4

«.

Medusa
Programmer's Guide
Beta Draft

Apple Confidential

Medusa Programmer's Guide, Beta Draft Apple confidential

€ APPLE COMPUTER, INC.

This manual is copyrighted by Apple
or by Apple’s suppliers, with all rights
reserved. Under the copyright laws,
this manual may not be copied, in
whole or in part, without the
written consent of Apple Computer,
Inc. This exception does not allow
copies to be made for others,
whether or not sold, but all of the
material purchased may be sold,
given, or lent to another person.
Under the law, copying includes
translating into another language.

© Apple Computer, Inc., 1989

20525 Mariani Avenue

Cupertino, CA 95014

(408)996-1010

Apple, the Apple logo, and Macintosh
are registered trademarks of Apple
Computer, Inc.

TokenTalk, Macintosh Coprocessor
Platform, and MR-DOS are
trademarks of Apple Computer, Inc.

NuBus is a trademark of Texas
Instruments.

Simultaneously published in the
United States and Canada

Notice

The information in this
document reflects the current
state of the product. Every
effort has been made to verify
the accuracy of this information;
however, it is subject to change.
Beta Drafts are released in this
form to provide the
development community with
essential information in order
to work on compatible products.

321/8)

Apple Confidential

Contents

Preface

What this document contains /
Suggested reading /

Possible applications /
Conventions used in this manual /

Introduction 1

Token Ring Networks /

The network layers /

A token ring network /

Token communication /

The Macintosh II token ring interface /
SubNetwork Access Protocol (SNAP) /
The 802.2 Logical Link Control IPC interface /
Macintosh Operating System IPC services /
Download and initialization services /

Apple Confidential

2 Source Routing Support

What is source routing? /
Hierarchical networks /
Mesh networks /

How source routing works /
Routing information /

Source routing implementation /
SNAP use /

LLCuse /
Source route limits /

3 SubNetwork Access Protocol (SNAP) Interface

General information /

Typical SNAP use /

IPC requests to SNAP /
SNAPAttach /
SNAPGetConfig /
SNAPGetHdr /
SNAPTransmit /
SNAPDetach /
SNAPReceive /
SNAPCancel /
SNAPGetParms /

Functions supporting 802.2 /
SNAPSwapHdr /

Example program listing /

4 The 802.2 LLC / IPC Interface
General information /
Typical 802.2 LLC use /
IPC requests 10 802.2 LLC /
LLCCpenSAP /

LLCTioseSAP /

iv CONTENTS

Apple Confidential

LLCGetHdr /
LLCGetConfig /
LLCOpenStation /
LLCCloseStation /
LLCConnectStation /
LLCModifyParams /
LLCReceive /
LLCReceiveCancel /
LLCT1Transmit /
LLCT2Transmit /
LLCReset /
LLCReturnBuffer /
LLCGetStatistics /
LLCStatus /
LLCSetFunctionalAddr /
Functions Supporting 802.2 /
LLCSwapHdr /

5 Apple IPC Services
i General information /

Apple IPC driver /

Apple IPC library /
Apple IPC managers /

Using Apple IPC /

Apple IPC services /
CoseQueue /
CopyNuBus /
FreeMsg /

GetCard /
GetETick /
GetdCCTID /
GetPCg /
GetMsg /
CetNameTID /
GetTickPS /
Z21D -
Isiocai
iliRegerve /

CONENTS

A\

Apple Confidential

Lookup_Task /
OpenQueue /
Receive /
Register_Task /
Send /
SwapTID /

6 Download and Initialization

General information /
TokenTaik Prep services /
TTFindCards /
TTFindBootedCards /
TTFindUnbootedCards /
TTBootCards /
TTForceBoot /
TTGetStatusAddr /
TTGetLLCTID /
TTGetSNAPTID /
TTGetBoardID /
TTDynamicDL /
TokenTalk Prep file example /
LLC resource description /
TokenTalk NB card boot process summary /
Defining the LLC resource /

7 Avoiding Trouble

General information /

Common error causes /
Error codes /
Network connection failure /
Problems programming the listener function /
Global data structures and dynamic download /
DMA conflicts /

Appendix A Componeats 77

vi CONTENTS

Apple Confidential

Appendix B The TokenTalk NB Card 79

Hardware overview /
Communications engine /
Central processor unit (CPU) /
Read-only memory (ROM) /
Dynamic random access memory (DRAM) /
Communications engine/NuBus interface /
Communications engine/token ring interface /
Token ring interface /
TMS38010 communications processor /
TMS38020 protocol handler (PH) /
TMS38030 system interface (SIF) /
TMS38051 and TMS38052 ring interface /
Bumed-in unit ID /
Adapter interfaces /
TokenTalk NB memory map /
Control registers /
TokenTalk NB card options register /
TMS38030 direct 1/O interface registers /
DATA register /
DATA AUTO INCREMENT register /
ADDRESS register /
INTERRUPT register /
TMS38030 DMA /
NuBus addressing /
Adapter timer /
68000 reset /
TMS38030 reset /
Interrupts /
Software overview /
Power-on self-test /
Software interface /
System command block /
System status block /
TMS380 initialization /
TMS380 command execution /
Command completion /
TMS380 commands /

CONENTS

vii

Apple Confidential

Appendix C Echo Task Program Example
Proéram summary /
Programming checklist /
Dynamic downlcad /

DynDownLoadExamp.make /
DynDownlLoad.c /

Dynamic global data structure management /
ADT.h /

ADT.c /
ListenerGlue.a /

The echo task /
EchoTask.make /
Echoh /
Generalh /
EchoBlastTask.c /
EchoTask.c /
EchoTask.r /

Interface to MR-DOS and SNAP /
Externals.h /
SNAP-Interface.h /
Echo-Interface.h /
MREcho-Interface.c /
MRSNAP-Interface.c /

viii CONTENTS

e

CHAPTER

CHAPTER 2

CHAPTER 4

CHAPTER S

CHAPTER?7

APPENDIX B

Apple Confidential

Figures and Tables

Introduction / 1

Figure 1-1 ~ TokenTalk NB protocol model /

Figure 1-2 Token ring topology /

Figure1-3 Token ring components /

Figure 14. Frame formats: free token, busy token /
Figure1-5 Macintosh interface to the token ring network /

Source Routing Support /

Figure 2-1 Single bridge between networks /
Figure 2-2 Hierarchical network /
Figure2-3 Mesh network /

The 802.2 LLC / IPC Interface /
Figure4-1 SAPs and link stations /

Apple IPC Services /

Table 5-1 Apple IPC services /
Table 5-2 State tabie for the Receive call /
Table 5-3 Errors returned /

Avoiding Trouble /

Figure7-1 Dynamic task download /
Table 7-1 mStatus error code summary /

The TokenTalk NB Card /
Figure B-1 TokenTalk NB block diagram /

E — A:l-

Apple Confidential

Preface |

THIS DOCUMENT s to be used by Apple software developers who wish
to develop a protocol interface to the Apple® TokenTalk™ NB card in
conjunction with the Macintosh® Operating System (OS). To make use of
the information presented here, you should have a working knowledge of the
Macintosh OS and, depending on your application, a working knowledge of
token ring networks. The information presented in this manual describes
how to interface to the data link layer by way of calls to the SubNetwork
Access Protocol (SNAP) interface and the 802.2 logical link control (LLC)

interface.

You should be familiar with the following information:
Macintosh II computer and NuBus™

Macintosh Programmer’s Workshop (MPW®)

C programming

Multiprocessor programming techniques

Network programming techniques

Minimal Realtime Distributed Operating System (MR-DOS™)

What this document contains

This document provides a description of the programming interface to the
TokenTalk NB card and includes programming information on the
SubNetwork Access Protocol (SNAP) interface, the logical link control (LLC)
interface, and the interprocessor communication (IPC) interface provided in
the Macintosh OS. The Macintosh services that initialize the TokenTalk NB
card are also presented.

xi

xii

Preface

Apple confidential

The intent of this document is to supply information that allows
developers to develop other protocol interfaces (APPC, 3270, and so on) that
run under the Macintosh OS for the TokenTalk NB card.

The following table describes the contents of this manual and shows
where to find information that helps you accomplish a desired task. Not all
chapters are applicable to all tasks. A roadmap that illustrates the manual
organization follows the table.

What you need Location Content

Introductory Chapter 1 An introduction to token ring concepts

information and interface services running under the
Macintosh OS

Source routing support Chapter 2 A discussion of source routing support in

in a multi-network TokenTalk

environment

Developing Type 1 Chapter 3 The SubNetwork Access Protocol (SNAP)

“connectionless” token interface calls to the Macintosh OS

ring services

Deveioping Type 2 Chapter 4 The 802.2 logical link control (LLC) interface,

connection-oriented which is useful for applications based on a

token ring services specific protocol with an assigned Service
Access Point (SAP) identifier

Interprocess commun- Chapter 5 The interprocess communication (IPC)

ication between the services provided by the Macintosh OS for

Macintosh OS and the passing messages between the operating

TokenTalk NB card system and the TokenTalk NB card. All
developers need the information contained

' in this chapter.

Initialize the TokenTalk Chapter 6 The code and parameters in the TokenTaik

NB card Prep file used for initializing the TokenTalk
NB card and an example of how to use the
TokenTalk Prep file. All developers need
the information contained in this chapter.

General troubleshooting ~ Chapter 7 Troubleshooting tips and hints for

guidelines avoiding trouble with software and

hardware.

2

e

Type 1 application
(simple interface)

Chapter §
Macintosh OS
Interprocess
Communication
Services

Chapter 6
TokenTalk NB card
dounloading and
initializing

How to avoid

Apple confidential

Chapter 4
80221LIC

Type 2 application
(complex interface)

Preface

xiii

Xiv

Preface

Apple confidential

Suggested reading

Here is a list of reference materials that relate or apply directly to the
TokenTalk NB card:

8 Macintosh Coprocessor Platform Developer’s Guide (MR-DOS IPC
implementations)

Apple TokenTalk NB User’s Guide

Athena Programmer’s Reference and User's Guide

Texas Instruments TMS380 Adapter Chipset User’s Guide

Texas Instruments TMS380 Adapter Chipset User’s Guide Supplement
Texas Instruments Manual Update, Revision F

IBM Token Ring Network Architecture Reference

[EEE 802.2 Standard

IEEE 802.5 Standard

Possible applications

You may ish to develop any number of possible applications. For example,
you may want to create your own 3270 protocol emulator that accesses
mainframe computers by way of the token ring interface. Other applications
might be to implement TCP/IP under the Macintosh O for the TokenTalk
NB card or to provide X.25 dial-up services.

The information presented in this document assumes that the token ring
application you are developing runs under the Macintosh OS and is not
downloaded to reside in memory on the TokenTalk NB card itself. The
Macintosh Coprocessor Platform Developer’s Guide contains information you
aeed (o deveiop TckenTalk NB memory-resident applications.

Conventicas 1sed in this manual

-COK o7 wese conventions throughout the manual:

& Note: Notes like this contain supplementary information.

A special rypeface is used to indicate lines of code:

“rogram code _coxs lilke thls

a_—,

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 1 Introduction

THIS CHAPTERINTRODUCES the topics that support
programming access to the Apple TokenTalk NB card. The TokenTalk NB
card provides an interface to a token ring network. By using the services
provided in the Macintosh Operating System (OS), you can program a protocol
interface, such as 3270 data stream protocol or TCP/IP, that supports token

ring communication.

In this chapter you will find introductory information on token ring
networks, SubNetwork Access Protocol (SNAP), the 802.2 Logical Link Control
(LLC) interface, Macintosh OS Interprocess Communication (IPC), and the

download and initialization services for the TokenTalk NB card. =

Medusa Programmer's Guide, Beta Draft Apple Confidential

Token ring networks

A token ring network is a topology (ring) and 2 protocol (token-passing) defined by the IEEE 802
committee. The actual token ring access method, or how to interface with the physical media, is
defined in the [EEE 802.5 standard. However, you need not be concerned with the physical access to
the token ring network because the access is handled by the TokenTalk NB card itself, as are the
802.2 logical link control functions.

The network layers

The TokenTalk NB card provides an interface to the token ring network. The token ring network

. interface adheres to the International Standards Organization Open System Interconnection (I1SO
OSI) network model. The 802.2 LLC interface provided for the TokenTalk NB card corresponds to
the ISO OSI model as shown in Figure 1-1.

® Figure 1-1 TokenTalk NB protocol model

Application

Sessjon

Transport

Network

Data Hink

Physicai

2 1 / Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidential

A token ring network

The topology of a token ring network is shown in Figure 1-2, which shows the ring, the nodes, and
the free token that circulates around the ring. The physical components of a token ring network
consist of the TokenTalk NB cards, one or more muitistation access units (MAU), and the
connecting cables. The MAU and the connecting cables provide the physical “ring” for the network,
in fact, the MAU acts as a wiring concentrator for the connecting cables. Multistation access units
can be connected in a daisy chain to provide whatever size network is required. The TokenTalk NB
card and the Macintosh I system provide the network node on the ring (Figure I-3).

Token communication

In a token ring network, a data packet called a free token is passed from node to node. If a node has
no data to transmit, it passes the free token to the next node. On the other hand, if a node does
have data to transmit, it captures the free ioken, changes it to a busy token, and appends the

necessary destination address, source address, data, data checks, and control bytes to ensure reliable ‘

delivery to the destination node. This busy token is called a frame.

Each node between the source node and the destination node passes the frame, or data packet,
onward. When the cata is received ai the destination node, it marks the data packet as received and
sends the busy token around the ring to the source node. The source node then checks the token
and verifies that the destination node received the data. The originating node removes the busy
token from the ring and releases a new free token on the ring so another node can transmit (Figure
1-4). The originating node must wait for another free token before it can transmit again.

Any one node is allowed one transmission per free token, which limits each node’s access to the
network. In this manner, every node on the network is guaranteed equal access time to the
network.

1/ Introduction

3

Medusa Programmer's Guide, Beta Draft Apple Confidential
8 Figure 1-2 Token ring topology

] ? i
N
re—

Circulating token

® Figur= 1-3 Token ring components

Nodes
(up to 8 nodes per MAU)

Muion A Unit
MAD)

MAD

4 1 / Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidentiat 3/20/89
® Figure 14 Frame formats: free token, busy token
Free token format
Destination Source Frame i Pmilng Frame

address address

6 bytes 6 bytes

starus

i byte

Busy token format L

Inserted by node

The Macintosh II token ring interface

The actual formatting and transmission of the data packets, free tokens, and busy tokens is
handled by the hardware on the TokenTalk NB card and the 802.2 LLC interface software. Your task
as a developer or programmer is to use the programming support tools to pass the necessary
destination address and data information to the TokenTalk NB card and to deliver the data from
the card to appiications running under the Macintosh OS. .Source routing of packets through
bridges is described in Chapter 2.

Figure 1-5 shows the Macintosh Il and TokenTalk NB card interface = the token ring network.

1 7 Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidential
® Figure 1-5 Macintosh interface to the token ring network

Macintosh I

Application running under
Macintosh [I operating system

IPC
communications

TokenTalk NB card

o0 e —

Network

e0e L X X

As shown in Figure 1-5, the primary communication interface between the TokenTalk NB card and
the Macintosh 11 is through the interprocess communication (IPC) services. These services are
provided by the Macintosh OS on the Macintosh 11 and by MR-DOS on the TokenTalk NB card. A
specific set of services for the 802.2 LLC and SNAP orovide the interface to the chip set that handles
the iow-ievei protocol processing and phvsical communication with the toKen ring Nerwork.

The TokenTaik NB cara is inuialized and downicaded by wav or the services provided in the
TokenTalk Prep file.

) 1 / Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidential

SubNetwork Access Protocol (SNAP)

The IEEE 802.2 committee has implemented a SubNetwork Access Protocol (SNAP) that allows
protocol multiplexing and demultiplexing among multiple users of a data link. When Ethernet was
first designed, it allowed for 64 different protocol identifiers. However, with the maturation of
local area network technology and the development of other network standards such as token ring
and token bus, 64 different protocols identifiers were too few. Different network companies
devised various schemes to expand the number of protocol identifiers so as to differentiate
between, say, AppleTalk, TCP/IP, XNS, and other protocols.

To accommodate the large number of network protocols, the IEEE 802 committee has imposed the
SNAP to standardize protocol access to the network and to ensure that protocol identifiers from
different vendors do not conflict. SNAP is analogous to the old Ethernet protocol ID except that
SNAP is a S-byte field and the old Ethernet protocol ID is a 2-byte field. The trend now is to
represent the old Ethernet protocol IDs in SNAP, which provides compliance with the current
standard.

SNAP allows Type 1 (datagram) communication services only; it does not support connection and
session-oriented Type 2 services. For those services you must bypass SNAP and use the 802.2 logical
link control (LLC) interface directly. ’ '

The SNAP interface described in this manuai is sufficient for a wide variety of network protocol
applications. Source routing is supported by the SNAP interface to allow transmission of packets
through bridges and multiple networks, but is not implemented in the LLC interface. The more
complex LLC interface should be used primarily in Type 2 applications, such as connection-oriented
3270 data stream protocol communication.

The 802.2 Logical Link Control IPC interface

The logical link control (LLC) sublayer is the part of the data link layer that supports the media-
independent data link functions, and which uses the services cf the medium access control (MAC)
sublayer to provide services 10 the network layer. The {PC interface to the 802.2 LLC communicates
with either the Texas Instruments token ring chip set (the TMS380 family) that implements the
802.2 LLC, or with a software-based 802.2 LLC wherein the tasks performed by the chip set are
implemented in software.

The 802.2 IPC interface functions described in this manual provide access to and communicate with
the 802.2 LLC. It is important to understand that for the TokenTalk NB card applications, the 802.2
LLC itself is implemented in the chip set on the TokenTalk NB card.

1 / Invoduction

Medusa Programmer's Guide, Beta Draft Apple Confidential

Macintosh Operating System IPC services

The Macintosh 11 operating system supports 2 multitasking, multiprocessor environmert.
Different intelligent cards residing on the NuBus, such as the TokenTalk NB card, depend on
interrupt-driven communications to transfer information and to coordinate task execution. The
interprocess communication (IPC) is the mechanism that provides this communication service.

Many IPC functions are provided for the Macintosh Operating System and for the MR-DOS.
MR-DOS is an operating system that resides on the smart cards in the Macintosh II and provides
the IPC services for these cards. For information on the MR-DOS IPC, refer to the Macintosh

Coprocessor Platform Developer’s Guide.

Download and initialization services

A TokenTalk NB card is initialized from the Macintosh Operating System by way of a special file
called TokenTalk Prep. This file contains resources that hold code images for downloading to the
TokenTalk NB card. The TokenTalk Prep file provides the services that initialize the TokenTalk NB
card and download MR-DOS, SNAP, 802.2 LLC/IPC interface, and defauit LLC parameters.

8 1/ Introduction

Sie,

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 2 Source Routing Support

THIS CHAPTER DESCRIBES network source routing support and
includes background information on network routing and bridges. This
chapter also discusses source routing implementation and source routing
limits. For the most part, source routing support is transparent because it is
included as part of the SubNetwork Access Protocol (SNAP) services in
TokenTalk. »

Medusa Programmer's Guide, Beta Draft Apple Confidential

What is source routing?

Chapter 1 presented the concepts associated with a single token ring network and briefly described
the frame formats associated with data transmission within a token ring network. In a single
token ring network, the information contained in the frame, or data packet, includes the address of
the source node and the address of the destination node. Source node and destination node
addresses are all that are required to send data packets in a token ring network.

The term source routing refers to the means by which frames between multiple networks are
correctly sent, or routed, between the source and destination nodes. Source routing occurs when a
bridge connects two or more token ring networks and frames pass through the bridge between the
two networks (Figure 2-1). In essence, a bridge forwards frames from one network to another
based on routing information that is inserted by the source node.

& Figure 2-1 Single bridge between networks

O -
Tokean‘_gl\‘C%—— % HHTokenRing 2

As defined by the IEEE 802 specification, a bridge is a functional unit that connects two networks
using a single logical link control (LLC) procedure, which in TokenTalk is the [EEE 802.2 LLC. Several
configurations are possible when more than two networks are connected by bridge, but the
resultant network is either a hierarchical network or a mesh network. These two concepts are
explained in the following paragraphs.

Hierarchical networxs

Simply defined, a hierarchical network is one that provides only one path between the source and
destination nodes, no matter the number of intermediate rings. For example, in Figure 2-2a frame
from ring 1 must pass through intermediate ring 2 in order to reach its destination on ring 3. No
other path exists.

Likewise, a frame from ring 4 destined for ring 1 must pass through intermediate rings 3 and 2.
The key to a tnerarchical nerwork is that only one path. or route, is provided between source and
sestination nodes. s the figure shows. there s 4 choice ©f briages petween rng 2 and 3 but no
noIce of intermediate nngs

10 2/ Source Routing Support

i

Medusa Programmer's Guide, Beta Draft Apple Confidential

u Figure 2-2 Hierarchical network

X

TokenRing 2

Mesh networks

A mesh network provides multiple paths between the source and destination rings and alternative
choices of bridges. Figure 2-3 shows four rings connected in a mesh configuration.

® Figure 2-3 Mesh network

Token%
W

2

j TokenRing 4
A

3ridge @ ' 3ricge

I
|

Pl

-0

TokenRing 2]

I
0

" TokenRing 3

)

-
ridge

Ld‘

'1 the mesh network shown in Figure 2-3, 3 frame has two possible naths from ring 1 '0 ring 2. The
TZme (20 Oe Ted IRrougn 1ing 4 Of (rougn nng 2.

2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

Note that a parallel connection exists between ring 2 and 3. Paralle! connections provide redundancy
in situations that require high reliability. Up to 16 parallel connections can exist between any two
rings. .

Variations on hierarchical and mesh networks can accommodate a wide variety of network
configurations. Configuration parameters and network layouts are determined during the planning
and installation phase and are dependent on specific limitations enforced by the bridge
manufacturer. The primary benefit of bridges is to allow more than 260 devices to be supported in
the network installation.

How source routing works

For any two nodes, or stations, to communicate in 3 hierarchical or mesh network, routing
information must exist that describes the path between the two stations. Route determination
can be the responsibility of the communicating stations, the bridges, or a central management
facility’ . Source routing applies to the first case, where the station that is the source of the frame
puts the routing information into the frame. Bridges, which operate at the data link layer of the
network, support source routing. (Refer to Chapter 1 for an illustration of the network layers.)

Source routing exhibits the following features:

8 Routing information is based on information about the path between two communicating
stations; station addresses are not used.

® Path information is leamed dynamically by a station that initiates communication with
another.

B Route discovery is a two-part process that involves broadcasting a message to all of the
interconnected networks.

& Bridge routing tables are not required; bridges decide whether to forward a frame by comparing
a fixed, identifying value with a small portion of the routing information field in the frame.

Routing information

Routing information is contained in its own field in the frame and is separate from the destination
address. The routing information is obtained in two stages. The first stage occurs when the
source station broadcasts a frame to all of the connected networks. The broadcast frame contains
the destination address of the target station plus information that tells the intervening bridges to
forward the frame.

"ian-Bon K. lv, Januei Avery Pif. ina Fobert A. Donnan. “Source Rouung [or Local Area Networks,” '3M Corporation

Cspe
Flob

12 2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidential

The routing information is added to the frame during the broadcast phase. A bridge on the
first network adds the identifying numbers of the two networks that it joins. Additional bridges
add only the identifying number of the next network. (The network ID numbers are assigned by a
network administrator when the network is initially installed and configured.) Frames are
prevented from looping because no bridge will forward a frame to a network whose number
already appears in the frame.

The second phase of obtaining the routing information is performed by the station that received
the initial broadcast frames. Each frame is returned as soon as passible according to the route it
acquired from the bridges along the way, rather than being returned by broadcast message.
Because the initial broadcast frame is returned by any of several possible routes, the source station
acquires frames that contain valid routing information. The source station can choose any of the
valid routes returned by the destination, but the first response has usually traveled the fastest
route.

Up to this point, the destination station still has no idea which route will be used for
communication. The source station keeps its chosen routing information, which is leamed by the
destination station when nonbroadcast communication begins. Because the same route is used for
communication in both directions, failed links can be easily diagnosed.

The routing information can be associated solely with the destination address, or with the
combination of destination address and destination and source link service access points (SAPs).
The first case limits all communication to the same route, whereas the second case allows different
“conversations” to use different routes. Chapter 4 describes SAPs.

As previously mentioned, the SubNetwork Access Protocol (SNAP) interface automatically
provides source routing support in a connectionless environment. Because the source routing is
provided in a connectionless environment, an aging timer is used to eliminate source routing
information from the routing tables, thus preventing possible errors from table overflow. By
contrast, if connection-oriented source routing were supported, the routing information would be
maintained only for the duration of the link connection.

Source routing implementation

Source routing 15 impiemented in the SubNetwork Access Protocol (SNAP) interface. Suppiied with
the TokenTalk NB card, this protocol automatically handles the discovery and response phase for
source routing addresses.

2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidentiat

SNAP use

The SNAP interface allows Type 1 (datagram) communication services only; connection and
session-oriented Type 2 services are only supported by the 802.2 logical link control (LLC). For those
services you must bypass SNAP and use the LLC interface directly.

The SNAP interface described in this manual is sufficient for a wide variety of network
protocol applications.

1LC use

The more complex LLC interface is used primarily in Type 2 applications, such as connection-oriented
3270 data stream protocol communication. Source routing is not directly supported in the LLC
interface

Source route limits

Some limits on source routing are imposed when the networks and network bridges are installed. A
network administrator is responsible for properly configuring the network and supplying workable
values. The configuration parameters that can restrict frame forwarding and source routing
activity include the following:

8 Bridge ID number. To properly route frames, each bridge must have an ID number assigned.

8 Hop count limit. The hop count is the number of bridges that broadcast frames have already
crossed to reach the current bridge. Broadcast frames with a hop count equal to or higher than
the hop count limit imposed on the bridge are not allowed to cross the bridge. If the number
of hops between the source and destination station exceeds the hop count limit, the frame
transmission fails.

Additional bridge configuration parameters controlled by the network administrator affect how
frames are passed throughout the network.

The number of source routing addresses that any one station can keep track of is limited by the
table size reserved for storing these addresses. Two tables are used: one keeps track of the address-
to-ring numbers; the other keeps track of the ring-number-to-route. The tables can hold
approximately 80 node addresses and 100 ring addresses.

Table overflow is prevented by a “least-used timeout” algorithm. A node address entry is
dropped when it is not heard from for 40 seconds. A ring number is dropped when it is not heard
from {or three minutes.

14 2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 3 SubNetwork Access Protocol (SNAP)
Interface

THIS CHAPTER DISCUSSES the programming interface for the
802.2 SubNetwork Access Protocol (SNAP) interface. SNAP is used to deliver
Type 1 messages in a network and is a less complex interface than the 802.2
LLC interface described in Chapter 4. =

15

Medusa Programmer's Guide, Beta Draft Apple Confidential.

General information

SubNetwork Access Protocol (SNAP)is defined by the IEEE 802 committee as the standard means
of identifying a large number of protocols in an 802.2 environment. SNAP uses a service access point
(SAP) identifier of 0XAA. By comparison, a ISO OSI SAP identifier is the hex value OxFE.

The first five bytes of the information field of each SNAP frame contain a protocol discriminator
that identifies a particular protocol. The first three bytes of the protocol discriminator are the
vendor ID assigned to the creator of the protocol, that is, the same vendor ID used in globally-
administered node addresses. The Ethernet bit ordering in these three bytes is retained, which
means that the bytes are transmitted most-significant-byte, least-significant-bit first. This
Ethernet bit ordering is the format for representing the vendor ID in SNAP on all media. The last
two bytes are assigned by the vendor to identify a particular protocol. By convention, if the vendor
ID is set to zero, the remaining two bytes represent an Ethernet protocol ID.

As you can see, the SNAP interface is not strictly limited to token ring applications. Because the
SNAP interface is at the data link level of the network model, it is insulated from the
implementation of the physical level.

In the TokenTalk NB card implementation, the SNAP interface registers itself under the type
“SNAP" with the MR-DOS name manager. A name that is associated with the type is passed as a
startup parameter. (Startup parameters are provided in the TokenTalk Prep file discussed in Chapter
6.) By convention, the name is “TokenTalkNB.”

Client processes should limit the number of requests that they queue to the SNAP. As a general
guideline, no more than ten SNAPReceive and ten SNAPTransmit requests should be queued by a
single client at once. With any more queued requests MR-DOS can run out of message buffers. One
method to impose this limit is to allocate a fixed number of transmit buffers, receive buffers, and
data buffers when the code is initialized and to keep the buffers in a linked list. Then, by removing
entries from the list and requeueing them when a request completes, there only await a limited
number of requests to the SNAP interface at any given time. Queueing several receive or transmit
requests improves both the throughput and reliability, but the aumber of queued requests must
never exceed the number of available MR-DOS message buffers.

16 3/ SubNetwork Access Protocol (Snap) Interface

A

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following list presents the requests that a client can issue to the SNAP interface. In each case,
mCode identifies the function and, in the reply, mStatus holds the result code for the function. As
is the convention with MR-DOS IPC, all requests have an even mCode value and all replies use the
corresponding mCode plus one.

mCode Meaning - See page
SNAPAttach Attach protocol discriminator 19

SNAPGetConfig Return SNAP configuration information pal

SNAPGetHdr Return media header template 2

SNAPTransmit Send a SNAP type 1 frame A

SNAPDetach Detach protocol discriminator ps)

SNAPReceive Receive a frame ¥

SNAPCancel Cancel all queued receives 3

SNAPGetParms Returns SNAP-associated parameters 9

In addition to the above messages, the SNAP interface supplies the following library of support
functions:

Name Description

SNAPSwapHdr Swap node addresses in LANHdr structure for return to sender

Typical SNAP use

IPC requests support both Type 1 and Type 2 logical link control (LLC). Type 1 is connectionless and
uses both the SNAP interface and, because the SNAP services are built on top of the LLC services,
the 802.2 LLC interface. Type 2 is connection-oriented and is not supported by the SNAP interface. A
typical application for Type 2 is 3270 terminal emulation.

Because the SNAP allows a Type 1 data link service only, it is discussed in terms of Type 1 LLC. Type
1 LLC provides a data link with 2 minimum protocol complexity and is used when the upper iayers of
e :5C moae! provide e error detection and recovery. Tvpe t LLC is 4iso used in an appiication in
which it is not necessary to guarantee all data link layer transmissions.

Once a SNAP is attached, the application or protocol stack associated with that protocol
discriminator can transmi and receive any of the following Type 1 frames through the SNAP:

8 TEST - Test Command causes the remote node to send a Test Response.

® U7 - Unnumbered Information is used to iransfer data in 2 Type ! environment.

3 / SubNetwork Access Protocol (SNAP) {nterface

17

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following series of actions illustrates a typical usage for a SNAP client using Type 1 services and
outlines the actions necessary to transmit data by way of a TokenTalk NB card:

L

Yo po N O

Use the TokenTalk Prep Utilities A('ITGelSNAP’!'ID) or the IPC name lookup to find the SNAP
service.

Issue a SNAPGetParms to obtain the Task ID of LLC and the RefNum of the SNAP's SAP. This
allows the SNAP client to be able to make requests directly of the 802.2 LLC IPC interface, such
as LLCT1Transmit, LLCGetHdr, and LLCGetConfig.

Issue a SNAPAtach, which includes a S-byte protocol discriminator.
Optionally obtain configuration information from LLC by way of SNAPGetConfig.

Obtain header template by way of SNAPGetHdr. The header can be copied after it has been
obtained, but it is important initially to use SNAPGetHdr to build the LAN header with values
supplied by the client (such as destination node). Different LLC implementations might assume
a different header setup, so by using SNAPGetHdr you insulate yourself from unnecessary
problems. In general, the offset values supplied in the header should be left alone.

Queue receive requests to SNAP to accept incoming frames by way of SNAPReceive.
Issue transmit requests to SNAP as required by way of SNAPTransmit
Reissue receive requests as the receive frames are retumed.

On completion, issue SNAPDetach. SNAPDetach automatically cancels outstanding receives.
Any outstanding receives are returned as “cancelled.”

IPC requests to SNAP

In all structure declarations in this chapter, the type “byte” refers to an unsigned 8-bit integer and
“word” refers 0 an unsigned 16-bit integer. All structures and symbols used in this document are
defined in the include file SNAP h.

18

3/ SubNetwork Access Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential 32/89
SNAPAttach

The SNAPAttach message is used to hegin listening for packets on the specified SNAP protocol.
This request also specifies various options that are associated with the particular protocol.

Example 3-1 shows the type SNAP_PD, which is used to hold protocol discriminators. This type
may not be useful for representing the SNAP header in frames because the C compiler pads it to six
bytes.

mDataPtr points to the five-byte PD data structure. mDataSize is equal to the size of the PD data
structure.

Refer to Example 3-2 for the structure of mOData in the SNAPAttach request. Note that
mDataPtr points to the type SNAP.PD, which holds the protocol discriminator to attach to.

Result codes Value Description
SNAPNOEm Normal completion
SNAPInUse PD already attached
SNAPNoMore Insufficient resources

The “Listener” function pointer is a special hook that some clients find useful to handle incoming
frames more efficiently. Most clients should not use a listener function. Any listener that is
provided must be located on the same slot as the 802.2 interface. A listener function is called with
parameters that pass the media header, information pointer, information length, and frame type.
The listener must be completed with this buffer before returning. When a listener function is in use,
SNAPReceive requests are not used to receive frames.

An example declaration for the SNAP listener function might be coded as follows:

void Sample_Listener (nul, nu2, hp, bp, len, ft)

long nul, nu2; /*Not used, but do not alter*/
LANHdr ~hp; /*Pointer to LANHdr of received frame*/
ansigned char *bp; /*Pointer tc I-fleld, includes the protccel

discriminator=/

int len; /*Length of I-field*/
int £ /*Frame type, 3, 3, cr 9 only*/
LE (ftT = 35 /*If not JI frame, wgnore*/
return;
if (bp(5] !'= 0) /*1f byte following protocol discriminator is not 0%/
return; /*igncre frame */

/* Other code to manipulate frame data */

return;

3 / SubNetwork Access Protocol (SNAP) Interface 19

Medusa Programmer's Guide, Beta Draft Apple Confidential ¥2A/89

= Example 3-1 mOData structure for SNAP_PD request

typedef struct
{

union
{
long PD1; /* Fast access to first four bytes of PD */
char PDc(5] /* Access to each and every byte of PD */
)} PD:
)} SNAP_PD;

= Example 3-2 mOData structure for SNAPAttach request

typedef struct
{

word PDRefNum; /* Returns RefNum of this PD (used on SNAPReceive) =*/
word Options; /* Options :
/* Bit 15: Unused
* Bit 14: Use listener function
* Bits 13-0: Unused
*/
void (*Listener) (); /* Pointer to optional listening function */
} SNAPAttachOData;

20 2 / SybNetwork Access Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetConfig

The SNAPGetConfig message returns. configuration information about SNAP. Exampie 3-3 shows
the structure returned at the address passed in mDataPtr.

Result codes Value - Description
LLCNOEsr Normal completion
LLCTruncated Buffer too short to receive all information

8 Example 3-3 Structure mDataPtr points to following completion of SNAPGetConfig

zypedef struct

{

long LlCVersion: /* LLC Version ID ~*/

long FAddr; /* Functional address (token ring only) */
long GlTimerl; /* Does not apply to SNAP */

long G2Timerl; /* Does not apply to SNAP */

long GiTimer2; /* Does not apply to SNAP */

long G2Timer2:; /* Does not apply to SNAP */

long GlITimer: /* Does not apply to SNAP */

long G2ITimer; /* Does not apply to SNAP */

word MaxFramelen; /* Maximum frame length */

Wwcra ASAPs; /* Joes nct apply tc SNAP */

werd AStations; /* Does not apply to SNAP ~*/

word MaxHeader; /* Maximum header size for this media */
byte LLCClass; /* Class of LLC implementation:

* 1 - Implements typel only
* 2 - Implements typel and type 2

*/ .
pyte Media; /* Media indicator:
* 0 - Unknown 4 - 16 Mb Token Ring
* 1 - LocalTalk S5 - FDDI
- 2 - 1C Mb Ethernet 5 - Token 3us
= 3 - 4 Mb Token Ring
=/
oyze Routing; /* Source-rcuting indicator:

* 2 - No source-routing
* 1 - IBM source-routing

*/
byte Addrlen; /* Length of node address in bytes */
byte Addr (9] ; /* This node's address */
byte NumGAddrs; /* The number of group addresses that follow */

byte GAddrBuf(1l]; /* Start of group addresses (length, address pairs) =*/
» LLCGetConfigBuffer:

3 / SubNetwork Access Protocol (SNAP) Interface

Medusa Programmer’s Guide, Beta Draft Apple Confidential

SNAPGetHdr

The SNAPGetHdr message creates a LANHdr structure that is used to transmit to the specified
node. Options are also provided to return broadcast header templates.

Example 3-4 shows the structure of mOData in the IPC message and Example 3-5 shows the
structure of the LANHdr structure that is returned to the area pointed to by the Hdr field in
mOData.

mDataPtr points to the node address and mDataSize indicates the size of that address in bytes.

Not all media support all possible options. In cases when an unsupportable option is specified, the
SNAP interface builds the best header it can and returns the status LLCNotFullySupported to the
client. mDataSize must either be zero to get a broadcast template or be the exact size of a node
address for the underlying media.

Result codes Value Description
LLCNoErr Normal completion
LLCNotFullySupported Some option or type requested is not fully
supported by this media
LLCAddrError Invalid remote address—size must be 0 or equal to
the node address size for the media

® Example 34 mOData structure for SNAPGetHdr requests

typedef struct
{
word HdrType: /* Header types:
* 0 - Normal header
* 1 - Single-route b'cast, all-routes b'cast return
* 2 - Single-route b'cast, non-broadcast return
- 3 - All-routes broadcast header

*/
word Cptions; /* Header options (a.ways zero) */
cyte Reserved; /* Always zeroc */
cyte Reserveaq; /* Always zero */
_ANHdr THar; /* Pointer o LANHACr structure o be returned */

; LLCGetddrODlata;

22 3/ SubNetwork Access Protocoi (Snap) Interface

N

Medusa Programmer's Guide, Beta Draft
8 Example 3-§

typedef struct

{

}

byte

byte

byte
pyte
byte
byte
byte
byte
byte
byte
byte
byte
byte
LANHdr;

Media;

Routing;

DOff;
DLen;
SOff:
Slen;
ROff;
RLen;
HOfZf;
Hlen;
DSAP;
SSAP;
HBuf (407,

/*

/*

/*
/'
/*
/*
/*
/t
/*
/*
/*
/*
/*

Apple Confidential
LANHdr structure for SNAPGetHdr

Media indicator:

*

b4

*

*

*/
Source-routing indicator:

*/
Offset
Length

ffset
Length
Offset
Length
Offset
Length

to
of
to
of
to
of
to
of

0 - Unknown

10 Mb Ethernet

1
2
3 - 4 Mb Token Ring

0 - No source-routing

4 - 16 Mb Token Ring

- LocalTalk 5 - FDDI

6 - Token Bus

1 - IBM source-routing

destination address in header puffer

destination address in header buffer

source address in header buffer =»/

source address in header buffer =/

routing information in
routing information in
media header in header
media header in header

Destination SAP value */

Source SAP value =~/

Header buffer =*/

header
header
buffer
buffer

buffer
buffer
*/
*/

~/
=/

*/
*/

3 / SubNetwork Access Protocol (SNAP) Interface

2

-

3

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPTransmit

The SNAPTransmit message is used to send a Type 1 frame.

Refer to Example 3-6 for the structure of mOData in the IPC message and to Example 3-5 for the
description of the LANHdr structure that is pointed to by Hdr.

mDataPtr points to either a frame holding the buffer, or, if the “list-directed” bit of the Options
field is set, to an array of counts and pointers to buffers, as with receive.

If mDataPtr points to a frame holding user data, the first 5 bytes must be the protocol
discriminator (PD) and filled in by the user. It is possible to separate the 5 bytes of the PD from the
user data by using the list-directed option. In this case the mDataPtr points to an array of counts
and pointers: the first pointer points to the 5-byte PD and the second points to the user data.

Result codes

Value

LLCNoErr
LLCBadPri
LLCTxError

Description

Normal completion
Unauthorized access priority
Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame

LLCTxTooLong

Invalid transmit frame length

LLCBadRefNum Invalid RefNum
LLCRoutingError Invalid routing information length

LLCBadFrame
LLCCancelled

Invalid frame type
Transmit cancelled

® Example 3-6 mOData structure; SNAPTransmit requests

ypedef struct

word
werd
werd

byte

byte
LANHar
- SNAPTxOData:

Reserved,
Infolen;

Cpticns;

FrameType;

FS;

/* Reserved - always zero */
/* Length of informaticn placed in buffer =/
/* Cptlions:

b Bits 15-8: Jnused

- Bit 7: List-directed

* Bits 6-0: Cnused

*/

/* Frame type

* Specifies frame to send:

* 03 UI frame 0B Test cmd (p=1)
* /)

/* Returns frame status */

ddr /* Pointer to LANHdr (N/A to LLCT2Transmit) =/

24 3/ SubNetwork Access Protocol (Snap) Interface

Hg;gg"’*h >

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPDetach

The SNAPDetach message deactivates a SNAP protocol. All outstanding SNAPReceives are cancelled,
and if a listener was in use on the protocol being detached, it will no longer be called.

Refer to Example 3-7 for the structure of mOData in the IPC message.

Result codes Value Description

SNAPNoEr Normal completion
SNAPNotAttached Invalid RefNum

® Example 3-7 mOData structure for SNAPDetach and SNAPCancel requests

typedef struct
{
word PDRefNum; /* RefNum of SNAP protocol discriminator
*/
) SNAP_PD_RefNum;

3/ SubNetwork Access Protocol (SNAP) Interface

2

5

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPReceive

The SNAPReceive message is used to receive frames from an attached SNAP protocol.

Refer to Example 3-8 for the structure of mOData in the IPC message and to LLC interface
documentation for the description of the LANHdr structure that may be pointed to by Hdr.

mDataPtr points to either a buffer to

receive the frame or, if the “list-directed” bit of the Options

field is set, to an array of counts and pointers. See Example 3-9 for the structure of the array of

counts and lengths.

It is possible to separate the 5 bytes of the PD from the user data by using the list-directed option.

In this case the mDataPtr points (0 an array of counts and pointers: the first pointer points to the
5-byte PD and the second points to the user data.

When list-directed, the number of elements in the list is determined by its size in bytes, given by the

value of mDataSize. Note that multiple receives can be queued for any given RefNum.

* Result codes Value
SNAPNOEm

Description

Normal completion

SNAPNotAttached Invalid RefNum
SNAPTruncated Frame larger than provided buffer space

SNAPCancelled

Receive cancelled, either explicitly or by SNAPDetach

8 Example 3-8 mOData structure for SNAPReceive requests

typedef struct

{
word PDRefNum;
word Options;

word Infolen;
byte Framelype;

byte Filler;

/* RefNum of protocol discriminator =/
/* Options:

* Bits 15-8: Unused

* Bit 7: List-directed
- 3its 6-0: Cnused

=/

/* Numpber of bytes of data in the I-field */
/* Frame Iype ~eceived:

M 23 JI fZzame

hd [o}:} Test resp (f=1)
- 09 Test resp (£=0)
*/

/* Not used */

LANHdr *Hdr; /* Pointer to area to receive header */

} LLCTxRxOData;

26 3/ SubNetwork Access Protocol (Snap) Interface

| elapsiian

Medusa Programmer's Guide, Beta Draft Apple Confidential
® Example 3-9 Structure for list-directed SNAPReceive requests

struct
{
word Count; /* 3yte count for this transfer */

byte *Ptr; /* Pointer for this transfer */
} arrayl(]; N

3/ SubNetwork Access Protocol (SNAP) Interface

2

-

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPCancel

The SNAPCancel message is used to cancel SNAPReceive requests outstanding on an attached SNAP
protocol.

Refer to Example 3-7 for the structure of mOData in the IPC message.

Result codes Value Description

SNAPNOEmT Normal completion
SNAPNotAttached Invalid RefNum

28 3/ SubNetwork Access Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetParms

The SNAPGetParms message is used to get the SNAP associated parameters. The message returns
the Task ID of the associated LLC process and the RefNum of the SNAP's SAP (0xAA). The LLC

process information is useful if the client process wishes to make calls directly to the LLC interface.

Example 3-10 shows the structure of the mOData in the IPC message.

Result code Value Description

SNAPNOE!T Normal completion

8 Example 3-10 Structure for SNAPGetParmsOData

typedef struct
{
tid_type LLCTID;
word SAPRefNum;
} SNAPGetParmsOData:

3 / SubNetwork Access Protocol (SNAP) Interface

29

Medusa Programmer's Guide, Beta Draft Apple Confidential

Functions supporting 802.2

In addition to the preceding SNAP messages, the interface supplies a library containing the
following support function. Note that you must link the LLCSupportLib.O file with your code
before using SNAPSwapHdr. ‘
Name Description

SNAPSwapHdr Swap node addresses in LANHdr structure for return to sender

SNAPSwapHdr

The SNAPSwapHdr function is called using Pascal calling conventions. The function swaps the
addresses in a LANHdr. This swapping would usually be done to respond to a Type 1 frame.

pascal void SNAPSwapHdr (LANHdr *Hdr);

Example program listing

The program listing presented below is a sample of how to invoke TokenTalk NB functions and
perform a SNAPAttach. Note the use of #define statements that simplify program maintenance
and insulate the code from extreme revisions in the TokenTalk interface code.

/* Useful defined functions. */

#define ODataAs (x,Y) ((x =) ((y)->mOData))

tdefine SDataAs (x,Y) ((x *) ((y)=->mSData))

#define CPAs (x,Y) ((x *) ((y)=->mDataPtr)

tdefine Reply (X, Y) \

{ tid_type T;\
Tt = (x)->mF:om,‘(x)->mF:om = (x)=->mTo, (x)=->mTo = t£;\
(x)=->mCode = 1, (x)=->mStatus = y;\

Send{x);\

static tid_type SNAP_TID; /* TID of SNAP process */
static short OurSNAPRefNum; /* Our SNAP RefNum */

/* This does a SNAPAttach */

#define VendorID 0x000000 /* Vendor ID */

#define ProtcollD 0x1234 /* Ethernet protocol 0x1234 */

30 3/ SubNetwork Access Protocol (Snap) Interface

s,

Medusa Programmer's Guide, Beta Draft

message
long Id:
SNAP_PD pd;
((cmp = GetMsg())
return;

cmp->mTo = SNAP_TID:
cmp->mCode = SNAPAttach;
Id = cmp->mlId;

*emp;

M = o]
if == 0

)

CDataAs (SNAPAttachReplyOData,

Apple Confidential

/* How to get the SNAP_TID */

/* SNAP_TID acquired from previous name lookup */

16) & Oxff;
8) & Oxff;
xff;

>> 8) & Oxff;

AN EE .
oF S84

ppay)

sod;

cmp) =>PDRefNum;

pd.PD.PDc(Q0] = (VendorlID >>
pd.PD.PDcil) = (VendorID >>
pd.PD.PDc(2) = VendorID & 0
pd.PD.PDc{3) = (ProtocollID
2d.PD.PCc{4] = ProtccollD ¢
(SNAP_?D =) cmp->mDataPtr =
cmp->mDataSize = sizeof (SNAP_?D);
Send (cmp)
cmp = Receive(Id, 0, 0, 0);
if (cmp=->mStatus)
{
FreeMsg (cmp) ;
return;
}
OurSNAPRefNum =

reeMsg (cmp)

3 / SubNetwork Access Protocol (SNAP) Interface

320/89

31

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

Chapter 4 The 802.2 LLC / IPC Interface

THIS CHAPTER DESCRIBES the programming function calls that
support the 802.2 LLC / IPC interface. The 802.2 LLC / IPC interface provides the
message-passing interface to the TMS380 chip set that implements the logical
link control (LLC) for the token ring network. The 802.2 IPC interface
described in this chapter works equally well with an LLC that is implemented
in software rather than the TMS380 chip set. =

s,

« ’

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information

The IPC services use a name table to identify various IPC clients. Every client must register its name
to use the name lookup functions provided by the IPC services. The TokenTalk NB implementation
of the 802.2 LLC / IPC interface registers itself under three different types with the MR-DOS Name
Manager. These types are

s LC
® Token Ring LLC
8 4 MB Token Ring LLC

By providing several types for the LLC interface, a client can look for a generic LLC or a specific type
of LLC by name. Associated with each of these types is the name that is passed in the LLCName field
of the startup parameters. (Startup parameters are provided in the TokenTalk Prep file discussed in
Chapter 6.) By convention, the name is “TokenTalkNB.”

Client processes should limit the number of requests that they queue to the LLC. As a general
guideline, no more than ten LLCReceive and ten LLCT1Transmit (or LLCTZTransmit) requests should
be queued by a single client at once. With any more queued requests MR-DOS can run out of
message buffers. One method to impose this limit is to allocate a fixed number of transmit buffers,
receive buffers, and data buffers when the code is initialized and to keep the buffers in a linked list.
Then, by removing entries from the list and returning them when a request finishes, only a limited
number of requests await the LLC interface at any given time. Queueing several receive or transmit
requests improves both the throughput and reliability, but the number of queued requests must
never exceed the number of available MR-DOS message buffers.

The majority of functions described in this chapter support IPC messages to the 802.2 LLC. An
additional function provides address swapping that swaps the source and destination addresses in
the frame header. :

34 4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following list presents the requests that a client can issue to the 802.2 LLC. In the normal

fashion, replies from LLC to these requests increment by one the mCode in the IPC message to

indicate the reply.
mCode
LLCOpenSAP
LLCCloseSAP
LLCGetHdr
LLCGetConfig
LLCOpenStation

LLCCloseStation
LLCConnectStation
LLCModifyParams

LLCReceive
LLCReceiveCancel
LLCT1Transmit
LLCT2Transmit
LLCReset
LLCReturnBuffer

LLCGetStatistics

LLCSetFunctionalAddr

LLCStatus

The LLCStatus message is sent by the 802.2 LLC interface to a client. This message informs the client
of status changes reiated to Type 2 LLC. There is no specific reply to this message.

Meaning

Activate an individual or group SAP
Deactivate a SAP

Return media header template

Return LLC configuration information

Allocate resources to support a
Type 2 connection

Terminate activity on a station and
release the station

Atternpt to place local and remote stations
into data transfer state

Modify parameters associated with a SAP
or link station

Receive a frame from a SAP or link station
Cancel outstanding receives on stations or SAPs
Send a Type 1 frame

Send a Type 2 frame (1 frame)

Reset link stations and/or SAPs

Return interface-owned buffer to LLC

(no reply to this request)

Get link station statistics

Add/remove functional addresses

Notifies client of status changes

4/ The 802.2 LLC/ IPC Interface

See page
»

G & B

&

B B R WA

35

Medusa Programmer's Guide, Beta Draft Apple Confidential

Typical 802.2 LLC use

The IPC requests support both Type Land Type 2 logical link control (LLC). Type 1 is connectionless
and uses the SNAP interface described in Chapter 3. Type 2 is connection-oriented and is not
supported by the SNAP interface. A typical application for Type 2 is connection-oriented 3270 data
stream protocol. ’

Refer to the TMS380 Adapter Chipset User’s Guide Supplement for additional information.

SubNetwork Access Protocol (SNAP) is not supported for Type 2 connections; therefore, Type 2
connections depend on the 802.2 LLC interface described in this chapter. Token ring connections
used by IBM, such as 3270 data stream protocols, exclusively use Type 2 data link services.

Type 2 services are connection-oriented. That is, the attached client must open further
connections after opening the service access point (SAP). Type 2 services guarantee the delivery of
all data link transmissions with proper sequencing, acknowledgments, and automatic retries. With
Type 2 services, connections are established prior to any data transmissions between nodes wishing
to communicate. These connection points between nodes are referred to as “link stations."

For example, consider a link station 1 that wishes to communicate with link station 2. Station 1
allocates a link resource and sends a connection request frame to station 2. If station 2 has the
resources and is authorized to communicate with station 1, it returns a positive acknowledgment
to the station 1 connection request. Assuming a positive acknowledgment is returned, a link is
established and data transfer can occur in either direction. Once all data and all acknowledgments
transferred, either station can send a disconnect request to close the link, which frees resources in
both stations for other communications.

To establish communications for Type 2 operation, the attached client must first open a SAP, then
open a link station associated with that SAP, and finally perform a connection request with the
remote station. This sequence creates a link from the SAP in this node to another SAP in a different
node. One link station can be associated with only one local SAP and only one remote SAP on one
remote node. However, a single SAP may be associated with multiple link stations (Figure 4-1).

The following series of actions illustrates a typical usage for an LLC client using a Type 2

connection-oriented data link service:

1 Use the TokenTalkPrep Utilities (TTGetLLCTID) or the IPC name lookup to find the LLC
service.

2 Optionally obtain configuration information by way of LLCGetConfig, which provides the
maximum frame size and the physical limit for the maximum number of stations.

3 Issue LLCOpenSAP to begin LLC activity.

4 Obtain a header template by way of LLCGetHdr. The header can be copied after it is obtained,
but it is important initially to use LLCGetHdr to build the LAN header with values supplied by
the client (such as destination node). Different LLC implementations might assume a different
header setup, 50 Dy using LLCSetHdr you insulate yourse!f from unnecessary problems. in
generai, the offset vaiues suppiied in the header shouid be left aione.

36 4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

(5

10.
11

12
13.
14
15.

Queue receive requests (o the SAP to accept incoming Type 1 frames by way of LLCReceive.
Remember that XID frames necessary to establish Type 2 communication are transmitted as
Type 1.

Obtain the address of the node that is to receive the Type 2 frame. The destination address can
be obtained from a broadcast name lookup function, or it can be provided by a hard-wired table
maintained on the network. A hardwired name table is site-dependent.

Issue LLCGetHdr with the destination node address.

Issue an LLCOpenStation request using a template.

Using a template, exchange XID frames as required with the destination node.

Using a template, issue LLCConnectStation to activate the Type 2 link station connection.

Issue LLCReceive requests to the link station to permit reception of information frames (1
frames).

Issue transmit requests as required by way of LLCTZTransmit.
Reissue receive requests as the receive frames are returned.
When done with the link station, issue LLCCloseStation.

On completion, close the SAP by way of LLCCLoseSAP.

Establishing a link station requires a significant amount of resource. As a result, only a limited
number of link stations can be open at any one time. The number of open link stations allowed is a
parameter to LLC when it is first started. The number of available stations can be determined with
LLCGetConfig.

{ .

Figure 4-1 SAPs and link stations

Station 1 resources Station 2 resources

~Noce 2

4/The 802.2 LLC/ IPC Interface 37

Medusa Programmer's Guide, Beta Draft Apple Confidentiat

IPC Requests to 802.2 L1LC

In all structure dedlarations in this chapter, the “type” byte refers to an unsigned 8-bit integer, and
*word” refers to an unsigned 16-bit integer.

All the structures and symbols used in this document are defined in the indude file LLC.h. The
include file OS.h contains the structures for the IPC messages referred to in this chapter.

In each case, mCode identifies the function. In the reply, mStatus holds the result code for the
function. As is the convention with MR-DOS IPC, all requests have an even mCode value and all
replies use the corresponding mCode plus one.

38 4/ The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential 3289

LLCOpenSAP

The LLCOpenSAP message activates ejther an individual or group SAP. This request also specifies
various options and defaults associated with the particular SAP.

Example 4-1 shows the structure of mOData in the IPC message. Example 4-2 shows the
structure of the optional statton parameters that can be pointed to by mDataPtr. Station
parameters can be set to default values by passing mDataPtr as zero.

The universal receive option on a SAP (Example 4-1) allows the SAP to receive all frames directed
to it whether the frames are for an associated link station or for the SAP itself. In this case, a single
posted receive will accept either a Type 1 or a Type 2 frame. When the universal receive option is
used for Type 2 frames (I frame), the RefNum in the completed receive is replaced by the RefNum
of the destination link station.

The universal receive option is provided as a convenience for some SAPs. When used, all receives
should be queued to the SAP, and none to the link stations.

The listener function pointer is a special hook that for certain clients find useful to handle
received frames more efficiently. Most clients should simply specify 0 for this particular bit. Any
listener that is provided must be located on the same slot as the 802.2 interface. A listener function
is called with parameters that pass the media header, information pointer, information length, and
frame type. The listener must be finished with this buffer and header before returning.

An example declaration for the 802.2 LLC listener function might be coded as follows:

veid Sample_Listener (hp, zp, len, f£2)

LANHdr +hp: /*Pointer o LANHdr of received frame*/
unsigned char ~*bp; /*Pointer to I-field*/
int len; /*Length cf I-field*/
int fr; /*Frame type, 3-9*/
(.
if (bp(0) > 3) /*1f first byte of the I-field is > 3 ignore frame */
return;

Result codes Value Description
LLCNOErr Normal completion
LLCBadSAPOpts Invalid SAP options
LLCBadPri Unauthorized access priority

LLCMaxExceeded Parameter exceeds maximum
LLCBadSAPVaiue [nvalid SAP value

4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft

Value
LLCNoGroup
LLCNoResources
LLCGroupLimit
LLCBadSize

Apple Confidential Y20/89

Description

Requested membership in nonexistent group
The maximum number of SAPs are already open
The group SAP already has maximum members
mDataSize has inappropriate length

s Example 41 mOData structure for LLCOpenSAP and LLCModifyParams

typedef struct

{
word RefNum;
word Cpticns;

function

byte SAPValue;

*/
byte StationCnt;
byte FailedGSAP;
byte Unused;
void (*Listener) ();
» LLCSAPOData:

/* Returns refnum assigned to SAP */
/* Holds