

ð

Preliminary

Developer Press



 Apple Computer, Inc. 1992–1995

ð

The Copland Toolbox

This document was created with FrameMaker 4.0.4

Draft. Confidential.



 Apple Computer, Inc. 10/19/95

ð

Apple Computer, Inc.



 1992–1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleScript, AppleShare,
AppleTalk, GeoPort, HyperCard,
ImageWriter, LocalTalk, Macintosh,
MacTCP, OpenDoc, PowerBook,
Power Macintosh, PowerTalk,
QuickTime, TrueType, and
WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.

Balloon Help, Chicago, Finder,
Geneva, Mac, and QuickDraw are
trademarks of Apple Computer, Inc.
IBM is a registered trademark of
International Business Machines
Corporation.
MacPaint and MacWrite are
registered trademarks, and
Clarisworks is a trademark, of Claris
Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state..

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Contents

1-1

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction to the Copland
Toolbox

Creating an Application’s Human Interface 1-6
Events 1-7
Windows 1-9
Panels 1-13

Controls 1-17
Text Elements 1-21
Alert Boxes and Dialog Boxes 1-22
Radio Button Groups 1-24
Lists 1-25
Menus 1-26
Simple Visual Elements 1-28

Copy, Paste, Drag, and Drop 1-30
Scrap Manager 1-30
Clipboard Manager 1-32
Drag Manager 1-32

Interactions With the Finder 1-33
Resources 1-33
Themes 1-36

Copland Toolbox Architecture 1-40
Opacity and Consistency 1-42
International Text 1-43
Extensible Data Structures 1-43
Extensible Designs 1-44

Customizing Panels 1-44
Customizing Interface Definition Objects 1-45

This document was created with FrameMaker 4.0.4

C H A P T E R 1

1-2

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

C H A P T E R 1

1-3

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Introduction to the Copland Toolbox 1

The Copland Toolbox consists of system software services that you can use to
create your application’s human interface elements and present them to users.
The Toolbox also simplifies a variety of human interface programming tasks
and provides low-level support for active assistance.

This chapter introduces the Copland Toolbox. “Creating an Application’s
Human Interface,” beginning on page 1-6, introduces the Copland event-
handling model and the standard human interface elements provided by the
Toolbox. “Copland Toolbox Architecture,” beginning on page 1-40, introduces
key programming concepts that underlie the Toolbox.

Chapter 2, “The Toolbox: System 7 Compared With Copland,” provides
information for System 7 developers who want to begin planning for Copland.

▲ W A R N I N G

This document is preliminary and incomplete. All
information presented here is subject to change in later
developer releases.

▲

A typical Copland application presents users with a carefully designed visual
interface that allows them to perform actions and accomplish goals according
to their own priorities. To ensure that human interface elements share
consistent behavior and appearance across all applications, the Copland
Toolbox provides a comprehensive set of standard interface elements that you
can piece together according to your application’s needs. This ensures that
common elements such as pop-up menus and sliders work the same way in
different applications and coordinates with the appearance of other elements.

The Copland Toolbox also supports customization by each user in ways that
maintain the overall look and feel of the human interface for that user. For
example, users can choose among different themes, or styles—that is,
coordinated sets of human interface designs that determine the appearance of
human interface elements on a systemwide basis, across multiple applications.

The figures that follow show some of the standard human interface elements
provided by the Toolbox and the way their appearance changes when the user
switches themes. Figure 1-1 shows how the screen might appear when a user
has selected the Apple Default theme and is interacting with a typical Mac OS–
compatible application, called SurfWriter, that permits simple text editing.

Note

Unless otherwise indicated, the human interface elements
illustrated in this chapter use the Apple Default theme.

◆

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Introduction to the Copland Toolbox

1-4

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 1-1

The SurfWriter application as it appears in the Apple Default theme

A user can directly control the SurfWriter application by means of a variety of
human interface elements, including

■

menus that allow the user to choose commands

■

windows that allow the user to enter and edit information

■

scroll bars and other controls that the user can manipulate

■

dialog boxes that solicit information from the user

Active window

Scroll bar Modeless dialog box Desktop

Menu

Menu

bar

C H A P T E R 1

Introduction to the Copland Toolbox

1-5

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 1-2

The SurfWriter application as it appears in an alternate theme

In addition to interacting freely with the application by manipulating its visual
interface, the user can change the appearance of all windows, controls, menus,
and other elements displayed on a single computer by choosing a different
theme. Figure 1-2 shows the SurfWriter application as it appears in an alternate
theme.

Apple supplies several standard themes. The Apple Default theme shown in
Figure 1-1 is built into the system. Users can install additional themes, switch
installed themes, or remove installed themes whenever they wish.

Active window

Scroll bar Modeless dialog box Desktop

Menu

Menu

bar

C H A P T E R 1

Introduction to the Copland Toolbox

1-6

Creating an Application’s Human Interface

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Creating an Application’s Human Interface 1

The Copland Toolbox provides a complete programming model for creating an
application’s human interface. From the user’s point of view, a Copland
application

■

responds to user actions, such as mouse actions or keyboard input

■

displays windows, alert boxes, and dialog boxes that present data and
various choices about manipulating the data to the user

■

displays controls that let users manipulate the application directly with a
pointing device such as a mouse

■

displays menus that let the user choose from lists of choices or commands

In general, the user should always be free to choose the next action to perform.
To support this freedom in a Copland application, you use the Apple Event
Manager, which provides a systemwide mechanism for distributing events in a
preemptively safe manner. Events that use this mechanism are called

Apple
events.

By default, the Toolbox interprets Apple events as they are delivered by
the Apple Event Manager and directs them to the appropriate menu or window.

To create your application’s windows, you use the Window Manager. To create
most of the other elements of your application’s human interface, including its
dialog boxes, controls and menus, you use the Panels class library.

A

panel

 is a SOM object that encapsulates one or more human interface
elements. The Panels class library defines a wide range of standard elements
commonly used in applications, including menus, dialog boxes and alert boxes,
scroll bars and other controls, lists, icons, and visual separators. Although
panels can be used within OpenDoc parts, they aren’t intended to be as large or
as powerful as parts. Instead, they facilitate the assembly of integrated human
interface elements from smaller, simpler objects.

One especially useful kind of panel is an

embedding panel,

 which contains
other panels (possibly including other embedding panels) and distributes
events to them. For example, everything inside a standard Copland window is
usually contained in an embedding panel. You use embedding panels and the
other standard panels defined by the Panels class library to assemble your
application’s visual interface. If necessary, you can also define your own
custom panels using object-oriented programming (OOP) techniques.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface

1-7

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

In addition to providing windows, dialog boxes, menus, and other basic
human interface elements, a Copland application

■

has characteristic icons that represents the application file and the
application’s documents in the Finder

■

lets users specify application-specific preferences

■

supports copy, paste, and drag and drop

To implement these capabilities in your application, you use the Finder
interface, the Preferences Manager, and the Scrap, Clipboard, and Drag
Managers.

You generally specify human interface elements for your application in
resources that are completely independent of your application’s source code.
This greatly simplifies localization for different countries and languages. The
Resource Manager provides functions for managing resources.

The sections that follow introduce some of the standard features of Copland
applications and the Toolbox services you use to implement them. For more
information about the architectural principles shared by all Toolbox services,
see “Copland Toolbox Architecture,” beginning on page 1-40.

Events 1

System 7 and earlier versions of the Mac OS require applications to have an
event loop, a piece of code that continually polls the system for events and
responds to those events appropriately. Although this arrangement allows the
user considerable freedom in choosing when to perform various actions, it has
limitations in the preemptive multitasking environment provided by Copland.
Copland introduces a new event model, based on the Apple events mechanism
introduced in System 7, that provides a unified interface for events throughout
the system, avoids the problems created by polling, and enhances application
responsiveness to user actions.

From a user’s point of view, the way Copland handles events is similar to the
way the Mac OS has always handled them. For example, the user can type text
in a window, select a graphic and copy it, open a new document in a different
application, paste in the graphic, open another document, then go back to the
first window to select text and change its size, style, or font.

From a programmer’s point of view, the Copland event model differs
significantly from the event loop model. The essence of Copland event

C H A P T E R 1

Introduction to the Copland Toolbox

1-8

Creating an Application’s Human Interface

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

handling is simple. When the user launches your application, it informs the
Apple Event Manager what kinds of events it’s interested in receiving. Your
application then informs the Apple Event Manager that it is ready to receive
events, and the Apple Event Manager blocks the calling task until an event in
which your application has expressed an interest arrives. This arrangement
takes maximum advantage of priority-based preemptive scheduling, allowing
other applications and tasks to receive processing time when your application
doesn’t need it.

To identify which events it’s interested in receiving, your application installs
event handlers in one or more

event handler tables,

 which the Apple Event
Manager uses to dispatch events as the application receives them. In addition,
the Toolbox provides a set of default event handlers that automatically
interpret low-level events such as mouse clicks and keypresses and pass them
on to the appropriate window or menu item. Your application can override any
of the default event handlers.

When a window receives an event, it processes the event on the basis of the
window’s own

window event handler.

 If the event is in the title bar or some
other area controlled by the Window Manager, the default window event
handler responds to the event; otherwise, it sends the event on to the

root
panel,

 which is an embedding panel that contains all of the window’s other
panels. As with other handlers, your application can override the default
window event handler if necessary.

When the root panel inside a menu or a window receives an event, it handles
the event by calling methods of the subpanels it contains. “Panels,” beginning
on page 1-13, describes the Panels class library and how you can use it to
implement your application’s human interface.

The best way to support the Copland event model is to separate the code that
controls your application’s user interface from the code that responds to the
user’s manipulation of the interface. This is called

factoring

 your application.
A fully factored application translates user actions into Apple events that the
application sends to itself to handle those actions appropriately. Factoring not
only supports the Copland event model, but also allows your application to be
controlled by means of any scripting language, such as AppleScript, that’s
based on the Open Scripting Architecture (OSA).

Another difference between the Copland event model and a traditional event
loop involves

periodic processing,

 which is processing that takes place at
specified intervals. For example, if the user isn’t doing anything else, an
application should be able to perform repetitive tasks such as making the caret

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface

1-9

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

blink in the active window. To support this kind of processing in Copland, you
use periodic Apple events.

Periodic processing is different from

 background processing,

which takes
place in the background while the user continues to work. You perform
background processing by creating a secondary task that executes
preemptively and concurrently while the primary task that controls the human
interface continues to respond to user actions.

For example, it may be desirable for a graphics application to perform
intensive calculations related to image processing in the background, allowing
the user to continue to interact with the application’s human interface without
loss of responsiveness. When the calculations are complete, the secondary task
can transfer the result of the calculations to the primary task, which actually
draws the image to the screen.

For more information about the Copland tasking model, see the document
“Kernel and Operating System Services.”

For more information about the Copland event model, see “The Copland Event
Model,” beginning on page 2-5 of this document.

Windows 1

Most applications use windows to present information to and interact with the
user. Figure 1-3 shows a standard document window and its elements.

Figure 1-3

A standard document window

Zoom box

Title bar icon

Collapse box

Close box

Size box

C H A P T E R 1

Introduction to the Copland Toolbox

1-10

Creating an Application’s Human Interface

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

The window in Figure 1-3 includes the following elements:

■

A

close box

 that dismisses the window.

■

A

title bar icon

 that users can drag to a new volume to copy the document
to that volume. The behavior of the title bar icon is determined by you
within guidelines to be provided by Apple

.

■

A

collapse box

 in the upper-right corner that users can click to control
“windowshade” behavior—that is, to hide or show all of the window except
the title bar.

■

A

zoom box

 next to the collapse box. The Copland Window Manager
includes built-in support for monitor-specific zooming; that is, clicking the
zoom box causes the window to expand so it fills the screen of the monitor
on which it is displayed.

■

A

size box

 in the lower-right corner that users can drag to resize the window.

The Window Manager allows you to specify various attributes of any window,
such as whether it has a size box, collapse box, zoom box, title bar icon, or close
box. It also supports resizing of windows in directions other than down and to
the right and the use of text objects in window titles, both of which greatly
simplify localization. (For more information about Toolbox support for text
objects, see “International Text” on page 1-43.)

Every window belongs to one of three classes:

■

Modal windows

 appear in front of all other kinds of windows in an
application’s layer. They are used for dialog boxes and alert boxes that
require immediate attention from the user.

■

Floating windows

 appear in front of document windows and behind modal
windows in an application’s layer. They are used for tool palettes, catalogs,
and other elements used to act on data in document windows.

■

Document windows

 (like that shown in Figure 1-3) appear behind floating
windows and modal windows in an application’s layer. They are used for
document data such as graphics and text.

The Window Manager keeps windows of each class in separate sublayers
within a single application’s layer. For example, the floating windows shown in
Figure 1-4 always appear in front of the same application’s document windows.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface

1-11

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 1-4

Layering of floating windows and document windows

If the user performs some action that invokes a modal window, such as
attempting to close a document without saving it, the modal window appears
in front of all other windows in the application’s layer, as shown in Figure 1-5.

When your application displays any modal window, the menu bar
automatically changes to a modal state. The menu bar returns to its original
state when the modal window is gone.

Floating windows

Document

windows

C H A P T E R 1

Introduction to the Copland Toolbox

1-12

Creating an Application’s Human Interface

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 1-5

The Window Manager ensures that modal windows always appear in

front of other windows in an application’s layer.

As shown in the preceding figures, a user typically has one or more windows
open on the desktop, often from several different applications. However, only
one window can be the active window. The

active window

 is the window that
appears frontmost on the desktop, and it is identified by distinctive details that
aren’t visible for inactive windows. For example, in Figure 1-4, the document
window “untitled” is active, and the other document window is inactive;
whereas in Figure 1-5, the modal window is the active window, and both
document windows are inactive.

All keyboard activity is directed toward the active window. Make sure your
application follows the human interface guidelines regarding active and
inactive windows. For example, you should show the scroll bars and highlight
any selection in an active window, and hide the scroll bars and change or
remove highlighting from any selection in an inactive window.

Modal

window

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface

1-13

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

The chapter “Window Manager,” which will be available with later developer
releases, describes the standard kinds of windows and how to create, move,
size, zoom, or update the contents of your window using Window Manager
functions.

Panels 1

The Panels class library provides a uniform, object-oriented interface for
implementing human interface elements commonly used by applications.
These standard elements are based on SOM classes that all ultimately inherit
from the abstract superclass Panel, as shown in Figure 1-6.

▲ W A R N I N G

The class names and relationships shown in Figure 1-6 are
preliminary and subject to change in later releases.

▲

Figure 1-6

Top two levels of the inheritance hierarchy for the Panels class library

Panel

Embedding panel

Abstract control panel

Abstract text panel

Icon panel

List panel

Menu panel

Picture panel

Visual separator panel

C H A P T E R 1

Introduction to the Copland Toolbox

1-14

Creating an Application’s Human Interface

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Figure 1-6 shows preliminary plans for the top two levels of the Panels
inheritance hierarchy (which also includes additional subclasses not shown in
the figure). These classes play the following roles:

■

The panel class is the superclass for all panel classes, and as such it defines
the attributes and methods shared by all panels. These include methods for
initializing, enabling or disabling, drawing, and hiding or showing a panel,
as well as methods that control keyboard focus, mouse interaction, copy,
paste, drag and drop, and other standard interactive behavior. Other classes
in the Panels class library define additional methods and other
characteristics as necessary.

■

The abstract control panel class is the superclass for all controls, including
sliders, scroll bars, pop-up menus, progress indicators, and buttons such as
checkboxes and radio buttons.

■

The abstract text panel class is the superclass for all textual human interface
elements, including static text, styled static text, and editable text.

■

The embedding panel class is the superclass for panels that contain other
panels, including dialog boxes, alert boxes, and radio button groups.

■

The list panel class is the superclass for all panels that encapsulate lists,
including icon lists, text lists, and scrolling lists.

■

The menu panel class is the superclass for all panels that encapsulate menus.

■

The last three classes shown in Figure 1-6 encapsulate simple visual
elements that are commonly used in applications. These classes provide a
convenient way to integrate purely visual elements with other human
interface elements:

n

The icon panel class defines panels that encapsulate icons of different
sizes and bit depths.

n

The picture panel class defines panels that encapsulate bitmapped images.

n

The visual separator class defines panels that encapsulate horizontal,
vertical, and rectangular visual separators.

None of the standard panels require a traditional Toolbox manager. Instead of
calling procedural functions, you create and manipulate panel objects using
SOM techniques. Each panel knows how to draw itself appropriately
depending on its state; for example, checkboxes can check and uncheck
themselves, sliders can change their appearance in response to dragging, menu
panels can highlight correctly when selected, and so on.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface

1-15

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

A panel controls all aspects of its appearance and behavior as its state changes
in response to user activities. Your application determines what effect changes
in the panel’s state have within the application.

When you instantiate any panel, you can identify a function the panel will call
when a state change should generate a specific action by your application. For
example, the change in state that occurs when a user chooses a menu command
might invoke the function provided by your application that executes the
command. This arrangement keeps the implementation of the panel itself
separate from the specific behavior that your application associates with a
particular panel state.

Figure 1-7 illustrates a typical use of standard panels in a modal dialog box.

Figure 1-7

Standard panels used in a modal dialog box

The dialog box shown in Figure 1-7 includes these standard panels:

■

Dialog box panel.

 All the panels in Figure 1-7 are embedded within the
standard dialog box panel, which is a special kind of embedding panel that
encapsulates the entire contents of a dialog box. The dialog box panel isn’t
labeled in the figure; it consists of the entire content area of the modal dialog
box. Like any other embedding panel, a dialog box panel controls the layout,
keyboard focus, and mouse interaction for all the panels it contains.

■ Static text panel. A panel that displays static text.

Static text panel

Push button panels

Radio button

group panel

Horizontal

visual separator panel

Rectangular

visual separator panel

C H A P T E R 1

Introduction to the Copland Toolbox

1-16 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

■ Radio button group panel. A specialized embedding panel that
encapsulates radio button controls. A radio button group panel controls
keyboard focus and mouse interaction for its radio buttons, changing their
highlighting and state as appropriate in response to mouse clicks and
keypresses.

■ Horizontal and rectangular visual separator panels. Visual separator panels
can be manipulated and positioned like any other panel within any
embedding panel. You can also specify title text for the rectangular visual
separator to display, as in the movable modal dialog box in Figure 1-11 on
page 1-23.

■ Push button panels. Keyboard focus for the Cancel and Scale button panels
is integrated with the rest of the panels, and they highlight themselves
correctly when clicked.

You can place panels in any window, not just a dialog box, and you can
combine panels to create toolbars and other complex human interface
elements, including menus.

Like any SOM-based class library, the Panels class library provides three key
benefits associated with OOP:

■ Inheritance allows subclasses to make use of characteristics defined by
classes above them in their branches of the class hierarchy. You can use SOM
subclassing techniques to derive new panel classes from standard panel
classes, creating new kinds of elements without having to start from scratch.

■ Encapsulation refers to the packaging of all the code that implements a
panel’s human interface behavior within the panel object itself, thus
protecting it from accidental or inappropriate changes. Panels are
autonomous SOM objects that you can reuse in completely unrelated
applications. You don’t have to subclass each time you want to use a
particular kind of panel for a new purpose. Instead, you simply specify a
different function during instantiation that implements application-specific
behavior when the panel’s state changes.

■ Unification of disparate human interface elements in a single programming
interface simplifies the construction of your application’s human interface.
You always implement common behavior, such as showing or hiding a
panel, the same way no matter what kind of panel is involved. Instead of
learning how to implement similar behaviors in slightly different ways for
different managers, you use the same method to implement the same
behavior for any panel.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-17
Draft. Confidential.  Apple Computer, Inc. 10/23/95

For more information about SOM, see the document “SOM and Software
Extensibility in Copland.”

You don’t need to use an object-oriented language such as C++ to take
advantage of these benefits. Some familiarity with OOP is required only if you
subclass from the standard classes; and you need to subclass only if you want
to create panels whose appearance or behavior differ from the standard panels.
For a discussion of custom panels, see “Customizing Panels,” beginning on
page 1-44.

In addition to the benefits of OOP, the Panels class library includes support for
the following capabilities:

■ Binary compatibility. As SOM objects, future versions of any panel can be
released without breaking existing versions.

■ Embedding. You can arrange standard panels in containment hierarchies by
using various kinds of embedding panels, without any need for subclassing.

■ Keyboard navigation. Panels know how to react to keystrokes and how to
display themselves with and without keyboard focus.

■ Collection items. You can attach collection items to any panel. (For more
information about collections, see “Extensible Data Structures” on page 1-43.)

■ Drag Manager support. You can support drag and drop for any panel just
by overriding a few methods.

The sections that follow include examples of some of the standard panels
defined by the Panels class library.

Controls 1

Most windows and dialog boxes contain controls. Controls are human interface
elements that the user can manipulate with the mouse to perform actions in
your application or to change settings that modify future actions.

Table 1-1 shows examples of the panels you can create with the panel classes
for controls. The appearance of each control is defined by its class. The current
theme determines details of its appearance, and your application determines its
actions and settings.

You can use panel methods to draw most of the standard controls with
keyboard focus—that is, change a control’s appearance as appropriate when it
is the focal point on screen for actions triggered by keypresses.

C H A P T E R 1

Introduction to the Copland Toolbox

1-18 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Table 1-1 Some of the standard panels that encapsulate controls

Example in the
Apple Default theme Name Description

Push
button
panel

A button that displays text indicating its
purpose. Used to perform an instantaneous
action when clicked by the user, such as
completing operations defined by a dialog box
or acknowledging an error message in an alert
box. You can optionally specify that a push
button is the default button, in which case it
draws itself with standard default appearance
for the current theme; for example, with a ring
around it.

Icon
button
panel

A button that displays an icon. Used in
situations where icons are more convenient than
text for indicating a button’s purpose, for
example in palettes and toolbars. An icon button
can animate momentarily like a push button or
toggle back and forth between a pressed state
and an unpressed state, similar to a checkbox.
Icon buttons come in three sizes: small, medium,
and large. This example shows a large icon.

Checkbox
panel

A button that displays a small square with
accompanying text indicating what kind of
setting the checkbox controls. Used for an option
that must be off, on, or in a mixed state. In the
Apple Default theme, the square contains an X
when the setting associated with the box is on, is
empty when the setting is off, or contains a short
horizontal line when the setting is mixed. (For
more information about the mixed state, see
page 1-21.)

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-19
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Radio
button
panel

A button that displays a circle with a title beside
it indicating what kind of setting the radio
button controls. Like checkboxes, radio buttons
retain and display an on-or-off setting; however,
only one radio button in a group of radio
buttons should be on at any one time. In the
Apple Default theme, the circle is filled when the
setting associated with the button is on, is empty
when the setting is off, or contains a short
horizontal line when the setting is mixed. (For
more information about the mixed state, see
page 1-21.)

Disclosure
triangle
panel

A triangle used to control progressive disclosure
in lists, such as lists of files and folders in the
Finder. When the arrow points right, only one
item should be visible beside it. When the arrow
points down, both the original item and the
items contained within it should be visible in the
list. To toggle between the two states, the user
clicks the disclosure triangle, which turns with a
characteristic animation defined by the current
theme.

Little
arrows
panel

A pair of arrows that typically accompany a text
box containing a numerical value, such as the
date or time. Clicking the up arrow should
increase the value in the text box, and clicking
the down arrow should decrease it. The new
values don’t need to be contiguous to the old
ones as long as they change in a logical and
predictable manner appropriate for whatever
they represent.

Example in the
Apple Default theme Name Description

C H A P T E R 1

Introduction to the Copland Toolbox

1-20 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Progress
indicator
panel

A horizontal display used to indicate the
progress of a lengthy operation (typically more
than three seconds). If you don’t know how long
an operation will take, you can let the user know
that it’s still in progress by rotating a progress
indicator like a barber pole, as shown in the
upper example. If you can supply values to the
panel indicating how much of an operation has
been completed, the progress indicator can fill
itself in from one end to the other to indicate
what percentage of the operation has been
completed, as shown in the lower example.

Slider
panel

Displays a range of values, magnitude, or
position. A movable indicator shows the current
setting. Some sliders allow users to alter the
value of the slider by moving the indicator up
and down or back and forth. Sliders can be
analog or digital devices that display their
values graphically.

Pop-up
menu
panel

A menu that appears in a dialog box or window.
Used as an alternative to a radio button group or
a list, a pop-up menu allows the user to select
from several choices. When the user presses the
mouse button while the pointer’s over the menu
title, additional menu items appear, as shown in
this example. Pop-up menu panels can support
all the features of regular menus, including icons
and other menu item types, sticky menus, and
tear-off menus. They also handle mouse and
keyboard interaction, including highlighting the
menu item and tracking keyboard focus.

Scroll bar
panel

A narrow rectangle with an arrow in a box at
each end and a scroll box that moves between
them. Windows can have a horizontal scroll bar,
a vertical scroll bar, or both. Users can click the
arrows or drag the scroll box to display more of
the document by scrolling it into view. Scrolling
should be live—that is, the contents of the
window should scroll at the same time that the
user is dragging the scroll box.

Example in the
Apple Default theme Name Description

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-21
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Radio buttons and checkboxes can be displayed in three different states: on, off,
or mixed. A mixed state indicates that a setting is on for some elements and off
for others. For example, a checkbox that determines whether a character is
boldface appears in a mixed state if some characters in a range of selected text
are bold and others aren’t. Because a mixed state provides feedback about the
settings for several elements, the user can’t change it directly. Instead, the user
must change the settings for the individual elements.

You can use panel methods to get a series of control values back from a control
such as a slider or scroll bar while a user is still manipulating it. For example,
you can get control values back from a scroll bar that allow your application to
redraw the window’s contents while the user is dragging the scroll box (live
scrolling), or you can change the sound volume while the user is still
manipulating the slider rather than waiting until the user releases it. All control
values are 32-bit values, permitting manipulation of any control at a very
detailed level of granularity.

The chapter “Controls,” which will be available with later developer releases,
describes how to create and manipulate the standard controls.

Text Elements 1

The Panels class library includes separate classes for static text panels, styled
static text panels, and editable text panels.

A static text panel or static styled text panel encapsulates a text object. Figure
Figure 1-8 shows two static text panels.

Figure 1-8 Static text panels

An editable text panel encapsulates a text object and permits editing of the text
it contains. Editable text panels support keyboard navigation, copy, paste, drag
and drop, and styled text. Figure 1-9 shows an editable text panel.

C H A P T E R 1

Introduction to the Copland Toolbox

1-22 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 1-9 An editable text panel

For more information about text objects, see “International Text” on page 1-43.

Alert Boxes and Dialog Boxes 1

In addition to windows and their contents, a Copland application also uses
alert boxes and dialog boxes to communicate with the user. An application
displays an alert box to warn or to report an error to the user. An alert box
typically consists of an icon, text describing the situation, and buttons for the
user to acknowledge or rectify the problem.

Figure 1-10 shows an alert box that the SurfWriter application displays when
the user attempts to close a window without saving the document. The alert
box gives the user a chance to save the document before the SurfWriter
application closes the window, thus helping to avoid accidental data loss.

Figure 1-10 An alert box panel

An application displays a dialog box to solicit specific kinds of information
from the user. Embedding panel classes include methods that you can use to
assemble standard panels such as buttons, text panels, lists, and visual
separators in alert boxes and dialog boxes. You also use panel methods to
handle user interactions with dialog boxes.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-23
Draft. Confidential.  Apple Computer, Inc. 10/23/95

You can create modal, movable modal, or modeless dialog boxes. Figure 1-11
shows an example of each type. Each dialog box in the figure is constructed
from a variety of standard panels.

Figure 1-11 Modal, movable modal, and modeless dialog box panels

A movable modal dialog box

A modeless dialog box

A modal dialog box

C H A P T E R 1

Introduction to the Copland Toolbox

1-24 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

A modal dialog box requires the user to work in a single mode—that is, only
inside the dialog box—until the completion of the user’s interaction with that
dialog box. A modal dialog box is similar in appearance to an alert box, except
that a modal dialog box can contain any combination of panels, whereas an
alert box consists only of text, icon, and button panels. The user cannot move a
modal dialog box, and the user can dismiss it only by clicking the appropriate
buttons. You should use a modal dialog box only when it’s essential for the
user to complete an operation before performing any other work.

A movable modal dialog box is a modal dialog box with a title bar (but no
close box) that allows the user to move the dialog box. The user can dismiss the
dialog box only by clicking its buttons; however, when you use movable modal
dialog boxes, you should allow the user to switch layers by clicking in another
application’s window or by choosing another application from the Apple or
Application menu. Use a movable modal dialog box when the user might need
to move the dialog box to view other areas of the screen or when the user can
switch to another application without affecting the state of your application.

A modeless dialog box is a dialog box that looks like a document window
without a size box or scroll bars. A modeless dialog box does not require the
user to respond before doing anything else. The user can move a modeless
dialog box, move between a modeless dialog box and other windows, and
close a modeless dialog box just like a document window. Whenever possible,
use a modeless dialog box instead of a movable modal or modal dialog box.
Use a modeless dialog box when the user can perform other operations—such
as working in document windows—without dismissing the dialog box.

The chapter “Dialog Boxes and Alert Boxes,” which will be available with later
releases, describes how to create alert boxes and dialog boxes.

Radio Button Groups 1

A radio button group is a special embedding panel that encapsulates several
radio button panels, as shown in Figure 1-12. Unlike the individual radio
button panel illustrated on page 1-19, a radio button group panel can handle
mouse and keyboard interaction, including highlighting and tracking keyboard
focus.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-25
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 1-12 A radio button group panel

Lists 1

A list is a series of items displayed within a rectangle. Each item in a list is
contained within a rectangular cell. All cells within a list are the same size, but
may contain different types of data and multiple columns of data. The user can
click cells to select them. Figure 1-13 shows two simple list panels.

Figure 1-13 Simple list panels

You can create lists with or without scroll bars. To arrange one or more lists
with buttons and other controls in a window, you simply add the lists and
other panels to an embedding panel.

You can use list panel methods to store and update the data within a list,
display the list within a window with an appearance that matches the current
theme, and respond appropriately to mouse clicks within a list. List panels
store all offsets and values using 32-bit values, permitting the association of
large amounts of data with a single list.

The chapter “Lists,” which will be available with later developer releases,
describes in detail how to create lists.

C H A P T E R 1

Introduction to the Copland Toolbox

1-26 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Menus 1

A menu lets the user view or choose an item from a list of choices or
commands that your application provides. You design your application’s
menus according to the tasks or actions your application performs. All
applications should support the Apple, File, Edit, Help, Keyboard, and
Application menus.

A menu consists of several menu items. The menu panel class defines a variety
of standard menu items, including text, submenus, icons, and pattern and color
cells. Menu panels also allow you to

■ create grid menus that contain colors, patterns, and icons

■ make any application menu or submenu a tear-off menu

■ provide custom content on an item-by-item basis

■ display any font in any language using any script in a menu

■ display a keyboard equivalent for any menu item using multiple modifier
keys

■ show and hide the menu bar

■ support a “sticky menu” mode that allows users to leave a menu or
submenu open and choose menu items by clicking them or from the
keyboard

Figure 1-14 and Figure 1-15 show three menus created from standard menu
panel classes, including pattern and color swatches, text items based on text
objects, dividers, and submenus. You can freely mix icons, text, marks, and
keyboard equivalents in any menu item.

The chapter “Menus,” which will be available with later developer releases,
describes in detail how to create menu panels.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-27
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 1-14 Menu created from the standard menu panel classes

Figure 1-15 Tear-off menu with custom layout

Multiple

text styles

Mark

Keyboard

equivalents

Submenu

Multiple

fonts and

scripts

C H A P T E R 1

Introduction to the Copland Toolbox

1-28 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Simple Visual Elements 1

In addition to the interactive panels introduced in the preceding sections, the
Panels class library defines a variety of simple visual panels, including icons,
pictures, and visual separators. Although users don’t interact with these
elements, it is often convenient to implement them as panels.

Simple visual elements can be implemented in two ways: by using the Panels
class library panels or by using lower-level services. The visual panels defined
by the Panels class library encapsulate the visual elements most commonly
used in applications. Using these standard panels is usually the easiest way to
integrate simple visual elements with your application’s interactive human
interface elements.

Icons 1

An icon is a graphic representation of some human interface element, such as a
document, disk, folder, application, or the Trash in the Finder. The Finder
draws and manages the icons that a user sees on the desktop.

Figure 1-16 shows the Note icon commonly used to identify Note alert boxes.

Figure 1-16 A Note icon panel

To display an icon, you typically use an icon panel. An icon panel encapsulates
an icon and can draw itself appropriately within an embedding panel. Icon
panels include methods for creating, drawing, labeling, and disposing of icons.

It’s also possible to display an icon using the Icon Utilities, a lower-level set of
utilities for manipulating icons that aren’t inside panels. For example, you can
use the Icon Utilities to display icons in your application’s content area. The
Icon Utilities also allow you to obtain the icon currently being used by a
particular file in the Finder so you can display it.

The chapter “Icons,” which will be available with later developer releases,
describes in detail how to create and manipulate icons.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-29
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Pictures 1

To display a QuickDraw picture, you typically use a picture panel. Figure 1-17
shows an example.

Figure 1-17 A picture panel

To display a picture that’s not in a panel, you can call QuickDraw directly.

Visual Separators 1

Visual separator panels can display horizontal, vertical, or rectangular visual
separators. Figure 1-18 shows examples of horizontal and visual separators. A
rectangular visual separator can optionally include a title. For an example of a
rectangular visual separator panel, see Figure 1-7 on page 1-15.

Figure 1-18 Horizontal and vertical visual separator panels

To display visual separators that aren’t part of a panel, you can use the
Appearance Manager primitives shown in Table 1-2 on page 1-38.

C H A P T E R 1

Introduction to the Copland Toolbox

1-30 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Copy, Paste, Drag, and Drop 1

Users of Copland applications should be able to copy and paste data freely
within the same window or from one window to another. Users should also be
able to drag visual interface elements such as text, graphics, bitmaps, icons, or
outline items from one place to another by pressing down on the mouse button
while the pointer is over a selection, moving the pointer across the screen, and
then releasing the mouse button.

You can use the Scrap Manager, Clipboard Manager, and Drag Manager to
implement copy, paste, and drag and drop in a single piece of code. The Scrap
Manager provides the generic transport package format, and the Clipboard
and Drag Managers provide transport mechanisms for moving the packaged
data, called a scrap, from one place to another.

Because they don’t involve drawing to the screen, the Scrap Manager and the
Clipboard Manager execute in a preemptively safe manner and are fully
reentrant—unlike the Drag Manager and the rest of the Copland Toolbox,
which are non-reentrant.

The chapter “Scrap, Clipboard, and Drag Managers,” which will be available
with later developer releases, describes in detail how to implement copy, paste,
and drag and drop. The sections that follow introduce these three managers.

Scrap Manager 1

The Scrap Manager can handle data of any size, including QuickTime movies,
sound data, graphics data, and other data that take up a lot of memory. The
Scrap Manager provides functions that allow you to create a scrap, package the
data to be transported inside it, and retrieve the data after the Clipboard
Manager or Drag Manager have transported the scrap to its destination.

A scrap consists of one or more scrap items. Each scrap item is associated with
a single piece of data represented by one or more scrap item types. For
example, a scrap that contains a picture might contain a single scrap item
represented by a single scrap item type, such as a PICT; whereas a scrap that
contains a Finder icon might contain a scrap item represented by several scrap
item types, including the icon itself, a PICT, and a reference used by the file
system to identify the file associated with the icon, as shown in Figure 1-19. It is
usually desirable to provide the same data in several different formats, so that
the receiving application can choose a format that it can handle.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-31
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 1-19 Scrap, scrap items, and scrap item types

The Scrap Manager also supports the concept of promises. For example, you
can choose to put a scrap on the Clipboard as a promise instead of the actual
data. This involves constructing an empty scrap with placeholders for the
various scrap item types. When the user pastes, the Scrap Manager asks the
original application to fulfill its promise for the type of data being pasted by
providing the actual data. This mechanism avoids data transfer until the data is
actually needed for a paste. It also allows the original application to transfer
the data using just the format requested by the pasting application rather than
duplicating the data in a variety of possible formats. Promises are especially
useful for copying large pieces of data, but they are also the fastest way to copy
any kind of data.

Promises placed on the Clipboard require slightly differently treatment than
promises used in dragging operations. If the user quits the original application
or closes the document containing the promised data before a promise on the
Clipboard has been fulfilled, the original application should fulfill the promise
before it quits or closes the window to ensure that user can paste the item in the
future.

Scrap

Scrap

item:

Finder

icon #1

Scrap

item:

Finder

icon #2

Scrap

item:

Finder

icon #3

Scrap item

type:

PICT

Scrap item

type:

Icon suite

Scrap item

type:

File system

reference

C H A P T E R 1

Introduction to the Copland Toolbox

1-32 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Clipboard Manager 1

The Clipboard Manager provides a mechanism for placing a scrap on the
Clipboard and retrieving it when the user pastes the data in a new location. A
single Clipboard is shared by all currently running applications.

In general, after you use the Clipboard Manager to place a scrap on the
Clipboard, the scrap becomes read only. Multiple applications can use the
Scrap Manager simultaneously to extract data from the scrap during separate
paste operations, but the scrap can’t be altered. If another scrap gets placed on
the Clipboard before one or more applications have finished pasting, the Scrap
Manager maintains the old scrap until they are finished, but treats the most
recent scrap as the current scrap for any new paste operations.

Whenever a new scrap gets placed on the Clipboard, the Clipboard Manager
sends an Apple event to all interested applications to notify them that the
contents of the Clipboard have changed and what data types are available for
the new data. This allows each application to update its Edit menu
appropriately as soon as new data is copied to the Clipboard. For example,
when your application receives an event informing it that the Clipboard now
contains text in a format your application can handle, it should make sure that
the Paste item in its Edit menu is enabled.

Drag Manager 1

From the user’s point of view, to drag something means to position the pointer
on a visual interface element (such as an icon in the Finder), press and hold the
mouse button, move the pointer to a new position, and then release the mouse
button. In general, dragging can have different effects, depending on what’s
under the pointer when the user first presses the mouse button. These can
include selecting blocks of text, choosing a menu item, selecting a range of
objects, shrinking or expanding an object, or moving an icon or other visual
elements from one place to another. The Drag Manager supports the latter form
of dragging: moving visual elements and their associated data from one place
to another.

You use the Drag Manager to support the dragging of visual interface elements
within your application, from your application to other applications or the
Finder, and from other applications or the Finder to your application. The Drag
Manager uses a scrap to hold the data associated with a dragged element.
Elements that may be dragged can include text, graphics, bitmaps, icons,
outline items, and so on. The Finder itself uses the Drag Manager to support

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-33
Draft. Confidential.  Apple Computer, Inc. 10/23/95

common dragging operations such as moving a file or folder or dropping items
on other items to make something happen, such as running a script.

The Scrap Manager packs and unpacks the data that’s transported in a drag.
The Drag Manager supports the user experience while an item is being
dragged, including displaying a transparent version of the original image
during dragging. You use the Drag Manager to create the scrap associated with
a dragged element, the Scrap Manager to add scrap items and their associated
scrap item types to the scrap, the Drag Manager to handle the actual dragging,
and the Scrap Manager to read the scrap after the drag operation is complete.

You must supply drag tracking and drag receive handlers that the Drag
Manager uses to track the drag across the screen and receive the drag when the
user drops drag items at a destination within your application.

Interactions With the Finder 1

Once you’ve designed your application, you need to create icons to represent
the application and the documents it creates. The Finder displays these icons to
the user. If your application appears as an item in the Apple or Application
menu, your application’s icon is displayed next to its name and, when your
application is active, as the title of the Application menu.

Many applications allow users to set various preferences, such as default font,
pen widths, menu contents, toolbar contents, backup saving behavior, and so
on. The Preferences Manager provides a standard mechanism for controlling
your application’s preferences. Using the Preferences Manager ensures that
your application can take advantage of Copland’s support for multiple users
who share a single computer.

The chapter “Finder Interface” describes how to define and create the icons for
your application and its documents. The chapter also describes how your
application interacts with the Finder. The chapter “Preferences Manager”
describes how to implement user preferences for your application. Both
chapters will be available with later developer releases.

Resources 1

Resources are basic elements of every Macintosh application. By defining
descriptions of menus, windows, controls, dialog boxes, sounds, fonts, and
icons in resources, you can make these and other elements easier to create and

C H A P T E R 1

Introduction to the Copland Toolbox

1-34 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

manage. Using resources also eases translation of user interface elements into
other languages.

A resource is any data stored according to a defined structure in the resource
fork of a file. The data in a resource is interpreted according to its resource
type. You usually create resources using a resource compiler or resource editor.
This book shows resources in Rez format; Rez is a resource compiler provided
with the Macintosh Programmer’s Workshop (MPW), available from APDA.
Apple and third parties also provide additional resource tools you can use to
create the resources for your application.

Most of the Toolbox services use the Resource Manager to read resources for
you. For example, you can use the Window Manager and panel methods to
read descriptions of your application’s windows, dialog boxes, menus, and
controls from resources. The Toolbox services interpret a resource’s data for
you once it is read into memory. While you’ll typically use Toolbox services to
access resources, you can also use the Resource Manager directly to read and
write resources.

The chapter “Resource Manager,” which will be available with later developer
releases, describes the Resource Manager in detail. To help you understand
how the Window Manager and the Panels class library use resources, this
section gives a brief overview of resources.

The Mac OS treats a file as a named, ordered sequence of bytes that is stored on
a volume and is typically divided into two forks, the data fork and the resource
fork. The data fork contains data that usually corresponds to data created by
the user; the application creating the file can store and interpret the data in the
data fork in whatever manner is appropriate. The resource fork of a file
consists of the resources themselves.

When you write data to a file, you write to either the file’s resource fork or its
data fork. You must use File Manager routines to read from and write to a file’s
data fork and Resource Manager routines to read from and write to a file’s
resource fork.

You typically store as resources data that has a defined structure—such as icons
and sounds—and descriptions of menus, controls, dialog boxes, and windows.
When you create a resource, you assign it a resource type and resource ID. A
resource type is a sequence of four characters that uniquely identifies a specific
type of resource, and a resource ID identifies by number a specific resource of
that type. (You can also use a resource name in place of a resource ID to
identify a particular resource within a resource type.) For example, to create a
description of a window in a resource, you create a resource of type 'wind'

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-35
Draft. Confidential.  Apple Computer, Inc. 10/23/95

and give it a resource ID or resource name that is unique among any other
'wind' resources that you have defined. Some resources have restrictions on
the numbers you can use for resource IDs; in general, numbers 128 through
32767 are available for your use.

The Mac OS defines a number of standard resource types. You can use these
resource types to define their corresponding elements. You can also create your
own resource types if your application needs resources other than the standard
types.

When your application or a Toolbox service requests a resource of a particular
type with a given resource ID, the Resource Manager looks for the specified
resource and, if successful, reads it into memory. However, the Resource
Manager does not interpret the format of an individual resource type. You
should not make any assumptions about a standard resource’s format once the
Resource Manager has read it into memory. For example, when you use the
Window Manager to read a description of a window from a 'wind' resource,
the Window Manager uses the Resource Manager to read the resource into
memory. Once the resource is in memory, the Window Manager interprets the
resource’s data and creates a window with the characteristics described by the
resource. You should not directly access the window resource in memory. In
general, the only resources you should access directly in memory are those
whose formats you define yourself.

You typically store the resources specific to your application—such as
descriptions of its menus, windows, controls, and dialog boxes—in the
application file’s resource fork. Whether you store data in the data fork or the
resource fork of a document file depends largely on whether you can structure
that data in a useful manner as a resource. Data that is likely to be edited by the
user is usually stored in the data fork of a document file. Document-specific
settings, such as the document window’s last position and size on the screen,
are usually stored as a resource in the document file’s resource fork. The next
time the user opens the document, your application can read the position and
size saved in this resource and position the document accordingly.

You can specify that the Resource Manager read a resource into memory
immediately when the Resource Manager opens a file’s resource fork, or you
can specify that the Resource Manager read it into memory only when needed.
Normally, the Resource Manager stores resources from resource forks opened
by your application in relocatable blocks in your application’s heap. You can
also specify whether the resource should be purged from memory to make
room in memory for other data. If you specify that a resource is purgeable, you

C H A P T E R 1

Introduction to the Copland Toolbox

1-36 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

need to use the Resource Manager to make sure the resource is in memory
before accessing it.

When a user opens your application, your application’s resource fork is opened
automatically. When your application opens a file, your application typically
opens both the file’s data fork and the file’s resource fork. When your
application requests a resource from the Resource Manager, the Resource
Manager follows a specific search order. (If necessary, your application can
change the search order using Resource Manager routines.) The Resource
Manager normally looks first for the resource in the resource fork of the last file
that your application opened. So, if your application has a single file open, the
Resource Manager looks first in that file’s resource fork. If the Resource
Manager doesn’t find the resource there, it continues to search each resource
fork open to your application in the reverse order that the files were opened.
After looking in the resource forks of files your application has opened, the
Resource Manager searches your application’s resource fork. If it doesn’t find
the resource there, it searches system resources.

This search allows your application to use system resources, to override system
resources with resources stored in the application’s resource fork, and to
override application-defined resources with resources stored in a document’s
resource fork.

A resource fork can contain at most 2700 resources. In general, you should not
create more than 500 resources of the same type in any one resource fork.

Themes 1

As shown in the first two figures in this chapter, users can select different
themes, or styles—that is, coordinated sets of human interface designs that
determine the appearance of human interface elements on a systemwide basis,
across multiple applications. Regardless of the theme, the core user experience
remains the same, and users can switch themes without having to learn new
human interface metaphors. The Appearance Manager and its use of interface
definition objects (IDOs), which are extensible SOM-based definitions for the
appearance of windows, menus, and controls, provide the underlying support
for these capabilities.

IDOs are essentially drawing engines that use the inheritance characteristics of
SOM to simplify the creation and customization of human interface elements.
Unlike panels, they do not encapsulate data or track content in any way and do
not need to be reinstantiated for every interface object. For example, the

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-37
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Window Manager can use a single IDO to draw any number of identical
windows.

A theme and its associated IDOs determine the appearance of all human
interface elements on the screen, including alert icons, controls, background
colors, dialog boxes, menus, screen savers, state transitions, and windows.
Apple supplies several standard themes. Users can choose among the themes
available to the system with the Appearance control panel, which also allows
them to modify other aspects of their computing environment’s appearance,
such as the desktop pattern, highlight color, screen saver, and system font. (The
Appearance control panel replaces the Desktop Patterns and Color control
panels used in System 7.)

In addition to supporting user customization, themes and the underlying IDO
mechanism insulate your application from future changes to the human
interface. They free you from relying on hardwired appearances for standard
elements while making it easier to create customized elements. Because
Copland allows you to deal with appearance abstractions rather than specific
details, your application can support not only the new human interface designs
in Copland but also future design enhancements.

The Appearance Manager manages all aspects of themes and theme switching,
including IDOs, the Appearance control panel, support for a variety of color
data (RGB colors, pixel patterns, and so on), and support for animation and
sound. It supersedes System 7 color tables such as 'cctb' and 'mctb' with a
more abstract mechanism that allows you to coordinate colors with the current
theme.

The Appearance Manager provides primitives for specifying window headers,
group boxes, separators, and other building blocks that you can use to
assemble custom, theme-compatible visual elements for specialized purposes.
Table 1-2 shows preliminary designs for some of the primitives provided by the
Appearance Manager as they appear in the Apple Default theme.

Using the Copland Toolbox as described in this book ensures that your
application will support themes and theme switching.

C H A P T E R 1

Introduction to the Copland Toolbox

1-38 Creating an Application’s Human Interface

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Table 1-2 Some Appearance Manager primitives and examples of their use

Appearance in the
Apple Default Theme Example of use Description

Primary group box.
Used to frame a
primary group of
related controls; title
optional.

Secondary group box.
Used to frame a
secondary group of
related controls; title
optional.

Placard. Used as
background for an
element in a window.

Window header. Used
to display information
at the top of the content
area, below the title bar.

C H A P T E R 1

Introduction to the Copland Toolbox

Creating an Application’s Human Interface 1-39
Draft. Confidential.  Apple Computer, Inc. 10/23/95

In addition to the primitives illustrated in Table 1-2, the Appearance Manager
provides functions that allow you to determine how the current theme is
drawing various aspects of the human interface, such as background fills.

You need to use the Appearance Manager directly only if you’re using the
primitives illustrated in Table 1-2 to create custom human interface elements or
if you want to draw in your application’s content area in a manner that
matches the current theme. For example, you can ask the Appearance Manager
for the current background color so you can coordinate the appearance of your
application’s content area with the current theme. Similarly, if you want to
draw a line through a standard menu item, you can ask the Appearance
Manager for the current color of the menu item text so you can use the same
color for the line.

The Panels class library uses Appearance Manager primitives to create some
kinds of panels. For example, a visual separator panel uses the primary group
box or vertical or horizontal separators. If you want an element to exist
cooperatively with other panels, instantiating and drawing itself as
appropriate, you should use the Panels class library to create it. If you want to

Vertical and horizontal
separators. Used to
separate elements in a
dialog box or window.

Appearance in the
Apple Default Theme Example of use Description

C H A P T E R 1

Introduction to the Copland Toolbox

1-40 Copland Toolbox Architecture

Draft. Confidential.  Apple Computer, Inc. 10/23/95

exercise complete control over the element you are creating—for example, in a
content area that doesn’t use panels at all—you should use the primitives
directly.

The chapter “Appearance Manager,” which will be available with later
developer releases, describes the Appearance Manager in detail.

Copland Toolbox Architecture 1

Figure 1-20 illustrates the relationships among the Copland Toolbox services
directly involved in creating an application’s human interface.

Figure 1-20 High-level architecture of the Copland Toolbox

Applications

QuickDraw and QuickDraw GX

Appearance Manager

Panels

Window

Manager Menus

Controls

Lists

Simple

visual

elements

Dialog

boxes

Interface definition objects (IDOs)

C H A P T E R 1

Introduction to the Copland Toolbox

Copland Toolbox Architecture 1-41
Draft. Confidential.  Apple Computer, Inc. 10/23/95

The parts of the Toolbox shown in Figure 1-20 play the following roles:

■ The Window Manager creates and manipulates windows.

■ The Panels class library provides a uniform, object-oriented interface for
implementing keyboard navigation, mouse interaction, copy, paste, drag
and drop, and other standard behavior for menus, controls, dialog boxes,
alert boxes, lists, and simple visual elements. Panels use the Appearance
Manager, menu IDOs, and control IDOs to draw themselves. You use SOM
techniques to create and manipulate panels.

■ The Appearance Manager keeps track of all aspects of themes and theme
switching, including window IDOs, menu IDOs, control IDOs, and other
information specified by the current theme.

The Toolbox also includes several services not shown in Figure 1-20:

■ The Clipboard Manager and Drag Manager use the Scrap Manager to
transport data by means of copy, paste, and drag and drop operations.

■ The Scrap Manager provides a generic transport package format used by the
Clipboard Manager and Drag Manager.

■ The Finder interface lets you specify icons that represent your application
and its documents in the Finder.

■ The Preferences Manager provides a standard mechanism for controlling
your application’s preferences.

■ The Resource Manager manages the resources in which you specify your
application’s human interface elements

IDOs provided by the current theme determine the appearance of human
interface elements on the screen with the aid of the Appearance Manager,
QuickDraw, and QuickDraw GX. For example, when your application asks the
Window Manager to draw a window, it normally uses the window IDO from
the current theme to do the actual drawing. Similarly, when your application
calls a panel’s Draw method, the panel uses the menu IDO, control IDO, or
Appearance Manager primitives specified by the current theme to draw itself.

You can also use the Appearance Manager, QuickDraw, or QuickDraw GX to
assemble your own human interface elements and content areas, bypassing the
higher-level Toolbox services altogether.

All Toolbox services support similar capabilities in similar ways, thus ensuring
a consistent programming interface as well as a consistent user experience. The
most important architectural principles fall into four categories:

C H A P T E R 1

Introduction to the Copland Toolbox

1-42 Copland Toolbox Architecture

Draft. Confidential.  Apple Computer, Inc. 10/23/95

■ Opacity and consistency. The Toolbox provides a complete programming
model that doesn’t require direct manipulation of underlying data structures.

■ Integrated support for international text. The Toolbox takes advantage of
Copland text objects to provide flexible support for multilingual text
throughout the human interface.

■ Data extensibility. The Toolbox uses the Collection Manager to support the
addition of arbitrary tagged data to Toolbox data structures without
manipulating the structures directly.

■ Design extensibility. The Toolbox includes a comprehensive set of standard
windows, menus, controls, and other human interface elements that can be
used as is or extended by developers to support specialized application
needs.

Opacity and Consistency 1

The Copland Toolbox provides high-level interfaces that eliminate the need to
keep track of the internal organization of system data structures. Instead,
Toolbox services ensure the opacity and consistency of the programming
interface. The Toolbox provides

■ accessor functions or methods for getting and setting information about
specific human interface elements

■ blind references such as WindowRef that identify data structures without
permitting direct access

■ high-level interfaces for all operations, including those traditionally
associated with low-memory globals

■ the Panels class library for creating standard, customizable human interface
elements

By ensuring the opacity of the Toolbox interfaces, Apple can continue
developing human interface capabilities without forcing applications to deal
with new implementation details.

For an introduction to the use of accessors, blind references, the Panels class
library, and other Toolbox interfaces, see the chapter “Introduction to Toolbox
Programming,” which will be available with later developer releases.

C H A P T E R 1

Introduction to the Copland Toolbox

Copland Toolbox Architecture 1-43
Draft. Confidential.  Apple Computer, Inc. 10/23/95

International Text 1

Copland supports a systemwide text data type, called a text object, that
encapsulates the details of text encoding. Text objects allow applications to
manipulate multilingual text transparently without dealing with the details of
character encoding, which can be based on Unicode, ASCII, traditional
Macintosh, and other encoding systems. Copland applications should use text
objects rather than Pascal and C strings within all human interface elements,
including menu item text, buttons, and window titles.

Copland’s pervasive support for text objects has two ramifications for
application programming:

■ You can display multilingual text (in multiple scripts) within a single menu,
dialog box, or other human interface element.

■ Because you don’t have to keep track of the details of individual scripts and
encoding systems, localization of interface elements is greatly simplified.

In addition to supporting text objects throughout the Toolbox, Copland
provides standard human interface elements, such as left-growing windows
and automatically resizable dialog boxes, that support specific international
needs.

For an introduction to the use of text objects with the Toolbox, see the chapter
“Introduction to Toolbox Programming,” which will be available with later
developer releases.

Extensible Data Structures 1

The Copland Toolbox eliminates the need for hardwired modification of system
data structures by providing a new mechanism that lets you attach arbitrary
data to virtually any human interface element. Based on the Collection
Manager, which originally shipped with QuickDraw GX, this mechanism can
be used to associate data with a tag and ID, attach that data to any Toolbox
data structure, and retrieve it when necessary.

The Window Manager and all panels provide collection item functions or
methods you can use to get, set, and remove collection items associated with
virtually any human interface element. Collection items can be used for a
variety of purposes. For example, in a Preferences dialog box that allows the
user to switch among several preference “pages,” each of which displays
multiple panels, you can use collection items to associate a page ID with the

C H A P T E R 1

Introduction to the Copland Toolbox

1-44 Copland Toolbox Architecture

Draft. Confidential.  Apple Computer, Inc. 10/23/95

panels that appear in that page. This makes it easy to hide or show the
appropriate panels when the user switches pages.

The Collection Manager is described in Inside Macintosh: QuickDraw GX:
Environment and Utilities. For an introduction to the use of collections with the
Toolbox, see the chapter “Introduction to Toolbox Programming,” which will
be available with later developer releases.

Extensible Designs 1

Whenever possible, you should use the standard windows, menus, controls,
and so on provided by the Copland Toolbox. This is the easiest way to support
themes. If you need to create custom elements, you have two choices:

■ Customize standard elements. You can modify just those characteristics of a
standard element that you wish to implement differently while maintaining
support for theme switching.

■ Implement your own theme-compatible elements. You can assemble
custom human interface elements from primitives and fills that maintain
support for theme switching.

Copland provides two mechanisms for extending human interface designs:
panels and IDOs. Both allow you to customize the standard designs or create
new ones without sacrificing compatibility.

Customizing Panels 1

Figure 1-6 on page 1-13 shows a portion of the inheritance hierarchy for the
standard Copland panels. You can use standard SOM techniques to subclass
custom panels from any of the standard panel classes.

For example, you can create a custom text panel, based on the editable text
panel class, that accepts numbers but not letters. To do so, you subclass from
the editable text panel class and override just three methods: Keydown, Paste,
and Drop.

Figure 1-21 shows another example of a custom panel, this one based on the
embedding panel class.

C H A P T E R 1

Introduction to the Copland Toolbox

Copland Toolbox Architecture 1-45
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Figure 1-21 Custom panel created by embedding a checkbox panel, rectangular
visual separator panel, and editable text panel in an embedding panel.

The panel shown in Figure 1-21 includes an editable text box, a rectangular
visual separator around the text box, and a checkbox at the top of the visual
separator that allows the user to enable or disable the text box. To create this
panel, you subclass from the editable text panel class to create an embedding
panel that contains the other panels. You must override the embedding panel’s
DoClick method, calling the inherited DoClick to determine whether the click
was in the checkbox and enabling or disabling the editable text panel.

The chapter “Panels,” which will be available with later developer releases,
describes how to assemble custom panels from the standard panels classes.

Customizing Interface Definition Objects 1

IDOs determine all aspects of the appearance of their respective human
interface elements. For example, the Window Manager can use a single IDO to
draw any number of identical windows. When it needs to perform operations
such as drawing the window frame, resizing the window, reporting the region
where mouse-down events occur, calculating content regions, and so on, it uses
standard methods defined for that kind of IDO. This arrangement allows
window operations to be entirely independent of the visual characteristics of a
window defined by a particular IDO.

You can use the IDO mechanism to create custom IDOs in two ways:

■ Subclass from the IDO you want to modify and override only those methods
you want to change.

■ Create your own custom IDO from scratch.

The chapter “Interface Definition Objects,” which will be available with later
developer releases, describes both ways of creating a custom IDO.

Active with keyboard focusInactive

C H A P T E R 1

Introduction to the Copland Toolbox

1-46 Copland Toolbox Architecture

Draft. Confidential.  Apple Computer, Inc. 10/23/95

C H A P T E R 2

Contents

2-1

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 The Toolbox: System 7
Compared With Copland

General Compatibility Guidelines 2-4
The Copland Event Model 2-5

Apple Event Dispatchers 2-6
Apple Event Handlers 2-7
Tasking Models 2-9

One Task, One Dispatcher 2-9
Multiple Tasks, Multiple Dispatchers 2-10
Multiple Tasks, One Dispatcher 2-12

Benefits of the Copland Event Model 2-13
Window Manager 2-14

Constants and Data Types 2-14
Window References 2-14
Window Classes 2-14
Window IDOs 2-14
Window Attributes 2-15

Window Manager Functions 2-15
Initializing the Window Manager 2-15
Creating Windows 2-15
Naming Windows 2-16
Accessing Windows 2-17
Manipulating Window Collection Items 2-17
Displaying Windows 2-18
Manipulating Window Layering 2-18
Positioning Windows 2-18
Retrieving Window Information 2-19
Moving Windows 2-19
Resizing Windows 2-19

This document was created with FrameMaker 4.0.4

C H A P T E R 2

2-2

Contents

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Zooming Windows 2-20
Collapsing Windows 2-20
Disposing of Windows 2-21
Maintaining the Update Region 2-21
Setting and Retrieving Other Window Characteristics 2-21
Manipulating the Desktop 2-21
Manipulating Window Color Information 2-21
Low-Level Routines 2-21

Window Manager Resource 2-22
Dialog Manager, Control Manager,
List Manager, Menu Manager 2-22
Scrap Manager 2-22

Scrap Manager Functions 2-23
Creating and Deleting Scrap References 2-23
Adding Scrap Items to the Scrap 2-23
Making and Keeping Promises 2-24
Getting Scrap Item Information 2-24
Working With Collections 2-24

Clipboard Manager 2-25
Clipboard Manager Functions 2-26

Putting a Scrap on the Clipboard 2-26
Retrieving and Releasing a Scrap From the Clipboard 2-26

Drag Manager 2-26
Drag Manager Functions 2-28

Installing and Removing Drag Handler Functions 2-28
Creating and Disposing of Drag Objects and References 2-28
Overriding Standard Input and Drawing Behavior 2-28
Performing a Drag 2-28
Setting the Transparency of the Drag Image 2-29
Supporting Drag and Drop Behavior 2-29
Getting and Setting Status Information About a Drag 2-29

Resource Manager 2-29

C H A P T E R 2

2-3

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

The Toolbox: System 7 Compared With Copland 2

This chapter compares some of the System 7 Toolbox services with the
equivalent Copland services, including information on backward compatibility
with System 7 applications and requirements for Copland-savvy applications.
Where possible, this chapter categorizes Toolbox functions according to the
categories used in the reference sections in

Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter doesn’t describe the interfaces that are entirely new in Copland,
such as the Appearance Manager, Panels class library, and IDO class library.
For a conceptual overview of the entire Copland Toolbox, see Chapter 1,
“Introduction to the Copland Toolbox.”

If you have developed a System 7 application and want to begin planning its
migration to Copland, this chapter provides preliminary information to help
you get started. However, it doesn’t include detailed information about the
Copland event model, panel methods, resource formats, human interface
guidelines, and other aspects of Copland that you will need to understand
before you can create a Copland-savvy application. Later developer releases
will provide this information.

▲ W A R N I N G

The interface descriptions in this chapter are preliminary
and incomplete. All interfaces are subject to change in later
developer releases.

In particular, the interfaces in this release for the Dialog
Manager, Control Manager, List Manager, and Menu
Manager will not be supported in later releases, and the
Panels class library will be extended to provide the
equivalent services.

▲

This document was created with FrameMaker 4.0.4

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-4

General Compatibility Guidelines

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

General Compatibility Guidelines 2

Using the Copland Toolbox not only ensures compatibility with Copland but
also lays the foundation for new capabilities that will be introduced in
Gershwin and future Mac OS enhancements.

Like any major system software revision, Copland introduces features that
aren’t backward compatible with earlier systems. However, most System 7
applications can run on Copland, even though they may not be able to take
advantage of all its features. For example, clients of standard System 7
definition procedures (defprocs) work correctly and inherit the Copland
human interface appearance. Custom defprocs written for System 7 also work
correctly on Copland but do not inherit the Copland appearance.

Here are some guidelines you can use now to ensure that System 7 applications
currently under development are compatible with the Copland Toolbox:

■

Support Apple events as described in

Inside Macintosh: Interapplication
Communication

, including factoring your application and making it fully
scriptable and recordable. The Copland event model is based primarily on
Apple events.

■

Don’t assume that dialog box backgrounds are white. The Copland human
interface supports a variety of background colors.

■

For floating windows, use the standard floating window definition (ID 124)
introduced in System 7.5. This window definition works correctly on
Copland and inherits the Copland appearance.

■

Don’t hard-code any assumptions about the precise locations of human
interface elements such as close boxes, zoom boxes, and window titles
within the noncontent areas of windows or dialog boxes.

■

Don’t hard-code any assumptions about the precise locations of any human
interface elements in the Save and Open dialog boxes. Use the relative
position of the standard elements to determine the locations of new ones.

■

Never access low memory directly. If you need to access low memory, use
accessor functions.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

The Copland Event Model

2-5

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

■

Use data structure accessor functions where they exist. For example, use

SetMenuItemText

 and

GetMenuItemText

 to manipulate menu item text rather
than accessing the data structure directly.

■

If data structure accessor functions aren’t available, isolate the code that
accesses data structures directly. Copland provides accessor functions for all
data structures, and it is easier to take advantage of them if you have
isolated the code that needs to be updated.

■

Don’t manipulate the window list directly. Use the

BringToFront

 and

SendBehind

 functions instead.

The Copland Event Model 2

Chapter 1, “Introduction to the Copland Toolbox,” introduces the Copland
event model. Copland supports the classic Event Manager as described in

Inside Macintosh: Macintosh Toolbox Essentials

 for backward compatibility.

When launched, a Copland-savvy application calls

AEInstall

 to install
handlers for the events that it wants to handle. It doesn’t use

WaitNextEvent

 to
receive events and

AEProcessAppleEvent

 to dispatch them. Instead, the
application uses the new Copland function

AEReceive

, which processes events
with other Apple event consumers in the preemptively scheduled Copland
environment.

A Copland application consists of one or more tasks. Copland tasks are
introduced in the accompanying document, “Kernel and Operating System
Services.” Typically, the code for a task performs any initialization work the
task requires and then calls

AEReceive

, which doesn’t return unless there’s an
error. For the most part, the task executes from inside

AEReceive

, which takes
care of many of the operations that are handled by a System 7 event loop. The

AEReceive

 function blocks the calling task until an event the application can
handle arrives, then reawakens the task and dispatches the event to the
appropriate handler. This cycle of blocking then waking the task continues
until the task terminates or the application quits.

All events are conveyed via the “bottleneck” of

AEReceive

. This avoids the
multilevel dispatching required with the classic Event Manager, which
recognizes three principal kinds of events (low-level events, operating system
events, and high-level events such as Apple events), each requiring different
treatment.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-6

The Copland Event Model

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

The sections that follow introduce some of the concepts underlying the
Copland event model. Later developer releases will provide more detailed
information about handling events in Copland.

Apple Event Dispatchers 2

The ultimate target of an event is always an

Apple event dispatcher,

 which
combines an event queue, at least one task, and a stack of handler tables. Every
process has a default Apple event dispatcher, and your application may install
additional dispatchers as necessary.

Figure 2-1 illustrates the way an Apple event dispatcher uses its handler tables
to dispatch an event.

Figure 2-1

A handler table stack associated with an Apple event dispatcher

When an event arrives,

AEReceive

 wakes up the task and searches the stack of
handler tables for a matching handler. An Apple event handler is identified by
the combination of the event class and event ID of the event it handles—much
the way Apple event handlers are stored in application and system handler
tables in System 7. The main difference is that Copland has no handler tables

Incoming

event

Handler

Handler table

stack

Application

tables

Default

table

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

The Copland Event Model

2-7

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

comparable to the global handler tables in System 7. Each Apple event
dispatcher maintains a separate handler table stack, which consists of a default
handler table and one or more application handler tables.

The

default handler table,

 which is identical for all applications and cannot be
modified, provides a set of default event handlers. Most applications need to
install one or more of their own handler tables to augment the default
behaviors.

Application handler tables

 are installed by your application. You can use
Apple Event Manager functions to add, remove, or replace application handler
tables at any time.

You can stack application handler tables on top of the default one to express
interest in events and intercept them as the Apple Event Manager matches
incoming events with handlers. When the Apple Event Manager searches for
an event’s handler, it starts from the top of the stack and looks down the chain
of handler tables until it finds a match.

Apple Event Handlers 2

When the Apple Event Manager locates an event’s handler in a handler table, it
passes the event to that handler. The handler must make several decisions
about how to handle each event:

1.

Handle the event or don’t handle it.

 If it actually handles the event, the
handler must then choose whether to filter it. If the handler doesn’t handle
the event, it allows the event to “fall through” to the next table in the stack,
and the Apple Event Manager keeps searching for a handler.

2.

Filter the event or don’t filter it.

 If it filters the event, the handler suspends
the event temporarily until there is a change in modality. For example, a
handler might filter certain events while a dialog box is being displayed,
allowing those events to be handled only after the user has dismissed the
dialog box. If it doesn’t filter the event, the handler must respond to the
event in some way and then decide whether to pass the event on to the next
table in the handler table stack.

3.

After handling the event, pass it on or not.

 After handling the event, the
handler can choose to let it fall through to next table in the stack, in which
case the Apple Event Manager keeps searching for a handler.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-8

The Copland Event Model

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Events for which handlers can be installed in a handler table include the
following:

■

Physical events

 are low-level events—such as disk inserts, update and
activate events, mouse clicks, and keypresses—that are generated by the
system. Most of the handlers provided by the default handler table are
physical event handlers. Physical event handlers translate physical events
into higher-level synthetic events and send the repackaged events to the
same Apple event dispatcher. For example, the Text Services Manager can
translate a series of keypresses into a single Kanji character.

■

Synthetic events

 are events that are meaningful to most applications, such
as “window zoomed” or “menu selected.” More than one physical event
may generate the same synthetic event; for example, the user might select a
menu item by releasing the mouse button or by pressing a key. The default
handler table provides some synthetic event handlers that basically redirect
the event to a particular menu or window. Synthetic event handlers can also
translate synthetic events into higher-level semantic events.

■

Semantic events

 are events such as “Open Document” or “Quit
Application” with a specific meaning for an individual application. Semantic
events can be generated by synthetic events; for example, the synthetic event
handler for the Quit command in the File menu in turn generates a Quit
Application semantic event. More commonly, semantic events are injected
directly into the corresponding handler rather than cascading up through
synthetic events from an original physical event. For example, a Get Data
event is always generated by a script or another application; it is never
generated directly by the user.

When you’re creating the human interface for your application, you are
primarily concerned with synthetic events. Most synthetic events are
ultimately directed at a target within the application, such as a window or a
menu. Combined with the Panels class library, the event-handling mechanism
provided by Apple event dispatchers allows the Toolbox to help your
application arbitrate targets for some events while allowing you to override the
default arbitration at any point.

Semantic events are primarily of interest to external clients. Unlike other kinds
of handlers, semantic event handlers can send replies in response to a script or
to a query from another application.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

The Copland Event Model

2-9

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Tasking Models 2

A Copland application has a single primary task and may have additional
secondary tasks. Only the primary task can call Toolbox services. Tasks are
discussed in more detail in the accompanying document, “Kernel and
Operating System Services.”

When any task calls

AEReceive

, the task specifies the Apple event dispatcher
(and thus the event queue) in which it’s interested. You can associate tasks with
Apple event dispatchers in three principal ways:

■

one task and one dispatcher

■

multiple tasks and multiple dispatchers

■

multiple tasks and one dispatcher

The sections that follow introduce these tasking models. More complex
relationships among tasks and dispatchers may be created by combining these
approaches in various ways.

Identifying the particular arrangement of tasks and dispatchers appropriate for
your application is a design decision. In general, a single primary task should
be associated with a single Apple event dispatcher, as in the first two models.
The third model, which associates multiple tasks with a single dispatcher, is
intended for use by server processes.

One Task, One Dispatcher 2

Figure 2-2 shows the simplest case: A single primary task associated with a
single Apple event dispatcher.

Figure 2-2

One task, one dispatcher

Primary

task

AEReceive Apple event

dispatcher Handlers

Initialization

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-10

The Copland Event Model

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

The arrangement shown in Figure 2-2 superficially resembles a System 7 event
loop in the sense that a single task is responsible for all event handling. The

AEReceive

 function wakes the application’s primary task each time an event
arrives and uses the application’s single Apple event dispatcher to locate the
event’s handler.

Multiple Tasks, Multiple Dispatchers 2

An Apple event dispatcher and its handlers represent one kind of behavior or
set of activities that your application can perform. For example, it makes sense
to associate an application’s primary task with a single dispatcher for all
handlers that call Toolbox functions, as in Figure 2-2.

It’s also possible to create additional dispatchers for one or more secondary
tasks, which cannot call Toolbox functions. Figure 2-3 illustrates this
arrangement.

Figure 2-3

Multiple tasks, multiple dispatchers

Primary task

Secondary task

Secondary task

AEReceive Apple event

dispatcher 2 Handlers

AEReceive

Apple event

dispatcher 1 Handlers

Apple event

dispatcher 3 Handlers

AEReceive

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

The Copland Event Model

2-11

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

You can implement the tasking model shown in Figure 2-3 in several ways. It’s
possible, for example, to route events to a particular dispatcher. You can route
all human interface events to the dispatcher associated with the primary task,
and other events to dispatchers associated with secondary tasks as appropriate.

Alternatively, you can send all events to the primary task initially and use the
primary task’s dispatcher to forward certain events to one or more secondary
tasks. For example, a graphics program might have a menu command that
transforms an image in some way by performing a series of calculations. The
handler invoked by that command can in turn send an Apple event to a
different dispatcher associated with a secondary task that actually performs the
calculations. The primary task is then free to continue responding to the user’s
manipulation of the human interface while the secondary task, which doesn’t
involve the human interface, continues to execute in the background.

When the secondary task needs to inform the user of its progress, the handler
that’s performing the calculation can send an event back to the primary task’s
dispatcher to update a progress indicator. Similarly, when the handler has
completed its calculations, it can send an event back to the primary task’s
dispatcher to invoke the handler that actually draws the transformed image.

Because Copland permits an application to use multiple secondary tasks in
addition to a single primary task, the graphics application in this example
could actually perform transformation calculations on several different images,
starting each calculation at a different time and performing them all
concurrently. Thus, the primary task could be drawing the results of one
calculation to the screen while one secondary task is in the middle of
calculating a transformation for a second image and another secondary task is
just beginning to calculate a transformation for a third image.

Because of the way the Copland kernel prioritizes tasks in this kind of
situation, the application continues to be highly responsive to user actions even
while secondary tasks are executing—unlike System 7, in which background
processing can seriously interfere with the application’s responsiveness.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-12

The Copland Event Model

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

Multiple Tasks, One Dispatcher 2

Figure 2-4 shows multiple tasks calling

AEReceive

 with the same dispatcher.
Each task has its own entry point and begins executing at a different time. The
tasks don’t necessarily have to be identical, but they must use the same set of
handlers provided by the dispatcher and must all be equally qualified to deal
with incoming events. All handlers in a dispatcher that is shared in this way
must be fully reentrant.

Figure 2-4

Multiple tasks, one dispatcher

This arrangement is most useful for server applications. For example, a
database that receives requests continuously from several sources can spawn a
series of identical tasks associated with the same Apple event dispatcher. All
these tasks share the same stack of handler tables. The Apple event dispatcher
pairs each task with each incoming request and looks up the corresponding
handler in the stack of handler tables. As each task resumes execution, it can
execute at the same time, if necessary, that previously woken tasks are
executing. Thus, the database can handle a series of requests simultaneously.

Task 1

Task 2

Task 3

AEReceive Apple event

dispatcher

Handlers

AEReceive

AEReceive

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

The Copland Event Model

2-13

Draft. Confidential.



 Apple Computer, Inc. 10/23/95

The tasking model shown in Figure 2-4 is not appropriate for most client
applications or for applications that interact directly with the user.

Benefits of the Copland Event Model 2

You must support the Copland event model to take advantage of all the human
interface features provided by the Copland Toolbox. The Copland event model
also provides these benefits:

■

The use of blocking rather than polling improves performance for all
applications running on the same machine and takes maximum advantage
of priority-based preemptive scheduling.

■

The use of Apple event handlers rather than event masks to distinguish
events permits a much larger name space for events. This ensures that Apple
can provide new default handlers and new behaviors with minimum impact
on existing applications and also makes it easier to create specialized events
for your own purposes.

■

The use of Apple events throughout the system ensures that all
Copland-savvy applications can be scriptable and recordable.

■

Events are always sent and dispatched the same way, which simplifies the
overall Mac OS programming model.

Although Copland supports the classic Event Manager for backward
compatibility, many new Toolbox features require the new event model, and
much of the information conveyed by Copland Apple events is lost in the
translation to classic events.

More information about the Copland event model will be available with later
developer releases. The best way to prepare your System 7 application for
Copland events is to support Apple events as described in

Inside Macintosh:
Interapplication Communication

, including factoring your application and
making it fully scriptable and recordable. In general, the new event interfaces
provided by Copland are designed to augment the capabilities described in
that book rather than to replace them.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-14 Window Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Window Manager 2

Constants and Data Types 2

Window References 2

All Window Manager functions that take or return pointers of type WindowPtr
or WindowPeek in System 7 use window references of type WindowRef in Copland.
The WindowRecord data structure and other related structures that underlie
window references are not directly accessible to Copland-savvy applications.
Instead, you pass window references to accessor functions that get and set
window characteristics (see “Accessing Windows” on page 2-17 for more
details).

Window Classes 2

The Copland Window Manager defines a new WindowClass data type that
determines a window’s layering. When you create a window, you specify its
class as normal, floating, or modal. Modal windows always appear above
floating windows, which always appear above normal (document) windows.
Once a window has been created, its class can’t be changed.

When a modal window becomes visible, the Window Manager deactivates all
the application’s floating windows, generates deactivate events for them, and
the menu bar changes to a modal state. The Window Manager reverses this
process when it hides any modal window.

Window IDOs 2

The Copland Window Manager replaces the window definition functions
(defprocs) used in System 7 with SOM-based window interface definition
objects (window IDOs). For more information about IDOs, see Chapter 1,
“Introduction to the Copland Toolbox.”

Window IDOs support several new capabilities that aren’t supported by
System 7 definition functions. For example, a window IDO specifies a grow
direction, which can be either left to right or right to left, and allows you to

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Window Manager 2-15
Draft. Confidential.  Apple Computer, Inc. 10/23/95

locate specific parts of a window, such as the title text and the window’s
draggable region.

Window Attributes 2

In System 7, a window’s visual and functional attributes are defined by a
window definition ID that incorporates both the resource ID of a window
definition function and a variant specifying structural differences between
windows that are otherwise identical.

The Copland Window Manager replaces window defprocs with window IDOs
and retains the variant mechanism for specifying basic structural differences
such as modal dialog boxes, movable modal dialog boxes, and floating
windows with a drag bar at the side instead of the top. In addition, the
Copland Window Manager defines a new WindowAttributes data type that
specifies additional details for a window, such as whether it has a grow box,
collapse box, title bar icon, or right-to-left orientation; whether its content can
be erased; and whether it should receive update or activate events.

Window Manager Functions 2

Initializing the Window Manager 2

This release replaces the System 7 function InitWindows with
InitWindowsVersion, which takes the version number of the current Window
Manager as a parameter. Although this release requires Copland-savvy
applications to use InitWindowsVersion, this requirement is likely to change in
later releases.

Creating Windows 2

The Copland Window Manager provides two new functions that create
windows and return window references. The GetNewWindowRef function creates
a new window on the basis of a description in a window resource. The
NewWindowRef function creates a window on the basis of window attributes and
other characteristics specified in its parameters. Copland-savvy applications
should use these functions rather than GetNewCWindow, GetNewWindow, NewCWindow,
and NewWindow, which are supported for backward compatibility only.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-16 Window Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

The System 7 Window Manager creation functions use window definition IDs
to identify a window definition function and variant code, which determine
how to draw the window. The Copland Window Manager creation functions
use window IDOs rather than window defprocs and use variant codes only to
identify broad structural differences among modal, movable modal, and
floating windows. You can obtain a reference to the current theme’s window
IDO by using the Appearance Manager routine GetSystemIDO.

Neither GetNewWindowRef nor NewWindowRef include a parameter for storage of
the window itself. The Copland Window Manager keeps track of window
memory for you.

It is usually easier to use GetNewWindowRef to load a window from a previously
defined resource rather than using NewWindowRef to create it dynamically. The
GetNewWindowRef function uses a window IDO and a variant code to create a
window according to a description in a window resource. Although an IDO
and variant code can be specified in the window resource, you can also pass
GetNewWindowRef a UniversalIDOReference structure that specifies a different
window IDO and variant code.

A UniversalIDOReference is a structure defined by the Appearance Manager. It
includes a pointer to an IDO and a variant code for the desired window
structure. To override the IDO and variant code specified in the window
resource, you pass GetNewWindowRef a pointer to a UniversalIDOReference
structure. To use the window IDO and variant code specified in the window
resource, you pass a null pointer instead of a pointer to a
UniversalIDOReference structure.

Differences between NewWindowRef and its System 7 counterparts include the
following:

■ There are no title, refCon, or visibility parameters. A window is always
invisible when it is created. You use other Window Manager functions to
make a window visible, set its title, and keep track of your associated data.

■ Instead of passing a window definition ID, you pass NewWindowRef a pointer
to a window IDO and a variant code.

■ You must specify the window’s class (see “Window Classes” on page 2-14).

Naming Windows 2

When you use GetNewWindowRef to create a window, the name of the window is
specified in a text object resource referred to by the window resource. To get or

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Window Manager 2-17
Draft. Confidential.  Apple Computer, Inc. 10/23/95

set the title of a window after you have created it, you should use the Copland
accessor functions SetWindowTitle and GetWindowTitle. Although the Copland
Window Manager supports the System 7 functions SetWTitle and GetWTitle for
backward compatibility, Copland-savvy applications should use the new
functions to take advantage of Copland text objects.

Accessing Windows 2

The Copland Window Manager doesn’t allow direct access to the data
structures that underlie window references. Instead, you pass window
references to new accessor functions that get and set a variety of window
characteristics, including its attributes, rectangle, region, kind, visibility,
highlighting, and title. You can use additional accessors to get characteristics
that can’t be set, such as the structure region, content region, update region,
class, reference constant, and window IDO.

The new accessor functions include a new convenience function,
GetWindowPort, that provides a way to get a window’s graphics port. You must
use this function to get a window’s port; you cannot assume that a window
reference is the same as a graphics port.

Manipulating Window Collection Items 2

The Copland Window Manager provides three functions for manipulating the
collection items associated with a window: AddWindowCollectionItem,
GetWindowCollectionItem, and RemoveWindowCollectionItem. You can use these
functions to access collection items defined by the Window Manager or to add
and remove your own collection items.

The Window Manager defines collection item tags for the following window
data:

■ handle to the title bar icon suite

■ handle to the custom title bar gadget icon suite

■ handle to the window content pattern

■ RGB color for the window content area

If collection items for a particular window define both a pattern and an RGB
color, the Window Manager ignores the color and uses the pattern.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-18 Window Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Displaying Windows 2

The ShowWindow, HideWindow, ShowHide (renamed ShowHideWindow), HiliteWindow,
and DrawGrowIcon work much the same way in Copland as they do in System 7.

Manipulating Window Layering 2

In the Copland Window Manager, the SelectWindow, BringToFront, and
SendBehind functions move a window only within that portion of the
application’s layer devoted to the window’s class. For example, calling
SelectWindow on a document window brings it to the front of all document
windows, but not in front of modal or floating windows. Similarly, SendBehind
doesn’t permit invalid ordering of windows. Applications that aren’t
Copland-savvy aren’t affected by this change because they don’t use the new
floating and modal window classes.

Copland-savvy applications can continue to use the FrontWindow function to get
the frontmost visible window, regardless of its class. The Copland Window
Manager also provides several new functions that act on class-specific portions
of the window list in an application’s layer. These include the following:

■ GetWindowList returns the frontmost window. The semantics of this function
will change in future releases.

■ FrontNonFloatingWindow returns the frontmost modal or document window.

■ FrontWindowOfClass returns the frontmost window of a given class.

■ AreFloatersVisible returns the visible state of all floating windows.

■ ShowHideFloatingWindows sets the visible state of all floating windows.

■ ActivateFloatingWindows activates or deactivates all floating windows.

Positioning Windows 2

The Copland Window Manager provides three new functions—
AutoPositionWindow, PositionWindow, and CheckWindow—that allow you to
position windows or get information related to window positioning by passing
constants for various control values. These calls greatly simplify
window-positioning tasks that you must code explicitly in System 7. For
example, AutoPositionWindow automatically takes care of staggering multiple
windows so they don’t overlap.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Window Manager 2-19
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Retrieving Window Information 2

Current plans for the Copland version of the FindWindow function include
several new result codes:

■ The inCollapseBox constant indicates that a mouse-down event has occurred
in the window’s collapse box. Copland-savvy applications should respond
by calling the CollapseWindow function.

■ The inTitleIcon constant indicates that a mouse-down event has occurred in
the window’s title bar icon. Copland-savvy applications should respond as
follows: Use the Drag Manager to create a drag scrap reference, pass that
reference to the Window Manager function BeginTitleIconDrag to highlight
the icon, call the Drag Manager to handle the actual dragging and dropping,
then call EndTitleIconDrag.

■ The inCustomGadget constant indicates that a mouse-down event has
occurred in the window’s custom gadget. A custom gadget is an
application-defined element in the title bar.

Note
The Copland event model and the Panels class library
make it possible to manipulate windows without calling
the FindWindow function directly. Later developer releases
will include more information on this topic. ◆

Unlike the System 7 Window Manager, the Copland Window Manager won’t
attempt to activate the palettes of floating windows. Copland-savvy
applications either can rely on the Window Manager to activate windows
appropriately or can instruct the Window Manager to ignore palette activation
and handle it themselves. For backward compatibility, Copland also supports
applications that aren’t Copland-savvy and patch FrontWindow to achieve
appropriate window activation when tool palettes are present.

Moving Windows 2

Functions used for moving windows, such as DragWindow and MoveWindow, work
much the same way in Copland as they do in System 7.

Resizing Windows 2

The Copland Window Manager supports window resizing in any direction.
The window IDO specifies the grow direction, and you call the new

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-20 Window Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

ResizeWindow function to track the mouse and resize the window as
appropriate. The ResizeWindow function replaces the System 7 functions
GrowWindow and SizeWindow, which are supported for backward compatibility
only.

Zooming Windows 2

The Copland Window Manager extends the monitor-specific zooming behavior
of Finder windows to all applications. Clicking the zoom box in a Copland
window causes the window to expand so it zooms to its standard state (the
maximum size of its content), if possible, without moving to a different monitor.

The new Window Manager function ZoomWindowOut zooms a window to its
standard state. If the window can’t fit at its ideal size, ZoomWindowOut zooms it
to fit its current monitor.

The System 7 function ZoomWindow is still supported in Copland. In addition to
zooming, ZoomWindow is useful for resizing a window programmatically in a
direction other than down and to the right.

Collapsing Windows 2

System 7 supports window collapsing by means of the WindowShade
extension, which collapses windows without applications’ knowledge when
the user double-clicks the window’s title bar. This causes some compatibility
problems for applications that cache certain information about a window’s size
and position.

Copland windows have a collapse box for collapsing windows. The version of
the Copland Window Manager in this release provides a new FindWindow result
code, inCollapseBox, that indicates a mouse-down event has occurred in the
collapse box. You can respond to such an event by calling the new routine
CollapseWindow. To determine whether a window is collapsed, you can call the
IsWindowCollapsed function. As previously noted, the Copland event model
and the Panels class library also make it possible to manipulate windows
without calling the FindWindow function directly.

In applications that aren’t Copland-savvy, windows that use standard system
window definitions have collapse boxes and will be collapsed by the Window
Manager without the application’s knowledge.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Window Manager 2-21
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Disposing of Windows 2

Copland-savvy applications should always use DisposeWindow to dispose of a
window. The Copland Window Manager supports CloseWindow for backward
compatibility only.

Maintaining the Update Region 2

The System 7 functions InvalRgn, InvalRect, ValidRgn, and ValidRect all assume
that the current graphics port is actually a window pointer and adjust the
update region of that window accordingly. Because the graphics port’s pointer
isn’t the same as a Copland window reference, the Copland Window Manager
replaces these functions with four new functions that take window references:
InvalWindowRgn, InvalWindowRect, ValidWindowRgn, and ValidWindowRect.

The BeginUpdate and EndUpdate functions work much the same way in Copland
as they do in System 7.

Setting and Retrieving Other Window Characteristics 2

The SetWindowPic, SetWRefCon, GetWRefCon, and GetWVariant functions work
much the same way in Copland as they do in System 7.

Manipulating the Desktop 2

The GetCWMgrPort and GetWMgrPort functions are supported for backward
compatibility only. They aren’t recommended for Copland-savvy applications.
The SetDeskCPat and GetGrayRgn functions aren’t supported at all in Copland.

Manipulating Window Color Information 2

In Copland, window color information is handled entirely by the window IDO,
which in turns relies on the current theme. The System 7 functions SetWinColor
and GetAuxWin are supported only for backward compatibility, and (as in
System 7) only with respect to background color.

Low-Level Routines 2

Low-level routines such as ClipAbove, SaveOld, and DrawNew are supported for
backward compatibility only.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-22 Dialog Manager, Control Manager, List Manager, Menu Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Window Manager Resource 2

The Copland Window Manager supports a new 'wind' resource that
Copland-savvy applications should use rather than the System 7 'WIND'
resource, which is supported for backward compatibility only.

Dialog Manager, Control Manager,
List Manager, Menu Manager 2

The interfaces for the Dialog Manager, Control Manager, List Manager, and
Menu Manager in this release represent work in progress that will change
significantly in later developer releases. The interfaces for the Panels class
library in this release will be extended to provide equivalent services by means
of panel attributes and methods.

The System 7 versions of the Dialog Manager, Control Manager, List Manager,
and Menu Manager are supported for backward compatibility only.
Copland-savvy applications must use the Panels class library to create dialog
boxes, alert boxes, controls, lists, and menus.

For an introduction to panels, see Chapter 1, “Introduction to the Copland
Toolbox.”

Scrap Manager 2

The Scrap Manager used in System 7 has changed little since it was first created
as part of the software for the original Macintosh computer. It was originally
designed to handle a few lines of text or a 1-bit picture being copied and pasted
between MacWrite and MacPaint, not the large pieces of data, such as
QuickTime movies, sounds, and blocks of formatted text, commonly used
today.

Copland replaces the original Scrap Manager with a new Clipboard Manager
and introduces an entirely new Scrap Manager. The new Scrap Manager
supplies the generic storage mechanism for copying and pasting Clipboard
information and dragging and dropping data. Both the Clipboard Manager and
the Drag Manager use the Scrap Manager to move data between clients (for

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Scrap Manager 2-23
Draft. Confidential.  Apple Computer, Inc. 10/23/95

instance, between applications or within areas of a single application). The
System 7 Drag Manager functions that prepared data for transport have been
revised and incorporated into the Copland Scrap Manager so that they apply to
Clipboard data as well as to drag information.

The Copland Scrap Manager allows you to create a scrap, add items to the
scrap, and specify each scrap item with different scrap item types (that is,
multiple representations). It also allows you to read and extract information
from a scrap after it has been transported to its destination.

You can add collection items to a scrap at three levels: the scrap as a whole,
individual items within the scrap, and scrap item types within each scrap item.
For example, a collection item for the entire scrap might specify an identifier
for the creator of the scrap; and a collection item at the scrap item level might
indicate the order in which the user selected the items.

Many Scrap Manager, Clipboard Manager, and Drag Manger functions take a
scrap reference as an input parameter. A scrap reference identifies a particular
scrap, whether it is used by the Clipboard Manager, the Drag Manager, or the
Scrap Manager.

Scrap Manager Functions 2

The Copland Scrap Manager provides functions you can use to create and
delete scrap references, add items to the scrap, make and keep promises, obtain
information about scrap items, and add collection items to a scrap.

Creating and Deleting Scrap References 2

You use the NewScrapRef function to create a new scrap and allocate a scrap
reference for use with a Clipboard. The DisposeScrapRef function disposes of a
scrap previously created by the NewScrapRef function.

Adding Scrap Items to the Scrap 2

The AddScrapItemType function, which replaces the System 7 Drag Manager
function AddDragItemFlavor, lets you write data in a specific format to the scrap.
You can use AddScrapItemType repeatedly to place data in more than one
format in the scrap.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-24 Scrap Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

To add data to a specific item type, you can use the SetScrapItemTypeData
function, which replaces the System 7 Drag Manager function
SetDragItemFlavorData.

Making and Keeping Promises 2

The Copland Scrap Manager adds support for promises in Clipboard
operations to the support provided by System 7 for promises in drag
operations. You can use the SetScrapSendProc function to specify the scrap send
function the Scrap Manager will use when a promise needs to be fulfilled. (This
function replaces the System 7 Drag Manager SetDragSendProc function.) To
specify the data fulfillment function for a scrap item type, you can use the
Copland Scrap Manager function SetScrapItemTypeDataFulfillmentProc, which
replaces the System 7 Drag Manager function SetDragSendProc.

Getting Scrap Item Information 2

The Copland Scrap Manager provides functions that obtain a range of data
about scrap items, including the number of scrap items, the item reference
number for a specified scrap item, the number of item types for a specified
scrap item, the scrap item type associated with a particular location within
a scrap item, the size of a specified scrap item type, and the data for a
specified scrap item type. These scrap-item information functions replace
the following System 7 Drag Manager functions: CountDragItems,
GetDragItemReferenceNumber, CountDragItemFlavors, GetFlavorType,
GetFlavorDataSize, and GetFlavorData.

Working With Collections 2

The Copland Scrap Manager includes a set of functions that let you retrieve
add, or remove specific collection information about the entire scrap, a specific
scrap item, and a scrap item type.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Clipboard Manager 2-25
Draft. Confidential.  Apple Computer, Inc. 10/23/95

Clipboard Manager 2

The entirely new Copland Clipboard Manager supports cut, copy, and paste by
accepting scraps created with the Scrap Manager and transferring them
between clients via the familiar concept of the Clipboard.

Basically, the Copland Clipboard contains a single Scrap Manager scrap.
Clients use the Scrap Manager to create the scrap, the Clipboard Manager to
put it on or retrieve it from the Clipboard, and the Scrap Manager to read it.
The Clipboard Manager accepts a Scrap Manager scrap, returns read access to a
scrap on the Clipboard, and disposes of a scrap when a client is finished with it.

The Clipboard Manager manages the Clipboard. When you use the Clipboard
Manager to put a scrap on the Clipboard, you can no longer write to that scrap
(except for unfulfilled promises). The Clipboard Manager automatically
disposes of the scrap when it has been replaced by a new scrap and other
applications are finished retrieving it.

When using the Clipboard Manager to exchange data between applications or
within your application, you follow these steps:

1. Create a scrap with the Scrap Manager’s NewScrapRef function.

2. Add items to the scrap with the Scrap Manager’s AddScrapItemType function.

3. Put the scrap on a Clipboard with the Clipboard Manager’s
PutScrapOnClipboard function.

4. When the user pastes, get the scrap from the Clipboard with the
GetClipboardScrapRef function.

5. Obtain data from the scrap using the Scrap Manager functions.

The GetClipboardScrapRef function returns a Clipboard scrap reference that
you can pass to Clipboard Manager functions and to Scrap Manager functions.
The Copland Clipboard scrap reference is defined by the ClipboardScrapRef
data type.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-26 Drag Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Clipboard Manager Functions 2

The Copland Clipboard Manager functions let you place a scrap on the
Clipboard and retrieve a scrap from it.

Putting a Scrap on the Clipboard 2

The PutScrapOnClipboard function takes a scrap created using the Scrap
Manager and puts it on the Clipboard. If this function succeeds, the scrap just
written becomes the active Clipboard scrap and the Clipboard Manager
disposes of the scrap when it’s finished with it. If the function fails, the client
must dispose of the scrap.

Retrieving and Releasing a Scrap From the Clipboard 2

The GetClipboardScrap function retrieves a read-only copy of the scrap from
the Clipboard. After retrieving a scrap from the Clipboard, you use Scrap
Manager functions to extract its data. When you’re finished with a scrap
retrieved from the Clipboard, you use the ReleaseClipboardScrap function to
release the scrap reference.

Drag Manager 2

The System 7 Drag Manager supports all aspects of drag and drop behavior,
both in the Finder and within applications. The Copland Drag Manager
supports the user experience of dragging, but it no longer packs and unpacks
the data that’s transported in a drag. Instead, you use the Drag Manager to
create the scrap, the Scrap Manager to add items to it, the Drag Manager to
support the user experience during dragging, and the Scrap Manager to read
the scrap after the drag operation is complete.

As mentioned in “Scrap Manager,” beginning on page 2-22, the System 7 Drag
Manager functions that prepare data for transport have been revised and
incorporated into the Copland Scrap Manager so that they apply to Clipboard
data as well as to drag information. The Copland Drag Manager differs from
the System 7 Drag Manager in several other important respects:

■ As the user drags an image around the screen, the Copland Drag Manager
displays either a transparent version of the original image or just its outline.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Drag Manager 2-27
Draft. Confidential.  Apple Computer, Inc. 10/23/95

■ The Appearance Manager chooses the highlighting colors (for example, the
target frame color) for drag operations.

■ To add or obtain data from a drag, you use the Scrap Manager and pass the
DragScrapRef data type directly.

■ You no longer use the Drag Manager data type FlavorFlags. Instead, the
Scrap Manager provides the equivalent type ScrapItemTypeFlags, used in
collection items that you attach to a drag scrap using the Scrap Manager.
Similarly, the System 7 data types HFSFlavor and PromiseHFSFlavor have
been transferred to the Scrap Manager under new names.

■ You use the Scrap Manager data type ScrapItemType instead of the System 7
data type DragItemFlavor.

■ The System 7 Drag Manager ItemReference data type has been renamed
ScrapItemRef, and the FlavorType data type has been renamed
ScrapItemType. Their uses remain exactly the same.

■ The following System 7 Drag Manager functions have been replaced by
parallel functions in the Copland Scrap Manager: AddDragItemFlavor,
SetDragItemFlavorData, SetDragSendProc, CountDragItems,
GetDragItemReferenceNumber, CountDragItemFlavors, GetFlavorType,
GetFlavorFlags, GetFlavorDataSize, and GetFlavorData. Copland-savvy
applications should not use these functions.

When you use the Drag Manager to perform a drag operation, you follow these
steps:

1. Create a drag scrap with the NewDrag function.

2. Add items to the scrap with the Scrap Manager’s AddScrapItemType function.

3. Perform a single drag operation using the TrackDrag function. (This
operation can be canceled.)

4. When the user drops the dragged item, the Drag Manager uses your receive
drag handler to receive the drag.

5. Use Scrap Manager functions to retrieve data from the scrap.

Most Drag Manager functions take a drag scrap reference as an input
parameter. A drag scrap reference can also be passed to Scrap Manager
functions. A drag scrap reference must be allocated by the Drag Manager
function NewDrag and is defined by the DragScrapRef data type.

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-28 Drag Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

Drag Manager Functions 2

The Copland Drag Manager functions let you install and remove drag handler
functions, create and dispose of drag scrap references, override standard input
and drawing behavior, perform a drag, set the transparent drag image, set and
get status information about a drag, and support drag and drop behavior.

Installing and Removing Drag Handler Functions 2

In Copland, you still use the Drag Manager to install or remove drag handler
functions for your entire application or for one of your application’s windows.
The Drag Manager provides a pair of install and remove functions for the drag
tracking handler and the drag receive handler, which are defined by the
DragTrackingHandler and DragReceiveHandler data types.

Creating and Disposing of Drag Objects and References 2

The Copland version of the NewDrag function creates a drag scrap reference to
identify the drag in subsequent calls to the Drag Manager. This drag scrap
reference is required when you add scrap item types via the Scrap Manager
and when you call the TrackDrag function. Your installed drag handlers receive
this drag scrap reference so that you can call other Drag Manager functions
within your drag handlers.

The Copland version of the DisposeDrag function disposes of the drag scrap
identified by a specified drag scrap reference. If the drag scrap contains any
scrap item types, the memory associated with the scrap item types is disposed
of as well. You should call DisposeDrag after a drag has been performed using
TrackDrag or to dispose of a drag scrap reference that’s no longer needed.

Overriding Standard Input and Drawing Behavior 2

If you want to override the Copland Drag Manager’s default behavior, you can
provide drag callback functions for drag input and drag drawing with the
SetDragInputProc and SetDragDrawingProc functions. The System 7
SetDragSendProc callback function has been replaced by the Copland Scrap
Manager function SetScrapItemTypeDataFulfillmentProc.

Performing a Drag 2

Once the drag image for a drag has been set up, you use the Copland version
of the TrackDrag function to perform the drag operation with a particular drag

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

Resource Manager 2-29
Draft. Confidential.  Apple Computer, Inc. 10/23/95

scrap reference given a mouse-down event and drag region. The Drag Manager
follows the cursor on the screen with the specified drag image feedback and
sends tracking messages to applications with registered drag tracking handlers.
When the user releases the mouse button, the Drag Manager calls any receive
drop handlers registered for the destination window. An application’s receive
drop handler accepts the drag and transfers the dragged data into the
application.

Setting the Transparency of the Drag Image 2

You can use the new SetDragImage function to set the degree of transparency of
a given drag image.

Supporting Drag and Drop Behavior 2

Like the System 7 Drag Manager, the Copland Drag Manager supports drag
and drop behavior with functions that retrieve and set an Apple event
descriptor for a specified drop location, perform standard drag and drop
highlighting (including scrolling preparation), and let you draw zooming
animation like the Finder’s.

Getting and Setting Status Information About a Drag 2

The Copland Drag Manager includes functions that obtain status information
about the drag attribute flags, get and set the mouse location, retrieve the
origin of a specified drag, obtain key modifiers associated with a specified drag
scrap reference, and set and retrieve the bounding rectangle of specified drag
items.

Resource Manager 2

Most of the System 7 Resource Manager functions are supported for backward
compatibility. The exceptions are the InitResources, RsrcZoneInit, and
RsrcMapEntry functions, which even System 7 applications don’t need to call.
Also, the undocumented resource chain override mechanism used by some
System 7 applications is not supported in Copland.

Most of the System 7 functions also have an equivalent function, whose name
begins with the prefix RM, for use by Copland-savvy applications. Major

C H A P T E R 2

The Toolbox: System 7 Compared With Copland

2-30 Resource Manager

Draft. Confidential.  Apple Computer, Inc. 10/23/95

differences between the new functions and System 7 functions include the
following:

■ You can’t access the resource map in Copland. Copland supports an opaque
resource file abstraction, and you access its resources through this
abstraction.

■ The error mechanism based on ResError is no longer necessary. Instead,
Copland Resource Manager functions simply return OSStatus errors.

■ The FSpCreateResFile, HCreateResFile, and CreateResFile functions have
been replaced by the single function RMCreateResFile, which takes a
Copland file system object.

■ The FSpOpenResFile, HOpenResFile, OpenRFPerm, and OpenResFile functions
have been replaced by the single function RMOpenResFile, which takes a
Copland file system object.

■ The new functions RMAddResFileToSearchPath and
RMRemoveResFileFromSearchPath allow you to add or remove resource files to
or from the beginning of the resource search path for your application.

■ Functions such as Get1Resource and Get1NamedResource are no longer
needed. Instead, you specify parameters for RMGetResource,
RMGetNamedResource, and so on that indicate whether or not the function
should search just the current resource file or the entire resource search path.

■ Copland doesn’t support ROM-based resources, so there is no Copland
equivalent to the RGetResource function.

■ The new Resource Manager functions include a parameter that allows you
to enable or disable automatic loading of resource data into memory. As a
result, there is no need for a Copland equivalent of the SetResLoad function.

■ The System 7 function GetResourceSizeOnDisk has been renamed
RMGetResourceSize.

■ There is no Copland equivalent to the GetMaxResourceSize function, because
using them depends on specific implementation details of the System 7
Resource Manager.

■ The GetResFileAttrs and SetResFileAttrs functions have been replaced by
the GetResFileReadOnlyState and SetResFileReadOnlyState functions, which
get and set the resource file’s read-only state both in memory and on disk.

	The Copland Toolbox
	Introduction to the Copland Toolbox
	Creating an Application's Human Interface
	Events
	Windows
	Panels
	Controls
	Text Elements
	Alert Boxes and Dialog Boxes
	Radio Button Groups
	Lists
	Menus
	Simple Visual Elements

	Copy, Paste, Drag, and Drop
	Scrap Manager
	Clipboard Manager
	Drag Manager

	Interactions With the Finder
	Resources
	Themes

	Copland Toolbox Architecture
	Opacity and Consistency
	International Text
	Extensible Data Structures
	Extensible Designs
	Customizing Panels
	Customizing Interface Definition Objects

	The Toolbox: System 7 Compared With Copland
	General Compatibility Guidelines
	The Copland Event Model
	Apple Event Dispatchers
	Apple Event Handlers
	Tasking Models
	One Task, One Dispatcher
	Multiple Tasks, Multiple Dispatchers
	Multiple Tasks, One Dispatcher

	Benefits of the Copland Event Model

	Window Manager
	Constants and Data Types
	Window References
	Window Classes
	Window IDOs
	Window Attributes

	Window Manager Functions
	Initializing the Window Manager
	Creating Windows
	Naming Windows
	Accessing Windows
	Manipulating Window Collection Items
	Displaying Windows
	Manipulating Window Layering
	Positioning Windows
	Retrieving Window Information
	Moving Windows
	Resizing Windows
	Zooming Windows
	Collapsing Windows
	Disposing of Windows
	Maintaining the Update Region
	Setting and Retrieving Other Window Characteristics
	Manipulating the Desktop
	Manipulating Window Color Information
	Low- Level Routines

	Window Manager Resource

	Dialog Manager, Control Manager, List Manager, Menu Manager
	Scrap Manager
	Scrap Manager Functions
	Creating and Deleting Scrap References
	Adding Scrap Items to the Scrap
	Making and Keeping Promises
	Getting Scrap Item Information
	Working With Collections

	Clipboard Manager
	Clipboard Manager Functions
	Putting a Scrap on the Clipboard
	Retrieving and Releasing a Scrap From the Clipboard

	Drag Manager
	Drag Manager Functions
	Installing and Removing Drag Handler Functions
	Creating and Disposing of Drag Objects and References
	Overriding Standard Input and Drawing Behavior
	Performing a Drag
	Setting the Transparency of the Drag Image
	Supporting Drag and Drop Behavior
	Getting and Setting Status Information About a Drag

	Resource Manager

