
Date:

From:

To:

Subject:

January 21, 1985

Larry Tesler ~
Larry Rosenstein, Ken Doyle, Scott Wallace, Gaby Hirl,
Dan lngalls, Barry Haynes, Yu Ying Chow, Mark Lentczner,
Chris Espinosa, Andy AverilL Scott Knaster, Russ Daniels,
Pete Cressman, Judy York, Amy Rapport, Eileen Crombie ...
Bud Tribble, Jerome Coonen, Rony Sebok ... Steve Capps,
Martin Haeberli, Rick Meyers, Al Hoffman ... Gursharan Sidhu ...
Dan Cochran ... Hasmig Seropian, Cary Clark, Bob Belleville

Expandable Application: Release Plan

This is a release plan for the Expandable Application (aka Generic Appl ication,
Standard Appl ication, Macintosh ToolKit, Vantage).

All releases will be made through the Software Library. Non-Apple users will
contact Technical Support for help. In turn, Technical Support will forward
questions they can't answer to my group.

Release 0.0 (•Phi") is planned for January 23, 1985. lts authors were Larry
Rosenstein, Scott Wallace, and Ken Ooyle. One of two sample programs is by Gaby
Hirl. Release 0.0 is intended for use by Rony Sebok (who is writing an electronic
mail user interface)„ Russ Daniels (to prepare for eventual technical support of the
product), and Kurt Schmucker and Andy Averilt {to write documentation). lt is
missing many smal 1 but critical features; memory management is not yet smart; the
Pascal syntax is not the tatest Wirth-approved variety; it is virtually undocumented;
it has not been used outside my group.

Release D.1 c-·chi•) is planned for February L 1985. The audience wi 11 be
expanded to include other Apple employees who program Macintosh appl ications in
Pascal, and a number of outside testers to be selected by Scott Knaster and myself.
The outside testers wi 11 come from the ranks of university customers and certif ied
developers with experiPnce in both Macintosh ToolBox use and object-oriented
programming (e.g.„ Lisa Clascal). lt will be like Release 0.0 except it will have the
Wirth-approved new syntax, scrap management, and various m inor improvements.

We plan ta teach an in-hause course in February based an release 0.1.
Release D.3 („Psi„) is planned for March 15, 1985. There will a little more
documentation. The audience will be enlarged to include some outside testers with
no specific prior experience. The capabilities will be expanded to include smarter
memory management and to t ie other loose ends.

Release 0.5 („Omega•) is planned for April 241 1985. lt will have the final
architecture and fairly complete documentation. The audience wi 11 be
expanded to include as many developers as we can suppart. Release 0.5 wi 11
never be a „Product 11

1 because the Lisa Workshop wil 1 be needed to compi lel
but it should make Macintosh application development easier for Lisa owners.

Release 0. 7 („Alpha") is planned for around June 1, actually, one month after the
later of: Release 0.5; Alpha of the New Macintosh Development System. This
version will be compatible with Objective C, support applications in assembler ... and
support Finder-coexistent applications. A Lisa will no langer be required.

Release 0.9 ("Beta") is planned for around July 1, at the later of: one month after
Release 0.7; one week after Beta of the New Macintosh Development System.

Release 1.0 ("Official") is planned for late summer ... concurrent with the
Official Release of the New Macintosh Development System.

Motivation

An lntroduction to

MacApp™ 0.1
Larry Tesler

February 14, 1985

There are ce.rtai,n features found in almest every Macintosh application. Typically, the
us~r can scrolLand resize windows, perform document operations like open, save, and

.. print~ and issue. eäiting commands like cut, paste, and undo. In addition, a well-written
program ·will detect and report errors and recover from them.

To implement the requir~d features reliably and efUciently--and according to high
· sta.ndard_s of ease ·qf us~ ati.d consistency--i~ no.mean feat. The law of conservation cf

.cqrnplexity states t~atJ.f life gels easierJor the. use~,.it n,iust get more complicated for the
„.p_rpgral'.Tlryi~r .. ~o wonder many people have fcÜrid 'that developing Macintosh Software
is more difficultthan they had anticipated.

One way to ~ase the ~ask of fv1~cintosh programmers is to let them reuse code written
by othe[s. The.Maci_ritosh ToolSo~, Operating Sys~em, and QuickDraw provide a body
of sha,red codeth~t ·redµqes.development time~ bütthese packages do not go as far as
they.might. Jhey·proyiqe stand~ir~ rqutines, but riö- standard architecture. Every
developer'must werk out a viable structure for each'application--a surprisingly difficult
task.

The omission of a standard architectur~ from the To~IBox was quite intentional. Apple
-:-vantedthe sy~tem.to. ge ~$:qp_~n -~~ possil:>le, consistent with f~ture compatibility and
Jhe„preservatibn oftrade.secrets. p·eopfe always think up ways to·use a Computer that
we never anticipated.

But for ~very,d(3velop~r who ~as -~ _nqn-standarq. r~quir~me.nt, ttiere are many more
Who·have ·requirements in comhion. Fodhose '~l'eople Apple has designed MacApp™ .

.. ~acApp. implenients a stand~rd applicaticm ~rchit~cture that we believe is well-suited
·to.many produels~. lf you ~an fit your d~sign_into·the.MacApp paradigm, you will save a
f<?t. ofJ~plemenfation time, and your custdmers wilf enjöy the benefits of greater

· consistency between applications.

· Note: MacApp is not suitable for the implementation cf desk accessories.

MacApp0.1

. MacAppJJ.1 is.a prelim~nary version o.f M~cApp. lt is intended for interim use by a ··
. ' handful. Qf 10$ters .who cah opefrate with little documentation, and for study by the
·people :who are ·wri.trng the documentation.

The Objects of a Macintosh Application

Look around the screen of a Macintosh application and what de you see? Usually, you
~ill find a pointer, a menu bar, and one er more windows. Bordering each window is a
title par and scroll bars. ·1n the body cf each window you see a portion cf a document.
In one winqow (the active window} there is probably an indication cf something that the
user tias selected. That indication may be a blinking insertion point, reverse video
highlighting, or tiny square "handles."

lf you could analyze a running program, you would find a data structure corresponding
to each object mentioned above, plus many others. Fortunately, you de not have to
deal with a multltude. cf objects to write a MacApp program. Many common objects (for
example, menus} are handled for you by the ToolBox and MacApp.

The objects you de have to deal with fall into two categories: standard and particular.
Standarq objecJs are those that appear in some form in almest every application, but
that vary. in operation from program to program. Windows and documents are good

· exämples. Partipular objebts ·are those .that some applications need, but that many de
not, e.g., spreadsheets, graphs, and slot machines.

Since standard objects recur in every application, generic definitions for them are
inclu~ed in ~acApp. E~ch application customizes the generic definitions to suit its

· special" needs. A bar-chart application might define the special behavior cf x-y series
windows and bar~chartwindows; but it does not have to include code for generic
operations like scrolling and resizing; these are already defined in MacApp.

To make it easier to customize.,MacApp st.andard types in your application, both your
program and MacApp ·are written in an object-oriented language. At present, the
language used.'tp write MacApp programs is Object Pascal, an extension cf Pascal

· · · :design_edwith-the help of fröf. NiklausWirth. Later this year, it will be possible to use
,V,acApp with.object-oriented versions cf other languages, including Objective C from
Productivity Products, lnc. You will also be able to use an assembler.

Object Pascal

A spe9ification of Opject Pascal can be found in Object Pascal Report, attached. The
lp.ngüage addsto. pascal a new $truc::tured type ca.lled object. Members cf object types

·.~re· dynamicaJJy· allocated on a heap; that is, they are created and destroyed during
_execution. Ecich meml:)er of ~n objec! type.has its own state, together with a set cf
operation.·s· t.hät can exam"ine · and chahge that state. The components cf the state are
called fierds and the operations are called methods.

An .example ,of ~om_ething peclare~ a~ .. an object type is a window. One of the fields cf
· a window is a Boofean variable called isResizable. One of its methods is called Close.

Although yqu must declare windows and other standard objects as object types, you
· . need not i·mp_lerh.ent-spreadsheets and other particular objects that way. However,

particular obj~c.ts shöÜld;. in g~neral, be allocated on the heap or on disk. The use cf
global variables makes it difficult to support multiple windows and documents.

Intro To MacApp February 14, 1985 Page 2

Usage of the Term "Object"

In the rest of this memo, the term "object" will be used as a technical term to denote a
member of an object type.

Standard Object Types

MacApp declares the following standard object types:

TApplication
TFrame

TDocument TWindow
TView TCommand

Every qbject type declared by MacApp begins with the letter "T" to avoid name conflicts
with globals declaredin the Macintosh ToolBox. lt is not necessary for the object types
you declare to begin with a "T".

Each standard object represents an important constituent of the Macintosh standard
user interface. Below, we state for each type of standard object:

• Purpose lts purpose.
• Fields What some of its fields contain.
• Methods The names of some of its methods. Methods you are likely to

·· customize are italicized.
• Events Som.e of the user input events the object normally handles.
• Quantity !he number of members of the type in existence at any time during

execution (except during initialization and termination).

TApplication

Purpose . The applic~tioq· receives each event in turn from the system event queue,
and eittier· handles it itself or dispatches it to another object.

Fields lts.four-character "signature" (e.g., 'MACA' for MacWrite).
A list of open documents.
A list of open windows that are not part of any document.

Methods MainEventLoop, ObeyEvent, LaunchDocument, OpenToollcon, Terminate.

Events About. .. , Desk accessories, New, Open ... , Quit.

Quantity One per running program.

Intro To MacApp February 14, 1985 Page 3

TDocument

Purpose The document object contains the underlying data structures of a document.
lt also manages the user's disk files.

Fields lts four-character "file type" (e.g., 'WORD' for MacWrite).
A list of win~ows ~hat belong to the document.
The fi!e name that the user specified in "Save As ... ".
A tally of changes the user has made since the last Save.
The last command the user has issued to this document.

Methods ReadFrom, WriteTo, BytesConsumed, Save, Glose.

Events Save, Save As ... , Revert, Glose.

Quantity One per New or Open with no corresponding Glose.

TWindow

Purpose A window maintains context for the user. Windows can overlap on the
screen. The user can usually move them around, change their size, and
plose them .. The one in which the user is currently working is called the
active window. Most events are channeled to the active window.

Fields The window manager's WindowPtr.
Gan it have a close box? Have a resize icon? Activate?
ls it active now?
The document of which it is part (or nil if none).

Methods DrawResizelcon, Open, Glose, Activate, UpdateEvent.

Events Activate, Deactivate, Drag Title Bar, Glick in Glose Box.

Quantity One for each window that is open or temporarily hidden.

Intro Ta MacApp February 14, 1985 Page 4

TFrame

Purpose A window can be subdivided into frames. A frame can contain other frames
as well. Frames need not tile their container. They normally da not
overlap--if they do, you must write extra code to handle the effects of
overlap.

Fields

lf a window has scroll bars, it has (at least) one frame whose boundary is
smaller than its own. An undivided window without scroll bars can serve as
its own frame. In the rest of this memo, the term· "frame" designates either a
window or a subdivision of a window.

The window that contains it.
A list of "controls" (e.g., scroll bars) within its boundaries.
The standard amount to scroll by in each direction.

Methods Sc~ollBy, ScrollTo, HaveView, Focus, TracklnContent.

Events Scroll, Resize.

Quantity One for every panel or other subdivision of a window.

TView

Purpose A view is what you see inside a frame. At any moment, a view has definite
boundaries. The frame can scroll over the view within those boundaries .

Fields

. Th_e ~09rdinate system of the view is relative to its own upper left corner.
ThEi uriit.s Qf the coordin.ate system need not be the same as those of the
screeh or page on which the view is displayed. The units will, in fact, differ
while zooming and while printing in high resolution.

Sometimes, two frames or-windows display different views of the same data
at the same time (e.g.,_Series and Graph windows in Microsoft Chart). -
Somet.irnes,.a single frame or window displays different views of the same

· · data at different times (e.g., By Icon and By Date in the Finder).

The resolution in ~pots per inch (usually screen resolution).
The CL1mmt boundaries (a rectangle <32K spots per side).
The frame (or-window) in which it is shown.

Methods . DoM.ouseCommand, DoKeyCommand, DoMenuCommand,
· DoSetupMenus, Draw, ·Activate, HighlightSelection.

Events Display contents, Select/Deselect, Edit.

Quantity At most one at a time per frame or undivided window.

Intro To MacApp February 14, 1985 Page 5

TPrintableView

Purpose A View that can be paginated and printed is a printable view. Use a
printabre view when you want the user to be able to obtain hard copy by
choosing the Print command.

Fields The page number for the topleftmost corner of the view.
ls pa.ge_ 2 below page 1 or to the right of page 1?
Are page breaks being displayed an the screen?

Methods DrawBreaks, DrawPagelnterior, Print, PrintPage.

Events Page Setup„., Print..., Print One, Show/Hide Page Breaks.

Quantity At most one at a time per frame or undivided window.

TCommand

Purpose A_ command represent~ a user action, or ~ series of actions that would be
treated as a unit by an Undo. In ·general, you create a command object
wtiEm ~h_e user starts to type (a Key Command), when he presses the mause
button in the interior of a frame (a Mouse Command), or when he chooses a
comm.and from a menu (a Menu Command).

Fields

The command object is responsible not only for doing the specified action,
but als~ for unc;joing and redoing it if the user so chooses. In the case of a
Mouse Corrimand, the command object is also responsible for giving
feedback to the user while he is dragging the mause.

A command number (const cCut, cTyping, cStretch, etc.).
ls Undo supported?
Does itchange the document enough that Close must Save?

Methods TrackMouse, Dolt, Undolt, Redolt, Commit.

Events Mouse motion, completion of any command, Undo.

Quantity At most one (the last either done or undone).

Intro To MacApp February 14, 1985 Page 6

In summary, the responsibilities of each type of standard object include:

Same of its responsibilities

Quit, New, Open ... , About..., Desk accessories
Save, Save As ... , Revert, Close

TApplication
TDocument
TView
TFrame
TWindow
TCommand

Select, Edit [and Print, Page Setup, etc. for a TPrintableView]
Scroll, Resize
Close, (De)activate
Do, Undo, Redo, Track mause

The number of objects of each standard type that may exist at any moment is:

~
TApplication
.TDocument
TWindow
TFrame
TView
TCommand

Number of objects jn exjstence
Always one
One for every New or Open without a Close
One for every window on screen or hidden
One for every subdivision of a window
One per fr~me, plus hidden views
One if the last command can be undone

The Ownership Hierarchy

At execution time, the standard objects in existence at any moment belang to a
hierarchy call~d the ownership hierarchy. At the top of the hierarchy is the application

· object; it may o.wn documents and/or windows, as weil as a command. A document
can own windows as well. A window·or frame may own frames or views.

The ownership hierarchy of a running program is shown in the diagram on the
follöyving pagE:k In the diagram, each object owns the objects below it that are

. · .connected tö it by dark lines.· Most windows belang to a document, but one does not.
· Some windows are not subdivided, others have frames that can or can not scroll. Two
frames show different views of the same desert island.

When you declare and initialize a document, window, frame, or view, you can specify
what attributes it has as well as what relationships it has with other standard objects.

Intro To MacApp February 14, 1985 Page 7

THIS PAGE INTENTIONALLY BLANK: REPLACE IT BY THE FIGURE

Intro To MacApp February 14, 1985 Page 8

An Example

We will develop a simple application to show how MacApp is used. The program will
be a variation an the Puzzle desk accessory.

lmagine that you were not using a Macintosh, but rather a dumb terminal and a
text-oriented operating system. You could implement a puzzle program in Pascal
nevertheless. lt would display the puzzle by printing a square array of numbers an the
terminal:

2 5 14 8
13 0 4 11
10 7 6 15
3 12 9 1

Then it would prompt the user to specify which piece to move:
Move which piece? 13

The program would look through the array:
f PieceArray: array [0 .. 3, 0 .. 3] of integer;

tor tne J'lUmber 13 an~ find that i.t i_s at [aRow,aCol]=[1,0]. lt would note that the blank
spä~~ ~t[fßl~nkCol,fBlankRow]:::=[1,1] is.adjacent, and therefore allow a move:

_, ·. fPieceÄrray[fBla.nkCol,fBlankRow] := fPieceArray[aRow,aCol];
fPie'ceArray[aRow,aCol] := O;

lt would display the puzzle in its new state and be ready for another move.

We could aqd a few features to this simple program. lf the user typed a special
command code, say, ~1, the program would scramble the puzzle. lf he typed -2 or-3,
he would be prompted for a file name to save or load the puzzle. The command -4
woul.d print the puzzle .an the attached teleprinter, -5 would undo the last move, and o
would quit the program and return to the shell. There could even be a command, -6,
that switched to an alternate "list" view of the puzzle:

r0 eo 2
rO c1 5

r3 c2 9
r3 c3 1

To make the program less machine-dependent, it would have three interacting
modules: the data mqdel', the views, and the command interface. The data model

.,would in~lude the puzzl.e array,.Le., the variables fPieceArray, fBlankCol, and
fBlankRow. „ The vi.ew.s Would_display the puzzle on the terminal or teleprinter using
WriteLn. The comitl~md iriterlace wouldl.ise Readln to prompt the user for a number,
. classify the command, and call the appropriate routines to obey the input event.

Intro To MacApp February 14, 1985 Page 9

The following is a possible interface to the terminal-oriented puzzle program:

type Coords = record row, col: integer end;
TextFile =File of Char;

{The Puzzle -- A Data Model}
var f PieceArray: array [0 .. 3, 0 .. 3] of integer;

fBlankCol, fBlankRow: integer;
procedure IPuz~le; {lnitialize the puzzle}
procedure Scramble; {Scramble the pieces}
.funct.ion .MovePiece(oldLoc: Coords; var newLoc: Coords): boolean;
procec;fure WriteOn(refNum: integer); {Save on an open file}
prdcedure ReadFrom(refNum: integer); {Load from an open file}

{The Square View}
var · f Puzzle: TPuzzle;

f~ieceSize: Point; {a record with the piece width/height}
pr,Qced~re 1$quareView(slze: Point)-; {lnitialize the view}

· procedüre· DrawSquare(outDevice: File of CHAR); {Display/Print}

{The List View}
var f Puzzle: TPuzzle;

. . fSpacing: Integer; {space to leave between columns}
procedüre IListView(size: Point); {lnitialize the view}
procedure DrawList(outDevice: TextFile); {Display/Print}

{The Move Command}
var f Puzzle: TPuzzle;

fOldLoc, fNewLoc: Coords;
pr9csdure IMoveCommand(aCmd: CmdNumber; aPuzzle: TPuzzle;

· oldLoc: Coords); ·
procedure DoMovelt;
procedure UndoMovelt;
procedure RedoMovelt; {Two undos in a row rede}

{The Save Command}
var f Puzzle: TPuzzle;

fRefnum: TextFile;
procedl,Jre ISaveCommand(aCmd: CmdNumber; aPuzzle: TPuzzle);
procedure ·DoSavelt; {Undo not implemented}

{and so forth}

Intro Tc MacApp February 14, 1985 Page 10

To adapt the program to the Macintosh, the puzzle array would be declared as a kind
c;>f TDocument, the two views as kinds cf TView, and the various commands as kinds of
TCommands, all as objects in Object Pascal:

TPuzzle = object (TDocument)
f PieceArray: array [0 .. 3, 0 .. 3] of integer;
fBlankCol, fBlankRow: integer;
procedure !Puzzle; {lnitialize the puzzle}
prqcedur~ Scramble; {Scramble the pieces}
functlon. ·Mo_vePiece(oldLoc: Coords; var newloc: Coords): boolean;
procedure WriteOn(refNum: integer); override; {Save}
pro'cedure ReadFro"m(refNum: integer); override; {Load}
end;

TSquareView = object (TView)
f Puzzle: TPuzzle;
f P~eceSize: Point; {a record with the piece width/height}

.. p_roceqüte l_Sql:JareVi,ew(aPuzzle: TPuzzle; size: Point); {lnitialize the view}
· pro.cedure Draw(area: Reet); override; {Display/Print}

end;

TListView = object (TView)
f Puzzle: TPuzzle;
fSpacing: _Integer; {space to leave between columns}
prcfoed{Jre IListView(aPuzzle: TPuzzle; size: Point); {lnitialize the view}
pro·cedure Draw(area: Reet); override; {Display/Print}
end;

TMoveCommand = object (TCommand)
f Puzzle: TPuzzle;
·fOldLoc, fNewLoc: Coords;
procedure IMoveCommand (aCmd: CmdNumber; aPuzzle: TPuzzle;

oldloc: Coords);
procedure Dolt; override;
procedure Undolt; override;
procedure Redolt; override; {Two undos in a row rede}
end;

TS.aveCommand = object (TCommand)
f Puzzle: TPuzzle;
fRefnum: TextFile;

· procedure ISaveCommand (aCmd: CmdNumber; aPuzzle: TPuzzle;
aCmd: CmdNumber);

procedure Dolt; override; {Undo not implemented}
end;

The overripe qualifier indicates ttJat MacApp will call that method automatically at the
appropriate time, änd·thata default (usually a no-op) is implemented in MacApp.

Intro To MacApp February 14, 1985 Page 11

The only additional requirement would be to add the following methods (parameters
not all shown) to both view types:

function DoMenuCommand(aCmd: CmdNumber): TCommand; override;
function DoMousePress(aPoint: Point; ...): TCommand; override;

and to declare an application object type:

PuzApplication = object (TApplication)
function NewDocument(...): TDocument; override;
end;

You must of course, implement the bodies of the methods.

A different but complete version of the Puzzle program is attached.

In addition to writing the program, you must edit a so-called resource file that defines
t~e appearance.bf your menus and alert messages. Then you must compile the
resource file and the program itself using the Lisa Workshop.

Designing your Application

NOTE: In the cod~ fr(igment~ used as examples in this section, identifiers that MacApp declares are
italicized. The specific applicatiori would declare all other identifiers.

To design a MacApp program, you must first analyze it in terms of the standard
MacApp architecture.

Will the user be able to see document icons on the desktop, open them from the
Finder„and use th~ Open and. Save cornmands from the application's File/Print menu
t.o ~ccess the doctiments they represent? (For·MacWrite™ , .MacPaint'™ , and ·
.MacDraw'™ , the. answer is yes~ For Font Mover, the answer is no.) lf the answer is no,
th.ß application object owns all the window objects itself. lf it is yes, your program
requiies document objects, e.g.:

type
TLedger = object (TDocument)

. Are there windows~-other than transient dialog boxes and the Clipboard--that can
appear on the·scre~n evenwhen no documents are open? (For MacPaint, the answer

· - is 'yes: the. shap~ and texture palettes are always on the screen. · For MacWrite, the
·answer is no-: the header,·footer, find, and change windows disappear when the
document is closed).

Intro To MacApp February 14, 1985 Page 12

Any windows that survive even when documents vanish belang to the application
object:

type
TPain~App= object (TApplication)

fShapePalette, fTexturePalette: TWindow,

type
TWriteDoc = object (TDocument)

fTextWindow: TWindow,
fHeaderWindow, fFooterWindow, fSearchWindow: TWindow,

ls there _only o~e-type of document, or several? That is, do all documents you support
have the same data structure and operations? Would you use one icon for some of the
application's documents, and a different icon for others? (Most applications handle
only on~ type of document. Lotus Jazz™ handles several.) The answer to these
questions will determine the number of object types you must declare that inherit from
TDocument, e.g.:

type
TSpreadSheet = object (TDocument)

TRecordFi le = object (TDocument)

Can the user choose to see different views of the same data? (In MacWrite, there is
essentially one view, with ·aptic;ms to display rulers, headers, and footers. In the Finder,
there are twq distinct views: by Icon, and as a list by Date, by Size, or by Kind.) lf
.differf?•nt views of the sam.~ data a~e possible, you'can declare several types that inherit

·. fröm TView and that have a data-reference field in common, e.g.:

type
TlconView = object (TView)

fObjlist: TObjlist;

TListView = object (TView)
fObjList: TObjlist;

lf multiple views of the s~me data are 9ffered, can only one be seen at a time? (In the
· · Finder, any onß folder can be _viewec:i pnly one. way at a time. In Microsoft™ Chart, a

·serie~ view aryd·a Chart view of the same data can be seen at the same time in different
· windows •. In Microsoft Multiplan™ , the formula of one cell can be seen in the formula
bar at the· same time that t_he values in a group 9f cells can be seen in the worksheet.)
lfthe .views alterhate in one part .of a window, as in the Finder, then you have a frame
that can contain· different views ät different times. lf the views can coexist in different
parts of the same window;-as in ·Multiplan, then you have a window with multiple
franies, each having a different view. lf the views can coexist in different window, as in

Intro To MacApp February 14, 1985 Page 13

Chart, then you have a document with multiple windows, each having a different view.
No matter which case applies, you do not need. to declare any special kinds of
windows or frames. Your initialization and command methods simply pass parameters

· to generic methods to specify the relationships among your views, frames, and
windows. For example, to emulate the Finder, you might launch a window with the
folowing code:

var
aWindow:
aFrame:
anlconView:
alistView:

NE~(aWlndow);

TWindow,
TFrame;
TlconView;
TListView;

aWindow./Window({various parameters}); {Generic initialization method}
NEW(aFrame); .
aFrame./Frame(aWindow, {other parameters, including booleans for scrolling});

IF fCurrViewKind = bylcon THEN
BEGIN
NEW(anlconView);
anlconView.llconView(aFrame); {llconView would call IView}
END

ELSE
BEGIN
NEW(alistView);
aUstView.IListView(aFrame, fCurrViewKind); {IListView would call IView}
END;

Can a singl~_.view, b~ split andthe separate panes scrolled to show the same or
differentare~s·of the document? (The worksheet in Multiplan can be split.) lf so, then

. fhe.view resides in a special.frame called a TSplitFrame [not yet implemented]. When
you.launch the window, you will create the frame using:

var workFrame: TSplitFrame;
NEW(workFrame);

Can the vie~ be printed using the Print.command? (MacPaint palettes and the
Multiplari formula bar can n·ot. The Finder's views can not either, because the Print
command_ in th~ .Find~r causes applications to start up and print their own views.) lf the
viewca·n be· printed, then it should be declared as a kind of TPrintableView, e.g.:

type
TWorkSheet = object (TPrintable View)

What commands can the user issue? Are some trivially different? (In MacDraw, the
commands ·in-the S~ad~s menu differ only bywhich texture is chosen. Cut and copy
differ .only in whether the: selectioh· is deleted after the command, but intra-caption cut
and copy are quite differentfrom graphics cut and copy.) lf commands fundamentally

Intro To MacApp February 14, 1985 Page 14

identical, they can be of the same type. Otherwise, different kinds of cornrnands should
be declared:

type
TShade = object (TCommand)

fObjList: TObjList;
fTexture: Color;

TCutGraphics = object (TCommand)
fObjList: TObjList;
fDelAfter: BOOLEAN;

TCutText = object (TCommand)
fCaption: TTextHandler;
fDelAfter: BOOLEAN;

TStretch = object (TCommand)
fObjList: TObjList;
fNumerator, fDenominator: INTEGER;
fDirection: Direction;

What objects does a cornrnand affect? Most cornrnands affect the current selection.
Fc;>rexa.rnple, Cut deletes whatever is currently highlighted. Same cornrnands (e.g.,
Print)' apply to the view containing the selection or to the rnain view of the active
window. Other commands apply to the whole document (Save) or to the whole

. application (Quit). Be -sur~ e.ach type of comrnand object declares fields that reference
· the·objects affected. In the examples above, fCaption and fObjList serve that purpose.

The Target

Ther~ js a g_lobql variable in MacApp called gTarget. lts value is the rnost specific
object that'qcmta,ins the selection, usu~lly a yiew .. lfthereJs·no selection, gTarget is
usually the aeti~e window~ lf there· are' rio Windows, gTarget·is the application object.

. "In geri~ral, your view object will have fields of your choosing that indicate what specific
items are currently selected, as well as a method calledHighlightSelection to highlight
those items .

. The significance of gTarge_t is that.it gets first crack at most user events. lf the user
chooses a menu comrnßPd. (or types on the keyboard), MacApp calls the
DoMenu.Comm.ahd '{()rpbKeyCornmand) method of whatever object is currently
iefere-nced ·by gTarget. The object_ inspects the command to see if it can handle it. lf
not, it calls its ?ncest6r's DoMenuCommand (or DoKeyComrnand) method, which is
usually."a gene~icJn.ethod declafed in MacApp. The syntax for invoking the ancestor's

· „ method from a' DoMenuCommand function is:

DoMenuCommand := inherited DoMenuCommand(aCmd);

Intro To MacApp February 14, 1985 Page 15

The generic method may handle some commands itself. Ones it can't handle it passes
up the ownership hierarchy, i.e., from the view to the frame, the window, and the
document, and finally.tö the application object itself. In each case, your override
method gets a crack at handling the command before the generic method in MacApp
does. lf no object handles the command, MacApp displays an alert message to that
effect.

For some applications, a different ordering of event handlers is needed. For example,
the target view may wish to give an adjacent view a crack at the command before the
frame and window get a chance. Such v·ariations can be specified easily by varying
certain parameters of initialization methods.

lt should be obvious that maintaining the value of the global variable gTarget is critical.
In general, it is your responsibility to üpdate it after every user selection and command .

. However, MacApp does some updating of its value automatically: if a frame switches
vievvs and the old view was .gTarget, the new view becomes gTarget; if a window is
de~ctivated.and·later reactivp.ted, the old valüe of gTarg.et is restored; if a new window .
is opehed, it'becomes gTarget; if the only remaJning wiridow is closed, the application
becomes gTarget.

Benefits of Object-oriented Programming

You may haye hearq claims th.at, with object-oriented programming, software can be
significantly improved in modularity,.development time, code size, ease of
.maintenance, and U$er interface consistency. You may also have the impression that
·object-oriented programs suffer in the area of performance. Let us examine these
· issues:with respect to the use of MacApp.

Modularity

Once you.have analy.zed ypu,r application in terms ofits documents, views, commands,
främes,.and windows, you can divide·it into modules by object type and think about

· each object one at a time.

For example, when you are working an the implementation of a command object, you
· can forget about the rest of the systen:i and concentrate on the following issues. What

·. stat~ needs to b.e .saved to undo the·command? Have you declared fields to record
„ .'.that state; anc:t: is:yb.Ür ihitialization method passed sufficient information? ls any

additional state needed to do or redo the command?

Now code the Dolt method, the Undolt method, and the Redolt method, being sure to
le.aye the. clipboard an~ the selecti9n· in their proper state. Usually you need not bother

. tb make QuickDraw calls to.üpdate the view~ lf you do and are not careful,
unnecessary c;ie.lays ~nd/()r annoying flashes may result. lnstead, simply call the

· T9olbox.procedüre rnvalRect or lnvalRgn to indicate what needs redrawing, and let
. MacApp call your view's Draw method later.

Intro To MacApp February 14, 1985 Page 16

When you are working on a view object, program menu commands, mause
commands, and key commands one at a time.

For menu commands, declare overrides of DoSetupMenus and DoMenuCommand. In
DoMenuCommand, return a new command object whenever the user's action causes
the previous command tobe too old to undo. lf the document is not changed (e.g.,
Select All), or the previous command is being continued, return the special value
gNoChanges.- In PoSetÜpMenus, CCill Enable(c, TRUE, checkMarkWanted) for every
menu comm·and c ·torwhich a case ·1abel appears in your DoMenuCommand method.

For mause cornmands, determine from the mause location, current palette choice, and ~
other factors whc:lt action is intended~ For example, in MacDraw, when the palette
choice is the arrow, a button press On an object could begin either a move or select
· action, while -~ b.u~ton press in .the. background always begins a selection. In either
case, -creat~ a command to track the mause.· lf it turns out to be just a selection, you
cän return gNoCha.nges; MacApp will free the unused command.

For key cqmmands, there are seyeral altern~tives. lf the entire view is a standard
unfortn.atted~te·xt editor, de.clare it a kind_of TfextView (you will have to USE unit
. UTe~Edit). TteXtVi~w i_rnple.ments D9S.etupMenus, DoMenuCommand,
DoMouseComman,d ~ ·and DoKeyCommand for you. lf separate areas of a form or
drawing can have indefpe~dent E3ditable text strings, define your own kind of view, but

· when the user selects qne of the strings, create an object of type TTExtHandler (also
defiried· in unit UTextEdit) [not ·yet implemented], and assign it to the global variable
gTarget so it will handle typing .

. For each document type,_define its data structure and methods, including procedures
Rea,df rqm and WriteTo to read and write data· given a file number, a function
BytesConsumeq ta· catculate.the approx.imate amount of disk space it would take to
save the document , and a boolean ·1unction AcceptFile to acdept or reject file names to
appear in the Open ... dialog .

. To retain flexi.bility, the document object should not make QuickDraw or lnvalRect calls,
or do anything thß.t makes unw,ar,r~nted assumptions about how many views exist or

. ~bbutvvhat kinds ofviews they are .. lt:is fine, höwever, for the document to associ.ate
.„fbrmatting· prope.rties with its data„ and for a view to consult that information as it
displays.

The views and comrnands do make QuickDraw and lnvalRect calls, extracting
· information ·fromthe do_cume.nt as n·eeded. lt is a waste for every one of them to
°(eimplement r:naniplJlatJbn of the document's data. To share code and improve
·modularity, they should call methods of the document when they need to make
changes to it.

Same applicatior:is support multiple simultaneous views of the same data. When the
usercha:nges'"the documentthrough one view, the other views reflect the Change. One

· wey tO. hnplement this i$ for every method of every command object to call a method in
ev~fy affeqted yiev,/to tell-it w~at part·of th~:r c;tocument changed, so that the view can

· invalidate that part.· This is the simplesf w~y, but it suffers from lack of modularity. A
more mo·dular way is to have the document keep track of what parts of itself changed,

Intro To MacApp February 14, 1985 Page 17

and for it to notify the other views after every command. This works weil for some
commands, but it. is difficult in this scheme to achieve mouse-tracking feedback in all
views concurrently. The most flexible solution is for the owning frame, window, or
document to create a speeial TMulVwCommand object [not yet implemented] to
intercept every· call to a command method. After letting the real command object da its
thing, the multi-view command asks the document what changed, and teils the other
views to invalidate affected parts.

lf you adhere to modular design, it will be easy later to modify a view, add new views,
or define additional commands. lt will be a trivial matter to plug a view into a splittable
or scrollable frame or to make it print.

Development time

MacApp implements many functions for you, saving you months of effort. They include:

• ~II user actio11s outside your vi~ws .{e.g., title bar, scroll bars, resize icon, menu bar) .
"~ _Apple-menü co.rr\rriands {you simp.ly editthe About message in your resource file).

• File-menu comm~.nds; indi.Jding Print.commands {you define the TDocument
. ·methods„f\cce.ptFile, ReadFfom, BytesNeeded, and WriteTo).

· • ·,Wi11d.ow op~ning, closing, moving, scrolling, resizing, splitting, and updating {you
„. ~uppfy a praw method for each view).

· :· Page break display. {you can override page break placement if you wish).
• Automatie scfolling when the möuse is dragged past the outer edge of a frame.

MacApp also do~s all of the following for you:
, .• lt determin·es .whether the user st?rted the application by selecting the application

icpn or onß or more document icons,· and whether the command he issued to the
Fin~er w~s· Opefl ör f:>ririt. •.. 1~ t~en·calls appropfiate application methods.

· • lt runs ~he ev~nt lpop that rec_~ives each user input and serial i/o event, classifies it,
and di~pa,~che.s to ?PPropriat~ methods. [Serial port events not yet implemented.]

·,• lt_countS multiple: mouse ·buttonclicks in rapid succession {double click) .
. -~ lfcalls specicil:metho_ds ~urihg.ldl~-time when the queue of user input is empty .

.Thus, 111.e'nu tltles can-be disabJe.d {handled by MacApp), insertion points can blink_
· {handl~d".by UTextEdit); and the cursor shape can be changed [not yet implemented] .

.. „. ·lt ,make.s sure no- rn~n~s are enabled except those that are enabled by
gTarget.DoSefopMerius and by methods it calls.

~ . lf keeps track of the corhmaf'.ld object that will handle the next Undo or Redo, and
. gets rid cf it when the next command comes along.

• ltthe ·disk is too full to sav~ the document without deleting the old version, it asks the
Ü$er whether it .·may overwrite the old version.

• lt tiandlf?s Reduce To Fit .and .other zooming operations [not yet implemented] .
. · •. lt._keeps ·the:elevator in.the corr~ct pla9e in the shaft at all times.

:. lt (ets you(P.oMouseCo.mm_anq andDraw routines deal in local view coordinates.
• lt takes ·ca.t~ of-the details whert yolj·tell a frame to switch views .

. •. 1.t tel_ls yo\.1 w:hen to highlight ·an.d µnhighlight selections so as to minimize flashing .
• lt makes it easyto resize·yourview when the document grows, and to make its size

an integer multiple of the page size if you desire, even if the page size changes.

Intro To MacApp February 14, 1985 Page 18

And when you are debugging ...
• l,t provides a window for your use to Writeln debugging information.
• lt provides a de.bugger that qan get control at every procedure entry and exit, offering:

symbolic trace, keybo·ard interrupt, breakpoint, single step, symbolic display of the
call stack, and hexidecimal display of parameters, locals, object fields, and arbitrary
locations in RAM.

Code size

There is no question that the amount of code you write yourself will be much less--in
both source and object form--if you use MacApp. A more difficult question is what will
happen to the total size of your product, including the code of MacApp.

There are. two versions of MacApp: one .with debugging features enabled and one
without. · The former is appmximately 6ÖK bytes and the later 30K bytes [numbers
subject to change]. Becausethe debugging version is so large, you will want to use a

~ 512K Macintosh or a Macintosh XL to debug, unless your application is very small.

Of the 30K or so.in the end-user version, one-third is printing code that is only swapped
in guring printing, another third is resident at almest all times, and the rest swaps in
small pieces as needed for time-consuming and infrequent operations like

. initialization, termination, and filing. [Segmentation is currently poor--to be improved.]
{Nümbers subject to change.]

lt is true that you could probably implement your application. in a bit less space without
MacApp th.an with it, becau~e you could take advcintage of special circumstances to
shortenor.omit certaih routines. However, it is unlikely you would save enough space
to warrari~ thE3 extra development effort, especially if you work for yourself or a small
company, or lf you are developing for a relatively small market, or for your own use.

In the future, we may provide one or more of the following ways to reduce the code size
of your MacApp program:

• We may recode all or parts of MacApp in assembler.
• .We may prövide a way to strip methods you don't use out of object files.
• We may provide a way far· MacApp object code to appear just once on a disk.

Ease of mai ntenance

Pertinent comments, wen„named identifiers, a.nd internal documentation are as
'necessary'as ~lways .. ··sut if the recommendations about modularity are followed,
MacApp programs should be easie.r'to maintain than programs not written in an
object-oriented style.

Intro To MacApp February 14, 1985 Page 19

User interface consistency

Because so much of the standard Macintosh user interface is implemented by MacApp,
it is easier for q programmer to conform with the standard than to violate it. However, it
is always possible for you to override anything that you find necessary to make your
user interface fit your problem better.

Performance

lf a MacApp progr~m is written in Object Pascal, its performance will usually be within
10% of what it would be if it ran the same code in straight Pascal. There is some
slowdown due to run-time dispatch to methods, but method calls need not occur much
in inner loops.

Same programs may actually run faster an MacApp than if you wrote them from
scratch. · 1n creating MacApp, we are t_aking advantage of the experience of a large
nurnber. of programmers who ·have developE}d varioüs pef"1'.ormance techniques over

. the iast few years. (lf you know of ways to further improve MacApp's Speed, please let
us know!)

Documentation Plans

Hayden Press is plc:mning-a textbookJo appear late this year called Object-oriented
Progra.mmingfor the Macintosh· .lt will describe MacApp and include examples in

: several languag'es, ·including Öbject Pascal, Objective C, assembler, and Smalltalk.

Apple is producing a manual for MacApp that will include:

• Documentation of every class, field, and method.

• Flow diagrams that show what methods are called for every user action.

• A cookbook that lists common things that programmers want to implement or
change in MacApp. For each one, it tells you what sections to read in the

.: MacApp mariual and Inside Macintosh, and what methods you will need to
override in MacApp.

The sowc.~ code of MßcApp will be available to study and to edit. However, whenever
possible,:·it is recommended that you override methods rather than edit them.

At this time, all of the promised documentation is in progress. Early users will have to
.work.with inadäquate documentation; .and suffer some changes of interface from one

. versiön-to the next. The reason .we expect to be be making changes is that we hope
·early. users wllf tell us what areas of MacApp require improvement.

(To be continued)

Intro To MacApp February 14, 1985 Page 20

Document

0

Frame

~

1
Uiew

Frame

b~t~ll
1

Uiew

(i

• „ . .

w

Document

~
1

2A

Frame

~
~

1
PrintableUiew

-~

