

ð

Preliminary

Developer Press



 Apple Computer, Inc. 1992–1995

ð

Kernel and Operating System
Services

This document was created with FrameMaker 4.0.4

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

ð

Apple Computer, Inc.



 1992–1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleScript, AppleShare,
AppleTalk, GeoPort, HyperCard,
ImageWriter, LocalTalk, Macintosh,
MacTCP, OpenDoc, PowerBook,
Power Macintosh, PowerTalk,
QuickTime, TrueType, and
WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.

Balloon Help, Chicago, Finder,
Geneva, Mac, and QuickDraw are
trademarks of Apple Computer, Inc.
IBM is a registered trademark of
International Business Machines
Corporation.
MacPaint and MacWrite are
registered trademarks, and
Clarisworks is a trademark, of Claris
Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state..

This document was created with FrameMaker 4.0.4

iii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figures, Tables, and Listings vii

Preface

Preface

ix

Book Organization ix
Conventions Used in This Book x

Special Fonts x
Types of Notes x
Numerical Formats xi

Chapter 1

Introduction to Kernel and Operating System Services

13

Runtime Services and Memory Management 15
Execution Environments 15
Scheduling 16

Synchronization Services 16
Interprocess Communication Services 17

Apple Events 18
Messaging 18
Kernel Queue Messages 19
Shared Memory 19
System Notification 19
Interspace Block Copy 19

Other Services 20

Chapter 2

Software Structure

21

Software Structure 23
About Processes 23
About Tasks 24

Primary and Secondary Tasks 25
User Mode and Supervisor Mode Tasks 27

This document was created with FrameMaker 4.0.4

iv

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

Parent, Child, and Orphan Tasks 27
About Accept Functions 28
About Interrupt Handlers 29

Software Interrupt Handlers 29
Hardware Interrupt Handlers 31
Secondary Interrupt Handlers 32

About Exception Handlers 33
Performance and Software Structure 34

Speed Versus Space 34
Crossing Protection Boundaries 35

Execution Environments 36
Scheduling Algorithm 38

Chapter 3

Memory Management

41

Address Spaces 43
Resident, Pageable, and Virtual Memory 43
Areas 45

Access Rights 48
Memory Reservations 48

Memory Data Structures 49
Pools 50
Application Heaps 53
Per-Task Data 53

Cooperative Process Address Space 54
A Protected Address Space 55
Shared Memory 56

Shared Data 56
Shared Code 57

Chapter 4

Synchronization Services

61

Introduction to Synchronization Issues 63
About Synchronization Services 66

Synchronization Primitives and Locking 66
Atomic Instructions 66

v

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

Simple Locks 67
Read/Write Locks 69

Event Groups 71
Kernel Queues 73
Interrupts and Synchronization 74

Software Interrupt Synchronization 74
Secondary Interrupt Synchronization 75
Synchronization by Disabling Hardware Interrupts 75

Synchronization and Software Structure 76
Synchronization and Multiprocessing 77

Chapter 5

Messaging Service

79

About the Messaging Service 81
Setting Up the Messaging Service 83
Sending Messages 85
Receiving Messages 86
Using Accept Functions 87
Asynchronous Sends and Receives 88
Replying to Messages 88

Chapter 6

Other Services

91

System Registry 93
Timing Services 94

Measuring Elapsed Time 94
Suspending Task Execution 94
Using Asynchronous Timers for Notification 95

Notification Services 95
Asynchronous Notifications 95
System Notification 96

Interspace Block Copy 97

vi

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

Chapter 7

System 7 Compatibility

99

Compatibility With System 7 Services 101
Threads 101
High-Level Events 101
PPC Toolbox Services 101
System 7 Hardware Interrupt Level and Deferred Tasks 102
System Extensions 102
Patching 102
Memory Management 103
A-Trap Support 103

Index

105

vii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

Figures, Tables, and Listings

Preface

Preface

ix

Chapter 1

Introduction to Kernel and Operating System Services

13

Chapter 2

Software Structure

21

Figure 2-1

Primary and secondary tasks within an application 26

Table 2-1

Reentrant services 26

Figure 2-2

Effect of task and software interrupt execution 30

Figure 2-3

Execution environments 37

Table 2-2

Comparison of software by mode and execution environment 38

Chapter 3

Memory Management

41

Figure 3-1

A memory area with guard ranges 47

Table 3-1

Allowable pool operations 51

Table 3-2

Default memory pools 52

Figure 3-2

Data memory areas for two cooperative processes 55

Figure 3-3

Data memory areas in an address space for a process with two
tasks 56

Figure 3-4

Access to system services in Copland 59

Chapter 4

Synchronization Services

61

Figure 4-1

Serialized versus interleaved execution 64

Figure 4-2

Using simple locks 68

Figure 4-3

Using a read/write lock 70

Chapter 5

Messaging Service

79

Figure 5-1

Client-server communication using messaging 82

This document was created with FrameMaker 4.0.4

viii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

Figure 5-2

A port handling one object 83

Figure 5-3

A port handling several objects 84

Figure 5-4

A receiver implementation 86

Chapter 6

Other Services

91

Chapter 7

System 7 Compatibility

99

Table 7-1

Programmatic patching calls supported under Copland 102

ix

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

P R E F A C E

Preface

This book provides the conceptual background to understand how and when
to use services provided by the Mac OS kernel and operating system. The
kernel controls and coordinates access to the hardware, which includes the
processor, memory, and I/O devices. All services are built on top of kernel
services. Operating system services, as described in this manual, are services
built directly from kernel services and are not part of a larger service, such as
the file system and Toolbox, which also use kernel services and may use
operating system services as well.

If you are an application developer or an OpenDoc part developer, you should
read this manual to gain an understanding of the services provided by the Mac
OS. If you write only single-task applications or parts (such as those created for
System 7), you probably won’t need to use most of the services described
herein. However, this manual explains how you can write more efficient yet
simpler applications and parts using services provided by the kernel and
operating system.

If you are writing extensions, device drivers, or other system software, you will
need to use kernel and operating system services. Read this chapter to
understand the services that are provided and to gain an appreciation of the
choices you’ll need to make when implementing your software.

Book Organization 0

IMPORTANT

This book is a work in progress. Its contents are subject to
change without notice. Your comments are welcome.

▲

This book is divided into seven chapters:

■

Chapter 1, “Introduction to Kernel and Operating System Services,”
introduces the fundamental concepts that you need to make decisions about
how to implement software. It also identifies the services described in the
rest of the manual.

This document was created with FrameMaker 4.0.4

x

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

P R E F A C E

■

Chapter 2, “Software Structure,” shows how you can package your software
for execution and how software is scheduled for execution.

■

Chapter 3, “Memory Management,” identifies the kinds of memory that you
can use and how memory is addressed, accessed, and shared.

■

Chapter 4, “Synchronization Services,” describes the services available to
synchronize access to resources, such as memory data structures.

■

Chapter 5, “Messaging Service,” describes the primary kernel service for
interprocess and intraprocess communication.

■

Chapter 6, “Other Services,” describes other kernel and operating system
services, including the system registry, timing services, notification services
and interspace block copy.

■

Chapter 7, “System 7 Compatibility,” briefly identifies issues that affect the
compatibility of System 7 applications.

Conventions Used in This Book 0

This book uses various conventions to present certain types of information.

Special Fonts 0

All code listings, reserved words, and the names of data structures, constants,
fields, parameters, and functions are shown in a monospaced font

(

this is
monospaced

)

.

When new terms are introduced, they are in

 boldface.

 These terms are also
defined in the glossary.

Types of Notes 0

There are several types of notes used in this book.

xi

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

P R E F A C E

Note

A note like this contains information that is interesting but
possibly not essential to an understanding of the main
text.

◆

IMPORTANT

A note like this contains information that is especially
important.

▲

Numerical Formats 0

Hexadecimal numbers are shown in this format: #x0008.

The numerical values of constants are shown in decimal format, unless the
constants are flag or mask elements with bitwise interpretations, in which case
they are shown in hexadecimal format.

xii

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

P R E F A C E

CHAPTER 1

Contents

13

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction to Kernel and
Operating System Services

Runtime Services and Memory Management 15
Execution Environments 15
Scheduling 16

Synchronization Services 16
Interprocess Communication Services 17

Apple Events 18
Messaging 18
Kernel Queue Messages 19
Shared Memory 19
System Notification 19
Interspace Block Copy 19

Other Services 20

This document was created with FrameMaker 4.0.4

C H A P T E R 1

14

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 1

Runtime Services and Memory Management

15

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Introduction to Kernel and Operating System Services 1

This chapter introduces the kernel and operating system services. You should
read this chapter if you need to obtain an overview of the services provided by
the kernel and operating system. These services are described more fully in the
chapters that follow.

The following sections briefly identify the major services provided by the
kernel and operating system. These services include

■

runtime and memory management services

■

synchronization services

■

interprocess communications services

■

other services

Runtime Services and Memory Management 1

Runtime and memory management services include the mapping of processes
into address spaces, code sharing, and the execution of tasks and other
software. The organization of an address space and memory management
issues are discussed in the chapter “Memory Management,” beginning on
page 43. The following sections briefly introduce two important runtime
concepts:

■

execution environments

■

scheduling

Execution Environments 1

Execution environments specify the rules under which software can execute.
For example, execution environments control the kinds of memory access
allowed and the kernel services that can be executed. The execution
environments are

■

task (user mode and supervisor mode) environment

■

hardware interrupt environment

■

secondary interrupt environment

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Introduction to Kernel and Operating System Services

16

Synchronization Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Of these environments, only user mode software can execute in the task
environment; only supervisor mode (privileged) software can execute in all
environments. For more information about execution environments, see the
section “Execution Environments,” beginning on page 36.

Scheduling 1

The kernel uses a preemptive multitask scheduling algorithm, in which the
highest priority task runs until it blocks, until its time-slice is used up, or until
a higher priority task becomes unblocked. For example, it might block so that
an I/O operation can complete or because it is waiting for an event to occur.
When a task is blocked, the next highest priority task is allowed to run.

Special rules apply to primary tasks in the cooperative process address space.
While they obey the same rules as other tasks, the Process Manager ensures
that only one primary task is eligible for execution; others are blocked until the
current one relinquishes its eligibility.

For more information about scheduling, see the section “Scheduling
Algorithm,” beginning on page 38.

Synchronization Services 1

Synchronization services provide serialized access to shared resources. Often a
shared resource is a data structure in memory, such as a data structure that can
be updated by two tasks in the same address space or a data structure in
shared memory that can be updated by software in different address spaces. By
serializing access to this data, operations that need to be performed on the data
atomically, that is, from start to finish as a single undivided operation, can be
performed.

The major kinds of synchronization services provided by the kernel and
operating system are

■

Synchronization primitives and locking provide processor-supported atomic
instructions and locks for implementing critical sections.

■

Event groups let you wait for a condition to occur so that execution of a
critical section will not start until the condition is satisfied.

C H A P T E R 1

Introduction to Kernel and Operating System Services

Interprocess Communication Services

17

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

Kernel queues also let you wait for a condition to occur; however, they
maintain more information about changes in condition and can also be used
for explicit but limited communication.

■

Interrupts can also be used to synchronize operations.

These services are described in the chapter “Synchronization Services,”
beginning on page 63.

Interprocess Communication Services 1

Interprocess communications services allow data to be transferred between
different address spaces and between different execution environments. Some
of these services are built directly into the kernel, while others are considered
to be application services. All the interprocess communications services that are
available are introduced in this section; however, application services such as
Apple events, which are used by most applications to communicate between
processes, are discussed in other

 Inside Macintosh

 books.

As a general principle, you should never expose the details of the
communication mechanism or its protocol and you should try to minimize the
volume of the interprocess communication.

In a client-server implementation, for example, you most likely will package
the communication between client and server in a subroutine (function) library.
There are advantages to using a subroutine library:

■

The library hides the actual communication mechanism and protocol being
used. In the future, you may decide to change the communications
mechanism or you may decide to change the sequence or packaging of
requests to or responses from the server.

■

The library protects the client from changes in the underlying architecture;
for example, you may find a way to reduce interprocess communication by
shifting some of the software being executed on the server to the client. The
code being moved can be treated as simply an implementation detail of a
function in the library as opposed to a change to the client software itself.

The following communications services are supported by the operating system:

■

Apple events

■

messaging

C H A P T E R 1

Introduction to Kernel and Operating System Services

18

Interprocess Communication Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

kernel queues

■

system notification

■

shared memory

■

interspace block copy

Note

High-level events can also be used, but they are provided
only for compatibility. For further information, see
“High-Level Events,” beginning on page 101.

◆

Transfer of data requires synchronization to succeed; for example, you can’t
allow data to be read while it is potentially inconsistent, such as when it is
being updated. Therefore, most interprocess communications services either
guarantee synchronization or support protocols that can be used to implement
synchronization.

Apple Events 1

Apple events are the primary communications service for interapplication
communication (IAC). Apple events are especially useful for IAC because the
semantics of the data can be represented at a high level; for example, you can
specify the paragraphs in a word-processing document or cells in a spreadsheet
as the target of an Apple event.

You can use Apple events to build complex data structures and handle
dynamic typing. The data itself, along with the semantics for its interpretation,
can be flattened into a structure that can be transported with a physical
communications service that supports variable size data. This structure is
unflattened automatically at its destination. For more information about Apple
events and their data model, see

Inside Macintosh: Interapplication
Communication

.

Messaging 1

The messaging service provides a transaction-based mechanism for exchanging
data between software in the same or different address spaces. The transaction
consists of a message that is sent by the sender and received and replied to by
the receiver. The contents of the message are not interpreted in any way by the

C H A P T E R 1

Introduction to Kernel and Operating System Services

Interprocess Communication Services

19

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

operating system. For more information about the messaging service, see
“About the Messaging Service,” beginning on page 81.

Kernel Queue Messages 1

Kernel queues are primarily used for synchronization; however, kernel queues
can be used as a fast communications service (generally faster than messaging)
if you can package the message in three words or less. For further information
about kernel queues and the typical form of kernel queue messages, see the
section “Kernel Queues,” beginning on page 73.

Shared Memory 1

Global memory can be shared by tasks in different address spaces. The
operating system supports other mechanisms as well. They provide more
protection than using global memory. For more information about shared
memory used for interprocess communication, see the section “Shared Data,”
beginning on page 56.

System Notification 1

System notification is an operating system service that allows a piece of
software to broadcast a notification about a change in the state of the system. A
broadcast is a notification that is sent to a potentially wide audience. The
audience is software that can then respond to the notification. For more
information about system notification, see “System Notification,” beginning on
page 96.

Interspace Block Copy 1

Interspace block copy is a service that allows the contents of memory to be
copied between address spaces. It does not provide synchronization. For more
information about the interspace block copy function, see “Interspace Block
Copy” on page 97.

C H A P T E R 1

Introduction to Kernel and Operating System Services

20

Other Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Other Services 1

Other services include

■

the system registry, which is used to look up well-known names. For more
information, see the section “System Registry” on page 93.

■

timing services, which allow you to precisely measure elapsed time. For
more information about timing services, see “Timing Services” on page 94.

■

notification services, which include system notification as described above
and three techniques for asynchronous notification. For more information
about notification services, see “Notification Services” on page 95.

C H A P T E R 2

Contents

21

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Software Structure

Software Structure 23
About Processes 23
About Tasks 24

Primary and Secondary Tasks 25
User Mode and Supervisor Mode Tasks 27
Parent, Child, and Orphan Tasks 27

About Accept Functions 28
About Interrupt Handlers 29

Software Interrupt Handlers 29
Hardware Interrupt Handlers 31
Secondary Interrupt Handlers 32

About Exception Handlers 33
Performance and Software Structure 34

Speed Versus Space 34
Crossing Protection Boundaries 35

Execution Environments 36
Scheduling Algorithm 38

This document was created with FrameMaker 4.0.4

C H A P T E R 2

22

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 2

Software Structure

23

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Software Structure 2

This chapter describes the possible ways to structure your software, whether
an application, part, extension, or driver. Closely related to software structure
are execution environments. Execution environments control the addressability
of memory and, indirectly, they control memory access rights and affect
synchronization. Finally, the kernel handles scheduling for all tasks. The rest of
this chapter expands on these topics.

Software Structure 2

Most software, especially applications, is structured as tasks in processes. In
addition to using processes and tasks, software can also be structured to use
accept functions and interrupt handlers. An accept function is a
special-purpose subroutine that replaces the need for a task that receives
messages and replies to them. An interrupt handler is a subroutine that
responds to an asynchronous event, such as a change in the hardware.

The following sections describe processes and the ways that software can be
structured as

■

tasks

■

interrupt handlers

■

accept functions

■

exception handlers

Finally, issues related to performance and software structure are discussed.

About Processes 2

A

process

 is a collection of one or more tasks and other resources associated
with an address space. Resources include data in files and data in resources.

When a process is created, an address space is associated with the process.
Once the process has been created, its address space cannot change. When you
create tasks, you must specify the process to which they are associated. Once a
task has been created, its process cannot be changed. (The same code, however,
can be executed by tasks in different processes.) The process, therefore, controls
the logical addresses that can be addressed by these tasks. For information

This document was created with FrameMaker 4.0.4

C H A P T E R 2

Software Structure

24

Software Structure

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

about tasks, see “About Tasks,” beginning on page 24. For information about
address spaces, see “Address Spaces,” beginning on page 43.

In general, each process should be in a separate address space, as this allows
resources in one process to be protected from tasks in another process. An
exception is that if a task needs to use cooperative services, the task’s process
must be associated with the cooperative process address space.

Cooperative
services

 are non-reentrant operating system services, such as most parts of the
Toolbox, the classic Memory Manager, and other services commonly associated
with applications. A

cooperative process

 is a Process Manager process whose
(primary) task can use cooperative services. For information about the Process
Manager, see

Inside Macintosh: Processes

. The

cooperative process address space

is an address space provided by the operating system.

Typically, a cooperative process is an application with a user interface
component. They are called cooperative processes because their primary tasks
cooperate to ensure that they periodically relinquish the processor to tasks in
other cooperative processes—this is not automatic—and that they do not
inadvertently affect memory associated with the tasks of other processes in the
cooperative process address space.

The key issue in determining the kind of process to use is whether or not your
software uses cooperative services. Ask the question, “Does the software
require cooperative services such as the Toolbox?” If the answer is yes, you
need to use a cooperative process. If the answer is no, you can use a process in
a separate address space because it provides memory protection and is the
most suitable structure for future enhancements to the operating system.

About Tasks 2

A task represents code in a state of execution. Typically, this code is shared so
that a task does not actually “own” the code—instead, the task maintains state
information, such as local variables, the next instruction to execute and register
values.

There are several ways to identify the kind of task:

■

A task can be either a primary task or a secondary task. A

primary task

 is a
task associated with a cooperative process and is created by the Process
Manager when the application is launched. Primary tasks are the only tasks
allowed to use cooperative services. Other tasks created from within
cooperative processes are

secondary tasks;

 they cannot use cooperative
services.

C H A P T E R 2

Software Structure

Software Structure

25

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

A task can be either a user mode task or a supervisor mode task. The kind of
task determines which instructions can be executed and which addresses in
the address space can be referenced. A

user mode

task

 is one that cannot
execute privileged instructions. A

supervisor mode

task

, also called a

privileged task,

 can execute any instruction and can have different,
potentially greater, memory access rights. All tasks in the same process run
in the same mode.

■

A task can be a

parent task

, which owns one or more

child tasks

, or a task
can be an

orphan task

, which is a task that has no parent. These hierarchial
relationships are useful when specifying actions that affect multiple tasks.

These ways of identifying tasks are not mutually exclusive. For example, a
secondary task may or may not be a privileged task; it could be a parent, child,
or orphan task. The following sections describe each of these kinds of tasks
further.

Primary and Secondary Tasks 2

Primary and secondary tasks are relevant only for cooperative processes—
these processes are typically applications and have a user interface component.
When an application is launched, the Process Manager creates a primary task.
This task can use either reentrant or non-reentrant services, including
cooperative services. You can create other tasks, called secondary tasks, from
your application to achieve increased efficiency overall by dividing the work to
be performed into multiple tasks. Secondary tasks cannot use cooperative
services.

Note

Tasks associated with processes that are not cooperative
processes have the same restriction as secondary tasks
associated with a cooperative process. None of these tasks
can use cooperative services.

◆

If your application must perform computationally intensive execution, you
should use a secondary task. For example, you can improve the responsiveness
and productivity of your application by having the primary task perform user
interface tasks and using secondary tasks to process data and perform
time-consuming I/O and computation-intensive operations.

Figure 2-1 shows an example of primary and secondary tasks using system
services.

C H A P T E R 2

Software Structure

26

Software Structure

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 2-1

Primary and secondary tasks within an application

Table 2-1 shows the services that can be used with any task because they are
reentrant. All other services are cooperative services and can be used only by
primary tasks.

Table 2-1

Reentrant services

Reentrant service Reentrant service

Modern file system APIs Messaging

Area (memory) services Virtual memory backing provider

Kernel services Pool Manager

Synchronization services Driver services library

Tasking services System notification

System registry International text object (parts of) and string
comparison services

Apple events Open Transport services

I/O families (SCSI, ADB, etc.) Code Fragment Manager

Standard C library

Reentrant services

Non-reentrant services

Classic

Memory

Manager

High-level

Resource

Manager

Other

non-reentrant

services

File

Manager

Apple

Events

Other

reentrant

services

Toolbox

Network

and I/O

Pool

Manager

Primary task

Secondary tasks

...

Task

Task Task Task

C H A P T E R 2

Software Structure

Software Structure

27

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

User Mode and Supervisor Mode Tasks 2

User mode and supervisor mode control instruction execution privileges
(which specify the instructions that can be executed) and memory access rights
(which determine the ability of a task to access different locations in its
process’s address space). A task can be either a user mode task or a supervisor
mode task.

Supervisor mode tasks can execute any instruction. User mode tasks cannot
execute privileged processor instructions or invoke services that handle
interrupts or set up accept functions. For more information about instruction
privileges, see the section “Performance and Software Structure,” beginning on
page 34.

Memory access rights are specified when ranges of logical addresses are
defined within the address space. These ranges are called areas. For more
information about areas, see the section “Areas,” beginning on page 45.

A user mode task has read/write access to private memory within an address
space and read-only access to most global memory. A user mode task can be
granted read/write access to areas in global memory, as needed. Some global
memory is completely inaccessible to user mode tasks; for example, I/O device
control registers. A supervisor mode task can only address locations in global
memory.

All applications should be written as user mode tasks. Primary tasks in
cooperative address spaces are always user mode tasks. Supervisor mode tasks
should only be used when access to hardware-related memory locations are
required.

Parent, Child, and Orphan Tasks 2

When you create a task from another task, by default the newly created task
becomes a child of the task that created it. You can use this relationship to
specify the scope while changing task priorities or terminating a task. For
example, you can use the scope to terminate tasks in a single call—you could
specify that the parent task and child tasks be terminated, or just the parent
task.

If you create a task from another task but wish the newly created task to be in a
hierarchy by itself, you can specify the newly created task as an orphan task. If
the orphan task creates another task in the default manner, it becomes a parent
task.

C H A P T E R 2

Software Structure

28

Software Structure

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

A child task executes in the same mode as its parent. A user mode task can
only create other user mode tasks and a supervisor mode task can only create
other supervisor mode tasks.

About Accept Functions 2

Accept functions

 are privileged code whose purpose is to receive messages. An
accept function serves the same purpose as a task-based receiver; however, it is
actually a subroutine that is automatically invoked when a message is received.
A message is part of an interprocess communication mechanism that allows
data to be transferred from a sender to a receiver (with a reply sent back),
whether or not the sender and receiver are in the same address space. A sender
is a task (either user mode or a supervisor mode) or a software interrupt
handler. For information about messages and senders and receivers, see
“About the Messaging Service,” beginning on page 81. For information about
software interrupt handlers, see “Software Interrupt Handlers,” beginning on
page 29.

An accept function executes in the sender’s context. An accept function always
runs in supervisor mode, even if the sender is running in user mode. Because
an accept function is implemented as a subroutine call, no task switch is
required. The sending task cannot continue its execution while the accept
function executes.

There are several advantages to using accept functions instead of tasks to
handle receipt of messages:

■

The receiver of a message can access the sender’s memory because the
accept function is executing in the sender’s address space. Thus the data
being transferred can be passed by reference rather than being copied.

■

Execution of an accept function is fast. By being implemented as a
subroutine associated with a task rather than being implemented as a task
itself, an accept function can be executed without a context switch from the
sending task to the receiver. It is slower than making a subroutine call;
however, it is much faster than sending a message to another task.

■

An accept function requires resources (stack space) only when it is actually
running. To receive messages with tasks, you would need to have a task
created and waiting, and it would be consuming resources while waiting.

■

An accept function can be executed concurrently, with one execution in
progress per sender. To achieve the same level of concurrency with tasks,

C H A P T E R 2

Software Structure

Software Structure

29

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

you would need to create a task to handle each message as soon as it was
received or you would need to have a task ready to receive each message.

About Interrupt Handlers 2

Interrupt handlers respond to hardware and software events. When an
interrupt occurs, task execution is suspended on the processor and execution of
the interrupt handler begins. Task execution does not resume on that processor
until the interrupt has been handled.

You can implement an interrupt handler for three kinds of interrupts:

■

software interrupts are interrupts that are sent or signaled by software. They
are the only kind of interrupt that can be handled within an application.

■

hardware interrupts are interrupts that are caused by a signal from an
external device.

■

secondary interrupts are interrupts that are sent or signaled from a hardware
interrupt handler or a supervisor mode task.

The following sections discuss handlers for these kinds of interrupts.

Software Interrupt Handlers 2

A

software interrupt

 is a signal or event that is sent to a task. A

software
interrupt handler

 can respond to this kind of interrupt. The sender of an
interrupt can be software in the same process (and address space) or software
in a different process and, most likely, in a different address space as the task to
which the interrupt is sent. The kernel saves the interrupted task’s state,
executes the specified interrupt handler, then restores the task’s state and
allows it to resume execution.

A task responds to multiple software interrupts sequentially. If several
interrupts are received, they are guaranteed to be executed in the order in
which they are sent. Figure 2-2 shows the relationship between task execution
and software interrupt execution.

C H A P T E R 2

Software Structure

30

Software Structure

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 2-2

Effect of task and software interrupt execution

Note

Figure 2-2 implies that the tasks are running on a single
processor. When implementing your software, you should
always assume that tasks can execute concurrently, as if
each task were executing on its own processor.

◆

Software interrupts are delivered to a task, even if the task is blocked. If a
software interrupt handler blocks, no further interrupts are delivered to its
task; the interrupts are queued for delivery.

Software interrupt handlers do not change execution priority. A software
interrupt handler is not run until the interrupted task is scheduled to execute.
The interrupt handler runs at the same priority as the task.

Software interrupt

execution path

Time

ExecutingKey:

Blocked

Software interrupt

received

Software interrupt

handler for task A

Task A

Task B
Software interrupt

execution path

Software interrupt

received

Blocked Unblocked

Software interrupt

handler for task B

C H A P T E R 2

Software Structure

Software Structure

31

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Interrupt handlers can be temporary, meaning that they only execute (at most)
once, or they can be permanent, meaning that they are set up once and can
respond to an interrupt each time it is sent.

If a permanent interrupt handler cannot handle its interrupt before receiving
the next one, it executes only once, regardless of the number of times the
interrupt occurred. After the handler executes, the next interrupt causes the
handler to be scheduled again.

The primary reason to use software interrupts is to handle asynchronous
events within the same task. You might consider a permanent software
interrupt if you don’t care whether each interrupt is handled.

For other uses of software interrupts, you should carefully consider the benefit
versus complexity of handling asynchronous events within a single task. It may
be easier to use several tasks, each handling a single kind of event. You may
also find it easier to use kernel queues to synchronize events. For example,
instead of issuing an asynchronous I/O request and handling its completion as
a software interrupt, you should consider using a separate task to handle just
the I/O or using a kernel queue to notify your task of the completion. For
information about kernel queues, see the section “Kernel Queues,” beginning
on page 73.

Hardware Interrupt Handlers 2

A

hardware interrupt

 is a signal from an external device. A

hardware
interrupt handler

 is privileged code that responds to hardware interrupts. On
processors with only one hardware interrupt priority level, such as the Power
Macintosh, a hardware interrupt handler cannot be interrupted.

Note

In a multiprocessor system, only one hardware interrupt
handler can execute at a time, regardless of the number of
processors.

◆

A hardware interrupt causes all software execution on the interrupted
processor to stop until the handler executes. Interrupts are effectively disabled
during a hardware interrupt handler’s execution because nothing else can
execute and the handler cannot be interrupted. Thus a hardware interrupt
handler should take only minimal actions, such as

■

resetting the interrupt condition on the device

C H A P T E R 2

Software Structure

32

Software Structure

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

notifying some other piece of software that an interrupt occurred. (This
software is typically a supervisor mode task or a secondary interrupt
handler.)

The following additional points are relevant to implementors of hardware
interrupt handlers:

■

A hardware interrupt handler cannot be allowed to block or cause a page
fault; thus all resources that the handler uses must be available, and the
memory needed for code and data should be resident and locked down.

■

Hardware interrupt handlers are given a stack, called the interrupt stack, to
run on.

Secondary Interrupt Handlers 2

A

secondary interrupt

 is a signal from a hardware interrupt handler or a
supervisor mode task. A

secondary interrupt handler

 is privileged code that
can be interrupted only by hardware interrupts. All task execution remains
blocked on that processor until a secondary interrupt handler finishes its
execution on that processor.

Note

In a multiprocessor system, only one secondary interrupt
handler can execute at a time, regardless of the number of
processors.

◆

Secondary interrupt handlers associated with hardware interrupt handlers are
queued, then executed in a first-in, first-out order. Secondary interrupt
handlers for privileged tasks are called and executed immediately. All
secondary interrupt handlers must complete execution before task execution
can resume.

You might need to use a secondary interrupt handler

■

when work started by a hardware interrupt handler is so time consuming
that the work cannot be completed before allowing another hardware
interrupt to occur

■

when atomic instructions are not sufficient for synchronizing a secondary
interrupt handler scheduled by a hardware interrupt handler with a
supervisor mode task

In the first case, you must exit the hardware interrupt handler as soon as
possible so that additional hardware interrupts are not lost. Secondary

C H A P T E R 2

Software Structure

Software Structure

33

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

interrupts could be used for real-time processing before task execution is
allowed to resume.

In the second case, a hardware interrupt handler could queue a secondary
interrupt handler and a secondary interrupt handler could be called from a
task as soon as its execution resumes. Because secondary interrupt handlers are
guaranteed to be executed serially, they cannot be interrupted while in the
process of changing shared data. For an example of how this works, see the
section “Interrupts and Synchronization,” beginning on page 74.

About Exception Handlers 2

The microprocessor detects

exceptions

—that is, errors or other special
conditions such as addressing errors, arithmetic overflows, and illegal
instructions—in the course of program execution. When one of these
exceptions occurs, the kernel tries to call an

exception handler

, whose job it is
to handle the exception in the most graceful way possible. The handler
performs its action, then the kernel resumes execution from where the
exception occurred or transfers control as indicated by the exception handler.

Note

These exception handlers are not the same as the
high-level exception mechanism available in the C++
language.

◆

Each task, accept function, secondary interrupt handler, and hardware
interrupt handler should have its own exception handler for kernel and
hardware detected exceptions. The default exception handler returns an error.

If the exception handler returns an error, the kernel’s actions depend on the
execution environment. A debugger is called if one’s installed. If not, and the
exception occurred in a task or a software interrupt handler, the task is
terminated.

If no debugger is installed and the exception occurred in a secondary interrupt
handler or hardware interrupt handler, the exception is fatal to the system.
Therefore, secondary interrupt handlers and hardware interrupt handlers
should always have exception handlers if they might conceivably get an
exception—even if the handlers only jump to a safe exit point.

An unhandled exception in an accept function is less catastrophic; the sending
task receives an error. If the accept function held any locks or other resources,

C H A P T E R 2

Software Structure

34

Software Structure

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

those resources will never be released and the system will partially or fully
hang. Accept functions should always have exception handlers to unlock and
deallocate resources if a failure occurs. The exception handler can clean up and
return a failure to the sending software, leaving the system in a fully functional
state.

Performance and Software Structure 2

There are several performance-related issues that are affected by the choice of
software structure:

■

To a certain extent, memory space can be traded off for increased speed;
however, this is not an absolute maxim. Any such tradeoff needs to be
carefully considered.

■

Boundaries such as execution environments and address spaces provide
protection for executing software. Boundaries are set as the result of
decisions about software structure, which are often made with consideration
of robustness, flexibility and reuse potential as well. Communication across
a protection boundary; however, is one of the more expensive services
performed by the operating system, thus, tradeoffs exist between speed and
desired level of protection, robustness, and other measures of software
quality.

The following sections examine these issues.

Speed Versus Space 2

Often one thinks of

speed

 as the major criteria and

space as the resource to be
traded for speed. You should avoid this inclination or your software may
become too unwieldy for its purpose. For example, a space-versus-speed issue
can arise when you are determining how many tasks to use to implement your
software.

It is simpler to implement a task that handles one event (synchronous
processing of an event by a single task) than it is to implement a task that
handles several events. This fact suggests that the software should be
structured as multiple tasks. In general, this conclusion is a good one if the
software is structured such that

■ there are a fixed number of tasks each performing a specific job

■ there are a small number of tasks handling incoming requests (events)

C H A P T E R 2

Software Structure

Software Structure 35
Draft. Confidential.  Apple Computer, Inc. 10/23/95

If carried beyond a reasonable conclusion, however, a task could be created to
handle each potential event. This could lead to a large number, perhaps
hundreds, of potentially idle tasks, each taking a portion of memory.

In addition to the impact of memory use, more tasks may not even increase
concurrency. If the processing time for the task were small, it might be slower
to create and delete tasks than to queue the events and let them wait until a
task became available to handle the event. In addition, on a single-processor
system, if it takes just a few milliseconds to execute the task, the time-slice
interval would make it unnecessary to have more than a few tasks handle
incoming requests—the task would be finished before the time interval
expired, meaning that it wouldn’t be necessary to have another task waiting to
handle a request.

Crossing Protection Boundaries 2

The execution performance of software can be affected by whether or not it
needs to communicate with software in a different address space or in a
different execution environment. Most applications, for example, run solely in
the cooperative process address space as user mode tasks. Because these tasks
are in the same execution environment (user mode task) and in the same
address space, communication between the tasks is relatively inexpensive. The
most expensive communication, however, is between user mode tasks in
different address spaces.

If you want the advantages of memory protection for your software, or if it is
desirable to implement your software in the client-server model with a client
running in one address space, such as the cooperative process address space,
and the server running in a protected address space, you must decide how to
divide your software between address spaces and how each piece of software
will communicate with the others.

The following points can be made about the relative performance
characteristics of software execution, based on communication needs:

■ Communication between user mode tasks in the same address space are
relatively inexpensive.

■ Communication between privileged software (supervisor mode tasks, accept
functions, hardware and secondary interrupts, and software interrupts from
supervisor mode tasks) is relatively inexpensive.

C H A P T E R 2

Software Structure

36 Execution Environments

Draft. Confidential.  Apple Computer, Inc. 10/23/95

■ Communication between user mode software (a user mode task or software
interrupt from a user mode task) and privileged software using an accept
function is inexpensive.

■ Communication between user mode software and privileged software by
other means is relatively more expensive.

■ Communication between user mode software in different address spaces is
most expensive.

Execution Environments 2

Execution environments specify the rules under which software can execute.
They are used along with privilege mode and area access rights to control the
kernel services and resources that can be used. The environment isolates and
protects software that is running concurrently—you cannot access code or data
in a different environment directly; you must use kernel services. The three
execution environments you can use are

■ task (user mode and supervisor mode) environment

■ hardware interrupt environment

■ secondary interrupt environment

Figure 2-3 shows the execution environments and the kinds of software that
can be executed within each one.

C H A P T E R 2

Software Structure

Execution Environments 37
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 2-3 Execution environments

You structure your software to take advantage of one of the execution
environments. The major criteria for choosing an environment are

■ services available from the kernel and operating system within the
environment

■ data addressability, meaning the memory that can be referenced from an
environment

■ data residency, meaning whether the memory must remain resident or
whether it can be paged

Table 2-2 shows the kind of services available to software in the different
environments.

Modes

Supervisor

mode

Task
Secondary

interrupt

User mode

Execution Environment

Tasks

Software

interrupt handlers

Accept functions

Primary tasks

Other tasks

Software

interrupt handlers

Secondary

interrupt handlers

Hardware

interrupt handlers

Hardware

interrupt

C H A P T E R 2

Software Structure

38 Scheduling Algorithm

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Table 2-2 Comparison of software by mode and execution environment

Scheduling Algorithm 2

To share the processor with all tasks, the kernel can preempt the execution of
one task and start—or resume—the execution of another. This form of
processor sharing is called preemptive multitasking.

The kernel schedules all tasks preemptively, based on their priority and on
their eligibility to execute. A task is eligible for execution whenever it is not
waiting for some operation to complete, such as an I/O operation or loading a
page into memory. Tasks that are not eligible for execution are said to be
blocked on some event. Many tasks can be eligible for execution, but only one
can be executing on a processor at a time.

The highest priority task that is eligible for execution is guaranteed to be the
task that is executing. A task’s priority is based on its relative importance. You

Software Available kernel services
Data
addressability

Must be
resident?

User mode task or user
mode software interrupt
handler

All except for those related
to interrupts and accept
functions

Process’s
address space,
including
global data

No

Supervisor mode task or
supervisor mode software
interrupt handler

All Global data No

Hardware interrupt
handler

Only those related to
event flags and interrupts

Global data Yes

Secondary interrupt
handler

Those related to event
flags and kernel
notification, naming,
timers, and messages

Global data Yes

Accept function All Process’s
address space,
including
global data

No

C H A P T E R 2

Software Structure

Scheduling Algorithm 39
Draft. Confidential.  Apple Computer, Inc. 10/23/95

specify the priority based on the kind of software, for example, server
processes, applications, drivers, and real-time operations.

A context switch saves the processor state of the currently executing task and
restores the processor state of the next task to execute. The kernel performs a
context switch when

■ a task with a priority greater than the currently executing task becomes
eligible for execution

■ the currently executing task becomes blocked

■ a task’s time slice, which is the maximum time a task can execute before it
must pause, is used up

For example, when a task is blocked on an event and the event occurs, the task
becomes eligible to execute. If this newly eligible task has a priority greater
than the currently executing task, the kernel performs a context switch, where
the execution of current task is suspended (it still remains eligible) and the
higher-priority task is resumed from the point at which it was blocked.

If several tasks have the same highest priority and are all eligible for execution,
the kernel allows each task to execute for an internally specified time slice.
When a time slice expires, the kernel switches to the next task with the same
priority. The kernel uses this time-slice form of scheduling to give each task at
this highest priority access to the CPU on a round-robin basis, such that the
tasks take turn executing, in order. A task cannot starve the others unless it is
the only task at the highest priority and it does not block.

The kernel never uses time slicing over its priority-based scheduling
algorithms; it uses time slicing only when several tasks are all eligible for
execution at the same priority and no higher-priority tasks are eligible. If a
higher-priority task becomes eligible for execution, it will always get
immediate access to the processor.

Time slicing is not used for all priority levels. It is not used with some tasks
whose priority level is higher than an application’s priority level.

The Process Manager assigns the same priority to all primary tasks in the
cooperative process address space. If the primary task creates a secondary task,
the primary task assigns the priority of the secondary task.

C H A P T E R 2

Software Structure

40 Scheduling Algorithm

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Note
The Process Manager blocks all primary tasks but one.
This action ensures that only one primary task is eligible
for access to cooperative services at a time. This primary
task can be preempted by a secondary task, or a task in a
process that is not a cooperative process, or by an
interrupt; however, this primary task is not time sliced
with other primary tasks. The primary task remains
eligible until its process is no longer the current
application. For specific switching rules, see Inside
Macintosh: Processes. ◆

Interrupts immediately suspend the currently executing task. Hardware
interrupts can interrupt secondary interrupts and both hardware and
secondary interrupts can interrupt software interrupts. These interrupts are
serialized and must run to completion before task execution can resume. For
specific rules on the interactions between kinds of interrupts, see “Interrupts
and Synchronization,” beginning on page 74.

C H A P T E R 3

Contents

41

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 Memory Management

Address Spaces 43
Resident, Pageable, and Virtual Memory 43
Areas 45

Access Rights 48
Memory Reservations 48

Memory Data Structures 49
Pools 50
Application Heaps 53
Per-Task Data 53

Cooperative Process Address Space 54
A Protected Address Space 55
Shared Memory 56

Shared Data 56
Shared Code 57

This document was created with FrameMaker 4.0.4

C H A P T E R 3

42

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 3

Address Spaces

43

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Memory Management 3

The previous chapter described how you should structure your code
depending on kind of tasks you define and whether the tasks execute as part of
a cooperative process. Memory-related issues such as address spaces and
addressability were touched upon in that chapter. This chapter provides a more
complete discussion of memory management issues.

Address Spaces 3

Memory is organized into

address spaces

, which are a set of logical addresses
that may be accessed by a processor at a given time. A 32-bit address space is
used; thus, an address space can contain up to 4 gigabytes (2

32

) of logical
addresses. Logical addresses are mapped to physical locations in memory
when the contents of the logical addresses are accessed. Logical addresses
range from address 0 to address xFFFF FFFF.

An address space is divided into three parts, based on its usage and content:

■

global memory for data

■

global memory for code

■

nonglobal private memory

Global memory is shared by all processes. The logical addresses of global
memory locations are the same in each process, thus the content of each
address in global memory is the same regardless of the process with which a
task is associated.

Privileged software can only address global memory. User mode software can
address private memory and global memory. Within an address space, areas
determine the ranges of addressable locations, access rights to these locations,
and whether or not they must be resident in memory. For more information
about areas, see “Areas,” beginning on page 45.

Resident, Pageable, and Virtual Memory 3

Memory can be

resident

, meaning that it must always be present in physical
memory, or it may be

pageable

, meaning that it need only be present in

This document was created with FrameMaker 4.0.4

C H A P T E R 3

Memory Management

44

Resident, Pageable, and Virtual Memory

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

physical memory when it is referenced. The operating system provides a
mechanism, called

virtual memory

, that allows address spaces to have many
more logical addresses than the number of locations that are physically present
in memory. For example, 16 MB of physical memory may serve to hold the
contents of 128 GB of virtual memory containing 32 four-gigabyte address
spaces. Thus, virtual memory allows you to access any logical memory location
without concern for physical residency—the operating system is responsible
for ensuring that the data is resident when it is needed.

When a memory location that is not resident is accessed, a page fault occurs.
The software that caused the page fault is blocked until data obtained from the
backing provider is physically resident in memory. A

page fault

 is a hardware
exception for which the kernel provides a handler. The handler responds by to
the page fault by loading the page of data that is needed into physical memory
from a backing provider.

Note

Only software running in the task level execution
environment is allowed to cause page faults. For more
information about execution environments, see “Execution
Environments,” beginning on page 36.

◆

A

backing provider

 is an entity that manages backing objects. A

backing
object

 is typically a mapped file on disk, however, the backing provider could
provide access to a backing object across a network instead.

Virtual memory is always present and it operates transparently to applications
and other software executing in user mode. You typically need to be concerned
with virtual memory only when you need to prevent page faults:

■

When implementing an I/O driver you must ensure that hardware and
secondary interrupt handlers do not cause page faults. Thus, all code
executed by a hardware or secondary interrupt handler and all data
accessed by them must be resident.

■

When you wish to avoid untimely page faults; for example, when rendering
live video onscreen, you may not want rendering to pause while data is
being obtained.

In these rare cases, the data needs to be made resident before the software that
uses it starts to execute. You can specify that a range of memory be made
resident in one of two ways:

■

You can specify that an area be physically resident when it is created.

C H A P T E R 3

Memory Management

Areas

45

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

You can temporarily lock a page of pageable memory in physical memory,
forcing it to become resident.

The use of resident memory removes physical memory from the set that is
available for use with virtual memory. Regardless, enough physical memory
must be available to make the data resident.

Areas 3

An

area

is a contiguous range of addresses; there are no holes in an area. When
you create an area, you simply define a range of addresses that become
addressable. After creating an area, you can choose how to structure it, for
example as a pool, a heap, a stack, and so on.

An area associates part of the address space with a range of locations in a
backing object. Backing objects may be memory-mapped files or scratch space.
If you specify a memory-mapped file, the area has the structure and contents of
the file. If you specify scratch space, the area’s structure and contents must still
be defined.

Areas have attributes that apply to the entire area, not just part of it. These
attributes are:

■

addressability, that is, whether the area is globally shared or private to a
particular address space

■

accessibility, which specifies the memory access rights (excluded, read only
or read/write) for user mode and supervisor mode software. For
information about accessibility, see the section “Access Rights,” beginning
on page 48.

■

residency, which specifies whether the memory area is always resident in
physical memory or whether it is pageable, meaning that it can be moved in
and out of physical memory as it is used. (Note that a pageable area is not
required to be paged in all at once.)

You can create your own memory areas and specify their attributes to suit your
software’s needs. The operating system provides areas to match the execution
environment in which your software needs to run. The operating system may
also provide higher-level APIs that create areas for you; for example, it may
create an area for a mapped file when you call a routine to perform the
mapping.

C H A P T E R 3

Memory Management

46

Areas

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

As an alternative to actually creating memory areas, you may be able to use
preallocated pools that have the desired attributes instead. Your software
performance might be enhanced if you can use a preallocated pool instead of
creating your own area. Pools are discussed in the next section, “Pools,”
beginning on page 50.

There are several cases when creating an area may be useful:

■

You need to allocate several pages of memory in a single chunk and you
don’t need to deallocate it or reallocate it frequently.

■

You need to allocate page-aligned structures.

■

You need to share memory.

■

You need physically contiguous memory; this should seldom be necessary,
as explained below.

■

You need to allocate your own pool instead of using pools supplied by the
operating system, as explained in the following section, “Pools,” beginning
on page 50.

When you create a memory area, in addition to specifying the area’s attributes,
you can specify how to initialize the area. You can specify

■

whether or not to initially zero-fill the area. It may be useful in some cases
for the software to be able to assume the area contains all zeros when the
area is created.

■

whether or not a pageable area is represented as a

sparse area

 on the
backing storage device. For a pageable area, the disk space that is needed
when the area is not physically resident in memory may be allocated all at
once or sparsely. Sparse allocation means that space is allocated
incrementally as pages are actually needed. Using sparse areas may reduce
the amount of disk space you need.

■

whether or not a resident area will be created contiguously or not. A resident
contiguous area is physically contiguous; a noncontiguous resident area is
an area that is not required to be contiguous, whether or not it actually is.
You should not need to create contiguous areas for most operations; you
may need it if you are writing a device driver for a device and the device
cannot handle scatter-gather transfers.

■

whether a resident area is created as a sparse area or not. This is the same
option as for a pageable area; in the case of resident areas, the option has
implications for page faults when memory is referenced the first time. For a

C H A P T E R 3

Memory Management

Areas

47

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

resident area, the physical memory that is needed may be allocated all at
once or sparsely. Sparse allocation means that a page is allocated
incrementally as it is actually needed. Using sparse areas may reduce the
amount of physical memory you actually need; however, a page fault will
occur when the page is first allocated. Once a page has been allocated, a
page fault cannot occur, regardless of whether the resident area was created
sparsely or not.

■

where to place the area. Placing an area allows you to specify the logical
address at which the area should begin; otherwise the operating system
finds an available range of address and uses them when creating an area.
Typically, you only need to place an area that you want to appear in the
same location in the private part of two address spaces. If you place an area,
you should first make a memory reservation to ensure that the specified
range of addresses are available. For information about memory
reservations, see the section “Memory Reservations,” beginning on page 48.

When you create a memory area, you can specify the size of a

guard range

of
memory to be placed at the beginning and end of the area. The kernel allows
no access whatsoever to these addresses; neither user nor supervisor mode
software can write to or read from them. Figure 3-1 illustrates a memory area
created with guard ranges. If any software, even the software residing in the
area itself, attempts to access a guard range, the processor generates an
exception. This makes it possible to detect conditions like stack overflows
before they adversely affect surrounding areas.

Figure 3-1

A memory area with guard ranges

An area

Guard range

Guard range

Accessible

memory

C H A P T E R 3

Memory Management

48

Areas

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Access Rights 3

An area specifies two sets of access rights, one for user mode software, and one
for privileged (supervisor mode) software. The three levels of access are

■

excluded (no access)

■

read only

■

read/write

The access rights for privileged software, must be the same or greater than the
access rights for user mode software. For example, if you specify read only for
user mode access, you need to specify read only or read/write for supervisor
mode access. If you specify read/write access for user mode, you need to
specify read/write access for supervisor mode.

If you specify incompatible access rights, the operating system promotes the
supervisor mode access to match the user mode access. For example, if you
specify read/write access for user mode and read only access for supervisor
mode, the area will be created with read/write access for both user mode and
supervisor mode software.

Note

Some processors do not allow all combinations of user
mode and supervisor mode access rights, even when
supervisor mode access is the same or greater than the
user mode access. You need not be concerned about which
combinations are supported; the kernel always chooses the
closest valid combination to the access rights you request.

For example, on Power Macintosh computers, a
combination of excluded access for user mode software
and read only access for supervisor mode software is not
supported. In this case, the user mode access is promoted
to read only. You can determine the actual access rights by
calling a function to retrieve the area information after you
create an area.

◆

Memory Reservations 3

A

memory reservation

 allows you to reserve a range of logical addresses
before the area is actually created. Thus, you can set aside a range of addresses

C H A P T E R 3

Memory Management

Memory Data Structures

49

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

before you need to choose a backing object and specify other characteristics of
an area. A memory reservation does not actually create an area; it prevents an
area from being created arbitrarily in the specified range after the reservation
has been made. After you have a reservation, you can create an area in it. You
must create an area before the specified range can be addressed.

You should always obtain a reservation before creating a placed area. When
you obtain the reservation, you know that you will be able to create the area at
the specified location. The reservation also prevents the situation in which a
task in another process attempts to create an area in the same place
unintentionally while the first task is also creating the area.

A

global memory reservation

 causes a reservation to be made for the same
range of addresses in all address spaces. The memory reservation will also be
made in all address spaces that are created afterwards as well.

Note

A global memory reservation can be made for either global
or private part of an address space.

◆

Memory reservations can be used to reserve a range of addresses for sharing
between the private part of two or more address spaces. This is necessary if the
shared area contains pointers that may be referenced by software in each
address space.

Memory Data Structures 3

After an area has been created, you can start to allocate structures within the
area. You can leave the area unstructured, as well; for example, when you only
need to store a large graphics image temporarily.

For areas that are associated with a file mapping, the structure is defined to be
the same as the file’s structure. To structure non-file mapped areas, you must
define the structure. For example, you can create a pool in an area, which
provides a structure for the area, and then allocate (and deallocate) memory
from the pool.

You could also structure all or part of an area as a heap, stack, or some other
kind of data. Although you can create several kinds of structures in a single
area, you typically structure an entire area in only one way. For example, you
might create an area and use it exclusively as a pool.

C H A P T E R 3

Memory Management

50

Memory Data Structures

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Some of these structures are automatically provided for you by the operating
system. The following sections describe several kinds of data structures that
you might find or create in an area:

■

pools

■

application heaps

■

per-task structures, such those used for stacks and local storage

Pools 3

Pools

 are memory that can be allocated from areas created by the operating
system or from areas that you create. A pool is identified by its address.
Pointers are used to reference data in a pool. The Pool Manager handles
allocation and deallocation from a pool.

You typically use pools to store transient data because storage in pools can be
allocated and deallocated very efficiently. Advantages to using pools are that

■

allocation and deallocation from pools is fast; these operations are much
faster than creating or deleting areas

■

pools can be dynamically grown

■

access is pointer based (therefore, you don’t have the indirection associated
with Heap Manager handles)

■

the Pool Manager is reentrant; therefore tasks that use pools need not
synchronize their access to the Pool Manager—this is done for you

The operations allowed for pools depend on the area from which the pool was
created. Table 3-1 shows how residency affects the operations that are allowed.

C H A P T E R 3

Memory Management

Memory Data Structures

51

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Table 3-1

Allowable pool operations

The operating system provides several pools that are created from different
areas, thus the pools have different characteristics and access rights. You
should use these pools if possible, because allocation and deallocation from an
existing pool is much faster than creating an area and a pool within it before
you can allocate and deallocate memory.

Each process has access to a

default pool

. Tasks and other user mode software
can use the default pool as a heap for storing per-process global data. The
default pool can also be accessed by accept functions. In general, applications
will use either the default pool or the application heap. Application heaps are
described in the section “Application Heaps,” beginning on page 53.

In addition to the default pool associated with each process, the operating
system provides three other pools for specific kinds of software:

■

a system resident pool

■

a system pageable pool

■

a system global pool

Device drivers and other supervisor mode software commonly use the

system
resident pool

 when the software cannot tolerate page faults. (See Table 3-2 on
page 52.) The kernel holds memory allocated from this pool in physical
memory at all times. Only software running in supervisor mode can allocate
memory from this pool. The data stored in the system resident pool is
read-only for all user mode software.

Supervisor mode software that can tolerate page faults should allocate memory
from the system pageable pool. The

system pageable pool

 acts as the default
pool for supervisor mode software. This pool, too, is read only for all user
mode software.

Execution environment
and mode

Operations allowed for
pool in pageable area

Operations allowed for
pool in resident area

Privileged task level Reference, allocate, deallocate Reference, allocate, deallocate
Secondary interrupt
handler level

Reference if known to be
resident; otherwise none

Reference, deallocate

Hardware interrupt
handler level

Reference if known to be
resident; otherwise none

Reference

User task level Reference, allocate, deallocate Reference, allocate, deallocate

C H A P T E R 3

Memory Management

52

Memory Data Structures

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

User mode and supervisor mode software can use the

system global pool

 to
allocate memory that must be globally accessible to all code in every address
space. Use this pool sparingly—any software can corrupt the contents of
memory allocated from the system global pool.

Table 3-2 summarizes the use of default memory pools.

Table 3-2

Default memory pools

Note

The levels in Table 3-2 refer to execution environments. To
determine which kinds software can execute in the various
execution enviornments, see Figure 2-3 on page 37.

◆

In general, you should be able to implement your software using one of the
pools provided. If you cannot use one of them, your software can create its own
memory area and specify attributes suitable for its needs. Pools can then be
created within the area. For example, if you need to address or share memory
whose attributes are different than those of the existing pools, you can create a
memory area with the needed attributes and create a pool within the area.

When you use the Pool Manager to create pools, they inherit the attributes of
the areas from which they were created. The Pool Manager allows you to
specify the initial size of a pool as it is created. You can also specify a
specialized grow function that is executed to grow your pool when it runs out
of space. The default grow function allocates a new area for a pool when it runs
out of space.

Pool References allowed by Pageable? One per

System
resident

Software at all levels except for user mode
task level

No System

System
pageable

Software at all levels except user mode task,
secondary interrupt, and hardware interrupt
levels

Yes System

System global Software at all levels Yes System
Default Software at user mode task level or by accept

functions
Yes Process

C H A P T E R 3

Memory Management

Memory Data Structures

53

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Application Heaps 3

Each cooperative process has an

application heap

 that is accessible from a
primary task. You use it directly when you call Memory Manager functions
such as

NewHandle

, and you use it indirectly when you call other Toolbox
functions that need to allocate memory, such as for the window record that is
created when you create a window.

Nonprimary tasks should not use the application heap, because the application
heap is managed by the Memory Manager, which is non-reentrant. You should
use pools, or areas, or call the standard C library function

malloc

 instead.

Per-Task Data 3

As mentioned in the previous section, primary tasks have access to an
application heap for storing data. All tasks can use several kinds of

per-task
data

, which are memory-based data structures used for storing data. They
include the following ones:

■

stacks

■

task local storage

Stack space for a task is managed by the operating system. A task’s stack is
used by software to hold local variables and parameters passed to functions.
This data is always accessible to the task when it is executing.

It sometimes may be necessary to maintain static data for each task executing
the same code, yet keep the data off the stack so that the value is retained even
after the function that created the variable terminates. For these cases, you
should use

task local storage

so the data will persist until the task is deleted.
For example, if a task needs to maintain a connection with another piece of
software, the software’s ID can be kept in task local storage.

Software within each application or process that uses the context is allowed
read/write access to the variables in the context. If you wish to prevent
concurrent access to the variables, you must use synchronization services or, if
you are implementing an application, you might restrict the use of these
variables to the primary task.

C H A P T E R 3

Memory Management

54 Cooperative Process Address Space

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Cooperative Process Address Space 3

This section shows the various kinds of memory in the cooperative process
address space. Each cooperative process has the following kinds of memory
and data structures:

■ global memory, which is mainly used for sharing code

■ a default pool, from which tasks can allocate private data

■ an application heap, for use by a primary task

■ a system heap and low memory globals, which are used only for
compatibility

Figure 3-2 illustrates how the data used by two cooperative processes might be
arranged. Process A has a single primary task. Process B has a primary task and
one secondary task.

C H A P T E R 3

Memory Management

A Protected Address Space 55
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 3-2 Data memory areas for two cooperative processes

The cooperative process address space contains a system heap. The system
heap, along with low memory globals, are global within the cooperative
process address space; they are not, however, global across address spaces.
Notice that the default pool for process B consists of two discontiguous areas.
Pools can be dynamically grown; when they grow, they may appear in
discontiguous areas.

A Protected Address Space 3

Every process except cooperative processes can have its own address space.
Figure 3-3 shows two tasks associated with a process in a protected address
space.

Data memory for

process A

Data memory for

process B

Address space

Global

Unused

Private

Global within address space

System heap

Low memory

System global pool

Stack

Application heap

System heap

Low memory

Application heap

Default pool

Primary task stack

Secondary task stack

System global pool

Default pool

Default pool

C H A P T E R 3

Memory Management

56 Shared Memory

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 3-3 Data memory areas in an address space for a process with two tasks

Process C consists of two user mode tasks. There is a user mode stack for every
task in the process, and a default pool shared by all the tasks in the process.
Each task can have its own task local storage.

Shared Memory 3

Shared memory is used for sharing code and data. The following sections
discuss how you can use shared memory.

Shared Data 3

Shared data provides the ability for software executing in one address space to
share memory locations with software running in another address space. Thus,
shared data allows communication without significant overhead. A synchro-

Default pool

Stack (for task b)

Stack (for task a)

System global pool

Task local storage

(for task a)

Task local storage

(for task b)

System global pool

Task local storage

Process DProcess C

C H A P T E R 3

Memory Management

Shared Memory 57
Draft. Confidential.  Apple Computer, Inc. 10/23/95

nization mechanism must be used to prevent accidental overwriting of
memory that is shared. You should use shared memory if you need to transfer
a large amount of memory between address spaces frequently.

As already noted in the section “Address Spaces” on page 43, global memory
appears at the same location in every address space. All software can address
global memory. You can use global memory for sharing; however, using it for
that purpose requires cooperation and can leave the entire system vulnerable:

■ Global memory is a limited resource; because other processes may allocate
global memory also, you must be concerned about how to handle failures.

■ When user mode software is allowed write access to global memory,
anything within the shared area can be changed by any software running on
the system.

Given these limitations on the use of global memory, you should only use it for
privileged software and only when a small amount of data is being shared.

There are several alternatives to using global memory for shared data. They
require more effort to set up; however, they overcome the vulnerability
associated with global memory:

■ Use memory whose addresses map to the same locations on a backing
storage device. This technique is called file mapping on some systems. It
uses the virtual memory mechanism which makes changes to a backing
object associated with virtual memory immediately visible to all address
spaces that use the locations. This technique, however, is only useful if the
data is pageable, because resident memory is not associated with a backing
storage device.

■ Explicitly specify an area to be shared between processes in two or more
address spaces.

Shared Code 3

Shared code allows several instances of software to run concurrently with only
one copy of the code present in logical memory. Shared code is implemented as
code fragments, simply called fragments, which are containers of executable
code packaged by a linker and prepared for execution as they are loaded. Each
fragment consists of its code, static data, imported symbols, and exported
symbols.

C H A P T E R 3

Memory Management

58 Shared Memory

Draft. Confidential.  Apple Computer, Inc. 10/23/95

The Code Fragment Manager automatically loads fragments into memory and
prepares them for execution. Once loaded, another instance of the software can
be executed with only the additional overhead of stacks and per-task data for
maintaining the execution state; another copy of the code is not required.

Fragments that export functions and variables to other fragments are called
shared libraries. Because all fragments are potentially sharable (although not
all are actually shared), the terms fragments and shared libraries are often used
interchangeably. In general, a shared library is used to resolve imported
symbols during linking and also during the loading and preparation of some
other fragment.

A shared library that is dynamically linked at execution time is called a
dynamically linked library. A dynamically linked library exports code or data
that can be referenced by another fragment. For example, while linking, an
application fragment can import a math library and the Window Manager
library. At execution time those libraries are dynamically bound to the
application.

Note
Do not confuse shared libraries built with the Code
Fragment Manager with shared libraries used by the
Apple Shared Library Manager (ASLM). ASLM is not
supported. ◆

Using shared libraries for software development has many benefits, including
the following:

■ Having software in separate pieces simplifies development. For example, if
you need to enhance the spell-checking module of your application, you
need only to change and replace that shared library. You can distribute the
enhanced shared library as a replacement, instead of distributing a new
version of the application or a patch.

■ When two or more applications use the same shared library, memory is
saved because only one copy of the code is in memory.

All system services, including system software, are provided through shared
libraries. All fragment-based software gains access to system services by
directly calling shared libraries. System services also access each other directly,
one shared library to another.

C H A P T E R 3

Memory Management

Shared Memory

59

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

For example, Figure 3-4 shows a fragment-based application accessing two
shared libraries,

x

 and

y

, directly. The figure also shows shared library

x

accessing shared library

y

directly.

Figure 3-4

Access to system services in Copland

To allocate per-process static data, the Code Fragment Manager allocates one
copy of a library’s static data from the default pool for each process that uses
that library.

The

System Object Model (SOM)

, a new model for developing and packaging
object-oriented software, is also supported. SOM makes object-oriented shared
libraries viable by providing release-to-release binary compatibility, compiler
and language independence, and a basic level of dynamic language support.
SOM is implemented as a layer on top of the Code Fragment Manager.

Fragment-based application

Shared library x Shared library y

This document was created with FrameMaker 4.0.4

C H A P T E R 3

Memory Management

60 Shared Memory

Draft. Confidential.  Apple Computer, Inc. 10/23/95

C H A P T E R 4

Contents

61

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Synchronization Services

Introduction to Synchronization Issues 63
About Synchronization Services 66

Synchronization Primitives and Locking 66
Atomic Instructions 66
Simple Locks 67
Read/Write Locks 69

Event Groups 71
Kernel Queues 73
Interrupts and Synchronization 74

Software Interrupt Synchronization 74
Secondary Interrupt Synchronization 75
Synchronization by Disabling Hardware Interrupts 75

Synchronization and Software Structure 76
Synchronization and Multiprocessing 77

This document was created with FrameMaker 4.0.4

C H A P T E R 4

62

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 4

Introduction to Synchronization Issues

63

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Synchronization Services 4

Whenever two or more resources could be shared by concurrently executing
software, synchronization is required. Although concurrent execution is not
possible on a single processor machine, interleaved execution between tasks is
possible. Interleaved execution exhibits the same effects as concurrent
execution with respect to synchronization. The actual result of an operation can
be different than the correct result if you allow unsynchronized access to a
shared resource.

Synchronization services provide ways that you can guarantee orderly access
to resources by your software. You must use synchronization services
whenever you allow access to a resource from software that has the potential to
execute concurrently with other software.

This chapter introduces why you need to use synchronization and describes
the synchronization services provided by the kernel and operating system.
Then, a section follows that explains the effects of using various
synchronization services with different kinds of software.

Introduction to Synchronization Issues 4

Consider two tasks, task A and task B, that each execute the following
C-language statement:

if (x==0)
x = x + 1;

These tasks can be used to show a classic example of the effect of serialized
versus interleaved execution on a shared resource; in this case, a single
memory location represented by the variable

x

. In this example, if the test for

x==0

 is interleaved with the execution of

 x = x + 1

, the result can be wrong.

If task A executes the statement first and then task B executes the statement, the
result for

x

 is 1. If task B executes the statement first and then task A executes
the statement, the result is the same. In fact, for any initial value of

x

 and any
number of tasks executing the code atomically, the result will be either 0 or 1.

If the execution of the tasks is interleaved so that the comparison for

x==0

 is
separated from changing the variable, the result may be different (and wrong)
from the serialized execution. To ensure that one of the correct results is
achieved, you must prevent interleaved execution of statements that affect a

This document was created with FrameMaker 4.0.4

C H A P T E R 4

Synchronization Services

64

Introduction to Synchronization Issues

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

shared resource. In this case, the compare and change actions must be atomic;
that is, the actions must be completed, start to finish, as a single undivided
operation.

Figure 4-1 shows the serialized and interleaved execution sequences.

Figure 4-1

Serialized versus interleaved execution

In this example, the comparison and the potential change to the value form a

critical section

, which is a section of code whose execution must be serialized
so that it is atomic with respect other code that may affect the same shared
resources. In this example, the comparison and change to a shared resource, the
variable x, must be in a critical section in each task that wants to manipulate
the variable.

Task A

Task B

Task A

Serialized execution

Interleaved execution

Task B

Time

x = 0

x = 1

x = 1

x = 2

x = 1

C H A P T E R 4

Synchronization Services

Introduction to Synchronization Issues

65

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Note

The critical section in this example consists of code that
compares the value of only one memory location, in which
case you can use the compare-and-swap atomic instruction
without having to consider the broader issue of what code
must be in the critical section. For more information about
the compare-and-swap instruction, see the section “Atomic
Instructions,” beginning on page 66.

◆

The key to using synchronization services is to be able to

■

make explicit decisions about which resources are to be shared. If more than
one task has concurrent access—and therefore the potential for interleaved
execution—for either reading or writing to a shared resource,
synchronization of access to the resource is probably required. If several
tasks can write to the resource concurrently or if tasks should not attempt to
read from the resource while it is being updated lest an inconsistency result,
synchronization is definitely required.

■

determine which part of the execution must be serialized and therefore must
be in critical sections. Synchronization reduces the potential for concurrency
because execution of a task may have to wait while another piece of software
is executing within the critical section. In the worst case, serialization could
eliminate concurrent execution altogether. You must make decisions about
the scope of the operation that must be serialized and try to minimize the
amount of time spent in critical sections.

■

make sure that access to a shared resource is handled consistently. The
kernel and operating system provide the services that implement
synchronization. You are responsible for developing a protocol for using
synchronization services with respect to each shared resource. The
synchronization services know nothing about your protocol. If the protocol
is violated, for example, if a task is allowed to change a shared variable
outside of a critical section, erroneous results that are often difficult to
diagnose can occur. Perhaps the best way to implement a protocol like this is
to build the synchronization calls into the routines that handle the access to
the resource so that whenever you call the routines to access the resource,
synchronization is automatically performed.

Synchronization services can provide a communication service in addition to
controlling access to critical sections of code. You seldom will use a
synchronization service unless you wish to communicate data, because the
reason you share data is to communicate values between tasks. For this reason,

C H A P T E R 4

Synchronization Services

66

About Synchronization Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

you should also be familiar with communication services provided by the
kernel and operating system before making decisions about how best to
synchronize communication. For an overview of communication services, see
“Interprocess Communication Services,” beginning on page 17.

About Synchronization Services 4

The following sections describe the major kinds of synchronization services
provided by the kernel and operating system:

■

Synchronization primitives and locking provide processor-supported atomic
instructions and locks for implementing critical sections.

■

Event groups let you wait for a condition to occur so that execution of a
critical section will not start until the condition is satisfied.

■

Kernel queues also let you wait for a condition to occur; however, they
maintain more information about changes in condition and can also be used
for explicit but limited communication.

■

Interrupts can also be used to synchronize operations. They can also be
disabled, which is not recommended in most cases.

The following sections describe each of the synchronization services.

Synchronization Primitives and Locking 4

Synchronization primitives are atomic instructions that operate on 4-byte
long-word aligned memory locations. Synchronization primitives are used to
implement locking, which has two variations, simple locks and read/write
locks. You can use both synchronization primitives and locking mechanisms.

Atomic Instructions 4

The operating system provides several kinds of atomic instructions.

Atomic
instructions

 implement undivided operations that, once started, are carried to
completion. The data manipulated by an atomic instruction is a 32-bit value in
a 4-byte longword-aligned structure, as follows:

C H A P T E R 4

Synchronization Services

About Synchronization Services

67

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

compare and swap

 the contents of a memory location, which allows you to
make a comparison of the contents of a single memory address and, if true,
allows a value to be exchanged for the current one.

■

test and set

 an arbitrary bit in memory, which is similar to compare and swap
but for a 1-bit value rather than a 32-bit value. The bit is specified as an
offset from a single memory address.

■

addition

 to (and by addition of negative values, subtraction from) the
contents of a memory location

■

increment

 or

decrement

 by 1 the contents of a memory location. Note that

n++

or

n = n - 1

 in a higher level language, such as C, is not by itself guaranteed
to be atomic; it could be implemented as several machine instructions.

■

bitwise operations

, such as AND, OR, and XOR.

Atomic instructions for addition, increment, decrement, and bitwise operations
are also provided for 8-bit and 16-bit values as well.

If you need synchronization, you should use atomic instructions whenever
possible because they are very efficient. (If you don’t need synchronization,
don’t use them.) Atomic instructions are simply wrappers around hardware
instructions and thus do not even require kernel intervention. Unfortunately,
they guarantee serialized access only to individual memory locations. If the
resource is some other kind of data structure, you cannot synchronize access
with atomic instructions. In addition, you must use caution when deciding
whether part of a data structure for which you want to serialize access is
aligned correctly; for example, many fields in Toolbox data structures are not
long-word aligned.

Simple Locks 4

A simple lock can be used to synchronize access to several memory locations.
Typically, your code attempts to acquire the lock at the beginning of a critical
section. After executing the critical section, your code must release the lock.

If the lock is in use, the request blocks waiting for the lock or it fails, depending
on how you attempted to acquire the lock. Your choice of whether to block or
fail depends, at least in part, by the kind of software; you cannot allow a
hardware or secondary interrupt handler to block.

Figure 4-2 shows how critical sections in tasks A, B, and C that affect the same
data can synchronize access to the data by using a simple lock.

C H A P T E R 4

Synchronization Services

68

About Synchronization Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 4-2

Using simple locks

In Figure 4-2, task A receives access to the critical section and tasks B and C
block when they attempt to enter their critical sections. When task A finishes,
either task B or C could acquire access to their critical section; in Figure 4-2,
task B is shown executing its critical section before task C executes its critical
section; however, the scheduling algorithm determines which task executes
next.

If you allow a task and its software interrupt handler to try to obtain the same
lock, you must disable software interrupts when the lock is acquired by the
task. This is an option when acquiring the lock and is performed very
efficiently. If you do not disable software interrupts, a software interrupt
handler for a task might try to acquire the lock that is already held by the task.
The software interrupt handler would preempt the task before the task could
release the lock, and the software interrupt handler would block waiting for a
lock that cannot be released.

You should use a simple lock when an atomic instruction is insufficient—that
is, whenever more than one word needs to be manipulated atomically. There

Task A

Begin locked section

Task B

Time

ExecutingKey:

Blocked/waiting for execution

Task C

Begin locked section

Begin locked section

End locked section

End locked section

End locked section

C H A P T E R 4

Synchronization Services

About Synchronization Services

69

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

are three cases where you need to use a more robust, but somewhat slower,
locking mechanism:

■

when you want to allow read access to the data most of the time yet want to
synchronize access while updating the data

■

when tasks running at different priorities might attempt to acquire the same
lock and you are concerned about priority inversion

■

when you want to allow recursive locking, for example, when a routine in a
library acquires a lock and the routine is not aware of which other routines
might attempt to acquire the lock.

In these cases you should use read/write locks, as described in the next section.

Read/Write Locks 4

Read/write locks provide all the capabilities of simple locks. In addition, they
can be held exclusively by software (identified as a

writer

) that wants to change
data in a critical section, or be shared by software (called

readers

) that wants
only to view the values. The readers and writer always attempt to access the
data from within a critical section.

Before entering the critical section, a reader or writer must obtain access by
acquiring a lock. A writer obtains an exclusive lock, which prevents any
readers or another writer from obtaining the lock; these tasks remain blocked
until the writer releases the lock. The writer cannot obtain the lock, however,
until all readers have released their locks; the writer remains blocked until no
readers (or another writer) hold the lock.

Figure 4-3 shows how task A, a writer, might interact with tasks B and C, which
are readers.

C H A P T E R 4

Synchronization Services

70

About Synchronization Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 4-3

Using a read/write lock

In this example, task A attempts to enter its critical section, and because it
wants to perform an update, it attempts to acquire an exclusive lock. Task B has
already acquired a shared lock and therefore task A is blocked waiting for task
B to release the shared lock. During this time, task C attempts to acquire a
shared lock. Because task A’s request for an exclusive lock is pending, task C
must wait for task A to acquire and then release its exclusive lock.

If another writer makes a request for an exclusive lock while task B is executing
its critical section, task C will have to wait longer because a new writer would
gain exclusive access before any reader gains shared access.

The previous discussion assumes that tasks A, B, and C are running at the same
priority level. If a lock is held by a lower priority task and a higher priority task
is waiting for it, a priority inversion may occur, such that the higher priority
task may be blocked indefinitely waiting for the lower-priority task to release
its lock. If a read/write lock is being used by different priority tasks, you can
specify an option that temporarily raises the priority of the lower-priority task

Task A

Begin read-locked

section

Task B

Time

ExecutingKey:

Blocked/waiting for execution

Task C

Begin write-locked

section

Begin read-locked

section

End read-locked

section

End write-locked

section

End read-locked

section

C H A P T E R 4

Synchronization Services

About Synchronization Services

71

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

so that it can release the lock and allow the higher-priority task to run; after
releasing the lock, the lower-priority task continues at its original priority.

There is one other feature of read/write locks. A writer, holding an exclusive
lock, can be demoted to a reader holding a shared lock without having to
release the lock. This is subtly different from a writer that releases its exclusive
lock and immediately thereafter attempts to acquire a shared lock. In the first
case, where the writer is demoted, the lock is not actually released. In the
second case, the lock is released and another writer may gain the lock before
the shared lock is granted to the former writer.

Event Groups 4

Event groups allow a task to specify one or more conditions (with a maximum
of 32 conditions) and then wait for any or all of the conditions to be met before
resuming execution. Each condition is represented by an

event flag

 (numbered
from 0 to 31) in a 32-bit

event group

.

You can manipulate each flag in one of two ways:

■

Set the flag, which specifies that the condition has been met.

■

Clear the flag, which specifies that this condition is no longer of interest,
until the flag is set again.

You set and clear flags for an event group in one operation. Setting, clearing, or
testing flags in an event group are atomic operations; thus, you are guaranteed
that several flags can be set, cleared, or tested as a single undivided operation.

When you create an event group, all flags are cleared and each flag remains
clear until it is set. After a flag has been set, it remains set until it is cleared. If a
task waits on a flag that has already been set, it will not be blocked, because the
condition has already been met.

The waiting task specifies the group that contains the flags, a timeout value
(which is allowed to be infinite), a mask, and some options. The mask specifies
the flags that can unblock the task, and the options specify how to interpret the
mask and whether to clear the flags.

When one or more flags are set, tasks waiting for flags in the event group are
tested against these flags in priority order, and if the priority is the same, they
are tested in order of how long the task has been blocked. Thus, a higher
priority task is unblocked before a lower priority task and, given equal priority,
the task that has been blocked longer becomes unblocked sooner.

C H A P T E R 4

Synchronization Services

72

About Synchronization Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

The fact that more than one task can become unblocked makes event groups a
powerful yet potentially complex technique for coordinating execution,
because the options for unblocking a task can affect just the highest priority
task (or the longest waiting task when there is a tie) or the options can affect all
waiting tasks.

The options allow you to specify rules for unblocking waiting tasks. The
conditions for which each task is waiting are examined task-by-task in priority
(and waiting time within priority) order. You can specify one of the following
options:

■

If any of the conditions are met, unblock the task.

■

If all of the conditions are met, unblock the task.

■

If any of the conditions are met, unblock the task and clear the flags; other
tasks waiting on those flags remain blocked until those flags are set again.

■

If all of the conditions are met, unblock the task and clear the flags; other
tasks waiting on those flags remain blocked until those flags are set again.

■

If any of the conditions are met, unblock the task; clear the flags only after
conditions for all waiting tasks have been tested—thus, all eligible software
becomes unblocked.

Typically, you use the same clear options for each task in an event group;
otherwise, the complexity of interaction increases significantly. A typical
example might be to set up several tasks capable of responding to the same
event. If all tasks specify clearing the flags, then only one task will handle the
event. Unblocking a task would prevent the other tasks from being unblocked
as well.

Event groups are useful in the following situations:

■

You need to wait on a combination of events occurring.

■

You don’t need to distinguish between multiple occurrences of an event; an
event flag could be set multiple times before it is cleared.

■

You need to signal an event from a hardware or secondary interrupt handler.

■

You don’t need to associate data with an event

If you need to queue events so that you can take action on each one rather than
treat the event as a gate that is opened when a condition has been met, you
should use kernel queues. The performance of kernel queues is slower than

C H A P T E R 4

Synchronization Services

About Synchronization Services

73

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

that of event groups, and notification of the event cannot be made from a
hardware interrupt handler. Kernel queues are described in the next section.

Kernel Queues 4

Kernel queues

 are a mechanism that allows software to wait on an event—the
event, called a

notification

, is an entry being made to a queue. Kernel queues
are similar to event groups in that they both allow software to block waiting for
an event to occur. For kernel queues, the event notification is placed in a queue;
whereas events for an event group are simply set.

Kernel queue notification has different capabilities leading to different results
than does setting an event for an event group:

■

The notification allows you to transfer three words of data from the notifier
to the waiting software.

■

Notifications are queued, which allows software to distinguish between
multiple occurrences of the same event.

■

The notification and its data is delivered only to a single piece of software,
which is the one that has been waiting the longest. Thus, waiting software is
notified on a first-come, first-served basis regardless of priority, and once the
notification is delivered, it is no longer available to other software.

Kernel queues are often used for notifying software about the completion of
asynchronous events. For example, a secondary interrupt handler could notify
a task when an I/O operation completes execution.

Any kind of data may be transferred between the notifying software and the
waiting software. You must establish a protocol for interpreting the data. For
example, you might use a protocol that interprets the data in the following way:

■

The first word specifies the kind of event, for example, the completion of an
I/O operation.

■

The second word specifies information about the operation, for example, the
status resulting from the I/O operation.

■

The third word specifies information about the state of the operation when it
was started, for example, whether it was reading or writing.

When you wait on a queue, you also can specify a timeout value. A timeout
value of 0, for example, could be used to check if the queue is empty. You
would not use a timeout value of 0 in a loop, however, because it would be a

C H A P T E R 4

Synchronization Services

74

About Synchronization Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

polling loop. Polling is not recommended, because it causes the software to be
active most of the time and results in unnecessary context switches.

In general, you should use kernel queues for synchronization only if you
cannot use other services, such as event groups or locking, because kernel
queues have more overhead than other synchronization services. If, however,
you need a communications capability and can accept the three-word message
size restriction, kernel queues are one of the most efficient interprocess
communications services. For more information about interprocess
communication services, see the section “Interprocess Communication
Services,” beginning on page 17.

Interrupts and Synchronization 4

The kernel serializes the execution of some interrupt handlers; thus these
interrupt handlers provide synchronization. Also, disabling interrupts has
synchronization implications. The following sections describe the
synchronization that occurs with the use of software interrupt handlers,
secondary interrupt handlers, and disabling hardware interrupts.

Software Interrupt Synchronization 4

Software interrupt handlers associated with the same task are guaranteed to be
serialized. Once a software interrupt handler has started execution, it cannot be
interrupted by another one associated with the same task.

Software interrupt handlers that are associated with different tasks are not
serialized in any way; locking must be used before a software interrupt handler
attempts to access shared data. If it is necessary to acquire a lock within a
software interrupt handler, you must take additional steps to avoid deadlock if
that lock is also shared by a task and a software interrupt handler associated
with the task.

If a software interrupt handler associated with a task and the task itself attempt
to use a lock, either the software interrupt handler’s request must not be
allowed to block or the task’s software interrupts must be disabled—disabling
software interrupts is an option you can specify when requesting the lock.
Otherwise, the lock might be granted to the task, and when a software
interrupt occurs, the software interrupt handler could block waiting to acquire
the lock. In this case the task could not release the lock, because it is now
blocked waiting for the software interrupt handler to complete.

C H A P T E R 4

Synchronization Services

About Synchronization Services

75

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Secondary Interrupt Synchronization 4

Secondary interrupt handlers are guaranteed to be executed sequentially. You
can use secondary interrupt handlers as an intermediary to allow a hardware
interrupt handler to share data with a task. Locking cannot be used in this case,
because a hardware interrupt handler cannot be allowed to block. If a
hardware interrupt handler fails to acquire the lock, the handler has no
recourse that ensures synchronization.

Consider the following example. A hardware interrupt handler may fill up a
buffer with input data. A task is responsible for taking data out of the buffer
and processing it in some way. A secondary interrupt handler would be
scheduled by the hardware interrupt handler whenever data became available
for processing. A secondary interrupt handler would be called by the task
when it is ready to process the data. Since both secondary interrupt handlers
cannot execute at the same time, the data will only be accessed serially by one
or the other secondary interrupt handlers.

Note
If only a small quantity of data needs to be transferred
from the hardware interrupt handler to the task, a
secondary interrupt handler could notify the task through
a kernel queue. This would reduce the performance
bottleneck of using another secondary interrupt handler
from the task. Transferring more than three words at a
time, however, would require a solution such as this one. ◆

Synchronization by Disabling Hardware Interrupts 4

You rarely need to disable hardware interrupts; however, you may need to do
so if you must update more than a single memory location atomically and
these locations are shared by a hardware interrupt handler and a secondary
interrupt handler. In this case, you may need to disable hardware interrupts. If
possible, you should try to disable only a particular device’s interrupts using
mechanisms provided by the I/O system.

Only privileged software can disable hardware interrupts. Keep in mind that
hardware interrupts could be lost during the time that the interrupts are
disabled, thus you must consider the absolute amount of time you have on a
processor-by-processor basis before lost interrupts become an issue.

C H A P T E R 4

Synchronization Services

76 Synchronization and Software Structure

Draft. Confidential.  Apple Computer, Inc. 10/23/95

IMPORTANT

Although you can disable hardware interrupts, you should
seldom if ever find the need to do so. If you must disable
hardware interrupts, call DisableHardwareInterrupts rather
than a processor-level instruction; otherwise, your
software will fail on multiprocessor systems. ▲

Synchronization and Software Structure 4

The choice of software affects the kind of synchronization services that are
available. This section outlines how you might use synchronization to share
resources between different pieces of software. Remember that:

■ Hardware interrupt handlers can only use atomic operations, use locking
operations that are not allowed to block, and set event flags.

■ Secondary interrupt handlers can use all synchronization services available
to hardware interrupt handlers; in addition, secondary interrupt handlers
can clear event flags.

■ All other software (software that runs in the task level execution
environment) can use any of the synchronization services provided by the
kernel and operating system.

The following points can be made about how to synchronize between different
kinds of software:

■ Synchronization is not required

n between hardware interrupt handlers on Power Macintosh computers

n between secondary interrupt handlers

n between the software interrupt handlers associated with the same task
This is because execution is already serialized

■ Atomic instructions can be used by any kind of software.

■ Secondary interrupt handlers and supervisor mode tasks and their software
interrupt handlers can disable hardware interrupts, effectively preventing
hardware interrupts or secondary interrupts from occurring.

■ A task can disable the receipt of software interrupts directed to the task.

C H A P T E R 4

Synchronization Services

Synchronization and Multiprocessing 77
Draft. Confidential.  Apple Computer, Inc. 10/23/95

■ Locking can be used with tasks (user mode or supervisor mode) and
software interrupt handlers; however, software interrupts may need to be
disabled or nonblocking locking operations may need to be used in
conjunction with resources shared between a task and its software interrupt
handlers.

■ User mode tasks and their software interrupt handlers cannot synchronize
with hardware or secondary interrupt handlers except through atomic
instructions.

IMPORTANT

Never use task priorities to attempt synchronization—it
will not work. For example, a higher-priority task may be
preempted by a lower-priority task at any time because of
conditions such as page faults. Always use
synchronization techniques when sharing data between
tasks. ▲

Synchronization and Multiprocessing 4

The kernel and operating system are designed to handle multiprocessing.
Unless you’re using hardware or secondary interrupt level or disabling
interrupts, you shouldn’t have to worry about it — everything will just work.
(These things should not be relevant unless you’re writing a device driver). For
example, imagine that you have a server with multiple tasks, and two of your
tasks get scheduled simultaneously on different processors. This doesn’t
introduce any new synchronization requirements for those tasks — it looks just
like a single CPU that happens to be switching between the two tasks very
frequently. If your server would fail on a multiprocessing system, it would also
fail in a single-processor system that happened to preempt your task at just the
wrong moment.

It is possible to write task level code that works only on a single-processor
system because of the way the kernel schedules tasks at certain priorities. For
example, in the absence of page faults, run-til-block scheduling behavior can be
misused to simulate cooperative scheduling—and it will fail on an
multiprocessor system. As stated in the previous section, you should always
enforce execution order using explicit synchronization operations, never with
knowledge of scheduling behavior. The kernel’s scheduling behavior or other

C H A P T E R 4

Synchronization Services

78 Synchronization and Multiprocessing

Draft. Confidential.  Apple Computer, Inc. 10/23/95

aspects of the system may change, causing your code to fail even on a
single-processor system.

If you are using secondary interrupt level or disabling hardware interrupts,
you must remember to follow these rules:

■ If you synchronize access to shared data with atomic routines, always use
them to access that data at hardware or secondary interrupt level as well as
at task level.

■ If you synchronize access to shared data using a secondary interrupt
handler, always use a secondary interrupt handler to access that data. Don’t
assume that just because hardware interrupts are disabled that the data is
safe.

■ Always call the DisableHardwareInterrupts subroutine to disable hardware
interrupts.

C H A P T E R 5

Contents

79

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 Messaging Service

About the Messaging Service 81
Setting Up the Messaging Service 83
Sending Messages 85
Receiving Messages 86
Using Accept Functions 87
Asynchronous Sends and Receives 88
Replying to Messages 88

This document was created with FrameMaker 4.0.4

C H A P T E R 5

80

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 5

About the Messaging Service

81

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Messaging Service 5

The messaging service is an interprocess communications service for sending
messages between tasks. Both synchronous (send an message and wait for a
reply) and asynchronous (send a message and continue) forms of messaging
can be used. This chapter introduces the messaging service and explains how it
can be used.

About the Messaging Service 5

Messaging is an interprocess communications service that allows a message to
be sent from one piece of software, the

sender

, to another piece of software, the

receiver

. The

message

 is a contiguous set of bytes (which may be zero bytes)
that is understood only by the sender and receiver; it is not interpreted by the
messaging service. A message is always associated with a

reply

, which is a
response (that might also be zero bytes long) from the receiver to the sender.
Thus, the message and its reply form a transaction between the sender and
receiver.

The sender of a message is typically the client of the receiver. The receiver is
often a kernel process set up to be a server. Clients seldom need to call
functions that interact with the messaging service directly because messages
typically are sent, received, and replied to as the result of the client calling
functions in a library provided with the server software.

Figure 5-1 shows how a client application could call a library that establishes
communication with a server.

This document was created with FrameMaker 4.0.4

C H A P T E R 5

Messaging Service

82

About the Messaging Service

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 5-1

Client-server communication using messaging

This example implies that the client must wait until it receives a reply. This
technique is implemented with a

synchronous send

 operation, which causes
the sender to block while waiting for a reply. Alternatively, you can use an
asynchronous send, which does not require the sender to wait. For more
information about send operations, see“Sending Messages” on page 85.

If you develop an application, you seldom need to deal with messages directly;
you simply call functions in the library provided with the server. If you are
implementing a server that uses the messaging communications service,
however, you must consider how to implement the software both as a client
library and as a server process. The major issues are how to

■

set up the messaging service

■

send a message from the client side

■

receive a message on the server side

■

handle asynchronous communication

■

use accept functions

■

reply to a message

The following sections discuss these issues.

Task Library

Task

Send

Client

Task

Server

Reply

Receive

C H A P T E R 5

Messaging Service

About the Messaging Service

83

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Setting Up the Messaging Service 5

The messaging service allows the sender to send a message to an object. An

object

 represents something to which a request can be made. For example, an
object might represent a window or dialog box that can be used to formulate a
search of a database (and display the results of the search), or an object might
represent a file that can be read or written to, and so on. Messages from many
different clients can be sent to the same object.

A

port

 represents the place where a message is delivered after it is sent to an
object. An object is associated with only one port at a time. The receiver
software can get the next message from a port, take some action, and then
reply. Objects are small. Ports are larger than objects.

Figure 5-2 shows how a single object can be associated with a port. This model
could be used to implement a datagram service.

Figure 5-2

A port handling one object

When only a single object is associated with a port, it may not seem necessary
to make a distinction between an object and a port. However, although an
object can be associated with only one port at a time, a port can have several
objects associated with it. This is the typical way that a connection-based

Task MessagesSend

Task
Task

Server

Object Port
Receive

Task

B A B C

C

A

C H A P T E R 5

Messaging Service

84

About the Messaging Service

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

service (for example, a file server) is implemented. The server is associated
with one port and there is one connection per object to the server.

Figure 5-3 shows a server process whose port is associated with two objects.

Figure 5-3

A port handling several objects

As the message conceptually “moves” from the object to the port, the
messaging service notes the object to which the message is sent; the server can
make use of this information as needed. Each object has a reference constant
that is only used by the server. Typically, the server places the address of a
control block in this reference constant. In the example of a file server, the
control block might be the actual control block associated with a file.

You must create a port before you can create an object. The client sends a
message to an object; the object is identified by ID. The client typically does not
know the ID of the object initially. To handle this situation, you must create at
least one object for the port and use the system registry to make it available for
clients to use. Clients should look up the server by name and obtain an ID. If
the server supports multiple objects, such as one per connection, the server
could respond to a message sent to the published ID by creating a new object
and returning the new object’s ID. For more information about the system
registry, see “System Registry,” beginning on page 93.

Task MessagesSend

Task

Task

Server

Object Port

Receive

Task

E

D E FObject

F

D

C H A P T E R 5

Messaging Service

About the Messaging Service

85

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Sending Messages 5

Messages are sent to objects. A message may be sent either synchronously,
meaning that the sender blocks until a reply is received, or asynchronously,
meaning that the sender can continue and a reply will be delivered later. For
information about asynchronous sends, see the section “Asynchronous Sends
and Receives,” beginning on page 88.

When you send a message, you can specify the following items:

■

the message buffer and its length

■

a message type (see the following section, “Receiving Messages”)

■

an optional reply buffer and its length

■

an optional timeout value

■

options

You place the message in the buffer and specify its length. Depending on the
options you choose, you can allocate a buffer that will contain the reply. You
also can specify a timeout value; however, using one can complicate
programming for two reasons: you won’t know why the receiver didn’t reply
in time (it could just be slow or it may not be running), and you must decide
what to do when a timeout occurs (for example, whether or not to try again).
The additional complexity associated with using a timeout value, however,
may be justified to prevent the sender from hanging.

Options specify, among other things, how to transfer the data. You can transfer
the data by value, or reference, or you can let the messaging service decide. In
most cases, you should let the messaging service decide how to transfer the
data because it will choose the most efficient method. The most efficient
method is not always obvious.

If the message is sent by value, the messaging service copies the message into
the buffer provided by the receiver. If the message is sent by reference, the
messaging service automatically makes the sender’s buffer addressable and
accessible to the receiver.

The messaging system will also make a best effort for delivery. For example, if
it would be more efficient to copy the data but there is not enough buffer space
in the receiver, the messaging system will transfer the data by reference, if
possible.

C H A P T E R 5

Messaging Service

86

About the Messaging Service

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Receiving Messages 5

Messages are received in the order they are sent to an object and are released to
the port for processing. The receiver can distribute the messages to tasks or an
accept function for processing based on the message type of the message. A

message type

 is a 32-bit number specified by the function that receives the
message. It is ANDed together with the message type specified in the message
itself; if the result is nonzero, the message is returned by the function for
processing.

It is typically much easier to implement the receiver as several tasks, or as a
combination of tasks and accept functions, each operating synchronously. For
example, one task could handle certain types of messages and another task
could handle other types. The message type could determine which messages
were sent to the two tasks. Figure 5-4 shows conceptually how messages can be
directed to tasks based on message type.

Figure 5-4

A receiver implementation

Task MessagesSend

Task
Task

Server

Object Port
Receive

Task Object
Locked

Task

C H A P T E R 5

Messaging Service

About the Messaging Service

87

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

In Figure 5-4, messages that are conceptually typed with a star are sent to one
task. Messages that are conceptually typed with a triangle are sent to another
task.

Messages may be received either synchronously, meaning that the receiver
blocks until a message arrives, or asynchronously, meaning that the receiver
can do other work until it is notified that a message has arrived. For
information about asynchronous receives, see the section, “Asynchronous
Sends and Receives,” beginning on page 88. Messages can also be received by
accept functions; for more information, see “Using Accept Functions,”
beginning on page 87.

Using Accept Functions 5

An accept function can handle messages that arrive at a port. Only one accept
function can be installed in a port at one time. Using an accept function to
handle a message is more efficient than using a task to handle it, because a
context switch is not required. Accept functions also guarantee that buffers are
not copied.

There are several issues you need to consider when using an accept function:

■

Accept functions execute concurrently; thus if several messages have been
sent to a port but have not yet been replied to, several instances of the accept
function will be executing. If the accept function shares a resource such as a
data structure, access to the resource must be synchronized.

■

An accept function is privileged code; therefore, you must install it from
code running in supervisor mode. The best way to do this is to install it from
a shared library running in supervisor mode; when the library is loaded, the
accept function is installed.

■

Accept functions do not receive messages that were sent to the port before
the accept function was installed. For that reason you should create the port
and install the accept function before creating objects.

You can use the message type to direct a subset of messages to an accept
function and allow tasks to handle other messages. For example, you could set
up the accept function to handle the most common kinds of messages sent to a
server or to handle large messages. Less frequent messages, or those that did
not involve large amounts of data being transferred, could be handled by tasks.
Thus, an accept function could handle messages that might otherwise result in
copying data and allow for maximum concurrency of the senders’ tasks.

C H A P T E R 5

Messaging Service

88

About the Messaging Service

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Asynchronous Sends and Receives 5

Messages may be both sent and received asynchronously. The functions that
handle asynchronous sends and receives allow you to specify the notification
mechanism that, in the case of sending, indicates that a reply is available to the
sender and, in the case of receiving, indicates that the receiver has a message to
process and reply to.

Notification is handled the same way for either the sender or the receiver. You
specify one or more of the following methods in the function call to send or
receive the message:

■

a software interrupt

■

an event group and a set of flags

■

a kernel queue

For more information about these notification mechanisms, see “Asynchronous
Notifications,” beginning on page 95.

There are several other issues you should consider when using either
asynchronous sends or receives:

■

When sending a message asynchronously, you must ensure that the memory
locations that contain the message and those reserved for the reply remain
accessible. For this reason, you typically cannot use a stack to hold the
message or its reply. If you must use the stack, you can specify an option
that buffers the message in the kernel; however, if buffer space is not
available, the message will be sent as a synchronous message and the sender
will block until a reply is received.

■

You can cancel asynchronous sends and receives. If you cancel an
asynchronous send, the message is removed from the object or the port if it
is waiting. If it has already been received, a kernel message is sent that
indicates the message should be dropped. If you cancel an asynchronous
receive, no further action is necessary.

Replying to Messages 5

Each message that arrives at a port must be replied to. The ID of the message
specifies the target of the reply; the reply is sent to a message, not to an object.
The contents of the reply are used to set values in the function that sent the
message:

C H A P T E R 5

Messaging Service

About the Messaging Service

89

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

The reply buffer and buffer length specify the data that is destined for the
sender’s reply buffer. The messaging service determines how the transfer is
to be made, which depends, in part, on the options the sender specified.

■

The status of the transaction. The server and client software agree on the
meaning of the status; the messaging service simply passes the value back as
the return code for synchronous sends or as a value in a kernel notification
record for asynchronous sends.

C H A P T E R 5

Messaging Service

90

About the Messaging Service

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 6

Contents

91

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 Other Services

System Registry 93
Timing Services 94

Measuring Elapsed Time 94
Suspending Task Execution 94
Using Asynchronous Timers for Notification 95

Notification Services 95
Asynchronous Notifications 95
System Notification 96

Interspace Block Copy 97

This document was created with FrameMaker 4.0.4

C H A P T E R 6

92

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 6

System Registry

93

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Other Services 6

This chapter identifies other kernel and operating services. These services
include

■

the system registry

■

timing services

■

notification services

■

interspace block copy

System Registry 6

The

system registry

 is an operating system service that allows you to store
well-known names so that software can retrieve values based on them. A

well-known name

 is a name that software knows to use; of course, you must
explicitly identify the name to use to the software. The system registry is a data
structure that resides in global memory. Data in the registry is not persistent; it
is re-created whenever the system is restarted.

For example, a mail server could put its well-known name in the registry when
it starts to execute. A client that wants to use the server could look up the name
and obtain information allowing it to send messages to an object associated
with the mail server’s port. (For information about why you might need to use
the system registry for messaging, see the section “Setting Up the Messaging
Service” on page 83.)

The well-known name can be any C-style character string up to 255 bytes long.
Names in the registry must be unique. You need to avoid placing a name in the
registry that could conflict with another name that might be placed there later.
You should also remove the name when it is no longer valid, for example,
when the server associated with the name is closed down.

Once it the registry, your software can look up the name. The software must
specify the name exactly as it exists in the registry. An array of bytes is
returned. The bytes can contain any values, such as an object ID in the previous
example. You must establish the rules for interpreting these values.

This document was created with FrameMaker 4.0.4

C H A P T E R 6

Other Services

94

Timing Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Timing Services 6

The timing services enable the precise measurement of elapsed time. The
timing services allow tasks to suspend their execution until a given time or to
cause a specified subroutine to be called at a given time. The following sections
describe

■

how elapsed time is measured

■

how timing services can be used to control task execution

■

how timers can be used for notification

Measuring Elapsed Time 6

Measurement of elapsed time is done by obtaining the time before and after the
event to be timed. The difference of these two values indicates the elapsed time
of the event. In this context, time refers to the 64-bit absolute time count that is
maintained by the kernel. The count is set to zero by the kernel during its
initialization at system start-up time. Conversion routines are provided in a
shared library to convert from absolute time to 64-bit nanoseconds or 32-bit
durations.

Suspending Task Execution 6

A given task can suspend its execution until a specified time in the future. This
process is called

delaying

. When this time is reached, the task again becomes
eligible for execution. The task does not actually execute until it is scheduled
for execution according to its priority and the priorities of the other eligible
tasks. In any case, the task never executes prior to the specified time.

When a task uses a delay service, it can specify the time, in relative or absolute
terms, at which it should resume execution. Relative times indicate that
execution should resume, for example, 5 minutes from now. Absolute times
indicate that execution should resume, for example, at 3 o’clock. Absolute times
are a bit more cumbersome to use but allow periodic timing with no long-term
drift.

C H A P T E R 6

Other Services

Notification Services

95

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Using Asynchronous Timers for Notification 6

Asynchronous timing services cause notification at a given time. Asynchronous
timers always specify absolute expiration times, which allows you to use them
to do drift-free timing.

One of the asynchronous notification methods, described on page 95 can be
used. The notification can be delivered in any or all of three ways. First, one or
more event flags within a single event flag group can be set. Second, a queue
can be notified. Third, a specified subroutine can be run as a software interrupt.

Note

These are the same ways that notification for asynchronous
sends and receives of messages can be delivered. For more
information about asynchronous notification techniques,
see “Asynchronous Notifications,” beginning on page 95.

◆

Once set, an asynchronous timer remains in effect until it is either canceled or
expires. A timer can be canceled, using the ID of the timer returned by the
kernel when the timer was set, at any time prior to expiration. Expiration of the
timer causes the notification to be delivered.

Notification Services 6

Notification services include asynchronous notifications via kernel queues,
event groups, and software interrupts, and broadcast notifications (which by
their nature are also asynchronous) from the system. The following sections
discuss:

■

asynchronous notifications

■

system notifications

Asynchronous Notifications 6

Asynchronous notifications allow your software to be notified whenever an
event occurs. There are three ways in which software can be notified:

C H A P T E R 6

Other Services

96

Notification Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

You can specify a software interrupt to deliver to a task when an operation
completes execution. For information about software interrupts, see
“Software Interrupt Handlers,” beginning on page 29.

■

You can specify an event group and flags to be set on completion of an
operation. When the operation completes, waiting tasks can become
unblocked. For information about event groups, see “Event Groups,”
beginning on page 71.

■

You can specify a kernel queue. A notification is placed in the queue when
an operation occurs. For more information about kernel queues, see “Kernel
Queues,” beginning on page 73.

For example, the messaging service provides asynchronous sends and receipts
of messages. You can specify the notification mechanism when you send a
message or set up to receive one. For more information about messages and
asynchronous sends and receives, see “Asynchronous Sends and Receives,”
beginning on page 88.

System Notification 6

System notification is an operating system service that allows a piece of
software to broadcast a notification about a change in the state of the system. A

broadcast

 is a notification that is sent to a potentially wide audience. The
audience is software that can then respond to the notification. For example, a
device driver could use system notification to announce a change in the status
of the hardware for which it is responsible. Software using the device could
then take action based on the notification.

The software that initiates the broadcast is called a

producer

. Software that is
interested in the particular notification is called a

consumer

. Between a
producer and its consumers are distributors. A

distributor

 represents a service
to which producers send notifications. It is responsible for directing the
notification to consumers.

A producer determines which distributor handles the kind of event being
produced. A distributor can handle different kinds of events; however, any
specific kind of event can be handled by only one distributor. By default, there
is only one distributor, which handles all the different kinds of events.

When a producer sends a notification to a distributor, it specifies the subject of
the notification. Consumers subscribe to a service on the basis of the kind of
notification and the subject. The distributor for the service sends a notification

C H A P T E R 6

Other Services

Interspace Block Copy

97

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

to a consumer if the consumer has subscribed to it, in other words, if the kind
of notification and the subject of the notification match.

System notification is built on kernel queues. A distributor is responsible for
placing a notification in each consumer’s queue, and each consumer is
responsible for handling the notification. (For information about kernel queues,
see “Kernel Queues,” beginning on page 73.)

Producers can produce notifications either synchronously or asynchronously.
Producers of synchronous notifications are blocked until the notification is
received by the distributor. Consumers can also receive notifications either
synchronously or asynchronously. Synchronous consumers block until a
notification arrives.

System notification can only be used by software executing in the task-level
execution environment. (For information about execution environments, see
“Performance and Software Structure,” beginning on page 34.)

Interspace Block Copy 6

The kernel provides a function that copies data between address spaces. While
not strictly a interprocess communications service, you can use the interspace
block copy function when you need to update data in another address space.
For example, the messaging service uses interspace block copy when sending a
message by value. The function checks that the data to be copied is accessible
and returns a status value.

When you use the interspace block copy function, you must be aware of these
issues:

■

Because this function does not perform synchronization, you must
synchronize access between software executing in different address spaces
and potentially in different execution environments as well.

■

Specifying a “bad” but accessible (perhaps random) address for the
destination could have disastrous consequences. You should obtain the
destination address from software in the destination address space, thus
placing responsibility for the destination address with the receiver of the
data.

C H A P T E R 6

Other Services

98

Interspace Block Copy

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 7

Contents

99

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 System 7 Compatibility

Compatibility With System 7 Services 101
Threads 101
High-Level Events 101
PPC Toolbox Services 101
System 7 Hardware Interrupt Level and Deferred Tasks 102
System Extensions 102
Patching 102
Memory Management 103
A-Trap Support 103

This document was created with FrameMaker 4.0.4

C H A P T E R 7

100

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 7

Compatibility With System 7 Services

101

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

System 7 Compatibility 7

This chapter identifies System 7 services that you may be using that could
affect the way your software runs under Copland.

Compatibility With System 7 Services 7

The following sections briefly describe System 7 services that have implications
for kernel and operating system software.

Threads 7

The Thread Manager implements a cooperative threads capability in System 7
applications. You can continue to use threads, however, they only provide
threads of execution for the currently executing application and do not enter
into the kernel’s scheduling algorithm.

You should seriously consider replacing threads by tasks, especially if you
want to use services such as locking within an application. For example, if you
attempt to acquire a lock from within a thread and block, the entire application
(if it is a single primary task) blocks, not just the thread. Another thread cannot
execute to release the lock.

High-Level Events 7

Primary tasks can use high-level events; however, secondary tasks cannot send
high-level events other than Apple events. In most cases you should use Apple
events to communicate with other applications.

PPC Toolbox Services 7

Primary tasks can use the PPCBrowser mechanism and the PPC Toolbox
functions. Secondary tasks cannot use the PPCBrowser mechanism but can call
all other PPC Toolbox functions. However, before using the PPC Toolbox to
send data between tasks, you should consider whether any of the other
interprocess communication methods are more appropriate for your needs.

This document was created with FrameMaker 4.0.4

C H A P T E R 7

System 7 Compatibility

102

Compatibility With System 7 Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

System 7 Hardware Interrupt Level and Deferred Tasks 7

In System 7, I/O completion routines, VBLs, and Time Manager tasks run at
either hardware interrupt level or as deferred tasks. These are now run at user
mode task level instead. Therefore, most code on the system, including
completion routines, is run at task level, and less is run at interrupt level or
with interrupts disabled. This strategy provides the following benefits:

■

The kernel doesn’t allow application code to be run at interrupt level,
because the code could cause page faults. Interrupt time is minimized.
Because applications never disable interrupts, interrupt latency is minimized
and the time available for applications to run is increased.

Interrupt latency

is the time between when an interrupt is generated and the associated
interrupt handler is executed.

■

Page faults become invisible to application code, including completion
routines.

System Extensions 7

Copland does

not

 support the use of system extensions of type

'INIT'

. To
support replacements for software of this type, Copland provides enhanced
system services, many of which also eliminate the need for the patching that
your application might have done in System 7.

Patching 7

The Patch Manager ensures that the trap patching API defined with System
software 7 is supported in the Copland operating system. Support is limited to
local patching. Table 7-1 lists the names of the functions that continue to be
supported in Copland.

Table 7-1

Programmatic patching calls supported under Copland

Function

GetTrapAddress

SetTrapAddress

NGetTrapAddress

C H A P T E R 7

System 7 Compatibility

Compatibility With System 7 Services

103

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

These functions are fully described in the Trap Manager chapter of

Inside
Macintosh: Operating System Utilities

.

Memory Management 7

Copland applications use the Memory Manager when allocating and releasing
memory space in their heaps, which are still used by the Toolbox. The Copland
Memory Manager fully supports the System 7 Memory Manager APIs. The
calls work the same way as they do if System 7 virtual memory is turned off.

Due to the number of changes in the addressing model introduced by Copland,
software that circumvents the System 7 Memory Manager functions may
require revision to run compatibly with Copland’s virtual memory.

A-Trap Support 7

Because it is fragment-based, PowerPC native code compiled for System 7 is
supported by the Copland runtime environment. All Code Fragment
Manager–based calling conventions in Copland remain consistent with those of
System 7. The Copland runtime environment also supports System 7 software
based on the use of the A-trap table—developed for the original 68K runtime
environment—by running this software under emulation on the PowerPC
processor.

NSetTrapAddress

GetOSTrapAddress

SetOSTrapAddress

GetToolTrapAddress

SetToolTrapAddress

GetToolboxTrapAddress

SetToolboxTrapAddress

GetTrapVector

Table 7-1

Programmatic patching calls supported under Copland

Function

C H A P T E R 7

System 7 Compatibility

104

Compatibility With System 7 Services

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

105

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

Index

A

accept functions 28, 87
addition atomic instruction 67
address spaces 43

cooperative process address space 54
process 55

Apple events 18
application heaps 53
areas 45

reserving 48
asynchronous notifications 95
asynchronous receives 88
asynchronous sends 88
atomic instructions 66
A-trap support 103

B

backing objects 44
backing providers 44
bitwise atomic instructions 67
block copy 97
blocked 38
boundaries, protection 35
broadcast 96

C

child tasks 25, 27
code fragment 57
Code Fragment Manager 58
consumers 96
context switching 39
cooperative process address space 24, 54

cooperative processes 24
cooperative services 24
copy, interspace block 97

D

decrement atomic instruction 67
default pools 51
delaying 94
disabling hardware interrupts 75
distributors 96
dynamically linked library 58

E

elapsed time 94
event flags 71
event groups 71
events, high-level 101
exception handlers 33
execution environments 15, 36

F

file mapping 57
flags, event 71

G

global memory reservations 49
groups, event 71

This document was created with FrameMaker 4.0.4

I N D E X

106

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

guard range 47

H

hardware interrupt handlers 31
hardware interrupts, disabling 75
high-level events 101

I

increment atomic instruction 67
interprocess communication services 17
interrupt handlers 29

hardware 31
secondary 32
software 29

interrupts and synchronization 74
interspace block copy 97

K

kernel queues 73
kernel services 15

L

locks
read/write 69
simple 67

M

memory, shared 56
memory management services 15
memory organization 43

application heaps 53

areas 45
cooperative process address space 54
pools 50

memory reservations 48
messages 81

receiving 86
replying to 88
sending 85
types 86

messaging services 81
and accept functions 87

multiprocessing 77

N

names, well-known 93
notifications

asynchronous 95
using asynchronous timers 95
with kernel queues 73

notification services 95
asynchronous 95
system notification 96

O

objects 83
ompare and swap atomic instruction 67
operating system services 15
orphan tasks 25, 27

P

pageable memory 43
page faults 44
parent tasks 25, 27
patching 102
performance 34

and protection boundaries 35

I N D E X

107

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

speed and space tradeoffs 34
per-task data 53
polling 74
pools 50

default 51
system global 52
system pageable 51
system resident 51

ports 83
PPC Toolbox services 101
preemptive multitasking 38
primary tasks 24, 25
privileged tasks 25
processes 23
processes, cooperative 24
Process Manager 39
producers 96
protection boudaries 35

Q

queues, kernel 73

R

read/write locks 69
receivers 81
re-entrant services 26
reply messages 81
reservations, memory 48
resident memory 43
runtime services 15

S

scheduling 16, 38
secondary interrupt handlers 32, 75
secondary tasks 24, 25
senders 81

shared libraries 58
shared memory 56

code 57
data 56

simple locks 67
software interrupt handlers 29, 74
software structure 23

and execution environments 37
performance of 34
synchronization issues 76

sparse areas 46
supervisor mode tasks 25, 27
synchronization

and interrupts 74
and multiprocessing 77
and software structure 76
introduction to issues 63

synchronization services 16, 66
synchronous sends 82
System 7

compatibility 101
deferred tasks 102
extensions 102
memory management 103

System 7 hardware interrupt level 102
system global pool 52
System Object Model 59
system pageable pool 51
system registry 93
system resident pool 51

T

task local storage 53
tasks 24

child 27
delaying 94
orphan 27
parent 27
per-task data 53
primary 25
priority 38

I N D E X

108

Draft. Preliminary, Confidential.



 Apple Computer, Inc. 10/23/95

scheduling 38
secondary 25
supervisor mode 27
user mode 27

test and set atomic instruction 67
threads 101
time slice 39
timing services 94

U

user mode tasks 25, 27

V

virtual memory 44

W

well-known names 93

	Kernel and Operating System Services
	Contents
	Figures, Tables, and Listings
	Preface
	Book Organization
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	Numerical Formats

	Introduction to Kernel and Operating System Services
	Runtime Services and Memory Management
	Execution Environments
	Scheduling

	Synchronization Services
	Interprocess Communication Services
	Apple Events
	Messaging
	Kernel Queue Messages
	Shared Memory
	System Notification
	Interspace Block Copy

	Other Services

	Software Structure
	Software Structure
	About Processes
	About Tasks
	Primary and Secondary Tasks
	User Mode and Supervisor Mode Tasks
	Parent, Child, and Orphan Tasks

	About Accept Functions
	About Interrupt Handlers
	Software Interrupt Handlers
	Hardware Interrupt Handlers
	Secondary Interrupt Handlers

	About Exception Handlers
	Performance and Software Structure
	Speed Versus Space
	Crossing Protection Boundaries

	Execution Environments
	Scheduling Algorithm

	Memory Management
	Address Spaces
	Resident, Pageable, and Virtual Memory
	Areas
	Access Rights
	Memory Reservations

	Memory Data Structures
	Pools
	Application Heaps
	Per- Task Data

	Cooperative Process Address Space
	A Protected Address Space
	Shared Memory
	Shared Data
	Shared Code

	Synchronization Services
	Introduction to Synchronization Issues
	About Synchronization Services
	Synchronization Primitives and Locking
	Atomic Instructions
	Simple Locks
	Read/ Write Locks

	Event Groups
	Kernel Queues
	Interrupts and Synchronization
	Software Interrupt Synchronization
	Secondary Interrupt Synchronization
	Synchronization by Disabling Hardware Interrupts

	Synchronization and Software Structure
	Synchronization and Multiprocessing

	Messaging Service
	About the Messaging Service
	Setting Up the Messaging Service
	Sending Messages
	Receiving Messages
	Using Accept Functions
	Asynchronous Sends and Receives
	Replying to Messages

	Other Services
	System Registry
	Timing Services
	Measuring Elapsed Time
	Suspending Task Execution
	Using Asynchronous Timers for Notification

	Notification Services
	Asynchronous Notifications
	System Notification

	Interspace Block Copy

	System 7 Compatibility
	Compatibility With System 7 Services
	Threads
	High- Level Events
	PPC Toolbox Services
	System 7 Hardware Interrupt Level and Deferred Tasks
	System Extensions
	Patching
	Memory Management
	A- Trap Support

	Index

