

ð

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

ð

I N S I D E M A C I N T O S H

Text Handling and
Internationalization

Draft. Confidential.



 Apple Computer, Inc. 4/29/96

ð

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh,
and WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Mac and QuickDraw are trademarks
of Apple Computer, Inc.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and

may be registered in certain
jurisdictions.
Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

The quotation on page 35 is by
Emily Dickinson.

The quotation on page 37 is by Lao
Tsu.
The quotations on pages 26 and 30
are by Oscar Wilde.

Contents

Chapter 1 Introduction to Text Handling and Internationalization on
Mac OS 8 1-1

About Text Handling and Internationalization in Mac OS 8 1-6
Mac OS 8 Text-Handling Component Features 1-7
A Word About Text Imaging in Mac OS 8 1-11

Mac OS 8 Exceptions to Backward Compatibility With System 7 1-11
Looking Toward the Future 1-13
Text Handling in System 7 and Mac OS 8: A Comparison 1-14

Internationalization and Localization 1-15
Writing Systems and Scripts 1-17

Writing Systems and Scripts As Understood in Mac OS 8 1-18
Writing Systems and Script Systems As Understood in System 7 1-20
Deconstructing the System 7 Script Manager and Looking at Mac OS 8

Solutions 1-20
Text Objects for Text Storage and Interchange 1-25

Text Object Contents 1-27
A Simple Text Object 1-27
A Text Object Containing Multiple Text Runs 1-28

How Text Objects Are Used 1-30
Text Objects and Text Strings: A Comparison 1-31
Text Object Types 1-32
Indices for Text in a Text Object 1-32
Imaging With Text Objects 1-34

Font Selection Hint for Font Substitution 1-34
Text Measurement 1-35
Text Alignment and Justification 1-36
Controlling Text Flow When the Text Is Too Wide for the Line 1-37

Text Annotations 1-39
Annotation Types and Storage 1-40
Annotation Syntax and Semantics 1-40
Annotation Attributes 1-41
How Annotations Are Adjusted When Text Is Modified 1-42
iii
Draft.  Apple Computer, Inc. 4/19/96

Effects of Replacing, Inserting, and Deleting Text on the Text and Its
Annotations 1-43

Storage and Retrieval of International Data and Preferences 1-48
The Locale Database 1-48
Locales 1-51
The Locale Object Manager 1-51
Default System Locale and Default Application Locale 1-52
How the Locale Database Is Created 1-53
Storing Persistent Data in the Locale Database 1-53

Defining a Locale and Its Defaults 1-54
Providing a Stand-Alone Locale Object 1-54

Locale Objects 1-55
Locale Object Names Table 1-56
Locale Object Attribute Name-Value Pairs 1-57
Where Locale Objects Reside in Memory 1-58
Default Locale Objects for a Locale 1-62

Searching the Locale Database for Data 1-63
Text Encoding and Conversion 1-67

Encoding Converters 1-67
The High-Level Encoding Converter Manager 1-67
The Low-Level Encoding Converter Manager 1-68

Characters, Codes, Text Encodings, Text Encoding Schemes, and Text
Elements 1-70

Characters 1-70
Codes 1-71
Coded Characters 1-71
Text Encodings and Text Encoding Schemes 1-72
Text Representation and Text Elements 1-73
Text Encoding Specification 1-74

Unicode 1-76
Converting Between Character Sets Using Mapping Tables 1-79

Round-Trip Fidelity 1-79
Multiple Semantics and Multiple Representations 1-80
Strict and Loose Mapping 1-81
Base Encoding Mapping Tables Supported by Mac OS 8 1-84

Handling Editable Text 1-84
The Text Panel 1-84
Using the Text Panel 1-85
iv
Draft.  Apple Computer, Inc. 4/19/96

Text Engines 1-86
Selecting and Getting a Text Engine 1-87
Using a Text Engine Directly 1-88
If You Are Providing a Text Engine 1-88

About TextEdit 1-89
String Comparison 1-89

Collation References 1-89
Overriding Default Collation Behavior 1-90
Code Conversion for String Comparison 1-90

Chapter 2 Locale Object Manager Reference 2-1

Locale Object Manager Constants and Data Types 2-5
Locale Reference 2-5
Locale Iterator Reference 2-6
Locale Database Search Direction 2-7
Locale Object Reference 2-8
Attribute Name-Value Pair Structure 2-8
Standard Attribute Names 2-10
Name-Table Entry 2-12
Locale Object Name Identifier Constants 2-13
Locale Name Identifier for Locale’s Default Values 2-15
Locale Identifier and Constants 2-16
Locale Language Codes and Wildcard 2-17
Locale Region Code and Wildcard 2-18
Locale Customization Code and Wildcard 2-19
Locale Object Tag Index 2-19
Associated-Data Tag 2-20
Locale Object Memory Context 2-21

Locale Object Manager Functions 2-21
Obtaining and Setting Locale References 2-21
Setting the Locale for the Current Process 2-26
Obtaining the Number of Locales in the Database 2-27
Obtaining a Locale Object’s Name, Attributes, Data, and Locale 2-28
Obtaining a Locale’s Default Values 2-35
Getting and Setting Default Behavior for a Locale 2-36
v
Draft.  Apple Computer, Inc. 4/19/96

Searching for the First Matching Object of a Locale and Searching
Iteratively 2-39

Adding Locale Objects To and Removing Them From the Locale
Database 2-50

Getting Data Associated With a Locale Object 2-54
Creating and Obtaining a Locale Identifier 2-60
Obtaining Locale Identifier Information 2-68
Determining Where a Locale Object Exists in Memory 2-72

Locale Object Manager Result Codes 2-72
Glossary 2-75
vi
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 1

Contents

Draft.



 Apple Computer, Inc. 4/19/96

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Introduction to Text Handling
and Internationalization on
Mac OS 8
About Text Handling and Internationalization in Mac OS 8 1-6
Mac OS 8 Text-Handling Component Features 1-7
A Word About Text Imaging in Mac OS 8 1-11

Mac OS 8 Exceptions to Backward Compatibility With System 7 1-11
Looking Toward the Future 1-13
Text Handling in System 7 and Mac OS 8: A Comparison 1-14

Internationalization and Localization 1-15
Writing Systems and Scripts 1-17

Writing Systems and Scripts As Understood in Mac OS 8 1-18
Writing Systems and Script Systems As Understood in System 7 1-20
Deconstructing the System 7 Script Manager and Looking at Mac OS 8
Solutions 1-20

Text Objects for Text Storage and Interchange 1-25
Text Object Contents 1-27

A Simple Text Object 1-27
A Text Object Containing Multiple Text Runs 1-28

How Text Objects Are Used 1-30
Text Objects and Text Strings: A Comparison 1-31
Text Object Types 1-32
Indices for Text in a Text Object 1-32
Imaging With Text Objects 1-34

Font Selection Hint for Font Substitution 1-34
Text Measurement 1-35
Text Alignment and Justification 1-36
Controlling Text Flow When the Text Is Too Wide for the Line 1-37

Text Annotations 1-39
Annotation Types and Storage 1-40
1-1

C H A P T E R 1

Annotation Syntax and Semantics 1-40
Annotation Attributes 1-41
How Annotations Are Adjusted When Text Is Modified 1-42
Effects of Replacing, Inserting, and Deleting Text on the Text and Its
Annotations 1-43

Storage and Retrieval of International Data and Preferences 1-48
The Locale Database 1-48
Locales 1-51
The Locale Object Manager 1-51
Default System Locale and Default Application Locale 1-52
How the Locale Database Is Created 1-53
Storing Persistent Data in the Locale Database 1-53

Defining a Locale and Its Defaults 1-54
Providing a Stand-Alone Locale Object 1-54

Locale Objects 1-55
Locale Object Names Table 1-56
Locale Object Attribute Name-Value Pairs 1-57
Where Locale Objects Reside in Memory 1-58
Default Locale Objects for a Locale 1-62

Searching the Locale Database for Data 1-63
Text Encoding and Conversion 1-67

Encoding Converters 1-67
The High-Level Encoding Converter Manager 1-67
The Low-Level Encoding Converter Manager 1-68

Characters, Codes, Text Encodings, Text Encoding Schemes, and Text
Elements 1-70

Characters 1-70
Codes 1-71
Coded Characters 1-71
Text Encodings and Text Encoding Schemes 1-72
Text Representation and Text Elements 1-73
Text Encoding Specification 1-74

Unicode 1-76
Converting Between Character Sets Using Mapping Tables 1-79

Round-Trip Fidelity 1-79
Multiple Semantics and Multiple Representations 1-80
Strict and Loose Mapping 1-81
Base Encoding Mapping Tables Supported by Mac OS 8 1-84
1-2 Contents

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 1

Handling Editable Text 1-84
The Text Panel 1-84
Using the Text Panel 1-85
Text Engines 1-86

Selecting and Getting a Text Engine 1-87
Using a Text Engine Directly 1-88
If You Are Providing a Text Engine 1-88

About TextEdit 1-89
String Comparison 1-89

Collation References 1-89
Overriding Default Collation Behavior 1-90
Code Conversion for String Comparison 1-90
Contents 1-3
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 1

1-4 Contents

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8 1

This chapter provides an overview of text-handling and internationalization
support in Mac™ OS 8. For the Mac OS 8 Developer Release: Compatibility
Edition, this chapter is meant to serve these purposes:

■ It provides a high-level view of the new and improved text handling and
internationalization components on Mac OS 8, describing them and
highlighting their special features. See “About Text Handling and
Internationalization in Mac OS 8” (page 1-6).

■ It explains System 7 backward compatibility provided within Mac OS 8 and
identifies those few areas for which backward compatibility is not provided.
See “Mac OS 8 Exceptions to Backward Compatibility With System 7”
(page 1-11).

■ It gives a brief look at the future vision for text handling and
internationalization beyond Mac OS 8. See “Looking Toward the Future”
(page 1-13).

■ It explains the fundamental conceptual differences between Mac OS 8 and
System 7 that provide the underpinnings to text handling. This includes
explanation of a different understanding of the concepts of a writing system
and a script for Mac OS 8 from that on which text handling for System 7 was
premised. The Mac OS 8 view is more aligned with the concepts of scripts
and writing systems as they are used and understood in the area of
linguistics. However, it requires an adjustment in thinking on your part if
you have based your understanding of these concepts on how they are
explained in Inside Macintosh: Text for System 7 in relation to System 7’s
Script Manager. See “Text Handling in System 7 and Mac OS 8: A
Comparison” (page 1-14).

■ It gives a more thorough treatment of several of the new text components
central to Mac OS 8 that make internationalizing your application easier. It
describes various aspects of these three components:

n Text objects and the Text Object Manager. See “Text Objects for Text
Storage and Interchange” (page 1-25).

n Locales, the locale database, and the Locale Object Manager. See “Storage
and Retrieval of International Data and Preferences” (page 1-48).

n Encoding conversion, the Low-Level Encoding Converter, and the
High-Level Encoding Converter. See “Text Encoding and Conversion”
(page 1-67).
1-5
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

■ It briefly describes the Text Editing Services and the String Comparison
Services. For Text Editing Services, see “Handling Editable Text” (page 1-84).
For the String Comparison Services, see “String Comparison” (page 1-89).

▲ W A R N I N G

This document is preliminary and incomplete. All
information presented here is subject to change in later
developer releases. Some information it contains will
become the basis for conceptual and tutorial information
in chapters of the Inside Macintosh: Text Handling and
Internationalization book for Mac OS 8, to be provided at a
later date. ▲

About Text Handling and Internationalization in Mac OS 8 1

Mac OS 8, provides text-handling and internationalization features that carry
forward the Apple® tradition of setting new standards and leading the
industry in software internationalization. By building into its design ease of use
and powerful flexibility, Mac OS 8 gives developers more control over how an
application can present language-based choices to end users and provides
extensibility that can move with any direction the industry takes. Mac OS 8’s
international software allows you to develop world-ready software that can be
released in more than a single geographic market at the same time.

One example of the flexibility inherent in Mac OS 8 is that it allows you to
create an internationalized application that can handle a mix of any text
encodings (or text encoding schemes) and be easily localized for any language
and geographical region. In addition to the standard set of Mac OS 8 text
encodings and Unicode shipped with the system software, you as a third-party
developer can provide your own text encodings and make them available to
applications running on Mac OS 8. (For System 7 and its earlier versions, this
was not possible.) For example, any of the DOS code pages can be installed on
a Mac OS 8 system. Mac OS 8 supplies a number of text encodings including
Latin-1 (ISO 8859-1, which is the default encoding for the Internet. Mac OS 8
performs conversion from one encoding scheme to another. One benefit is that
your application can support text files in any encoding scheme that your user
might obtain from the Internet.
1-6 About Text Handling and Internationalization in Mac OS 8

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

Mac OS 8 provides more flexibility in its international support than other
platforms do. Neither Windows 95 nor Windows NT (New Technology) offer
feasible alternatives to Mac OS 8.

Mac OS 8 includes far more Unicode support than does Windows 95 and it
offers far more flexibility and ease of use than does Windows NT. For example,
if you code your application to Windows NT using its standard form, you can
use the Unicode text encoding or another text encoding, but not both. Windows
NT standard form does not let you support a mix of text encodings; the single
encoding to be used is set when you compile your application. You can,
however, make specific calls from within your application to support different
text encodings, but this approach is far more cumbersome than the easy way in
which Mac OS 8 allows you to support mixed encodings.

Mac OS 8 Text-Handling Component Features 1

Mac OS 8 provides many new text-handling components. The features these
components offer include

■ support for text objects that let you store encoding specification, language,
and region information along with text. Because they encapsulate this
information, text objects remove the complexity from the work you need to
do to maintain the text encoding for text along with the text string. Text
objects are the primary means of passing text to and between system
components. Text objects allow easy conversion of text between encoding
schemes and easy localization of your application; you should use them for
text displayed as part of the human interface, such as text shown in menus
and dialog boxes. The Text Object Manager provides support for text
annotations that let you attach related data to a segment of a text string
within a text object. For Mac OS 8 applications, you should think of using
text objects as the default scenario for handling text. The only circumstances
in which you might not want to use text objects are when you export text to
another application on another platform and when you implement a
text-intensive application such as a word processor. See “Text Objects for
Text Storage and Interchange” (page 1-25) for more information.

■ support for use of a new repository for international preferences and data,
called the locale database, and access to the database and its contents
through the Locale Object Manager. You can add objects containing data to
the database and remove them from it, search the database for objects, and
obtain information about objects. See “Storage and Retrieval of International
Data and Preferences” (page 1-48).
About Text Handling and Internationalization in Mac OS 8 1-7
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

■ the provision of a full-scale encoding converter that allows you to convert
text to and from Unicode, gives you fine-grain control over the conversion
process, and provides extensive error reporting.The Low-Level Encoding
Converter supports table lookup-based conversion to or from Unicode. It
also provides attendant utilities, such as truncation functions and functions
for converting Pascal strings. See “Text Encoding and Conversion”
(page 1-67) for more information.

■ the provision of a high-level encoding converter that allows you to convert
text between any two encodings or schemes and offers ease of use by
determining default conversion-process values for you. The High-Level
Encoding Converter Manager performs table lookup-based and algorithmic
conversions. It uses the Low-Level Encoding Converter for table
lookup-based conversion and plug ins for algorithmic conversions. This
version of the converter does not map external formatting from the source
text to the converted text, so it is best used to convert mainly plain text or
text with inline formatting, such as HyperText Markup Language (HTML).
You might want to use either of the encoding converters instead of text
objects when your application does extensive text processing, in which case
you’ll need to perform encoding conversions yourself. See “Text Encoding
and Conversion” (page 1-67) for more information.

■ Text Editing Services, including a text panel, text engines, and an enhanced
and improved version of TextEdit. Text panels are simple to use, requiring
very little effort on the part of your application. They allow you to display
editable text fields in your application’s windows. The text panel manages
itself in the rectangle you define. You can select the text engine to use with a
text panel. For more extensive processing, you can use an engine alone. For
Mac OS 8, you are not limited to use of a single text engine as is the case
with TextEdit in System 7. Text Editing Services include an enhanced version
of TextEdit that provides support for integrated inline input and text objects,
and is based in the new event model. See “Handling Editable Text”
(page 1-84). Note that for this release, a modified version of the TextEdit
engine that eliminates the 32K record limitation is the only supported text
engine.

■ new and enhanced String Comparison Services for comparing and
searching strings for all languages. These functions support text objects,
allowing two strings in different text encodings to be compared. See “String
Comparison” (page 1-89) for more information.

■ an enhanced version of the Text Services Manager (TSM) that includes
support for a broad range of text services in addition to input methods,
1-8 About Text Handling and Internationalization in Mac OS 8

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

removes Chinese-Japanese-Korean (CJK) limitations on input-method
support, and greatly simplifies the process required to make your
application TSM aware. TSM takes full advantage of the new event model.
For Mac OS 8, TSM supports new categories of text services through a
common interface and makes these services available to a wide range of
applications. To enable integration of these services within your application,
TSM supplies these two levels of interfaces:

n a high-level interface through functions that use the TSMDocumentID
structure and that gives your application easy access to input methods
and available interactive text services

n a low-level interface that manipulates the underlying TSMContext service
context and allows your application direct access to the service’s
functionality, letting you use any services as an integrated part of your
application.

If you are providing text services, TSM for the Mac OS 8 is designed to make
it easy for you to create them. TSM supports these three categories of text
services:
n input methods, designed to filter events passed to the application. Input

methods are capable of intercepting text entry and interacting with both
your application and its user to convert raw events to the text stream.

n interactive text services such as spell checkers, style checkers, and
dictionaries, which, when activated, interact with your application and its
user to perform a specific action on the text encapsulated within the
application. They use the TSM protocol to access and modify the
encapsulated text and interact with the user on behalf of your host
application.

n batch services such as hyphenators, tokenizers, and stemmers that your
application can use to obtain specific linguist processing of the text it
handles. These services do not process events, and your host application
must call them directly.

■ revised and extended keyboard-menu handling support extended to handle
other types of text input. The new design allows for additional classes of text
input methods to be added to the menu and expands the technology to
handle input devices other than the keyboard, such as speech-to-text and
pen input. This support is now referred to as Text Input Menu Handling.
The new menu, which is called the Text Input menu, can be configured by
the application or its user. Your application can enable and disable menu
items. For example, if it doesn’t handle Arabic, your application can gray out
the item.
About Text Handling and Internationalization in Mac OS 8 1-9
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

■ a new event model that includes a suite of Text Events, and a newly
designed keyboard architecture with a new key translation module and
functions. The Key Translation module is responsible for converting virtual
keycodes into renderable character codes. New functionality is added to the
translation routines for sequential dead keys and for mapping a single
keypress to many character codes.

■ a friendlier and simplified International Text String Parser that provides an
interface composed of multiple functions and data structures rather than one
function with a huge parameter block, as was the case in the past with single
IntlTokenize function that used the 'itl4' tokens resource. This set of
utilities allows you to define your own metaclasses of tokens.

■ Number Formatting and Conversion Services that give you the ability to
format numbers for any language, country, and encoding scheme in a
transparent way and that include scanning routines to convert the text into
binary representation of the number.

■ new Date-and-Time support through the use of TimeObjects and calendars.
TimeObjects provides UTC (Coordinated Universal Time) support and an
expanded range of representable times. The new Date-and-Time support
also includes extended formatting with TimeObjects. A date-time format is
defined for specifying information necessary to represent a TimeObject, or
portions of one, in textual form. The calendar services use TimeObjects to
provide a higher level of date and time support. These services provide a
plug-in architecture that allows new calendar engines to be added and
allows for the behavior of existing calendars to be overridden. Mac OS 8
provides support for a basic set of calendars. Calendars not supported in the
first release of Mac OS 8 can easily be added later by Apple or, by you, as
third-party developer.

■ a new Language Manager that allows users to interact with the system in
the language of their choice. The language an application uses need not be
the same one that another application or workspace (such as the Finder) is
using at the same time. At application launch, the Language Manager
establishes the primary language for the application.

■ additional Text Utilities.

■ integration of WorldScript® I and WorldScript II supporting a single code
base. This integration allows for one system for the world; there are no
extensions and no patches.
1-10 About Text Handling and Internationalization in Mac OS 8

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

A Word About Text Imaging in Mac OS 8 1

Mac OS 8 differs from System 7 in how it provides support for and handles text
imaging. Apart from high-level text imaging done through text panels, text
engines, TextEdit, and text objects, for Mac OS 8 text imaging is separate from
text handling. Applications requiring greater control over text imaging and
more intensive text-imaging services can use one of the graphics systems
provided with Mac OS 8, such as GX or Color QuickDraw™.

The Text Object Manager provides default text imaging. A single text-imaging
function combines the work of the QuickDraw Text text-measuring function
and the Font Manager font metrics function, providing the width in pixels of
the text object’s string as imaged by DrawText, along with the total line height
and the ascent. The Text Object Manager uses a color graphics port that you can
specify. It also allows you to provide it with a font-substitution hint to assist it
in determining which font to use when the most appropriate one is not
available.

Mac OS 8 Exceptions to Backward Compatibility With
System 7 1

With few exceptions, software you develop today using the international
technology provided by System 7 will work with Mac OS 8.

IMPORTANT

The following list might be incomplete. More information
will be provided in later developer releases. ▲

Here are aspects of the features of System 7 for which backward compatibility
is not supported:

■ Input methods. If you provide an input method for System 7 and want to
make it available for Mac OS 8, you must replace it with a new one that is
SOM-based (System Object Module). In System 7, input methods are
implemented as components. In Mac OS 8, input methods are SOM-based.

■ Aspects of the Script Manager.

n The Script Manager’s internal data structures are different in Mac OS 8
from what they were in System 7. If you access them directly in your
Mac OS 8 Exceptions to Backward Compatibility With System 7 1-11
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

application—a behavior that is unsupported and was always
unsupported in System 7—your application will not run in Mac OS 8.

n For most selectors, the SetScriptVariable and SetScriptManagerVariable
functions have only local effect in Mac OS 8. That is, any changes you
make using these functions will be effective only in your calling
application’s current context.

n When possible, the Script Manager’s notion of a system script will be
carried out and synchronized with the application’s initial locale—usually
the workspace locale. However, circumstances can occur in which an
application’s default locale has no equivalent script code.

n The functions GetScriptUtilityAddress and SetScriptUtilityAddress are
no longer supported.

n For Mac OS 8, default fonts are specified by a special data structure in the
locale. Mac OS 8 does not recognize equivalent values stored in the
System 7 international resource.

■ Aspects of QuickDraw Text.

n You should avoid using the System 7 FontToScript and FontScript
functions, which convert a family FOND ID to a script code. Although
existing fonts retain their IDs for backward compatibility, new fonts are
not backward compatible.

n The Print Action routine, (described in System 7’s Inside Macintosh:
Devices) has no effect in Mac OS 8.

n The smCharPortion verb is not supported.
n The ForceFont flag is always false in Mac OS 8.
n Negative verbs for GetScriptVariable that returned vectors for low-level

imaging within WorldScript I will return universal procedure pointers
(UPPs) to no-operational (no-op) routines for this release of Mac OS 8.
This functionality will be supported in a later release of Mac OS 8.

■ Aspects of keyboard support.

n Although backward compatibility is provided for the KeyScript routine,
Apple strongly recommends that you move to using the new Text Input
Menu Handling support.

n The GetScriptManagerVariable function called with smKCHRCache verb will
return a KHCR, but not necessarily the one used by the Key Translation
Manager.
1-12 Mac OS 8 Exceptions to Backward Compatibility With System 7

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

■ Aspects of WorldScript.

n WorldScript I QuickDraw patch. Mac OS 8 does not support the
GetScriptQDPatchAddress and SetScriptQDPatchAddress functions used for
getting a pointer to the specified WorldScript I QuickDraw patch for a
script system and patching a script system with a new QuickDraw
routine, nor does it support the GetScriptUtilityAddress and
SetScriptUtilityAddress functions.

n For this release of Mac OS 8, none of the routines in the WorldScript.h
header file are implemented. It is highly likely that they will not be
supported at all for Mac OS 8. Later developer releases will provide
further information.

■ Dictionary Manager. The System 7 Dictionary Manager is no longer
supported.

■ Aspects of TextEdit.

n Private scrap handling. For System 7, monostyled TextEdit used the
private scrap in some circumstances. For Mac OS 8, monostyled TextEdit
scrap handling is unified with multistyled TextEdit, and it always uses
the public scrap.

n Undocumented low-memory globals are no longer maintained. They
include TEFindLine, TETrimMeasure, WordRedraw, TEWdBreak, JPixel2Char,
JChar2Pixel, and JHiliteText.

n For System 7, TextEdit calls the Script Manager to compute word breaks.
The recommended way to customize this for Mac OS 8 is to use TEDoText.

n If your application supports TSMTE, you should now get all of your text,
not just two-byte text, through callbacks instead of through key events.

Looking Toward the Future 1

One of the principal underlying design goals of Mac OS 8 text-handling and
international support is to provide extensibility not only within the current
version of the system software but also with a view toward the future. This
goal is reached in many areas. For example, text objects allow movement
toward a system based in Unicode, if that direction is taken. Also, the design of
the Locale database allows for storage and retrieval of any type of international
data; as new requirements emerge, the database can easily accommodate them.
Looking Toward the Future 1-13
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Support for Unicode is another example of this extensibility and open
orientation. In addition to the fact that it offers the simplest solution for fully
multilingual systems, Unicode offers many important and useful features. One
of its most important aspects is that it naturally lends itself to text interchange
among different platforms, as well as among applications and platform code on
a single system.

Apple recognizes that the movement toward universal use of Unicode might
not happen immediately or entirely; the industry might take another direction.
For this reason, Apple intends to support and handle as many text encodings
(and text encoding schemes) and the coded character sets they include as
possible. Mac OS 8 is not limited to handling just a few encoding schemes
based on the current market size. Apple recognizes that Unicode will not
suddenly replace all other text encodings and that most platforms will have to
deal with a mixture of other text encodings (and text encoding schemes) in
addition to Unicode. For a description of the terms text encoding, text encoding
scheme, and coded character set, see “Characters, Codes, Text Encodings, Text
Encoding Schemes, and Text Elements” (page 1-70).

Because Mac OS 8 supports any encodings, including Unicode, it can move in
any direction. If the industry moves toward Unicode, Mac OS provides support
for it; if it doesn’t, Mac OS 8 still supports conversion among any encodings
and encoding schemes.

Not all of Mac OS 8 system components are Unicode based. Mac OS system
software transition to Unicode most likely will occur gradually with different
system components moving to Unicode at different times. By using text objects
in applications you are porting or coding to Mac OS 8, you are ensuring that
changes you will have to make to your code are few, if any, if Mac OS 8
transitions from a system that provides international support based in multiple
encodings to one that supports a single encoding, Unicode.

Text Handling in System 7 and Mac OS 8: A Comparison 1

Mac OS 8 text-handling support shapes the context in which the future of
internationalization is beginning to emerge by addressing software engineering
requirements for developing applications for the global marketplace in ways
that offer ease of use, extensibility, and flexibility.
1-14 Text Handling in System 7 and Mac OS 8: A Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Mac OS 8 provides support for more areas of text handling and
internationalization than did System 7 and provides new solutions to problems
addressed by System 7. This new support and these solutions give you more
flexibility and control over how you perform text handling in your
internationalized application and how you present language-based choices to
your application’s user. These solutions, implemented through the use of text
objects, encoding conversion, and the locale database, and effective through
your application’s use of the Text Services Manager, text panels, String
Comparison Services, and other Mac OS 8 text-handling components, allow
you to build internationalized applications that require far less management in
your code than was needed in System 7.

This section looks at the advantages of designing and developing
internationalized applications and describes some of the conceptual and
behavioral differences between Mac OS 8 and System 7 related to multilingual
support.

Internationalization and Localization 1

Users of computers interact with them through a combination of elements
implemented in system and application software that includes images and the
written language. Text handling is heavily culturally dependent, and there are
more software engineering issues associated with it than there are with the
handling of images across languages and cultures. Among the cultural
differences reflected in the written language are how the language is
represented—for example, is it alphabetic, ideographic, or syllabic—and how
national conventions for the presentation of date, time, and numbers are
defined.

Note
Although the term ideographic is commonly used to
characterize languages (such as Chinese) that include
ideographs and pictographs, the term is inaccurate and
misleading. Most so-called ideographic scripts include
some ideographs and pictographs but they also include
phonetics. For example, while Chinese includes both
ideographs and pictographs, it also includes many
complex characters that are phonetically based. ◆

In designing software applications that address these cultural differences,
applications developers can follow one of these two general strategies:
Text Handling in System 7 and Mac OS 8: A Comparison 1-15
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
■ Localization by reengineering. You can design and develop an application
that is specialized for a single language and culture from the beginning.
Applications localized by reengineering generally include hard-coded
dependencies on cultural and linguistic conventions. After you develop the
initial specialized product, localization by reengineering entails adapting the
software to fit specific national languages and cultural conventions for
markets other than the one for which you originally designed it.

■ Internationalization. You can develop application software that is
generalized and designed to accommodate various languages and cultures.
The process of designing and creating software with multiple cultures in
mind—software that can be easily localized for various geographical regions
and their languages without requiring changes to the source code—is called
internationalization. This process entails distinguishing cultural elements
that the software must accommodate differently for each language when the
software is localized and handling those elements in a way that allows for
variation. Internationalized software inevitably entails localization.
Internationalized software can call functions that access and obtain data at
runtime that is specific to a language or culture. Localizing software
designed for an international market usually requires changes to the data or
text of your application’s user interface, but no source code changes.

Clearly, internationalization offers the more cost-effective and efficient design
strategy if your intention is to make software meant for the global marketplace.
Building localized software from the beginning requires multiple code bases if
you plan to market your product in multiple geographical areas. Building
internationalized software from the beginning allows you to develop and
maintain one code base which localizers—developers in various countries who
adapt software to those countries— can then specialize.

In considering what constitutes an internationalized application, these two
separate issues surface:

■ User-interface handling. It is important for the user interface portion of
your application—that is, read-only text such as menu contents and system
messages—to be easily localizable. (Mac OS 8 contains multiple localizations
for system software so the system component can present messages in your
user’s language of choice.) You can use text object resources for the
nonmodifiable data of your application’s user-interface to allow for easy
localization.

■ User input and editable-text handling. It is important that the content
portion of your application—that is, the part that deals with user input and
1-16 Text Handling in System 7 and Mac OS 8: A Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
editable text—be able to handle text in any language. In other words, your
application should allow your user to enter and edit text in any language. A
single document might contain text in more than one language, so your
application should support a mix of languages within the same document. A
user might type text in German, then switch to Japanese. Mac OS 8 text
handling components enable you to implement these processes easily.

To facilitate localization of applications, Mac OS 8 internationalization
components provide the ability to store and access data required for specific
locales. By supporting any text encodings and text encoding schemes, Mac OS
8 provides encoding conversion automatically through text objects or directly
through one of the encoding conversion managers. In addition to the standard
Mac OS 8 encodings provided with the system, Mac OS 8 supports Unicode
and text encodings and text encoding schemes provided by third-party
developers.

Note
A text encoding usually contains the encodings for the
characters belonging to a single character set addressing a
single script. A text encoding scheme is a method that
allows for the support of and addresses multiple coded
character sets.Text encoding schemes often include
predefined escape sequences that indicate transitions to
specific coded character sets. For a more complete
description of the terms text encoding, text encoding
scheme, and coded character set, see “Characters, Codes,
Text Encodings, Text Encoding Schemes, and Text
Elements” (page 1-70). ◆

Writing Systems and Scripts 1

Writing systems and scripts are viewed and understood differently in Mac OS 8
from System 7. Mac OS 8 text handling and internationalization software uses
the concepts of writing systems and scripts as they are understood in the area
of linguistics. This position differs from the one held in System 7, in which the
concept of a script system and what composed one was particular to System 7.
If you have relied on the understanding of these concepts imparted by
descriptions of System 7 and its predecessor versions, you’ll need to adjust
your perspective somewhat to make the transition to international text support
in Mac OS 8.
Text Handling in System 7 and Mac OS 8: A Comparison 1-17
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Writing Systems and Scripts As Understood in Mac OS 8 1

Mac OS 8 aligns with the standard view of writing systems and scripts
expressed in linguistic literature and explained in this discussion.

Writing Systems 1

Written representation of a spoken language relies on a writing system. A
writing system, then, is an artificial construct used to record language in
written form. It can be viewed as having three main components—language,
scripts, and orthography—with well defined relations to one another.

Scripts 1

A script comprises a set of symbols that represent the components of a
language. A writing system uses one or more scripts for the symbols required
to represent linguistic elements, which include sound, meaning, syntax and so
forth. A script can be coupled with one language, or it can represent and be
used by many languages. Moreover, a language can have more than one script
associated with it. For example, the Japanese language uses the Japanese script,
while the French, Italian, and Spanish languages all use parts of the Latin script.

A script exists apart from both the languages it represents and the writing
systems for which it is used. (A small number of scripts, less than 100, are used
by writing systems despite the large number of existing modern and archaic
languages.) Scripts have largely developed in accord with geographical and
cultural requirements; they show historical, linguistic, and geopolitical
derivations and influences.

Some scripts are more inclined to represent sound, while others represent
meaning, but usually scripts include both representations. Alphabetic scripts
are thought to represent sound exclusively and hieroglyphic or ideographic
scripts are thought to represent ideas, but this is a misconception because both
systems include symbols for sound and meaning.

A special category of scripts, called pseudoscripts, exists for use with other
scripts. These pseudoscripts include symbols, numbers, and punctuation.

Writing systems can use different scripts at the same time. A writing system
uses at least one script and typically one or more pseudoscripts. In this sense,
then, it is best to refer to the characters a writing system includes as a repertoire
of characters, rather than a character set, because these characters can belong to
different scripts. Figure 1-1 shows six writing systems and the scripts and
pseudoscripts that they incorporate. Notice that although the U.S English and
1-18 Text Handling in System 7 and Mac OS 8: A Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
U.K. English writing systems both use the same ranges of the Latin script and
the common punctuation and symbols pseudoscript, they comprise distinct
writing systems because their orthographies differ.

Figure 1-1 Writing systems, scripts, and orthographies

Orthographies 1

The writing system for a language entails an orthography which defines the
relationship between the written language and one or more scripts.

Among the rules an orthography specifies are rules of directionality, level of
discreteness, and units of representation. For example, for mixed-directional
text, the direction of a paragraph is important. For writing systems based in
European languages, a paragraph is considered a unit of representation, as is a
word. Word division and paragraph identification are easily determined for

Scripts and pseudoscripts

Writing

systems

Latin

(Roman) Cyrillic Hiragana Katakana Ideographs

Common

punctuation

symbols

US English

UK English

French for

France

French for

Canada

German

Japanese

Same

character

repertoire

different

orthography

Same

character

repertoire

different

orthography
Text Handling in System 7 and Mac OS 8: A Comparison 1-19
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
these languages, but this is not the case for writing systems based in Japanese
or Indic languages.

Orthographies can differ between two geographical regions using the same
language and collection of scripts. An example of this is the American English
orthography, which differs from the British English orthography.

Text-handling system software that deals with the orthography of writing
systems includes support for directionality, word breaking, hyphenating, and
spell checking services, among others.

Writing Systems and Script Systems As Understood in System 7 1

For System 7, a writing system is described as a set of characters and the basic
rules for their use in creating a visual depiction of language, rules for
displaying, ordering, and formatting characters. Writing systems have specific
requirements for text display, text editing, character set, and fonts. A script
system is defined as a collection of resources, mostly tables of data, that defines
the behavior of a particular writing system.

For System 7 a writing system breaks down into scripts, which imply locales
and orthographies associated with locales. While the term text encoding is not
used in System 7, a script in System 7 implies a text encoding, but it also
implies additional data stored in international resources pertaining to locales.
A script system can support various languages and regions. For example, the
System 7 MacRoman script system supports the English, French, German,
Italian, and Spanish languages. Within the French language are regional
variations, for example, Belgian and French Canadian.

In System 7, often information stored in international resources is common to a
group of locales (languages and regions) that use the script system. However,
because of the way relationships are drawn between the scripts and the locales
that particularize the data for the various writing systems or languages in
System 7, international resources containing this data that applies to multiple
locales is often replicated for each language or region. In System 7, a script
connotes information about locales. This is not so in Mac OS 8.

Deconstructing the System 7 Script Manager and Looking at Mac OS 8
Solutions 1

The System 7 Script Manager provides exceptionally good international
support compared with other available contemporary technologies. However,
it is constrained by a number of limitations inherent in its design. For example,
1-20 Text Handling in System 7 and Mac OS 8: A Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
text encoding is separated from the text to which it belongs. Also, extensibility
in handling international resources is inelegant because the original design was
envisioned to meet the requirement of a fixed number of resources.

In addressing and transcending these and other problems inherent in the Script
Manager, designers of Mac OS 8 recognized the opportunity to press
international support forward, set new standards, and realize in the design of
new international text-handling and storage components goals of flexibility,
extensibility, and ease of use.

This section explains some of the ways in which they did this. First, it describes
the way the Script Manager addresses the complexities entailed in providing
international text support, and then it describes how Mac OS 8 approaches
these problems.

Text Handling and Storage in the System 7 Script Manager 1

This section identifies in System 7 how you store the encoding for text, how the
system stores international data needed for text handling functions, and how
you access that data. You can contrast this with the way these processes are
handled for Mac OS 8 by looking at “Text Handling and Storage in Mac OS 8”
(page 1-22).

■ separation of encoding from text

System 7 multiscript support allows an application to handle text expressed in
multiple languages, but it requires the application to store and manage script
and language information used to represent the text apart from the text itself.
In addition to adding complexity to code, this separation often results in the
display of unreadable text when that text is moved from an application that
provides multilingual support to one that does not, a condition sometimes
referred to as moji-bake, a phrase that means character garbage in Japanese.

■ overloaded script code

The System 7 Script Manager categorizes international writing systems with a
data type called a script code. Depending on how an application uses them,
script codes can signify multiple attributes, including language and region
information, text encoding, and localization. Because script codes are
multipurpose and overloaded, they are easily misused.

■ storage of international data

For System 7, international data is packaged in a file type called a Script
bundle. The system unpacks the data contained in this file and moves it into
Text Handling in System 7 and Mac OS 8: A Comparison 1-21
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
the System file. The Script Manager was designed with the idea that a script
would require a limited set of international resources— resources such as the
numeric format resource, the long date and time resource, and the keyboard
layout resource. In time, however, this group of resources proved to be
insufficient and new resources were added, but they were handled in a variety
of ways, including overloading the Script bundle and enhancing WorldScript to
locate and load them.

■ access to international data

For System 7, you use two routines—GetIntResource and
GetIntResourceTable— for accessing international data stored in resources.
These routines support a limited number of data types; adding new data types
requires that these accessor routines themselves be modified. Resources your
application can access using these routines follow a specific naming
convention; if a resource does not follow this convention, to access its data,
your code must read the resource directly from the system file.

Text Handling and Storage in Mac OS 8 1

This section identifies in Mac OS 8 how you store the text encoding
specification for text along with the text, how the text encoding exists separate
from the language and region information, how the system stores international
data needed for text handling functions, and how you access that data. You can
contrast this with how these processes are handled for System 7 by looking at
“Text Handling and Storage in the System 7 Script Manager” (page 1-21).

Mac OS 8 separates information previously coalesced in System 7; it provides a
distinct text encoding specification data type for identifying the text encoding
or text encoding scheme and other information used in representing text; and it
provides a distinct locale identifier data type specifying the language and
region information used to characterize text or collections of data for specific
writing systems or languages. These locale-specific data are stored in the locale
database separately from the files containing text encodings.

■ coupling of text encoding specification and language and region information
with text

Mac OS addresses problems that result from storing information used to
represent text apart from the text itself by encapsulating in a text object the text
string and all pertinent information about text representation. Text objects
simplify the work you need to do to associate text encoding information with
text. Along with a text string, a text object stores the string’s text encoding
specification, its language and region information, and any annotations for it. A
1-22 Text Handling in System 7 and Mac OS 8: A Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
text object can contain multilingual text with text runs carrying this
information for varying text segments. The text, its encoding, its language and
region information, and its annotations remain together as the text is moved
from one application to another, diminishing the possibility that your text will
be displayed in an unreadable manner. All of the information, including
annotations, stays together as text is cut, copied, and pasted within your
application.

IMPORTANT

Annotations are similar to System 7 resources in that the
semantics of an annotation are available to applications
and system components that understand the annotation’s
particular tag type. Although applications other than the
one that created the annotation and Mac OS 8 system
components might be able to interpret the semantics of an
annotation, you should not assume that they do or that
they will preserve an annotation’s semantic integrity. ▲

If you use text objects, the system performs any necessary encoding
conversions for you. For example, if your application performs collation
processes and you use text objects, the system will convert text expressed in
any text encoding to Unicode—if the strings are in different encodings or if
collation tables don’t exist for the original encoding—so that all strings are
compared in the same encoding. See “Text Objects for Text Storage and
Interchange” (page 1-25) for more information on text objects. If you do not use
text objects, your application can convert text across encodings using one of the
encoding converters. See “Text Encoding and Conversion” (page 1-67) for more
information on the Mac OS 8 encoding converters.

■ separation of text encoding from language and region

Instead of bundling together data for a geographical region with the text
encoding used to represent the text, the design of Mac OS 8 separates the text
encoding or text encoding scheme from data used for the orthography of the
language and region for which the text is to be localized, and from the font
used to image the text.

In addition to the standard set of Mac OS 8 text encodings and text encoding
schemes shipped with the software, third-party developers can provide their
own text encodings and schemes, extending the range of possible ones your
application can support. Moreover, Mac OS 8 supports the Latin-1(ISO 8859-1)
text encoding, which is currently the most common one used for the Internet,
Text Handling in System 7 and Mac OS 8: A Comparison 1-23
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
so you can support text files in this encoding that your user obtains from the
Internet.

Resources containing data used to localize text for a certain geographical
region are stored in the locale database, whereas information for text encodings
and schemes is stored separately in files containing the coded character set and
all information needed for its mapping and conversion to Unicode.

This separation, which makes writing systems independent of text encodings
and text encoding schemes give you more control over how your application
can present choices in its user interface.

■ storage of international data

The Mac OS 8 locale database provides a way in which you can store any type
of data used for text handling and text-behavior-setting, and easily modify that
data. The locale database clusters together such data for a specific geographical
area according to its locale and region information. These clusters are called
locales and each one is composed of locale objects. A Mac OS 8 locale object is
roughly equivalent to a System 7 international resource.

The locale database is highly extensible; the kind of international preferences
data and other data known to be required today does not limit or define what
you can store in the locale database and access as future requirements surface.

You can permanently add data to the locale database for use by all applications
and system components, or you can extend the data available for your
application’s use within its current process by temporarily adding data to the
database. You can also temporarily override the default behavior of various
text-handling operations for the language of a specific geographical region
from within your application’s current process to customize it for your use.

The Locale Object Manager creates the locale database and adds data to it at
system startup, but system components and your application software can
determine which data to use—for example, for localization—at runtime after
determining the user’s preferred language and the appropriate character set for
that language.

The locale database offers an extensible means of storing international
preferences data. To provide backward compatibility with System 7, the
Mac OS 8 release of the locale database provides a way to incorporate System 7
international resources, making those resources available to your application;
they show up in your resource chain, just as they always did with System 7,
even though they are stored in the locale database.
1-24 Text Handling in System 7 and Mac OS 8: A Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
■ access to international data

You use the Locale Object Manager to access data stored in the locale database.
Each locale object belonging to a locale is a separate entity that you can access
independently. All data that exists in the locale database is cataloged along the
same lines and accessed using the same method. Moreover, data stored in the
locale database is cataloged along multiple lines based on information
describing that data. When developers create locale objects, they provide
various kinds of information describing the data. The Locale Object Manager
uses this information to classify and catalog the data; it includes this defining
information with the data when it adds the data to the database.

This way of cataloging locale object data allows you to access data of a certain
type for various languages and regions by specifying any of its characteristics.
For example, you might want to find all input methods for languages that use
2-byte character encodings, or you might want to find all data-and-time
formatting data for a specific language. The Locale Object Manager locates and
returns to you any data resident in the database that meets a set of
specifications you provide.

While the locale database offers extensibility, the Locale Object Manager offers
ease of use and flexibility in accessing that data. For more information on how
to access data in the locale database, see “Storage and Retrieval of International
Data and Preferences” (page 1-48).

Text Objects for Text Storage and Interchange 1

A text object is the fundamental unit of text interchange in Mac OS 8. You use
text objects to pass text to or receive text from system components. For
example, to specify a name to the file system, you use a File Manager function,
passing it a text object containing the name. You also use text objects to specify
text that is displayed as part of your application’s user interface. All user
interface elements in your application that contain localizable text should
specify the text using text objects and store the text in text object resources.

A text object consists of a text encoding specification, which identifies the text
encoding in which the text is expressed, a locale identifier, which identifies the
locale in which the text was originally created, and the actual text itself. A
locale identifier encapsulates an International Standards Organization (ISO)
language code, which specifies the language in which the text is to be
Text Objects for Text Storage and Interchange 1-25
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
represented, and an ISO region code, which specifies the geographical region
for languages that vary by region. A locale identifier can also contain a
customization code, but these codes are not retained by text objects because the
custom settings become invalid or obsolete as the locale database is rebuilt or
changes.

Figure 1-2 shows a conceptual rendering of a simple text object’s contents.

Figure 1-2 A simple text object

Note
A text object can also contain annotations, not shown in
Figure 1-2. Annotations are discussed later in this chapter.

◆

Because they enclose the encoding specification, and language and region
information along with the text, text objects make it possible for software that
did not create the text to process it correctly in an environment in which
multiple text encodings and languages are used. For example, the user
interface elements of an application localized for Hebrew will be depicted in
the Hebrew language on a U.S. MacOS Roman system if the MacOS Hebrew
character set and corresponding glyphs used to represent the text are available
on that system.

Text object

Nothing ages like happiness.

MacOS Roman

'eng' 'US'

Text string

ISO language code

ISO region code

Text encoding

specification

Locale identifier
1-26 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text Object Contents 1

This section describes the primary contents of a text object from a conceptual
perspective; these are the parts of a text object your application provides or
manipulates using the Text Object Manager. A text object contains other
information used internally, which is not described here.

A text object encapsulates

■ the text string.

■ the text encoding specification giving the text encoding used to express the
text. See “Text Encoding and Conversion” (page 1-67) for information on
text encodings and specifications.

■ the locale identifier consisting of the ISO language and ISO geographical
region codes identifying the language and region for which the text is
localized. For background information on locale identifiers, see “Storage and
Retrieval of International Data and Preferences” (page 1-48).

■ one or more optional annotations used to mark the whole text string or
segments of it with any additional information you want used in
conjunction with that text. See “Text Annotations” (page 1-39) for
information on annotations.

A Simple Text Object 1

A text object can contain one or more text runs. A text run is a text string
segment that is characterized by a single text encoding specification and locale
identifier stipulating how the text is to be represented. When the text object’s
entire text string has a single text encoding specification and locale identifier
associated with it, the object contains a single text run.

A locale identifier includes an ISO language code and, if applicable, an ISO
region code. A language code is a three-character, lowercase identifier used to
indicate a particular written version of a language for Mac OS 8. A region code
is a two-character, uppercase identifier used to indicate a version of the written
language of a particular region or territory.

Mac OS 8 recognizes the language codes defined by ISO in the ISO CD 639/2
draft proposal titled “Code For the Representation of Names of Languages,
alpha-3 code” dated December 16, 1991. Constants defined for these codes are
included as comments in the TextCommon.h file.
Text Objects for Text Storage and Interchange 1-27
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-3 shows two separate simple text objects, each containing the same
text string. The first text object has a MacOS Roman text encoding and a locale
identifier for the English language of the United States. The ISO language code
'eng' specifies the English language. The ISO region code 'US' specifies the
geographical region of the United States. The second text object has a MacOS
Roman text encoding and a locale identifier for the English language of Great
Britain. Variations associated with the English language as written and spoken
in the United States apply to the first text object while variations associated
with the English language as written and spoken in Great Britain apply to the
second text object. For example, a spelling checker created for the United States
region would indicate that the word colour in the text string is misspelled and
suggest the regional spelling color.

Figure 1-3 Two single text-run text objects for different regions

A Text Object Containing Multiple Text Runs 1

The text string of a single text object can be composed of multiple text runs.
This is the case if various segments of the text have associated with them
different text encoding specifications and locale identifiers. Figure 1-4 shows a
text object whose text string contains these three text runs:

■ The text segment “The old believe everything” is represented in the MacOS
Hebrew text encoding and the Hebrew language of Israel. The ISO language
code 'heb' specifies the Hebrew language. The ISO region code 'IL' specifies
the geographical region of Israel. An annotation specifying the color blue is

Text object

MacOS Roman

'eng' 'US'

Text string

ISO language code

ISO region code

Text encoding

specification

Locale identifier

Broadness, not bravery, changes

colours like a chameleon.

Text object

MacOS Roman

'eng' 'GB'

Text string

ISO language code

ISO region code

Text encoding

specification

Locale identifier

Broadness, not bravery, changes

colours like a chameleon.
1-28 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
associated with the word “believe.” The Text Object Manager imaging
functions would not interpret the annotation or image the text in blue. The
application might use the color information stored in the annotation with
another imaging system.

Note
Recall that although the Mac OS 8 system software
preserves annotations, it does not interpret their content. ◆

■ The text segment “The middle-aged suspect everything” is represented in
the MacOS Arabic text encoding. The ISO language code 'ara' specifies the
Arabic language. There is no annotation associated with the text of this text
run. (When you create and use locale identifiers, you can use the locale
region wildcard, kLocaleRegionWildCard, along with the ISO language code
to specify that you want to use the standard form of a language, and not a
particular regional form of the language.)

■ The text segment “The young know everything” is represented in the
MacOS Japanese text encoding and the Japanese language of Japan. The ISO
language code 'jpn' specifies the Japanese language. The ISO region code 'JP'
specifies the geographical region of Japan. An annotation providing a
pronunciation hint is attached to the entire text segment, while a color
annotation is attached to the word “young” only.
Text Objects for Text Storage and Interchange 1-29
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-4 shows this text object.

Figure 1-4 A text object with multiple text runs

How Text Objects Are Used 1

Because they facilitate internationalization of an application, you should use
text objects for all parts of your application’s user interface, for example, for
static text in menus, panels, and dialog boxes. However, text objects are not
meant to be used as a document model, that is, for text-intensive applications
such as word processors.

The Text Object Manager provides an application programming interface (API)
that you can use to create, modify, and dispose of text objects, obtain their
contents, and obtain information about them. You can copy and replace the
contents of text objects with a text string or contents from another text object,
append text to an existing text object, and concatenate two text objects to create

Text object

The old believe everything.

'heb' 'IL'

The middle-aged suspect everything.

MacOS Arabic

'ara'

The young know everything.

MacOS Japanese

'jpn' 'JP'

Annotation A

Annotation B

Color: Blue

Pronunciation

hint

Annotation C

Color: Red

MacOS Hebrew
1-30 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
a third one combining them. You can obtain the text contained in a text object
as a text string. You can attach annotations to the text segments of a text object’s
text string and replace and delete existing annotations.

You can determine whether a text object is empty, get its size, determine the
number of text runs it contains, and obtain the encoding of a portion of text
within a text object. You can convert text objects to and from Unicode, Pascal,
or C strings.

The Text Object Manager also includes a set of imaging functions that you can
use to draw the text of a text object.

Text Objects and Text Strings: A Comparison 1

A text object differs from a simple text string in three primary ways:

■ A text object encapsulates and carries the text encoding specification and the
language and region information used to represent the text along with the
text string.

■ A text object does not allow direct manipulation of the text. Instead, you use
the Text Object Manager functions to extract text from or put it into a text
object. A text object stores the text string and its attendant information in a
private data structure, and, is therefore, opaque to your code. By hiding the
details of the text encoding specification from your application, text objects
provide for an easy transition to a system based in Unicode.

■ A text object can include annotations that are associated with the whole text
string or portions of it. Annotations can contain whatever additional data
you want to associate with the text string. You can use annotations for any
purpose suited to your application. See “Text Annotations” (page 1-39) for
information on annotations.

Text objects provide functionality equivalent to that of C strings and Pascal
strings. C string and Pascal string representations used as the principal means
of expressing text in System 7 and earlier versions of the system software do
not lend themselves to Unicode. C strings are not feasible because they are null
terminated and null bytes occur in many Unicode character encodings. Pascal
strings are simply too short to hold enough Unicode characters to be useful.
Text Objects for Text Storage and Interchange 1-31
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text Object Types 1

There are two kinds of text objects distinguished mainly by how storage for
their contents is managed: ephemeral text objects and persistent text objects.

The Text Object Manager dynamically allocates and initializes the memory for
an ephemeral text object when your application calls the Text Object Manager
function that creates one. The Text Object Manager manages the memory for an
ephemeral text object, expanding and contracting the text object as necessary to
accommodate the text and modifications to it.

You provide a block of contiguous memory for a persistent text object; the Text
Object Manager will use only that memory for the persistent text object. A
persistent text object is self contained; you can move a persistent text object
around and preserve it until you no longer need it. You can either stack-allocate
a persistent text object or create one in a fixed-size data structure. You should
always use a persistent text object if the text object will be passed from one
address space to another.

Your application allocates the memory for a persistent text object in text object
units and passes that memory to the Text Object Manager function, which you
call to initialize the persistent text object. For this purpose, the Text Object
Manager defines the TextObjectUnit data type, which consists of 4 bytes,
naturally aligning on a longword boundary.

You use a pointer of type TextObject with the Text Object Manager functions to
point to the beginning of a text object, whether the text object is an ephemeral
or persistent one.

Indices for Text in a Text Object 1

The Text Object Manager allows you to manipulate the text in an existing text
object. You can extract and copy text from a text object; you can insert text in
and append it to a text object; you can replace text in a text object with other
text. Functions for these and other purposes require that you identify the
character or text segment of the object’s text string that you want to affect. You
use text object indices for this purpose.

The position of a character within a text object is indicated by an index. A text
object index is a number that indicates a position between characters, before
the first character, or after the last character of the text in a text object. A text
object index does not refer to a specific character, rather it indicates the position
1-32 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
before or after that character. The Text Object Manager uses indices to identify
the position of characters composing an object’s text string.

Usually, you use a set of text object indices to specify a portion of the text
within a text object; to do so, you identify the index position before the
character that begins the text range and the index position after the character
that ends the text range.

The numerical values of text object indices are associated with the specific
internal representation of a text object’s text, so they are not valid across Text
Object Manager functions that modify the text object’s content. Numbers of
indices increase monotonically within a text object, but they are not necessarily
sequential. If the text of a text object has been modified since you last obtained
indices for a segment of its text, and you want to refer to that text segment
again—for example, to copy it again—you should use a Text Object Manager
function to obtain the new indices delineating that text segment. The characters
of the text string shown in Figure 1-5 are marked with indices identifying their
positions. Notice that the numbers representing the indices increase, but they
are not sequential (nor do they correspond to byte offsets).

Figure 1-5 Text object indices

The Text Object Manager provides constants for referring to the beginning of a
text object and its end. It is always safer to use these constants when you want
to specify the beginning or end of the text of a text object instead of attempting
to calculate the index values. These constant will always refer to the beginning
and end, while your calculated index values may not.

Text object

The old believe everything.

MacOS Roman

'eng' 'US'

Text string

Indices

Text encoding

Locale identifier

40 90 108

ISO language code

ISO region code
Text Objects for Text Storage and Interchange 1-33
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Imaging With Text Objects 1

The Text Object Manager includes a set of Color QuickDraw–based functions
that you can use for imaging text objects. Unlike the System 7 QuickDraw Text
functions, the text object imaging functions allow you to specify the graphics
port to be used. These functions take an explicit color graphics port parameter
instead of using the current graphics port. You can measure and draw text
using these functions. The functions return any measurements they compute as
fixed integers instead of simple integers, as was the case for the System 7
functions.

To draw the text of a text object, you call the DrawTextObject function.
DrawTextObject draws the text at the current pen position using the glyphs for
the language and text encoding specified by the text object. The pen is left at
the end of the imaged text. When you call this function, you can provide it with
a font selection hint to be used if the Text Object Manager must perform font
substitution.

The text object imaging functions take a global text direction parameter for
handling multidirectional text, which you can set to left-to-right or right-to-left
or base it on the current system default. To give you more flexibility in the use
of these measuring and drawing functions, the Text Object Manager defines
imaging options. You can set the bit flags in a function’s option bits parameter
to specify aspects such as alignment, justification, and handling of text too
wide for the available space. Standard behavior, which you can accept or
override, is defined for each function.

Font Selection Hint for Font Substitution 1

A text object can contain multiple text runs, each of which is composed of text
to be represented in a different language and text encoding from its adjacent
text segments. When you draw or measure text, the specified text segment may
span multiple languages and encoding systems. When it does, the Text Object
Manager must determine the correct font to use for each text run the text
segment contains.

The Text Object Manager offers an interim solution to the problem entailed in
determining the most appropriate font to use in imaging text objects containing
multi-encoded, multilanguage text. For this purpose, the Text Object Manager
defines tokens representing special fonts. You can select one of these tokens
and pass it to an imaging function as part of the function’s option bits
parameter. The token provides a font-substitution hint to the Text Object
Manager when the current font is not the most appropriate one to use to image
1-34 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
the text of a text run. This hint will direct a text object imaging function to try
using the particular special font defined for the required text encoding of that
text run. If the Text Object Manager cannot find an appropriate font, it will use
the current one.

IMPORTANT

Again, this is an interim solution for this release of Mac OS
8. When a common, system wide solution to the
font-selection problem is available, a developer release will
address it. ▲

Text Measurement 1

One of the imaging functions provided by the Text Object Manager returns
three metrics associated with imaging the text of a text object. The function
calculates and returns these three measurements in pixels as fixed-point values:

■ the width of the text object as imaged by the DrawTextObject function. You
can use the width for performing tasks such as highlighting.

■ the total line height taking into account any font substitution; line height is
the measurement or the vertical distance from the top of the text (or the
ascent line of the text) down to the bottom of the leading beneath the text (or
the ascent line of the next text line).

■ the ascent, that is, the distance from the baseline to the top of the text.

Figure 1-6 maps these metrics to an imaged text string.

Figure 1-6 Text imaging metrics

To live is so startling it leaves

little time for anything else.

Baseline
Leading

Line height
Ascent

Line width
Text Objects for Text Storage and Interchange 1-35
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text Alignment and Justification 1

The Text Object Manager allows you to specify text alignment and text
justification separately when drawing text in a rectangular region defined by a
box. Alignment is the horizontal placement of lines of text with respect to the
left and right edges of the text area. Justification is the spreading or
compressing of printed text to fit into a given line length so that it is flush on
both left and right edges of the text area.

When you use the Text Object Manager imaging functions, you can specify
justification separately from alignment to allow for handling the last line of text
in a paragraph. If you turn on justification, the Text Object Manager functions
will justify all of the text of a paragraph except for the last line. The last line
will be aligned according to the method of alignment you specify, but not
justified.

You can specify that text be left aligned, centered, or right aligned. Figure 1-7
shows three examples using the same text: for the first one, the text is justified
and left aligned, notice that the last line in each paragraph is left aligned, not
justified; for the second one, the text is justified and centered, notice that the
last line in each paragraph is centered, not justified; for the third one, the text is
justified and right aligned; notice that the last line is right aligned but not
justified.
1-36 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-7 Text alignment and justification

Controlling Text Flow When the Text Is Too Wide for the Line 1

When you draw text on a line using the FlowTextObjectOntoLine function, you
can exert finer control over how the text is to be handled if it is too wide to fit
on a line, rather than accepting the default treatment. By default, the function
first tries to condense the text, then truncates it, and finally clips the text image.

To refine how the text is handled, you can specify whether it should be
condensed, elided, or both. If elided, you can specify whether the text should
be elided in the middle, at the beginning, or at the end.

Difficult and easy
complement each other.

Long and short contrast
each other.

High and low rest upon
each other.

Difficult and easy
complement each other.

Long and short contrast

each other.

High and low rest upon
each other.

Difficult and easy
complement each other.

Long and short contrast

each other.

High and low rest upon
each other.

Justified with last line aligned left.

Justified with last line aligned center.

Justified with last line aligned right.
Text Objects for Text Storage and Interchange 1-37
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Note
Unlike the System 7 Script Manager’s TruncateText
function, FlowTextObjectOntoLine does not modify the
original text object. All of the original text remains the
same. ◆

If you specify the condensed option, the Text Object Manager will use a
condensed font to fit the text on the line. If you specify that the text is to be
elided, the Text Object Manager will elide the text by omitting a portion of it
where you specify—at the beginning, middle, or end—and replacing the text
with an omission symbol, such as the ellipsis, specific to the language in which
the text is represented.

Figure 1-8 shows an example in which the first two lines are both elided and
condensed. The first line is elided in the middle, and the second line at the end.
The third line is condensed but not elided. The last line is neither elided nor
condensed.

Figure 1-8 Condensing and eliding text

To live is so startling ... for anything else.

To live is so startling it leaves little time...

To live is so startling it leaves little time for anything else.

To live is so startling it leaves little time

To live is so startling it leaves little time for

 Middle elided

and

condensed

End elided

and

condensed

Not elided

and

condensed

Not elided

and not

condensed
1-38 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text Annotations 1

The Text Object Manager provides a way for you to associate related data with
the text of a text object.

You associate related data with text in the form of an annotation. You can use
annotations for any purpose suited to your application. For example, you can
use annotations to tie pronunciation hints for text-to-speech conversion to the
text string. In handwriting recognition systems, you can store the “ink”
version—what the user actually writes on the screen—with the textual version
using annotations.

You might want to use annotations, for example, if you want your application
to be able to sort files in languages that do not use alphabets, such as Japanese.
For example, without the use of annotations, there is no convention that you
can use to sort a list of names if the names were created with the Japanese
coded character set. However, if you attach the phonetic pronunciation of each
name to the text for a name, you can sort according to pronunciation. In
handwriting recognition systems, you can store the “ink” version -- what the
user actually writes on the screen -- with the textual version using annotations.

You can annotate a text object’s entire text string or any portion of it. You can
attach one or more annotations to a text string. You can associate multiple
annotations containing different kinds of data with all of the text of a text string
or annotations containing the same or different data with different segments of
the text string; you can overlap annotations across contiguous segments of text.

There are two ways to add annotations to a text object:

■ You can explicitly apply an annotation to the text of a text object.

■ You can replace text in one text object with text from another, and the
annotations attached to the replacement text are carried along with it.

By design, text objects do not carry style information; rather, the imaging
system that your application uses is responsible for providing the style
information for the text of a text object. However, it is possible for you to
annotate text with style information. If you do, the semantics of the style
information are private to your application. That is, your application is
responsible for interpreting the style information; the Text Object Manager
does not intervene in any way.
Text Objects for Text Storage and Interchange 1-39
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Annotation Types and Storage 1

You use the Text Object Manager functions to attach an annotation to an
object’s text segment. A text object annotation is a single block of data that is
self-contained and does not refer to other areas of memory. For example, you
should not include embedded pointers in any annotation that you provide. If
the text object containing the annotation were moved to a new address space,
any pointers that it contained would be invalid. When you provide and attach
an annotation to a text object, the Text Object Manager copies the data into the
text object.

Text object annotations are distinguished by type. An annotation’s type is
represented by a 4-byte tag. You define annotation types to identify the kind of
annotation data you supply. Annotation tags follow the rules that apply to
4-byte identifiers. An annotation type tag can be any sequence of uppercase
ASCII letters. Apple reserves for its own use lowercase ASCII letters, all spaces,
or all international characters (characters greater than $7F). The Text Object
Manager defines a wildcard annotation type that you can use to affect all
annotations of a text object—for example, to delete them all.

IMPORTANT

You must register any annotation types and their tags that
you define with the Apple Developer Support Center
(applelink:DEVSUPPORT). (This procedure is similar to the
one you follow in registering creator and file types.) ▲

Annotation Syntax and Semantics 1

An annotation’s data is meaningful to your application only; the Text Object
Manager does not interpret it. The Text Object Manager ensures that the syntax
of annotations remains valid across changes to the text object. Ensuring the
syntactic validity of an annotation means that the Text Object Manager
guarantees that an annotation’s size and data will not change as it adjusts the
range of text to which that annotation applies. It also means that the Text
Object Manager adjusts the annotations so that they continue to apply to the
correct portions of the text string and it ensures that annotations of the same
type do not overlap.

After the text has been modified, annotations apply to the same text as they did
before, though the textual regions may have changed; for example, some of the
text might have been deleted. The Text Object Manager also ensures that
annotations do not apply to any new text added to the text object. For more
1-40 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
information on this process, see “How Annotations Are Adjusted When Text Is
Modified” (page 1-42).

The Text Object Manager does not ensure the semantic validity of annotations
within the text object after modifications to it. The responsibility for this lies
with your application. Semantic validity refers to the internal meaning of an
annotation in relation to its text.

In Mac OS environment, text objects can pass across address spaces and
between different computers. The Text Object Manager is present and acts on
text objects in these circumstances, ensuring their syntactic validity but not
their semantic validity.

Annotations are similar to System 7 resources in that the semantics of an
annotation are available to applications and system components that
understand the annotation’s particular tag type. Although applications other
than the creator of the annotation and Mac OS 8 system components might be
able to interpret the semantics of an annotation, you should not assume that
they do or that they will preserve an annotation’s semantic integrity. Your
application should always be prepared to validate any annotations it has
created or is able to interpret if the text object containing the annotation is
passed to another application or system component that might modify it.

If your application has multiple threads sharing access to text objects, it’s your
application’s responsibility to protect access to the text objects.

Annotation Attributes 1

Whenever a text object has been modified, your application is responsible for
ensuring the semantic validity of annotations within the text object. When it
modifies a text object, the Text Object Manager sets attribute bits in the
annotations of the text object. Each annotation contains two attribute bits.
These bits serve as hints, indicating that you may need to validate an
annotation’s semantics. Here is how you can interpret the bits:

■ You can think of the text-object-annotation-changed attribute bit as
signifying a local change. That is, the Text Object Manager sets this bit in an
annotation when it modifies the range of text to which the annotation
applies.

■ You can think of the text-object-text-changed attribute bit as signifying a
global change, a change somewhere in the text of the text object. That is, the
Text Object Manager sets this bit in every annotation of the text object when
it modifies any of the text of a text object.
Text Objects for Text Storage and Interchange 1-41
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

For example, suppose a text object contains a text string for the phrase
“Changing the world one person at a time.” In this scenario, suppose one
annotation is attached to the text segment “Changing the world” and another
annotation is attached to the text segment “time.” Suppose you replace the
characters for the word “changing” with the characters for the word “seeing.”

Here is how the Text Object Manager would set the annotation bits in the
annotations attached to these text segments after changing the text:

■ It would set both bits in the annotation that now applies to “Seeing the
world.” It sets both bits because the text to which the annotation applies has
been changed; this modification also qualifies as a change to any of the text
in the text object.

■ It sets only the text-object-text-changed attribute bit for the annotation that
applies to “time” because text elsewhere in the text object has been changed
but the local text to which the annotation applies has not.

You can use a Text Object Manager function to check an annotation’s bits to
determine whether you need to update the annotation’s contents to ensure its
semantic validity. The function that allows you to obtain information about the
annotations of a text object returns data structures containing an attributes field
for each annotation. This field includes two bit flags representing the
annotation bits. The Text Object Manager provides constants that define masks
you can use to test these bit flags. After you validate the annotation data, you
can use another Text Object Manager function to clear one or both of the
annotation attribute bits for annotations of a particular type. This allows you to
reuse the bits; you can refer to them later to see if the text has been changed
again.

How Annotations Are Adjusted When Text Is Modified 1

The Text Object Manager follows these rules in adjusting annotations after
modifying the text of a text object:

■ Only one annotation of a given type can exist for a text string segment
within a text object. That is, no annotations of the same type can have
overlapping ranges.

n Adding an annotation deletes any annotations of the same type that fall
entirely within a new annotation’s range.

n Any older annotations overlapping the text segment of a new annotation
of the same type will be adjusted so that they no longer overlap the new
annotation’s range.
1-42 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8

■ All annotations are cloned when their host text is split. The cloned
annotations are identical to the original except that the original and the clone
now apply to separate text segments.

The Text Object Manager makes these four kinds of adjustments to annotations
when the text of a text object is changed in some way, depending on how the
text is modified:

■ If the text range that an annotation spans is completely deleted, so is the
annotation. For an example of this, see Figure 1-9 (page 1-45).

■ If an annotation’s range completely contains a deleted text region, the
endpoint of the annotation’s range is adjusted to reflect the deleted text.

■ If an annotation’s range intersects a deleted text region but neither contains
it nor is contained by it, the annotation’s end point in the deleted text region
is adjusted to be outside it. That is, the annotation’s range shrinks so that it
longer intersects the deleted region. Instead, it now applies to the remaining
portion of the text range to which it originally applied. For an example of
this, see Figure 1-9 (page 1-45).

■ If text is inserted into the region spanned by an annotation, that annotation
is split so that the annotation is attached to the same text as before the
insertion, which is now two separate segments. For an example of this, see
Figure 1-10 (page 1-47). Here is how the Text Object Manager effects this:

n It adjusts the original annotation’s endpoint so that the annotation does
not span the inserted text.

n It copies the annotation and its data and attaches it to the remainder of
the original text segment that comes after the inserted text.

Effects of Replacing, Inserting, and Deleting Text on the Text and Its
Annotations 1

You can replace a portion or all of the text of a text object with new text. You
can insert text into a text object and delete text from one. Whenever you take
these actions, annotations associated with the text are affected.

Any annotations associated with text you insert into a text object are carried
along with the text. Annotations associated with text you delete from a text
object are adjusted to accommodate the remaining text to which they apply. To
replace text, the Text Object Manager first deletes the text to be replaced and
then inserts the new, replacement text.
Text Objects for Text Storage and Interchange 1-43
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
For text deletion, insertion, and replacement, the Text Object Manager follows
the rules governing the four kinds of adjustments made to annotations when
text is modified. See “How Annotations Are Adjusted When Text Is Modified”
(page 1-42) for information on these rules.

Text Deletion and Annotations 1

In the example shown in Figure 1-9, the word “believe” is deleted from the text
object that encapsulates the text string “The old believe everything” and its
associated annotations.

These four annotations are associated with the word “believe”.

■ The first one (A) applies to the word “believe” exclusively, so it is deleted
entirely.

■ The second one (B) applies to both the word “believe” and the word
“everything”, so it is adjusted to apply to the word “everything” only.
Notice that both the local (text-object-annotation-changed attribute bit) and
the global (text-object-text-changed attribute bit) bits are set for annotation B.

■ The third one (C) is adjusted to apply to the word “old” only, and both of its
bits are set.

■ The fourth one (D), which spanned the text segment “old believe
everything” is split into two annotations, each containing its own set of dirty
bits, to now apply to both “old” and “everything” and both bits are set.

Notice that annotation E originally applied only to the word “everything”, so
this annotation was unaffected by the deletion. For that reason, only its global
(text-object-text-changed attribute bit) bit is set.
1-44 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-9 Effect of text deletion on annotations

The old believe everything.
Annotation A

Annotation C

Annotation B

Annotation D

Annotation E

A

E

E

B

D

C

The old everything.

Annotation E

Annotation C

Annotation D1

Annotation B

Annotation D2

B

D2

C

D1
Local

Global

Local
Global

Local
Global

Local
Global

Local
Global

Local
Global

Local
Global

Local
Global

Local
Global

Local
Global

0 0 0 0

0 0

0 0

0 0

1 1

1 1 1 1

1 1

0 1
Text Objects for Text Storage and Interchange 1-45
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text Insertion and Annotations 1

Using a text object containing the text string “The young know everything,”
and the text object from the deletion example discussed in “Text Deletion and
Annotations” (page 1-44), assume that the word “know” is copied and pasted
into the text object whose word “believe” was deleted at the same place. The
resulting text string in the text object now reads “The old know everything.”
Figure 1-10 shows the text object containing the text string “The young know
everything.” and its annotations, and the resulting text object containing the
text string “The old know everything.” As shown in Figure 1-10, annotations
are adjusted in the following way to produce the resulting text object:

■ Annotation F applies entirely and only to the word “know”, and it is copied
and carried along with the word so that it applies to it, and only it, in the
text object resulting from the insertion.

■ Annotation G is copied and shrunk to apply to only the word “know” when
the word is inserted in the resulting text object.

■ Annotation H is copied and adjusted to apply to only the letters “k” and “n”
in the resulting text object.

■ Annotation I is copied and adjusted to apply to only the letters “o” and “w”
in the resulting text object.
1-46 Text Objects for Text Storage and Interchange

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-10 Effect of text insertion on annotations

The old know everything.

B

D2

C

F

G

H

I

E

D1

The young know everything.

F

G

I

H
Annotation H

Local
Global

0 0

Annotation B

Local
Global

1 1

Annotation D2

Local
Global

Annotation F

Local
Global

Annotation H

Local
Global

1 1

Annotation D1

cal
bal

1 1

1 1

1 1

Annotation F

Local
Global

0 0

Annotation I

Local
Global

0 0

Annotation C

Local
Global

1 1

Annotation E

Local
Global

0 1

Annotation G

Local
Global

1 1

Annotation I

Local
Global

1 1

Annotation G

Local
Global

0 0
Text Objects for Text Storage and Interchange 1-47
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text Replacement and Annotations 1

From your application’s perspective, text replacement appears to be a single
process. In fact, to perform text replacement, the Text Object Manager first
performs a deletion and then an insertion. The processes discussed earlier in
“Text Deletion and Annotations” (page 1-44) and “Text Insertion and
Annotations” (page 1-46) perform text replacement.

Storage and Retrieval of International Data and Preferences 1

International preferences and other data— data such as date-and-time strings,
number formats, hyphenation dictionaries, and collation schemes—define in
part the orthography for a particular writing system. This data allows for
language or regional variations within a writing system.

Mac OS 8 components that address international text requirements use this
data to determine how to handle text for the world’s various scripts. Whenever
your application uses an application programming interface (API) to one of
these components, your application indirectly uses this information. Your
application might also have occasion to use this data directly. For example, you
might want to obtain date-formatting information for a specific language to
display a date to your user in a particular format belonging to that language.
You might even want to customize the behavior of a certain operation, such as
collation, for a particular language.

To address the storage and access requirements for data used for international
text handling, Mac OS 8 includes a database called the locale database; to give
you access to data stored there, it includes a component and its API, called the
Locale Object Manager.

The Locale Database 1

The locale database is composed of clusters of information called locales, each
of which pertains to a particular language and region. Each of these clusters is
composed of various types of data used by text-handling operations and
software plug-ins. International software components such as the Text Services
Manager, the String Comparison Services, Date-and-Time Services, and other
system components your application uses to process text use this data. Data
stored in the locale database is also directly available to your application. All
1-48 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Mac OS 8 applications use data stored in the locale database either indirectly or
directly.

The locale database is composed of loose collections of data. It is highly
extensible and flexible, accommodating various types of data. Using
information accompanying the data that describes it, the Locale Object
Manager catalogs this data in the database in a way that makes for easy access
along multiple lines. Figure 1-11 shows a conceptual view of the locale
database. (The contents of a locale database depend on information processed
at system startup; see “How the Locale Database Is Created” (page 1-53).) Each
locale is labeled with ISO language and region codes, together referred to as a
locale identifier. These values define the primary language or geographical
region of the locale and indicate the language and region to which the locale
objects composing the locale belong. A locale identifier also contains a
customization code identifying whether the locale contains customized data.
Within each locale are shown the sets of locale objects composing it.
Storage and Retrieval of International Data and Preferences 1-49
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Locales 1

A locale exists to contain data for the language and geographical region that
define it. Although the text encodings for different languages can share coded
character sets, the languages for which they are used often differ in rules of
composition. A region is a particular subset of a language. A region can
represent a linguistic or cultural entity, not necessarily corresponding to a
nation, whose language is different enough from other versions of the same
language that it merits a specific localized version of Mac OS 8 system
software. For example, U.S. and British are two regional variations that are
subsets of the English language. The locale for the United States of America, for
example, would have English as its default language and United States as its
default geographical region.

A locale collects together locale objects containing data that establishes cultural
preferences for the variation of the language used by a particular geographical
region. The data belonging to a locale can specify a culture’s text handling
preferences for collation, word breaking, date-and-time formatting,
hyphenation, and so forth. The data can also contain information providing
access to input methods and other processes.

Although a locale contains locale objects for the culture represented by its
primary language and region, a locale might also contain other kinds of locale
objects. For example, a modern Greek locale might have locale objects
containing collation tables or hyphenation dictionaries for classical Greek—
perhaps one for Doric Greek and one for Attic Greek—for use by scholars of
ancient Greek languages.

A locale also serves as a focal point in the locale database. The Locale Object
Manager defines a locale reference data type that your application can obtain
for any locale by specifying a locale identifier consisting of the locale’s primary
language and region.

Many application clients of the locale database want primarily to specify the
default operation for various types of international processing. If your
application is only interested in using defaults, it can find this information
easily because locales cluster data for a specific language and region.

The Locale Object Manager 1

The Locale Object Manager provides a set of functions that manage, find, and
provide access to data your application requires for international text
processing and handling. Using the Locale Object Manager, you can search the
Storage and Retrieval of International Data and Preferences 1-51
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
locale database for a single locale object containing data you want or search
iteratively for any or all locale objects matching a set of criteria you specify.

You can use the Locale Object Manager for many purposes related to the task
of finding and obtaining data. For example, you can

■ determine the locale that is being used for your application, and change it if
you like.

■ obtain information about the database contents, such as the number of
locales it contains and the default behavior for text-handling operations
defined at system startup for any locale. You can also change these default
behaviors for your application’s use.

■ find out the name and attributes of a locale object and the locale to which it
belongs, in addition to obtaining that locale object’s data.

■ temporarily add objects to the database for your use and remove them.

For many of these processes, you must identify the locale, the locale object, or
both where the data that you are interested in is stored or where the Locale
Object Manager should begin looking for that data. For this purpose, the Locale
Object Manager defines these two data structures:

■ a locale reference that refers to one of the locales belonging to the locale
database. You use a locale reference to specify the locale you are interested in
when you call the Locale Object Manager functions to access and act on the
data contained in locales, to specify the beginning position of a search, and
to change the default locale to be used within your application’s process.
You can think of a locale reference as a resolved locale identifier that allows
you direct access to a specific locale.

■ a locale object reference that refers to a specific locale object. You pass a
locale object reference to the Locale Object Manager functions that you use
to obtain the data contained in a locale object or to obtain information about
a locale object, such as any of the user-displayable names associated with the
locale object, the locale object’s key name, any of its attributes, and the locale
to which it belongs. You can preserve a locale object reference and use it at
any time to obtain a pointer to the data the object contains.

Default System Locale and Default Application Locale 1

At system startup, the Locale Object Manager establishes the default system
locale based on the language and region for which the system is localized. The
1-52 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
default system locale identifies the locale whose content is used for
international text-processing functions. Typically, the language of the system
locale used for text-handling purposes corresponds to the language for which
the system is localized. However, it is possible for these two to differ.

With the Locale Object Manager, you can obtain a reference to the default
system locale without specifying its language and region. Once you have this
reference, you can use it to determine the locale’s language and region. The
Locale Object Manager bases the default locale for your application on the
default system locale. However, you can use the Locale Object Manager to
change the locale for your application to one other than the system default.

How the Locale Database Is Created 1

At system startup, the Locale Object Manager builds the locale database from
data contained in files stored in the Locales folder. The Locales folder can
contain Locale files or any other type of file. A Locale file identifies the
fundamental language or geographical region defining a locale and contains
locale object resources of type 'lobj' belonging to the locale. For each Locale
file that the Locale Object Manager finds, it creates a unique locale in the locale
database.

Other files stored in the Locales folder can contain stand-alone locale object
resources. Locale objects are self-descriptive; they contain information
specifying which language or geographical region they were primarily
designed for. Based on this information, the Locale Object Manager associates
each stand-alone locale object it finds with the most appropriate locale for it in
the locale database.

Locale objects that are loaded into the locale database at system startup are
considered permanently resident in the locale database—that is, your
application, another application, or a system component that uses them cannot
remove or permanently modify them, and they persist beyond the life of the
application’s process in which they are used. You can think of these locale
objects as system resources.

Storing Persistent Data in the Locale Database 1

Your application can use the data that exists in the locale database without
having ever stored any data there, and you can store data in the database. Most
applications will use only the data stored in the locale database, but service
Storage and Retrieval of International Data and Preferences 1-53
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
providers, localizers, and other groups of developers can provide data to be
stored there.

Depending on your purpose, there are two approaches you can take to store
data in the database and make it available to all applications and system
components:

■ You can define a locale and the locale objects composing it for the locale
database by providing a Locale file.

■ You can provide a stand-alone locale object, in any type of file, to be added
to a locale defined by someone else.

Defining a Locale and Its Defaults 1

To define a locale, you provide a Locale file. It lets you identify not only the
language and region to which the locale objects composing the locale belong
but also the default behaviors for operations having many possible
permutations.Within the Locale file, you provide locale object resources
containing data used by these operations. You might provide a number of
locale objects for the same operation. For example, your Locale file might
contain several locale objects, each specifying a set of rules for string
comparison for a given text encoding specification.

To identify which of these locale objects contains the default data, you can
include a locale defaults list resource of type 'ldfl' that specifies the default
behavior for any given operation. In this way, you can characterize the default
text-handling behavior of every operation within a locale. When no other
information is available to determine which data is used, the data belonging to
the default locale object for a particular operation is used.

Providing a Stand-Alone Locale Object 1

You do not need to define a locale to add a locale object to the database. You
can provide a stand-alone locale object, and the Locale Object Manager will
associate it with the most appropriate locale, based on required information
you provide in the locale object.

When you install a file in the Locales folder containing a stand-alone locale
object, you can easily include in the database any data that you want made
available to all of its clients. You can just as easily remove this data from the
database. For example, if you are a developer who intends to provide a specific
utility or service, such as an input method, you can create and include a
1-54 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
stand-alone locale object in a file that you install in the Locale folder. When you
want to supply a new version of the service, you can remove this file and
replace it with an updated version to be used the next time the system is
booted and the database is built. You don’t need to include your locale object in
a Locale file.

Locale Objects 1

A locale object is an entity containing data localized for a specific text-handling
operation or international software service, such as an input method or spell
checker, and information describing that data. They can be incorporated in the
locale database at system startup. They are installed in the database each time
it is created and reside in the database permanently until the file containing
them is removed from the Locales folder; if a file containing locale objects is
removed, the next time the database is built these objects are not included in it.
Unlike SOM-based text services—such as input methods and stemmers that
use the Text Services Manager—locale objects incorporated in the database in
this manner are data structures organized as resources; they are not objects as
understood in terms of object-oriented design.

In addition to providing locale objects for use by any database clients, you can
temporarily add them to the database for use by your application only. You use
the Locale Object Manager for this; you don’t need to create locale object
resources for this purpose. Instead, you supply a pointer to data for the locale
object when you call the function that adds it to the database. This is a void
pointer, so you can provide any type of data for the locale object.

Regardless of the method you use to specify a locale object, you always provide
additional information along with the text-handling data it contains. This
information includes names and attributes that serve to catalog the locale
object data, identifying the locale to which it belongs and the type of data it
contains. This information makes the locale object accessible to you and other
users of the locale database and also includes one or more text strings, telling
about the data, that your application can display to your user.

Figure 1-12 shows a close-up view of a locale object containing an English U. S.
date format table. Along with the data is a names table that contains the two
required names and three attribute name-value pairs giving the language,
region, and text encoding name, followed by the data. (See “Locale Object
Attribute Name-Value Pairs” (page 1-57) for more information.)
Storage and Retrieval of International Data and Preferences 1-55
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-12 Contents of a locale object

Note
A locale object resource contains additional information
not described here that is used internally. ◆

The Locale Object Manager makes the culturally specific data contained in
locale objects accessible to your application and other clients of the locale
database from many different vantages. You can access the data by knowing
only some aspects of it, for example, the kind of data it contains and the locale
to which it belongs, or any of its attributes.

Locale Object Names Table 1

Every locale object in the database has associated with it a names table that
contains at least two required name records. In addition to a key name, the
names table always contains a user-visible name for the locale object. The key
name is used internally to catalog the locale object in the database, and it serves
as the primary search key. Two examples of key names are inputmethod and

'eng' 'US'

Collation

Date

format

keyname = dateformat

user-visible name = "U.S.Date Format Table"

language = English

region = United States

encoding name = MacOS Roman

4/15/96

Names

Attributes

Data
1-56 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
collatetable. Like the key name, the user-visible name string indicates the
type of data the locale object contains, only it is meant to be displayed to the
user.

The optional names in the names table contain text strings that you can display
to your user to describe the data contents of the locale object, for example, the
copyright notice. You can obtain any of these name strings by calling the Locale
Object Manager and specifying the name whose text string you want. Each
locale object name has associated with it an identifier that serves to identify the
type of data the name string contains. The Locale Object Manager defines
constants for these identifier names that you can use to indicate the one you
want. Here is a list of the name types that a names table can contain, along with
their strings:

■ The required locale object key name. The Locale Object Manager uses this
name to catalog the data in the database. It also uses it as a key into the
database to find locale objects of this type.

■ The locale object user-visible name to display to the user.

■ The copyright string name and the copyright value.

■ The manufacturer string name and the manufacturer value.

■ The function description name and a string that specifies the purpose or
type of function provided by the object’s data, for example, “U.S. English
Collation Table”.

■ The locale object version string name and the version number value that
gives the version of the locale object’s data. For example, a version number
value might specify the following string: “Apple Computer Japanese Input
Method. Version 1.0”.

Locale Object Attribute Name-Value Pairs 1

Every locale object in the locale database contains a set of attributes provided
by the creator of the locale object, each of which consists of a name-value pair.
Sets of attributes contained within a locale object serve to classify the data the
object contains along multiple lines so that you can access it according to any
collection of its qualities at different times. You provide a data structure
containing attribute name-value pairs to describe the data that you are looking
for when you call the Locale Object Manager to obtain it. For example, your
application might look for all locale objects whose data is characterized by one
Storage and Retrieval of International Data and Preferences 1-57
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
specific attribute while another application might look for locale objects of a
certain type having in common two or more attributes.

Locale objects belonging to the same or different locales might have some of
the same attributes; for example, all locale objects containing input methods
and collation and number formatting services for a certain language, such as
Thai, would have in common a language attribute for Thai.

Attribute name-value pairs distinguish locale objects having the same key
name. Recall that a key name specifies the type of data a locale object contains.
A locale itself can contain multiple locale objects that include data for the same
type of operation. For example, the U. S. English-language locale might have
two locale objects for date-format data: one showing numbers, one showing a
mix of numbers and words. Taken as a whole, the locale database will contain
many locale objects providing the same type of data.

You can use attribute name-value pairs to specify which locale object of a
certain type you are looking for. Suppose you want to obtain collation tables
for the English language for both the British and U. S. geographical regions. To
request this data, you would specify the key name and an attribute; for the key
name you would specify collatetable; for the attribute you would specify the
English language. If you did not qualify the key name with the language
attribute, the Locale Object Manager would search the database for any locale
objects containing collation table data without regard for the language they
apply to. If you wanted only the regional collation table for the British form of
the English language, you would further qualify your request by including
another attribute specifying the region.

Recall that you provide an attribute value paired with a name. An attribute
name describes the type of data the attribute value specifies. For example, a
locale object might contain the predefined attribute name kLanguageName for
which the associated attribute value is a specific language code. The Locale
Object Manager defines a set of attribute names for commonly used attributes.
You can ascribe these names to attribute values to identify their content type.
These include constants for attribute names such as text service, keyboard
input method, locale identifier, and SOM class. Associated with the text service
name would be a value specifying a particular type of text service, and so on.

Where Locale Objects Reside in Memory 1

Locale objects composing the locale database can exist in system wide memory
or in your application’s per-process memory area, as illustrated by Figure 1-13.
1-58 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-13 Memory used for locale database

'eng' 'GB'

Thesaurus

Collation

'heb' 'IL'

Collation
Calendar

'fre' 'CA'

Input

method

Hyphenation

dictionary

Calendar

Systemwide memory

Per-process memory

'eng' 'GB'

Spell

checker

Application
Storage and Retrieval of International Data and Preferences 1-59
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Locale objects that are loaded into the locale database at system startup are
considered permanently resident in the locale database—your application
cannot remove them or permanently modify them, and they persist in memory
beyond the life of your application’s process. These locale objects are stored in
system wide memory. They essentially compose the locale database as it
appears to all of its clients. Applications and system components using the
locale database see this view of it.

However, you can use the Locale Object Manager to add a locale object to the
database for use from within your application’s current process. Any locale
object that you add in this way is stored in your application’s per-process
memory area. From your application’s view, the locale database appears to
contain this locale object, but other applications accessing the locale database
concurrently cannot see your additional locale object. When you add a locale
object, you are not modifying the locale database, only extending its contents
temporarily for your use.

Figure 1-14 shows where these locale objects reside in memory. It shows two
views of the locale database. One view is from the perspective of the SurfWriter
application that added a locale object to the database for use within its current
process. This view includes the locale object stored in its per-process memory.
Notice that the other application’s view, Application B, is of the locale database
in systemwide memory only.
1-60 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-14 Where locale objects reside in memory

'eng' 'GB'

Theseaurus

Collation

'heb' 'IL'

Collation

Calendar

'fre' 'CA'

Input

method

Hyphenation

dictionary

Calendar

Systemwide memory

Per-process memory Per-process memory

SurfWriter

application Application B

'eng' 'GB'

Spell

checker
Storage and Retrieval of International Data and Preferences 1-61
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Default Locale Objects for a Locale 1

When the Locale Object Manager initially builds the locale database, it sets
default behaviors for text-handling operations for each locale based on
information provided in a Locale file. Your application can use the standard
default behaviors for a given locale, or you can change one or more of them
temporarily for use within your application’s current process.

You can customize the formats of numbers, currency, time, dates, and
measurements; you can customize string comparison, and other operations. For
example, you might want to use short dates—the specification of dates in
purely numeric representation. For the U. S. English locale, the short date for
December 16, 1995 is 12/16/95. In this case, you would customize the U. S.
English locale to use the locale object for this operation whose data contains the
short-date format.

The Locale Object Manager provides functions you can use to obtain or change
the data used to determine the default behavior for any text-handling
operation that applies to a specific locale. To indicate the default behavior you
want to know about, you specify the key name. To set the default behavior, you
identify the locale object containing it. In both cases, you also identify the locale.

Any customizations you make to the default text-handling behaviors of a
specific locale are valid for your application only from within its current
process. Not only are these changes effective for your application only, but only
your application perceives the database as modified in this way. Your
modifications do not affect the locale database as it is seen by other
applications that might be using it; the standard default values established at
system startup are in effect for other applications accessing the database at the
same time. Figure 1-15 illustrates this.
1-62 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-15 An application’s view of default locale objects after changing one

Searching the Locale Database for Data 1

To obtain data stored in a locale object of the locale database, you call the
Locale Object Manager, describing aspects of the data you want. The Locale
Object Manager then searches the locale database for a match that satisfies the
criteria you provide.

You can search for a single locale object, or you can search iteratively for more
than one matching locale object. In either case, when the Locale Object

SurfWriter

application

Application B

'jpn' 'JP'

Input

method

Word breaking

Default

(changed by application

for it's own use)

Default

for local

Default

(not changed by

application)

Input

method

Input

method
Storage and Retrieval of International Data and Preferences 1-63
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Manager finds a match, it returns a reference to the locale object and a pointer
to the data it contains. You can use the pointer to access the locale object’s data
directly after calling the search function, or you can preserve the locale object
reference and pointer and use it later to obtain the data, delaying retrieval of
the data.

If you want to search for only one matching locale object, you can use the
Locale Object Manager function designed for this purpose. You can position
the search anywhere in the database by giving the locale reference to the locale
where you want the Locale Object Manager to begin and by specifying the
direction in which you want the search to proceed. The Locale Object Manager
returns to you the first locale object it encounters that matches the key name
and attributes you specify.

You can also perform an iterative search that traverses the entire locale
database looking for matching locale objects; you use two Locale Object
Manager functions designed for this purpose. To search iteratively throughout
the database, you use a locale iterator. You create a locale iterator reference that
contains a locale reference to the locale where you want the search to begin and
the matching criteria, consisting of the key name and an array of attribute
name-value pairs. You then pass the locale iterator reference to the Locale
Object Manager function that performs the search, telling it the direction to
proceed in. When the function encounters a locale object that matches your
description, it returns a locale object reference and the data for the matching
object to your application.

You can continue to call the function from within a loop to find all matching
locale objects or until you find what you are looking for; you use the same
locale iterator reference to do this. The Locale Object Manager tracks the
progress through the locale database maintaining the next position at which to
continue the search. When there are no more matching locale objects in the
database, the function returns a result code that you can test against.

Figure 1-16 illustrates this process. In this example, the application is searching
for locale objects containing calendrical data. The Locale Object Manager finds
a match in locale 1— a matching locale object is marked with a check in this
illustration. The Locale Object Manager returns the data to the application—
indicated by the number 2, representing this part of the process. It then
resumes the search at the point where it stopped—indicated by the process
number 3—when the application calls the function again from within its loop.
It doesn’t find any more matches in locale 1, so it proceeds to locale 2. The
Locale Object Manager finds another match in locale 2, returns it to the
application—indicated by the process number 4. It again resumes the search
1-64 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
from where it left off—indicated by the process number 5 —after being called
from within the loop. Notice that although it searches locale 3, the Locale
Object Manager doesn’t find a match there, so it continues on to locale 4, where
again it finds a match and returns it to the application—indicated by the
process number 6—completing the search of the entire database.
Storage and Retrieval of International Data and Preferences 1-65
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Figure 1-16 An iterative search of the locale database

'fre' 'CA'

'eng' 'GB'

'heb' 'IL'

Calendar

'jpn' 'JP'

Application

Spelling

checker

Locale Object Manager

Locale 1

Locale 2

Locale 3

Locale 4

Calendar
CalendarHyphenation

dictionary

Input

method

Collation

Calendar

Theseaurus
Collation

1
2

3

4 5

6

Starts

search

Continues

search

Continues

search

Returns Locale

Object data

Returns

Locale Object

data

Returns

Locale

Object

data
1-66 Storage and Retrieval of International Data and Preferences

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text Encoding and Conversion 1

If you are designing a text-intensive application, such as a word processor,
your application should use the encoding converter services provided by
Mac OS 8 when you want to convert the text from one encoding to another.
This section describes the two types of encoding converters the Mac OS 8
provides and their uses, and it looks at some of the concepts underlying
conversion between text encodings.

Note
In most cases, you should use text objects for text your
application handles. If you use text objects for your
multilingual applications, the system automatically
handles any encoding conversions required by processes
your application performs. The system software calls the
encoding converter to convert the text from one encoding
to another in a manner that is transparent to your
application so that your code doesn’t have to handle
conversion. However, text objects are inefficient for use
with the amount of text that applications such as a word
processor handle. ◆

Encoding Converters 1

Mac OS 8 provides two encoding conversion managers—the High-Level
Encoding Converter Manager and the Low-Level Encoding Converter
Manager—that offer different levels of service for converting text across
encodings. The high-level one is easy to use, having a simpler interface than
the low-level one, but it gives you less control over the conversion process and
provides less error reporting than does the low-level one.

The High-Level Encoding Converter Manager 1

The High-Level Encoding Converter Manager allows you to convert text
between any two encodings. It does not map offsets pertaining to text
formatting, as does the Low-Level Converter, so it is best used to convert
mainly plain text or text with inline formatting, such as HTML.
Text Encoding and Conversion 1-67
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
The High-Level Encoding Converter Manager performs table lookup-based
and algorithmic conversions. If the High-Level Encoding Converter Manager
cannot perform an exact conversion, it takes the most reasonable action,
effectively using default values. Although using the high-level version of the
converter is easier and simpler than the low-level one, you cannot specify the
conversion behavior, for example, for mapping strategy, through use of control
options when you use it as you can with the low-level one.

The High-Level Encoding Converter Manager does not guarantee exact
mapping. It may use a loose mapping or fallback-characters mapping in the
conversion process. Because it does not provide detailed error reporting, your
application is not informed when either of these types of mapping occurs. For
this reason, the High-Level Encoding Converter Manager cannot ensure
round-trip fidelity.

You should consider using the High-Level Encoding Converter Manager if

■ you want to convert directly from any encoding to any encoding, but
without exercising control over the process

■ you’re converting plain text or text with inline formatting

■ you aren’t concerned with high fidelity

■ you don’t need to control how mapping is performed when exact mapping
isn’t possible, and you don’t need to know when loose mappings and
fallbacks are used.

■ you want to perform an algorithmic transformation

For table lookup-based conversions, the High-Level Encoding Converter
Manager calls the Low-Level Encoding Converter Manager to perform the
conversion. For conversions entailing text encoding schemes and conversions
that perform algorithmic transformations for text encoding formats, it uses
algorithmic conversion plug-ins. (See “Text Encoding Format” (page 1-76) for
more information on transformations.)

The High-Level Encoding Converter is extensible, allowing you as a
third-party developer to provide your own algorithmic conversion plug-ins to
be used with it.

The Low-Level Encoding Converter Manager 1

The Low-Level Encoding Converter Manager performs table lookup-based
conversions, allowing you to convert text encoded in the coded character set of
1-68 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
one text encoding to another using Unicode as a hub. (Table lookup-based
conversion converts text encoded in a single text encoding to another; it does
not deal with text encoding schemes.) The primary use of the Low-Level
Encoding Converter Manager is to convert text from any text encoding to
Unicode or to convert Unicode text to any text encoding. It does this efficiently
and it gives you a fine level of control over how the conversion is performed.
You can also use it to convert between any two text encodings when you want
more control over the conversion mapping and extensive error reporting.

Through use of control options, the Low-Level Encoding Converter Manager
allows you to specify how mapping should be performed. You can specify that
you require high-fidelity mapping or you can stipulate the kind of mapping
acceptable when a direct, exact, mapping is not possible; you can control
whether the converter performs loose mapping and fallback mapping, and you
can supply your own fallback handler for fallback mapping. These mapping
concepts are discussed in “Converting Between Character Sets Using Mapping
Tables” (page 1-79). The Low-Level Encoding Converter Manager can also map
style or font information from a source text string to the converted string that it
returns to your application so that you can maintain formatting information
external to the text.

You should consider using the Low-Level Encoding Converter if

■ you want to convert text in any text encoding to Unicode

■ you want to convert Unicode text to any text encoding

■ you require round-trip fidelity

■ you want to convert text that has associated text formatting information and
have the converter map the related offsets to the converted text

■ you want control over how mapping is performed

■ you want extensive error reporting when high-fidelity mapping isn’t possible

The Low-Level Encoding Converter Manager does not perform algorithmic
transformations; you should use the High-Level Encoding Converter Manager
for this purpose.

Most applications will use the High-Level Encoding Converter for converting
between any two text encodings. Applications that only want to convert either
to Unicode or from Unicode will use the Low-Level Encoding Converter.
However, when you want to convert text between any two text encodings and
you require control over the process, you can call the Low-Level Encoding
Converter Manager using Unicode as the intermediary encoding, or hub. Using
Text Encoding and Conversion 1-69
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
the Low-Level Encoding Converter Manager for this purpose entails a two-part
process: first you convert text in any text encoding to Unicode, then you
convert the text—now expressed in Unicode—from Unicode to the target text
encoding.

The Low-Level Encoding Converter Manager consists of a set of functions and
their data types, most of which align along these two processes: one group of
functions allows you to convert text to Unicode; the other group allows you to
convert text from Unicode. These functions also include truncation utilities that
allow you to determine where to properly truncate text before converting it
and utilities for converting Pascal strings to and from Unicode.

Characters, Codes, Text Encodings, Text Encoding Schemes,
and Text Elements 1

In considering how text is converted from one encoding to another, it is useful
to understand what constitutes a text encoding or a text encoding scheme. To
understand what constitutes a text encoding, it is helpful to have a set of terms
that describe its aspects and that clarify underlying concepts, which are often
misconstrued. To use these concepts in a meaningful way that adapts itself to
the practical and evolving requirements of text internationalization, it is
important to make distinctions. Assigning terms to these concepts and defining
the terms draws these distinctions.

Existing standards-setting bodies look at these concepts as they apply to
internationalization from varying perspectives. For the most, they define their
terms based on existing encoding schemes rooted in the past and the
requirements these schemes met.

This section uses emerging terms and definitions for these concepts—
characters, codes, coded characters, and text encoding schemes—suggested by
proponents who are today creating the context in which internationalization is
discussed and who are shaping its future.

Characters 1

A basic difference can be articulated in identifying how a person using a
writing system might think of a character from how a computer handles one.
The notion of a character exists in relation to writing systems; people usually
think in terms of the graphical representation of a character. The encoding for a
character exists in relation to computers; computers handle characters in the
form of their numeric codes or representations.
1-70 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
A character is a unit of information used for the organization, control, or
representation of data. Letters, ideographs, digits, and symbols in a writing
system are all examples of characters. A character is associated with a name,
and optionally, but commonly, with a representative image or rendering.

A character repertoire is a collection of distinct characters. Two characters are
distinct if and only if they have distinct names in the context of an identified
character repertoire. Two characters that are distinct in name may have
identical images or renderings. Characters composing a character repertoire
can belong to different scripts.

Codes 1

Computers do not recognize characters. Instead, they contend with their
numeric representations or equivalents. Several terms come into play in
thinking about how characters belonging to a character repertoire are
represented to computers.

A bit combination is an ordered collection of bits that is interpreted as a binary
number. A code set is a set of bit combinations of equal size that are ordered by
their numeric values that must be consecutive. A code set position is the
location of a bit combination in a code set. It corresponds to the numeric value
of the bit combination.

Note
Some standards use the term code point to refer to a bit
combination of a code set. The code point bit combination
is the smallest unit of expression in a code set. All Unicode,
Version 1.1 code points have a uniform width of 16 bits. ◆

Coded Characters 1

For characters to be recognized and distinguished from one another by
computers, they must be mapped to code bit combinations at particular code
set positions within a code set.

A coded character set is a one-to-one mapping from a character repertoire to a
code set. These codes represent characters to the computer. A code set may
contain bit combinations that do not correspond to a character in the character
repertoire, that is, it can be a superset of the characters belonging to a character
repertoire.
Text Encoding and Conversion 1-71
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Note
Some standards bodies do not distinguish a coded
character set from a character set and instead merge the
concepts referred to by the terms character repertoire and
coded character set in the single term character set. ◆

A coded representation is a sequence of one or more bit combinations that
unambiguously represent a character in the domain of an identified coded
character set. A code representation is often referred to as a coded character. A
coded representation implies an object that is represented, specifically, a
character. A given character may have more than one coded representation.
Each distinct coded representation of a character is referred to as a “coded
representation form.”

A coded representation or element of a coded character set is a unit of encoding
on which processing occurs. A coded representation should be independent of
writing systems and textual data itself.

Text Encodings and Text Encoding Schemes 1

Computer users throughout the world who work mainly in their native
language also need to use English characters or characters from other scripts.
The Japanese writing system, for example, uses four individual scripts: Romaji
(alphabetic Roman letters), Katakana and Hiragana (syllabic characters), and
Kanji (ideographic characters). Even English-language users require use of
pseudoscripts that include collections of symbols, numbers, and punctuation.

Providing support for multilingual applications entails finding a facile way to
allow software to use characters from the scripts of multiple languages. This
requires designing predictable ways to mix characters from multiple coded
character sets.

A text encoding usually contains the encodings for the characters belonging to
a single character set addressing a single script. To distinguish between a text
encoding based in a single coded character set and a text encoding that
addresses multiple coded character sets, editors of current Internet standards
have suggested use of the second term character encoding scheme or text encoding
scheme. Apple Computer aligns with this suggestion and uses the term text
encoding scheme. A text encoding scheme is a method that specifies a unique
mapping from a sequence of bit combinations to a sequence of integers, each of
which is interpreted as the principal coded representation of a character in
some identified coded character set. Text encoding schemes often include
1-72 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
predefined escape sequences that indicate transitions to specific coded
character sets.

The sequence of bit combinations that serve as input to the mapping function
of a text encoding scheme may be construed as a sequence of coded character
representations. They may be preceded by, interspersed with, or followed by
escape functions that must be explicitly specified by the text encoding scheme.

A well-known example of a text encoding scheme is the ISO 2022-JP-2
standard, which begins in ASCII and switches to other coded character sets of
ISO 2022 through limited combinations of escape sequences. This text encoding
scheme makes reference to 8 distinct coded character sets.

Many existing text encoding schemes are based on the method described in the
ISO 2022 standard, which specifies code extension techniques. The ISO 2022
standard allows multiple coded characters sets to be combined in 7-bit or 8-bit
formats; as mentioned previously, it identifies the various sets by escape
sequences. The 7-bit format is used for software that cannot handle 8-bit data,
such as some electronic mail programs.

Text Representation and Text Elements 1

When an application processes text, it usually decomposes the text into
elements consisting of the smallest unit of data for a particular process. This
fundamental unit of text is called a text element. Defining a text element is
difficult because it is process dependent. One characteristic of a text element is
that its definition changes depending on the operation in which it is used and
even perhaps on the writing system to which it belongs. This makes it possible
to think of a text element as an abstraction of a unit of text used by a particular
process. Determining what constitutes a text element, then, depends on the
particular language and process. For example, the Arabic ligature lam-alef text
element is used for text rendering but not for text sorting.

No simple relationship exists between text elements and code representations.
Coded character sets cannot enumerate all possible combinations of text
elements, which are potentially unlimited. A single text element can
correspond to a single code representation or multiple code representations.
Multiple text elements can also correspond to a single or multiple code
representations. Again, the relationship varies based on the language of the text
and the application’s process in which it is used. As mentioned earlier, a coded
representation should be independent of writing systems and textual data
itself. A code representation can be optimized for a particular text process, but
this is not the same as making it dependent on that process.
Text Encoding and Conversion 1-73
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Most text processing can be broadly classified into either of two categories:
communication or computation. Communication involves the interchange of
text. When an application transmits text, it sometimes need to convert the text
from one representation to another in a predictable or algorithmic way to
accommodate different media. This process entails modifying the form or
content of the text.

Computation entails various processes. A common one is determining
whether two text elements or sequences of text elements are equivalent. There
are various levels of equivalency: are the text elements or sequences of text
elements identical, do they take up the same code set positions, do they have
the same form, do they render the same image when displayed, and so forth.
Complex computational text processes include sorting, searching, text display,
text editing, text word breaking, spell checking, and grammar analysis.

Different text processes operate on different units of text. For example, input
processing must recognize natural boundaries that define text entered through
the keyboard, pen, or voice.

A single process that is language dependent, such as sorting, uses different text
elements, depending on the language of the text string, even when the process
is applied to the same text. For example, the string “ch” is sorted differently for
English and Spanish text. For English text, the string is treated as two text
elements: “c” and “h.” For traditional Spanish text sorting, it is treated as one
text element because it is sorted as a single character.

Because text element sequences depend on text processes, they may not always
be ordered in the same way. Text element sequences can be ordered in different
ways, for example, visually or logically. An example of a visual ordering is a
display text element sequence for a given directional flow. An example of a
logical ordering is one in which the code representations are ordered according
to the input text element sequence.

Text Encoding Specification 1

For Mac OS 8, you use a data type called a text encoding specification to
identify the coded character set, text encoding, or text encoding scheme in
which a segment of text is represented. Mac OS 8 system components use text
encodings and text encoding schemes indirectly or directly in handling text.
You use the Low-Level Encoding Converter Manager to create a text encoding
specification. Here are only a few of the ways in which text encoding
specifications are used:
1-74 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
■ Text objects contain the text encoding specification for the text they
encapsulate.

■ The Locale Object Manager locale objects contain text encoding
specifications for user-displayable text strings they include.

■ Encoding conversions performed by the either of the converters require at
least two text encoding specifications. You identify the encoding of the
source text and the target encoding to which you want that text converted.

A text encoding specification is an opaque scalar value into which the
Low-Level Encoding Converter Manager packs four numeric values that
identify the text encoding base, the text encoding variant, the text encoding
format, and the packing version used for the text encoding or text encoding
scheme.

When you create a text encoding specification, you specify all but the packing
version. The Low-Level Encoding Converter Manager packs the three values
that you provide into an unsigned 32-bit value, which you can then pass by
value either directly or from within other data structures to the functions that
use text encodings or text encoding schemes.

Text Encoding Base 1

A text encoding base is the primary specification of the text encoding or coded
character set.

Text Encoding Variant 1

A text encoding variant identifies a text encoding or coded character set some
of whose less commonly used characters vary from those specified by the base
encoding scheme with which the variant is related. Variations in mapping
usually exist only for insignificant characters.

Variants of the same base encoding usually coexist in the same system as font
variants. Two different text encoding that can both be used for body text in the
same language on the same version of a localized platform are considered
variants of the same base encoding.

For example, the MacOS Icelandic and MacOS Turkish text encodings are
considered different base encodings even though they belong to the same
script; they normally do not coexist on the same Macintosh® system, and they
each have their own language and region codes.
Text Encoding and Conversion 1-75
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
However, the Sai Mincho and Hon Mincho fonts, which are not distinguished
by language or region, generally coexist on a MacOS Japanese system; they are
considered variants of MacOS Japanese. Although Sai Mincho and Hon Mincho
each implement slightly different character sets, they are not different enough
for a user to think of them as something completely unique, as is the case with
the Symbol and ITC Zapf Dingbats® fonts.

Text Encoding Format 1

A text encoding format identifies the packing format. It specifies the particular
way in which a coded character set is algorithmically transformed, for
example, to allow transmission through communication channels that may
handle smaller bit values than those defined for the native coded character set,
or to allow character codes to be handled by older software.

Typically, transformations are performed by programmatic code that
implements an algorithm. For example, some communication systems require
that data adhere to the rules of the ISO 2022 standard, which reserves the 8-bit
code values between 0x80 and 0x9F (the C1 space), and the code position
DELETE. Unicode uses these values to encode characters. As a result, direct
transmission of Unicode data over these transmission systems is not possible.

Text encoded in a character set, such as Unicode, that uses 16-bit character
encodings might be transformed programmatically by code that implements
the algorithm of a specific format for transmission through a communication
channel that handles 7-bit or 8-bit character codes.

The High-Level Encoding Converter Manager performs transformations using
algorithmic conversion plug-ins. Third-party developers can install format
transformation plug-ins for use with Mac OS 8.

Unicode 1

Most text encodings and text encoding schemes developed in the past offer
limited or complex solutions to the problems intrinsic to text
internationalization. Text encodings are limited, usually supporting one
language, and text encoding schemes are characteristically complex. Although
text encoding schemes can support a mix of encodings for processing groups of
related languages or even collections of encodings for processing more unusual
combinations of languages, such as a mix of Japanese and German, they entail
convolutions such as use of escape sequences or reserved codes that signal
shifts between encodings. A simpler solution would be to combine all code
1-76 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
representations of characters for all commonly used scripts and languages and
symbols into a universal coded character set.

The Unicode coded character set provides this simple solution by attempting to
encode all of the characters in use in the world today. It includes code
representations for characters from the world’s scripts as well as math
operators, technical symbols, geometric shapes, and dingbats. Unicode uses a
16-bit encoding space, which its designers selected after carefully analyzing the
overall requirements of the scripts which constitute modern written text. A
plain text standard was defined to ensure legibility.

Unicode offers the simplest solution to problems inherent in providing support
for fully multilingual systems. Any one text encoding scheme can provide
support for all of the single encodings its method addresses. By addressing
most of the character encodings for the world’s scripts, Unicode can offer
support for all common encodings and the languages they support. Because
Unicode is a single coded character set, it doesn’t require use of escape
sequences or other complexities to identify transitions between coded character
set. Unicode attempts to remedy problems common to application programs
that handle multiple languages, such as use of multiple, inconsistent code
representations caused by conflicting national character standards.

Using Unicode as the primary text encoding offers many advantages at the
system level and to you as a developer of applications meant for the world
market. Unicode provides more representational power than any other single
text encoding scheme, enabling a vast diversity of languages to be expressed in
one system. Because it encompasses code representations belonging to coded
character sets used on most platforms and for most of the world’s languages,
Unicode facilitates data interchange with other platforms. Using Unicode, text
manipulated by your application and shared across applications and platforms
can be encoded in a single coded character set; this text can also be easily
localized. Unicode offers advantages even to developers of English-only
applications also because it contains a wide assortment of technical,
typographic, and other symbols.

Unicode provides some special features, such as combining or nonspacing
marks and conjoining jamos. These features are a function of the variety of
languages that Unicode handles. If you have coded applications that handle
text for the languages these features support, they should be familiar to you. If
you have used a single coded character set such as ASCII almost exclusively,
these features will be new to you.
Text Encoding and Conversion 1-77
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
The following two bodies, involved in the effort to standardize the world’s
languages for use in computing, define Unicode standards:

■ The Unicode Consortium, a technical committee composed of
representatives from many different companies, publishes the Unicode
standard. The Unicode 1.1 standard is an evolution of the Unicode 1.0
standard, the first Unicode standard issued by the Unicode Consortium.

■ ISO (the International Organization for Standardization) and the IEC (the
International Electrotechnical Commission), national bodies that together
form the specialized system for worldwide standardization, publish ISO/
IEC 10646. This standard specifies the Universal Multiple-Octet Coded
Character Set (UCS), a standard whose code point assignments are identical
with Unicode.

The Unicode 1.1 Standard 1

The Unicode 1.1 Standard uses 16-bit character encodings. That is, all Unicode,
version 1.1 code points have a uniform width of 16 bits. Unicode 1.1 is identical
in code representation content to the ISO/IEC 10646-1 UCS-2 (Universal
Character Set containing 2 bytes) BMP (Basic Multilingual Plane).

For this release of Mac OS 8, the Encoding Converter supports the Unicode
Consortium’s Unicode Standard, Version 1.1, specified by the Unicode Standard:
Worldwide Character Encoding, Version 1.1. and the UCS-2 subset of the ISO/IEC
10646-1993 standard.

Note
Sixteen-bit character encodings have been proven
sufficient to handle the world’s commonly used written
languages. However, the ISO/IEC 10646 standard includes
a 32-bit encoding form referred to as UCS-4 (Universal
Character Set containing 4 bytes). Although supporting the
32-bit encoding format is currently unnecessary because
16-bit encodings are adequate, in the future, Apple intends
to support all Unicode encoding formats. ◆

ISO/IEC 10646 1

The ISO/IEC 10646 standard defines two alternative forms of encoding:

■ a 32-bit encoding, which is the canonical form. The 32-bit form is referred to
as UCS-4 (Universal Character Set containing 4 bytes)
1-78 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
■ a 16-bit form that is referred to as UCS-2

The ISO/IEC 10646 nomenclature refers to coded characters as multiples of
octets and assumes octets are serialized, while the Unicode nomenclature refers
to coded characters as indivisible 16-bit entities. The ISO/IEC 10646 standard
UCS-4 (32-bit character encoding) is not supported by the Unicode 1.1 standard.

Converting Between Character Sets Using Mapping Tables 1

To convert text between two text encodings, the Low-Level Encoding
Converter maps the coded representations of characters from one set to
another, taking into account complex conditions mentioned later in this section.

The Low-Level Encoding Converter Manager does not itself incorporate any
knowledge of the specifics of any text encoding. Instead, it uses loadable,
replaceable mapping tables that provide the information about any text
encoding required to perform the conversion.

All information about a particular coded character set used in a text encoding
is incorporated in a mapping table. A mapping table associates coded
representations of characters belonging to one coded character set with their
equivalent representations in another and accounts for the various conditions
that arise when coded representations of characters cannot be directly mapped
to each other.

A mapping table is stored as a resource file in the Text Encoding folder. One
mapping table resource file exists for each supported base encoding.

Round-Trip Fidelity 1

When the Low-Level Encoding Converter Manager is able to convert a text
string expressed in one text encoding to Unicode and back again to the original
text encoding, with the final text string matching exactly the source text string—
that is, without incurring any changes to the original—round-trip fidelity is
said to have occurred.

For the various national and international standards that the Unicode
Consortium used as sources for the Unicode 1.1 coded character set, Unicode
provides round-trip fidelity. Because those coded character sets have been
effectively incorporated into the Unicode coded character set, conversion
involving them will always produce round-trip fidelity. Text in one of those
coded character sets can be mapped to Unicode and back again with no loss of
Text Encoding and Conversion 1-79
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
information. Coded representations of characters that were distinct in the
source encoding will be distinct in Unicode.

However, perfect round-trip conversion is not always possible. Not all
vendor-provided coded character sets are directly incorporated into Unicode.
Some code representations of characters may have no counterpart in Unicode.
For example, a source text string from a vendor coded character set might
contain a ligature that is not represented in Unicode. In this case, that
information may be lost during the round trip.

The Low-Level Encoding Converter uses a variety of conventional methods to
attempt to find some way to map the source coded representation of a
character onto a sequence of Unicode coded representations in such a way as to
preserve its identity and interchangeability.

Here are some of the methods used to map code representations of characters
when high fidelity achieved through an exact or strict mapping is not possible:

■ loose mapping

■ fallback mapping

■ mapping of characters to the Corporate Use Zone

Multiple Semantics and Multiple Representations 1

In many coded character sets, a single coded representation of a character may
have multiple semantics, either by explicit definition, ambiguous definition, or
established usage. A condition of multiple semantics, also called ambiguous
semantics, exists when a single coded representation in one coded character set
represents two distinct but similar text elements, and two separate coded
representations exist for these text elements in Unicode.

For example, the JIS X0208 standard specifies the JIS X0208 character 0x2142 as
having two meanings: double vertical line and parallel. Each meaning
corresponds to a distinct Unicode code representation. The meaning “double
vertical line” corresponds to the Unicode coded representation U+2016
“DOUBLE VERTICAL LINE”. The meaning “parallel” corresponds to the
Unicode coded representation U+2225 “PARALLEL TO”. Either one is a valid
match for the JIS character.

The ASCII coded representation 0x2D is specified as “hyphen, minus sign.”
Unicode has a corresponding HYPHEN-MINUS character, which is the best
match for the ASCII one. However, Unicode also has separate HYPEN and
MINUS SIGN code representations of characters.
1-80 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Multiple representation exists when a number of text elements can be
represented in Unicode either as single coded representations or coded
representation sequences. Examples include Latin and Greek coded
representations with diacritics and Hangul syllables. The presentation forms
encoded in Unicode can also be represented using coded representations for
the abstract forms, and this also constitutes a condition of multiple
representation.

Strict and Loose Mapping 1

A mapping table has both strict equivalence and loose mapping sections that
identify how a mapping is to occur. Loose and strict mappings occur within the
context of multiple semantics and multiple representations.

Strict mappings can be a one-to-one mapping (a mapping between one coded
representation to one coded representation), a one-to-many mapping, or a
many-to-one mapping.

In all these cases, strict mappings are exact mappings between coded
representations yielding high fidelity when multiple possibilities exist. Strict
mapping occurs when the mapping of a coded representation from Unicode to
Character Set X, for example—a particular character set—is the exact reverse of
the mapping of that coded representation from Character Set X to Unicode.
Loose mapping occurs when the mapping of a coded representation from
Unicode to the coded representation of a character belonging to another coded
character set, for example, Character Set X, does not yield the same coded
representation when the reverse mapping occurs, that is, when mapping from
Character Set X to Unicode.

In the case of multiple semantics, a strict mapping exists between the single
coded representation in Character Set X and only one of the two code
representations in Unicode. Mapping to the other coded representation in
Character Set X would constitute a loose mapping. Loose mappings from
Unicode to Character Set X are considered additional mappings that match the
semantics established for the coded representations in Character Set X.

Consider the example used earlier to illustrate multiple semantics: the single
JIS X0208 coded representation 0x2142 that represents both of the characters
double vertical line and parallel.

To map this coded representation to Unicode, it is necessary to choose between
the two Unicode coded representations: U+2016 “DOUBLE VERTICAL LINE”
or U+2225 “PARALLEL TO”. When this coded representation of a character is
Text Encoding and Conversion 1-81
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
mapped to either Unicode coded representation and then mapped back to JIS,
the result is the same because both can be successfully mapped back to the
single code representation. Round-trip fidelity has occurred.

However, this is not the case entirely when mapping from Unicode to JIS. If the
Unicode coded representation U+2016 “DOUBLE VERTICAL LINE” is mapped
to the JIS coded representation 0x2142 and back again, the end result—yielding
U+2016 “DOUBLE VERTICAL LINE”—is identical to the starting coded
representation.

But this is not true if the Unicode coded representation U+2225 “PARALLEL
TO” is mapped to the JIS coded representation 0x2142 and back again; in this
case, because the mapping is already defined, the end result is the Unicode
coded representation U+2016 “DOUBLE VERTICAL LINE”, which is not the
starting character.

For the Low-Level Encoding Converter Manager functions that allow you to
convert a single text segment or a text run from any text encoding to Unicode,
you can set a flag specifying that the converter should use only the strict
equivalence portion of the mapping table or that it can use the loose mapping
section if the text element is not found in the strict equivalence portion of the
table.

Presentation Forms 1

A presentation form is a graphic form that is used to represent a character
when that character is used in a particular display format.

Presentation forms include variant forms, ligatures, and composite display
forms. For example, presentation forms include some graphic symbols that
represent multiple characters, such as those for Arabic contextual forms, Arabic
ligatures, and Latin ligatures. Some coded character sets include different
presentation forms for some CJK (Chinese, Japanese, Korean) punctuation and
Japanese Kana characters depending on whether they are intended for
horizontal or vertical display. Some coded character sets encode presentation
forms instead of, or in addition to, encoding abstract characters. Presentation
variants include full-width and half-width characters.

While text encodings designed before Unicode encode presentation forms,
Unicode design goals specify that variant forms of characters that are
predictable from the text content and context should not be encoded as code
representations. For example, ligatures and composite display forms should
not be encoded when they can be predicted from the text content and
immediate context. Therefore, Unicode does not encode all presentation forms.
1-82 Text Encoding and Conversion

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Corporate Use Zone 1

Code space in the Unicode standard is divided into areas and zones. One area,
called the Private Use Area, includes a zone called the Corporate Use Zone.

Some code representations of characters that Apple requires are mapped to
code representations in the Unicode Corporate Use Zone. The Apple logo is an
example.

Apple provides a registry of its coded character set definitions in this zone that
you can check to ensure that you don’t use the same code representations. The
path to this registry is ftp:/unicode.org/pub/MappingTables/Apple.

Although they allow the Low-Level Encoding Converter Manager to guarantee
perfect round trips for certain code representations, characters in the Unicode
Corporate Use Zone are not portable to other systems.

Fallback Mappings 1

A fallback mapping is a sequence of one or more bit combinations (or code
points) in the target encoding for a text element that are not exactly equivalent
to the source encoding bit combinations but which preserve some of the
information of the original. For example, (C) is a possible fallback mapping for
©. In general, fallback characters are used as a last resort in converting text
between encodings because they are not reversible and therefore do not lend
themselves to round-trip fidelity conversions.

Fallback Handlers 1

A fallback handler is processing code that the Low-Level Encoding Converter
Manager uses either when it cannot perform a one-to-one mapping in
converting a Unicode character to another encoding or when it cannot use the
strict mapping equivalence or the loose mapping portions of the specified
mapping table for this purpose.

The Low-Level Encoding Converter Manager supplies a default fallback
handler that you can associate with a data structure, called a conversion
information reference, to be used for converting the text. However, you can
also supply your own fallback handler and use it instead of or in addition to
the default handler.
Text Encoding and Conversion 1-83
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Base Encoding Mapping Tables Supported by Mac OS 8 1

Mapping tables that provide information about a particular text encoding exist
for each supported base encoding. For Mac OS 8, the tables exist as resources in
files that are stored in the Mapping Tables folder. (The folder name may have
been localized.) There is one file for each base encoding that the converter
supports. You can install your own mapping tables in this folder.

The Low-Level Encoding Converter Manager allows you to query it for a list of
any mappings available on the system.

Handling Editable Text 1

Mac OS 8 minimizes the effort required of your application to handle editable
text by introducing Text Editing Services, which consist of a text panel and a
text engine, and their associated functions. Your application can call these
functions to choose the text engine to use either with a text panel or alone. You
also use these functions to insert and delete text, modify it, image it, and
respond to user events related to text handling. TextEdit also belongs to Text
Editing Services. However, to fully utilize Mac OS 8, your application should
use text panels and text engines instead of using TextEdit directly.

Note
For this release of Mac OS 8, a modified version of the
TextEdit engine that eliminates the 32K record limitation is
the only supported text engine. ◆

When you use text engines directly, the interface is the same for any text
engine. This consistency makes it possible and easy for you to use different text
engines according to your text-processing and editing requirements. Because
text engines are interchangeable with or without text panels, use of text panels
and text engines allows for greater flexibility and extensibility.

The Text Panel 1

The text panel is a viewer through which your application user can enter and
manipulate small amounts of text in fields and dialog boxes or in any window
for which you support text input and editing. A text panel does not perform
text processing or editing, nor is it aware of how this is done.
1-84 Handling Editable Text

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Text panels use text engines to perform most of their work. A text panel
provides the user interface or the visible front-end portion and the text engine
associated with it implements the text editing services such as text formatting,
drawing, and editing.

A text panel references a text engine to be used with it. You can select the text
engine that offers features you need from among any of the available text
engines installed in the system. In Mac OS 8, you are not limited to use of a
single text engine as with TextEdit in System 7. In addition to their special
features, most text engines will offer standard text styling and attributes, such
as plain text or boldfacing. Mac OS 8 provides text engines, and third-party
developers can also provide text engines. Each text engine is registered with
the system, along with a list of the features it implements.

Note
For this release, Mac OS 8 provides only the TextEdit text
engine. This engine is a modified version of TextEdit that
eliminates the TextEdit 32K record limitation. ◆

The text panel is a variation of the High-Level Toolbox (HLTB) panel. Its
behavior differs from other types of panels only in the implementation of its
methods dispatched due to events.

The Edit Text panel is provided for this release. The Edit Text panel is a specific
implementation of the abstract text panel class. The Edit Text panel is designed
as a class that defines not only user-interface behavior and application
interaction— where and when the text is drawn—but also how it is drawn. It is
tied to a specific text engine, the TextEdit text engine, for managing text.

Using the Text Panel 1

Text panels are simple to use requiring very little effort on the part of your
application. For example, here’s how you might display an editable text field in
one of your application’s windows. Once you have the signature of the engine
you want to use, you call a Text Editing Services function to create a new
instance of the text panel. You pass that function the ID of the text engine. You
initialize the panel instance by also passing the function the rectangle for the
text panel and the window it belongs to, and option bit flags, which allow you
to specify if the field is editable, masked, off screen, and so forth.

That’s all your application needs to do until it gets the text typed by the user to
process it. For example, you no longer need to poll an event queue, as you
Handling Editable Text 1-85
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
must in System 7, to determine which interface element is concerned with an
event. The text panel manages itself in the rectangle you defined within the
window. After you instantiate and initialize the text panel, your application can
stay out of the way (through AEReceive) until one of its service routine is
invoked by the system. At that point, your application can resume activity to
implement the functionality of a user-interface element instead of managing
the entire process.

The Edit Text panel uses the default system handlers to intercept events and
pass them to an associated text engine for processing. This occurs
transparently, requiring no effort on the part of your application.

You can use the Text Editing Services functions to determine whether the text is
read only, selectable, or maskable. You can set and get the bounds where the
text flows, that is, the bounding height and width. You can install, extract,
delete, and replace the text edited by the text engine. You can style the text.
Standard text styling features, such as bold, italic, underline, and outline are
supported. To determine whether other styles are supported, you can query the
text engine. You can set and get the text color and alignment, and you can get
the text font and size. You can count the number of faces used for a given range
of text. You can highlight, select, or draw a specified range of text. These
services also include a set of text attribute iterator functions that you can use to
respond to a user’s actions that modify the style attributes of the text.

Text Engines 1

You use a text engine with a text panel, but you can also use a text engine alone
to perform any task you want.

The Mac OS 8 design for Text Editing Services separates the text engine
definition from the text panel to make it possible for you to use any available
text engine you want. This means that although you can still use TextEdit as
your text-editing engine, you are no longer dependent on it. The default system
engine for Mac OS 8 is based on TextEdit to preserve backward compatibility
with the Dialog Manager text fields in System 7, but new text engines will be
made available from Apple Computer and third-party developers. The system
is designed to allow you to choose a text engine that offers the services which
best accommodate your text-editing requirements.

All available text engines are registered with the system. When a new text
engine is installed, for this release of Mac OS 8, it is registered in the locale
database, with its specific features and a text engine signature. (Note that use of
1-86 Handling Editable Text

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
the locale database is subject to change in the future.) Your application can ask
for a text engine that meets your requirements by querying the locale database
for a specific attribute. For example, you can ask for one that supports GX
typography, large text, or one that supports WorldScript®. In return, you’ll get
the signature of a text engine. Your application uses this signature to load the
corresponding SOM object either directly or through the text panel.

Using a text engine directly gives your application more control and
capabilities than you have in using a text panel. When you use a text engine
with a text panel, the text panel inherits and overrides all event-handling
routines that are routed automatically from the window to the panel. When
you use a text engine directly, your application should explicitly call the text
engine event handlers.

All text engines use the same group of data structures and methods required to
provide core text-processing and text-editing services, that is, they all have the
same API. This means that you do not need to know how to deal with the
particulars of different text engines.

Selecting and Getting a Text Engine 1

Whether you use a text engine with a text panel or directly, you need to
identify the text engine you want. The Text Editing Services provide three
separate functions that allow you to get a text engine based on different
information. Here are the three ways in which you can do this:

■ You can get a text engine by signature. Each text engine has a unique
signature.

■ You can get a text engine by class name. Each text engine has a unique
descriptor consisting of its SOM class name and SOM minor and major
version number.

■ You can get the default engine.

If you are interested in a specific kind of text engine offering certain features,
you can use a function that finds a matching text engine, if one is registered
with the system, based on a list of features you pass to the function.

Once you have a text engine, you can call a different function to query whether
that text engine has a specific feature you are interested in before you create an
instance of the text engine. For example, you might want to know if the engine
supports strike-through or double underline. The Text Editing Services
provides an enumerated list of predefined features that you can check for.
Handling Editable Text 1-87
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Using a Text Engine Directly 1

To use a text engine directly instead of with a text panel, you initialize and
activate the text engine instance after you get its reference. You can choose the
level of control you want over the engine and determine how the engine reacts
to certain events. You can direct the engine to install its own handlers, or not,
when it is activated. This is not possible when you use a text engine in
conjunction with the text panel, because the text panel implementation
determines how events are handled.

You can use a text engine directly, for example, if your application supplies a
simple text editor, and allow the system default handlers to intercept Apple
events and communicate with the text engine. Alternatively, if you need to
intercede, for example, to filter events to restrict the kind of data the user
enters, you can override some of the system’s default event handlers by calling
Apple Event Manager functions to stack your own handler table above the
system default handler table of the Apple event dispatcher for your process.

The Text Editing Services includes functions for initializing a text engine,
specifying the width and height of the rectangle where the text should be
formatted, setting and getting the margins added to the text frame rectangle,
drawing text, inserting, deleting, and replacing text, getting and setting text
attributes, imaging text according to page dimensions for printing, enabling
and disabling text drawing for special purposes such as search-and-replace,
selecting (highlighting) ranges of text, and scrolling the text.

They also include functions for storage and scrap management, and for
manipulating raw text in order to provide services for word-breaking or
text-element breaking.

Drag-and-drop is completely supported and implemented by the engine
without requiring any intervention on your application’s part. However, if for
any reason you want to handle mouse-down events yourself, the Text Editing
Services provide functions that enable this for drag-and-drop support.

If you direct the text engine to install its own handlers, you don’t need to be
concerned with mouse-event handling. However, if you want to handle mouse
events yourself, the Text Editing Services provide functions for this purpose.

If You Are Providing a Text Engine 1

The structure of a text engine is specified in SOM interface definition language
(IDL). Mac OS 8 defines the default engine TSystemTextEngine. You can
override the default engine and provide your own. However, you should do
1-88 Handling Editable Text

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
this only to provide cosmetic changes. Because the data structure of a text
engine is opaque, you will not be able to change radically the behavior of an
existing engine. Instead, if you want to change the behavior, you should
provide your own engine.

If you implement a specialized text engine, whether its for your application or
for others, you must make the engine available. To make your text engine
available, you must register it with a central service and provide a list of
attributes that describe your text engine’s features. Information on how to do
this will be provided with a later developer release.

About TextEdit 1

Other parts of the Text Editing Services do not replace TextEdit; they offer a
higher-level service that is easy to use and that lets you to use one of the
available text engines or your own text engine instead of limiting you to
TextEdit. Although you can still use TextEdit directly, Apple recommends that
you use text panels and text engines instead of TextEdit for your Mac OS 8
application.

Text Editing Services include an enhanced version of TextEdit that includes
integrated inline input support, integration of drag-and-drop support, and
support for text objects. It is based in the new event model.

String Comparison 1

Mac OS 8 provides the String Comparison Services, a set of functions for
comparing and searching text objects and strings. These functions provide
many improvements over the System 7 string comparison routines. They allow
for portability, better performance, better linguistic capability, the ability to
handle Unicode, and easier localization.

Collation References 1

The String Comparison Services include a private data structure called a
collation reference (CollationRef) that collects all information relevant to a
particular, desired collation order, including references to appropriate locale
objects and any default overrides your application uses. The String
String Comparison 1-89
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Comparison Services allow you to create, modify, and destroy collation
references. However, you do not need to provide a collation reference when
you use collation functions. If you don’t provide one, the function uses the
default behavior for the locale of the current process.

Overriding Default Collation Behavior 1

Some developers want a high degree of control over aspects of collation
behavior. Usually, these developers do not want to change the collation
behavior for the letters of a particular language, but they want to be able to
change the relative order of scripts and how punctuation and numbers are
handled, for example. For those of you who want this kind of control, the
String Comparison Services provide functions that allow you to override the
default behavior for aspects of collation.

You can use the OverrideCollationSetOrder function to override the relative
order of character groups and classes defined by the locale. A group is a logical
collection of characters that are related to a script or common to several scripts;
these characters may include letters, punctuation, numbers, and so forth. For
example, all the characters that are specific to Greek constitute a group. Some
groups include characters that are common to several scripts: the general
punctuation, numbers, and symbols in Unicode are common to all scripts.
Localizers generally define the collation order for one or more groups.

Code Conversion for String Comparison 1

You can collate text objects and text strings. If the text objects and text strings to
be compared are in different encodings, the String Comparison Services will
call the Low-Level Encoding Converter to convert both of them to Unicode
before comparing them. All locales of the locale database should contain
collation tables for Unicode, even if they don’t have them for other encodings,
which makes this collation feasible. If the text objects or text strings are in the
same encoding but no collation tables exist for that encoding, they will also be
converted to Unicode if Unicode collation tables exist.

The String Comparison Services can handle text strings that use the same or a
mixture of encodings. For cases of multiple encodings that force a code
conversion, the String Comparison Services automatically call the Encoding
Converter in a manner that is transparent to your application.
1-90 String Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
Here are the four possible types of encoding cases that the String Comparison
Services handle:

■ Unicode and Unicode, case A. In this case, conversion of either of the two text
strings is not necessary. If collation tables for the Unicode encoding are
missing the required ranges, the String Comparison Services return an error.

■ Unicode and any other encoding (referred to as Character Set X), case B. In this
case, the text string in Character Set X must be converted to Unicode before
the String Comparison Services can compare the two text strings. If the
String Comparison Services cannot do this, because, for example, conversion
tables are missing, then it returns an error. Otherwise, it performs a
Unicode-to-Unicode comparison on the strings.

■ Character Set X and Character Set X, case C. This case—most likely the most
common case for early releases of the Mac OS—may or may not entail
conversion. First, the String Comparison Services check to see if collation
tables for the text strings are present. If so, it uses them. If not, it tries to
convert the text string in Character Set X to Unicode and do comparison
using collation tables for Unicode; this process, then, becomes the same the
as Case B, described above.

■ Character Set X and another, different, non-Unicode encoding (referred to as
Character Set Y), case D. In this case, both Character Set X and Character Set Y
must be converted to Unicode before the String Comparison Services can
perform comparison. If either comparison fails (due to missing tables or
something else), the String Comparison Services return an error. If both text
strings are successfully converted, the String Comparison Services perform a
Unicode-to-Unicode (Case A) comparison on them.
String Comparison 1-91
Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 1

Introduction to Text Handling and Internationalization on Mac OS 8
1-92 String Comparison

Draft.  Apple Computer, Inc. 4/29/96

C H A P T E R 2

Contents

Draft.  Apple Computer, Inc. 4/19/96

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Locale Object Manager Reference
Locale Object Manager Constants and Data Types 2-5
Locale Reference 2-5
Locale Iterator Reference 2-6
Locale Database Search Direction 2-7
Locale Object Reference 2-8
Attribute Name-Value Pair Structure 2-8
Standard Attribute Names 2-10
Name-Table Entry 2-12
Locale Object Name Identifier Constants 2-13
Locale Name Identifier for Locale’s Default Values 2-15
Locale Identifier and Constants 2-16
Locale Language Codes and Wildcard 2-17
Locale Region Code and Wildcard 2-18
Locale Customization Code and Wildcard 2-19
Locale Object Tag Index 2-19
Associated-Data Tag 2-20
Locale Object Memory Context 2-21

Locale Object Manager Functions 2-21
Obtaining and Setting Locale References 2-21

GetCurrentProcessLocaleRef 2-22
GetLocaleReference 2-23
GetSystemDefaultLocaleRef 2-25

Setting the Locale for the Current Process 2-26
SetCurrentProcessLocale 2-26

Obtaining the Number of Locales in the Database 2-27
CountInstalledLocales 2-27

Obtaining a Locale Object’s Name, Attributes, Data, and Locale 2-28
2-1

C H A P T E R 2
GetLocaleObjectName 2-28
GetLocaleObjectKeyName 2-30
GetLocaleObjectAttributes 2-31
GetLocaleObjectData 2-33
GetLocaleObjectLocale 2-34

Obtaining a Locale’s Default Values 2-35
GetLocaleInformation 2-35

Getting and Setting Default Behavior for a Locale 2-36
GetDefaultLocaleObject 2-37
SetDefaultLocaleObject 2-38

Searching for the First Matching Object of a Locale and Searching
Iteratively 2-39

SearchOneLocaleObject 2-40
LocaleIteratorCreate 2-42
SetLocaleIterator 2-45
LocaleIterate 2-47
LocaleIteratorDispose 2-50

Adding Locale Objects To and Removing Them From the Locale
Database 2-50

AddLocaleObject 2-51
RemoveLocaleObject 2-53

Getting Data Associated With a Locale Object 2-54
GetLocaleObjectAssociatedData 2-55
CountLocaleObjectAssociatedDataTags 2-56
GetIndexedAssociatedData 2-57
GetLocaleObjectFSObjectRef 2-59

Creating and Obtaining a Locale Identifier 2-60
CreateLocaleIdentifier 2-61
GetSystemLocaleIdentifier 2-62
GetCurrentProcessLocaleIdentifier 2-63
GetLocaleRefLocaleIdentifier 2-65
GetFirstLocale 2-65
GetNextLocale 2-66

Obtaining Locale Identifier Information 2-68
GetLocaleLanguage 2-68
GetLocaleRegion 2-69
GetLocaleCustomization 2-70

Determining Where a Locale Object Exists in Memory 2-72
2-2 Contents

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2
GetLocaleObjectMemoryContext 2-72
Locale Object Manager Result Codes 2-72
Glossary 2-75
Contents 2-3
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2
2-4 Contents

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2
Locale Object Manager Reference 2

Locale Object Manager Constants and Data Types 2

The Locale Object Manager provides a set of functions that manage, find, and
provide access to data required by international system components and
applications. These data are stored in the locale database. The database serves
as a repository of international preferences and data organized into sets of
information clustered along cultural lines, each of which composes a locale.
Each locale represents a particular cultural entity. Locales are composed of
locale objects that contain data pertaining to the locale’s culture. In addition to
data, locale objects contain names and attributes describing their data and its
use in various ways. Your application uses these names and attributes to
identify the content of locale objects whose data you are interested in. A locale
can, and usually does, have multiple locale objects.

Locale Reference 2

A locale reference is a private data type that refers to one of the locales
belonging to the locale database. You use a locale reference to specify the locale
you are interested in when you call the Locale Object Manager functions to
access and act on the data contained in locales and to change the default locale
to be used within your application’s CFM context. You can think of a locale
reference as a resolved locale identifier (page 2-16).

You can search the locale database for information beginning from any locale.
You use a locale reference to indicate a specific locale where you want to begin
a search of the database. You can use the GetLocaleReference function
(page 2-25) to obtain a locale reference for a specific locale. You specify the
locale for which you want a reference by giving its local identifier (page 2-16).

At system startup, the Locale Object Manager establishes the default system
locale based on the language and region for which the system is localized. The
default system locale identifies the locale whose content is used for
international text processing functions. Normally the system locale
corresponds to the language the system is localized for. However, it is possible
for the default system locale to differ from the language for which the system is
localized.
Locale Object Manager Constants and Data Types 2-5
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
You can use the GetSystemDefaultLocaleRef function (page 2-25) to obtain a
reference to the default system locale.

The default system locale becomes the default locale for your application.
However, you can change the application locale by calling the
SetCurrentProcessLocale function (page 2-26). At any time, you can obtain a
reference for the locale of the current process by calling the
GetCurrentProcessLocaleRef function (page 2-22).

A locale reference is defined by a LocaleRef data type.

typedef struct OpaqueLocaleRef* LocaleRef; /* locale reference */

See “Locale Object Manager Constants and Data Types” (page 2-5) for general
information.

Locale Iterator Reference 2

When you need to obtain data that pertains to a specific culture or certain types
of data for processing text for different cultures—for sorting or word breaking,
for example—you can query the locale database; the locale database contains
the data or it contains information giving access to culturally related data
stored elsewhere.

You can locate and retrieve certain types of data associated with different
locales contained in the locale database by specifying a locale object key name.
Locale object key names contribute to the information that the Locale Object
Manager uses to catalog and find locale objects in the database.

You can refine the search for locale objects by specifying one or more locale
object attributes (page 2-8), for example, a specific language for which you
want input methods. The locale object name and attributes you specify are
used to search the database for locale objects containing matching values.

To search iteratively for more than one locale object that satisfies your matching
criteria, you must first create a locale iterator reference containing information
used to perform the search, such as where the Locale Object Manager should
begin the search and the matching criteria it should use. A locale iterator
reference is a private data structure created and maintained by the Locale
Object Manager and returned to your application when you use
LocaleIteratorCreate (page 2-42) to create one.
2-6 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
You pass the returned locale iterator reference to LocaleIterate (page 2-47) to
search iteratively through the locale database looking for locale objects whose
locale object name and attributes match those you specified. A locale iterator
reference is defined by a LocaleIteratorReference data type.

typedef struct OpaqueLocaleIteratorReference* LocaleIteratorReference;
/* locale iterator reference */

See “Locale Object Manager Constants and Data Types” (page 2-5) for general
information.

Locale Database Search Direction 2

You can specify the direction in which you want the locale database search to
proceed—forward or backward from the starting locale position—when you
use LocaleIterate (page 2-47) to perform an iterative search throughout the
database. You can use the constants defined by the following enumeration to
specify the direction:

typedef UInt16 LocaleIterateOp;
enum {

kLocaleForwardIterate = 0, /* foward databse search */
kLocaleBackwardIterate = 1 /* backward databse search */

};

Enumerator descriptions

kLocaleForwardIterate
Search forward in the locale database starting from the
locale specified in the locale iterator reference (page 2-6).

kLocaleBackwardIterate
Search backward in the locale database starting from the
locale specified in the locale iterator reference.

See “Locale Object Manager Constants and Data Types” (page 2-5) for general
information.
Locale Object Manager Constants and Data Types 2-7
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Locale Object Reference 2

A locale object reference is a private data structure that refers to a specific
locale object. You pass a locale object reference to the Locale Object Manager
functions that you use to obtain the data contained in a locale object or to
obtain information about a locale object, such as any of the user-displayable
names associated with the locale object, the locale object’s key name, any of its
attributes, or the locale to which it belongs. You can preserve a locale object
reference and use it at any time to obtain a pointer to the data the object
contains.

The Locale Object Manager returns a locale object reference when you search
the locale database for a locale object and when you temporarily add a locale
object to it. These three functions return a locale object reference:

■ When you use SearchOneLocaleObject (page 2-40) to find the first locale
object that matches your search criteria, the function returns a locale object
reference, identifying the locale object, along with its data.

■ For each matching locale object it finds, LocaleIterate (page 2-47) returns
the locale object reference of the locale object that satisfies the
search-matching criteria along with that locale object’s data.

■ When you use AddLocaleObject (page 2-51) to add a locale object to the
database for the duration of the current process, it returns a locale object
reference to you.

A locale object reference is defined by a LocaleObjectRef data type.

typedef struct opaque LocaleObjectRef; /* locale object reference */

See “Locale Object Manager Constants and Data Types” (page 2-5) for more
information.

Attribute Name-Value Pair Structure 2

Every locale object in the locale database contains an arbitrary set of attributes,
each of which consists of a name-value pair. Sets of attributes contained within
a locale object serve to classify the data the object contains along multiple lines
so that it can be accessed according to any collection of its qualities at different
times. For example, your application might look for all locale objects
2-8 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
containing one specific attribute while another application might look for locale
objects having in common two or more attributes.

An attribute name describes the type of data the attribute value specifies. For
example, a locale object might contain the predefined attribute name
kLanguageName for which the associated attribute value is a specific language
code.

You can provide one or more attribute name-value pairs as matching criteria to
be used to search the locale database for locale objects. Along with a locale
object key name, attribute name-value pairs identify and distinguish two locale
objects that have the same key name. You can retrieve data contained in one or
more locale objects belonging to the same or different locales by specifying a
set of attributes; all locale objects having those attributes are made available to
your application.

You specify attribute name-value pairs for use with the SearchOneLocaleObject
function (page 2-40) to search for a single locale object—the function returns
the first locale object found that satisfies the matching criteria. You specify
attribute name-value pairs when you create a locale iterator reference
(page 2-6) for use with the LocaleIterate function (page 2-47) to search within
and across locales for locale objects that satisfy the matching criteria.

To obtain all attribute name-value pairs associated with a specific object, you
use the GetLocaleObjectAttributes function (page 2-31).

You use an attribute name-value pair structure to specify an attribute. To
specify more than one attribute, you pass the function a pointer to an array of
name-value pairs. The attribute name-value pair structure is defined by the
NameValuePair data type.

struct NameValuePair {
StringPtr name; /* name for attribute value */
ByteCount valueLength; /* length of attribute data */
void *value; /* attribute data */

};
typedef NameValuePair *NameValuePair;

Field descriptions
name A Pascal string that ascribes a name to the attribute value.

The name describes the type of data the value carries. For
this parameter, you can use one of the constants for the
Locale Object Manager Constants and Data Types 2-9
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
attribute name strings (page 2-10) defined by the Locale
Object Manager for common attributes.

valueLength The length in bytes of the attribute data given in the value
parameter.

value The attribute data.
See “Locale Object Manager Constants and Data Types” (page 2-5) for more
information.

Standard Attribute Names 2

You use attribute name-value pairs (page 2-8) as part of the search criteria you
give when you use the Locale Object Manager to find data in the locale
database.

A locale object attribute consists of a name-value pair that serves to classify
the data a locale object contains in a particular way. A locale object includes an
attributes table that contains various attributes, allowing the locale object to be
categorized along multiple lines so that you can access it according to any
collection of its qualities at different times.

The Locale Object Manager defines a set of attribute names for commonly used
attributes. You can ascribe these names to attribute values to identify their
content type. A locale object may have associated with it many other types of
attributes each of which has a name consisting of an ASCII string not defined
by the Locale Object Manager.

You can use these constants defined for the Locale Object Manager’s attribute
name strings as the value of the name field portion of an attribute name-value
pair structure. The Locale Object Manager defines these standard attribute
names:

#define kExecutableCfragName “\pexecutablecfrag”
/* attribute contains name of executable code fragment */

#define kSOMClassName “\psomclass”
/* attribute contains SOM class name */

#define kUserVisibleName “\puservisiblename”
/* attribute contains user-displayable name */

#define kScriptName “\pscript”
/* attribute identifies locale object data as System 7 international

resource */
#define kLanguageName “\planguage”
2-10 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
/* attribute identifies language locale object data applies to */
#define kRegionName “\pregion”

/* attribute identifies region locale object data applies to */
#define kResIDName “\presid”

/* attribute identifies locale object data as System 7 international
resource */

#define kEncodingName “\pencoding”
/* attribute specifies text encoding */

#define kTextServiceTypeName “\ptextservice”
/* attribute identifies the text service */

#define kInputMethodTypeName “\pkeyboardinputmethod”
/* attribute specifies the type of input method */

#define kLocaleIdentifierName “\localeidentifier”
/* attribute specifies the locale identifier */

Constants descriptions

kExecutableCfragName
Specifies that the attribute value contains the name of the
executable code fragment.

kSOMClassName Specifies that the attribute value contains the SOM class
name.

kUserVisibleName
Labels the attribute value as containing text intended to be
displayed to the user, such as copyright information.

kScriptName Marks data, identifying it as formerly System 7
international resource type data.

kLanguageName Labels the attribute value as specifying the language to
which the data contained in the locale object applies.

kRegionName Labels the attribute value as specifying the region to which
the data contained in the locale object applies.

kResIDName Marks data, identifying it as formerly System 7
international resource type data.

kEncodingName Labels the attribute value as specifying the text encoding.
See the “Low-Level Encoding Converter Manager
Reference” for a description of text encodings.

kTextServiceTypeName
Specifies that the attribute value identifies the function
provided by the text service.
Locale Object Manager Constants and Data Types 2-11
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
kInputMethodTypeName
Labels the attribute value as specifying the input method
type.

kLocaleIdentifierName

Labels the attribute value as containing a locale identifier
value.

Any client of the Locale Object Manager—including other system
components—can define name strings that are appropriate for the data
contained in locale objects stored in the database.

If you are interested in a set of standard name strings for a particular system
component, such as the Text Services Manager, refer to the reference chapter for
that component.

See “Locale Object Manager Constants and Data Types” (page 2-5) for general
information.

Name-Table Entry 2

Every locale object in the database has associated with it a locale object names
table that contains at least two name records for the set of names associated
with the locale object. In addition to the locale object key name, the names table
always contains a user-visible name for the locale object. Like the key name,
which is used internally, the user-visible name string indicates the type of data
the locale object contains, only it is meant to be displayed to the user.

A names table can include additional names containing text strings that your
application can display to your user to describe aspects of the data that the
locale object provides, for example, a copyright notice.

When you use the AddLocaleObject function (page 2-51) to temporarily add a
locale object to the database, you can specify any of the user-displayable names
and their identifiers for the locale object.

You use a name-table entry structure to specify a user-displayable name. To
specify more than one name-table entry, you pass the function a pointer to an
array of name-table entry structures. The NameTableEntry data type defines the
name-table entry structure.

struct NameTableEntry {
LocaleNameIdentifier nameID; /* user name identifier*/
UInt16 reserved; /* reserved for future use */
2-12 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
TextObject name; /* text object containing name */
};
typedef struct NameTableEntry NameTableEntry;

nameID The identifier for the user name specified in the TextObject
parameter. You use one of the locale object name identifier
constants (page 2-13) to specify the name ID.

reserved Reserved for future use.
name A text object containing the user name text string whose

identifier you specified in the nameID parameter, the text
encoding, and the language and region for the text string.
For information on text objects, see “Text Object Manager
Reference,” to be provided later. For information on text
encodings, see “Low-Level Encoding Converter Manager
Reference,” to be provided later.

See “Locale Object Manager Constants and Data Types” (page 2-5) for
high-level information.

Locale Object Name Identifier Constants 2

A locale object names tables contains name records for the set of names
associated with the locale object. The names table includes a key name for the
locale object that the Locale Object Manager uses to catalog the locale object in
the database. The key name serves as the primary search key. Two examples of
key names are inputmethod and collatetable.

You use a locale object’s key name to specify the primary search key for
functions that take a keyName parameter. You specify a locale object key name,
for example, as part of the search criteria you provide when you call the
LocaleIterateCreate function (page 2-42).

Most of the names in the names table exist so that you can describe the data
contents of a locale object to a user, for example, the user-visible name
indicating the type of data and the copyright notice. You can obtain any of
these name strings to display to the user by giving the identifier of the name
whose data you want.

Each locale object name has associated with it an identifier that serves to
identify the type of data the name string contains. The Locale Object Manager
defines constants for these identifier names that you can use to specify which of
a locale object’s names you want to obtain when you call GetLocaleObjectName
Locale Object Manager Constants and Data Types 2-13
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
(page 2-28). When you call GetLocaleObjectName, you specify the text encoding
used for the name string. Using name identifiers allows a locale object to
contain multiple localized name strings.

The Locale Object Manager defines the following six identifier name constants:

typedef SInt16 LocaleNameIdentifier;
enum {

kLocaleObjectKeyNameIdentifier = 0, /* identifier for key name */
kLocaleObjectUserName = 1, /* identifier for user-visible name */
kLocaleObjectCopyrightString = 2, /* identifier for copyright value */
kLocaleObjectManufacturerString = 3, /* identifier for manufacturer value */
kLocaleObjectFunctionDescription = 4, /* identifier for function value */
kLocaleObjectVersionString = 5 /* identifier for version number

value */
};

Constants descriptions

kLocaleObjectKeyNameIdentifier
Identifier name for the locale object key name. The Locale
Object Manager uses this name as a key into the database
to find locale objects of this type. You can obtain the locale
object key name without using an identifier name by
calling GetLocaleObjectKeyName (page 2-30). You do not
display the key name to the user.

kLocaleObjectUserName
Identifier name for the locale object user-visible name to
display to the user.

kLocaleObjectCopyrightString
Identifier name for the copyright value, which is a string
you might want to display to the user.

kLocaleObjectManufacturerString
Identifier name for the manufacturer value, which is a
string you might want to display to the user.

kLocaleObjectFunctionDescription
Identifier name for the function value that specifies the
purpose or type of function provided by the object’s data,
for example, “U.S. English Configuration Table”.

kLocaleObjectVersionString
Identifier name for the version number value that specifies
2-14 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
the version of the locale object’s data. For example, a
version number value might specify the following string:
“Apple Computer Japanese Input Method. Version 1.0”.

See “Locale Object Manager Constants and Data Types” (page 2-5) for
high-level information.

Locale Name Identifier for Locale’s Default Values 2

You can obtain default values defined for a locale to display to your user by
calling the GetLocaleInformation (page 2-35) function and giving the name
identifier of the default you are interested in. GetLocaleInformation returns a
text object from which you can extract the default value text string. To tell
GetLocaleInformation which of the locale’s default values you want, you
specify a locale default name identifier. The Locale Object Manager defines the
following locale default name identifier constants for a locale’s default values.

typedef LocaleNameIdentifier LocaleDefaultValue;
enum {

kLocaleLanguageID = 0x000A, /* language id */
kLocaleLanguageLocalizedName = 1, /* localized name of language */
kLocaleLanguageEnglishName = 0x000B, /* English name of language */
kLocaleAbbreviatedLanguageName = 0x000C, /* abbreviated language name */
kLocaleLanguageNativeName = 0x000D, /* native name of language */
kLocaleCountryCode = 0x000E, /* country code */
kLocaleLocalizedCountryName = 0x000F, /* localized name of country */
kLocaleEnglishCountryName = 0x1002, /* English name of country */
kLocaleAbbreviatedCountryName = 0x001F, /* abbreviated country name */
kLocaleNativeCountryName = 0x002F, /* native name of country */

};

Field descriptions
kLocaleLanguageID A three-character language code from ISO 639.
kLocaleLanguageLocalizedName

The fully-localized name for the Locale file. (This is a
synonym for kLocaleObjectUserName.)

kLocaleLanguageEnglishName

The full English name of the locale, from ISO 639.
Characters composing the name are restricted to characters
in the 7-bit ASCII encoding.
Locale Object Manager Constants and Data Types 2-15
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
kLocaleAbbreviatedLanguageName
The abbreviated name of the language. (This is a synonym
for kLocaleLanguageID.)

kLocaleLanguageNativeName
A synonym for kLocaleObjectUserName and
kLocaleLanguageLocalizedName.

kLocaleCountryCode
A two-character code, from ISO 3166.

kLocaleLocalizedCountryName
The fully localized country or territory name.

kLocaleEnglishCountryName
The full English name of the country, from ISO 3166.
Characters composing the name are restricted to characters
in the 7-bit ASCII encoding.

kLocaleAbbreviatedCountryName
The abbreviated name of the country. For example, U.S is
the abbreviated name of the United States.

kLocaleNativeCountryName
A synonym for kLocaleLocalizedCountryName.

See “Locale Object Manager Constants and Data Types” (page 2-5) for
high-level information.

Locale Identifier and Constants 2

A locale identifier is a packed value containing packed language and region
codes, and a customization code indicating whether the locale is a customized
version of a standard locale. Your application can create a locale identifier and
use it to obtain a locale reference (page 2-5). You can think of a locale reference
as a resolved locale identifier.

You use a locale identifier to indicate the locale for which you want to obtain a
reference when you call the GetLocaleReference function (page 2-25).

The Locale Object manager returns a locale identifier to you when you use
CreateLocaleIdentifier to create one. The Locale Object Manager provides a
number of functions (page 2-60) that you can use to obtain the locale identifier
for locales that reside in the locale database on the current system. Once a
locale identifier exists, you can use Locale Object Manager functions to extract
the language, region, and customization information that it contains.
2-16 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
A locale identifier is defined by a LocaleIdentifier data type.

typedef UInt32 LocaleIdentifier; /* locale identifier */

The Locale Object Manager defines the following constants that you can use to
specify the wildcard locale identifier, the system default locale identifier, or the
user default locale identifier.

typedef UInt32 LocaleIdentifier;
enum {

kLocaleIdentifierWildCard = 0x00000000,
/* locale identifier wildcard */

kSystemDefaultLocaleIdentifer = 0x7FFFFFFF,
/* locale identifier for system default locale */

kUserDefaultLocaleIdentifer = 0x7EEEEEEE
/* locale identifier for application’s default locale */

};

Enumerator descriptions
kLocaleIdentifierWildCard

Specifies a locale identifier that matches on any language,
region, and customization code. If you pass this constant
to GetLocaleReference (page 2-23), the function returns the
locale used for your application’s current process.

kSystemDefaultLocaleIdentifer
Specifies the system default locale identifier. You can
obtain a locale reference to the system locale by passing
this constant to the GetLocaleReference function.

kUserDefaultLocaleIdentifer
Specifies the application’s default current locale identifier.
You can obtain a locale reference to the user locale by
passing this constant to the GetLocaleReference function.

See “Locale Object Manager Constants and Data Types” (page 2-5) for general
information.

Locale Language Codes and Wildcard 2

A locale language code is a three-character, lowercase identifier used to
indicate a particular written version of a language for the Mac OS 8. The Mac
OS 8 recognizes the language codes defined by the International Standards
Locale Object Manager Constants and Data Types 2-17
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Organization (ISO) in the “Code For the Representation of Names of
Languages, alpha-3 code” dated December 16, 1991 (ISO CD 639/2 draft
proposal). For your convenience the constants defined for these codes are
included as comments in the TextCommon.h file.

If you do not know the language for a particular locale for which you want to
create a locale identifier, you can specify the locale language code wildcard
when you call the CreateLocaleIdentifier function (page 2-61).

The LocaleLanguageCode data type defines the language code. The following
enumeration defines the locale language code wildcard constant:

typedef OSType LocaleLanguageCode;
enum {

kLocaleLanguageWildCard = 0x00000000 /* locale language wildcard */
};

See “Locale Object Manager Constants and Data Types” (page 2-5) for general
information.

Locale Region Code and Wildcard 2

A region code is a two-character, uppercase identifier used to indicate a
particular geographical region or territory. The Mac OS 8 recognizes the region
codes defined by the International Standards Organization (ISO) in the “Code
For the Representation of Names of Languages, alpha-3 code” dated December
16, 1991 (ISO CD 639/2 draft proposal). For your convenience the constants
defined for these codes are included as comments in the TextCommon.h file.

If you do not know the region for a particular locale for which you want to
create a locale identifier, you can specify the locale region code wildcard when
you call the CreateLocaleIdentifier function (page 2-61).

The LocaleRegionCode data type defines the region code. The following
enumeration defines the locale region code wildcard constant:

typedef UInt16 LocaleRegionCode;
enum {

kLocaleRegionWildCard = 0x0000, /*locale region wildcard */
};
2-18 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
See “Locale Object Manager Constants and Data Types” (page 2-5) for
high-level information.

Locale Customization Code and Wildcard 2

The Locale Object Manager creates a custom locale based on a locale that exists
in the locale database when some aspect of the original locale is changed. The
Locale Object Manager assigns a customization code to the locale identifier for
the new version of the locale. For example, if a French-Canadian locale is
modified in some way—suppose any of the default values for the locale, such
as a number separator, have been changed—the Locale Object Manager would
create a new custom version of the locale and assign it a customization code.

The Locale Object Manager sets a customization code internally to indicate that
the locale is a customized version of a standard system locale. Because this
value is set internally, you should always specify the
kLocaleCustomizationWildCard constant for the CreateLocaleIdentifier
function (page 2-61) when you call the function to create a locale identifier.

The LocaleCustomizationCode data type defines the customization code. The
following enumeration defines the locale customization code wildcard constant:

typedef UInt16 LocaleCustomizationCode;
enum {

kLocaleCustomizationWildCard = 0x0000
/* locale customization wildcard */

};

See “Locale Object Manager Constants and Data Types” (page 2-5) for general
information.

Locale Object Tag Index 2

A locale object can contain additional data related to its primary data. For
example, this associated data might contain an icon for the primary data or it
might contain additional user-displayable names beyond the set allowed in a
names table (page 2-13) for a locale object. Each collection of associated data for
a locale object is identified by a four-character tag that is stored along with the
data.
Locale Object Manager Constants and Data Types 2-19
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
A locale object may have associated with it multiple collections of associated
data. To obtain data associated with a locale object’s primary data, you identify
the type of associated data by specifying the data’s tag. If you don’t know the
tag name for a collection of data, you can use the GetIndexedAssociatedData
function (page 2-57) to retrieve additional data associated with a locale object
by specifying the zero-based index number of the tag. You can use
CountLocaleObjectAssociatedDataTags (page 2-56) to get the number of
collections of data using the count to increment through the tag indices.

The Locale Object Manager defines the following data type that you use to
specify a tag index:

typedef UInt32 LocaleObjectTagIdentifier;
/* locale associated data type tag */

See “Locale Object Manager Constants and Data Types” (page 2-5) for
high-level information.

Associated-Data Tag 2

A locale object can contain additional data associated with its primary data. For
example, this data might specify an icon for the primary data or it might
contain additional user-displayable names beyond the set allowed in a names
table (page 2-13) for a locale object. Each collection of associated data for a
locale object is identified by a four-character tag that is stored along with the
data.

When you want to obtain data associated with the primary data of a locale
object, you pass the GetLocaleObjectAssociatedData function the associated
data’s tag. The GetIndexedAssociatedData function (page 2-57) returns the data
tag and data you identify by index.

The Locale Object Manager defines the following data type for specifying an
associated-data tag:

typedef OSType LocaleDataTag; /* associated data tage */

See “Locale Object Manager Constants and Data Types” (page 2-5) for
high-level information.
2-20 Locale Object Manager Constants and Data Types

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Locale Object Memory Context 2

A locale object can reside in system-wide memory (global memory) or it can
reside in your application’s per-process memory heap (local memory). To
determine where in memory a locale object resides, you call the
GetLocaleObjectMemoryContext function (page 2-72), which returns one of the
following constants to identify the object’s memory location.

typedef UInt16 LocaleObjectContext;
enum {

kLocaleObjectIsGlobal = 0,
/* locale object resides in system-wide memory */

kLocaleObjectIsLocal = 1
/* locale object resides in application’s per-process heap */

};

Enumerator descriptions
kLocaleObjectIsGlobal

Identifies the locale object as residing in system-wide
memory.

kLocaleObjectIsLocal
Identifies the locale object as residing in your application’s
per-process memory heap.

See “Locale Object Manager Constants and Data Types” (page 2-5) for
high-level information.

Locale Object Manager Functions 2

Obtaining and Setting Locale References 2

You use a locale reference to specify the locale you are interested in when you
call the Locale Object Manager functions to access and act on the data
contained in locales and to change the default locale to be used within your
application’s CFM context. You can think of a locale reference as a resolved
locale identifier. The Locale Object Manager includes these functions that you
can use to obtain locale references:
Locale Object Manager Functions 2-21
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
■ GetCurrentProcessLocaleRef returns the reference to the default locale for
your application’s current process.

■ GetLocaleReference returns a reference to the locale whose primary
language and region match those you specify in the locale identifier.

■ GetSystemDefaultLocaleRef returns the locale reference for the current
system default locale.

GetCurrentProcessLocaleRef 2

Returns the locale reference to the default locale for the current process.

LocaleRef GetCurrentProcessLocaleRef (void);

function result The locale reference (page 2-5) for the default locale of the
current process.

DISCUSSION

The GetCurrentProcessLocaleRef function returns the reference to the locale
used for your application’s current process, that is, the locale used for the
current Code Fragment Manager (CFM) context. You can think of this as the
default locale for your application. At system startup, the Locale Object
Manager establishes the default locale for the application based on the default
system locale. You can change the locale for the current process using the
SetCurrentProcessLocale function (page 2-26). After you a set new locale for
the current process, that locale becomes the default locale; if you call
GetCurrentProcessLocaleRef subsequently, the function returns a reference to
the newly set locale.
2-22 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

GetLocaleReference 2

Returns a reference to the locale whose primary language and region match
those you specify in the locale identifier.

OSStatus GetLocaleReference (LocaleIdentifier identifier,
LocaleRef *locale);

identifier A locale identifier specifying the primary language and region
for the locale whose reference you want to obtain. To obtain a
locale identifier for a locale resident in the database, use one of
the functions (page 2-60) provided for this purpose. To obtain a
reference to the system default locale, specify
kSystemDefaultLocaleIdentifier (page 2-16). To obtain a
reference to your application’s default current locale, specify
kUserDefaultLocaleIdentifer (page 2-16). To obtain a reference
to the first locale in the database, specify
kLocaleIdentifierWildcard (page 2-16).

locale A pointer to a locale reference. On output, this pointer refers to
the locale reference (page 2-5) for the locale you identified.

function result A result code. If the locale database does not include a locale for
the locale identifier you specify, the function returns a
localeNotFoundErr result code. For other possible returned
result codes, see “Locale Object Manager Result Codes”
(page 2-72).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-23
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
DISCUSSION

The GetLocaleReference function returns a locale reference that refers to a
specific locale within the locale database. To identify the primary language and
region characterizing the locale for which you want a locale reference, you
supply a locale identifier. To obtain a locale identifier, you can use any of the
Locale Object Manager functions (page 2-60) that return locale identifiers for
locales resident in the database.

Note
If you use the CreateLocaleIdentifier function to create a
locale identifier for a locale that is not resident in the
database, you should not call GetLocaleReference using
that locale identifier. Because the locale is not resident,
there is no locale reference for it. ◆

Many of the Locale Object Manager functions require that you specify a locale
reference to identify a locale that you want to act on in some way. You use a
locale reference to position the start of a locale database search. For example,
you pass a locale reference to SearchOneLocaleObject (page 2-40) to identify the
locale where you want to begin a search for the first locale object that matches
your criteria. You pass a locale reference to LocaleIteratorCreate (page 2-42) to
identify the locale where you want to begin an iterative search throughout the
locales of the database for data and information belonging to one or more
locale objects. You pass a locale reference to SetLocaleIterator (page 2-45) to
change the starting position of an iterative search.

You identify the locale to which you want to add a locale object for your use
within the current process by specifying its locale reference when you call the
AddLocaleObject function (page 2-51).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-24 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
GetSystemDefaultLocaleRef 2

Returns the locale reference for the default system locale.

LocaleRef GetSystemDefaultLocaleRef (void);

function result The locale reference (page 2-5) for the default system locale.

DISCUSSION

At system startup, the Locale Object Manager establishes the default system
locale based on the language and region for which the system is localized. You
can use GetSystemDefaultLocaleRef to obtain a reference to that locale.

You might want to use this function, for example, to obtain a reference to the
system locale if your application customized the system locale using
AddLocaleObject (page 2-51) for the duration of your process, but within that
process you want to revert to using the default system locale.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

The default system locale becomes the default locale for your application.
However, you can change the locale used for your application by calling the
SetCurrentProcessLocale function (page 2-26).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-25
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Setting the Locale for the Current Process 2

SetCurrentProcessLocale 2

Sets the locale to be used for the current process, that is, the current CFM (Code
Fragment Manager) context, and returns a reference to it.

OSStatus SetCurrentProcessLocale (LocaleIdentifier localeID,
LocaleRef *locale);

localeID A locale identifier (page 2-16) for the locale to be used for the
current process.

locale A pointer to a locale reference (page 2-5). On output, the pointer
refers to the locale reference for the locale to be used for the
current process.

function result A result code. If the locale identifier you specify in the localeID
parameter is invalid, the function returns an localeNotFoundErr
result code and the locale for the current process is not changed.
For other possible returned result codes, see “Locale Object
Manager Result Codes” (page 2-72).

DISCUSSION

Your application can use SetCurrentProcessLocale to change the locale for the
current process, that is, the current Code Fragment Manager (CFM) context.
You might want to do this, for example, if your application is localized for one
system, but it is running on a system localized for a different country or region.
At system startup, the Locale Object Manager establishes the default locale for
the application based on the default system locale. At system startup, the
Locale Object Manager establishes the default locale for the application based
on the default system locale.
2-26 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can use any of the functions that the Locale Object Manager provides to
obtain a locale identifier (page 2-60) to supply one to SetCurrentProcessLocale.

Obtaining the Number of Locales in the Database 2

CountInstalledLocales 2

Returns the number of locales installed in the locale database on the system.

ItemCount CountInstalledLocales (void);

function result The number of locales in the database.

DISCUSSION

The function counts the locales in the database and returns this number. You
might want to use this number, for example, to determine how much memory
to reserve for information such as locale references returned by
GetLocaleReference (page 2-23) if your application calls GetLocaleReference
from within a loop to move through the locales of the database and obtain a
reference for each one.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-27
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Obtaining a Locale Object’s Name, Attributes, Data, and Locale 2

You can use the following functions to obtain information about a locale object:

■ GetLocaleObjectName finds a localized version of a locale object name and
returns it as text object.

■ GetLocaleObjectKeyName returns the key name for the locale object whose
locale object reference you specify.

■ GetLocaleObjectAttributes returns all attributes of the specified object.

■ GetLocaleObjectData returns the data stored in the data portion of the
specified locale object.

■ GetLocaleObjectLocale identifies the locale to which the specified locale
object belongs, returning the locale reference and the locale identifier for the
locale.

GetLocaleObjectName 2

Returns a text object containing an object name.

OSStatus GetLocaleObjectName (LocaleObjectRef objectRef,
LocaleNameIdentifier nameID,
TextEncoding encoding,
LocaleIdentifier languageRegion,
ByteCount *nameSize,
TextObject name);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-28 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
objectRef A locale object reference (page 2-8) to the locale object whose
name string you want to obtain as a text object.

nameID A locale name identifier (page 2-13) that specifies one of the
locale object names. To identify which name you want, specify
one of the name identifier constants defined by the Locale
Object Manager.

encoding The text encoding of the name identified by the nameID
parameter. A text encoding is a value that describes the text
encoding scheme character set and its packaging format used to
represent the text. The Locale Object Manager stores the text
encoding you provide along with the name string in the text
object. For information on text encodings, see “Low-Level
Encoding Converter Manager Reference,” to be provided later.

languageRegion
A locale identifier (page 2-16) that specifies the language and
region for which the name that you want is localized. The
Locale Object Manager stores the information you provide
along with the name string in the text object.

nameSize On input, a pointer to a value of type ByteCount. If you want to
use a persistent text object, pass in a pointer. If you use an
ephemeral text object—for example, you pass the result from a
call to NewTextObject as the value of name—specify NULL for this
parameter on input. On output, nameSize returns the size in
bytes of the persistent text object.

name A text object (see “Text Object Manager reference” to be
provided later.) On input, an ephemeral text object or NULL if
you want the function to return the name in a persistent text
object. On output, the text object contains the name string
corresponding to the name identification given in the nameID
parameter, the text encoding, and the language and region for
the text string.

DISCUSSION

A locale object contains a name table that can include up to six name records.
The name table includes records for the locale object’s key name and
user-displayable names, such as the locale object user name and copyright
information. A name record contains a name ID field that tells the type of
Locale Object Manager Functions 2-29
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
information its name string field contains. The Locale Object Manager defines
constants to identify the names of the name table. You give a name identifier
constant for the nameID field to specify which of the name strings belonging to
the locale object you want GetLocaleObjectName to return as a text object.

For example, to obtain a text object to display to your user containing the locale
object user name, you would specify kLocaleObjectUserName as the name
identifier when you call GetLocaleObjectName. A text object is a private data
type that you use to pass data to the Mac OS 8 system components and to store
text displayed as part of your user interface.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

GetLocaleObjectKeyName 2

Returns the key name for the locale object whose locale object reference you
specify.

OSStatus GetLocaleObjectKeyName (LocaleObjectRef objectRef,
Str255 keyName);

objectRef A locale object reference (page 2-8) to the locale object whose
key name you want to obtain.

keyName On output, a text string giving the key name (page 2-13) for the
specified locale object.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-30 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
DISCUSSION

You can use the locale object key name that GetLocaleObjectKeyName returns as
part of the criteria to search the locale database for matching locale objects. Key
names usually describe the type of data the locale object contains, for example,
collatetable.

You provide a locale object key name to LocaleIteratorCreate (page 2-42) to be
used in an iterative search for locale objects. You provide a locale object key
name to SetLocaleIterator (page 2-45) to change that portion of the existing
search criteria. To search for the first matching locale object found, you provide
a locale object key name to the SearchOneLocaleObject function (page 2-40).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

GetLocaleObjectAttributes 2

Returns all attributes of the specified object.

OSStatus GetLocaleObjectAttributes (LocaleObjectRef objectRef,
const NameValuePair **attributes,
ItemCount *countPairs);

objectRef A locale object reference (page 2-8) to the locale object whose
attributes you want to obtain.

attributes A pointer to an attribute name-value pair structure (page 2-8).
On output, the pointer refers to the table in memory containing
the full set of attribute name-value pairs associated with the
specified locale object. This table is read only.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-31
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
countPairs A pointer to a value of type ItemCount. On output, the value
pointed to specifies the number of attribute name-value pairs
contained in the table referred to by the attributes parameter.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

DISCUSSION

Once you identify the locale object whose attributes you want to obtain, you
provide its locale object reference to the GetLocaleObjectAttributes function. If
the function completes successfully, GetLocaleObjectAttributes returns a
pointer to the set of attributes associated with the specified locale object and a
pointer to the number of attribute pairs contained in that set. The attribute
name-value pairs set pointed to in memory is read-only; you cannot write to it.
However, you can use the number of pairs returned as a counter to increment
through the table in memory. You can read the attributes data or copy it as you
increment through the table.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-32 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
GetLocaleObjectData 2

Returns a pointer to the data stored in the data portion of the specified locale
object.

OSStatus GetLocaleObjectData (LocaleObjectRef objectRef,
const void **localeObjectData,
ByteCount *dataSize);

objectRef A locale object reference (page 2-8) to the locale object whose
data you want to obtain.

localeObjectData
A pointer to data. On output, the pointer refers to the data
belonging to the locale object whose reference you specify. The
data pointed to is read only.

dataSize A pointer to a value of type ByteCount. On output, the value
pointed to gives the size in bytes of the data referred to by the
localeObjectData parameter.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

DISCUSSION

Once you identify the locale object whose data you want to obtain, you pass its
locale object reference to the GetLocaleObjectData function to obtain a pointer
to the object’s data. A locale object’s data might consist of a sorting table or a
number format table, for example.

The data pointed to is read only. You can copy the data and write to the copy of
it, but you must not alter the original data in memory. This rule applies unless
the locale object whose reference you provide is a locale object that your
application added to the database for its use within the current process; in this
case, you can modify the original data you provided.
Locale Object Manager Functions 2-33
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

GetLocaleObjectLocale 2

Identifies the locale to which the specified locale object belongs, returning the
locale reference and the locale identifier for the locale.

OSStatus GetLocaleObjectLocale (
LocaleObjectRef objectRef,
LocaleRef *locale,
LocaleIdentifier *localeID);

objectRef The locale object reference (page 2-8) to the locale object whose
locale you want to know.

locale A pointer to a locale reference (page 2-5). On output, the pointer
refers to the locale reference of the locale to which the specified
locale object belongs.

localeID A pointer to a locale identifier (page 2-16). On output, the
pointer refers to the locale identifier that specifies the language
and region for the locale to which the locale object belongs.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

DISCUSSION

When you perform an iterative search of the locale database and you obtain a
locale object that satisfies your matching criteria, you don’t know to which
locale the object belongs because the search is not constrained to one locale.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-34 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
You can use GetLocaleObjectLocale to determine the locale to which the object
belongs and to obtain the locale identifier from which you can determine the
primary language and region of the locale.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To determine the primary language and region of the locale, use the
GetLocaleLanguage (page 2-68) and GetLocaleRegion (page 2-69) functions.

Obtaining a Locale’s Default Values 2

GetLocaleInformation 2

Returns a text object containing the default value indicated by the name
identifier you specify for the locale whose reference you specify.

OSStatus GetLocaleInformation (LocaleRef locale,
LocaleDefaultValue infoID,
TextObject *infoText);

locale A locale reference identifying the locale for which you want the
name of the default value.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-35
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
infoID The identifier of the locale name whose default value you want
returned in the text object. To specify the default value name
identifier, use one of the locale name default value (page 2-15)
constants.

infoText A pointer to a text object. On output, the text object contains the
default value name string corresponding to the name identifier
given in the infoID parameter. For information on text objects,
see “Text Object Manager Reference,” to be provided later.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Getting and Setting Default Behavior for a Locale 2

When the Locale Object Manager initially builds the locale database, it sets
default behaviors for each locale based on information provided by a localizer
in a Locale file. For a given type of data identified by a key name, you can
obtain or set the default for a locale. You use the GetDefaultLocaleObject
function to obtain a reference to the locale object containing the locale’s default
data for a specific behavior. You use the SetDefaultLocaleObject function to set
a locale’s default data for a specific behavior.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-36 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
GetDefaultLocaleObject 2

Returns a reference to the locale object containing the locale’s default data for
the behavior specified by the key name you provide.

OSStatus GetDefaultLocaleObject (
LocaleRef locale,
ConstStr255Param keyName,
LocaleObjectRef *objectRef);

locale The locale reference (page 2-5) to the locale for which you want
the default data.

keyName A text string giving the key name (page 2-13) of the type of data
for which you want the default locale object.

objectRef A pointer to a locale object reference (page 2-8). On output, the
locale object reference to the default locale object for the type of
function specified by keyName.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

DISCUSSION

You can use this utility to obtain the default data that determines the behavior
of the locale for any type of text-handling operation. You specify the locale
object’s key name to identify the default behavior you want to know about.
Default behaviors for a given locale are based on information provided in a
Locale file created by a localizer and read by the Locale Object Manager when
it initially builds the database.
Locale Object Manager Functions 2-37
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SetDefaultLocaleObject 2

Sets the specified locale’s default behavior within the current process for the
kind of operation identified by the given key name contained in the given
locale object reference.

OSStatus SetDefaultLocaleObject (
LocaleRef locale,
LocaleObjectRef objectRef);

locale The locale reference (page 2-5) to the locale for which you want
to set the default.

objectRef A locale object reference (page 2-8) to the locale object
containing the data to use for the default behavior of the
operation specified by the locale object’s key name.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-38 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Searching for the First Matching Object of a Locale and Searching
Iteratively 2

You can search the locale database for one or more locale objects whose data
you want and obtain a reference to the locale object, a pointer to its data, or
both. You can use the pointer to access the locale object’s data directly after
calling the search function, or you can preserve the locale object reference and
pointer use them later, delaying the retrieval of the data. The Locale Object
Manager provides these functions for searching the database:

■ SearchOneLocaleObject finds the first locale object that matches your search
criteria.

■ LocaleIteratorCreate creates an iterator containing the search criteria for an
iterative search.

■ LocaleIteratorCreate iterates through the database to find as many
matching locale objects as you want.

■ SetLocaleIteratormodifies the content of an existing locale iterator reference
and resets its starting position.

■ LocaleIteratorDispose releases the memory for the iterator when you no
longer need it.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-39
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
SearchOneLocaleObject 2

Using the locale object’s key name and attributes you provide, searches the
locale database for the first matching locale object and returns a reference to it
along with a pointer to that locale object’s data.

OSStatus SearchOneLocaleObject(LocaleRef locale,
ConstStr255Param keyName,
UInt16 countAttributes,
const NameValuePair *attributes,
const void **localeObjectData,
ByteCount *dataSize,
const LocaleObjectRef *objectRef);

locale A locale reference (page 2-5) to the locale where the search is to
begin. The Locale Object Manager starts the search here and
traverses the database until it finds the first matching locale
object.

keyName The key name (page 2-13) for the specified locale object.

countAttributes
The number of attribute name-value pairs that you provide in
the pairs parameter.

attributes A pointer to an array of attribute name-value pair structures
(page 2-8). On input, this array provides the attributes that the
returned locale object must possess to satisfy the search criteria.

localeObjectData
A pointer to data. On output, the pointer refers to the data
belonging to the locale object that satisfied the matching
criteria. The data pointed to is read only. (The objectRef
parameter returns a reference to the locale object whose data is
pointed to by this parameter.) If you don’t want the function to
return a pointer to the data, pass in NULL for this parameter.

dataSize A pointer to a value of type ByteCount. On output, the value
pointed to contains the size in bytes of the data returned in the
localeObjectData parameter. If you don’t want the function to
return this value, pass in NULL for this parameter.
2-40 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
objectRef A pointer to a locale object reference (page 2-8). On output, the
pointer refers to the locale object reference for the first locale
object found in the locale database that meets the matching
criteria. This is the locale object whose data is provided in the
localeObjectData parameter. If you don’t want the function to
return a locale object reference, pass in NULL for this parameter.

function result A result code. If the locale database does not include a locale
object that meets the matching criteria, the function returns an
localeObjectNotFoundErr result code. For other possible
returned result codes, see “Locale Object Manager Result
Codes” (page 2-72).

DISCUSSION

The SearchOneLocaleObject function lets you search the locale database for the
first locale object that matches the key name and attribute name-value pairs
criteria that you provide. You can position the start of the search anywhere in
the database by giving the locale reference to the locale where you want the
Locale Object Manager to begin. SearchOneLocaleObject returns only one
matching locale object, unlike LocaleIterate (page 2-47), which you can use to
search the entire database for all matching locale objects. However, you do not
need to create a locale iterator reference (page 2-6) for use with
SearchOneLocaleObject as you must for use with LocaleIterate.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-41
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
SEE ALSO

To obtain a reference to the locale where you want to position the start of the
search, you use GetLocaleReference (page 2-23), passing it a locale identifier
(page 2-6) to denote the locale.

LocaleIteratorCreate 2

Creates and returns a locale iterator reference that you can use to iteratively
search the locale database for objects having characteristics you specify as
matching criteria.

OSStatus LocaleIteratorCreate (LocaleRef locale,
ConstStr255Param keyName,
ItemCount countAttributes,
const NameValuePair *attributes,
LocaleIteratorReference *localeIteratorRef);

locale A locale reference (page 2-5) to the locale with which the Locale
Object Manager is to begin the search. This parameter sets the
locale in the locale iterator reference that designates where
LocaleIterate (page 2-47) will position the start of the search.
To begin the search with the default locale of the current
process, set this parameter to NULL.

keyName A locale object key name (page 2-13) that you provide to specify
part of the matching criteria used in the search. For a locale
object to satisfy this part of the matching criteria, its key name,
specified in its name table, must match the key name you
supply. Together the locale object key name and the list of
attribute name-value pairs you give in the pairs parameter
constitute the matching criteria. To base the search on only the
attribute name-value pairs, specify NULL for this parameter.

countPairs The number of attribute name-value pairs given in the pairs
parameter. If you do not provide attribute name-value pairs as
part of the search criteria, specify 0 for this parameter.

pairs A pointer to an array of attribute name-value pair structures
(page 2-8). On input, this array provides the attributes that the
returned locale object must possess to satisfy the search criteria.
2-42 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Together the attribute name-value pairs and the locale object
key name constitute the matching criteria. To base the search on
only the locale object key name you give in the keyName
parameter, specify NULL for this parameter.

localeIteratorRef

A pointer to a locale iterator reference (page 2-6). On output,
this pointer refers to the locale iterator reference created with
the search criteria and starting position you specified.

function result A result code. If the locale reference you specify in the locale
parameter is invalid, the function returns a
localeBadReferenceErr result code. If there is not enough
memory available to create the locale iterator reference, the
function returns a memFullErr result code. For other possible
returned result codes, see “Locale Object Manager Result
Codes” (page 2-72).

DISCUSSION

Your application can gain access to different types of data stored in the locale
database by using the Locale Object Manager to search the database. To search
iteratively throughout the database, you use a private data structure called a
locale iterator reference.

To search through the locale database, you pass a locale iterator reference to the
LocaleIterate (page 2-47) function. In response, the Locale Object Manager
finds locale objects in the locale database that match your description. When
LocaleIterate encounters a locale object that matches your description, it
returns a locale object reference (page 2-8) and the data for the matching object
to your application. You can continue to call LocaleIterate from within a loop
to find all matching locale objects using the same locale iterator reference until
you find what you are looking for. The locale iterator reference used for the
search tracks the progress through the locale database maintaining the next
position at which to continue the search. When there are no more matching
locale objects in the database, LocaleIterate returns an eObjectNotFound result
code that you can test against.

To create a locale iterator reference, you use LocaleIteratorCreate, passing it
the matching criteria that describes what it is you are looking for. For this
matching criteria, you typically provide a locale object key name, one or more
attributes, or both. However, to look at all objects in the locale database, you
Locale Object Manager Functions 2-43
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
can create a locale iterator reference that specifies only the starting position of
the search, but no matching criteria. In this case, you would specify NULL for
both the keyName and pairs parameters and 0 for the countPairs parameter.

A locale object key name describes the type of data you are interested in. For
example, you might want to find all input methods, in which case you would
specify inputmethods as the keyName parameter. You might want to refine the
search further by specifying one or more attributes that a qualifying locale
object must possess, such as an attribute designating the language that the
input method supports. In this case, you would provide an attribute
name-value pair structure specifying kLanguageName as the name ID, the size in
bytes of the language code, and the language code for the specific language
you are interested in.

As part of the locale iterator reference, you can specify where in the database
you want the search to begin by giving a reference to the locale that serves as
the starting point. Positioning the start of the search at a specific locale allows
you greater efficiency if you do not want to search the entire database. For
example, the Locale Object Manager may encounter and return the specific
locale object you are looking for before it has worked its way through half the
locales composing the database. However, it is important to understand that
the locale whose reference you provide serves only as the starting point and
does not limit the search to that locale. The search proceeds from that locale
forward or backward throughout the locales of the database depending on the
direction you specify when you call LocaleIterate.

A locale iterator reference remains available for your use until you dispose of it
by calling LocaleIteratorDispose (page 2-50).

You can use the same locale iterator data structure for multiple, distinct
searches. For each new search, you can change the search matching criteria—
the locale object name and its attributes—of an existing locale iterator.
However, for each new search, you must remember to reset the starting
position using the SetLocaleIterator (page 2-45) function, otherwise the search
will fail.
2-44 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SetLocaleIterator 2

Modifies the content of an existing locale iterator reference, changing or
resetting either the search’s starting position only, or its starting position and its
matching criteria.

OSStatus SetLocaleIterator (LocaleRef locale,
ConstStr255Param keyName,
ItemCount countAttributes,
const NameValuePair *attributes,
LocaleIteratorReference *localeIteratorRef);

locale A locale reference (page 2-5) to the locale with which the
iterator is to begin the search. This parameter resets the starting
position for the search in the locale iterator reference specified
by the localeIteratorRef parameter. You can reset the locale
reference to restart a search. You must always reset the starting
position when you use an existing locale iterator reference for a
new search. You can reset the iterative search to its original
starting position by specifying NULL for this parameter instead
of specifying a new locale reference.

keyName A locale object key name (page 2-13) that you provide to change
the name string currently set in the specified locale iterator. A
locale object key name serves as part of the matching criteria
used in the search. For a locale object to satisfy this part of the
matching criteria, it must include this name among the names
belonging to it. To reuse the existing locale object key name set

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-45
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
for the locale iterator reference, specify -1 for this parameter.
Together the locale object key name and the list of attribute
name-value pairs contained in the locale iterator reference
constitute the matching criteria.

countAttributes
The number of attribute name-value pairs given in the pairs
parameter.

attributes A pointer to an array of attribute name-value pair structures
(page 2-8). On input, this pointer refers to an array containing
the attributes that you provide to replace the existing
name-value pairs in the specified locale iterator. To reuse the
existing attribute name-value pairs in the locale iterator
reference, specify -1 for this parameter.

localeIteratorRef

A pointer to a locale iterator reference (page 2-6). On input, the
pointer refers to an existing locale iterator reference whose
content you want to modify.

function result A result code. If the locale reference you specify in the locale
parameter is invalid, the function returns a
localeBadReferenceErr result code. The function returns a
memFullErr result code if there is insufficient memory for the
Locale Object Manager to modify the locale iterator reference.

DISCUSSION

After you have created a locale iterator reference using LocaleIterateCreate
(page 2-42), you can use SetLocaleIterator to modify its content. To reuse an
existing locale iterator reference, you must always reset the starting position
specified by the locale parameter, otherwise the search will fail. The Locale
Object Manager traverses and tracks its progress through the entire locale
database once using a locale iterator reference. Resetting the starting position
informs the Locale Object Manager that you want to use the existing locale
iterator reference for a new search so that it can clear any tracking information
used for the last search. If you want to position the search at the locale
currently specified by locale iterator reference, pass NULL as the locale
parameter. To reuse the existing locale object name or the existing set of
attributes, specify -1 for these parameters. You can use all the current
2-46 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
information in the locale iterator reference to search the database again by
specifying NULL for locale, -1 for keyName, and -1 for pairs.

You can change the locale object key name or the attribute name-value pairs, or
both parts of the search criteria. If you supply new attribute name-value pairs,
you replace all of the existing ones formerly specified; you cannot partially
modify a set of attributes other than by providing the same attribute along with
the new ones you supply in your array.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

LocaleIterate 2

Searches the locale database iteratively for locale objects that match the search
criteria specified by the locale iterator reference you provide, and returns a
matching locale object’s reference and a pointer to its data.

OSStatus LocaleIterate (LocaleIteratorReference localeIteratorRef,
LocaleIterateOp op,
const void **dataPtr,
ByteCount *dataSize,
const LocaleObjectRef *objectRef);

localeIteratorRef
A locale iterator reference (page 2-6) containing the search
criteria and starting position.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-47
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
op The direction in which you want the search to proceed, either
forward or backward. You can use the locale database search
direction constants (page 2-7) for this parameter.

dataPtr A pointer to data. On output, this pointer refers to the read-only
data belonging to the matching locale object if LocaleIterate
finds a locale object that satisfies the search criteria. You can
copy this data, but you cannot modify it in the memory location
pointed to by this parameter. If no matching locale object exists
in the database, this parameter contains an invalid value and
the function returns an eObjectNotFound result code.

dataSize A pointer to a value of type ByteCount. On output, the value
pointed to specifies the size in bytes of the locale object’s data
pointed to by the dataPtr parameter.

objectRef A pointer to a locale object reference. On output, the locale
object reference for the locale object that matched the search
criteria.

function result A result code. When there are no more locale objects in the
locale database that match the description you provide in the
locale iterator reference, or if the first time you call
LocaleIterate it searches the entire database without finding a
matching locale object, LocaleIterate returns an
localeNotFoundErr result code. If the locale iterator reference
you specify is NULL, the function returns a paramErr result code.
For other possible returned result codes, see “Locale Object
Manager Result Codes” (page 2-72).

DISCUSSION

Your application can use an iterative search to gain access to the data of all
locale objects in the database that have in common a set of characteristics. To
simplify this process and allow you to widen or narrow the search criteria more
easily, the Locale Object Manager allows you to create a locale iterator reference
that holds both the characteristics of the locale objects whose data you are
interested in and the position in the database where the search is to begin. You
use LocaleIterateCreate (page 2-42) to create a locale iterator reference that
you pass to the LocaleIterate function when you call LocaleIterate from
within a loop to search iteratively through the database for matching locale
objects.
2-48 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
The LocaleIterate function begins at the locale whose reference you specified
when you created the locale iterator reference, but it proceeds from there to
search through all locales of the entire locale database for locale object matches.
LocaleIterate returns a reference to the locale object and a pointer to its data
each time the function finds a match until it completes its search of the entire
database or until you stop the search because you have found the locale object
you were searching for. The locale object data pointed to by the dataPtr
parameter is read only; your application can copy its contents, but you cannot
write to it in memory.

The locale iterator used for the search tracks the progress through the locale
database maintaining the next position at which to continue the search. You can
specify the direction of the search when you call the function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can use the locale object reference returned by LocaleIterate to specify the
locale object whose attributes you want to obtain when you call
GetLocaleObjectAttributes (page 2-31).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-49
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
LocaleIteratorDispose 2

Disposes of a locale iterator reference created by the LocaleIteratorCreate
function.

OSStatus LocaleIteratorDispose (
LocaleIteratorReference localeIteratorRef);

localeIteratorRef
The locale iterator reference to be disposed of.

function result A result code. If you specified an invalid locale iterator
reference, LocaleIteratorDispose returns a paramErr result code.
For other possible returned result codes, see “Locale Object
Manager Result Codes” (page 2-72).

DISCUSSION

You can reuse existing locale iterator references for multiple, distinct searches,
but when you are entirely finished with one, you must dispose of the memory
used for the locale iterator reference by calling this function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Adding Locale Objects To and Removing Them From the Locale
Database 2

You can add data to the locale database and remove it from the database from
within your application’s current process. You use the AddLocaleObject

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-50 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
function to add a locale object and the RemoveLocaleObject function to remove
any locale object you added.

AddLocaleObject 2

Adds a locale object to the specified locale for the duration of the current
process, and returns a reference to the object.

OSStatus AddLocaleObject(LocaleRef locale,
void *localeObjectData,
ByteCount objectSize,
ConstStr255Param keyName,
ItemCount countUserNames,
const NameTableEntry *userName
ItemCount countAttributes,
const NameValuePair *attributes,
LocaleObjectRef *objectRef);

locale A locale reference to the locale (page 2-5) to add the specified
locale object to.

localeObjectData
A pointer to data. On input, the pointer refers to the data for the
new locale object to be added to the database. You can provide
any type of data for the locale object; the localeObjectData data
type is a void pointer, so it doesn’t restrict the type of data you
can supply.

objectSize The size in bytes of the locale object’s data given in the
localeObjectData parameter.

keyName A locale object key name for the new locale object.

countUserNames
The number of user names you provide in the userNames
parameter.
Locale Object Manager Functions 2-51
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
userNames A pointer to a name-table entry structure (page 2-12). On input,
the pointer refers to the first name-table entry in the array of
structures containing the user names and their identifiers for
the data you are adding. You must specify at least a locale
object user name (kLocaleObjectUserName).

countAttributes
The number of attribute name-value pairs you provide in the
attributes parameter. If you are not providing any attributes,
specify 0 for this parameter.

attributes A pointer to an attribute name-value pair structure (page 2-8).
On input, this pointer refers to the first attribute name-value
pair in the array of structures containing the attributes for the
locale object to be added. If you are not providing any
attributes, pass in NULL for this parameter.

objectRef A pointer to a locale object reference (page 2-8). On output, a
locale object reference to the new locale object temporarily
added to the database.

function result A result code. If there is not enough memory available for the
function to create the new locale object and add it to the
database, the function returns a memFullErr result code. If a
locale object having the same locale object key name and
attributes you specify for the new one already exists in the
database, the function returns a
localeObjectNameAttributeConflictErr result code. For other
possible returned result codes, see “Locale Object Manager
Result Codes” (page 2-72).

DISCUSSION

You can add a locale object to a specific locale to be used within the current
process, that is, the current CFM (Code Fragment Manager) context. The locale
object is temporarily incorporated in the database.

You should always use the RemoveLocaleObject function (page 2-53) to
explicitly remove the locale object from the database before the current process
terminates. Then, you should dispose of the memory you allocated for the
parts of that object—its data, key name, user names, and attributes.

If you do not explicitly remove the locale object from the database before the
process terminates, the Locale Object Manager removes it when this occurs. In
2-52 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
this case, you are still responsible for releasing the memory allocated for the
object parts.

Adding a locale object to the database using AddLocaleObject is the way to
temporarily replace an existing locale object—for example, to install a custom
sorting table to override the default one for the locale for the duration of the
current process.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

RemoveLocaleObject 2

Removes the specified locale object from the locale database.

OSStatus RemoveLocaleObject (LocaleObjectRef objectRef);

objectRef A locale object reference (page 2-8) to the locale object to be
removed from the database.

function result A result code. If you specify an invalid locale object reference,
the function returns a localeObjectInvalidReferenceErr result
code. For other possible returned result codes, see “Locale
Object Manager Result Codes” (page 2-72).

DISCUSSION

You can use this function to remove locale objects that you added to the locale
database, but you cannot remove locale objects added to the locale database
when it was built at system startup or locale objects added to it by other clients

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-53
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
of the database. Removing a locale object from the database does not release
the memory you allocated for the object’s parts when you added the locale
object using AddLocaleObject (page 2-51). It is your responsibility to dispose of
the data and release the memory for it.

You should always call this function to remove a locale object that you added
within the context of the current process before that process terminates.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Getting Data Associated With a Locale Object 2

You can obtain additional data associated with a locale object’s primary data. If
you know the tag that identifies the collection of data you want, you can use
the GetLocaleObjectAssociatedData function to obtain it. If you don’t know the
tag, you can obtain the tags for a locale object’s associated data by first
determining the total number of tags, then using the number as a count to
increment through the tags. To identify the total number of tags, you use the
CountLocaleObjectAssociatedDataTags function. To obtain a tag based on its
index, you use the GetIndexedAssociatedData.

You can use the GetLocaleObjectFSObjectRef function to obtain the file
specification object reference for the file that originally contained a given locale
object.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-54 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
GetLocaleObjectAssociatedData 2

Returns a pointer to the tag-identified data associated with the locale object
whose reference you specify.

OSStatus GetLocaleObjectAssociatedData (LocaleObjectRef objectRef,
LocaleDataTag tag,
const void **associatedDataPtr,
ByteCount *size);

objectRef A locale object reference (page 2-8) to the locale object whose
data you want to obtain.

tag A data tag (page 2-20), consisting of four characters enclosed in
single quotation marks, identifying the associated data you
want.

associatedDataPtr
A pointer to data. On output, this pointer refers to the data
whose tag you specified.

size A pointer to a value of type ByteCount. On output, this value
specifies the size of the associated data.

function result A result code. If the locale object reference that you specify in
the objectRef parameter is invalid, the function returns a
localeObjectInvalidReferenceErr result code. For other
possible returned result codes, see “Locale Object Manager
Result Codes” (page 2-72).

DISCUSSION

After you search for a locale object and obtain a reference to it using either
SearchOneLocaleObject (page 2-40) or LocaleIterate (page 2-47), you can call
GetLocaleObjectAssociatedData to obtain any collection of data associated with
the locale object’s primary data.

A locale object may have associated with it multiple collections of associated
data. To identify the type of associated data you want to obtain, you specify the
data’s tag.
Locale Object Manager Functions 2-55
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

CountLocaleObjectAssociatedDataTags 2

Returns the number of associated-data tags that exist for the specified locale
object.

ItemCount CountLocaleObjectAssociatedDataTags (
LocaleObjectRef objectRef);

objectRef A locale object reference (page 2-8) to the locale object for which
you want the number of tags.

function result The number of associated-data tags belonging to the specified
locale object. If there is no data associated with the locale object,
this function returns a value of 0.

DISCUSSION

A locale object can have additional data associated with it that is identified by a
4-character tag. If you want to obtain any collection of associated data included
in a locale object for use with its primary data, you need to know the associated
data’s tag. You can obtain the tags for associated data by first calling
CountLocaleObjectAssociatedDataTags to get the total number of tags. You can
then use this number as a count to increment through the tags referring to them
by index based on this count. You use this function in conjunction with
GetIndexedAssociatedData (page 2-57) which returns the tag whose index you
specify.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-56 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Any locale object originally contained in a file has at least one associated-data
tag, called the file object tag, that identifies its associated data as the file
specification reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

GetIndexedAssociatedData 2

Given an index into the table of associated data for the specified locale object,
returns the associated data, its size, and its tag.

OSStatus GetIndexedAssociatedData (
LocaleObjectRef objectRef,
LocaleObjectTagIndex tagIndex,
LocaleDataTag *tag,
const void **associatedDataPtr,
ByteCount *size);

objectRef A locale object reference (page 2-8) to the locale object whose
associated data you want to obtain.

tagIndex A zero-based index that refers to the tag whose data you want.
You use CountLocaleObjectAssociatedDataTags (page 2-56) to
obtain the total number of tags to use as the count.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-57
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
tag A pointer to a value of type LocaleDataTag (page 2-19). On
output, this value contains an associated data tag identifying
the data whose index you specified. If you don’t want the
function to return an associated-data tag, pass in NULL for this
parameter.

associatedDataPtr
A pointer to data associated with a locale object. On return, this
pointer refers to the associated data whose index you specified
as the tagIndex parameter. The pointer refers to read-only
memory. If you attempt to write to it, you will cause an access
fault to occur. If you don’t want the function to return a pointer
to the associated data, pass in NULL for this parameter.

size A pointer to a value of type ByteCount. On output, this value
contains the size in bytes of the associated data. If you don’t
want the function to return the size of the associated data, pass
in NULL for this parameter.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-58 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
GetLocaleObjectFSObjectRef 2

Returns the file specification object reference for the file that originally
contained the locale object.

OSStatus GetLocaleObjectFSObjectRef (
LocaleObjectRef objectRef,
FSObjectRef *fileRef);

objectRef
A locale object reference (page 2-8) to the locale object whose
associated file you want to obtain.

fileRef A pointer to a file specification object reference. On output, this
file specification object reference identifies the file that
originally contained the locale object. The file might contain the
data for the locale object, for example, if the data is an input
method or other service not stored in the locale database. See
the File Manager for information on file specification object
references. The file specification object reference is valid within
the current process only.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

DISCUSSION

At system startup, the Locale Object Manager adds all locale objects that exist
within files stored in the Locales folder to the locale database. During this
process, the Locale Object Manager stores a permanent reference to the file
system object specification for the file that originally contained the locale object
along with the locale object in the database. The data that a locale object
provides can be stored with the locale object in the database or it can remain in
the data fork of the locale object’s original file. For example, an input method
implemented as a (System Object Module) SOM object would reside in the data
fork of the locale object’s original file. The locale object representing the input
method would be installed in the locale database; the locale object would
contain the file system object specification for the locale’s original file in which
the input method, itself, is stored.

The GetLocaleObjectFSObjectRef function is used internally by other Mac OS 8
Managers. However it is available for your use as well.
Locale Object Manager Functions 2-59
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
The Text Services Manager, one of the Mac OS 8 managers that uses this
function, might create a locale iterator reference (page 2-6) containing function
and language attributes, then search the locale database using the iterator to
look for services that match the specified values. In the case of a SOM-based
text service, for example, the class for the text service would be stored in the
data portion of the locale object—not in the locale object’s original file—and the
locale object would contain a function attribute describing the service’s use and
a language attribute telling the language for which it is localized. When the
Text Services Manager obtained the reference to the locale object for the service
it was searching for, it would pass the reference to GetLocaleObjectFSObjectRef
to obtain the file specification for the file containing the service. The Text
Services Manager could then use the file specification to load the CFM (Code
Fragment Manager) library and use the class name stored as the locale object’s
data to instantiate the SOM object service.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Creating and Obtaining a Locale Identifier 2

A locale identifier is a packed value containing packed language and region
codes, and a customization code indicating whether the locale is a customized
version of a standard locale. The Locale Object Manager provides these
functions for creating and obtaining locale identifiers:

■ CreateLocaleIdentifier creates and returns a locale identifier based on
information you provide.

■ GetSystemLocaleIdentifier returns the locale identifier for the system locale.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-60 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
■ GetCurrentProcessLocaleIdentifier returns the locale identifier for your
application’s current process.

■ GetLocaleRefLocaleIdentifier returns the locale identifier for the locale
whose reference you provide.

■ GetFirstLocale returns the locale identifier of the first locale in the database.

■ GetNextLocale returns the locale identifier for the next locale in the database
that follows the locale whose reference and identifier you provide.

CreateLocaleIdentifier 2

Creates and returns a locale identifier containing the language and region you
specify.

LocaleIdentifier CreateLocaleIdentifier(LocaleLanguageCode language,
LocaleRegionCode region,
LocaleCustomizationCode customization);

language A locale language code (page 2-17) that identifies the language
of this locale. If you do not know the primary language for the
locale or you do not want to specify a particular language, use
the kLocaleLanguageWildCard constant (page 2-17) to specify any
language.

region A locale region code (page 2-18) that identifies the region of this
locale. If you do not know the region code for the locale or you
do not want to specify a particular region, use the
kLocaleRegionWildCard constant (page 2-17) to specify any
region.

customization
A customization code set internally by the Locale Object
Manager to indicate that the locale is a customized version of a
standard system locale. Because this value is set internally by
the Locale Object Manager, you should always specify the
kLocaleCustomizationWildCard constant (page 2-19) for this
parameter.

function result A locale identifier (page 2-16) that contains the information you
provide to identify a locale.
Locale Object Manager Functions 2-61
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
DISCUSSION

A locale identifier contains a language code, a region code, and a customization
code for a locale. You can use CreateLocaleIdentifier to create and obtain a
locale identifier for a locale that is not in the locale database, that is, for a locale
that is not installed on the system. The following scenario illustrates why you
might want to create a locale identifier for a locale not resident on the system.

Suppose your application allows a user to label text with language and region
attributes; the user directs you to treat a portion of text as French-Canadian, but
the locale database does not contain a French-Canadian locale. In response, you
would call CreateLocaleIdentifier, specifying the appropriate language and
region codes for a French-Canadian locale. Then, your application would label
the text with the Apple Roman (MacRoman) text encoding along with the
locale identifier you created.

You should always specify the wildcard constant
kLocaleCustomizationWildCard as the value of the customization parameter
when creating a locale identifier because the Locale Object Manager assigns
this code internally only to customized versions of a locale. If you want to
know whether a specific locale is a custom one, you can use
GetLocaleCustomization (page 2-70).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

GetSystemLocaleIdentifier 2

Returns the locale identifier of the system locale.

LocaleIdentifier GetSystemLocaleIdentifier (void);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-62 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
function result A locale identifier (page 2-16) that contains the primary
language and region codes of the locale used for the system and
a customization code if the system locale has been customized.

DISCUSSION

At system startup, the Locale Object Manager establishes the default system
locale based on the language and region for which the system is localized. You
can use GetSystemLocaleIdentifier to obtain the locale identifier for the current
system locale. Using the locale identifier that GetSystemLocaleIdentifier
returns, you can call GetLocaleLanguage (page 2-68) and GetLocaleRegion
(page 2-69) if you want to know the language and region for which the system
is localized and GetLocaleCustomization (page 2-70) if you want to know if the
system locale has been customized in any way.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can use the GetSystemDefaultLocaleRef function (page 2-25) to obtain a
reference to the default system locale.

GetCurrentProcessLocaleIdentifier 2

Returns the locale identifier of the locale used for the current process.

LocaleIdentifier GetCurrentProcessLocaleIdentifier (LocaleRef locale);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-63
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
function result A locale identifier (page 2-16) that contains the primary
language and region codes of the locale used for the current
process, that is, the current CFM (Code Fragment Manager)
context, and a customization code if the locale has been
customized.

DISCUSSION

At system startup, the Locale Object Manager establishes the default system
locale based on the language and region for which the system is localized. The
default system locale becomes the default locale for your application, that is,
for the current process, unless you change the locale for the current process by
calling the SetCurrentProcessLocale function (page 2-26).

You can use GetCurrentProcessLocaleIdentifier to obtain the locale identifier
for the current process locale. Using the locale identifier that
GetCurrentProcessLocaleIdentifier returns, you can call GetLocaleLanguage
(page 2-68) and GetLocaleRegion (page 2-69) if you want to know the primary
language and region used for the current process and GetLocaleCustomization
(page 2-70) if you want to know if the current process locale has been
customized in any way.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-64 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
GetLocaleRefLocaleIdentifier 2

Returns the locale identifier for the locale whose reference you provide.

LocaleIdentifier GetLocaleRefLocaleIdentifier (LocaleRef locale);

locale A locale reference (page 2-5) to the locale whose locale identifier
you want to obtain.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Using the locale identifier that GetLocaleRefLocaleIdentifier returns, you can
call GetLocaleLanguage (page 2-68) and GetLocaleRegion (page 2-69) if you want
to know the primary language and region of the locale and
GetLocaleCustomization (page 2-70) if you want to know if the locale has been
customized in any way.

GetFirstLocale 2

Returns the locale reference and locale identifier of the first locale in the
database.

OSStatus GetFirstLocale (LocaleRef *locale,
LocaleIdentifier *localeID);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-65
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
locale A pointer to a locale reference (page 2-5). On output, this
pointer refers to the locale reference for the first locale in the
database.

localeID A pointer to a locale identifier (page 2-16). On output, the
pointer refers to the locale identifier for the first locale in the
database.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

DISCUSSION

You can use GetFirstLocale to begin an iteration through the database to obtain
the locale reference and locale identifier of each locale in succession. After you
obtain the locale reference of the first locale, you can pass it to the
GetNextLocale function (page 2-66) to obtain the locale reference and locale
identifier for the next locale in the database, and so on, calling GetNextLocale
from within a loop to obtain as many sets of information as you require.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

GetNextLocale 2

Returns the locale reference and locale identifier for the next locale in the
database that follows the locale whose reference and identifier you provide.

OSStatus GetNextLocale (LocaleRef *locale,
LocaleIdentifier *localeID);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-66 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
locale A pointer to a locale reference (page 2-5). On input, this pointer
refers to the locale reference for the locale preceding the one for
which you want information. You can supply the pointer to the
locale reference returned by the GetFirstLocale function
(page 2-65). On output, this pointer refers to the locale reference
for the next locale in the database.

localeID A pointer to a locale identifier (page 2-16). On input, this
pointer refers to the locale identifier for the locale preceding the
one for which you want information. You can supply the
pointer to the locale iterator returned by GetFirstLocale. On
output, the pointer refers to the locale identifier for the next
locale in the database that follows the one whose reference you
supplied in the locale parameter.

function result A result code. See “Locale Object Manager Result Codes”
(page 2-72).

DISCUSSION

You can use GetNextLocale from within a loop to iterate through the database
obtaining the locale references and locale identifiers for all locales or as many
in succession as you require. You pass GetNextLocale the locale reference and
identifier for the locale where you want the process to begin, and it returns the
locale reference and locale identifier for the next locale in the database. To
begin collecting locale references and identifiers starting with the first locale in
the database, call GetFirstLocale (page 2-65) outside the loop before you call
GetNextLocale, passing to GetNextLocale the locale reference and identifier
returned by GetFirstLocale.

Although GetFirstLocale and GetNextLocale are meant to be used together, you
can call GetNextLocale passing it the locale reference and identifier for any
locale to begin the process from that locale. To obtain a locale
reference-identifier set to pass to GetNextLocale, you can use
GetLocaleReference (page 2-23) or any of the functions that return a reference
and GetLocaleRefLocaleIdentifier (page 2-65) or any of the functions that
return an identifier.
Locale Object Manager Functions 2-67
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Obtaining Locale Identifier Information 2

You can obtain the values stored in a locale identifier. To obtain the language
code, use the GetLocaleLanguage function. To obtain the region code, use the
GetLocaleRegion function. To obtain the customization information, use the
GetLocaleCustomization function.

GetLocaleLanguage 2

Returns the language code for the locale whose locale identifier you supply.

LocaleLanguageCode GetLocaleLanguage (LocaleIdentifier identifier);

identifier A locale identifier (page 2-16) that specifies a particular locale.

function result
The language code representing the language for the locale that
you identified in the identifier parameter.

DISCUSSION

The GetLocaleLanguage function returns the language code for the primary
language of the locale whose identifier you specify. This value is one of the
language codes defined by the International Standards Organization (ISO) in
the “Code For the Representation of Names of Languages, alpha-3 code” dated

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-68 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
December 16, 1991 (ISO CD 639/2 draft proposal). Constants defined for these
codes are included as comments in the TextCommon.h header file.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain a locale identifier for locales that reside in the database, you can use
any of the functions provided by the Locale Object Manager to return locale
identifiers (page 2-63) on the current system.

GetLocaleRegion 2

Returns the region for the locale whose locale identifier you supply.

LocaleRegionCode GetLocaleRegion (LocaleIdentifier identifier);

identifier A locale identifier (page 2-16) that specifies a particular locale.

function result The region code representing the region for the locale that you
identified in the identifier parameter.

DISCUSSION

The GetLocaleRegion function returns the region code for the locale whose
identifier you specify. This value is one of the region codes defined by the
International Standards Organization (ISO) in the “Code For the
Representation of Names of Languages, alpha-3 code” dated December 16,

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-69
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
1991 (ISO CD 639/2 draft proposal). Constants defined for these codes are
included as comments in the TextCommon.h header file.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain a locale identifier for locales that reside in the database, you can use
any of the functions provided by the Locale Object Manager to return locale
identifiers (page 2-63) on the current system.

GetLocaleCustomization 2

Returns the customization code, if one exists, for the locale whose locale
identifier you supply.

LocaleCustomizationCode GetLocaleCustomization (
LocaleIdentifier identifier);

identifier A locale identifier (page 2-16) that specifies a particular locale.

function result The customization code for the locale that you identified in the
identifier parameter. If the locale has not been customized, the
Locale Object Manager returns kLocaleIdentifierWildCard.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-70 Locale Object Manager Functions

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
DISCUSSION

You can use GetLocaleCustomization to determine if the locale whose identifier
you specify has been customized. The Locale Object Manager creates a custom
locale based on a locale that exists in the locale database when some aspect of
the original locale is changed. The Locale Object Manager assigns a
customization code to the locale identifier for the new version of the locale. For
example, if a French-Canadian locale is modified in some way—suppose any of
the default values for the locale, such as a number separator, have been
changed—the Locale Object Manager would create a new custom version of
the locale and assign it a customization code.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain a locale identifier for locales that reside in the database, you can use
any of the functions provided by the Locale Object Manager to return locale
identifiers (page 2-63) on the current system.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Locale Object Manager Functions 2-71
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Determining Where a Locale Object Exists in Memory 2

GetLocaleObjectMemoryContext 2

Identifies where in memory the specified locale object resides—whether in
system-wide memory or your application’s per-process heap.

OSStatus GetLocaleObjectMemoryContext (
LocaleObjectRef objectRef,
LocaleObjectContext *context);

objectRef A locale object reference (page 2-8) to the locale object whose
location in memory you want to determine.

context A pointer to a value of type LocaleObjectContext (page 2-21).
On output, the value pointed to specifies where the locale object
resides in memory—whether in system-wide memory
(kLocaleObjectIsGlobal) or your application’s per-process heap
(kLocaleObjectIsLocal).

Locale Object Manager Result Codes 2

Many of the Locale Object Manager functions return result codes. The various
result codes specific to the Locale Object Manager are listed here. In addition,
Locale Object Manager functions may return other system-related result codes.

localeNotFoundErr –30001 Database does not
contain the
specified locale

localeObjectAttributeNotAvailErr –30002 Specified attribute
was not found

localeObjectNoNamesTableErr –30005 Specified locale
object does not
include a names
table

localeBadReferenceErr –30006 Specified locale
reference is invalid.
2-72 Locale Object Manager Result Codes

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
localeObjectNotFoundErr –30007 Database does not
contain the
specified locale
object

localeObjectInvalidReferenceErr –30008 Specified locale
object reference is
invalid

localeObjectItemFoundIsLastErr –30009 Returned item is
the last object in
the database. You
must reset the
iterator to continue
the search.

localeObjectNameAttributeConflictErr –30010 Duplicate. A locale
object having the
same locale object
key name and
attributes as those
specified for the
new one already
exists in the
database.

localeObjectInvalidIteratorErr –30020 Specified iterator is
invalid

localeObjectNoNameErr –30021 There is no locale
name or name ID
that corresponds to
the name ID you
specified.

localeObjectTagDataNotFoundErr –30022 There is no
associated data or
associated-data tag
corresponding to
the tag you
specified.

localeObjectCannotDeleteSystemObjectErr –30023 Object specified for
deletion is a
system object. Your
application cannot
delete a system
object from the
database.
Locale Object Manager Result Codes 2-73
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
localeDuplicateErr –30025 Duplicate locale.
localeObjectDefaultValueNotAvailableErr –30026 Default value for

which you
specified a name
ID does not exist.

localeNoAssociatedDataTagsErr –30027 Specified locale has
no associated data.
2-74 Locale Object Manager Result Codes

Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
Glossary 2

locale A loose collection of data, organized as locale objects, that establishes cultural
preferences and characterizes the behavior of text-related processes for the locale. A locale
contains locale objects whose data pertains to the culture represented by the primary language
and region of the locale, but it can also contain other kinds of locale objects. For example, a
modern Greek locale might have locale objects containing sorting tables for classical Greek—
one for Doric Greek and one for Attic Greek—for use by ancient Greek languages scholars.

locale database A database that serves as a repository of international preferences and data
organized into sets of information called locale objects that are clustered along cultural lines,
each of which composes a locale.

locale identifier A private data structure that contains a language code, a region code, and a
customization code for a locale. Every locale in the database has a locale identifier that
specifies the primary language and region of the locale and that indicates, through the
customization code, whether the locale is a customized version of a standard system locale.

locale iterator A private data structure used to search the locale database iteratively for one
or more locale objects that satisfy matching criteria specified when an application creates the
locale iterator.

locale object A set of information containing data, pertaining to a specific culture, for a
text-related function. A locale object also contains information used to identify the data it
provides. The Locale Object Manager creates and installs locale objects in the database at
system startup from locale object resources stored in the Locales folder. An application can
temporarily add a locale object to the database for its use during its current process.

locale object attribute A name-value pair that serves to classify the data a locale object
contains. A locale object includes an attributes table that can include various attributes; this
allows the locale object to be categorized along multiple lines so that it can be accessed
according to any collection of its qualities at different times.

locale object key name A name, specified in the locale object name table, that the Locale
Object Manager uses internally to catalog the locale object in the database. A key name serves
as the primary search key for a locale object.

Locale Object Manager A collection of functions that let you search the locale database for
specific locale objects, their data, and their defining information. You can also add locale
objects to the database and modify existing ones using these functions.
Glossary 2-75
Draft.  Apple Computer, Inc. 4/19/96

C H A P T E R 2

Locale Object Manager Reference
locale object reference A private data structure that refers to a specific locale object. An
application passes a locale object reference to Locale Object Manager functions to obtain the
data contained in a locale object or to obtain information about a locale object, such as any of
the user-displayable names associated with the locale object, the locale object’s key name, and
any of its attributes.

locale object names Every locale object in the database has associated with it a name table
that contains up to six names associated with the locale object. Most of the names in the name
table exist so that an application can describe a locale object to a user. For example, a name
table can contain the locale object’s user-displayable name and the copyright notice. The name
table also contains the locale object key name.

locale reference A private data structure that refers to a specific locale belonging to the
locale database.

locale object resource A resource of type 'lobj' containing three required tables—a
resource for the data table whose table type is 'data', a resource for the name table whose
table type is 'name', and a resource for the attribute table whose table type is 'attr'. A locale
object resource can optionally contain a resource for the head table whose table type is 'head'
and any other type of table that you define. The Locale Object Manager installs locale objects
in the database, creating them from the locale object resources that define them.

region A particular subset of a language. A region can represent a linguistic or cultural
entity, not necessarily corresponding to a nation, whose language is different enough from
other versions of the same language that it merits a specific localized version of Mac OS 8
system software. For example, U.S. and British are two regional variations that are subsets of
the English language.

system locale object A locale object that the Locale Object Manager loads into the locale
database at system startup, building the locale object from a resource file of type 'lobj' that
defines it and adding the locale object to the appropriate locale. A system locale object is
considered permanently resident in the locale database—that is, an application cannot remove
it or permanently modify it.
2-76 Glossary

Draft.  Apple Computer, Inc. 4/19/96

	Text Handling and Internationalization
	Contents
	Introduction to Text Handling and Internationaliza...
	About Text Handling and Internationalization in Ma...
	Mac�OS 8 Text-Handling Component Features
	A Word About Text Imaging in Mac�OS 8

	Mac�OS 8 Exceptions to Backward Compatibility With...
	Looking Toward the Future
	Text Handling in System 7 and Mac OS 8: A Comparis...
	Internationalization and Localization
	Writing Systems and Scripts
	Writing Systems and Scripts As Understood in Mac�O...
	Writing Systems and Script Systems As Understood i...
	Deconstructing the System 7 Script Manager and Loo...

	Text Objects for Text Storage and Interchange
	Text Object Contents
	A Simple Text Object
	A Text Object Containing Multiple Text Runs

	How Text Objects Are Used
	Text Objects and Text Strings: A Comparison
	Text Object Types
	Indices for Text in a Text Object
	Imaging With Text Objects
	Font Selection Hint for Font Substitution
	Text Measurement
	Text Alignment and Justification
	Controlling Text Flow When the Text Is Too Wide fo...

	Text Annotations
	Annotation Types and Storage
	Annotation Syntax and Semantics
	Annotation Attributes
	How Annotations Are Adjusted When Text Is Modified...
	Effects of Replacing, Inserting, and Deleting Text...

	Storage and Retrieval of International Data and Pr...
	The Locale Database
	Locales
	The Locale Object Manager
	Default System Locale and Default Application Loca...
	How the Locale Database Is Created
	Storing Persistent Data in the Locale Database
	Defining a Locale and Its Defaults
	Providing a Stand-Alone Locale Object

	Locale Objects
	Locale Object Names Table
	Locale Object Attribute Name-Value Pairs
	Where Locale Objects Reside in Memory
	Default Locale Objects for a Locale

	Searching the Locale Database for Data

	Text Encoding and Conversion
	Encoding Converters
	The High-Level Encoding Converter Manager
	The Low-Level Encoding Converter Manager

	Characters, Codes, Text Encodings, Text Encoding S...
	Characters
	Codes
	Coded Characters
	Text Encodings and Text Encoding Schemes
	Text Representation and Text Elements
	Text Encoding Specification

	Unicode
	Converting Between Character Sets Using Mapping Ta...
	Round-Trip Fidelity
	Multiple Semantics and Multiple Representations
	Strict and Loose Mapping
	Base Encoding Mapping Tables Supported by Mac OS 8...

	Handling Editable Text
	The Text Panel
	Using the Text Panel
	Text Engines
	Selecting and Getting a Text Engine
	Using a Text Engine Directly
	If You Are Providing a Text Engine

	About TextEdit

	String Comparison
	Collation References
	Overriding Default Collation Behavior
	Code Conversion for String Comparison

	Locale Object Manager Reference
	Locale Object Manager Constants and Data Types
	Locale Reference
	Locale Iterator Reference
	Locale Database Search Direction
	Locale Object Reference
	Attribute Name-Value Pair Structure
	Standard Attribute Names
	Name-Table Entry
	Locale Object Name Identifier Constants
	Locale Name Identifier for Locale’s Default Values...
	Locale Identifier and Constants
	Locale Language Codes and Wildcard
	Locale Region Code and Wildcard
	Locale Customization Code and Wildcard
	Locale Object Tag Index
	Associated-Data Tag
	Locale Object Memory Context

	Locale Object Manager Functions
	Obtaining and Setting Locale References
	Setting the Locale for the Current Process
	Obtaining the Number of Locales in the Database
	Obtaining a Locale Object’s Name, Attributes, Data...
	Obtaining a Locale’s Default Values
	Getting and Setting Default Behavior for a Locale
	Searching for the First Matching Object of a Local...
	Adding Locale Objects To and Removing Them From th...
	Getting Data Associated With a Locale Object
	Creating and Obtaining a Locale Identifier
	Obtaining Locale Identifier Information
	Determining Where a Locale Object Exists in Memory...

	Locale Object Manager Result Codes

	Glossary

