
Running Emulated Drivers
Wayne Meretsky

March 9, 1993

Summary

This document describes the problems of running emulated
device drivers in the V1 software system. Also discussed are
proposed solutions to some of those problems and the costs
associated with those solutions.

Included is a brief description of hardware support that must be
included in any native expansion slot card (PSI, PCI, etc). whose
purpose is to allow NuBus cards to be plugged into the system.
With this provision, a NuKernel based system should be able to
remain compatible with all but the most bizzare device drivers
and applications.

What software cannot be emulated?

In a NuKernel based system, software that is invoked as a result
of a hardware interrupt, synchronously to the interruption, and at
interrupt level, cannot be emulated. For the purpose of this
discussion this classification of software is termed interrupt-
level software.

Note that in System 7, there is a tremendous amount of
interrupt-level software. Applications , for example, that make
asynchronous I/O requests have their completion routines run
synchronously to the hardware interrupt that signifies the
completion of the I/O request. These applications, therefore,
contain interrupt level software. In the V1 system, however,
NuKernel Software Interrupts are used to get the execution of

completion routines out of interrupt level.

In a V1 system, interrupt-level software includes the following:

• ADB device drivers may be interrupt-level software.
This depends upon the amount re-work done to the ADB
manager. Techniques for removing ADB device drivers
from interrupt level have been demonstrated by the
NuKernel team.

• Certain system software managers such as the VBL
Manager, Time Manager, SCSI Manager, etc. These
managers all interact with some hardware at interrupt
level. However, in a V1 system, these are all ported by
the NuKernel team and execute only native instructions.
Therefore, unless there is a need to support third party
patches to these managers, they represent no problem.
Because of changes to the hardware it is doubtful that
these patches would work properly even if they were
emulated.

• Some DRVRs (Serial, Sound, etc.) have hardware
interrupt handlers. The TNT team in MSD will be
providing native versions of these drivers for V1.
Therefore, unless there is a need to support third party
M68000 drivers for these devices, they represent no
problem. Because of changes to the hardware in TNT it
is doubtful that these third-party drivers will work even
if they are emulated.

• Most NuBus cards have hardware interrupt handlers.
These are the most troublesome because the drivers are
contained in ROM on the NuBus cards and cannot be
easily replaced. This document outlines a strategy that
will be capable of supporting most, but not all, NuBus
cards.

• Applications that have interrupt handlers. This includes
certain strange applications that chose to avoid the
Device Manager model for dealing with devices. These
applications will not work in the V1 system.

What problems are associated with interrupt software?

Two major problems are associated with emulating interrupt-
level software in V1: conforming to the NuKernel restrictions on
interrupt level execution and conforming to the synchronization
requirements of emulated software. Each is complex and they
are not related.

NuKernel Restrictions on Interrupt Level Execution

Emulation of interruptions in the V1 system requires that either
the V1 environment for interrupt level execution be adhered to
by the emulator and the emulated software or that the interrupt
level environment be altered. The V1 rules for interrupt level
execution are the NuKernel rules for interrupt level execution
and require that:

• No page faults occur

• Only limited kernel services are utilized

To comply with the no-page-fault rule would require that at least
the entire emulator, the interrupt-level software that is being
emulated (including everything it ever calls), and all state that is
accessed be locked into physical memory. The only reliable way

to achieve this is to wire down the entire system heap as is done
in System 7. This places a tremendous constraint upon the
number of physical page frames available to the rest of the
system. Many studies have shown that decreasing the number
of physical page frames causes a non-linear increase in the page
fault rate and a corresponding degradation in system
performance. In particular, the ATG study entitled The Effects
of Limiting Swappable Memory on System 7 Virtual Memory
Performance by Eric Traut concludes that the impact in that
system is cubic!

Going down a different path, one that allows page faults at
interrupt time, is an interesting exercise. The problem with page
faults at interrupt time is centered around the SCSI managers
interrupt driven nature. Interrupts must be processed to make
forward progress on page faults themselves. Cyclone deals with
this problem by detecting the lack of forward progress and
reverting to a polling scheme until the I/O for the page fault is
complete. The Cyclone scheme cannot be made to work in a
NuKernel system because the deadlock is not apparent.
NuKernel has no I/O busy wait loops. Although it may be
possible to detect the deadlock conditions by spreading various
checks throughout the system, the resulting system is (as
demonstrated by the Cyclone schedule) difficult to understand
and maintain. Further, handling page faults at interrupt time
requires use of many kernel services (sending messages, etc.)
that are not presently callable at interrupt level. This provides a
segue into that aspect of the problem.

The second area of execution environment impact has to do with
the limited use of kernel services at interrupt level. Given the
lack of compliance with even the limited guidelines suggested
for M68000 interrupt-level software, it is doubtful that limiting
the use of kernel services at interrupt level is possible when

emulating those drivers. Lets review the reasons for limiting the
kernel services available at interrupt time.

One of the primary design goals of NuKernel is to reduce the
interrupt latency of the system. This goal is motivated by the
increasing amount of near real-time processing that is being
done on Macintosh systems. Typical examples of this are
QuickTime, WorldPort, MIDI, etc. For all of these examples,
high interrupt latency causes rapid degradation in performance.
A quick investigation into why System 7 has such high interrupt
latency shows that OS, ToolBox, and application software are
forced to disable interrupts to achieve synchronization with
asynchronous processing that is done either directly or indirectly
as the result of an interruption. In effect, the critical sections in
all software on Macintosh are protected by disabling hardware
interrupts.

NuKernel does not disable interrupts to guarantee synchronous
access to its critical sections. Instead it uses the secondary
interrupt handling concept to serialize such accesses. This
means that kernel services that require synchronization cannot
be called from hardware interrupt handlers but can be called
from secondary interrupt handlers. If kernel services that
require synchronization are to be callable from hardware
interrupt handlers then the synchronization techniques used by
the kernel will have to disable interrupts for the duration of the
critical section. This is completely contrary to our goals of
improving responsiveness by reducing interrupt latency.

Synchronization Concerns

There are two of these: macro instruction boundary
synchronization and interrupt synchronization.

M68000 processors only allow interruptions at macro instruction
boundaries. Much M68000 code, especially interrupt-level
software, depend upon this level of implicit synchronization for
correct operation. PowerPC processor architecture similarly

allows interrupts only at macro instruction boundaries.
Unfortunately, when running the emulator, the PowerPC
interrupts can arrive in the middle of a sequence of PowerPC
instructions that emulate a single M68000 macro instruction. If
the interrupt is fielded by an emulated handler then, from the
perspective of the emulated code, the interrupt is mid-
instruction. Handling interrupts mid-instructions will break
M68000 drivers.

The V0 solution to this problem is based upon specialized
interrupt hardware and emulator/nanokernel interactions that
conspire to delay interruptions until macro instruction
boundaries. All interruptions in that system are fielded by
M68000 handlers.

In a NuKernel system, it is not currently possible to determine if
the emulator is running. The emulator is just native code that
executes like any other ToolBox/application code. The fact that
the emulator's purpose is to emulate is not apparent. Similarly,
the kernel is not aware that the file systems purpose is to read
and write files. If the kernel is to become cognizant of the
emulator, the kernel must provide interfaces that are invoked on
each mode switch. This level of integration with the emulator is
not desirable in a NuKernel based system. The impact on
interrupt latency and the requirements placed on hardware
implied by supporting macro-instruction synchronization are not
in line with the NuKernel design goals.

The second area of synchronization concern is that of interrupt
synchronization. Drivers frequently synchronize with their
interrupt handlers by disabling interrupts. When the drivers are
emulated, this means that the emulation of M68000 instructions
that disable M68000 interrupts must also disable real hardware
interrupts. In a NuKernel system we had planned upon not

disabling interrupts when an application disabled M68000
interrupts. Rather, the effect of disabling M68000 interrupts
would be only to disable software interrupts to the current task.
This would allow applications to synchronize with their
asynchronous code (completion routines, VBL tasks, Time
Manager Tasks, etc.).

This approach allows application compatibility to be maintained
without sacrificing the kernel's goals for interrupt latency.

What interrupt-level software needs to be emulated?

In System 7, there are many kinds of software that participate in
the device control portion of the system. Motherboard device
drivers (Serial, Sound, Floppy, etc.), Slot Drivers, ADB Drivers,
SCSI Drivers are just a few. Each of these typically contain
interrupt-level software. If NuKernel is to be an integral part of
V1 on TNT, exactly what drivers need to be emulated?

The system provided drivers (Floppy, Sound, Serial, Keyboard,
Mouse, etc.) are already scheduled to be ported and run as native
NuKernel drivers. Although some applications may bypass
those system-provided drivers and instead use either their own
code or have DRVR resources integral to the application, these
won't work even if they are emulated because the TNT hardware
is sufficiently different from previous systems.

ADB device drivers are far and few between. Most third party
ADB devices (light pens, track balls, keyboards, etc.) simply use
the system supplied keyboard and mouse drivers. Those that
have their own drivers would break unless the a new, native,
driver is provided or the old driver is emulated. These drivers
do not seem to be a significant concern and it is hard to see how
they could justify the impact of emulating driver code in a
NuKernel based system. The ADB manager changes proposed
by the NuKernel team would allow existing ADB device drivers
to be run emulated but not at interrupt-level. These changes
have been prototyped by the NuKernel team and are used in the
existing M68000 NuKernel system.

SCSI device drivers never execute at interrupt-level in System 7
because the SCSI manager is not interrupt driver in that system.

The NuKernel SCSI manager is interrupt driven. However, the
interface to that SCSI manager that provides compatibility with
System 7 SCSI drivers does not cause those drivers to be
executed at interrupt-level. Therefore, emulating SCSI drivers
are not a problem in the V1 system. Of course, NuKernel
requires that SCSI disk drivers conform to the new SCSI API
and driver API if they are to be used as swapping devices by the
NuKernel VM system. NuKernel will most likely include a
"universal" disk driver that will be used if the device -resident
SCSI driver for a hard disk is not a native NuKernel driver. If
this universal driver does not support the disk then that disk
cannot be used for paging.

This leaves only NuBus slot drivers. Neither PDM nor TNT
have NuBus slots and it is unlikely that future PowerPC
machines will include direct support for NuBus. NuBus
becomes a problem if adapters are created that allow NuBus
cards to be plugged into the expansion slots of PowerPC
machines. The NuBus problem is compounded by the fact that
most NuBus cards have M68000 drivers in the card's declaration
ROM.

NuBus cards can be supported three different ways. Two of
these are obvious: a new native driver can be required or the
declaration driver in the ROM can be emulated. The former
approach is the most desirable from a kernel perspective. These
drivers would perform much more efficiently and would
eliminate the problems of emulating the drivers.

A third approach to the NuBus dilemma is possible. If the
hardware adapter that allows NuBus cards to be plugged into the
expansion slots of PowerPC machines contains a small amount
of extra hardware, then the entire slot device driver can be run
within the context of a NuKernel task thereby removing the

requirement that parts of the driver be emulated at interrupt
time. This approach removes the entire NuBus card driver's
interrupt-level execution requirements in a compatible fashion.

The reason that extra hardware is required is a result of the
interrupt structure of slot devices. In the NuBus world, the
card's interrupt handler must be run in order to clear the interrupt
request. If the request is not cleared, the interrupt remains
pending. If the adapter hardware included the ability to mask
the interrupt from the slot device, then there is no requirement to
run the handler at interrupt time. The expansion slot interrupt
handler could simply mask the NuBus card's interrupt request
and then queue a software interrupt to a high priority task that
would invoke the card's driver's interrupt handler. After the
NuBus card's handler had been run, the expansion slot driver
would unmask the interrupt source so that future interrupts could
occur. This would be transparent to the slot device and its
driver.

This approach could be made to work only if the increase in
latency between slot interrupt request and slot interrupt handling
implied by scheduling a task is acceptable. For many slot
devices (frame buffers, Ethernet cards, etc.) it should be fine.
For some esoteric, custom cards that perform data acquisition or
MIDI processing it may introduce unacceptable latency. It could
be argued that drivers for those types of cards would need to be
rewritten in any case because the performance of emulated code
is either not acceptable or highly undesirable.

Conclusions

The costs of emulating M68000 interrupt time code, particularly
that found in device drivers, is extremely high. It impacts the
overall performance of the system in both space and time. It
also adds prohibitive interrupt latency restrictions to the entire
system.

Because the majority of the device drivers in a given system are
provided by Apple and will be native in PowerPC systems the

only justifications for emulation must be NuBus or oddball
applications. Hopefully the oddball applications can be
eliminated without much discussion. Most NuBus drivers can
be dealt with in the fashion described. Those remaining would
be broken and Apple will probably receive criticism for this
failure to achieve 100% compatibility.

The NuKernel strategy provides an infinitely greater degree of
support for third party hardware than Microsoft provides in their
transition to NT or DEC provided in their transition to Alpha.

Given the limited number of drivers that could require emulated
interrupt level execution it seems that a cost/benefit analysis can
not possibly justify total compatibility with existing M68000
drivers in a NuKernel system. This is before any consideration
is given to the fact that these drivers are not viable in a multi-
address space or SMP system.

If NuKernel is to provide the basis for system software in the
future, now is the time to present the few incompatibilities
necessary to make that forward progress.

