
lntroduction

Object Pascal

For. the Macintosh

Larry Tesler
February 14, 1985

The specification of the. language Object Pascal appears in theObject Pascal Report,
~ttached. The present memo specifies differences between the current Macintosh
imp_lementation änd the specification. In cases noted as "temporary deviations", we
intend to bring the implementation into conformance shortly.

Multi-Level "inherited"

According to the standard, the statement "inherited Draw" activates a method of the
immediate ancestor of the type whose method contains the statement. In the
Macintosh versicin~ if a more remote ancestral type, T, has a different implementation
of the same method, then that method can be invoked by T. Draw. This feature is rarely
used.

Object Type Declaratlons

According to the standard. an obj~ct type declaration may appear in a main program,
in the interfäce of ä unit, or in_ the implementation of a unit. In the Macintosh version, it
can_.on,fy appear.in fhe interface of a unit. Method declarations can only appear in the
i~plementation of ttie same untt. These d~viations are temporary.
· ··. According·to the standard; it i·s an error if a method is declared override in the type

· dectaration and then not implemented, or if an override method is implemented but not
decfared override. In the Macintosh Version, the compiler does not check for these
errors. This is a temporary deviation.

Aqcording to the standard, the oame of a method in a method header is qualified by
· the type name when the method body is introduced but not in the type declaration. In

the Macintosh version, qualification is permitted in the type declaration.

Range Checklng

Accordi.ng·to the standard, it is an error to coerce a value to an object type if it is not in
the domain ofthat type.· In the Macintosh version, if and only if the compiler switch
{$R+} is in effect, the compiler generates code to test the validity of object-type
coercions.

Object Pascal for the Macintosh Page 2

Unsafe Use of Handles

According to the standard, the implementation of a reference is not specified, and may
be machine dependent. In the Macintosh version, an object reference is implemented
as a handle, i.e., as a pointer to a pointer to an object. The object itself can change its
memory address during execution as part of a compaction process that is invoked to
prevent heap fragmentation.

Because an object can change its location, it is unsafe to save a pointer to it in a
variable or register and then later to access the object through the saved pointer. lf a
procedure call should intervene, then the heap might compact to make room for a
newly allocated object or to swap the procedure itself into memory, invalidating the
pointer.

Where possible, the compiler takes care to access objects only through handles
and not through pointers. Examples:

type
T = object

F: Integer;
S: String[lO];

end;
var Y: T;
Y.F := Func;
Proc(Y.F);
with Y do

end;

begin
F := Func;
Proc(F);
F := F + 1;
DrawString(S);

The assignments Y. F : = Func and F : = Func are safe even if activation of
Func causes heap compaction.

The statements Proc (Y .F) and Proc (F) are safe unless the parameter is
declared as var and activation of Proc causes compaction, in which case they are
unsafe and the compiler will report an error.

The assignment F : = F + 1 is safe even if the preceding activation of Proc (F)

caused compaction.
The statement Drawstring (S) is unsafe if DrawString causes compaction, but

the compif.er will nQ1 report an error because DrawString does not declare its
argument as a var parameter even though it treats it as such.

lf you receive an error mes$age from the compiler about an unsafe var
paramete'r, it is.best to pass a local variable instead and to follow the procedure call by
an assignment from the local to the field. However, if you are certain that the called
procedure, and every procedure it:wm call are·resident in memory and that none of
them will compact tt.e heap, or if you have temporarily locked the object whose field is
the parameter, then you can suppress the complaint using the compiler switch { $H-}.
Example:

{$H-} SetRect(Obj.bounds, 0. 0, 100, 200); {$H+}

Repetition of Parameter Lists

Object Pascal for the Macintosh Page 3

In Standard Pascal, it is not permitted to repeat the parameter list of a procedure when
its body is introduced. In the Macintosh version, repetition. of the parameter list is
permitted for methods as w~n as for ordinary procedures and functions. The parameter
names, types, and order (and function result type, if any) must agree exactly.

Word Symbols

According to the standard, object and inherited are word symbols and may not be
redeclared. · To protect the large body of software written in Workshop Pascal, the
Macintosh version may be more forgiving. The compiler may allow a programmer to
declare the identifiers object and inheri ted in a program or unit that does not have
any object type declarations.

Names of Predeclared Functlons

The following predeclared functions have non-standard names in the Macintosh
version. Member is presently named InClass. New and Dispose when applied to
object types are named NewObject and DisposeObject. These deviations are
temporary.

Object Pascal vs. Lisa Clascal

by Larry Tesler
February 13, 1985

Object Pascal (clescribed in Object Pascal Report, attached) is a revision of Lisa
Clascal designed by Apple Computer's Macintosh Software Group with the help of
Niklaus Wirth. Hera 1 list the differences between the languages, and rationalize them.:

An earlier set of memos described a proposed language, Clascal-85, that was a much
larger departure from. Usa ClascaL Prof. Wirth convinced us that most of the changes
proposed therein were in the opposite direction than desired.

Summary of Changes

The following syntactic constructs have changed:

Lisa Clascal (Old) Object Pascal (New)

superself.< identifier >
subclass of .Dll
subclass of'
lsClass

-> inherHed < identifier >
-> object
-> object (~)
-> Member

procedure <method name> ...
functlon <method name> ...

-> procedure ,.<method name>
-> functlon ,.<method name>

The last two changes above only apply in the implementation of a method.

The following are language additions (the first one has not been implemented yet):

• Classes ma..y be declared in an Implementation or in a program.
• , ~ew and .D'i'sp~$e are used to allocate and deallocate objects.
• object a·nd lnherited are reserved words.

The following are language deletions:

• methods of ~and .the matching end.
• · subclass, süperself , abstract, default, thlsclass, and Create.

Also note new freedoms:

• The method implementations of a class need not be grouped together.
• "seif." may be omitted.

and a new restriction:

• A name declared in any method of a type may not be the same as the name of a
field or method of that type.

Page 1 February 14, 1985 Object Pascal vs. Lisa Clascal

Rationale for Changes

The term class has been purged from the vocabulary.

• Niklaus Wirth urged this change to reduce the number of concepts: a class is
simply an object type. 1 like the change because students used to confuse
classes with objects.

One problem with the change is that Objective C and Smalltalk documentation use the
term class. l.n Kurt Schmucker's book, Object-oriented Programming for the Macintosh,
he can equate the term "class" with "object type".

We use descendant and ancestor lnstead of subclass and superclass .

• The term- "class" is no longer used ..

• Students seem to have difficulty with the subclasslsuperclass terminology. They
often point out that a subclass has "more" properties than its superclass and yet
"sub" implies it has lass. Pointing out the analogy with set theory does not seem
to straighten out their confusion.

In Object Pascal, "wi th self do" is lmplicit In every method.

• The ability to elide "seif." is consistent with Smalltalk and Objective C.

• Dc;in lngalls and Niklaus Wirth urged the change to emphasize that the method
· belongs to the scope of the type.

• Programs gets shorter.

• lt is easier to convert Pascal code written with global variables and procedures to
object-oriented code.

One prot>lem with eliding "seif." is that unqualified names are harder to identify. In
MacApp, we .have aUeviated this probleryi by a naming convention. Globals start with
"g",.fields of objects start with "f'", and_fields of records start with "the". Still, for
readability reasons, it is not recommended to "with" another object inside a method,
especially one of the same type 1

Qualificatlon by type name ls used In a method implementation's header.

• lt clarifies the code and facilitates searches in the editor.

• lt is more consistent to require it than to make it optional.

• lt allows us to eliminate the "methods of ... end" construct.

Page 2 February 14, 1985 Object Pascal vs. Lisa Clascal

Abstract and default methods have been eliminated.

In Lisa Clascal, the qualifiers written after a regular method were abstract, default,
and overrlde. Unqualified methods were alsö permitted; they were semantically
equivalent to default methods but were implemented more efficiently because the
cornpiler could assume that overriding was unlikely. The purpose of abstract
methods'wasalso efficiency; no implementation was provided for them, because all
concrete classes were ,expected to override them.

The reasons for eliminating abstract and default methods are:

• Our new implementation eliminates differences in efficiency.

• The user has fewer concepts to learn.

The speclal create method has been elimlnated.

In Object Pascal, the equivalent of Create"is to call New fand then to activate an
iriitialization method of a user-chosen name. This change was urged by Niklaus Wirth.
The reasons are:

• Create was an exception to and confused users.

• Activating an ancestor's Create was paradoxical because the object could only
be allocäted once (necessärily in TObject) but its size had tobe known to do so
(nece~sarily in the most specific Create). We tried various kludges to work
aroundthe paradox, an of which were awkward, inefficient, and confusing.

The syntax of the object-type declaratlon has changed.

In the declaration of an object type, the construct:
TPicWindow = object (TWindow)

replaces the old Lisa Clascal construct:
TPicWindow = subclass of TWindow

The new syntax was proposed by Niklaus Wirth. lts advantages are:

• To declare a top-level type we can simply omit the parenthesized type name. In
Clascal, "subclass of nil" was a kludge.

• In Pascal, type identifiers are nouns that describe individuals, not sets, e.g., in:
type Point = record v, h: integer end;
var pt: Point;

pt is a Point record, not the set of all possible Point records. Similarly, in:
var w: TWindow

w is [a reference to] a Point object, not the set of all possible Point objects.

Page 3 February 14, 1985 Object Pascal vs. Lisa Clascal

The construct "superself .Meth" changed to "inherited Meth".

• The term superclass is no longer used.

• lt is no longer required to use "seif." so a "." seems redundant here.

• The word lnherited is explicit, e.g., lnherlted Draw invokes the inherited Draw
method ignoring any overrides.

The predeclared variable thisClass has been eliminated.

lt was pnly used in Create methods. For systems programmers, our compiler will
support POINTER(ObjTypeName).

The methods'"!'of construct has been elimlnated.

In Lisa Clascal, all methods of a class had to appear within methods of •.. end
brackets.

• Listings were harder to read and illogical to indent.

• We may want to add a capability later that would let a unit add a method to a type
declared in another unit.

• Soma programmers may want to organize some units by method name instead of
by type name.

An object type may be declared In an implementation or program.

In Lisa Clascal,.af'l obje~t type could only be declared in the interface of a unit. The
, change was urged by practica,lly everybody. lt is essential for a Think Technologies
implemeritation. Allöwing an object type to be declared in a procedure would be
problemmatical so we have not.

Names declared In a method must differ from names declared In the type.

The parameters and. local names within any method of a type may not conflict with the
field änd method names of that type. This is consistent with a rule of Smalltalk, and lets
the compiler call the user's attention to a quite common bug

Page 4 February 14, 1985 Object Pascal vs. Lisa Clascal

1. lntroduction

Object Pascal

Report

Larry Tester
February 14, 1985

Object-oriented programming is a technique in which a complex system is structured
as a·set of interacting objects. Each object defines its own data structure and
algorithms. Consequently, a high degree of modularity and data abstraction can be
achieved.

Strictly speaking, obJect-oriented progn;imming does not require special
.language features, but .Programs written without the benefit of special constructs tend
tobe opaque and. difficult to modify. Programming languages that support the object
concept (e.g., Simula-·67 and Smalltalk:.80) make it easier to create maintainable
programs .

. The language ObjectPascalfacilitat~s object-oriented programming through an
extension of the Pascal language. In doirig so, it preserves the original aims of the
Pascal language: (1) it .is a language suitable for teaching; (2) it is capable of being
implemented reliably and efficiently on currently available computers.

·in designing Object Pascal, we were faced with many difficult tradeoffs. In the
end, we were gü'ided by Ein.stein's maxim: "Make everything as simple as possible, but
. no simprer." As a result, we sacrificed certain features fOund in other object-oriented
languages. because we feit their compl~xity outweighed the benefits they might have
offered~ These judgments were · no:t ba.sed solely .on theoretical notions. The language
evolved f6r more than two years under the name "Clascal", during which hundreds of
.programr:ners learned and used it. Each time the language specification was revised,
we had an _opportunity to ·observe the effects of the changes on both programming
convenience and ease of learning.

The specification reported here is based on a collaboration between Prof.
Niklaus Wirth, the author of Pascal. and members of the group at Apple Computer, lnc.
that developed a.nd implemented Clascal. . We have implemented the specifications in
a version of aurPasQaf compiler for the Macintosh computer, and have created a
significant obJect libraty Eind several i,hteresting applications.

· - · we-hereby cont~bute the l~nguage specifications to the public domain, and
· ~nqourage oth.ersto make C.Ompatibler extensions to other Pascal Compilers. lt should
be noted that, with certain adaptations, these extensions could be applied to the
language Modula-2.

Object Pascal Report Page 2

2. Summary of the Language

In standard Pascal, structured types employ one of the following four structuring
methöds: array structure, record structure, set structure, and file structure. In Object
Pas.ca!, a fifth strucfüring method is introduced: object structure. An object differs from
a record in the following ways:

1. In addition to fields, an object may contain named components called
methods. Unlike a field, a method is not a variable. A method is a procedure
·or .funcdon, and can be accessed only to activate it.

2. An objecHype can inherit from another object type. lt acquires all the fields
and.rnethodsof that type,.:can de.flne additional fields and methods, and may
override any of the acqulred methods with its own implementations.
lnheritance is transitive.

3. All objects .are dynamic, i.e., they are created and destroyed during program
execution. They are· identified not by pointers, as dynamic records are, but by
similar values called references.

4. A type identifier associated with an object type always denotes the reference
type whose domain is that object type.

5. A reference variable is a variable whose type is declared to possess a
reference type. ·1ts value is never an actual object, but is instead a reference
to an object. Any number of reference variables can reference the same
object.

3. Notation and Terminology

The notation and term_inology used herein follow the conventions of Pascal User
Manual and Report, Thtrd Edition (ISO Pascal Standard) by Jensen and Wirth, revised
by Mickel; and Miner, 1985.

The section headings in this specification correspond to those in the Report.
Unaffected sections are omitted. ·Consequently, the numbering of sections is not
consecutive.

4. Symbols and Symbol Separators

In addition to the standard symbols of Pascal, Object Pascal adds:

WordSymbol = "object" 1 "inherited" .

Object Pascal Report Page 3

6. Types

An object type definition introduces a type identifier that denotes the object-reference
type associated with a new object type.

Type Definition = Reference Typeldentifier "=" ObjectType 1

6.2. Structured Types

An object type cannot be packed. However, any of its fields can possess a packed
type.

StructuredType = ObjectType 1 ...•

6.2.5. Object Types. The discussion of record types and fields in Section 6.2.2 of
the Report applies equally well to object types, except that an object type can not have ·
a variant part. ·

In additio.n to fields, an object can have method components.
An object type can ·inherit components from another object type. lnheritance is

transitive, that is, if T3 inherits from T2, and T2 inherits from T1, then T3 inherits from
T1. lf one type inherits from another, the former is called a descendant of the latter, and
the latter an ancestorof the former. The domain of an object type consists of that type
and all its descendants.

ObjectType

Heritage

Methodlist

MethodHeading

Methodldentifier

l .

= "object" [Heritage] [Fieldlist ";"] Methodlist "end" .

= "(" ReferenceTypeldentif1{lf")" ·"'' „,. V' r .""'--~~
= { MethodHeading [";" '1o~er,ride" l ";" } .
= (ProcedureHeading 1 FunctionHeading) .

= (Procedureldentifier 1 Functionldentifier) .

~v·„·'
{/--

The scope of a component identifier extends over the domain of its object type,
and encompasSe$ QOtnponent.designatprs and with statements where it may be used.
lts scope afse> extends over procadure Emd function blocks implementing methods of
the object type (ind its descendants. · Thus each component identifier spelling must be
unique within an object type and its descendants .

. The identifier of an override method must be spelled identically to the identifier of
the m'ethod it overrides. The order, types, and names of the parameters, and the type
ofthe function result, if any, must match exactly.

· . An ·object type can only be declared in the type definition part of a main program.
lt can not be declared·ina variable definition part, in a formal parameter list, or within a
procedu_re or function declaration block. (Note: In Pascal-related languages that
support separate compilation, an object type can be declared in any module or unit,
but only in the outermost scope.)

Object Pascal Report

Examples of object types:
Employee = object

FirstName, LastName: packed array [1 .. 32] of Char;
HourlyWage, HoursPaid: Integer;
procedure Hire(Name1, Name2: packed array [1 .. 32] of Char;

Rate, HoursWorked: Integer);
function RegularPay(HoursWorked: Integer): Integer;
procedure lssuePaycheck(HoursWorked: Integer);
end;

ExemptEmployee = object (Employee)
function RegularPay(HoursWorked: Integer): Integer; override;
end;

Executive = object (ExemptEmployee)
WeeklyBonus: Integer;
procedure S~tBonus.(Performancelevel: Integer);
procedure lssuePaycheck(HoursWorked: Integer); override;
end;

Page 4

Type ExemptEmployee overrides the method RegularPay because supervisors
are paid for HoursPaid hours regardfess of the nümber they have actually worked.
Type Executive overrides the method lssuePaycheck because WeeklyBonus must be
added to the amount calculated by RegularPay.

it is often desirable to discourag~ assignment to fields of an object except from
within· methods of that object. This makes.it possible· for the object to guarantee its own
intemal consistency. To di~courage uncontrolled assignment, the example above
includes a Hire- rnethod toJnitiaHze the fields of an Employee object, and a SetBonus
method to assign to the additional field of an Executive object.

6.2.5.1. Object Type M~mbershlp. puring execution, an object is created as a
specific type. lt is co11sidered a membe.rofJ~at type and of all ancestral types. In the
above exampfe, an obj,ect created·as an ExemptEmployee is also a member of the
type Employee. · References to it may be assigned to reference variables of types
ExemptEmployee and Employee

Conversely, if a variable Emp is declared to possess the reference type
Employe·e, its value during execution ma.y be either nil or a reference to a member of
type EmpfOyee, ExemptEmployee, or Executive.

The method select~d for activatio.n by the designator Emp. RegularPay depends
on the execution-time type of Emp. The method activated could be
Employee.RegularPay or ExemptEmployee.RegularPay. (lt could also be
Executive. RegularPay, but Executive. RegularPay is the same as
ExemptEmployee.RegularPay.)

·In general, one can not determine from the program text which method a method
designator will activate during execution .. one can devefop a procedure that activates
·emp.RegularPay,. and later, withoüt modifying that procedure, can apply it to an
employee of a new, ünforeseen descend(int type of Employee. When extensibility of
this sort is desired, one. shoulc;J employ an object type with an open-ended set of
descendant types in preference to a record type with a closed set of variants.

Object Pascal Report Page 5

6.3.1 •. Reference Types. The discussion of pointer types in Section 6.3 of the
Report applies equally to reference types, except that the domain type of a reference
type is always an object type. There is no special syntax needed to declare reference
types, because the name given in an object type definition becomes the name of the
reference type.

Reference Typeldentifier = ldentifier .

6.5. Type Compatibility

The conditions for. assignment-aompatibility are extended as follows. A value
possessing referenqe type T2 is assignment-compatible with a reference type T1 if T2
is in the domain of TL In other words. a vafue of type Executive can be assigned to a
variable of type Employee (a descendant of Executive) but not vice versa.

6.6. Type Coerclon

lf reference type T2 is in the domain of T1, a value possessing type T1 can be coerced
to a value possessing type T2. lt is an error if the value is not a member of type T2.

CoercedFactor = Reference Typeldentifier "(" Expression ")" .

Example:
Executive(Emp)

Object Pascal Report Page 6

7. Variables

7.2.3. Object Field Designators. An object field designator denotes a field of an
object.

ObjectFieldDesignator= [ReferenceVariable "."] Fieldldentifier .

The rules are the same as for field designators of records (see Section 7.2.2 of
the Report) with the following exceptions. (1) The remarks about variants do not apply.;
(2) Object fields are accessed through a reference variable instead of a record
variable.

The reference variable and the "." may be omitted inside a with statement that
lists the reference variable. They may also be ömitted within any. method block; when
they are, the effect is the same as if "seif." had been written (see Section 9.1.2).

7.5. Reference Variables.

A variable declared to possess a reference type is a reference variable. The "A" used
to denote the id,entified variable of a pointer is fOrbidden after a reference variable;
thus, there is no way to treat the referenced object as a variable in its own right.
However, components of the object can be accessed through any reference to it.

Reference Variable = Variableldentifier .

Example:
type T = object

F, G: Integer
end;

var X, V: T;
New(X); {Create an object of type T; make X a reference to it}
V := X; {Make Y be a second reference to the same object}
Y.F := X.G + 1; {Make its F field one greater than its G field}

8.1. Operands.

Function designators are extended in the same way as procedure statements (see
Section 9.1.2).

FunctionDesignator = MethodDesignator Actua/Parameterlist 1 •.•.

Example:
function ExemptEmployee. RegularPay;

begin
RegularPay := inherited RegularPay(HoursPaid);
end

For an explanation of "inherited," see the next section, 9.1.2.

Object Pascal Report Page 7

9. Statements

9.1.2. Procedure Statements .. The syntax of a procedure statement is extended
in Object Pascal to allow a method designator denoting a procedure to replace the
procedure identifier.

[Reference Variable "." 1 "inherited"] Methodldentifier . MethodDesignator =

ProcedureStatement = MethodDesignator Actua/Parameterlist 1 ••••

The obiect referenced by the reference variable plays two roles. First, the
execution""time type of the object determines which implementation of the method is
activated. Second, the object itself is an implicit actual parameter; it corresponds to a
formal parameter nanied seif that possesses the type corresponding to the activated
method.

The reference variable and the "." may be omitted inside a with statement that
lists the referen9evariable. They may also be omitted within any method block; when
they an~,>t~e effect is the same as if "seif." had been written.

The· modifier "inherited" is generally used within an override method to activate
the overridden method. lt may only appear within a method declaration block. lt must
prece.de. the identifier of a method that was inherited by the associated object type. lt

·. causes seif tobe the implicit qCtual parameter ofthe called procedure. The
· execvtion-time.type of seif does not determine which implementation is activated by
"inherited." lnstead, the inherited implementation is activated, ignoring any override.

9.2.4. With statements. The with statement is extended to permit reference
variables as well as record variables.

WithStatement = "with" WithVariableList "do" Statement .

WithVariableList = WithVariable { "," WithVariable} .

WithVariable = RecordVariable 1 ReferenceVariable.

Object Pascal Report

10. Blocks, Scope, and Activations

10.2. Scope

Page 8

Within the type definition part in_ which the spelling of an object type-identifier is
introduced, that identifier may occur before its introduction. (Note: In Pascal-related
languages that support separate compilation, the introduction of the spelling may be
required to precede all its occurrences if a module or unit whose scope includes the
type definition in question has introouced a tYpe-identifier of the same spelling.)

In a procedure or function declaration block that implements a method of an
. obJect type, the identi.fiers of the components of that type (and of its ancestors) are
effective in the bl_ock. The interpretation is the same as if the statement list of the block
had been embedded in a with Statement of the form "with seif do begin „. end".

The scope rules for field identifiers of object types is the same as for record types,
except that th~ entire domain of the type is included.

11. Procedures and Functions

ProcedureAndFunctionDeclarationPart

{ (ProcedureDeclaration 1 FunctionDeclaration 1 MethodDeclaration) ";" } .

11.3.5.1. lmpliplt Parameters. In a declaration of a method for an object type,
there is always an implicit parameter. with the identifier seif, that possesses the object
type. The scope of seif extends over the method declaration block. The value
assign~d to seif when the variable is created is a reference to the object whose method
component wäs designated to activate the ·method~ Subsequent assignment to the
variable is forbidden.

11.4~2. Dynamlc alloc~tion procedures. The predeclared procedures New and
DispOse are enhanced to acce.pt a single parameter that is a reference variable. New
creates an object ·whose type corresponds to the reference type of that variable. lt also
creates a reference to the riew object and assigns the reference to the variable.

Object Pascal Report Page 9

11.5.2. Boolean functions. Let r be any object-reference expression, and let t be
the type-identifier of a reference type that is in the domain of the reference type
possessed by r.

Member(r, t) is an error i~~ij~t!-~~ ~erwise, Member(r, t) yields true if
r is non-nWanäifthfrobject llf)eferences is a member of the
type denoted by t. \.

The Member function is useful for screening questionable coercions.

Example:
if Member(Emp, Executive) then

begin
Exec := Executive(Emp);
Exec.SetBonus(Exec.WeeklyBonus * 1.1);
end;

11.6. Method Declarations

A method declaration is like a procedure declaration or a function declaration with the
following exception.

lt is always declared in the style of a forward declaration: one declaration consists
of the methöd heading ,and appe~rs in the object type definition, and a second
declaration ·consists· c>f'a method identification and the block. Both declarations must
appear in the main program [or in the same compilation unit]: the first in its type
definition part, and the second in its procedure and function declaration part. The
directive "forward" is not used. In the second declaration, the method identifier must
be qualified by the type name.

MethodDeclaration = Methodldentification ";"Block .

Methodldentification = ("procedure" l "function") ReferenceTypeldentifier"." Methodldentifier.

Methodldentifier = ldentifier.

