OS 8 Toolbox 1-1

Overview of the Mac OS 8 Toolbox 1-6
Apple Events and the Toolbox 1-8

Toolbox Event Routing 1-9
Periodic and Background Processing 1-10
Supporting the Mac OS 8 Event Model 1-10

Human Interface Objects 1-11
Windows 1-17

Window Layers 1-18
Window Groups 1-21

Panels 1-22
Controls 1-24
Dialog Boxes and Alert Boxes 1-28
Menus 1-32
Lists 1-34
Scrolling Panels 1-35
Editable Text Panels 1-35
Radio Button Groups 1-36
Visual Separators 1-36
Static Image Panels 1-37

Imaging Objects 1-40
Copy, Paste, Drag, and Drop 1-42

Scrap Manager 1-42
Clipboard Manager 1-44
Drag Manager 1-44

Interactions With the Finder 1-45
Resources 1-46
Themes 1-49
Programming With the Toolbox 1-52

Opacity and Consistency 1-53
International Text 1-53
Object Life Cycle Management 1-54
Extensible Data Structures 1-54
iii
Draft.  Apple Computer, Inc. 4/24/96

Extensible Designs 1-55
Assembling Embedding Panels 1-55
Customizing HI Objects 1-56
Customizing HI Imaging Objects 1-57

Chapter 2 Toolbox Event Routing 2-1

Event Routing Within a Process 2-4
Geometric Event Routing 2-6

Default Geometric Event Routing 2-6
Overriding the Default Geometric Event Routing 2-8

Broadcast Event Routing 2-10
Default Broadcast Event Routing 2-10
Overriding Default Broadcast Routing 2-12

Focused Event Routing 2-13
Command Events 2-14
Navigation Events 2-14

Default Routing for a Navigation Event 2-15
Overriding the Default Routing for a Navigation Event 2-17

Virtual Key Events and Text Events 2-19
Default Routing for Virtual Key and Text Events 2-20
Overriding Default Routing for Virtual Key and Text Events 2-21

Routing Events With Application Handlers 2-23
Handler Tables in Process Dispatchers 2-23
Handler Tables in Window Dispatchers 2-24
Registering a Panel’s Interest in an Event 2-24

Toolbox Support for Modal States 2-25

Chapter 3 Toolbox Events Reference 3-1

Apple Event Descriptor Types 3-4
Standard Events Handled by the Toolbox 3-5

Key Events 3-5
Key Down 3-5
Auto Key 3-6
Key Up 3-7
iv
Draft.  Apple Computer, Inc. 4/24/96

Mouse Events 3-8
Mouse Up 3-8
Mouse Down 3-9
Mouse Moved 3-10
Mouse Stopped Moving 3-11

Window Events 3-12
Mouse Down in Back 3-12
Mouse Down in Content 3-13
Window Resized 3-14
Window Close Request 3-15
Window Activated 3-16
Window Deactivated 3-16
Update 3-17

Text Events 3-18
Update Active Input Area 3-18
Position to Offset 3-20
Offset to Position 3-21
Get Input Area Region 3-22

Application Events 3-23
Suspend 3-23
Resume 3-23

Chapter 4 HIObject Class Reference 4-1

HIObject 4-5
Description 4-5

Summary of Static Methods 4-7
Summary of Public Methods 4-7
Summary of Protected Methods 4-10
Execution Environments 4-11

Constants and Data Types 4-11
Reference Labels 4-11
Adoption Flags 4-12
Drawing Modes 4-12
Coordinate System Constants 4-13
User Input Focus Support Flags 4-14
Clipboard Support Flags 4-14
v
Draft.  Apple Computer, Inc. 4/24/96

State Change Callback Function 4-15
State Change Codes 4-16
AE Record Keywords 4-17
AE Record Data Formats 4-18

Static Methods 4-19
Public Methods 4-25

Initializing, Saving, and Disposing of an Object 4-25
Getting HI Object Attributes 4-39
Getting and Setting an HI Object’s State Change Callback Function 4-44
Manipulating an HI Object’s Size and Location 4-47
Enabling and Disabling an HI Object 4-58
Getting and Setting an HI Object’s Visibility 4-62
Getting and Setting an HI Object’s Title 4-65
Event Handling 4-70
Controlling User Input Focus 4-89
Imaging 4-98
Supporting Clipboard Operations 4-109

Protected Methods 4-115
Application-Defined Function 4-125

Appendix A Notes for System 7 Developers A-1

Compatibility Guidelines A-2
Window Manager, Dialog Manager, Control Manager,

List Manager, Menu Manager A-3
Scrap Manager A-3

Scrap Manager Functions A-4
Creating and Deleting Scrap References A-4
Adding Scrap Items to the Scrap A-4
Making and Keeping Promises A-5
Getting Scrap Item Information A-5

Clipboard Manager A-5
Clipboard Manager Functions A-7

Putting a Scrap on the Clipboard A-7
Retrieving and Releasing a Scrap From the Clipboard A-7

Drag Manager A-7
Drag Manager Functions A-9
vi
Draft.  Apple Computer, Inc. 4/24/96

Installing and Removing Drag Event Handlers A-9
Creating and Disposing of Drag References A-9
Overriding Standard Drawing Behavior A-10
Performing a Drag A-10
Setting the Transparency of the Drag Image A-10
Supporting Drag-and-Drop Behavior A-10
Getting and Setting Status Information About a Drag A-10

Resource Manager A-11

Glossary G-1
vii
Draft.  Apple Computer, Inc. 4/24/96

viii
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Contents

Draft.



 Apple Computer, Inc. 4/24/96

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Introduction to the
Mac OS 8 Toolbox
Overview of the Mac OS 8 Toolbox 1-6
Apple Events and the Toolbox 1-8

Toolbox Event Routing 1-9
Periodic and Background Processing 1-10
Supporting the Mac OS 8 Event Model 1-10

Human Interface Objects 1-11
Windows 1-17

Window Layers 1-18
Window Groups 1-21

Panels 1-22
Controls 1-24
Dialog Boxes and Alert Boxes 1-28
Menus 1-32
Lists 1-34
Scrolling Panels 1-35
Editable Text Panels 1-35
Radio Button Groups 1-36
Visual Separators 1-36
Static Image Panels 1-37

Imaging Objects 1-40
Copy, Paste, Drag, and Drop 1-42

Scrap Manager 1-42
Clipboard Manager 1-44
Drag Manager 1-44

Interactions With the Finder 1-45
Resources 1-46
Themes 1-49
1-1

C H A P T E R 1

Programming With the Toolbox 1-52
Opacity and Consistency 1-53
International Text 1-53
Object Life Cycle Management 1-54
Extensible Data Structures 1-54
Extensible Designs 1-55

Assembling Embedding Panels 1-55
Customizing HI Objects 1-56
Customizing HI Imaging Objects 1-57
1-2 Contents

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox 1

The Mac OS 8 Toolbox consists of system software services that you can use to
create your application’s human interface elements and present them to users.
The Toolbox also simplifies a variety of human interface programming tasks
and provides low-level support for active assistance.

This chapter introduces some of the standard human interface features of
Mac OS 8 applications and the Toolbox services you use to implement them. It
also discusses the role of Apple events in Mac OS 8 programming. For more
information about Apple events and related Mac OS 8 capabilities, see the
accompanying document Apple Events in Mac OS 8.

▲ W A R N I N G

This document is preliminary and incomplete. All
information presented here is subject to change. ▲

A typical Mac OS 8 application presents users with a carefully designed human
interface that allows them to perform actions and accomplish goals according
to their own priorities. To ensure that human interface elements share
consistent behavior and appearance across all applications, the Mac OS 8
Toolbox provides a comprehensive set of standard interface elements that you
can piece together according to your application’s needs. This ensures that
common elements such as pop-up buttons and sliders work the same way in
different applications and coordinate with the appearance of other elements.

The Mac OS 8 Toolbox also supports customization by each user in ways that
maintain the overall look and feel of the human interface for that user. For
example, users can choose among different themes, or styles—that is,
coordinated sets of human interface designs that determine the appearance of
human interface elements on a systemwide basis, across multiple applications.

The figures that follow show some of the standard human interface elements
provided by the Toolbox and the way their appearance changes when the user
switches themes. Figure 1-1 shows how the screen might appear when a user
has selected the Apple Default theme and is interacting with a typical Mac OS 8
application, called SurfWriter, that permits simple text editing.

Note
Unless otherwise indicated, the human interface elements
illustrated in this chapter use the Apple Default theme. ◆
1-3
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

Figure 1-1 The SurfWriter application as it appears in the Apple Default theme

A user can directly control the SurfWriter application by means of a variety of
human interface elements, including

■ menus that allow the user to choose commands

■ windows that allow the user to enter and edit information

■ scroll bars and other controls that the user can manipulate

■ dialog boxes that solicit information from the user

Active window

Scroll bar Modeless dialog box Desktop

Menu

Menu

bar
1-4
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

Figure 1-2 The SurfWriter application as it appears in an alternate theme

In addition to interacting freely with the application’s human interface
elements, the user can change the appearance of all windows, controls, menus,
and other elements displayed on a single computer by choosing a different
theme. Figure 1-2 shows the SurfWriter application as it appears in an alternate
theme.

Apple supplies several standard themes. The Apple Default theme shown in
Figure 1-1 is built into the system. Users can install additional themes, switch
the current theme from one installed theme to another, or remove installed
themes whenever they wish.

Active window

Scroll bar Modeless dialog box Desktop

Menu

Menu

bar
1-5
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

Overview of the Mac OS 8 Toolbox 1

The Mac OS 8 Toolbox provides a complete programming model for creating
an application’s human interface. From the user’s point of view, a typical
Mac OS 8 application can, among other things,

■ respond to input from a keyboard, mouse, or other input device

■ display windows, alert boxes, and dialog boxes that present data and
various choices about manipulating the data to the user

■ display controls that let the user perform actions or manipulate application
settings directly with a variety of input devices

■ display menus that let the user choose from lists of choices or commands

In general, the user should always be free to choose the next action to perform.
To support this freedom in your application, you use the Apple Event Manager,
which provides a systemwide mechanism for distributing events in a preemp-
tively safe manner. Events that use this mechanism are called Apple events.

To create your application’s windows, dialog boxes, controls, and menus, you
use human interface objects (HI objects). An HI object is a SOM™ object that
encapsulates one or more human interface elements. The HI Objects class
library, which is part of the Toolbox, provides a unified, object-oriented
interface for implementing navigation, mouse interaction, copy, paste, drag and
drop, and other standard behavior for HI objects. The library includes
definitions for a variety of standard windows, menus, lists, dialog boxes and
alert boxes, scroll bars and other controls, editable text boxes, and other human
interface elements. You use these standard HI objects to assemble your
application’s human interface. If necessary, you can also define your own
custom HI objects using object-oriented programming (OOP) techniques.

None of the standard HI objects require a traditional Toolbox manager. Instead
of calling a manager’s functions, you create and manipulate HI objects by
calling their methods. Each HI object knows how to draw itself appropriately
depending on its state; for example, checkboxes can check and uncheck
themselves, sliders can change their appearance in response to dragging,
menus can highlight correctly when selected, and so on.

The Toolbox provides default event handlers that route mouse events, window
events, text events, and other standard Apple events to the appropriate HI
1-6 Overview of the Mac OS 8 Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

objects automatically. You can override the default handlers and add handlers
for additional events to implement your application’s unique behavior.

HI objects commonly make use of another kind of SOM object called an
imaging object. An imaging object is a drawing engine that can draw a
particular type of image data, such as icons, text, pictures, patterns, and so on.
Each type of data must be drawn by its corresponding imaging object, but all
imaging objects share the same programming interface. HHI objects that need
to draw titles, menu items, and list items use imaging objects to do so, so you
can use any kind of image data in such elements.

You can store descriptions of HI objects, images, sounds, and other localizable
data in resources managed by the Resource Manager. Resources are completely
separate from your application’s code and thus greatly simplify localization. To
read and write resources, you typically use high-level system services such as
the HI Objects class library, which in turn call the Resource Manager.

In addition to providing an integrated human interface composed of HI
objects, a Mac OS 8 application

■ supports copy, paste, and drag and drop

■ has characteristic icons that represent the application file and the
application’s documents in the Finder

■ lets users specify application-specific preferences

The following Toolbox services allow you to implement these capabilities:

■ The Clipboard Manager and Drag Manager support a consistent user
experience for copy, paste, and drag-and-drop operations.

■ The Scrap Manager provides a generic transport package format used by the
Clipboard Manager and Drag Manager.

■ The Finder interface lets you specify icons that represent your application
and its documents in the Finder.

■ The Preferences Manager controls all application preferences.

When you use the standard HI objects, your application automatically supports
themes. The Appearance Manager provides the underlying support for all
aspects of themes and theme switching. Because you can combine the standard
HI objects to create a wide range of complex human interfaces, you don’t often
need to use the Appearance Manager directly. If you do need to customize HI
objects, you can use Appearance Manager primitives to coordinate the
appearance of your objects with the current theme.
Overview of the Mac OS 8 Toolbox 1-7
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

Apple Events and the Toolbox 1

System 7 and earlier versions of the Mac OS require applications to have an
event loop, a piece of code that continually polls the system for events and
responds to those events appropriately. Although this arrangement allows the
user considerable freedom in choosing when to perform various actions, it has
limitations in the Mac OS 8 preemptive multitasking environment. The
Mac OS 8 event model, based on the Apple events mechanism introduced in
System 7, provides a unified interface for events throughout the system, avoids
the problems created by polling, and enhances responsiveness to user actions.

From a user’s point of view, the way Mac OS 8 handles events is similar to the
way the Mac OS has always handled them. For example, the user can type text
in a window, select a graphic and copy it, open a new document in a different
application, paste in the graphic, open another document, then go back to the
first window to select text and change its size, style, or font.

From a programmer’s point of view, the Mac OS 8 event model differs
significantly from the event loop model. The essence of Mac OS 8 event
handling is simple. When your application launches, it expresses an interest in
receiving certain events. Your application then informs the Apple Event
Manager that it is ready to receive, and the Apple Event Manager blocks the
calling task until an event in which your application has expressed an interest
arrives. This arrangement takes maximum advantage of priority-based
preemptive scheduling, allowing other applications and tasks to receive
processing time when your application doesn’t need it.

Mac OS 8 includes a set of low-level services, called User Input Services, that
receive input from various kinds of input devices, convert the input (for
example, mouse actions or key presses) into Apple events, and send the Apple
events to an Apple event dispatcher associated with a process. An Apple event
dispatcher then dispatches the events within a process. Every process has a
default dispatcher that provides the initial dispatching for all incoming events,
and your application may create additional dispatchers if necessary. To identify
which events it’s interested in receiving, your application associates event
handlers with the default dispatcher using a mechanism analogous to the way
System 7 applications install Apple event handlers.

Handlers associated with a process dispatcher typically determine which
window within the process an event is directed toward and forward it to that
1-8 Apple Events and the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

window. Every window has a single Apple event dispatcher associated with it
that provides the initial processing for all events received by that window.
Handlers associated with the window dispatcher typically call methods of one
or more HI objects within the window for further event processing as needed.

Toolbox Event Routing 1

The Toolbox defines standard events, including mouse events and window
events, for which it also provides default handlers and for which the HI Objects
class library defines methods. The Toolbox also provides default handlers for
other events, such as key events and text events, generated by other parts of the
system. The Toolbox handlers automatically route most events from the default
process dispatcher to the target HI objects, which provide methods that can
handle specific events. For example, the default handlers route text events to
the HI object that currently has user input focus—that is, it is the focal point
onscreen for user input, whether from a keyboard, a speech input device, or
other input devices.

By default, the target HI objects respond automatically to user actions that
change an object’s state in some standard way, for example by zooming a
window to the appropriate monitor, highlighting menu items as the user drags
the pointer through them, changing the highlighting of radio buttons, and so
on. You don’t need to subclass from the standard objects to associate
application-specific behavior with state changes in a particular HI object.
Instead, you install a callback function after you instantiate the object.

The ability of the standard HI objects to respond to user interaction
appropriately is not limited to low-level events such as mouse events and key
events. Mac OS 8 supports higher-level events that correspond to interface
abstractions such as “select object.” The default Toolbox event handlers
translate mouse events, key events, speech events, and other events generated
by input devices into higher-level events that your application handles the
same way regardless of the originating device.

You may selectively override the default event routing by installing your own
handlers in the appropriate dispatcher or by defining your own HIObject
subclass and overriding the appropriate methods. Thus, although the Toolbox
provides extensive default event-routing and event-handling capabilities from
the level of the process dispatcher to the level of an individual HI object, you
can modify the default behavior to any extent necessary at any point along the
way. This provides benefits both for application developers, who can take
advantage of the default event handling without sacrificing flexibility, and for
Apple Events and the Toolbox 1-9
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

framework developers, who can build the framework’s event handling on top
of the default behavior.

For an introduction to the default routing provided by the Toolbox, see
“Toolbox Event Routing” (page 2-3). For definitions of the standard Toolbox
events and their default handlers, see “Toolbox Events Reference” (page 3-3).

Periodic and Background Processing 1

Another difference between the Mac OS 8 event model and a traditional event
loop involves periodic processing, which is processing that takes place at
specified intervals. For example, if the user isn’t doing anything else, an
application should be able to perform repetitive tasks such as making the caret
blink in the active window. To support this kind of processing in Mac OS 8, you
use periodic Apple events.

Periodic processing is different from background processing, which takes
place in the background while the user continues to work. You perform
background processing by creating an additional task that executes
preemptively and concurrently while the main task that controls the human
interface continues to respond to user actions.

For example, it may be desirable for a graphics application to perform
intensive calculations related to image processing in the background, allowing
the user to continue to interact with the application’s human interface without
loss of responsiveness. When the calculations are complete, the additional task
can transfer the result of the calculations to the main task, which actually
draws the image to the screen.

Supporting the Mac OS 8 Event Model 1

The best way to support the Mac OS 8 event model is to separate the code that
controls your application’s user interface from the code that responds to the
user’s manipulation of the interface. This is called factoring your application.
A fully factored application translates user actions into Apple events that the
application sends to itself to handle those actions appropriately. Factoring not
only supports the Mac OS 8 event model, but also allows your application to be
controlled by means of any scripting language, such as AppleScript, that’s
based on the Open Scripting Architecture (OSA).

For more information about supporting the Mac OS 8 event model, see the
accompanying document Apple Events in Mac OS 8.
1-10 Apple Events and the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

Human Interface Objects 1

The HI Objects class library provides an object-oriented interface for human
interface elements commonly used by applications. These standard elements
are based on SOM classes that all inherit from the abstract superclass HIObject,
as shown in Figure 1-3.

Figure 1-3 shows the inheritance hierarchy for the standard HI object classes—
that is, the ways in which classes inherit their methods and other characteristics
from other classes. This inheritance hierarchy has no relationship to the
containment hierarchies for the runtime objects you instantiate from the HI
object classes.

A containment hierarchy describes which instantiated HI objects are contained
within which other HI objects. For example, a radio button panel can be located
inside a radio button group panel, which is inside a dialog box, which is inside
a window.

Class HIObject has two direct subclasses, HIWindow and HIPanel. A window is a
container for all other kinds of HI objects, including menus and dialog boxes. A
panel is any HI object that can be placed in a window. All HI objects other than
windows are panels.

Embedding panels and root panels play an important role in every
application’s human interface. An embedding panel (class HIEmbeddingPanel) is
a special kind of panel that can contain other panels. Embedding panels are
useful for assembling compound panels from the standard panels.

A root panel (class HIRootPanel) is an embedding panel that fills a window’s
content area and to which the window passes all events that affect the
window’s content. The root panel in turn passes events to other panels that it
contains. For example, a modal dialog box is a specialized root panel that
tracks user interaction with the panels it contains and takes care of all event
handling required to enforce its modal state.

Note
HI objects can be used within OpenDoc parts, but they
aren’t intended to be as large or as powerful as parts.
Instead, they facilitate the assembly of an integrated
human interface from smaller, simpler elements. ◆
Human Interface Objects 1-11
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-3 The inheritance hierarchy for the HI Objects class library .

HIObject

HIPanel

HIWindow

HIAbstractList

HIBevelButton

HICheckBox

HIDisclosureTriangle

HILittleArrows

HIPopUpControl HIPopUpButton

HIProgressIndicator

HIScrollingPanel

HIPushButton

HIRadioButton

HIScrollbar

HISlider

HIEmbeddingPanel HIRootPanel HIDialog

HIAlert

HIModalDialog

HIRadioButtonGroup

HIVisualSeparator

HIStaticPanel

HIEditText

HIMenu

HIIcon

HICaption

HIControl

HIList

HIPicture
1-12 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
The classes shown in Figure 1-3 play the following roles:

■ HIObject is the abstract superclass for all HI object classes. Its methods
perform operations such as handling events, manipulating an object’s
location, enabling and disabling it, setting its visibility, controlling user input
focus, and imaging.

■ HIWindow is one of the two direct subclasses of HIObject. It is a concrete class
that defines the standard Mac OS 8 windows. Its methods perform
operations on a single window, including handling events within the
window, highlighting, ordering, positioning, imaging, and so on. Windows
can also handle standard user interactions—such as zooming the window to
the appropriate monitor—automatically. For examples of the standard
windows, see “Windows” (page 1-17).

■ HIPanel is the other direct subclass of HIObject. It is the abstract superclass
for all kinds of panels. HIPanel provides basic methods required by all
panels for initialization, handling events, and getting information about the
container hierarchy in which a particular panel is located. For an
introduction to panels, see “Panels” (page 1-22).

■ HIAbstractList is the abstract superclass for all lists. Its methods add,
manipulate, and delete list items. Its concrete subclasses, HIList and HIMenu,
define additional methods that perform operations specific to lists and
menus. List panels and menu panels can also handle all user interaction,
including input from a pointing device or keyboard, automatically. For
examples of the standard panels you can create with these classes, see
“Lists” (page 1-34) and “Menus” (page 1-32).

■ HIEditText is the concrete class for editable text panels. Its methods perform
text-specific operations such as inserting, deleting, and replacing text.
Editable text panels can handle user interaction and text input automatically.
For examples, see “Editable Text Panels” (page 1-35) and “Customizing HI
Objects” (page 1-56).

■ HIControl is the abstract superclass for all controls, including slider panels,
scroll bars, pop-up buttons, progress indicators, and buttons such as push
buttons and radio buttons. Its methods perform operations common to all
controls, such as getting and setting control values. For examples of the
standard controls, see “Controls” (page 1-24).
Human Interface Objects 1-13
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox

■ HIEmbeddingPanel is the superclass for all panels that can contain embedded
subpanels:

n HIRootPanel implements the root panel, which is an embedding panel
associated with every window. The window forwards events that affect
the window’s content to the root panel.

n HIDialog is the superclass for all dialog boxes. In Mac OS 8, a dialog box is
a specialized root panel that coordinates all user interaction with its
subpanels. For an introduction to dialog boxes, see “Dialog Boxes and
Alert Boxes” (page 1-28).

n HIModalDialog is a subclass of HIDialog used to create modal dialog boxes.
n HIAlert is a subclass of HIModalDialog used to create alert boxes.

■ HIScrollingPanel implements a panel designed to contain any other panel
(for example, a list panel or editable text panel) that is larger than the
scrollable area allocated for the scrolling panel.

■ HIRadioButtonGroup is the concrete class for radio button group panels that
can automatically handle user interaction with the individual radio button
panels in the group. For an example, see “Radio Button Groups” (page 1-36).

■ HIVisualSeparator is the concrete class for panels that encapsulate
horizontal, vertical, and rectangular visual separators. For examples, see
“Visual Separators” (page 1-36).

■ HIStaticPanel is the abstract superclass for panels that encapsulate icons of
different bit depths, static text, QuickDraw pictures, and other images. The
subclasses HIIcon, HICaption, and HIPicture provide a convenient way to
integrate these purely visual elements with other HI objects. For examples,
see “Static Image Panels” (page 1-37).

Some of these classes, such as HIObject and HIWindow, also define static
methods, which are methods you can call without first specifiying a particular
object. For example, you use static methods to instantiate and initialize an
object using data in an AE record or to manipulate groups of windows.
1-14 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
The HI Objects class library provides three key benefits associated with OOP:

■ Inheritance allows subclasses to share characteristics defined by classes
above them in their branches of the class hierarchy. The HI Objects class
library provides a wide range of standard subclasses that you can use to
assemble complex human interfaces. If necessary, you can use OOP
techniques to create your own subclasses without having to start from
scratch.

■ Encapsulation refers to the packaging of all the code that implements an HI
object’s appearance, state, and behavior (including theme-dependent
characteristics) within the object itself, thus protecting it from inappropriate
changes. Encapsulation also makes it possible to keep HI objects completely
separate from the application behavior that they control. You don’t have to
subclass each time you want to use a particular HI object for a new purpose.
Instead, you specify a callback function during instantiation that implements
application-specific behavior when the object’s state changes. This allows
you to reuse the same HI object in completely unrelated applications just by
specifying a new callback function.

■ Polymorphism is the ability to call objects of different classes with the same
method; for example, you can call the Draw method to draw an HI object of
any class. Polymorphism permits the unification of disparate human
interface elements in a single programming interface, which simplifies the
construction of your application’s human interface. You always trigger
common behavior the same way no matter what kind of HI object is
involved. Instead of learning how to implement similar behaviors in slightly
different ways for different managers, you use the same method to
implement the same behavior for a variety of objects.

HI objects also provide all the benefits of SOM objects, including the following:

■ Language independence. You don’t need to use an object-oriented language
such as C++ to use HI objects. SOM supports a variety of object-oriented and
procedural languages, and you can use the standard HI objects to create
complex human interfaces with only minimal knowledge of OOP.

■ Binary compatibility. Because SOM solves the “fragile base class problem,”
future versions of any HI object class can be released without breaking
existing versions.

For more information about SOM and its benefits, see the accompanying
document SOM and Software Extensibility.
Human Interface Objects 1-15
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Other benefits of using the HI Objects class library include the following:

■ Embedding. You can arrange standard HI objects in containment hierarchies
by using various kinds of embedding panels and without subclassing any of
the standard panels.

■ User input focus. HI objects provide built-in support for user input focus,
redrawing themselves as necessary when the focus changes and receiving
and handling focused events appropriately. These capabilities automate
much of the programming involved in controlling user input focus for HI
objects in the same embedding panel.

■ Navigation events. HI objects can automatically handle Navigation events
when appropriate—that is, events that provide alternate access to HI objects
with user input focus. For example, if a checkbox has user input focus,
pressing the space bar repeatedly selects and deselects it; and if a slider has
user input focus, pressing an arrow key moves the slider in the
corresponding direction. Dialog box panels respond automatically to
Navigation events (for example, an event generated by a Tab key press) that
move user input focus from one subpanel to another.

■ Collection items. You can attach collection items to any HI object. For more
information about collections, see “Extensible Data Structures” (page 1-54).

■ Drag Manager support. HI objects greatly simplify implementation of
drag-and-drop behavior, such as dragging text from one editable text panel
to another.

For a description of the superclass HIObject, see “HIObject Class Reference”
(page 4-5). Information about Drag Manager support and references for the
other classes in the HI Objects class library will be available with later
developer releases.
1-16 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Windows 1

Most applications use windows to present information to and interact with the
user. Figure 1-4 shows a standard document window and its elements.

Figure 1-4 A standard document window

The window in Figure 1-4 includes the following elements:

■ A close box that dismisses the window.

■ A title bar icon that users can use as a proxy for the document’s Finder icon
in drag-and-drop operations. For example, the user can can drag a
document’s title bar icon to a particular folder on a volume, then drop it to
save the docment in that location. For more information about title bar icons,
see the accompanying document Human Interface Guidelines for Mac OS 8.

■ A collapse box in the upper-right corner that users can click to control
“windowshade” behavior—that is, to hide or show all of the window except
the title bar.

■ A zoom box next to the collapse box. Class HIWindow includes built-in
support for monitor-specific zooming. Clicking the zoom box once causes
the window to expand to its optimal size on the monitor on which most of
its area is currently displayed. Clicking the zoom box a second time restores
the window to its previous size and location.

■ A size box in the lower-right corner that users can drag to resize the window.

You can use HIWindow methods to get and set various attributes of any window,
such as whether it has a size box, collapse box, zoom box, title bar icon, or close
box. HIWindow also supports resizing of windows in directions other than down

Zoom box

Title bar icon

Collapse box

Close box

Size box
Human Interface Objects 1-17
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
and to the right, the use of multilingual text in window titles, and other
features that simplify localization.

Windows instantiated from class HIWindow can handle standard user
interactions automatically, including resizing or moving the window and
zooming it to the appropriate monitor.

For more information about multilingual text, see “International Text”
(page 1-53). The chapter “Windows,” which will be available with later
developer releases, describes how to use the methods and static functions
defined by HIWindow.

Window Layers 1

Every application has a layer within which it can display its windows. Various
system services, such as Apple Guide and the Text Services Manager, control
additional layers that may appear in front of or behind your application’s layer.

Every window in an application’s layer belongs to a “class” (not to be confused
with OOP classes) that determines how it appears in relation to other windows
in the same layer:

■ Modal windows appear in front of all other kinds of windows in an
application’s layer. They are used for modal dialog boxes and alert boxes
that require immediate attention from the user.

■ Floating windows appear in front of document windows and behind modal
windows in an application’s layer. They are used for tool palettes, catalogs,
and other elements used to act on data in document windows.

■ Document windows (like that shown in Figure 1-4) appear behind floating
windows and modal windows in an application’s layer. They are used for
document data such as graphics and text and (without the title bar icon or
the size box) for modeless dialog boxes.

Windows of each class maintain this layering within a single application’s
layer. For example, the floating windows shown in Figure 1-5 always appear in
front of the same application’s document windows.
1-18 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-5 Layering of floating windows and document windows

A user typically has one or more windows open, often from several different
applications. However, only one window can be the active window. An
application’s active window is the frontmost nonfloating window in the
application’s layer that is currently receiving user input. It is identified by
distinctive details that aren’t visible for inactive windows; for example, the
Apple Default theme displays title bars for active windows with characteristic
“racing stripes.”

In Figure 1-5, the document window “untitled” is the active window. The other
document window in the figure is inactive. If the user manipulates the floating
windows, the corresponding actions affect contents of the active window.

Floating windows

Document

windows
Human Interface Objects 1-19
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-6 Modal windows always appear in front of other windows in an
application’s layer.

When the user attempts to close the window “untitled” in Figure 1-5 without
saving its contents, the application displays a movable modal dialog box in a
modal window, as shown in Figure 1-6.

The modal window containing the dialog box appears in front of all other
windows in the application’s layer, so it is now the active window. Decisions
made by the user with the aid of the dialog box apply to the document
“untitled.” The user can’t manipulate the floating windows in this situation.

When your application displays any modal window, the menu bar
automatically changes to a modal state, deactivating menus that aren’t
available when the modal window is displayed. The menu bar returns to its
original state when the modal window is gone.

Movable

modal

dialog

box
1-20 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Windows instantiated from HIObject automatically support the guidelines for
active and inactive windows as described in Macintosh Human Interface
Guidelines. For example, they activate the scroll bars and highlight any selection
when activated, and they deactivate the scroll bars and change or remove
highlighting from any selection when deactivated. Similarly, an application’s
floating windows automatically disappear when the user switches to a
different application.

If you are creating a window that needs to appear in a layer other than your
application’s primary layer, you can get a reference to the layer in which it
should appear from the system service involved. For example, to create a
window for a spelling checker managed by the Text Services Manager, you can
get a reference to the text services layer from the Text Services Manager and
then use that reference to initialize the window in that layer.

Window Groups 1

Window groups provide a useful abstraction for keeping your application’s
windows organized and automate many aspects of window management. You
can add any of your application windows to a window group, regardless of
window class. You can also add groups to groups.

You typically use a window group to associate a window with one or more
additional windows, so that clicking the original window brings all of its
associated windows to the front of their respective sublayers (while
maintaining their ordering with respect to each other). For example, you might
want to show the tool palettes associated with a document window whenever
the user activates that window. To do so, you use HIWindow static functions that
allow you to bundle the floating windows that contain the tool palettes with
the document window as a unique window group. The tool palettes then come
as far forward as they can (otherwise maintaining their current ordering)
whenever the user activates the document window.

Your application itself has a group associated with it that contains all your
application’s windows. Thus, in addition to providing a means of associating
related windows, window groups provide a mechanism for getting
information about your application’s windows and the order in which they are
displayed in your application’s layer.

For example, to find out which window is behind a given window, you first
use an HIWindow static function to obtain a list of the windows in the application
group in the order they are displayed in the application’s layer. You can then
iterate through the windows in the list to determine which window is behind
Human Interface Objects 1-21
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
the one you’re interested in. Similarly, you can get a list of windows in the
application group to determine which windows need to be closed when the
user quits the application.

Panels 1

Any HI object that can be placed in a window is a panel. A panel controls all
aspects of its appearance and behavior as its state changes in response to user
activities. You determine how changes in the panel’s state affect your
application.

Figure 1-7 illustrates a typical use of standard panels in a movable modal
dialog box.

Figure 1-7 Standard panels used in a movable modal dialog box

All the panels in Figure 1-7 are embedded within the standard dialog box panel
(class HIDialog), which is a root panel that encapsulates the entire contents of a
dialog box. The dialog box panel isn’t labeled in the figure; it consists of the
entire content area of the modal dialog box. Like any other embedding panel, a
dialog box panel controls the layout, user input focus, and user interaction for
all the panels it contains.

Caption panel

Editable

text panel

Push button panelsRectangular

visual separator

Radio button

group panel

Checkbox panel

Horizontal visual

separator panel
1-22 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
These standard panels are embedded within the dialog box panel in Figure 1-7:

■ Caption panel. This panel (class HICaption) provides an easy way to display
static text.

■ Editable text panel. This panel (class HIEditText) handles all user interaction
within an editable text box.

■ Radio button group panel. An embedding panel (class HIRadioButtonGroup)
that encapsulates radio button controls. A radio button group panel controls
user input focus and user interaction for its radio buttons, changing their
highlighting and state as appropriate in response to user actions such as
mouse clicks and key presses.

■ Visual separator panels. Horizontal, vertical, and rectangular visual
separator panels (class HIVisualSeparator) can be manipulated and
positioned like any other panel within any embedding panel. You can also
specify title text for the rectangular visual separator to display.

■ Checkbox panels. An active checkbox panel (class HICheckBox) can select
and deselect itself in response to user input such as mouse clicks; draw itself
with and without user input focus; and select or deselect itself when it has
user input focus and the user triggers an appropriate Navigation event, for
example by pressing the space bar.

■ Push button panels. The Cancel and OK push button panels (class
HIPushButton) highlight themselves appropriately in response to user input
such as mouse clicks, pressing Command-period, and pressing the Return or
Enter key.

To associate a panel’s state with a particular action or setting in your
application, you specify a callback function for the panel to call when its state
changes. For example, the dialog box panel Figure 1-7 specifies a state change
function for the radio button group panel that enables the Shrink to Fit
checkbox when the Picture radio button is selected and disables the checkbox
when the Picture radio button is deselected. Similarly, the state change that
occurs when a user chooses a menu command might invoke the function
provided by your application that executes the command. This arrangement
keeps the implementation of the panel itself separate from the specific behavior
that your application associates with a particular object state.

The sections that follow include examples of the standard panels defined by
subclasses of HIPanel.
Human Interface Objects 1-23
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Controls 1

Most windows and dialog boxes contain controls. Controls are HI objects that
the user can manipulate with a pointing device, from a keyboard, or via other
input devices to perform actions in your application or to change settings that
modify future actions.

Table 1-1 shows examples of the panels you can create with the standard
subclasses of HIControl. The appearance of each control is defined by its class
and by the current theme.

Table 1-1 Some of the standard panels that encapsulate controls

Example in the
Apple Default theme Name and class Description

Push button panel

HIPushButton

A button that displays an image (such
as text, an icon, or a picture) indicating
its purpose. Used to perform an
instantaneous action when clicked by
the user, such as completing
operations defined by a dialog box or
acknowledging an error message in an
alert box. You can optionally specify
that a push button is the default
button, in which case it draws itself
with the standard default appearance
for the current theme (for example,
with a ring around it) and responds
when the user presses the Return or
Enter key.

Bevel button panel

HIBevelButton

Like a push button, a bevel button
displays an image (such as text, an
icon, or a picture) indicating its
purpose. Bevel buttons are commonly
used in toolbars and palettes and to
indicate state changes in dialog boxes.
A bevel button can behave in one of
two ways: animate momentarily (like
a push button) or toggle back and
forth between a pressed state and an
unpressed state (similar to a checkbox).
1-24 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Checkbox panel

HICheckbox

A control that displays a small square
with a label that may be text, an icon, a
picture, or any other image indicating
what kind of setting it controls. Used
for an option that must be off, on, or in
a mixed state. The square is checked
when the setting associated with the
box is on, is empty when the setting is
off, or contains a short horizontal line
when the setting is mixed. (For more
information about the mixed state, see
page 1-28.) Several adjacent
checkboxes may be selected at the
same time.

Radio button panel

HIRadioButton

A button that displays a circle with a
label that may be text, an icon, or a
picture beside it indicating what kind
of setting the radio button controls.
Like checkboxes, radio buttons retain
and display an on-or-off setting;
however, only one radio button in a
group of radio buttons should be on at
any one time. In the Apple Default
theme, the circle is filled when the
setting associated with the button is
on, is empty when the setting is off, or
contains a short horizontal line when
the setting is mixed. (For more
information about the mixed state, see
page 1-28.)

Table 1-1 Some of the standard panels that encapsulate controls (continued)

Example in the
Apple Default theme Name and class Description
Human Interface Objects 1-25
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Disclosure triangle
panel

HIDisclosureTriangle

A triangle used to control progressive
disclosure in lists, such as lists of files
and folders in the Finder. When the
arrow points right, only one item
should be visible beside it. When the
arrow points down, both the original
item and the items contained within it
should be visible in the list. To toggle
between the two states, the user clicks
the disclosure triangle, which turns
with a characteristic animation defined
by the current theme.

Little arrows panel

HILittleArrows

A pair of arrows that typically
accompany a text box containing a
numerical value, such as the date or
time. Clicking the up arrow should
increase the value in the text box, and
clicking the down arrow should
decrease it.

Progress indicator
panel

HIProgressIndicator

A horizontal display used to indicate
the progress of a lengthy operation
(typically more than three seconds). If
you don’t know how long an
operation will take, you can let the
user know that it’s still in progress by
rotating an indeterminate progress
indicator like a barber pole, as in the
upper example. If you can supply
values to the panel indicating how
much of an operation has been
completed, you can use a determinate
progress indicator, which fills itself in
from one end to the other to indicate
what percentage of the operation has
been completed, as in the lower
example.

Table 1-1 Some of the standard panels that encapsulate controls (continued)

Example in the
Apple Default theme Name and class Description
1-26 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Slider panel

HISlider

Displays a range of values, magnitude,
or position. A movable indicator
shows the current setting. Sliders
allow users to alter the value of the
slider by moving the indicator up and
down or back and forth. Sliders can be
analog or digital devices that display
their values graphically.

Popup button panel

HIPopUpButton

A button with an associated menu.
When the user presses the mouse
button while the pointer’s over the
popup button, additional menu items
appear, as shown here. You can use a
popup button as an alternative to a
radio button group or a list.

Scroll bar panel

HIScrollbar

Windows and lists can have a
horizontal scroll bar, a vertical scroll
bar, or both. In the Apple Default
Theme, a scroll bar is a narrow
rectangle with an arrow in a box at
each end and a scroll box that moves
between them. Users can click the
arrows or drag the scroll box to
display more of the document by
scrolling it into view. Scrolling should
be live—that is, the contents of the
window should scroll at the same time
that the user is dragging the scroll
box—as long as this doesn’t degrade
performance.

Table 1-1 Some of the standard panels that encapsulate controls (continued)

Example in the
Apple Default theme Name and class Description
Human Interface Objects 1-27
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Radio buttons and checkboxes can be displayed in three different states: on, off,
or mixed. A mixed state indicates that a setting is on for some elements in a
selection and off for others. For example, a checkbox that determines whether a
character is boldface appears in a mixed state if some characters in a range of
selected text are bold and others aren’t. The user can change a checkbox in a
mixed state to either on or off for all the elements concerned, but can’t directly
change a checkbox that’s on or off to a mixed state.

You can use HIControl methods to get a series of control values back from a
control such as a slider or scroll bar while a user is still manipulating it. For
example, you can get control values back from a scroll bar that allow your
application to redraw the window’s contents while the user is dragging the
scroll box (live scrolling), or you can change the sound volume while the user is
still manipulating the slider rather than waiting until the user releases it. All
control values are 32-bit values, permitting manipulation of any control at a
very detailed level of granularity.

The chapter “Controls,” which will be available with later developer releases,
describes how to create and manipulate the standard controls.

Dialog Boxes and Alert Boxes 1

Dialog boxes and alert boxes are specialized root panels that your application
displays inside a window when it needs to interact with the user. In both cases,
the panel controls all user interaction with its subpanels; for example, it tracks
and updates user input focus and maintains its own modal state, if any. The
dialog box or alert box panel also has a distinctive frame just inside the frame
of the window in which it is displayed.

Dialog Boxes 1

An application displays a dialog box to solicit specific kinds of information
from the user by means of the panels it contains, such as button panels, text
panels, and list panels. In general, you should use either modeless or movable
modal dialog boxes.

A modeless dialog box (class HIDialog) is a dialog box inside a document
window that doesn’t have a size box or scroll bars. Figure 1-8 shows an
example.
1-28 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-8 A modeless dialog box

A modeless dialog box does not require the user to respond before doing
anything else. The user can move a modeless dialog box, move between a
modeless dialog box and other windows, and close a modeless dialog box just
like a document window. Whenever possible, use a modeless dialog box
instead of a movable modal dialog box.

A movable modal dialog box (class HIModalDialog) is a dialog box inside a
modal window. It requires the user to work in a single mode within your
application—that is, only inside the dialog box—until the completion of the
user’s interaction with that dialog box. Figure 1-9 shows an example.

Figure 1-9 A movable modal dialog box
Human Interface Objects 1-29
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
A movable modal dialog box has a title bar (but no close box or size box) that
allows the user to move it around the screen, for example to examine the part
of the screen that it covers. The user can dismiss the dialog box only by clicking
its buttons; however, the user should be able to switch layers by clicking in
another application’s window or by choosing another application from the
Apple or Application menu. You should prevent the user from switching layers
only if doing so risks immediate damage to the user’s data.

It’s also possible to instantiate a nonmovable modal dialog box from class
HIModalDialog. A nonmovable modal dialog box resembles a movable modal
dialog box except that it has no title bar and the user can’t move it.
HIModalDialog supports this form of dialog box for backward compatibility
only. Mac OS 8 applications should use movable modal dialog boxes instead.

HIModalDialog takes care of the event handling required to enforce the modal
state for both movable modal and nonmovable modal dialog boxes. For more
information, see “Toolbox Support for Modal States” (page 2-25).

Alert Boxes 1

An application displays an alert box to warn or to report an error to the user.
An alert box typically consists of an icon, text describing the situation, and
buttons for the user to acknowledge or rectify the problem. You can use a note
alert box, caution alert box, or stop alert box, each with a corresponding icon
that indicates the seriousness of the information conveyed by its text. (For
information about when to use which icon, see Macintosh Human Interface
Guidelines.)

You use HIAlert to create alert boxes with the icon of your choice using a
standard layout. In most cases, you should create movable alert boxes. It’s also
possible create a nonmovable alert box.

A movable alert box (class HIAlert), like a movable modal dialog box, has a
title bar (but no close box) that allows the user to move it. However, a movable
alert box can contain only text, an icon, and button panels, whereas a movable
modal dialog box can contain any combination of panels. The user can dismiss
a movable alert box only by clicking its buttons. As with a movable modal
dialog box, you should normally allow the user to switch layers while a
movable alert box is active by clicking in another application’s window or by
choosing another application from the Apple or Application menu.You should
prevent the user from switching layers only if doing so risks immediate
damage to the user’s data.
1-30 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-10 shows a movable alert box that the SurfWriter application displays
if a user attempts to create an envelope with an address that’s too long.

Figure 1-10 A movable alert box

A nonmovable alert box resembles a movable alert box except that it has no
title bar and the user can’t move it. Figure 1-11 shows an example. HIAlert
supports this form of dialog box mainly for backward compatibility. In most
cases you should use a movable rather than a nonmovable alert box. Use a
modal alert box only when it’s essential for the user to make an urgent decision
immediately.

Figure 1-11 A nonmovable alert box

The chapter “Dialog Boxes and Alert Boxes,” which will be available with later
developer releases, describes how to create dialog boxes and alert boxes and
provides human interface guidelines for using them.
Human Interface Objects 1-31
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Menus 1

A menu lets the user view or choose an item from a list of choices or
commands that your application provides. You design your application’s
menus according to the tasks or actions your application performs. All
applications support the Apple, File (or Document for OpenDoc part editors),
and Edit menus and should add menu items as appropriate to the Help,
Keyboard, and Application menus.

You can use class HIMenu to instantiate menu panels that

■ contain polymorphic image data

■ can be torn off

■ display menu items in a grid

■ display menu items in any font in any language using any script

■ display keyboard equivalents for any menu item using multiple modifier
keys

■ support a “sticky menu” mode that allows users to leave a menu or
submenu open and choose menu items by clicking them or from the
keyboard

■ respond automatically to user actions, such as highlighting menu items
when the user navigates through them

You can also use HIMenu to show and hide the menu bar.

Figure 1-12 and Figure 1-13 show three menus created from HIMenu, including
menu items that consist of pattern and color swatches, text items, dividers, and
submenus.

To associate icons, text, pictures, patterns, and other simple visual elements
with specific menu items, you create an image reference for that element with
the aid of the appropriate imaging object, then pass the image reference to a
method. For an introduction to imaging objects, see “Imaging Objects”
(page 1-40).

The chapter “Menus,” which will be available with later developer releases,
describes in detail how to create menu panels.
1-32 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-12 Some standard menu items

Figure 1-13 Standard tear-off menu with custom layout

Multiple

text styles

Mark

Keyboard

equivalents

Submenu

Multiple

fonts and

scripts
Human Interface Objects 1-33
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Lists 1

A list is a series of items displayed within a rectangle. Each item in a list is
contained within a rectangular cell. All cells within a list are the same size, but
may contain different types of data and multiple columns of data. The user can
click cells to select them.

You can use class HIList to instantiate list panels with cells that

■ contain polymorphic image data

■ display text images in any font in any language using any script

■ respond automatically to user actions, such as highlighting when the user
navigates through them

Figure 1-14 shows a list panel embedded in a scrolling panel.

Figure 1-14 A list panel embedded in a scrolling panel

To create a scrolling list like that shown in Figure 1-14, you instantiate a list
from HIList and embed it in a scrolling panel instantiated from
HIScrollingPanel. To arrange one or more lists with buttons and other controls
in a window, you simply add the lists (or scrolling panels that contain lists) to
an embedding panel.

You can use HIList methods to store and update the data within a list, display
the list within a window with an appearance that matches the current theme,
and respond appropriately to user interaction with a list. List panels store all
offsets and values using 32-bit values, permitting the association of large
amounts of data with a single list.

To associate icons, text, pictures, patterns, and other static images with specific
list items, you first create an image reference for that element with the aid of
the appropriate imaging object, then pass the image reference to a method. For
an introduction to imaging objects, see “Imaging Objects” (page 1-40).
1-34 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
The chapter “Menus and Lists,” which will be available with later developer
releases, describes in detail how to create lists.

Scrolling Panels 1

A scrolling panel contains a vertical scroll bar, horizontal scroll bar, or both and
is designed to contain any other panel (for example, a list panel or editable text
panel) that is larger than the scrollable area allocated for the scrolling panel.
Scrolling panels include methods that allow you to set and get the scrolled
panel, vertical and horizontal scroll values, vertical and horizontal scroll
increments, and scroll bar visibility.

You use HIScrollingPanel to instantiate a scrolling panel, to which you can
then add the panel to be scrolled. For an example of a scrolling panel that
contains a list, see Figure 1-14 (page 1-34).

Editable Text Panels 1

A text panel displays the contents of a text object using the services of a text
engine, which manages the formatting, drawing, and editing of the text in
response to user actions and calls to panel methods. When you instantiate a
text panel, you specify the text engine you want it to use. Mac OS 8 provides a
default text engine based on TextEdit in System 7, and you can provide or use
other text engines according to the needs of your application.

The text panel itself is independent of the text engine with which it is
associated. Although its methods can perform text-specific operations such as
inserting, deleting, and replacing text, the text panel can also use its associated
text engine to respond automatically to user input from the mouse, keyboard,
voice-recognition software, and other sources of input. A text panel can also
support copy, paste, and drag and drop automatically.

You instantiate editable text panels like that shown in Figure 1-15 from class
HIEditText. An editable text panel permits editing by the user of the text that
the panel displays.

Figure 1-15 An editable text panel
Human Interface Objects 1-35
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
It’s possible to disallow editing temporarily in an editable text panel. This can
be useful, for example, for panels that are editable only some of the time,
depending on other conditions in the application. For an example of an
editable text panel that can be temporarily disabled, see Figure 1-23 (page 1-55).

The easiest way to create static text panels whose text never needs to be
editable is to use HICaption. For an example of a static text panel, see
Figure 1-20 (page 1-39).

For information about text objects, see “International Text” (page 1-53). For
information about text engines, see the accompanying document Text Handling
and Internationalization.

Radio Button Groups 1

A radio button group is an embedding panel that encapsulates several radio
button panels, as shown in Figure 1-16. Unlike the individual radio button
panel illustrated on page 1-25, a radio button group panel can handle mouse
and keyboard interaction, including highlighting and tracking user input focus.
You use HIRadioButtonGroup to instantiate a radio button group.

Figure 1-16 A radio button group panel

Visual Separators 1

Visual separator panels can display horizontal, vertical, or rectangular visual
separators. Figure 1-17 shows examples of horizontal and visual separators. A
rectangular visual separator can optionally include a title. For an example of a
rectangular visual separator panel, see Figure 1-7 (page 1-22).
1-36 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-17 Horizontal and vertical visual separator panels

You use HIVisualSeparator to instantiate a visual separator panel. To display
visual separators that aren’t part of a panel, you can use the Appearance
Manager primitives shown in Table 1-2 (page 1-50).

Static Image Panels 1

Embedding panels such as dialog boxes and palettes often include icons,
pictures, patterns, and simple unstyled captions. Although users don’t interact
with these elements, it is often convenient to implement them as panels.

The standard simple visual panel classes provide the easiest way to integrate
visual elements with your application’s interactive human interface elements.
You set the title for a simple visual panel—that is, the visual element to be
displayed—by passing data of the appropriate type to its initializing method,
which automatically creates the appropriate imaging reference and displays it
using imaging object methods.

You can also implement simple visual elements without the aid of the HI
Objects class library by using imaging objects or other lower-level services
directly. For an introduction to imaging objects, see “Imaging Objects”
(page 1-40).

The chapter “Static Image Panels,” which will be available with later developer
releases, describes in detail how to use HIStaticPanel subclasses to create and
manipulate visual images as panels.
Human Interface Objects 1-37
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Icons 1

An icon is a graphic representation of some human interface element, such as a
document, disk, folder, application, or the Trash in the Finder. The Finder
draws and manages the icons that a user sees on the desktop.

Figure 1-18 shows the talking face icon commonly used to identify note alert
boxes.

Figure 1-18 An icon panel

To display an icon as a panel, use HIIcon. An icon panel encapsulates an icon
image and can draw itself appropriately within an embedding panel.

To display an icon without using the HI Objects class library, use either the icon
imaging object interface or the Icon Utilities, a lower-level set of utilities for
manipulating icons that aren’t inside panels. For example, you can use the icon
imaging object interface to display icon images in any content area. The Icon
Utilities provide low-level support for icon caching and drawing. You can also
use the Icon Utilities to obtain the icon currently being used by a particular file
in the Finder so you can display it in your application.

Pictures 1

To display a QuickDraw picture as a panel, use HIPicture. Figure 1-19 shows
an example.

Figure 1-19 A picture panel
1-38 Human Interface Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
To display a picture outside of a panel, you can use either the picture imaging
object interface or QuickDraw directly.

Captions 1

To display the contents of a text object as a static text panel that can’t ever be
edited by the user, use HICaption. Figure 1-20 shows two static text panels.

To create text panels that can be edited (or have the potential to be edited), use
HIEditText. For an example of an editable text panel, see “Editable Text Panels”
(page 1-35).

HICaption provides the easiest way to display static text in a panel. Unlike
HIEditText, HICaption doesn’t require that you specify a text engine.

Figure 1-20 A caption panel

To display the contents of a text object outside of a panel, use either the text
imaging object interface or a text engine directly.

Both HICaption and text imaging object methods use text strikes, which are
standard drawing contexts defined by QuickDraw for specifying the font, size,
fractional widths, and other characteristics with which to draw text. Text
strikes also allow you to specify abstractions for the current application font,
large system font, small system font, and other special fonts that users can set
themselves. In most cases you should specify either the large system font or the
small system font for text that appears in your application’s HI objects.

More information about text strikes will be provided with later developer
releases.
Human Interface Objects 1-39
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Imaging Objects 1

HI objects support polymorphic image data for their titles and other elements
by using imaging objects. An imaging object is a SOM object that can draw a
specific kind of image data, such as text, icons, or pictures. The Imaging Objects
class library defines a separate imaging object class for each of several
commonly used types of image data. These classes descend from a common
abstract superclass, HIImagingObject, as shown in Figure 1-21.

Unlike imaging objects, which are full-fledged SOM objects, the image data on
which the imaging objects operate are not real objects in the OOP sense, since
they don’t have any methods of their own. The image data for a single image,
such as a picture or some static text, is identified by an image reference that
you can pass to imaging object methods or to HI object methods.

You can also bundle two or more images of potentially different types together
as a single composite image, which is identified by a single image reference
and drawn by a composite imaging object (class HICompositeImagingObject).
For example, the combination of a file or folder icon accompanied by a text
name, as displayed by the Finder, could be drawn by a composite imaging
object.

You use image references with the HI Objects class library to specify

■ titles of windows, push buttons, checkboxes, icons, rectangular visual
separators, and all other HI objects that can have a title

■ list items

■ menu items

You can also pass an image reference to HI imaging object methods to measure
or draw an image without using the HI Objects class library at all.
1-40 Imaging Objects

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Figure 1-21 The inheritance hierarchy for the HI Imaging Objects class library

The classes shown in Figure 1-21 play the following roles:

■ HIImagingObject is the abstract superclass for all HI imaging object classes.
Its methods perform operations common to all imaging objects, such as
creating, initializing, measuring, and drawing a new image.

■ HITextImagingObject is the concrete class that defines text images. Its
methods allow you to set and get the text object associated with an image
and the text strike that defines the font, style, and other characteristics of the
text to be displayed.

■ HIIconImagingObject is the concrete class that defines icon images. Its
methods allow you to set and get the icon image.

■ HIPictureImagingObject is the concrete class that defines picture images. Its
methods allow you to set and get the QuickDraw picture associated with a
picture image.

■ HIPatternImagingObject is the concrete class that defines pattern images. Its
methods allow you to set and get the pattern.

■ HICompositeImagingObject is the concrete class that defines composite
images. Its methods allow you to add subimages to a composite image and
to set and get image references for the subimages.

HICompositeImagingObject

HITextImagingObject

HIImagingObject

HIPatternImagingObject

HIPictureImagingObject

HIIconImagingObject
Imaging Objects 1-41
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Copy, Paste, Drag, and Drop 1

Users of Mac OS 8 applications should be able to copy and paste data freely
within the same window or from one window to another. Users should also be
able to drag and drop anything that they can copy and paste. For example, the
should be able to press down on the mouse button while the pointer is over a
selection, move the pointer across the screen, and then release the mouse
button.

You can use the Scrap Manager, Clipboard Manager, and Drag Manager to
implement copy, paste, and drag and drop with the same piece of code. The
Scrap Manager provides the generic transport package format, and the
Clipboard and Drag Managers support the underlying user experience of
moving the packaged data, called a scrap, from one place to another.

Because they don’t involve drawing to the screen, the Scrap Manager and the
Clipboard Manager execute in a preemptively safe manner and are fully
reentrant—unlike the Drag Manager and the rest of the Mac OS 8 Toolbox,
which are nonreentrant.

The chapter “Scrap, Clipboard, and Drag Managers,” which will be available
with later developer releases, describes in detail how to implement copy, paste,
and drag and drop. The sections that follow introduce these three managers.

Scrap Manager 1

The Scrap Manager can handle data of any size, including QuickTime movies,
sound data, graphics data, and other data that take up a lot of memory. The
Scrap Manager provides functions that allow you to create a scrap, package the
data to be transported inside it, and retrieve the data after the Clipboard
Manager or Drag Manager have transported the scrap to its destination.

A scrap consists of one or more scrap items. Each scrap item is associated with
a single piece of data represented by one or more scrap item types. For
example, a scrap that contains a picture might contain a single scrap item
represented by a single scrap item type, such as a PICT; whereas a scrap that
contains a Finder icon might contain a scrap item represented by several scrap
item types, including the icon itself, a PICT, and a file system object, as shown
in Figure 1-22. It is usually desirable to provide the same data in several
1-42 Copy, Paste, Drag, and Drop

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
different formats, so that the receiving application can choose a format that it
can handle.

Figure 1-22 Scrap, scrap items, and scrap item types

The Scrap Manager also supports the concept of promises. For example, you
can choose to put a scrap item on the Clipboard as a promise instead of the
actual data. This involves constructing an empty scrap with placeholders for
the various scrap item types. When the user pastes, the Scrap Manager sends a
Scrap Promise event to the original application, requesting that it fulfill its
promise for the type of data being pasted by providing the actual data. This
mechanism avoids data transfer until the data is actually needed for a paste. It
also allows the original application to transfer the data using just the format
requested by the pasting application rather than duplicating the data in a
variety of possible formats. Promises are especially useful for copying large
pieces of data, but they are also the fastest way to copy any kind of data.

Promises placed on the Clipboard require slightly different treatment than
promises used in dragging operations. If the user quits the original application
or closes the document containing the promised data before a promise on the
Clipboard has been fulfilled, the original application should fulfill the promise
before it quits or closes the window to ensure that user can paste the item in the
future.

Scrap

Scrap

item:

Finder

icon #1

Scrap

item:

Finder

icon #2

Scrap

item:

Finder

icon #3

Scrap item

type:

PICT

Scrap item

type:

Icon suite

Scrap item

type:

File system

object
Copy, Paste, Drag, and Drop 1-43
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Clipboard Manager 1

The Clipboard Manager provides a mechanism for placing a scrap on the
Clipboard and retrieving it when the user pastes the data in a new location. A
single Clipboard is shared by all currently running applications.

In general, after you use the Clipboard Manager to place a scrap on the
Clipboard, the scrap becomes read only. Multiple applications can use the
Scrap Manager simultaneously to extract data from the scrap during separate
paste operations, but the scrap can’t be altered. If another scrap gets placed on
the Clipboard before one or more applications have finished pasting, the Scrap
Manager maintains the old scrap until they are finished, but treats the most
recent scrap as the current scrap for any new paste operations.

Whenever a new scrap gets placed on the Clipboard, the Clipboard Manager
sends a Clipboard Changed Apple event to all interested applications to notify
them that the contents of the Clipboard have changed and what data types are
available for the new data. This allows each application to update its Edit menu
appropriately as soon as new data is copied to the Clipboard. For example,
when your application receives an event informing it that the Clipboard now
contains text in a format your application can handle, it should make sure that
the Paste item in its Edit menu is enabled.

Drag Manager 1

From the user’s point of view, to drag something means to position the pointer
on a visual interface element (such as an icon in the Finder), press and hold the
mouse button, move the pointer to a new position, and then release the mouse
button. In general, dragging can have different effects, depending on what’s
under the pointer when the user first presses the mouse button. These can
include selecting blocks of text, choosing a menu item, selecting a range of
objects, shrinking or expanding an object, or moving an icon or other visual
elements from one place to another. The Drag Manager supports the latter form
of dragging: moving visual elements and their associated data from one place
to another.

You use the Drag Manager to support the dragging of visual interface elements
within your application, from your application to other applications or the
Finder, and from other applications or the Finder to your application. The Drag
Manager uses a scrap to hold the data associated with a dragged element.
Elements that may be dragged can include text, graphics, bitmaps, icons,
outline items, and so on. The Finder itself uses the Drag Manager to support
1-44 Copy, Paste, Drag, and Drop

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
common dragging operations such as moving a file or folder or dropping items
on other items to make something happen, such as running a script.

The Scrap Manager packs and unpacks the data that’s transported in a drag
operation. The Drag Manager supports the user experience while an item is
being dragged, including displaying an outline or a transparent version of the
original image during dragging. You use the Drag Manager to create the scrap
associated with a dragged element, the Scrap Manager to add scrap items and
their associated scrap item types to the scrap, the Drag Manager to handle the
actual dragging, and the Scrap Manager to read the scrap after the drag
operation is complete.

The Toolbox provides default handlers for drag tracking and drag handling
events that the Drag Manager uses to inform your application as the user drags
items across the screen or drops drag items in one of your application’s
windows. If necessary, you can override these handlers to implement custom
dragging behavior for your application.

Interactions With the Finder 1

Once you’ve designed your application, you need to create icons to represent
the application and the documents it creates. The Finder displays these icons to
the user. If your application appears as an item in the Apple or Application
menu, your application’s icon is displayed next to its name and, when your
application is active, as the title of the Application menu.

Many applications allow users to set various preferences, such as the default
font, pen widths, menu contents, toolbar contents, backup saving behavior, and
so on. The Preferences Manager provides a standard mechanism for controlling
your application’s preferences. Using the Preferences Manager ensures that
your application can take advantage of Mac OS 8 support for multiple users
who share a single computer.

The chapter “Finder Interface” describes how to define and create the icons for
your application and its documents. The chapter also describes how your
application interacts with the Finder. The chapter “Preferences Manager”
describes how to implement user preferences for your application. Both
chapters will be available with later developer releases.
Interactions With the Finder 1-45
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Resources 1

Resources are basic elements of every Macintosh application. By storing
descriptions of menus, windows, controls, dialog boxes, sounds, fonts, and
icons in resources, you can make these and other elements easier to create and
manage. Using resources also eases translation of human interface elements
into other languages.

A resource is any data stored according to a defined structure in the resource
fork of a file. The data in a resource is interpreted according to its resource
type. You usually create resources using a resource compiler or resource editor.
This book shows resources in Rez format; Rez is a resource compiler provided
with the Macintosh Programmer’s Workshop (MPW), available from the Apple
Developer Catalog. Apple and third parties also provide additional resource
tools you can use to create the resources for your application.

Most of the Toolbox services use the Resource Manager to read resources for
you. For example, you can use the HIObject static functions to read descriptions
of your application’s windows, dialog boxes, menus, and controls from
resources. The Toolbox services interpret a resource’s data for you once it is
read into memory. To ensure compatibility with future versions of the Mac OS,
you should use Toolbox services to access resources whenever possible. If
necessary, you can also use the Resource Manager directly to read and write
resources whose formats are defined by your application.

The chapter “Resource Manager,” which will be available with later developer
releases, describes the Resource Manager in detail. This section provides a brief
introduction to resources in Mac OS 8.

Mac OS 8 treats a file as a named, ordered sequence of bytes that is stored on a
volume and is typically divided into two forks, the data fork and the resource
fork. The data fork contains data that usually corresponds to data created by
the user; the application creating the file can store and interpret the data in the
data fork in whatever manner is appropriate. The resource fork of a file
consists of the resources themselves.

When you write data to a file, you write to either the file’s resource fork or its
data fork. You must use File Manager routines to read from and write to a file’s
data fork and Resource Manager routines to read from and write to a file’s
resource fork.
1-46 Resources

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
You typically store as resources data that has a defined structure—such as
icons, sounds, or AE records that describe HI objects. When you create a
resource, you assign it a resource type and resource ID. A resource type is a
sequence of four characters that uniquely identifies a specific type of resource,
and a resource ID identifies by number a specific resource of that type. (You
can also use a resource name in place of a resource ID to identify a particular
resource within a resource type.) For example, to create a description of a
picture in a resource, you create a resource of type 'PICT' and give it a resource
ID or resource name that is unique among any other 'PICT' resources that you
have defined. Some resources have restrictions on the numbers you can use for
resource IDs; in general, numbers 128 through 32767 are available for your use.

Mac OS 8 defines a number of standard resource types. You can use these
resource types to define their corresponding elements. You can also create your
own resource types if your application needs resources other than the standard
types.

When your application or a Toolbox service requests a resource of a particular
type with a given resource ID, the Resource Manager looks for the specified
resource and, if successful, reads it into memory. However, the Resource
Manager does not interpret the format of an individual resource type. You
should not make any assumptions about a standard resource’s format once the
Resource Manager has read it into memory. For example, when you use a static
function defined by HIObject to read a window from an HI object resource, the
function uses the Resource Manager to read the resource into memory. Once
the resource is in memory, the HI Objects class library interprets the resource’s
data and creates a window with the characteristics described by the resource.
In general, you should not directly access resources in memory. The only
exceptions are resources whose formats you define yourself.

You typically store the resources specific to your application—such as
descriptions of its HI objects—in the application file’s resource fork. Whether
you store data in the data fork or the resource fork of a document file depends
largely on whether you can structure that data in a useful manner as a resource.
Data that is likely to be edited by the user is usually stored in the data fork of a
document file. Document-specific settings, such as the document window’s last
position and size on the screen, are usually stored as a resource in the
document file’s resource fork. The next time the user opens the document, your
application can read the position and size saved in this resource and position
the document accordingly.

You can specify that the Resource Manager read a resource into memory
immediately when the Resource Manager opens a file’s resource fork, or you
Resources 1-47
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
can specify that the Resource Manager read it into memory only when needed.
Normally, the Resource Manager stores resources from resource forks opened
by your application in relocatable blocks in your application’s heap. You can
also specify whether the resource should be purged from memory to make
room in memory for other data. If you specify that a resource is purgeable, you
need to use the Resource Manager to make sure the resource is in memory
before accessing it.

When a user opens your application, your application’s resource fork is opened
automatically. When your application opens a file, your application typically
opens both the file’s data fork and the file’s resource fork. When your
application requests a resource from the Resource Manager, the Resource
Manager follows a specific search order. (If necessary, your application can
change the search order using Resource Manager routines.) The Resource
Manager normally looks first for the resource in the resource fork of the last file
that your application opened. So, if your application has a single file open, the
Resource Manager looks first in that file’s resource fork. If the Resource
Manager doesn’t find the resource there, it continues to search each resource
fork open to your application in the reverse order that the files were opened.
After looking in the resource forks of files your application has opened, the
Resource Manager searches your application’s resource fork. If it doesn’t find
the resource there, it searches system resources.

This search allows your application to use system resources, to override system
resources with resources stored in the application’s resource fork, and to
override application-defined resources with resources stored in a document’s
resource fork.

A resource fork can contain at most 2700 resources. In general, you should not
create more than 500 resources of the same type in any one resource fork.
1-48 Resources

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Themes 1

As shown in Figure 1-1 (page 1-4) and Figure 1-2 (page 1-5), users can select
different themes, or styles—that is, coordinated sets of human interface designs
that determine the appearance of human interface elements on a systemwide
basis, across multiple applications. Regardless of the theme, the core user
experience remains the same, and users can switch themes without having to
learn new human interface metaphors. The Appearance Manager provides the
underlying support for these capabilities.

A theme determines the appearance of all HI objects on the screen, including
alert icons, controls, background colors, dialog boxes, menus, windows, and
state transitions. Apple supplies several standard themes. Users can choose
among the themes available to the system with the Appearance control panel,
which also allows them to modify other aspects of their computing
environment’s appearance, such as the desktop pattern, highlight color, screen
saver, and system font. (The Appearance control panel replaces the Desktop
Patterns and Color control panels used in System 7.)

In addition to supporting user customization, themes insulate your application
from future changes to the human interface. They free you from relying on
hardwired appearances for standard elements while making it easier to create
customized elements. Because Mac OS 8 allows you to deal with appearance
abstractions rather than specific details, your application can support not only
the new human interface designs in Mac OS 8 but also future design
enhancements.

The Appearance Manager manages all aspects of themes and theme switching,
the Appearance control panel, support for a variety of color data (RGB colors,
pixel patterns, and so on), and support for animation and sound. It supersedes
System 7 color tables such as 'cctb' and 'mctb' with a more abstract
mechanism that allows you to coordinate colors with the current theme.

The Appearance Manager provides primitives for specifying window headers,
group boxes, separators, and other building blocks for HI objects. Table 1-2
shows preliminary designs for some of the primitives provided by the
Appearance Manager as they appear in the Apple Default theme. The HI
Objects class library uses these primitives to draw HI objects. If you need to
customize any of the standard HI objects, you should use these primitives to
coordinate the appearance of your objects with the current theme.
Themes 1-49
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Table 1-2 Some Appearance Manager primitives and examples of their use

Appearance in the
Apple Default theme Example of use Description

Primary group box.
Used to frame a
primary group of
related controls; title
optional.

Secondary group box.
Used to frame a group
of related controls
within a primary group
box; title optional.

Placard. Used as
background for status
information in a
window.

Window header. Used
to display information
at the top of the content
area, below the title bar.

Text box frame. Used to
enclose a text box.
1-50 Themes

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Focused text box frame.
Used to indicate that a
text box has user input
focus.

List box frame. Used to
enclose a list. (Focused
appearance is the same
as a focused text box
frame.)

Ticks. Used to calibrate
a slider or progress
indicator.

Vertical and horizontal
visual separators. Used
to separate elements in
a dialog box or window.

Table 1-2 Some Appearance Manager primitives and examples of their use
(continued)

Appearance in the
Apple Default theme Example of use Description
Themes 1-51
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
In addition to the primitives illustrated in Table 1-2, the Appearance Manager
provides functions that allow you to determine how the current theme is
drawing various aspects of the human interface, such as background fills. For
example, you can ask the Appearance Manager for the current background
color so you can coordinate the appearance of your application’s content area
with the current theme. Similarly, if you want to draw a line through a
standard menu item, you can ask the Appearance Manager for the current
color of the menu item text so you can use the same color for the line.

For more information about using the Appearance Manager to extend the HI
Objects class library, see “Customizing HI Objects” (page 1-56). The chapter
“Appearance Manager,” which will be available with later developer releases,
describes the Appearance Manager in detail.

Programming With the Toolbox 1

All Toolbox services support similar capabilities in similar ways, thus ensuring
a consistent programming interface as well as a consistent user experience.
From a programmer’s point of view, these are the most important principles
that underlie the Mac OS 8 Toolbox:

■ Opacity and consistency. The Toolbox provides a complete programming
model that doesn’t require direct manipulation of underlying data structures.

■ Integrated support for international text. The Toolbox takes advantage of
Mac OS 8 text objects to provide flexible support for multilingual text
throughout the human interface.

■ Object lifecycle management. The Toolbox keeps track of multiple
references to a single HI object on your application’s behalf, releasing the
original object only after all references to it have been released.

■ Data extensibility. The Toolbox uses the Collection Manager to support the
addition of arbitrary tagged data to Toolbox data structures without
manipulating the structures directly.

■ Design extensibility. The windows, menus, controls, and other standard
elements defined by the HI Objects class library can be used as is or
extended by developers to support specialized application needs.

The sections that follow introduce these four aspects of Toolbox programming.
1-52 Programming With the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Opacity and Consistency 1

The Mac OS 8 Toolbox provides high-level interfaces that eliminate the need to
keep track of the internal organization of system data structures. Instead,
Toolbox services ensure the opacity and consistency of the programming
interface. The Toolbox provides

■ the HI Objects class library for creating standard, customizable HI objects

■ the HI Imaging Objects class library for creating standard image references
that can be used to draw a variety of image types

■ accessor functions or methods for getting and setting the contents of
individual data structures

■ blind references that identify data structures without permitting direct access

■ high-level interfaces for all operations, including those traditionally
associated with low-memory globals

The opacity the Toolbox interfaces ensures that your application doesn’t have
to depend on Toolbox implementation details. This allows Apple to develop
the Toolbox further in the future without requiring you to rewrite your
application.

International Text 1

Mac OS 8 supports a systemwide text data type, called a text object, that
encapsulates the details of text encoding. Text objects allow applications to
manipulate multilingual text transparently without dealing with the details of
character encoding, which can be based on Unicode, ASCII, traditional
Macintosh, and other encoding systems. Mac OS 8 applications should use text
objects rather than Pascal and C strings within all human interface elements,
including objects instantiated from HIEditText or HICaption and image
references created with HI imaging objects.

Pervasive support for text objects in Mac OS 8 has two ramifications for
application programming:

■ You can display multilingual text (in multiple scripts) as the title of any HI
object or as a menu item or list item.

■ Because you don’t have to keep track of the details of individual scripts and
encoding systems, localization of interface elements is greatly simplified.
Programming With the Toolbox 1-53
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
In addition to text objects, the Mac OS 8 Toolbox supports left-growing
windows, automatically resizable dialog boxes, and other features that address
specific international needs.

For more information about international text and Mac OS 8, see the
accompanying document Text Handling and Internationalization.

Object Life Cycle Management 1

The Mac OS 8 Toolbox allows you to obtain multiple independent references to
a single HI object. It does so by keeping track of all references to an HI object,
incrementing the reference count when a new reference is created and
decrementing it when a reference is released.

You always release HI object references the same way, regardless of how many
references a single HI object might have, thus avoiding the programming
involved in keeping track of them yourself. The Toolbox releases the original
object from memory only when the reference count reaches zero.

Extensible Data Structures 1

The Mac OS 8 Toolbox eliminates the need for hardwired modification of
system data structures by supporting the Collection Manager, which allows
you to attach arbitrary data to virtually any data structure. The Collection
Manager, which originally shipped with QuickDraw GX, can be used to
associate data with a tag and ID, attach that data as a collection item to any
Toolbox data structure, and retrieve it when necessary.

Collection items can be used for a variety of purposes. For example, in a
preferences dialog box that allows the user to switch among several preference
“pages,” each of which displays multiple panels, you can use collection items
to associate a page ID with the panels that appear in that page. This makes it
easy to hide or show the appropriate panels when the user switches pages.

The original Collection Manager is described in Inside Macintosh: QuickDraw
GX: Environment and Utilities. Information about the Mac OS 8 Collection
Manager will be available with later developer releases.
1-54 Programming With the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Extensible Designs 1

Whenever possible, you should use the standard HI objects defined by the HI
Objects class library. This is the easiest way to support themes. If you need to
create custom HI objects, you have three choices:

■ Add standard HI objects to a standard embedding panel. You can easily
add standard HI objects to a standard embedding panel without subclassing.

■ Subclass your own theme-compatible HI objects. You can subclass from
any HI object class to create your own custom HI objects, if necessary using
primitives and fills defined by the Appearance Manager to define new
appearances that maintain support for theme switching.

■ Subclass your own HI imaging objects. You can subclass from
HIImagingObject to support additional image types that you want to use for
HI object titles, menu items, list items, and so on.

The sections that follow briefly describe these three ways of extending the
standard HI object designs. These techniques will be described in more detail
in later developer releases.

Assembling Embedding Panels 1

The easiest way to create custom HI objects is to add standard HI objects to a
standard embedding panel. Figure 1-23 shows an example.

Figure 1-23 Custom panel created by embedding a checkbox panel and editable
text panel in an embedding panel

Enabled with user input focusDisabled
Programming With the Toolbox 1-55
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
The panel shown in Figure 1-23 is an embedding panel that contains two
subpanels: an editable text panel and a checkbox that allows the user to enable
or disable the text panel.

To create the panel in Figure 1-23, you can follow these steps:

1. Instantiate an embedding panel, checkbox panel, and editable text panel
from the corresponding HI object classes.

2. Add the checkbox panel and editable text panel to the embedding panel as
subpanels in the appropriate locations.

3. Set a state change function for the checkbox panel that enables the editable
text panel when the user selects the checkbox. When the user deselects the
checkbox, the state change function disables the editable text panel.

You can also specify such an arrangement in a description of the embedding
panel that you can store in a resource.

The checkbox panel changes its appearance appropriately in response to user
input such as mouse events or pressing the space bar. The editable text panel
draws itself appropriately when it receives user input focus and supports
standard user operations on text.

Customizing HI Objects 1

Figure 1-3 (page 1-12) shows the inheritance hierarchy for the standard classes
defined by the HI Objects class library. You can use standard SOM techniques
to subclass custom HI objects from any of these standard classes.

For example, you can create a custom editable text panel that accepts numbers
but not letters. To do so, you subclass from HIEditText and override just two
methods: ReplaceTextByTextObject and HandleAppleEvent.

If you need to change the appearance of a standard HI object, you can subclass
from it and use Appearance Manager primitives to create the appearance you
want in a theme-compatible manner. You can use this approach for a wide
range of customization, from minor adjustments to the appearance of a push
button to a completely new HI object subclassed from the HIObject superclass
that you build entirely with Appearance Manager primitives.
1-56 Programming With the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
Customizing HI Imaging Objects 1

Figure 1-21 (page 1-41) shows the inheritance hierarchy for the standard classes
defined by the HI Imaging Objects class library. You can use standard SOM
techniques to subclass custom HI imaging objects from the abstract superclass
HIImagingObject.

For example, if your application uses a proprietary graphics format, you can
subclass from HIImagingObject to implement an imaging object that draws
images in that format. You can then pass image references for images in your
proprietary format to any HI object methods that accept image references.

Programming With the Toolbox 1-57
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 1

Introduction to the Mac OS 8 Toolbox
1-58 Programming With the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Contents

Draft.  Apple Computer, Inc. 4/24/96

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Toolbox Event Routing
Event Routing Within a Process 2-4
Geometric Event Routing 2-6

Default Geometric Event Routing 2-6
Overriding the Default Geometric Event Routing 2-8

Broadcast Event Routing 2-10
Default Broadcast Event Routing 2-10
Overriding Default Broadcast Routing 2-12

Focused Event Routing 2-13
Command Events 2-14
Navigation Events 2-14

Default Routing for a Navigation Event 2-15
Overriding the Default Routing for a Navigation Event 2-17

Virtual Key Events and Text Events 2-19
Default Routing for Virtual Key and Text Events 2-20
Overriding Default Routing for Virtual Key and Text Events 2-21

Routing Events With Application Handlers 2-23
Handler Tables in Process Dispatchers 2-23
Handler Tables in Window Dispatchers 2-24
Registering a Panel’s Interest in an Event 2-24

Toolbox Support for Modal States 2-25
2-1

C H A P T E R 2
2-2 Contents

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2
Toolbox Event Routing 2

The Toolbox defines a variety of standard events for which it provides default
handlers. The Toolbox also provides default handlers for other events, such as
key events and text events, generated by other parts of the system.

This chapter describes how some of the default handlers that the Toolbox
provides route events to the appropriate HI objects. It also describes the points
at which you can override the default event routing to implement your
application’s unique behavior.

Before you read this chapter, you should be familiar with the accompanying
document Apple Events in Mac OS 8 and with the first chapter in this document,
“Introduction to the Mac OS 8 Toolbox” (page 1-3).

For an introduction to the treatment of text in Mac OS 8, see the accompanying
document Text Handling and Internationalization.

For descriptions of some of the events for which the Toolbox provides
handlers, see “Standard Events Handled by the Toolbox” (page 3-5).

▲ W A R N I N G

This document is preliminary and incomplete. It is
intended only to illustrate the design concepts that
underlie Toolbox event routing. All information presented
here, including the roles of individual events, handlers,
and methods, is subject to change. ▲
2-3
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Event Routing Within a Process 2

To dispatch Apple events within a process, the Apple Event Manager uses one
or more Apple event dispatchers, which combine an event queue and a stack of
handler tables. Dispatchers at the process level are called process dispatchers.
Every process has a default dispatcher, and you may create additional process
dispatchers as necessary. Every window has a single dispatcher called a
window dispatcher that determines the window’s default behavior.

Most incoming events traverse at least five points where they can be
intercepted on their journey from User Input Services to a target HI object:

4. A handler associated with the process dispatcher.

5. A handler associated with the window dispatcher.

6. A method of an HIWindow object.

7. A method of an HIRootPanel object.

8. A method of a subpanel embedded in the root panel.

In many cases the HI object containment hierarchy traversed by events extends
through additional nested subpanels.

A handler associated with an Apple event dispatcher can handle an event and
not pass it on; handle it and pass it on; or pass it on without taking any other
action. Typically, process dispatcher handlers forward events to window
dispatchers, and window dispatcher handlers call HIWindow methods. However,
a handler associated with either kind of dispatcher may also respond to an
event by sending a higher-level event to the original process dispatcher or,
potentially, to any other dispatcher.

Similarly, a method of a window object, a root panel, or any other panel in the
HI object containment hierarchy can handle an event and not pass it on; handle
it and pass it on to a contained panel; or pass it on to a contained panel without
taking any other action. Typically, window methods pass on events to the
equivalent root panel methods, which pass them on to the equivalent subpanel
methods, and so on until the event reaches its destination. However, like
handlers associated with dispatchers, any method may also respond to an
event by sending a higher-level event to the original process dispatcher, or,
potentially, to any other dispatcher.
2-4 Event Routing Within a Process

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
The Toolbox provides default handlers and defines HIObject methods for a
variety of events, including both events that it defines (such as events sent by
the Scrap Manager, Clipboard Manager, and Drag Manager) and events (such
as mouse events or text events) sent by other parts of the system. In general,
handlers and methods that correspond to the five interception points discussed
above route the event to the appropriate destination. You may selectively
override this default routing at any point by installing your own handlers in
the appropriate dispatcher or by defining your own HIObject subclass and
overriding the appropriate methods.

The Toolbox uses its default handlers and methods to route events in three
ways:

■ To a single target HI object at a specified location within a window.

■ To all the HI objects in one or more windows.

■ To the HI object that currently has user input focus.

In all three cases, the events are routed from a process dispatcher to a window
dispatcher, from a window dispatcher to a window, from a window to a root
panel, from a root panel to one or more subpanels, if necessary from subpanels
to other subpanels that they in turn contain, and so on until the events reach
their destinations. This standard routing for all events through the HI object
containment hierarchy ensures that all embedding panels can control all
aspects of the subpanels that they contain.

Events related to an application’s human interface can in turn be classified
according to their routing type:

■ Geometric events are routed to a single target HI object whose bounding
rectangle contains coordinates specified by the event. For example, a Mouse
Down event is typically routed through the containment hierarchy to a
single HI object, such as a button, that the user has clicked.

■ Broadcast events are routed to a group of related HI objects. For example, a
Window Activated event triggers the HandleActivate method for all the
panels in a window’s containment hierarchy.

■ Focused events are routed to the HI object that currently has user input
focus. For example, text events are typically routed through the containment
hierarchy for HI objects with user input focus to the editable text panel
currently receiving user input.

This chapter introduces each kind of routing and the advantages and
disadvantages of overriding handlers or methods at each interception point.
Event Routing Within a Process 2-5
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
For preliminary descriptions of some of the default handlers provided by the
Toolbox, see “Standard Events Handled by the Toolbox” (page 3-5). For
descriptions of event-handling methods defined by HIObject, see “HIObject
Class Reference” (page 4-5). Documentation for subclasses of HIObject will be
available with later developer releases.

Geometric Event Routing 2

In general, the event handlers installed in the process dispatcher simply
forward geometric events to the dispatcher for whatever window the event
occurred in. The window dispatcher in turn calls the corresponding HIWindow
method, such as HandleMouseUp or HandleMouseDown, or the catchall method
HandleAppleEvent if the event has no corresponding HIWindow method.

For information about using HandleAppleEvent to handle custom geometric
events you define for your application, see “Routing Events With Application
Handlers” (page 2-23).

Default Geometric Event Routing 2

The Mouse Down event presents an interesting example of geometric event
routing, because it gets translated into higher-level events, such as Mouse
Down in Content or Window Resized, depending on where it occurs within a
window. This illustrates the ability of the Mac OS 8 event model to interpret
low-level events and resend them as higher-level synthetic or semantic events
that are more meaningful to the application.

Figure 2-1 shows how the Toolbox routes a Mouse Down event to a panel in the
content area of a window. These steps correspond to the numbers in the figure:

1. User Input Services determines which process should receive the Mouse
Down event and sends the event to the dispatcher for that process.

2. The process dispatcher’s default handler table’s Mouse Down handler
determines which window the event occurred in and sends a Mouse Down
event to that window’s dispatcher.

3. The window dispatcher’s default handler table’s Mouse Down handler calls
HIWindow::HandleMouseDown.
2-6 Geometric Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Figure 2-1 Default geometric event routing for a Mouse Down event

4. The HandleMouseDown method determines whether the Mouse Down event
occurred in the window’s content area or in the window frame. If the event
occurred in the window’s content area, HandleMouseDown sends a Mouse
Down in Content event to the process dispatcher (as shown in the figure).
If the event occurred in the window frame, HandleMouseDown handles the
event, if possible (for example, by moving or resizing the window).
HandleMouseDown may also send additional events, such as Window Resized

User Input

Services

Process

dispatcher

Window

dispatcher

Mouse Down in Content eventMouse Down

in Content event

Window’s

HandleMouseDown

method

Window’s

HandleMouseDownInContent

method

Root panel’s

HandleMouseDownInContent

method

Subpanel’s

HandleMouseDownInContent

method

5

6

4

3 6

7

8

4

In content—

sends Mouse

Down in Content

event to process

dispatcher

Mouse Down event

Mouse Down event1

2

In frame—

Handles event;

may send other

events to process

dispatcher
Geometric Event Routing 2-7
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
or Window Close Request, to the process dispatcher to inform the
application what has happened. For example, if the user attempts to close a
window without saving changes, an application can respond to the Window
Close Request event by displaying a dialog box that provides the
opportunity to save changes before the application actually closes the
window.

5. The process dispatcher’s default handler table’s Mouse Down in Content
handler forwards the Mouse Down in Content event to the window
dispatcher.

6. The window dispatcher’s default handler table’s Mouse Down in Content
handler calls HIWindow::HandleMouseDownInContent.

7. The window’s HandleMouseDownInContent method calls
HIRootPanel::HandleMouseDownInContent.

8. The root panel’s HandleMouseDownInContent method determines which
subpanel the event occurred in and calls that subpanel’s
HandleMouseDownInContent method, which if necessary calls its subpanel’s
HandleMouseDownInContent method, and so on until the event is handled.

Overriding the Default Geometric Event Routing 2

You can override the default Toolbox routing for a Mouse Down event at any of
the numbered steps in Figure 2-1, depending on the needs of your application:

1. A Mouse Down handler installed by the application in the process
dispatcher’s handler table stack can intercept the original event. The
application’s handler can use FindWindow and other static functions provided
by HIWindow to arbitrate the recipient. This is analogous to the way mouse
events are handled in System 7. Intercepting standard events at this point is
not recommended for most applications.

2. A Mouse Down handler installed by the application in the window
dispatcher’s handler table stack can intercept the event. The application’s
handler can control any window behavior triggered by the event. However,
if the handler returns errAEEventNotHandled, it can take advantage of the
default Toolbox event routing from this point on. If your application needs
to control all aspects of event handling in a window, install your handler at
this point.
2-8 Geometric Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
3. A subclass of HIWindow can override the HandleMouseDown method. If your
implementation calls the inherited HandleMouseDown method, you can take
advantage of the default Toolbox event routing from this point on. If you
wish to customize the way the window responds to events in its frame,
override HandleMouseDown at this point.

4. A Mouse Down in Content handler installed by the application in the
process dispatcher’s handler table stack can intercept the event. The
application’s handler can use static functions provided by HIWindow to
arbitrate the receiving panel; or, if it returns errAEEventNotHandled, it can
take advantage of the default Toolbox event routing from this point on.
Intercepting standard events at this point is not recommended for most
applications.

5. A Mouse Down in Content handler installed by the application in the
window dispatcher’s handler table stack can intercept the event. The
application’s handler can control any behavior in the window’s content
triggered by the event. However, if the handler returns
errAEEventNotHandled, it can take advantage of the default Toolbox event
routing from this point on. This is one point at which you can implement
your own application content.

6. A subclass of HIWindow can override the HandleMouseDownInContent method. If
your implementation calls the inherited HandleMouseDownInContent method,
you can take advantage of the default Toolbox event routing from this point
on. This is another point at which you can implement your own application
content.

7. A subclass of HIRootPanel can override the HandleMouseDownInContent
method. If your implementation calls the inherited
HandleMouseDownInContent method, you can take advantage of the default
Toolbox event routing from this point on. However, in most cases the root
panel just passes the event to one of its subpanels. Implementing content at
this point is not recommended for most applications.

8. Any other subclass of HIObject can override the HandleMouseDownInContent
method. If your implementation calls the inherited
HandleMouseDownInContent method, you can take advantage of the default
Toolbox event routing from this point on. This is the point at which you can
customize the standard HI objects defined by the Toolbox.

You can override other standard geometric events in an analogous manner.
Geometric Event Routing 2-9
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Note
Although intercepting standard events at the process
dispatcher level is not recommended for most situations,
it may sometimes be useful for a subclass of HIObject
to override events at this level temporarily to enforce a
modal state. For example, the implementation of any
HI object that needs to track mouse movement while
the mouse is down should install handlers for some
mouse events at this level. See the description of the
HandleMouseDownInContent method (page 4-79) for details.

Broadcast Event Routing 2

Broadcast events are sent to multiple HI objects within a given scope, such as
all the windows in an application or all the panels in a window.

For a broadcast event that targets all the panels in a single window, the handler
installed in the process dispatcher forwards the event to that window’s
dispatcher. The window dispatcher in turn calls the corresponding HIWindow
method, such as HandleActivate, or the catchall method HandleAppleEvent if the
event has no corresponding HIWindow method. The HIWindow method for a
broadcast event in turn calls the equivalent HIRootPanel method, which calls
the same method on all its embedded subpanels, and so on until the event has
reached all panels in the container hierarchy.

For more information about using HandleAppleEvent to handle custom
broadcast events, see “Routing Events With Application Handlers” (page 2-23).

Default Broadcast Event Routing 2

Figure 2-2 shows how the Toolbox routes a Window Activated event to all the
panels in a window. These steps correspond to the numbers in the figure:

1. User Input Services determines which process should receive the Window
Activated event and sends the event to the dispatcher for that process.

2. The process dispatcher’s default handler table’s Window Activated handler
determines which window the event occurred in and sends a Window
Activated event to that window’s dispatcher.
2-10 Broadcast Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Figure 2-2 Default broadcast event routing for a Window Activated event

3. The window dispatcher’s default handler table’s Window Activated handler
calls HIWindow::HandleActivate.

4. The window’s HandleActivate method calls HIRootPanel::HandleActivate.

User Input

Services

Process

dispatcher

Window

dispatcher

 Window Activated event

Window’s

HandleActivate method

Root panel’s

HandleActivate method

Subpanel’s

HandleActivate method

Subpanel’s

HandleActivate method

Subpanel’s

HandleActivate method

1

2

3

4

5

Broadcast Event Routing 2-11
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
5. The root panel’s HandleActivate method calls the HandleActivate methods
for all of its embedded subpanels, which if necessary call the HandleActivate
methods for their embedded subpanels, and so on until the event has
reached all panels in the container hierarchy.

Overriding Default Broadcast Routing 2

You can override the default Toolbox routing for a Window Activated event at
any of the numbered steps in Figure 2-1, depending on the needs of your
application:

1. A Window Activated handler installed by the application in the process
dispatcher’s handler table stack can intercept the original event. This is
analogous to the way similar events are handled in System 7. Intercepting
broadcast events at this point isn’t recommended for most applications.
However, if the handler returns errAEEventNotHandled, it can take advantage
of the default Toolbox event routing from this point on.

2. A Window Activated handler installed by the application in the window
dispatcher’s handler table stack can intercept the event. If the handler
returns errAEEventNotHandled, it can take advantage of the default Toolbox
event routing from this point on. You should install a handler at this point if
you want to implement your own window activation without using SOM to
create your own HIWindow subclass.

3. A subclass of HIWindow can override the HandleActivate method. If your
implementation calls the inherited HandleActivate method, you can take
advantage of the default Toolbox event routing from this point on. This is
usually the best point at which to implement your own window activation.

4. A subclass of HIRootPanel can override the HandleActivate method. If your
implementation calls the inherited HandleActivate method, you can take
advantage of the default Toolbox event routing from this point on. In most
cases the root panel just passes the event on to its subpanels. Subclassing
HIRootPanel isn’t recommended for implementing window content.

5. Any other subclass of HIObject can override the HandleActivate method. If
your implementation calls the inherited HandleActivate method, you can
take advantage of the default Toolbox event routing from this point on. This
is the point at which you can customize the standard HI objects.

You can override other standard broadcast events in an analogous manner.
2-12 Broadcast Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Focused Event Routing 2

The ultimate destination of a focused event is the HI object that currently has
user input focus. Focused events typically convey user input from a keyboard.
In the case of the default focused event routing supported by the Toolbox, the
event that actually reaches a particular HI object represents the end product of
several levels of processing performed by User Input Services and the Text
Services Manager and its services, such as input methods, spelling checkers,
and other language-sensitive services.

For example, User Input Services translates input from a keyboard into three
kinds of events:

■ Command events. When the user presses the Command key and at the
same time presses another key, User Input Services sends the process
dispatcher for the active application a Command event.

■ Navigation events. When the user presses certain keys used to provide
alternate access to HI objects (for example, the Tab key or the space bar),
User Input Services sends the process dispatcher a Navigation event. If an
HI object with user input focus receives the event, it responds with an
appropriate action, such as transferring user input focus to the next panel
that can take focus or selecting a checkbox. If a Navigation event isn’t
handled and if it is an appropriate key event, it gets resent to the process
dispatchers a Virtual Key event.

■ Virtual Key events. When the user presses any key other than a Command
key combination or a key used for navigation, User Input Services sends the
process dispatcher for the active application a Virtual Key event.

Virtual Key events convey individual character codes. Handlers installed in the
process dispatcher use the Text Services Manager to convert Virtual Key events
into high-level text events. For example, certain combinations of Virtual Key
events might be translated into a ligature, a Kanji character, or a mathematical
symbol, depending on text input methods and other services currently
registered with the Text Services Manager.

Your application doesn’t normally handle a Virtual Key event directly. Instead,
you can either take advantage of the default handling or override handlers for
the high-level text events.
Focused Event Routing 2-13
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
In addition to creating text events from Virtual Key events, the Text Services
Manager creates them from other sources of input, such as voice recognition
software. Regardless of the way text is generated, your application always
handles high-level text events the same way. This is one of the benefits of the
default event routing provided by the Toolbox and the Text Services Manager.

If you need to intercept low-level keyboard events before they are translated
into Command events, Navigation events, or Virtual Key events—for example,
for a game that can be controlled from the keyboard—you can override
handlers in the process dispatcher’s default handler table for the Key Up, Key
Down, and Auto Key events.

This section introduces the way the Text Services Manager and the Toolbox
cooperate to process Command events, Navigation events, Virtual Key events,
and text events after they arrive at the process dispatcher. For an introduction
to the treatment of text in Mac OS 8, see the accompanying document Text
Handling and Internationalization. Documentation for the Text Services Manager
will be available with later developer releases.

Command Events 2

User Input Services generates Command events when the user triggers a
shortcut for some action, for example by pressing the Command key and the
O key at the same time as a shortcut for the Open command in the File menu.
However, Command events aren’t restricted to keyboard equivalents for menu
items. User Input Services may translate other forms of user input, such as
speech, into Command events, and Command events may be used to trigger
actions not represented by menu items.

Unlike Virtual Key events and Navigation events, Command events are never
intercepted by the Text Services Manager.

Future developer releases will provide information about Command events.

Navigation Events 2

User Input Services generates Navigation events when the user takes some
action that can be interpreted as a navigation request; for example, the user
may press the Tab key to transfer user input focus from one HI object to
another in a dialog box. However, Navigation events aren’t restricted to
keyboard input. User Input Services may translate input from other sources of
user input, such as speech recognition software, into Navigation events.
2-14 Focused Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Default Routing for a Navigation Event 2

Figure 2-3 shows the default routing for a typical Navigation event from User
Input Services to the panel that currently has user input focus.

Figure 2-3 Default focused event routing for a Navigation event

User Input

Services

Process

dispatcher

Text Services

Manager

Text

service

Text

service

Text

serviceWindow

dispatcher

Navigation event

Virtual

Key

event

Window’s

HandleNavigation

method

Root panel’s

HandleNavigation

method

Subpanel’s

HandleNavigation

method

1

4

2

3

5

6

7

8

If HI object methods

don't handle the event,

default handler sends

equivalent Virtual Key

event to process

dispatcher
Focused Event Routing 2-15
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
These steps correspond to the numbers in Figure 2-3:

1. User Input Services sends the event to the process dispatcher for the active
application.

2. The process dispatcher’s default handler table’s Navigation event handler
first passes the event to the Text Services Manager, which gives each of its
currently registered services (such as input methods, spelling checkers, and
so on) a chance to handle the event. If one of the text services handles the
Navigation event, the event goes no further.

3. If none of the text services handles the event, the Text Services Manager
returns the event to the Navigation event handler.

4. The Navigation event handler forwards the event to the window that
currently has user input focus.

5. The window dispatcher’s default handler table’s Navigation event handler
calls HiWindow::HandleNavigation.

6. The window’s HandleNavigation method calls
HIRootPanel::HandleNavigation.

7. The root panel’s HandleNavigation method calls the HandleNavigation
method of the subpanel that currently has user input focus, which if
necessary calls the HandleNavigation method of its subpanel, and so on until
the event is handled.

8. If the event isn’t handled by any of the method calls, the call to
HIWindow::HandleNavigation (step 5) returns errAEEventNotHandled and the
window dispatcher’s default handler resends the event as a Virtual Key
event.

For example, if the user presses the Tab key, User Input Services sends the
process dispatcher a Navigation event that specifies a Tab key was pressed
(step 1). The default Navigation event handler passes the event to the Text
Services Manager (step 2), which checks whether any of its services can handle
the event—for example, to move the cursor from one part of a spelling checker
to another. If the Navigation event is handled by a text service, it proceeds no
further.
2-16 Focused Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
If the Navigation event isn’t handled by a text service, the Text Services
Manager returns the event to the Navigation event handler (step 3), which
forwards it to the appropriate window dispatcher (step 4). The window
dispatcher’s default handler then calls the window’s HandleNavigation method
(step 5), and so on through the containment hierarchy for panels with user
input focus until the event gets handled, for example by dialog box transferring
user input focus to the next focusable subpanel.

If the window that currently has user input focus can’t handle the Tab keypress
as a Navigation event, the window may be able to handle it in the form of a key
event—for example, as a Tab character within a text panel or a text document.
Therefore, if the panels to which the window dispatcher’s default handler
passes the Navigation event don’t handle it, and if the event is an appropriate
key event, the handler resends the event to the process dispatcher as a Virtual
Key event (step 8). This allows a keypress a chance to be processed as text
input rather than navigation input.

Overriding the Default Routing for a Navigation Event 2

You can override the default Toolbox routing for a Navigation event at most of
the steps shown in Figure 2-3, depending on the needs of your application:

1. A Navigation event handler installed by your application in the process
dispatcher’s handler table stack can intercept the original Navigation event.
Intercepting Navigation events at this point isn’t recommended for most
applications.

2. If a Navigation event handler associated with the process dispatcher returns
errAEEventNotHandled, it can take advantage of the default Toolbox event
routing—including the default handler’s use of the Text Services Manager—
from this point on.

3. You can’t override the behavior of the Text Services Manager after it receives
a Navigation event. If none of its currently registered services handles the
event, the Text Services Manager returns the event to the Navigation event
handler that called it.
Focused Event Routing 2-17
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
4. A Navigation event handler installed by your application in the window
dispatcher’s handler table stack can intercept the event. If the handler itself
returns errAEEventNotHandled, it can take advantage of the default Toolbox
event routing from this point on. You should install a handler at this point if
you want to implement your own Navigation event handling without using
SOM to create your own HIWindow subclass.

5. A subclass of HIWindow can override the HandleNavigation method. If your
implementation calls the inherited HandleNavigation method, it can take
advantage of the default Toolbox event routing from this point on. This is
usually the best point at which to implement custom navigation within a
window.

6. A subclass of HIRootPanel can override the HandleNavigation method. If your
implementation calls the inherited HandleNavigation method, it can take
advantage of the default Toolbox event routing from this point on. However,
in most cases the root panel just forwards the event to one of its subpanels.
Subclassing HIRootPanel isn’t recommended for implementing focused
events.

7. Any other subclass of HIObject can override the HandleNavigation method. If
your implementation calls the inherited HandleNavigation method, you can
take advantage of the default Toolbox event routing from this point on. This
is the point at which you can customize the navigation behavior of the
standard HI objects defined by the Toolbox.

8. If your application installs a Navigation event handler in the window
dispatcher’s handler table stack, the handler should resend the event to the
process dispatcher as a Virtual Key event if the original Navigation event
isn’t handled by the window or any of its subpanels.
2-18 Focused Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Virtual Key Events and Text Events 2

The Text Services Manager intercepts all Virtual Key events and transforms
them into a series of text events with the aid of input methods and other text
services. The Text Services Manager expresses the results of this processing by
means of four kinds of text events that it sends to the process dispatcher:

■ Update Active Input Area events. The Text Services Manager uses Update
Active Input Area events to convey one or more textual characters in the
form of a text object, plus related information about which portions of
existing text content to replace and how to highlight the new text.

■ Position to Offset events. The Text Services Manager uses Position to Offset
events to request that the HI object with user input focus translate a global
coordinate position to an offset within the object’s textual content. Position
to Offset events allow text services to determine actions associated with
mouse movement, text selection, and so on.

■ Offset to Position events. The Text Services Manager uses Offset to Position
events to request that the HI object with user input focus translate an offset
within the object’s textual content to a global coordinate position. Offset to
Position events allow text services to obtain information about the attributes
of a particular portion of text within the HI object’s textual content and the
absolute position of the text on the screen.

■ Get Input Area Region events. The Text Services Manager uses Get Region
events to request ranges of text within an HI object’s textual content. This
event allows text services to manipulate ranges of text; for example, it allows
an interactive spell checker to manipulate existing text.
Focused Event Routing 2-19
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Default Routing for Virtual Key and Text Events 2

Figure 2-4 shows the default routing for all Virtual Key events and for the text
events into which the Text Services Manger transforms Virtual Key events.

Figure 2-4 Default focused event routing for Virtual Key and Text events

User Input

Services

Process

dispatcher

Text Services

Manager

Text

service

Text

service

Text

serviceWindow

dispatcher

Virtual Key events

Text events

Window’s

HandleAppleEvent

method

1

4

2

3

5

6

7

Root panel’s

HandleAppleEvent

method

 HandleAppleEvent

method of editable text panel

that has user input focus
2-20 Focused Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
These steps correspond to the numbers in Figure 2-4:

1. User Input Services (or potentially other sources, such as the window
dispatcher’s default handler for a Navigation event) sends Virtual key
events to the process dispatcher for the active application.

2. The process dispatcher’s default handler table’s Virtual Key event handler
passes the event to the Text Services Manager, which translates the incoming
stream of Virtual Key events into text events.

3. The Text Services Manager sends the text events back to the process
dispatcher.

4. The process dispatcher’s default handler table’s text event handlers forward
the events to the window that currently has user input focus.

5. The window dispatcher’s default handler table’s text event handlers call
HIWindow::HandleAppleEvent.

6. The window’s HandleAppleEvent method calls
HIRootPanel::HandleAppleEvent.

7. The root panel’s HandleAppleEvent method calls the HandleNavigation
method of the subpanel with user input focus, which if necessary calls the
HandleAppleEvent method of its subpanel with user input focus, and so on
until the event is handled.

Overriding Default Routing for Virtual Key and Text Events 2

You can override the default Toolbox routing for Virtual Key events at most of
the numbered steps shown in Figure 2-4, depending on the needs of your
application:

1. Virtual Key event handlers installed by your application in the process
dispatcher’s handler table stack can intercept the original Virtual Key
events. Intercepting Virtual Key events at this point isn’t recommended for
most applications. If you want to receive low-level keypress information
before it is translated into Virtual Key events, you can install your own Key
Up, Key Down, and Auto Key event handlers in the process dispatcher’s
default handler table.

2. If a Virtual Key event handler associated with the process dispatcher returns
errAEEventNotHandled, it can take advantage of the default Toolbox event
routing—including the default handler’s use of the Text Services Manager—
from this point on.
Focused Event Routing 2-21
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
3. You can’t override the behavior of the Text Services Manager after it receives
Virtual Key events.

4. Text event handlers installed by your application in the window
dispatcher’s handler table stack can intercept the text events generated by
the Text Services Manager. If such handlers returns errAEEventNotHandled,
they can take advantage of the default Toolbox event routing from this point
on. You should install handlers at this point if you want to implement your
own text event handling without using SOM to create your own HIWindow
subclass.

5. A subclass of HIWindow can override the HandleAppleEvent method. If your
implementation calls the inherited HandleAppleEvent method, it can take
advantage of the default Toolbox event routing from this point on. This is
usually the best point at which to implement custom navigation within a
window.

6. A subclass of HIRootPanel can override the HandleAppleEvent method. If your
implementation calls the inherited HandleAppleEvent method, it can take
advantage of the default Toolbox event routing from this point on. However,
in most cases the root panel just forwards the event to one of its subpanels.
Subclassing HIRootPanel isn’t recommended for implementing focused
events.

7. Any other subclass of HIObject can override the HandleAppleEvent method. If
your implementation calls the inherited HandleAppleEvent method, it can
take advantage of the default Toolbox event routing from this point on. This
is the point at which you can customize the text-handling behavior of the
standard editable text panel defined by the Toolbox.

If you override HandleAppleEvent in any HIPanel subclass, the panel’s
initialization methods should register the panel’s interest in the events you
want it to handle by calling its RegisterInterestInEvent method. For more
information about registering interest in events, see “Registering a Panel’s
Interest in an Event” (page 2-24).
2-22 Focused Event Routing

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Routing Events With Application Handlers 2

As discussed in the preceding sections, you can override the default Toolbox
handlers for the standard events by installing your own handlers in the
appropriate dispatcher or by subclassing from any HI object class. In a similar
manner, you can install handlers for any other events in a process dispatcher or
a window dispatcher, and you can subclass any panel class to implement
custom event handling.

Handler Tables in Process Dispatchers 2

Overriding at the process level gives you the most control over event routing in
your application, but it also requires you to do the most work. In general,
overriding the Toolbox handlers at this level requires you to implement your
application in much the same way as a System 7 application—that is, by
controlling event dispatching within the application without any assistance
from the Toolbox. Overriding at this level also has the greatest potential to limit
your application’s compatibility with future versions of the Mac OS. Because
you can use little if any of the default Toolbox event-handling code if you
override at this level, you also limit the extent to which your application can
automatically take advantage of new events and event handling supported by
the Mac OS in the future.

If your application structure requires you to override at this level, your
handlers should first determine if the event is relevant to one of your windows.
If it is not, your handler should simply return errAEEventNotHandled and let the
default Toolbox event routing handle the event. This can be useful, for
example, if you are attempting to reuse System 7 code in a Mac OS 8
application and you want to take advantage of the default Toolbox event
routing for any events that your application doesn’t need to intercept, such as a
mouse event in an Apple Guide window.
Routing Events With Application Handlers 2-23
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Handler Tables in Window Dispatchers 2

Overriding at the window level, either via procedural handlers installed in the
window dispatcher or subclasses of HIWindow, is the recommended practice for
all Mac OS 8 savvy applications. Overriding at this level allows the Toolbox to
continue to perform default event routing, so that your application never sees
events that it need not handle—for example, events targeted at system floating
windows such as Text Services input method windows or utility windows
created by other background services.

Registering a Panel’s Interest in an Event 2

To create a subclass for panels that need to handle events other than the
standard Toolbox events, you must override the HandleAppleEvent method
and handle the events from within your subclass implementation.

The initializing methods for your subclass should register the panel’s interest
in any event you want it to handle by calling its RegisterInterestInEvent
method. In addition to the event class and ID, you pass a handler table
reference and a routing type to RegisterInterestInEvent. The handler table
reference identifies the handler table with which you want to register the
panel’s interest.

RegisterInterestInEvent installs a handler that routes the event through the HI
object containment hierarchy according to its routing type. This ensures that
the event will be passed to the HandleAppleEvent methods for the appropriate
window, root panel, and subpanels until it either reaches a panel that can
handle it or reaches a panel whose HandleAppleEvent method returns
errAEEventNotHandled.

If you specify the event’s routing type as geometric (kHIRouteByLocation), it
gets sent through the containment hierarchy to the panel, if any, in the location
where the event occurred. If you specify the event’s routing type as focused
(kHIRouteToFocusSubPanel), it gets sent through the containment hierarchy for
HI objects with user input focus to the panel that currently has user input
focus. If you specify the event’s routing type as broadcast
(kHIRouteToAllSubPanels), the root panel sends it to all subpanels.
2-24 Routing Events With Application Handlers

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
Because events of all routing types are always routed through a containment
hierarchy, embedding panel implementations of the HandleAppleEvent method
should call the HandleAppleEvent method of its subpanels, if possible, according
to the event’s routing type. The last panel to receive the event, at the bottom of
the containment hierarchy, should return errAEEventNotHandled if it can’t
handle the event.

Toolbox Support for Modal States 2

To implement a modal state, you typically create a filtered handler table and
install handlers in it for the events to which you want to limit event handling.
What you do next depends on whether the modal state is associated with a
dialog box or alert box:

■ If you are implementing a modal state that doesn’t involve a dialog box or
alert box, you must use Apple Event Manager functions to push the table
onto a dispatcher’s handler stack (AEPushDispatcherHandlerTable) and begin
receiving events (AEReceive). When the user dismisses the dialog box, you
pop the handler table off the handler stack (AEPopDispatcherHandlerTable).

■ If you are using a standard modal dialog box or alert box provided by the HI
Objects class library, you call a single method (ExecuteModality) that
performs all the same operations automatically.

For more information about using the Apple Event Manager to implement
event dispatching for modal states, see the accompanying document Apple
Events in Mac OS 8.

More information about Toolbox support for modal states will be provided
with later developer releases.
Toolbox Support for Modal States 2-25
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 2

Toolbox Event Routing
2-26 Toolbox Support for Modal States

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Contents

Draft.  Apple Computer, Inc. 4/22/96

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Toolbox Events Reference
Apple Event Descriptor Types 3-4
Standard Events Handled by the Toolbox 3-5

Key Events 3-5
Key Down 3-5
Auto Key 3-6
Key Up 3-7

Mouse Events 3-8
Mouse Up 3-8
Mouse Down 3-9
Mouse Moved 3-10
Mouse Stopped Moving 3-11

Window Events 3-12
Mouse Down in Back 3-12
Mouse Down in Content 3-13
Window Resized 3-14
Window Close Request 3-15
Window Activated 3-16
Window Deactivated 3-16
Update 3-17

Text Events 3-18
Update Active Input Area 3-18
Position To Offset 3-20
Offset To Position 3-21
Get Input Area Region 3-22

Application Events 3-23
Suspend 3-23
Resume 3-23
3-1

C H A P T E R 3
3-2 Contents

Draft.  Apple Computer, Inc. 4/22/96

C H A P T E R 3
Toolbox Events Reference 3

This chapter introduces some of the standard Apple events for which the
Toolbox provides handlers, including the parameters of each event, the
descriptor types it uses, and the behavior of the default handlers.

Before you read this chapter, you should be familiar with the accompanying
document Apple Events in Mac OS 8 and with the first two chapters in this
document: “Introduction to the Mac OS 8 Toolbox” (page 1-3) and “Toolbox
Event Routing” (page 2-3).

▲ W A R N I N G

This document is preliminary and incomplete. It is
intended only to illustrate the design concepts that
underlie both the standard events and the default handling
provided by the Toolbox. All information presented here,
including details such as event class and event ID and the
behavior of individual handlers, is subject to change. ▲
3-3
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Apple Event Descriptor Types 3

Table 3-1 lists some of the descriptor types defined by the Apple Event
Manager for use with the Apple events defined in this chapter. Information
about additional descriptor types, including those used with text events, will
be provided with later developer releases.

Note
Table 3-1 doesn’t include descriptor types used with object
specifier records or specialized types used by the System 7
Apple Event Manager. Mac OS 8 savvy applications can
use most descriptor types defined by the System 7 Apple
Event Manager, as documented in Inside Macintosh:
Interapplication Communication. ◆

Table 3-1 Descriptor types defined by the Apple Event Manager for use with the
standard events

Descriptor type Value Description
typeBoolean 'bool' 1-byte Boolean value
typeChar 'TEXT' Unterminated string
typeLongInteger 'long' 32-bit integer
typeShortInteger 'shor' 16-bit integer
typeTrue 'true' Boolean value true
typeFalse 'fals' Boolean value false
typeAlias 'alis' Alias record
typeEnumerated 'enum' Enumerated data
typeType 'type' Four-character code for event class

or event ID
typeQDPoint 'qdpt' QuickDraw point
typeQDRectangle 'qdrt' QuickDraw rectangle
typeHIWindow 'wobj' A pointer to a window object
typeHIMenu 'mobj' A pointer to a menu object
3-4 Apple Event Descriptor Types

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Standard Events Handled by the Toolbox 3

Key Events 3

The Key Down, Auto Key, and Key Up events are low-level keypress events
generated by a keyboard family. Most applications aren’t interested in these
events; instead, they are interested in higher-level translations.

Default handlers provided by the Toolbox use User Input Services to translate
key events into Command, Navigation, or Virtual Key events. For an
introduction to the way the Toolbox routes these events, see “Toolbox Event
Routing” (page 2-3). Later developer releases will provide more information
about these events.

Key Down 3

Indicates that a particular key has been pressed.

Event class kAEKeyClass

Event ID kAEDown

Parameters—

keyModifiers typeShortInteger Key codes for modifier keys held
down while the key was pressed.

keyWhen typeLongInteger Time that the key was pressed.
keyWhere typeQDPoint The location of the pointer at the

time the key was pressed.
keyKey typeChar Key pressed.
keyKeyCode typeChar Character code for the key

pressed.
keyKeyboard typeChar Keyboard on which the key was

pressed.
Standard Events Handled by the Toolbox 3-5
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Key Down handler associated with the default process dispatcher
uses User Input Services to combine the event with other incoming key events
as necessary to form Command, Navigation, and Virtual Key events.

Auto Key 3

Indicates that a particular key has been held down.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Auto Key handler associated with the default process dispatcher
uses User Input Services to combine the event with other incoming key events
as necessary to form Command, Navigation, and Virtual Key events.

Event class kAEKeyClass

Event ID kAEAutoDown

Parameters—

keyModifiers typeShortInteger Key codes for modifier keys held
down while the key was held
down.

keyWhen typeLongInteger Time that the key was held
down.

keyWhere typeQDPoint The location of the pointer at the
time the key was held down.

keyKey typeChar Key held down.
keyKeyCode typeChar Character code corresponding to

the key that was held down.
keyKeyboard typeChar Keyboard on which the key was

held down.
3-6 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Key Up 3

Indicates that a particular key has been released.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Key Up handler associated with the default process dispatcher uses
User Input Services to combine the event with other incoming key events as
necessary to form Command, Navigation, and Virtual Key events.

Event class kAEKeyClass

Event ID kAEUp

Parameters—

keyModifiers typeShortInteger Key codes for modifier keys
held down while the key was
released.

keyWhen typeLongInteger Time that the key was released.
keyWhere typeQDPoint The location of the pointer at

the time the key was released.
keyKey typeChar Key released.
keyKeyCode typeChar Character code corresponding

to the key that was released.
keyKeyboard typeChar Keyboard on which the key was

released.
Standard Events Handled by the Toolbox 3-7
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Mouse Events 3

The default handlers installed in the process dispatcher simply forward Mouse
Down, Mouse Moved, Mouse Stopped Moving, and Mouse Up events to the
dispatcher for whatever window the event occurred in. The window dispatcher
in turn forwards the event to the corresponding HIWindow method, such as
HandleMouseUp or HandleMouseDown, or to the catchall method HandleAppleEvent
if the event has no corresponding HIWindow method.

Mouse Up 3

The mouse button has been released in either the frame or the content area of a
window.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Mouse Up handler associated with the default process dispatcher
determines which window the event occurred in and resends the event to that
window’s dispatcher.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Mouse Up handler associated with the window dispatcher calls
HIWindow::HandleMouseUp.

Event class kAEMouseClass

Event ID kAEUp

Parameters—

keyModifiers typeShortInteger Codes for modifier keys held
down when the user releases
the mouse button.

keyWhere typeQDPoint Global coordinates for the
location of the pointer
onscreen when the user
releases the mouse button.
3-8 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Mouse Down 3

The mouse button has been pressed in either the frame or the content area of an
active window.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Mouse Down handler associated with the default process
dispatcher determines which window the event occurred in and forwards the
event to that window’s dispatcher.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Mouse Down handler associated with the window dispatcher calls
HIWindow::HandleMouseDown.

Event class kAEMouseClass

Event ID kAEDown

Parameters—

keyModifiers typeShortInteger Codes for modifier keys held
down when the user presses
the mouse button.

keyWhere typeQDPoint Global coordinates for the
location of the pointer
onscreen when the user
presses the mouse button.
Standard Events Handled by the Toolbox 3-9
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Mouse Moved 3

The mouse has moved in either the frame or the content area of a window.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Mouse Moved handler associated with the default process
dispatcher determines which window the event occurred in and forwards the
event to that window’s dispatcher.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Mouse Moved handler associated with the window dispatcher
calls HIWindow::HandleMouseMoved.

Event class kAEMouseClass

Event ID kAEMoved

Parameters—

keyModifiers typeShortInteger Codes for modifier keys held
down when the user moved
the mouse.

keyWhere typeQDPoint Global coordinates for the
location of the pointer
onscreen when the user
moved the mouse.
3-10 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Mouse Stopped Moving 3

The mouse has stopped moving in either the frame or the content area of a
window.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Mouse Stopped Moving handler associated with the default
process dispatcher determines which window the event occurred in and
forwards the event to that window’s dispatcher.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Mouse Stopped Moving handler associated with the window
dispatcher calls HIWindow::HandleMouseStoppedMoving.

Event class kAEMouseClass

Event ID kAEStoppedMoving

Parameters—

keyModifiers typeShortInteger Codes for modifier keys held
down when the user stopped
moving the mouse.

keyWhere typeQDPoint Global coordinates for the
location of the pointer
onscreen when the user
stopped moving the mouse.
Standard Events Handled by the Toolbox 3-11
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Window Events 3

Mouse Down in Back 3

The mouse button has been pressed in either the frame or the content area of an
inactive window.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Mouse Down in Back handler associated with the default process
dispatcher determines which window the event occurred in and forwards the
event to that window’s dispatcher.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Mouse Down in Back handler associated with the window
dispatcher forwards the event to HIWindow::HandleMouseDownInBack.

Event class kAEWindowClass

Event ID kAEMouseDown

Parameters—

keyDirectObject typeHIWindow A pointer to the window
object receiving the event.

keyModifiers typeShortInteger Codes for modifier keys held
down when the user pressed
the mouse button.

keyWhere typeQDPoint Global coordinates for the
location of the pointer
onscreen when the user
pressed the mouse button.
3-12 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Mouse Down in Content 3

The mouse button has been pressed in the content area of an active window.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Mouse Down in Content handler associated with the default
process dispatcher determines which window the event occurred in by
examining the event’s direct object. It then forwards the event to that window’s
dispatcher. This handler does not perform any hit testing.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Mouse Down in Content handler associated with the window
dispatcher calls HIWindow::HandleMouseDownInContent.

Event class kAEWindowClass

Event ID kAEMouseDown

Parameters—

keyDirectObject typeHIWindow A pointer to the window
object receiving the event.

keyModifiers typeShortInteger Codes for modifier keys
held down when the user
pressed the mouse button.

keyWhere typeQDPoint Global coordinates for the
location of the pointer
onscreen when the user
pressed the mouse button.

keyLocalWhere typeQDPoint Local coordinates in the
window’s color graphics
port for the same point
described by the keyWhere
parameter.
Standard Events Handled by the Toolbox 3-13
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Window Resized 3

The window has been resized.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Window Resized handler associated with the default process
dispatcher forwards the event to the dispatcher for the window that has been
resized.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Window Resized handler associated with the window dispatcher
calls HIWindow::HandleResize.

Event class kAEWindowClass

Event ID kAEResized

Parameters—

keyDirectObject typeHIWindow A pointer to the window
object that has been resized.

keyOriginalBounds typeQDRectangle The window’s original port
rectangle.

keyNewBounds typeQDRectangle The window’s new port
rectangle.
3-14 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Window Close Request 3

The user has indicated that a window should be closed, for example by clicking
the window’s close box.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Window Close Request handler associated with the default process
dispatcher forwards the event to the dispatcher for the window or windows to
be closed.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Window Close Request handler associated with the window
dispatcher calls HIWindow::HandleClose.

Event class kAEWindowClass

Event ID kAEClosed

Parameters—

keyDirectObject typeHIWindow A pointer to the window
object that should be closed.

keyCloseAllWindows typeBoolean A Boolean value indicating
whether all the application’s
windows should be closed. A
value of true indicates that the
application should close all its
open windows; a value of
false indicates that the client
should close only the window
specified by the
keyDirectObject parameter.
Standard Events Handled by the Toolbox 3-15
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Window Activated 3

The window has been activated.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Window Activated handler associated with the default process
dispatcher forwards the event to the dispatcher for the window that has been
activated.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Window Activated handler associated with the window
dispatcher calls HIWindow::HandleActivate.

Window Deactivated 3

The window has been deactivated.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Window Deactivated handler associated with the default process
dispatcher forwards the event to the dispatcher for the window that has been
deactivated.

Event class kAEWindowClass

Event ID kAEActivate

Parameters—

keyDirectObject typeHIWindow A pointer to the window
object that has been activated.

Event class kAEWindowClass

Event ID kAEDeactivate

Parameters—

keyDirectObject typeHIWindow A pointer to the window
object that has been
deactivated.
3-16 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Window Deactivated handler associated with the window
dispatcher calls HIWindow::HandleDeactivate.

Update 3

Update the window.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Update handler associated with the default process dispatcher
forwards the event to the dispatcher for the window to be updated.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Update handler associated with the window dispatcher forwards
the event to HIWindow::HandleUpdate, which in turn calls HIWindow::BeginUpdate
and HIWindow::EndUpdate.

Event class kAEWindowClass

Event ID kAEDeactivate

Parameters—

keyDirectObject typeHIWindow A pointer to the window
object that requires updating.
Standard Events Handled by the Toolbox 3-17
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Text Events 3

The Text Services Manager intercepts all Virtual Key events before they reach
the default process dispatcher’s application handler tables or default handler
table. With the aid of input methods and other text services, the Text Services
Manager transforms Virtual Key events into a series of text events, which the
Apple Event Manager then routes through the handler table stack in the usual
manner.

IMPORTANT

You don’t need to know about the structure of text events
unless you are implementing your own text processor or
subclassing from HIEditableText. Otherwise, the default
Toolbox text event routing and the standard editable text
panels handle all text events automatically. ▲

Before attempting to use the information in this section, you should be familiar
with the accompanying document Text Handling and Internationalization and
with the System 7 book Inside Macintosh: Text.

Detailed documention for the Mac OS 8 Text Services Manager will be available
with later developer releases.

Update Active Input Area 3

The text content of the active input area has been updated, highlighted,
scrolled, or committed. The Update Active Input Area event conveys one or
more textual characters in the form of a text object, plus related information
about which portions of existing text content to replace and how to highlight
the new text.

Event class kAETextEventClass

Event ID kAEUpdateActiveInputArea

Parameters—

kAETextEventText typeTextObject The text to be inserted.

keyAETextInputObject typeTextInputObject The keyboard object that was
active when the text was
generated.

keyAEFixedLength typeLongInteger The number of bytes that should
be committed to the
application’s text content.
3-18 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Update Active Input Area event handler associated with the
default process dispatcher forwards the event to the dispatcher for the window
that has user input focus.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Update Active Input Area event handler associated with the
window dispatcher calls the HandleAppleEvent method of the editable text
panel that has user input focus.

keyAEContext typeTSMContext The TSM context that generated
this event.

keyAEInlineID typeLongInteger The inline hole ID to be allocated
to this transaction.

keyAEReplaceRange typeReplaceRangeArray The Replace Range array,
indicating the range of text in the
active input area to be replaced

keyAEHiliteRange typeHilteRangeArray The Hilight Range array,
indicating the range of text in the
active input area to be
highlighted.

keyAEPinRange typeTextRange The Pin range, indicating the
range of text that should be
scrolled into view if possible.

keyAEClauseOffsets typeClauseOffsetArray The Clause Range array, used for
word selection and related
purposes.
Standard Events Handled by the Toolbox 3-19
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Position to Offset 3

Requests that the HI object with user input focus translate a global coordinate
position to an offset within the object’s textual content. The reply to a Position
to Offset event allows text services to determine actions associated with mouse
movement, text selection, and so on.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Position to Offset event handler associated with the default process
dispatcher forwards the event to the dispatcher for the window that has user
input focus.

Event class kAETextEventClass

Event ID kAEPosToOffset

Parameters—

kAEPoint typeQDPoint The global coordinate position to
offset.

keyAEDragging typeBoolean If the value is true, the mouse is
being dragged; if the value is
false, the mouse is not being
dragged.

keyAEContext typeTSMContext The TSM context that generated
this event.

Reply parameters—

kAERegionClass typeRegionClass The region the point falls in.

keyAEOffset typeByteOffset The requested offset within the
HI object’s text.

keyAELeftSide typeBoolean If the value is true, the point falls
on the left side of a character. If
the value is false, the point falls
on the right side of a character.

keyAEInlineOwner typeTSMContext The TSM context that owns the
inline hole (if the point falls
within an inline hole).

keyAEInlineID typeLongInteger The inline hole ID (if the point
falls within an inline hole).
3-20 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Position To Offset event handler associated with the window
dispatcher calls the HandleAppleEvent method of the editable text panel that has
user input focus.

Offset to Position 3

Requests that the HI object with user input focus translate an offset within the
object’s textual content to a global coordinate position. The reply to an Offset to
Position event allows text services to obtain information about the attributes of
a particular portion of text within the HI object’s textual content and the
absolute position of the text on the screen.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Offset to Position event handler associated with the default process
dispatcher forwards the event to the dispatcher for the window that has user
input focus.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Offset to Position event handler associated with the window
dispatcher calls the HandleAppleEvent method of the editable text panel that has
user input focus.

Event class kAETextEventClass

Event ID kAEOffsetToPos

Parameters—

keyAEOffset typeByteOffset The requested offset within the
HI object’s text.

keyAEInlineID typeLongInteger The inline hole ID (if the point
falls on an inline hole).

keyAEContext typeTSMContext The TSM context that generated
this event.

Reply parameter—

kAETextInlineInfo typeTextLineInfo The Text Info structure
describing the point in the client
document.
Standard Events Handled by the Toolbox 3-21
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Get Input Area Region 3

Requests ranges of text within an HI object’s textual content. The reply to a Get
Input Area Region event consists of a range of text that text services can
manipulate.

DEFAULT HANDLER FOR PROCESS DISPATCHER

The default Get Input Area Region event handler associated with the default
process dispatcher forwards the event to the dispatcher for the window that
has user input focus.

DEFAULT HANDLER FOR WINDOW DISPATCHER

The default Get Input Area Region event handler associated with the window
dispatcher calls the HandleAppleEvent method of the editable text panel that has
user input focus.

Event class kAETextEventClass

Event ID kAEOffsetToPos

Parameters—

kAERegionClass typeRegionClass The request region type.

keyAEGetRegionRange typeGetRange The region array for the region to
be retrieved.

keyAEInlineID typeLongInteger The inline hole ID (if the
requested region is within an
inline hole).

keyAEContext typeTSMContext The TSM context that generated
this event.

Reply parameter—

kAETextEventText typeTextObject The text of the requested region.
3-22 Standard Events Handled by the Toolbox

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
Application Events 3

Standard Apple events previously defined by Apple—for example, the
Required suite of Apple events discussed in Inside Macintosh: Interapplication
Communication—are still supported in Mac OS 8 and still play the same roles.
Mac OS 8 defines additional events that all applications should support,
including Suspend and Resume.

Suspend 3

Informs an application in the foreground that the Process Manager is about to
switch it into the background.

The Toolbox doesn’t provide any default handlers for the Suspend event. Your
applciation should install a Suspend event handler in the default process
dispatcher that deactivates the front window, removes the highlighting from
any selections, and does anything else required to get ready for switching out.

Resume 3

Informs an application in the background that the Process Manager is about to
switch it into the foreground.

The Toolbox doesn’t provide any default handlers for the Resume event. Your
application should install a Resume event handler in the default process
dispatcher that activates the front window and restores any windows to the
state the user left them at the time of the previous Suspend event.

Event class kAEApplicationClass

Event ID kAESuspend

No parameters

Event class kAEApplicationClass

Event ID kAEResume

No parameters
Application Events 3-23
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 3

Toolbox Events Reference
3-24 Application Events

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

Contents

Draft.  Apple Computer, Inc. 4/22/96

Contents
Figure 4-0HI
Listing 4-0
Table 4-0
4 HIObject Class Reference
HIObject 4-5
Description 4-5

Summary of Static Methods 4-7
Summary of Public Methods 4-7
Summary of Protected Methods 4-10
Execution Environments 4-11

Constants and Data Types 4-11
Reference Labels 4-11
Adoption Flags 4-12
Drawing Modes 4-12
Coordinate System Constants 4-13
User Input Focus Support Flags 4-14
Clipboard Support Flags 4-14
State Change Callback Function 4-15
State Change Codes 4-16
AE Record Keywords 4-17
AE Record Data Formats 4-18

Static Methods 4-19
GetNewHIObjectFromResource 4-19
GetNewHIObject 4-21
GetHIObjectFromRefLabel 4-23

Public Methods 4-25
Initializing, Saving, and Disposing of an Object 4-25

Init 4-26
InitFromAERecord 4-28
WriteToAERecord 4-31
Clone 4-33
4-1

C H A P T E R 4
Release 4-35
GetOwnerCount 4-36
Terminate 4-37

Getting HI Object Attributes 4-39
GetWindow 4-39
GetPort 4-40
GetRefLabel 4-41
GetCollection 4-42

Getting and Setting an HI Object’s State Change Callback Function 4-44
AddStateChangeCallback 4-44
RemoveStateChangeCallback 4-46

Manipulating an HI Object’s Size and Location 4-47
GetBoundingRect 4-48
SetBoundingRect 4-49
SetPosition 4-51
SetSize 4-53
CalculateOptimalSize 4-54
GetUpdateRect 4-56

Enabling and Disabling an HI Object 4-58
Enable 4-58
Disable 4-59
IsEnabled 4-60

Getting and Setting an HI Object’s Visibility 4-62
Show 4-62
Hide 4-63
IsVisible 4-64

Getting and Setting an HI Object’s Title 4-65
GetTitle 4-65
SetTitle 4-67

Event Handling 4-70
HandleAppleEvent 4-71
HandleActivate 4-73
HandleDeactivate 4-75
HandleNavigation 4-77
HandleMouseDownInContent 4-79
HandleMouseMovedInContent 4-82
HandleMouseStoppedMovingInContent 4-85
HandleMouseUpInContent 4-87
4-2 Contents

Draft.  Apple Computer, Inc. 4/22/96

C H A P T E R 4
Controlling User Input Focus 4-89
TakeUserInputFocus 4-90
ReleaseUserInputFocus 4-92
HasUserInputFocus 4-93
CanReleaseUserInputFocus 4-94
SetUserInputFocusFlags 4-96
GetUserInputFocusFlags 4-97

Imaging 4-98
Draw 4-99
Erase 4-100
Invalidate 4-102
GetDrawingMode 4-103
SetDrawingMode 4-105
GetBackgroundPattern 4-106
SetBackgroundPattern 4-107

Supporting Clipboard Operations 4-109
Cut 4-109
Copy 4-110
Paste 4-111
Clear 4-113
GetClipboardSupportFlags 4-114

Protected Methods 4-115
DrawContent 4-115
EraseContent 4-117
TranslatePoint 4-118
TranslateRect 4-120
StateChanged 4-122
SetClipboardSupportFlags 4-123
Verify 4-124

Application-Defined Function 4-125
MyStateChangeCallback 4-125
Contents 4-3
Draft.  Apple Computer, Inc. 4/22/96

C H A P T E R 4
4-4 Contents

Draft.  Apple Computer, Inc. 4/22/96

C H A P T E R 4
HIObject Class Reference 4

HIObject 4

Superclass SOMObject

Subclasses See Figure 4-1 (page 4-6).

The abstract base class HIObject defines the behavior common to all HI objects.

For an introduction to the HI Objects class library, see “Introduction to the
Mac OS 8 Toolbox” (page 1-3).

Description 4

The abstract superclass HIObject defines constants, data types, public methods,
protected methods, and static methods for use by clients of the HI Objects class
library. The public methods perform operations common to all human interface
objects, such as basic event handling, manipulating an object’s location,
enabling and disabling it, setting its visibility, controlling user input focus,
imaging, and so on. The static methods (that is, procedural functions you can
call without specifying a particular object) perform operations that aren’t
targeted to a specific human interface object, such as creating a new HI object
and initializing it using data stored in a resource.

HIObject also defines protected methods, which you need to use only if you are
implementing your own subclass based on HIObject or one of its subclasses.

If your application uses the HI Objects class library as a client or if you need to
subclass your own HI objects, you need information about both class HIObject
and the other standard HI object classes.

You should never instantiate HIObject itself. Instead, instantiate either one of
the subclasses defined by Apple or a subclass defined by your application.
HIObject 4-5
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Figure 4-1 HIObject and the inheritance hierarchy for the HI Objects class library

HIObject

HIPanel

HIWindow

HIAbstractList

HIBevelButton

HICheckBox

HIDisclosureTriangle

HILittleArrows

HIPopUpControl HIPopUpButton

HIPushButton

HIRadioButton

HIScrollbar

HISlider

HIEmbeddingPanel HIRootPanel HIDialog

HIAlert

HIModalDialog

HIRadioButtonGroup

HIVisualSeparator

HIStaticPanel

HIEditText

HIMenu

HIIcon

HICaption

HIControl

HIList

HIPicture

HIProgressIndicator

HIScrollingPanel
4-6 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Summary of Static Methods 4

For detailed descriptions of these methods, see “Static Methods” (page 4-19).

GetNewHIObjectFromResource
Reads a resource into memory and uses its data to
instantiate and initialize a new HI object.

GetNewHIObject Instantiates and initializes an HI object using data in an AE
record.

GetHIObjectFromRefLabel
Finds all the HI objects in the current process that have a
specified reference label.

Summary of Public Methods 4

For detailed descriptions of these methods, see “Public Methods” (page 4-25).

Initializing, Saving, and Releasing

Init Initializes an existing HI object programmatically.
InitFromAERecord Initializes an HI object on the basis of data in an AE record.
WriteToAERecord Writes an HI object’s state and initialization data to an AE

record that can be saved on disk, sent as part of an Apple
event, or passed to InitFromAERecord.

Clone Returns a new pointer to an HI object and increments the
reference count for that object.

Release Decrements the reference count for an HI object and, if the
count reaches 0, disposes of any dynamically allocated
resources, such as memory, associated with the object.

GetOwnerCount Returns the current reference count for an HI object.
Terminate Disposes of any dynamically allocated resources, such as

memory, associated with an HI object.

Getting Object Attributes

GetWindow Returns a pointer to the window object in which an HI
object is located.

GetPort Returns a pointer to the CGrafPort record for an object’s
color graphics port.

GetRefLabel Gets an HI object’s reference label.
HIObject 4-7
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
GetCollection Returns a reference to the collection associated with an HI
object.

Getting and Setting an Object’s State Change Callback Function

AddStateChangeCallback
Adds a given procedure pointer to an HI object’s list of
state change callbacks.

RemoveStateChangeCallback
Removes a specified state change callback function.

Manipulating an HI Object’s Size and Location

GetBoundingRect Gets an HI object’s bounding rectangle—that is, the
rectangle that defines its location.

SetBoundingRect Sets an HI object’s bounding rectangle—that is, the
rectangle that defines its location.

SetPosition Sets an HI object’s position.
SetSize Sets an HI object’s size.
CalculateOptimalSize

Gets an HI object’s optimal size.
GetUpdateRect Gets an HI object’s update rectangle—that is, the rectangle

that encloses the entire area in which the object can draw.

Enabling and Disabling an HI Object

Enable Enables an HI object.
Disable Disables an HI object.
IsEnabled Returns an HI object’s enabled state.

Getting and Setting an HI Object’s Visibility

Show Makes an HI object visible.
Hide Hides an HI object.
IsVisible Returns an HI object’s visibility state.

Getting and Setting an HI Object Title’s Image Reference

GetTitle Gets the image reference for an HI object’s title.
SetTitle Sets an HI object’s title.
4-8 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Event Handling

HandleAppleEvent Handles a given Apple event.
HandleActivate Handles a Window Activated event.
HandleDeactivate Handles a Window Deactivated event.
HandleNavigation Handles a Navigation event.
HandleMouseDownInContent

Handles a Mouse Down event in an HI object’s bounding
rectangle.

HandleMouseMovedInContent
Handles a Mouse Moved event in an HI object’s bounding
rectangle.

HandleMouseStoppedMovingInContent
Handles a Mouse Stopped Moving event in an HI object’s
bounding rectangle.

HandleMouseUpInContent
Handles a Mouse Up event in an HI object’s bounding
rectangle.

Controlling User Input Focus

TakeUserInputFocus Assigns user input focus to an HI object.
ReleaseUserInputFocus

Releases user input focus.
HasUserInputFocus Returns an HI object’s user input focus state.
CanReleaseUserInputFocus

Indicates whether an HI object can release input focus.
SetUserInputFocusFlags

Sets an HI object’s user input focus support flags.
GetUserInputFocusFlags

Returns an HI object’s user input focus support flags.

Imaging

Draw Causes an HI object to draw itself in a specified color
graphics port.

Erase Causes an HI object to erase itself in a specified color
graphics port.

Invalidate Forces an HI object to redraw itself according to its
drawing mode.
HIObject 4-9
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
GetDrawingMode Gets an HI object’s drawing mode.
SetDrawingMode Sets an HI object’s drawing mode.
GetBackgroundPattern

Returns an HI object’s background pattern.
SetBackgroundPattern

Sets an HI object’s background pattern.

Supporting Clipboard Operations

Cut Cuts current selection.
Copy Copies current selection.
Paste Pastes at the location of the current selection.
Clear Clears the current selection.
GetClipboardSupportFlags

Returns an HI object’s clipboard support flags.

Summary of Protected Methods 4

For detailed descriptions of these methods, see “Protected Methods”
(page 4-115).

DrawContent Draws an HI object within its update rectangle.
EraseContent Erases an HI object within its update rectangle.
TranslatePoint Translates a given point between coordinate systems.
TranslateRect Translates a given rectangle between coordinate systems.
StateChanged Causes an HI object to invoke its state change functions.
SetClipboardSupportFlags

Sets an HI object’s clipboard support flags.
Verify Verifies that an HI object’s internal state is valid.
4-10 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Execution Environments 4

Subclasses of HIObject can be instantiated only by the main task of a
cooperative program. Methods defined by the HI Objects class library

■ are not preemptively reentrant

■ cannot be called at secondary interrupt level

■ cannot be called at hardware interrupt level

Constants and Data Types 4

Reference Labels 4

Reference labels allow your application to assign nonlocalizable names to the
HI objects it creates. This makes it possible, for example, to refer to an HI object
in a script by the same name no matter how your application is localized.

Reference labels are not used by HI objects themselves. Your application is
entirely responsible for assigning and keeping track of its own reference labels.
You can use them in any way you want. For example, you can assign one label
for each object, for a group of objects, for all your application’s HI objects, or
whatever other scheme is convenient. You also determine the rules for and
enforcement of the uniqueness of reference labels within your application.

When you initialize a new HI object with the Init method (page 4-26), you pass
the object’s reference label as a parameter. When you initialize a new HI object
with the InitFromAERecord method (page 4-28) or the static method
GetNewHIObject, the AE record used for initialization specifies the object’s
reference label.

typedef struct RefLabel RefLabel;

struct RefLabel {
OSType creator; /* creator of the object; use application signature */
OSType id; /* label used to identify the object */

};
HIObject 4-11
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Field descriptions
creator Identifies the creator of the HI object. Use your

application’s signature in this field to identify the objects it
creates.

id Identifies the HI object. You can use any four-character
code for the data in this field.

Use the static method GetHIObjectFromRefLabel (page 4-23) to find all the HI
objects that share a particular reference label within your application’s process.

Adoption Flags 4

The AddSubPanel method (defined by HIEmbeddingPanel) associates a subpanel
with an embedding panel. Class HIEmbeddingPanel defines adoption flags of
type HIAdoptionFlags to indicate how the embedding panel controls the
subpanel after adopting it.

typedef OptionBits HIAdoptionFlags;

Information about HIEmbeddingPanel and the adoption flags it defines will be
provided with later developer releases.

Drawing Modes 4

Drawing modes allow your application to control when drawing begins. They
determine when the object should redraw itself after a call to the Invalidate
method (page 4-102): immediately, after the next Update event, or at some later
time. Controlling the drawing mode can be useful, for example, if you are
adding a number of panels to a dialog box or altering existing panels and you
want to make sure drawing occurs only after you’re finished.

Drawing modes are identified by enumerators of type HIDrawingMode.

typedef OptionBits HIDrawingMode;
enum {

kHIDrawNextUpdateEvent =0x00000000, /* redraw on next Update event; default mode */
kHIDrawImmediately = 0x00000001, /* redraw now */
kHIDeferDrawing = 0x00000002 /* redraw when mode changes */

};
4-12 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Enumerator descriptions

kHIDrawNextUpdateEvent
Calling Invalidate causes the object to redraw itself when
it next receives an Update event.

kHIDrawImmediately Calling Invalidate causes the object to redraw itself
immediately.

kHIDeferDrawing Calling Invalidate causes the object to redraw itself some
time later when the mode is changed to one of the first two
values.

To set drawing modes, use the SetDrawingMode method (page 4-105).

Coordinate System Constants 4

The methods GetBoundingRect (page 4-48), SetBoundingRect (page 4-49),
SetPosition (page 4-51), and GetUpdateRect (page 4-56) allow you to specify the
coordinate system used to set or return values related to an HI object’s position.
You do so with enumerators of type HICoordinateSystem.

typedef OSType HICoordinateSystem;
enum {

kHICoordScreenRelative = 'scrn',
kHICoordPortRelative = 'port',
kHIObjectRelative = 'obj '

};

Enumerator descriptions

kHICoordScreenRelative
Coordinate system relative to the screen. You typically use
this coordinate system with HIWindow objects only.

kHICoordPortRelative
Coordinate system relative to the graphics port.

kHICoordObjectRelative
Coordinate system relative to the object itself.

Subclasses of HIObject may declare other coordinate systems that apply to
those classes. If you are implementing a subclass that declares its own
coordinate system, you can use the protected methods TranslatePoint
(page 4-118) or TranslateRect (page 4-120) to translate between coordinate
systems.
HIObject 4-13
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
User Input Focus Support Flags 4

The GetUserInputFocusFlags (page 4-97) and SetUserInputFocusFlags
(page 4-96) methods allow you to set flags of type HIUserInputFocusFlags that
determine an object’s ability to accept user input focus.

typedef OptionBits HIUserInputFocusFlags;
enum {

kHICanTakeUserInputFocus = 0x00000001,
kHITakesUserInputFocusWhenClicked = 0x00000002

};

Constant descriptions

kHICanTakeUserInputFocus
The object can accept user input focus. This flag typically
doesn’t change over the life of the object. Any interactive
object that reacts to text entry and navigation events
should set this flag.

kHITakesUserInputFocusWhenClicked
The object accepts user input focus when clicked. Some
objects (for example, editable text fields) should acquire
focus when the user clicks their content. Other objects (for
example, push buttons and checkboxes) should not accept
focus when clicked.

Clipboard Support Flags 4

Some kinds of HI objects allow a user to perform Cut, Copy, Paste, Clear, or
Undo operations while the object has user input focus. For example, an
editable text panel can support any of these operations at different times,
depending on the user’s most recent action.

To determine whether an HI object currently has user focus, your application
calls the HasUserInputFocus method. If the object has user input focus but no
text is selected, the application should disable the Cut, Copy, and Clear
commands in the Edit menu and may or may not disable the Paste and Undo
commands, depending on whether the Clipboard currently contains a scrap
and on the user’s most recent action. If the object has user input focus and
some text is selected, the application should ensure that the Cut, Copy, and
Clear commands are enabled.
4-14 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
The public method GetClipboardSupportFlags (page 4-114) returns flags of type
HIClipboardSupportFlags that provide information about an object’s current
state with respect to the Clipboard.

typedef OptionBits HIClipboardSupportFlags;
enum {

kHISupportsCut = 0x00000001, /* object supports cutting */
kHISupportsCopy = 0x00000002, /* object supports copying */
kHISupportsPaste = 0x00000003, /* object supports pasting */
kHISupportsClear = 0x00000004 /* object supports clearing */

};

Each HI object is responsible for keeping track of its own state with respect to
Clipboard-related commands and for using the protected method
SetClipboardSupportFlags to set the flags that reflect that state.

State Change Callback Function 4

You can use the AddStateChangeCallback method (page 4-44) to add a state
change callback function to an HI object’s collection of such functions. When an
object’s state changes—for example, when a user selects a checkbox—the object
calls each of its associated state change callback functions to perform whatever
action is appropriate. This function allows you to associate actions with a
specific HI object state without having to create a subclass.

typedef void (*HIStateChangeCallbackProcPtr)(
Environment *ev,
HIStateChangeCodeCreator selectorCreator,
HIStateChangeCode whatHappened,
HIObject *theObject);

The HI object passes a state change code creator and a state change code in the
selectorCreator and whatHappened parameters, respectively. For information
about these types and their enumerations, see “State Change Codes”
(page 4-16).

When you use the AddStateChangeCallback method (page 4-44) to associate a
changed state function with an HI object, it creates a state change callback
reference that refers to the function.

typedef struct OpaqueHIStateChangeCallbackRef* HIStateChangeCallbackRef;
HIObject 4-15
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
You pass the callback reference HIChangedStateCallbackRef to
RemoveChangeStateCallback (page 4-46) to remove a particular callback.

For information about writing your own state change callback function, see
“Application-Defined Function” (page 4-125).

State Change Codes 4

You use the AddStateChangeCallback method (page 4-44) to associate a state
change callback function with an HI object. A given object may have multiple
state change callback functions installed by different clients.Whenever an
object’s state changes, the object calls all its state change callback functions,
passing them information that identifies the change in state that has occurred.
Each kind of state change is uniquely identified by two IDs: a state change code
creator and a state change code.

The code creator identifies the name space for state changes defined by a
particular creator. The state change identifies a unique state change defined by
that creator. You should use your application signature as the creator code for
any state change codes defined by your application.

Class HIObject defines a creator code for the state changes defined by Apple
Computer and several state change codes.

typedef OSType HIStateChangeCodeCreator; /* creator ID */
enum {

kHIObjectAppleCreator = 'aapl'
}

typedef OSType HIStateChangeCode; /* code indicating what changed */
enum {

kHIStateChangeObjectBoundsChanging = 'bnd1',
kHIStateChangeObjectBoundsChanged = 'bnd2',
kHIStateChangeObjectVisibilityChanging = 'vis1',
kHIStateChangeObjectVisibilityChanged = 'vis2'

};

Enumerator descriptions

kHIObjectAppleCreator
The state change code creator for the state codes defined
by Apple.
4-16 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
kHIStateChangeObjectBoundsChanging
The object’s bounds are about to change.

kHIStateChangeObjectBoundsChangedThe object’s bounds have changed.
kHIStateChangeObjectVisibilityChanging

The object’s visibility is about to change.
kHIStateChangeObjectVisibilityChanged

The object’s visibility has changed.
Only HI object classes define creator codes. The HI object specifies the state
change creator and the appropriate state change code when it calls the
protected method StateChanged (page 4-122). A callback function can react to
state change codes defined by any creator.

For information about state change callback functions, see “State Change
Callback Function” (page 4-15) and “Application-Defined Function”
(page 4-125).

AE Record Keywords 4

The HI Objects class library uses the Apple Event Manager data structure
called an AE record as the universal format for describing a HI objects. This
hierarchical data format permits the precise description of the initialization
data for all the subclasses in an HI object’s inheritance hierarchy.

An AE record that describes an HI object typically specifies the object’s class,
the data format used in the AE record, and all the data required to initialize the
object, including its reference label, visibility state, background pattern, title,
and so on. You can initialize a new HI object using such an AE record; convert
it to a flattened stream of data suitable for storage in a resource; send it as part
of an Apple event; or keep it in memory as a way of maintaining information
about an object without keeping the object itself in memory.

The HI object initialization data in an AE record consists of a series of nested
AE records, each describing the initialization data for that class and specifying
another AE record that describes the initialization data for its subclass. For
example, the nested AE records describing a push button consist of an AE
record for data defined by HIObject, which contains an AE record for data
defined by HIPanel, which contains an AE record for data defined by HIControl,
which contains an AE record for data defined by HIPushButton.

Information about the keywords used in AE records that describe HI object
classes will be available with later developer releases.You typically use a
HIObject 4-17
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
resource editor to create resources that contain flattened AE records describing
HI objects.

For information about HIObject methods that use AE records, see “Static
Methods” (page 4-19) and “Initializing, Saving, and Disposing of an Object”
(page 4-25).

AE Record Data Formats 4

The methods InitFromAERecord (page 4-28) and WriteToAERecord (page 4-31)
include a parameter of type HIAERecordDataFormat that specifies the format to
use for reading or writing the AE record.

typedef OptionBits HIAERecordDataFormat;
enum {

kHIUseResourceReferences = 0x00000000,
kHIFlattenAllData = 0x00000001,
kHISimpleValuesOnly = 0x00000002

};

Constant descriptions

kHIUseResourceReferences
The data consists of reference to resources that contain the
object data. For example, if the human interface for an HI
object includes text (such as a title), the text should be
stored in a text object resource, and the resource ID should
be stored in the AE record.

kHIFlattenAllData The data consists of a flattened representation of the object
data itself, which is encapsulated in an AE record. For
example, if the human interface for an HI object includes
text, the text object for the text should be flattened into a
buffer and stored directly in the AE record.

kHISimpleValuesOnly
The data consists of simple values. It provides only the
information required to express the object’s intrinsic value.
For example, the AE record for an HIControl object
includes its 32-bit control value but not its bounding
rectangle or title. You can’t use this data format when you
first initialize an HI object, but you can use it if you are
reinitializing the object.
4-18 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Static Methods 4

The HI Objects class library uses AE records to describe HI objects. An AE
record that describes an object typically specifies the object’s class, the data
format used in the AE record, and all the data required to initialize the object.
For more information about the use of AE records to describe HI objects, see
“AE Record Keywords” (page 4-17).

The static method GetNewHIObject (page 4-21) instantiates an HI object based on
information in an AE record, then passes a reference to the AE record to the
object’s InitFromAERecord method (page 4-28). InitFromAERecord uses the
initialization data in the AE record to initialize the object.

To instantiate and initialize an HI object from data stored in a resource, use the
static method GetNewHIObjectFromResource (page 4-19).
GetNewHIObjectFromResource reads a resource into memory, converts it to an AE
record, and passes a reference to the AE record to GetNewHIObject.

To retrieve all the HI objects in the current process that have a specified
reference label, use the static method GetHIObjectFromRefLabel (page 4-23).

For more information about initializing HI objects, see “Initializing, Saving,
and Disposing of an Object” (page 4-25).

GetNewHIObjectFromResource 4

Reads a resource into memory and uses its data to instantiate and initialize a
new HI object.

IDL DECLARATION

GetNewHIObjectFromResource (
in ResID objectInitializerResourceID,
out HIObject newObject);
HIObject 4-19
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

OSStatus HIObject_GetNewHIObjectFromResource (
Environment *ev,
ResID objectInitializerResourceID,
HIObject **newObject);

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

objectInitializerResourceID
The resource ID for the resource from which to get the
description of the new HI object.

newObject A pointer to an HI object pointer. On output, the HI object
pointer identifies the new initialized object.

function result Information about result codes will be provided with later
developer releases.

DESCRIPTION

GetNewHIObjectFromResource reads a specified resource into a buffer. The only
purpose of the resource is to supply data that GetNewHIObjectFromResource
converts from the flattened format used in resources to the AE record format.
GetNewHIObjectFromResource manages all aspects of its use of the resource,
including disposal.

To allocate and initialize the HI object described by the AE record,
GetNewHIObjectFromResource calls GetNewHIObject (page 4-21).

▲ W A R N I N G

The new HI object identified by the newObject parameter is
a SOM object, not a resource. Don’t attempt to use
Resource Manager calls on it. ▲

SPECIAL CONSIDERATIONS

Every call to GetNewHIObjectFromResource must be matched by an equivalent
call to Release (page 4-35).
4-20 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

SEE ALSO

For an overview of related static methods, see “Static Methods” (page 4-19).

For an overview of related public methods and the object life cycle
management provided by HIObject, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).

GetNewHIObject 4

Instantiates and initializes an HI object using data in an AE record.

IDL DECLARATION

OSStatus GetNewHIObject (
in AESubDesc objectInitializer,
out HIObject newObject);

C DECLARATION

OSStatus HIObject_GetNewHIObject (
Environment *ev,
AESubDesc *objectInitializer,
HIObject **newObject);

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller.
HIObject 4-21
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
objectInitializer
A pointer to an Apple event subdescriptor. On input, the
subdescriptor identifies an AE record that describes an HI
object. For more information, see “AE Record Keywords”
(page 4-17).

newObject A pointer to an HI object pointer. On output, the HI object
pointer identifies the new initialized object of the requested
class.

function result Information about result codes will be provided with later
developer releases.

DESCRIPTION

GetNewHIObject determines what class of object to create and what kind of data
format to use based on information in the AE record identified by the
objectInitializer parameter, then uses SOM techniques to create that object.
Next, GetNewHIObject uses the Apple Event Manager to create a subdescriptor
identifying the portion of the AE record that contains the actual initialization
data and passes that subdescriptor to the InitFromAERecord method (page 4-28)
to initialize the object. You can also use InitFromAERecord directly if the
corresponding instantiated object already exists.

If you are creating an HI object from data in a resource, you don’t need to use
GetNewHIObject. Instead, use GetNewHIObjectFromResource (page 4-19).

SPECIAL CONSIDERATIONS

Every call to GetNewHIObject must be matched by an equivalent call to Release
(page 4-35).

CALLING RESTRICTIONS

Static methods defined by HIObject and its subclasses can be called only by the
main task of a cooperative program. For more details, see “Execution
Environments” (page 4-11).

SEE ALSO

For an overview of related static methods, see “Static Methods” (page 4-19).
4-22 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
For an overview of related public methods and the object life cycle
management provided by HIObject, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).

GetHIObjectFromRefLabel 4

Finds all the HI objects in the current process that have a specified reference
label.

IDL DECLARATION

OSStatus GetHIObjectFromRefLabel (
in RefLabel identifier,
in ItemCount requestedObjects,
out ItemCount totalObjects,
inout HIObject theObjects);

C DECLARATION

OSStatus HIObject_GetHIObjectFromRefLabel(
Environment *ev,
RefLabel *identifier,
ItemCount requestedObjects,
ItemCount *totalObjects,
HIObject **theObjects);

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

identifier A pointer to a reference label. On input, you specify a reference
label for the objects you want to retrieve. See “Reference
Labels” (page 4-11) for details.

requestedObjects
The number of HI objects the array specified by the theObjects
parameter can hold. GetHIObjectFromRefLabel returns no more
than this number of objects.
HIObject 4-23
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
totalObjects A pointer to an item count. On output, the count reflects the
total number of HI objects with the specified reference label that
actually exist. If you don’t want the item count returned, set
totalObjects to NULL.

theObjects A pointer to an array of HI object pointers. On output, this
array identifies the requested objects that it has room for (up to
the number that actually exist). GetHIObjectFromRefLabel
assumes that the array has at least enough space to hold
pointers for the number of requested HI objects indicated by
the requestedObjects parameter. If you don’t want the HI
objects returned, set theObjects and requestedObjects to NULL.

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

When you initialize a new HI object, you can assign it a reference label of any
value. This can be useful for keeping track of related HI objects, such as
identical controls that appear in several dialog boxes.

You can also assign a unique reference label to an HI object so you can locate it
easily with GetHIObjectFromRefLabel. For example, if you need to disable the
OK button in a modeless dialog box, you can locate it by calling
GetHIObjectFromRefLabel, then disable it by calling the button’s Disable method.

To obtain the total number of HI objects with a specified reference label before
allocating memory for theObjects, set requestedObjects and theObjects to NULL.

CALLING RESTRICTIONS

Static methods defined by HIObject and its subclasses can be called only by the
main task of a cooperative program. For more details, see “Execution
Environments” (page 4-11).

SEE ALSO

For an overview of related static methods, see “Static Methods” (page 4-19).
4-24 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Public Methods 4

Initializing, Saving, and Disposing of an Object 4

The HI Objects class library uses AE records to describe HI objects. An AE
record that describes an object typically specifies the object’s class, the data
format used in the AE record, and all the data required to initialize the object.
For more information about AE records and their uses, see “AE Record
Keywords” (page 4-17).

The static method GetNewHIObject (page 4-21) instantiates an HI object based on
information in an AE record, then passes a reference to the AE record to the
object’s InitFromAERecord method (page 4-28). InitFromAERecord uses the
initialization data in the AE record to initialize the object. If an AE record for an
HI object and the corresponding instantiated object already exist, you can pass
a reference to it to InitFromAERecord directly.

You can use the WriteToAERecord method (page 4-31) to create a persistent
representation of any HI object as an AE record (the inverse of
InitFromAERecord). This can be useful if you want to keep an AE record for an
object in memory so you can reinitialize the object at a later time. Resource
editors use WriteToAERecord to create AE records for storage in resources.

To instantiate and initialize an HI object from data stored in a resource, you use
the static method GetNewHIObjectFromResource (page 4-19).
GetNewHIObjectFromResource reads a resource into memory, converts it to an AE
record, and passes a reference to the AE record to GetNewHIObject.

To initialize an object programmatically, you use the initialization method
provided by that object’s class—for example, InitDialog for dialog panels or
InitRadioButtonGroup for radio button group panels. The implementation of
each such method calls the initialization method of its superclass, which calls
the initialization method of its superclass, and so on until Init (page 4-26) gets
called. Init is normally not called directly by a client of the HI Objects class
library. After initializing the object, you can use its methods to set
characteristics such as its visibility and title, handle events, or perform any
other actions the object knows how to perform.

It is often desirable to use the same HI object for a variety of purposes within
an application. The HI Objects class library provides object life cycle
management for all HI objects. To do so, it keeps track of references to every HI
object your application creates, incrementing the object’s reference count
HIObject 4-25
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
whenever a new reference gets created and decrementing the count whenever a
reference gets released.

To get a new reference to an existing HI object, use the Clone method
(page 4-33). Clone increments the reference count for the HI object and returns a
new pointer to the object. When you are finished with any reference to an HI
object, call the Release method. Release decrements the reference count, calling
the Terminate method (page 4-37) to dispose of the original object only when
the reference count reaches 0.

Every call to GetNewHIObject, GetNewHIObjectFromResource, or Clone must be
matched by an equivalent call to Release.

You shouldn’t normally call Terminate directly. Instead, you should call Release
to take advantage of its support for reference counting. Call Terminate directly
only if you want to clear out an object’s state before reinitializing it with a call
to InitFromAERecord.

Init 4

Initializes an existing HI object programmatically.

IDL DECLARATION

OSStatus Init (in RefLabel identifier,
in Rect bounds);

C DECLARATION

OSStatus HIObject_Init (
HIObject *somSelf,
Environment *ev,
RefLabel *identifier
Rect *bounds);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
4-26 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

identifier A pointer to a reference label. On input, you specify a reference
label. See “Reference Labels” (page 4-11) for details.

bounds A pointer to a rectangle. On input, you specify the rectangle in
which you want to create the object. The default coordinate
system for this rectangle is dictated by the subclass. For
example, for windows this rectangle is in screen-relative
coordinates, while for panels it is in port-relative coordinates.

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

To initialize an object programmatically, you use the initialization method
provided by that object’s class—for example, InitDialog for dialog panels or
InitRadioButtonGroup for radio button group panels. The implementation of
each such method calls the initialization method of its superclass, which calls
the initialization method of its superclass, and so on until Init gets called. Init
is normally not called directly by a client of the HI Objects class library.

You must initialize an HI object successfully before you can call any other
method on that object. In addition to initializing an existing HI object
programmatically, you can create and initialize an HI object using
GetNewHIObjectFromResource (page 4-19) or GetNewHIObject (page 4-21), and you
can initialize an existing HI object using InitFromAERecord (page 4-28).

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

Init should be called by subclasses of class HIObject only.

OVERRIDE INFORMATION

If you subclass from class HIObject, do not override Init. Instead, add a new
initialization method for your subclass. The programmatic initialization
HIObject 4-27
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
method for any subclass of HIObject must first call the programmatic
initialization method defined by its immediate superclass, and if that call is
successful, complete any initialization work required to make the object usable.
Note that any resources allocated inside the initialization method must be
deallocated inside the Terminate method (page 4-37).

SEE ALSO

For an overview of related methods, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).

InitFromAERecord 4

Initializes an HI object on the basis of data in an AE record.

IDL DECLARATION

OSStatus InitFromAERecord (
in AESubDesc baseInitializerData,
in AESubDesc initializerDataForClass,
in HIObjectDataFormat dataFormat);

C DECLARATION

OSStatus HIObject_InitFromAERecord (
HIObject *somSelf,
Environment *ev,
AESubDesc *baseInitializerData,
AESubDesc *initializerDataForClass,
HIAERecordDataFormat dataFormat);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
4-28 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

baseInitializerData
A pointer to an Apple event subdescriptor. On input, you
provide a subdescriptor that identifies the AE record for the
entire HI object. For details, see “AE Record Keywords”
(page 4-17).

initializerDataForClass
A pointer to an Apple event subdescriptor. On input, class
implementations provide a subdescriptor that points to
initializer data for the next subclass in the object’s inheritance
hierarchy. Every call to HIAERecordFormat must provide a
subdescriptor of some kind in this parameter.

dataFormat The data format used in the AE record specified by the
baseInitializerData parameter. You identify the data format
with one of the values defined in the HIAERecordDataFormat
enumeration (page 4-18)—with the exception of
kHISimpleValuesOnly, which can be used only with the
WriteTOAERecord method. (For more details, see the discussion
that follows.)

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

You don’t usually call InitFromAERecord directly. Instead, you pass an AE
record describing the object to the static method GetNewHIObject (page 4-21),
which instantiates the new HI object and passes a reference to the AE record to
the object’s InitFromAERecord method. InitFromAERecord uses the initialization
data in the AE record to initialize the object. If an AE record for an HI object
and the corresponding instantiated object already exist, you can pass a
reference to it directly to InitFromAERecord.

When your application calls InitFromAERecord, the method ignores the contents
of the initializerDataForClass parameter. On output, the implementation of
InitFromAERecord for class HIObject sets up the initializerDataForClass
parameter to point to initializer data for the next subclass in the object’s
inheritance hierarchy. The implementation of InitFromAERecord for the subclass
HIObject 4-29
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
then uses that data to perform its own initialization tasks. For more details, see
the override information that follows.

If you set the dataFormat parameter to kHIUseResourceReferences, the AE record
identified by the subdescriptor record must contain resource IDs for data that is
typically encapsulated in resources (such as text objects, pictures, pixel
patterns, and so on). If dataFormat is set to kHIFlattenAllData, the AE record
must contain all of the actual data, and AEInitFromAERecord won’t look for
resource IDs.

Because it simplifies localization, you typically use the
kHIUseResourceReferences data format for storing and instantiating HI objects
inside your application. You use the kHIFlattenAllData data format only if your
application cannot assume that its resource fork is present when the object is
instantiated.

You cannot use the kHISimpleValuesOnly data format when you first initialize
an object. However, you can reset the values of an object that has already been
initialized by calling InitFromAERecord again on the same object and specifying
kHISimpleValuesOnly. This can be useful if you want to reuse an existing object
with different initial values.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

To support initialization from an AE record, each subclass of HIObject must
override InitFromAERecord. The overridden method always calls its inherited
InitFromAERecord method before performing its own initialization tasks. If the
inherited call executes successfully (that is, returns noErr), you can assume that
the subdescriptor in the initializerDataForClass parameter points to the AE
record containing the initialization data for your subclass implementation.

After performing its own initialization tasks, the InitFromAERecord method for
any subclass must set up the initializerDataForClass parameter so that it
points to the initializer data for the next subclass in the object’s inheritance
hierarchy, if any. To do so, each subclass typically uses code like this:
4-30 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
myError = AEGetKeySubDesc (dataForCurrentClass,
keyHISubclassInitializer,
dataForCurrentClass);

If the subclass is at the bottom of the object’s inheritance hierarchy (that is, it is
the object’s own class), AEGetKeySubDesc returns errAEDescNotFound. If the
HIObject (or any abstract class) implementation of InitFromAERecord receives
this result code, it also returns errAEDescNotFound, indicating that something is
wrong with the data or that an attempt has been made to initialize an object
from an abstract class, and subclass implementations should also return
errAEDescNotFound. If a concrete subclass implementation of InitFromAERecord
receives this result code, it should return noErr.

SEE ALSO

For an overview of related methods, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).

To instantiate and initialize an HI object from data stored in a resource, use the
static method GetNewHIObjectFromResource (page 4-19).

WriteToAERecord 4

Writes an HI object’s state and initialization data to an AE record that can be
saved on disk, sent as part of an Apple event, or passed to InitFromAERecord.

IDL DECLARATION

OSStatus WriteToAERecord (in AERecord dataForSubclass,
inout AERecord objectData,
in HIObjectDataFormat dataFormat);

C DECLARATION

OSStatus HIObject_WriteToAERecord (
HIObject *somSelf,
Environment *ev,
HIObject 4-31
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
AERecord *dataForSubclass,
AERecord *objectData,
HIAERecordDataFormat dataFormat);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

dataForSubclass
A pointer to an AE record. On input, WriteToAERecord assumes
that this AE record contains all the data for the object’s
subclasses in the format specified by the dataFormat parameter.
If the object has no subclasses, set this parameter to NULL.

objectData A pointer to an AE record. On output, this record contains all
the data required to initialize the object in the state it’s in when
you call WriteToAERecord. For details, see “AE Record
Keywords” (page 4-17).

dataFormat The data format used for AE records specified by the
dataForSubclass and objectData parameters. You identify the
data format with one of the values defined in the
HIAERecordDataFormat enumeration (page 4-18).

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

WriteToAERecord creates a persistent representation of any HI object as an AE
record (the inverse of InitFromAERecord). This can be useful if you want to keep
an AE record for an object in memory so you can instantiate and reinitialize the
object at a later time. For example, a dialog box that can display a series of
pages can save the state of each page in an AE record, then call GetNewHIObject
to instantiate and initialize the page when the user chooses to display it.

Resource editors use WriteToAERecord to create AE records for storage in
resources.
4-32 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

A subclass of HIObject must override WriteToAERecord to support initialization
from data in an AE record—the standard way of instantiating HI objects. The
implementation of the override must perform the following steps:

1. Create an AE record, dataForClass, and attach all class data to that AE record
in the format specified in the dataFormat parameter.

2. If dataForSubclass is not null, copy that data as a subrecord to dataForClass.
Dispose of dataForSubclass.

3. Call the inherited WriteToAERecord method. Pass dataForClass as the
dataForSubclass parameter.

SEE ALSO

For an overview of related methods, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).

Clone 4

Returns a new pointer to an HI object and increments the reference count for
that object.

IDL DECLARATION

HIObject Clone ();
HIObject 4-33
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

HIObject *HIObject_Clone (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A new pointer to the object.

DISCUSSION

You use Clone to create a duplicate reference to an HI object. Every call to Clone
must be matched by a call to Release.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override Clone.

SEE ALSO

For an overview of related methods, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).
4-34 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Release 4

Decrements the reference count for an HI object and, if the count reaches 0,
disposes of any dynamically allocated resources, such as memory, associated
with the object.

IDL DECLARATION

void Release ();

C DECLARATION

void HIObject_Release (HIObject *somSelf,
Environment *ev);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

When you are finished with any reference to an HI object, you should call
Release to decrement its reference count. When a call to Release brings an HI
object’s reference count to 0, Release calls the protected method Terminate to
dispose of any dynamically allocated resources, such as memory, associated
with the object, then uses SOM techniques to dispose of the object itself.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
HIObject 4-35
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

Do not override Release.

SEE ALSO

For an overview of related methods, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).

GetOwnerCount 4

Returns the current reference count for an HI object.

IDL DECLARATION

ItemCount GetOwnerCount ();

C DECLARATION

ItemCount *HIObject_GetOwnerCount (HIObject *somSelf,
Environment *ev);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A pointer to an item count that reflects the current reference
count for the object.

DISCUSSION

GetOwnerCount is used only for debugging and for certain kinds of exception
handling.
4-36 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetOwnerCount.

SEE ALSO

For an overview of related methods, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).

Terminate 4

Disposes of any dynamically allocated resources, such as memory, associated
with an HI object.

IDL DECLARATION

void Terminate ();

C DECLARATION

void HIObject_Terminate (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
HIObject 4-37
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
DISCUSSION

To release an HI object, you should normally call Release, which calls Terminate
only when the reference count reaches 0.

You should call Terminate directly only if you want to clear out an object’s state
before reinitializing it with a call to InitFromAERecord.

After you call Terminate, no other HI object methods can be counted on to
work correctly except for those declared in the SOMObject base class and the
standard HI object initialization methods.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

All HI objects that dynamically allocate memory must override Terminate to
ensure that the memory is properly freed. The implementation of Terminate
must perform all of its own termination duties first and then call its inherited
Terminate.

All HI objects must be robust enough to handle multiple terminations.
Typically, this involves setting any pointers to NULL after disposing of them and
checking for NULL pointers before disposing of them.

SEE ALSO

For an overview of related methods, see “Initializing, Saving, and Disposing of
an Object” (page 4-25).
4-38 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Getting HI Object Attributes 4

GetWindow 4

Returns a pointer to the window object in which an HI object is located.

IDL DECLARATION

HIWindow GetWindow ();

C DECLARATION

HIWindow* HIObject_GetWindow (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A pointer to the window object in which the HI object is located.

DISCUSSION

All HI objects are associated with windows. If the HI object itself is a window,
then its window is itself. Otherwise, the window is the window in which the
object typically displays itself and interacts with the user.

Note that while all HI objects are bound to windows, they can be drawn in any
color graphics port (for example, when printing or when drawing in an
offscreen graphics world).
HIObject 4-39
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

It’s not usually necessary to override GetWindow.

SEE ALSO

Compare GetPort (page 4-40).

GetPort 4

Returns a pointer to the CGrafPort record for an HI object’s color graphics port.

IDL DECLARATION

CGrafPtr GetPort();

C DECLARATION

CGrafPtr HIObject_GetPort (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A pointer to the CGrafPort record for the object’s graphics port.
4-40 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
DISCUSSION

GetPort simply identifies the color graphics port associated with the HI object’s
window.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetPort.

SEE ALSO

Compare GetWindow (page 4-39).

GetRefLabel 4

Gets an HI object’s reference label.

IDL DECLARATION

void GetRefLabel (out RefLabel identifier);

C DECLARATION

void HIObject_GetRefLabel (
HIObject *somSelf,
Environment *ev,
RefLabel *identifier);

somSelf A pointer to the HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
HIObject 4-41
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

identifier A pointer to a reference label. On output, this parameter
identifies the object’s reference label. See “Reference Labels”
(page 4-11) for details.

DISCUSSION

A reference label allows your application to identify any HI object by means of
a static nonlocalizable value of your choice. You assign a reference label to an
object when you initialize it.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetRefLabel.

GetCollection 4

Returns a reference to the collection associated with an HI object.

IDL DECLARATION

Collection GetCollection();

C DECLARATION

Collection HIObject_GetCollection (
HIObject *somSelf,
Environment *ev);
4-42 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A reference to the collection associated with the object. You can
use Collection Manager functions to manipulate the collection.

DISCUSSION

GetCollection returns a collection reference that you can pass to Collection
Manager functions to get, add, or remove collection items associated with the
object. Collection items can be useful for adding application-specific data to an
HI object without having to subclass.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetCollection.

SEE ALSO

Documentation for the related HIPanel method GetDeepCollectionItemData will
be available with later developer releases. GetDeepCollectionItemData searches
the HI object and, if the search isn’t successful, continues to search the object’s
embedding parents for a specified collection item.
HIObject 4-43
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Getting and Setting an HI Object’s State Change Callback Function 4

AddStateChangeCallback 4

Adds a given procedure pointer to an HI object’s list of state change callbacks.

IDL DECLARATION

OSStatus AddStateChangeCallback (
in HIStateChangeCallbackProcPtr *changedStateCallback,
out HIStateChangeCallbackRef newCallbackRef);

C DECLARATION

OSStatus HIObject_AddStateChangeCallback (
HIObject *somSelf,
Environment *ev,
HIStateChangeCallbackProcPtr changedStateCallback,
HIStateChangeCallbackRef *newCallbackRef);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

changedStateCallback
A pointer to the state change callback function you want to add.

newCallbackRef
A pointer to a state change callback reference. On output, this
reference identifies the state change callback function you have
associated with the object. To remove the corresponding
callback function pass the reference to
4-44 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
RemoveStateChangeCallback (page 4-46). If you set
newCallbackRef to NULL, AddStateChangeCallback doesn’t return
a reference in this parameter.

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

AddStateChangeCallback adds a state change callback function to the specified
object. When the object’s state changes—for example, when a user selects a
checkbox—the object calls its state change callback functions to perform
whatever application-specific action is appropriate.

Many clients can add state change callbacks to an HI object—including the
operating system, your application, application plug-ins, and shared libraries.
AddStateChangeCallback makes no effort to manage the order in which it calls
an object’s state change callbacks.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override AddStateChangeCallback.

SEE ALSO

To remove an object’s state change callback function, use the
RemoveStateChangeCallback method (page 4-46).

For information about writing a state change callback function, see
“Application-Defined Function” (page 4-125).

For a simple example of the use of a state change callback function, see
“Assembling Embedding Panels” (page 1-55).
HIObject 4-45
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
RemoveStateChangeCallback 4

Removes a specified state change callback function.

IDL DECLARATION

OSStatus RemoveStateChangeCallback (
in HIStateChangeCallbackRef callbackRefToRemove);

C DECLARATION

OSStatus HIObject_RemoveStateChangeCallback (
HIObject *somSelf,
Environment *ev,
HIStateChangeCallbackRef callbackRefToRemove);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

callbackRefToRemove
A reference to the state change callback function you want to
remove.

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

The AddStateChangeCallback method (page 4-44) assigns a state change callback
reference to each callback function that it successfully installs. This reference is
necessary because a particular HI object may have more than one state change
callback function associated with it. You pass the reference to
RemoveStateChangeCallback to remove the corresponding callback function.
4-46 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override RemoveStateChangeCallback.

SEE ALSO

For information about writing a state change callback function, see
“Application-Defined Function” (page 4-125).

Manipulating an HI Object’s Size and Location 4

Class HIObject defines several methods that get or set different aspects of an
object’s size and location:

■ To get or set an object’s bounding rectangle, use GetBoundingRect (page 4-48)
or SetBoundingRect (page 4-49). You can also change the bounding rectangle
by using SetPosition (page 4-51) and SetSize (page 4-53).

■ To get an object’s optimal size, use CalculateOptimalSize (page 4-54). This is
useful with objects whose size may not be easily determined until runtime,
such as caption panels.

■ To get the rectangle within which an object can draw (which may be larger
than its bounding rectangle), use GetUpdateRect (page 4-56).
HIObject 4-47
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
GetBoundingRect 4

Gets an HI object’s bounding rectangle—that is, the rectangle that defines its
location.

IDL DECLARATION

void GetBoundingRect(
in HICoordinateSystem coordinate,
out Rect bounds);

C DECLARATION

void HIObject_GetBoundingRect (
HIObject *somSelf,
Environment *ev,
HICoordinateSystem coordinate,
Rect *bounds);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

coordinate The coordinate system you want GetBoundingRect to use to
specify the rectangle returned in the bounds parameter. You
identify the coordinate system with one of the values defined in
the HICoordinateSystem enumeration (page 4-13).

bounds A pointer to a rectangle. On output, the rectangle describes the
object’s bounds in the coordinate system specified by the
coordinate parameter.

DISCUSSION

Every HI object has a bounding rectangle that defines its location. The object’s
content must be drawn within this rectangle; for example, the area of a button
4-48 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
that can respond to mouse clicks corresponds to its bounding rectangle. The
object may also draw adornments inside a second, larger rectangle called the
update rectangle, which you can obtain by calling the GetUpdateRect method
(page 4-56).

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

You can override GetBoundingRect if you want to modify or limit the bounding
rectangle of an HI object.

SEE ALSO

For an overview of related methods, see “Manipulating an HI Object’s Size and
Location” (page 4-47).

SetBoundingRect 4

Sets an HI object’s bounding rectangle—that is, the rectangle that defines its
location.

IDL DECLARATION

void SetBoundingRect (
in HICoordinateSystem coordinate,
in Rect newBounds);
HIObject 4-49
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

void HIObject_SetBoundingRect (HIObject *somSelf,
Environment *ev,
HICoordinateSystem coordinate,
Rect* newBounds);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

coordinate The coordinate system you want SetBoundingRect to use to
interpret the rectangle in the newBounds parameter. You identify
the coordinate system with one of the values defined in the
HICoordinateSystem enumeration (page 4-13).

newBounds A pointer to a rectangle. On input, you supply a rectangle
describing the bounds to which to set the object in the
coordinates specified by the coordinate parameter.

DISCUSSION

Every HI object has a bounding rectangle that defines its location. The object’s
content must be drawn within this rectangle; for example, the area of a button
that can respond to mouse clicks corresponds to its bounding rectangle. The
object may also draw adornments inside a second, larger rectangle called the
update rectangle, which you can obtain by calling the GetUpdateRect method
(page 4-56).

You can change an object’s position and size at the same time by calling
SetBoundingRect. If you want to change just the object’s position or just its size,
use the SetPosition (page 4-51) or SetSize (page 4-53) method.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
4-50 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

Do not override SetBoundingRect. If you want to modify the behavior of an HI
object when its position or size is changed, override SetPosition (page 4-51) or
SetSize (page 4-53).

SEE ALSO

For an overview of related methods, see “Manipulating an HI Object’s Size and
Location” (page 4-47).

SetPosition 4

Sets an HI object’s position.

IDL DECLARATION

void SetPosition (in HICoordinateSystem coordinate,
in Point newPosition);

C DECLARATION

void HIObject_SetPosition (
HIObject *somSelf,
Environment *ev,
HICoordinateSystem coordinate,
Point *newPosition);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
HIObject 4-51
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
coordinate The coordinate system you want SetPosition to use to interpret
the point in the newPosition parameter. You identify the
coordinate system with one of the values defined in the
HICoordinateSystem enumeration (page 4-13).

newPosition A pointer to a point. On input, you supply the point describing
the position of the object’s upper-left corner in the coordinate
system specified by the coordinate parameter.

DISCUSSION

Because SetPosition changes the location of an HI object, its implementation
ensures that the appropriate screen areas are erased and invalidated.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

You can override SetPosition if you would like your object to modify its
behavior when its position changes. Your implementation of SetPosition
should call the inherited SetPosition method to maintain the object’s geometry
correctly.

SEE ALSO

For an overview of related methods, see “Manipulating an HI Object’s Size and
Location” (page 4-47).
4-52 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
SetSize 4

Sets an HI object’s size.

IDL DECLARATION

void SetSize (in SInt16 width,
in SInt16 height);

C DECLARATION

void HIObject_SetSize (
HIObject *somSelf, Environment *ev,
SInt16 width,
SInt16 height);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

width The width to which you want to set the object, in pixels.

height The height to which you want to set the object, in pixels.

DISCUSSION

Because SetSize changes the location of an HI object, its implementation
ensures that the appropriate screen areas are erased and invalidated.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
HIObject 4-53
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

You can override SetSize if you would like your object to modify its behavior
when its size changes. Your implementation of SetSize should call the
inherited SetSize method to maintain the object’s geometry correctly.

SEE ALSO

For an overview of related methods, see “Manipulating an HI Object’s Size and
Location” (page 4-47).

CalculateOptimalSize 4

Gets an HI object’s optimal size.

IDL DECLARATION

void CalculateOptimalSize (
out SInt16 optimalWidth,
out SInt16 optimalHeight);

C DECLARATION

void HIObject_CalculateOptimalSize (
HIObject *somSelf,
Environment *ev,
SInt16 *optimalWidth,
SInt16 *optimalHeight);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
4-54 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
optimalWidth A pointer to an integer. On output, the integer specifies the
object’s optimal width in pixels. If the object can’t calculate an
optimal width, CalculateOptimalSize returns the value of the
object’s original width in this parameter.

optimalHeight A pointer to an integer. On output, the integer specifies the
object’s optimal height in pixels. If the object can’t calculate an
optimal height, CalculateOptimalSize returns the value of the
object’s original height in this parameter.

DISCUSSION

An object’s optimal size is represented by the smallest rectangle that can
completely enclose its content. This is useful information for objects that can
resize themselves to enclose their content in an optimal fashion. For example,
static text panels may vary in length depending on the language in which they
are displayed or due to text substitution.

CalculateOptimalSize doesn’t resize the HI object. After you have determined
its optimal size, use the SetSize method (page 4-53) to resize it.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

The HIObject implementation of CalculateOptimalSize simply returns the value
of the object’s original width and height in the optimalWidth and optimalHeight
parameters. Any subclass for an object that can resize itself to enclose its
content in an optimal fashion should override CalculateOptimalSize to
determine that optimal size.

SEE ALSO

For an overview of related methods, see “Manipulating an HI Object’s Size and
Location” (page 4-47).
HIObject 4-55
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
GetUpdateRect 4

Gets an HI object’s update rectangle—that is, the rectangle that encloses the
entire area in which the object can draw.

IDL DECLARATION

void GetUpdateRect (in HICoordinateSystem coordinate,
out Rect updateRect);

C DECLARATION

void HIObject_GetUpdateRect (
HIObject *somSelf,
Environment *ev,
HICoordinateSystem coordinate,
Rect *updateRect);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

coordinate The coordinate system you want GetUpdateRect to use to specify
the rectangle in the updateRect parameter. You identify the
coordinate system with one of the values defined in the
HICoordinateSystem enumeration (page 4-13).

updateRect A pointer to a rectangle. On output, the rectangle describes the
object’s update rectangle in the coordinate system specified by
the coordinate parameter.

DISCUSSION

The rectangle returned in the updateRect parameter is at least as large as the
bounding rectangle, and it can be larger to accommodate visual elements like
focus indicators, which are drawn outside of the typical object’s bounding
4-56 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
rectangle. An object’s update rectangle can be no more than 7 pixels larger (per
side) than its bounding rectangle.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

The HIObject implementation of GetUpdateRect simply returns the object’s
bounding rectangle. If you are creating a subclass for an HI object that draws
some kind of adornment (for example, a user input focus ring or default push
button ring), then your implementation should return an update rectangle that
includes room for those adornments.

Typically, the implementation of an override gets the panel’s bounding
rectangle and calls InsetRect to adjust the rectangle to encompass the entire
update area.

SEE ALSO

For an overview of related methods, see “Manipulating an HI Object’s Size and
Location” (page 4-47).
HIObject 4-57
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Enabling and Disabling an HI Object 4

Enable 4

Enables an HI object.

IDL DECLARATION

void Enable ();

C DECLARATION

void HIObject_Enable(HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

An enabled object can receive events and handle them appropriately.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
4-58 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

Subclasses for objects that need to generate some side effect when they are
enabled should override the Enable method. For example, many controls adjust
their appearance after changing from a disabled state to an enabled state to
indicate that they can accept mouse clicks.

SEE ALSO

To disable an HI object, use the Disable method (page 4-59). To get an object’s
enabled state, use the IsEnabled method (page 4-60).

Disable 4

Disables an HI object.

IDL DECLARATION

void Disable ();

C DECLARATION

void HIObject_Disable(
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

A disabled object does not accept events, and clients shouldn’t dispatch events
to it.
HIObject 4-59
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses for objects that need to generate some side effect when they are
disabled should override the Disable method. For example, many controls
adjust their appearance after changing from an enabled state to a disabled state
to indicate that they can no longer accept mouse clicks.

SEE ALSO

To enable an HI object, use the Enable method (page 4-58). To get an object’s
enabled state, use the IsEnabled method (page 4-60).

IsEnabled 4

Returns an HI object’s enabled state.

IDL DECLARATION

boolean IsEnabled ();

C DECLARATION

boolean HIObject_IsEnabled (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
4-60 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A Boolean value indicating the enabled state of the object. The
value true indicates that the object is enabled; the value false
indicates that the object is disabled.

DISCUSSION

An enabled object can receive events and handle them appropriately. A
disabled object does not accept events, and clients shouldn’t dispatch
events to it.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override IsEnabled.

SEE ALSO

To enable an object, use the Enable method (page 4-58). To disable an object, use
the Disable method (page 4-59).
HIObject 4-61
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Getting and Setting an HI Object’s Visibility 4

Show 4

Makes an HI object visible.

IDL DECLARATION

void Show ();

C DECLARATION

void HIObject_Show (HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

The Show method makes an invisible object visible. If the object is already
visible, Show has no effect. Calling Show makes an HI object redraw itself by
calling its own Invalidate method (page 4-102).

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
4-62 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

Subclasses that need to generate some side effect when the object is shown
should override the Show function.

SEE ALSO

To make an object invisible, use the Hide method (page 4-63). To check whether
an object is visible, use the IsVisible method (page 4-64).

Hide 4

Hides an HI object.

IDL DECLARATION

void Hide();

C DECLARATION

void HIObject_Hide (HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

The Hide method makes a visible object invisible by erasing and invalidating its
rectangle, thus permitting other objects in the same area of the screen to redraw
themselves. The object erases itself by calling its Erase method (page 4-100),
which in turn calls the EraseContent method (page 4-117).
HIObject 4-63
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
A hidden HI object doesn’t receive events and can’t take user input focus.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses that need to generate some side effect when the object is hidden
should override the Hide function.

SEE ALSO

To make an object visible, use the Show method (page 4-62). To check whether
an object is visible, use the IsVisible method (page 4-64).

IsVisible 4

Returns an HI object’s visibility state.

IDL DECLARATION

boolean IsVisible ();

C DECLARATION

boolean HIObject_IsVisible (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
4-64 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A Boolean value indicating the visibility of the object. A value
of true indicates that the object is visible; a value of false
indicates that the object isn’t visible.

DISCUSSION

An invisible object doesn’t receive events and can’t take user input focus.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override IsVisible.

SEE ALSO

To make an object visible, use the Show method (page 4-62). To make an object
invisible, use the Hide method (page 4-63).

Getting and Setting an HI Object’s Title 4

GetTitle 4

Gets the image reference for an HI object’s title.

IDL DECLARATION

OSStatus GetTitle (out HIImageRef title);
HIObject 4-65
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

OSStatus HIObject_GetTitle (
HIObject *somSelf,
Environment *ev,
HIImageRef *title);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

title A pointer to an image reference. On output, this reference
identifies the object’s title image; or, if the object has no title,
this reference is set to NULL.

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

An HI object’s title is specified by an image reference. The image reference
identifies a text object, an icon, a picture, a pattern, other kinds of images, or
combinations of images.

The HI Imaging Objects class library provides object life cycle management for
all image references. For a discussion of the way this works for image
references, see SetTitle (page 4-67).

The image reference GetTitle provides in the title parameter is a clone of the
image reference that identifies the HI object’s title. Thus, a successful call to
GetTitle increments the reference count for the title’s image reference by 1.
Therefore, every call to GetTitle should eventually be matched by a call to the
HI imaging object method ReleaseImage.

After you get an image reference for an HI object’s title, it’s possible to change
the image identified by its image reference using methods defined by the HI
Imaging Objects class library.
4-66 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetTitle.

SEE ALSO

For an introduction to imaging objects, see “Imaging Objects” (page 1-40).

For a discussion of the life cycle management provided by the HI Objects class
library, see “Initializing, Saving, and Disposing of an Object” (page 4-25).

To set the image reference for an object’s title, use the SetTitle method
(page 4-67).

SetTitle 4

Sets an HI object’s title.

IDL DECLARATION

OSStatus SetTitle (in ConstHIImageRef title,
in HIAdoptionFlags disposalAdoptionFlags);

C DECLARATION

OSStatus HIObject_SetTitle (
HIObject *somSelf,
Environment *ev,
ConstHIImageRef title,
HIAdoptionFlags disposalAdoptionFlags);
HIObject 4-67
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

title A reference to the imaging object you want to use to set the
object’s title. You use the static method GetHIImagingObject,
defined by class HIImagingObject, to get an imaging object.

disposalAdoptionFlags
Reserved.

function result Information about result codes will be provided with later
developer releases.

DISCUSSION

Most HI objects can have a title, which is identified by an image reference. A
title’s image reference typically identifies a text image (which encapsulates a
text object and a text strike), but you can also use icons, pictures, patterns, other
kinds of images, or combinations of images as titles.

The HI Imaging Objects class library provides object life cycle management for
all image references in much the same way that the HI Objects class library
manages multiple references to HI objects. To set an HI object’s title, you first
use the HI Imaging Objects class library to construct an image reference for the
text, icon, picture, or other image you want to set as the title. At this point, the
reference count for the new image reference is 1. You then pass the image
reference to SetTitle. SetTitle always clones the image reference in the title
parameter, so the reference count is now 2.

If you call Release (page 4-35) on an HI object that has a title, and if that call to
Release brings the HI object’s reference count to 0, Release calls Terminate
(page 4-37), and Terminate calls the HI imaging object method ReleaseImage to
decrement the reference count for the title’s image reference. If at that point the
image reference’s reference count reaches 0, ReleaseImage calls the HI imaging
object method DisposeImage.

Thus, if you want the life of an image reference to coincide with the life of the
HI object whose title it specifies, you should call ReleaseImage on the image
reference right after you call SetTitle. In the example just discussed, this brings
4-68 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
reference count for the image reference back down to 1, so that a future call to
the HI object’s Terminate method will bring the count down to 0 and the image
reference will be disposed of at the same time as the HI object.

If you want to keep the image reference around even after the HI object is
disposed of, don’t call ReleaseImage on the image reference after you call
SetTitle. This allows the reference count for the image reference to remain at 1
even after any objects whose title it specifies have been disposed.

If you call SetTitle with an image reference different from that for the existing
title, SetTitle releases the current image reference for the title and clones the
new image reference in the usual manner.

If you call SetTitle with the same image reference as its current title, then the
HI object assumes that its title image has changed. The object then invalidates
itself and adjusts itself to the title content appropriately.

After you have set an object’s title, it’s possible to change it by manipulating
the image identified by its image reference using methods defined by the HI
Imaging Objects class library.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses that need to generate some side effect when the object’s title is set or
changes should override the SetTitle function.

SEE ALSO

For an introduction to imaging objects, see “Imaging Objects” (page 1-40).

For a discussion of the life cycle management provided by HIObject, see
“Initializing, Saving, and Disposing of an Object” (page 4-25).

To get the image reference for an object’s title, use the GetTitle method
(page 4-65).
HIObject 4-69
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Event Handling 4

The Toolbox provides a table of default event handlers for the default Apple
event dispatcher associated with each process. These handlers determine which
window (if any) a standard Toolbox event should be directed toward and
resend the event to that window’s event dispatcher. The Toolbox also provides
a table of default handlers for the dispatcher associated with each window.
These handlers either handle the event directly or call a method provided by
HIWindow that handles the event.

If the event affects the window’s content area, the HIWindow method calls a root
panel method for the event, which calls a subpanel method, and so on until the
event reaches a subpanel that can handle it.

The accompanying document, Apple Events in Mac OS 8, introduces the
Mac OS 8 event model. For an introduction to Toolbox event routing, see
“Toolbox Event Routing” (page 2-3). For definitions of some of the standard
events, see “Toolbox Events Reference” (page 3-3).

This section describes the methods defined by HIObject that handle the basic
activation, navigation, and mouse events for which the Toolbox provides
default handlers. These methods are typically called by handlers or by other
methods; your application doesn’t need to call them unless it overrides the
default event handling or implements a subclass of HIEmbeddingPanel.

The HandleActivate (page 4-73), HandleDeactivate (page 4-75), and
HandleNavigation (page 4-77) methods handle activation and navigation events.

The HandleMouseDownInContent (page 4-79), HandleMouseMovedInContent
(page 4-73), HandleMouseStoppedMovingInContent (page 4-85), and
HandleMouseUpInContent (page 4-87) methods handle mouse events that occur
in a window’s bounding rectangle.

Handlers installed in the window dispatcher for other events can either handle
them directly or call the HandleAppleEvent method (page 4-71) on the window
object, which calls the HandleAppleEvent method on the root panel, and so on
until the event reaches a subpanel that can handle it.

Event-handling methods include a reply parameter for consistency with the
Apple Event Manager, but they ignore this parameter unless the
documentation specifies otherwise.
4-70 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
HandleAppleEvent 4

Handles a given Apple event.

IDL DECLARATION

OSStatus HandleAppleEvent (in AEEventClass eventClass,
in AEEventID eventID,
in AppleEvent theEvent,
in AppleEvent reply,
in AEHandlerTableRef handlerTableRef);

C DECLARATION

HIObject_HandleAppleEvent (HIObject *somSelf, Environment *ev,
AppleEvent *theEvent,
AEEventClass eventClass,
AEEventID eventID,
AppleEvent *reply);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

eventClass The event class of the event to be handled.

eventID The event ID of the event to be handled.

theEvent A pointer to an Apple event. On input, you supply the event to
be handled.

reply A pointer to a reply Apple event. On output, the reply Apple
event contains the appropriate reply parameters, if any.

handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.
HIObject 4-71
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the event isn’t handled by the object. More
information about result codes will be provided with later
developer releases.

DISCUSSION

HandleAppleEvent acts as a catchall for Apple events that don’t have a
corresponding method defined by the HI Objects class library. The client for
HandleAppleEvent is typically an embedding panel that needs to send such an
event to a subpanel instantiated from a custom subclass or a system service
such as the Text Services Manager. See “Override Information” for more details.

The eventClass and eventID parameters are identical to the equivalent values in
the Apple event specified by the theEvent parameter. This information is
provided in parameter form for the convenience of the HandleAppleEvent
implementation.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

If you are creating a subclass for objects that need to handle events other than
the standard Toolbox events, you should override the HandleAppleEvent
method and handle the events from within your subclass implementation.

In addition, the object’s initialization functions should register its interest in
that event by calling the HIPanel method RegisterInterestInEvent and
specifying the event class and event ID. This ensures that the event will be
passed through the window dispatcher’s handler table to the HandleAppleEvent
method for the window object, root panel, and successive subpanels until it
reaches the object or objects that know about it.

More than one HI object can register interest in the same event. If the event is a
geometry event, it gets sent to the interested panel, if any, in the location where
the event occurred. If it is a broadcast event, the root panel sends it to all
interested subpanels.
4-72 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
SEE ALSO

For an overview of related methods, see “Event Handling” (page 4-70).

For an introduction to the use of the HandleAppleEvent and
RegisterInterestInEvent methods, see “Registering a Panel’s Interest in an
Event” (page 2-24).

HandleActivate 4

Handles a Window Activated event.

IDL DECLARATION

OSStatus HandleActivate (
in AppleEvent theEvent,
in AppleEvent reply
in AEHandlerTableRef handlerTableRef);

C DECLARATION

OSStatus HIObject_HandleActivate (
HIObject *somSelf,
Environment *ev,
AppleEvent *theEvent,
AppleEvent *reply
AEHandlerTableRef handlerTableRef);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

theEvent A pointer to an Apple event. On input, you supply the Window
Activated event to be handled.
HIObject 4-73
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
reply A pointer to an Apple event. On input, you supply the reply
Apple event to be returned by the object.

handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.

function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the event isn’t handled by the object. More
information about result codes will be provided with later
developer releases.

DISCUSSION

When a window dispatcher receives a Window Activated event, its default
handler for that event calls the window’s HandleActivate method, which calls
the root panel’s HandleActivate method, which calls all its subpanels’
HandleActivate methods.

If you call the HandleActivate method on an HI object that is being reactivated,
and if the object was enabled when it was deactivated, it reenables itself.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses that need to generate some side effect when the HI object is
activated should override the HandleActivate function.

SEE ALSO

For an overview of related event-handling methods, see “Event Handling”
(page 4-70).

For information about enabling and disabling, see “Enabling and Disabling an
HI Object” (page 4-58).
4-74 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
For a description of the Window Activation event and its default handlers, see
“Window Activated” (page 3-16).

HandleDeactivate 4

Handles a Window Deactivated event.

IDL DECLARATION

OSStatus HandleDeactivate (
in AppleEvent theEvent,
in AppleEvent reply
in AEHandlerTableRef handlerTableRef);

C DECLARATION

OSStatus HandleDeactivate (
HIObject *somSelf,
Environment *ev,
AppleEvent *theEvent,
AppleEvent *reply
AEHandlerTableRef handlerTableRef);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

theEvent A pointer to an Apple event. On input, you supply the Window
Deactivated event to be handled.

reply A pointer to an Apple event. On input, you supply the reply
Apple event to be returned by the object.
HIObject 4-75
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.

function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the event isn’t handled by the object. More
information about result codes will be provided with later
developer releases.

DISCUSSION

When a window dispatcher receives a Window Deactivated event, its default
handler for that event calls the window’s HandleDeactivate method, which calls
the root panel’s HandleDeactivate method, which calls all its subpanels’
HandleDeactivate methods.

HandleDeactivate disables the object as well as deactivating it.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses that need to generate some side effect when the HI object is
activated should override the HandleDeactivate function.

SEE ALSO

For an overview of related event-handling methods, see “Event Handling”
(page 4-70).

For information about enabling and disabling, see “Enabling and Disabling an
HI Object” (page 4-58).

For a description of the Window Deactivated event and its default handlers,
see “Window Deactivated” (page 3-16).
4-76 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
HandleNavigation 4

Handles a Navigation event.

IDL DECLARATION

OSStatus HandleNavigation (
in SInt8 key,
in SInt8 keyCode,
in EventModifiers modifiers,
in AppleEvent theEvent,
in AppleEvent reply
in AEHandlerTableRef handlerTableRef);

C DECLARATION

OSStatus HIObject_HandleNavigation (
HIObject *somSelf,
Environment *ev,
SInt8 key,
SInt8 keyCode,
EventModifiers modifiers,
AppleEvent *theEvent,
AppleEvent *reply
AEHandlerTableRef handlerTableRef);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

key Information about this parameter will be provided with later
developer releases.

keyCode Information about this parameter will be provided with later
developer releases.
HIObject 4-77
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
modifiers Information about this parameter will be provided with later
developer releases.

theEvent A pointer to an Apple event. On input, you supply the
Navigation event to be handled.

reply A pointer to an Apple event. On input, you supply the reply
Apple event to be returned by the object.

handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.

function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the event isn’t handled by the object. More
information about result codes will be provided with later
developer releases.

DISCUSSION

When a process dispatcher receives a Navigation event, its default handler for
that event forwards the event to the dispatcher for the window that currently
has user input focus. When a window dispatcher receives a Navigation event,
its default handler for that event calls the window’s HandleNavigation method,
which calls the root panel’s HandleNavigation method, which calls the
HandleNavigation method on the subpanel that currently has user input focus,
and so on through the container hierarchy for HI objects with user focus until
the event gets handled.

If the event isn’t handled by any of the method calls, the default handler
resends the event to the process dispatcher as a Virtual key event (if possible),
which is in turn processed by the Text Services Manager and transformed into
a text event. This allows the original event (for example, a Tab keypress) a
chance to be processed by the same window dispatcher as a text event if it isn’t
handled as a Navigation event.

The key, keycode, and modifiers parameters are identical to the equivalent
values in the Apple event specified by the theEvent parameter. This
information is provided in parameter form for the convenience of the
HandleNavigation implementation.
4-78 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses for objects that can take user input focus and can react to navigation
events should override HandleNavigation. The HIObject implementation of this
method does nothing and returns noErr.

SEE ALSO

For an overview of related event-handling methods, see “Event Handling”
(page 4-70).

For information about user input focus, see “Controlling User Input Focus”
(page 4-89).

For an introduction to Navigation event routing, see “Navigation Events”
(page 2-14).

HandleMouseDownInContent 4

Handles a Mouse Down event in an HI object’s bounding rectangle.

IDL DECLARATION

OSStatus HandleMouseDownInContent (
in Point portLocalWhere,
in EventModifiers modifiers,
in AppleEvent theEvent,
in AppleEvent reply
in AEHandlerTableRef handlerTableRef);
HIObject 4-79
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

OS Status HIObject_HandleMouseDownInContent (
HIObject *somSelf,
Environment *ev,
Point *portLocalWhere,
EventModifiers modifiers,
AppleEvent *theEvent,
AppleEvent *reply
AEHandlerTableRef handlerTableRef);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

portLocalWhere
A pointer to a point. On input, you supply the point where the
user clicked in coordinates local to the object’s graphics port.

modifiers A set of flags defined by the EventModifiers enumeration
indicating which keyboard modification keys were pressed at
the time the event was generated. Examples of modification
keys include the Shift, Command, Control, and Option keys.

theEvent A pointer to an Apple event. On input, you supply the Mouse
Down event to be handled.

reply A pointer to an Apple event. On input, you supply the reply
Apple event to be returned by the object.

handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.

function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the user has moved the pointer outside of the
object’s bounding rectangle or has pressed the mouse button
while the pointer is within a part of the object that doesn’t
handle Mouse Down events. More information about result
codes will be provided with later developer releases.
4-80 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
DISCUSSION

After determining that a Mouse Down event occurred within the window’s
content area, a window’s HandleMouseDown method resends the event to the
process dispatcher as a Mouse Down in Content event. The process dispatcher
forwards the event to the window dispatcher, and a handler installed in the
window dispatcher passes it to the window object’s HandleMouseDownInContent
method, which passes it to the root panel’s HandleMouseDownInContent method.

If any subpanel’s bounding rectangle contains the point specified by the
portLocalWhere parameter, the root panel’s HandleMouseDownInContent method
calls the subpanel’s HandleMouseDownInContent method, and so on until the
event reaches a subpanel that can handle it.

The portLocalWhere and modifiers parameters are identical to the equivalent
values in the Apple event specified by the theEvent parameter. This
information is provided in parameter form for the convenience of the
HandleMouseDownInContent implementation.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses for HI objects that need to track mouse movement while the mouse
button is pressed must override HandleMouseDownInContent. The
HandleMouseDownInContent implementation should create a filtered handler
table, push it onto the process dispatcher’s handler table stack, and call
AEReceive to track the mouse until the button is released.

The Mouse Moved, Mouse Stopped Moving, and Mouse Up handlers
associated with the filtered table should call the HI object’s
HandleMouseMovedInContent, HandleMouseStoppedMovingInContent, and
HandleMouseUpInContent methods, respectively. The HandleMouseUpInContent
method should force an exit from the call to AEReceive. This returns the flow of
control to the HandleMouseDownInContent method, which should pop the filtered
handler table and exit.
HIObject 4-81
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
If the HI object accepts the Mouse Down event, HandleMouseDownInContent
should return noErr. If the HI object doesn’t accept the Mouse Down event,
HandleMouseDownInContent should return errAEEventNotHandled.

Subclasses should also support drag-and-drop behavior where appropriate. If
the Mouse Down event occurs in a selection within the object’s content, the
subclass implementation should initiate a drag. Information on how to do this
will be provided with later developer releases.

SEE ALSO

For an overview of related event-handling methods, see “Event Handling”
(page 4-70).

For an introduction to the default Toolbox routing for the Mouse Down in
Content event, see “Default Geometric Event Routing” (page 2-6).

For more information about modal states, see the accompanying document
Apple Events in Mac OS 8.

HandleMouseMovedInContent 4

Handles a Mouse Moved event in an HI object’s bounding rectangle.

IDL DECLARATION

OSStatus HandleMouseMovedInContent (
in Point portLocalWhere,
in EventModifiers modifiers,
in AppleEvent theEvent,
in AppleEvent reply
in AEHandlerTableRef handlerTableRef);
4-82 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

OSStatus HIObject_HandleMouseMovedInContent (
HIObject *somSelf,
Environment *ev,
Point *portLocalWhere,
EventModifiers modifiers,
AppleEvent *theEvent,
AppleEvent *reply,
AEHandlerTableRef handlerTableRef);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

portLocalWhere
A pointer to a point. On input, you supply the point the mouse
moved to in coordinates local to the object’s graphics port.

modifiers A set of flags defined by the EventModifiers enumeration
indicating which keyboard modification keys were pressed at
the time the event was generated. Examples of modification
keys include the Shift, Command, Control, and Option keys.

theEvent A pointer to an Apple event. On input, you supply the Mouse
Down event to be handled.

reply A pointer to an Apple event. On input, you supply the reply
Apple event to be returned by the object.

handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.

function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the event isn’t handled by the object. More
information about result codes will be provided with later
developer releases.
HIObject 4-83
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
DISCUSSION

If the user moves the mouse while the mouse button is pressed and the pointer
is within a window’s content area, User Input Services sends a Mouse Moved
event to the appropriate application’s default process dispatcher. A Mouse
Moved event handler installed in the process dispatcher by a
HandleMouseDownInContent method (page 4-79) passes the event directly to the
HandleMouseMovedInContent method for the HI object in which mouse
movement has occurred.

The portLocalWhere and modifiers parameters are identical to the equivalent
values in the Apple event specified by the theEvent parameter. This
information is provided in parameter form for the convenience of the
HandleMouseMovedInContent implementation.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses of HI object that support mouse interaction should override
HandleMouseMovedInContent. See the override information for
HandleMouseDownInContent (page 4-79) for details.

SEE ALSO

For an overview of related event-handling methods, see “Event Handling”
(page 4-70).

For a description of the Mouse Moved event and its default handlers, see
“Mouse Moved” (page 3-10).
4-84 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
HandleMouseStoppedMovingInContent 4

Handles a Mouse Stopped Moving event in an HI object’s bounding rectangle.

IDL DECLARATION

OSStatus HandleMouseStoppedMovingInContent (
in Point portLocalWhere,
in EventModifiers modifiers,
in AppleEvent theEvent,
in AppleEvent reply
in AEHandlerTableRef handlerTableRef);

C DECLARATION

OSStatus HIObject_HandleMouseStoppedMovingInContent (
HIObject *somSelf,
Environment *ev,
Point *portLocalWhere,
EventModifiers modifiers,
AppleEvent *theEvent,
AppleEvent *reply,
AEHandlerTableRef handlerTableRef);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

portLocalWhere
A pointer to a point. On input, you supply the point at which
the mouse stopped moving in coordinates local to the object’s
graphics port.
HIObject 4-85
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
modifiers A set of flags defined by the EventModifiers enumeration
indicating which keyboard modification keys were pressed at
the time the event was generated. Examples of modification
keys include the Shift, Command, Control, and Option keys.

theEvent A pointer to an Apple event. On input, you supply the Mouse
Stopped Moving event to be handled.

reply A pointer to an Apple event. On input, you supply the reply
Apple event to be returned by the object.

handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.

function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the event isn’t handled by the object. More
information about result codes will be provided with later
developer releases.

DISCUSSION

If the user stops moving the mouse while the mouse button is pressed and the
pointer is within a window’s content area, User Input Services sends a Mouse
Stopped Moving event to the appropriate application’s default process
dispatcher. A Mouse Stopped Moving event handler installed in the process
dispatcher by a HandleMouseDownInContent method (page 4-79) passes the event
directly to the HandleMouseStoppedMovingInContent method for the HI object in
which mouse movement has stopped.

The portLocalWhere and modifiers parameters are identical to the equivalent
values in the Apple event specified by the theEvent parameter. This
information is provided in parameter form for the convenience of the
HandleMouseStoppedMovingInContent implementation.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
4-86 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

Subclasses of HI object that support mouse interaction should override
HandleMouseStoppedMovingInContent. See the override information for
HandleMouseDownInContent (page 4-79) for details.

SEE ALSO

For an overview of related event-handling methods, see “Event Handling”
(page 4-70).

For a description of the Mouse Stopped Moving event and its default handlers,
see “Mouse Stopped Moving” (page 3-11).

HandleMouseUpInContent 4

Handles a Mouse Up event in an HI object’s bounding rectangle.

IDL DECLARATION

OSStatus HandleMouseUpInContent (
in Point portLocalWhere,
in EventModifiers modifiers,
in AppleEvent theEvent,
in AppleEvent reply
in AEHandlerTableRef handlerTableRef);

C DECLARATION

HIObject_HandleMouseUpInContent (HIObject *somSelf, Environment *ev,
Point *portLocalWhere,
EventModifiers modifiers,
AppleEvent *theEvent,
AppleEvent *reply
AEHandlerTableRef handlerTableRef);
HIObject 4-87
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

portLocalWhere
A pointer to a point. On input, you supply the point at which
the Mouse Up even occurred in coordinates local to the object’s
graphics port.

modifiers A set of flags defined by the EventModifiers enumeration
indicating which keyboard modification keys were pressed at
the time the event was generated. Examples of modification
keys include the Shift, Command, Control, and Option keys.

theEvent A pointer to an Apple event. On input, you supply the Mouse
Up event to be handled.

reply A pointer to an Apple event. On input, you supply the reply
Apple event to be returned by the object.

handlerTableRef
The handler table reference for the handler table containing the
handler that received this event.

function result A result code. The result code noErr indicates that the object
handled the event. The result code errAEEventNotHandled
indicates that the event isn’t handled by the object. More
information about result codes will be provided with later
developer releases.

DISCUSSION

If the user releases the mouse button and the pointer is within a window’s
content area, User Input Services sends a Mouse Up event to the appropriate
application’s default process dispatcher. A Mouse Up event handler installed in
the process dispatcher by a HandleMouseDownInContent method (page 4-79)
passes the event directly to the HandleMouseUpInContent method for the HI
object under the pointer when the user releases the mouse button.

The portLocalWhere and modifiers parameters are identical to the equivalent
values in the Apple event specified by the theEvent parameter. This
4-88 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
information is provided in parameter form for the convenience of the
HandleMouseUpInContent implementation.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses of HI object that support mouse interaction should override
HandleMouseUpInContent. See the override information for
HandleMouseDownInContent (page 4-79) for details.

SEE ALSO

For an overview of related event-handling methods, see “Event Handling”
(page 4-70).

For a description of the Mouse Up event and its default handlers, see “Mouse
Up” (page 3-8).

Controlling User Input Focus 4

Your application must maintain the current user input focus for the HI objects
it creates. It receives some assistance in this effort from windows, which help
route focused events, and from embedding panels, which perform simple user
input focus arbitration for their subpanels.

Your application can provide more complex user input focus arbitration rules
in two ways: by subclassing from HIEmbeddingPanel and overriding the user
input focus arbitration methods, or by instantiating your panels outside of an
embedding panel and manually transferring focus to the correct panel as
necessary.

To assign user input to and release it for an object, use the TakeUserInputFocus
(page 4-90) and ReleaseUserInputFocus (page 4-92) methods. The object
redraws itself with the appropriate appearance after you call one of these
methods.
HIObject 4-89
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Before calling ReleaseUserInputFocus, use the CanReleaseUserInputFocus
method (page 4-94) to ensure that the object is in a state that permits it to
release focus. For example, CanReleaseUserInputFocus doesn’t return true for
an editable text panel that accepts only numbers between 10 and 100 until the
panel’s text is valid.

To find out whether an object currently has user input focus, use the
HasUserInputFocus method (page 4-93).

If you are implementing an HI object subclass, you may want to specify
whether your object can accept user input focus when you first initialize the
object. You can do so by calling the GetUserInputFocusFlags (page 4-97) and
SetUserInputFocusFlags (page 4-96) methods.

TakeUserInputFocus 4

Assigns user input focus to an HI object.

IDL DECLARATION

void TakeUserInputFocus ();

C DECLARATION

void HIObject_TakeUserInputFocus (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
4-90 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
DISCUSSION

An HI object that can receive user input focus redraws itself with the
appropriate focused appearance for the current theme after a call to
TakeUserInputFocus. Embedding panels keep track of user input focus for their
subpanels and call TakeUserInputFocus and ReleaseUserInputFocus as necessary
to control it.

You don’t need to call TakeUserInputFocus unless you are using panels outside
of any kind of embedding panel, in which case your application must ensure
that the appropriate panel has user input focus at any particular time.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses of HI object that can accept user input focus should override
TakeUserInputFocus. The implementation of TakeUserInputFocus should call its
inherited TakeUserInputFocus method to maintain the integrity of its internal
user input focus state. When the HI object acquires focus, the implementation
should adjust its appearance accordingly (usually with the aid of the
Appearance Manager).

SEE ALSO

For an overview of related methods, see “Controlling User Input Focus”
(page 4-89).
HIObject 4-91
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ReleaseUserInputFocus 4

Releases user input focus.

IDL DECLARATION

void ReleaseUserInputFocus();

C DECLARATION

void HIObject_ReleaseUserInputFocus (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

An HI object that can receive user input focus redraws itself without its focused
appearance after a call to ReleaseUserInputFocus. Embedding panels keep track
of user input focus for their subpanels and call TakeUserInputFocus and
ReleaseUserInputFocus as necessary to control it.

You don’t need to call ReleaseUserInputFocus unless you are using panels
outside of any kind of embedding panel, in which case your application must
ensure that the appropriate panel has user input focus at any particular time.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
4-92 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

Subclasses of HI object that can accept user input focus should override
ReleaseUserInputFocus. The implementation of TakeUserInputFocus should call
its inherited ReleaseUserInputFocus to maintain the integrity of its internal user
input focus state. When the HI object releases focus, the implementation should
adjust its appearance accordingly (usually with the aid of the Appearance
Manager).

SEE ALSO

For an overview of related methods, see “Controlling User Input Focus”
(page 4-89).

HasUserInputFocus 4

Returns an HI object’s user input focus state.

IDL DECLARATION

boolean HasUserInputFocus ();

C DECLARATION

boolean HIObject_HasUserInputFocus (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
HIObject 4-93
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
function result A Boolean value indicating the object’s current user input focus
state. The value true indicates that the object has focus; the
value false indicates that the object doesn’t have focus.

DISCUSSION

User input focus state is maintained throughout the container hierarchy. If a
push button inside an embedding panel inside a root panel inside a window
has user input focus, then so do the embedding panel, the root panel, and the
window.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override HasUserInputFocus.

SEE ALSO

For an overview of related methods, see “Controlling User Input Focus”
(page 4-89).

CanReleaseUserInputFocus 4

Indicates whether an HI object can release user input focus.

IDL DECLARATION

boolean CanReleaseUserInputFocus ();
4-94 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

boolean HIObject_CanReleaseUserInputFocus (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A Boolean value indicating whether the object can give up user
input focus. The value true indicates that the object can give up
focus; the value false indicates that the object can’t give up
focus.

DISCUSSION

The HIObject implementation of CanReleaseUserInputFocus always returns
true. The HIPanel implementation calls HIPanel::HasValidContent to see
whether the panel’s content is in a valid state. If this is the case,
HIPanel::CanReleaseUserInputFocus returns true; otherwise, it returns false.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Subclasses of HIObject that may not wish to release user input focus under
unusual circumstances should override CanReleaseUserInputFocus.

SEE ALSO

For an overview of related methods, see “Controlling User Input Focus”
(page 4-89).
HIObject 4-95
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
SetUserInputFocusFlags 4

Sets an HI object’s user input focus support flags.

IDL DECLARATION

void SetUserInputFocusFlags (
in HIUserInputFOcusFlags flags);

C DECLARATION

void SetUserInputFocusFlags (
HIObject *somSelf,
Environment *ev,
HIUserInputFocusFlags flags);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

flags The object user flags you want to set for the object. You specify
the flags with values defined in the HIUserInputFocusFlags
enumeration (page 4-13).

DISCUSSION

SetUserInputFocusFlags changes the user input flags only—not the object’s
actual user input focus. The client is responsible for tracking user input focus
and changing it as necessary.

You typically call this method during an object’s initialization to specify its
support for user input focus.
4-96 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override SetUserInputFocusFlags.

SEE ALSO

For an overview of related methods, see “Controlling User Input Focus”
(page 4-89).

GetUserInputFocusFlags 4

Returns an HI object’s user input focus support flags.

IDL DECLARATION

HIUserInputFocusFlags GetUserInputFocusFlags ();

C DECLARATION

HIUserInputFocusFlags HIObject_GetUserInputFocusFlags (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
HIObject 4-97
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
function result The object’s current user input flags. These are specified with
values defined in the HIUserInputFocusFlags enumeration
(page 4-14).

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetUserInputFocusFlags.

SEE ALSO

For an overview of related methods, see “Controlling User Input Focus”
(page 4-89).

Imaging 4

To make an HI object draw or erase itself (either in its own window or in any
specified graphics port), use the Draw method (page 4-99) or the Erase method
(page 4-100).

To invalidate an HI object so that it will redraw itself according to its current
drawing mode (for example, when it receives the next Update event), use the
Invalidate method (page 4-102). To get or set an object’s drawing mode, use
the GetDrawingMode method (page 4-103) or the SetDrawingMode method
(page 4-105).

To get or set an HI object’s background pixel pattern, use the
GetBackgroundPattern method (page 4-106) or the SetBackgroundPattern
method (page 4-107).
4-98 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Draw 4

Causes an HI object to draw itself in a specified color graphics port.

IDL DECLARATION

void Draw (in CGrafPtr whichPort,
in RgnHandle drawRgn);

C DECLARATION

void HIObject_Draw (
HIObject *somSelf,
Environment *ev,
CGrafPtr whichPort,
RgnHandle drawRgn);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

whichPort A pointer to a CGrafPort record for the graphics port in which
you want to draw the object. If the value of this parameter is
NULL, the object draws itself in its own window’s CGrafPort.

drawRgn A handle to the region of the object in which you want to draw.
If the value of this parameter is NULL, the object draws the entire
object.

DISCUSSION

The Draw method allows an object to draw itself to some other port as well as to
its window. Although an object must always be located in a window, drawing
to another port (for example, during printing or when drawing offscreen) may
sometimes be desirable.
HIObject 4-99
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
The Draw method doesn’t do the actual drawing, but it sets up the environment
to prepare the HI object to draw itself. For example, it preserves the current
graphics port, then sets the port to the one specified by the whichPort
parameter. Also, the Draw method adjusts the background erase pattern (if the
panel has a background pattern). The protected method DrawContent
(page 4-115) performs the actual drawing.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override Draw. Draw calls the protected method DrawContent (page 4-115)
to do the actual work of drawing. To change the way an object looks, create
your own subclass and override DrawContent.

SEE ALSO

For an overview of related methods, see “Imaging” (page 4-98).

Erase 4

Causes an HI object to erase itself in a specified color graphics port.

IDL DECLARATION

void Erase (in CGrafPtr whichPort, in RgnHandle eraseRgn);
4-100 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

void HIObject_Erase (HIObject *somSelf,
Environment *ev,
CGrafPtr whichPort,
RgnHandle eraseRgn);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

whichPort A pointer to a CGrafPort record for the graphics port in which
you want to erase the object. If the value of this parameter is
NULL, the object erases itself in its own window’s CGrafPort.

drawRgn A handle to the region of the object that you want to erase. If
the value of this parameter is NULL, the object erases all of itself.

DISCUSSION

The Erase method allows an HI object to erase itself in some other port as well
as in its window. Although an HI object must always be located in a window,
drawing and erasing to another port (for example, during printing or when
drawing offscreen) may sometimes be desirable.

The Erase method doesn’t do the actual erasing. Much like the Draw method
(page 4-99), Erase sets up the environment so that the panel can erase itself,
then calls EraseContent.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
HIObject 4-101
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

Do not override Erase. The Erase method calls the protected method
EraseContent (page 4-117) to do the actual work of erasing. To change the way
an object erases, create your own subclass and override EraseContent.

SEE ALSO

For an overview of related methods, see “Imaging” (page 4-98).

Invalidate 4

Forces an HI object to redraw itself according to its drawing mode.

IDL DECLARATION

void Invalidate ();

C DECLARATION

void HIObject_Invalidate (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

After a call to Invalidate, an object redraws itself immediately, after the next
update event, or at some later time, depending on its current drawing mode.
For example, the SetValue method for a control such as a slider calls the
4-102 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
control’s Invalidate method so the control will redraw itself to reflect its new
value.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

It’s not usually necessary to override Invalidate. If you do, your
implementation should call its inherited Invalidate method to maintain
invalidation state integrity.

SEE ALSO

For descriptions of the possible drawing modes, see “Drawing Modes”
(page 4-12).

To set an object’s drawing mode, use the SetDrawingMode method (page 4-105).

For an overview of related methods, see “Imaging” (page 4-98).

GetDrawingMode 4

Gets an HI object’s drawing mode.

IDL DECLARATION

HIDrawingMode GetDrawingMode ();

C DECLARATION

HIDrawingMode HIObject_GetDrawingMode (
HIObject *somSelf,
Environment *ev);
HIObject 4-103
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result The object’s current drawing mode. The drawing mode is
specified by one of the values defined in the HIDrawingMode
enumeration (page 4-12).

DISCUSSION

An object’s drawing mode determines whether a call to Invalidate (page 4-102)
will cause the object to redraw itself immediately, after the next update event,
or at some later time.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetDrawingMode.

SEE ALSO

To set an object’s drawing mode, use the SetDrawingMode method (page 4-105).

For an overview of related methods, see “Imaging” (page 4-98).
4-104 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
SetDrawingMode 4

Sets an HI object’s drawing mode.

IDL DECLARATION

void SetDrawingMode (in HIDrawingMode drawingMode);

C DECLARATION

void HIObject_SetDrawingMode (
HIObject *somSelf,
Environment *ev,
HIDrawingMode drawingMode);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

drawingMode The drawing mode to which you want set the object. You
specify the drawing mode with one of the values defined in the
HIDrawingMode enumeration (page 4-12).

DISCUSSION

An object’s drawing mode determines whether a call to Invalidate (page 4-102)
will cause the object to redraw itself immediately, after the next update event,
or at some later time. By default, an HI object redraws itself when it receives
the next Update event.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
HIObject 4-105
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

You should override SetDrawingMode only if your subclass doesn’t support a
particular drawing mode. For example, some HI objects (such as menus) can’t
afford to wait for an Update event. The implementations for their subclasses
could override SetDrawingMode to turn a request for kHIDrawNextUpdateEvent to
kHIDrawImmediately.

SEE ALSO

To get an object’s drawing mode, use the GetDrawingMode method (page 4-103).

For an overview of related methods, see “Imaging” (page 4-98).

GetBackgroundPattern 4

Returns an HI object’s background pattern.

IDL DECLARATION

PixPatHandle GetBackgroundPattern();

C DECLARATION

PixPatHandle HIObject_GetBackgroundPattern (
HIObject *somSelf, Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result A handle to a pixel pattern that describes the object’s
background pattern.
4-106 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetBackgroundPattern.

SEE ALSO

To set an HI object’s background pattern, use the SetBackgroundPattern method
(page 4-107).

For an overview of related methods, see “Imaging” (page 4-98).

SetBackgroundPattern 4

Sets an HI object’s background pattern.

IDL DECLARATION

void SetBackgroundPattern (in PixPatHandle backgroundPattern);

C DECLARATION

void HIObject_SetBackgroundPattern (
HIObject *somSelf,
Environment *ev,
PixPatHandle backgroundPattern);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
HIObject 4-107
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

backgroundPattern
A handle to a pixel pattern. On input, you specify the pixel
pattern to which you want to set the object’s background. To get
the current theme’s background pattern for objects of a given
class, use Appearance Manager functions.

DISCUSSION

The background pattern determines how both drawing and erasing operations
draw the background for an HI object (such as a dialog box) that has one. You
can set an object’s background pattern to keep it consistent with the current
theme.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

It’s not usually necessary to override SetBackgroundPattern.

SEE ALSO

To get an object’s background pattern, use the GetBackgroundPattern method
(page 4-106).

For an overview of related methods, see “Imaging” (page 4-98).
4-108 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Supporting Clipboard Operations 4

Some kinds of HI objects allow a user to perform Cut, Copy, Paste, Clear, or
Undo operations while the object has user input focus. Your application should
call the Cut (page 4-109), Copy (page 4-110), Paste (page 4-111), and Clear
(page 4-113) methods for such objects as appropriate in response to the user’s
actions.

An HI object’s ability to respond to these methods depends on its current state.
You can use the GetClipboardSupportFlags method (page 4-114) to get flags that
provide information about an object’s current state with respect to the
Clipboard.

For an overview of operations involving the Clipboard, see “Copy, Paste, Drag,
and Drop” (page 1-42).

Cut 4

Cuts current selection.

IDL DECLARATION

void Cut ();

C DECLARATION

void HIObject_Cut (HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
HIObject 4-109
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
DISCUSSION

The HIObject implementation of Cut simply calls the Copy (page 4-110) and
Clear (page 4-113) methods.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

You should never override the Cut method for standard cut operations. Instead,
override Copy or Clear, and Cut will be supported automatically.

SEE ALSO

For an overview of related methods, see “Supporting Clipboard Operations”
(page 4-109).

Copy 4

Copies current selection.

IDL DECLARATION

void Copy ();

C DECLARATION

void HIObject_Copy (HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
4-110 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

The Copy method uses the Scrap Manager and the Clipboard Manager to copy
the HI object’s current selection to the Clipboard.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

You should override the Copy method for objects that are editable and support
the Scrap Manager. Your implementation doesn’t need to call its inherited Copy
method.

SEE ALSO

For an overview of related methods, see “Supporting Clipboard Operations”
(page 4-109).

Paste 4

Pastes at the location of the current selection.

IDL DECLARATION

void Paste();
HIObject 4-111
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

void HIObject_Paste (HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

The Paste method uses the Clipboard Manager and the Scrap Manager to copy
the contents of the Clipboard to the HI object’s current selection.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

You should override the Paste method for objects that are editable and support
the Scrap Manager. Your implementation doesn’t need to call its inherited
Paste method.

SEE ALSO

For an overview of related methods, see “Supporting Clipboard Operations”
(page 4-109).
4-112 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Clear 4

Clears the current selection.

IDL DECLARATION

void Clear ();

C DECLARATION

void HIObject_Clear (HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

DISCUSSION

The Clear method clears the HI object’s current selection.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

You should override the Clear method for objects that are editable and support
the Scrap Manager. Your implementation doesn’t need to call its inherited
Clear method.
HIObject 4-113
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
SEE ALSO

For an overview of related methods, see “Supporting Clipboard Operations”
(page 4-109).

GetClipboardSupportFlags 4

Returns an HI object’s clipboard support flags.

IDL DECLARATION

HIClipboardSupportFlags GetClipboardSuportFlags();

C DECLARATION

HIClipboardSupportFlags HIObject_GetClipboardSupportFlags (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

function result The object’s clipboard support flags. These are specified with
the values defined in the HIClipboardSupportFlags enumeration
(page 4-14).

DISCUSSION

The clipboard support flags returned by GetClipboardSupportFlags provide
information about an object’s current state with respect to the Clipboard. You
can use this information to determine whether it’s appropriate to enable or
disable menu items in the Edit menu while the object has user input focus.
4-114 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
Each HI object is responsible for keeping track of its own state with respect to
Clipboard-related commands and for using the protected method
SetClipboardSupportFlags (page 4-123) to set the flags that reflect that state.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

OVERRIDE INFORMATION

Do not override GetClipboardSupportFlags.

SEE ALSO

For an overview of related methods, see “Supporting Clipboard Operations”
(page 4-109).

Protected Methods 4

Protected methods should be called only from within an HI object’s
implementation. Therefore, they are of interest only if you are creating a
subclass.

DrawContent 4

Draws an HI object within its update rectangle.

IDL DECLARATION

void DrawContent (in CGrafPtr whichPort,
in RgnHandle drawRgn);
HIObject 4-115
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

void HIObject_DrawContent (
HIObject *somSelf,
Environment *ev,
CGrafPtr whichPort,
RgnHandle drawRgn);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

whichPort A pointer to a CGrafPort record for the graphics port in which
you want to draw the object. If the value of this parameter is
NULL, the object draws itself in its own window’s CGrafPort.

drawRgn A handle to the region of the object in which you want to draw.
If the value of this parameter is NULL, the object draws the entire
object.

DISCUSSION

Draw (page 4-99) calls DrawContent to draw an object within its update rectangle.
DrawContent assumes that the graphics port and the object’s background
pattern have been set.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

The DrawContent method is protected—that is, it should be called only from
within an object’s implementation. When your application needs to draw an
object, use the Draw method (page 4-99).
4-116 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
OVERRIDE INFORMATION

To ensure that its HI objects visually match the current theme, a subclass that
overrides DrawContent shouldn’t make any assumptions about the drawing
context. In some cases, such as a visual separator panel, the subclass doesn’t
use QuickDraw primitives directly. Instead, it uses the Appearance Manager.
For example, a visual separator panel calls the Appearance Manager function
DrawThemeSeparator rather than the QuickDraw function LineTo. In other cases
the subclass must obtain information (such as the current theme’s background
pattern) from the Appearance Manager before using QuickDraw functions.

EraseContent 4

Erases an HI object within its update rectangle.

IDL DECLARATION

void EraseContent (in CGrafPtr whichPort,
in RgnHandle drawRgn);

C DECLARATION

void HIObject_EraseContent (
HIObject *somSelf,
Environment *ev,
CGrafPtr whichPort,
RgnHandle drawRgn);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

whichPort A pointer to a CGrafPort record for the graphics port in which
you want to erase the object. If the value of this parameter is
NULL, the object erases itself in its own window’s CGrafPort.
HIObject 4-117
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
drawRgn A handle to the region of the object you want to erase. If the
value of this parameter is NULL, the object erases all of itself.

DISCUSSION

Erase (page 4-100) calls EraseContent to erase a specified region of an object.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

The EraseContent method is protected—that is, it should be called only from
within an object’s implementation. When your application needs to erase an
object, use the Erase method (page 4-100).

OVERRIDE INFORMATION

You can override the EraseContent method if your object draws in a restricted
portion of its update rectangle and therefore needs to erase only the same
restricted area. For example, a rectangular visual separator consists of four thin
lines, not the entire update rectangle.

You can assume that the background pattern has been set before EraseContent
is called.

TranslatePoint 4

Translates a given point between coordinate systems.

IDL DECLARATION

void TranslatePoint (in HICoordinateSystem translateFrom,
in HICoordinateSystem translateTo,
in Point sourcePoint,
out Point translatedPoint);
4-118 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
C DECLARATION

void HIObject_TranslatePoint (
HIObject *somSelf,
Environment *ev,
HICoordinateSystem translateFrom,
HICoordinateSystem translateTo,
Point *sourcePoint,
Point *translatedPoint);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

translateFrom The coordinate system currently used to define the point in the
sourcePoint parameter. You identify the coordinate system with
one of the values defined in the HICoordinateSystem
enumeration (page 4-13).

translateTo The coordinate system to which you want to translate the point
in the sourcePoint parameter. You identify the coordinate
system with one of the values defined in the
HICoordinateSystem enumeration (page 4-13).

sourcePoint A pointer to a point. On input, you supply the point you want
translated.

translatedPoint
A pointer to a point. On output, the point is a translation of the
point in the sourcePoint parameter from the coordinate system
described in the translateFrom parameter to the coordinate
system described in the translateTo parameter.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
HIObject 4-119
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
The TranslatePoint method is protected—that is, it should be called only from
within an object’s implementation. When your application needs to erase an
object, use the Erase method (page 4-100).

OVERRIDE INFORMATION

Your subclass may introduce a new coordinate system that relates to its
architecture. For example, class HIScrollingPanel provides a coordinate system
for the content panel that is scrolled. If so, you should override TranslatePoint
to support translating to and from your new coordinate system.

TranslateRect 4

Translates a given rectangle between coordinate systems.

IDL DECLARATION

void TranslateRect (in HICoordinateSystem translateFrom,
in HICoordinateSystem translateTo,
in Rect sourceRect,
out Rect translatedRect);

C DECLARATION

void HIObject_TranslateRect (
HIObject *somSelf,
Environment *ev,
HICoordinateSystem translateFrom,
HICoordinateSystem translateTo,
Rect *sourceRect,
Rect *translatedRect);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.
4-120 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

translateFrom The coordinate system currently used to define the rectangle in
the sourceRect parameter. You identify the coordinate system
with one of the values defined in the HICoordinateSystem
enumeration (page 4-13).

translateTo The coordinate system to which you want to translate the
rectangle in the sourceRect parameter. You identify the
coordinate system with one of the values defined in the
HICoordinateSystem enumeration (page 4-13).

sourceRect A pointer to a rectangle. On input, you supply the rectangle
you want translated.

translatedRect
A pointer to a rectangle. On output, the rectangle is a
translation of the rectangle in the sourceRect parameter from
the coordinate system described in the translateFrom parameter
to the coordinate system described in the translateTo
parameter.

DISCUSSION

The HIObject implementation of TranslateRect simply calls TranslatePoint
(page 4-118) on TopLeft and BottomRight of the rectangle.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

The TranslateRect method is protected—that is, it should be called only from
within an object’s implementation.

OVERRIDE INFORMATION

Do not override TranslateRect. Instead, override TranslatePoint.
HIObject 4-121
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
StateChanged 4

Causes an HI object to invoke its state change functions.

IDL DECLARATION

void StateChanged (in HIStateStateChangeCodeCreator selectorCreator,
in HIStateChangeCode changedCode);

C DECLARATION

void HIObject_StateChanged (
HIObject *somSelf,
Environment *ev,
HIStateStateChangeCodeCreator selectorCreator,
HIStateChangeCode changedCode);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

selectorCreator
The creator code corresponding to the changedCode parameter.

changedCode The state change code that corresponds to the behavior you
want to invoke with the state change function. The state change
codes defined by class HIObject are listed in the
HIStateChangeCode enumeration (page 4-16).

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).
4-122 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
The StateChanged method is protected—that is, it should be called only from
within an object’s implementation.

OVERRIDE INFORMATION

If your subclass needs to know whether the HI object’s state has changed, you
should override StateChanged and your implementation should call the
inherited StateChanged method.

SetClipboardSupportFlags 4

Sets an HI object’s clipboard support flags.

IDL DECLARATION

void SetClipboardSupportFlags (in HIClipboardSupportFlags flags);

C DECLARATION

void HIObject_SetClipboardSupportFlags (
HIObject *somSelf,
Environment *ev,
HIClipboardSupportFlags flags);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.

flags The clipboard support flags you want to set for the object. You
specify these flags with values defined in the
HIClipboardSupportFlags enumeration (page 4-14).
HIObject 4-123
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

The SetClipboardSupportFlags method is protected—that is, it should be called
only from within an object’s implementation.

OVERRIDE INFORMATION

You can override SetClipboardSupportFlags if your subclass has special
Clipboard-related requirements. For example, if the object you are defining
can’t ever paste, your implementation can ensure that the kHISupportsPaste
flag is never set.

Verify 4

Verifies that an HI object’s internal state is valid.

IDL DECLARATION

OSStatus Verify ();

C DECLARATION

OSStatus HIObject_Verify (
HIObject *somSelf,
Environment *ev);

somSelf A pointer to an HI object. All nonstatic SOM object methods
take the SOM object as a first parameter. For details, see the
SOM documentation provided by IBM.

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
4-124 HIObject

Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
DISCUSSION

This method is used for testing purposes only. In optimized builds, it should
do nothing and return noErr. You should use this method in development
builds of your application to facilitate debugging.

CALLING RESTRICTIONS

Methods defined by HIObject and its subclasses can be called only by the main
task of a cooperative program. For more details, see “Execution Environments”
(page 4-11).

The Verify method is protected—that is, it should be called only from within
an object’s implementation.

OVERRIDE INFORMATION

Subclasses should override this method so they can verify their own state.

Application-Defined Function 4

MyStateChangeCallback 4

Performs the action associated with an HI object’s change in state.

void MyStateChangeCallback (
Environment *ev,
HIStateChangeCodeCreator selectorCreator,
HIStateChangeCode whatHappened,
HIObject *theObject);

ev A pointer to an environment variable used by all SOM classes
to pass exception information back to the caller. For details, see
the SOM documentation provided by IBM.
HIObject 4-125
Draft.  Apple Computer, Inc. 4/24/96

C H A P T E R 4

HIObject Class Reference
selectorCreator
A state change creator code. This may be the value defined by
class HIObject in the HIStateChangeCodeCreator enumeration
(page 4-16) or your application’s signature.

whatHappened A state change code. This may be one of the values defined by
class HIObject in the HIStateChangeCode enumeration
(page 4-16) or additional numerations defined by a subclass.

theObject A pointer to an HI object. This parameter identifies the object
that invoked the MyStateChangeCallback function.

DISCUSSION

All state change functions associated with an HI object are called for all state
changes that object experiences. Therefore, you must ensure that your state
change function reacts only to those state change codes that it supports.

More information about state change callback functions will be available with
later developer releases.
4-126 HIObject

Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Notes for System 7 Developers A

This appendix includes the general Toolbox compatibility guidelines that
System 7 applications must follow to be able to run on Mac OS 8. It also
compares the Mac OS 8 Scrap Manager, Clipboard Manager, Drag Manager,
and Resource Manager with the equivalent System 7 services.

This appendix doesn’t describe the interfaces that are entirely new in Mac OS 8,
such as the Appearance Manager and the HI Objects class library. For an
overview of the entire Mac OS 8 Toolbox, see “Introduction to the Mac OS 8
Toolbox” (page 1-3). For a detailed description of class HIObject, see “HIObject
Class Reference” (page 4-5).

If you have developed a System 7 application and want to begin planning its
migration to Mac OS 8, this appendix provides some of the information you
need to get started. However, it doesn’t include detailed information about the
Mac OS 8 event model, resource formats, human interface guidelines, and
other aspects of Mac OS 8 that you will also need to learn about.

For an introduction to the Mac OS 8 event model, see the accompanying
document Apple Events in Mac OS 8.

For preliminary human interface guidelines, see the accompanying document
Human Interface Guidelines for Mac OS 8.

▲ W A R N I N G

This document is preliminary and incomplete. All
information presented here is subject to change. ▲
A-1
Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
Compatibility Guidelines 4

Using the Mac OS 8 Toolbox not only ensures compatibility with Mac OS 8 but
also lays the foundation for new capabilities that will be introduced in
Gershwin and future Mac OS enhancements.

Like any major system software revision, Mac OS 8 introduces features that
aren’t backward compatible with earlier systems. However, most System 7
applications can run on Mac OS 8, even though they may not be able to take
advantage of all its features. For example, clients of standard System 7
definition procedures (defprocs) work correctly and inherit the Mac OS 8
human interface appearance. Custom defprocs written for System 7 also work
correctly on Mac OS 8 but do not inherit the Mac OS 8 appearance.

Here are some guidelines you can use now to ensure that System 7 applications
currently under development are compatible with the Mac OS 8 Toolbox:

■ Support Apple events as described in Inside Macintosh: Interapplication
Communication, including factoring your application and making it fully
scriptable and recordable. The Mac OS 8 event model is based primarily on
Apple events.

■ Don’t assume that dialog box backgrounds are white. The Mac OS 8 human
interface supports a variety of background colors.

■ For floating windows, use the standard floating window definition (ID 124)
introduced in System 7.5. This window definition works correctly on
Mac OS 8 and inherits the Mac OS 8 appearance.

■ Don’t hard-code any assumptions about the precise locations of human
interface elements such as close boxes, zoom boxes, and window titles
within the noncontent areas of windows or dialog boxes.

■ Don’t hard-code any assumptions about the precise locations of any human
interface elements in the Save and Open dialog boxes. Use the relative
position of the standard elements to determine the locations of new ones.

■ Never access low memory directly. If you need to access low memory, use
accessor functions.
A-2 Compatibility Guidelines

Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
■ Use data structure accessor functions where they exist. For example, use
SetMenuItemText and GetMenuItemText to manipulate menu item text rather
than accessing the data structure directly.

■ If data structure accessor functions aren’t available, isolate the code that
accesses data structures directly. Mac OS 8 provides accessor functions for all
data structures, and it is easier to take advantage of them if you have
isolated the code that needs to be updated.

■ Don’t manipulate the window list directly. Use the BringToFront and
SendBehind functions instead.

Window Manager, Dialog Manager, Control Manager,
List Manager, Menu Manager 4

The Window Manager, Dialog Manager, Control Manager, List Manager, and
Menu Manager are supported for backward compatibility only. You can use the
HI Objects class library to create windows, dialog boxes, alert boxes, controls,
lists, and menus in Mac OS 8.

For an introduction to HI objects, see “Introduction to the Mac OS 8 Toolbox”
(page 1-3).

Scrap Manager 4

The Scrap Manager used in System 7 has changed little since it was first created
as part of the software for the original Macintosh computer. It was originally
designed to handle a few lines of text or a 1-bit picture being copied and pasted
between MacWrite and MacPaint, not the large pieces of data, such as
QuickTime movies, sounds, and blocks of formatted text, commonly used
today.

Mac OS 8 replaces the original Scrap Manager with a new Clipboard Manager
and introduces an entirely new Scrap Manager. The new Scrap Manager
supplies the generic storage mechanism for copying and pasting clipboard
information and dragging and dropping data. Both the Clipboard Manager and
the Drag Manager use the Scrap Manager to move data between clients (for
Window Manager, Dialog Manager, Control Manager, List Manager, Menu Manager A-3
Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
instance, between applications or within areas of a single application). The
System 7 Drag Manager functions that prepared data for transport have been
revised and incorporated into the Mac OS 8 Scrap Manager so that they apply
to clipboard data as well as to drag information.

The Mac OS 8 Scrap Manager allows you to create a scrap, add items to the
scrap, and specify each scrap item with different scrap item types (that is,
multiple representations). It also allows you to read and extract information
from a scrap after it has been transported to its destination.

Many Scrap Manager, Clipboard Manager, and Drag Manager functions take a
scrap reference as an input parameter. A scrap reference identifies a particular
scrap, whether it is used by the Clipboard Manager, the Drag Manager, or the
Scrap Manager.

Scrap Manager Functions 4

The Mac OS 8 Scrap Manager provides functions you can use to create and
delete scrap references, add items to the scrap, make and keep promises, and
obtain information about scrap items.

Creating and Deleting Scrap References 4

You use the NewScrapRef function to create a new scrap and allocate a scrap
reference for use with the Clipboard. The DisposeScrapRef function disposes of
a scrap previously created by the NewScrapRef function.

Adding Scrap Items to the Scrap 4

The AddScrapItemType function, which replaces the System 7 Drag Manager
function AddDragItemFlavor, lets you write data in a specific format to the scrap.
You can use AddScrapItemType repeatedly to place data in more than one format
in the scrap.

To add data to a specific item type, you can use the SetScrapItemTypeData
function, which replaces the System 7 Drag Manager function
SetDragItemFlavorData.

Every scrap item type has a set of attributes, which include information such as
whether the scrap item type is private to the sender, whether the sender can
translate the data, and so on. To set the current set of scrap item type attributes
for a specified scrap, you can use the SetScrapItemTypeAttributes function.
A-4 Scrap Manager

Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
Making and Keeping Promises 4

The Mac OS 8 Scrap Manager adds support for promises in clipboard
operations to the support provided by System 7 for promises in drag
operations. Your application makes a promise by adding a scrap item type with
data of length 0 to a scrap item. When the user performs an action (such as
choosing the Paste command or dragging and dropping) that requires a
promise to be fulfilled, the Scrap Manager sends the Scrap Promise event to the
application that made the promise to request that it fulfill its promise. You use
Apple Event Manager functions to install your application’s handlers for the
Scrap Promise event.

Getting Scrap Item Information 4

The Mac OS 8 Scrap Manager provides functions that obtain a range of data
about scrap items, including the number of scrap items and scrap item types,
the scrap item reference for a specified scrap item, the number of item types for
a specified scrap item, the scrap item type associated with a particular location
within a scrap item, the size of a specified scrap item type, the attributes of a
given scrap item type, and the data for a specified scrap item type. These
scrap-item information functions replace the following System 7 Drag Manager
functions: CountDragItems, GetDragItemReferenceNumber, CountDragItemFlavors,
GetFlavorType, GetFlavorDataSize, and GetFlavorData.

Clipboard Manager 4

The entirely new Mac OS 8 Clipboard Manager supports the user’s experience
of cut, copy, and paste operations by accepting scraps created with the Scrap
Manager and transferring them between clients via the familiar concept of the
Clipboard.

Basically, the Mac OS 8 Clipboard contains a single Scrap Manager scrap.
Clients use the Scrap Manager to create the scrap, the Clipboard Manager to
put it on or retrieve it from the Clipboard, and the Scrap Manager to read it.
The Clipboard Manager accepts a Scrap Manager scrap, returns read access to a
scrap on the Clipboard, and releases the scrap when it’s no longer needed.

The Clipboard Manager manages the Clipboard. When you use the Clipboard
Manager to put a scrap on the Clipboard, you can no longer write to that scrap
(except for unfulfilled promises). The Clipboard Manager automatically
Clipboard Manager A-5
Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
disposes of the scrap when it has been replaced by a new scrap and other
applications are finished retrieving it.

When using the Clipboard Manager to exchange data between applications or
within your application, you follow these steps:

1. Create a scrap with the Scrap Manager’s NewScrapRef function.

2. Add items to the scrap with the Scrap Manager’s AddScrapItemType function.

3. Put the scrap on the Clipboard with the Clipboard Manager’s
PutScrapOnClipboard function.

4. When the user pastes, get the scrap from the Clipboard with the
GetClipboardScrapRef function.

5. Obtain data from the scrap using the Scrap Manager functions.

6. Release the scrap with the ReleaseClipboardScrap function.

When a new scrap gets placed on the Clipboard, the Clipboard Manager sends
all interested applications a Clipboard Changed event to notify them what data
types are available for the new data. This allows each application to update its
Edit menu appropriately as soon as new data is copied onto the Clipboard.

The data types specified in the Clipboard Changed event should be regarded as
a hint, not a guarantee of the types that will actually be available on the
Clipboard at some later time. For example, the user might choose the Paste
command just before a new Clipboard Changed event arrives. Before handling
a paste, your application should examine the Clipboard contents directly to
check the available types at that time.

When the Clipboard Manager disposes of a scrap on the Clipboard that has
been replaced by a new scrap, it sends all interested applications a Clipboard
Disposed event. This informs an application that has added promises to the
scrap that it no longer has any obligation to fulfill them.

You use Apple Event Manager functions to install your application’s handlers
for the Clipboard Changed and Clipboard Disposed events.
A-6 Clipboard Manager

Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
Clipboard Manager Functions 4

The Mac OS 8 Clipboard Manager functions let you place a scrap on the
Clipboard and retrieve a scrap from it.

Putting a Scrap on the Clipboard 4

The PutScrapOnClipboard function takes a scrap created using the Scrap
Manager and puts it on the Clipboard. If this function succeeds, the scrap
becomes the active Clipboard scrap and the Clipboard Manager disposes of the
scrap when it’s finished with it. If the function fails, the client must dispose of
the scrap.

Retrieving and Releasing a Scrap From the Clipboard 4

The GetScrapFromClipboard function retrieves a read-only copy of the scrap
from the Clipboard. After retrieving a scrap from the Clipboard, you use Scrap
Manager functions to extract its data. When you’re finished with a scrap
retrieved from the Clipboard, you use the ReleaseClipboardScrap function to
release the scrap reference.

Drag Manager 4

The System 7 Drag Manager supports all aspects of drag-and-drop behavior,
both in the Finder and within applications. The Mac OS 8 Drag Manager
supports the user experience of dragging, but it no longer packs and unpacks
the data that’s transported in a drag. Instead, you use the Drag Manager to
create the scrap, the Scrap Manager to add items to it, the Drag Manager to
support the user experience during dragging, and the Scrap Manager to read
the scrap after the drag operation is complete.
Drag Manager A-7
Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
As mentioned in “Scrap Manager” (page A-3), the System 7 Drag Manager
functions that prepare data for transport have been revised and incorporated
into the Mac OS 8 Scrap Manager so that they apply to clipboard data as well
as to drag information. The Mac OS 8 Drag Manager differs from the System 7
Drag Manager in several other important respects:

■ As the user drags an image around the screen, the Mac OS 8 Drag Manager
displays either a transparent version of the original image or just its outline.

■ The Appearance Manager chooses the highlighting colors (for example, the
target frame color) for drag operations.

■ To add or obtain data from a drag, you use the Scrap Manager and pass the
DragScrapRef data type directly.

■ You no longer use the Drag Manager data type FlavorFlags. Instead, the
Scrap Manager provides the equivalent type ScrapItemTypeAttributeFlags,
used in collection items that you attach to a drag scrap using the Scrap
Manager. Similarly, the System 7 data types HFSFlavor and PromiseHFSFlavor
have been transferred to the Scrap Manager as kScrapItemTypeFSObject and
kScrapItemTypePromiseFSObject.

■ You use the Scrap Manager data type ScrapItemType instead of the System 7
data type DragItemFlavor.

■ The System 7 Drag Manager ItemReference data type has been renamed
ScrapItemRef, and the FlavorType data type has been renamed
ScrapItemType. Their uses remain exactly the same.

■ The following System 7 Drag Manager functions have been replaced by
parallel functions in the Mac OS 8 Scrap Manager: AddDragItemFlavor,
SetDragItemFlavorData, SetDragSendProc, CountDragItems,
GetDragItemReferenceNumber, CountDragItemFlavors, GetFlavorType,
GetFlavorFlags, GetFlavorDataSize, and GetFlavorData. These functions are
supported for backward compatibility only.

When you use the Drag Manager to perform a drag operation, you follow these
steps:

1. Create a drag scrap with the NewDrag function.

2. Add items to the scrap with the Scrap Manager’s AddScrapItemType function.

3. Perform a single drag operation using the TrackAEDrag function. (This
operation can be canceled.) The Drag Manager sends your application
drag-tracking events to inform it of the progress of the drag.
A-8 Drag Manager

Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
4. When the user drops the dragged item, the Drag Manager sends your
application a Drag Received event.

5. Use Scrap Manager functions in your Drag Received handler to retrieve data
from the scrap.

Most Drag Manager functions take a drag scrap reference as an input
parameter. A drag scrap reference can also be passed to Scrap Manager
functions. A drag scrap reference must be allocated by the Drag Manager
function NewDrag and is defined by the DragScrapRef data type.

Drag Manager Functions 4

The Mac OS 8 Drag Manager functions let you create and dispose of drag scrap
references, override standard input and drawing behavior, perform a drag, set
the transparent drag image, set and get information about a drag, and support
drag-and-drop behavior.

Installing and Removing Drag Event Handlers 4

In Mac OS 8, the drag-tracking and drag receive handler functions used in
System 7 have been replaced by Apple event handlers for equivalent drag
events. The Drag Manager sends your application drag-tracking events to
inform it of the progress of a drag and a Drag Received event when the user
drops the dragged items. You use Apple Event Manager functions to install
your application’s handlers for these events.

Creating and Disposing of Drag References 4

The Mac OS 8 version of the NewDrag function creates a drag scrap reference to
identify the drag in subsequent calls to the Drag Manager. This drag scrap
reference is required when you add scrap item types via the Scrap Manager
and when you call the TrackAEDrag function. Your installed drag event handlers
receive this drag scrap reference, which they can use to call other Drag
Manager functions.

The Mac OS 8 version of the DisposeDrag function disposes of the drag scrap
identified by a specified drag scrap reference. If the drag scrap contains any
scrap item types, the memory associated with the scrap item types is disposed
of as well. You should call DisposeDrag after a drag has been performed using
TrackAEDrag or to dispose of a drag scrap reference that’s no longer needed.
Drag Manager A-9
Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
Overriding Standard Drawing Behavior 4

The Mac OS 8 Drag Manager sends your application drag-drawing events to
initiate the actual drawing during a drag. The Drag Manager provides default
event handlers for these events, which your application can override if you
wish to implement your own drag-drawing behavior.

Performing a Drag 4

Once the drag image for a drag has been set up, you use the Mac OS 8 version
of the TrackAEDrag function to perform the drag operation with a particular
drag scrap reference given a mouse-down event and drag region. The Drag
Manager follows the cursor on the screen with the specified drag image
feedback and sends drag-tracking events to inform your application of the
progress of the drag. When the user releases the mouse button, the Drag
Manager sends a Drag Received event to the destination window. Your
application’s Drag Received handler accepts the drag and transfers the
dragged data into the application.

Setting the Transparency of the Drag Image 4

You can use the new SetDragImage function to set the degree of transparency of
a given drag image.

Supporting Drag-and-Drop Behavior 4

Like the System 7 Drag Manager, the Mac OS 8 Drag Manager supports
drag-and-drop behavior with functions that retrieve and set an Apple event
descriptor for a specified drop location, perform standard drag-and-drop
highlighting (including scrolling preparation), and let you draw zooming
animation like the Finder’s.

Getting and Setting Status Information About a Drag 4

The Mac OS 8 Drag Manager includes functions that obtain status information
about the drag attribute flags, get and set the pointer location, retrieve the
origin of a specified drag, obtain key modifiers associated with a drag scrap
reference, and set and retrieve the bounding rectangle of drag items.
A-10 Drag Manager

Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
Resource Manager 4

Most of the System 7 Resource Manager functions are supported for backward
compatibility. The exceptions are the InitResources, RsrcZoneInit, and
RsrcMapEntry functions, which even System 7 applications don’t need to call.
Also, the undocumented resource chain override mechanism used by some
System 7 applications is not supported in Mac OS 8.

Most of the System 7 functions also have an equivalent function, whose name
begins with the prefix RM, in Mac OS 8. Major differences between the new
functions and System 7 functions include the following:

■ You can’t access the resource map in Mac OS 8. Mac OS 8 supports an
opaque resource file abstraction, and you access its resources through this
abstraction.

■ The error mechanism based on ResError is no longer necessary. Instead,
Mac OS 8 Resource Manager functions simply return OSStatus errors.

■ The FSpCreateResFile, HCreateResFile, and CreateResFile functions have
been replaced by the single function RMCreateResFile, which takes a
Mac OS 8 file system object.

■ The FSpOpenResFile, HOpenResFile, OpenRFPerm, and OpenResFile functions
have been replaced by the single function RMOpenResFile, which takes a
Mac OS 8 file system object.

■ The new functions RMAddResFileToSearchPath and
RMRemoveResFileFromSearchPath allow you to remove resource files from the
resource search path for your application and to add previously removed
files to the beginning of the resource search path.

■ Functions such as Get1Resource and Get1NamedResource are no longer
needed. Instead, you specify parameters for RMGetResource,
RMGetNamedResource, and so on that indicate whether or not the function
should search just the current resource file or the entire resource search path.

■ Mac OS 8 doesn’t support ROM-based resources, so there is no Mac OS 8
equivalent to the RGetResource function.
Resource Manager A-11
Draft.  Apple Computer, Inc. 4/24/96

A P P E N D I X A

Notes for System 7 Developers
■ The new Resource Manager functions include a parameter that allows you
to enable or disable automatic loading of resource data into memory. As a
result, there is no need for a Mac OS 8 equivalent of the SetResLoad function.

■ The System 7 function GetResourceSizeOnDisk has been renamed
RMGetResourceSize.

■ There is no Mac OS 8 equivalent to the GetMaxResourceSize function, because
using it depends on specific implementation details of the System 7
Resource Manager.

■ The GetResFileAttrs and SetResFileAttrs functions have been replaced by
the GetResFileReadOnlyState and SetResFileReadOnlyState functions, which
get and set the resource file’s read-only state both in memory and on disk.
A-12 Resource Manager

Draft.  Apple Computer, Inc. 4/24/96

Glossary
active window The frontmost nonfloating
window that is currently receiving user
input. The active window is identified by
distinctive details that aren’t visible for
inactive windows; for example, the Apple
Default theme displays title bars for active
windows with characteristic “racing
stripes.”

alert box A panel that an application
displays to warn the user or to report an
error to the user. An alert box typically
consists of text describing the situation and
buttons that require the user to
acknowledge or rectify the problem. See
movable alert box, nonmovable alert box,
dialog box, modal window.

Apple event A data structure that
identifies itself by event class and event ID,
names its own destination, and contains
additional data structures that vary
depending on the kind of event. First
introduced in System 7 to support
interapplication communication, Apple
events provide the primary mechanism for
communication throughout Mac OS 8.

Apple event dispatcher A dispatcher that
consists of an event queue and a handler
table stack. For example, every process has
a default Apple event dispatcher associated
with at least one task, and a program may
install additional dispatchers in a process as
necessary. See also handler table stack.

application handler table A handler table
added to a handler table stack by an
application. See also default handler table,
handler table stack.

background processing Processing that
takes place in the background while the
user continues to work. You perform
background processing by creating an
additional task that executes preemptively
and concurrently while the main task that
controls the human interface continues to
respond to user actions.

bounding rectangle The rectangle that
defines an HI object’s location for the
purposes of drawing its content or
responding to geometric events. Compare
update rectangle.

broadcast events Apple events that are
routed to multiple targets. For example, a
Window Activated event triggers the
HandleActivate method for every panel
within a window.

cell A rectangular part of a list displaying
information about one item in the list.

Clipboard A container maintained by the
Clipboard Manager that holds a shared
Scrap Manager scrap.

close box The element in a window’s title
bar that, when clicked, closes the window.
In the Apple Default theme, the close box is
a box on the left end of the title bar of an
active window.
GL-1
Draft. © Apple Computer, Inc. 4/24/96

G L O S S A R Y
collapse box The element in a window’s
title bar that, when clicked, collapses or
expands the window. In the Apple Default
theme, the collapse box is a box on the right
end of the title bar of an active window.

composite imaging object An imaging
object that can draw a composite image,
identified by a single image reference, that
consists of several different images. See also
imaging object.

containment hierarchy A hierarchical
arrangement of objects that describes which
objects are contained by which other
objects. Compare inheritance hierarchy.

data fork Part of a file that contains data
accessed using the File Manager. The data
usually corresponds to data entered by the
user; the application creating a file can store
and interpret the data in the data fork in
whatever manner is appropriate.

default handler table A table of default
handlers at the bottom of every handler
table stack. See also application handler
table, handler table stack.

dialog box A panel that an application
displays to solicit specific kinds of
information from the user. See also
modeless dialog box, movable modal
dialog box, nonmovable modal dialog box.

document window A window typically
used to display document data. A
document window appears behind floating
and modal windows in an application’s
layer. See also floating window, modal
window.

drag To position the pointer on a visual
interface element (such as an icon in the
Finder), press and hold the mouse button,
move the pointer to a new position, and
then release the mouse button. Dragging
can have different effects, depending on
what’s under the pointer when the user first
presses the mouse button. To support the
dragging of items from one place to
another, you use the Drag Manager.

drag region The portion of a window’s
title bar and, depending on the current
theme, additional portions of the window
frame that the user can drag to move a
window.

embedding panel A panel of any subclass
of HIEmbeddingPanel that contains other
panels and controls their layout, user input
focus, and navigation.

encapsulation In object-oriented
programming, the packaging of an object’s
data and the functions that can act on it in a
manner that protects the data from
inappropriate changes. This protection is
possible because only the object itself can
change its data. To gain access to an object’s
data, a client must call that object’s
programming interface.

factoring Using Apple events to separate
the code that presents an application’s
human interface to the user from the code
that responds to the user’s manipulation of
the interface. In a fully factored application,
any significant user actions generate Apple
events that any scripting component based
on the Open Scripting Architecture (OSA)
can record as statements in a compiled
script.
GL-2
Draft. © Apple Computer, Inc. 4/24/96

G L O S S A R Y
file A named, ordered collection of
information stored on a Mac OS volume,
typically divided into a data fork and a
resource fork.

filtered handler table A handler table
used to suspend the incoming events for
which it doesn’t provide handlers. When a
filtered table contains no handler for a
particular event, the event remains in the
event queue without being handled. After
the filtered table has been removed from the
handler table stack, the Apple Event
Manager passes any suspended events on
to the next handler table in the order in
which they were originally received. See
also nonfiltered handler table.

floating window A window typically
used for tool palettes, catalogs, and other
elements used to act on data in document
windows. A floating window appears in
front of document windows and behind
modal windows in an application’s layer.
See also document window, modal
window.

focused events Apple events that are
routed to a target that currently has user
input focus. For example, text events are
typically routed to the editable text panel
currently receiving user input.

geometric events Apple events that are
routed to a single target whose bounding
rectangle contains coordinates specified by
the event. For example, a Mouse Down
event is typically directed to a single HI
object, such as a button, that the user has
clicked.

handler table A table of Apple event
handlers that can be added to a handler
table stack. Every handler table stack
includes a default handler table, and an
application can push additional handler
tables onto the stack as necessary to express
interest in specific Apple events. See also
application handler table, default handler
table.

handler table stack A stack of handler
tables that consists of a default handler
table and potentially one or more
application handler tables. The Apple Event
Manager looks through a dispatcher’s
handler table stack to find handlers for
incoming events. See also application
handler table, default handler table.

HI object See human interface object.

human interface object A SOM object
created from a subclass of HIObject that
encapsulates one or more human interface
elements, such as a window, a dialog box, a
control, or a menu.

Human Interface Toolbox A collection of
shared libraries that application developers
use to create and manipulate human
interface elements such as windows, dialog
boxes, menus, and controls. These shared
libraries ensure that Mac OS 8 applications
present a consistent and standard interface
to users.

image reference A reference that you can
pass to imaging object methods or HI object
methods to identify an image to be drawn
by an imaging object. See also imaging
object.
GL-3
Draft. © Apple Computer, Inc. 4/24/96

G L O S S A R Y
imaging object A SOM object instantiated
from a subclass of HIImagingObject that can
draw a specific kind of image data, such as
text, icons, or pictures. See also image
reference.

inheritance In object-oriented
programming, the transmission of
properties and behaviors from one class to
another. See also inheritance hierarchy.

inheritance hierarchy In object-oriented
programming, an hierarchical arrangement
of classes that describes their patterns of
inheritance. Compare containment
hierarchy.

list A series of items displayed within a
rectangle.

mixed state A state in which a radio
button or a checkbox can be displayed. A
mixed state indicates a setting is on for
some elements in a selection and off for
others. The user can change a checkbox in a
mixed state to either on or off for all the
elements concerned, but can’t directly
change a checkbox that’s on or off to a
mixed state.

modal window A window that puts the
user in a state or “mode” of being able to
work only inside the window. A modal
window is typically used to display a
dialog box or alert box that requires
immediate attention from the user. A modal
window appears in front of all other
windows in an application’s layer. See also
document window, floating window.

modeless dialog box A dialog box
displayed in a document window without a
size box or scroll bars. The user can move a

modeless dialog box, make it inactive and
active again, and close it like any document
window. See also nonmovable modal
dialog box, movable modal dialog box.

movable alert box An alert box with a
title bar that allows the user to move the
box.

movable modal dialog box A dialog box
displayed in a modal window with a title
bar (but no close box) that the user can drag
to move the box. The user can dismiss a
movable modal dialog box only by clicking
its buttons. See also dialog box,
nonmovable modal dialog box, modeless
dialog box.

nonfiltered handler table A handler table
that allows the Apple Event Manager to
process events as they arrive, without
suspending any of them. When a
nonfiltered handler table contains no
handler for a particular event, the Apple
Event Manager passes the event on to the
next handler table in the stack. See also
filtered handler table.

nonmovable alert box An alert box that
the user can’t move.

nonmovable modal dialog box A dialog
box displayed in a modal window that the
user can’t move. The user can dismiss a
nonmovable modal dialog box only by
clicking its buttons. See also modeless
dialog box, movable modal dialog box.

panel In the HI Objects class library, any
HI object that can be placed in a window.
Compare window.
GL-4
Draft. © Apple Computer, Inc. 4/24/96

G L O S S A R Y
periodic processing Processing that takes
place at specified intervals. For example, if
the user isn’t doing anything else, an
application should be able to perform
repetitive tasks such as making the caret
blink in the active window. To support
periodic processing in Mac OS 8, you can
use periodic Apple events.

polymorphism In object-oriented
programming, the ability to call objects of
different classes with the same method; for
example, you can call the Draw method to
draw an HI object of any class.

process dispatcher An Apple event
dispatcher associated with a process.

promise A scrap item type that contains a
placeholder rather than the scrap item data
itself. When the user pastes or completes a
drag operation, the Scrap Manager sends a
Scrap Promise event to the original
application to request that it fulfill its
promise for the type of data being pasted or
dropped. See also scrap, scrap item type.

resource Any data stored according to a
defined structure in a resource fork of a file.
The data in a resource is interpreted
according to its resource type.

resource fork Part of a file that contains
the file’s resources.

resource ID A number that identifies a
specific resource of a given resource type.

resource type A sequence of four
characters that uniquely identifies a specific
type of resource.

root panel An embedding panel that fills
a window’s content area and to which the
window passes all events that affect the
window’s content. The root panel in turn
passes events to other panels that it
contains.

scrap A structure created by the Scrap
Manager that consists of one or more scrap
items, which in turn can hold one or more
pieces of data. See also promise, scrap item,
scrap item type.

scrap item A structure created by the
Scrap Manager for holding a single piece of
data that can be represented in different
ways by one or more scrap item types. See
also scrap, scrap item type.

scrap item type A structure created by the
Scrap Manager that is associated with a
scrap item and holds a single representation
of the piece of data associated with the
scrap item. See also scrap, scrap item.

size box A box in the lower-right corner
of some active windows. Dragging the size
box resizes the window.

SOM See System Object Model.

System Object Model (SOM) A standard
architecture licensed by IBM for the
development and packaging of object-
oriented software. SOM provides language-
and platform-independent means of
defining programmatic objects and
handling method dispatching dynamically
at runtime.

theme A coordinated set of human
interface designs that determine the
appearance of human interface elements on
a systemwide basis.
GL-5
Draft. © Apple Computer, Inc. 4/24/96

G L O S S A R Y
title bar icon An icon in a document
window’s title bar that users can use as a
proxy for the document’s Finder icon in
drag-and-drop operations. For example, the
user can drag a document’s title bar icon to
another volume, then drop it to copy a
document file to that volume.

update rectangle The rectangle that
defines the entire area in which an HI object
can draw, including its bounding rectangle
and any adornments. Compare bounding
rectangle.

user input focus The current focal point
on the screen for user input, whether from a
pointing device, a keyboard, a speech input
device, or other input devices.

window An object that presents
information such as a document or
message. In the HI objects class library, a
window is also a container for all other
kinds of HI objects, including menus and
dialog boxes. Compare panel.

window dispatcher An Apple event
dispatcher associated with a window.

window group A group of windows
associated with a window. Whenever the
user activates a window that has an
associated window group, all the windows
in the group also come as far forward as
they can while maintaining their current
ordering.

zoom box A box to the left of the collapse
box in a window’s title bar that the user can
click to alternate between two different
window sizes. Clicking the zoom box once
causes the window to expand to its optimal
size on the monitor on which most of its
area is currently displayed. Clicking the
zoom box a second time restores the
window to its previous size and location.
See also collapse box.
GL-6
Draft. © Apple Computer, Inc. 4/24/96

	Human Interface Toolbox
	Contents
	Introduction to the Mac�OS�8 Toolbox
	Overview of the Mac OS 8 Toolbox
	Apple Events and the Toolbox
	Toolbox Event Routing
	Periodic and Background Processing
	Supporting the Mac�OS�8 Event Model

	Human Interface Objects
	Windows
	Window Layers
	Window Groups

	Panels
	Controls
	Dialog Boxes and Alert Boxes
	Menus
	Lists
	Scrolling Panels
	Editable Text Panels
	Radio Button Groups
	Visual Separators
	Static Image Panels

	Imaging Objects
	Copy, Paste, Drag, and Drop
	Scrap Manager
	Clipboard Manager
	Drag Manager

	Interactions With the Finder
	Resources
	Themes
	Programming With the Toolbox
	Opacity and Consistency
	International Text
	Object Life Cycle Management
	Extensible Data Structures
	Extensible Designs
	Assembling Embedding Panels
	Customizing HI Objects
	Customizing HI Imaging Objects

	Toolbox Event Routing
	Event Routing Within a Process
	Geometric Event Routing
	Default Geometric Event Routing
	Overriding the Default Geometric Event Routing

	Broadcast Event Routing
	Default Broadcast Event Routing
	Overriding Default Broadcast Routing

	Focused Event Routing
	Command Events
	Navigation Events
	Default Routing for a Navigation Event
	Overriding the Default Routing for a Navigation Ev...

	Virtual Key Events and Text Events
	Default Routing for Virtual Key and Text Events
	Overriding Default Routing for Virtual Key and Tex...

	Routing Events With Application Handlers
	Handler Tables in Process Dispatchers
	Handler Tables in Window Dispatchers
	Registering a Panel’s Interest in an Event

	Toolbox Support for Modal States

	Toolbox Events Reference
	Apple Event Descriptor Types
	Standard Events Handled by the Toolbox
	Key Events
	Key Down
	Auto Key
	Key Up

	Mouse Events
	Mouse Up
	Mouse Down
	Mouse Moved
	Mouse Stopped Moving

	Window Events
	Mouse Down in Back
	Mouse Down in Content
	Window Resized
	Window Close Request
	Window Activated
	Window Deactivated
	Update

	Text Events
	Update Active Input Area
	Position to Offset
	Offset to Position
	Get Input Area Region

	Application Events
	Suspend
	Resume

	HIObject Class Reference
	HIObject
	Description
	Summary of Static Methods
	Summary of Public Methods
	Summary of Protected Methods
	Execution Environments

	Constants and Data Types
	Reference Labels
	Adoption Flags
	Drawing Modes
	Coordinate System Constants
	User Input Focus Support Flags
	Clipboard Support Flags
	State Change Callback Function
	State Change Codes
	AE Record Keywords
	AE Record Data Formats

	Static Methods
	Public Methods
	Initializing, Saving, and Disposing of an Object
	Getting HI Object Attributes
	Getting and Setting an HI Object’s State Change Ca...
	Manipulating an HI Object’s Size and Location
	Enabling and Disabling an HI Object
	Getting and Setting an HI Object’s Visibility
	Getting and Setting an HI Object’s Title
	Event Handling
	Controlling User Input Focus
	Imaging
	Supporting Clipboard Operations

	Protected Methods
	Application-Defined Function

	Notes for System 7 Developers
	Compatibility Guidelines
	Window Manager, Dialog Manager, Control Manager, L...
	Scrap Manager
	Scrap Manager Functions
	Creating and Deleting Scrap References
	Adding Scrap Items to the Scrap
	Making and Keeping Promises
	Getting Scrap Item Information

	Clipboard Manager
	Clipboard Manager Functions
	Putting a Scrap on the Clipboard
	Retrieving and Releasing a Scrap From the Clipboar...

	Drag Manager
	Drag Manager Functions
	Installing and Removing Drag Event Handlers
	Creating and Disposing of Drag References
	Overriding Standard Drawing Behavior
	Performing a Drag
	Setting the Transparency of the Drag Image
	Supporting Drag-and-Drop Behavior
	Getting and Setting Status Information About a Dra...

	Resource Manager

	Glossary

