
Current Status

Pascal to Smalltalk

Barry Haynes
April 11, 1985

A new class, PascalCodeParser has been created. lt is a subclass of Parser that
parses Pascal source code to produce a Smalltalk parse tree. From this parse tree,
Smalltalk source is created and each method is added to the Smalltalk class that
should include that method. Currently, the user must create the Smalltalk class
manually. All methods are automatically placed in a category called pascal
source. PascalCodeParser can now handle parsing procedures and functions
and converting Pascal formal parameters into Smalltalk keyword parameters. lt
converts simple local variables from Pascal to Smalltalk. Pascal expressions and
assignment statements are correctly converted into equivalent Smalltalk
statements. Handling function return results is also implemented.

At this point, we know the basic conversion mechanism works. All that is required
· to do complete conversion from Pascal to Smalltalk is Smalltalk methods and a
scheme for each of the parts of the Pascal railroad diagrams that have not yet been ·
implemented. The rest of this memo deals with these issues and problems that
must be resolved to finish the job.

lssues for the Rest of the Conversion

1. In general it is assumed the Object Pascal that is being translated has been
compiled, has no syntax errors and is correct, complete Object Pascal in every
way.

2.lt will be assumed that real numbers are not used in the Pascal that is being
translated. ·

3.Globals could be handled in the following way. For MacApp itself, global
variables and constants can be added as class variables to class TObject. For
the case of constants, code will be added to TObject initialize toset the constants
to the correct values. Fora particular application, globals and constants declared
in the interface and implementation of that application will be stored in a shared
pool shared by all classes of that application. The shared pool will be initialized
by the initialize method of whatever class the parser comes comes across first. lt
is generally assumed this will be a sub-class of TApplication.

4. There will be a symbol table that will remember needed information about
particular types and variables, like if it is an array or a PascalRecord. Variables
that require a PascalRecord will have code generated in either the appropriate
class initialize method or the local method, depending on where the Variable is
located, to create the PascalRecord.

5.Both the interface and implementation of MacApp or a specific application will
have to be parsed. This will allow the parser to know about the types of all
variables. The parser will need to know about global procedures as well as
methods that haven't yet been parsed. Only by parsing the interfaces first can
this information be obtained. Procedures that are global to MacApp will be
defined as class methods of TObject. Procedures that are global to a particular
application will be defined as class methods of the firstclass that is parsed in that
application. This is assumed to be a subclass of TApplication. ldentifiers will
have to be looked up in the symbol table to see if they are a function call. When
they are, the name of the class will have tobe placed in front of them. Calls to the
Toolbox will also have to be recognized by symbol table lookup so 'Mac' can be
placed in front of them. When a procedure has parameters, the Smalltalk
keywords will have tobe looked up and added as the Smalltalk call is made.

6.Pascal character literals need to be converted to Smalltalk equivalents.

7.Pascal declarations for enumerated types will be handled by making a constant
. for each type starting with the value 0. Comments will be added to aid in reverse
translation.

8.Sub-Range types will be handled by treating them like integers and assuming the
Pascal range checking has delt with any problems. Upon translating back,
Pascal range checking should flag problems added while in the Smalltalk world.

9."Packed" will be ignored for now.

1 O.Code will be generated at the beginning of the appropriate method to allocate
the correct ammount of space for any array variable that is declared.

11.Varient Records would have tobe a ·new sub-class of the original record for each
variant. For now, we will assume we don't have any variant records. Can we
assume this?

12.0bject type statements will cause the definition of a new Smalltalk class with
instance variables equivalent to the Pascal ones. The Smalltalk methods will be
added while parsing the interface part and they will be put in the categories as
specified by the Pascal comments.

13.Things like "override", "forward", "external", "inline" will be saved in·comments for
translation back to Pascal at a later date.

14.There will be a general escape mechanism that will skip things we have not yet
decided how to translate. Skipped source will be left in it's Pascal form within a
Smalltalk comment with the flag "**Skipped**" at the start of the comment.

15.Within Smalltalk, there will be no difference between variables that are declared
to be some type of Pascal Record verses those that are declared to be a pointer
to a Pascal Record. Both of these must use a subclass of PascalRecord to
access the Toolbox. So statements like foo".bar and foo.bar will both be
translated into the Smalltalk foo bar. The statements foo".bar := and
foo.bar := will both be translated into foo bar: <. We will have to leave in
appropriate comments to aid in the reverse translation.

There is one subtle thing having to do with VAR parameters within Toolbox calls.
lf the Pascal declaration is "VAR foo:PascalRecord" then the type encoding
should be "D" for direct pointer since the contents of the PascalRecord will be
changed by the procedure. lf the Pascal declaration is "VAR foo:"PascalRecord",
for a pointer to a PascalRecord, then the type encoding should be "VD" since the
pointer value itself will change. Within the Toolbox calls that are accessed
through the table lookup, all of them are encoded as "VD". We will have to look
through these for the problem cases and encode them by hand.

16.Pascal Records that contain 4 bytes of data or less have tobe passed as
LONGINTs instead of a subclass of PascalRecord.

17.The filebuffer symbol within Pascal, f", will be ignored for now assuming it is not
used.

18.NIL is passed back and fourth between Smalltalk and the Toolbox in the
following way. The statement "PascalRecord new" creates a PascalRecord with
all three of it's fields equal to NIL. When this is passed to the conversion routines,
it is converted to 0, the Pascal version of NIL. When O is passed back from the
Toolbox as a pointer, handle, function result or VAR parameter, the conversion
routines pass back a PascalRecord with all three fields equal to NIL.

19.lf statements will be done by moving the expression to the front then using ifTrue:
for the "THEN" part and ifFalse: for the "ELSE" part.

20.Case statements will be done by assigning the expression to a tempory variable
then doing a compare of the tempory to each Pascal case using nested ifTrue:
ifFalse: statements. lf there is an otherwise clause, it will be the code for the final
ifFalse.

21.While statements translate into: (expression)
whileTrue: [code]

22.Repeat statements translate into: [code, expression].
whileFalse:[]

23.For statements translate into: x to: y by: delta do: []

24.The statement "WITH foo DO [block]" can be implemented by looking at each
expression within the block foo and seeing if it is a local variable. lf it is not a
local variable, then combine it with foo and see if it creates a valid method of
whatever PascalRecord foo is a subclass of. lf it does, then use that method
instead of the original expression. To translate back, all the foos can be removed
from an area deliminated by "with foo" comments of some sort.

25.For procedure parameters,say to call foo, one can pass a block that looks
something like [generateWhateverKindOfReceiverFooNeeds foo]. lf the
procedure parameter has parameters, then you send a block with parameters like
[:param1 :param2 1 generateWhateverKindOfReceiverFooNeeds foo: param1
with: param2].

26.To implement Pascal VAR parameters with Smalltalk, if there is just one Var
parameter and the call is currently not a function, convert the call to a function
and return the Var parameter return value. lf there are more than one Var
parameters or the call is already a function, you pass in a block that returns as its
value the input value of the Var parameter. This block also has a parameter that
you pass to it. lt assigns the value of this parameter to a local variable in the
method that called the method with the Var parameter. Example:

1 returnValue initialValue 1
initialValue < 5.

"call foo passing in 5 as the initial value for the VAR parameter"
foo: [:newReturnValue 1 returnValue < newReturnValue. "initialValue]

"within foo"
foo: intValue <VAR INTEGER>

1inputValue1
"send the value: message to intValue to get the initial value of the VAR
parameter. The parameter you pass it, 10, is the return value for the VAR
parameter. You can evaluate the block more than once if the return value
is based on the input value."

inputValue < intValue value: 1 O

Will this always werk? ls there an easier way!

27.Pascal comments using {} wil.1 be translated into Smalltalk comments using "''.
·Additional information that is added to the Smalltalk source to translate back into
Pascal will use comments within {}. The Smalltalk parser will be changed to
recognize the {} comments.

28. Problems discovered during hand translation of the early Text Edit version of
MacApp. These need to be dealt with during the automatic translation process.

a.Objects in Smalltalk can get deallocated if nobody is referencing them. The trick
of allqcating a window object then stuffing it with setWRefcon to later retrieve it
with getWRefcon has the problem that the object may be de-allocated while it is
only referenced by the Toolbox refcon field. 1 saved the window ih a Smalltalk
collection within class TWindow and used the index 1 saved with setWRefcon to
later retrieve the correct window.

b.Toolbox constants and globals need to be available for the MacApp
application.

c.Some Object Pascal methods get really too large within the Smalltalk
environment.

d.Calls to the Toolbox that return a VAR parameter value can sometimes have
1

subtle problems when translated. Example:
the Pascal statement GlobalTolocal(theEvent.where) translates to:
Mac globalToLocal: theEvent where

In this case, where never gets the local value returned to it since the message
theEvent where returns a tempory object and that tempory object is the one
that gets the new value returned to it. The solution 1 used was:

tempPt < theEvent where.
Mac globalTolocal: tempPt.
theEvent where: tempPt.

e.Toolbox globals that might get changed by the ToolBox, for example thePort,
require a method to access them. This method gets the current value from the
real global. Maybe all Toolbox global vars should be accessed via a Mac
method call instead of having equivalent Smalltalk class variables.

f .In Smalltalk you can't write new values into procedure parameters as you can in
Pascal. You need to generate a local tempory variable along with the code to
copy the param's value into that tamp. Now, within the method one can assign
a new value into that temp.

g.Pascal create methods do SELF :=. The translation is to create the new object
in a tempory variable then return the object you created.

h.Pascal uses SELF.VarName to access instance variables, Smalltalk just
uses the variable name alone. Pascal doesn't use SELF .ProcName to
access methods within the same class, Smalltalk does use SELF in this case.

i.As mentioned earlier, the encoding of some ToolBox calls is wrang~ Example:
FUNCTION GetNextEvent(eventMask: INTEGER; VAR theEvent:

EventRecord);
is encoded in the table as 'B-IVD'. lt should be encoded as 'B-ID' since
theEvent is declared as a Record, not a pointer to a Record. We don't want the
pointer value to change, as would happen in the original encoding. We want
the contents of what is pointed to to change, as per the correct encoding. We
need to look through all interfaces and fix the encodings on VAR paramethers
where this is a problem.

j.Resources need tobe created using the Workshop. There are other parts of the
development cycle that would still have to be done using the Workshop or the
finder. This is a frustration but we can certainly live with it for now.

