
Preliminary

Developer Press
© Apple Computer, Inc. 1992–1995

Patch Manager

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

ð

Apple Computer, Inc.



 1992–1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleScript, AppleShare,
AppleTalk, GeoPort, HyperCard,
ImageWriter, LocalTalk, Macintosh,
MacTCP, OpenDoc, PowerBook,
Power Macintosh, PowerTalk,
QuickTime, TrueType, and
WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.

Balloon Help, Chicago, Finder,
Geneva, Mac, and QuickDraw are
trademarks of Apple Computer, Inc.
IBM is a registered trademark of
International Business Machines
Corporation.
MacPaint and MacWrite are
registered trademarks, and
Clarisworks is a trademark, of Claris
Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state..

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Contents 1-1

Draft. Confidential. „ Apple Computer, Inc. 10/24/95

Contents

Figure 1-0<8bat>u
Listing 1-0
Table 1-0

1 The Patch Manager

About Patching and the Patch Manager 1-4
Programmatic and Data-Driven Patching 1-5
Patch Scope 1-6
Data-Driven Patching 1-7

The Patch Description Fragment 1-8
Applying Several Patches to the Same Routine 1-9
The Structure of Patch Code 1-11
Order Requirements 1-12
Limitations on Patching 1-13

Compatibility 1-14
Using the Patch Manager 1-15

Creating a Patch 1-15
The Patch Header 1-16
The Patch Description Structure 1-17
Specifying Order Requirements 1-21

Creating a Local Patch 1-24
Creating a Global Patch 1-24
Creating a Patchable Shared Library 1-24
Obtaining Information About Patches 1-25

Patch Manager Reference 1-27
Constants and Data Types 1-27

Option Bits Mask Enumeration 1-27
Wildcard Enumeration 1-28
Ordered Item Enumeration 1-29
Patch Header Flags Enumeration 1-30
Patch Header Tag Enumeration 1-31
Patch Header Structure 1-31

C H A P T E R 1

1-2 Contents

Draft. Confidential. „ Apple Computer, Inc. 10/24/95

Patch Description Structure 1-32
Ordered Item Name Structure 1-33
Order Requirements Structure 1-34
Patch Information Structure 1-34
Patch Chain Information Structure 1-35

Patch Manager Functions 1-36
Enabling and Disabling Patches 1-36

EnablePatch 1-36
DisablePatch 1-37

Obtaining Information About Patch Chains 1-37
GetPatchChainsInKernelProcess 1-38
GetPatchChainInformation 1-39

Determining Whether a Routine is a Patch 1-39
GetPatchChainFromProcPtr 1-40
GetPatchFromProcPtr 1-40

Obtaining Information About a Patch 1-41
GetPatchesInPatchChain 1-41
GetPatchInformation 1-42

C H A P T E R 1

1-3

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

The Patch Manager 1

This chapter describes the Patch Manager and explains data-driven patching, a
new patching model that you should use if you are writing patching code that
is meant to run in Copland or in any subsequent Mac OS release.

A

patch

 is a piece of code that intercepts the transaction between a client and a
service. By using a patch you can monitor the use of this service or you can
modify or replace the service. The Patch Manager is a shared library containing
routines that you can use to obtain information about existing patches and to
enable and disable patches. You should read this chapter if you are writing an
application that must monitor, modify, or replace a routine residing in another
fragment and if you cannot find any means to do so other than by patching that
routine.

The Patch Manager is a new component of the Macintosh OS. It is intended to
replace the routines used to install patches documented in the Trap Manager
chapter of

Inside Macintosh: Operating System Utilities

. The programmatic
patching model, referred to throughout this chapter, is based on the use of
these routines. The Patch Manager is based on a new data-driven patching
model that offers many advantages over the programmatic patching model
used in system 7. Creating patches using the new model allows you to

■

use a single patching model for head, tail, and surround patching

■

patch any imported routine, not just operating system and toolbox routines

■

create patches that have local as well as global effect

■

enable and disable existing patches

■

control the order in which patches execute

■

obtain information about any currently installed patches

Copland also supports the patching API documented in the Trap Manager
chapter of

InsideMacintosh:Operating System Utilities

. Note however, that this
API will not be supported in future versions of the Mac OS. Thus, if you are
certain that you need to patch, you might want to modify your patching code
using the model described in this chapter to ensure compatibility with future
operating system releases.

Although this chapter describes patching in some depth, you should rarely, if
ever, need to use patches in an application. Historically, Apple has used
patches to fix problems and augment routines in ROM code. The packaging of
system services as a set of updatable shared libraries has eliminated this need
for patching. Application developers have also used patching to get

This document was created with FrameMaker 4.0.4

C H A P T E R 1

The Patch Manager

1-4

About Patching and the Patch Manager

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

information about system activity, to schedule services, or to customize the
behavior of the system. Copland includes widely expanded notification
services, new scheduling services, and many additional routines that you can
use to customize the behavior of the system. Inasmuch as patching a routine is
less economical and less dependable than using these newer services, you
should seriously consider using the new services offered by Copland instead of
patching system routines. However, because it is impossible to anticipate every
need, the patching mechanism described in this chapter has been provided for
your use.

About Patching and the Patch Manager 1

Patching a routine allows you to assume control every time the routine is called
from a particular kernel process. If you assume control in order to do some
preparatory processing before the routine executes, the patch is called a

head
patch.

 If you want to do additional processing after the routine executes, the
patch is called a

tail patch

. If you want to do both, the patch is called a

surround patch.

 It is also possible, though it is strongly discouraged, to write a

replacement patch,

 which is executed instead of the routine being called.

When several applications patch the same routine, the result is a daisy chain of
patches, or

patch chain,

 with each patch in the chain executing in turn before
the patched routine is called. Using the data-driven patching model defined for
the Patch Manager, you can create every type of patch, specify when you want
your patch to execute (relative to other patches in the patch chain), and have
these patches automatically installed at the appropriate time —when the
system starts up or when you launch the application, depending on the patch
scope. Then, you can use Patch Manager functions

■

to obtain information about all currently installed patches

■

to determine which routines are being patched

■

to enable or to disable patches

The following sections summarize the differences between programmatic and
data-driven patching models, explains the special problems posed by patches
with global effect, and examines the data-driven patching model in greater
detail.

C H A P T E R 1

The Patch Manager

About Patching and the Patch Manager

1-5

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

Programmatic and Data-Driven Patching 1

The patching model used in Copland differs markedly from the model used in
system 7. This section describes these differences and examines the patching
model used in Copland in greater detail.

The

programmatic patching

 model defined for system 7 allows you to patch a
system routine by replacing its address in the trap dispatch table with the
address of your patch routine. If you need to call the patched routine from your
patch, you are required to save the original address and then, in most
instances, to write assembly language code that sets up the stack properly and
then jumps to the saved address. Programmatic patching is in many ways
limiting and costly to the programmer: It is limited to patching system
software, it is difficult to implement, and it provides no control over the order
in which patches execute. In addition, using this method it is not possible to
examine the patch chain, which makes it next to impossible to identify and
resolve patching conflicts.

The

data-driven patching

 model defined for Copland and future Mac OS
releases allows you to patch any routine by creating a data structure, called a

patch description structure,

 for each patch you want the operating system to
install. The patch description structure specifies a reference for the patch, a
reference to the patched routine, the name of the patch, and other information
used to control the execution of the patch. You store these data structures in a
special fragment that is associated with your application fragment. When you
launch your application, the Code Fragment Manager, Process Manager, and
Patch Manager work together to load the patch code, prepare it for execution,
and execute it at an appropriate time. You may store the patch routines in the
fragment containing the patch description structures, but you are not required
to do so.

Note

Because access to system routines in System 7 and in the
first release of the PowerPC operating system is enabled
through the use of a trap table, dispatched traps are
extremely difficult to patch. Beginning with Copland,
accessing system routines is the same as accessing any
exported routine and the problem of dispatched traps is
completely eliminated.

◆

The main advantage of the data-driven patching model is that it gives you
more control over the execution of your patches at the same time that it does
more of the programming work: Once you write the patch routine and create

C H A P T E R 1

The Patch Manager

1-6

About Patching and the Patch Manager

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

the patch descriptions, you have no additional programming to do. The Code
Fragment Manager and the Patch Manager assume all responsibility for
installing your patches in the patch chain in the order that you specify, for
advising you about any conflicting patches, and for maintaining information
about the patches in a chain. In addition, the Patch Manager provides routines
that you can use to obtain information about all installed patches for all
processes on a machine and to enable or disable any patch.

Patch Scope 1

Using the programmatic patching model under System 7, patches can have
local or global scope. If you want to assume control only when a routine is
called by your application, you must create a patch that has local effect. This
kind of patch is called a

local patch.

 If you want to assume control when the
routine is called by any kernel process, you must create a patch that has global
effect. This kind of patch is called a

global patch.

Under System 7, the distinction between local and global patches lies in
whether the patches are installed by INIT-type code or whether they are
installed by an application. Patches installed by INIT-type code have global
effect; patches installed by an application have local effect. A programmatic
patch that has global scope is loaded in the system heap: the same instance of
the patch and of any data initialized by the patch are visible and accessible to
all processes that call the patched routine. The Copland runtime architecture
cannot support INIT-type code and does not support global programmatic
patches.

Under Copland, all patches are local patches that are installed within a
particular kernel process. You can achieve global-effect patching by having the
operating system install a local patch in all current processes. Any processes
that are launched before you install the global-effect patch are not affected by
the patch.

To install a patch that has global effect in Copland, you must create a shared
library fragment that uses per-process instantiation and a special patch
fragment that contains the patch description structure.The patch code can
reside in either fragment. The operating system instantiates such a library for
each kernel process, and the iteration of the local patch across all current
processes creates a patch with global effect. Each process contains its own copy
of the patch and of any data initialized by that patch.

C H A P T E R 1

The Patch Manager

About Patching and the Patch Manager

1-7

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

Because global-effect patches in the data-driven patching model are actually
iterated local patches, if you create a patch that needs to share data or
communicate with other instances of the patch, you must explicitly use
standard Copland mechanisms for sharing and coordination. For more
information, see NameOfBookToBeProvided, which describes these services.

Data-Driven Patching 1

This section describes the data-driven patching model in greater detail. It
describes the data structure used to define a patch, explains the structure of the
special fragment containing these structures, and discusses the ordering and
execution of patches when multiple patches are applied to a single routine.

You use a data structure like the one shown in Figure 1-1 to describe each patch
that you want to install.

Figure 1-1

The patch description structure

You initialize the patch description structure to contain the address of the patch
and of the patched routine, the name of the patch, and any order requirements
and options you specify for the patch.You use the order requirements field to
describe the order in which you would like the patch to execute relative to

Patch reference

Reference to patched routine

Patch name

Order requirements

Options

Installation result

Patch ID

Reference to Patch Manager

call-through routine

ID of conflicting patch if any

Patch Manager

returns this information

C H A P T E R 1

The Patch Manager

1-8

About Patching and the Patch Manager

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

other patches. You use the options field to specify whether the patch is initially
enabled or disabled and whether the patch must be successfully installed in
order for the application to be launched.

In addition to its ID, every patch also has a name, that you assign to it when
you create the patch. A patch name is composed of two parts: its signature and
its type expressed as four-character literals. For example,

'WORD' 'SpCh'

.The
signature must be the same as the registered creator code for the application or
shared library installing the patch. The type part of the name is a four-character
literal of your choice. If you are using programmatic patches, the Patch
Manager will do the name assignment. If you are creating a data-driven patch
and you do not assign it a name, the system will be unable to install the patch.

By using wildcard characters in lieu of either part of the patch name when
specifying ordering requirements, you can cause your patch to be ordered
relative to sets of patches. For example, you can ask that your patch execute
before all patches installed by a given application, or you can ask that your
patch execute after all patches of a specific type.

When your application or shared library is loaded, the Code Fragment
Manager also loads and prepares the special fragment containing the patch
descriptions. The Code Fragment Manager performs any required relocations
and fills in actual addresses for the patch address and the patched routine
address. The Patch Manager examines the ordering requirements you specified
for each patch and attempts to place the patch in a patch chain according to
those requirements. If it is able to do so, it returns a unique

patch ID

 to identify
the patch. If it is not able to do so, it returns an error code in the installation
result field of the patch description structure and it also returns the ID of the
patch that caused the installation of your patch to fail.

The Patch Description Fragment 1

In order to install a patch, you must create a special patch description fragment
and store this fragment in the same file as that of the owning fragment. The
patch description fragment should have the same name and usage code as that
of the owning fragment, but it must have the update level 255. If any of these
conditions are not met, the operating system will be unable to recognize and to
install your patch.

The patch description fragment includes a patch header and one or more patch
description structures. Figure 1-2 shows the structure of a patch description
fragment that contains two patch description structures.

C H A P T E R 1

The Patch Manager

About Patching and the Patch Manager

1-9

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

Figure 1-2

Patch description fragment.

The patch header specifies the number of patch description structures in the
fragment and points to the first one. The Code Fragment Manager and Patch
Manager use the information provided by the patch header to locate all patch
description structures in the fragment.The order in which patch description
structures appear in the patch fragment affects the order in which the patches
are installed but does not affect the order in which they execute. The order of
execution is affected only by the values you specify for a patch’s ordering
requirements.

Applying Several Patches to the Same Routine 1

If several fragments patch the same routine, each patch is successively applied
to the routine. Figure 1-3 shows two patches being applied to the routine

InitGraf

.

Flags

Number of patch descriptions

Pointer to first patch

description structure

Patch description structure A

Patch description structure B

Patch description

fragment

Patch header

C H A P T E R 1

The Patch Manager

1-10

About Patching and the Patch Manager

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

Figure 1-3

A patch chain

A

patch chain

 is an ordered list of patches, all on the same instance of the same
entry point. Figure 1-3 shows two patch chains for

InitGraf

. A patch chain
includes a

root,

 which is the routine being patched, and one or more patches. In
Figure 1-3, the root of each patch chain is the routine

InitGraf

. The smallest
patch chain contains one patch and the patch root.

Patch chains can contain local and global patches. The patch chains shown in
Figure 1-3 include a global patch (

'MyAp' 'CPRS'

) and a local patch.

■

The Code Fragment Manager instantiates a global patch for each kernel
process that references the patched routine. This means that any data
associated with the patch is instantiated in each kernel process. In addition,
information about the patch, with the exception of the patch name, is also
unique to the current kernel process. Note that the ID of the global patch
and the ID of the patch chain to which it belongs is different, depending on
the current kernel process.

■

The local patches,

'WApp' 'spel'

and

 'DApp' 'graf'

are also identified by
unique patch IDs, even though they have different names.

Each patch chain is identified by a

patch chain ID.

 This identifier is unique for
each boot of the operating system. If two or more patch chains have the same
root, the patch chain that executes is the patch chain that is current for a given
kernel process. For example, when AppA is executing, patches

'MyAp' 'CPRS'

'MyAp'

'CPRS'

'WApp'

'spel'

InitGraf

Patch ID = 100

patch chain ID = 231

When AppA is current

'MyAp'

'CPRS'

'DApp'

'graf'

InitGraf

Patch ID = 201

patch chain ID = 785

When AppB is current

C H A P T E R 1

The Patch Manager

About Patching and the Patch Manager

1-11

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

and

'WApp' 'spel'

 are executed whenever the routine

InitGraf

 is called. When
AppB is executing, patches

'MyAp' 'CPRS'

 and

'DApp' 'graf'

 are executed
whenever the routine

InitGraf

 is called.

The order in which patches execute is determined by the ordering
requirements you specify for each patch in the patch description structure.
Otherwise, no ordering hierarchy exists. For example, global patches do not
take precedence over local patches, and so on. Once the system has installed a
patch in a patch chain, you can cause a patch not to execute by disabling it, but
you cannot change its ordering requirements.

The Patch Manager provides routines that you can use to enable or disable a
patch in a patch chain. It is important to understand that enabling a patch does
not cause it to be added to the chain and that disabling a patch does not cause
it to be removed from a chain. Enabling or disabling a patch simply determines
whether the patch is executed when the patched routine is called.

The Structure of Patch Code 1

The structure of patch code used with data-driven patching is that of the
surround patch. This type of patch

■

does some preprocessing

■

calls the patched routine

■

does some post processing

Using the programmatic patching model, the call to the patched routine was
the most difficult to implement. It involved saving the original address of the
patched routine and then, in most cases, writing assembly-language code by
means of which the stack was properly set up, and then a jump or branch was
effected to the saved routine address.

The data-driven patching model replaces the troublesome second step with a
simple standard runtime call to the Patch Manager that you write in a
high-level language. This call tells the Patch Manager to call the next link in the
patch chain and supplies the information it needs (return result type, routine
parameters) to make the call. If the next link in the chain is a patch, the Patch
Manager passes control to that patch. If the next link is the chain root, the
patched routine actually executes.

The structure of data-driven patching code is shown in Figure 1-4.

C H A P T E R 1

The Patch Manager

1-12

About Patching and the Patch Manager

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

Figure 1-4

The structure of a patch

As mentioned before, the patch code does not need to include any assembly
code. It need only call the routine that handles the chaining. This routine
ensures that the runtime environment is set up properly and that control passes
smoothly to the next link in the chain. The Patch Manager returns the address
of the routine that handles the chaining in the patch description structure.

A

replacement patch

 is a patch that does not include a call to the chaining
routine. To implement such a patch, you simply define a patch description
structure for it, but you never call through the chaining routine. When you
launch the application, the Patch Manager automatically installs the patch by
placing it in the patch chain for the patched routine. It is important to
understand that because a replacement patch does not call through the
chaining routine, no patch following the replacement patch in the chain
executes, including the routine being patched. For example, if

'MyAp' 'CPRS'

 in
Figure 1-3, is a replacement patch, neither

'WApp' 'spel'

 nor

'DApp' 'graf',

nor

 InitGraf

are ever executed.

It is possible to specify order requirements that cause the replacement patch to
be placed last in the chain (right before the patched routine). In this way all
other patches in the patch chain execute before the replacement patch.
However, it is not recommended that you do this, because setting up ordering
requirements that are too strict is likely to result in your not being able to
install your patch.

Order Requirements 1

You use the order requirements field of the patch description structure to
specify when your patch should execute. The Patch Manager allows you to
specify this order relative only to other patches, not to the patched routine. For
example, you can specify that your patch execute

■

before one patch and after another patch

Do any preprocessing here.

Call the next link in the chain

by calling runtime routine that

handles chaining.

Do any postprocessing here

Omit for tail patch

Omit for replacement patch

Omit for head patch

C H A P T E R 1

The Patch Manager

About Patching and the Patch Manager

1-13

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

■ immediately before one patch and after another patch

■ before one patch and immediately after another patch

■ before a set of patches or after a set of patches

It is not a good idea to impose order requirements unless they are crucial to the
performance of your code. If the Patch Manager cannot resolve conflicting
order requirements, it cannot install your patch, and it returns this information
to you in the patch description structure.

IMPORTANT

You cannot cause your patch to be installed by disabling
the patch whose order requirements conflicts with yours.
The Patch Manager must honor the ordering requirements
of a patch even when that patch is disabled. Thus, the only
way to eliminate ordering conflicts is to change your own
ordering requirements. ▲

Limitations on Patching 1

If you use the data-driven patching model, you must observe the following
restrictions:

■ Patch code must be native.

■ A library that owns a patch description fragment must use per-process
instantiation.

■ You can use only the generic routine that calls the next link in a patch chain
to call patch code. That is, you can only call patch code as part of a patch
chain.

■ You cannot use the same patch code to patch two different routines.

■ A fragment can have only one patch fragment associated with it.

■ You must place the patch fragment and owning fragment in the same file.

C H A P T E R 1

The Patch Manager

1-14 About Patching and the Patch Manager

Draft. Confidential.  Apple Computer, Inc. 10/19/95

Compatibility 1

The Patch Manager ensures that the trap patching API defined with System
software 7 is supported in Copland. Support is limited to local patching. Table
1-1 lists the names of the functions that continue to be supported in Copland.

These functions are fully described in the Trap Manager chapter of Inside
Macintosh: Operating System Utilities.

If you use these functions to install a programmatic patch, you can still use all
the functions described in this chapter to obtain information patches (including
the programmatic patch) and to enable or disable a patch.

Table 1-1 Programmatic patching calls supported under Copland

Function

GetTrapAddress

SetTrapAddress

NGetTrapAddress

NSetTrapAddress

GetOSTrapAddress

SetOSTrapAddress

GetToolTrapAddress

SetToolTrapAddress

GetToolboxTrapAddress

SetToolboxTrapAddress

GetTrapVector

C H A P T E R 1

The Patch Manager

Using the Patch Manager 1-15
Draft. Confidential.  Apple Computer, Inc. 10/19/95

Using the Patch Manager 1

The Patch Manager provides data structures that you use to describe your
patch and the order in which you would like it to execute. The Patch Manager
also provides functions that you can use to

■ obtain a list of all the patches in a patch chain

■ obtain information about any patch in a chain

■ obtain a list of all the patch chains associated with a process

■ determine the process to which a patch chain belongs

■ determine the root of a patch chain

■ determine the patch chain to which a routine belongs

■ enable or disable any patch in a chain

This section explains how you use Patch Manager data structures and
functions to create a patch, to control its execution, and to obtain information
about currently installed patches.

Creating a Patch 1

This section explains the steps required to create a patch. Creating a patch
involves

■ Creating the source for the patch description fragment

The source includes initializing a patch description header and one patch
description for each patch.
The patch description header specifies the number of patch descriptions you
are going to include in the patch description file and provides a pointer to
the array referencing the patch description structures. The patch description
header must be the main symbol of the patch description fragment. The
section “The Patch Header” on page 1-16 explains how you create a patch
description header.
The patch description specifies the patch, the patched routine, the patch
name, and other options that govern the installation and execution of the

C H A P T E R 1

The Patch Manager

1-16 Using the Patch Manager

Draft. Confidential.  Apple Computer, Inc. 10/19/95

patch. The section “The Patch Description Structure” on page 1-17 explains
how you initialize a patch description.

■ Compiling and linking the source files containing the patch description
header and the patch descriptions into a patch description fragment.

This is a file having the same name and usage code as the fragment owning
the patch description fragment, but an update level of 255.

■ Write the patch routine and place it either in the patch description fragment
or in any fragment that you are going to link with the patch description
fragment.

The following two sections explain how you write a patch header and a patch
description.

The Patch Header 1

Listing 1-1 shows the PatchHeader data type. The Patch Manager uses the first
two fields for version control. You use the count field to specify the maximum
number of patch description structures in the fragment. This number can
exceed the actual number of patch descriptions; the Patch Manager strips
trailing null pointers. You use the patches field to reference the patch
descriptions.

Listing 1-1 The PatchHeader data type

struct PatchHeader {
OSType tag;
UInt32 version;
PatchHeaderOptions flags;
ItemCount count;
PatchDescriptionPtr * patches;

};
typedef struct PatchHeader PatchHeader;

Listing 1-2 shows a sample patch header. It specifies the size of the array
referencing the patch description structures and supplies a pointer to the first
patch description structure.

C H A P T E R 1

The Patch Manager

Using the Patch Manager 1-17
Draft. Confidential.  Apple Computer, Inc. 10/19/95

Listing 1-2 Sample patch header

PatchDescription * gMyPatch[kMaxDesCount] ={gMyPatchX} /* Listing 1-4 */

PatchHeader gPatchData = {
kPatchHeaderTag,
kPatchHeaderVersion,
kNilOptions,
kMaxDescCount,
gPatchDescription
};

The system uses the flags field of the patch header to let you know whether it
has failed to install any of your required or optional patches. If you are
installing many patches, knowing that all your patches have been successfully
installed can save you the trouble of examining each patch description
structure to obtain the same information.

The Patch Description Structure 1

Listing 1-3 shows the PatchHeader data type. You use the first five fields to
describe your patch: you provide a reference to the patched routine, a reference
to the patch, a name for the patch, a constant value indicating the order in
which you want the patch to execute relative to other patches, and a constant
value indicating whether the patch should be initially enabled or disabled. The
section “Order Requirements,” beginning on page 1-12 explains how you
specify a value for the field thisPatchOrdering.

The Patch Manager uses the last four fields to return information to you about
the installation of the patch. It tells you whether the installation succeeded, it
returns the ID of the patch, it provides a reference to the Patch Manager routine
that handles the chaining, and, if your patch could not be installed because its
ordering requirements conflicted with those of another patch, it returns the ID
of the conflicting patch.

Listing 1-3 The PatchDescription data type

struct PatchDescription {
PatchableProcPtr originalRoutine;
PatchableProcPtr patchRoutine;

C H A P T E R 1

The Patch Manager

1-18 Using the Patch Manager

Draft. Confidential.  Apple Computer, Inc. 10/19/95

PatchName thisPatchName;
PatchOrderRequirements thisPatchOrdering;
PatchOptions installOptions;
OSStatus installResult;
PatchID thisPatchID;
PatchableProcPtr thisCallThroughProc;
PatchID rejectingPatchID;

};
typedef struct PatchDescription PatchDescription;

Listing 1-4 shows a sample patch description. It specifies the name of the patch
to be 'wild',demo'; it specifies that the patch can be placed anywhere in the
patch chain and the it should be initially enabled.

Listing 1-4 Sample patch description

PatchDescription gMyPatchX = {
&SysBeep,
&MySysBeepPatch,
{ 'wild',

'demo'},
{ kNilOptions,
{ kDoNotMatchAnyOrderedItemService,

kDoNotMatchAnyOrderedItemSignature},
{ kDoNotMatchAnyOrderedItemService,

kDoNotMatchAnyOrderedItemSignature}},
kPatchEnabledBit,
paramErr,
kInvalidID,
NULL,
kInvalidID

};

The initial values of the four output fields are not critical; however, using the
ones shown in Listing 1-4 can help ensure that errors are detected.

Listing 1-5 shows a sample surround patch for the routine SysBeep. When the
patch runs, it causes the menu bar to flash right before and right after the
system beep sounds.

C H A P T E R 1

The Patch Manager

Using the Patch Manager 1-19
Draft. Confidential.  Apple Computer, Inc. 10/19/95

Listing 1-5 Sample patch code

void MySysBeepPatch(SInt16 duration)
{
// Preprocess

FlashMenuBar(0);
(void) DelayFor(kDurationMillisecond * 116);
FlashMenuBar(0);

// This is where the call to the chaining routine goes

// Postprocess
FlashMenuBar(0);
(void) DelayFor(kDurationMillisecond * 116);
FlashMenuBar(0);

}

Listing 1-6 shows a complete patch description fragment.

Listing 1-6 Patch Description Fragment

#include <Patches.h>
#include <CodeFragments.h>

#define AnyOrderedItemName {kMatchAnyOrderedItemService,
kMatchAnyOrderedItemSignature}

#define NoOrderedItemName {kDoNotMatchAnyOrderedItemService,
kDoNotMatchAnyOrderedItemSignature}

#define DoNotCareItemOrder {kNilOptions, AnyOrderedItemName,

AnyOrderedItemName}

typedef OSStatus (*GetIndexedSymbolPtr) (CFragConnectionID connID,
 SInt32symIndex,
 Str255symName,
 LogicalAddress * symAddr,
 CFragSymbolClass *symClass);

C H A P T E R 1

The Patch Manager

1-20 Using the Patch Manager

Draft. Confidential.  Apple Computer, Inc. 10/19/95

OSStatus MyGetIndexedSymbol (CFragConnectionID connID,
 SInt32symIndex,
 Str255symName,
 LogicalAddress * symAddr,
 CFragSymbolClass *symClass);

enum {
 kMyPatchCount = 3
};

#define gMyGetIndexedSymbolPatchName {'PTst', 'GSym'}

PatchDescription gMyGetIndexedSymbolPatch= InitialPatchDescription

(CFragGetIndexedSymbol,
 MyGetIndexedSymbol,
 gMyGetIndexedSymbolPatchName,
 DoNotCareItemOrder,
 (kPatchEnabledMask | kPatchOptionalMask));

PatchDescription * gMyPatchDescriptions [kMyPatchCount] =

{ NULL, &gMyGetIndexedSymbolPatch };

PatchHeadergMyPatches = { kPatchHeaderTag, kPatchHeaderVersion,

kNilOptions, kMyPatchCount, gMyPatchDescriptions };

OSStatus MyGetIndexedSymbol (CFragConnectionID connID,
 SInt32symIndex,
 Str255symName,
 LogicalAddress * symAddr,
 CFragSymbolClass *symClass)
{
 OSStatuserr;
 GetIndexedSymbolPtr NextGetIndexedSymbol=

gMyGetIndexedSymbolPatch.thisCallThroughProc;

 DebugStr ((StringPtr) "\pIn MyGetIndexedSymbol");

 err = (*NextGetIndexedSymbol) (connID, symIndex, symName, symAddr,

symClass);

C H A P T E R 1

The Patch Manager

Using the Patch Manager 1-21
Draft. Confidential.  Apple Computer, Inc. 10/19/95

 return err;
}

[Discussion of Listing 1-6: To be done.]

Specifying Order Requirements 1

The field thisPatchOrdering in the patch description structure is a patch order
requirements structure that you use to specify the order in which you want
your patch to execute. It is easiest to explain how you use this structure by
referring to a sample patch chain like the one shown in Figure 1-5.

Figure 1-5 Sample patch chain

The figure shows a set of five patches, P1 through P5, being applied to a
routine. The structure you use to control the placement of your patch in that
chain is shown in Figure 1-6.

P1
Routine

XP2 P3 P4 P5

Order of execution

C H A P T E R 1

The Patch Manager

1-22 Using the Patch Manager

Draft. Confidential.  Apple Computer, Inc. 10/19/95

Figure 1-6 Patch order requirements structure

The structure contains three fields. You use the field itemBefore to specify the
name of the patch after which you want your patch to execute; for example, if
your patch is P3 and you want it to execute after patch P1, you can specify the
patch name of P1 in the itemBefore field when you create the patch. You use the
field itemAfter to specify the name of the patch before which you want your
patch to execute. For example, if your patch is P3 and you want it to execute
before P4, you can specify the patch name of P4 in the itemAfter field when
you create the patch.

You use the options field of the order requirements structure to make the
selection specified with either of the other two fields more precise:

■ If you want your patch to execute immediately after the patch given in the
itemBefore field, specify the constant kOrderedItemIsRightBefore in the
options field.

■ If you want your patch to execute immediately before the patch given in the
itemAfter field, specify the constant kOrderedItemIsRightAfter in the
options field.

Note that this scheme allows you to order your patch immediately after or
immediately before another patch, but not both. It is best, however, unless
the execution of your patch absolutely requires it, that you set the options
field to NIL. This results in a looser ordering requirement and, consequently,
in fewer ordering conflicts when the system installs your patch or other
patches in the same patch chain.

options

itemBefore

itemAfter

kOrderedItemIsRightBefore/kOrderedItemIsRightAfter/NIL

service

signature

service

signature

C H A P T E R 1

The Patch Manager

Using the Patch Manager 1-23
Draft. Confidential.  Apple Computer, Inc. 10/19/95

You can also use the constant names listed in Table 1-2 in the itemBefore or
itemAfter fields to specify your location relative to a set of patches.

The following examples illustrate the use of the constant names shown in
Table 1-2.

■ To have your patch execute right before the patched routine, specify
kMatchAnyOrderedItemService and kMatchAnyOrderedItemSignature in the
itemBefore field. Specify kDoNotMatchAnyORderedItemService and
kDoNotMatchAnyOrderedItemSignature for the itemAfter field.

■ To have your patch execute first, specify kMatchAnyOrderedItemService and
kMatchAnyOrderedItemSignature in the itemAfter field. Specify
kDoNotMatchAnyORderedItemService and kDoNotMatchAnyOrderedItemSignature
for the itemBefore field.

■ To have your patch execute before a patch installed by application
OtherApp, specify the application’s creator code in the signature field of the
itemAfter field, and set the service field to
kDoNotMatchAnyORderedItemService.

Table 1-2 Wildcard specifiers

Constant name Meaning

kMatchAnyOrderedItemService Place my patch before/after every
patch name whose signature field
matches my signature field.

kMatchAnyOrderedItemSignature Place my patch before/after every
patch name whose service field
matches that specified in my service
field.

kDoNotMatchAnyOrderedItemService I don’t care where you place my
patch.

kDoNotMatchAnyOrderedItemSignature I don’t care where you place my
patch.

C H A P T E R 1

The Patch Manager

1-24 Using the Patch Manager

Draft. Confidential.  Apple Computer, Inc. 10/19/95

▲ W A R N I N G

The more restrictive you make the order requirements for
your patch, the more likely they are to conflict with the
order requirements of other patches. As a result, it will not
be possible to install your patch or other conflicting
patches. ▲

Creating a Local Patch 1

The steps required to create a local patch are listed in “Creating a Patch,”
beginning on page 1-15. Once you have created the patch description fragment,
you must assign it the same name and creator as that of the owning fragment
but an update level of 255. The owning fragment can be an application, a
shared library, or any other kind of fragment except an update library.

Creating a Global Patch 1

The steps required to create a global patch are exactly the same as those for
creating a local patch except that the owning fragment must be a shared library
using per-process instantiation.

[To be done: Explain how the patch gets recognized and loaded.]

The patch defined by the patch description fragment is installed for all
processes that are launched after the shared library is loaded.

If the patch code resides in the patch description fragment, the shared library
fragment can be empty.

Creating a Patchable Shared Library 1

If you want to create a patchable shared library, it is important to make sure
that your development system generates all internal calls to your exported
routines as indirect calls. Some compilers and linkers do not call through
transition vectors for routines in the same compilation unit. The data-driven
patching mechanism depends upon the fact that patchable routines are
accessed through transition vectors. If your compiler and linker do not call
through a transition vector for an internally referenced routine and such a
routine is patched, not all calls to the routine will see the patch.

C H A P T E R 1

The Patch Manager

Using the Patch Manager 1-25
Draft. Confidential.  Apple Computer, Inc. 10/19/95

Obtaining Information About Patches 1

The Patch Manager supports a variety of functions that return information
about installed patches. This section offers a brief discussion of how these
functions relate to one another and provides a more detailed discussion of the
function used to return information about a patch.

Table 1-3 shows the input and output parameters of the Patch Manager
functions that return information.

As you can see, given any single piece of information, you can use these
routines to determine how that piece fits into the current patching scheme for
all installed patches. For example, for any given process, you can determine the
IDs of the patch chains associated with it and consequently the IDs of all the
patches in the patch chains. For any given routine, you can determine whether
it is included in a patch chain and, if so, the process to which the patch chain
belongs.

You use the GetPatchInformation function to obtain information about a single
patch; the function returns this information in a patch information structure.
This includes the ID of the patch chain to which the patch belongs, the address
of the patch, the name of the patch, its order requirements, and the options that
are currently set for the patch. Current option settings are returned in the
patchOptions field; these determine whether

Table 1-3 Patch Manager functions that return information

Function Input Output

GetPatchChainsInKernelProcess Process ID Patch chain IDs

GetPatchChainInformation Patch chain ID Process ID
Chain root

GetPatchChainFromProcPtr Routine Patch chain ID

GetPatchFromProcPtr Routine Patch ID

GetPatchesInPatchChain Patch chain ID List of patch IDs

GetPatchInformation Patch ID Patch chain ID
Patch address
Options
Patch name

C H A P T E R 1

The Patch Manager

1-26 Using the Patch Manager

Draft. Confidential.  Apple Computer, Inc. 10/19/95

■ the patch is optional or required

An optional patch is a patch that does not have to be installed in order for
the application that references the patched routine to be launched. A
required patch is a patch that has to be installed in order for the application
to be launched.

■ the patch is a data-driven patch or a programmatic patch

In Copland, some applications might call routines that are patched
programmatically. Such patches are included in the patch chain and you can
use Patch Manager functions to obtain information about these patches, to
enable them, and to disable them.

■ the patch is currently enabled or disabled

You can examine the installOptions field of the patch description structure
to determine whether the patch is initially enabled or disabled.

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-27
Draft. Confidential.  Apple Computer, Inc. 10/19/95

Patch Manager Reference 1

Constants and Data Types 1

Option Bits Mask Enumeration 1

The option bits mask enumeration specifies possible values for the
installOptions field of the patch description structure (page 1-32) and for the
patchOptions field of the patch information structure (page 1-34). When you
install a patch, you use the patch description structure to describe the patch.
After the patch is installed, the Patch Manager returns information about its
current state in a patch information structure.

You can use the bit OR operator to combine two or more of the following
values.

enum {
kPatchEnabledMask = (1L << kPatchEnabledBit),
kPatchCompatibilityMask = (1L << kPatchCompatibilityBit),
kPatchOptionalMask = (1L << kPatchOptionalBit)

};

Enumerator descriptions

kPatchEnabledMask Before installing a patch, you use this bit in the
installOptions field of the patch description structure to
specify whether the patch is initially enabled. After
installing the patch, you can use the EnablePatch function
(page 1-36) and DisablePatch function (page 1-37) to
enable and disable the patch.
When you examine the patchOptions field of the patch
information structure, the setting of this bit indicates the
initial state of the patch: The bit is set if the patch was
enabled; the bit is clear if the patch was disabled. To obtain
the current state of the patch, you must call the
GetPatchInformation function (page 1-42).

C H A P T E R 1

The Patch Manager

1-28 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

kPatchCompatibilityMask
Do not use this bit in the installOptions field of the patch
description structure.
If this bit is set in the patchOptions field of the patch
information structure, it means that this is a programmatic
patch. If this bit is clear, it means that this is a data-driven
patch.

kPatchOptionalMask The setting of this bit in the patchOptions field of the patch
description structure, tells the Code Fragment Manager
how to proceed if it cannot load a patch. If this bit is set, it
means the Code Fragment Manager should launch your
application anyway. If this bit is clear, the Code Fragment
Manager should not launch your application. In this case,
it is your application’s responsibility to notify the user of
the cause of failure.

Wildcard Enumeration 1

You use the wildcard enumeration to specify values for the service and
signature fields of the ordered item name structure (page 1-33). You use the
ordered item name structure to specify values for the itemBefore and itemAfter
fields of the order requirements structure (page 1-34). The effect of using
wildcard order specifiers is explained in “Specifying Order Requirements” on
page 1-21.

enum
{

kMatchAnyOrderedItemService = (OrderedItemService)'****',
kMatchAnyOrderedItemSignature = (OrderedItemSignature)'****',
kDoNotMatchAnyOrderedItemService = (OrderedItemService)'----',
kDoNotMatchAnyOrderedItemSignature = (OrderedItemSignature)'----'

};

kMatchAnyOrderedItemService
In the service field of the itemBefore field, this value
causes your patch to execute after all other patches whose
signature matches that specified in the signature field of
the itemBefore field.
In the service field of the itemAfter field, this value causes
your patch to execute before all other patches whose

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-29
Draft. Confidential.  Apple Computer, Inc. 10/19/95

signature matches that specified in the signature field of
the itemBefore field.

kMatchAnyOrderedItemSignature
In the signature field of the itemBefore field, this value
causes your patch to execute after all other patches whose
service matches that specified in the service field of the
itemAfter field.
In the signature field of the itemAfter file, this value
causes your patch to execute before all other patches
whose service field matches that specified in the service
field of the itemAfter field.

kDoNotMatchAnyOrderedItemService
In the service field of the itemBefore field, this value
means that you don’t care if any patch executes before
your patch.
In the signature field of the itemAfter field, this value
means that you don’t care if any patch executes after your
patch.

kDoNotMatchAnyOrderedItemSignature
In the service field of the itemBefore field, this value
means that you don’t care if any patch executes before
your patch.
In the signature field of the itemAfter field, this value
means that you don’t care if any patch executes after your
patch.

Ordered Item Enumeration 1

You use the ordered item enumeration to specify a value for the options field of
the order requirements structure (page 1-34). This value determines whether
your patch is executed immediately before or immediately after another patch.
Set this field to NULL, to indicate that the patch does not have execute right
before or right after another patch.

enum
{

kOrderedItemIsRightBefore = 0x00000001,
kOrderedItemIsRightAfter = 0x00000002

};

C H A P T E R 1

The Patch Manager

1-30 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

kOrderedItemIsRightBefore
The itemBefore field of the order requirements structure
specifies the name of the patch that should execute before
your patch. If you want that patch to execute immediately
before your patch, specify this constant name for the
options field of the order requirements structure.

kOrderedItemIsRightAfter
The itemAfter field of the order requirements structure
specifies the name of the patch that should execute after
your patch. If you want that patch to execute immediately
after your patch, specify this constant name for the options
field of the order requirements structure.

Patch Header Flags Enumeration 1

The patch header flags enumeration is used by the Patch Manager to specify a
value for the flags field of the patch header structure (page 1-31).

After the Code Fragment Manager has loaded your code fragment and patch
fragment, and has installed your patches, it uses the installResult field of the
patch description structure to let you know whether a particular patch was
installed. At the same time, the Code Fragment Manager sets a bit in the flags
field of the patch header structure to let you know whether any required or
optional patch in a given patch chain set has failed. Thus, if you examine the
flags field first and find either or both bits clear, you can save yourself the
trouble of looking at the installResult field for each patch you have installed.

typedef OptionBits PatchHeaderOptions;
enum {

kRequiredPatchErrorsMask = 0x00000001,
kOptionalPatchErrorsMask = 0x00000002

};

Enumeration descriptions

kRequiredPatchErrorsMask
If this bit is set, the system has failed to install one or more
required patches.

kOptionalPatchErrorsMask
If this bit is set, the system has failed to install one or more
optional patches.

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-31
Draft. Confidential.  Apple Computer, Inc. 10/19/95

Patch Header Tag Enumeration 1

You use the patch header tag enumeration to specify values for the tag field
and the version field of the patch header structure (page 1-31).

enum {
kPatchHeaderTag = 'Ptch'
kPatchHeaderVersion = 1

};

Enumeration descriptions

kPatchHeaderTag Value for the tag field of the patch header structure.
kPatchHeaderVersion

Value for the version field of the patch header structure.

Patch Header Structure 1

You use the patch header structure to specify the address and size of the array
containing the patch descriptions for your local or global patches.

The PatchHeader data type defines a patch header structure.

struct PatchHeader {
OSType tag;
UInt32 version;
PatchHeaderOptions flags;
ItemCount count;
PatchDescriptionPtr * patches;

};
typedef struct PatchHeader PatchHeader;

Field descriptions
tag The constant name kPatchHeaderTag.
version The constant name kPatchHeaderVersion.
flags This field is set by the Code Fragment Manager to one of

the values defined by the patch header flags enumeration
(page 1-30).

count The number of patch description structures in the array
referenced by the patches field, described next.

C H A P T E R 1

The Patch Manager

1-32 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

patches A pointer to an array of pointers to patch description
structures that specify the local or global patches that you
want to install.

Patch Description Structure 1

You use the patch description structure to specify a reference to your patch
routine, a reference to the routine you want to patch, the name of your patch,
and additional information about how you want the Patch Manager to execute
your patch. The Patch Manager uses some fields in this structure to return
information about the patch if it was successfully installed or to let you know
about possible sources of conflict if it could not install the patch.

You must include one patch description structure for each patch you want to
install. The PatchDescription data type defines a patch description structure.

struct PatchDescription {
PatchableProcPtr originalRoutine;
PatchableProcPtr patchRoutine;
PatchName thisPatchName;
PatchOrderRequirements thisPatchOrdering;
PatchOptions installOptions;
OSStatus installResult;
PatchID thisPatchID;
PatchableProcPtr thisCallThroughProc;
PatchID rejectingPatchID;

};
typedef struct PatchDescription PatchDescription;

Field descriptions
originalRoutine A pointer to the routine you want to patch.
patchRoutine A pointer to the patch routine.
thisPatchName The name of your patch routine. You use the ordered item

name structure (page 1-33) to specify the name of your
patch.

thisPatchOrdering The order in which you want your patch to execute.
You use the order requirements structure (page 1-34) to
specify whether your patch should execute before or after
some other named patch.

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-33
Draft. Confidential.  Apple Computer, Inc. 10/19/95

You can specify NULL if you do not care when the pach
executes.

installOptions A value given by the option bits mask enumeration
(page 1-27) specifying whether the patch is initially
enabled and whether the Code Fragment Manager should
go ahead and load your application if it is unable to install
your patch.

installResult The Patch Manager returns 0 in this field if the patch was
successfully installed, or a nonzero result if it was not.

thisPatchID The Patch Manager returns the patch ID in this field if the
patch was successfully installed.

thisCallThroughProc
The Patch Manager sets this field to the address of the
routine you call to transfer control to the next routine in
the patch chain.

rejectingPatchID The Patch Manager sets this field to the ID of a patch
whose ordering requirements conflict with those you have
specified for your patch. Disabling the conflicting patch
does not solve ordering conflicts, but changing your
ordering requirements might resolve the conflict.
If there are no conflicts, the Patch Manager sets this field to
the constant value kInvalidID.

Ordered Item Name Structure 1

You use the ordered item name structure to specify values for the itemBefore
and itemAfter fields of the order requirements structure (page 1-34). A patch
must be uniquely named within a patch chain.

The OrderedItemName data type defines an ordered item name structure.

struct OrderedItemName {
OrderedItemService service;
OrderedItemSignature signature;

};
typedef struct OrderedItemName OrderedItemName, *OrderedItemNamePtr;

service A four-character literal that you define to identify a patch
or one of the wildcard service enumerators (page 1-28).

C H A P T E R 1

The Patch Manager

1-34 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

signature A four-character literal that specifies the application’s
creator or one of the wildcard signature enumerators
(page 1-28).

Order Requirements Structure 1

You use the order requirements structure to specify a value for the field
thisPatchOrdering of the patch description structure (page 1-32). This field
defines the relative order in which you want your patch to execute.

The use of this structure is explained in “Specifying Order Requirements” on
page 1-21. The OrderRequirements data type defines the order requirements
structure.

struct OrderRequirements {
OrderedItemOptions options;
OrderedItemName itemBefore;
OrderedItemName itemAfter;

};
typedef struct OrderRequirements OrderRequirements, *OrderRequirementsPtr;

options The value you specify for this field determines whether the
item specified in the itemBefore field should come
immediately before your patch or whether the item
specified in the itemAfter field should come immediately
after your patch. You specify one of these two values using
the ordered item enumeration (page 1-29). If you do not
need to specify either, use kNilOptions.

itemBefore The ordered item name structure (page 1-33) for the patch
that should execute before your patch.

itemAfter The ordered item name structure (page 1-33) for the patch
that should execute after your patch.

Patch Information Structure 1

The Patch Manager uses the patch information structure to return information
to you about a patch specified by the PatchID parameter to the
GetPatchInformation function (page 1-42).

The PatchInformation data type defines a patch information structure.

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-35
Draft. Confidential.  Apple Computer, Inc. 10/19/95

struct PatchInformation {
PatchChainID patchChain;
PatchableProcPtr patchingRoutine;
PatchOptions patchOptions;
PatchName patchName;
PatchOrderRequirements patchOrder;

};
typedef struct PatchInformation PatchInformation, *PatchInformationPtr;

Field descriptions
patchChain The patch chain ID of the patch chain to which the patch

belongs.
patchingRoutine The address of the patch routine.
PatchOptions A value given by the option bits enumeration (page 1-27)

specifying whether the patch is currently enabled, whether
it is a programmatic or data-driven patch, and whether the
code fragment loader can launch an application even when
it cannot install the patch.

patchName The name of the patch. If this is a programmatic patch, the
name is one assigned by the Patch Manager.

patchOrder An order requirements structure (page 1-34) specifying the
names of patches whose execution must precede or follow
that of this patch.

Patch Chain Information Structure 1

You call the GetPatchChainInformation function (page 1-39) to determine the
address of the routine that is being patched and the kernel process ID of the
process that contains the patched routine. The GetPatchChainInformation
function returns this information in a patch chain information structure.

The PatchChainInformation data type defines a patch chain information
structure.

struct PatchChainInformation {
KernelProcessID kernelProcess;
PatchableProcPtr chainRoot;

};
typedef struct PatchChainInformation PatchChainInformation,

*PatchChainInformationPtr;

C H A P T E R 1

The Patch Manager

1-36 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

Field descriptions
kernelProcess The ID of the process containing the patched routine.
chainRoot A reference to the routine being patched.

Patch Manager Functions 1

Enabling and Disabling Patches 1

When you define a patch using the patch description structure (page 1-32), you
use the installOptions field to specify whether the patch should be enabled or
disabled by default. You use the functions described in this section to change
that default setting.

EnablePatch 1

Enables a patch.

OSStatus EnablePatch (PatchID thePatch);

thePatch The ID of the patch being enabled.

DISCUSSION

Enabling a patch causes the Patch Manager to execute the patch when the
routine being patched is called. The order in which the patch executes depends
upon ordering constraints specified by the field thisPatchOrdering of the patch
description structure for this patch.

Any client that can obtain a patch ID can enable or disable a patch.

SEE ALSO

Use the DisablePatch function (page 1-37) to disable a patch.

Use the GetPatchInformation function (page 1-42) to determine whether a patch
is enabled or disabled.

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-37
Draft. Confidential.  Apple Computer, Inc. 10/19/95

You use the patch description structure (page 1-32) to specify any ordering
requirements for a patch.

DisablePatch 1

Disables a patch.

OSStatus DisablePatch (PatchID thePatch);

thePatch The ID of the patch being disabled.

DISCUSSION

Disabling a patch causes the Patch Manager not to execute the patch when the
routine being patched is called.

Disabling a patch is not the same as removing a patch from the patch chain. For
example, if any ordering conflicts exist, they remain even though the patch
causing the conflict is disabled.

SEE ALSO

Use the EnablePatch function (page 1-36) to enable a patch.

Use the GetPatchInformation function (page 1-42) to determine whether a patch
is enabled or disabled.

Obtaining Information About Patch Chains 1

You use the functions described in this section to obtain a list of patch chains
associated with a process and to obtain information about a particular patch
chain.

C H A P T E R 1

The Patch Manager

1-38 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

GetPatchChainsInKernelProcess 1

Returns a list of all patch chains associated with a process.

OSStatus GetPatchChainsInKernelProcess(KernelProcessID theKernelProcess,
ItemCount requestedPatchChains,
ItemCount *totalPatchChains,
PatchChainID *thePatchChains);

theKernelProcess
The ID of the process with which the patch chains are
associated. Specify kCurrentKernelProcessID to indicate the
current process.

requestedPatchChains
An integer specifying the size of the array in which this
function stores patch chain information when it returns.

totalPatchChains
A pointer to the total number of patch chains associated with
the specified kernel process.

thePatchChains
A pointer to an array of patch chain IDs. On return, the
GetPatchChainsInKernelProcess function stores the patch chain
IDs in the specified process in this array.

DISCUSSION

The patch chain IDs in the array referenced by thePatchChains parameter are
not listed in any particular order.

If you call this function and the value specified by the requestedPatchChains
parameter is smaller than the value specified by the totalPatchChains
parameter, this means that the array you have allocated for the patch chain IDs
is too small. You must set the requestedPatchChains parameter to the value
specified by the totalPatchChains parameter and then call the function again.

SEE ALSO

Use the GetPatchChainInformation function (page 1-39) to get information
about a specific patch chain.

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-39
Draft. Confidential.  Apple Computer, Inc. 10/19/95

You use the GetPatchesInPatchChain function (page 1-41) to obtain a list of all
the patches in a patch chain.

GetPatchChainInformation 1

Returns information about a patch chain.

OSStatus GetPatchChainInformation (PatchChainID thePatchChain,
PBVersion version,
PatchChainInformation *patchChainInfo);

thePatchChain The ID of the patch chain about which information is sought.

version The constant kPatchChainInformationVersion.

patchChainInfo
A pointer to a patch chain information structure (page 1-35)
that the GetPatchChainInformation function fills in when it
returns.

DISCUSSION

For a given patch chain ID, the GetPatchChainInformation function returns a
patch chain information structure that specifies the ID of the process with
which the patch chain is associated and the address of the routine that is being
patched.

SEE ALSO

Use the GetPatchChainsInKernelProcess function (page 1-38) to find out what
other patch chains are associated with the process to which this patch chain
belongs.

Determining Whether a Routine is a Patch 1

You use the functions described in this section to determine whether a routine
belongs to a patch chain and whether it is a patch or the routine being patched.

C H A P T E R 1

The Patch Manager

1-40 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

GetPatchChainFromProcPtr 1

Determines whether a routine belongs to a patch chain.

OSStatusGetPatchChainFromProcPtr (KernelProcessID theKernelProcess,
PatchableProcPtr theRoutine,
PatchChainID *thePatchChain);

theKernelProcess
The process ID of the process to which the patched routine
belongs.

theRoutine The address of the routine.

thePatchChain A pointer to the ID of the patch chain to which the routine
belongs either because it is a patch or because it is the routine
being patched (the root of the chain).

DISCUSSION

If the parameter theRoutine specifies a routine that is either a patch in a patch
chain or the root of a patch chain, the GetPatchChainFromProcPtr function
returns the ID of the patch chain to which the routine belongs. Otherwise, the
function returns an error.

SEE ALSO

To determine whether the routine is a patch or a root, use the
GetPatchFromProcPtr function (page 1-40).

GetPatchFromProcPtr 1

Determines whether a routine is a patch and returns its ID if it is.

OSStatus GetPatchFromProcPtr(KernelProcessID theKernelProcess,
PatchableProcPtr theRoutine, PatchID *thePatch);

theKernelProcess
The ID of the process to which the routine belongs.

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-41
Draft. Confidential.  Apple Computer, Inc. 10/19/95

theRoutine The address of the routine.

thePatch A pointer to the ID of the patch. If the routine is a patch, the
GetPatchFromProcPtr function sets this field when it returns.

DISCUSSION

If the specified routine is a patch, this function references the ID of the patch in
the parameter thePatch. If the routine is a root or cannot be found in a patch
chain, the function returns an error.

SEE ALSO

If the routine is a patch, you can obtain additional information about the patch
by calling the GetPatchInformation function(page 1-42).

Obtaining Information About a Patch 1

You use the functions described in this section to obtain a list of all the patches
in a patch chain and to obtain information about a particular patch in a chain.

GetPatchesInPatchChain 1

Returns a list of patches in a patch chain.

OSStatus GetPatchesInPatchChain (PatchChainID thePatchChain,
ItemCountrequestedPatches, ItemCount * totalPatches,
PatchID * thePatches);

thePatchChain The ID of the patch chain.

requestedPatches
An integer specifying the size of the array in which this
function stores patch IDs when it returns.

totalPatches A pointer to the total number of patch IDs in the patch chain.

thePatches A pointer to an array of patch IDs. On return, the
GetPatchesInPatchChain function stores the patch IDs in the
specified patch chain in this array.

C H A P T E R 1

The Patch Manager

1-42 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

DISCUSSION

The patches in the array referenced by the parameter thePatches are not listed
in any particular order. The function returns the names of all the patches in the
patch chain, whether they are enabled or not.

If you call this function and the value specified by the requestedPatches
parameter is smaller than the value returned in the totalPatches parameter,
this means that the array you have allocated for the patch ID information is too
small. You must set the requestedPatches parameter to the value specified by
the totalPatches parameter and call the function again.

SEE ALSO

Use the GetPatchInformation function (page 1-42) to get information about a
particular patch in a patch chain.

Use the GetPatchChainInformation function (page 1-39) to find out the name of
the routine being patched and the ID of the process that contains the patched
routine.

GetPatchInformation 1

Returns information about a patch.

OSStatus GetPatchInformation (PatchID thePatchID,PBVersion version,
PatchInformation *patchInfo);

thePatchID The ID of the patch.

version The value kPatchInformationVersion.

patchInfo A pointer to a patch information structure. On return, the
GetPatchInformation function fills in the fields of this structure.

DISCUSSION

The GetPatchInformation function returns the following information about a
patch: the ID of the patch chain to which the patch belongs, the address of the
patch routine, the name of the patch, the ordering constraints specified for the
patch, and any options for the patch. Once a patch has been installed by the

C H A P T E R 1

The Patch Manager

Patch Manager Reference 1-43
Draft. Confidential.  Apple Computer, Inc. 10/19/95

Patch Manager, any client that knows the ID of the patch can obtain patch
information by calling the GetPatchInformation function.

SEE ALSO

Use the GetPatchChainsInKernelProcess function (page 1-38) to obtain the IDs
of all patch chains associated with a process. Then you can use the
GetPatchesInChain function (page 1-41) to obtain the IDs of all patches in a
chain.

C H A P T E R 1

The Patch Manager

1-44 Patch Manager Reference

Draft. Confidential.  Apple Computer, Inc. 10/19/95

	Patch Manager
	The Patch Manager
	About Patching and the Patch Manager
	Programmatic and Data- Driven Patching
	Patch Scope
	Data- Driven Patching
	The Patch Description Fragment
	Applying Several Patches to the Same Routine
	The Structure of Patch Code
	Order Requirements
	Limitations on Patching

	Compatibility

	Using the Patch Manager
	Creating a Patch
	The Patch Header
	The Patch Description Structure
	Specifying Order Requirements

	Creating a Local Patch
	Creating a Global Patch
	Creating a Patchable Shared Library
	Obtaining Information About Patches

	Patch Manager Reference

