
(

Medusa
Programmer's Guide
Beta Draft

Apple Confidential

Medusa Programmer's Guide, Beta Draft

S APPLE COMP'Ulll, INC.

This manual is cq>yrighted by Apple
or by Apple's suppliers, with all rights
reserved. Under the cop)'!ight laws,
this manual may !10l be copied, in
whole or in part, without the
written consent of Apple Computer,
Inc. This exception does !lC(allow
copies to be made for OOiers,
whether or ncx sold, but all ci the
material purchased may be sold,
given, or lent to another person.
Under the law, copying includes
translating into another language.

C Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 95014
(~)996-1010

Apple, the Apple logo, and Macintosh
are registered trademarks of Apple
Computer, Inc.

TokenTalk, Macinta;h Coprocessor
Platform, and MR-DOS are
trademarks of Apple Computer, Inc.

NuBus i.5 a trademark of Texas
Instruments.

Simultaneously publi.shed in the
United States and Canada

Notice

The information in this
document rctlects the current
state of the product. Every
effort has been made to verify
the accuracy of this information;
however, it is subject to change.
Beta Drafts an: rcJe:ased in this
form to ptOTlde the
deveJopmem community with
essendal information In order
to work on compatible products.

Apple confidential Y21/89

(

Apple C.Onfidential

Contents

Preface
What this document contains I
Suggested reading I
Possible applications I
Conventions used in this manual I

1 Introduction 1

Token Ring Networks I

The network layers I
A token ring network I
Token communication I
The Macintosh II token ring interface I

SubNetwork Access Protocol (SNAP) I
The 802.2 Logical Link Control !PC interface I
Macintosh Operating System !PC services I
Download and initialization services I

iii

Apple Confidential

2 Source Routing Support

What is source routing? I
Hierarchical networks I
Mesh networks I

How source routing works I
Routing information I

Source routing implementation I
SNAPuse I
U.C use I

Source route limits I

3 SubNetwork Access Protocol (SNAP) Interface

General information I
Typical SNAP use I
!PC requests to SNAP I

SNAPAttach I
SNAPGetConfig I
SNAPGetHdr I
SNAPTransmit I
SNAPDetach I
SNAPReceive I
SNAPC.ancel I
SNAPGetParm.s I

Functions supporting 802.2 I
SNAPSwapHdr I

Example program listing I

4 The 802.2 llC I lPC Interface

General information I
Typi:al rol-2 llC use I
!PC requests ID ~2.2 LLC I

U.COpenSAP I
U.CCloseSAP /

iv CONTENTS

Apple Confidential

(

IlCGetHdr I
IlCGetCoofig I
LLCOpenStation I
LLCClo.seStation I
IlCConnectStation I
LLCModifyParams I
IlCReceive I
IlCReceiveC.ancel I
IlCTl Transmit I
IlCT2Transmit I
IlCReset I
LLCRetumBuffer I
IlCGetStatistics I
IlCStatus I
IlCSetFunctionalAddr I

Functions Supporting 802.2 I
LLCSwapHdr I

5 Apple IPC Services
I

General information I 1
Apple !PC driver I
Apple !PC library I

Apple !PC managers I
Csing Apple !PC I
Apple !PC services I

C<RQJeue I
CopvNuBus I
freeMsg /
GetCard I
GetETick I
GetICCTID I
GetlPCg I
GetMsg I
GeL"larneTID I
GetTickPS /
1.;LnD
{5Locai I

iGliRece~;e /

CONENTS v

Lookup_Task I
OpenQueue I
Receive I
Register_Task I
Send I
SwapTID I

Apple C.Onfidential

6 Download and Initialization

General information I
TokenTalk Prep services I

ITFindCards I
ITFindBootedCards I
ITFindUnboo<edCards I
TTBootCards I
ITForceBoot I
TTGetStatusAddr I
TTGetLLCTID I
TTGetSNAPTID I
TTGetBoardID I
TTDynamicDL I

TokenTaik Prep file example I
LLC resource description I

TokenTalk '.'JB card boot process summary I
Defining the LLC resource I

i Avoiding Trouble

General infoonation I
Commoo emx causes I

Error codes I
Network connection failure I
Problems programming the listener function I
Global data structures and dynamic download I
OMA conflicts I

Appendix A Components 7'7

vi CONTENTS

(

Apple Confidential

Appendix B Th~ TokenTalk NB (.ard 79
Hardware overview I
Communications engine I

Central processor unit (CPU) I
Read-only memory (ROM) I
Dynamic random access memory (DRAM) I
Communications engine/NuBus interface I
Communications engine/token ring interface I

Token ring interface I
TMS38010 oommunications processor I
ThtS38020 protocol handler (PH) I
TMS38030 system interface (SIF) I
TMS38051 and TMS38052 ring interface I
Burned-in unit ID I

Adapter interfaces I
TokenTalk ~'B memory map I
Control registers I
TokenTalk NB card options register I
TMS38030direct1/0 interface registers I

DATA register I
DATA AlITO INCREMENT register I
ADD R£5S register I
INTERRUPT register I

ThtS38030 DMA I
:--luBus addressing I

Adapter timer /
€:aX!O reset I
™538030 reset I
Interrupts I

Software overview I
Power-on self-test I
Software interface I

System conunand block I
System status block I
TMS38l initialization I
TMS38l command execution I
Command completion I

TMS380 commanci.s I

CONENTS vii

Apple Confidential

Appendix C Echo Task Program Example
-

Program summary I
Programming checklist I
Dynamic download I

DynDownLoadExamp.make I
DynDownLoadc I

Dynamic global data structure management I
ADT.h I
ADT.c I
ListenerGlue.a I

The echo task I
EchoTask.make I
f.coo.h I
GeneraJ.h I
EchoBiastTask.c I
EchoTask.c I
EchoTask.r I

Interface to MR-DOS and SNAP I
Extemals.h I
SNAP-Interface.h I
Echo-lnterface.h I
MREcho-Interface.c I
MRSNAP-lnterface.c I

viii CONTE:.ITS

c

(

Apple Confidential

Figures and Tables

C H A PT E R 1 Introduction I 1

Figure 1-1 TokenTalk NB protocol model I
Figure 1-2 Token ring topology I
Figure 1-3 Token ring components I
Figure 1-4. Frame formats: free token, busy token I
Figure 1-5 Macintosh interface to the token ring network I

CH APTER 2 Source Routing Support I

Figure 2-1
Figure 2-2
Figure 2-3

Single bridge between networks I
Hierarchical network I
Mesh network I

C H APT E R 4 The 802.2 LLC I IPC Interface I

Figure 4-1 SAPs and link stations I

C H A PT E R 5 Apple IPC Services I

Table 5-1 Apple !PC services I
Table 5-2 State tabie for the Receive call I
Table 5-3 Errors rerumed I

CH APT E R 7 Avoiding Trouble I

Figure 7-1
Table 7-1

Dynamic task download I
mStatus error code summary /

A P P E N D I X B The TokenTaJk NB Card I

Figure B-1 TokenTalk NB block diagram

x

/

Apple Conf Kiential

Preface

TIIIS DOCUMENT i.5 to be used by Apple software developers who wish

to develop a protocol interface to the Apple® TokenTalkTll NB card in

conjunction with the ~cintosh® Operating System (OS). To make use of

the information presented here, you should have a working knowledge of the

Macintosh OS and, depending on your application, a working knowledge of

token ring networks. The information presented in this manual describes

how to interface to the data link layer by way of calls to the SubNetwork

Access Protocol (SNAP) interface and the 002.2 logical link control (LLC)

interface.

You should be familiar with the following information:

• Macintosh II computer and NuBus ™
• Macintosh Programmer's Workshop (MPw®)

• C programming

• Multiprocessor programming techniques

• Network programming techniques

• ."1inimal Realtirne Distributed Operating System (MR-DOS™)

What this document contains

This document provides a description of the programming interface to the
TokenTalk NB card and includes programming information on the
SubNetwork Access Protocol (SNAP) interface, the logical link control (LLC)
interface, and the interprocessor communication (IPC) interface provided in
the Macintosh OS. The Macintosh services that initialize the TolcenTalk NB
card are also presented.

xi

xii ?reface

Apple confidential

The intent of this document is to supply information that allows
developers to develop ether protocol interfaces (APPC, 3270, and so on) that
run under the Macintosh OS for the TokenTalk NB card.

The following table describes the contents of this manual and shows
where to find information that helps you accomplish a desired task. Not all
chaprer5-are applicable to all tasks. A roadmap that illustrates the manual
organi7.ation follows the table.

What you need Location Content

Introductory Chapter 1 An introduction to token ring concepts
information and interface services running under the

Macintosh OS

Source routing support Chapter 2 A discussion of source routing support in
in a multi-network: Token Talk
environment

Developing Type 1 Chapter 3 The SubNetwork Access Protocol (SNAP)
•connectionless" token interface calls to the Macintosh OS
ring services

Developing Type 2 Chapter 4 The ~2.2 logical link control (LLC) interface,
connection-oriemed which is useful for applications based on a
token ring services specific protocol with an assigned Service

Access Point (SAP) identifier

Interprocess commun- Chapter 5 The interprocess communication (IPC)
ication between the services provided by the Macintosh OS for
Macintosh OS and the passing messages between the operating
TokenTalk NB card system and the TokenTalk NB card. All

developers' need the information contained
in this chapter.

Initialize the TokenTalk Chapter 6 The code and parameters in the TokenTalk
NB card Prep file used for initializing the TokenTalk

NB card and an example of how to use '.he
TokenTalk Prep ftle. All developers need
the information contained in this chapter.

General troubleshooting Chapter7 Troubleshooting tips and hints for
guidelines avoiding trouble with software and

hardware.

.....,,..,,,._,. '"

(

Chapter 3
SNAP
Type 1 application
(simple inteef ace)

Chapter 1
Introduction

Chapter 2
Source
routtng
support

Chapter 5
MacinlOSh OS
Intmproass
Communication
Seroiees

Chapter 6
Tolum TaJJt NB card
downloading and
tnitiaiizing -Chapter 7
How to avoid
l70Uble

Apple confidential

Chapter4
802.2U.C
Type 2 application
(complex inteiface)

Preface x iii

xiv Preface

Apple confidential

Suggested reading

Here is a list of reference materials that relate or apply directly to the
TokenTalk NB card:

• Macintosh Coprocessor Platform Developer's Guide(MR-DOS !PC
implementations)

• Apple TokenTaJJz NB User's Guide

• Athena Programmer's Reference and User's Guide

• Texas Instruments 1MS380 Adapter Chipset User's Guide

• Texas Inst""ments 1MS380 Adapter ChipSet User's Guide Supplement

• Texas Instruments Manual Update, Revision F

• IBM Token Ring Nettrork Architecture Reference

• IEEE 802.2 Standard

• IEEE 802.5 Standard

Possible applications

You may "'lish to develop any number of pos.sible applications. For example,
you may want to create your own 3270 protocol emulator that accesses
mainframe computers by way of the token ring interface. Other applications
might be to implement TCP/IP under the Macintosh OS for the TokenTalk
NB card or to provide X.25 dial-up services.

The information presented in this document assumes that the token ring
application you are developing runs under the Macintosh OS and is not

downloaded to reside in memory on the TokenTalk NB card itself. The
Macintosh Coprocessor Platform Developer's Guide contains information you
:ieed LO deve:op 'ckenT::lk NB memory-resident applications .

.:Onventlons "JSed in this manual

_:;::ix ;::;; :nese ::anventioos throughout the manual:

+ Note: Notes like this contain supplementary information.

A special rypeface is used to indiC31e lines of code:

?~~aram ~ode ~ooKs :ike this

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 1 Introduction

T H I S C H A P T E R I N T R 0 D U C E S the topics that support

programming access to the Apple TokenTalk NB card. The TokenTalk NB

card provides an interface to a token ring network. By using the services

provided in the ."lacintosh Operating System (OS), you can program a prctocol

interface, such as 3270 data stream protocol or TCP/IP, that supports token

ring communication.

In this chapter you will find introductory information on token ring

networks, SubNerwork Access Prctocol (SNAP), the 802.2 Logical Link Control

(UC) interface, Macintosh OS Interprocess Communication (!PC), and the

download and initializ.ation services for the TokenTalk ~ card. •

1

Medusa Programmer's Guide, Beta Draft Apple Coofidential

Token ring networks
A token ring network ~ a topology (ring) and a protocol (token-pa.ssing) defined by the IEEE 802
committee. The ac.tual token ring access method, or how to interface with the physical media, is
defined in the IEEE 802.5 standard. However, you need not be concerned with the physical access to
the token ring network because the access is handled by the TokenTalk NB card itself, as are the
002.2 logical link control functions.

The network layers

The TokenTalk NB card provides an interface to the token ring network. The token ring network
.. interface adheres to the International Standards Organization Open System Interconnection (ISO

OSI) network model. The 002.2 LLC interface provided for the TokenTalk NB card corresponds to
the 1SO OSI model as shown in Figure 1-1.

• Figure 1-1 TokenTalk NB protocol model

--·,1 -1--1
SeWon

Transport

2 1 I Introduction

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

A token ring network

The topology cl a token ring network is shown in Figure 1-2, vvhich shows the ring, the nodes, and
the free token that circulates around the ring. The physical components of a token ring network
consist of the TokenTalk NB cards, one or more multistation access units (MAU), and the
connecting cables. The MAU ind the connecting cables provide the physical "ring" for the network,
in fact, the MAU acts as a wiring concentrator for the connecting cables. Multistation access units
can be connected in a daisy chain to provide whatever size network is required. The TokenTalk NB
card and the Macintosh II system provide the network node on the ring (Ftgure 1-3).

Token communication

In a token ring network, a data packet called a free token is passed from node to node. If a node has
no data to transmit, it passes the free token to the next node. On the other hand, if a node does
have data to transmit, it caprures the free loken, changes it to a busy token, and appends the
necessary destination address, source address, data, data checks, and control bytes to ensure reliable
deliver/ to the destination node. This busy token is called a frame.

Each node between the source node and the destination node passes the frame, or data packet,
onward. When the data is received at the destination node, it marks the data packet as received and
sends the busy token around the ring to the source node. The source node then checks the token
and verifies that the destination node received the data. The originating node removes the busy
token from the ring and releases a new free token on the ring so another node can transmit (Figure
1-4). The originating node must wait for anocher free token before it can transmit again.

Any one node is allowed one transmission per free token, which limits each node's access to the
network. In this manner, every node on the network is guaranteed equal access time to the
network.

1 1 Introduction 3

Medusa Programmer's Guide, Beta Draft

• Figure 1-2 Token ring topology

D

1'ITT1111111l El I f! I

Apple Confidential

D
1'ITT1111111I El I El I

"' Ci.rculaling token
,....... __
D

• Figu~ 1-3 Token ring components

4 l / Introduction

(up to 8 nodes per MAU)

Medusa Programmer's Guide, Beta Draft Apple C.Onfldentiat

• Figure 1-4 Frame formats: free token, busy token

,,.

Free token format

,. ,.
,.

,. ,.
,. ,. ,.

,. ,. ,.

,. ,,.

,. ,. ,,.

,. ,,. ,.
,,.

,. ,. ,,.

The Macintosh II token ring interface

--••• -:....
Frame
check

Dau se<juena:

4 bytes

The actual formatting and transmission of the data packets, free tokens, and busy tokens is
handled by the hardware on the TokenTalk NB card and the 802.2 llC interface software. Your task
as a developer or programmer is to use the programming support tools to pass the necessary
destination address and data information to the TokenTalk NB card and to deliver the data fivm
the card to applications running under the Macintosh OS .. Source routing of packets through
bridges IS described in Chapter 2.

Figure 1-5 shows Jie .\1acintosh ii and TokenTalk "IB orJ interface ~s i.he token ring network.

lntroduc:1on

?:1:~e

starus

)

5

Medusa Programmer's Guide, Beu Draft Apple Coofident.ial.

• Figure l·S Macinto.sh interface to the token ring network

Macint~h II

As shown in Figure 1·5, the primary communication interface between the TokenTalk NB card and
the Macintosh II is through the interprocess communication (!PC) services. These services are
provided by the ~h OS on I.be Macintosh II and by MR-DOS on the TokenTalk NB card A
specific set of services for the 802.2 UC Jnd SNAP rrovide rbe interface to Lhe chip set that handles
:.1e iow-ievei oraocol orocessm~ and ohvsical communication w1til tne ~oi<en nm~ necwonc

:i1e :-oken Talk :IB c:ua is mlliaJized and downioaaea bv wav oi the ~rv1ces orov1aea m me
TokenTalk Preo ftle.

6 l / Introduction

(·.

..

Medusa Programmers Guide, Beta Draft Apple Confidential

SubNetwork Access Protocol (SNAP)

The IEEE ~2.2 committee has implemented a SubNetwork Access Protocol (SNAP) that allows
protocol multiplexing and demultiplexing among multiple users of a data link. When Ethernet was
first designed, it allowed for 64 different protocol identifiers. However, with the maturation of
local area network technology and the development <:i other network standards such as token ring
and token bus, 64 different protocols identifiers were too few. Different network companies
devised various schemes to expand the number of protocol identifiers so as to differentiate
between, say, AppleTalk, TCP/IP, XNS, and other protocols.

To accommodate the large number of network protocols, the IEEE 802 committee has imposed the
SNAP to standardize prcxocol access to the network and to ensure that protocol identifiers from
different vendors do not conflict. SNAP is analogous to the old Ethernet protocol ID except that
SNAP is a 5-byte field and the old ahemet protocol ID is a 2-byte field. The trend now is to
represent the old Flhemet protocol IDs in SNAP, which provides compliance with the current
standard.

SNAP allows Type 1 (datagram) communication services only; it does not support connection and
session-oriented Type 2 services. For those services you must bypass SNAP and use the ~2.2 logical
link control (UC) interface directly. · ·

The SNAP interface described in this manuai is sufficient for a wide variety of network prcxocol
applications. Source routing is supported by the SNAP interface to allow transmission of packets
through bridges and multiple networks, but is not implemented in the UC interface. The more
complex LLC interface should be used primarily in Type 2 applications, such as connection-oriented
3270 data stream protocol communication.

The 802.2 Logical Link Control IPC interface

The logical link control (LLC) sublayer is the part oi the data link layer that supports the media­
independent data link functions, and -:.;h!ch uses the services cf the medium access control (MAC)
sublayer to provide services ~o the nerwnrk !ayer. 111e :PC interface to the 802.2 U.C communicates
with either the Texas instrumenLS token ring chip set (the TMS380 family) that implements the
~2.2 LLC, or with a software-based 802.2 UC wherein the tasks performed by the chip set are
implemented in software.

The 802.2 !PC itterface functiom described in this manual provide access to and communicate with
the 802.2 LLC. It is important to understand that for the TokenTalk NB card applications, the 802.2
LLC itself is irnplcmemed in the chip set on the TokenTalk '.'.'B card.

1 i !mrcxiuction

Medusa Programmer's Guide, Beta Draft Apple Confidential

Macintosh Operating System IPC services
The Macintosh II operating system supports a multitasking, multiprocessor environment.
Different intelligent card,, residing on the NuBus, such as the TokenTalk NB card, depend on
interrupt-driven communicatiom to transfer information and to coordinate task execution. The
interprocess communication (IPC) is the mechanism that provides this communication service.

Many IPC functions are provided fcx the Macintosh Operating System and for the MR-DOS.
MR-DOS is an operating system that resides on the smart cards in the Macintosh II and provides
the IPC services for these card,,. For information on the MR-DOS !PC, refer to the Macintosh
Coprocessor Plalform Deveioper's Guidi!.

Download and initialization services
A TokenTaJk NB card is initialized from the Macintosh Operating System by way <i a special file
called TokenTalk Prep. This file contains resources that hold code images for downloading to the
TokenTaJk NB card. The TokcnTaJk Prep file provides the services that initialize the TokenTalk NB
card and download MR-DOS, SNAP, &::12.2 LLC/IPC interface, and default LLC parameters.

8 1 I Introduction

(

r(

c:

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 2 Source Routing Support

T H I S C H A P T E R D E S C R I B E S network source routing support and

includes l:Yackground information on network routing and bridges. This

chapter also discusses source routing implementation and source routing

limi!S. For the most part, source routing support is transparent because it is

included as part of the SubNetwork Access Protocol (SNAP) services in

TokenTalk. •

9

Medusa Programmer's Guide, Beta Draft Apple c.onftdential ·

What is source routing?
Chapter I presented the concepts aMOC:iated with a single token ring network and briefly described
the frame formats aMOC:iated with data transmission within a token ring network. In a single
token ring network, the information contained in the frame, or data packet, includes the address of
the source oode and the address of the destination oode. Source oode and destination node
addresses are all that are required to send data packets in a token ring network.

The term source routing refers to the means by which frames between multiple networks are
correctly sent, or routed, between the source arid destination oodes. Source routing occurs when a
bridge connects two or more token ring networks and frames pass through the bridge between the
two networks (Figure 2-1). In essence, a bridge forwards frames from one network to another
based on routing information that :s inserted by the source node.

• Figure 2·1 Single bridge between networks

As defined by the IEEE 802 specification, a bridge is a functional unit that connects two networks
using a single logical link control (UC) procedure, which in TokenTalk is the IEEE 802.2 U.C. Several
configurations are possible when more than two networks are connected by bridge, but the
resultant network is either a hierarchical network or a mesh network. These two concepts are
explained in the following ~aragnoh.5.

Hierarchical netwcrX.S

Simply defined, a hierarchicaJ network is one that provides only one path between the source and
destination nodes, no matter the number of intermediate rings. For example, in Figure 2·2 a frame
from ring 1 must pass through intermediate ring 2 in order to reach :ts. destination on ring 3. '.'fo
other path exists.

Llkew~, a fame from ring 4 destined for ring 1 must pass through intermediate rings 3 and 2.
The key to a hlCr.U'Cbicai nerworic is that only one path. or :oUle, is orovided between source and
:estination nodes. -\S the fiqure ~nows. mere ::i ;a choice Qr bno~es between nn~ .: :mo 3 buc no
:::01ce or in::ermeriiate nnl!S.

l 0 2 /Source Routm~ Suooort

Medusa Programmer's Guide, Beta Draft

• Figure 2-2 Hierarchical network

To""~o~

Bridge

Bridge

Bridge

Mesh networks

Apple Confidential

_)~nRing4
0

Bridge

A mesh netux:Jriz provides multiple paths between the source and destination rings and alternative
choices of bridges. Figure 2-3 shows four rings connec.ted in a mesh configuration.

• F}gure 2-3 Mesh network

~enRing4 r----==(o

3ndg'! 3ncige

Bridge

''.1 L'"1e :':"lesh nerwork ~ho-wn m fiwre 2-~ . .l frame has two oossible !)albs from rim~ 1 :o ring ~. "'"he

~:.rne ::.::n ce r8mea t!lroetl?fl rm12 " or r n:ou12.n nn~ 2.

2 I Source Routin~ Support 11

Medusa Programmer's Guide, Beta Draft Apple Confidential

Note that a parallel connection exists between ring 2 and 3. Parallel connections provide redundancy
in situations that require high reliability. Up to 16 parallel connections can exist between any two
rings.

Variations on hierarchical arid mesh networks can accommodate a wide variety of network
configurations. Configuration parameters and network layouts are detennined during the planning
and installation phase and are -dependent on specific limitations enforced by the bridge
manufacturer. The primary benefit of bridges is to allow more than 260 devices to be supported in
the network installation.

How source routing works

For any two nodes, or stations, to communicate in a hierarchical or mesh network, routing
information must exist that describes the path between the two stations. Route determination
can be the responsibility of the communicating stations, the bridges, or a central management
facility· . Source routing applies to the first case, where the station that is the source of the frame
puts the routing information into the frame. Bridges, which operate at the data link layer of the
network, support source routing. (Refer to Chapter 1 for an illustration of the network layers.)

Source routing exhibits the following features:

• Routing information is based on information about the path between two communicating
stations; station addresses are not used.

• Path information is learned dynamically by a station that initiates communication with
another.

• Route discovery is a two-part proc:eSs that involves broadcasting a message to all of the
interconnected networks.

• Bridge routing tables are not required; bridges decide whether to forward a frame by comparing
a fixed, idenlifjing value with a small portion of the routing information field in the frame.

Routing information

Routing information is contained in its own field in the frame and is separate from the destination
address. The routing infonnation is obtained in two stages. The first stage occurs when the
source station broldasr.s a frame to all of the connected networks. The broacbst frame contains
the destination addres,, of the target station plus information that tells the intervening bridges to
forward the frame.

· ·:ia.n-.Don !(. ::.v, Jamei Averv Pi!!. ;;na P.obert A. Jon.'Ull. ·~-ource R.ouam~ r'or Locu Area !~etwor.Ks:' 'BM Ccroorat:on

~85

12 2 I Source Routing Support

/

(
Medusa Prograrruner's Guide, Beta Draft Apple Confidential

The routing information is added to the frame during the broadcast phase. A bridge on the
first network adds the identifying numbers of the two networks that it joins. Additional bridges
add only the identifying number of the next network. (The network ID numbers are assigned by a
network administralOr when the network is initially installed and configured) Frames are
prevented from looping because no bridge will forward a frame to a network whose number
already appears in the frame. -

The second phase of obtaining the routing information is performed by the station that received
the initial broadcast frames. Each frame is returned as soon as possible according to the route it
acquired from the bridges along the way, rather than being returned by broadcast message.
Because the initial broadcast frame is returned by any of several possible routes, the source station
acquires frames that contain valid routing infonnation. The source station can choose any of the
valid routes returned by the destination, but the first response has usually traveled the fastest
route.

Up to this point, the destination station still has no idea which route will be used for
communication. The source station keeps its chosen routing information, which is learned by the
destination station when nonbroadcast communication begins. Because the same route is used for
communication in bolh directions, failed links can be easily diagnosed.

The routing infonnation can be associated solely with the destination address, or with the
combination of destination address and destination and source link service access points (SAPs).
The first case limits all communication to the same route, whereas the second case allows different
"conversations" to use different routes. Chapter 4 describes SAPs.

As previously mentioned, the SubNetwork Access Protocol (SNAP) interface automatically
provides source routing support in a connectionless environment. Because the source routing is
provided in a connectionless environment, an aging timer is used to diminate source routing
information from the routing tables, thus preventing po.ssible errors from table overflow. By
contrast, if connection-oriented source routing were supported, the routing information would be
maintained only for the duration of the link connection.

Source routing implementation

Source routing lS 1mpiemented in the SubNetwork Access Protocol (SNAP) interface. Supp1ied wu.h
the TokenTalk NB card, this protocol automatically handles the discovery and response phase for
source routing addresses.

2 / Source Routing Support 13

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

SNAP use

The SNAP interface allows Type 1 (datagram) communication services only; connection and
session-oriented Type 2 services are only supported by the 802.2 logical link control (IJ.C). For those
services you must bypass SNAP and use the IJ.C interface directly.

The SNAP interface described in thi.5 manual is sufficient for a wide variety of network
protocol applications.

llC use

The more complex LLC interface i5 used prirriarily in Type 2 applications, such as coMection-oriented
3270 data stream protocol communication. Source routing is not directly supported in the LLC
interface

Source route limits
Some limits on source routing are imposed when the necworks and network bridges are installed. A
network administrator is responsible for properly configuring the necwork and supplying workable
values. The configuration parameters that can restrict frame forwarding and source routing
activity include the following:

• Bridge ID number. To properly route frames, each bridge must have an ID number assigned.

• Hop count limit. The hop count is tjle number of bridges that broadcast frames have already
crossed to reach the current bridge. Broadcast frames with a hop count equal to or higher than
the hop count limit imposed on the bridge are not allowed to cross the bridge. If the number
of hops between the source and destination station exceeds the hop count limit, the frame
transmission fails.

Additional bridge configuration parameters controlled by the network administrator affect how
frames are passed throughout the network.

The number of source routing ad~ that any one station can keep track of is limited by the
table size reserved for storing these ad~. Two tables are used: one keeps track of the address­
tcrring numbers; the other keeps track of the ring-number-to-route. The tables can hold
approximately fJ> oode a~ and 100 ring addresses.

Table overflow is prevented by a "least-used timeout• algorithm. A node address entry is

dropped when it is DOt he3rd from for 40 seconds. A ring number is dropped when it is not heard
from for tttree minutes.

14 2 / Source Routin~ Support

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 3 SubNetWork Access Protocol (SNAP)
Interface

T H I S C H A P T E R D I S C U S S E S the programming inte1face for the

802.2 SubNetwork Acces.s Protocol (SNAP) interface. SNAP is used to deliver

Type 1 messages in a network and is a les.s complex interface than the 802.2

UC interface described in Olapter 4. •

15

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential.

General information
SubNetwork Access Protocol (SNAP)i.s defined by the IEEE 802 committee as the standard means
of identifying a large number cl protocols in an 802.2 environment. SNAP uses a service access point
(SAP) identifier of OxAA. By compari.5on, a ISO OSI SAP identifier is the hex value OxFE.

The first five bytes of the information field of each SNAP frame contain a protocol discriminator
that identifies a particular protocol. The first three bytes of the protocol discriminator are the
vendor ID assigned to the creator cl the protocol, that is, the same vendor ID used in globally­
admini.stered node addresses. The Ethernet bit ordering in these three bytes is retained, which
means that the bytes are transmitted most-significant-byte, least-significant-bit first. This
Ethernet bit ordering is the format for representing the vendor ID in SNAP on all media. The last
two bytes are assigned by the vendor to identify a particular protocol. By convention, if the vendor
ID is set to zero, the remaining two bytes represent an Ethernet protocol ID.

As you C3Il see, the SNAP interface is not strictly limited to token ring applications. Because the
SNAP interface is at the data link level of the network model, it is insulated from the
implemenl31ion of the physical level.

In the TokenTalk NB card implementation, the SNAP interface registers itself under the type
"SNAP• with the MR-DOS name manager. A name that is associated with the type is pas.sec! as a
starrup parameter. (Startup parameters are provided in the TokenTalk Prep file discussed in Chapter
6.) By convention, the name is "TokenTalk.'.'IB. •

Client processes should limit the number of requests that they queue to the SNAP. As a general
guideline, no more than ten SNAPReceive and ten SNAPTransmit requests should be queued by a
single client at once. With any more queued requests MR-DOS can run out cl rnes.5age buffers. One
method to impose this limit is to allocate a fixed number of transmit buffers, receive buffers, and
data buffers when the code is initialized ·and to keep the buffers in a linked list. Then, by removing
entries from the list and requeueing them when a request completes, there only await a limited
number of requests to the SNAP interface at any given time. Queueing several receive or transmit
requests improves beth the throughput and reliability, but the number cl queued requests must
never exceed the numter of Jvail.able MR-DOS message buffers.

16 3 i SubNetwork Access Protocol (Snap) Interface

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

The following list presents the requests that a client can issue to the SNAP interface. In each case,
mCode identifies the function and, in the reply, mStatus hold.5 the result code for the function. As
is the convention with MR-DOS !PC, all requests have an even mCode value and all replies use the
corresponding mCode plus one.

mCode Meaning ·

SNAPAttach Attach protocol discriminator

SNAPGetConfig Return SNAP configuration information

SNAPGetHdr Return media header template

SNAPTransmit Send a SNAP type 1 frame

SNAPDetach

SNAPReceive

SNAPCancel

Detach protocol discriminator

Receive a frame

Cancel all queued receives

SNAPGetParms Returns SNAP-associated parameters

See page

19

Z1

22

24

25

~

28

'9

In addition to the above messages, the SNAP interface supplies the following library of support
functions:

Name Description

SNAPSwapHdr Swap node addresses in l.Ai"IHdr structure for return to sender

Typical SNAP use

!PC requests support both Type 1 and Type 2 logical link control (UC). Type 1 is oonnectionless and
uses both the SNAP interface and, because the SNAP services are built on top of the LLC services,
the 802.2 UC interface. Type 2 is connection-oriented and is nct supported by the SNAP interface. A
typic.al application for Type 2 is 3270 terminal emulation.

Because the SNAP allows a Type l data link service cmly, it is discussed in terms of Type 1 LLC. Type
l IlC provides a data link v.ith a minimum prctccol ccmplexity and is used when the upper layers of
Jle iSO model provide the error detection and recovery. -:-,.-pe i LLC :S .:iiSO used in an appiic:ation in

which it i.5 not necessary to guarantee all data link layer transmissions.

Once a SNAP is attached, the application or protocol stack associated with that prctocol
discriminator can tramml and receive any of the following Type 1 frames through the SNAP:

• TEST - Test Command causes the remote node to serid a Test Response.

• L1 - :.:nnumbered !niormation is used to t.-ansfer data in a Type ! environment

3 I SubNetwork Access Protocol (SNAP) Interface 17

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following series of actions illustrates a typical usage for a SNAP client using Type 1 services and
outlines the actions necessary to transmit data by way of a TokenTalk NB card:

l. Use the TokenTalk Prep Utilities (1TGetSNAPTID) or the !PC name lookup to find the SNAP
service.

2 Issue a SNAPGet.Panm to _obtain the Task ID of I.LC and the RefNum of the SNAP's SAP. This
allows the SNAP client to be able to make requests directly of the ~2.2 I.LC IPC interface, such
as LLCT1Transmit, LLCGetHdr, and LLCGetConfig.

3. Issue a SNAPAttach, which includes a 5-byte protocol discriminator.

4. Optionally obtain configuration information from I.LC by way <:i SNAPGetConfig.

5. Obtain header template by way of SNAPGetHdr. The header can be copied after it has been
obtained, but it is important initially to use SNAPGetHdr to build the LAN header with values
supplied by the client (such as destination node). Different I.LC implementations might assume
a different header setup, so by using SNAPGetHdr you insulate yourself from unnecessary
proble~. In general, the offset values supplied in the header should be left alone.

6. Queue receive requests to SNAP to accept incoming frames by way of SNAPReceive.

7. Issue transmit requests to SNAP as required by way of SNAPTransmit

8. Reissue receive requests as the receive frames are returned.

9. On completion, i.ssue SNAPDetach. SNAPDetach automatically cancels out.standing receives.
Any outstanding receives are returned as •cancelled•

IPC requests to SNAP

In all structure declarations in this chapter, the type "byte" refers to an unsigned 8-bit integer and
"word" refers to an unsigned 16-bit integer. All structures and symbols used in th~ document are
defined in the include file SNAP.h.

18 3 i SubNetwork Access Protocol (Snao) Imerface

r -._
f '

(

f

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPAttach

The SNAPAa2ch message is used to begin listening for packets on the specified SNAP protocol.
This request also specifies various options that are associated with the particular protocol.

F.xample 3-1 shows the type SNAP _PD, which is used to hold protocol discriminators. This type
may nct be useful for representing the SNAP header in frames because the C compiler pads it to six
bytes.

mDataPtr points to the five-byte PD dau structure. mDataSize is equal to the size of the PD data
structure.

Refer to F.xample 3-2 for the structure of mOData in the SNAPAttach request. Note that
mDataPtr points to the type SNAP.PD, which holds the protocol discriminator to aa.ach to.

Result codes Value

SNAPNoErr

SNAP!nUse

SNAPNoMore

Description

Normal completion

PD already attached
Insufficient resources

The "Listener- funaion pointer is a special hook that some clients find useful to handle incoming
frames more efficiently. Most clients should not use a listener function. Any listener that is
provided must be located on the same slot as the 802.2 interface. A listener function is called with
parameters that pass the media header, information pointer, information length, and frame type.
The listener must be completed with this buffer before returning. When a listener funaion is in use,
SNAPReceive requests are nct used to receive frames.

An example declaration for the SNAP listener function might be coded as follows:

void Sample_t.istener (nul, nu2, hp, bp, len, ft)
long nul, nu2; /*Not used, but do not alter•/
L.ANHdr *hp; /*Pointer to L.ANHdr of =eceived frame•/
~nsigned char *bp;

:er.;

::.;

:..t { f~ 3)

return;
if (bp [5 J ! • 0)

return;

/'Pointer :o :-f~e~d, includes :.~e protocol
· discrirninacor•/

/*Ler.gth of :-f:eld*/
/*F'rame type, 3, a, er 9 only*/

/' rr: r.ot. ~JI !ra1'!1e, .:.gnore•/

/*If byte following protocol discriminat:or is not O•/
/*ignore frame •/

/* Other code to manipulate frame data •/

t"et:urn;

3 ! SubNetwork Access Protocol (SNAP) Interface 19

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

• Example 3-1 mOData structure for SNAP _PD request

typedef struct
(

union

long
char

PDl;

POc[SJ;
/* Fast access to first four bytes of PO */
/* Access to each and every byte of PO •/

) PO;
SNAP_PO;

• Example 3·2 mOData structure for SNAPAttach request

typedef si:ruct

word PDRefNum; /* Returns RefNum of this
word Options; /* Options

/* Bit 15:
Bit l 4:

Bits 13-0:

*/

PD (used on SNAPReceive)

Unused
Use listener function
Unused

void (*Listener)(); /* Pointer to optional listening function */
SNA?AttachOData;

3 ·1 SubNetwork .\ccess Protocol (5nao) Interface

•/

{

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetConflg

The SNAPGetConfig message returns. configuration information about SNAP. &le 3-3 shows
the structure returned at the address passed in mDataPtr.

Result codes Value

11.Ci'lloErr

11.CTruncated

Description

Normal completion

Buffer too short to receive all information

• Example 3-3 Structure mDataPtr points to following completion of SNAPGetConfig

-:ypedef s-cr;..ic4:

long :_:,cversion; /'* LLC Version ID */
long FAddr; /* Functional address (token ring onlyl */
long GlTimerl; /* Does not apply to SNAP .. I

long G2Timerl; /'* Does not apply to SNAP *I
:.ong GlTimer2; /* Does not apply to SNAP •/
:ong G2Timer2; /* Does not apply to SNAP •/

2.ong Gl:Timer; /* Does not apply to SNAP •/

:ong G2I'I'imer; /* Does not apply to SNAP .. I

woro MaxFrameLen; /* ~aximum frame length */

tiW"C!'.'O. .l\SA?s; /• Joes ~ot apply ~o SNAP *I
wrcrd AStac:or.s; /* Joes not apply to SNAP *I
word MaxHeader: /* Maximum header size for this media .. I

byce !..LCC2.ass; !• Class of L',.. ~~ implementation:

- Implements typel only

2 - Implements typel and type 2
*/

byte Media; I* !-ledia indicator:
0 - Unknown 4 - 16 Mb Token Ring

- Local Talk 5 - :DOI
2 •v Mb E:thernet 6 - :'oker: 3us
3 - 4 Mb 'roken Ri.1g

•/

i• Source-:-~i.;ting ~::dicator:

J - No sou::-~e-=our..:. .. ~q

1 - IBM source-routing
•/

byte AddrLen; /* Length of node address in bytes •/

byte Addr[9]; /* This node's address •/

byte NumGAddrs; /* The number of group addresses that follow •/

byte GAddrBuf[l]; /* Start of group addresses (length, address pairs)
::cGetConf igBuffer;

•/

3 I SubNetwork Access Prococol (SNAP) Interface 21

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetHdr

The SNAPGetHdr message creates a !.ANHdr structure that is used to trammit to the specified
ncxie. Options are also provided to return broadcast header templates.

Example 3-4 shows the structµre of mOData in the IPC message and F.%ample 3-5shows the
structure of the LANHdr structure that is returned to the area pointed to by the Hdr field in
mOData.

mData.l>tr points to the ncxie address and mDataSize indicates the size of that address in bytes.

Not all media support all possible options. In cases when an unsupportable option is specified, the
SNAP interface builds the best header it can and returns the status LLCNotFullySupported to the
client. mDataSize must either be zero to get a broadcast template or be the exact size of a node
address for the underlying media.

Result codes Value Description

LLCi"oErr Normal completion

LLCNotFuilySupported Some option or type requested is not fully
supported by this media

LLCAddrError Invalid remote address-size must be 0 or equal to
the ncxie address size for the media

• E:zamplc 3-4 mOData structure for SNAPGetHdr requests

typedef struct

22

word HdrType;

:Jptions;

/* Header types:

*/

O ·- Normal header
l - Single-route b'cast, all-routes b'cast return

2 - Single-route b'cast, non-broadcast return

3 - All-routes broadcast header

/* Header options (a.:.ways zero) */

by;;e Reserved; I* A.:.·,.,ays zero *I

byte ?.eservea; I* Alliays zero *I

:..ANiidr • 'i-.::::; .'" ?oint.er :o :..AN Her st. ::"Jct. 'J:'e ::.o be :::et 'Jrned *I

LLC~et.HdrOData;

3 I SubNetwork Access Protocol (Snap) Interface

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

• Example 3-S LANHdr strucr.ure for SNAPGetHdr

typedef struct

byte Media;

byte Routing;

/* Media indicator:
• 0 - Unknown - 16 Mb Token Ring

1 - LocalTalk 5 - FDDI
• 2 - 10 Mb Ethernet 6 - Token Bus

* 3 - 4 Mb Token Ring
•/

/• Source-routing indicator:

•/

Offset ::o
Length of

0 - No source-routing
1 - IBM source-routing

destination address in header
destination address in header

buf !er

buffer

Off set to source address in header buffer •/

Length of source address in header buffer •/

Offset to routing information in
Length of routing information in
Off set to media header in
Length of media header in
Destination SAP value •/
Source SAP value •/
Header buffer •/

header
header

header buffer
header buffer
buffer •/

buffer •/

•/

•/

•/

•/

3 / SubNetwork Access Prococol (SNAP) Interface 23

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPTransmit

The SNAPTransmit message is used tq send a Type I frame.

Refer to E:xampl.e 3-6 for the structure of mOData in the !PC message and to Example 3-5 for the
description of the LANHdr s~cture that is pointed to by Hdr.

mDataPtr points to either a frame holding the buffer, or, if the "list-directed• bit of the Options
field is set, to an array of counts and pointers to buffers, as with receive.

If mDataPtr points to a frame holding user data, the first 5 bytes must be the protocol
discriminator (PD) and filled in by the user. It is possible to separate the 5 bytes of the PD from the
user data by using the list-directed option. Jn this case the mDataPtr points to an array of counts
and pointers: the first pointer points to the 5-byte PD and the second points to the user data.

Result codes Value Description

LLCNoErr Normal completion

llCBadPri Unauthorized access priority

LLCTxError Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame

llCTxTooLong Invalid transmit frame length

llCBadRer.-lum Invalid Rer.-lum

llCRoutingError Invalid routing information length

LLCBadFrame Invalid frame type

llCCancelled Transmit cancelled

• Example 3-6 mOData structure; SNAPTransmit requests

-:ypedef struct

:<eser·1ed; !• Reserved - always zero •/ ..,crd
·.;era

word
::tfoLen;

Opti.cns;

/* ~eng~h of ~nformat:~n placed i~ bu:~er */

/• Opt.ions:
3it.s 15-8: Unused
Bit 7: List-directed
Bits 6-0: Unused

•/

FrameType; /* Frame type
* Specifies frame to send:

* 03 UI frame OB Test cmd (p•l)

"I
byte FS; /* Returns frame status •/
:..ANHa:- "!!dr /* ?oint.er to r..ANHdr iN/A to LLCT2Transmitl •/

SNAP'!.-<OData:

24 3 I SubNetwork Access Protocol (Snap) Interface

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPDetach

The SNAPDdach message deactivates. a SNAP protocol. All outstanding SNAPReceives are cancelled,
and if a listener was in use on !.he protocol being detached, it will no longer be called.

Refer to F.xample 3-7 for the ~tructure of mOData in the IPC message.

Result codes Value

SNAPNoErr

Descrtptton

Normal completion

SNAPNotAttached Invalid RefNum

• Example 3-7 rnOData structure for SNAPDetach and SNAPCancel requests

::ypedef st.rue::

word PDRefNum; /* RefNum of SNAP protocol discriminator

*/
) SNAP_PD_RefNum;

3 I SubNetwork Access Protocol (SNAP) Interface 25

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

SNAPReceive

The SNAPReceive message is used to-receive frames from an attached SNAP prococol.

Refer to E:campk 3-8 for the structure of mOData in the !PC message and to UC interface
documentation for the description of the W\NHdr structure that may be pointed to by Hdr.

mDataPtr points to either a buffer to receive the frame or, if the "list-directed" bit of the Options
field is set, to an array of councs and pointers. See F.xample 3-9 for the structure of the array of
councs and lengths.

It is possible to separate the 5 bytes of the PD from the user data by using the list-directed option.
In this case the mDataPtr points to an array of councs and pointers: the first pointer points to the
5-byte PD and the second points to the user data.

When list-directed, the number of elements in the list is determined by its size in bytes, given by the
value of mDataSize. Note that multiple receives can be queued for any given RefNum .

.. Result codes Value Description

SNAPNoErr Normal completion

SNAPNotAttached Invalid RefNum

SN APTruncated

SNAPCancelled

Frame larger than provided buff er space

Receive cancelled, either explicitly or by SNAPDetach

• Ex.ample 3-8 mOData structure for SNAPReceive requests

-::ypedef struct

word ?DRefNum;
word Options:

«o::a :n~oLen;

by-::e :::air.eType;

Jr RefNum of protocol discriminator •/
/• Options:

Bits 15-8: Unused
Bit 7: List-di.!'ec:ed

Bits 6-0: ~nused

•/

J• 9umber of bytes of data in the :-field •/
1~ F:arne :ype :eceived:

CJ J: :~ame

08 Test resp <f=l)

09 Test resp (f=O)
•/

byte Filler; /• Not used •/

LANHdr •lldr; /* Pointer to area to receive header */
l LLCTxRxOOata;

26 3 / SubNetwork Access Protocol (Snap) Incerface

Medusa Programmer's Guide, Beta Draft Apple Confidential

(
• Example 3-9 Struc.ture for list-directed SNAPReceive requests

struct

word Count; /" 3yte count for: this transfer •/

byte •Ptr; /* Pointer for this transfer */

array[];

3 / SubNetwork Access Protocol (SNAP) Interface 27

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPcancel

The SNAPCancel message is used to c;ancel SNAPReceive requests outstanding on an anached SNAP
protocol.

Refer to Example 3-7 for the s_tructure of mOData in the !PC message.

Rcsuh codes Value Descript1on

SNAPNoErr Normal completion

SNAPNotAttached Invalid RefNum

28 3 / SubNetwork Access Protocol (Snap) Interface

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetParms

The SNAPGetParm.s message is used ~o get the SNAP associated parameters. The message returns
the Task ID of the associated Ll.C process and the RefNum of the SNAP's SAP (OxAA). The Ll.C
process information is useful if the client process wishes to make calls directly to the LLC interface.

Example 3-10 shows the structure of the mOData in the !PC message.

Result code Value

SNAPNoErr

Descriptton

Normal completion

• Example 3-10 Structure for SNAPGetParrnsOData

:ypedef s::-uct

tid_type
word

} SNAPGetParmsOData;

LLCT:D;
SAPRefNum;

3 I SubNetwork Access Protocol (SNAP) Interface 29

Medusa Programmer's Guide, Beta Draft Apple Conftdentia!

Functions supporting 802.2
In addition to the preceding SNAP messages, the interface supplies a library containing the
following support function. Note that you must link the LLCSupportLib.O file with your code
before using SNAPSwapHdr.

Name Description
SNAPSwapHdr Swap node addresses in LANHdr structure for return to sender

SNAPSwapHdt

The SNAPSwapHdr function is called using Pascal calling conventions. The function swaps the
addresses in a LANHdr. This swapping would usually be done to respond to a Type I frame.

pascal void SNAPSwapHdr(LANHdr *Hdr);

Example program listing
The program listing presented below is a sample of how to invoke TokenTalk NB functions and
perform a SNAPAttach. Note the use of 'define statements that simplify program maintenance
and insulate the code from extreme revisions in the TokenTalk interface code.

/• Useful defined functions. */

tdefine ODataAs (x, yl ((x "l ((y) ->mODatal)

ljdefine SDataAs (x, y) ((x •) ((yl->mSDatal l

lldefine DPAs (X, y) ((x *) ((y) ->r,,OataPtr))

•aefine ~eply(x,y) \

::..d_type t;\

t = <x)->mFrom, {x)->mFrom • {x)->m!o, {x)->mTo • t;\

(x)->mCocie i• l, (x)->mStatus = y;\

Send { x) ; \

si::atic tid_type SNAP_TID;

static short OurSNAPRefNum;

/*

itdefine

tdefine

This does a SNAPAttach •/

Vendor ID OxOOOOOO

ProtcolID Oxl234

/* TIC Of SNAP process */

/* Our SNA? RefNum */

/* Vendor ID */

/* Ethernet protocol Oxl234 •/

30 3 I SubNer:work Access Protocol (Snap) Interface

(

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential Y20/89
message •cmp;

long Id;
SNAP PD pd; /* How to get the SNAP_T!D */

if ((cmp • GetMsg() I 0)

return;
cmp->mTo • SNAP_TID;
cmp->mCode • SNAPAttach;

/• SNAP_TID acquired from previous name lookup •/

!d = cmp->mid;
pd.PD.PDc[O] <VendorID >> 16) & Oxff;
pd.PD.PDc'.l] (VendorID » 9) & Oxff;
pd.?D.PDc[2] = VendorID & Oxff;
pd.PD.PDc~JJ = (Protocolr:J » 8) & Oxff;
;id.?D.PDc[4!
iSNA?_?D •) CC'.;>->c.1Da:.aP":= = •pd;

cmp->mDataS~ze = sizeo:1SNA?_?DI;
Send (cmp);

cmp = Receive(Id, 0, 0, 0);
if (cmp->mStatus)

FreeMsg (cmp);
return;

0'J r SNA?Re fNum
:reeMsg (cmpl;

ODataAs(SNAPAt":achReplyOData, cmpl->?DRefNum;

3 I SubNetwork Access Protocol (SNAP) Interface 31

·~.

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 4 The 802.2 llC I IPC Interface

T H I S C H A P T E R D E S C R I B E S the programming function calls that

support the 802.2 LLC I !PC interface. The 802.2 LLC I IPC interface provides the

message-passing interface to the TMS380 chip set that implements the logical

link control (LLC) for the token ring network. The 802.2 IPC interface

described in this chapter works equally well with an LLC that is implemented

in software rather than the TMS380 chip set •

33

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

General information
The !PC services use a name table to -identify various !PC clients. Every client must register its name
to use the name lookup functions provided by the !PC services. The TokenTalk NB implementation
of the 802.2 LLC I IPC interfac_e registers itself under three different types with the MR-DOS Name
Manager. These types are

• IlC

• Token Ring LLC

• 4 MB Token Ring LLC

By providing several types for the LLC interface, a client can look for a generic LLC or a specific type
of LLC by name.Associated with each of these types is the name that is passed in the LLCName field
of the startup parameters. (Startup parameters are provided in the TokenTalk Prep file discussed in
Chapter 6.) By convention, the name is "TokenTalkNB."

Client processes should limit the number of requests that they queue to the LLC. As a general
guideline, no more than ten LLCReceive and ten LLCTlTransmit (or LLCTZTransmit) requests should
be queued by a single client at once. With any more queued requests MR-DOS can run out of
message buffers. One method to impose this limit is to allocate a fixed number of transmit buffers,
receive buffers, and data buffers when the code is initialized and to keep the buffers in a linked list
Then, by removing entries from the list and returning them when a request finishes, only a limited
number of requests await the LLC interface at any given time. Queueing several receive or transmit
requests improves both the throughput and reliability, but the number of queued requests must
never exceed the number of available MR-DOS message buffers.

The majority of functions described in this chapter support !PC messages to the 802.2 UC. An
additional function provides address swapping that swaps the source and destination addresses in
the frame header.

34 4 /The 802.2 LLC I IPC Interface

(

{

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following list presenl.S the requests that a client can issue to the 802.2 LLC. In the normal
fashion, replies from I.LC to these requests increment by one the mCode in the !PC mes.5age to
indicate the reply.

mCode Meaning Sec page
LLCOpen.5AP Activate an individual or group SAP '1)

!lCClo.5eSAP Deactivate a SAP 42
LLCGetHdr Return media header template 43
LLCGetConfig Return I.LC configuration infonnation 45
LLCOpenStation Allocate resources to support a

Type 2 connection 45

LLCCloseStation Terminate activity on a station and
release the station fl

LLCConnectStation Attempt to place local and remote stations
into data transfer state 48

UCModifyParams Modify parameters associated with a SAP
or link station of}

LLCReceive Receive a frame from a SAP or link station ~

LLCReceiveCancel Cancel outstanding receives on stations or SAPs 51
LLCTl Transmit Send a Type 1 frame 52
LLCT2Transmit Send a Type 2 frame (I frame) 53
LLCReset Reset link stations and/or SAPs 54
LLCReturnBuffer Return interface-owned buffer to LLC

(no reply to· this request) 55
LLCGetStatistics Get link station statistics '.Xi

LLCSetfunctionalAddr Add/remove functional addresses <:jj

LLCStatus Notifies client of status changes 58

The LLCStatus message is sent by the 802.2 U.C interface to a client This mes.5age informs the client
of status changes reiated to Ty-pe 2 Ll.C. :here is no specific reply to this message.

4 I The EK>2.2 LLC I IPC Interface 35

Medusa Programmer's Guide, Beta Draft Apple Confidential

Typical 802.2 LLC use

The IPC requests suppat both Type Land Type 2 logical link control (LLC). Type 1 is connectionless
and uses the SNAP interface described in Chapter 3. Type 2 is connection-oriented and is noc
supported by the SNAP interface. A typical application for Type 2 is connection-oriented 3270 data
stream protocol.

Refer to the TMS380 Adapter Chipset User's Guide Supp/emenJ for additional information.

SubNetwork Access Protocol (SNAP) is not supported for Type 2 connections; therefore, Type 2
connections depend on the 802.2 LLC interface described in this chapter. Token ring connections
used by IBM, such as 3270 data stream protocols, exclusively use Type 2 data link services.

Type 2 services are connection-oriented. That is, the attached client must open further
connections after opening the service access point (SAP). Type 2 services guarantee the delivery of
all data link transmissions with proper sequencing, acknowledgments, and automatic retries. With
Type 2 services, connections are established prior to any data transmissions berween ncxies wishing
to communicate. These connection points between ncxies are referred to as "link stations.'

For example, con5ider a link station 1 that wishes to communicate with link station 2. Station 1
allocates a link resource and sends a connection request frame to station 2. If station 2 has the
resources and is authorized to communicate with station 1, it returns a positive acknowledgment
to the station 1 connection request. Assuming a positive acknowledgment is returned, a link is
established and data transfer can occur in either direction. Once all data and all acknowledgments
tran5ferred, either station can send a disconnect request to close the link, which frees resources in

OOth stations for other communications.

To establish communications for Type 2 operation, the attached client must first open a SAP, then
open a link station associated with that SAP, and finally perform a connection request with the
rernoce station. This sequence creates a link from the SAP in this node to another SAP in a different
ncxie. One link station can be associated with only one local SAP and only one remae SAP on one
rernoce ncxie. However, a single SAP may be associated with multiple link stations (Figure 4-1).

The following series of actions illustrates a typical usage for an llC client using a Type 2
connection-oriented data link service:

1. Cse the TokenTalkPrep Utilities (TI'GetllCTID) or the !PC name lookup to find the UC
service.

2 Optionally obtain configuration information by way of llCGetConfig, which provides the
maximum frame size and the physical limil for the maximum number of stations.

3. Issue U.COpen.5AP to begin llC activity.

4. Obtain a header template by way of LLCGetHdr. The header can be copied after it is obtained,
but it is impa1anl initially to use llCGetHdr to build the LAN header with values supplied by
the client (such as destination ncxie). Different llC implementations might assume a different
'.leader seruo, so by usmg LLC::n:tHdr you msulare yourself from unnecessary problems. Jn
generai, the offset vaiues suppiiea in the heaaer si::louid be left ai~:>ne.

36 4 I The ~2.2 llC I IPC Interface

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

5. Queue receive requests to the SAP to accept incoming Type 1 frames by way of LLCReceive.
Remember that XID frames necessary to establish Type 2 communication are transmitted as
Type 1.

6. Obtain the address of the node that is to receive the Type 2 frame. The destination address can
be obtained from a broadgast name lookup function, or it can be provided by a hard-wired table
maintained on the network. A hardwired name table is site-dependent.

7. Issue LLCGetHdr with the destination node address.

8. Issue an LLCOpenStation request using a template.

9. Using a template, exchange XID frames as required with the destination node.

10. Using a template, issue LLCConnectStation to activate the Type 2 link station connection.

11. Issue LLCReceive requests to the link station to permit reception of information frames (I
frames).

12. Issue transmit requests as required by way of LLCT2Transmit

13. Reissue receive requests as the receive frames are returned.

14. When done with the link station, issue UCCloseStation.

15. On completion, close the SAP by way of LLCCI.aseSAP.

Establishing a link station requires a significant amount of resource. As a result, only a limited
number of link station.s can be open at any one time. The number of open link station.s allowed is a
parameter to LLC when it is first started. The number of available stations can be determined with
UCGetConfig.

• Figure 4-1 SAPs and link stations

Station 1 resources Station 2 resources

4 I The ~2.2 LLC I IPC Interface

\ode 2

37

- -------------~~-

Medusa Programmer's Guide, Beta Draft Apple Confidential

IPC Requests to 802.2 LLC

Jn all structure dedarations in this chapter, the •type• byte refers to an unsigned ~bit integer, and
'word" refers to an umigned 16-bit integer.

All the structures and sympols used in this document are defined in the indude file IJ.C.h. The
include file 05.h contaim the structures for the IPC messages referred to in this chapter.

In each case, mCode identifies the function. In the reply, m.5ratus holds the result code for the
function. As is the convention with MR-DOS !PC, all requests have an even mCode value and all
replies use the corresponding mCcde plus one.

38 4 I The 8l2.2 IJ.C /!PC Interface

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCOpenSAP

The LLCOpenSAP message activates either an individual or group SAP. This request also specifies
various options and defaults associated with the particular SAP.

F.xample 4-1 shows the struaure of mOData in the !PC message. F.xample 4-2 shows the
structure of the optional stacton parameters that can be pointed to by mDataPtr. Station
parameters can be set to default values by passing mDataPtr as zero.

The universal receive option on a SAP (Example 4-1) allows the SAP to receive all frames directed
to it whether the frames are for an associated link station or for the SAP itself. In this case, a single
posted receive will accept either a Type 1 or a Type 2 frame. When the universal receive option is
used for Type 2 frames (I frame), the RefNum in the completed receive is replaced by the RefNum
of the destination link station.

The universal receive option is provided as a convenience for some SAPs. When used, all receives
should be queued to the SAP, and none to the link stations.

The listener function pointer is a special hook that for certain clients find useful to handle
received frames more efficiently. Most clients should simply specify 0 for this particular bit. Any

listener that is provided must be located on the same slot as the 802.2 interface. A listener function
is called with parameters that pass the media header, information pointer, information length, and
frame type. The listener must be finished with this buffer and header before returning.

An example declaration for the 802.2 UC listener function might be coded as follows:

void Sample_Listener (hp, bp, :.en, ftl
LANHdr •hp; /•Pointer to LANHdr of =eceived f=ame•/

int
int

len;
ft;

if (bp [0 J > 3)
return;

=et:J=n:

/•Pointer to !-field•/
/*Length of !-field*/
/*frame type, 3-9*/

/*If first byte of the I-field is > 3 ignore frame •/

Resuh codes Value Description

LLCNoErr

IJ.CBadSAPOpts

IlCBadPri
LLCMax.Exceeded
U.CBadSAPVaiue

Normal completion

Invalid SAP options

Unauthorized access priority

Parameter exceeds maximum

Invalid SAP value

4 I The 802.2 LLC I IPC Interface 39

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Vaiue

I.LOloGroup

I.LO/oResources

LLCGroup.Limit

llCBadSize

Description

Requested membership in nonexistent group

The maximum number of SAPs are already open

The group SAP already has maximum members

mDataSize has inappropriate length

• Example 4-1 mOData structure for llCOpenSAP and UCModifyParams

typedef struct

lo'Ord
lo'Ord

fun ct ion

byte
*/

byte
byte
byte
void

:.:.:SAPOData;

RefNum;
Options;

SAPValue;

StationCnt;
F ailedGSAP;
Unused;
(*Listener)();

/* Returns refnum assigned to SAP •/
/* Holds SAP options
/* Bit 15: "Universal• receive

•/

Bit 14: "Listener• is a Listening

Bits 13-9:Unused
Bit 8: Reserved
Bits 7-5: Access priority
Bit 4: Unused
Bit 3: Handle XIDs
Bit 2: Individual SAP
B'" : : Group SAP
Bit 0: Unused

/* Holds desired SAP number (individual or group)

/* Max. link stations for this SAP •/
/* Returns failing GSAP •/

/* Unused */

/* Pointer to optional listening function •/

• Example 4-2 mOOataPtr structure for UCOpenSAP, UCOpenStalion, and UCModifyPararns

byte !imerTl;
byte TimerT2;
byte TimerTI;
byte MaxOut;
byte Maxin;
byte MaxOutincr;
;:,yte Max.Retries;
oyte GSAPMaxMem;
40!'C ~axI.F ield.;

oyte GC.-it;

co·:r:e '":3A.P ~ g l _:

_:.:s:ar::.:onflar:-;:s:

/* Response timer value (default = 5) •/

/* Receive Acknowledge timer value (default • 2l */

/* Inactivity timer valu~ (default • 3) */

/* Max. no. of outstanding Tx I frames */

/* Max. no. of outstanding Rx I frames •/
/* Dynamic windowing increment */

/* Max. no. of retransmissions */

!* '!ax .. ,o. cf ,-nembers :Jf a GSAP •/
• ~ax. :eng~~ of :-~!eld •/

/* Number of GSAPs co Join •/

40 4 I The ~2.2 UC I IPC Interface

(

. (r,

(-·.

•'

Medusa Programmer's Guide, Beta Draft Apple C.Onfidenti2J.

Nae that the GCnt and GSAP fields are nct used in LLCOpenStation requests and that
GSAPMaxMem and MaxIFidd are not used in LLC.\1odifyPararns requests.

The timers all range in value fromO (for default) to 10. For TimerTl, values in the range 1-5 use
the corresponding grwp 1 timer interval which is 200 ms. Values in the range 6-10 use the group 2
timer interval which is 1 second

For TimerT2, values in the- range 1-5 use the corresponding group 1 timer interval which is 40
ms. Values in the range 6-10 use the group 2 interval which is 400 ms.

For Timeffi, values in the range 1-5 use the corresponding group 1 timer interval which is 1
second Values in the range 6-10 use the group 2 interval which is 5 seconds .

4 / The ~2.2 IlC I IPC Interface 41

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCCloseSAP

The llCOoseSAP message deactivates. a SAP. An individual SAP should net be closed until all link
stations associated with the SAP are closed. Likewise, a group SAP should net be closed as long as
the group hz any SAPs as members. A SAP can be removed from a group by LLCQoseSAP (for that
SAP), or by LLCMoc::tifyPararm. Example 4-3 shows the structure of mOData in the !PC message.

Result codes Vaiue

LLCNoErr

LLCBadRefNum

LLClinkOpen

LLCSAPOpen

LLCSeqError

Descrlpttcn

Normal completion

Invalid RefNum

Unclosed link stations on SAP

Group SAP cannot close-all member SAPs are not
closed

Sequence error

• Example 4-3 mOData structure for LLCCloseSAP, LLCClC6eSlation, LLCReceiveCancel, and
LLCReset

typedef s-cruct

word RefNum; /• RefNum of SAP to close •/
:..:..c~efNumOData;

42 4 I The ~2.2 I.LC I IPC !ntertace

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCGetHdr

The LLCGetHdr message creates a LANHdr structure that is used to receive, transmit, open a
station, or connect a station to or from the specified node. Options are also provided to return
broadcast header templates.

F.xample 4-4 shows the structure of mOData in the !PC message, and F.xample 4-5 shows the
structure of the LANHdr structure that is returned to the area pointed to by the Hdr field in
mOData. mDataPtr points to the node address and mDataSize indicates the size of that address in
bytes.

Nct all media support all possible options. When an unsupportable option i.5 specified, the !PC
interface builds the best header it can and returns the status LLCNOlFullySupported to the client.
mDataSize must either be zero to get a broadcast template or be the exact size of a node address for
the underlying media.

Rcsuh codes Value Descrlptton

LLCNoErr Normal completion

LLCNotFullySupported Some option or type requested is not fully
supported by thi.5 media

LLCAddrError Invalid remote addres.s-size must be 0 or node
address size for the media

• Example 4-4 mOData structure for LLCGetHdr requests

<:ypedef st:ruc<:

word HdrType; /• Header .types:

O - Normal header
l - Single-route b'cast, all-routes b'cast: return
2 - Single-route b'cast, non-broadcast return

3 - Al~-:ou~es or~adcast ~eader

•/

~c=d Options; /* Header options: Al~ays zero •/

:Oy1:e SS!l.P; /• Source SAP va.:.ue •/
byt:e JSA.P; /• :>est:.:..~at:.:.on SA? value•/

LANHdr •Hdr; /• Pointer co LANHdr s1:ruc<:ure to be returned •/

L.:..CGet:HdrOData;

4 /The ~2.2 LLC I IPC Interface 43

Medusa Programmer's Guide, Beta Draft Apple Confidential

• EDmpk 4-S I.ANHdr structure for IlCGetHdr used by IlCOpenStation, llCConnectStation,
llCReceive, and IlCTransmit

typedef struct

byt.e Media; /* Media indicator:

byi:e Roui:ing;

byte DOff; /*

byt.e DLen; /*

byt.e SOff; /*

byt.e SLen; /*

byt.e ROff; /"

byi:e RLen; /*

byi:e HO ff; /*
byt.e HLen; /*
byte OSAP; /*

byte SSAP; /*
byte HBuf[40]; /*

LANHd.r;

44 4 I The ~2.2 llC I IPC Interface

0 - Unknown

* 1 - LocalTalk

* 2 - 10 Mb Ethernet
3 - 4 Mb Token Ring

* 4 - 16 M.b Token Ring

" 5 - roor
6 - Token Bus

"I
/• Source-routing indicator:

Offset to
Length of
Off set to
Lengt.h of
Off set to
Length of
Q~:set to
Length of

O - No source-routing
1 - IBM source-roui:ing

"I
destination address in header buffer
destination address in header buffer
source address in head.er buffer •I

source address in header buffer */

routing information in header buffer
routing information in head.er buffer
media header in head.er buffer */

media header in head.er buf !er */

::lestination SAP value "I
Source SAP value •/

Head.er buffer */

*/

"I

*/

*/

/'
(

,, ,• ,,

(
Medusa Programmer's Guide, Beta Draft Apple Confidential.

llCGetConflg

The llCGetConfig message returns configuration information about llC. Examp/.e 4-6 shows the
structure returned to the address passed in mDataPtr.

Result codes Value -

UCNoErr
llCTruncated

Descriptton

Normal completion

Buffer too short to receive all information

• Example 4-6 Structure mDataPtr points to following completion of llCGetConfig

:ypedef st.rue:

.:.o;.g

long

long

long
long

long

:..:.cversion;
?Addr;

GlTimerl;
G2Timerl;
G1Timer2;

G2Timer2;

/• LLC Version ID •/

/• Func:ional address (:oi<.en ring only) •/

/• Group 1 timer 1 (response timer) in milliseconds •/

/• Group 2 timer
/• Group 1 timer 2

/• Group 2 timer 2

(response timer) in milliseconds •/
(receive ack) in milliseconds •/

(receive ack) in milliseconds •/

long Gl!Timer; /* Group 1 inactivity timer in milliseconds •/

long G2:Timer; /* Group 2 inactivity timer in milliseconds */

'#Ord MaxFrameLen; /* Maximum frame length •I

.,,.ord ASAP s; I* Avai.:.able SAP s •I

word Ast.at.ions; /* Available stations •/

word MaxHeader; /• ~aximum header size for this media •/

byte LLCClass; /* Class of LLC implementation:

byte Media;

byte Rout.ing;

- Implements typel only
2 - Implements typel and Type 2

•/

/• Media indicator:

*/

O - Unknown

l - Local!alk

2 - lO ~b S:~e:~et

3 - 4 ~b :cken ~ing

4 - :6 ~b :ck.en Ring

5 - FCID I

6 - Tci<en 3us

/* Source-routing indicator:

•/

O - No source-routing

1 - IBM source-ro~ting

byte AddrLen; /* Length of node address in bytes •/

byte Addr (9 J; I* This node's address •I

!::yte NumGAddrs; /* The number cf -;roup addresses t.nat follow • 1

cyce ~AOdr9ut[::: 1 • Star~ ~f :;roup aadresses ; .:.eng1:::. ~adress 9a1.rs / ,,. /

4 / The 002.2 UC I IPC Interface 45

Medusa Programmer's Guide, Beta Draft Apple Conf ldential

LLCOpenStation

The LLCOpenStation message allocates resources to support a connection between two stations.

Refer to Examp/8 4-7 for the structure of mOData in the !PC message. Refer back to Example 4-2
for the structure of the statio!_l parameters that can be pointed to by mDataPtr. The station
parameters can be set to default values by passing mDataPtr as zero. Example 4-5 shows the
LANHdr structure that is pointed to by the Hdr field in mOData.

The RefNum parameter (Example 4-3) holds the RefNum of the local SAP when the request is made
and returns the new station's RefNum on successful reply. The high byte of the RefNum is the
reference number for the SAP, and the low byte is the reference number of the link station.

Result codes Vaiue

LLCNoErr

llCBadPri

llCBadRefNum

LLC\iaxf.xceeded

LLCBadSAPValue

LLC'l"oResources

LLCAddrError

llCBadSize

Descnption

Normal completion

Unauthorized access priority

Invalid RefNum

Parameter exceeded maximum

Invalid SAP value or SAP value already in use

Maximum number of link stations are already open

Invalid remote address-group address invalid

mDataSize has inappropriate value

• Example 4-7 mOData structure for LLCOpenStation and LLCConnectStation requests

1:ypedef struct

word RefNum;
word StaOpts:

/* Returned station refnum •/
/* Station options:

Bits 15-8:
Bi:s 7-5:

Bits 4-0:

Unused
Pr:.or::y
Unused

:.ANH er • !1cr: /• ?c.i.:i~er !..ANHdr ~oldi.;g

remote node address •/
:.LCSta1:ionOData;

46 4 I The ~2.2 I.LC I IPC Interface

(

.,
'('

Medusa Programmer's Guide, Beta Draft Apple Conf ldential

LLCCloseStatlon
The llCCl~tation message causes a link station to go to a closed state. Refer back to Example 4-3 for the
structure of mODara in the !PC message.

Resu.11 codes Value

UCNoErr

UCBadRefNum

UCClosedNoAck

llCSeqError

Descrtptton

Normal completion

Invalid RefNum

Station closed without remote acknowledgment

Sequence error-have already issued a cl05e to this link

4 I The 8l2.2 UC I !PC Interface 47

Medusa Programmer's Guide, Beu Draft Apple Confidential

llCConnectStatlon

The LLCConnectSWion message plaq:s the local and remote link stations into the data transfer
state. Example 4-7 shows the structure of rnOData in the !PC message. Ref er back to Example 4-5
for the I.ANHdr structure pointed to by the contents of rnOData.

Rcsuh codes Value

LLCNoEtr

LLCBadRefNum

LLCProtoError

LLCRoutingError

llCConnSeqError

llCConnFail

48 4 /The 002.2 UC I !PC Interface

Description

Normal completion

Invalid RefNum

Protocol error-link in invalid state for command

Invalid routing information length

Connect sequence error
The remote station did not accept the connection
request

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

llCModifyParams

The LLCModifyParam.s message is used to modify either open link station parameters or default
SAP parameters.

Refer back to Example 4-1 for.the structure ci mOData in the !PC message and to Example 4-2 for
the structure ci lhe station parameters that can be pointed to by mDataPtr. Specification of the
station parameters can be set to default values by passing mDataPtr as zero. The only fields in the
LLC5APOData structure used for this request are RefNum and the access priority in SAPOptions.
Any GSAP addition that failed is returned in FailedGSAP.

If the low-order bit of a specified GSAP is zero, the specified group SAP membership should be
added. If the low-order bit is one, the specified group SAP membership should be cancelled.

Result codes Value

LLCi~oErr

LLCBadPri

LLCBadRefNum

LLCMaxF.xceeded

LLG'loGroup
LLCGroupLimit

LLC~otMember

LLCBadSize

Description

Normal completion

Unauthorized access priority

Invalid RefNum

Parameter exceeded maximum

Requested group membership in nonexistent group SAP
Group SAP has maximum members

Member not found in group SAP

mDataSize has inappropriate value

4 I The 8'.>2.2 LLC I !PC Interface 49

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCReceive

The LLCReceive me:mge ~ used to receive frames from a link station or a SAP. F:xample 4-8 shows
the structure of mOData in the !PC message,and Example 4-5 shows the description ci the LANHdr
structure that can be pointed to by Hdr.

mDataPtr points either to a buffer that receives the frame or, if the "list-directed• bit ci the
Options field is set, to an array of counts and pointers. See F.xample 4-9 for the structure ci the
array of counts and lengths.

Do net use be "list-directed• option in conjunction with a SAP listener function (see LLCOpenSAP).
The number of elements in the list is determined by mDataSize, as usual. Multiple receives can be
queued for any given RefNum, which allows reception of Type 1 or Type 2 frames. Normally this
interface requires the receiver to provide the buffer space. If the "use interface buffer• bit ci the
Options field is set, the interface fills in addresses for mDataPtr and Hdr. When the "use interface
buffer" feature is used, the dient initially passes mDataPtr and Hdr as zero and passes back to LLC
any buff er that is present on completion of the receive. After completion the buffers are returned

.. to the interface by reissuing the receive or by issuing LLCRetumBuffer.

Result codes Value

LLCNoErr

LLCBadRefNum

LLCM.sgReject

U.CCarx:elled

LLCBadPointer

50 4 I The ~2.2 U.C I IPC Interface

Descrtptton

Normal completion

Invalid RefNum

Unusual interface error

Receive cancelled, either explicitly or by dose operation

Bad pointer passed as "interface-owned'

Medusa Programmer's Guide, Beta Draft Apple Confidential

llCReceiveCancel
The U.CReceiveCancel memge ~used to cancel all outstanding receives on either a link station or a SAP. Refer
back to Example 4-3 for the structure.of mOData in the !PC message.

Result codes Value·­

llCNoErr

U.CBadRefNum

.Descriptton

Normal completion

Invalid RefNum

• Example 4-8 mOData structure, LLCReceive, U.CT1Transmit, and LLCTZrransmit requests

~ypedef st=;;c:.

word
word

RefNum;
Options;

/• RefNum :or link station or SAP •/
/• Options:

Bits 15-8:

• Bit 7:
Bit 6:

Bits 5-0:

•/

Unused
List-directed
Use interface buffer
(LLCReceive only)
Unused

word :nfoLen; /• Ler.gth of information placed in buffer •/
byte Frame:ype; /• Ret~r~s received frame type Ion LLCReceive) or

byte FS;
LANHdr ·Hdr

:.:.::xRxODai:a;

"' Speci.:ies ~=ame to send ton r..:.,cr~Transmi':.):

06 XID resp (:=l)

02 r frame 07 XID resp I f=O)

03 or frame 08 Test resp (f=l)

04 XID cmd (p=l) 09 Test resp I f=Ol

05 XID cmd (p•O) OB Test: cmd (p=l)
•/

!• Recurns frame stat:us (token-ring Type l only) •/
/• ?ointer to LANHdr IN/A to LLC:'2Transmit:I •I

• Example 4-9 Structure for list-directed receives and transmits

st.=·..:.c:.

word
byte

array[];

Count;
•Ptr;

J• Byte count for chis transfer •/
/* Poincer for chis transfer */

4 I The ~2.2 U.C I IPC Interface 51

Medusa Programmer's Guide, Beta Draft Apple Confidential

llCTlTransmit

The llCTlTramml memge is used to send a Type 1 frame. Refer to Example 4-8 for the structure
of mOData in the IPC mes.sage and to Example 4-5 for the description ci the LANHdr structure that
can be pointed to by Hdr.

mDataPtr points either to_ a frame holding the buffer or, if the "list-directed" bit of the Options
field is set, to an array ci counts and pointers, as with receive. See Example 4-9 for the structure ci
the list-directed transmit array. Typically, FrarneType 3 is used for Type 1 transmiMions.

Result codes Value Descript1on

LLOloErr Normal completion

LLCBadPri Unauthorized access priority

LLCTxError Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame

LLCTxTooLong Invalid transmit frame length

LLCBadRefNum Invalid RefNum

LLCRoutingError Invalid routing information length

LLCBadFrame Invalid frame type

LLCCarx:elled Transmit cancelled

52 4 I The 8>22 llC I IPC Interface

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

llCT2Transmit

The UCT2Transmit message is used to send a Type 2 frame (I frame) through a link station. Refer
to Example 4-8 fcr the structure of mOData in the !PC message and to Example 4-5 for the
description of the LANHdr structure that can be pointed to by Hdr.

mDataPtr points either to a frame holding the buffer or, if the "list-directed" bit of the Options
field is set, to an array of counts and pointers, as with receive. See Example 4-9 for the structure of
the list-directed transmit array. Typically, FrameType 2 is used for Type 2 transmissions.

Resuh codes Value

LLCNoErr

UCBadPri

UCTxError

LLCUnauthM.AC

LLCNo!Frames

UCTxTooLong

UCBadRefNum

UCProtoError

UCCancelled

Description

'.'\orrnal completion

Cnauthonzed access priority

Error in frame transmit or strip

Unauthorized M.AC frame

Link not transmitting I frames

Invalid transmit frame length

Invalid RefNum

Protocol error-I frame issued before OM.A ready

Transmit cancelled

4 / The 802. 2 UC I !PC Interface 53

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCReset

The LLCReset memge reset san incli".idual link station or a SAP and all ri its link stations. Be certain
to use the correct RetNum so that a link station is not inadvertently reset Refer to Example 4-3 for
the structure of mOOata in the IPC message.

Result codes Value

LLCNoErr

LLCBadRefNum

S4 4 I The 8>2.2 LLC I lPC Interface

Description

Normal completion

Invalid RefNum

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCReturnBuffer

The LLCRetumBuffer request ~ used lo return interface-owned receive buffers to the interface.
~ormally this ~ not needed since requeuing the receive also returm the buffer. However, a race
condition can occur when closing a SAP that can result in the dient receiving completed receive
requests and yet not being able to requeue the receives because an LLCQC6CSAP request has already
been sent. When this rare event occurs, the U.CReturnBuffer request ~ used to return the buffers.

To return a buffer, set mDataPtr to the buffer address and place the address of the header in
mOData(O]. This message has no reply.

Rcsuh codes There are no result ccxies for this func.tion because there is no reply.

4 / The ~2.2 LLC I !PC Interface 55

Medusa Programmer's Guide, Beta Draft Apple Confidential·

llCGetStatistics

The LLCGetStatistics message is used·to get statistics for a link station. Refer to F.:lample 4-lOfor
the structure of mOData in the IPC message and to F.:lample 4-11 for the description of the
structure returned to the area_pointed to by mDataPtr. The type of statistics tracked include

• Number ci I frames sent and received

• Number ci I frame errors sent and received

• Tl timer expirations

• Last command/response sent or received

• Primary and secondary link states

Result codes Value

LLC'loErr

LLCTruncated

LLCBadRefNum

Description

Normal completion

Returned data incomplete due to inadequate buff er
space

Invalid RefNum

• Example 4-10 mOData structure for LLCGetStatistics requests

i::ypedef si::ruc:;

word RefNum;
word Options;

word Act:.en;
::CGetSta:is:icsOData;

56 4 I The fl>2.2 LLC I IPC Interface

/• RefNum of link si::ation •/
/• Opi::ions:

•/

Bii:: 15: Clear error counters
after rei::urninq stai::istics

Bits 14-0: 0 Unused

/• Actual length of buffer returned •/

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

• Example 4-11 mDat.aPtr pointer to UCGetStatistics buffer

typedef
(

struct

word
word
byte
byte
word

byte
byte
byt.e

byt.e

byte

oy:e

NumITx;
NumIRx;
NumIRxErr;
NumITxErr;
NumTlExp;

LascCmdRx;
LastC:ndTx;
?riStat.e;

SecStat.e;

TxState;
~xSta~e;

:.as:: SR;

~n'Jsed;

:.ANHdr :ldr;

/" Number of I frames sent "I
/" Number of I frames received "I

/" Number of bad frames received "/
/" Number of I frames sent ending in error
/" Number of times Tl expired when not "I
/" transferring data "I
/" Last. command/response rcvd (LLC byte 0)

/" Last. command/response sent "I
/" :.ink primary st.ate:

3it. 7: Closed
3it 6: ::lisconnect.ed
3it. 5: Disconnecting

.. Bit 4: Opening
Bit 3: Reset.ting
Bit 2: FRMR Sent .. Bit 1: FRMR Received

.. Bit 0: Opened
"I

/" Link secondary state:

"I

I"
/"

I•

I"

/" ;.ANHdr

Send

Sit 7: Checkpointing
3i t 6: Local busy (user set l
Sit 5: Local busy (system)
Bit 4: Remote busy
Bit 3: Reject.ion
Bit 2: Clearing
Bit 1: Dyn. win. running
Bit 0: reserved

state variable V(S) "I
Receive state variable V(R) "I
:.a st received N !R) "I

Unused "I
used to send T !:::ames "I

"I

"I

4 I The ~2.2 llC / IPC Interface 57

Medusa Programmer's Guide, Beta Draft Apple C.onfidential-

LLCStatus

The ~2.2 I.LC interface sends the IlC:Status mes.sage to the client of a particular link that has
changed status. There is no specific reply to this message. Refer to F:xample 4-12 for the structure
of mSData in the IPC mes.sage and to F.::ample 4-13 for the structure of mOData in the !PC
message.

• Example 4-12 mSData structure in llCStatus messages

typedef struct
{

word
word

RefNum;
Status;

byte FRMR[SJ;
byte Priority;

LLCStatusSData;

/• RefNum cf link station •/
/• LLC status bits:

Bit lS:Link lost
Bit 14:Disconnected
Bit 13:FRMR rcv'd

* Bit 12:FRMR sent
Bit ll:SABME rcv'd

* Bit lO:Opened link
Bit 9:Remote busy

*/

Bit S:Remote not busy
Bit 7: TI expired
Bit 6: Counter ovfl.
Bit 5: Priority reduced
Bits 4-0: Reserved

/* Holds FRMR response (if bit 12 or 13 set) •/
/* Holds access priority (if bit 5 set) •/

• Example 4-13 mOData struc.ture in llCStatus messages

by:e AddrLen;
Addr:9!;
:<SAP;

LLCStatusOData;

/* ::.ength of remote node address :n bytes •/
/• Holds remote node address Ii! bit :o setl •/
!* Holds remote SAP value (if bit :o setl •/

58 4 I The ~2.2 llC I !PC Interface

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

LLCSetFunctio nalAddr

The UCSetFunctiooa!Addr message Ls used to add or remove bits to the functional address. Refer to
E.xample 4-14 for the structure of mOData in the !PC message.

Result code Value

UCNoErr

Description

Normal completion

• Example 4-14 mOData structure for UCSetfunctionalAddr

'.: ypede f sc rue'.:

wora Opt.i..on;

:ong Addr;

:LCSecFunctionalAddrOData;

/• I!: zer-o, add ot!"-ierwise :-emove .. /

/• ~ask of bits ~o add or remove •/

4 I The ~2.2 UC I !PC Interface 59

Medusa Programmer's Guide, Beta Draft Apple Confidential-

Functions supporting 802.2 /--

In addition to the previous IPC messages, the ~2.2 interface supplies a library containing the
following support function:

Name
llCSwapHdr

LLCSwapHdr

Description

Swap addresses in 1.ANHdr structure for return to sender

The LLCSwapHdr function swaps the addresses in a UNHdr. Thi.s swapping usually be done to
respond to a Type 1 frame. '.'lonnally the caller provides its own SAP value for the SSAP. The SSAP
for the swapped header cannot be taken from the DSAP in the header because the DSAP might be a
group SAP, and group SAPs cannot be SSAPs.

Call the llCSwapHdr function by using Pascal calling conventions:

pascal void LLCSwapHdr(LANHdr 'Hdr, byte SSAP);

60 41 The ~2.2 U.C I IPC Interface

Medusa Programmer's Guide, Beta Draft Apple C.Onfx:!ential

Chapter 5 Apple IPC Services

T H I S C H A P T E R P R E S E N T S the Apple interprocess communication

(!PC) services provided by the Macintosh Operating System on the Macintosh

II. !PC services provide a means of passing messages between processors

that reside on Lhe NuBus. An Apple smart card, such as the TokenTalk NB

card, has its own on-card operating system called Minimal Realtime

Distributed Operating System (MR-DOS). The MR-DOS !PC interface is fully

described in the Macintosh Coprocessor Platform Developer's Guide. This

chapter summariz.es Lhe applicable Apple !PC services , which are fully

described in the Developers Guide. •

61

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information
The code for MR-DOS and Apple !PC-includes a collection of trap.$, interrupt handlers, and tasks that
provide support for process naming, timing services, and intercard and inuacard communications
using messages. These routines enable a smart card to support a multitasking distributed operating
environment for communicatlOns and other real-time services on the same card or on other smart
cards installed in the Macintosh II computer.

Interprocess communication is accomplished through communication messages that are fixed­
size but flexibly formatted MR-DOS allows dynamic name-binding of tasks to support interprocess
communication.

Apple !PC CinterProcess Communication) is a combination of a driver and support software
found in the Apple !PC fde in the Apple !PC folder on the distribution disk. Apple !PC provides
message-passing and naming services for communications from the Macintosh II to tasks on
smart cards such as the TokenTalk NB card Apple IPC is simiiar to the InterCard Communications
Manager on MR-DOS.

Apple !PC is a driver and associated interface code in the form of a library that runs under the
Macinta;h Operating System. The Apple !PC driver handles all message passing (interprocess
communication) between processes on the Macintosh II Operating System and Macintosh
Coprocessor (MCP) card tasks on the NuBus.

Periodically, Apple !PC scans for and processes incoming messages, receives calls that have
timed out, activates slOlS that have timed out, and processes outgoing messages. The driver
receives messages from and delivers messages to Macintosh II processes u.sing calls to Apple !PC
driver.

An application that uses Apple !PC mu.st have an initial call to OpenQueue to establish its use of
Apple !PC. Messages are sent and received by way of the Send and Receive calls, much like tasks
under MR-DOS. Several source-language examples of applications are provided in the Apple !PC
folder on the distribution disk.

Apple IPC driver

Apple IPC services are handled by the Apple !PC driver, which handles all message passing between
processes on the Macintosh II operating system and smart card processes on the NuBus. The
Macintosh II process sends to and receives from smart card processes by way <i calls to the Apple
!PC driver.

The Apple IPC fie b placed in the System Folder; routines contained in the file are installed by
the !NIT 31 mechanim1 during system startup.

During initiaiizatioo, the driver sets up a communication area. It then searches NuBus slots for
the InterCard Communication !vfanagcr (ICC:\fl communic:ltion areas of sman cards installed in the
Macintosh II, much as the MR-DOS ;CC:..f does. For eacn vaiid communication area founa, me driver
stores the address <i the Apple !PC communication area in a vector in the sman card's
·:ommunic:ltion are:i.

62 5 I Apple IPC Services

(

(

Medusa Programmer's Guide, Beta Draft Apple Confidential

Periodically, Apple !PC scans for and proces.ses Receive operations that have timed out,
incoming messages, active slots that have timed out, and outgoing messages. The driver receives
messages from and delivers messagei to the Macintosh II processes.

Apple IPC library
The object routines, or glue ccx:le, in the Apple !PC library provide the interface between a Macintosh
application and the Apple !PC driver. These routines provide for opening and closing the message
queue to the driver, gelling and freeing message buffers, and sending and receiving messages.

In addition, the Apple !PC library provides access to many of the same utilities that MR-DOS
provides, such as moving data, obtaining the operating environment, and registering and looking up
task names through the Apple !PC Name Manager. These routines are located in the Apple
IPC:IPCGlue.o me on the distribution disk. The C language calling sequence is used in all of these
routines.

Apple IPC managers

The managers for Apple !PC are the Echo Manager and the Name Manager. These Apple !PC
managers perform functions identiol to and have the same message interface as those of their MR­
DOS counterparts; minor differences are due to the slightly different interface wilh Apple !PC.

The Apple !PC managers are tasks that cany out higher level services on behalf of applications
on the Macintosh II computer. These managers are often referred to as slot 0 managers, and the
Macintosh itself is sometimes ref erred to as the slot 0 card.

• Note The slot 0 card is not to be confused with the Slot Manager in the Macintosh II (part
of the Macintosh Operating System).

5 I Apple !PC Services 63

Medusa Programmer's Guide, Beta Draft Apple Confidential

Using Apple IPC

To establish its use of Apple IPC, an application must have an initial call to OpenQueue to establish
its use of IPC. Each process that uses Apple !PC requests that a queue be opened for messages
addressed to that process.

Much like tasks under MR-DOS, messages are sent and received in Apple !PC by way of the Send call
and the Receive call.

• When the driver gets a Receive request and no completion routine is specified, it searches the
queue for a message matching the criteria specified. If it finds a matching message, the driver
returns to the process. If it finds no matching mes.sage, the driver either returns immediately
or, depending on the timeout specified, lets the process wait for a matching mes.sage
(indefinitely if the timeout is 0, or until the timeout is reached). Waiting is handled by placing
the process in an internal timeout queue.

• The Receive request behaves differently when a completion routine is specified. Additional
information on the Receive call follows in this chapter.

• If a Send request is destined for a process on the Macintosh II, the destination process is
unblocked, if waiting, or the message is placed in its queue. If the mes.sage is destined for a task

· on a smart card, the message is transferred to the ICCM on that slot. for delivery to the task.

Apple IPC services

This section describes the Apple !PC services and provides examples of how to call primitives from
bah C and assembly language. These services are provided to support features similar to those of
~-DOS for applications running on the Macintosh II computer. The MCP Deveioper's Guide
contains additional information on both MR-DOS and Apple !PC.

• Nole. As with MR-DOS, Apple !PC uses C calling conventions, and all registers are preserved
except DO, 01, AO, and Al. Calls in both C and assembly language take arguments and use
similar data suuc:tures. Any macros referred to in this chapter are for examples only and do
not exist on the clistribution disk at this time.

Table 5-1 briefly describes the services provided by Apple !PC.

64 5 I Apple IPC ServictS

Medusa Programmer's Guide, Beta Draft

• Table H Apple !PC services

Apple C.Onf idential

Name

Cla;eQueue
CopyNuBus

FreeMsg

Get Card

GetETick

GetlCCTID

Get!PCg

GetMsg

GetNameTID

GetTickPS

GetTID

ls Local

KillReceive

Lookup_ Task

OpenQueue

Receive

Register_ Task

SeOO
SwapTID

CloseQueue

Description

Coses an Apple IPC queue

C.Opies a block of data from the source address to the destination
address

Frees a message buffer

Returns the NuBus slot number on which the calling process is running

Returns the number ri major ticks since the operating system started

Returns the task identifier of the InterCard C.Ommunication Manager

Returns the address Ii the global data area within the Apple IPC driver

Gets message buffer

Returns the task identifier of the Name Manager

Returns the number of major ticks in one second

Returns the task identifier of the calling task

Returns an indication of the locality of an address

Cancels an outstanding receive request

Returns the task identifier ri the task that matches the object and
type names specified

Opens an Apple !PC queue

Receives a message

Allows a task to register itself with the object and type names
specified

Sends a m6sage

Swaps the mFrom and mTo fields in a message buffer

CloseQueue doses the queue that was previously opened. Make thi.5 IPC call last prior to
terminating an entitiy.

The C declaration fa OoseQueue i.1

void CloseQueue();

The following ex:unpie provides an equivalent ri CloseQueue in assembly language.

~SR CloseQueue

5 I Apple !PC Services 65

Medusa Programmer's Guide, Beta Draft Apple Confidential

CopyNuBus

CopyNuBus ~ies a block of dat3. and does a simple move of bytes from the source to the
destination, without checking for overlapping source and destination addresses. The number of
bytes is specified in the count parameter. The source address and destination address may be either
Macintosh main memay or memory on a smart card. This routine deals with the complexity of
pctential 32-bit NuBus addresses for the source and the destination, but it does not deal with the
~ibility of overlapping buffers.

A. Warning Don't overlap the source and destination blocks. Doing so could cause
partial overwriting of the destination block. •

The C declaration for CopyNuBus is

void CopyNuBus (source, deltination, count);
char •source; /'* Address of source buffer '*/
char '*destination; /'* Address of destination buffer '*/
unsigned short count; /'* Byte count '*/

The following example provides an equivalent c:J CopyNuBus in ~mbly language.

MOVE.L iCount,-(A7)
?EA

PEA
JSR
ADD.L

FreeMsg

Destination
Source
CopyNuBus
U2,A7

FreeMsg frees a message buffer that was acquired earlier by a call to GetMsg.
The number of messages initially available depends on the number requested in the named

resource Apple lPC entries c:J type aipn in the Apple IPC driver file.

The C dedaration c:J FreeMsg is

void FreeMsg(mptr J;

message *mptr; /* pointer to message buffer to free '*/

The form fa the PreeMsg macro is as follows, where Pl is the address of the ~ge buffer to be
freed:

[La.bell FreeMsg ?l

To indicace the location coot3.ining the desired address, Pl can be specified as a register (AO-A6, DO­
D7). or bv using anv ~ addressin15 mode valid in an LEA instruction.

66 5 I Apple IPC Services

(
Medusa Programmer's Guide, Beta Draft Apple Confidential-

Get Card

GetCard retums the NuBus slot numb.er on which the calling process is running. For the Macintosh
II computer, the number returned is always zero.

The C declaration for GetCard_is

char GetCard ();

The following example provides an equivalent of GetCard in assembly language. On return, DO
contains the NuBus slot number on which the calling process is running .

.;"SR Ge1:Card

GetETick

GetETick returns the number of major ticks--that is, the elapsed time in ticks-since the
operating system started.

The C declaration for GetE'rick is

unsigned long GetETick();

The following example shows how to call GetETick using assembly language. To return the
number of major ticks, get the value of location gMa jorTick in the gComrnon data
area.

JSR GetETick

• Note. A tick on the Macintosh II is of a different duration than that on an MCP card.

GetICCTID

GetICCTID returns the task identifier of the InterCard Communication Manager.

The C declaration for GetICcnD iS
tid_type GetICCTID C);

An equivalent <i GetICCI1D in as.5embly language is given in the following example. On return, DO
contains the task identifier of the ICC.\1 .

.;sR Ger.!c~::::o

5 I Apple IPC Services 67

Medusa Programmer's Guide, Beta Draft Apple Confidential-

GetIPCg

GetgIPCg returns the address of the data area of the Apple !PC driver. This routine is an aid for
advanced developers. Refer to the include files on your distribution disk for the structure of IPCg.

The C declaration for GetgIPCg is

struct IPCq *GetIPCg();

The following example provides an equivalent of Ge!.IPCg in assembly language. On return, DO
contains the addres.5 of the data area of the Apple !PC driver.

..;"SR GetI?Cg

A Warning Use this call at your own risk. Subject to change with no notice. •

GetMsg

GetMsg requests a message buffer from the free-message pool. Get~g returns either a pointer to
the allocated message or zero. A FreeMsg call releases the message.

All fields in the message, except message ID (rnID) and the From address (mfrom), are cleared
before the pointer to the message is returned. Message ID is a message field set to a number that is
statistically unique; the From address is a message field set to the current task identifier.

The C declaration of Get.Msg is

message •GetMsg();

The form for the Get."'1.sg macro is

'.;etMsg

The address of the allccared message buffer is returned in DO unless no buffer was available. In that
case, 0 is returned in DO.

68 5 / Apple !PC Services

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

GetNameTID

GetNarneTID returns the ta.sk identifrer of the Name Manager. The C declaration for GetNameTID
is

tid_type GetNameTID ();

The following example gives an equivalent of GetNameTID in assembly language. On return, DO is
the ta.sk identifier of the Name Manager.

JSR GetNameTID

GetTickPS

GecTickPS returns the number of major ticks in one second.

The C dedaration for GetTickPS is

unsigned short GetTickPS ();

The following example provides an equivalent of GetTickPS in assembly language. On return, DO is
the number of major ticks in one second.

JSR GetTickPS

GetTID

GetTID returns the ta.sk identifier of the calling ta.sk.

The C declaration for GemD is

t.:.d_::ype Get:'I:l ();

The following example provides an equivalent of GemD in assembly language. On return, DO is the
ta.sk identifier of the calling ta.sk.

JSR Get TIO

5 I Apple !PC Services 69

Medusa Programmer's Guide, Beta Draft Apple Confidential

Islocal

IsLocal returns true or false to indicate whether an address is local.

The C declaration for IsLocal is

short Is Local (address)
char •address; t• address to test. */

IsLocal returns true (nonzero) if the address passed i.s local, false (zero) if it is a remcxe NuBus
address.

The form for the IsLocal macro is as follows, where Pl is the address to examine.

c:.abel] :sLocal

To indicate the location of a longword containing the desired value, you can specify Pl as a register
(AO-A6, 00-07), an immediate (t<abs-expr>), or use any~ addressing mode valid in an LEA
instruction.

KillReceive

KillReceive cancels any ourstanding Receive request for this process. .'vtessages destined for this
process are not discarded.

The C declaration for KillReceive is

void KillReceive();

The following example shows how to Clll KillReceive using assembly language:

:SR KillReceive

Lookup_Task

Lookup_ Task returns the task identifier of the process or task that matches the Object Name and
Type ~.fame specified, or 0 if no matching process or task is found The wildcard character •.• is
allowed. Initially, set the index to 0. Subsequent calls might modify the index, which should be left
unchanged.

Lookup.,;Task modifies the variable index. The variable index allows Lookup_ Task to find any
additional entries that might match the criteria in subsequent calls.

The C declaration for Lookup_ Task .is

:~a_:ype LcoKup_7asK (CO)ec:. ~ype, 1m_,:D, ~naexJ

cnar co ject [; ; I• Object Name •I
=har -:ype ,, ; /* ~ype Name •/

~arne ~anaqer :asK :den~~::er •1 : ~c:_::ype
.. ::s;.gned ~her": •:.:-.a.ex: :.::o.ex • .'

70 5 I Apple !PC Services

Medusa Progranuner's Guide, Beta Draft Apple C.Onfidential

The task identifier ci the Name Manager is run_ TIO, and it can be obtained by using GetNameTID
for name managers on the Macintosh II, or by sending an ICC_GetCards message to the ICCM for
name managers on NuBus cards. Lookup_ Task returns the task identifier ci the first process or
task that matches the criteria.

The following code shows how to look up all processes on the main logic board of the Macintosh
II computer:

short index;
tid_type tid;

index z O;

whi:..e 1 l':id = !.ook'clp_:ask I"=", "s", Gei:Name!:D (), &index)) > 0)

pr.:~'it! ("~:J \x Fo:.;r.C \::", :id);

The following example shows how to call Lookup_ Task from assembly language:

MOVE.W
PEA

MOVE. L
MOVE.!.
PEA
PEA
:sR
ADDQ.iol
C'ST. W

BNE.S

tO,INDEX ; initialize index
INDEX ; address of index
TID,DO ; value of tid on stack
DO,-(A7) place on stack
TYPE NAME address of type name
OBJECT NAME address of object name
Lookup_:'asi<

pep :'.ie stack

DO ; check if ~ound

00,XXX jump if found

5 I Apple !PC Services 71

Medusa Programmer's Guide, Beta Draft Apple Confidential

Open Queue

OpenQueue as.signs an !PC queue anc;I returns the TID cf the process that called OpenQueue. If if
no queue could be as.signed, it retUms zero. This method allows you to set up your O'Wl1 procedure
to detennine what to do while waiting on a blocking Receive; if you do no< want to use this
mechanism, use a parameter of zero. This procedure also lets yoo decide whether to cancel the
outstanding Receive request or discontinue communication with Apple !PC; that is, it lets you
check for operator termination.

This function must be called before any other call to !PC can be made. You can issue either

• an Apple!PC OoseQueue request, or

• a Kil!Receive request

If the procedure issues an Apple!PC CoseQueue request and returns to the Apple IPC driver, then
the driver retUms to the outstanding Receive request with a value of 0. Issuing a KillReceive
request returns 0 to the Receive request (no message).

The C declaration for OpenQueue is

tid_type Oper.Queue(procedurel
void (*procedu::el (); /* Procedure to execute while waiting•/

/* for blocking receive to complete. */

+ Note. This parameter is required; use 0 if you do not want to call the procedure.

The fonn for the OpenQueue macro is as follows, where Pl is the address cf the procedure to
execute while vniting for a blocking receive to complete.

[Label OpenQueue Pl

To indicate the location of a longword containing the desired value, you can specify Pl as a register
(At>-A6, 00-07), an immediate ('l<abs-expr >) , or use any 6&XXl addressing mode valid in an LEA.
instruction.

72 S I Apple lPC Services

··~

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Receive

Receive returns the highest priority message from the message queue of the process that matches
the specified criteria.

The C declaration of Receive is.

message

unsigned

tid_type

unsigned

*Receive(mID, mfrom, mCode, timeout, compl)

long mID; /* Onique message ID to wait on

mFrom; /* Sender address to wait on

short mCode; /* Message code to wait on

long timeout; /* Time to wait in major ticks

/* before giving up

*/

*/

void compl (I ; /* Address of a completion routi~e •/

*/

*/
*/

The first three parameters (m!D, mfrom, and mCode) are selection criteria used to receive a specific
kind of message. These parameters can be set to match either a specific value, any value (by
specifying OS_MATQ-I_All), or no value (by specifying OS_MATQi_NONE).

The fourth parameter is the timeout value. A timeout value of 0 waits forever for a satisfying
message. A negative value returns either a satisfying message or 0 immediately, and a positive value
waits that many ticks for a satisfying message to arrive.

• Note. If a completion routine is not specified, the !PC Receive performs in exactly the same
way as the MR-DOS Receive primitive.

The fifth parameter is the address of a C completion routine. Required for Apple !PC, compl

changes the way the Receive request performs. The compl parameter must be either the address
of a completion routine or zero, if no completion routine is desired. When this completion routine
parameter is nonzero, the call to Receive always returns immediately with a result of 0.

The completion routine is called with a parameter of type ·message ·' If the completion routine
is passed a pointer of zero, a timeout occurred.

• Note; It is possible to call the completion routine before the Receive actually returns. The
purpose of the completion routine is to provide a mechanism by which the Macintosh II
application can continue to execute without having to wait for a message. This is necessary
because the curreru version of the Macintosh II operating system is net a multitasking
operating system; therefore, the application cannot cease to process events. Under MR­
DOS, a process an do a blocking Receive and pennit other processes to execute.

Table 5-2 describes the results from vanous senings of the timeout parameter in maJOr ticks for
the Receive call. The results column describes what is returned to the Receive request and
:.:ompietion rouune. 15 weil as when the completion rouune :s wiled.

5 I Apple !PC Services 73

Medusa Programmer's Guide, Beta Draft Apple Confidential

• Table 5-2 Stale table for the Receive call
Name Descripdoll

Time- Comple· Message Immediate Sub5equent
out tion available results results
value routine

<O No(O) No Returns 0 to the Receive None
request

No(O) Yes Returns message to None
Receive request

Yes No Apple !PC driver returns None
0 to the Receive request;
completion routine ~
ncx called

Yes Yes Apple !PC driver calls None
the completion routine with
the message; driver then
returns 0 to the Receive request

-0 No(O) No Waits until it gets a message, Waits for a
then returns a message to the message;
Receive request OpenQueue

routine~

called
continuously.

No(O) Yes When a message arrives, None ,,,. -,,

returns a message to the
"-.,....,.., .. .r'

Receive request

Yes No Returns O to the Receive None
request; when a message
arrives, the driver calls the
completion routine with
the message

Yes Yes Returns a message to the None
completion routine and
returns 0 to the Receive
request

'14 5 /Apple !PC.Services

(

:(

Medusa Programmer's Guide, Beta Draft Apple Confidential

Table S-2 (continued)

Time- Complc- Message· Immediate
out ti on available results
value routine

:>() No(O) No Waits for a message

If the time interval that
you specify expires, then
it returns 0 to the Receive
request

No(O) Yes Message returns to the
Receive request

Yes No Immediately returns O to
the Receive request and the
task continues executing

When a message comes in,
the driver calls the completion
routine with the message

If the timeout expires, the
driver calls the completion
routine with 0

Yes Yes Returns a message to the
completion routine; returns
0 to the Receive request

When using completion routine, you should observe the following guidelines:

• Never use a blocking Receive in a completion routine.

Subsequent
results

Message does
not arrive

None

None

None

• Be cautious about starting the next asynchronous Receive within a completion routine, as
recursion can be deadly.

• Remember that completion routines are sometimes called as the result of an interrupt;
anticipate the unexpected!

Only one Receive may be outstanding on a given queue at a time; attempted additional Receive
routines return emxs. Receive returns a 0 in the event of one of the f01lowing:

• no message is milable (either timeout or nonblocking)

• a negative ena axie is received in the case of an error

• or a positive pointer to the received message buffer i.s returned

• .Vote. :Xercise c:J.Ution when lesting the pointer returned bv Receive for a negative value to
ensure tilal !.'1e ~est is ~·aiid.

S I Apple !PC Services 75

Medusa Programmer's Guide, Beta Draft

The form f cr the Receive macro is:

[Label] Receive

Apple Confidential

Pl, P2, ?3, P4, PS

where Pi is the message ID match code, as follows:

? 2 = sender addres.s match code
P 3 = message code match code
P 4 = timeout code
P s = completion routine address

To indicate the location of a longword containing the desired value, you can specify Pl through P5
as a register (AO-A6, 00-07), an immediate (t<abs-expr>), or you can use any 68000 addressing
mode valid in an LEA instruction.

Whenever you call the Receive request on Apple !PC, you get one of three results returned from the
!PC driver:

• 0

• message

• negative number (indicating an error)

Table 5-3 lists the only two errors that can be returned when a Receive request is made to Apple !PC.

• Table 5-3 Errors returned
Error
NoQueueErr

Queue Busy

Number
-M
.{JS

De.scription

No more queues or bad queue

Receive is already outstanding on queue

Error -64 ('.'loQueueErr) is returned if the queue number (110) of the task doing the Receive request
is bad. A queue number i.s bad if it is noc within the range of legal queue numbers or is ncx open
(e:ther OpenQueue v.ra.s noc done or OoseQueue v.ra.s done).

Errcr -65 (QueueBusy) is returned if an attempt i.s made to do a Receive request for a particular
queue number (TIO) when a request is already outstanding. For more information, refer to the
section earlier in this chapter on OpenQueue.

.A Warning To check for an error in the message pointer returned by a Receive request
in C language, you must cast the message pointer to long before checking
to see if the pointer is negative. Failure to do so will result in a system
C!4Sh. ...

76 5 / Apple IPC Services

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

The following code checks the message pointer to see if an error code was returned:

message •msgptr;

msgptr a Receive (0, 0, 0, 0, Ol;
if ! !long) msgptr < oi.

/* Process error code */

else

/* ~o error, process message */

Register_Task

Register_ Task allows a process to register itself with the Object Name and Type Name specified,
using the Name Manager. To make the process visible only to other processes on the Macintosh II
main logic board, set local_only to nonzero. To make the process visible to tasks on other cards,
then set local_ only to 0. Register_ Task rerums a nonzero value if the process was registered; if not,

0 is returned.

The C declaration for Register_ Task is

typedef boolean short;
char Register_Task
char object { J :

char type { l:

object, type, local_onlyl;
/* Object Name */

/* Type Name */

boolean local_ only; /* If Local Visibility Only */

The following code provides an example of how to register a process:

1'.Register_:ask (''my_~ame", ''my_type'', 0))

pr!nt!("Could not Register Process");

The following example shows how to call Register_ Task from assembly language:

MOVE.L tLOCAL, -!A7) value of local on stack
PEA T'tPE_NAME address of type name
PEA OBJECT_NJIME address of object name
JSR Register_Task
ADDQ.W tl2,A7 pop the stack
TST.B DO check if register ok
SNE.S OK :ump i! OK

5 I Apple IPC ~ices 77

Medusa Programmer's Guide, Beta Draft Apple C.OOfldential

Send

Send allows you to send a message to. the destination address specified in the message. Send places
a message in the queue ci the process specified by the message field, mTo. The m~ge is placed in
the queue in priorly order (from highest to lowest). This call assumes that all fields have been ftlled
in (mFrom, mTo, mCode, anctso forth).

The C declaration ci Send is

void Send(mptr l

message *mptr; /* pointer to message buffer */

If a message is undeliverable, it is returned to the sender with the message status, mStatus, set to
Oxl3000 and the message code, me.ode, having bit 1 « 15 set

The assembly-language form for the Send macro is as follows, where Pl is the address of the
message buffer to be sent

(Label] Send Pl

To indicate the location containing the address of the message buffer to be sent, you can specify Pl
as a register (AO-A6, 00-07), or you can use any ~ addressing mode valid in an LEA imtruction.

SwapTID

SwapTID swap.5 the mFrom and mTo fields of a message buffer.

The C declaration ci SwapTID is

void SwapTID< mptr l

message •mptr; I* pointer to message buffer • /

The assembly-language form for the SwapTID macro is as follows, where Pl is the address of the
message buff er

:Label] SwapT::::J

To indicate the location containing the desired address, you can specify Pl as a register (AO-A6, 00-
07), or you can use any~ addressing mode valid in an LEA instruction.

Pl can be specified as a register (AO-A6, 00-07), or can use any 6roX> addressing mode valid in an LEA
instruction to specify the loation containing the desired address.

78 5 / Apple !PC Services

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 6 Download and Initialization

T H I S C H A P T E R D E S C R I B E S the interface to and the operation of

the TokenTalk Prep file. The TokenTalk Prep file provides code and

parameters for initializing the TokenTalk NB card. This chapter contains an

example of how to use the TokenTalk Prep file to download and initialize the

TokenTalk :-,13 card, and it describes the resources and services in the

TokenTalk Prep file. •

79

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

General information

The TokenTalk Prep FJe contains resources. These resources consist of code images for
downloading to the TokenTalk NB card and routines that participate in the boot process and
initialization of the card.

The Token Talk Prep file is a specific type, ' t t pp ' , and the ftle's creator is also of the type
• t tpp •. Specifically, the TokenTalk Prep file contains the following resources:

ResType

'STR'

'ttbl'

'llcp'

'ttut'

-1

0

Description

The TokenTalk Prefs ftle

resources containing MR-DOS, llC, and SNAP; these boot the
card

Resource that contains default LLC parameters

Resource that contains the utility routine to support the
TokenTalk NB card initialization

The TokenTalk Prefs file (whose name is contained in 'STR') can contain an 'llcp' resource
that overrides the default logical link control llC parameters. See the section "LLC Resource
Descriplion" later in this chapter for information on creating your own ' llcp' resource.

The 'ttbl' resource contains the software that bocts the card and 'llcp' contains
the default llC parameters.

The 't tut' resource contains a utility routine that supports the TokenTalk NB card
initialization.

TokenTalk Prep services

The 't tut ' resource in the TokenTalk Prep ftle provides the following services. Definitions
relating to these operations are located in the include file rn..:til.h.

Code Meaning See page
TIFindCards Find all cards and return mask 82

TIFindBootedCards Find booled cards and return mask 82

TIFindUnbootedCards Find unbooted cards and return mask 82
TTBootCards Boot cards a3
TTForceBoot Force boot of cards a3
TIGetStatusAddr Return TT status address a3
TTGetLLCTID Return TIO of LLC for given slot 84
TIGetSNAPTID Return TID of SNAP for given slot 84
TTGetBoard!D Return board ID for given sl<X 84
TTDvnamicDL Perform dynamic download 8'5

80 6 I Download and Initialization

(
Medusa Prograrruner's Guide, Beta Draft Apple C.Onfidential

To call on the TokenTalk Prep file to perform these services, perform the following steps:

1. Open the resource fork of the TokenTalk Prep file in the System Folder.

2 Load the • ttut • resource.

3. Obtain the pointer to the resource and strip it using StripAddress.

4. Use the stripped pointer to call the function in the 't tut ' resource.

See the section "TokenTalk Prep File Example" later in thi.s chapter for a sample program listing that
performs these steps.

Call the TokenTalk Prep services using Pascal calling conventions. The function acceptS two long
integer parameters and returns a long integer result. The first parameter i.s always one of the service
names listed above; it specifies which operation to perform. The second parameter and the returned
result vary depending on the operation specified. In addition, the TokenTalk Prep file should be on
the top of the resource file list for all operations except TIDynamicDL. When dynamically
downloading a running TokenTalk NB card, the file that contains the resources to download should
be at the top of the resource file list.

61 Download and Initialii.ation 81

Medusa Programmer's Guide, Beta Draft Apple Confidential

mind Cards

The TI'FindCards function finds all or.some TokenTalk NB cards. The second parameter is a 16-bit
mask of the NuBus slots to check in the low-order 16 bits. In the bit mask, bit zn denotes NuBus
slot n. The result returned L$ a similar mask of the TokenTalk NB cards found.

Assume that the pointer Uti!Ptr is declared as follows and that it has been initialized with the
stripped address of the ' t tut ' resource:

typedef pascal lonq t•TTUtilPtr) (lonq op, lonq data);

TTUti.lPtr UtilPtr;

A TI'FindCards request to fmd all TokenTalk NB cards would be similar to the following:

result• (•UtilPtr) (TTFindCards, -l);

To verify that slot 1 (NuBus slot 9-the one nearest the Macintosh II power supply) contains a
TokenTalk NB card, use the following call:

result• (•UtilPtr) (TTFindCards, Ox0200);

This operation uses the Slot Manager to identify TokenTalk NB cards. It makes no use of any MR­
DOS !PC services.

mindBootedCatds

The TI'FindBootedCards function is similar to TIFindCards except that it only locates TokenTalk
NB cards that already have MR-DOS and U.C running. Logically, thi.$ function uses TI'FindCards to
identify TokenTalk NB cards then checks that the card is running by using MR-DOS !PC services.

The following call finds all TokenTalk NB cards that are running:

:esult = (*~ti.!.?trl (':':FindBootedCards, -1>;

TI'FindUnbootedCards

The TI'FmdUnbootedCarm operation is similar to TIFindBootedCards except that it only locates
TokenTalk NB cards tba do ncx already have MR-DOS and U.C ruMing. Logically, this request uses
TrFindCards to ida:iiy TokenTalk NB cards then checks to see whether the card is ruMing by
using MR-DOS !PC services.

The following call finds all TokenTalk NB cards that are not running:

result• <•OtilPtr) (TTFindOnbootedCards, -l);

82 6 I Download and Initiali1.ation

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

TI'Bootcards

The TI'Boot~ function bocxs the·TokenTalk NB card. This request only bocxs TokenTalk NB
cards that have not yet been booted. Logically, this request uses TrFindUnbootedCards then bocxs
th~ cards found. The result c::i this operation is a mask of the cards that were actually booted.

See the section "TokenTaik NB Card Boot Process Summary- later in this chapter for more
information on the boot process.

The following call starts all TokenTalk NB cards that are not running:

result • (*Util?t:::) CT':'BootCards, -1);

TIForceBoot

The TI'ForceBoot function is similar to the TTBootCards operation except that it forcibly restarts
cards that are already running. In normal use, this function should never be used since a TokenTalk
NB card may be supporting multiple concurrent applications. The result of this operation is a mask
of the cards that were actually started.

See the section "TokenTalk NB Card Boot Process Summary" later in this chapter for more
information on the boot process.

The following call starts the TokenTalk '.'<B card in slot 2 (Nu Bus slot A):

result s (*Util?t::) CTTForceBoot, Qx0400):

TIGetStatusAddr

The TTGetStatusAddr function returns the address of the UC status structure for the given slot.
The second parameter to this request is a mask of the sloe to operate on. Unlike previous requests,
this mask should have only a single bit set since only a single status address can be returned. The
result of this operation is a 32-bit '.'>JuBus address. This address will be returned even if the card is
not running. By inspecting the structure at this address, ring status can be monitored. Refer to the
TMS380 Adapter ChipSet User's Gutde Suppiement for additional information on ring status
messages.

The following call returns the status address for the TokenTalk NB card in slot 3 (NuBus slot B):

result • (*OtilPtrl <TTGetStatusAddr, OxOBOO):

61 Download and Initializ.ation 83

Medusa Programmer's Guide, Beta Draft Apple Conftdentiat

ITGetllCTID

The 1TGetLLcnD function returns the task ID c:i the LLC task running on the given slot. The
second parameter is a mask of the slot to operate on. This mask shoold only have a single bit set

since only a single task ID can be returned. This task ID may be used to is.rue LLC requests as
described in Chapter 4, 9l'he s02.2 LLC I IPC Interface." A zero is returned if the card is missing or not

running.

The following call returns the LLC task ID for the TokenTaJk NB card in slot 4 (NuBus slot C):

result• t•UtilPtrl (TTGetLLCTID, OxlOOOJ;

TTGetSNAPTID

The 1TGetSNAPTID function is much like the 1TGetLLCTID function except that it returns the
task ID of the SNAP task running on the given slot The second parameter is a mask of the slot to

operate on. This mask shoold only have a single bit set since only a single task ID can be returned
This task ID may be used to issue SNAP requests as described in Cllapter 3, "SubNetworlc Access
Protocol (SNAP) Interface.• A zero is returned if the card is missing or not running.

The following call returns the SNAP task ID for the TokenTalk NB card in slot 5 (NuBus slot D):

result - ("UtilPt:::) (T':'GetSNAl?TID, Ox2000) I

TTGetBoardID

The 1TGetBoardID func.tion returns the Boarc!ID for the TokenTaJk NB card in the given slot.
This is the board ID returned by the Slot Manager. The second parameter is a mask c:i the slot to
operate on. This mask should only have a single bit set since only a single board ID can be returned
The result of this operation is board ID stored in the declaration ROM on the card. The board ID is
returned even if the card is not running.

The following call returns the board ID for the TokenTalk NB card in slot 6 (NuBus slot E):

result• (*UtilPtrl CTTGetBoardID, Ox4000);

84 6 I Download and Initialization

Medusa Programmer's Guide, Beta Draft Apple Confidential

TIDynamicDL

The lTDynamicDL function downloads and starts a task onto a running TokenTalk NB card.
Dynamic download requires considerable familiarity with the MR-DOS environment and is beyond
the scope of this document The second parameter is the address of the structure shown in
F:xampk 6-1. The result of tflis operation is the task ID of the started task, or zero if the task could
not be started.

The following call attempts to start a task on the TokenTalk NB card in slot 3 (NuBus slot B):

TTDDLP ttdl;

memset((char *)&ttdl, 0, sizeof(':'':'::JDLPll; /*clearing :nemory */

:tdl.type ~ 'abed';

ttdl.SlotNo • 3;
ttdl.STPB.stack - 2048;

/* the type of your task code file */
/* the slot number to download to */
/*the size of the task's stack */

ttdl.STPB.priority • 25: /* the task's priority */
result • (*Util?tr) (TTDynamicDL, (lonq) &ttdl):

• Example 6-1 TIDynarnicDL request structure

typedef st::uct

long
long

Type;
Slot No;

struct st_?B xxx;

TTDDLP;

/* Resource type holding code to download */
/* Slot number to download to

inot a mask - 9 - 14) */
/* StartTask parameter structure defined in MR-DOS

include file os.h.
*/

6 I Download and Initialization 85

Medusa Programmer's Guide, Beta Draft Apple Confidential

TokenTalk Prep file example
The following routine returns a pointer to the TIUtil routine and a RefNum to the resource ftle, so
that the ftle can be dosed on completion. The pointer is returned as zero if any errors occur. See
Appendix C for a canplete progcunming example.

/*

GetTTUtilPtr - Return pointer to TTUtil routine.

Inputs:

Outputs:

resno Resource number of string resource holding prep file name.
refptr Address of a short to receive the resource file refnum.

Returns pointer to TTUtil routine, or zero if unavailable.

Note that no refnum is returned if the pointer returned is zero. This
* roueine will aueomatically close any resource .file ie may have opened

in that case.

:'~UtilPt.r GeeTTUtilPtr(resno, refptr)
short :esno;
sr.cr~ •refptr;

nandle strhdl, utlhdl;
short ttrefnum;
SysEnvRec sysrec;

if ((serhdl • GetResource('STR ' resno)) •• 0 I I SysEnvirons(l, &sysrec))
return O; /* Fail if resource missing or

SysEnvirons fails */

ttrefnum • OpenRFPermr•strhdl, sysrec.sysVRefNum, EsRdPerm);
ReieaseResou::ce(str.'1dl): /* F.'..le r.ame no longer needed */

(t::.refnum == -:..> /* :f open failed, return 0 */

:-et.:.;r:1 O;

~f ((utlhdl • GetlResource('ttut', 0)) •• 0) /* Error loading

CloseResFile(ttrefnum);
return O;

*refptr • ttrefnum;

resource? */

/*Close file and return O if didn't
get resource */

::eeurn <TTDtilPtr)StripAddress(*Utlhdll: /* Return seripped pointer */

86 6 I Download and Initialization

/

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

llC resource description
The following information summarizes the boot process and describes the LLC resource.

TokenTalk NB card boot process summary

The boot process checks for the presence of a TokenTalk Prefs file whose name comes from the
'STR' resource. In the TokenTalk Prefs file, the boot process checks for an 'llcp' resource
with an ID that matches the slo< being booted. If the matching slot ID ls present, the LLC
parameters in that resource are used when starting LLC on that slot. Otherwise, the default
contenrs of the 'llcp' resource in the TokenTalk Prep file is used Thi.s approach allows a
Macintosh II system with multiple TokenTalk NB cards to have each card initialized with different
parameters based on its intended use.

Defining the llC resource

If the TokenTalk Prefs file does not exist and you want to define special LLC parameters, you must
create the Token Talk Prefs file in the System Folder with a type of ' t t pf ' and creator
' t t pp ' . The description of the ' 11 cp ' resource follows:

/•

TTinit.r - Define format of LLC parameter resource.

Mark D. Rustad. 9/10/99.

Copyright C Apple Computer, Inc. 1999.

:ype I .:..:.cp I

:or.gi:-.t;
long int;
:ongint;
long int;

unsigned integer;
unsigned integer;
unsigned integer;
unsigned byte;
unsigned byte;
unsigned byte;
unsigned byte;
unsigned byte;
unsigned byte;
Jnsigned "::yte;

/• ::::.:.:..!.al f'.lnctior.al add::ess •/

I .. ::;itial groi;p address */

/• Options (not used - should be zero)
/• Address of listener, always zero

in resource */

/• Maximum frame size */

/* Maximum number of link stations */

/* Buffer size within tms380 */

/* Maximum number of SAPs */

/* Maximum number of group SAPs */

•/

/* Maximum num.ber of group SAP members */

:• Number of transmit buffer in list •/
/* Num.ber of receive buffers in list •/
/• Num.ber of in~errupt messages to reserve */

,,.. '.:iroup .. ::-esponse period 140 ~s :!.=ksl ff/

6 I Download and Initialization 87

Medusa Programmer's Guide, Beta Draft
unsigned byt.e;
unsigned byt.e;
unsigned byt.e;
unsigned byt.e;
unsigned byt.e;
unsigned byte;
hex string{6];
hex stringll8J;
cstring[32J; /* IPC

);

/• .End of i.:cp.:: •/

88 6 I Download and Initialization

Apple Confidential
/• Group 1 inact.ivity period */

/• Group 2 response period */

/* Group 2 receive acknowledge period •/
I* Group 2 inactivity period •/
/• Minimum transmit buffers •/
/* Maximum transmit buffers •/
/* Node address, 0 uses burned-in address •/
/* Product IO string (in .EBCDIC?) */

name of this LLC */

(

(

Medusa Progranuner's Guide, Beta Draft Apple C.Onfidential

Chapter 7 Avoiding Trouble

T H I S C H A P T E R D I S C U S S E S some common situations that might

prevent your development code from operating correctly. The object of this

chapter is to provide a first-line troubleshooting guide that helps identify

common but subtle errors. The troubleshooting information includes

software tips and hardware tips. •

89

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

General inf ormatlon
The overall complexly <i programmjng and developing applications for a netWork environment
provides ample opportunity for problems. Good programming technique and design can prevent
some problems; other problems arise from implementing good practices in an environment that
lacks full support for those tried-and-true practices.

The SNAP and llC interfaces provide error messages. Problems with the interface itself can
usually be resolved by investigating the causes of the error messages. Other problems can be more
subtle, such as having the token ring chipset shut down for no apparent reason or having code that
worked in a standalone environment fail when ported to a dynamic download environment The
remainder of this chapter presents guidelines for tho.se less obvious error conditions.

Refer to the echo task program in Appendix C for a comprehensive example of a functional,
dynamically downloaded TokenTalk task.

Common error causes
Pcxenti.al causes of errors not easily detected include the following:

• t.;nchecked error codes

• Failure in the physical netWork connection

• Errors in programming the I istener function

• Global data structures referred to incorrectly

• OMA activity that conflicts

Each of these causes i.s discussed in the following paragraphs.

Error codes

The mStatus message returns 0 on successful completion of an interface call. Your program should
always check the mStatus mes.sage for an error condition and provide a suitable recovery routine.

By checking the error codes, you obtain a diagnostic indication of the cause of the error, which is an
important program devciopment tool. A summary of error codes is pr.esented in Table 7-1.

90 7 I Avoiding Trouble

(-

1

Medusa Programmer's Guide, Beta Draft Apple Confidential

• Table 7·1. m.5tatus error code summary

SNAP Resuh VaJue
codes

SNAPCancelled

SNAP!nUse

SNAPNoErr

SNAPNoErr

SNAPNoErr

SNAPNoMore

SNAPNotAttached

SNAPNotAttached

SNAPTruncated

U.C Result codes Vaiue

LLCAddrError

LLCBadFrame

LLCBadPointer

U.CBadPri

LLCBadRefNum

U.CBadSAPOpts

U.CBadSAPValue

U.CBadSize

U.CCancelled

LLCClosedNoAck

U.CConnFail

U.CConnSeqErrcr

U.CGroupLlmil

LLO.ilkOpen
IlOdaxF.xceeded

U.CMsgReject

l.LC'IoErr

LLOloGroup

~LC:'-/oiframes

Description

Receive cancelled, either explicitly or by SNAPDetach

PD already attached

Normal completion

Normal completion
Normal completion

Insufficient resources

Invalid RefNum

Invalid RefNum

Frame larger than provided buffer space

Description

Invalid remote address-group address invalid.
Also,size must be 0 or node address size for the
media

Invalid frame type

Bad pointer passed as "interface-owned"

Unauthorized access priority

Invalid RefNum

Invalid SAP options

Invalid SAP value or SAP value already in use

mDataSize has inappropriate value

Receive cancelled, either explicitly or by dose operation

Station dosed without remoce acknowledgment

The remote station did noc accept the connection
request

Connect sequence error
The group SAP already has maximum members
Undosed link stations on SAP

Parameter exceeds maximum

Unusual interface error

Norma.I completion

Requested group membership in nonexistent group SAP

Link noc transmittmg i frames

7 I Avoiding i:rouble 91

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCNoResources Maximum number of link stations or SAPs are already
open

LLCNotFullySupported Some option or type requested is not fully
supported by this media

LLCNotMember

LLCProtoError

LLCRoutingError

llCSAPOpen

llCSeqError

LLCTruncated

llCTxError

llCTxTooLong

LLCUnauthMAC

Network connection. failure

Member not found in group SAP

Protocol error-I frame issued before OMA ready or link
in invalid state for command

Invalid routing information length

Group SAP cannot close-all member SAPs are not
closed
Sequence error-have already i.ssued a close to this link

Buffer too short to receive all information

Error in frame transmit or strip

Invalid transmit frame length

Unauthorized MAC frame

If a cable is disconnected on the TokenTalk NB card or the Multistation Access Unit (MAU) while
the TokenTalk software is running, the error "llC ncx open• occurs. The adapter card's chipset will
waits for approximately 2 seconds and then shuts itself down, which closes the llC interface. All
queued messages are returned to the client and any future messages are also returned to the client
with the ·uc not open• error code.

Recovery for this condition depends on the application on the TokenTalk ~ card. The choices
are either to download and initialize the card again, or to require a complete system reboot

A similar condition occurs if the card is downloaded and initialized without being plugged in to
the~C.

Proble~ programming the &ten.er function

Treat the listener funaion like an interrupt service routine, which is to say keep it simple and
efficient Avoid alloaling large amounts of stack to the listener function and avoid attempting to
perfonn a large amouot of processing. All "good programming" techniques for dealing with
interrupt service routines apply equally well to dealing with the listener function.

92 : / Avoiding Trouble

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Global data structures and dynamic download

For each task, the AS register contains the starting address of the global data structure associated
with that task when it is created and linked with ·MR-DOS. It is normally useful to assign the
common global data structure in this manner, because all tasks created and linked with MR-DOS will
have the same value for AS, for example,

AS • GetqCommon()->qinitAS

In a dynamic download situation, however, this assumption is wrong. A task spawned from the
dynamically downloaded task has a different A5, which differs from that of the task created and
linked with MR-DOS. Therefore, to spawn another task from the dynamic download task, you
must set up your own AS to ensure that the correct data structure is used.

This type of error is difficult to trace because a task developed as a standalone under MR-DOS
will execute. But when the same task is dynamically downloaded it will fail, and all because the
wrong data structure address is used. This is a situation in which a useful and acceptable
programming practice backfires.

Rgure 7-1 shows a situation in which the adapter card is loaded and initialized from the Macintosh
OS. A task is linked with MR-DOS, the 802.2 interface is downlooded to he card along with MR-DOS,
and all tasks begin execution. At this point, the A5 register contains the address of the common
global data structure, which is set when the the tasks are linked with MR-DOS. Sometime later, a
new task is dynamically downlooded to the card. As the figure shows, the new task must have its
own value for A5, which is created by the dynamic downlood process. The echo task program in
Appendix C contains an example of the code that captures and manages the dynamic download
value for AS.

7 I Avoiding Trouble 93

Medusa Programmer's Guide, Beta Draft

• Figure 7·1 Dynamic task download

[!]
•

Apple C.onfidentiaJ

A5-> global dara and jump table

MR·DOS 8J2.2 wk

• -----------.> Available memory

Macinto5h Operating System

load and initialize card
Tas.fs liniwd 10 MR-DOS

Dynamic download
newTa.sk

.....____>

Direct Memory Access (DMA) conflicts

AS panu to common globa.I strucrure
Task.AS • gCommon

··········---~t~~iiw1~-~~P..~.k! D-····
............. ~~.la!?l1:.~r:r

AS-> globil dara and jump table

············~~J;.-~---··~·····

newTask.AS • gCommon

An error condition can occur when the TMS380 chipsets on two cards in the same system attempt a
DMA transfer to one another at the same time. The chipset attempts to retry on error; but if it
fails repeatedly, it shuts itself down. The simplest way to avoid this condition is to have the CPU
perform the OMA transfer and have the chipset copy the data from the CPU.

This DMA cooflic1 is possible because the token ring chipset has no connector to the CPU halt
signal. It is by meam <:i asserting the halt and bus error signals at the same time that a bus retry
occurs. A bus retry occurs when the DMA request cannot complete. Because the chipset only sees
the bus error signal, it acts as though a bus error has occurred in fact, rather than merely a bus retrv.
The retry-on-error romt is set to its m.axL.'TIUm iim1t of 255, meaning that 255 consecuuve bus errors
must be seen by the chipset before it shuts itself down.

Avoid lhlS po<enuai error condi[IOn m one or" •wo ways:

94 i I Avoiding ~rouble

Medusa Programmer's Guide, Beta Draft Apple Confidential

• As mentioned, have the adapter card CPU perform the DMA transfer rather than the token ring
chipset

• Split the DMA transmit buffers into small enough sizes that the buffer will exhaust before the
bus retry count does

7 I Avoiding Trouble 95

(

·~.

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidenlial

Appendix A Components

The release diskette for software development on the TokenTalk NB card

includes the following files:

• UCSupportI.ib.o

• UCh

• SNAP.h

• TRlnit.h

• ITCtil.h

• IT!nit.r

97

Medusa Programmer's Guide, Beta Draft Apple Confidential

Appendix B The TokenTalk NB Card

The TokenTalk NB card i.5 a single-board communications controller that

occupies one l/O slct on the system board of the Macintosh II system. The

card provides high-speed (4\1 bps) token ring network communications and is

compatible with the IBM token ring adapter at the physical transmission

level.

Designed to the Draft 2.0 NuBus specifications, the TokenTalk NB card can

function as either a NuBus master or slave device. When acting as bus master,

TokenTalk NB has full access to all other NuBus devices installed in the ha;t

system. As a NuBus slave, TokenTalk NB relinqui.5hes control of all its

internal resources to the designated bus master.

Throughout this appendix, all address reference and data values are given as

hexadecimal values and refer to the 24-bit address range of the Motorola 68000

microprocessor. The high-order 8 bits that indicate the NuBus slot address are

nct contained in the addresses listed in this appendix.

The term "'NS380" as used in this appendix refers to the complete Texas

Instruments 'NS380 Token Ring Adapter Chipset as a whole rather than to a

specific member of the chipset. •

99

Medusa Programmer's Guide, Beta Draft Apple Confidential

Hardware overview
The overall design cr the TokenTallc NB card can be divided into two main functional blocks: the
communications engine and the token ring interface. Rgure B-1 shows a functional block diagram
of the TokenTalk NB card.

• Figure B-1 TokenTalk NB Block Diagram

C.Ommunialions engine

r--
~10

~ Token Ring interf:ice

1--
UnitID PROM 16KBSRAM

?==

i-- TMS~IO ?==
64KB ROM Communications

processor
6roXJ/NuBus 1--!

interface TMS~20 i-- ?==
512KB RAM Protocol

handler

i-- Control
Ring intert':ice F=

regi&ers I TMS~l I
I TMS3&l52 I

.__
TMS~30 F=

System
interface

Communications engine

The communications engine consists of five major components:

• The Motorola 6aXX> CPU

• PROM

• RAM

• Communications engine/NuBus interface

• Communications engine/token ring interface

TI1e::e :::ornoonerus are d.e.scnbed in the foilowing sections.

100 BI The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential

Central processor unit (CPU)

The processor employed on the Toke~Talk NB card is a Mctaola 68000 CPU with a clock speed of
10 Mhz. The 10-Mhz dock is derived from the 10-Mhz NuBus clock. Because TokenTalk NB can
function as a NuBus Master device, the 6a>OO processor is capable of acquiring full access and
control of all NuBus devices and resources.

Read-only memory (ROM)

TokenTalk NB provides space for 64KB of adapter ROM. This ROM contains the NuBus
configuration information required to interface the card to the Macintosh II environment, the
power on self-test code, the power on reset vectors, the burned-in unit ID, the version number, the
copyright nctice, and any additional firmware provided by Apple Computer, Inc.

The adapter ROM is mapped at adapter addresses FFOOOO to FFFFFF. The on-board ROM appears as
" a 16-bit device to the 68000 and as a 32-bit device to the Nu Bus. When accessed by NuBus, circuitry

on the communications engine performs two 16-bit accesses to provide a full 32 bits of data in one
NuBus access. When this action is performed, the low-address word occupies the low-order bits (0-
15) and the high-address word occupies the high-order bits (16-31) of a 32-bit longword.

Dynamic random access memory (DRA..\I)

A total of 512KB of DR.AM on the TokenTalk NB is mapped at adapter addresses 000000 to 07FFFF.
The CPU, TM538J30 Token Ring System Interface, and NuBus all have access to this memory. The
on-board DRAM is used for TokenTalk NB system code and data space.

When it functions as a bus slave, all on-board RAM is accessible to the current system bus master.
While the current NuBus master has access, both the 68000 and the TMS30030 are denied access to
the on-board RA.\.i. This RAM:, like the ROM, appears as a 16-bit device to the 60000 and TMS380, and
as a 32-bit device to NuBus.

When accessed by '.'l'uBus, circuitry on the communications engine performs two 16-bit accesses to
provide a full 32 bits of data in one NuBus access. When this aaion is performed, the low-address
word occupies the low-order bits (0--15) and the high-address word occupies the high-order bits (16--

31) of a 32-bil longword

B I The TokenTalk NB c.ard 101

Medusa Programmer's Guide, Beta Draft Apple Confidential

Communications engine/NuBus interface

The comrnunicatiom engine/NuBus interface provides an 8/16/32-bit interface between the
TokenTalk NB 68XlO and NuBus. Beouse the 68000 is a 16-bit device and the NuBus allows 32-bit
accesses, special circuitry is provided to transform a 32-bit NuBus access into two 16-bit 6a>OO
accesses. If any problem occurs with the NuBus access, a bus error is reported to the 6a>OO. Access
to the communications engine/NuBus interface is accomplished through a set of control registers
located at addresses COOCOO-C00040.

NuBus pinouts as viewed from the front edge of the card are as follows:

Pin Row A RowB Rowe

1 -12 -12 /RESET
2 GND GND GND
3 /SPY GND +S
4 ISP +5 +S
5 /TMl +S /TMO
6 /ADl +5 /ADO
7 /AD3 +S /AD2
8 /ADS /AD4

9 !AD7 /AD6
10 /AD9 /ADS
11 /ADll /ADlO
12 /AD13 GND /AD12
13 /AD15 GND /AD14
14 /AD17 GND /AD16
15 /AD19 GND /AD18
16 /AD21 GND /AD20
17 /AD23 GND /AD22
18 1AD25 GND /AD24
19 .1AD27 GND /AD26
Jl /A.029 GND /AD28
21 /AD31 GND IADYJ
22 GND GND GND
23 GND GND /PFW
24 /ARBl /ARBO
z; /ARB3 /ARB2
~ /IDl /!DO
7J /ID3 /ID2
~ /AO< +5 /START
'!) +5 +S +5
)) ;RQST GND •5
31 /NMRQ GND GND
32 ~12 "12 /CJ(. Jiese pms are connected but :"'.01 ::u.ppii.ea ui.:h ihe - 5.2 v c:gnai spec~ri.ed :n :h.e ."-iuBU.s speci .. 1canon .

102 BI The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential

Communications engine/token ring interface

The comrnunicalions engine/token ring interface consists cl the 68000, the token ring interface
logic, and the direct VO control registers and OMA conuoller located in the TMS38030. This interface
logic provides a 16-bit interface between the 68)()() and the TMS38030. Access to this interface is
accomplished through the use- of the TMS38030 direct 1/0 conuol registers that are mapped to the
~ memory addresses from OOOOOO-aX>006.

Token ring interface

The token ring interface section of TokenTalk ~B is implemented using the TI TMS380 token ring
interface controller chipset. The TMS380 configuration consists cl the five TMS380 chips, 16KB of
buff er RAM, and the interface logic.

The TMS3al chips are briefly described in the following sections.

TMS38010 communications processor

The TMS38010 executes the protocol firmware residing in the TMS38030 and provides intermediate
buffering of ring traffic. There are 2816 bytes of internal buffer RAM that are supplemented with
16KB of external static RAM (19,200 bytes total) to provide a larger and more efficient buffer space.

TMS38020 protocol handler (PH)

The token ring Media Access Control (MAC) sublayer protocol firmware normally resident within
the TMS38020 can be replaced with enhanced protocol firmware residing in external PROM. Addition
of this enhanced PROM provides features required in a bridge environmenL An application that
needs to verify the installation of the optional protocol firmware can read the TokenTalk NB
options register (address ~) and check whether bit 0 is set to zero.

Texas Instruments has a set of two PROMs that contains an enhanced version of the TMS38020
prcxocol handler internal ROM. This enhanced PROM set is used in bridge applications. The
TokenTalk NB card can incorporate these PROMs through the use of a piggy-back balrd, which is
plugged into a CODDedOr located on the TokenTalk NB card

The maximum rrumber of Token Talk NB cards that can be installed in a single Macintosh II
system is limited by the power supply and by the number of available skxs. Software access to
each card is accomplished through the NuBus slot addressing conventions.

B I The TokenTalk NB c.ard 103

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential ·

TMS38030 system interface (S1F)

The TMS38030 system interface chip controls all interface functions between the 6rooo and the
remainder d the token ring chipset. The TMS38030 provides a 16-bit bus between the 6rooo and the
TMS380 token ring interface. The TMS38030 provides a set of direct VO registers and a direct
memory access (DMA) channel for data transfers.

TMS38051 and TMS38052 ring interface

The ™538051 and TMS30052 ring interface chips perfonn the actual data encoding and decoding
using the differential Manchester code. The ring interface chips also perform the ring insertion and
de-insertion tasks. Physical connection to the ring i.s by way of an IBM Token Ring Adapter DB9
nine-pin connector. The DB9 connector provides correct signal connection to the IBM Type 1
Cabling System. Pinouts for the DB9 connector are as follows:

Pin

Shield
1
2
3
4
5
6
7
8
9

Wire

I
4

3
5

2

Burned-in unit ID

Signal

Ground
Receive
Not Used
Not Csed
Not Used
Transmit
Receive
Not Used
Not Used
Transmit

The unit ID/serial number i.s stored in a reserved location in the 6rooo Declaration PROM. The unit
ID is the network node address of a TokenTalk NB card and its host. F.ach token ring adapter card,
whether a TokenTalk NB card or otherwise, has a unique 6-byte (48-bit) burned-in unit ID. The unit
ID contained in this ROM is used as the default node ID when the adapter card is first opened By
supplying a IOC3lly administered node ID as a parameter to the TMS380 Open command, you can
override the def2ult unit ID. If no unit ID override is provided by the application software, the
low-level protocol software must retrieve the burned-in unit ID from the Declaration PROM and
pass it to the TMS38> chipset as the node ID used when opening the TokenTalk NB card (or ether
adapter card).

The iEEE 002 committee administers and assigns blocks of unit ID numbers to respective
manufaaurers.

104 B /The TokenTalk NB Card

:f

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Adapter interfaces
The following sectioos describe the adapter interfaces and include descriptions of the adapter
memory map, control registers, optiom register, direct VO interface registers, OMA, timers, resets,
and interrupts.

TokenTalk NB memory map

The following list provides an addres.s map of all resources on the TokenTalk NB card:

~ Function

FFOOOO-FFFFFF ROM(64KB)
EOOOOO-FEFFFF Reserved
amt() 68JOO Reset
ClXXX)A Set Interrupt TokenTalk NB Request
~ Clear Interrupt TokenTalk NB Request
axro> Set Interrupt Host Request
ClXm4 Clear Interrupt Host Request
OlXX)2 Clear Timer Interrupt
axroJ NuBus Extension Register I Clear Reset
AOOOOO-BFFFFF Nu Bus
000012-9FFFFF Reserved (VO Interface Deccxle)
a:xxllO TMS~ NuBus Extension Register
gxXX)3 TokenTalk NB Options Register
~ TMS38030 DIO Interrupt Register
8Xm4 TMS38030 010 Address Register
8XXX)2 TMS~30 DIO Data Auto Increment Register
BXm> TMS38030 010 Data Register
400000-7FFFFF Reserved (1/0 Interface-No Decode)
~3FFFFF Reserved
000000-07FFFF RAM 512KB

B I The TokenTaJk NB Coard 105

Medusa Programmer's Guide, Beta Draft Apple Confidential

Control registers

The canmunicatioos engine provides eight control registers that assist the 68000/I'MS380 software
interface. The coorrol registers are memory-mapped al addresses C00000-C00040. The eight control
registers and fun<iic>m are as follow:

Addres,, Function l/W
aroto 68>00Reset w
OXXXlA Set Interrupt TokenTalk NB Request R
~ Oear Interrupt TokenTalk NB Request R
aJJ1iJ Set Interrupt Host Request R
ClXXXl4 Clear Interrupt Host Request R

ClXXXJ2 Qear Timer Interrupt R
axx:oo NuBus Extension Register I Clear Reset R

TokenTalk NB card options register

The options register at address~ is provided to detennine what options, if any, are currently
installed on the TokenTalk NB card. The only option currently planned for the card is the optional
Enhanced TMS38020 PROM set. By reading the optiora register and testing bit 0, you can determine
whether the bridge PROM set is installed when 0 • installed and 1 • ncx in.stalled

TMS38030 direct I/O interface registers

The TMS38030 provides both a dire<.t I/0 (D!O) interface and a OMA interface. The DIO is used for
initializing the TokenTalk NB card, command initiation, and status reporting. The OMA interface is
used for transferring command.5, parameter lists, and frames between the TMS380 RAM and the
68:XXl RAM.

The DIO interface consists of four 16-bit registers, located in the 68ooo memory space starting at
address mx>o. The registers are as follows:

DATA register

Function

TMS38030 DIO Interrupt Register
TMS38030 010 Address Register
TMS38030 010 Data Auto Increment Register
TMS38030 DIO Data Register

The DATA register is the primary mean.5 of reading from or writing to the buffer RAM of the
TMS38010. The data being read or written is pointed to by the address contained in the ADORFSS
reg1Ster.

106 B I The TokenTalk NB (.ard

(

'~
·~

(

Medusa Programmer's Guide, Beta Draft

DATA AUTO INCREMENT register

Apple C.Onfidential

The DATA AUTO INCREMENT register functions similarly to the DATA register, except that the
address contained in the ADDRESS register is automatically incremented in preparation for the next
data access.

ADDRESS register

The ADDRESS register points to the address ci the TMS30010 buffer memory at which the next
data access will occur.

INTERRUPT register

The Il'<IERRCPT register interrupts and reads status information from the ThfS380 chipset. Bits 0-
7 ci the Ii'<IERRCPT register can be set to 1 only by the 6roJO. Only the communicalions processor
(TMS30010) can reset these bits. Bit 8 can be set only by the TMS30010, and only the 6&:l<Xl can reset
this bit.

Bits 9-15 of the INTERRUPT register are read-only to the 68000. The bit definitions for the
INTERRUPT register change depending on whether a read or a write operation is being performed.
In read mode, the register bits have the following definitions, where bit 0 is the most significant
bit:

Bit Definition

0 Interrupt adapter (TMS380)
1 Adapter reset (TMS300)
2 System status block dear
3 Execute
4 System control block request
5 Receive continue
6 Receive val id
.., Transmit valid I

8 Interrupt host system

9 Initialize
10 Test
11 Error
12 Interrupt rode 0 I Error 0
13 Inlerrupl rode 1 I Error 1
14 Interrupt rode 2 I Error 2
15 Error 3

B I The TokenTalk NB Card 107

Medusa Programmer's Guide, Beta Draft Apple Confidential

In write mode, the register bits have the following definitions:

Bit Definition

0 Interrupt adapter (TMS380)
1 Adapter reset (TMS38))
2 System status broclc dear
3 Execute
4 System control bloclc request
5 Receive continue
6 Receive valid
7 Transmit valid
8 Reset system interrupt
9 Don't care
10 Don't care
11 Don't care
12 Don't care
13 Don't care
14 Don't care
15 Don't care

TMS38030 DMA

The TMS38030 OMA chaMel provides 24 address bits, enabling access to a full 16 MB r:i memory.
Since the OMA only has 16 hardware address lines, the 8 most significanl address bits are separately
latched onto the 68000 bus before the least significant 16 bits are latched. This action and any
updating r:i the most significant address bits are accomplished automatically by the TMS38>30.
OMA access to the Macintosh II system board or any other NuBus cards installed in the system is
accomplished by the communications engine through the NuBus extension register. The contents
of this 12-bit register are used as the NuBus slot address (bits 2~31) to create a full 32-bit NuBus
address. The DMA channel can be programmed for either burst-mode or cyc:le-stcal modes of
operation.

NuBus addres.sing

A special 12-bit address extension register loated at address COOOOO provides ~cxess to the 32-bit
NuBus address space from the 68)()(). Access to this address space from the TMS38>30 is through
the TMS38) NuBus e:ztemion register at address 800010. To access the NuBus, the 12 most
significant bits of the NuBus address should be written to this register prior to the NuBus access.
Additionally, seuiDg bit A'lJJ in the address field - a bit not normally used- perfonn.s a hardware
read/modify/write cyde. This bit must be set whenever executing an 68ooo software test-and-reset
(BSET) instruction. Address bit A20 should be false (0) for all other operations.

108 BI The TokenTaJk NB Card

(

1i
\\

Medusa Programmer's Guide, Beta Draft Apple C.onfidential ·

The contents of the NuBus extension register are appended by the communications engine as
the high-order 12 bits of all addresses used by the TMS38030 to transfer OMA data acr~ the
system interface. By using this extens1oo register, it is possible for the communications engine to
route a data packet from the TMS38)10 buffer to the Macintosh II or other NuBus card

If you change the NuBus .extension register to route data packets from the TMS38) to a
location other than the TokenTalk NB card on-board RAM, you must restore the extension register
contents to the appropriate value.

When you route packets from the TMS38) to another destination, remember that you are
transferring IEEE 8)2.5 packets including all header information, which must be processed.

Adapter timer

An on-board timer circuit provides a Level 1 interrupt every 6.5536 milliseconds. The timer interrupt
can be cleared by reading address C00002. The timer interrupt must be cleared within 3 milli.seconds
or the next timer tick will be lost

68000 reset

The ~ proce~r can be reset by reading address 0Xl004. The RF.SET line is cleared when addres.s
COOOOO is read or whenever NuBus is reset On a power-on RF.SET (Nu Bus reset), the 68)()() supervisor
stack pointer and program counter are read from the on-board ROM locations FFOOOO and FF0004,
respectively. The power on reset vectors will point to the diagnostic and power-up code located in
the ROM.

In the event ci a software initiated reset (address C00004 is read), the 68)()() supervi.5or stack
pointer is loaded from address 000000 in the TokenTalk NB card RAM, and the program counter is
loaded from RAM addres.s 000004. You must make certain that valid programmed reset vectors are
loaded in these locations.

TMS38030 reset

The TMS38)30 can be reset in software by writing an FF to the DIO INTERRUPT register of the
TMS38)30, located at address 800006. From the h<E side, the TMS380 is reset when the 68)()() is reset
by reading address CD0004 and it is removCd from reset when the 68000 reach address COOOOO. When
the 6BooO is reset &an NuBus, the TMS38030 is also reset.

BI The TokenTalk NB Card . 109

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Interrupts

The TokenTalk NB card provides three levels a interrupts and priorities as follows:

Interrupt Level Priority

Timer l Lowest

NuBus

Token ring interface

Software overview

2

3

Low

Highest

The following sections provide overviews of the power-on self-test, the software interface, and
the TMS380 command set.

Power-on self-test

A series of power-on self-test (POST) routines are executed when the adapter is first powered up.
All tests are initiated and controlled by the on-baud 68000 proces.50r. The following functiom are
performed:

• Write then read test of 512KB RAM

• CRC check ci declaration ROM

• Initialization of the ~ exception veaor table

• TMS380 diagnostic and lobe media tests. These tests are performed under the conuol <i the
TMS3al, with status and em:::r information passed back to the 68000.

• Read/write test across NuBus between 60020 and 68000

• 68000 hardware reset test across NuBus

• Timer, NuBus, token ring interrupt test

The TMS3al diagnostic and lobe media tests indude internal CRC circuitry checkout, an internal
loop-back test from the TMS38)10 to the TMS38020 and ring interface chips and hick to the
TMS38010. ~ successful completion of the internal loop-back and CRC tests, the TMS380
perfonns a lobe media test. This i.1 the same as the internal loop-hick test, except that instead of
looping back to the TM.538>10 from the ring interface, the test continues through the connecting
cable to the multistalioo acxes,, uni (wiring concentrator) before looping back. For additional
information on these oper2tionaJ tests, refer to the Texas lnstrumems TMS380 Adapter Chipset
User's Guide.

110 B I The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential·

Software interface

The following seam present a basic overview of the software mechanisms that control and
operate the TMS380 from the 60000. In addition to direct manipulation of the DIO registers, two
software construc:ts--the system command block (SCB) and the system status block (SSB) that
reside in the TokenTalk NB card's 68000 memory-are used to pass commands to and get status
from the TMS38>.

System command block (SCB)

The system command block is a six-byte buffer that is used to issue commands to the TMS380.
From low memory to high memory, the format of the SCB is as follows:

COMMAND 2 bytes

ADDRESS high 2 bytes

ADDRESS low 2 bytes

The COMMAND field contains the 16-bit command code of the command to be issued. The two
address fields contain a 32-bit pointer to a command parameter table. (The upper 8 bits are ignored,
resulting in a 24-bit address.) The format of the commarid parameter table varies for each command
arid contains parameter arid address information needed to execute the command

System status block (SSB)

The system status block is an eight-byte buffer that the TMS380 uses to return status information
arid completion codes on completion of an adapter chipset command. From low memory to high
memory, the format of the SSB is as follows:

COMMAND 2 bytes

STATIJS 0 2 bytes

STATUS 1 2 bytes

ST ATI.:S 2 2 bytes

The COMMA.\1) field is updated by the TMS38) and identifies either RING STATIJS, COMMAND
REJECT STATIJS, or the status of a general command. The three status fields contain actual status
information for the COMMAND field. The format and meaning of the status fields vary depending
on the command.

TMS380 initialization

TMS30 initiaJizatial is accomplished by alloaiting in the ~ memory an SCB and an 5.5B. The
partirular applic:ltioo running on the TokenTalk NB card also creales a 22-byte initialization block.
This block, similar to a command parameter table, contains various intialization options, interrupt
vectors for the TMS38), TMS38) DMA parameters, and 24-bit pointers to the SCB and SSB.

B I The TokenTalk NB Card 111

Medusa Programmer's Guide, Beta Draft Apple Confidential

To transfer the intialization block to the TMS380, the direct VO registers are used. The basic
procedure is as follows:

1. Software reset the TokenTalk NB card.

2. Verify that the power-up ~iagnostics are successfully completed.

3. Write the value 0200 to the TMS38J30 address register.

4. Transfer the intialization block to the TMS38030 by writing each byte or 16-bit word to the
DATA AUTO INCREMENT register. This a<.tion causes the initialization block to be written to
successive TMS38) RAM locations beginning at address OAOO.

5. After transferring the entire initialii.ation block, write the hex value 9080 to the INTERRUPT
register. This value causes an adapter interrupt, instru<.ts the adapter to execute the intialii.ation
block, and prevents resetting the system interrupt bit

6. Loop on reading the INTERRUPT register until either the error bit is set (initialization failed), the
INITIALlZE, TEST and ERROR bits are all zero (successful initialization), or 10 seconds have
passed (hardware failure).

7. Verify that the SSB and SCB contents are correct, which verifies TMS38J30 OMA.

TMS380 command execution

After successful initialization of the TMS38J, commands can be issued to the adapter. The process
of issuing a command involves the SCB and an associated command parameter table. The basic
procedure is as follows:

• Allocate an appropriate command parameter table and initialize its values as required.

• Fill the SCB with the command code and pointers to the command parameter table as required.

• Set the INTERRUPT ADAPTER (bit 0), SSB CLEAR (bit 2), and EXECUTES bits to 1.

This proces.s interrupts the TMS380 and causes it to transfer by way cl the DMA the SCB and any
required parameters into the TMS38J RAM, and then begins execution of the command. Once the
SCB and parameters are copied into the TMS300 RAM, the TMS380 writes a zero into the COMMAND
field cl the SCB, indicating that andher command may now be issued.

Command completion

On completion of a command or on discovering an error while executing a command, the TMS38l
transfers by way of the DMA 8 bytes of status information into the SSB. The OMA result is always
8 bytes, regardless d the actual number of bytes of information supplied. After a OMA transfer of
the command swus information, the 68000 is interrupted by the TMS 380. At this point an
application can chedr the SSB fa successful completion. The actual status values that indicate
success or failure V3f:Y depending on the command.

112 B I The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential

(
TMS380 commands

All TMS38l SCB ~ and their as.scxiated hex codes are as follows:

Command Code

~ tm3
Transmit 00>4

Transmit Halt OOJ5

Receive CW)

aase rrJJ7

Set Group Address OOl!

Set Functional Address WJ1

Read Error Log OCJJA

Read Adapter Buffer OCJJB

B I The TokenTalk NB C.ard 113

Medusa Programmer's Guide, Beta Draft Apple Confidential

Appendix C Echo Task Program Example

The echo t.ask program presented in this appendix shows all major software

components needed to successfully program a downloadable t.ask for the

TokenTalk NB card.

Additionally, this echo t.ask program is fully functional and exercises the

tr"arumit and receive functions on a single TokenTalk NB carci. As such, it

provides not only a good programming example but also a functional exercise

of the token ring hardware.

Throughout this appendix, all address reference and data values are given as

hexadecimal values and refer to the 24-bit addres.5 range of the Motorola 6ro'.)()

microprocessor. The high-order 8 bits that indicate the NuBus slot address are

not contained in the addresses listed in this appendix. •

115

--------------- ---------

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Program summary
The majority of this appendix is a C program Ii.sting that demoratr3tes a fully-funaional echo task
that is dynamically downloaded to the TokenTalk NB card in Slot A. The echo task exercises the
transmit and receive functiora of the SNAP interface, causing a single card to send frames to itself,
effectively flooding the network with SNAP frarm. This exercise is useful because it verifies overall
operation of the card and also provides a template for implementing the li&ener function and for
managing global data structures under a dynamically downloaded task. (Chapter 7 discussed some
of the problems associated with managing global data structures under a dynamically downloaded
task.) The program was developed using the Macintosh Programmer's Workshop (MPW).

The program does not produce any di.splayed output By using a network packet analyzing
tool, such as a Sniffer from Data General, you can examine the traffic created by this program.

The echo task program contains several modules:

• Header files. The C language include file giving coratants that can be added together to set the
options field in many of the LLC and SNAP calls.

• Make files. The make files for building the program example that show how to make the
program from its various modules.

• Source ftles. The source files for DynDownLoadExamp.

The program listing consists of modules that support the echo task. It demonstrates many
features and techniques for working with the I.LC and SNAP interface:

• How to conditionally compile and use a listener function

• How to write a protocol (shown in Echo.c)

• How to start tasks from other task.$ (shown in Download.c)

• How to find and use SNAP from MR-DOS.

116 C I E.cho Task Program Example

(

f_

Medusa Programmer's Guide, Beta Draft Apple Confidential

Programming checklist
The following procedure describes step-by-step how to create the example program using MPW
Version 3.0 (a later). Copies of the fdcs are provided on the distribution diskettes supplied with
Tok:enTalk NB development t.ools.

1. Copy the Apple IPC and Token Talk Prep files into your System Folder.

2. Copy the MR-DOS Includes folder into your MPW folder.

3. Copy the UserStartup•TokenRingExamp file into your MPW folder.

4. Copy the TokenRingExamp folder into the MPW folder.

5. Create a new folder in MPW and name it TokenTalk Includes. Copy the following files into this
folder:

• llC.h

• SNAP.h

• TRinit.h

• TTUtil.h

• TTinit.r

6. Crear a new folder in MPW and name it TokenTalk Libraries. Copy the following file into this
folder:

• LLCSupportLib.o

These folders and files are required to build the example program. If Apple !PC did not already exist
in the System Folder prior to copying these files, you must reboot before you can execute the
example program.

The next steps are accomplished using MPW 3.0 or later. If you are not using MPW 3.0 or later, you
can copy UserStartup•TokenRingExamp to your t.:serStartup file.

l. Lounch \iPW.

2. Build the Echo Task program.

3. Build the DynDownl.oadExamp program.

4. Quit MPW.

5. Copy Echo Task to your System Folder.

6. Launch DynDownI..oadEx.

At this point, Dyn.DownLoadEx:unp downloads the Echo Task program to the TokenTalk NB card
in Slot A of your Macintosh II. The Echo Task program floods the token ring with frames.

CI Echo Task Program Example 117

Medusa Programmer's Guide, Beta Draft Apple C.onfidential

Program listing

The remainder of this appendix ~ a listing of the make files, header fdes, and source files that create
the dynamic downlaid task and the echo task. The modules are presented as follow:

• DyDamic download

DynDoWDloadExamp.make

DynDownload.c

• Dynamic global data structure management

ADT.h

ADT.c

UstenerGluc.a

• Echo task

Echo Task.make

F.cho.h

Gencral.h

EchoBlastTask.c

EchoTask.c

EclwTask.r

• MR·DOS and SNAP interface

Externa.ls.h

SNAP-Interface.h

Echo-Interface.h

MREcho-Interfacc.c

MRSNAP·Interfacc.c

118 C I Echo Task Program Example

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Dynamic download
The following program ftles show the make file for the dynamic download process and the source
code that launches the download process.

DynDownloadExamp.make

~

.;

"
~

?!.le:

:argec :
Sot.: =::es:

C::eated:

DynDownLoadExamp.make
:ynDcwnLoadExamp
Jy:-:::owr. :.cad..::

Monday, :a.".~a::y JG, :989 8:48::3 AM

DynDownLoad.c.o f DynDownLcadExamp.make DynDownLoad.c
C DynDownLoad.c

SOURCES = DynDownLoad.c

OBCECTS DynDownLoad.c.o

DynDownLoadExamp ff DynDownLoadExamp.make iQBCECTS}
~ink -w -t AP?~ -c '????' a

1'{C~ibraries}'1 ~R~n:~me.o a
11 {~ibraries}''Inter~ace.o a
"{CLibra::ies}"StdCLib.o a
"{CLibrar!es}"CSANELib.o a
"{CLibraries)"Math.o i
"(CLibraries}"Ciriterface.o i
-o DynDownLoadExamp

CI Echo Task Program Example 119

Medusa Programmer's Guide, Beta Draft Apple Confidential

DynDownLoad.c

File: OynOownLoad.c
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988-1989
All riqhts reserved

tinclude <Files.h>
•include <Resources.h>
•include <TTUtil.h>
#include <Memory.h>

/*

"I

This is the tiny Application that downloads our EchoTask proqram onto a Token Talk NB
Card in slot A. It makes assumptions about the location and name of the file. It also
downloads LLC onto the card if it hasn't been loaded.

sta~ic TTUtil?t= GlobalUti~Ptr;
sta~ic snort TTRefSum;

!TUtilPtr GetTTUtilPtr(char •PrepFile,short VRefNum,short "refptrl

Handle utlhdl;
short ttrefnum;
ttrefnum • OpenRFPerm<PrepFile,VRefNum,fsRdPerm);
if Cttrefnum -ll

/" Error in Openinq the !ile "/
retu.rn(O);

.:.!c<utlhdl "GetlResource('t'::ut',0)) 0)

/• Error in qettinq the resource "/
CloseResFile(ttrefnum);
return (0);

•refptr • ttrefnum;
return((TTtJtilPtrJStripAddressc•utlhdl));

:onq !indCards(lonq ~ask)

return(('GlobalUtilPtrl (TTFindCards,mask));

1~ C I Echo Task Program Example

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

long FindBootedCards(long mask)

return C C'"GlobalUtilPtr) CTTFindBootedCards, mask));

long FindOnbootedCardsClong mask)

return C c•GlobalUtilPtr) <TTFindOnbootedCards, mask));

long BootCards(long mask!

return ((*GlobalUtil?tr) iTTBootCards, mask));

ForceBoot(long mask)

rat"Jr:'l Ii *G.:.obalUtilPtrl iT:'ForceBoot,mask));

long DynamicDLCTTDDLP •Parameters)

return I l*GlobalUtil?trl IT':'DynamicDL, (long) Parameters));

Bootitllong How, long MyMask)

.:.ong aootedMask;
:or.g !"!asi<;

.:.ong type = -1;
long Cards;

/* Assumes that a PREP file has been opened •/

Cards= FindCards(-l); /*Find all the cards•/

if I (How == TTForceBootl ; I FindUnbootedCards CMyMaskl)

BootedMask = (•GiobalUtilPtr) (How,MyMask); /* Perform Download here •/

~ask FindBootedCards(Cards); /* Look through all cards to find booted ones •/

/T Cal: :his once before exec~ting any tests •/

SysEnvRec sysrec;

ifCSysEnvironscl,&sysrec))
(

/'" Error in SysEnvirons call •/
return;

GlobalOtilPtr • GetTTOt ilPtr C "\pTokenTalk ?rep", sys rec. sysVRefNum, &TTRefNum) ;

3ootitCTTBootCards,-l);

CI Echo Task Program Example 121

Medusa Programmer's Guide, Beta Draft Apple C.onfidential-

void DoDynamicDownLoad(voidl

main()

122

lonq type • -1;
short ResRetNum;
SysEnvRec sysrec;
TTDDLP *OynamicOownLoadParms;
lonq OownLoadTID;
Handle OynamicDPHandle;
lonq DynDownLoadSlot;

DynOownLoadSlot = OxOA;

/*

In this example, we expect a file in the system folder named "Echo :'ask", wr.:..=.-.
contains the '?ARM' resource that indicates how to Download the code onto :~e
Token Talk NB Card. We are also assuming that the Token Talk NB Card is
in slot A for simplicity.

*/

if(SysEnvirons(l,&sysrec))
{

/* Error in SysEnvirons call */

return;

ResRefNum - OpenRFPermC"\pEcho Task", sysrec.sysVRefNum, fsRdPerm):

DynamicDPHandle • GetlResourceC'?ARM',0);
it(OynamicOPHandlel
(

HLock(DynamicOPHandlel;
DynamicDownLoadParms • (TTDDLP *) (*DynamicDPHandlel;
DynamicDownLoadParms->SlotNo • DynOownLoadSlot;

DownLoadT!D • DynamicDL((TTDDLP •)StripAddress((char *)DynamicDownLoadParmsl);
HUnlocklDynamicDPHandle);

ClcseResFile<ResRefNuml:

InitLLC(); /*Make sure the card is initialized•/
DoOynamicOownLoad(); /*Now put my task there·*/

C I Echo Task Program Example
/-

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

Dynamic global data structure management
The following program mes show how to set up and manage the global data structure in a dynamic
downlood environmenL Chapter 7 diKusses the problems that can occur when the task's pointers
are managed incorrectly. An assembly language routine shows how to capcure and restore the
dynamic downlood task's AS register so that it points to the correct global data structure.

ADT.h

File: ADT.h
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1989-1999
All rights reserved

Efndef ADT
itdefine _AD!_

•include <7ypes.h>

:ypedef st=uct ELEMENT
(

struct ELEMENT *Next;
)ELEMENT;

iQt.:EUE;

E:.EMENT •:lead;

~ong Size;
Boolean InUse; /• Optional Flag •/

void InitQueue(QUEUE •Queue);
void EnQueue(void *Element,QUEUE •Queue);
void *ServeQueue(QUEUE *Queue);

•endif

CI Echo Task Program Example 123

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

ADT.c

File: AOT.c
Written by Eric M. Trehus

* Copyright Apple Computer, Inc. 1988-1989
All rights reserved

.; inc:!. -.:de <ADT. h>
•include <STDIO.h>
#include <strings.h>
iiinclude <os.h>

/*

This file provides Queue Manipulation routines. It ensures mutual exclusion during
critical code regions through the use of Rescheduling.

*/

void :nitQueue(QUEUE *Queue) /• Initializes a queue as empty */

Queue->Head = NUL:;
Queue->Tail NULL;
Queue->Size • O;
Queue->InUse • false;

void EnQueue(void *Element.QUEUE •Queue)
•/

short oldSchedMode;

ol=SchedMode • Reschedule(OS_3LOCK_:MMEDl;

if(Queue->Sizel

/• Adds an element to the end of the queue

Queue->Tail->Next = (ELEMENT *)Element;
Queue->Tail • <ELEMENT *)Element;

/* Link in the new Element •/
/* Opdate Tail */

else

Queue->Head • <ELEMENT •)Element;
Queue->Tail • <ELEMENT *)Element;

Queue->Size+~;

124 C I Echo Task Program Example

/* The Queue is empty •/

/* Head and Tail is the same Element •/

I*· Show that the Queue has grown •I

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfldential

ifColdSchedMode == OS_SLICE_~ODE)

Reschedule(OS_SLICE_~ODE);

void *ServeQueueCQUEUE *Queue) /* Removes the first element from the queue,
and returns a pointer to it */

ELEMENT *ptr;
short oldSchedMode;

oldSchedMode • Reschedule(OS_BLOCK_IMMEDl;

~f(Queue->Size)

else

pt= = Queue->Head;

Queue->Head = ptr->Next;
Queue->Size--;

ptr • NULL;

if(oldSchedMode == OS_SLICE_~ODEl

Reschedule(OS_SLICE_~OJEl;

:-e:~rn (pt:-l;

/* FIFO */

/* Update Head to point to Next Elemen: •
/* show that the Queue has shrunken •/

/* No Elements in the Queue */

C I Echo Task Program Example 125

Medusa Programmer's Guide, Beta Draft Apple Confidential

UstenerGlue.a

Written by Eric M. Trehus
Copyriqht (Cl Apple Computer Inc., 1988.
All Riqhts Reserved.

Glue code so that AS is set up when our EchoListener function is called.

** SaveAS - Save AS in code space.
CASE ON
Proc
Expor~ Save AS

SaveAS LEA EchoAS, AO

Move.L AS, (AO)
RtS

EchoAS DC.L 0

EchoListen - Set ~p -~ ca.: Ec~o :~stener.

Export EchoListen
Import EchoListener

!!:choListen
Move.L AS, -(A7)
MoveA. L EchoAS, AS
JSR EchoListener
MoveA.L (A7) +, AS
:<ts
Endp
End

lli C I Echo Task Program Examole

Case is important to c.

Get location to keep A5
Put AS in that location
Return

Keep AS Here.

Save AS on seack
Set AS
Call listener
Restore AS
Return

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

The echo task

The following program are the major components of the echo task that is dynamically downloaded
to the TolcenTalk NB carci. The make file, header files, and source files for the echo task are
included.

Echo Task.make

~choSlas:~ask.c.o ; 'Echo Task' .~aKe Echo3las~7ask.c

: ~CompilerOpticns} EchoBlast7ask.c

EchoTask.c.o f 'Echo Task' .make EchoTask.c
C {CompilerOptions) EchoTask.c

ADT.c.o f 'Echo Task'.make ADT.c
C {CompilerOptions) AOT.c

~RSNAP-Interface.c.o f 'Echo Task' .make ~RSNAP-Interface.c
C \Compi:erOptionsi MRSNA?-Interface.c

~REcho-:n~erface.c.o f 'Echo :ask' .ma~e MREcho-!~terface.c

C (CompilerOptions) ~REcho-:n:er:ace.c

'Echo Task' ff 'Echo Task' .make Echo!ask.r
Rez EchoTask.r -append -o 'Echo Task'

'Listener Glue.a.a' f 'Echo Task' .make 'Listener Glue.a'
as~ 'Listener Glue.a'

SOCRCES • ~cho~ask.: ~RSNAP-!~ter:ace.c ~c~~:as~.c AD:.c MREcho-I~:er:ace.c SchoB:as~:as~.=

~B:EC7S • MRSNA?-:nter:ace.c.c Ec~o~ask.c.o ADT.c.o ~REcho-Interface.c.o EchoElast~ask.c.o
1 ::stener ~l~e.a.o'

'Echo Task' ff 'Echo Task' .make (OBJECTS}
Link iLinkOptions) -t Card -c mash d

!OBJECTS) d
"{IPCLibraries)"osqlue.o d
"{LLCLibraries}"LLCSupportLib.o d
-o "{SystemFolderl"'Echo Task'

CI Echo Task Program Ex3mple 127

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Echo.h

File: Echo.h

* Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988-1989
All rights reserved

•ifndef ~Echo~
•define ~Echo~
finclude <L~C.h>

/* mCodes for Echo Protocol */
•define EchoOpen
tdefine EchoClose

OxOECO
Ox0EC2

•define EchoReceive OxOEC4
#define EchoTransmit OxOEC6

tdefine EchoNoErr OxOOOO
'!define EchoBadRe fNum Ox0101
•define EchoClosed Ox0l02
lfdef ine Echo'!'ocMany :JxClOJ
#define EchcTruncated Ox0:04

/*
/*

/*
/*
/*

No Errors, good result */

Bad refnum passed in */

Echo was closed */
No resouces .:.eft */
Buffer not large enough */

/* mOData of !PC will contain the following structure for EchoOpen, EchoClose */

typedef struct EchoRefNumOOata
{

unsigned short RefNum;
/EchoRefNumOData;

/* Given from EchoOpen */

/• ~OData of :?c wil! contai~ the ~ollcwing st:uc:~re for an EchoTransmi: •/
/• ~DataPt~ ~i:l poi~:. :o tne buffer to be ~ransmitted •/

/• ~Da~aSize is ~he size of the information :o be :=ansmitted */

:.ypedef str"Jct E:cho7:-ar.smi:CData

~nsigned short RefNum; /* Given from EchoOpen */
LANHdr * Hdr; /* Hdr to use on Echo Frame */

lEchoTransmitOData;
/* mOData of IPC will contain the following structure for an EchoReceive */
/* mDataPtr will point to the buffer for information to be placed */

/* mOataSize ia the size of the buffer •/
typedef struc~ EchoReceiveOData
{

unsigned short RefNum;
~nsignea snor~ rnfoLan;
LANHdr *Hdr;

}EchoReceiveOData:

128 C I Echo Task Program Example

/• Amount of information placed in the buffer T/

*

Medusa Programmer's Guide, Beta Draft Apple Confidential

General.h

.. File: General.h
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988-1989
All rights reserved

itdefine Sync O
itdefine Async :

•def~ne CannotGet~essageBuf!e:E=r OxFE

ldef ine byte unsigned char

tdefine word unsigned short

tdefine ODataAs(x,y)
#define SDataAs(x,y)
#define DPAs(x,y)

((x *) ((y)->mOData))
((x *) ((y)->mSData))

((X *) ((y) ->mDataPtr))

C I Echo Task Program Example 129

Medusa Programmer's Guide, Beta Draft Apple Confidential

EchoBJastTask.c

* File: EchoBlastTask.c
* Written by Eric M. Trehus

Copyriqht Apple Computer, Inc. 1988-1989
All riqhts reserved

Hnclude <os.h>
•i~clude <manaqers.h>
•include <mrdos.h>
•include <siop.h>
Hnclude <LLC.h>
tinclude <types.h>
iinclude <Echo.h>
tinclude <Echo-!nterface.h>
!include <Externals.h>

EchoBlastTask continueously broadcasts frames usinq our Echo Protocol.

static void EchoBlastTask()

word
LANHdr
messaqe
char
word
word

Result;
Hdr;

*Message;
•TransmitData;
BrodcastAddr[3);
RefNum;

/• Get a Har !or :ransmi::i~g •;

BroacastAddr(Oj = OxCOOO;
BrodcastAddr[l] • OxFFFF;
3rodcastAddr[2] OxFFFF;

TransmitOata • "Sending Echo Frames to everyone as fast as I can";
Result Echo_Open(Sync,,RefNum);
Result• SNAP_GetHdr(Sync,J,0,0,0,&Hdr,6,BrodcastAddr);
Result Echo_Transmit(Async,RefNum,&Hdr,80,TransmitOata);

1~ C I F.cho Task Program Example

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

for (;;)

Message = Receive(0,0,0,0);

SwapTID<Messagel;
Message->mCode &= Ox7FFE;
Send(Message);

/• Prepare to reissue the transmit request •/
/• Fix the mCode */

/• Re-Queue the transmit •/

Result = Echo_Close(Sync,RefNum);

void StartEchoBlastTask() /• Create the EchoBlastTask */

str\.:Ct S:' ?B stpb, '*pb;

pb = &stpb;
pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> Start?armSegment = NULL;

pb -> stack = 12000;
pb -> heap = O;

pb -> priority = 31;
pb -> InitRegs.?C = EchoB1astTask;
pb -> InitRegs.A_Registe~s [5] = Get~yA5();
pb -> ?aren:::D = Get::~();
i: (StartTask (pbl == Ol

illegal I I;

CI Echo Task Program Example 131

Medusa Programmer's Guide, Beta Draft Apple Confidential

EchoTask.c

132 C I Echo Task Program Example

(_

Medusa Programmer's Guide, Beta Draft Apple Confidential

/ ..

File: EchoTask.c
Written by Eric M. Trehus
Copyright Apple Computer, Inc. 1988
All rights reserved

The Echo protocol consists of 4 commands:

Ec!'loOpen:

EchoReceive:

Allocates resources for the client, and assigns a refnum so :ha:
t!'le client can accumulate t!'le responses via EchoReceive.

When an EchoReply is received a search is made for a matching
EchoReceive request.

EchoTransmit: Transmits a SNAP frame with our Echo Protocol Oescriminator, and
the clients refnum, and data.

EchoClose: Deallocates resources allocated from EchoOpen, and cancels all
pending EchoReceive requests.

7!'\e pre-processor symbol UseEchoListener can be used to create 2 different versions
of the EchoTask. If UseEchoListener is defined, then SNAP's listener function is
used. This is more efficient than using SNAPReceive, however it is slightly more
complicated to use. Otherwise SNAPReceive•s are posted, and reposted as they
complete.

The EchoTask that is started here responds to EchoRequests when received.

>li:-.cl:.:de <os.!'l>
•include <managers.h>
•include <mrdos.h>
>linclude <siop.h>
•include <SNAP.h>
tinclude <types.h>
#include <ADT.h>
tinclude <Externals.h>
•include <SNAP-Interface.h>
•include <Echo.h>

rdefine UseEchoListener
•define MaxOpen :a
~cef!~e Jaeic~oL~scener

/ .. Use SNAPS listener function vrs SNAPReceive •/
, .. Maximum number of EchoQueue•s to be opened •I

CI Echo Task Program Example 133

Medusa Programmer's Guide, Beta Draft

typedef struct
{

char PD [5);

short RefNum;

EchoHeaderStruct;

tid_type GlobalSNAPTID;
tid_type GlobalEchoTID;
long GlobalLLCMessagePriority;

static QUEUE EchoQueue[MaxOpenj;
wore EchoPDRefNu~;

NOpen;

Apple C.Onfidential

/• SNAP PD and Clients RefNum goes here •/

/* Task Identifier of SNAP on this card */

/* Task Identifier of Echo Protocol on this card •/
/* Priority of messages used in this system •/

static char *EchoBufferl,•EchoBuffer2,•EchoBuffer3;
static LANHdr EchoHeaderl,EchoHeader2,EchoHeader3;
word EchoPDRefNum;

LLCGetConfigBuffer ConfigBuffer;

~e wi:l use :he ?~otocol Desc=imi~a:or as :~e indicator :or both Echo ~equests,

and Echo Repy 1 s as follows:

Echo Request PD is EE EE EE EE EE.
Echo Reply PD is EE EE EE EE EF.

s~art~~g 2 addi:ior.a~ :asks, t~e :i=st one is
respcnc to Echo ?equests on :ne :oKen ring network. The second one ~s :o star:

-~~ ~:~e~: whic~ uses ou: ~=he ?=Jcocol se:vices. ~i~al!y we ~all in:o a loop a~d

:~e =l~e~:s of our Ec~o ?rotoco~ seno :hei: ~essages here.

134 C I Echo Task Program Example

(
Medusa Programmer's Guide, Beta Draft Apple C.Onfidential
:nain ()

message *Message;

GlobalSNAPTID 2 FindMySNAP();
GlobalEchoTID • GetTID(); /*Alternatly we could register a name, and let our

clients find us using the name manager. Then our protocol could
be used by tasks everywhere. You get more bussiness if
you advertise! */

GlobalLLCMessagePriority = O;
SNAP_GetCon!ig(false,sizeof(LLCGetConfigBuffer),&ConfigBuffer);

~ifdef UseEchoListener

•/

~endif

hfndef

Jtendif

SaveAS <); /• ~se ~l~e. EchoL!sten will access a variable not based on AS :o ;e: ;5

StartEchoTask();
StartEchoBlastTask();

/* Sets up the Echo Protocol */
/* Client of the Echo Protocol */

for(;;)

Message= ~eceive(0,0,0,0);
switch(Message->mCodeJ

case E:choOpen:
Star:EchoOpen(Message);
break;

case E:choClose:
StartE:choClose(Message);
break;

case EchoReceive:
StartE:choReceive(Message);
breai<;

case EchoTransmit:

OseEchoListener

StartE:choTransmit(Message);
break;

case SNAPReceive I 1: /* If it completes */

E:choComplete<Message);
break;

CI Echo Task Program Ex2mple 13S

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential
static tid_type FindMySNAP()

short index " O;
return(Lookup_Task("•","SNA!?",GetNameTID(),&index));

#ifdef OseEchoListener
extern void EchoListen(J;

#endif

InitEcho!?rotocol() /• Initializes the Echo Protocol •/

char EchoReplyDescriminator'.5];
long Buf~erSize;

word Result;
void EchoListen():

BufferSize = ConfigBuffer.MaxFrameLen - ConfigBuffer.MaxHeader;
EchoReplyDescrL~inator[Ol • OxEE:
EchoReplyDescriminator[lJ = OxEE;
EchoReplyDescriminator[2J OxEE:
EchoReplyDescriminator[JJ • OxEE:
EchoReplyDescriminator~4! • OxEF;

/• Al:ocate J buffers •/
EchoBufferl = GetMem(BufferSize>;
EchoBuffer2 = GetMem(BufferSize>;
EchoBufferJ • GetMem(BufferSize):

*ifndef UseEchoListener

ite.se

Result = SNAP_Attach(Sync,&EchoPDRefNum,0,NULL,EchoReplyDescriminator):
Result = SNAP_Receive(Async,Echo!?DRefNum,O,&EchoHeaderl,BufferSize,EchoBufferl>;
Res~lt • SNAP_Receive(Asyr.c,Echo!?DRefNum,O,&EchoHeader2,BufferSize,EchoBuffer2l:
Res~.:.: SNAP_Receive1Async,EchoPDRefNum,O,&EchoHeaderJ,BuffecSize,EchoBuffer3l:

Res~.:.: =

SNA?_A:=ach<Sync,&EchoPDRe!Num,Listener!~nc~~on.EchoL~sten,EchoReplyDescri~i~ator);

'iendif

136 C I Echo Task Program Example

\

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

static void EchoTask() /* Turns around any Echo Request into an Echo Reply */

word
word
LANHdr
char
char
char
message
char
char
long
long

Result;
PDRefNum;
Hdr[3];
•Sufferl;
*Suffer2;
*Suffer3;
*Message;
ErrorCount;
EchoRequestDescriminator[SJ;
ReceiveSufferSize;
ID;

E=rorCount. • O:

EchoRequestDescriminator[OJ • OxEE;
EchoRequestDescriminator[l] - OxEE;
EchoRequestDescriminator[2] = OxEE;
EchoRequestDescriminator[3] = OxEE;
EchoRequestDescriminator[4] • OxEE;

Receive3ufferSize s ConfigSuffer.MaxframeLen - ConfigSuffer.MaxHeader;

GetMem<ReceiveBuf:erSizel;
3uffer2 GetMem<ReceiveBuf:erSize);
Buffer3 GetMemlReceiveBufferSizel;
iflBufferl && Buffer2 && 3uffer3) /* If we got memory in all requests */

/* Queue up 3 Receive requests */

Result SNAP_AttachiSync,&PDRefNum,O,NULL,EchoRequestDescriminatorl;

Resul: SNAP_ReceivelAsync,?DRefNum,0,&Hdr[OJ,Receive3ufferSize,Buffer:l;

Resul: SNAP Rece~ve(Async,?DRefNum,O,&Hcr;:J,ReceiveBuf!erSize,3uf:er2l;

Result= SNAP_ReceivelAsync,?DRefNum,0,&Hdr[2J,Receive3uf!erSize,Buf:er3':

for I;; l /* Do this until told otherwise */

Message• Receive(0,0,0,0l;
if(Messaqe->mStatus)
{

FreeMsg(Message);

Errorcount+•;
if(ErrorCount == J)

break:

/* After 3 errors,
we will no longer echo */

/* '!'hats it, 3 strikes */

CI Echo Task Program Example 137

Medusa Programmer's Guide, Beta Draft Apple Confidential

else

SwapTIO(Messagel; /* Prepare to echo reply •/

LLCSwapHdr(ODataAs(LLCTxRxOData,Message)->Hdr,OxAA);

Message->mCode = SNAPTransmit;

ID = Message->mid;

Message->mDataPtr[4J = OxEF; /•Make it an Echo Reply •/

Send(Message); /* The packet is on its way •/

Message= Receive(ID,0,0,0); /*Wait for transmit

to complete •/

SwapT!O(Message); /*Prepare to reissue SNAPReceive •/

Message->mCode = SNAPReceive;

CJataAs(SNAPReceiveOData,Message)->PDRefNum = ?DRefNum; /•

Transmit Messed me ~? w;
Send(Messagel;

Result = SNAP_Detach(Sync,PDRefNum);

FreeMem(Bufferll;

FreeMem(Buffer2l;

FreeMem(BufferJ);

Start£choTask (l /• Create t~.e :'lew task :::choTask •/

struct ST PB stpb, •pb;

pb = &stpb;

pb -> CodeSegment = NULL;

pb -> :JataSeg~ent = NULL;

?D -> StartPar~Seqment = ~re:.:.:

?O -> staci< = :2000;

?b -> heap = 0;

?b -> ;:>::iority = 3l;

po -> InitRegs.?C = £choTask;

pb -> InitRegs.A_Regist.ers [5) = GetMyAS():

pb -> ParentTID = GetTID();

InitEchoQueue();

InitEchoProtocol();

if (StartTask (pb) Ol

illegal ();

3tar~Ec~oTransmit~messaqe ~Messaqe~

LLCList LBuffer(2];

~choHeaaerStruct ~choHeader:

138 C I Echo Task Program Example

/* Requeue SNAP_Receive •/

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

RefNum • ODataAs<EchoRefNumOData,MessageJ->RefNum;

if(!EchoOueue[RefNumJ .InUse 11 RefNum >= MaxOpen 11 !RefNum)
/• Check for invalid refnum •/

else
Message->mStatus = EchoBadRefNum;

EchoHeader.?D[OJ = OxEE;
EchoHeader.?D(lJ • OxEE;
EchoHeader.?0[2] OxEE;
EchoHeader.?0(3] • OxEE;
EchoHeacier. PD [4 I OxEE;
EchoHeader.RefNum = RefNum;

~Buffer'.~] .count z sizeof!EchoHeader);
L3uffer:oJ .?tr= (char *l&EchoHeader;
L3uffer[:; .Count = Message->mDataSize;
L3uffer[lJ .?tr• Message->mData?tr;

Message->mStatus = SNA?_Transmit<Sync,sizeof (EchoHeader>~Message->mDataSize,

ListDirected,3,0DataAs(EchoTransmitOData,Message)->Hdr,
sizeof !L3ufferl, <char •J LBufferJ;

SwapT:J(~essagel:

Message->mCcde :• l; /• Mark that it is a reply, Transmit complete •/
Send(Messagel;

static InitEchcQueue()

int i;

~or(i=O;i<MaxCper.;:•+)

static GetfreeEchoQueueinciex(J

int i;

for(i•l;i<HaxOpen;i++l

if(!EchoQueue[iJ .InUse)
break;

::e1:urn (i.);

queue so refnums are never 0 •/

CI Echo Task Program Example 139

Medusa Programmer's Guide, Beta Draft

Star~EchoOpen(message *Message)
{

word RefNum;

Message->mStatus • EchoNoErr;
if(NOpen >• MaxOpen)
{

Apple C.Onfidential

Message->mStatus • EchoTooMany;

else

NOpen+ ... ; /* We are going to allocate the resources */

RefNum a GetFreeEchoQueue!ndex();
EchoQueuelRefN~mJ .:nose= t:ue; /* Mark the queue busy */
ODataAs(EchoRefNumOData,Message)->RefNum • RefNum;

SwapT!D(Message);
Message->mCode !• l;
Send(Message);

/* This will cancel all of the Echo Receive Requests */
StartEchoClose(message •Message)

!nessage *mp;
word RefNum;

Message->mStat us • EchoNoErr; ,r-

RefNum • ODataAs(EchoRefNumOData,Message)->RefNum;
if(!EchoQueue[RefNumJ.InUse II RefNum >• MaxOpen II !RefNum)

/* Check for invalid refnum •/
Message->mStatus = EchoBadRefNum;

else

whilelmp = ServeQueue(&EcnoQueue[RefNum]))

mp->mStatus = EchoClosed;
SwapT!D (mp);
mp->mCode I• l;
Send(mp);

EchoQueue[RefNumJ .!nUse • false;
NOpen--;

SwapTIO(Messagel;
Message->mCode I• l;
Send (Message);

140 C I Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential

StartEchoReceive(message *Message)

word RefNum;

Message->mStatus = EchoNoErr;
RefNum • ODataAs(EchoRefNumOData,Message)->RefNum;
if(!EchoQueue{RefNumJ .InUse 11 RefNum >• MaxOpen 11 !RefNum)

else

Message->mStatus = EchoBadRefNum;
SwapTID(Message);
Message->mCode I• 1;

Ser:d(Message);

EnQueue(Message,&EchoQueue[RefNumJ);

*ifndef UseEchoListener
EchoComplete(message *Message)

/* Check for invalid refnum •/

/* Handle SNAPReceive for EE EE EE EE EF Protocol Descriminator */

message *mp; /* A pointer :o the users EchoReceive Message structure •/
word !nfoLen; /• ~eng~h of ~~!or~at~on placed into user•s buffer •/

word RefNum;
i~t EchoHeaderSize;

EchoHeaderSize = sizeof(EchoHeaderStruct);
if(!Message->mStatus) /* rf there was an error */

/* Get Refnum from frame received */
RefNum = ((EchoHeaderStruct *) (Message->mDataPtr))->RefNum;
if(mp = ServeQueue<&EchoQueue[RefNum]ll

mp->mStatus = EchoNcErr;
/• Assume no error ~ntil proven ot~erw~se •/

;~foLen • ODataAs(SNAPReceiveOData,Message)->rnfoLen - EchoHeaderSize;
if(InfoLen > mp->mDataSize)

/* Error, qot more than we were asking for */

mp->mStatus • EchoTruncated;
InfoLen = mp->mDataSize;

OOataAs<EchoReceiveOData,mp)->InfoLen • rnfoLen;

/* Copy the data into the user's buffer */
CopyNuBustMessage->mOataPtr•EchoneaderSize,mp->mDataPtr,:ntoLenl;

/* Copy the header into the user's header */

:opyNuBus<COataAs\SNAPRece.iveOOata,Messagel
->Her, QDataAs 1 EchoRece.:..veOOata. :np1 ->Hdr, sizeor; :.ANHd:::l ; ;

CI Echo Task Program Example 141

Medusa Programmer's Guide, Beta Draft Apple Confidential

fe.i.se

/• Send the message to the user •/
SwapTID <mp);
mp->mCode 1• l;
Send<mpl;

/* Re-issue the receive •/
SwapTID<Message);
Message->mCode • SNAPReceive;
SendlMessage);

/• Handle SNAPReceive ~or EE EE EE EE EF Protocol Descriminator •/

Y20189

void EchcLlstenerllong nul,lcng nu2,::..ANHdr •Hdr,char •Sutter,int len,int FrameTypel

message •mp;
word InfoLen;
word RefNum;

/* A pointer to the users EchoReceive Message structure •/
/* Length of information placed into user's buffer */

int EchcHeaderSize;

tpraqma unusedlnul)
tpragma unused(nu2l
tpraqma unusedlframe!ypel

tendif

EchcHeaderSize • sizeof(EchcHeaderstruct);
t• G@t ?etnum from fra~e received •/
RefNum • ((tchoHeacierStruct *) (Sufferl) ->RefNum;
iflmp • ServeQueue(,EchoQueue(RefNum)l)
{

mp->mStatus • EchoNoErr; /* Assume no error until proven otherwise •/
:nfoLen • len - EchcHeaderSize;
:!1Inf0Len > mp->mDa-::as:ze1 /•Error, got more than we were asi<inq !o:: •/

mp->mStacus • EcnoT::uncated;
:~!oLen = ~p->~Da:as~ze;

ODataAs1EchoReceiveOData,mp1->!nfoLen • :nfoLen;
/• Copy the data into the Jser•s buffer •/
CopyNuBus <Buf fer-+EchoHeaderSi ze, mp->mOataPtr. Inf oLen) ;
/* Copy the header into the user's header •/
CopyNuBus<Hdr,OOataAslEchoReceiveOOata,mp>->Hdr,sizeof(LANHdr));
/* Send the message to the user */

SwapTID (mp I :
mp->mCode i• l;
Send (mpl:

142 C I &:ho Task Program Example

(

(~

Medusa Programmer's Guide, Beu Draft Apple Confidenual

EchoTask.r

;···\
file: EchoTask.r
Written by Eric M. Trehus
Copyriqht Apple Computer, Inc. 1988-1989
All riqhts reserved

\••···;
type 'mash•

pstring;

resour:::e •mash• (0)
SSformat("Echo Task •s",SSDate)

};

type 'PARM'
(

/• Created resource type for dynamic download •/

long int;
lonqint;
lonqint;

long int;
lonqint;
longint;
long int;
longint:;
long int;
lonqi..nt;

~c:ig int:;
~ong1nt;

lonq!.:tt:

long in~;
~ong i:it;
:ongi:it;
.:.or.gin1:;

lonqint;

long int;
long int;
long int;
long int;
longint;
long int;
longint;
.:.:iteger:
'Jns1qned byte;
long int;

);

/•-Resource t:ype holding code to download •/
/• SlotNo •/
1• ?aramSize •/

;• CodeSegment: memory region on card ~or

/• DataSeqment: memory region on card !or

/• StartParmSeqment: memory region on card :or
1• DO •/

/• Dl •/

/• 02 •/

1• 03 •j

/• D4 •/

1• DS •/

/• ::)6 •/

/ • :)7 •/
I• AO •/

/• Al •/

/• A2 •/

1• AJ •/

/• A4 •/

/• AS •/

I* A6 •/
/• A7 •/
/• PC; Program Counter
1• stack; initial stack size (in bytes)
/• heap; initial heap size <in bytes I

code •/

global data•/
start parameters

/• return code; error :::ode !.! tasle not started (!id a 0) -
/• ;:iriori:y; ;:iriority Of tasK ~in bytes> •/

1• Parent TIO: TID of l?arent: on Networle/Host

CI Echo Task Program Example 143

•/

•/

*/

•/

•/

•/

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

resource 'PARM' (0)

'CODE', /* Resource type holding code to download •/

10, /* Slot No A, Assume this is the only place it will go •/

0, /* ?aramSize •/

0, /* CodeSegment: memory region on card for code •/

0, /* DataSegment: memory region on card for global data */

0, /* StartParmSegment: memory region on card for start paramete:-s •/

0, /* DO •/

0' /* Dl •/

0' /* D2 */
~ /* DJ •/ v,

v' /• D4 */
~ / ... JS •/ v'

" /* J6 •/ v'

0' /• D7 •/

0' /* AO •/

0' /* Al •/

0, /* A2 */

0, /* A3 •/

0, /• A4 */

0, /* AS •/
~ /* A6 •/ v'

·v' /• A7 •/

v' /• ?C.· ?::og::am Cc'.l;;':er . /
32"68, /* stack; ini.ti.al stack size (in bytes) •/

0, /* heap; initial heap size (in bytes) */

0, /* return code; error code if task not started (!id = 0) •/ -
20, !• prior icy; pri.oricy of task (in bytes) •/

0 /* ParentTID; TI!J of ?arent on Network/Host •I

) ;

144 C I Echo Task Program Example

(

'l ,,.

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

Interface to MR-DOS and SNAP
The rinal set of program files show how to set up the interface to MR-DOS and SNAP by means of
header files that declare the necessary parameters.

Externals.h

F!!e: Externals.~

Wr~tten by Eric M. :rehus
Copyright Apple Computer, Inc. :988-1989
All rights reserved

extern tid_type GlobalSNAPTID;
extern tid_type GlobalEchoTID;

/* Task Identifier of SNAP on this card •/

extern long GlobalLLCMessagePriority;

pascal void illegal ()
extern Ox4afc;

unsigned long GetMyAS<l • {0x200D!;

/• Priority of messages used in this system •/

C /Echo Task Program Example 145

Medusa Programmer's Guide, Beta Draft

SNAP-Interface.h

File:-SNAP-Interface.h
Written by Eric M. Trehus

Apple Confidential

Copyright Apple Computer, Inc. 1988-1989

All rights reserved

~i~ndef ~SNAPINTERFACE~

~define ~SNAP:NTERFACE~

tinclude <General.h>
hnclude <LLC. h>
word SNAP_Attach(int

word
word
void
void

word SNAP_Detach(int
word

word SNAP_GetConfig<int
long
LLCGetConfigBuffer

word SNAP_GetHdr(int
word
word
byte
by-::e
:..ANHdr
long
char

146 C I Echo Task Program Example

SyncFlaq,
"PDRefNum,
Options,
("Listener)(),
*ProtocolDescriptorl;

SyncF::.ag,
RefNum);

SyncFlag,
ConfigBufferSize,
*ConfigBuffer);

SyncFlag,
HdrType,
Options,
SSA?,
DSAP,

AddressSize,
*Adc:iress1;

(
Medusa Programmer's Guide, Beta Draft

word SNAP_Transmit(int
word
word
byte
LANHdr
long
char

word SNAP_Receive(int
word
word
LANHdr
:ong
char

Apple Confidential.

SyncFlag,
InfoLen,
Options,
FrameType,
•Hdr,
BufferSize,
•Buffer) :

SyncFlag,
PDRefNum,
Options,
•Hdr,
3uf!erSize,
*9uf:erl;

C I Echo Task Program Example 147

Medusa Programmer's Guide, Beta Draft

Echo-Interface.h

File: Echo-Interface.h
~ritten by Eric M. Trehus

Apple c.onfldentiaJ

Copyright Apple Computer, Inc. 1988-1989
All rights· reserved

•~:ndef ~Echointerface~

•def~ne ~Echornter:ace~

tinclude <LLC.h>
tinclude <General.h>

word Echo_Open(int
word

word Echo_Close< int
word

word Echo_Receive(int
word
LANHdr
long
void

word Echo_Transmit(int
word
LANHdr
.:.o~g

void

148 C I Echo Task Program Example

SyncFlag,
•RefNum);

SyncFlag,
RefNum);

Sy:icF:.ag,
i'lef~um,

•Hdr,
3ufferSize,
... Buffer);

RefNum,
•Hdr,

SyncFlag,

3u!:e:-Size,
•Suffer};

'i

Medusa Programmer's Guide, Beta Draft

MREcho-Interface.c

File: MREcho-Interface.c

Written by Eric M. Trehus

Apple Confidential

Copyright Apple Computer, Inc. 1988-1989
All rights reserved

4include <STDIO.h>

•include <Types.h>
Jtincl~de <os.h>
#include <L~C.h>

•include <SNAP.h>

tinclude <Echo.h>

tinclude <Echo-Interface.h>

iinclude <Externals.h>

/*

MREcho-Interface.c provides a procedure interface to the ECHO protocol. This hides

many of the details of MR-DOS.
*/

word Echo_Open(int SyncFlag,

*RefNum)

/* Local Variables */

message *Message;

word Result = O;
long ID;

if(Message = GetMsg())

word

ID = Message->m!d;

Message->mCode • EchoOpen;

~essage->m.Priority = GlobalLLC~essageP:~ority;
Message->mTo - GlobalEchoTID;

it(SyncFlag)
{

Send(Message);

else

Send(Message);

Message - Receive(ID,J,C,J);

/* If Async */

/* Sync */

CI Echo Task Program Example 149

Medusa Programmer's Guide, Beta Draft Apple Coofidential

Result • Message->mStatus;
•RefNum • ODataAs(EchoRefNumOData,Message)->RefNum;
FreeMsg(Message);

else
Result • CannotGetMessageBufferErr;

return(Result);

word Echo_Close(int

/• Local Variables •/
message ·~essage;
word Result = O;
long ID;

if(Message • GetMsg())

SyncFlag,
word

!D = Message->mid;
Message->mCode = EchoClose;

RefNum)

Message->mPriority • GlobalLLCMessagePriority;
Message->mTo = GlobalEchoT~D;

CDataAsCEchoRefNumOData,Message)->RefNum = RefNum;

else

if(SyncFlag)
{

else

Send (Message) ;

SendlMessage);
~essage = ~eceive<:D,J,8,~l;

Result = Message->mStat~s;

F:eeMsg(Message);

Result • CannotGetMessageBufferErr;

return (Result);

150 C I Echo Task Program Example

/• If Async •/

/• Sync •/

c:

Medusa Prograrruner's Guide, Beta Draft Apple Confidential-
/"*
In our example this procedure is not needed, however it is provided for completeness .
.. I

word Echo_Receive(int

/"* Local Variables "*/
message *Message;
word Result - O;
long '.::D;

~f(Message = GetMsgl))

ID • Message->mid;

SyncFlag,
word
LANHdr
long
void

Message->mCode = EchoReceive;

RefNum,
"*Hdr,
BufferSize,
"*Buffer)

Message->mPriority • GlobalLLCMessagePriority;
Message->mTo • GlobalEchoTID;
ODataAs<EchoReceiveOData,Message)->RefNum - RefNum;
ODataAslEchoReceiveOData,Message)->Hdr • Hdr;
Message->mDataSize • 9uffer5ize;
Message->mData?tr = 3uffer;

if(SyncFlagl

SendlMessage);

else

Send<Message);
Message• ReceiveliD,0,0,0);
Result = Message->mScacus;
;reeMsg(Messagel;

else
Result = CannotGetMessageBufferErr;

return(Result);

word Echo_TranS11it(int
word
LANHdr
long
void

/* Local Variables •/
message ·~essage;
•oro. ?.es cl t :a J:

~~nq ::;;

SyncFlag,
RefNum,
"*Hdr,
BufferSize,
•Buffer)

/"* If Async "*/

/* Sync •/

C I Echo Task Program Example 151

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

if(Messaqe • GetMsq())
{

e~se

ID • Messaqe->mid;
Messaqe->mCode = EchoTransmit;
Messaqe->mPriority = GlobalLLCMessaqePriority;
Messaqe->mTo = GlobalEchoT!D;
ODataAsCEchoTransmitOData,Messaqe)->RefNum = RefNum;
ODataAsCEchoTransmitOData,MessageJ->Hdr = Hdr;
Message->mDataSize • BufferSize;
Message->mDataPtr = Buffer;

'..~ (SyncF.:.aq)

else

Send (Message);

SendlMessage);
Message= Receive<ID,0,0,0);
Result = Messaqe->mStatus;
FreeMsg(Messaqe);

Result = cannotGetMessageBuf:erE=r;

/* '' Async */

/* Sync */

return<Result);

152 C I Echo Task Program Example

(

Medusa Programmer's Guide, Beta Draft Apple C.Onfidential

MRSNAP-I.nterface.c

File: MRSNAP-Interface.c
* Written by Eric M. Trehus

Copyriqht Apple Computer, Inc. 1988-1989
All rights reserved

/•

MRSNAP-Interface.c provides a procedure interface to SNAP. 7his hides ~any of :he
details of MR-DOS.

llinclude <os.h>
llinclude <LLC.h>
iinclude <STDIO.h>
iinclude <Types.h>
~include <SNAP.h>
finclude <General.h>

word SNAP_Attach<int
word
word
void
void

/* Local Variables •/
message •Messaqe;
·,;o::d Resul.: = O;
.:.ong :o;

:!(Message= GetMsq())

/* IPC-MRDOS interface */

SyncFlaq,
•PDRefNum,
Options,
(*Listener>(),
•ProtocolDescriptorl

ID • Messaqe->mid;
Messaqe->mCode • SNAPAttach;
Messaqe->ml?riority • GlobalLLCMessagePriority;
Meaaaqe->mTo • GlobalSNAPTID;

Meaaaqe->mDataPtr • ProtocolDescriptor;
Measaqe->mOat:aS.l.ze • 5;
OOataAs!SNAPAttachOOata,MessaqeJ->Options •Options;
ODat:aAs(SNAPAttachOOata,Messagel->Listener • Listener;

CI Echo Task Program Example 153

Medusa Programmer's Guide, Beta Draft

ifCSyncFlag)
(

SendCMessage);

else

Send(Messagel;

Apple Confidential

Message - ReceiveCID,0,0,0);
Result - Message->mStatus;

/• If Async */

/* Sync */

•PDRefNum = ODataAsCSNAPAttachOData,Messagel->PDRefNum;

FreeMsgCMessagel;

else
Result - CannotGetMessageBufferErr;

return(Result);

word SNAP_DetachCint
word

/• ~ccal Variables •/

message *Message;
word Resul:: • O;
long ID;

if(Message = GetMsgCll
{

ID • Message->mid;

SyncFlag,
RefNuml

Message->mCode = SNAPDetach;
~essage->mP=i~ri~y = ~:ooa::~c~essage?=iori~y;

~essage->m!o = ~:obalSNAP:::;

:cataAsCSNAP_?D_RefNum,Message)->PDRefNum = (snor::lRefNum;

if CSyncFlagl

else

Send (Message);

Send(Messaqel;
Message 2 Receive<ID,0,0,0);
Result = Message->mStat~s;

rreeMsqcMessagel;

154 C I Echo Task Program Example

/• If Async */

/* Sync */

(
Medusa Programmer's Guide, Beta Draft Apple Confidential

else
Result • CannotGetMessageBufferErr;

return<Result);

word SNAP_Ge~Config<int
long
LLCGetConfigBuffer
)

Syncflag,
ConfigBufferSize,
•configBuf fer

message *Message;
word Resul: = O:

:.ong r::i;

if(Message • GetMsg())

,ID• Message->mid;
Message->mCode = SNAPGetConfig;
Messaqe->rnPriority • GlobalLLCMessaqePriority;
Messaqe->mTo = GlobalSNAPTID;
Message->mDataSize = ConfigBufferSize;
Message->mDataPtr = !char •)ConfigBuf~er;

e:se

if!SyncF:.ag)
{.

else

Send<Message);

Send(Message);
Message• Receive<ID,0,0,0);
Result • Message->mStatus;
FreeMsg(Messagel;

~esul~ • CannotGetMessaqeEuf:erE:r;
ret:irn <Result);

word SNAP_GetHdr(int
word
word
byte
byte
I.ANHdr
lonq
char

Syncflaq,

/• If Async •/

/* Sync */

HdrType,
Options,
SSAP,
DSAP,
*Hdr.
AddressSize.
*Aciciress

CI Echo Task Program Example 155

Medusa Programmer's Guide, Beta Draft Apple C.Onftdential

word

message •Message;
word Result • O;
long IO;

if(Message • GetMsg())
{

IO • Message->mid;
Message->mCode • SNAPGetHdr;
Message->mPriority • GlobalLLCMessagePriority;
Message->mTo = GlobalSNAPTID;
ODataAs(LLCGetHdrOData,Message)->HdrType • HdrType;
ODataAs<LLCGetHdrOData,Message)->Options =Options;
ODataAs(LLCGetHdrCData,Message)->SSAP • SSAP;
ODataAs(LLCGetHdrOData,Message)->DSAP • JSA?;
ODataAs(LLCGetHdrOData,Message)->Hdr • Hdr;

e.i.se

Message->mDataSize - AddressSize;
Message->mDataPtr • Address;

if(Syncflagl

!

e.i.se

Send(Message):

Send(Message);
Message• Receive(ID,0,0,0);
if (Message}
(

Re~ult = Message->mStatus;
FreeMsg(Message);

~es'!.l:: = Car.notGet.Message3-...!!erE.:::;

ret;,;rn<Result1;

SNAP_Transmit(int
word
worc:l
byte

LANBc:lr
lonq
char

message *Message;
word Result. = O;

SyncFlag,
InfoLen,
Options,
Frame Type,
•Heir,
Buf ferSize.
*Buffer

/• If Async */

/* Sync •/

156 C I F.cho Task Program Example

(

C'

Medusa Programmer's Guide, Beta Draft

if(Message • GetMsg(ll
(

ID • Message->mid;

Apple Confidential"

Messaqe->mCode = SNAPTransmit;
Message->mPriority = GlobalLLCMessagePriority;
Messaqe->mTo • GlobalSNAPTID;
ODataAs(SNAPTxOData,Messaqel->InfoLen • InfoLen; /* This is ignored */

ODataAs(SNAPTxOData,Messagel->Options •Options;
ODataAs<SNAPTxOData,Messaqel->FrameType • FrameType;
ODataAs(SNAPTxOData,Messagel->Hdr • Hdr;

Message->mDataSize = BufferSize;
Message->mDataPtr = 9uf~er;

if(SyncF:ag)

Send(Messagel;

else

Send(Message);
Message• Receive<ID,0,0,0);
Result = Message->mStatus;
FreeMsg(Messagel;

else
Result • CannotGetMessageBufferErr;

return(Result);

word SNAP_Receive(
word
word
:.ANHdr
lor.g
char

int

message •Message;
word Result • O;
long !D;

if(Messaqe • GetMsg())
(

ID • Messaqe->mid;

SyncFlag,
?DRef~um,

Options,

3uf:e:-s.:.ze,
•9ufferl

Messaqe->mCode • SNAPReceive;

/• If II.sync •/

/* Sync •/

Messaqe->mPriority • GlobalL.:..CMessage?riority;
Message->mTo • GlobalSNAPT!D;
ODataAs(SNAPReceiveOData,MessageJ->PDRefNum • ?DRefNum;
ODataAs<SNAPReceiveOData,Messaqe)->Options •Options:
:DataAslSNAPReceive0Data.~essaqe1->adr • ~dr;

CI Echo Task Program Example 157

Medusa Programmer's Guide, Beta Draft Apple Confidenual

Message->mDataSize BufferSize;
Message->mDataPtr = Buffer;

else

it(Syncflag)
{

Send (Message) ;

Result = CannotGetMessageBufferErr;

return(Resultl:

158 C I Echo Task Program Example

/* If Async •/

