
030-3621-A

MPW3.2
Release Notes

Erratum

Due to an oversight, an erroneous comment symbol was used in lines 20 through 24 of the
source file:

{MPW}PExamples:TESampleGlue.a

The character"#" was incorrectly written where the character";" should have been written.

MPW3.2
Release Notes

i Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW3.2
Release Notes

This release note summarizes the differences between MPW 3.2 and MPW 3.0, the last
version for which a reference manual exists. Details beyond those given in this note are to
be found in separate release notes entitled MPW 3.2 Shell, MPW 3.2 Object Pascal, MPW
3.2 C, MPW 3.2 Assembler, MPW 3.2 Libraries & Interfaces, MPW 3.2 "411" Help,
MPW 3.2 Run-Time Architecture, MPW 3.2 SIOW, and MPW 3.2 Tools & Scripts.
Three of the above: "411" Help, Run-Time Architecture, and SIOW describe completely
new features.

Principal Changes

Shell

• Projector has a number of enhancements.

• The Editor provides split windows.

• A marker browser has been provided.

• There are additional commands for the faccess function.

• The save command, when scripted, saves the resource fork of a file if any resource has
changed.

• MPW can now be run under A/UX.

• New System 7 .0 error codes have been added to the file SysErrs.err.

c

• A variety of new object code optimizations have been implemented.

• There are new compiler options to control optimization level.

MPW3.2
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Support is provided for the MacApp debugger and code profilers (generating a preamble
and postamble for functions).

• A new pragma is provided for passing parameters to functions via registers.

• A new pragma is provided to force the generation of MC68020 code.

• A new pragma is provided to prevent the multiple inclusion of header files.

• There is a new option for invoking the "32-bit everything'' run-time architecture.

• A new pragma is provided to prevent dead code stripping by the linker.

• An option is provided for machines having the MC68020 and up that allows stand-alone
code segments greater than 32K.

Object Pascal

• Further object code optimizations, including an optional two-pass code generation phase
which allocates unused scratch registers for local data.

• An option to control optimization level.

• An option for invoking the "32-bit everything'' run-time architecture.

• A new syntax for declaring forward and external objects

• Enhancements to the Object Pascal declaration handling to support MacApp.

• Support for USES clauses in the implementation section of a unit.

• Support for external C functions with arbitrary numbers of arguments,.

• The ability to omit static links for nested procedures that don't need them.

• Increase in the number of nested include files, the maximum number of nested compile­
time conditionals, and in the number of long identifiers.

ASM

• New optimizations.

• Longer identifiers to support C++ name mangling.

• MC68040 support.

• A new parameter and syntax for module directives.

• "32-Bit Everything" support.

MPW3.2 2
Release Notes

Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Improved SADE support.

• A new macro function: &SYSINMOD.

Tools/Scripts

• The Link, Lib, DumpCode, and DumpObj tools support an improved form of data
initialization.

• The Search tool has some new options and its performance has been improved.

• The DumpCode and DumpObj tools provide support for 68040 development

• The Object Pascal compiler, C compiler, ASM, and Link support "32-bit
Everything," which is a capability for simultaneously exceeding the 32K limit on code
segment sizes, the size of the jump table, and the size of the application globals space.

• Link has an option which causes the automatic generation of"branch islands." This
permits code segments to be larger than 32K.

• A new StreamEdit tool provides for scriptable editing of text streams similar to that
provided by Unix's Sed tool.

• Make includes extensions to the default rule mechanism and new built-in variables.

• Choose has new options to prompt for "secure" passwords with a dialog box.

• ProcNames and PasRef now process "$" compiler directives such as conditional
compilation directives. ProcNames has been modified to generate MPW Shell com­
mands to mark all of the procedures and functions in a file.

• FileDiv has been enhanced to handle non-text files.

• Compare has been modified to support a larger number of lines in the files being
compared.

Libraries/Interfaces

• CRuntime.o and Runtime.o have been merged into a single Runtime.o.

• The libraries have been resegmented to move more modules out of the "main" segment.

• The C libraries conform to the ANSI specification.

• The Pascal libraries include standard C string functions which work on Pascal strings.

• There is a new library supporting a simple input/output window application known as
SIOW.

MPW3.2
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• The SANE libraries have performance enhancements.

• New Interfaces support several SANE enhancements and support System 7.0.

• Clncludes has been changed to eliminate glue code in calling certain Macintosh Toolbox
routines.

Miscellaneous

• A new facility, "411" Help, provides rapid on-line access to development information
while using MPW. Because of this size of the database, "411" Help will be distributed
on CD only.

Important Note for Users of Virus Detectors

A number of virus detectors, e.g., Vaccine™ and SAM™ think that the MPW Linker is a
virus because the Linker routinely creates and modifies 'CODE' resources. The behavior
may range from the Linker appearing to hang to multiple appearances of a window request­
ing permission to proceed. This problem can possibly be corrected by changing the pro­
tection level of the virus detector. If all else fails, the detector can be temporarily disabled.

Important Note for Users of The Debugger V2 & MacNosy

Attempts to use the above products with MPW 3.2 will result in a bus error. The following
change to the MPW Shell will remove the problem:

Using ResEdit, change the bytes at offsets $46B4 and $4722 in CODE resource ID 5 from
$67 to $60.

MPW3.2
Release Notes

4 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Reporting Bugs

Please report any bugs you find to Apple. Use the application "Outside Bug Reporter,"
found on the MPW Installation Disk. After completing the bug report, send it

via AppleLink to: APPLE.BUGS

or

via US Mail to:
Apple Computer, Inc.
Bug Report Center
20525 Mariani Ave. MS 27-AN
Cupertino, CA 95014

• Apple Partners who are in critical need of a work-around solution should contact
MacDTS

via AppleLink to: MACDTS

or

via US Mail to:

Apple Computer, Inc.
Developer Technical Support
20525 Mariani Ave. MS 75-3T
Cupertino, CA 95014

System Requirements

MPW 3.2 requires a hard disk and at least 2 Mb of RAM. Actually, the MPW Shell's
MultiFinder partition size comes set at 2048K. In order to compile and link large programs
with symbolic information, it may be necessary to increase MPW Shell's memory partition
size. SADE requires MultiFinder and at least 2.5 Mb of RAM. MPW 3.2 requires System
6.0 and Finder 6.1 (or later).

MPW3.2
Release Notes

5 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Shell
Release Notes

MPW 3.2 is the first release since MPW 3.0 that goes significantly beyond bug fixes. The
new MPW Shell incorporates safety features for Projector, split windows and miscella­
neous improvements for the editor, an enhanced set of window commands, enhanced tool
support via faccess, and a simple marker browser. A scripted save command saves the
resource fork of a file when any resource has changed. The "Mark" menu has been en­
hanced with the item ••Alphabetic"; this toggles the list of marks between alphabetic order
and the order of their appearance in the file The Shell is now truly 32-bit clean and runs
also in the AUX 2.0 environment.

£::. Important About testing tools: Memory management in the Shell has changed. The
Shell no longer checks the heap before and after tools run; this is a con­
sequence of following the rules for being "32-bit clean."

One way to see if tools are working correctly is to use MacsBug's HC
command. For example, you can have this command executed every
time a tool starts by using the following from inside MacsBug:

BR STARTTOOL '; HC; G'

This, however, has the disadvantage of causing the MacsBug window to
flash momentarily on the screen . .o.

£::. Important After GetFileName brings up the Standard File dialog when MPW is
running in the background (under MultiFinder), switching MPW to the
foreground will cause the computer to hang. The cause of this has not
been determined, but it may be a System 7 problem . .o.

• Note: The default shell panition is now 2048K bytes (Ox200000) and the default stack
size is is 64K bytes (OxlOOOO). Also, most work to be done under MPW 3.2 requires
at least 256K more memory than it did under previous releases.

MPW 3.2 Shell
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

/access Commands

The MPW Shell now contains code for several new faccess commands. The .:#:define
statements for the command names and the typedef for MarkElement are in
{ Cincludes} FCntl.h. The interlace is:

int faccess(char *filename, unsigned int command, long *arg);

These commands require that the file be open.

The new commands are:

F _GSCROLLINFO

F _SSCROLLINFO

F_SMARKER

Sets *arg to the value 1 if scrolling is locked; to the value 0 if it
is unlocked.

Locks scrolling if the value of *arg is non-zero; unlocks
scrolling if it is zero.

Sets a file marker according to the specification in the structure
* arg. This structure is defined by:

typedef struct MarkElement {
int start; //start position of mark
int end; //end position of mark*/
unsigned char charCount; // no. of chars.

II in mark name
char name[l); // first char. of mark name

MarkElement;

Note: The user must allocate sufficient contiguous space to
hold an instance of MarkElement followed by a zero-terminated
mark name. The necessary data items followed by the string
must then be copied into this space.

F _SSA VEONCLOSE Sets the status of "save on close." If * arg is 0 (SaveN ormal),
the normal prompt to the user is given. If * arg is 1
(SaveNever), the window is not saved. If *arg is 2
(SaveAlways), the window is saved.

F _GSAVEONCLOSE Sets *arg to 0, 1, or 2, respectively, depending on whether the
"save on close" status is SaveNormal, SaveNever, or
SaveAlways.

MPW 3.2 Shell
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

(For calling instructions when using assembly language or Pascal, see Chapter 12 of the
MPW 3.0 Reference Manual.)

Save

The save command (scripted) will now force a save of the resource fork of a file if the
format (font/tabs), scroll bar, window position, etc. has been modified, even if the text of
the file has not been modified. Note that the "Save" menu item will continue to operate as
before, including the fact that it will be disabled unless the text of the file has been modi­
fied.

Editor

Markers

A new item appears in the initial section of the "Mark" menu. It is a toggle labelled
"Alphabetical." When a check mark appears next to this label, the marks shown in the pop­
up menu will be in alphabetical order. Otherwise, the order is the sequence in which the
marked lines appear in the window.

If the first character supplied for a marker name is a hyphen, the remaining characters are
ignored, and the marker menu will show a menu separation line (a gray, one-pixel line).
This line will appear in the menu exactly where a normal marker name, if supplied, would
have appeared. The line will not show when the "Alphabetical" mode is selected from the
Mark menu.

MPW 3.2 Shell
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Keyboard Commands

The set of editing actions that are available from the keyboard has been extended. The set
is shown in the matrix below.

The actions "move word to right/left" and "extend selection word to right/left" require pre­
cise definition. A word is defined to be a contiguous group of characters chosen from the
set defined by the shell variable wordSet, the default value of which is a-zA-Z_0-9. The
point to which the insertion point moves, or the selection is extended, is from the current
position to the far edge of the nearest word in the direction of motion. The end of the line
provides an exception. H there are characters not in WordSet after the last word found (in
the direction of motion) on the line, then the cursor motion or selection extension stops at
the furthest of these characters before proceeding to the next line (again, in the direction of
motion). For example, given the following lines:
Now is the time for-­
to come to the aid

consecutive applications of option -+ will move the cursor from the right-hand edge of
"time" to the right-hand edge of "for" to just beyond"--" and then to the right-hand edge of
"to".

MPW 3.2 Shell
Release Notes

4 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

shift

option

shift
option

cmd

cmd
shift

cmd
option

cmd
shift

option

delete

deletes
character to
left

deletes
character to
left

deletes
word to
left

beep

deletes to
end of file

beep

deletes to
end of file

beep

del *

deletes moves
character to character
right to left

deletes extends
character to selection
right character

to left

deletes moves
word to word to
right left

beep extends
selection
word to
left

deletes to moves to
end of file beginning

of line

beep extends
selection to
beginning
of line

deletes to moves to
end of file beginning

of line

beep extends
selection to
beginning
of line

* del is available on extended keyboard only

MPW 3.2 Shell
Release Notes

5

i

moves move one moves one
character to lineup line down
right

extends extends extends
selection selection selection
character to one lineup one line
right down

moves moves one moves one
word to lineup line down
right

extends extends extends
selection selection selection
word to one lineup one line
right down

moves to moves one moves one
end of line page up page down

extends extends extends
selection to selection selection
end of line one page one page

U.1!_ down

moves to moves to moves to
end of line beginning end of file

of file

extends extends extends
selection to selection to selection to
end of line beginning end of file

of file

Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Windows

A new feature of the MPW Shell Editor is the capability to split windows. Each pane has
both vertical and horizontal scroll bars. As specified in the Human lnteiface Guide: The
Apple Desktop Inteiface, the user can create new panes by dragging the black rectangle
(split bar) at the top/left of the scroll bar; the panes can be resized by dragging the slide box
that is adjacent to the split bar or deleted by moving the slide box as far as possible in the
direction of its origin. The split bar creates a new pane; the slide box resizes (possibly
down to zero) an existing pane. Each pane is independently controllable (scroll and resize),
which increases flexibility in viewing a text file.

Extensions have been made to the set of commands that deal with windows.

• Note: The "Do It" button has been moved to the top of the window.

• Editor Window

Status Box ("Do It")

:o HD:MPW:EHamples:CEHBmples:EditCdeu.r
MP'w'Sh~n J

resource 'DITL' <-4064) (
(/* array DI TLarray : 1 e I ements *I

I* Cll */
(60, 110, 76, 280}'
Edi tText (

enabled, ""
};
I* C21 */

Macintosh Developer Technical Support~

EditText Sample Control Panel Device p:;:

~~~:::-~~~. '~·~ (85, 110, 101, 280}' 
Edi tText ( 

enabled, "" mm Versions: 1. 1 7/88 ~ 
~~ c 3 1 • , ,iii~ IQI J~m~m~~mmmm~mm~mim!11~~l1~i!!~!i~1~1~~~!1~!imHm~m~m~mmm__Q ~ 
~~~ti~~~~t5~' 280}, 1111! resource 'ICN•' <-4064, purgeable> ( ~ 

disabled, "Apple Macintosh 0evelope'1i1rn1 (I* array: 2 ele111ents */ lii!F

};

resource 'FREF' <-4064, purgeable) (
'cdev', O, ""

};

~hi I* I 1 I */ 'i'iil
::!~i $"00 00 00 00 00 00 3F EO 00 00 4 i:!!li
A s·oo 01 83 10 oo 02 01 90 oo 04 o;iliili

s·oo 04 01 90 oo 04 o3 90 oo 04 a

fmm!_'.,t __ ,1 ;1.·.!~ __ !_:,!,: !=~ gg ~~ ~ g: ~ ~~ ~ g: : ~I
_ $"08 oo oo 10 08 oo oo 10 os oo a !iii!;

resource 'nrct' < -4064, purgeab I e) (IQ $ "04 00 00 20 04 00 00 20 04 00 OQJ

'° 1 I~li~~i~~;ii~~~m~mm1i~1mmmm1i~11~1l~i1!11lmmmmm1m~lm~~mmmmm~m~m~mt ~ 4 ~ IQI]mrnm~mm1mmrnrn~1~imm~1~~m~mm~m~~m@rn~1ii~j1j1m11iiiilililtll o 1 '2J

MPW 3.2 Shell
Release Notes

1
Slide Box

6 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Window Commands

The Windows command has a new option, -o, that causes the pathnames to be written as
a set of Open commands.

Syntax

Windows
Windows [-q] [-o]

-q

-o

t list windows

f don't quote window names with
t special characters
f write out the "Open ... " commands

The -o option causes the list to consist of a series of Open commands, one per line, con­
taining the "-r" option for the case of read-only files.

• Note: The Suspend script has been modified to make use of Windows -o.

The Rotate Windows command has a new option that reverses the direction of rotation.

Syntax

RotateWindows
RotateWindows [-r]

-r

t send active (frontmost) window to back

t reverse rotation;
f bring bottom window to front

The Format command has a new attribute pair associated with the -a option. The option­
attribute combinations are:

-a L f lock auto scrolling
-a 1 t unlock auto scrolling

There are four new commands: ShowSelection, SaveOnCiose, AddPane, and
DeletePane.

Syntax

ShowSelection t place the selection in the desired window
t position

ShowSelection [-t I -b I -c I -n lines I -1 line] [window]
-t f pin selection to top of window
-b f pin selection to bottom of window
-c
-n lines

MPW 3.2 Shell
Release Notes

f pin selection in center of window
f move selection to "lines" from top

7 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-1 line f move the line numbered "line" to the
f top of the window

This command scrolls the window, setting the selection to the desired position. If a win­
dow is not named, the default is the target window.

• If the selection is in the window at the time of execution of the above command, the
window will not scroll. (See Known Outstanding Bugs.)

Syntax

SaveOnClose f set window saving preference
SaveOnClose [-a I -d I -n] [window]

-a f always save window when closing
-d f default (ask Yes/No/Cancel)
-n f never save window when closing

Note: The -n option does not deactivate the Save menu item; the user may always save
explicitly.

This command selects an automatic behavior: save (-a), do not save (-n), or ask whether to
save when closing a window (-d). If a window is not named, the default is the target win­
dow.

The SaveOnClose option is not permanent; its effect will not persist beyond the closing of
the window. Non-default "save on close" status is shown by one of the following icons in
the upper right-hand comer of the window:

The left-hand one denotes "never save on close"; the right hand one denotes "always save
on close."

If no option is given for this command, the behavior is to return a complete command line
of the form: SaveOnClose <option> <full window pathname>, thus showing the
SaveOnClose status of the named window.

lMPW 3.2 Shell
Release Notes

8 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• The next two commands, AddPane and DeletePane, are illustrated by an example
that immediately follows the formal syntax presentations.

Syntax

AddPane t split the window into panes
AddPane [-p paneSpec] [-y ySplit I -x xSplit] [window]

-p paneSpec
-y ySplit

-x xSplit

t choose a pane to split
t put a horizontal scroll bar at ySplit pixels
t from the top edge of the pane
t put a vertical scroll bar at xSplit pixels
f from the left edge of the pane

This command selects a pane of a window and then splits the pane as specified. paneSpec
identifies a pane by a path that stans at the largest subdivision and works toward the small­
est. pane Spec is a catenation of strings of the form "cnn" or ''rnn" where the "c" and ''r"
stand respectively for row and column and "nn" is an appropriate ordinal (see examples
below). If neither the -y nor the -x options are given, a set of AddPane commands, which
would have produced the window as shown, is sent to standard output. If the -p option is
omitted, the pane that is split is the active pane, i.e., the pane last written into. If a window
is not named, the default is the target window.

Syntax

DeletePane t delete panes from the window
DeletePane [-p paneSpec I -a] [window]

-p paneSpec t choose a pane to delete
-a t reset the window to have a single pane

This command selects a pane of a window and deletes it by removal of a scroll bar.
panespec has the same definition and use as is given above in the description of AddPane.
If the pane to be deleted is part of a row, the scroll bar on its right is deleted unless the pane
is the rightmost pane of the row, in which case the scroll bar on the left is deleted. If the
pane to be deleted is part of a column, the scroll bar at its bottom is deleted unless it is the
lowest pane of the column, in which case the scroll bar at its top is deleted. If neither op­
tion -p or -a are given, the pane that is deleted is the active pane, i.e., the pane last written
into. If a window is not named, the default is the target window.

MPW 3.2 Shell
Release Notes

9 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Example:

• A multi-paned window. Each pane is labelled with its pane Spec.

MPVSMll

zz

c1r1

zz

c1r2

MPW 3.2 Shell
Release Notes

HD:MPW:panetest

zz

10

(Active Window)

c2r2c3

Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

The command AddPane HD: MPW: panetest displays the following commands, which
would produce the above tiling when staning with an unpaned window:
addpane -p 11 -x 159 hd:mpw:panetest
addpane -p cl -y 219 hd:mpw:panetest
addpane -p c2 -y 163 hd:mpw:panetest
addpane -p c2r2 -y 135 hd:rnpw:panetest
addpane -p c2r2 -x 110 hd:mpw:panetest
addpane -p c2r2c2 -x 113 hd:mpw:panetest
addpane -p c2r2c3 -x 136 hd:mpw:panetest
addpane -p c2r3 -x 161 hd:mpw:panetest
addpane -p c2r3c2 -x 120 hd:mpw:panetest

• Note: addpane -p 1 1 -x 159 <windoW> is equivalent to
addpane -v 159 <windoW>.

Browser

The Browser presents users with a standard file/directory list, similar to that of the "open"
dialog box. If a file has been selected, a pane on the right shows all markers belonging to
that file. Upon selecting and double-clicking a marker, the Shell will open the appropriate
file and find the selected marker. If a marker is known, but the file containing it is un­
known, a field for entering a string allows the user to search for a file that contains that
string as a marker or a part thereof.

The Browser window is opened by executing the command Browser or choosing Browse
from the Marie menu.

MPW 3.2 Shell
Release Notes

11 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Browser Window

File List

File List

~o
c:::i HD

0 MakeFile
0Memory.p
0 Memory.r

[j•~•;1)

Driue) (Open

® Open es Rctiue
O Open es Target

Frontmost Window
Buttons

Browser

Building the Examples
Bui Id the program
s-ple
TESa11ple
Si I lyBal Is
TubaTest
ResEqual
Me111ory
Edi tCdev
Testperf
~riting Your Own Programs

([Find Mark)J

181 Open efter find

Marker List

Field for Find

This pane shows all of the text files within the specified directory. Clicking on a filename
causes the Marker List to display all of the markers within that file. Double-clicking on a
filename opens the file. All aspects of file and directory selection work the same way as for
the dialog box that appears when opening a file from an application, e.g. typing the initial
letters of a file or directory name, use of the cursor control keys and of the latter in con­
junction with the command key.

MPW 3.2 Shell
Release Notes

12 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Marker List

This pane shows all of the markers within the selected file. Double-clicking on a marker
opens the selected file to the selected marker.

• See Also: Mark command and the tools CMarker and ProcNames.

Field for Find

The user can type into this pane a string for comparison to all markers in all files in the cur­
rent directory. Pressing Return or Enter causes the Browser to search for the marker that
contains this string (even as a proper substring) and to select it. If the marker appears in
more than one file, the first such appearance in the file list is selected. If the Open after
find box has been checked, the file with the desired marker is automatically opened with
the marked item selected.

Find Mark Button

This button will open the currently selected file to the currently selected marker if the cur­
rent pane is the marker list (see Pane Selection below). Otherwise, if the current pane is the
find field, it will begin searching for the text in the find field. Once one occurrence of a
mark is found, this button changes to Find Next until the mark is deselected.

Frontmost Window Buttons

These radio buttons determine whether the window, when opened, is to be the frontmost
window (Open as Active}, or the window immediately behind the Browser window (Open
as Target).

MPW 3.2 Shell
Release Notes

13 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Pane Selection

The currently selected pane is indicated as follows: for File List and Marker List by a
heavy border, for Field for Find by the blinking of the cursor. The default selection is
Field for Find. The selection can be advanced, rotating among the three panes, by
pressing Tab. When either the File List or Marker List pane is selected, typing the initial
letter or letters of a name will select an item in the same manner as is done in the conven­
tional dialogue windows for opening files.

Projector

• Note: A tutorial on Projector can be found as Appendix G of these Release Notes.

A number of improvements have been made to Projector. This includes correction of some
deficiencies in the Commando interfaces, provision for checkout from and checkin to an
NFS (UNIX Network File System) site, and the set of changes that are detailed below.

Cancel Checkout

To reduce the probability of an erroneous cancellation of a checkout, an alert box stating the
identity of the owner of a checked out revision will appear when any user who is not the
owner starts to cancel the checkout. When a checkout is cancelled, Projector will change
the file from modifiable to read-only provided the file is to be found in the current checkout
directory. If the file is not found there, an alert box with a warning message will appear.
Cancel Checkout is now logged; instances of cancellation can be examined by use of the
command Projectinfo with the option -log.

AppleShare Use

Projector now supports multiple simultaneous reads from a Projector database. Thus, sev­
eral users can simultaneously check files out without incurring delay. If, however, any
user is writing to the database, other users are temporarily locked out. Conversely, a user
wishing to write to the database is temporarily locked out if any other users are reading or
writing.

MPW 3.2 Shell
Release Notes

14 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Time-outs

If a user is temporarily locked out under the circumstances described above, a "retrying ... "
dialog box is displayed. The user has the option to cancel. Formerly, cancellation took
place automatically after 80 retries.

Modify Read Only

More than one file name can now be written in the command line of a single
ModifyReadOnly command.

NameRevisions, DeleteNames

The default for NameRevisions and DeleteNames has been changed from private to public.
This required the introduction of anew option: -private. The old option, -public, is
being kept so as not to invalidate old scripts. The behavior then is:

1. -public will work as before.

2. The new option, -private, must be used to define private names.

3. Not specifying an option gives the default value: -public.

4. Using the -b option (both) with NameRevisions will work as follows: when listing
names (no files specified), both public and private names will be listed; when creating a
name, -b will default to public.

OrphanFiles

OrphanFiles no longer changes the modification date of the file.

Verify

This feature was added to Projector after a number of experiences with loss of data from
rotating magnetic storage. It is activated for Checkin and Checkout by marking a check
box labelled "Verify" in the respective window, or by using the option -verify in the
respective command line. The effects are as follows:

MPW 3.2 Shell
Release Notes

15 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

For Checkout: The file is checked out out normally and checked out out a second time as a
temporary file. The data forks of the two files are then compared. If they
are equal, the temporary file is deleted. If they are unequal, the temporary
file is saved, an error message is printed to StdErr, and a status of 2 is
returned.

For Checkin: The file is checked in, and then checked out as a temporary file. The data
forks of the temporary file and the copy that had been checked in are com­
pared. If they are equal, the temporary file is deleted. If they are unequal,
the temporary file is saved, an error message is printed to StdErr, and a
status of 2 is returned.

If the -p option is combined with the -verify option, a message will be emitted saying
that the file has been verified

Warning Messages (-newer and -update)

When executing a Checkout command with either of the options -newer or -update,
various circumstances may prevent the checkout of one or more files. Warning messages
are now issued for each such file, indicating the reason for the failure. The message for­
mats are:
NOT checked out: Your file <filename> is a modified read-only file.
NOT checked out: Your file <filename> is a modifiable file on a branch.
NOT checked out: Your file <filename> is on a branch.
NOT checked out: Your file <filename> belongs to another project.
NOT checked out: Your file <filename> has no ckid resource.
WARNING: Your file <filename> is modifiable but the checkout was

cancelled.
WARNING: Your file <filename> is not part of the project.

The first of the above warnings is issued only if the modified read-only file is not the latest
revision.

The last of these is possibly not self-explanatory. It indicates that a DeleteRevisions
command completely removed all revisions of the file from the Projector database. Then, a
file bearing the same name as the file in question was checked in.

In the event that the CheckOut window is used with the Select Newer button (with or with­
out the Option key), and one of the above circumstances occurs, a dialog box will be dis­
played with the message:

"WARNING: Some files have not been selected because they are not read-only, not part of
the project or have some other problem. Use the 'checkout -newer' command for more
detailed information."

MPW 3.2 Shell
Release Notes

16 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Known Outstanding Bugs

• Editor performance suffers when files have an excessive number of marks (of the order
of 100 to 200, depending on the speed of the cpu).

• (System 7) File aliases are not fully supported. They are currently usable only with the
Open command.

• When using ShowSelection, if the selection is in the window at the time of execution
the window will not scroll.

• Under System 7, tools that attempt to bring up the Standard File dialog in the back­
ground will bring up an empty window and totally freeze the computer so that only a
manual restart is possible.

Bug Fixes

General

• The MPW Shell no longer hangs as a consequence of executing the Beep command
while running in the background.

• The Shell no longer limits the stack of a tool to 200K.

• When using the Apple Extended Keyboard and Multi.finder, the Cut, Copy, and Paste
keys (Fl-F3) now always update the clipboard when switching between applications.

• The Files command now correctly calculates the sizes of non-boot volumes when
using the -i, -x, and -1 options.

• The Files command formerly did not in all cases print out fill file names when the -f
and -n options were used in conjunction with -x or -1. This bug has been fixed.

MPW 3.2 Shell
Release Notes

17 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Projector

• Output from the NameRevisions command can now be interrupted by use of
Command-Period.

• Fonnerly, CancelCheckout, when applied to a branch, would wider certain circum­
stances cancel the wrong revision. This no longer occurs.

• A bug, which could cause database corruption wider near-full-disk situations, has been
fixed.

MPW 3.2 Shell
Release Notes

18 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Tools/Scripts
Release Notes

Tools

Several new tools appear in this release.

• StreamEdit is a scriptable text editor similar to the editor sed that is found in UNIX®.

• CMarker generates markers at function definitions in C++/ANSI C source files.

• Get, developed for "411" Help, is available for general use. See the MPW 3.2 "411"
Help Release Notes for information about "411 ".

A number of improvements have been made to existing tools.

• Choose has two new options for prompting for passwords.

• Compare has had its line number limitation raised from 9999 to 65535.

• DumpObj has a slightly changed -m option. The argument can now be either a mod­
ule name or an entry point name. If it is the latter, the meaning is to dump the module
that contains the named entry point. Any number of instances this option may now ap­
pear in a command line.

• FileDiv has been enhanced to give the user the option of considering its input file as a
stream of bytes.

• The option -sort has been added to GetListltem.

• The perf onnance of Search has improved as the result of search algorithm and buffer­
ing changes. Four new options have been added.

• Link has a new data initialization routine to reduce the size of the compressed data
image in the link output Appropriate changes have been made to DumpCode for con­
formity with this change in Link. Options have been added to Link, one to accommo­
date a new run-time architecture ("32-Bit Everything"), the other to cause automatic gen­
eration of branch islands.

• Link and Lib, upon failure, will set that date of the output file to numeric zero
(1 January 1904).

MPW 3.2 Tools/Scripts
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Make has several new features. The default rule mechanism has been extended so that
it may identify optional additional dependencies in addition to the single dependency
pennitted by the current mechanism. A default build rule has been added for C++. A
new predefined variable, { Deps} stands for all of the dependencies of a target. A new
predefined target, $0ut0f Date can be used to force other targets to be rebuilt A new
option, -y, provides a limited form of the verbose option output.

• ProcNames has been enhanced to generate MPW Shell "mark" commands that set
markers on all procedures and functions in an Object Pascal file. It has also been en­
hanced to process conditional compilation directives.

• PasRef has been enhanced to process conditional compilation directives. The maxi­
mum number of symbols it can handle has been raised from 5000 to 6000.

• ResEqual now looks at resource attribute flags.

!:::,. A bug has been reported in DumpCode. Information will not be dumped correctly
from a module that has been compiled and linked as "model far'' and that
contains any A5-relocatable information.

Backup

A partial work-around for this is to use the "-ri" option, which inhibits
the dumping of relocation information. This will, at least, permit correct
dumping of code. t::,.

A bug that has now been fixed prevented the creation of inner folders when the when the
-t option was used to limit recursive processing (-r) to files of a specific type.

Choose

The following options, that prompt for "secure" passwords with a dialog box, have been
added:

-askpw #prompt for the server password. Illegal in conjunction
with -pw or -guest.

-askvp t prompt for the volume password. Illegal in conjunction
with -vp or -guest.

MPW 3.2 Tools/Scripts
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

CMarker

CMarker reads the specified C++ I ANSI C source file(s), syntax checks them and gener­
ates appropriate "Open" and "Mark" MPW commands, which, when executed, will mark
the source file(s) at each function definition with the marker name being the name of the
function. Its purpose is to aid in the marking of source files for use with the MPW "marker
browser" capability. CMarker contains a full ANSI C preprocessor and provides options
to mark include files, generate source listings (with or without showing macro expan­
sions), run the preprocessor only, flag anachronisms, and syntax check C++ I ANSI C
with or without Apple extensions.

(See Appendix B for the CMarker manual.)

Commando

The following bug has been fixed: conditionals in Commando resources were not always
evaluated correctly when a set of dependencies was not a simple tree but a directed acyclic
graph. An illustration of this would be two entries, B and C, both dependent on A, with D
dependent on the expression (B or C).

Compare

The maximum number of lines in the files being compared has been raised. The limitation
section of the manual should be amended to read: ''The maximum number of lines in the
text files read by Compare should be less than 65535."

DumpCode

DumpCode now stops disassembling at the end of the resource (rather than skidding to a
halt a few bytes beyond). It recognizes and dumps the new data initialization format used
by Link.

DumpObj

The -mods option prints a summary of the contents of an object file, including the name,
size, scope and segment of each module and entry point. This means you can find out
what's in an object file without dumping the entire file.

MPW 3.2 Tools/Scripts
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

More information is being dumped (flags are printed in English, logical addresses are
disassembled, and so forth).

Type data fix.ups are now printed correctly.

FileDiv

FileDiv now allows an input file to be viewed as containing an arbitrary byte stream in its
data fork.

(See Appendix F for changes to the FileDiv manual.)

Get

Get is a tool for retrieving information from a data base indexed by a BTree. It will not
only retrieve information, but will also create and update the index file when required.

Get is heavily oriented to the needs of the menu-driven "411". Direct calls to it could be for
the purpose of retrieving information from the "411" database in a different manner from
that provided in "411", or for accessing a database that is totally independent of "411".

Information on how to construct database files can be found in the section entitled 'Adding
your own help to "411 "' in the MPW 3.2 "411" Help Release Notes.

(See Appendix C for the Get manual.)

GetListltem

The option -sort has been added. Use of this option will cause the list in the dialogue box
to appear in sorted order.

Lib

Lib now supports the -mf option to allocate Multi.Finder temporary memory when the
MPW Shell heap runs low. See the documentation (and warnings) about -mf in the Link
manual page.

MPW 3.2 Tools/Scripts
Release Notes

4 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Link

Data Initialization

A new data initialization compression routine was added to Link to provide a more compact
representation of the data image within link output. The routine originated from the need
for better compression of C++ VTables. An associated _DATAINIT module exists within
the 3.2 alpha Runtime.o library to expand the data image into the proper below-AS world.
The new routine may reduce the size of the %A5Init segment by up to 33%. Link will re­
vert to using the original data initialization compression routine when older libraries are
linked.

New Options

Two new options deal with removal of various 32K size limitations. For technical expla­
nation, see the MPW 3.2 Run-Time Architecture Release Notes.

Branch Islands

A new option has been defined to cause the automatic generation of branch islands to
remove the 32K limit on segment size. The syntax is:

-br on # generate branch islands where needed

-br off # do not generate branch islands (default)

+ The -br on option should not be used simultaneously with the -model far option.

6. Important Because of an outstanding bug, attempting to use the -br on option
simultaneously with the -sn option may cause a crash. /::.

"32-Bit Everything"

A new option has been defined to accommodate the "32-Bit Everything" method of remov­
ing the 32K limit on segment size, jump table size, and the size of the global data area.
They are:

-model near # the default

-model far

If any of the code being linked was compiled with a "far" option, it is necessary to link
with the option -model far.

MPW 3.2 Tools/Scripts
Release Notes

5 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

New Keywords (-opt option)

The -opt option accepts two additional keywords:

-opt names

-opt info

SelectorProcs are modules generated by the linker to be
used at run-time for Object Pascal method dispatching.
This keyword causes MacsBug symbols to be appended to
SelectorProc modules so that the selector names are visible
in MacsBug disassemblies. The MacsBug symbols take up
space in the application, both on disk and in memory (e.g.
9K or more for a medium MacApp application).

Write method table optimiz:ation information to diagnostics.
This information was previously written to diagnostics
using the '-p' option and was moved to the 'Info' subarg
to reduce the size of the linker diagnostics when optimiz­
ing.

Object Pascal Optimization

Jump table entries for monomorphic methods are now being stripped. This is an inten­
tional step of the optimizer, although it may present problems when trying to call an Object
Pascal method from a C++ program. To work around the dispatching problem, use the
NoBypass subargument to -opt to bypass monomorphic method optimization when opti­
mizing.

Symbolics

The format of Sym files has changed to support Object Pascal and FOR1RAN. Use the
1.3 SADE with the MPW 3.2 Linker (you can't mix old and new Sym files or SADEs -
please delete your existing Sym files). Contact DTS for the details of the Sym file and
O:MF changes.

Miscellaneous

The linker now returns an error when the size of the jump table has reached the maximum
number of jump table entries.

MPW 3.2 Tools/Scripts
Release Notes

6 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Previously, when the -ad option was used, the linker would align every data module in­
cluding the main data module, if one existed. This was unacceptable since MPW Pascal
makes AS-relative references to data in the main data module assuming that it is located
immediately below AS. The -ad option will now correctly align data while leaving the main
data module immediately below AS.

There is now no limit to the size of global data that is compressed into the %A5Init data
initialization segment. There was previously a limit of 32K.

When linking using the -mf option, if memory conditions continue to be tight, the flush
command may be used to recover additional space from the shell's cache.

Various cosmetic changes have been made to the -1 and -map output.

Make

The new version of Make for MPW 3.2 includes several new features.

The default rule mechanism has been extended so it may identify optional additional depen­
dencies in addition to the single dependency permitted by the current mechanism. This new
capability has immediate applications to MacApp builds.

A default build rule has been added for C++ files, which are recognized by the suffix . cp.

Make supports a new predefined variable, {Deps}, which stands for all of the dependen­
cies of a target.

Make also supports a new predefined target, $0utOIDate, which can be used to force other
targets to be rebuilt.

A new option, -y, has been provided. This option tells why build rules were emitted, but
in a less verbose form than the existing -v option. Namely, it does not emit messages
about up-to-date targets.

Default Rules Extension

Default rules formerly had the following form:

.extensionl j .extension2
<build rules>

This syntax has been extended as follows:

.extensionl j .extension2 [other dependencies ...]
<build rules>

MPW 3.2 Tools/Scripts
Release Notes

7 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

The other dependencies can be more file extensions and/or fixed file names. These depen­
dencies are considered secondary or optional dependencies as is explained below.

The first extension on the right hand side of a default rule is treated as the primary
dependency (or trigger dependency), that is, the file name created with this extension
(i.e., " { depdir} {default} .extension2") must be valid in order for the default rule to be trig­
gered or applied. To be valid a file name must either appear in the makefile or exist in the
file system (or lead to a valid file name by further recursive applications of default rules).
The existence or non-existence of files specified by secondary dependencies will have no
effect on whether the rule is triggered, thus default rules are triggered just as they were be­
fore.

Secondary dependencies are optional; that is, none are required, and the indicated file
(or files) need not be valid for the default rule to be applied. Secondary dependencies are
only processed when a default rule is triggered by its primary dependency. When the sec­
ondary dependency is a fixed file name, a dependency will be added if the secondary de­
pendency refers to a valid file name. Similarly, when the secondary dependency is a file
extension (e.g., ".extension3") a dependency will be added if the file name implied by this
extension (i.e., " { depdir} {default} .extension3") refers to a valid file name. If a file name
specified by a secondary dependency is not valid then no dependency is added and the de­
fault rule is processed as usual.

Applications. This extension will be useful for MacApp, where typically a source file
consists of a file with the interface and an include with the implementation. Now the de­
pendency of the object file on both source files can be stated in a single rule, such as the
one below:

.p.o f .p .p.incl
<normal Pascal build rule>

"Deps" Variable

The predefined " { Deps}" variable may be used in a target's build rules and represents all of
the (first-level) dependencies of the target (as opposed to {NewerDeps} which represents
only those dependencies which are newer than the target).

The {Deps} variable can be used to write a default rule for links or application builds where
all of the dependency files will be linked together, such as:

f .o
{Link} {LinkOptions} {Deps} -o {TargDir}{Default}

MPW 3.2 Tools/Scripts
Release Notes

8 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

"$0utOIDate" Target

The predefined ''$0utOfDate" target is an artificial target which is always out of date and
never needs to be rebuilt One can force a target to be rebuilt by making it depend on
$0utotDate.

For example:

ForceRebuild =

foo f
t default variable definition (NOP)

{ForceRebuild}

<build foo>

If Make is invoked normally the target "foo" will not be rebuilt; however, it will be rebuilt
if invoked with the following command line:

Make -d ForceRebuild=$0utOfDate

This command line has the effect of overriding the vacuous definition of "ForceRebuild" in
the makefile while giving foo a dependency on $0utotDate which forces it to be rebuilt.

PasMat

The following bug, pertaining to the j formatting directive, has been fixed:
j=<width>[±]/<coll>[sd]/<col2>c

did not handle the case where <col2> could be 1.

Pas Ref

Options have been added to pennit processing of conditional compilation directives. The
limitation on the number of symbols has been raised from 5000 to 6000.

(See Appendix E for changes to the PasRef manual.)

MPW 3.2 Tools/Scripts
Release Notes

9 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

ProcNames

ProcNames can be directed to generate MPW Shell "mark" commands that place markers
on all procedures and functions in an Object Pascal file.

Options have been added to permit processing of conditional compilation directives.

(See Appendix D for changes to the ProcNames manual.)

ResEqual

ResEqual now compares resource attribute flags for equality and reports any differences
found.

Rez

A void splitting expressions with #if or #elif commands, for example:

type 'TEST'
int;

} ;

.Jtdefine big 5

resource 'TEST' (128) {
10 // this will not work because the expression is split

Hf big

.Jtendif
} ;

* 45

• Attention is directed to the material in the MPW 3.0 Reference Manual with respect to
the arguments of the -c and -t options. These arguments are Rez expressions. If a
special character within the expression requires that it be enclosed in single quotes, it is
necessary to surround the quoted expression with double quotes. E.g. -c 11 • §§§ • 11

MPW 3.2 Tools/Scripts
Release Notes

10 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Search

The following options have been added:

-b #break File/Line output text into two lines

-nf f write error message if pattern not found

-ns f return 0 when pattern not found

-sf f stop the search at the first successful match

Improvements in the search algorithm and in the buffering have greatly enhanced the per­
formance.

Sort

A bug in Sort prevented the sorting of field expressions that include column offsets or
counts. For example, a call of Sort with the option
-f 1.3+4

would fail to do any actual sorting. This bug has been fixed.

StreamEdit

StreamEdit is an non-interactive text editor similar in function to the Unix® tool sed.
Providing scriptable text matching and editing operations, it is useful for making repetitive
changes to files, for extracting information from text files, or as a filter.

StreamEdit takes a script and a set of input files (or standard input, if no input files are
specified) and applies each statement in the script to each line of input, writing the output to
standard output or the specified output file.

(See Appendix A for the StreamEdit manual.)

MPW 3.2 Tools/Scripts
Release Notes

11 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Scripts

CompareFiles

The CompareFiles command now has two more options for specifying screen size:

-TwoPage f screen size for Apple Two-Page Monochrome Monitor

-Portrait f screen size for Apple Macintosh Portrait Display

CreateMake

Enhancements to CreateMake are:

• A check box for providing symbolic information to the SADE debugger. This will ap­
ply the -sym on option to the generated command lines for compilation and linking.
The check box is dimmed for desk accessories, because the method for building them
produced by CreateMake is note compatible with SADE.

• Radio buttons for the options -mc68020, -mc68881, and -elems881.

• Provision for the building of objects of a new type: SIOW application. This type is de­
scribed in the MPW 3.2 SIOW Release Note.

Other changes are:

• CreateMake now creates correct Makefiles for building cdevs and most stand-alone code
resources. Desk accessories remain a problem since there are several different methods
for building the header at the start of a desk accessory. CreateMake will produce a cor­
rect makefile for one of the methods used in the Memory DA examples found in the
CExamples and PExamples folders. This build technique is the same as that found in
MPW 3.0, but is not compatible with SADE. For information see the Instructions file in
the CExamples or PExamples folder. In conclusion, if you are building a desk acces­
sory, you probably shouldn't be using CreateMake to produce the makefile.

• CreateMake recognizes that the functions of the libraries CRuntime.o and Clnterfaces.o
have now been absorbed into Runtime.o and Interfaces.o; it therefore no longer puts
CRuntime.o and Clnterfaces.o into the library list for linking.

MPW 3.2 Tools/Scripts
Release Notes

12 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• The compilation and linking command lines generated by CreateMake no longer have the
-w option; warnings will be issued. The only exception is that the link command line
for a tool has the -d option, thus suppressing the duplicate definition warnings that
would normally be issued because of the use of Stubs.o.

• If any source file is written in Object Pascal or C++ (filenames with the extensions . p or
. cp), the line f" {Libraries} "Obj Lib. o will appear in the link.

MPW 3.2 Tools/Scripts
Release Notes

13 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

Introduction

The original execution environment of the Macintosh was designed for a machine with
128K of RAM and a 68000 CPU. In order to cope with a memory this small, dynamic
relocation of almost everything was a necessity. It had to be possible to move segments of
code, to purge them when not needed, and to reload them elsewhere than their original
location when needed again. The initial architecture restricted the size of each of the fol­
lowing to 32K: code segments, the global data area, and the jump table (described below).
This execution environment is considered to be an extremely efficient one within the stated
constraints.

Throughout the history of MPW, various enhancements to MPW tools have been made
with the purpose removing one or another of these 32K restrictions. The following sec­
tions of these Release Notes show how to apply the available alternatives:

• Direct compiler generation of AS-relative data references with offsets exceeding 32K.

• Direct function calls within a code segment greater than 32K by use of the 68020 PC­
relative branch with 32-bit displacement (C compiler, 68020 only).

• Making function calls within a code segment greater than 32K by using "branch
islands."

• A Link option providing for extension of the jump table to more than 32K by utilizing
part of the application globals space.

• The "32-Bit Everything" solution, which extends application globals, code segments,
and the jump table to more than 32K each by performing address "fixups" at load time.

The remaining sections of these Notes describe the technology of the "32-Bit Everything"
solution in detail, present a number of essential caveats, and describe a new run-time li­
brary and interface that is directed to applications (and debuggers) which might be explicitly
concerned with the "32-Bit Everything" Segment Loader patches.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Breaking the 32K limit

More than 32K of global data (all 680x0 machines)

The compiler option -m, available for both Pascal and C, causes generation of code se­
quences that yield AS-relative references (execution-time A5 value) with 32-bit offsets.

A typical sequence is:
MOVEA.L

ADDA.L

WHATEVER

AS,AO

<32-bit offset>,AO

(AO)

Without the -m option, the code would be:

WHATEVER <16-bitoffset>(AS)

In either case, the offsets are supplied by the Linker.

Disadvantages: Code is larger and slower

Code segments greater than 32K (C compiler, 68020 and above)

The C compiler option -bigseg causes function calls within the same segment to be en­
coded with the 68020 BSR. L instruction, which is a PC-relative instruction with a 32-bit
offset.

Disadvantage: Not available to 68000 machines.

Advantage: Useful for large single-segment code, e.g. XCMDs.

Branch islands-a universal technique for large code segments

A simple, effective technique for implementing PC-relative code-to-code references within
a segment that exceeds 32K in size is to split the segment into two independently compiled
modules each of which is under 32K, and to include as a sandwich between these two por­
tions a small assembly-language module (a "branch island") that transmits calls between
the two. In other words, the original call is modified to be a JSR to the branch island and
the latter contains a BRA to the desired target. For usage information, see the Link section
of the MPW 3.2 Tools/Scripts Release Notes.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Large jump tables

A Linker option, -wrap, makes it possible for jump tables to be larger than 32K by utiliz­
ing unused space in the global data area for jump table entries when the jump table space
has been exhausted. This is particularly useful for MacApp programs. Because they make
little demand on global data space, this option significantly increases the size of the applica­
tions that can be generated with MacApp.

Disadvantage: Of limited utility. At best, can double the jump table size. Not applicable if
the global data area is filled with data

"32-Bit Everything"

Tiris is a complete and almost transparent method of removing all three limitations: on code
segment size, jump table size, and the sire of the global data area. The cost to the applica­
tions developer is a slight increase in code size and a slight increase in the time to load a
code segment. The method is activated by using certain options when compiling and link­
ing. The compiler options permit choice, on a compilation unit basis, of full 32-bit offsets
for global data (-Model farData), full 32-bit offsets for code references (-Model
farCode), or both (-Model far). Linking of modules compiled with any such combina­
tion is supported; the only requirement is that if any 32-bit option has been used with any
of the compilation units, the linking must be done with the option -Model far. The
increase in code size has three causes: each reference occupies two bytes of additional stor­
age, and the Linker inserts into the executable file relocation information that is used when
loading and about lK of code that patches the Segment Loader . The increase in load time
is caused by dynamic relocation of the 32-bit references during loading. Global data refer­
ences and code references via the jump table are relocated by adding the load-time value of
A5. Intra-segment code references are relocated by adding the load address of the segment.

Compiler and Linker options

The options are:

Compiler options (Object Pascal and C):
-Model near f the default
-Model far

which respectively choose the stated model for both code and data,
-Model nearData # again, the default
-Model farData

which chooses a model for data only, and

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-Model nearCode :It default

-Model farCode

which chooses a model for code only.

Linker options:
-model near :It the default

-model far

If any code being linked was compiled (or assembled) with any "far" option, it is an error
to attempt linking without specifying the option -model far.

Assembly language options and techniques

In assembly language, the use of a 32-bit reference for the target address of an instruction
must be explicitly demanded by use of the absolute long address syntax (xxx) . L, where
"xxx" is a relocatable expression. Two further requirements are that the relevant operand
symbol be imported, and that the option -model far be used for the assembly. The re­
quirement that the symbol be imported means that the defining occurrence of the symbol
must be in a different module from the instances of use as 32-bit references. Since the ab­
solute long address syntax by definition specifies absolute operands, the use of this form
with a relocatable symbol is an error unless the option -model far is invoked. The ab­
sence of the option -model far (the default) can be explicitly shown by use of the option
-model near.

Global data references, references to code in the same segment, and references to code in a
different segment all cause the assembler to produce similar records, records that tell the
Linker that a 32-bit patch will be needed. The Linker observes whether the references are
to code or data, and in the former case, whether the reference is within the same segment or
not.

The following example illustrates the technique:
MAIN

IMPORT
IMPORT

IMPORT

JSR

JSR

ADD.W

ENDMAIN

PROC

EXPORT

THERE NOP

ENDPROC

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

STUFF
THERE

ELSEWHERE

(THERE). L

(ELSEWHERE) . L

(STUFF). L,DO

THERE

4

Symbols from other
modules must be

imported.

Symbols are written

using (xxx) .L syntax.

Note that THERE

is in the MAIN

segment.

Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

ELSEWHERE

STUFF

Known problems

SEG
PROC
EXPORT
NOP
ENDPROC
PROC
DATA
EXPORT
DS
ENDPROC
END

'SGl'

ELSEWHERE

STUFF
1

Note that ELSEWHERE
is in a different
segment.

• The 32-Bit Everything mechanism patches the_ LoadSeg trap. Therefore, if user code
calls_ LoadSeg directly or patches_ LoadSeg, unpredictable behavior may occur.

• The Obj Lib. o library does not support 32-Bit Everything. Because of this, code using
Pascal Objects will not work with 32-Bit Everything. This does not apply to MacApp,
whose library does support 32-Bit Everything.

• It is in general not correct to combine Object Pascal objects compiled respectively with
differing choices of the near and far options. The Linker will consider this circumstance
to be an error.

• The user should be aware that using the "far" option results in the creation of code
which is not "pure." Because the code is modified when loaded (or reloaded), check
sums become invalid and attempts to share code are likely to fail.

Technical details of "32-Bit Everything"

Recapitulation of 16-bit technology

In order to provide for relocatability of code segments, all code-to-code references within a
segment are written as PC-relative, so that the code need have no knowledge of where it is
loaded. This nominally restricts the size of segments to 32K because the PC-relative in­
structions on a 68000 use a 16-bit offset. Current ways of removing this restriction are not
fully satisfactory, as a direct 32-bit branch is available only on the 68020 or higher.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

5 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

References from code to global data appear as AS-relative addresses with negative offsets.
The present method of dealing with more than 32K of global data is to generate 68000 in­
struction sequences that implement 32-bit AS-relative references. (lbe equivalent 68020
addressing mode is slow, and using it would introduce an undesirable processor restric­
tion.)

Code references from one segment to another are performed as indirect references via the
dynamically maintained jump table. Details of the jump table format are given in the
Segment Loader chapter of Inside Macintosh 01 ol. II, Ch. 2). The jump table is loaded at a
small positive offset from AS, and references to it are encoded as AS-relative addresses
with positive offsets. Each procedure or function which is an entry point to its segment is
therefore represented in the code as an AS-relative address, this address being created by
the Linker. The AS-relative addressing mode suggests that the jump table be limited to
32K. Other architectural considerations in fact prevent extension of this limit

In order to help the reader understand the description of the new addressing mechanisms, a
short summary of the current jump table mechanism follows. For more details, see the
above-named chapter of Inside Macintosh . The jump table entries for the procedures of
any given segment are contiguous. They appear in two alternate formats, depending on
whether or not the segment has been loaded. The "unloaded" format contains the all the
information the segment loader needs to construct an absolute jump instruction to the pro­
cedure. The information is: the segment number and the offset of the procedure from the
start of its segment. A subroutine jump to the "unloaded" jump table entry results in a call
of the Segment Loader to load the segment and to modify all jump table entries to the
"loaded" format. In this latter format, the jump table entry holds, in the same eight bytes,
the segment number and the previously-mentioned absolute jump instruction. When the
segment is purged, the segment loader reverses the process, and returns that segment's
jump table entries to the "unloaded" format. Each segment starts with a header, containing
information that the Segment Loader needs in order to perform the switch between "loaded"
and "unloaded" formats. This information is the offset of the first entry for that segment
from the start of the jump table and the number of jump table entries belonging to the seg­
ment.

In summary, the system was designed with a nominal restriction to 16-bit addresses for
several types of references, and the various methods of partial removal of this restriction
are not considered adequate. What is wanted is a consistent, unified, backwards­
compatible, and efficient way of removing the restriction.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

6 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

The "32-Bit Everything" solution

The tricky part of removing the restriction to 16-bit addressing is to do it in such a way that
the changes are almost transparent. If we refer to code with 16-bit addressing as code ac­
cording to the "near'' model, and code with 32-bit addressing as the "far" model, then one
ground rule is that the Linker should happily accept a mixture of segments compiled with
different models. Since the code making an intersegment reference cannot "know" the
model of the addressee, the code must make the call via the jump table in a model­
independent manner. This, of course, also requires that there be no change in the size of a
jump table entry.

There are three types of references which must be considered: code to data, intra-segment
code to code, and inter-segment code to code. Each of these is described in detail below.
The basic methodology is the same for each: instead of having compilers generate PC­
relative and AS-relative instructions, both having 16-bit offsets, have compilers instead
generate instructions with 32-bit addresses, and relocate these addresses at load time by the
segment load address or by the contents of AS, as is appropriate. Obviously the Segment
Loader must change. The way in which this change has been implemented will be de­
scribed later.

Code-to-data

If compilation and linking are petformed with any option that specifies the "far'' model for
data, then all instructions which reference global data are generated with 32-bit absolute ad­
dresses. These addresses are the offsets of the data items relative to A5. The location of
each such instruction making such a reference is stored in compressed form in an area
called "A5 relocation information." The modified Segment Loader, using this information
and the value of AS at load time, relocates each such instruction during loading by adding
the value of AS to the 32-bit address field of the instruction. This provides a more efficient
method than hitherto available for referencing a global data area that exceeds 32K.

Code-to-code (intra-segment)

If compilation and linking are petformed with any option that specifies the "far'' model for
code, then all instructions which make intra-segment code references are generated with 32-
bit absolute addresses. These addresses are the byte offsets from the beginning of the
segment to the referenced points. The location of each instruction making such a reference
will be stored in compressed form in an area called "segment relocation information." The
modified Segment Loader relocates each such instruction at load time by adding the load
address of the segment to the 32-bit address field of the instruction. This permits a seg­
ment to be over 32K in length.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

7 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Code-to-code (inter-segment)

Compilation and linking with the "far'' model causes the simultaneous removal of two pre­
vious restrictions: the limitation of the jump table and segment sire to 32K bytes each.
Because segments compiled under the "near'' module may be linked with other segments
that were compiled as "far," the jump table entries for "near'' segments precede those for
"far" ones. Thus, there still may be a portion of the jump table as large as 32K containing
"near" entries before the start of the "far'' entries. A segment compiled/linked as "far'' may
exceed 32K; therefore four bytes are required in a jump table entry to describe the offset of
a function from the beginning of its segment This requires a reorganization of the jump
table from the "classic" (/ nside Macintosh) structure. Because of the requirement simulta­
neously to support the "near'' and "far'' models, all jump table entries must be of the same
size, and preferably of the same format The new fonnat follows:

• Jump table entry

Unloaded Loaded

2-byte segment number 2-byte segment number

2-byte LoadSeg 6-byte JMP $xxxxxxxx

4-byte segment offset

Only the entries for unloaded segments differ from the "classic" jump table entries docu­
mented in Inside Macintosh. By omitting the instruction that stacks the segment number
(letting the Segment Loader fetch the segment number from the entry itself), two bytes are
saved, making possible the recording of a 4-byte offset.

References to "far'' jump table entries are handled in a similar way to global data references.
JSR instructions with absolute addresses are generated, the addresses of these instructions
are recori:ied as "AS relocation information," and the (modified) Segment Loader adds the
value of AS to the address fields of the JSR instructions at load time.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

8 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Because MPW rides on top of an existing system, it was decided to create the modified
Segment Loader by patching the one supplied by the system. The scenario is that, if the
"far'' model is requested, the Linker puts the code needed to do this patching into the appli­
cation itself. The first entry in the jump table is a "classic" entry, understood by the stan­
dard Segment Loader, which points to the patch code. Execution of this code causes the
desired modifications of the Loader. The remainder of the jump table is in the new format,
this part being separated from the first entry by a "flag" entry of which the first word is
reserved and must be zero, the second is a version field (nominally $FFFF), and the re­
maining two words are zero. The third jump table entry addresses the main entry point of
the application. The following illustration shows the start of the jump table:

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

9 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Jump table structure

$0
$0004 (segment offset)

$2

move. w #1, -(SP)

(put seg number on stack)
"Classic" format entry

$6

LoadSeg (Seg Loader trap)

$8

$0000 (reserved)

$A

$FFFF (version) "Flag" entry
$C

$0000 (reserved)

$10

$0002 (seg number) First new format entry

LoadSeg

segment off set

L---'"-

6 Important The format of the jump table for "32-bit Everything" is subject to change.
Developers are cautioned against assuming any dependency on the format
reported here. t::,.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

10 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

The standard Segment Loader loads 'CODE' resource 0 Gump table) and 'CODE' resource
1 in the usual manner. (The first entry in the jump table is a "classic" entry, understood by
the unmodified Segment Loader.) The contents of code(l), when executed, patches the
Segment Loader so that it can load and unload 32-bit segments. Code(l) also patches
Chain, Launch, and ExitToShell so that, when executed, they unpatch the Segment
Loader and then execute normally. Finally, Code(l) calls the third jump table entry.
Because the third entry has not yet been loaded, loading is now performed by the modified
Segment Loader, which, after verifying that the "flag" entry in the jump table is correct
with respect to the version field in the segment header, updates all PC-relative and A5-
relative references while loading the code. ff a segment has been moved, or A5 has
changed since the segment was loaded, then the jump table entries for the segment revert to
the "unloaded" format, and the modified segment loader will add to the addresses in the
code that need updating the respective changes in the load address and in the A5 contents.

32-bit segment structure

As stated above, "Classic" segments have a 4-byte header, the first two bytes being the off­
set from the beginning of the jump table of the entry for the first routine in the segment, and
the second two bytes being the number of jump table entries for the segment 32-bit seg­
ments have a considerably longer header and contain relocation information. That a seg­
ment is of the 32-bit persuasion can be determined from its first word, which matches the
"version" field in the second jump table entry, namely $FFFF. The second word is $0000.
The next longword is the byte offset from A5 of the first "Classic" or near jump table entry.
This is followed in tum by longwords giving the number of near entries, the byte offset
from A5 of the first 32-bit jump table entry, and the number of 32-bit entries. The next
four longwords contain, respectively, the offset from the segment start of the relocation
information for AS-relative references, the current A5 value used for relocating these refer­
ences, the offset from the segment start of the relocation information for segment-relative
references, and the segment load address used for relocating these references. Finally,
there is a longword containing zero that is reserved for future use. Following this header
is the code, the A5 relocation information, and the segment relocation information. This is
shown in the following diagram (The order of the shaded items is subject to change.):

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

11 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Segment structure

$FFFF

$0000

AS offset of 16-bit
referenced entries

Number of 16-bit
referenced entries

AS offset of 32-bit
referenced entries

Number of 32-bit
referenced entries

Offset of AS-relative
relocation info

Current value of AS

Offset of segment­
relative reloc info

current segment
location

$0000
(reserved

••.J.i.!.i:.·.~.~.·n·.~.;=.••.:.:~.:: .. :;.:.o;.=·.:,• .. :,:,: __ .: .. ·.;;·n·········: .. t. ... '.:.::.: ... t·.·.••.::.•.:.~.:.:·:=:··~=~=·····.••,•=.·n·,··t:: .. :·:·•·.•.F.•·.••.:.c.:;:.~ti~~ .. :·:·:n···:··.::·:.: ... :···.:···:·:· :I• : :a;;: ~,,,,,,. ~:::l":~::;:::::;:~,\:.•.:[·;:~~.,j.: ... ~.·)):(:)t>
:::::;:;::::::::::::=: ::::;:::::::·:-:::·:-:-:········ .·.·.:-:-::; ::(~~:;;;}{(:

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

$0

$2

$4

$8

$C

$10

$14

$18

$1C

$20

$24

12 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Relocation information format

The relocation information is simply a consecutive list of offsets between longwords that
need to be relocated at load time, beginning with the offset of the first such longword from
the start of the segment Some data compression has been used in recording this informa­
tion. Because instructions start at even addresses, it suffices to record the off set values
divided by two. In the table below, the various encodings are shown as bit strings. The
portions denoted by "bbb ... " give, when doubled, the desired offset values.

• Relocation information

relocation item

()()()()()()()(()()()()()()()(

Obbbbbbb

1 bbbbbbb bbbbbbbb

()()()()()()()(1 bbbbbbb

bbbbbbbb bbbbbbbb

bbbbbbbb

Signal handling in MPW tools

interpretation

end of relocation information

offsets between $02 and $FE

offsets between $0100 and $FFFE

offsets between $00010000 and $FFFFFFFE

The MPW 3.2 Al Release Notes stated a requirement that tools provide their own handling
of the SIGINT signal (command-period) if any "far" option had been used in building the
tool. This is no longer necessary, because the Shell will now remove the Segment Loader
patches after termination of the tool.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

13 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Run-time support

6 Important Developers are cautioned that the material in the remainder of this
document will probably change in MPW versions after MPW 3.2 t:,.

Overview

This section discusses a set of interfaces and libraries for working with the "32-Bit
Everything" run-time environment Addressed particularly are applications and/or
debuggers which use the _Launch or _Chain traps, or patch the _LoadSeg trap.

Files associated with this section are:

{Libraries}RTLib.o
{Cincludes}RTLib.h
{Pinterfaces}RTLib.p

Run-time interface

Library that implements the interface;
C and C ++ declarations;
Pascal declarations.

There are two kinds of programs that utilize the run-time interface: applications which need
knowledge of the environment in which they are executing and resident debuggers which
need to know about another application's environment.

+ Note: The calls and data structures to follow are shown in C. Pascal equivalents are to
be found in RTLib. p.

The "32-Bit Everything" run-time interface consists of a single procedure call:

pascal OSErr Runtime (RTPB* runtime__parms);

The operation to be performed is determined by the value of the first member of the
structure RTPB. RTPB has the form:

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

14 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

struct RTl?B {
short fOperation;
void* fAS;
union

RTGetVersionParam fVersionParam;
RTGetJTAddrParam fJTAddrParam;
RTSetSegLoadParam fSegLoadParam;

fRTParams;
} ;
typedef struct RTPB RTl?B;

The first member, fOperation, can have any of the following values:

kRTGetVersion
kRTGetJTAddress
kRTSetPreLoad
kRTSetSegLoadErr
kRTSetPostLoad
kRTSetPreUnload
kRtl?reLaunch
kRTPostLaunch

kRTGetVersionAS
kRTGetJTAddressAS
kRTSetPreLoadAS
kRTSetPreLoad
kRTSetPostLoadAS
kRTSetPreUnloadAS

Those operations whose name ends in "AS" require a value for the second member, fAS,
which is the address of an "AS-world" The similarly-named operation without the "AS"
uses the current value of AS as this address.

The third member, fRTJ?arams, is a parameter block consisting of one of three structures
holding parameters for the appropriate operation. The details for each structure are in­
cluded with operation's description.

Possible errors returned from Runtime include:

Error

eRtNoErr

eRTinvalidOP

eRTBadVersion

eRTinvalidJTPtr

Run-time operations

kRTGetVersion, kRTGetVersionAS

Description

(success)
Invalid operation
Not 32-bit everything run-time
Invalid jump table pointer

Return the run-time version number for the current (or specified) AS-world.
The fRTParams structure used with these operations is:

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

15 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

struct RTGetVersionParam {
unsigned short fVersion;

} ;
typedef struct RTGetVersionParam RTGetVersionParam;

fAS is used only for RTGetVersionAS to specify the AS-world. This field is not used for
RTGetVersion.

fVersion holds the returned version number. Current version numbers are:

Version No. Description

$0000 'Classic' world.

$FFFF 32-Bit Everything world.

kRTGetJTAddress, kRTGetJTAddressAS

Return the address of the code that the specified jump table entry points to for the current
(or specified) AS-world.

The fRTParams structure used with these operations is:

struct RTGetJTAddrParam
void* fJTAddr;
void* fCodeAddr;

} ;

typedef struct RTGetJTAddrParam RTGetJTAddrParam;

fJTAddr points to a given jump table entry. Pointing to a non-valid jump table entry will
return an unpredictable result.

fAS is used only for kRTGetJTAddressAS to specify the AS-world. This field is not used
for kRTGetJTAddress.

The code address is returned in fCodeAddr. Zero is returned if the segment is not loaded.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

16 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Segment Loader hooks

The operations kRTSetPreLoad, kRTSetSegLoadErr, kRTSetPostLoad,
kRTSetPreUnload, and the operations of the same names with a trailing "A5" enable
programs to acquire control in the case of error, or at pre-LoadSeg, post-LoadSeg, and
pre-UnloadSeg times. They do this by specifying, for each of the above cases, a user
handler to replace the (dummy) user handler that exists in the patched Segment Loader.

The fRTParams structure used with these operations is:

struct RTSetSegLoadParam
SegLoadHdlrPtr
SegLoadHdlrPtr

} ;

fUserHdlr;
fOldUserHdlr;

typedef struct RTSetSegLoadParam RTSetSegLoadParam;

fUserHdlr is a pointer to the user handler to be called at the time indicated by the opera­
tion. A pointer to the replaced user-handler is returned in fOlduserHdlr. This pointer can
be used at a later time to reinstall the original handler.

A user handler is defined as follows:
typedef pascal short (*SegLoadHdlrPtr) (RTState* state);

User-handlers may return a result code of type short. For now the result code is ignored
by the segment loader except in the case of the error-handler (see~ an action).

6. Important User-handlers must be defined within a segment that will be loaded in
memory when the handler is invoked. This will most commonly be the
main segment Also, a user-handler should not make any calls to func­
tions within an unloaded segment because this may result in a system
crash. e:..

fAS is used only for AS operations and contains the value of register AS for the specified
AS-world.

The RTState structure is used to pass information about segment loader operations to the
user-handler. It has the form:

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

17 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

struct RTState {

} ;

unsigned
short £Version;

void* fSP;

void*
long

short
Res Type

long
Boolean

Boolean
OS Err
long

fJTAddr;
fRegisters[lS];

fSegNo;
fSegType;

fSegSize;
fSeginCore;

fReservedl;
fOSErr;
fReserved2;

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

typedef struct RTState RTState;

run-time version
SP: &-of user return
address
PC: &-of jump table entry
registers DO-D7 and
A0-A6
segment number
segment type (normally
'CODE')
segment size
true if segment is in
memory
(reserved for future use)
error number
(reserved for future use)

£Version is the version number of the current "32-Bit Everything" run-time world.

fSP is the current stack pointer when either _LoadSeg or UnloadSeg was executed. In the
case of_ LoadSeg, if the jump table entry was reached via JSR, f SP is a pointer to the user
return address. The value at this SP may be modified within the error handler to change the
return address if a "continue" action is taken (see Take an action). This is not recom­
mended since there may be no user return address on the stack (see discussion below on
stack contents). In the case of unloadSeg, fSP points to the return address from the
UnloadSeg call.

fJTAddr points to the jump table entry called by the user code prior to the_ LoadSeg call.
In the case of UnloadSeg it is the jump table entry pointer passed to unloadSeg. This field
may be edited by the error handler to provide a different point of re-entrance when issuing
the "retry" action (see Take an action).

It is important in the "32-Bit Everything" world that nothing be assumed about the actual
layout of the jump table entry, since the format may change in new versions.

£Registers is an array of longs which contains the register values at the time_ LoadSeg
was called. The registers are saved in the order DO through 07, then AO through A6.

fSegNo and fSegType contain the segment's resource type and id. fSegType will nor­
mally be 'CODE', but this may change in the future.

fSegSize contains the segment's size.

If fSeginCore is true, the segment is already in the heap, but not locked down. (If the
segment is resident, no memory needs to be allocated for it).

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

18 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

fOSErr contains an error number. This field is valid only when the structure is passed to
an error handler.
Modifications to the RTState structure are ignored in all cases except when the fJTAddr

field is altered by the user error handler.

Operations

kRTSetPreLoad, kRTSetPreLoad.AS

Arrange for the function fuserHdlr to be called by the segment loader just before a seg­
ment is loaded. The user's pre-load handler replaces the original pre-load handler, and a
pointer to the old handler is returned in fOldUserHdlr. A pre-load handler could be used
to ensure that enough memory is available for a segment to be loaded. When the handler
returns, a segment load attempt is made. If an error occurs during the load, the error han­
dler is invoked.

kRTSetSeqLoadErr, kRTSetSeqLoadErrAS

Arrange for the function fUserHdlr to be called if a segment load fails. The user's error
handler replaces the old error handler, and the address of the old handler is returned in
fOldUserHdlr.

Upon entering the error handler the stack looks like:

8 (SP)

4 (SP)

(SP)

user parameters
(optional)

user return
address (optional)

• error handler result

address of
RTState structure

error handler
return address

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

19

pushed by user
code
(optional)

~ SP at time of
LoadSeg

present on stack when
error handler gets
control

Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Items on the stack that are labelled optional may in some cases not actually appear. For in­
stance, a simple JMP to a jump table entry would not have pushed the user parameters and
return address.

The word at a c SP) is the space reserved for the error handler's action code.

The value at 4 c SP) points to the RTState structure which provides information about the
failure.

The value at (SP) is the return address from the error handler. This may or may not be
used depending on whether the error handler performs a longjmp to restore control to the
application (see Retreat).

The error handler should examine the RT State structure and take appropriate action (e.g.
release some memory, etc.). It then can exit in one of two ways:

• Take an action. Return an action code on the stack for the segment loader to act upon,
and return. Current action codes are:

Value

kRTRetry

kRTContinue

Action

fu:!ry

This restores the stack to it's original state
prior to the_ LoadSeg and re-executes the
jump table entry. If all goes well, execution
will continue as planned. If fJTaddr in
RTState was modified, execution will
resume at the new address.

Note that unless preventative measures are
taken (e.g. a maximum retry count) using
this technique can lead to an infinite loop if
retrying the load always fails.

Continue

This restores the stack to its original state
prior to_ LoadSeg and sets the PC to the
user return address in the stack. This is
dangerous since a return address may not
exist.

Any other value will result in the system error, dsLoadErr, a segment loader error.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

20 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• Retreat! Use longjmp (or an equivalent) to pass control to another error handler, set up
in a parent stack frame. This handler can attempt damage control (e.g. tty to save the
document, alert the user and quit).

kRTSetPreUnload, kRTSetPreUnloadAS

Arrange for the function fUserHdlr to be called prior to unloading a segment The address
of the original handler is returned in fOldUserHdlr.

The meaning of the fields within the RT State structure vary some from their use with the
other handlers. Specifically, fSP points to the return address from the UnloadSeg call and
fJTAddr is the address of the jump table entty used as the parameter for unloadSeg. The
remaining fields are the same as described above. For debuggers, the pre-unload handler
can be used to uninstall breakpoints within a segment before it is unloaded.

Examples
{*---*}
{* example.p *}
{* An example tool which installs a pre-load handler and uses it *}
{* to print information about the segment. *}
{ * *}
{*pascal -model far example.p *}
{* link -model far -w -t MPST -c 'MPS ' -o examplep d *}
{* example.p.o {Libraries}RTLib.o {Libraries}Interface.o d *}
{* {Libraries}Runtime.o {PLibraries}PasLib.o *}
{* examplep *}
{*---*}

PROGRAM Example;
USES

RTLib, Toolintf, Types;

VAR
p: RTPBPtr;
param_block: RTPB;
error: OSErr;

{$S One}
PROCEDURE one;
BEGIN

{

do something

END;

{$S Main}

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

21 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

FUNCTION preload_handler(state: RTStatePtr): INTEGER;
BEGIN

{

print segment information

WRITELN (' segno = ' ,
WRITELN('segtype
WRITELN('segsize

stateA.fSegno);
•, stateA.fSegType);

stateA.fSegSize);
THEN WRITELN('incore IF (stateA.fSeginCore)

ELSE WRITELN('incore =
preload_handler := 0;

no');

END;

BEGIN
{

yes')

load writeln segment so that the pre-load handler does not
invoke another call to _LoadSeg

WRITELN('load writeln segment');

load the handler

p := @param_block;
pA.fOperation := kRTSetPreLoad;
pA.fUserHdlr := Ptr(@preload_handler);
error := Runtime(p);

load the segment

one;
END.

l*--*I
I* example.c *I
I* An example tool which installs a pre-load handler and uses it *I
I* to print information about the segment. *I
I* *I
I* c -model far example.c *I
I* link -model far -w -t MPST -c 'MPS ' -o examplec o *I
I* example.c.o {Libraries}RTLib.o {Libraries}Interface.o o *I
I* {Libraries}Runtime.o {CLibraries}StdCLib.o *I
I* examplec *I
l*--*I
#include <stdio.h>
#include <types.h>
#include <RTLib.h>

#pragma segment One
one ()
{

II
II do something
II

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

22 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

fpragma segment Main
pascal short preload_handler(RTState* state)
{

II
II print segment information
II
printf("segno = %d\n", state->fSegNo);
printf("segtype = %.4s\n", &(state->fSegType));
printf("segsize = %d\n", state->fSegSize);
if (state->fSeginCore) printf("incore = yes\n");
else printf("~ncore = no\n");
return(O);

main ()
{

RTPB param_block, *p;
OSErr error;

II
II load printf segment so that the pre-load handler does not
II invoke another call to _LoadSeg
II
printf("load printf segment\n");

II
II load the handler
II
p = ¶m_block;
p->fOperation = kRTSetPreLoad;
p->fRTParam.fSegLoadPararn.fUserHdlr
error= Runtirne(p);

II
II load the segment
II
one();

Calling Launch and Chain

(void*)&preload_handler;

MPW does not provide glue or interfaces for calling _Launch or_ Chain; application
writers must call the traps themselves from assembly or assembly-language inlines.
However, the "32-Bit Everything" environment requires some hand-holding in order to
survive a call to Launch.

Under 32-Bit Everything, a call to _Launch must be wrapped between two calls to
Runtime using the operations kRTPreLaunch and kRTPostLaunch:

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

23 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

IMPORT

MOVE.W
SUBQ.W
PEA
JSR

Launch

MOVE.W
SUBQ.W
PEA
JSR

(Runtime) : CODE

#kRTPreLaunch,-(SP)
#2,-(SP)
2(SP)
Runtime

#kRTPostLaunch,-(SP);
#2,-(SP)
2 (SP)
Runtime

push fOperation
room for result
push ptr to RTPB
prepare for launch

attempt a launch

push fOperation
; room for result
; push ptr to RTPB
; _QOst-launch housekee_Qin_g:_

The only parameter used from the RTPB structure is fOperation. The pre- and post-launch
operations do not require a parameter block for fRTParams.

Note that DTS says that you should never call the _Chain trap, since it is not implemented
by Multi.Finder. However, if you find it necessary to call _Chain, then wrap it in the same
manner as that needed by _Launch.

MPW 3.2 Run-Time Architecture
Enhancements
Release Notes

24 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 "411"
Release

About "411"

Help
Notes

"411" provides a way for Macintosh developers to achieve rapid retrieval of software de­
velopment information while using Apple's MPW development system. The access can be
via menus and command keys or from command line entries. The software development
information includes language-specific Inside Macintosh documentation, Tech Notes,
MPW command descriptions and Resource information. In addition a facility for automatic
insertion of Toolbox call templates is provided. Large cross reference index files
(. Windex) may be optionally used to provide an extremely rapid search of the documenta­
tion for any desired word. In the absence of these files, the same search may be made, but
it will be a linear search and therefore will be relatively slow.

"411" can also be customized and extended and new information can be added. The help
files of "411" may be either local or on a shared file server.

Setting up "411"

"411" consists of a installation instructions file (Read Me First), a special UserStartup
script (userStartup•Help), an installation script (Instal1411), and a set of help files
along with their . index and . Windex files. It makes use of a new MPW tool, Get, which
was written to support "411" but can be used independently. The "411" folder holds the
help files, their index and cross reference index files and a ''Tools" folder.

MPW 3.2 "411" Help
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

An important decision to make in setting up "411" is whether to place the "411" Help files
on a server or on your local hard disk. Since these files are large (over 16 Meg total) some
thought should go into deciding which files to use and whether to transfer them to your
hard disk or, if you are connected to a network, to a file server. The most obvious candi­
date for removal is either ClncludesHelp or PlnterfacesHelp. If you are not developing in
both C and Pascal, one of them will probably not be needed. Less obvious, but more sig­
nificant candidates for removal are the .wrndex files. These files are not required, but sig­
nificantly speed up the cross reference search that is done when selecting the "Search"
menu item. Placing the help files on a local hard disk will provide better access speed but
will use significant disk space. If you have access to a file server and several persons want
to access "411" Help, it may be best to move the "411" folder to the file server.

Set up "411" by writing the following two commands to your MPW WorkSheet and exe­
cuting them:
<rls>:Install411 <info>
Execute "{ShellDirectory}"UserStartup•Help

where <rls> denotes the path to the "411" files on the release medium and <info> denotes
the volume on which the user wishes the "411" Help files to reside. If <info> is omitted,
the installation will be to the volume that begins the path <rls>. (In this latter case, the
data files are not duplicated because they are already residing in the desired place.)

For example, if "411" were to be released in a folder named 411Stuff on a CD namedMPw
3. 2 Release, and the user wanted "411" to be installed on a volume named HelpMe, then
the commands to be executed would read:
'MPW 3.2 Release:411Stuff:Install411' HelpMe:
Execute "{ShellDirectory}"UserStartup•Help

The effect of the first of the above commands is to create the folder HelpMe: 411: and to
copy to it all of the "411" files. It then, additionally, copies the new Get tool to the user's
MPW Tools folder, copies userStartup•Help to the MPW folder, and creates a folder
called Help Folder in the MPW folder. This latter folder contains at this time a file called
Help_Folder whose contents is the single line: HelpMe: 411 :, i.e. the name of the folder
containing the "411" information. The effect of the second of the above commands is to
add the "411" menu to the menu bar, and to add one more file to the Help Folder, a file
called Help_Files which contains the names of all of the "411" data files in the order in
which they will be interrogated, e.g.:

HelpMe:4ll:CincludesHelp
HelpMe:41l:InsideMacintoshHelp
HelpMe:4ll:MPWHelp
HelpMe:4ll:PinterfacesHelp
HelpMe:4ll:ResourcesHelp
HelpMe:411:TechNotesHelp

MPW 3.2 "411" Help
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

+ Note: Because of their large size, the cross reference files (. wrndex) are not installed
automatically. If you wish to use these files, drag their icons to the desired folder.

Using the "411" Help menu

"411" works only from within the MPW development environment. When "411" is prop­
erly set up, there should be a 411 menu on the MPW menu bar. If there has been no
change to the userStartup•Help script, the Help menu looks like this:

• 411 Menu

Build Format Directory = HD:MPW:Worlcsheet Contents
Look up KE
Template Kl
Show Keys
Search

Set First File •••
Set411 Files •••
Edit 411 Files •••

About 411 •••

The menu items Look up and Template search all of the files listed in Help_Files;

the items Contents, Show Keys, and Search look only at the first file in the
Help _Files list. This first file is known as the cu"ently selected file. It can be changed
by using the Set First File menu item.

Contents

This menu item lets you see a list of the Help file's table of contents. For example, if the
ClncludesHelp file is the currently selected Help file, then selecting the "Contents" menu
item, causes a list of the ToolBox managers to appear in the Help window.

MPW 3.2 "411" Help
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

HelpMe:411:CincludesHelp

Appletalk.h
Controls.h
CursorCtl.h
Desk.h
Deskbus.h

FixMath.h
Fonts.h
Globals
Graf3D.h
HyperXCmd.h

Look up... "Help"

Palettes.h
Perf.h
Picker.h
Printing.h
Quickdraw.h

Serial.h
ShutDown.h
Slots.h
Sound.h
Start.h

Note that you can obtain the same information by selecting the key word "Help" (or the
name of the help file, e.g. ClncludesHelp) and then selecting the Look up menu item.

Look up (XE)

This menu item lets you look up information stored in the help files; the search starts with
the cmrently selected file (See Set Fi rs t F ii e ...). For example, if you choose (see 2
below) the word FindWindow and then select the Look up menu item (or type XE) the
following information will appear in the Help window:

HelpMe:41l:CincludesHelp Look up ... "findwindow"

short findwindow(Point *thePoint,WindowPtr *theWindow);
Type: Function
File {Cincludes}Windows.h
Trap Number A92C
InsideMacintosh Reference: FindWindow function I-287, P-35, 114, 170
FindWindow procedure V-208
[Macintosh Plus, Macintosh SE, Macintosh II]

When a mouse-down event occurs, the application should call FindWindow
with thePt equal to the point where the mouse button was pressed (in
global coordinates, as

Thus, to get help for a given key word:

1) Choose the Help file you want information from by using the Set First File ... menu
item to make the desired file the first file (currently selected file) in the help file list.
(Skip this step if the help file is already selected, or if the order of search does not mat­
ter.)

MPW 3.2 "411" Help
Release Notes

4 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

2) Click on a word in the active window. You may want to type in the word you want to
look up instead. If the item is just one word, it will be automatically selected if the
insertion point is adjacent to or within the word. Only if a multiple word item is to be
looked up is it necessary to do a manual selection of the entire item. (Note: the means
you don't have to double-click. Also you don't have to type the entire word, just
enough letters to allow 411 to distinguish between the word you want and any other in
the current Help file.)

3) Select the menu item Look up or type XE. This triggers a search through the help
files, in the order in which they are listed, looking for the selected key word If the
search is successful then a window named Help (a file in the MPW directory) is opened
and the information associated with the key word is displayed, along with an indication
of the file in which the key word was found.

Remember, the Look up menu item simply looks for the current selection in the active
window.

Since numbers are keywords only in TechNotesHelp, selecting a number will retrieve the
Macintosh Technical note of that number.

The header, which is placed above the "Contents" information, shows the help file that was
used. To the right of the file name is a message indicating the key word on which the
search was made. A mark is set to this (selected) key word in the file Help to aid the user
in subsequent scanning of Help for previously gathered information.

A slight modification of userStartup•Help causes the header to list all the "411" files in
the order in which they are searched, with the words on the right (Look up ...) printed on
the line bearing the name of the file in which the item was actually found. (See
Customizing "411" below.)

Template (IC 1)

This menu item lets you replace a toolbox function call such as FindWindow with the
template for that function. For example if you were to select "FindWindow" and choose
the Template' menu item (or type Xl), then your "FindWindow" selection in the Active
window would be replaced by:

short myVariable = findwindow((Point *)thePoint, (WindowPtr *)theWindow);

Both C and Pascal templates are available. Use Set Fi rs t Fi I e ... on the 411 menu to
choose a language by selecting either ClncludesHelp or PlnterfacesHelp.

MPW 3.2 "411" Help
Release Notes

5 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Show keys ...

This menu item lets you list all of the keys in the currently selected help file which begin
with the word you have selected in the Request dialog. For example, selecting this menu
and then typing the two letters "fs" when CincludesHelp is your current (first listed) help
file, produces a list of all of the HFS calls that begin with "FS", i.e. FSClose, ...

Search ••.

This menu item lets you search the currently selected help file for all occurrences of the
word you have selected. The result is a list of names (keys) whose data records contain the
word. On a large Help file, e.g. CincludesHelp, this can take a minute or more. Only the
current (first listed) help file is searched even if no data record containing the word is
found If your help folder contains a cross reference file (. wrndex) for the Help file, the
time to search is reduced to just a few seconds.

Set First File .•.

This menu item lets you choose a help file to be the currently selected file. A dialog win­
dow shows a list of all help files, and you are invited to make a selection. The selected file
then becomes the first file in the list that appears in the file Help_Files. It is then known
as the currently selected file, and, until you again reorder the list, is the initial target of all
Look up, Template, and Contents requests, and the only file used by Show
Keys and Search. The Help window opens, displaying the contents list of the selected
file.

Set 411 Files •..

This menu item presents a standard file dialog from which to locate a help folder. If a help
folder is selected then all the files in the folder that end in the word help are placed in the
list of files to search (in Help_Files). Note that this will remove any existing files from
the list..

MPW 3.2 "411" Help
Release Notes

6 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Edit 411 Files

This menu item open the Help_Files window, which contains a list of all the help files
that "411" knows about The list may be edited and then saved. Note that each line speci­
fies a path to a single help file.

About 411. ..

This menu item displays the credits and then does a lookup in the MPWHelp file for the
key "About 411".

Customizing "411"

There are several ways in which "411" can be customized by modifying the
UserStartup•Help script:

• If you are using a file server and want the script to call the MPW Choose tool to mount
the file server when MPW is launched, set the script variables Help_Server and
Guest. Set the former to the desired zone:server:volume pathname, and set the latter to
1 if want to log onto the server as an AppleShare "guest.". Note: This requires the
Choose tool from MPW 3.2 or later.

• If you wish to add or change command keys in the menu, simply edit the AddMenu
commands in the userstartup•Help script. For example, the line

AddMenu 411 "Look up/1"

in the script could be changed to:

AddMenu 411 "Look up/7"

to change the function key to X7. Alternatively,

AddMenu 411 "Look up"

removes the function key associated with the Look up menu item entirely.

• If you wish to change the name of the "411" menu, modify the argument of the Add.Menu

command For example, you can change the menu name "411" to "MyMenu" by
changing all occurrences of AddMenu 411 ... to AddMenu MyMenu ... in the
UserStartup•Help script

MPW 3.2 "411" Help
Release Notes

7 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

• If you wish all help files to be listed in the header, change the script so that it sets the
value of the variable headerStyle to -h (the default is -h2).

Using the Get Tool

The retrieval of information through the "411" Help menu is based upon calls to the MPW
Get tool. The calls that are used by "411" can be seen in the file userStartup•Help. If
you choose, you may instead call the Get tool directly or from your own script

(See the section on Get in the MPW 3.2 Tools/Scripts Release Notes.)

Adding your own help to "411"

Help files used by the Get tool are ordinary MPW Shell document files whose names end
with "Help" and that have an internal organization which is recognized by the Get tool.
The requirements are that a Help file consists of a set of records, each record in turn con­
sisting of one or more fields. Each record must start with the field tag a=KY ("re" is option-')
followed by one or more words separated by carriage returns. The search of the help file is
made on the key words. All other fields are various categories of information to be re­
trieved. Field tags must be the first item on a line, and are separated from the following
material by one or more spaces. Field tags are case sensitive. Each field is terminated by
the appearance of a new field tag. The record is terminated by the next a=KY tag (or end of
file).

Example:

a=KY Keyl

Key2

Key3

a=C This is a comment

MPW 3.2 "411" Help
Release Notes

8 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

The various tags other than ceKY are used to put the information to be retrieved into cate­
gories. The most neutral of them is cee, which is used for general textual matter. These
tags in some cases modify the behavior of Get. For example, the tag a?DT, which is used
for templates, precedes data which will be retrieved if and only if Get is called with the -t

option. This is used in the implementation of the "template" menu item. Other tags cause
some boiler plate to be emitted prior to the text in the data base. For example, the tag ceRI is
used for fields that contain chapter and page references to Inside Macintosh. The text
following the field tag will have inserted before it the cosmetic text: "rnsideMacintosh

Reference: ".

Field Tag Codes:

ceKY Key word or set of key words separated by carriage returns. This field denotes
the beginning of a "411" record and the words in this field are the record's
names, i.e. the words used as keys for retrieval of the record's data.

ceKL Key word List . This is typically used in conjunction with the key "Help" to
list, as a table of contents, all of the key words in the file.

ceF a File name of Assembler include file.

ceFc File name of C header file.

ceFp File name of Pascal Interface file.

ceF Used for the names of files which are not interfaces.

ceT Type of the item: function/structure/constant/etc.

a?D Formal declaration of the item: function, procedure, or structure.

a?DT A template for calls of procedures and functions.

cee Commentary. This is general textual information, generally lengthy compared
to that associated with the other tags.

ceR Reference to ... Used for references other than to Tech Notes and Inside
Macintosh.

ceRI Reference to Inside Macintosh. This is usually a chapter and page reference.

ceRT Reference to Tech Note. This is usually a reference by number.

ceTN Trap Number. This is used to annotate function that are in-line trap calls.

ceMM Routine may move or purge memory. This tag cause issuance of the preceding
warning.

MPW 3.2 "411" Help
Release Notes

9 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

When the Get tool is executed. it first retrieves the byte offset of a key word from the index
file, positions to the reKY line in the help file, and then reads all of the following lines until
another reKY typed line is encountered. Get then outputs the record, after first removing
the field tag codes from each field. Therefore, if the contents of a help file are altered in
any way, it is necessary that the index be rebuilt This is handled automatically by the Get

tool, which puts up a dialog stating that the index needs to be rebuilt and requesting
permission. In ordinary circumstances, this dialog should be answered affirmatively.

About the files in your "411" folder

The "411" folder contains the following files:
:411:

Install411 f the "411 installation
f script.

CincludesHelp f the CincludesHelp data file.
CincludesHelp.index f the CincludesHelp index file.
CincludesHelp.windex f the CincludesHelp cross

f reference index file
InsideMacintoshHelp f Vols. 1-7 data file.
InsideMacintoshHelp.index f Vols. 1-7 index file.
InsideMacintoshHelp.windex f Vols. 1-7 cross reference

f index file.
MPWHelp f the MPWHelp data file.
MPWHelp.index f the MPWHelp index file.
MPWHelp.windex f the MPWHelp cross reference

f index file.
PinterfacesHelp f the PinterfacesHelp data

f file.
PinterfacesHelp.index f the PinterfacesHelp index

f file.
PinterfacesHelp.windex f the PinterfacesHelp cross

f reference index file.
ResourcesHelp f the ResourcesHelp data file.
ResourcesHelp.index f the ResourcesHelp index

f file.
ResourcesHelp.windex f the ResourcesHelp cross

f reference index file.
TechNotesHelp f the TechNotesHelp data file.
TechNotesHelp.index f the TechNotesHelp index

t file.

MPW 3.2 "411" Help
Release Notes

10 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

TechNotesHelp.windex

:411:Tools:
Get

UserStartup•Help

Files created by "411"

f the TechNotesHelp cross
f reference index file.

f the Get MPW tool - used to
f look up help info.
f the "411" UserStartup script.

The following files are created by the userStartup•Help script, either at startup time, or
as the result of execution of menu items created by the script They all reside in the folder
"{MPW}Help Folder:"

Help
Help_Folder

Help_Files

Help_Temp

MPW 3.2 "411" Help
Release Notes

f

f

f

11

your "411" Help window.
contains the "411" path name
(path name to help data and
index files)
contains the list of all help
files (full file names including
path)
temporary file used by the "411"
menu

Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Appendix A
Release Notes

Syntax

Description

Stream.Edit-scriptable text editor

StreamEdit [-e string 1
[-d 1
[-o file 1
[-s scriptFile 1
[-set variablef.=value] J
[file ... 1

StreamEdit is a non-interactive text editor similar in function to the Unix® tool sed. l
Providing scriptable text matching and editing operations, it is useful for making repetitive
changes to files, for extracting information from text files, or as a filter.

StreamEdit takes a script and a set of input files (or standard input, if no input files are
specified) and, to each line of input in turn, applies each statement in the script, writing
the output to standard output or the specified output file.

A statement consists of an address or address range followed by one or more commands.
The commands in a statement apply to those input lines that match the address or
address range. Addresses are specified either numerically, by context matching using
regular expressions, or by simple boolean functions of the above. A command may have
parameters in the form of options and text strings. The commands, in general, cause
modification of the input line, and may furthermore cause text to be inserted before or
appended after the input line.

The -d option profoundly affects the editing process in that it filters out the initial input
lines so that they are not sent to the output except when a particular command explicitly
causes such transmission.

The script is specified in the command line by one or more -e or -s options. (Using the
-s option, the script comes from the named file; using the -e option, it is the string argu­
ment to the option.) If more than one script is specified, the resulting script is the con­
catenation of all the scripts. If no script is specified and -d is not used, the action is sim­
ply to copy the input lines to the output.

A script consists of a series of statements of the form:

address-expression command [; command ...

In a script file, statements and commands are separated by newlines or semi-colons. If
the script is a text string (-e option), only the semi-colon may be used. All the commands
following a particular address expression are executed when the address of the line being
processed matches the address expression.

l1t is not compatible with Unix® sed or awk.

MPW 3.2 Appendix A
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Operation

Note that strings must be quoted. Therefore, a command such as

StreamEdit -s -d scriptl

where the contents of scriptl is

1 print 'I found line l'; 2 print 'I found line 2'

should be written, using the -e option, as

StreamEdit -d -e "l print 'I found line l'; 2 print 'I found line 2'"

A command takes the form:

command-name [text-arguments ...

Address expressions may span multiple lines; arguments to commands are terminated by
either newlines or semi-colons.

Address expressions, commands and command arguments are described below.

Empty statements and commands are legal and are ignored. However, the first com-
mand following an address expression may not be empty. Comments begin with a sharp
sign(#). Semi-colons, unless they appear as the first character on a line, are equivalent to
line breaks as in the Shell, and are used to terminate commands. Newlines (outside of
strings) may be escaped to extend an argument list.

If a script line contains a semi-colon in the first column, the entire line is treated as a
comment by StreamEdit. This allows writing StreamEdit scripts that also contain MPW
shell commands. See the Examples section for more details.

StreamEdit operates on three buffers, called the edit buffer, the insert buffer and the ap­
pend buffer. For each line of text in the input, StreamEdit performs the following steps:

[1) Read the next input line into the edit buffer. Clear the insert and append buffers.

(2) Evaluate each address expression specified in the script (in the order in which it
appears) with respect to the edit buffer's current contents. If an address expres­
sion matches, then execute the actions associated with the expression.
The append command sends its argument to the append buffer; the insert sends
its argument to the insert buffer. All other commands either affect the edit buffer
or directly write to the output file.

[3] When all address/action pairs in the script have been evaluated, concatenate the
insert, edit and append buffers and write them to the output file.

Note that some commands (e.g. Replace and Change) can alter the contents of the edit
buffer; these changes persist, possibly affecting subsequent address matches.

MPW 3.2 Appendix A
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Addresses
An address takes one of the following forms (operators are listed in decreasing precedence:

address) Parenthesis are used to control precedence;

address NOT operator; the address must not match;

address && address Both addresses must match; if the first address
fails, the second address is not examined;

address I I address Either address may match; if the first address
succeeds, the second address is not examined;

address , address Matches the inclusive range of lines begun when
the first address matches, and ended when the
second address matches (this is meant very
literally; see below);

I regular expression/ Matches any input line containing the expression
(see the chapter on Advanced Editing in the
MPW Shell documentation for details; see below
for extensions to regular expressions);

• Considers a match to have succeeded before the
first input line is read;

N Matches input line number N;
$ Matches the last input line;
oo Considers a match to have succeeded after the

last input line is read;

Parenthesis and the ! , &&, 11 and , (comma) operators may be used to form complex
address expressions. For example:

(/trillian/ I I /zaphod/ && /beeblebrox/) && !42

will match any line containing either the text "trillian", or both "zaphod" and
"beeblebrox" (in any order), as long as the line is not the 42nc1 input line. And:

(1,10) && /Copyright/

matches a line containing the word Copyright, but only on one of the first ten input lines.

The range operator can be tricky in several circumstances. This is because it represents a
two-state system, not a continuous test for a condition. When the condition for the start of
the range is met, source lines are considered to match up to and including the line at
which the condition for the end of the range is met. If the first of these is not met, no
lines in the range will be considered. If the last of these is not met, lines will be consid­
ered to be a match forever! For example, the expression:

/Copyright/ && (1,10)

will match the range "/Copyright/ && 1" to "/Copyright/ && 10"; if Copyright
does not appear on the tenth input line, the range will stay active until the end of the
input, which is probably not what was intended. If Copyright does not appear on the first
input line, the range will not be activated at all.

MPW 3.2 Appendix A
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Extensions to Regular Expressions
Regular expressions are the same as those that the MPW shell supports, with the following
extensions:

• A regular expression of zero length, specified with two adjacent slashes (//) means
"the last regular expression matched."

Note that the last regular expression matched may be different from the most
recent regular expression that appears in the script. That is, the short-circuit
evaluation of the && and 11 operators may change the meaning of//. For instance:

/1/ I I /2/ replace // "3" -c -

will replace all occurrences of "l" or "2" with "3"

• A"<;:" symbol (generated by Option-C) as the first character in a regular expression
causes the regular expression to match in a case-sensitive manner (normally
matches are case insensitive). To use a bullet character C •) to anchor the match at
the beginning of the line, the bullet must follow the "<;:"symbol. That is, use:

/<;•fool

and not:

i <-- Wrong!

• The value of a variable may be referenced within a regular expression by enclosing
the variable name between ~ and ~ symbols (this substitution is very similar to the
way curly-braces work in MPW Shell scripts). The variable's value is not treated as a
regular expression, but rather just a string that must exactly match. An empty vari­
able (a null string) matches nothing - note that variables are empty unless they are
set.

Common Pitfalls

For instance, the following script searches for all occurrences of the text "foo":

set VAR "f oo"
/SVA~/ print

If the variable match has to be case-sensitive, the regular expression must be case­
sensitive, as in:

set VAR "foo"
/<;SVA~/ print

By far the most common mistake for a beginning StreamEdit user co make is to confuse
variables and stein~ in replacement expressions. When not within regular expressions,
stein~ must be quoted; an unquoted variable name represents the value of the variable.
For instance, the statements:

and

MPW 3.2 Appendix A
Release Notes

replace /hum/ dum

replace /hum/ "dum"

4

the variable dum

the string "dum"

Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

differ in that the first statement replaces /hum/ with the contents of the variable dum,
while the second statement replaces /hum/ with the string "dum". Since variables start
out empty, if the variable dum has not been initialized then the first statement has the
possibly alarming action of deleting the /hum/.

Text Arguments

Commands

Most commands accept text arguments, referred to in the command summary below as
"text". These arguments are expanded and concatenated into a temporary output buffer
and then moved to the destination. Text arguments take the following forms:

Text Argument Form
"string"
'string'

variable

®N

-from filename

-n

Ex ansion
The string itself (escape characters are processed,
and single or double quotes are allowed).

A period represents the contents of the edit buffer (the
current input line) minus its newline;

The contents of the variable;

The marked expression N, from the most recent match;

The next line of input from the specified file, minus its
trailing newline (if any). The filename argument may
be any other text argument form except -n (a string, a
variable, an ®-variable, etc.). If the filename is empty
(e.g. an uninitialized variable) the value is empty.

Suppress trailing newline at end of expansion.

Variables are names for strings. Variables are initially empty. Variable names are case­
ignored C identifiers, that is, [a-z_Jla-z0-9_1•. Again, care should be taken not to mistake
variables for strings.

Numbers are decimal. Strings are enclosed by single or double quotes. The backslash (\)
and shell-quote (o) characters may be used to quote special characters within strings and
regular expressions:

QD2~ f2rm ~J!ands 12
on \n newline
at \t tab
o\ \\ backslash
aa \o shell quote

Files are named streams of text; the argument to -from or -to may be a string, a variable,
an •@" variable, or even a -from. It is possible to read a file that is also being written;
writing to a file does not change the read position. There can be any number of files;
StreamEdit is not limited by the system's FCB count.

The underlined portions of each command name below indicate the minimum amount of
text needed to specify the command. It is guaranteed that future commands will not
conflict with existing abbreviations.

MPW 3.2 Appendix A
Release Notes

5 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

~end [-n] text
Append the specified text to the append buffer, to be written at the end of the current
cycle. If -n is not specified, a newline is automatically added to the end of the text.

$ Append "This line follows the last line of the input"
42 App -n "This is line 43 ==>"

l.n.a,ert [-n] text
Append the specified text to the insert buffer, to be written at the end of the current cycle.
If -n is not specified, a newline is automatically added to the end of the text.

1 Insert "This text precedes the first line of the file"
42 Ins "This is line 42 ==>" -n

Ch,ange [-n] text
Replace the contents of the edit buffer with the specified text. If -n is not specified, a
newline is automatically added to the end of the text.

42 Change "This is line 42"
/droid/ Ch "These are not the droids you're looking for"

J:2.al.ete
Clears the contents of the edit buffer; essentially the same as specifying "Change -n".

1,$ Delete
/•[dt]*#/ Delete # delete lines that are Shell comments

~
Concatenates and prints the insert, edit and append buffers. Gets the next line of input
and begins the match-execute-print cycle over again.

l,/foo/ Next # ignore input until "foo" is found

Note that Next affects the normal control flow in the script, sometimes with unexpected
results. Once the Next command has been executed, no further commands in the script that
match the current line will be executed, because the next line of input is fetched immediately. Note
also that the printing is independent of the -d option; the buffers will be printed exactly once
regardless of the presence or absence of -d.

~int [-appendto file I -to file] text
Print the specified text on standard output, or to file specified by -to or -appendto. The
text is written immediately (that is, before the insert, edit and append buffers are written).
If no text is specified, ".",the contents of the edit buffer, is assumed. If -n is not specified,
a newline is automatically added to the end of the text.

The -appendto option appends the output of Print to an existing file. If the file does not
already exist, it is created.

The -to option directs the output of Print to the specified file. The file is truncated the
first time it is written to.

MPW 3.2 Appendix A
Release Notes

6 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Type

Input

Both -append and -to require a filename argument. The filename may be specified by a
string, a variable, or an ®-variable. If the filename is an empty string (e.g. an uninitialized
variable) nothing is printed.

1,10 Print
1,$ print -to "MyFile" ">>> " .
I ([a-z0-91 +) ®ll print -to ®l
1,$ Pr -to MYVAR

~lace [-c count] /pattern/ replacement text
Replace the pattern in the edit buffer with the specified text. Unlike their behavior in
other commands, any"®" variables in the replacement text refer to the values set by
processing the pattern argument to Replace, not the "®" variables in the line's address.

The count following -c may be a number, or "oo" (which specifies an infinite count).

1421 replace 1421 "Meaning of Life"
1421 replace II "Meaning of Life" # II is the same
Rep I!©[Ot]*l9[-0-9]+)®1([dt]*Apple=)®21 ®1 ",1989" ®2

~ [status]
Stop processing. Nothing more is printed. If a single numeric argument is supplied, it is
used as StreamEdit's exit status.

Exit 42
Exit

exit with status 42
exit with status 0

.s.et. [-a I -i] variable text
Set the contents of the variable to the specified text. No newline is automatically added.
The -a option causes the text to be appended to the variable's current contents. likewise,
the -i option causes the text to be inserted before the variable's current contents.

I•#! ([a-zA-Z0-9_]+)®1/ Set current_file ®1
set line . # make copy of current line, sans newline
set line . "\n" i make copy of current line, with newline
set -a frog -from "some file"

QRt.ion keyword ...
A general purpose command that controls the processing of the script and the input text.
Current keywords are:

AutoDelete

Tool

Specifying the "auto delete" option is equivalent to appending the command

I=/ Delete

to the very end of the script. All input lines will be deleted; the only output will be
from Print commands. This is also equivalent to the -d command line option.
This is useful when writing filters or scripts that do not need to copy the input
lines as a matter of course.

Standard input, if no files are specified.

MPW 3.2 Appendix A
Release Notes

7 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Outputs

Options

Examples

The result of applying the script to each line of input, directed to standard output unless
the -o option is specified.

Also, the results of executing -to file and -appendTo file commands.

-e string The string is the script to compile. This option may be used more than once,
and may be used in conjunction with the -s option. The final script is the
concatenation of the -e and -s options, in the order specified on the
command line. Note that string must be quoted.

-d Specifying this is exactly equivalent to having a command of the form

-o file

-s file

/=I Delete

as the very last command in the script. It causes all input lines to be deleted;
the only output will be from Print or Next commands. This is also the same
as specifying the "Option AutoDelete" command (see above).

Direct the final output of StreamEdit to the specified file. -o is a "safe"
option; the destination file is not written until all of the input is read, so the
output file may be one of the input files.

Read the specified file and compile the script it contains. This option may be
used more than once, and may be used in conjunction with the -e option.
The final script is the concatenation of the -e and -s options, in the order
specified on the command line.

-set variablef.=valuel
Set the variable to the specified value; this is exactly like using a Set com­
mand, except that the variables are defined before the script is executed. The
value may be omitted, in which case the variable will be set to the empty
string.

Extracting the Leaf Part of a File Name
It is sometimes necessary to extract the leaf part of a complete file path name in a Shell
script. The StreamEdit expression:

I< .. : l * < [-.: J *l ®l/

sets the variable ®1 to the part of the file name following the last colon, or to the whole
file name it doesn't contain a colon. It could be used in a Shell script as a filter:

{MPW)Scripts:FilterLeaf
StreamEdit -d -e '/(.. :)*([-.:J*l®l/ print ®l'

For example:

Echo "The:I:Is:Silent:myFile" I FilterLeaf

would print:

MPW 3.2 Appendix A
Release Notes

myFile

8 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Generating Inlines
This is a script that generates MPW C or C++ inline function declarations from assembly
language source. It is far easier and less error-prone than hand-assembly or cut-and-paste;
even though this script depends on the format of the listing file produced by the MPW
Assembler, it is better to automate the process.

The script's usage is:

MakeCinline assemblyfile.a >outputFile

Given assembler input something like this:

;+
Inline Pascal string copy

;¥void pascal_string_copy(char* src, char* dest);

proc
movem.l (SP) ,AO-Al
moveq #0,DO
move.b (Al) , DO
bra.s @2

@loop: move.b (Al)+, (AO)+
@2: dbra DO,@loop

endproc

We want the filter to produce an inline declaration something like this:

void pascal_string_copy(char* src, char* dest) =

{Ox4cd7, Ox0300, Ox7000, OxlOll, Ox6002, Oxl0d9, Ox5lc8, Oxfffc};

The character "¥" in the assembler comment marks the declaration; in principle any
unique character or string can be used to flag the declaration.

The script has two parts; the first part contains MPW Shell commands, the rest of the
script contains StreamEdit statements.

The MPW Shell part of the script is:

if MakeCinline -- make C assembly language inline declarations
asm "{l}" -1
StreamEdit -d -s "'which {0}"" "{l}".lst
Delete "{l}".lst "{l}".o
exit

It runs the assembler on the input file, producing a listing which is processed by the rest
of the script. Then the temporary files are removed and the MPW Shell part of the script
exits; the Exit command ensures that the Shell doesn't execute any StreamEdit statements.

The invocation of StreamEdit here uses an interesting trick; the name of the StreamEdit
script to execute is, naturally, the name of the currently executing script. So we use

·which {OJ·

which expands into the name of the currently running shell script.

MPW 3.2 Appendix A
Release Notes

9 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

The rest of the file contains a StreamEdit script that processes the assembly listing
produced above. Here is an example of the assembler's listing output:

MC680xx Assembler - Ver 3.2dl 21-Nov-89 Page 1
Copyright Apple Computer, Inc. 1984-1989

Loe F Object Code Addr MSource Statement

case on
;+

; ¥void pascal_string_copy(char* src, char* dest);

00000
00000 4CD7 0300
00004 7000
00006 1011
00008 6002 ooooc
OOOOA 10D9
OOOOC G 51C8 FFFC OOOOA
00010

Elapsed time: 0.08 seconds.

strcpy

@loop:
@l:

proc
movem.l
moveq
move.b
bra.s
move.b
dbra
endproc

end

export
(SP),AO-Al
tO,DO
(Al),DO
@l
(Al)+, (AO)+
DO,@loop

Assembly complete - no errors found. 16 lines.

The opcodes we need are tantalizingly close, but embedded in material that we need to
strip away. The first job is to extract the inline's declaration and copy it to the output
Hex constants must be separated by commas--we accomplish this with a variable, initially
empty, that is set to a comma-and-space when a hex constant is emitted, so that a comma
precedes every hex constant but the first one.

/;¥[Ot]*([-,;]*)®l/
Print -n ®l " =on ("
Set PRECEEDING_COMMA
Delete

The regular expression matches the inline declaration in the comment (which can be
recognized by virtue of the marker string, •y", that we put there). The text of the inline is
extracted, omitting a possible trailing semicolon, and put into the variable ®1. The Print
statement emits the inline declaration (in ®1) and extra stuff needed for C inline syntax.
The PRECEEDING_COMMA variable is set to empty, the line is deleted, and processing
continues.

The inline declaration is terminated by an ENDP or an ENDPROC assembler directive:

I [Ot]ENDP/
Print "};on"
Delete

Next, totally uninteresting lines are deleted. Examining the assembly listing, we note that
the lines with the object code we need invariably contain a hex constant starting in the

MPW 3.2 Appendix A
Release Notes

10 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

first column, several spaces (with an optional "G"), and at least one two-byte hex constant.
We'll strip every line that doesn't meet these criteria, so that there will be less noise to
worry about.

!/•[0-9a-f]+ [g] [0-9a-f]«4»/
Delete

Then we simply delete any junk that precedes the hex constant we're interested in:

1,$ Replace /[0-9a-f]+ [g J I ""

Now the line contains one word of assembler output that we can copy to the output:

/•C[0-9a-fJ«4»)®1 I
Print -n PRECEEDING COMMA "Ox"®l
Set PRECEEDING_COMMA ", "
Replace // ""

We print an optional comma, followed by the hex constant itself. Then we arrange for
future constants to be preceded by a comma, and remove the constant from the front of
the line.

Now we have a problem--there's no way to tell how many more constants have to be
processed on the line under consideration. Furthermore, StreamEdit has no control
structures for looping, so a count wouldn't help much anyway. We resort to an artifice,
namely, repeating the above code as many times as we're likely to ever need it for a single
line of assembler output.

ii
Convert remaining words on line

/•([0-9a-fJ«4»)®1 I

Print -n ", Ox"®l
Replace // ""

/• C [0-9a-fJ«4»)®1 I
Print -n ", Ox"®l
Replace // ""

/•C[0-9a-fJ«4»)®1 I
Print -n ", Ox"®l
Replace // ""

/•C[0-9a-fJ«4»)®1 I
Print -n ", Ox"®l
Replace // ""

Examination of the assembler output shows that handling five constants on a line is more
than enough. However, if the assembler listing format changes, the script will break.

Unpacking Unix Shell Archives
This script unpacks a Unix shell archive, more commonly known as a sbar ftle. Shar files
are used in the Unix community to gather text (say, the sources for a program, including
its makefile) into a single file, suitable for transmittal by electronic mail or usenet.

MPW 3.2 Appendix A
Release Notes

11 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Files

Shar files typically have the form:

garbage at the beginning - mail headers and so forth
sed "s/~X//" >TheFile <<'END OF TheFile '
Xtext of the file
X where each line
X is preceded by an 'X'
END OF TheFile
more files, similarly packed

The Unix shell and the tool sed cooperate to strip off the "X"s at the beginning of each
line, and to direct the output to the correct file. Unfortunately the MPW Shell does not
have this kind of redirection, and StreamEdit is not sed, so we have to come up with our
own solution.

To make matters worse, there is no single format for a shar file-in the Unix community
it's "anything goes," as long as the standard Unix tools can unpack it. A StreamEdit script
to unpack an arbitrary shar file would have to closely emulate the Unix environment,
which is rather difficult. In practice, you will have to tweak this script to handle different
kinds of shar files.

The script starts with the usual MPW Shell commands to start up StreamEdit with the
proper script, pass along the command-line parameters, and exit.

streamedit -d -s 'which "{0}"' {parameters}
exit

The variable FILE holds the name of the current output file. When we see a line beginning
with "sed", we extract the output filename (possibly enclosed in quotes) and put it in the
variable.

Set FILE "DELETE.ME" # for safety's sake

/•sed/ && /> [Ot] *d' ([-, iJt l *) ®liJ' I # sed _ >'quotedFile'
11
/>[Ot]*([-, iJt>]*)®l I # sed ... >notQuotedFile

)

Set FILE ®l
print "Extracting " FILE

For paranoia's sake, the FILE variable is initialized to "DELETE.ME", and the name of each
file extracted is printed on standard output.

Extraction is simple-for every line beginning with an "X", the "X" is stripped off and the
line is written to the current destination file.

!•XI
replace // ""
print -to FILE

{ShellDirectory}StrEd.~.tmp Temporary output file.

Limitations Lines of more than 1,000 characters are silently split.

See Also

There is no easy way to do a Replace operation on a variable.
There are no "true" expressions - arithmetic is impossible.
There are no conditionals or other control structures.

Shell documentation on regular expressions.

MPW 3.2 Appendix A
Release Notes

12 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Appendix B
Release Notes

CMarker •• C++ I ANSI C Recognizer, Preprocessor and
Marker Tool

Syntax CMarker [option •..] [file ...]

Description CMarlcer reads the specified C++ I ANSI C source file(s), syntax checks them and
generates appropriate "Open" and "Mark" MPW commands, which, when executed, will
mark the source file(s) at each function definition with the marker name being the name
of the function. It's purpose is to aid in the marking of source files for use with the
MPW "marker browser" capability. CMarlcer contains a full ANSI C preprocessor and
provides options to mark include files, generate source listings (with or without
showing macro expansions), run the preprocessor only, flag anachronisms, and syntax
check C++ I ANSI C with or without Apple extensions.

Type Tool.

Input If no filenames are specified, standard input is parsed. Each file specified on the com­
mand line is parsed separately.

Output "Open" and "Mark" commands are written to standard output for subsequent execution
by the user. Additionally, if the -l[ist[ing]] option is specified, the source listing is
written to standard output. Preprocessor output may optionally be written to the the
file specified by the -ppout option.

Diagnostics Errors, warnings, and anachronisms are written to diagnostic output. If the
-p[rogress] option is specified, progress and summary infonnation is also written to
diagnostic output

Status The following status codes may be returned:

Options

0 No errors.
1 Parameter or option error.
2 Execution error.
3 Syntax errors.

Options may appear in any order and may be interleaved with the file names. All
options apply to the compilation of all the files.

-a[nachronisms]

-d[efine] name[=string]
[,name(=string]J ...

Suppress anachronisms messages. By default, warnings
for obsolescent ANSI C features and C++ anachronisms
are written to diagnostic output.

Define name to the preprocessor with the value 1 if the
string is omitted, or with the value of the string. This
is the same as writing #defines for these names at the
beginning of each source file.

MPW 3.2 Appendix B
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-e

-errors

-ext[ensions] .Q.D. I off

-i[ncludes]
pathname[,pathname], ...

-lang[uage] !:. I "C++"

-linesize n

MPW 3.2 Appendix B
Release Notes

Show macro expansion in the listing (-l[ist[ing]])
and/or preprocessor output files (-ppout). Note, this
option is assumed if a preprocessor output file is
specified (-ppout).

Suppress marking if errors are detected. The default
(i.e., not specifying -errors) is for CMarker to generate
marker commands, regardless of syntax errors.
CMarlcer can generate erroneous marker commands if the
errors are sufficiently severe to confuse the parser,
specifying -errors will cause CMarlcer to terminate
before emitting marker commands.

Control whether Apple extensions are supported.
Extensions include the SANE data types, Pascal
declarations, etc. By default, the extensions are
supported (i.e., on is assumed). Setting the extensions
off will result in the Apple extensions generating
syntax errors. Note, with extensions on, the value of
the macro s TDC is set to 0. - -
Search for include files in the specified directories.
Multiple -i[ncludes] options may be specified. At
most 14 directories are searched. The set of directories
should be the same as that used for compilation in order
to get all the preprocessor definitions.

The search order is:

1. The include filename is used as specified. If a full
pathname is given, then no other searching is
applied. If the file isn't found, and the pathname
used to specify the file is a partial pathname (no
colons in the name or a leading colon), then the
following directories are searched.

2. The directory containing the current input file.

3. The directories specified in -i[ncludes] options, in
the order listed.

4. The directories specified in the MPW Shell variable
{ Clncludes}.

Specify the target sources as either C or C++. The
default is C. If you specify C++ explicitly, it must be
quoted in MPW.

Specify the maximum number of characters generated in
a single listing line before a newline is inserted to fold
the line. The default, for all practical purposes is
infinity, or more precisely, about 1024.

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-l[ist[ing]] Generate a listing of the source to standard output. The
listing includes line number information (total line and
file line). If -showskipped is specified, lines which
are skipped in the input due to conditionals are also
shown and flagged accordingly.

-mc68881 Define the macro namemc68881 as having the value
1. This is the same as writing a #define for this name
at the start of each source file. If this option is not
specified, then the macro name me 6 8 8 81 remains
undefined unless defined by the -d[efine] option above.
This option is only provided for compatibility with
MPW C because the macro it generated may be used in
the source.

-msi Generate mark commands for include (header) files.
Specifying this option will generate mark commands for
methods (function elements) defined in header (".h") files
which are "#included" in the source. The default is to
inhibit marking header files (Applicable to C++ files
only).

-pp Preprocessing only. The syntax parser is turned off.
Mark commands will not be generated.

-ppout filename Write the preprocessor output to the specified.filename.
The preprocessor output is essentially the same as the
listing output, but with all additional listing
information removed. As such, it could be used as a
source input file to a compiler. Note, specifying the
-ppout option implies the -e option to show macro
expansions.

-p[rogress] Write CMarker's version, progress, and summary
information to diagnostic output.

-showskipped Show lines skipped by conditional compilation in the
listing output.

- t Display processing time and number of lines to
diagnostic output even if progress information (­
p[rogress]) is not being displayed.

-u [ndefine] name[,name]... Undefine the predefined preprocessor symbol name.

MPW 3.2 Appendix B
Release Notes

This is the same as writing #undef for the name at the
beginning of each source file. This option is provided
for compatibility with MPW C. The same names
predefined in MPW C are predefined here, e.g.,

FILE , LINE , etc. See also the -
mc6888l0ption above.

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Limitations CMarker contains a parser that is only a C++ I ANSI C syntax recognizer. It is not a
compiler and does not have any of the semantic constraints that can be detected by a
compiler. Where MPW C and ANSI C differ, the grammar will only accept ANSI C.
The preprocessor is also more fully ANSI C than MPW C (particularly in the way
macros are handled). This means that sources containing certain "old-fashioned" C
constructs will be flagged in error and in some cases confuse the parser enough to
generate several errors. Generally, however, the markers will be generated correctly.

In C++ and ANSI C there are many semantic constraints imposed on the syntax. These
are nonexistent here. Therefore, C++ I ANSI C source which is syntactically correct
and accepted by the parser has no guarantee of successful compilation. It should be
remembered, however, that the intent of CMarker is not to provide a syntax checker
(although it does a pretty good job of that), but to generate "Mark" commands for the
MPW Marker Browser.

Known Bugs CMarker will occasionally emit erroneous mark commands if the parser has detected
errors of sufficient severity as to get confused. See the -errors option above.

MPW 3.2 Appendix B
Release Notes

4 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Appendix C
Release Notes

Get -- Retrieval and Indexing Tool for Large Text Files

Syntax:

Get(dataFile ... 1-dfl listFile) [-x] [-kkey] [-col n] [-ddefaultkey] [-h 1-h2] [-1] [-nf] [-q]
[-s] [-search] [-t] [-sfl] [-y] [-field.field list [-fonnatformat string]]
[-lessFields field list]

If Get is successful then the record in the data file associated with key is written to the
standard output. If it is unsuccessful then the error message "### key NOT found" is
written to standard error.

Status:

0: no error, search was successful

1: syntax error

2: error in processing

3: system or out of memory error

4: key not found (-k key)

-9: user abort

Options:

dataFile ••• : One or more specially formatted files, each of which must be
accompanied by an index file whose name is of the form
dataFile. index, and whose file type is btre.

-dfl listFile: This is an alternative to the dataFile parameter. listFile

specifies a file which contains a list of data file path names.

MPW 3.2 Appendix C
Release Notes

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-k key:

-width w:

-d default:

-h:

-h2:

A key word in the index file (. index) . A search is made for this
key word; the search starts with the first listed data file and con­
tinues through the datafiles in the order in which they are listed,
either as the dataFile parameter or as the list in listFile.
There is a side effect of the search in the special case that the key
is the file name (the terminal name, not the full path) of one of the
data files and the -dfl listFile option is used. The side effect
is that the file name used as a key will be moved to the top of the
list in listFile.

Display results in multi-column format to fit a display window
whose width, in characters, is w. Must be a number between 1
and 200. This option applies only to key lists, either specified
explicitly by the tag ~L in the data, or implicitly by use of the -1

or -search options. The option, when applied to other kinds of
results, is ignored.

If the key word parameter is null, use "default" as the key word.
Example: get MPWHelp -k "" -d help will use "help" as the
key word. get MPWHelp -k Asm -d help will use "Asm" as
the keyword. This is useful in scripts where a possibly omitted
keyword is passed as a parameter.

Output a header, e.g.:

hd80:411:MPWHelp
hd80:41l:CincludesHelp Look up ... "FindWindow"
hd80:41l:InsideMacintoshHelp
hd80:411:PinterfacesHelp
hd80:411:ResourcesHelp
hd80:411:TechNotesHelp

<<data for "FindWindow" goes here ... >>

List all data files in the header. The ''Look up" line appears
opposite the file actually used.

Similar to -h, but include in the header only the single data file
that is actually used.

MPW 3.2 Appendix C
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-m

-1:

-nf:

-q:

-s:

-search:

-t:

-field
field list

-format
format
string

Select the key word that was found. (This must be used in
conjunction with -h or -h2, which causes a display of the key­
word in the form: Look up ... keyword.) Assign a marker to the
selection and set saveonclose for the active window to False.

List all keys that begin with the letters of the named (-k key) key
word . If no key word is specified, then list all keys in the data
file. Only the first listed data file is searched

Example: The command get MPWHelp -k asm -1 produces the
list:

Asm
AsmCvtIIGS
AsmIIGS
AsmMatIIGS

No filtering. Return the key word's data exactly as
it appears in the data file (including field tags).

Quiet! Don't output Hf key NOT found when a key is not
found.

Select the key word from the current selection in the active win­
dow. For obvious reasons, this can only be used in a script acti­
vated from a menu.

Search the data file for all occurrences of key word (- k key) and
return a list of all keys whose records contain that key word.
Only the first listed data file is searched.

Output only a template of the function or procedure requested.

This option specifies which of the data fields, associated with a
key word, to display. It is a comma-separated list of case sensi­
tive field tags.

Example: -field C,KL,T,Fc

This option may be used in combination with the -field option.
It is used to specify string information that is to be put in front of
the data associated with a given field tag. The string %s termi­
nates the string information for a given tag and represents the data
associated with that field tag. The set of% s symbols is in one-to­
one correspondence with the set of field tags in the field list of the
-field option.

MPW 3.2 Appendix C
Release Notes

3 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-sfl

-y

-x

Example:

get cincludeshelp -k sin -field Fe, D produces as output

{Cincludes}Math.h
extended sin(extended x);

get cincludeshelp -k sin -field Fc,D
-format "The file is: %sThe declaration is: %s"

produces as output

The file is: Math.h
The declaration is: extended sin(extended x);

Produces an ordered list of the requested data files. This is useful
only in conjunction with the option -dfl listFile.

The index file is automatically built if it is out of date or missing.
This option causes it to happen silently, In the absence of the
option, a dialog will be presented asking whether the index file
should be built.

Build, or if it is out of date, rebuild the cross reference index file
for the named help file.

Example: Get NewHelpFile -k <anyKey> -x will build or
rebuild the cross reference index file NewHelpFile. wrndex.

MPW 3.2 Appendix C
Release Notes

4 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Appendix D
Release Notes

ProcNames--display Pascal procedure and function names

ProcNames has been enhanced to have the ability of generating MPW Shell mark commands to place
markers on all the procedures and functions in a Pascal file.

New and Modified Qptions:

-b

-cond

-d name=1RUE I FALSE, ..•

-I n

MPW 3.2 Appendix D
Release Notes

Display line number infonnation for the the start of the
procedure or function body (i.e .• its BEGIN) instead of the
header. If marker commands are being generated (-m). the
markers will be placed on the procedure or function BEGIN
that delimits its body.

Process Pascal $setc and $ifc. $elsec, $endc conditionals.
This option is assumed if -d. -MC68020, or -MC68881
options are specified. Pascal conditionals must be processed
if you process USES statements (-u option) and those
USES reference {Plnterfaces}. Due to the way these
interfaces are organized. ProcNames will not parse the Pascal
source correctly unless the Pascal conditionals are processed.
ProcNames will not list routine names which are skipped
due to conditionals.

Set the compile time ($setc) variable name to 1RUE or
FALSE. This option has the same meaning and effect on
compile time conditional as in the Pascal compiler. The
purpose is to set initial value for variables tested by Pascal
compile time conditionals statements ($ifc). The -cond
option is assumed if -d is specified.

Caution: the -d option is "overloaded"! If a Shell command
line parameter of the form name=1RUE I FALSE is
specified, then this define form for the -d option is
assumed. Otherwise the "reset to line 1 for each now file"
form is assumed. For obvious reasons. a filename of the
form id=id must not be placed immediately after a -d option.

Process procedures and functions only to maximum nesting
level n.

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

-m

-MC68020

-MC68881

-o

Limitations changes/additions:

Generate MPW Shell marker commands instead of a display
of procedure names. The marker strings will be the
corresponding procedure or function names indented as a
function of their nesting level. For units, marker commands
will also be generated for the INTERFACE procedure and
function declarations. The markers may be placed on the
procedure header names (by default) or the BEGIN statement
of the procedure's body (using the -b option). You may
want to use the -1 option to limit the markers to only the n­
most outer procedures.

Specify this option if the source has any Pascal directive
conditional of the form { $ifc OPTION(MC68020)} and you
use that fact to generate MC68020 code from the Pascal
compiler. The -cond option is implied by using this
option.

Specify this option if the source has any Pascal directive
conditional of the form {$ifc OPTION(MC68881)} and you
use that fact to generate MC68881 code from the Pascal
compiler. The -cond option is implied by using this
option.

The source file is an Object Pascal Program. The identifier
OBJECT is considered as a reserved word so that Object
Pascal declarations may be processed. The default assumes
that the source is not an Object Pascal program. If markers
are being generated (-m), then marker commands will be
generated to mark the names of all objects declared in the
input file.

The limitation that recommends against using the -u option to request processing of USES declarations is
no longer applicable. The following paragraph should be added to "limitations":

When Pascal compile time conditionals are processed, the form {$ifc OPTION(id)) is only
fully supported when the id is MC68020 or MC68881. In all other case this form of $ifc
evaluates to TRUE. The Pascal $MC68020 and $MC68881 are treated as special cases
and tracked by ProcNames. The only reason for this is to handle the {$ifc OPTION(id)}
conditional. It is unreasonable and impracticable to have this ProcNames track every
Pascal compiler option that exists or may exist in the future. MC68020 and MC68881
have been singled out since they, of all the Pascal options, are the most likely candidates
to be used generally in Pascal source. Most other options are very specific to the Pascal
compiler itself and are unlikely to be used. Indeed, the $MC68881 is explicitly tested in
SANE.p. Currently there are no other uses of the {$ifc OPTION(id)} form in any other
of the standard Pascal libraries.

MPW 3.2 Appendix D
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Appendix E
Release Notes

PasRef-Pascal cross-referencer

New options have been provided for this tool, and changes have been made to the "Limitations" section as
given in :MPW 3.0 Reference, Vol.2.

New qptions:

-cond Process Pascal $set.c and $ifc, $elsec, $endc conditionals.
This option is assumed if -d, -MC68020, or -MC68881
options are specified. Pascal conditionals must be processed
if you process USES statements (-u option) and those
USES reference {Plnterfaces}. Due to the way these
interfaces are organized, PasRef will not parse the Pascal
source correctly unless the Pascal conditionals are processed.
PasRef will not list in the cross-reference identifiers in
statements which are skipped due to conditionals. In the
generated source listings, conditionally skipped lines are
flagged with a

-d name=1RUE I FALSE,... Set the compile time ($set.c) variable name to TRUE or
FALSE. This option has the same meaning and effect on
compile time conditionals as in the Pascal compiler. The
purpose is to set initial values for variables tested by Pascal
compile-time conditional statements ($ifc). The -cond
option is assumed if -d is specified.

-MC68020

-MC68881

MPW 3.2 Appendix E
Release Notes

Caution: the -d option is "overloaded"! If a Shell command
line parameter of the form name=TRUE I FALSE is
specified, then this define form for the -d option is assumed.
Otherwise the "reset to line 1 for each now file" form is
assumed. For obvious reasons, a filename of the form id=id
must not be placed immediately after a -d option.

Specify this option if the source has any Pascal directive
conditional of the form { $ifc OPTION(MC68020)} and you
use that fact to generate MC68020 code from the Pascal
compiler. The -cond option is implied by using this
option.

Specify this option if the source has any Pascal directive
conditional of the form {$ifc OPTION(MC6888 l}} and you
use that fact to generate MC68881 code from the Pascal
compiler. The -cond option is implied by using this
option.

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

Limitations changes/additions:

In the limitation that specifies the number of symbols Pasref can handle, the number has been changed from
5000 to 6000.

The limitation that recommends always using the -nu option to suppress processing of USES declarations
is no longer applicable. The following paragraph should be added to "limitations":

When Pascal compile time conditionals are processed, the form {$ifc OPTION(id)) is only
fully supported when the id is MC68020 or MC68881. In all other case this form of $ifc
evaluates to TRUE. The Pascal $MC68020 and $MC68881 are treated as special cases
and tracked by ProcNames. The only reason for this is to handle the {$ifc OPTION(id)}
conditional. It is unreasonable and impracticable to have this ProcNames track every
Pascal compiler option that exists or may exist in the future. MC68020 and MC68881
have been singled out since they, of all the Pascal options, are the most likely candidates
to be used generally in Pascal source. Most other options are very specific to the Pascal
compiler itself and are unlikely to be used. Indeed, the $MC68881 is explicitly tested in
SANE.p. Cmrently there are no other uses of the {$ifc OPTION(id)} form in any other
of the standard Pascal libraries.

MPW 3.2 Appendix E
Release Notes

2 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Appendix F
Release Notes

FileDiv-divide a file into several smaller files

The functionality of FileDiv has been expanded. FileDiv now allows an input file to be viewed as
containing an arbitrary byte stream in its data fork. The first paragraph of "Description" (MPW 3.0
Reference, Vol. 2) should be amended to read:

FileDiv is the inverse of the Concatenate command. It is used to break a large
file into several smaller pieces. The input file is divided into smaller files, each
containing an equal number of byteS or lines determined by the splitpoinl
(default=2000 lines or 10000 bytes). The last file contains whatever is left
over. The file to be read can either be viewed as a sequence of 1EXT file~
(the default), or as an arbitrary typed file with a byte stream in its data fork
(using the ·b option).

The following o.ptions have been changed:

.f

-n splitpoint

.... add the following sentence:

The .f option is ignored if the ·b option is specified.

Depending on whether or not the -b option is specified,
split the input file into, respectively, groups of splitpoint
bytes or splitpoint lines. (Note that for the case of lines, the
.f option causes splitting into groups of splitpoint m: .m.s:G
lines.)

The following options have been adde¢

·b

·SN

MPW 3.2 Appendix F
Release Notes

The input file is viewed as an arbitrary typed file with a byte
stream in its data fork. This file is divided into groups of
bytes with each group containing up to the number of bytes
specified by the splitpoint. If this option is omitted, the file
is assumed to be a TEXT file composed of a sequence of
lines.

When the ·b option is used, the input/output byte streams
are buffered in buffers whose size are N*512 bytes. The
default value for N is 128 (yielding 65536 byte buffers). Use
this option to change N. Values 1 to 512 are allowed.

1 Copyright Apple Computer, Inc.
1990-1991. All rights reserved.

MPW 3.2 Appendix G
Release Notes

PROJECTOR
An Informal Tutorial

Introduction

Projector is an integrated set of tools and scripts whose primary purpose is the control of source code.
1be system has two basic functions. The first is to make it practical to have several people working simul­
taneously on a project By allowing only one person at a time to modify any given file, it prevents a
programmer from inadvertently destroying changes made by another. The second function is to preserve, in
an orderly manner, revisions of a file and commentary on the revisions. This enables programmers to find
out the author and revision date, to read the revision commentary, and if desired, to retrieve the revision
itself.

Projector represents a considerable advance over older systems, such as SCCS and its descendants,
known to users of UNIX®. It uses its own window interface for three of its commands (New Project,
Checldn, and CheckOut). These windows, unlike Commando windows, can stay open indefinitely. The
Commando interface is also available for all commands, although its use is not recommended for the three
commands just mentioned. Projector also differs from SCCS in that its use is not restricted to text files.
However, the data compression achieved by storing only one complete copy of a file and storing revisions
as files of differences is only available for text files. Projector also has a degree of flexibility which permits
different users of the same set of files to view them differently. This is accomplished by giving each user
independent control of the mapping between the local directory hierarchy into which he/she keeps the files
and the hierarchy used for their storage in the Projector database. Finally, Projector has a facility for associ­
ating a specific set of file revisions with a name, this name being usable as a designator for a particular
version, or release, of a product. Thus, the name alone can be used to trigger the selection of just those
soun:es that are required to build the desired instance of the product.

This tutorial begins with a section that discusses the basic concepts and terminology. Following this
are sections that demonstrate the use of Projector by creating a database skeleton from scratch, putting files
into it, and performing various revision activities. These sections are illustrated with screen shots taken
during the actual operations.

Concepts and Terms

The top level, fundamental construct in a Projector database is called a project. Projects are analogous
to directories in an HFS (hierarchical file system). A project may contain files and may contain other
projects; just as a directory may have sub-directories, a project may have subprojects. The difference is that
a file name in a project represents all revisions of the file-this is known as a revision tree-and is also a
pointer to file information and revision information. File information is descriptive text that applies to all
revisions, while revision information is descriptive text that relates to a single revision. Fig. 1 illustrates
the project hierarchy that will be used throughout the next chapter.

MPW 3.2 Appendix G
Release Notes

1 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

The symbol "f" is used as a separator in naming projects much as the symbol":" is used in hierarchi­
cal file names. Thus, Basef is a project, Basef SourceSJ is a subproject of Basef, and Basef SourcesJcJ is a
subpi_:oject of Basef Sourcesf. As is the case with directories, the terminal separator may be omitted, e.g.
BasefSources. Although there is a parallel concept to that of current directory, namely cu"ent project, there
is no provision for a partial project name relative to the current project. That is, if the current project is
BaseJ, Basef Sources~ be denoted by JsourcesJ.

When a project is created, what one actually creates is a directory whose name is the project name.
This directory always contains two files, one called CurUserName that is invisible to the finder but
shows up in some dialogue windows, and one called ProjectorDB that contains all of the project data. If the
project has subprojects, then this directory will contain subdirectories (folders) that similarly house the
subprojects. That is, a subproject folder will be named after the subproject, and will contain its own
ProjectorDB file for the subproject data.

The act of checking out a file to a given directory is merely that of "copying" the file from the Projec­
tor Database to the directory in question. "Copying" is in quotes because in actuality the projector software
may be synthesizing the file dynamically from a set of differential revision data. A checked out file
contains a resource named ckid which identifies it as a file produced by Projector. This resource contains,
amount other things, the file's revision number, whether or not the file is write-protected, and the text of
the revision information.

Files may be checked out as read-only or as modifiable. If the Projector Database is accessible to
multiple users, e.g. on a server, then many users may simultaneously check a file out, but only one user at
a time may check it out as modifiable.

A file which has been checked out as modifiable may be checked in after modification. This enters the
modified text as a new revision of that file in the Projector Database.

A checkout directory is a directory that has been associated with a project (or subproject) by execu­
tion of the command CheckOutDir. This association is private to the user and vanishes when the current
MPW session ends. It may also be modified during an MPW session. The association defines the directory
into which the files of the project will be checked out by default There are no restrictions on this associa­
tion. The seven projects shown in Fig. 1 may be checked out to seven different directories that bear no
relationship to each other, may all be checked out to one directory, or (most commonly) may be checked
out respectively to a directory structure that matches that of the project hierarchy.

A name is an identifier that can be attached to a group of specific file revisions, but only to one revi­
sion for any given file. It is used in commands as an pseudonym for this group, most commonly for rapid
selection of the revisions belonging to a particular release. Names may be private or public. Public names
become project attributes and are automatically available to all users. Private names are available only to
the user who defines them, and last only for the duration of the MPW session.

MPW 3.2 Appendix G
Release Notes

2 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

Base/

Sources/
Interfaces/

BulldScript
Make Fiie

Sources/ Interfaces/

Cf
csource1.c
csource2.c
csource3.c

Cf
CPlusf

CPlusf

Cf

cinterfaces.h

cplussource1 .c
cplussource2.c

Fig. 1

cf
CPlusf

Project Creation

cplusinterfaces.h

Let us construct the project hierarchy of Fig. 1. Under the menu item "Project" in the MPW menu
bar we can select the item "New Project" The "Project Menu" is illustrated in Fig. 2.

Fig. 2

New Project •..
Mount Project •..
Set Project •.•

Compare Actiue •••
Merge Actiue ...

We obtain a special Projector window. It is a bit like a Commando window, but it stays open until
one clicks on the "close" box and it can be moved about on the screen. On the left side is a typical file

MPW 3.2 Appendix G
Release Notes

3 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

selection sub-window. We wish to establish this project inside of an already-existing directory called
"ProjectDemo," and therefore navigate in the standard way until this directory is selected, giving the window
as illustrated in Fig. 3. You can see it already contains two directories, Documents and Examples, which
have nothing to do with the proposed project. The user enters the name "Base" and the comment respec­
tively into the boxes labelled "Project Name" and ''New Project comment." The User field is automatically
set to the value of the MPW variable "user."

D New Project

c::> SC Project Name: lease I lei ProjectDemo I User: Herb Kanner
Cl Documents ~ New Prolect comment:
c::i EHamples

Base is a demonstration project. It wi 11 Q
contain subproject.s Sources and Interfaces,
and wi 11 also contain fi Jes Bui ldScript and
MakeFi le.

~ 0
(CIJ1en)

(Driue)(1:jec1) l New Project J)

Fig. 3

After pressing the "New Project" button, the window looks like Fig. 4. The directory containing the
empty database for the project Base has been created; its name can be seen in the left-hand window.

Now, clicking on the item "Base" in the left-hand sub-window will activate the "Open" button.
Clicking on the latter or double-clicking on "Base" will make it the current directory, and now the new
projects "Sources" and "Interfaces" can be created as subprojects of "Base" in the same way as "Base" was
created. Fig. 5 shows the window after this has been done. The Projector files belonging to "Base,"
namely "_CurUserName" and "ProjectorDB" are visible but dimmed. Similarly, the two subprojects "C"
and "CPlus"that are subprojects of both Interfaces and Sources can be created. Fig. 6 is the Finder window
for Base, showing the folders (directories) for the subprojects Source and Interfaces and the actual Projector
file for Base: ProjectorDB. Fig. 7 contains the Finder windows for both Sources and Interfaces, showing
their ProjectorDB files and their subprojects.

MPW 3.2 Appendix G
Release Notes

4 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

le Projectoemo I
DBase 00
Cl Documents
ClEHamples

(CIJten)
---D-rl_u_e--.J[---Ej_e_c_1---.

c::::> SC

l5 Bnse I

(open)
.--D-n-_u_e ___)[,,....-E-.j-e-c1---.

MPW 3.2 Appendix G
Release Notes

New Project

Project Name:

New Pro ·ect comment:
Base is a demonstration project. It wil I
contain subprojects Sources and Interfaces,
and wi 11 also contain files Bui ldScript and
MakeFi le.

Fig. 4

New Project

Project Name: I •
User: Herb Kanner

((New Project lJ

New Pro ·ect comment:
The project Sources wil I contain subprojects
C and CPlus.

Fig. 5

5

([New Project)J

Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

All files and revisions
are contained in this '
HFS file.

:0
3 itl!mS

LJ
Sourcl!S , , , , ..
~

Fig. 6

Sources
3 itMIS 18, 793K in disk

[Cl LJ
Proj•ctorDB c

Bose E!]-

34 ,3131< in disk 44 ,424K avail

D ~m I llltwf acH Proj•ctorDB

Ql
12 Q]

1661<: availabi.

LJ
CPlus

~D Interfaces E!]:

3 it•ms 18, 793K in disk 166K availabi.

[Cl LJ LJ
~

Pro jectorDB c CPlus

IQ
QI IQ l2l

Fig. 7

Before proceeding to the use of Projector for the storage, updating, and retrieval of files, it is necessary
to discuss the commands MountProject and Project. What we have done so far is to create a skeletal
Projector database, that is a hierarchical project structure and implicitly to mount all of the projects.
Mounting a project is analogous to opening a file. It makes the MPW Shell aware of the project and
makes the project data available to the user. Prior to mounting, projects exist only in file storage media.
The next time MPW is initiated, the projects whose creation was illustrated in Figs. 1-4 will have to be
mounted again before they can be accessed The simplest way to do this is with an unadorned MountProject
command whose parameter is the project's directory:

MountProject SC:ProjectDemo:Base

Mounting a project automatically mounts all of its subprojects, so only this one command is required. One
can also use Commando, and in fact the Commando window for MountProject can be activated directly
from the "Project" item in the MPW menu bar. The radio button should be left at its default value
"Generate MountProject Commands." When the button labelled "Project Location" is pushed, the choice
"Select a project to be mounted ... " will cause generation of the normal dialogue window for directory selec­
tion. The one selected will become the argument for the MountProject command.

MPW 3.2 Appendix G
Release Notes

6 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

A related command that is worth introducing at this point is Project Analogous to the file system
concept "current directory" is the Projector concept "current project" The Project command is used to set
the current project, and, again in analogy to the behavior of Directory, when given with no parameters it
returns the value of the current project A special Projector window is available from the menu bar, called
"Set Project. ... " It displays all mounted projects in project hierarchy notation (using f); the selected one
will become the current project.

The MountProject command can also be given with no parameters. In that event, it returns the names
of all currently mounted "root level" projects. The default behavior when doing this is to return each name
in the form of a complete MountProject command, i.e., to precede the project name with the word
MountProject. Figs. 8-10 illustrate some uses and variants of the Project and MountProject commands.

HD:MPW:Worlcsheet
MP'Yt' Shell J

I The Project command ..;th no p8181Tleters returns the current project:

project
Bue/Sources JC/

I Nov set the projectto Ba,,e:

project Bue

I and conllrm that It gohet:

project
683e/

I MountProject wtth no arguments retums aMountProject command that
I 'wtll mount the current project, handyforluture use. The retumed
I parvneleris an HFS path to the directory containing the project:

mount project
Mount Project SC:ProjectDemo:Ba,,e:

I The -r option causes corrvnands to be generated recursively I or
#the run project hierarchy

mount project -r
Moun!Project SC:ProjectDemo:Ba,,e:
MountProjecl SC:ProjectDemo:Ba,,e:lnterfaces:
MountProject SC:ProjectDemo:Base:lnterfaces:C:
MountProj ect SC: Proj ectDem o:Bas e:lnt erfaces :CPI us:
MountProject SC:Projectoemo:Bue:Sources:
MounlProjecl SC:Projectoemo:Base:Sources:C:
MountProject SC:ProjectDemo:Bue:Sources:CPlus:

112.L

Fig. 8

0-

MPW 3.2 Appendix G
Release Notes

7 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

HD:MPW:Worksheet
MP'tt' Shell l

#The-pp option causes the commands to be Project and the paths to be
#project paths:

mountproject-r-pp
Project Bue f
Project Bueftnterfacesf
Project BueftnterfacesJCf
Project BueftnterfacesJCPlu:1f
Project Bue[Sourcesf
Project BuefSourcesJCf
Project BuefSourcesJCPlusf

#Finally, the~ option suppresses the commands:

mountproject-r~
SC:ProjectDemo:Bue:
SC:ProjectDemo:Bue:lnterfaces:
SC:ProjectDem o:Bu e:lnt erfaces :C:
SC:ProjectDem o:Bu e:lnterfaces :CPI us:
SC:ProjectDemo:Bue:Sources:
SC:ProjectDemo:Bue:Soll'tes:C:
SC:ProjectDemo:Bue:Sources:CPlus:

Fig. 9

HD:MPW:Work:sheet
MP'ft' Shell I

#after qw1ting and restarting MPW:

mountproject SC:Projectoemo:Base

#No"Wconfinn thalthe entire hiel"lll'Chy has been mounted:

mount project~~ -pp
Bue/
Base flnl erfac es f
BueflnterfacesJCf
BaseftnterfacesJCPlusf
Base/Sources/
Base/SourcesJCf
Base/SourcesJCPlus/

BJ:

BJ:

I
#.And "We see that they ere el mounted agairj iQi

IQ.£ I1mmm11m:~m:1:1:1:1m1:1:m:1mm:1111111~11~11~1111111111m1mm1m111111mm1f~11m:m11:11m111111:1m1111111[QJ 121

MPW 3.2 Appendix G
Release Notes

Fig. 10

8 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

This might be a good moment for the user to experiment with the "Mount Project" and "Set Project"
items in the Project Menu. Mount Project is a conventional Commando window. Set Project creates a
window (Fig. 11) that lists, for selection, all mounted projects. It is used in much the same way as the
pop-up list of directories in the MPW Directory Menu.

Select o new current project:

Bosef lnterfocesf
Bosef lnterfocesfCPlusf
Bosef
Base/ Inter f ac esf(I
BosefSourcesfCPlusf
BosefSourcesfCf
Bose f Sources f

([OK D (Cancel)

Fig. 11

Relating Directories to Projects

Now that a tree of projects has been created, we wish to put some files into them. Let us make a
simplifying assumption which corresponds to the most probably desired organization: that the directory
structure into which the working copies of files are to go should be an exact replica of the project structure
just created. The first step is to create the directory structure that will in time house the files when they
have been checked out of a project. This is done with a command called CheckOutDir. In its simplest
form it takes two parameters, a project and a directory. The effect of executing this command is a bit
modal: it sets a default so that subsequent CheckOut commands addressed to that project copy the files to
the named directory unless another directory is explicitly named in the CheckOut command itself. A side
effect of CheckOutDir is that if the directory does not exist, it creates it. A lovely option to this command
is -r; with this option, sub-directories are created corresponding to all subprojects and they are given the
same names as the subprojects. As is the case with MountProject, a CheckOutDir command with no
arguments creates an instance of the command showing the directory that corresponds to the current project

For the purposes of this tutorial, we want to create a set of checkout directories that parallels the
project Base. We would like to put them in the same directory that contains Base, namely :ProjecDemo.
Since the name "Base" has been already used, we will call the root of the checkout tree "Baseckout."
Fig. 12 illustrates the use of the recursive CheckOutDir command.

MPW 3.2 Appendix G
Release Notes

9 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

HD:MPW:Worlcsheet °i

project
Ba.se/

#If the current project is Ba.se/, it can be used a.s a default in
fl. aCheckOutDircommand:

Ch eckOutDir-r SC:Proj ectDemo:Bas eckout

#If not, the command can be '*1'!1ten:

CheclcOutDir-r-project Base/ SC:ProjectDemo:Baseclcout

#Use the command ..,;th no arguments to confirm the checkout:

CheclcOutDir-r
CheclcOutDir-project Base/ SC:ProjectDemo:Baseclcout:
CheclcOutDir-proj ect Base~erfac es/ SC:ProjectD emo:Baseckout:lnterfaces:
CheclcOutDir-project Base~erfacesJC/ SC:ProjectD emo:Bas eclcout:lnterfaces :C:
CheclcOutDir-project BasejlnterfacesJCPlus/ SC:Proj ectDemo:Bas eckout:lnterfac es:CPlus:
CheckOutDir-proj ect Base/So~es/ SC:ProjectDemo:Baseclcout:Soll'Ces:
CheclcOutDir-project Base/Soll'CesJCJ SC:Projectoemo:Baseckout:Soll'Ces:C:
CheckOutDir-project Base/SourcesJCPlus/SC:Projectoemo:Baseclcout:Sources:CPlus:

fl. Note that CheclcOutDirW'ill create the needed directories, it they do not m
#already exist. ~

1121 J~~!~!~!!!~!i~:!!ii~!~!!!!!!!i~!lf!~!~!i~!l!!Ti!U!~!!~~~~~!!i!i~!~ml~~~~~!~!IT~~!!~~;ff~U~li~!!~f~~!~~ii~!~i!i!~ 121

Fig. 12

Checking Files In and Out

The most used and most complicated windows specific to Projector are Check In and Check Out.
Check In moves file data from normal file storage into the Projector database. Check Out copies files from
the database to normal file storage. The MPW commands Checkin and CheckOut serve the same purpose,
but other than for usage inside of scripts, it is strongly recommended that the windows, selectable by
choosing respectively "Check In ... " and "Check Out •.. " in the Project item of the MPW menu bar, be used.
These windows remain open until explicitly closed, and can be moved to where desired on the screen. The
two windows are partially keyed to each other in that changing the current project on either one affects both
windows. Most of the illustrations in this section show both windows, although in practice usually only
one is opened at a time. The examples reflect the directory/project structure created in the previous chapter.

Let us now assume that the required files have been written in the appropriate directories, as shown in
the following list:-

:Baseckout:
MakeFile
BuildScript

:Baseckout:Sources:C:
CSourcel.c
CSource2.c
CSource3.c

:Baseckout:Sources:CPlus:
CPlusSourcel.c
CPlusSource2.c

:Baseckout:Interfaces:C:
Cinterfaces.h

MPW 3.2 Appendix G
Release Notes

10 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

:Baseckout:lnterfaces:CPlus:
CPluslnterfaces.h

Opening the Check In and Check Out windows, we get the display shown in Fig. 13.

lD Check In

G::::::> SC Project: I B8Se I
le Baseckout I User: Herb Kanner

Cl Interfaces ~ TBSk: [J
Cl Sources Reu: (Hcwi~ion ...)

Check In comment:

0
I ~

D Touch mod date
(~elec1 an) (Open)

!®Keep read-only D Show all files 10 Keep modifiable [2) ((c hect: In J) (Driue)(Eject) !O Delete Copy . - .

Check Out

torrent Project Checkout to: I SC:Projectoemo:Beseckout: I
lliii!Base I User: Herb Kanner

ig Interfaces ~ l"<l~k: [J
igsources Ch<H k Out 1:ommen1:

I I
Select Files in Name: 181 Touch mod date

Q I None I
(Cane el C hect: cm1)

(Sc!lec t llll) (OJ1<m) !®Read-only !

~ !Q Modifiable I ,, Ct1ec k Du t J) (Sel<!< t 1\eu1er) I D Elranch i

Fig. 13

At the upper right in the Check In window can be seen a button labelled "Project:". The text on the
button is the name of the current project. If no project has been mounted, this text will read ''Root level
projects." The current project in this case is Base. If the button is pressed, the names of all projects pop
up in a selectable list, with the subproject nesting indicated by levels of indentation. On the left is a
display similar to the familiar dialogue used for opening files. Until a CheckOutDir command has been
given, it merely displays the contents of the current directory. If the project shown in the "Project:" button
has a checkout directory, then that directory will automatically be the subject of the display on the left. The

MPW 3.2 Appendix G
Release Notes

11 Copyright Apple Computer. Inc.
1990-1990. All rights reserved.

user may navigate freely within this left-hand portion of the window and select any directory and file on any
mounted volume; we will return to the application of this later. On closing and re-opening the Check In
window, or even by just leaving and project Base and then returning to it by use of the button at the upper
right, the left-hand display will again be set to the checkout directory for Base.

Note that the Check Out and Check In windows track each other in that they both always show the
same current project. The left hand display of the Check Out window permits navigation through the
project hierarchy and selection of files belonging to the Projector database in exactly the same manner as the
customary dialogs for Open do for directories and files. Whatever project is selected as the current project
also shows up on the Project button in the Check In window and vice versa. Whatever directory appears
automatically near the upper left of the Check In window (right under the name of the volume) will also
appear on the button labelled "Checkout to:" at the upper right of the Check Out window. The directory
can be changed independently in either of these windows. It automatically reverts to the one established by
the CheckOutDir command (if such a one exists) on deselecting and reselecting the project

Now, let us redirect our attention to the Check In window of Fig. 13. We see in the left-hand display two
subdirectories of Baseckout: Interfaces and Sources. No file names are visible even though the files
BuildScript and MakeFile reside in the directory Baseckout. The reason is that the Check In window by
default only lists files belonging to the current project Since the project "Base" is brand new, it does not
yet contain any files. To make the file names Interfaces and Sources visible in the window, we mark the
box labelled "Show all files," yielding the window shown in Fig. 14.

MPW 3.2 Appendix G
Release Notes

12 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

::§[

I Gl Baseclcout I
D BuildScript
CJ lnterfoces
D Makefile
CJ Sources

Check In

Project: _I _e_a_s_e __________ I

User: Herb Kanner

IQ Task: [.___ ______ --;===~J
Reu: (Het•i~iDn..,)
Check In comment:

a .. 1~1 ____......_.~
D Touch mod date

(Seltn:t <111) (Dpt~n) I ... , -------
- ! !®Keep reed-only

181 Show all files ! !O Keep modifiable
(Driue) (E je< t) i iO Delete Copy (?) f(Check In J

ty[r~ol ~[gjm

lgense I
Iii) I nterfoces
Iii) Sources

(S<~l<H t till) (OJt<m)

(Sele< t 1u~u1t~r

MPW 3.2 Appendix G
Release Notes

)

Check Out

; Checkout to: I SC:ProjectDemo:Boseckout: I
User: Herb Kanner

Ta~k:[J
Ch<H k Out cmnment:

I I
Select Files in Name: 181 Touch mod date

I None

®Read-only
O Modifiable

D Bran<h

Fig. 14

13

I
(C<1no~I C lu~ckout)

~ ((Che< k Out)J

Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

The next step, of course, is to check these files in. Selecting a file and pushing the Check In button
will enter the file and all ancillary information about it into the Projector database; this includes any Check
In comment that has been written. After this has been done for both BuildScript and MakeFile, the
windows will have the appearance of Fig. 15. This illustration also shows the Project pop-up list in the
Check In window.

Observe the icons used in both of these windows for files, directories, and projects. For a detailed list
of the meanings of all of the Projector icons, see the MPW Reference Manual. Because the radio buttons in
the Check In window were left at their default setting (Keep read-only), the names of the two files are now
gray, indicating that because they were checked in, and because the copies in the directory Baseckout are
now read-only, they clearly should not be checked in again. The icon indicates that they are read-only, and
if one now opens the copy of the file in the checkout directory, one will see that same icon in the upper
left-hand comer of the file window, and indeed, any attempt to write to that file will meet with failure.

Notice that each window has a button labelled with a great big question mark. Pushing this button
changes the right side of the window to an information window and modifies some of the other buttons.
Doing this to both windows yields the pair shown in Fig. 16. Note that the window titles have been
changed to remind one that they are now yielding information. The same button, now labelled "Done,"
when pushed again causes the window to revert to its original state.

Selecting and "opening" a file in the Check Out or Check Out/Information window demonstrates the
next level of access, that of the file revision. Fig. 17 shows the appearance of the Information windows
after opening MakeFile. We see an icon labelled "l," the revision number of the only existing revision.
As the file is checked out for modification and checked back in, additional such icons will appear, corre­
sponding to all existing revisions. This permits easy fetching of earlier revisions when desired. The radio
buttons labelled "Latest Revision Info" and "File Info" permit respectively the choice of a comment that
applies to the specific revision selected and a comment that applies in common to all revisions of the file.
The term "latest" in the label is not exactly accurate. It reflects the fact that the default selection will, in
fact, be the latest revision.

At the start of this section, it was assumed that the original revisions of the files to be checked in
already exist in their correct checkout directories. This assumption was made for convenience. By first
setting the desired project in the box at the upper right in the Check In window, checking the "Show all
files" box, and then selecting desired files for that project by use of the left-hand sub-window, it is easy to
check in files from anywhere.

MPW 3.2 Appendix G
Release Notes

14 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

~o

CJSC

lesi Baseckout I
Huill1S< rip t

CJ Interfaces
MBkefll<~

CJ Sources

(S•~lect <Ill) (D1u~n)

Reu:

Check In
I

Sources
c
CPI us

D Touch mod date

!®Keep read-only !
181 Show an files !O Keep modifiable! I?) (Chet:k In J Driue) (E je< t !O ~-elete Copy I

l:;!,![[~nt P[gjg.tl

I~ Bose I
~Interfaces ~
~Sources
!!Cl BuildScript
ISi Makefile

tQ
(Select all) (oirnn)

(Select newer

MPW 3.2 Appendix G
Release Notes

)

I

Check Out

Checkout to: I SC:Projectoemo:Boseckout: I
User: Herb Kenner

1"<1~k: l J
Che< k Out comment:

I
Select Files in Nnme: 181 Touch mod dnte

I None

®Read-only
0 Modifiable

D Elrnru h

Fig. 15

15

I
(C<1n< el check out)

~ ((Che< k Du t J)

Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

!! Check In/ Information

c::> SC

16 Boseckout I
}(Build Script 00
CJ lnterfoces
~Makefile
CJ Sources

! Project: ... I _e_a_s_e _________ _

l Name: BuildScript Reu: 1
! Owner: Herb Kanner
~ Project: B11sef
I Checked Out: Sat, Dec 2, 1989, 12: 12 PM

I
l l'<•~k: I lrne•s <-1>1_n_m_e_n_t_: ----------~-

L-~~~~--:::(=0=1>=e=n~) I ~

D Show all files !-------------------........
(Oriue) (E je< t] I ([Done JI (Reuert) (So11e)

Check Out/Information

turrent Project

lmi Bose I
I~ Interfaces
~Sources
If> BuildScript
If> Makefile

(Select mine)

(Uiew by •••

MPW 3.2 Appendix G
Release Notes

)
(Open)

D filt<ff

I When File Selected Show: i
!

! ®Latest Reuision Info 0 File Info !
Name: MakeFHe Reu: 1
Ruthor: Herb Kanner
Checked In: Fri, Dec 1, 1989, 12:22 PM

Task: [J
Latest reuision's comment:
This is the initial revision of MakeFile.

(ooneJ(Reuert)(soue)

Fig. 16

16 Copyright Apple Computer, Inc.
1990-1990. All rights reserved.

Check Out/Information

(Select mine) (oi1en)

(Ulew by ...) D fil1er

! When File S~lected Sho~--- l
i @ Latest Reuision Info O Fiie Info ! : _____ .;
Name: Makefile Reu: 1
Author: Herb Kanner
Checked In: Fri, Dec 1, 1969, 12:22 PM

Task:
~~~~~~~~~~~~~~-

Re u is ion's comment: 
Tnis is tne Initial reuision of MakeFi le. 

I Done ]) ( ReuP.r t) ( Soue ) 

Fig. 17 

Let us next assume that original revisions of all the files shown in Fig. 1 have been checked into their 
proper projects. It is now our intent to make some constructive changes to the file CSourcel.c. We go to 
the Check Out window. navigate in the left-hand area until the current project is BasefSourceslcJ. and select 
the file CSourcel .c. Before pushing the Check Out button. we make sure that the radio button 
"Modifiable" has been pushed. After writing a comment and pushing the Check Out button. we find that 
the two windows have the appearance of Fig. 18. Note the icon next to CSourcel.c in both windows; it 
indicates that the checked out copy is modifiable. If we now go to the Check Out{mformation window by 
pushing the big question mark and open CSourcel.c. we get the display of Fig. 19. We see that the 
revision being modified is called "1+." After it has been checked back in, this number will change to 2. 

This last demonstration could also have been accomplished using the Check Out window. instead of 
using the Check Out/Information window. However. the file CSourcel.c appears dimmed in that window. 
This is correct. Because it has been checked out for modification. any other attempt at checkout must be 
only as a branch. Making the file unselectable cautions the user. This precaution can be overridden by 
holding down the option key while clicking on the file name. The file can then be opened to display the 
revisions as before. Notice that when an "open" is forced on a file that has already been checked out for 
modification, the box labelled "Branch" in the Check Out window is automatically marked. 

MPW 3.2 Appendix G 
Release Notes 

17 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



c:J SC 

lee I 
.I CSourcel .c 
.~c Scmr< e2.c 
.)t I: Smm e :i. t: 

( Select all ) ( D(>P.O ) 

181 Show all files 

( Driue )( E jcic t ) 

:o 
Current Project 

liu;ic I 
.P C Sour< e I .1: ~ 
~ CSource2.c 
~ CSource3.c 

~ 
( Select all ) ( OJtcm ) 

( Sele< t newer 

MPW 3.2 Appendix G 
Release Notes 

) 

Check In 

Project: I c I 
User: Herb Kenner 
Task: [ J 
Reu: (11cwi~i1>1L .. ) 
Check In comment: 

I I 
O Touch mod date 

~®Keep read-only 
lO Keep modifiable 

~ (( [ hP.clc In l) jO Delete Copy 

Check Out 

Checkout to: I SC:ProjectDe ••• t:Sources:C: I 
User: Herb Kenner 

Task: [ J 
Check Out comment: 

1-;·;~2 

~ 
Select Files in Name: 1:81 Touch mod date 

I None 

fO Read-only 
i® Modifiable 
! D Branch i 

Fig. 18 

18 

I 
( Cano?( C ht?1:lrnuf ) 

~ ((Cheek Out )) 

Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



Check Dut/lnformotion -------- - - -

Current Project i i When File Selected Show: 
I p csource 1.c I f ! @ Lo test Reulslon Info O Fiie Info 

,.........,..___;~=====~ .......... i .Nome:- CSource 1.c Reu: 1 
I Author: Herb Kanner ! Checked In: Mon, Oct 9, 1989, 2:43 PM 

i 

I Tosk: joe1110nStr-ation 

! Reuision's comment: 
j These are the initial versions of the files 
i in the Pr-ojector- database. 

~ 

'":::::======::-::::==::::=.:"' i 
(Select mine) ( OJt<m ) !--------------.......... 

Uiew by... D Filter i (E) ( lh~11ert J ( S1we) 

Fig. 19 

Branching 

The normal sequence of checking out a file as modifiable, editing it, and checking it back in produces 
what is called "the main trunk," a series of revisions that are numbered in sequence: 1, 2, 3, .... The 
button labelled ''Revision ... " in the Check In window may be used to create gaps in this sequence. That is, 
if revisions 1 through 4 exist, so that revision 5 would be created next, the use of this button makes it 
possible to name the next revision with an integer greater than 5. Often, it is desirable to pursue a parallel 
development while work on the main trunk proceeds. The revisions belonging to the parallel development 
are said to be on a branch. Methods will be shown later for merging files developed along a branch back 
into the main trunk. The notion of branching is recursive; a branch may be created that diverges from an 
already existing branch and this may be done to any desired depth. Multiple branches may be taken from 
the same revision. There is a numbering scheme for branch revisions which enables the user to visualize 
the tree, knowing only the revision numbers. This branching capability accounts for the term revision tree 
to describe the set of revisions of a file. 

Branching from the latest revision is simple. If, for example, the current revision of CSourcel.c is 
Revision 3, then all that is needed is to click on the Branch box before checking out the file as modifiable. 
The file while it is checked out will be labelled Revision 3a+, and on being checked back in will become 
revision 3al. A second parallel branch from the main trunk would be labelled 3bl after check in. If 3al is 
checked out modifiable, revised, and checked back in, it becomes 3a2. A branch from 3a2 would become, 
after checkin, 3a2al, and so on. 

Branching from earlier revisions is slightly more complicated. Let us assume again that CSourcel.c 
is up to Revision 3, and that it is desired to revert to Revision 1 and branch from there. Go to the Check 
Out window, press the "Modifiable" radio button, then select and open CSourcel.c. The three revisions 
will now show, but all but the last will be dimmed. Select Revision 1 by holding down the option key 
while clicking on it Notice that the Branch box will be checked automatically. An alternative procedure is 
to select Revision 1 after pushing the "Read-only" radio button, and then pushing the "Modifiable" button. 
After checkout, the window will taken on the appearance of Fig. 20. After the branch is checked back in, 
the window will be as shown in Fig. 21. 

MPW 3.2 Appendix G 
Release Notes 

19 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



§[] 

Current Project 

I ~ csource 1.c I 
03 ~ 
02 
_p I 11• 

DI 

~ 
( Sele< t oll ) ( OJ1<m ) 

( Sel<H t IU~UJN ) 

Current Project 

I ~ CSource 1 .c I 
fTI3 
02 
O 11i1 
01 

( Sele< t oll ) ( Oi1en ) 

( S<~I<~< t IH~UH~r 

MPW 3.2 Appendix G 
Release Notes 

) 

Check Out 

Checkout to: I SC:ProjectDe ••• t:Sources:C: I 
User: Herb KBnner 

Task:[ ] 
Check Out comment: 
Th is is a br"cinch from Rev i s i on 1.j ~ 

IQ 
Select Files in Name: C8l Touch mod date 

I None I 
( C<m< el Uu~ckout ) 'O I i Read-only l 

i@ Modifiable i ~ (( Ct1e< k Out JJ l 181 Branch I 

Fig. 20 

Check Out 

~ Checkout to: I 
i 

SC:Projector: ... t:Sources:C: I 
i User: Herb Kanner 
i 

j Task: l 
I J 
j Check Out comment: 
i This is a br"anch fro11 Revision 1. 
i 
' 

L 

Select Files in Name: 181 Touch mod date 

I None 

0 Reed-only 
® Modifiable 

D Branch --

Fig. 21 

20 

I 
( C<lO< el [heck out ) 

~ (( Ct1e< k Out JJ 

Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



Fig. 22 shows the members of a moderately bushy revision tree (the one hidden item is Revision 1), 
and Fig. 23 shows the same tree graphically. 

MPW 3.2 Appendix G 
Release Notes 

Check Out 

Fig. 22 

21 

D Touch mod date 

( Can< el C he1:lrnu1 ) 

[? J ([ Check Out )J 

Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



branch revisions 

Fig. 23 

trunk revisions 

branch revisions 
I 

I 
I 

I 
I 

'f 

Miscellaneous Buttons, Icons, and Special Keys 

We are now in a position to discuss most of the remaining features of the Check In, Check Out, and 
New Project windows. 

The boxes labelled "Touch mod date" to be found in both the Check In and Check Out windows cause 
the date of latest modification in the file system directory to be set, respectively, to the time of the checkin 
or checkout. By default, this is marked in the Check Out window and not in the Check In window. 
Although this can cause unnecessary revisions of this date, it guarantees an update on every checkout, 
meaning that tools like Make will always assume that they are being presented with a new version. If this 
default is not used, and more than one person is working on a file, then there is a danger that a user may 
check out a revised file and send it to Make without the latter program realizing that the file has been 
updated. If there is only one user working with a set of projects, reversing this convention and touching the 
mod date on checkin may be more convenient. 

The button labelled "Cancel checkout" is active when a file that has been checked out for modification 
is selected. Pushing this button changes the status of the file to read-only and discards any changes that had 
been made to the file while it was modifiable. 

The button labelled "Select all" causes selection of the latest revision on the main trunk of all files in 
the current project. It does not perform a checkout, just a selection. The button labelled ''Select newer" 
selects, with one exception, those files for which the newest main trunk revision is not already to be found 

MPW 3.2 Appendix G 
Release Notes 

22 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



in the user's checkout directory. The exception is any revision which is on a branch. The assumption is 
that if a branch has been checked out, the user intends to keep it. This button does not distinguish between 
the main portion of a branch and sub-branches. A revision is either on the main trunk, i.e. its revision 
number contains no alphabetic characters, or it is on a branch, i.e. its revision number contains one or more 
alphabetics. If the option key is depressed while the "Select Newer" button is pressed, the selection action 
is modified so as not to select any revision whatsoever of a file unless a copy of the file already exists in 
the user's checkout directory. This is equivalent to using a written CheckOut command with the -update 
option. The idea is: select file revisions for checkout by the same criterion as "Select newer," but do not 
check out revisions of any files that have not already been checked out Just update the files that the user 
~checked out 

Multiple selection of a subset of the files shown in a Check In or Check Out window can be done in 
two ways. If the shift key is depressed while a second selection is made, then the previous selection is 
retained and all intervening names are selected, i.e., a contiguous set of names is selected. If disjoint set of 
names names are desired, then the command key should be depressed while making the selections after the 
first one. The "action" button of the Check In, Check Out, and New Project windows is keyboard activated 
by pressing the enter key. This is required because keystrokes, including that from the return key, are sent 
to the comment field in all three of these windows. 

Depressing the option key while pushing the Check Out button will cause automatic opening of the 
file being checked out if it is a text file. 

Some less frequently encountered icons are illustrated in the next two figures. Suppose that the user 
manually selects a directory in a Check In window that is not the "checkout directory" for the current 
project. For example, this might be done if the directory contains a file which is not yet a Projector file, 
and the user wants to check this file in to the current project. On marking the "Show all files" box, any 
Projector files in the directory which do not belong to the current project will be designated by an icon 
bearing a question mark and will have their names dimmed. This is illustrated in Fig. 24, where the current 
project is shown as C (actually BasefSourcesfC) but the user has selected the directory Baseckout Fig. 25 
illustrates one other icon that may be seen when multiple users have access to a Projector database. The 
user ·~oe" wishes to check out the file Cinterfaces.h. The padlock icon indicates that this file has been 
checked out for modification by another user. Projector will only allow "joe" to check out the latest revi­
sion as a read-only file. If "joe" wants to do any modification, he will have to create a branch. 

lesi Baseckout I 

( Selec1 all ) ( Open ) 

181 Show all files 

Driue ) ( E je< t 

MPW 3.2 Appendix G 
Release Notes 

Check In 

Project: ... I _c ___________ _ 
User: Herb Kanner 
Task: ..._ ________________ -;:::=========::: 
Heu: ( H<wi~ion .•. ) 
Check In comment: 

!@Keep read-only 
jO Keep modifiable 
!O Delete Copy 

23 

D Touch mod date 

n ( lu~cl: In I 

Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



~ 

Current Projfil 

lgc I 
Ii Clnterfaces.h ~ 

tQ 
( Select all ) ( OJten ) • 

( Select newer 

MPW 3.2 Appendix G 
Release Notes 

i ) i 

I 

Fig. 24 

Check Out 

Checkout to: I SC:Projector: •.. nterfaces:C: I 
User: joe 
Tcnk: l J 
Ch<~< k Dut 1:<nrmum1: 

~ 
Select Files in Name: ~Touch mod date 

I None 

®Read-only 
0 Modifiable 

D llramh 

Fig. 25 

24 

I 
( Can< el check out ) 

~ n Che< k l)ut D 

Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



Finally, the Check Out/Information window has a facility for identifying the revision of a file that is 
currently checked out. The procedure is as follows: Obtain the Information window by pushing the button 
with the big question mark. In the left-hand area of the window, select and open the file in question thus 
showing its revision tree. Push the "Select mine" button. If any revision of that file exists in its checkout 
directory, that revision will be selected in the window, thus giving the desired information. 

Naming a Set of Revisions 

Facilities exist in Projector for associating a name with a chosen set of file revisions. Thus, for 
example, the revisions corresponding to a given release, say alphal, of a product can be given that name. 
As is illustrated in Fig. 26, the button in the Check Out window labelled "Select Files in Name: .. will, 
when pushed, display a pop-up list of all known names. Dragging to the name "alphal" will then cause 
selection of that set of revisions, enabling easy checkout of the source files for that release. 

~ Check: Out 

Curr1mt Proj~ct Checkout to: I SC:ProjectDe ... t:Sources:C: I 
lliiltl User. Herb Kanner 

I IGI CSource 1.c ~ Ta~k:l ] 
IQ CSource2.c Che< k Du t comment: 
IQ csource3.c 

I ~ 
Select Files in Name: 181 Touch mod date 

~.one' I 
( Select all ) ( Open ) -~only! ( CaJJ< el £ heclc out ) 

i !O Modifiable! ~ ( Ct1e< k Out J) ( Select newer ) i ! OBnm<h j 

Fig. 26 

The assigning of names is done with the command NameRevisions. Like several other commands 
already described, this command is used with parameters to associate a name with a set of revisions, and 
without any parameters to elicit information about existing name assignments. It is one of the more 
complicated commands in the lexicon. Fortunately, anything done with this command can be easily 
reversed with the command DeleteNames. 

The three most important options of the NameRevisions command are -public, -private, and 
-dynamic. The -public option, which is the default, establishes a name as public and relatively 
permanent. It is recorded in the Projector database and will appear in the Check Out windows of all users. 
A private name exists only for the convenience of the user who defined it, and lasts only for the duration of 
the current MPW session. The only way to give it any longevity is to have the command that created it 
saved in a script file. Private names appear first in the pop-up list and are separated from public names by a 
dotted line. 

MPW 3.2 Appendix G 
Release Notes 

25 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



The option -dynamic is a little harder to explain. Let us consider a couple of scenarios that illustrate 
when this option is and is not wanted. First we will describe the simpler case, the one where the option is 
not used. Suppose that the latest revision on the main trunk of every file in a project is to be used for a 
release. The NameRevisions command written 

NameRevisions -project myproject -a thisrelease 

will freeze the name "thisrelease" to the latest main trunk revisions of files in the project "myproject." The 
-a option indicates that we want all of the files in the project. The selection is static. That is, at some 
future time, by which many of the files may have been revised several times, the use of the name 
"thisrelease" will select that frozen set of revisions. The second scenario might be that one or more files in 
a project become obsolete. Suppose that a project has files valid!, valid2, valid3, obsolete!, and obsolete2. 
It has been decided that obsolete! and obsolete2 will no longer be used. The command 

NameRevisions -project myproject -dynamic o 
active validl valid2 valid3 

will cause the name "active" to be a selector for the ~ main trunk revisions of the three named files­
that is, the latest revisions at the time the selection is made, not at the time the NameRevisions command 
was executed. Incidentally, if what was desired was the latest revision on branch "a" of, for example, 
valid2, that file name would be written in the NameRevisions command as "valid2,la". If a revision is 
fully specified in a file name, e.g. "valid2,lal ",then that will be the selected revision, regardless of whether 
or not the dynamic option is used. 

If a NameRevisions command reuses a name, the file revisions named in that command will be appended to 
the list of those previous associated with the name. If the intent is to ~ the old set of revisions by a 
new set, then the option -replace must be used. A name can be expunged by using it as an argument of 
the DeleteNames command. 

MPW 3.2 Appendix G 
Release Notes 

26 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



HD:MPW:Worlcsheet 

Project Base J 

# Malce ""'1ednesda.}"' a private name tort he latest revision ot all 
#tiles in the project. 

nam erevisi ons -private -r -ii ve dn es day 
###namerevisions -There are no files in project "Baseflnterfacesf' 
###nam erevisi ons -Th ere are no files in project "Base JS o urc es f' 

# C ontirm what ha.pp en e d: 

nam erevisi ons -private -r ~ 
# Project: Base/ 
Nam eR evisi ons we dn es day -private -u 'Herb Kann er' -project Base fa 

BuDdScrfipt1 1 a 
MalceFilel 1 

#Project: BaseflnterfacesjC/ 
Nam eR evisi ons "'e dn es day -private -u 'Herb Kann er' -project Base flnt erf aces f Cf a 
Clnterfaces.h1 1 

#Project: BaseflnterfacesjCPlus/ 
Nam eR evisi ons "'e dn es day -private -u 'Herb Kann er' -project Base flnt erfac es f C Pl us/ a 
CPluslnterfaces.h, 1 

#Project: Base/SourcesjC/ 
NameRevisions wednesday -private-u 'Herb Kanner' ·project BasefSourcesfCf a 
CSource l .c1 S a 
CSource2.c1 2 a 
CSource3.c,2 

#Project: Base/SourcesjCPlusf 
NameRevisions "'1ednesday -private-u 'Herb Kanner'-project BasefSourcesfCPlus/a ·.:1,!_,f,i_,i,! 

CPlusSource 1.c, 1 a 

Fig. 27 

The application of NameRevisions is demonstrated in the next few illustrations. In Fi_g. 27, using the 
-r (recursive) option, the name "wednesday" is associated with the all files in baseJ and all of its 
subprojects. Note that two diagnostic messages are emitted about the subprojects that do not contain files. 
As in MountProject, omission of necessary parameters causes that command to emit information, but 
includes the command name itself for possible future use. So, using no parameters, the execution of the 
command with the -r option causes printouts of the NameRevisions commands for each level of the project 
hierarchy that would associate the name with the applicable revisions. The effect is to get a nice list of the 
exact revisions that would be selected by use of the name. 

MPW 3.2 Appendix G 
Release Notes 

27 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



HO:MPW:Worksheet 
MP'w' SheTI l 

Project Bue/ 

I Make 1atesi-a pub&c d~amic name for ellthe ID es in the project 

narnere'v'isions -d~amic "f1.latest 
###narnere\4isions-There are noe tiles in project ·easeflntertacesr 
###narnere\4isions-There are noe tiles in project ·Bue/Soun:esr 

nern er mi ons -s -b ., 
I Project: Bue/ 
NarneRe\4isions 'ft'ednesday-priVlle -u 'Herb Kanne(-project Bue/ a 
Makefie, 1 a 
BuildScript, 1 

NarneRe\4isions latest -u 'Herb Kanne( -project Bue/ a 
BuldScript, a 
Make fie, 

I Project: Buejntertaces~J 
NarneRe\4i3ions '*'ednesday-priVlle-u 'Herb Kanne(-project Buejnterfaces~J a 
Cini ertac es .h, 1 

NameRe'tisions lat est -u 'Herb Kanne( -project BaseflnterlacesJCJ a 
CHerlaces.h, 

'I Project: Buejnterfaces~PlusJ 
NarneRe\4isions ...ednesday-priVlle -u 'Herb Kann er' -project Buejntertaces~Plus/ a 
CPluslnterfaces.h, 1 

NarneRe\4isions latest -u 'Herb Kanne( -project Bu eflnterlac esjCPlus/ a 
CPluslnterlaces .h, 

I Project: BuejSourcesJC/ 
NameR e\4isions '*'e dnesday-priVlle -u 'Herb Kanne( -project Bue JS oun:esJCJ a 
CSoun:e3.c,2 a 
CSoun:e2.c,2 a 
CSoun:e 1c,S 

NameRe\4isions lat est -u 'Herb Kanne( -project Bu eflntertaces JC/ a 
CSoun:e 1.c, a 
CSource2.c, a 
CSoun:e3.c, 

I Project: Bue/Soun:esJCPlus/ 
NameR e'tisions '*'ednes day-priVll e -u 'Herb Kanner' -project BuejSoun:esJCPlusJ a 
CPlusSowce2.c, 1 a 
CPlusSowce 1.c, 1 

NameRe\4isions lat est -u 'Herb Kanne( -project BueflntertacesjCPlus/ a 
CPlusSoun:e 1.c, a 
CPlusSoun:e2.c, 

Fig. 28 

In Fig. 28, the exercise of Fig. 27 is repeated, but this time the name "latest" is defined to be a 
dynamic name. The parameterless NameRevisions command is now given an additional option, -b, which 
forces it to list both public and private name assignments. We get to see now the files associated with the 
public name "latest" and with the private name "wednesday." Note that the files associated with the 
dynamic name are indicated by the file name followed by a comma, but with no revision number. This is 
because a file selected by a dynamic name is automatically the latest main trunk revision, so it is not 

MPW 3.2 Appendix G 
Release Notes 

28 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



usually desired to see the revision number. If the revision number is wanted, the option -expand will 
force it to appear as is demonstrated in Fig. 29. 

HO:MPW:Worksheet 

l 
I Set the current project to basepourcesJC/ 

project basepourcesjc 

# Rememberthlll .llllesi- is a d~emic name 

namere\>fslons -b-s 
# Project: Basetsoun::esJC/ 
NameRe..;sions latest-u "Herb Kanner' -project Base/Soun::esJC/ a 
CSoun:e 1.c, a 
CSoun:e2.c, a 
CSoun::e3.c, 

I Nov ua e -expand option 

namere'Jisions -b-s -expand 
' Project: BasetsourcesJC/ 
NameRNsions latest-u "Herb Kann er' -project Bas e/SourcesJC/ a 
CSource 1.c,3 a 
CSource2.c,2 a 
CSource3.c,~ ~ 

IQL ]~i~iii~iiif:~!~i~i~~i~~~~~ii~i~!!~~~~!Diiii~~i~~i~ij!~i~!~i~~iiii~ii!~i~i~ii~~~~i~~~i!i!~i~~ii~~~iiiiii~iiiiiii~iiijii!~Hi~iili~i~ii!Q '2J 

Fig. 29 

If You Must Be Different 

The demonstrations given so far make the checkout directory mimic the structme of the project itself. 
Each individual user of the project is free, however, to structme the checked out files in any desired way. 
For example, the commands: 

CheckOutDir -project BaseJsourcesJc sc:projector:CFiles 
CheckOutDir -project BaseJrnterfacesJc sc:projector:CFiles 
CheckOutDir -project BaseJSourcesfCPlus sc:projector:CPlusFiles 
CheckOutDir -project BaseJrnterfacesfCPlus sc:projector:CPlusFiles 

will create directories ":CFiles:" and ":CPlusFiles:", will cause all files in BaseJSourcesJcJ to be checked 
out in the directory ":CFiles:", and so on. 

Comparing Revisions and Merging Branches 

We discuss here the last two items on the MPW menu bar under "Project" The first, named 
"Compare Active ... ", calls the script CompareRevisions. The second, named "Merge Active ... ", calls the 
script MergeBranch. Both of these scripts do a small amount of housekeeping and call on the MPW script 
CompareFiles for the main body of the task. When "Compare Active" is invoked-the active window must 

MPW 3.2 Appendix G 
Release Notes 

29 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



be a checked out projector file-a selector window will appear naming the revision number of the active 
window and listing all other revisions so that one can be chosen. When the desired revision has been 
chosen, CompareFiles goes into action, and its windows display all the differences between the two 
revisions. "Merge Active ... " has a similar set of mechanisms and some constraints. The active window 
must be a branch revision. The other window, implicitly chosen, is the latest main trunk revision, checked 
out for modification. The mechanisms of CompareFiles permit the user to find the differences and selec­
tively to copy and paste material from the branch to the main trunk. This is the method to be used when 
work on a branch proves to be fruitful and it is desired to incorporate that work into the main line of the 
project. For details on the behavior of CompareFiles, see Volume 2 of the MPW Reference Manual. 

A particularly simple case of the application of Merge Active is of frequent occurrence, and is worth 
examining in detail. Suppose we check out Revision 10 of a file for modification, apply a set of changes 
applied, and then check it back in. After some thought, we decide that the current revision, namely 
Revision 11, is absolutely worthless and that we would like to revert to the previous revision. Unfortu­
nately, there is no way to delete a single revision from the top. The best that we can do is to create a 
Revision 12 that is a duplicate of Revision 10. Here is the quickest way to do this. In the Check Out 
window, ••open" the file to show the revision list, chose Modifiable and Branch and then select Revision 10 
while holding down the option key. Press the Check Out button. A branch revision from 10 will be 
checked ouL Now open the file, so that the active window contains this revision. Select ••Merge Active ... " 
from the Project menu. When the machine has settled down, the following will be seen: At the top of the 
screen will be two windows, side by side. One of them will be read-only, and will be the branch lOal. The 
other will be read-write, and will be the modifiable Revision 11+. (Revision 11+ becomes Revision 12 
when checked in.) Inspection of the Check Out window will confirm the status of these windows. Now, 
do a ••select all" operation, either via the Edit menu or from the keyboard, on both of these windows, and do 
a copy and paste of the entire branch window into the modifiable window. Next, select the pop-up item 
••0one" from the "Compare" menu item. This will dispose of the two windows. Finally, do a check in of 
the file, creating Revision 12. 

Miscellaneous Goodies 

Projector commands not yet considered are: 

DeleteRevisions 
ModifyReadOnly 
OrphanFiles 
Projectlnfo 
Transfe.rCkid 
UnmountProject 

These are discussed briefly where the writer feels that some explanation is useful. Some of them are not 
mentioned at all on the grounds that the material in the MPW manual is adequate. 

DeleteRevisions does not do what one might expecL It cannot usually be used to expunge a mistake. 
Its purpose is to delete large revision sets that are no longer wanted because of obsolescence. So, the alter­
natives are: with the -file option, it will delete all revisions of the named file from a projecL It will be as 
if the file had never been there. Without the file option, it deletes all revisions that are older than the named 
one on its branch, or an entire branch (see below). The obvious purpose is to get rid of stuff that is so old 
that no one will ever again want to see iL So, for example, 

DeleteRevisions -project proj/ file.c 

will delete all revisions of file.c prior to the latest one on the main trunk. If the parameter is 
f i 1 e • c , 2 a 3, then all revisions on branch 2a prior to 2a3 will be deleted. If the parameter is 
file . c, 2 a, then all of branch 2a will vanish. 

ModifyReadOnly is an emergency kind of command. Suppose a file has been checked out read only, 
and then the Projector database becomes temporarily unavailable. A typical situation causing this would be 
that the database is on a server, and the checkout is to a portable medium which the owner takes home. At 

MPW 3.2 Appendix G 
Release Notes 

30 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



home, a decision is made to edit this file. ModifyReadonly will remove the read only restriction from the 
file. This change can be confirmed by that fact that the icon in the lower left corner of the file window 
changes. The solid line that crosses the pencil becomes a dotted line. When this file next confronts the 
Projector Check In window, this same modified icon will appear next to the file name, and it will be possi­
ble to check the file in as a new revision. 

OrphanFiles is used to remove completely the Ckid resource from a file, so that the file is no longer 
recognized by Projector. 

MPW 3.2 Appendix G 
Release Notes 

31 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 



Command Syntax 

Checkin -w I -close I ([-u user] [-project project] [-t task] 
[-p] [-cs comment I -cf file] [-new I -b] [-rn I -delete] 
[-touch] [-y I -n I -c] (-a I file ... )) 

Checkout -w I -close I ([-u user] [-project project] 
[ [-rn] [-b] I -cancel] [-t task] [-cs comment I -cf file] 
[-d directory] [-r] [-open] [-y I -n I -c] [-p] 
[-noTouch] (-update I -newer I -a I file ... )) 

CheckOutDir [-project project I -rn] [-r] [-x I directory] 

CornpareRevisions file 

DeleteNarnes [-u user] [-project project] [-public I -private] 
[-r] [names ... I -a] 

DeleteRevisions [-u user] [-project project] [-file] [-y] 
revision ... 

MergeBranch file 

ModifyReadOnly file ... 

MountProject 

NarneRevisions [-u user] [-project project] [-public I -private 
-b] [-r] [[-only] I name [[-expand] [-s] I [-replace] 
[-dynamic] [names ... I -a]]] 

NewProject -w I -close I ([-u user] [-cs comment I -cf file] 
project) 

OrphanFiles file ... 

Project [-q I projectname] 

Projectinfo [-project project] [-log] [-comments] [-latest] [-f] 
[-r] [-s] [-only I -rn] [-af author I -a author] 
[-df dates I -d dates] [-cf pattern I -c pattern] 
[-t pattern] [-n name] [-update I -newer] [path. .. ] 

TransferCkid sourcefile destinationfile 

UnmountProject -a I project ... 

MPW 3.2 Appendix G 
Release Notes 

32 Copyright Apple Computer, Inc. 
1990-1990. All rights reserved. 




