
MPW 3.2 Assembler
Release Notes

030-3626-A

The following features have been added to the Assembler for version 3.2.

• New optimizations.

• Longer identifiers.

• New parameter and syntax for module directives.

• MC68040 support.

• "32-Bit Everything" support.

• Improved SADE support.

• A new macro function : &SYSINMOD

New Optimizations

The 3.2 Assembler supports optimization of instructions which were previously not opti­
mized. The following additional optimizations are available:

ADD #<Data>,An [-8 <= data <= -1) =====> SUBQ #-<Data>,An

ADDA #<Data>,An [-8 <= data <= -1] =====> SUBQ #-<Data>,An

ADDI #<Data>,An [-8 <= data <= -1) =====> SUBQ #-<Data>,An

SUB #<Data>,An [-8 <= data <= -1] =====> ADDQ #-<Data>,An
SUBA #<Data>,An [-8 <= data <= -1] =====> ADDQ #-<Data>,An

SUBI #<Data>,An [-8 <= data <= -1] =====> ADDQ #-<Data>,An

The above optimizations only occur when the Assembler understands the operand to be a
negative number. Since the Assembler operates on 32-bit arithmetic, the value of the
operand must be written as a negative number in order to activate the optimization. Tiris is
necessary regardless of the size (B, W, L) of the instruction. Thus, in a byte operation,
the operand must specify "-1" instead of "$FF". even though, un-optimized, they would
both compile to the same instruction.

MPW 3.2 Assembler
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

ADDI #<Data>,<EA3> [+l <= data <= +8] =====> ADDQ #<Data>,<EA3>

SUBI #<Data>,<EA3> [+l <= data <= +8] =====> SUBQ #<Data>,<EA3>

ADD.I #<data>,An [-32767 <= data <= +32767]

=====> LEA <Data>(An),An

Longer Identifiers

The Assembler now suppons identifiers of lengths up to 251 characters (this was done
primarily to support C++ name mangling). On detecting a name that exceeds this maxi­
mum, the Assembler issues the warning:

ID longer than maximum length ... truncating to maximum length.

New Parameter and Syntax for Module Directives

A new parameter, ForceActi ve, exists for the ccxie module and data mcxiule directives. A
new syntax has been provided and error checking for conflicting parameters is in effect.

ForceActive

ForceActi ve causes a ccxie or data module to be included in the final linked output even
if the Linker would otherwise strip that code or data module because there were no refer­
ences to it.

Syntax

For code module directives:
Line ::= [label] CodeDir [KeywordList]

CodeDir ::= PROC I FUNC I MAIN
KeywordList ::=Keyword I KeywordList, Keyword

Keyword::= ENTRY I EXPORT I FORCEACTIVE

For data module directives:
Line ::= [label] RECORD [KeywordList]

KeywordList Keyword I KeywordList, Keyword

MPW 3.2 Assembler
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Keyword::= ENTRY I EXPORT I INCR[EMENT] I DECR[EMENT]

MAIN I FORCEACTIVE

+ Note: The MPW 3.0 Assembler Manual describes MAIN as a parameter for the
RECORD directive, but appears to have inadvertently omitted MAIN from the syntax.

6 Important: Parameters following the directive RECORD determine whether a data
module or a template is being defined. A template definition is assumed
if the first token following a RECORD directive is any of the following:
a number, a left bracket, a numeric expression, or an undefined label. f:::,.

MC68040 Support

The support for the MC68040 is initiated by the directive MACHINE MC68040. This enables
the processing of mnemonics and addressing modes that are specific to the MC68040.
New MC68040 registers are URP, ITIO, ITfl, DTIO, DTIL Use of the MACHINE

MC68040 directive disallows all MC68030registers except for TC, MMUSR, and SRP. It
also disallows the MC68851, it and the MC68040 being mutually exclusive.

"32-Bit Everything" Support

A mechanism is now in place to support 32-bit references in assembly language. The re­
quirements are: the option -model far must be used; the reference must be written using
the absolute long address syntax (xxxx) • L; and the symbol being referenced must be im­
ported. (For further details and an example, see MPW 3 .2 Run-Time Architecture Release
Notes.)

Independent of the -model far mechanisms, it is now possible to define records and
templates which are larger than 32K.

+ Note: The use of .. 32-Bit Everything" in the Assembler is demonstrated in the modified
version of the count example to be found in the folder:

{ MPW} Examples:32bitAExamples:

MPW 3.2 Assembler
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Improved SADE Support

The Assembler now outputs record names as SADE symbols. It also now outputs the cor­
rect creation date of the source file.

New Macro Function: &SYSINMOD

The &SYSINMOD macro function is a superset of the &SYSMOD macro function. Jn
addition to the functions provided by &SYSMOD, the new function returns ' @GLOBAL' if
you are not in a modu,le and •@TEMPLATE 1 if you are in a template.

Known Outstanding Bugs

Assembler Bugs

• In a decrementing data module, where the last field contains an odd number of bytes: a)
in a main data module (record or "data" section in code) when the user has selected
Align Off, exported fields will not evaluate to the same address as fully qualified field
references; b) in Typed Data (data defined with a template) used within a "data" section
in code, the alignment of previous fields is not guaranteed-this means that longword
and word fields could appear on odd addresses without warning.

• When Typed Data is defined within the "data" section of a code module, and its label is
exported, the references to it from other code modules are not consistent with those in
the defining code module.

• A couple of problems arise when referring to the label of a decrementing typed data
module: a) The label points to different fields in the record, depending upon whether the
data module was defined i) within a "data" section of a code module, or ii) at a global
level; b) The label, when the module is defined at a global level, does not point into the
module at all, but rather to the next piece of data (or, if there is no next piece of data, to
location o (AS>.) To be safe, always used qualified references when using decrement­
ing typed data modules.

MPW 3.2 Assembler
Release Notes

4 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Integer Too Large: 2147483648. Macro language accepts an incorrect value of
2147483648 as an integer. It is internally represented as -2147483648. For example
the following is accepted:

GBLA &intVar
&intVar SETA

WRITELN
2147483648
&intVar ; writes out -2147483648

• If the &LIST function is used, divides a list into four items and is called again with four
items, one of which is a null-string, the &LIST function will fill it with the value from
the previous call, instead of a blank as suggested in the manual.

• String Truncation: The assembler truncates macro default parameter strings to a number
less that 255 characters depending upon the length of the macro line and the setting of
the -1 option.

• There are references in the manual to ranges of -32768 .. +65535. These should be
changed to be -32768 .. +32767.

• An error is not reported in the case of forward reference to a local label when using an
absolute addressing mode.

• If either Floating Point branch instructions of the form FBcc, or PMMU branch instruc­
tions of the form PBcc are optimized from Long to Word, the optimization is incorrect.
The amount of space allocated for the instruction is shortened, but the opword still rep­
resents the long form. This problem does not occur when "OPT NONE" is used.

Documentation Errors

• The description of the C calling conventions in the MPW 3.0 Assembler Manual is
incorrect. Please use the documentation in the MPW 3.0 C manual.

• The Condition Codes given in Appendix F of the MPW 3.0 Assembler Manual are
incorrect. Please use the Motorola User Manuals for an accurate description.

Fixed Bugs

The items listed below are bugs that existed in MPW 3.0 or MPW 3.1. The list does not
include bugs that first appeared in Alpha or Beta versions of MPW 3.2.

• The Assembler no longer crashes if a very large number of macro array variables are set
to very large default snings.

MPW 3.2 Assembler
Release Notes

5 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• The Assembler no longer crashes if a listing is to be generated in which there are lines
which contain more than 230 characters.

• The &LEX function now properly handle semi-colon and backslash characters in the
input.

• The Assembler now requires imported labels to be declared before use, generating an
error otherwise; thus conforming to documentation.

• The Symbol Table entry mechanism was altered to correct potential problems with
forward-referencing of local variables.

• The Object Assembly Macros now works for method overrides that call inherited
routines.

• Structured Assembly Macros (FlowCtl.Macs.a)

A major bug fix was done to handle the case of reverse operands, which were handled
incorrectly. The bug was that for reversed operands the reverse of a condition code is
not the same as the negate of a condition code. Thus the reverse of GE is LE, but the
negate of GE is LT.

A second bug was fixed for the handling of the negation of constructs like "A rel B OR
C rel D". These were processed incorrectly in IF# macros.

• The ACIR loop counter now exits when its value exceeds the ACIR limit value (as
specified in the documentation), instead of when it reaches the ACIR limit value.

• Forward references to labels defined as registers or registers lists are now flagged as
errors.

• Global equates to relocatable values are now flagged as errors.

• Warnings are now issued when local equates are redefined to the same value as a global
equate.

• SADE records are no longer output for@-labels.

• A warning is now issued when the last instruction in a code module is a BRA.S to an
imported label.

• An error is now reported when substirution of macro parameters generates a line longer
than 254 characters.

• Expansion of macro variables on continued lines is now supported.

• Load/Dump now allows templates to be larger than 32K and template origins to be
greater than 32K. (Be aware that the fix required a format change to Load/Dump files.)

• It is no longer possible to use a macro name which had previously been defined as an
op word.

MPW 3.2 Assembler
Release Notes

6 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• An error is now reported when a label in a record module is imported and subsequently
redefined.

• An error is now reported in the case of backward reference to a local label when using
an absolute addressing mode.

• The value 32 can now be used as the width designation of a bit field. It was formerly
necessary to represent it by using 0. (0 is still valid.)

• Globally imported data labels are no longer permitted for relative branch instructions,
e.g. FBEq, DBcc.

• Floating-point constants, when defined with DC.D, DC.S, or DC.X are now correctly
converted. (This was a bug in the 3.1 final version only.)

• The assembler now allows PC-relative addressing for CMPI instructions when the
machine designation is either MC68020, MC68030, or MC68040.

MPW 3.2 Assembler
Release Notes

7 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

S® Macintosh® Programmer's Workshop
Assembler
Version 3.2

This package contains

Manual

Set of release notes

Disk

1-inch binder

12 Tab dividers

If you have any questions, please call

1-800-282-2732
1-408-562-3910
1-800-637-0029

M0020LUD

(U.S.)
(International)
(Canada)

Macintosh Programmer's Workshop Assembler

MPW® 3.2 Assembler Release Notes

MPW Assembler, Version 3.2

4/24/91

