«.

ODI~Developer’s Guide

& APPLE COMPUTER, INC.

This manual is copyrighted by Apple or
by Apple's suppliers, with all rights
reserved. Under the copyright laws, this
manual may not be copied, in whole or
in part, without the written consent of
Apple Computer, Inc. except in the
normal use of software or to make a
backup copy of the software. This
exception does not allow copies to be
made for others, whether or not sold,
but all of the material purchased may be
sold, given, or lent to another person.
Under the law, copying includes
translating into another language.

© Apple Computer, Inc., 1988

20525 Mariani Avenue

Cupertino, CA 95014

(408) 996-1010

Apple, the Apple logo, LaserWriter, and

Macintosh are registered trademarks of
Apple Computer, Inc.

Ethernet is a registered trademark of
Xerox Corporation.

ITC Avant Garde Gothic, ITC Garamond,
and ITC Zapf Dingbats are registered
trade- marks of International Typeface
Corporation.

MicroChannel is a trademark of
Internation Business Corporation.

MLI/MPI, MLI, MPI, and Link Support
Layer are jointly owned trademarks of
Apple Computer and Novell, Inc.

POSTSCRIPT is a registered trademark of
Adobe Systems Incorporated.

Varityper is a registered trade-mark, and
VT600 is a trademark, of AM
International, Inc,

Simultaneously published in the United
States and Canada. :

2/21/88

Contents

Introduction

1 Introducing the MLI/MPI

Benefits for the user

Benefits for the developer

MLI/MPI module specifics

Protocol stack independence from MLIDs
Developing MLIDs

2 The Link Support Layer

Protocol Stack Support Entry Point
MLID Support Entry Point
General Services Entry Point

What You Need to Know

3 Link Support Layer General Services

AllocMemory
FreeMemory
ReAllocMemory
MemoryStatistics
AddMemoryToPool
AddGeneralService
RemoveGeneralService

PART I. Writing Drivers for the MLI

4 MLID Operations
The SEND Entry Point Handler

iv

Contents

The Interrupt Service Routine

MLID Initialization

MLID Control Procedures

GetMLIDConfiguration
GetMLIDStatistics
AddMulticastAddress
DeleteMulticastAddress
ReceptionControl
MLIDShutdown

MLIDReset
CreateConnection
RemoveConnection
AddPromiscuousSourceFilter
AddPromiscuousDestinationFilter
ClearPromiscuousFilters
DriverPoll

Link Support Commands for MLIDs

GetECB
ReturnECB
DeFragmentECB
ScheduleAESEvent
Cancel AESEvent
GetlntervalMarker
DeregisterMLID
HoldRcvEvent
StartCriticalSection
EndCriticalSection
GetCriticalSectionStatus
ServiceEvents
EnqueueSend
GetNextSend
SendComplete
AddProtocolID

PART I Writing Protocol Stacks for the MPI

8 Protocol Stack Operations

10

11

The Receive Entry Point

The Default Receiver Entry Point
The PreScanEntry Point

The Transmit Packet Handler

Protocol Stack Initialization
Stack Installation Stages
Registering a Protocol Stack
Register by binding with an MLID
Register as the default stack
Register as the PreScan stack
Finding an MLID by Name

Protocol Stack Control Commands

GetProtocolStackConfiguration
GetProtocolStackStatistics
BindToMLID
UnbindFromMLID
MLIDDeRegistered

Link Support Commands for Protocol Stacks

GetECB

ReturnECB
DefragmentECB
ScheduleAESEvent
CancelEvent
GetlntervalMarker
RegisterStack
DeRegisterStack
RegisterDefaultStack
DeRegisterDefaultStack
RegisterPreScanStack
DeRegisterPreScanStack
SendPacket

HoldPacket
GetHeldPacket
ScanPacket
GetStackIDfromName
GetPIDfromStackIDBoard
GetMLIDControlEntry
GetProtocolControlEntry
GetLinkSupportStatistics

Contents

v

vi

Contents

BindStack
UnbindStack
AddProtocolID
RelinquishControl

— O M m YO N =™ »

S

MLID Configuration Table

Protocol Stack Configuration Table
ECB Format

MLID Statistics Table Format

Protocol Stack Statistics Table Format
Link support Layer Statistics Table Format
System Error codes

NET.CFG Configuration File Format
Finding the Link Support Layer in DOS
Defined Medla IDs

Defined Card IDs

Glossary

Contents

vii

Apple/Novell Confidential

Chapter 1 Introducing the Open Data-Link Interface

The Open Data-Link Interface is a new system jointly developed by Apple
Computer, Inc. and Novell that provides unmatched flexibility for both
network developers and end users. The Open Data-Link Interface includes the
Multiple Link Interface (MLI™ and the Multiple Protocol Interface (MPI™).
The MLI and MPI are the interfaces for network card drivers and protocol
stacks to the Link Support Layer (LSL™). The LSL provides packet transfer
between these interfaces in a way that allows different protocol stacks to
use link-level drivers interchangeably and simultaneously. The Open Data-Link

Interface puts an end to the need for one-driver to one-stack communication.

1-1

Apple/Novell Confidential

Benefits for the user

Imagine the inconvenience that could result if messaging had to be done without the assistance of
a postal service. It's the same inconvenience that takes place when you're forced to buy a separate
driver or interface card to support each stack on your network. The Open Data-Link Interface acts
like a postal service and more, allowing a single driver to support any number of stacks—just like a
single postal service supports many kinds messengers. Any driver written to the MLI/MPI
specification can receive packets from any stack written to the specification. That means you
don't have to buy, install, or maintain separate drivers or interface cards for each protocol in your
network. One driver will handle all the protocols. '

Under the Open Data-Link Interface data packets need only be directed to a special module, the Link
Support Layer, instead of a specified driver or stack. The Link Support Layer is like the postal service
of this specification because it correctly steers inbound and outbound packets to the specified
stacks and drivers. That means your system is responsible only for directing data packets to the
Link Support Layer instead of reaching the full distance to the protocol stack or some specified
driver. Just as the postal service knows how to deliver messages directly to you, the Link Support
Layer knows how to deliver packets directly to the driver specified by the protocol stack. Similarly,
the Link Support Layer knows how to deliver packets to the protocol stack specified by the driver.

You can benefit directly from using the Open Data-Link Interface in the following ways:

® You can expand your networking system by adding networking protocols without having to
add more interface cards.
You don't have to buy different cards for different systems. If you need to switch back and
forth between environments such as TCP/IP and Netware®, you need only one interface card.

m You protect your investment.
With the Open Data-Link Interface, the one essential driver can be used in any workstation
accessing any environment. Once you invest in an Open Data-Link Interface driver, you're
protected because no matter how your network changes, the OLI driver will always
communicate with any stack written to the OLI.

s You spend less time and money on support.
With just one driver supporting many protocol stacks, you have fewer components to support.
When you take away all the additional drivers or interface cards except the one Multiple Link
Interface Driver (MLID) you would need to support the variety of protocol stacks on your
system. All the hardware you removed represents how much less hardware you have to

support.

1-2 MLI/MPI

Apple/Novell Confidential

Benefits for the developer

By writing drivers and stacks that follow the MLI/MPI specification, you seize a range of benefits
for yourself that will ultimately profit the user community. The MLI/MPI specification gives you a
standard by which to design network card drivers and protocol stacks that use the MLI/MPI
interface. Writing to the specification guarantees that the drivers and stacks work with each other.
You only need to develop once, develop correctly, and you will ultimately save development
resources and time to market.

Hardware developers who write drivers to this specification can have their drivers transparently
communicate with any protocol stack written to this specification. Similarly, protocol stack
developers who modify their stacks to meet this specification can have their stacks communicate
with any driver written to this specification.

As a developer, you can benefit directly from writing to the Open Data-Link Interface in the

following ways:

s You reduce the labor in your development process.
When you write your drivers or protocol stacks according to the MLI/MP! specification, you
labor only once because all other MLI/MPI compliant systems will work with yours. You don't
have to develop with “one-driver one-stack” communication in mind. You only have to
develop your drivers and stacks for communication with the Link Support Layer.

m You write a driver that has a full-feature set.
The driver you write to the MLI/MPI specification contains a full feature set that goes beyond
transporting packets to the Link Support Layer. Your driver can also call on the Link Support
Layer for any number of support commands including name lookup, registration, and statistics
on any other drivers in the system. Under the Open Data-Link Interface, your driver is capable
of supporting multiple protocol stacks instead of just one.

s Your protocol stacks have access to all network interface cards.
The stack you write to the MLI/MPI specification automatically gives you compatibility to any
card written to the same specification. This means there are more cards that can use your
stack.

m Your protocol stacks can co-exist transparently with other stacks written to the MLI/MPI
specification.
Because all the stacks in an Open Data-Link Interface System are written according to the same
specification, they can co-exist without conflict. m

MLI/MPI module specifics

In order to implement the multiplexing environment of the Open Data-Link Interface, the MLI/MPI
design uses the following three modules:

Chapter 1: Introducing the MLI/MPI 1-3

Apple/Novell Confidential

L The Multiple Link Interface Driver (MLID), supplied by the interface card manufacturer.
This module implements the actual interface to the card. The MLID must define the following
entry points:
O a Send Entry Point
This allows protocol stacks to transmit through the MLID's interface card.

O a Driver (MLID) Control Entry Point
This manages all the miscellaneous informational and control requests made of the MLID
by stacks.
2 The Link Support Layer (LSL), supplied by Apple Computer and Novell.

The LSL is responsible for coordinating communication between the MLIDs and the stacks. In
addition, it provides many common support routines needed by MLIDs and stacks. It is also
the central point where MLIDs and stacks conduct registration to identify each other.

The level of communication provided by the Link Support Layer between stacks and drivers
allows a fully multiplexed environment.

The LSL has the following four entry points:

O Initialization Entry Point
This entry point is where MLIDs and stacks register themselves with the LSL and exchange
entry point and configuration information.

14 MLI/MPI

Apple/Novell Confidential

O MLID Support Entry Point
This entry point allows the MLID to use the event-handling, timer, and queueing facilities
in the Link Support Layer.

a Protocol Stack Support Entry Point
This entry point allows stacks (and applications, under MS-DOS) to gain access to services
from the LSL. Additionally, it allows the stacks to queue packets, to schedule timer events,
to get Receive buffers, to perform stack ID-to-physical and physical-to-stack ID

mappings, to obtain error information, and to communicate directly with other stacks and
MLIDs.

O General Services Entry Point

This entry point allows stacks (and applications, under DOS) to access some general
services from the LSL, such as memory management functions. This entry point
additionally provides a generic communications medium so modules can add new general
services to the entry point.

3 The protocol stack.

This module is the implementation of a protocol. The MLL/MPI specification does not define
how an application communicates with a protocol stack because higher-level services vary from
stack to stack. The MLI/MPI specification details how a stack will communicate with the LSL
and, ultimately, the MLIDs. (The protocol stack receives packets from the Link Support Layer
and then processes these received packets. The protocol stack also creates outgoing packets
and transmits them through the Link Support Layer. From the Link Support Layer, the packets
are delivered to the MLID that was requested by the protocol stack.)

The processing of these packets allows higher-level services (such as registration and lookup of
entity names, and transaction processing) to exist. Because each stack maintains its own set of
higher-level services, the availability of a particular service will vary from stack to stack.

The stack contains the following five entry points:

O Protocol Stack Control Entry Point

This is the entry point where stacks can call each other and exchange configuration
information and statistics about their operation.

O Receive Entry Point (Optional)
This is the entry point where stacks normally receive incoming packets from MLIDs.

0 Default Receiver Entry Point (Optional)
This is an alternate entry point for receiving incoming packets from MLIDs.
O PreScan Entry Point (Optional)

This is a special entry point for stacks that need to filter or preview incoming packets
before they are routed by the Link Support Layer.

a Application Entry Point

Chapter 1: Introducing the MLI/MPI

Apple/Novell Confidential

This is the entry point where applications call the stack. The definition of this entry point
is dependent on the specific protocol stack. As a result, the Application Entry Point is
undefined in the MLI/MPI specification.

The following diagram provides a visual overview of a sample network system. Arrows indicate
optional communication paths.

Applications

ASP server
protocol

— — 1

AppleTaik . Address resolution n] PX protocol

protocol stack [¥ protocol stack

LocalTalk Ethemet Ethernet
MLID MLID #1 MLID #1

Network Network Network
interface card interface card interface card

Protocol stack independence from MLIDs

In order for protocol stacks to achieve independence from the link-level envelope of the underlying
media, the following assumptions are made in the current implementations:
1. Link-level physical addresses can be uniquely expressed in 48 bits or less.

2 Link-level envelopes, which have a field for demultiplexing of incoming packets (called the
protocol ID in this specification), can uniquely express this field in 48 bits or less.

3. A48 bit physical address corresponding to OFFFFFFFFFFFFH is considered to be a broadcast
request by all MLIDs.

1-6 MLI/MPI

Apple/Novell Confidential

The user can configure the system to recognize a particular protocol stack by specifying a number
(up to 48 bits) that describes the protocol ID for the stack. The user (or configuration program)
would enter this 48-bit number and the name of its corresponding stack into the NET.CFG file. The
LSL would then be able to route incoming packets from an MLID to the specified protocol stack.

Every MLID registers with the Link Support Layer. As part of the registration process, the MLID
tells the LSL the name and protocol ID for each of the stacks that the MLID recognizes. The stack
name and protocol ID are usually obtained from the NET.CFG file. The LSL then assigns a stack ID
to each known protocol name. The LSL also provides each MLID with a “board number” (or
multiple board numbers if the MLID is written to handle multiple link interface cards).

Stacks identify themselves by making the RegisterStack call to the Link Support Layer. The
protocol stack can then find out the Protocol ID for a given board number by making the
GetPIDfromStackiDBoard call to the Link Support Layer. The protocol ID is used in a Send Packet
command to tell the MLID which protocol ID to put in the link-level envelope.

By using the board number, a stack specifies which MLID will transmit a packet. The board
number also allows a stack to identify the MLID from which an incoming packet originated.

Developing MLIDs

Writing to the MLI/MPI specification gives customers a flexible solution by allowing them to mix and match
network cards and services. But you need to have your MLIDs certified before they can be marketed. If you are
interested in developing to this specification, contact your authorized Novell representative to get a standard
developer’s kit.

Chapter 1: Introducing the MLI/MPI 1-7

Appie Lompuler/ Novell Lonnaentiat

Chapter 2

The Link Support Layer

This chapter describes the services provided by the Link Support Layer to
MLIDs and protocol stacks.

The Link Support Layer contains special services called support routines to
help the function of both MLIDs and protocol stacks. By using the calls
specified in the chapters on support and controi procedures, MLIDs and
protocol stacks can access these services. These routines are designed to be
very efficient and to use a2 minimum amount of program stack space. Calls
are made to the Link Support Layer at the following four entry points:

® Protocol Stack Support Entry Point
® MLID Support Entry Point
B General Services Entry Point

® Initialization Entry Point g

2-1

Appie Lompuler/INovell Lonraentiat

Protocol Stack Support Entry Point

This entry point is a far-call address that can dispatch all Link Support Layer commands available to a
stack. Many of these commands are internally equivalent to those provided by the MLID Support
Entry Point. However, these LSL commands are dispatched through the Protocol Stack Support
Entry Point so that all commands available to a protocol stack are available through this entry

point.
The Protocol Stack Support Entry Point provides procedures for the following:

® toallow a stack to obtain and return Event Control Blocks (ECBs are Buffers used to send or
receive packets, or to schedule timers.)

to enqueue and recover ECBs for later use
to register and deregister the stack

to provide timing services

to determine stack and protocol IDs

to get statistics

to bind with MLIDs

to transmit packets through an MLID

to provide other services that allow stacks to obtain information about MLIDs and other
protocol stacks. The Link Support Layer maintains a list of all active stacks and MLIDs

The Link Support Layer uses the caller’s program stack space to accomplish its work. Packet
reception and Event Service Routines (ESRs), which are called when an ECB event completes for
Asynchronous Event Services (AES), which are timing routines, are dispatched on interrupt-time
program stacks. As a result, program stack swapping under MS-DOS must be used for any routines
that use more than about 32 bytes of program stack space.

MLID Support Entry Point

This entry point is a far-call address that can dispatch all Link Support Layer commands available to
an MLID. Many of these commands are internally equivalent to those provided by the Protocol
Stack Support Entry Point but are dispatched through the MLID Support Entry Point. As a result, all
commands accessible to an MLID are available through this entry point.

This entry point provides procedures for the following events:

8 wallow an MLID to obtain and return ECBs for packet reception

22 MLI/MPI

Apple Lomputer/ INovell Lonrnaential

to enqueue and recover Transmit ECBs for later use

to hold Receive ECBs for processing by the Link Support Layer
to register and deregister the MLID

to provide timing services

to add Protocol IDs

to start and end critical sections

General Services Entry Point

This entry point is available to all protocol stacks. Under MS-DOS, it is available to applications.

(The General Services Entry Point is not available to MLIDs.) It contains a small memory manager
and some hooks to allow other stacks (and applications, under MS-DOS) to add new commands
that can be accessed through the General Services Entry Point. This ability to add new commands is
intended to allow stacks/applications to find each other easily and exchange entry points.

What You Need to Know

Before you get started writing for the MLI/MPI, you should understand the following
characteristics:

® A limited number of MLIDs are supported by the Link Support Layer. This number can be
found by making the GetMLIDControlEntry call. Make this call incrementing the board number
parameter from 0 until the NO_MORE_ITEMS error code is retumned.

® A limited number of stacks are supported by the Link Support Layer. This number can be found
by making the GetProtocolControlEntry call. Make this call incrementing the Stack ID
parameter from 0 until the NO_MORE_ITEMS error code is returned.

® All MLIDs must be able to transmit and receive packets of at least 586 bytes, not counting the
media header envelope. If the media does not support this requirement, the MLID must
implement a strategy to join packets to give the Link Support Layer and protocol stacks the
impression that the MLID can transmit and receive at least this packet size. (Refer to the
description of the ReturnECB call in Chapter 7 for some hints on implementing this strategy.)

® Al version numbers in the specification are decimal. A major version number of 1 and a minor
version number of decimal 31 is intended to imply version 1.31.

® On 808X implementations, all calls to the Link Support Layer will preserve the Direction Flag,

Chapter 2: The Link Support Layer

2-3

Apple Computer/Novell Confidential

Chapter 3 Link Support Layer General Services

This chapter details the general services that the Link Support Layer provides
through its General Services Entry Point. The general services of the Link
Support Layer are available to protocol stacks (and other Ring 0 processes
under OS/2), and to applications under MS-DOS. Register BX is used to specify
the desired general service command.

The values of BX are allocated in the following way:

0000H to 1FFFH General services provided by Apple and Novell
2000H to 3FFFH General services administered by Apple

4000H to 5FFFH General services administered by Novell

6000H to 7FFFH General services administered by Apple and Novell
8000H to FFFFH Available for general use

All general services added to the Link Support Layer in the range 8000H to
FFFFH must support AX = 0 as an incoming parameter, and must return AX =
0. In addition these general services must return the address of a description
record (described next) in ES:SI. As an option, DX:BX can return an entry

~ point for the general service.

The following structure represents a Description record:

31

Apple Computer/Novell Confidential

3-2

MLI/MPI

Offset Length Description

0 1 O-terminated General

2 1 name (no leading length byte)
3 1 month

14 i « day

15 1 year

15 1 major version

16 1 minor version

If the general service is &nplemented as a TSR program under DOS, the PSP of
the TSR should be stored in the word immediately preceding this structure.

In addition, the function AX = 1 is reserved for general service removal. When
this call is made, the service should determine if it can be removed. If it can,
the general service should restore and clean up areas such as memory
allocation, interrupt vectors, and making the Remove General Service call; the
general service should also return AX = 0. It should return AX =
BAD_COMMAND if removal is not supported. FALL is returned in AX if
removal is supported but the service cannot be removed at this time. In this
case, ES:SI should point to a O-terminated string describing why the general
service cannot be removed. A (-terminated string has no leading lengh byte.

e,

Apple Computer/Novell Confidential

AllocMemory

This command allocates memory to the protocol stack. The memory can be freed when it is no
longer needed by using the FreeMemory command.

Assumes:

® BX=0

® Registers Preserved: DS, SS, SP, and BP

® Interrupts: Enabled on entry

® CX contains the number of bytes required

Returns:
® Interrupts: Enabled on exit
® AX = 0; memory was available and ES:SI will point to the allocated memory (in 0S/2, the
allocated memory is located in the GDT)
® AX <0; an error occurred:
AX = OUT_OF_RESOURCES if the memory pool does not have encugh memory to
satisfy a request

AX = BAD_PARAMETER if a request needs more memory than allowed. The
maximum number is implementation dependent but will
always be greater than 32K and less than 64K. For MS-
DOS, this number is 65516 bytes

& Note This command is not avialable under OS/2. Use the memory support procedures defined
by OS/2

FreeMemory

This command returns memory that was allocated by the AllocMemory command to the memory

pool

= BX=1

® Registers preserved: DS, SS, SP, and BP

= Interrupts: Enabled on entry

® ES:SI contains a pointer to the allocated memory.
Returns:

8 [nterrupts: Enabled on exit

Chapter 3: Link Support Layer General Services

Apple Computer/Novell Confidential

B AX = (; the memory was returned to the pool
B AX <0; an error occurred:

AX = BAD_PARAMETER if the pointer retumed did not come from the memory
pool
€ Note This command is not available under OS/2. Use the memory support procedures defined
by OS/2
ReAllocMemory

This command allows reduction of the size of an allocated memory block, returning some of the

* memory to the pool. If CX is passed in OFFFFH, the size of a block of memory can be discovered.
In addition, CX always returns the actual size of the block. The size may be more than requested as
a result of quantization in the memory manager.

Assumes:

BX=2

Registers preserved: DS, SS, SP, and BP

Interrupts: Enabled on entry

CX contains the number of bytes to which the memory block is to be resized
ES:SI contains the pointer to the block of memory to be resized

Returns:
® Interrupts: Enabled on exit
8 (X = size of memory block
8 AX =0 the resizing was done
® AX <0; an error occurred:
AX = BAD_PARAMETER if the pointer retumed did not come from the memory
pool
AX = OUT_OF_RESOURCES if more memory than was in the original block of
memory is requested

& Note This command is not available under OS/2. Use the memory support procedures defined
by OS/2

3-4 MLI/MPI

Apple Computer/Novell Confidential

MemoryStatistics

This command retums the current status of the memory pool.
Assumes:

BX=3

Registers preserved: All except AX, BX

Interrupts: Unspecified

ES:SI contains a pointer to six words

Returns:

& Interrupts: never changed from the way they entered

B AX=0

ES:SI points to six words as follows:

word 0: number of paragraphs of memory available
word 1: number of paragraphs of memory in use
word2: number of paragraphs in the largest block of memory
word 3; number of available blocks of memory
word 4: number of bytes overhead per allocation
word 5: number of bytes minimum allocation

® Note This command is not available under OS/2. Use the memory support procedures defined
by OS/2

AddMemoryToPool

This command allows a protocol stack or a terminate-and-stay-resident (TSR) application to give
more memory to the buffer pool. ‘

Assumes:

BX =4

Registers preserved: DS, SS, SP, and BP

Interrupts: enabled on entry

CX contains the number of paragraphs to add to the pool
ES contains the segment address to add to the pool

once memory is given to the pool, it can never be removed

Chapter 3: Link Support Layer General Services 3-5

Apple Computer/Novell Confidential

Returns:
® Interrupts: enabled on exit
® AX=(; no errors are possible

¢ Note This command is not available under OS/.2. Use the memory support procedures defined
by OS/2

AddGeneralService

This command allows protocol stacks, other Ring 0 processes under 0S/2, and TSR applications
under DOS to add new commands to the General Services Entry Point. The entry point (entry) of |
the new command will be called whenever the General Services Entry Point is entered with a
command code matching command in the passed structure. This command is especially useful for
enabling a process to locate other pieces of itself. For example, a stack could register itself to allow
another piece of the protocol stack, which is not always loaded, to find and communicate with the
master stack.

Before a new general service can be added to the General Services Entry Point, an available command code in the
range of 8000H—FFFFH needs to be located. This is done by making a General Service Entry Point call with the
desired command code in BX and with AX set to 0. If the command code is already in use, AX is returned still
setto 0, and ES:SI will contain a description record address. The description record may be examined to
determine what general service is installed for this command code. If the command code is not in use, AX is
returned containing the BAD_COMMAND (8008H) error code. The program that is installing the new General
Service can then execute an AddGeneralService command to actually add the new service.

Assumes

® BX=5

B Registers preserved: DS, SS, SP, and BP

® Interrupts: Enabled on entry

® ES:SI points to one of the following structures (which must be in the GDT under 0S/2):
Offset Length Description

0 4 reserved

4 4 service entry point

8 2 command number

Returns:

® [nterrupts: Return enabled .
® AX = 0; the command was added to the general services supported

3-6 MLI/MPI

Apple Computer/Novell Confidential

AX < 0; an error occurred:

AX = DUPLICATE_ENTRY if there is already a general service with the requested
command code

¢ Note: The memory that ES:SI points to is being used by the Link Support Layer until the

general service is removed with the RemoveGeneralService call.

RemoveGeneralService

This command allows the removal of a general service that was added with the AddGeneralService
command call.

Assumes:

BX=6

Registers preserved: DS, SS, SP, and BP

Interrupts: Enabled on entry ,

ES:SI points to one of the following structures, which must be in the GDT under OS/2:

Offset Length Description

0 4 reserved

4 4 service entry point
8 2 command number

This structure must be the one passed to the AddGeneralService call and not a copy of it.

Returns:

Interrupts: Return enabled
AX = 0; the command was removed from the general services supported
AX <0; an error occurred:

AX = ITEM_NOT_PRESENT if there is not a general service matching the passed
structure

Chapter 3: Link Support Layer General Services 37

Part I Writing Drivers for the MLI

Appie Lomputer/ Novell Lonraential

Chapter 4

MLID Operations

This chapter briefly describes the operation of an MLID. The MLID is
responsible for receiving packets at the link layer and routing them to the Link
Support Layer as well as transmitting packets through the interface adapter.
The MLID normally consists of the following three parts:

® an MLID Control Entry Point handler
® 3 Send Entry Point handler
® an Interrupt Service Routine (ISR)

This chapter provides a description of the Send Entry Point handler and the
ISR The operation of the MLID Control Entry Point handler is discussed in
Chapter 6, “MLID Control Procedures.” m

41

Apple Lomputer/INovell Lonriaential

The Send Entry Point Handler

The Send Entry Point handler gets the Event Control Block (ECB) in ES:SI and may modify all registers except SS,
SP, DS, and BP. The following example, written in pseudocode, shows one way to implement the handler:
If (Shut down)

{
Set AX = NO_SUCH_DRIVER
Set Status in ECB = NO_SUCH_DRIVER
Return

if (send_busy_flag)
{
EnqueueSend
else
set send_busy_flag
if (ECB.StackID == OffffH)
{
start raw mode send

else

create Link-Layer envelope

start send

4-2 MLI/MPI

Appie Lompuler/NOvell Lonraental

(transmit completes)

increment TotalTXPackets statistic

set Status in ECB to 0 or appropriate error code (see note
following the example)

call SendComplete with the ECB; (see note following the example)

clear send_busy_flag;

& Note: If the transmitter is asynchronous (that is, if it does not wait for completion), the Status is set and
SendComplete is called from the ISR that services the “transmit complete” interrupt. The ECB address
should be saved before leaving the transmit routine so that the correct ECB can be returned by
SendComplete when the transmit is complete.

For MLIDs that must use DMA, GetECB followed by DeFragmentECB can be used to obtain an ECB that is fully
defragmented and does not cross a 64 Kilobyte (KB) DMA boundary. In this case, SendCompiete should be
called immediately after the DeFragmentECB for the original ECB. In addition, SendCompiete should be called
after the send completes for the defragmented ECB. The following programming example shows how GetECB
can be used for MLIDs that use DMA:

call GetECB to obtain a DMA-capable ECB

call DeFragmentECB to copy and defragment the original ECB to
the new one

call SendComplete on original ECB to return it to the buffer pool
start send or start raw mode send

(transmit completes)

set Status in ECB to 0 or appropriate error code

call SendComplete on defragmented ECB

Chapter 4: MLID Operations 43

Appie Lomputer/ NoVell Lonnaenttal

ECB2= Get ECB() 8% ECB2
DeFragmentECB put ECB1 contenss into ECB2
(ECB1,ECB2)
SendComplete " need
(ECBY) we no longer ECB1

l SendComplete I
(Ec;’z;)’ we no longer need ECB2

The Interrupt Service Routine

The following example shows one way the ISR might be implemented:

push all registers
call StartCriticalSection if needed
shut off board source of interrupts

re-arm the interrupt system

44 MLI/MPI

Apple Lompuler/Novelt Lonriaential

/* First check for and process incoming packets. */

if (packet_received)

increment TotalRXPackets in statistics

if (fatal errors occurred in the packet)

increment appropriate statistic

throw away packet

else
if (packet came from myself) /* NOTE: ignore packets from self */
{
throw away packet
}
else

if (packet too large or too small)

increment appropriate statistic

throw away packet

else

call GetECB

if (ECB available)

Chapter 4: MLID Operations 4-5

Applie Lomputer/ Novell Lonraental

else

/*

read packet into ECB
set ImmAddr in ECB to the source address from the packet

set ProtolD in ECB to the protocol ID in the packet, or 0 if
the packet does not have a protocol ID

set BoardNo in ECB to the board number of the board which
received the packet

set FragCnt in ECB to 1

set SendLen to length of the data in the packet {not counting
envelope)

set FragLenl to length of the data in the packet (not counting
envelope)

set FragPtrl to start of the data in the packet (immediately
following envelope)

call HoldRcvEvent with the ECB

throw away packet

increment NoECBsAvail in statistics

If transmit_complete generates an interrupt, check here for
transmit completion. (See later note.)

*/

/*

4-6 MLI/MPI

Apple Lomputer/ NOvell Lonriaental

Here, we can optionally loop back to the top and check for more

received packets or transmit completions.

*/

/* Now check for queued transmits. Send a queued packet if the

transmitter is available. */

if (not send_busy_flaq)

call GetNextSend

if (a send event exists)

set send_busy_flag
start send

set Status in ECB to 0 or error code
Send Entry Point Handler)

call SendComplete with the ECB

cli

turn board interrupts back on

call EndCriticalSection or call ServiceEvents
pop all registers

iret

(see note under the

Chapter 4: MLID Operations

4-7

Apple Lomputer/ NOVElL Lonraental

¢ Note: If the transmitter is asynchronous, the ISR may also have to handle transmit complete interrupts. If
s, the following processing should be done in the ISR. (The previous example shows the internal structure
of the ISR.)

if (transmit_complete)

increment TotalTxPackets statistic (if not already incremented
at transmit start time)

set Status in ECB to O or appropriate error code
call SendComplete on transmitted ECB

clear send_busy_flag

4-8 MLI/MPI

Apple Computer/Novell Confidential

Chapter 5 MLID Initialization

This chapter describes the initialization process for an MLID. MLIDs initialize
themselves when the MLID loads itself in the computer's system. The MLID
must be initialized before it can send and receive packets on the network.

5-1

Apple Computer/Novell Confidential
The installation process of an MLID occurs in the following stages:

1 The MLID registers with the Link Support Layer. With OS/2, registration occurs when the MLID
sends an IOCTL command to the LINKSUP$ device using the general IOCTL command
(DosDevIOCH) with a function category of 0A1H and a function code of 1. However, with
DOS, the Link Support Layer is a TSR program. As a result, the Link Support Layer’s Initialization
Entry Point on a DOS-based network is found using the INT 2FH multiplexing address. The
exact procedure for doing this is described in Appendix J.

2 The MLID reads the NET.CFG file and fills in the MLID Configuration Table with the necessary
information. (See Appendix A for the format of the table and Appendix H for the format of the
NET.CFG file.)

3. The MLID calls the Link Support Layer Initialization Entry Point with the following
information:

BX=1 MLI initialization function code
ES:SI Points to a table with the following information:

Offset Bytes Description

0 4 Ring 0 address of the MLID Send Entry Point. -
All packets to be sent on the network will be
sent through this address

4 4 Ring 0 address of the MLID Control Entry Point

8 4 Address of the MLID Configuration Table valid
at the time this call is made

DS:DI Address of four words in memory for the Link Support Layer to return

configuration information into, in the following format:

Offset Bytes Description

0 4 Ring 0 Address of the MLID Support Entry
Point of the Link Support Layer

4 2 ‘ Board number assigned to the MLID

6 2 Maximum buffer size of receive ECBs in the
system

& Note: With 0S/2, the parameters are sent in the IOCTL parameter buffer and retumned in the
IOCTL data buffer.

4 At this point, the developer should initialize the hardware. If the hardware fails, make the
DeRegisterMLID call to the MLID Support Entry Point to remove the MLID from the Link

5-2 MLI/MPI

.’E‘F‘“ﬁ« = =) N

Apple Computer/Novell Confidential

Support Layer's list of MLIDs. The process should then be terminated and an error message
sent to the user.

5. The MLID informs the Link Support Layer about the Protocols the MLID can process. The
protocols are processed using the AddProtocolID call defined in Chapter 7. Only protocol IDs
mentioned in NET.CFG should be added, since there are a limited number of protocol stacks
supported by the Link Support Layer.

6. The MLID terminates to the operating system and remains resident. At this point, the driver is
installed in the computer’s system and is able to begin sending and receiving packets.

Chapter 5: MLID Initialization -

5-3

P

Apple Computer/Novell Confidential

Chapter 6 MLID Control Procedures

This chapter describes procedures that must be written for the MLID so that
it can support protocol stacks.

To call the MLID control procedures, place a function code into BX and call

the MLID Control Entry Point. The MLID Control Entry Point becomes
available to the Link Support Layer at initialization time. The retun value in AX
will always be generated so that the Z and § flags are set correctly. AX will be
0 (and the Z flag set, and $ flag clear) if the call was completed with no error.
AX will be less than 0 (and the Z flag clear and S flag set) if the call was
completed with an error. The value of AX will indicate the error. If an MLID
does not support one of the following calls, it must return BAD_COMMAND
in AX.

The following commands are provided by MLIDs:

@ GetMLIDConfiguration this call must be supported

® GetMLIDStatistics this call must be supported

® AddMulticastAddress support for this call is optional

® DeleteMulticastAddress support for this call is optional

® ReceptionControl this cail must be supported

® MLIDShutdown this call must be supported

8 MLIDReset ‘ this call must be supported

® CreateConnection support for this call is optional.
The correct error code must be
returned ‘

6-1

Apple Computer/Novell Confidential

8 RemoveConnection

8 AddPromiscuousSourceFilter

support for this call is optional.
The correct error code must be
returned

support for this call is optional

8 AddPromiscuousDestinationFilter support for this call is optional
® ClearPromiscuousFilters support for this call is optional
8 DriverPoll support for this call is optional (OS
dependent) @
GetMLIDConfiguration
This command allows a protocol stack to determine the configuration of an MLID.
Assumes
® BX=0

® Registers preserved: DS, SS, SP and BP
® Interrupts: Enabled on entry

Returns
® Interrupts: Enabled on exit

® ES:SI returns a pointer to the MLID Configuration Table (see appendix A for a description of

this table)
® AX=0; no errors are possible

GetMLIDStatistics

This command retumns a pointer to the MLID Statistics Table describing statistics of the MLID,

such as the number of transmitted and received packets.
Assumes

a8 BX=1

m Registers preserved: DS, SS, SP, and BP

6-2 MLI/MPI

Apple Computer/Novell Confidential

® Interrupts: Enabled on entry

Returns

® Interrupts: Enabled on exit

® ES:SI points to the MLID Statistics Table, the format of which is described in Appendix D

m AX=0; no errors are possible

AddMulticastAddress

This command adds a multicast address to the MLID address list. Once in this list, packets with
this address can be accepted as valid.

The MLID must maintain a count of the number of times that an address is added. This allows
multiple protocol stacks to add the same multicast address. (See DeleteMulticastAddress later in
this section.)
Assumes
® BX=2
B Registers preserved: DS, SS, SP and BP
® Interrupts: Enabled on entry
ES:SI points to a 6-byte multicast address to add to the MLID multicast list

Returns

® Interrupts: Enabled on exit

® AX = 0; the MLID added the multicast addresses; once in this list, packets with this address will
be accepted as valid. Use of the AddMulticastAddress call does not automatically enable
multicast reception. To enable multicast reception, use the Reception Control command
described later in this chapter

® AX <0 if an error occurred:
AX = BAD_COMMAND the MLID does not support multicast addressing
AX = QUT_OF_RESOURCES the MLID is out of room to add another multicast address

AX = BAD_PARAMETER the address pointed to by ES:SI is not a valid multicast
address '

% Note: Use of the AddMulticastAddress call does not automatically enable multicast
reception. The Reception Control command (described later in this chapter) must be used to
enable muiticast reception.

Chapter 6: MLID Control Procedures

6-3

Apple Computer/Novell Confidential

DeleteMulticastAddress

This command removes an instance of a multicast address from the MLID’s list of addresses.

When an MLID receives the DeleteMulticastAddress command, the MLID must decrement its
count of the number of times an address was added and only remove the address from its internal
tables when the counter decrements to 0. If a multicast addresss is removed, a packet with this
address will no longer be accepted as valid.

Assumes

BX=3

Registers preserved: DS, SS, SP, and BP

Interrupts: Enabled on entry

ES:SI points to a 6-byte address to remove from the multicast address list

Returns
® Interrupts: enabled on exit
8 AX =0 the MLID removed the multicast address from its list
B AX <(; an error occurred:
AX = BAD_COMMAND the MLID does not support multicast addressing

AX = ITEM_NOT_FOUND the multicast address was not found in the MLID’s valid
addresses list

ReceptionC.:ntrol

This command allows a protocol stack to determine or set which packet types an MLID will receive
by means of the bit settings passed in AX.

At a minimum, MLIDs must support Bit 0 being set. In order to be useful with most protocol
stacks, the MLID should also be able to support broadcast packets (Bit 2 being set).

Assumes

BX =4

Registers preserved: DS, SS, SP and BP

Interrupts: Enabled on entry

CX = 0. This setting indicates a read function

CX is greater or less than 0. This setting indicates a write function

6-4 MLI/MPI

,é&:“‘-\

Apple Computer/Novell Confidential

AX contains a bitmap indicating the types of incoming packets the MLID should accept:
Bit 0 = accept packets to the MLID’s address
Bit 1 = accept packets to the MLID’s multicast list
Bit 2 = accept broadcast packets
Bit 3 = accept all packets (promiscuous)

Returns

® Interrupts: Enabled on exit
® AX=0; no error occurred
® AX<0;an error occurred:
AX = BAD_PARAMETER the MLID does not support one or more of the settings you
requested in AX

m BXis equal to the reception control setting after the function was executed even if an error
occurred.

& Note Promiscuous address filters (see AddPromiscuousSource, AddPromiscuousDestination,
and ClearPromiscuousFilters later in this chapter) are not affected by changing reception
control in and out of the promiscuous mode.

MLIDShutdown

This command allows a protocol stack to shut down an MLID. If this call is supported by the
MLID and invoked, the MLID should unhook all interrupts that it has intercepted. In this way, if
the MLID is removed from memory, there will be no adverse effects. The MLID must fail all
incoming transmit requests with the NO_SUCH_DRIVER error code. In addition, the driver should
flush its send queue by repeatedly calling GetNextSend and Send Complete (with a CANCELLED
error code in the ECB Status Field) until the queue is empty. The driver should also set Bit 0 in the
share flag of the MLID Configuration Table.

Assumes

BX=5

Registers preserved: DS, SS, SP, and BP

AX = 0 if the caller wants the MLID both to shutdown its hardware and de-register itself.
AX # 0 if the MLID should only shut down its hardware and unhook its interrupts.

Interrupts: Enabled on entry

Returns

Chapter 6: MLID Control Procedures

6-5

Apple Computer/Novell Confidential

® Interrupts: Enabled on exit
® AX = 0. The MLID successfully shut down its hardware. Set Bit 0 in the the share flag |
B AX <0 if an error occurred:

AX = FAIL the MLID cannot shut down its hardware

AX = BAD_COMMAND the MLID does not support this command

A Caution: In order to remove the MLID safely from memory, the DeRegisterMLID
call must be made to the Link Support Layer. a

MLIDReset

This command instructs the MLID to reinitialize its hardware and prepare to become operational.
This command should also install its interrupt vectors needed for MLID. operation if they are not
already installed.

Assumes

® BX=6

B Registers preserved: DS, SS, SP, and BP
® Interrupts: Enabled on entry

Returns

® Interrupts: Enabled on exit
8 AX = 0; the MLID successfully reinitialized the interface card
® AX<0; an error occurred:
AX = FAIL the MLID cannot restart because of a hardware or software failure

& Note If it already has been initialized, the MLID should reset the hardware.

CreateConnection

6-6 MLI/MPI

Apple Computer/Novell Confidential

This command tells an MLID that the protocol stack will establish a lengthy connection with the
address to which ES:SI is pointing. CreateConnection allows the MLID to more efficiently handle
operations such as caching source routes. However, the MLID should still function properly even if
this call is never made.

Assumes

BX=7

Registers preserved: DS, SS, SP, and BP

Interrupts: Enabled on entry

ES:SI points to a 6-byte address to create a connection with it

Returns

u Interrupts: Enabled on exit

® AX = 0; the MLID successfully connected to this address
® AX<0; an error occurred:

AX = FAIL the connection was not established (the meaning of this error code is
undefined for this version of the specification)

RemoveConnection

This command tells an MLID that the protocol stack will no longer maintain a lengthy connection
with the address to which ES:SI is pointing. RemoveConnection allows the MLID to handle
commands such as caching source routes more efficiently. However, the MLID should still
function properly even if this call is never made.

Assumes

BX=8

Registers preserved: DS, SS, SP, and BP

Interrupts: Enabled on entry

ES:SI points to a 6-byte address to break a connection with the address

Returns

= Interrupts: Enabled on exit
8 AX=0

Chapter é: MLID Control Procedures

67

Apple Computer/Novell Confidential

AddPromiscuousSourceFilter

- This command allows a protocol stack to request an MLID to filter source addresses when the
MLID is in promiscuous mode. If the MLID has no source addresses in its filter table, packets from
any source address will be accepted. Otherwise, only those packets from addresses in the source
address filter list will be accepted.

The number of slots which the MLID keeps to support promiscuous filtering depends on the
implementation of the MLID.

Assumes

® BX=9

8 Registers preserved: DS, SS, SP, and BP

= Interrupts: Enabled on entry

® ES:SI points to a 6-byte address; the MLID should use this as a source address filter in
promiscuous mode

Returns

8 [nterrupts: Enabled on exit

B AX = 0, the source address was added to the MLID’s list of source address filters

B AX<0; an error occurred:

AX = BAD_COMMAND the MLID does not support filtering promiscuous
source addresses

AX = OUT_OF_RESOURCES the MLID has no more slots to store filter
information

& Note Promiscuous address filters (see, AddPromiscuousDestination, and
ClearPromiscuousFilters later in this chapter) are not affected by changing reception control
in and out of promiscuous mode (see ReceptionControl earlier in this chapter).

AddPromiscuousDestinationFilter

This command allows a protocol stack to request an MLID to filter destination addresses when the
MLID is in promiscuous mode. If the MLID has no destination addresses in its filter table, packets

to any destination address will be accepted. Otherwise, only those packets sent to addresses in the
destination address filter list will be accepted.

6-8 MLI/MPI

Apple Computer/Novell Confidential

The number of slots the MLID keeps to support promiscuous filtering is dependent on the
implementation of the MLID.

Assumes

BX=10

Registers preserved: DS, SS, SP, and BP
Interrupts: Enabled on entry

ES:SI points to a 6-byte address; the MLID should use this as a destination address filter in
promiscuous mode

Returns

B Interrupts: Enabled on exit]
® AX = 0; the destination address was added to the MLID’s list of destination address filters

® AX <0; an error occurred:

AX = BAD_COMMAND the MLID does not support filtering promiscuous
destination addresses

AX = QUT_OF_RESOURCES the MLID has no more slots to store filter information

& Note: Promiscuous address filters (see AddPromiscuousSource, AddPromiscuousDestination,
and ClearPromiscuousFilters later in this chapter) are not affected by changing reception
control in and out of promiscuous mode (see ReceptionControl earlier in this chapter).

ClearPromiscuousFilters

This command removes all promiscuous address filters from the tables maintained by the MLID.
Assumes

® BX=11

8 Registers preserved: DS, SS, SP, and BP

® Interrupts: Enabled on entry

Returns

® Interrupts: Enabled on exit

® AX = 0; the node supports promiscuous address filtering

8 AX <0; an error occurred:

Chapter 6: MLID Control Procedures

6-9

Apple Computer/Novell Confidential

AX = BAD_COMMAND the MLID does not support filtering promiscuous destination
addresses

This is the cnly way to remove promiscuous address filters.
& Note: Promiscuous address filters (see AddPromiscuousSource, AddPromiscuousDestination,

and ClearPromiscuousFilters later in this chapter) are not affected by changing reception
control in and out of promiscucus mode (see ReceptionControl earlier in this chapter).

DriverPoll

This command is called by the Link Support Layer periodically if Bit 5 is set in the ModeFlags field of
the MLID Configuration Table. (This bit indicates that the driver is a polled driver.)

Assumes

® BX=12

B Registers preserved: DS, SS, SP, and BP
® Interrupts: Enabled on entry
Returns

® Interrupts: Enabled on exit

¢ Note: This call retums nothing to the caller. Its use is implementation-dependent but is
commonly used as an ISR routine for interface cards with no interrupt capability. .

6-10 MLI/MPI

Apple Computer/Novell Confidential

Chapter 7 Link Support Commands for MLIDs

This chapter describes support commands in the Link Support Layer that can
be issued by the MLID. To call the support commands, place a function code
in BX and call the MLID Support Entry Point. (The MLID Support Entry Point
is obtained at MLID initialization from the Link Support Layer.) The value of
AX will indicate the error. AX will be 0 (and the Z flag set and § flag clear) if
the call completed with no error. AX will be less than 0 (and the Z flag clear
and § flag set) if the call completed with an error.

The following list presents the calls an MLID can make to the Link Support
Layer for support commands. The remainder of this chapter details separately
the function of each call.

u GetECB

m ReturnECB

s DeFragmentECB
a ScheduleAESEvent
"m CancelAESEvent

m GetlntervalMarker
s DeRegisterMLID
s HoldRcvEvent

® StartCriticalSection
s EndCriticalSection
® GetCriticalSectionStatus
® ServiceEvents

m EnqueueSend

a GetNextSend

Apple Computer/Novell Confidential

= SendComplete
8 AddProtocollD =

7-2 MLI/MPI

Apple Computer/Novell Confidential

GetECB

An MLID calls GetECB whenever the MLID receives a valid packet. The MLID reads the packet into
the ECB and sets the ProtoID, BoardNo, and ImmAddr fields to correspond with the incoming
packet. The FragCnt field must be set to 1, while the FragPtr1 field must point to the position in
the packet data immediately following the link-level envelope. FragLenl and SendLen will indicate
the length of the packet data, not including the size of the envelope. The envelope of the packet
will always immediately follow the FragLenl field of the ECB.

If an ECB is not available, the MLID should discard the incoming packet.

An ECB is always DMA-ready (in other words, on PC-compatibles the ECB will not cross a 64K

boundary).

In 0S/2, these ECBs are in the Global Descriptor Table (GDT) and addressable by all Ring 0 processes.
Assumes

m BX=0

m Register preserved: DS, SS, SP, and BP
m Interrupts: Disabled on entry
Returns

m Interrupts: Remain disabled

® AX=0; an ECB was available:

AX <0 ; an error occurred:
AX = QUT_OF_RESOURCES no ECBs available

m ES:SI points to the returned ECB, if one was available

ReturnECB

ReturnECB returns an ECB that was allocated through the GetECB command. The ECB is returned
to the Link Support Layer’s ECB pool for use when needed at a later time.

Most MLIDs do not need to use this command. It is only required if the MLID could not
properly receive the incoming packet (after having called GetECB) or if the MLID needs to fragment
packets to overcome media protocol constraints (such as limited packet size). Such MLIDs must
piece together multiple packets before reporting packet reception. However, the MLID must
obtain an ECB (using GetECB) and then hold the ECB when the first fragment arrives. If all of the
fragments do not arrive within an amount of time determined by the MLID, the MLID ignores the
fragments in its possession and returns the ECB.

Chapter 7: Link Support Procedures for MLIDs

Apple Computer/Novell Confidential

Assumes

BX=1

Registers preserved: DS, SS, SP and BP

Interrupts: Disabled on entry

ES:SI points to an ECB to be retumned to the Link Support Layer’s ECB Pool.
Returns
s Interrupts: Remain disabled
m AX=0
m AX<0; an error occurred:

AX = BAD_PARAMETER the ECB does not belong to the Link Support Layer

.- B B B
I

DeFragmentECB

This command allows an MLID to defragment an ECB quickly . The resulting ECB will be a copy of
the original, except it will have only one fragment. The data from the original fragments will be
placed at the specified offset from the Fraglenl field in the destination ECB.

If AX contains OFFFFH on entry to this command, then ES:SI points to a data buffer only and
not an ECB. In this case, the header information from the source ECB will not be copied, but
defragmented data will be moved to the data buffer at ES:SI. Otherwise, AX contains an offset
past the Fraglenl field to begin storing the defragmented data.

Assumes

BX=2

Register preserved: DS, SS, SP and BP, ES and SI
Interrupts: Unspecified

CX:DI points to an ECB to defragment

ES:SI points to an ECB to hold the defragmented copy

AX contains the number of bytes past the FragLenl field in the destination ECB to begin
storing the defragmented data. (For example, use 0 if the data is to begin immediately after the
FragLenl field at the start of the envelope field.) If this offset is OFFFFH, then ES:SI holds only
a data buffer, and ECB header information will not be copied

Returns
= Interrupts: Returned the same way they were entered and are not enabled inside the routine
s AX=0

@ AX<O0; an error occurred:

7-4 MLI/MPI

Apple Computer/Novell Confidential

AX = BAD_PARAMETER the ECB to be defragmented contains invalid fields describing
the data contents

& Note: Because this routine takes a long time to complete, interrupts should be left on if
“possible.

ScheduleAESEvent

This command schedules a driver-defined event to occur at the end of a specified time interval. An
ECB must be supplied for the AES timing system. When the timeout expires, the Status field is set
to 0 and the ESR is called. ES:SI will point to the ECB. An ECB which is already in use may not be
passed again to this command. To reset the timer of an AES Event, use CancelAESEvent, then issue
a new ScheduleAESEvent call.

When using OS/2, the ECB used for this call must be in the GDT . This call requires only the first
four fields of an ECB (FLink, BLink, Status, and ESR).

Assumes

BX=3

Registers preserved: DS, SS, SP, BP, ES, and SI
Interrupts: Unspecified

ES:SI points to an ECB filled in with the BLink field containing an unsigned 32-bit number for
the number of milliseconds that can elapse before the Status field is set to 0 and the ESR
Routine is called. The ESR field of the ECB must be valid

Returns

= [nterrupts: Are retumned the same way they were entered and are not enabled inside the routine
B AX=0

CancelAESEvent

This command cancels the AES event to which ES:SI is pointing. The Status field of the ECB will be
set to the CANCELLED error code. The ESR Routine will not be called.

Assumes
a BX=4
a Registers preserved: DS, SS, SP, BP, ES, and SI

Chapter 7: Link Support Procedures for MLIDs

Apple Computer/Novell Confidential

= Interrupts: Unspecified
m ES:SI points to the AES ECB to cancel

Returns

= Interrupts: Are returned the same way as they were entered and are not enabled inside the
routine

® AX=0; the cancel command was completed.
s AX<0; an error occurred:
AX = ITEM_NOT_PRESENT the ECB was not found in the AES Event queue

GetIntervalMarker

This command returns a timing marker in milliseconds; the marker can be used, for example, for
timing retry events. The value of this marker has no relation to any real-world, absolute time.
When time marker values are compared with each other, the difference is elapsed time in
milliseconds.

Assumes

m BX=5

m Registers preserved: all except DX:AX

m Interrupts: unspecified

Returns

m Interrupts: are returned the same way they were entered and are not enabled inside the routine
m DX:AX returns the current interval time in milliseconds

DeRegisterMLID

This command allows the driver to tell the Link Support Layer that the board whose number is in AX will no
longer be available to the system.

The Link Support Layer will call all protocol stacks that are bound to this driver using the
MLIDDeRegistered Protocol Control command to notify them of the deregistration.

Assumes

s BX=6

m Registers preserved: DS, SS, SP and BP
a Interrupts: Enabled on entry

7-6 MLI/MPI

Apple Computer/Novell Confidential

® AX contains the board number being deregistered

Returns

® Interrupts: Remain enabled

8 AX = 0; the Link Support Layer successfully deregistered the MLID
® AX<0;an error occurred:

AX = BAD_PARAMETER the Link Support Layer does not have an MLID registered as
the board number passed in AX

& Note The driver should flush its send queue before making this call as described in the
section on the MLIDShutdown command in Chapter 6.

HoldRcvEvent

HoldRcvEvent must be cailed every time a valid packet is received into an ECB. A pointer to this .
ECB is passed in registers ES:SI. All required fields in the ECB must have been set as indicated in the
Assumes section.

The ECB is placed in a temporary holding queue. The ServiceEvents routine (described later) calls
the appropriate protocol stack with the incoming packet. The stack must then retum the ECB to
the Link Support Layer’s ECB pool. ServiceEvents is called near the end of the driver’s ISR. (Refer to
Chapter 4, MLID Operations, for more information.)

Assumes

BX=7

Registers preserved: DS, SS, SP, BP, ES, and SI

Interrupts: Disabled on entry

ES:SI contains a pointer to an ECB associated with a completed receive event

The Status, ImmAddr, ProtoID, and BoardNo fields are set appropriately for the completed
packet reception. In addition, the FragCnt field is set to 1, the FragPtr1 field points to the start
of packet data immediately following the link-level envelope, and the Fraglenl and SendLen
fields contain the size of the packet, not including the size of the envelope. The envelope of the
packet will be located immediately following the FragLenl field, and the packet data will
immediately follow the envelope

Returns
m Interrupts: Remain disabled
a AX=0

Chapter 7: Link Support Procedures for MLIDs

7-7

Apple Computer/Novell Confidential

StartCriticalSection

StartCriticalSection and EndCriticalSection are two support commands that prevent the Link
Support Layer from processing events while the driver is executing critical sections of code. Event
processing is delayed until EndCriticalSection is called. '

These two support commands bracket any areas of the MLID code that execute with
interrupts enabled and that must run to completion for the MLID to continue running smoothly.
Also, by definition, the EndCriticalSection command must not be called until the driver is in a state
in which it would not be affected by having either AES or ServiceEvents routines executed. Control
might not be returned to the driver for some time.

The StartCriticalSection and EndCriticalSection calls should be made so that in the course of
execution they are properly balanced. Any imbalances may result in the workstation or server
locking up. A Start/End pair of calls may be nested within the domain of another Start/End pair. In
some cases, this will result when a critical code section is called from the higher levels of software
or called from another critical code section.

In MS-DOS, standard pop-up applications will be disabled while inside the critical section.

Assumes

® BX=8

® Registers preserved: DS, SS, SP and BP

m Interrupts: Disabled on entry

® AXis the board number of the MLID making the call

Returns

s Interrupts: Remain disabled

AX=0

BX = total number of outstanding calls to StartCriticalSection

CX = total number of outstanding calls to StartCriticalSection for the requested board number

EndCriticalSection

EndCriticalSection marks the point at which Link Support Layer events and MS-DOS pop-ups can
resume. For more information on EndCriticalSection, refer to the description of the previous call,
StartCriticalSection.

Assumes

s BX=9

8 Registers preserved: DS, SS, SP and BP
s Interrupts: Disabled on entry

7-8 MLI/MPI

Apple Computer/Novell Confidential

® AX s the board number of the MLID making the call

Returns

® Interrupts: Remain disabled, but they may have been enabled while the EndCriticalSection
function executed.

s AX=0
s BX = total number of outstanding calls to StartCriticalSection

m CX= total number of outstanding calls to StartCriticalSection for the requested board
number

GetCriticalSectionStatus

This command reports the current critical section status. For more information, refer to the
description of the StartCriticalSection command found earlier in this chapter.

Assumes

BX=10

Registers preserved: DS, SS, SP and BP

Interrupts: Unspecified

AX = board(number

Returns

= Interrupts: Return unchanged

AX=0

BX = total number of outstanding calls to StartCriticalSection

CX= total number of outstanding calls to StartCriticalSection for the requested board
number

ServiceEvents

ServiceEvents is invoked to complete the processing of network events that have been queued by
the HoldRcvEvent command and to process pending AES timer events. ServiceEvents processes
each ECB in the holding queue. The ECBs in the queue are processed in the same order that they
were added to the list, that is according to the “first in, first out” (FIFO) scheme. ServiceEvents
also processes AES-timer ECBs.

Chapter 7. Link Support Procedures for MLIDs

7-9

Apple Computer/Novell Confidential

The driver ISR should call ServiceEvents immediately before the registers are restored. All
hardware processing should have been completed by the driver, and the ISR must be ready to accept
a new interrupt.

The ServiceEvents routine will route all received packets to the correct protocol stack and fill in
the StackiD field for them. The stack is responsible for making the ReturnECB call to release the
ECB. (See the description of the ReturnECB call earlier in this chapter for more information.)

The Receive Entry Points, Default Receiver Entry Points, and PreScan Entry Points of the
protocol stacks will be called with interrupts disabled, and the program stack will be that of the
interrupted process (or the interrupt routine, if the ISR swaps stacks). The protocol stack should
turn interrupts on as soon as possible. If the protocol stack is running under an operating system
that supports program stack swapping at interrupt time, the protocol stack should swap to its
own internal program stack when it processes the received packets.

Assumes

s BX=11

® Registers preserved: DS, SS, SP and BP

m Interrupts: unspecified

® The system may spend a large amount of time in this routine
Returns

m Interrupts: Return disabled but interrupts will have been enabled during the course of
processing

m AX=0

EnqueueSend

This command allows the driver to place the Send ECB in the Link Support Layer’s send queue. The
Send ECB remains in the queue until the driver requests it by calling GetNextSend. The ECB may be
copied by the Link Support Layer under some operating systems. SendComplete should notbe
called for the ECB that was sent to the Link Support Layer through EnqueueSend (see the note in
GetNextSend, next.)

Assumes

BX =12

Registers preserved: DS, SS, SP and BP
Interrupts: Disabled on entry

ES:SI points to the Send ECB to queue
Returns

= Interrupts: Remain disabled

7-10 MLI/MPI

Apple Computer/Novell Confidential

m AX = 0; the ECB was successfully queued
®m AX <0; an error occurred:

AX = QUT_OF_RESOURCES the ECB needs to be copied and there was not a free ECB
available to create the copy

Transmitting an ECB with
the LSL hold queue

MLID

Y

GetSend ECB1 from LSL

EnqueueSend
(put ECBL in LSL queue)

send ECB1
to LSL

Do not call LsL
SendComplete on ECB1 hold queue

A

GetNextSend
(transmit ECB2)

\
SendComplete
(free ECB2)

Chapter 7: Link Support Procedures for MUIDs 7-11

Apple Computer/Novell Confidential

GetNextSend

This command determines if there are any Send ECBs on the Link Support Layer's send queue. If
there are, the address of the first ECB is returned in ES:SI. If not, a NO_MORE_ITEMS error code is
returned. (For more information, refer to the previous description of EnqueueSend.)

Assumes
BX=13
Registers preserved: DS, SS, SP and BP
Interrupts: Disabled on entry
AX contains the board number making the request
Returns
m Interrupts: Remain disabled
a8 AX=0. ES:SI will return an ECB queued up with the EnqueueSend command
m AX <0 if an error occurred:
AX = NO_MORE_ITEMS no ECBs are queued

& Note: The ECB returned by this command may not be the same ECB that was queued using
the EnqueueSend command, but may be a copy that has been defragmented. The driver
must call SendComplete when it is through using this ECB.

SendComplete

SendComplete must be called every time a packet is transmitted from an ECB. A pointer to this
ECB is passed in registers ES:SI.

This routine must be called any time the driver is finished using a Send ECB. The Link Support
Layer calls the ESR of the SendECB with interrupts disabled and ES:SI pointing to the ECB. The ESR
routine must not enable interrupts; it must execute quickly since it is called at interrupt time.
Always call SendComplete when you are done with an ECB retumed by GetNextSend (even if it is
the same ECB given to an EnqueueSend), but never call SendComplete when queuing a Send with
EnqueueSend. Normally, a driver is finished using a SendECB after it sends the data to the interface
card, or after calling GetNextSend in the driver’s ISR routine and sending the data to the interface
card. However, if the driver used the EnqueueSend command (described earlier) to transmit the ECB
at a later time, SendComplete should not be cailed for the ECB given to the EnqueueSend command.

Assumes
m BX=14

712 MLI/MPI

Apple Computer/Novell Confidential

® Registers preserved: DS, SS, SP and BP

= Interrupts: Disabled on entry

m ES:SI contains a pointer to an ECB associated with a completed Send event.
Returns

m Interrupts: Remain disabled

8 AX=0; no errors are possible.

AddProtocolID

This command allows the driver to tell the Link Support Layer the names and protocol IDs of the
protocol stacks the driver can support.

Assumes

BX=15

Registers preserved: DS, SS, SP and BP

Interrupts: Enabled on entry

ES:SI points to the 6-byte protocol ID being added

CX:DI points to a string (no more than 15 characters long) containing the name of the protocol
stack for this protocol ID. The string must have a leading length byte and a trailing zero byte.

m AX contains the media ID for which the new protocol ID is being added
Returns

= Interrupts: Enabled on exit

® AX = 0; the Link Support Layer successfully added the new protocol ID

m AX <0; an error occurred:
AX = OQUT_OF_RESOURCES The Link Support Layer has no resources to register
another protocol ID

AX = DUPLICATE_ENTRY There is already a protocol ID registered for the given
media/stack combination’

AX = BAD_PARAMETER The name of the parameter is illegal (undefined) and the
length field of this parameter should be less than or equal
to 15

& Note: This call should only be made for PID info in the NET.CFG file because of a limited
number of protocol stack siots.

Chapter 7: Link Support Procedures for MITDs

7-13

Apple Computer/Novell Confidential

7-14 MLI/MPI

o

Part II Writing Protocol Stacks for
the MPI

(

Apple Computer/Novell Confidential

Chapter 8

Protocol Stack Operations

This chapter briefly describes the operation of a protocol stack. The stack
receives packets from the Link Support Layer and then processes these
received packets. The protocol stack also creates outgoing packets. The stack
delivers the outgoing packets to the Link Support Layer. From the Link
Support Layer, the packets are delivered to the MLID that was requested by
the protocol stack.

The processing of these packets by the protocol stack allows higher-level
services (such as registration and lookup of entity names and transaction °
processing) to exist. Each stack maintains its own set of higher-level services
so the availability of a particular service will vary from stack to stack. w

81

Apple Computer/Novell Confidential

The stack normally consists of the following four handlers:

The Protocol Stack Control Entry Point handler
This handler allows applications and stacks to obtain valuable information about the stack.
The entry point is detailed further in Chapter 10, Protocol Stack Control Procedures.

The Application Entry Point handler
This handler services requests by applications.

The Transmit Packet handler
This handler is responsible for creating an ECB, filling in its fields, and passing the ECB to the
Link Support Layer for transmission.

The SendComplete ISR handler
This handler is called whenever a Send ECB has been processed by the MLID. The handler allows
the stack to do any required processing after an ECB has been transmitted

One or more of the following three handlers must also be included in the stack:

The Receive Entry Point handler :
This handler processes received packets delivered by the Link Support Layer. Stacks receive
packets if the BindStack call was used to bind with an MLID.

The Default Receiver Entry Point handler.

This is another handler for receiving packets delivered by the Link Support Layer. The Default
Receiver Entry Point receives all incoming packets from the MLID that can not be routed to
other stacks. For example, the PID of the packet is not registered. A stack receives packets if it
was registered as the default receiver by using the RegisterDefaultStack call. This handler could
be the same as the Receiver Entry Point handler.

The PreScan Entry Point handler
This entry point allows a special purpose stack to filter or preview incoming packets from an
MLID before they are routed by the Link Support Layer.

The process of registering and binding with MLIDs is discussed in Chapter 9, Protocol Stack
Initialization. This chapter provides detailed descriptions of the following:

The Receive Entry Point

The Defauit Receiver Entry Point
The PreScan Entry Point

The Transmit Packet handler

The Receive Entry Point

The Link Support Layer passes the Receive Entry Point a pointer to an ECB in ES:SI with the
following fields filled in:

8-2

MLI/MPI

Apple Computer/Novell Confidential

A Receive ECB
{ otme
0
4
8
10
StackID contains the stack ID of the protocol stack for
1 Suack D which this packet is destined. This value need only
6 Proto ID concern stacks that are attempting to handle two
different protocol IDs.
2 Board No ProtoID contains the protocol ID of the incoming packet.
2 tmem Addr Most stacks do not need this value.
BoardNo contains the board number of the MLID that
received this packet. .
ImmAdadr contains the physical address of the source node of
this packet.
2 Send Len FragCnt always contains a 1.
44 Frag Cat Sendlen contains the number of bytes in the packet (not
@ counting the envelope).
Fraghur ~| FragPiri contains a pointer to the start of the packet's data
5 FragLen 1 (immediately following the envelope).
Fraglenl contains the number of bytes in the packet's data
o | Envelope ’ (not counting the envelope).
| (variable length) o Envelope immediately follows FragLenl and has a variable
length, depending on the media.
Packet Data ¢
$ (variable length) $

The Receive Entry Point may destroy all registers except SS, SP, BP, and DS.

The protocol stack is responsible for making the ReturnECB call; this returns the ECB to the Link Support Layer.
The ECB should be returned after the protocol stack has finished processing the received packet.

(Chapter 8: Protocol Stack Operations 83

Apple Computer/Novell Confidential

The Default Receiver Entry Point

The Link Support Layer passes the Default Receiver Entry Point Handler a pointer to an ECB in ES:SI
with the following fields filled in:

8-4 MLI/MPI

L

Apple Computer/Novell Confidential

10

14

16

22

24

52

A Receive ECB

Proto ID

Board No

Imm Addr

Send Len

Frag Cat

Frag Ptr 1 —

FragLlen1

Envelope §
(variable length)

Packet Data ¢
$ (varablelength) $

StackID
ProwlD

BoardNo
Immadadr
Sendlen
FragCnt

FragPir1

Fraglenl

Engelope |

contains OFFFFH.
contains the protocol ID of the

incoming packet.

contains the board number of the
MLID that received this packet.

contains the physical address of the
source node of this packet.

contains the number of bytes in the
packet (not counting the envelope).
contains a 1.

contain a pointer to the start of the
packet's data (immediately following
the envelope).

contain the number of bytes in the
packet’s data (not counting the
envelope)

immediately follows Fraglen1 and has
a variable length, depending on the
media.

The Default Receiver Entry point handler may destroy all registers except SS, SP, BP, and DS. The
protocol stack is responsible for making the ReturnECB call; this returns the ECB to the Link
Support Layer after & has finished processing the received packet.

The PreScan Entry Point

Chapter 8: Protocol Stack Operations

Apple Oomputer/Noveil Confidential

The Link Support Layer passes the PreScan Entry Point Handler a pointer to an ECB in ES:SI with the
following fields filled in:

A Receive ECB
Offset
0
4
8
10 -
ProwID contains the protocol ID of the
U incoming packet
16 Proto D BoardNo contains the board number of the
MLID that received this packet. A
2 Board No protocol stack may want to reject a
packet depending on the origin of its
Imm Addr
u A board number
ImmAdar contains the physical address of the
source node of this packet
SendlLen contains the number of bytes in the
£ Send Len packet (not counting the envelope)
Frag Cat FragCnt always contains a 1.
. FragPtr1 contains a pointer to the start of the
46 Frag Ptr 1 - packet's data (immediately following
the envelope).
50 Fraglen 1 eavelope)
Fraglen1 contains the number of bytes in the
e packet's data (not counting the
[Vi
52 (vare ?:negm H envelope).
Envelope immediately follows FRAG_LEN1 and
has a variable length depending on the
Packet Data - media.
§ (variable length) $

The PreScan Entry Point Handler may destroy all registers except SS, SP, BP, and DS. The stack should return AX
= 0 if the Link Support Layer should not route the packet. The stack should return AX = 1 and ES:SI pointing to
the receive ECB if the Link Support Layer should route the receive ECB. If the stack returns AX = 0, the stack is
responsible for making the RetumECB command on the received ECB.

8-6 MLI/MPI

e

Apple Computer/Novell Confidential

The Transmit Packet Handler

To send a packet on the network, the protocol stack must create an ECB and provide the following

information in the ECB:

Transmit Packet Handler

42 PragCnt

44 FragPtrl

46 Praglenl

508 FragPtrx .
| 1
| 1

52 E Praglenx :
I‘ﬁ

StackiD

ImmAddr

ProtoWs

SendLen

FragCnt
FragPtrX

FraglenX

contains the stack ID of the stack sending the
packet or OFFFFH if the stack intends to send a
“raw” packet.

contains the address of an Event Service Routine
which will be called when the ECB is freed. This
field must contain a valid address.
contains the protocol ID for the stack ID/board
number for which the packet is destined. This
field is ignored if a “raw” packet is sent.
contains the board number for which the packet is
destined.
contains the physical address of the destination
node for this packet. This field is ignored if a “raw”
packet is sent.
may be filled in with any needed information (will
not be modified by the MLID or the Link Support
Layer).
contains the complete length of the packet,
counting all fragments, but not counting the
envelope (unless the feature to send a “raw”
packet is used)

contains the number of fragments for the packet

contains the pointer to the X'th fragment of the
packet

contains the number of bytes in the X'th
fragment of the packet

Chapter 8: Protocol Stack Operations 87

Apple Computer/Novell Confidential

After filling in the ECB, the packet is transmitted using the SendPacket call. The transmit
command is asynchronous, and the stack may not reuse the ECB until the ESR is called. The ESR is
called even if an error occurs. A stack must not depend on receiving an error if the transmit fails.
Some MLIDs call SendComplete immediately after the data from the ECB has been transferred to
the memory on the interface card.

The ESR may destroy all registers except SS, SP, BP, and DS, but may not enable interrupts.

If the transmit command waits for the ESR to be called before continuing (for the caller this means turning the
transmit into a synchronous command), the transmit handler should make the RelinquishControl call while
waiting. However, if the stack is operating under a multitasking operating system such as OS/2, the stack
should yield to the operating system instead, normally by waiting on a semaphore.

If the StackID field is set to OFFFFH, then a “raw” send is performed by the MLID. Normally, the MLID
encapsulates the data given by the ECB in a link-level envelope before transmitting the packet. For a raw
transmit, the stack is responsible for building the entire packet including media-specific headers. In this case the
media envelope must be contained entirely in the first fragment.

& Note The ESR may be called before control is returned from the SendPacket call.

8-8 LI/MPI

Apple Computer/Novell Confidential

Chapter 9 Protocol Stack Initialization

Protocol stack initialization occurs when the stack loads itself in the
computer’s system. This initialization process, described in this chapter, must
take place before the stack can send and receive packets. m

91

Apple Computer/Novell Confidential

Stack initialization stages

The initialization process of a stack occurs in the following stages:

1

9-2

The protocol stack first establishes a connection with the Link Support Layer. When using OS/2,
installation is accomplished when the stack sends an IOCTL command to the LINKSUP$ device
using the general IOCTL command (DosDevIOCt) with a function category of 0A1H and a
function code of 2. However, under MS-DOS, the LSL is a TSR program, and the Link Support
Layer's Initialization Interface Entry Point is found using the INT 2FH multiplexing address.
The exact procedure for finding this entry point is described in Appendix I.

The stack uses the following information to call the Link Support Layer’s Initialization Entry
Point. Using this call, the stack can obtain further information about the Link Support Layer.

BX = 2; protocol stack initialization function code

ES:SI; address of 8 bytes in memory into which the Link Support Layer fills the addresses of the
following two entry points:

Offset Bytes Description

0 4 Ring 0 address of the Protocol Stack
Support Entry Point of the Link Support
Layer.

4 4 Ring 0 address of the General Services Entry
Point of the Link Support Layer.

These two Link Support Layer entry points are described in more detail in later chapters.
The stack reads the NET.CFG file. (See Appendix H for the format of the NET.CFG file).
A stack must complete one or both of the following registration operations before it can
receive packets from an MLID:

O Register with the Link Support Layer by name and bind with an MLID

O Register as the default handler for an MLID

O Register as a PreScan stack for an MLID

Each of these registration operations is described in the next section.

& Note: With 0S/2, the eight bytes of entry point information is retumed in the IOCTL
data buffer.

MLI/MPI

(ﬁ,yﬂ .

Apple Computer/Novell Confidential

Registering a protocol stack

A protocol stack must be registered with the Link Support Layer in order to receive packets from an MLID.
Registration provides the Link Support Layer with the information it requires to route packets from MLIDs to
protocol stacks.

When an MLID receives a packet, the MLID places the board number of the MLID, the protocol ID from the
link-level envelope (or 0 if no protocol ID exists) and the packet into a receive ECB and passes the ECB to the
Link Support Layer. The Link Support Layer uses the board number and protocol ID to route the packet.

The Link Support Layer first calls the PreScan stack for the MLID if present. If a PreScan stack does not exist or
indicates that the Link Support Layer should route the packet, the Link Support Layer searches for any stack that
is registered and bound to the MLID. If no suitable stack is found, then the Link Support Layer will call the
stack that has registered as the default for the MLID. If no stack has registered as the default, the packet is
ignored. The ECB is then returned to the Link Support Layer's ECB pool by the Link Support Layer.

A stack can receive a packet in three ways. The stack can bind with an MLID to receive packets that have a
particular protocol ID. The stack can also be registered to receive all packets from an MLID if no other stack
claims them, or the stack can be registered as a PreScan stack. As a PreScan stack, it can receive all packets. A
stack can use all three methods of registering to receive packets from the same MLID. A stack can also be
bound with any number of MLIDs.

To register by binding with an MLID

A stack can bind with an MLID to receive specific packets (those with a specific protocol) by making at least
two calls. The stack must first make the RegisterStack call to obtain its StackID. The RegisterStack call takes
the following as parameters:

8 the name of the protocol stack
® 2 pointer to a table containing the following:
a pointer to the Receive Entry Point
a pointer to the Protocol Stack Control Entry Point

ES:SI points to a table containing the previously mentioned parameters, as shown in the RegisterStack call
described later in this chapter.

Using the StackID obtained from the RegisterStack call and the board number of the desired MLID, the protocol
stack makes the BindStack call to complete the binding process.

To register as the default stack
A protocol stack can become the default receiver for an MLID by making a single RegisterDefaultStack call. See

Chapter 11, Link Support Procedures for Protocol Stacks, for a full description of the call. Only one protocol stack
can be the default receiver of an MLID. The stack is implicitly bound to the MLID by making this call.

Cﬁapter 9: Protocol Stack Initialization >3

Apple Computer/Novell Confidential

Register as the PreScan stack

A stack can receive all packets from an MLID by making a single RegisterPreScanStack call. See Chapter 11, Link S
Support Procedures for Protocol Stacks, for a full description of the call. Only one stack can be the PreScanStack S
for an MLID. The stack is implicitly bound to the MLID by making this call.

In order to make the registration calls, the stack must determine the board number of the desired MLID. Board
numbers are assigned dynamically by the Link Support Layer as each MLID registers. A stack should not depend
on an MLID having any particular board number; the board number should be determined every time the stack
initializes.

Finding an MLID by name

A protocol stack can find an MLID’s board number from the name of the MLID. The name of the MLID can be
read from the NET.CFG file when the stack initializes, or the name of the MLID can be hard coded. The
following algorithm (in pseudo-C) can be used for finding an MLID’s board number from its name.

/*

IZ 2RSSR R R RSS2t i il il i i st i a2 2 i i b R 2 2R 22 2 2 X

** GetBoardNofromName

* %

** Inputs:

% name Pointer to name of MLID being searched for.
*% The first byte of the string must have its length,
*x and the string must be null-terminated.

** Qutputs:

* % BoardNo or -1 if none found.

de de e e de e dr de de de de de de e de de o e W ok Ye ke o de e de W e de e e dr e e A e e o de e e e e o d e e e e e de gk e e e ke e o e e O o o b e o e o ok

*x/
int GetBoardNofromName(char *name)

{

int board;

PtrToFunction | MLIDEntry; /* MLID Control Entry Point */
MLIDConfigurationTable *tbl; /* Ptr to MLID’s config tbl */
int status; /* Status of calls to LSL */

94 MLI/MPI

Apple Computer/Novell Confidential

for

(board = 0; ; board++)

/*

** Call Link Support Layer to get the Control Entry

** Pcint for MLID

LA

*/

status = GetMLIDControlEntry(bocard, §MLIDEntry);

if (status == NO_MORE_ITEMS) /* Didn’t find MLID */
return -1;

if (status == ITEM_NOT_FOUND) /* No MLID with this ID =*/
continue;

** Call MLID with function code 0 to get its

** Configuration table.

** The syntax below will not work exactly under most

** C’s since they pass the parametefs on the stack.

** Pseudo-C, remember?

** (An assembly language glue routine will be required.)

*/

status = MLIDEntry(0, &ConfigTbl):

if (status) /* Should never happen... */
continue;

/t

** Compare the name of the MLID in its configuraticn

Chapter 9: Protocol Stack Initialization 95

Apple Computer/Novell Confidential

** table with the desired name
*/
if (stricmp(name, ConfigTbl->ShortName) == 0)
return board; /* Found our MLID */

} /* for */

96 MLI/MPI

Apple Computer/Novell Confidential

Chapter 10 Protocol Stack Control Commands

This chapter describes commands that must be provided by a protocol stack
in order for it to support the MPI interface. m

10-1

Apple Computer/Novell Confidential

To call a protocol stack control command, place a function code into BX and call the Protocol Stack
Control Entry Point. The address of this entry point is obtained by making a
GetProtocolControlEntry command call to the Link Support Layer for the desired protocol stack.
The return value in AX will always be generated so that the Z and S flags are set correctly. AX will
be 0 (and the Z flag set and S flag clear) if the call is completed with no error. AX will be less than 0
(and the Z flag clear and S flag set) if the call completed with an error. The value of AX will indicate
the error. The following support commands are available through this interface:

® GetProtocolStackConfiguration
GetProtocolStackStatistics
BindToMLID
UnbindFromMLID

- MLIDDeRegistered

GetProtocolStackConfiguration

This command allows a protocol stack to read the name and version information of another
protocol stack.

Assumes

B BX=0

B Registers preserved: DS, SS, SP and BP
® Interrupts: Enabled on entry
Returns

® Interrupts: Enabled on exit

& ES:SI returns a pointer to the Protocol Stack Configuration Table (see Appendix B for a
description of this table)

® AX =0, no errors are possible

GetProtocolStackStatistics

This command returns a pointer to the Protocol Stack Statistics Table. The table describes statistics
of the protocol stack.

Assumes
¥ BX=1

10-2 MLI/MPI

Apple Computer/Novell Confidential

® Registers preserved: DS, SS, SP and BP

= Interrupts: Enabled on entry

Returns

® Interrupts: Enabled on exit

® ES:SI points to a statistics table whose format is described in Appendix E
m AX =0, no errors are possible

BindToMLID

This command provides a consistent method to instruct a protocol stack to bind with an MLID.

The protocol stack is expected to issue the BindStack call to the Link Support Layer as well as
perform any other maintenance commands required to bind to an MLID.

Assumes

® BX=2

® Registers preserved: DS, SS, SP, and BP

® Interrupts: Enabled on entry A

® (X contains the board number to which the protocol stack should bind

® ES:SI points to a parameter string that is dependent on the implementation
Returns

= Interrupts: Enabled on exit

® AX = 0; the bind completed successfully (other error codes are dependent on the
implementation)

UnbindFromMLID

This command provides a consistent method to instruct a protocol stack to unbind from an MLID.
Assumes

BX=3

Registers preserved: DS, SS, SP, and BP

Interrupts: Enabled on entry

CX contains the board number from which the protocol stack should unbind.

ES:SI points to a parameter string that is dependent on the implementation.

Chapter 10: Protocol Stack Control Procedures

10-3

Apple Computer/Novell Confidential

Returns
® Interrupts: Enabled on exit

® AX =0; the unbind call is completed successfully (other error codes are dependent on the
implementation)

MLIDDeRegistered

This command allows the Link Support Layer to inform all protocol stacks bound to an MLID that
the MLID has deregistered. As a result, the MLID will no longer be available. This call is used strictly
to inform stacks. The stack may use the information any way it chooses and may even ignore it.

Assumes

® BX=4

® Registers preserved: DS, SS, SP and BP

= Interrupts: Enabled on entry

® CX contains the board number which has deregistered from the Link Support Layer.
Returns

® Interrupts: Enabled on exit
8 AX has no return value for this call

104 MLI/MPI

=N

Apple Computer/Novell Confidential

Chapter 11 Link Support Commands for Protocol
Stacks

This chapter describes support commands found in the Link Support Layer
that can be called by the protocol stacks. =

11-1

Apple Computer/Novell Confidential

To call the Link Support Layer's protocol support commands, place a function code in BX and call
the Protocol Stack Support Entry Point. AX will be 0 (and the Z flag set and S flag clear) if the call
completed with no error. AX will be less than 0 (and the Z flag clear and § flag set) if the call
completed with an error. The value of AX will indicate the error.

The following support commands are available to protocol stacks:

GetECB

ReturnECB
DeFragmentECB
ScheduleAESEvent
CancelAESEvent
GetlntervalMarker
RegisterStack
DeRegisterStack
RegisterDefaultStack
DeRegisterDefaultStack
RegisterPreScanStack
DeRegisterPreScanStack
SendPacket

HoldPacket
GetHeldPacket
ScanPacket
GetStackIDfromName
GetPIDfromStackIDBoard
GetMLIDControlEntry
GetProtocolControlEntry
GetLinkSupportStatistics
BindStack

UnbindStack
AddProtocolID
RelinquishControl &

GetECB

112 MLI/MPI

s
&

4

Apple Computer/Novell Confidential

This command allows a protocol stack to obtain and use an ECB. The ECB is normally used when a
protocol stack has to simulate a received packet. Because MLID:s filter incoming packets sent by
other MLIDs, protocol stacks that need to receive their own transmissions can simulate a received
packet by getting an ECB from this command, copying the packet to be received into it, and calling
HoldPacket. The protocol stack retrieves the packet later by calling GetNextHeldPacket.

In OS/2, ECBs are in the GDT and addressable by all Ring 0 processes. In MS-DOS and 0S/2, the
packet does not cross a 64K DMA boundary.

Assumes
B BX=0
® Registers preserved: DS, SS, SP, and BP
B Interrupts: Disabled on entry
Returns
® Interrupts: Remain disabled
8 AX=0; an ECB was available
B AX <0; an error occurred:
AX = OUT_OF_RESOURCES no ECBs were available
8 ES:SI points to the returned ECB, if one was available

ReturnECB

ReturnECB returns an ECB that was allocated through the GetECB command. The ECB is returned
to the Link Support Layer's ECB pool for reuse.

Assumes
8 BX=1
B Registers preserved: DS, SS, SP, and BP
B [nterrupts: Disabled on entry
® ES:SI points to an ECB to be returned to the Link Support Layer's ECB pool for reuse
Returns '
® Interrupts: Remain disabled
® AX=0
® AX <(; an error occurred:
AX = BAD_PARAMETER the ECB does not belong to the Link Support Layer's ECB pool

Chapter 11: Link Support Procedures for Protocol Stacks

113

Apple Computer/Novell Confidential

DeFragmentECB

This command allows a protocol stack to defragment an ECB quickly. The resulting ECB will be a
copy of the original. The only exception is that there will be only one fragment, and the data from
the original fragments will be placed in AX bytes after the FragLen1 field in the destination ECB. (AX
refers to the ECB at an offset specified by AX past the FragLenl field).

If AX contains OFFFFH on entry to this command, then ES:SI points to only a data buffer, and not
an ECB. In this case, the header information from the source ECB will not be copied, but
defragmented data will be moved to the data buffer at ES:SI.

Assumes

BX=2

Register preserved: DS, SS, SP and BP, ES and SI

Interrupts: unspecified

CX:DI points to an ECB to defragment

ES:SI points to an ECB to hold the defragmented copy

AX contains the number of bytes past the FragLenl field in the destination ECB where the de-
fragmented data should be stored. If this offset is OFFFFH, then ES:SI only holds a data
buffer, and ECB header information will not be copied

Returns

= Interrupts: returned the same way they were entered, and are not enabled inside the routine
B AX=0
B AX<(; an error occurred:

AX = BAD_PARAMETER the ECB to be defragmented contains invalid fields
describing the data contents

¢ Note: Interrupts should be left on if at all possible.

ScheduleAESEvent

This command schedules a driver-defined event to occur at the end of a specified time interval. An

ECB must be supplied for the AES timing system. When the timeout occurs, the Status field is set
to 0 and the ESR is called, with ES:SI pointing to the ECB. An ECB which is already in use should not
be passed again to this command. To reset the timer of an AES Event, use CancelEvent, then issue a
new ScheduleAESEvent call.

114 MLI/MPI

,‘&y i,

Apple Computer/Novell Confidential

Assumes

® BX=3

® Registers preserved: DS, SS, SP, BP, ES, and SI

® Interrupts: unspecified

B ES:SI points to an ECB whose Blink field is filled in with an unsigned 32-bit number. This

number indicates how many milliseconds should elapse before the Status field is set to 0 and
the ESR is called. The ESR field of the ECB must contain a valid ESR pointer

8 In OS/2, the ECB is in the GDT
Returns

® Interrupts: returned the same way they were entered, and are not enabled inside the routine
B AX = 0; no errors are possible

CancelEvent

This command cancels the ECB to which ES:SI was pointing. The Status field of the ECB will be
set to the CANCELLED error code. The ESR will not be called. This command will cancel an
outstanding AES ECB or SendPacket ECB.

Assumes
8 BX=4
B Register preserved: DS, SS, SP, BP, ES, and SI
= [nterrupts: Disabled on entry
® ES:SI contains a pointer to an ECB to be cancelled
Returns
B Interrupts: remain Disabled
8 AX = 0; the cancel was completed successfully
B AX<0; an error occurred:
AX = ITEM_NOT_PRESENT the ECB could not be cancelled

GetIntervalMarker

Chapter 11: Link Support Procedures for Protocol Stacks

115

Apple Computer/Novell Confidential

This command retums a timing marker in milliseconds. The timing marker can be used, for example,
for timing retry events. The value of this marker has no relation to any real-world absolute time.
However, when time marker values are compared with each other, the difference between them is
elapsed time in milliseconds.

Assumes

® BX=5

B Registers preserved: all except DX, AX, BX
® Interrupts: unspecified

ES

Returns
® Interrupts: are returned the same way they were entered and are not enabled inside the routine
®m DXAX returns the current interval time in milliseconds

& Note AX does not return an error code

RegisterStack

A protocol stack can transmit packets and communicate with MLIDs even if it has not registered.
Either the RegisterStack, RegisterDefaultStack, or RegisterPreScanStack call must be made for the
protocol stack to receive incoming packets from the Link Support Layer.

In addition to a RegisterStack call, the protocol stack must issue BindStack calls for those MLIDs
from which the stack wants to receive packets.

Assumes

BX=6

Registers preserved: DS, SS, SP, and BP

Interrupts: unspecified

ES:SI points to a table with the following information:

Offset Bytes Description

0 4 Pointer to the name of the protocol stack. This pointer needs to be
valid only at the time the call is made '
4 4 Ring 0 Receive Entry Point for the protocol stack. All incoming
packets will be dispatched to this address for processing
8 4 Ring 0 Address of the Protocol Stack Control Entry Point
Returns

1146 MLI/MPI

Apple Computer/Novell Confidential

® Interrupts: Are returned the same way they were entered and are not enabled inside the routine
® BX = Stack ID
§ AX = 0; no error occurred
B AX <0; an error occurred:

AX = OUT_OF_RESOURCES there are too many protocol stacks already registered

AX = DUPLICATE_ENTRY a protocol stack with that name is already registered

AX = BAD_PARAMETER. length of the protocol stack name is 0 or greater than 15
DeRegisterStack

This command removes a protocol stack from the Link Support Layer’s list of protocol stacks.
After making this call, a protocol stack will not receive any more incoming packets (unless the
protocol stack has an outstanding RegisterDefaultStack or RegisterPreScanStack), and must make
the RegisterStack call again to start receiving incoming packets.

This command implicitly unbinds the protocol stack from all MLIDs to which it was bound.
Assumes

s BX=7

B Register preserved: DS, SS, SP and BP

® Interrupts: disabled on entry

® AX contains the stack ID that the protocol stack is de-registering.

Returns
= Interrupts: remain disabled
8 AX = (; the protocol stack was deregistered
B AX <0; an error occurred:
AX = ITEM_NOT_PRESENT no protocol stack is registered with that stack ID

RegisterDefaultStack

This call can be made for a protocol stack which needs to accept all incoming packets that are not
bound for other protocol stacks.

This call implicitly binds the protocol stack to the MLID whose board number is specified in AX.
No call to BindStack is possible (there is no stack ID associated with a default stack).

Chapter 11: Link Support Procedures for Protocol Stacks

11-7

Apple Computer/Novell Confidential

The RegisterDefaultStack command allows a protocol stack that recognizes the link-level envelope
to receive packets unwanted by other protocol stacks.

Assumes

BX=8

Register preserved: DS, SS, SP and BP
Interrupts: Unspecified

AX contains the board number from which the protocol stack will receive all packets not
specifically sent to any other protocol stack

® ES:SI points to a table with the following information:
Offset Bytes Description .
0 4 Ring 0 Default Receiver Entry Point for the protocol stack. All incoming packets

will be dispatched to this address for processing
4 4 Ring 0 Address of the Protocol Stack Control Entry Point
Returns

® Interrupts: Are returned the same way they were entered and are not enabled inside the routine
® AX=0; no error occurred
® AX<0; an error occurred:

AX = DUPLICATE_ENTRY There is already a default stack registered for the desired
board number

AX = BAD_PARAMETER The MLID corresponding to the requested board number
does not exist

& Note: RegisterStack, RegisterDefaultStack and, RegisterPreScanStack are separate calls and
handled independently by the Link Support Layer. Both calls can be used by a protocol stack,
depending on the particular need.

DeRegisterDefaultStack

This command removes the protocol stack associated with a specific MLID from the Link Support
Layer's list of default stacks. After making this call, a protocol stack will not receive incoming
packets from the specified MLID unless the protocol stack still has an outstanding RegisterStack
call.

Assumes

118 MLI/MPI

Apple Computer/Novell Confidential

BX=9

Registers preserved: DS, SS, SP, and BP

Interrupts: Disabled on entry

AX contains the board number for the default protocol stack being deregistered

Returans

® Interrupts: Remain disabled

8 AX = 0; the protocol stack was deregistered
® AX <(0; an error occurred:

AX = BAD_PARAMETER. the MLID corresponding to the requested board number
does not exist

AX=ITEM_NOT_PRESENT there is no default stack registered for this MLID

RegisterPreScanStack

This call can be made by a protocol stack which needs to filter or examine all incoming packets
before they are routed to other protocol stacks.

This call implicitly binds the protocol stack to the MLID whose board number is specified in AX.
No call to BindStack is possible (there is no stack ID associated with a PreScanStack).

The RegisterPreScanStack command allows a protocol stack to determine whether a packet should
be routed by the Link Support Layer or discarded.

Assumes

= BX=10

Register preserved: DS, SS, SP and BP

Interrupts: Unspecified

AX contains the board number from which the protocol stack intends to receive all packets
ES:SI points to a table with the following information:

Offset Bytes Description

0 4 Ring 0 PreScanStack Entry Point for the protocol stack. All incoming packets
will be dispatched to this address for processing. This routine will return AX = 1
to allow the Link Support Layer to route the incoming packet, or AX = 0 if the
Link Support Layer should not route the incoming packet. ES:SI must remain
unchanged to permit the Link Support Layer to route the packet

4 4 Ring 0 Address of the Protocol Stack Control Entry Point

Returns

Chapter 11: Link Support Procedures for Protocol Stacks

119

Apple Computer/Novell Confidential

® Interrupts: Returned the same way they were entered, and are not enabled inside the routine
® AX=0; no error occurred '
B AX<0; an error occurred: ‘
AX = DUPLICATE_ENTRY there is already a PreScanStack registered for the desired
board number

AX = BAD_PARAMETER. the MLID corresponding to the requested board number
does not exist

RegisterStack, RegisterDefaultStack, and RegisterPreScanStack are separate calls, and they are
handled independently by the Link Support Layer. Both calls can be used by a protocol stack,
depending on the particular need.

& Note: PreScan stacks are intended to be used to implement a “security-monitoring stack"
that keeps sensitive packets from being routed. They can also be used to preview packets
before they are routed to other protocol stacks in the system.

DeRegisterPreScanStack

This command removes the protocol stack name associated with a specific MLID from the Link
Support Layer’s list of default stacks. After making this call, a protocol stack will not receive
incoming packets from the specified MLID unless the protocol stack still has an outstanding
RegisterStack or RegisterDefaultStack call.

Assumes

| BX=11

B Registers preserved: DS, SS, SP, and BP

s Interrupts: Disabled on entry

® AX contains the board number for the default stack being deregistered
Returns

= Interrupts: remain disabled

8 AX = 0; the protocol stack was deregistered

® AX<0;an error occurred:

AX = BAD_PARAMETER. the MLID corresponding to the requested board
number does not exist

11-10 MLI/MPI

Apple Computer/Novell Confidential

AX = [TEM_NOT_PRESENT there is no PreScanStack registered on the requested
board number

SendPacket

This command sends a packet to one of the registered MLIDs. The ESR field of the ECB must be
filled in with the address of a routine to call when the send is complete. Until the ESR is called, the
ECB and all its data areas belong to the Link Support Layer and must not be modified.

If the ECB is sent in “raw” mode, the fragment list contains the complete packet, including the
link-level envelope. However, it is required that the link-level envelope be entirely contained within
the first fragment. In other words, the envelope cannot be split between the first and second
fragments.

The ESR of the SendPacket ECB will be called with ES:SI pointing to the ECB that was sent. This
call will be made at interrupt time with interrupts disabled. The ESR should not re-enable interrupts,
and should complete quickly. The Status field of the ECB will indicate any errors that were
detected. The ESR can destroy all registers except DS, SS, SP, and BP.

Assumes

BX =12

Register preserved: DS, SS, SP, and BP

Interrupts: unspecified

ES:SI contains a pointer to the Send ECB. The SendECB contains the following information:

ESR. The address of a routine that is called when the ECB is free (after the packet has
been transmitted or copied). A pointer to the ECB is passed to this routine in
ES:SI; the ECB’s Status field contains the result of the send

StackID. The stack ID of the protocol stack sending the packet. If this field is OFFFFH,
then the packet is raw and the first fragment of the send list contains the full
header of the packet

ProtolD. The protocol ID that the MLID is to use when encapsulating the data. This field
is ignored if “raw packet” is sent :
BoardNo. The board number of the MLID sending this packet

ImmAddr. The network address to which this packet is destined, unless the packet is raw,
in which case this field is undefined

SendLen. The total length of all fragments sent must be stored here
FragCat. The number of fragments in the packet to be sent
FragPrX. A pointer to the data of the X'th fragment

FraglenX. The number of bytes present in the Xth fragment

Chapter 11: Link Support Procedures for Protocol Stacks 11-11

Apple Computer/Novell Confidential

Returns

® Interrupts: Will return enabled

B AX = (; there was no error; however, until the ESR is called, the ECB belongs to the MLID
B AX <(; an error occurred:

AX = NO_SUCH_DRIVER the BoardNo in the ECB does not exist

AX = BAD_PARAMETER the SendECB was not completed correctly

AX = OUT_OF_RESOURCES there were not enough resources to handle the send
request

AX = FAIL the MLID could not send the packet

@ Note: If an error occurred, the error code will be placed in the status field of the ECB and the
ESR will be called. Be aware that the ESR can be called before the call to SendPacket returns.

HoldPacket

This command allows a protocol stack to queue an incoming packet for later processing. The
GetHeldPacket and ScanPacket commands can be used to find and remove packets from this queue.

Assumes

8 BX=13

® Registers preserved: DS, SS, SP, BP, ES, and SI

® Interrupts: Disabled on entry

® ES:SI contains a pointer to a Receive ECB to be held.
Returns .

® Interrupts: Remain disabled

® AX=0; no errors are possible

< Note: ECBs in the hold queue may be reused by the Link Support Layer if it runs out of ECBs.

GetHeldPacket

11112 MLI/MPI

Apple Computer/Novell Confidential

This command allows a protocol stack to remove an ECB from the hold queue; it was placed there
with a call to HoldPacket. ES:SI may point to an ECB to remove it from the queue (the ECB is
usually obtained from a ScanPacket call). Otherwise, ES:SI can be set to 0:0 to allow a limited search
of the queue. For more powerful searches, use the ScanPacket call.

Assumes
BX=14
Register preserved: DS, SS, SP, and BP
Interrupts: Disabled on entry
AX = stack ID
ES:SI = 0:0
CX = match word .
The first ECB that satisfies the following two conditions is removed from the hold queue:
OThe ECB's stack ID matches the value in AX
O The first word of the protocol workspace matches the value in CX

® Note: If CX = OFFFFH, the match on the protocol workspace will be ignored.

B ESSI< 00
The ECB indicated in ES:Sl is removed from the hold queue

Returns

® Interrupts: Remain disabled

® AX =0; ES:SI will contain a pointer to the desired ECB. The ECB will have been removed from
the queue.

B AX <0; an error occurred:

AX = BAD_PARAMETER the ECB passed in ES:SI did not belong to the -
protocol stack (the StackID was in AX)

AX = ITEM_NOT_FOUND the requested ECB was not found in the hold queue
or the hold queue is empty

& Note: Link Support Layer ECBs in the hold queue are “at risk” of being reused if the Link
Support Layer runs short of ECBs for incoming packets. Refer to Appendix C for details on
the ECB format.

Chapter 11: Link Support Procedures for Protocol Stacks 11-13

Apple Computer/Novell Confidential

ScanPacket

This command scans the hold queue in search of ECBs that correspond to the stack ID in AX and
have CX matching the first word of the ProtoWs field. A new scan is started by passing ES:SI as 0:0.
The scan is continued by calling the command with ES:SI which still contains the return value of
the previous invocation.

Interrupts must remain disabled while scanning the hold queue. To remove an ECB from the hold
queue, call GetHeldPacket with ES:SI containing the value returned from ScanPacket but leave
interrupts off until GetHeldPacket returns.

Assumes

B BX=15

® Register preserved: DS, SS, SP and BP

® Interrupts: Disabled on entry

® ES:SI contains a pointer to the previous ECB returned or 0:0 for a first-time call.
® AX contains a stack ID to use as a filter to scan for ECBs

=

CX contains a value to match with the first word of the ProtoWs field of the ECB. If CX =
OFFFFH, then the match with the ProtoWS value is ignored

Returns

 m Interrupts: Remain disabled

8 AX = (; ES:SI returns the next ECB in the hold queue with the desired stack ID |

® AX <0, an error occurred: ‘ ‘
AX = NO_MORE_ITEMS there are no more matching items in the hold queue

GetStackIDfromName

This command allows a protocol stack or application to obtain its own or any other stack ID. With
this information and the board number of an MLID, a stack can obtain the protocol ID, which is
used for sending packets. Once the stack ID and board number are known, the stack uses the
GetPIDfromStackIiDBoard call to obtain the protocol ID.

For the ASCII character set only (in other words, when the high bit is clear), the match of the stack
name will be case insensitive . Any other characters that have the high bit set must match exactly.

Assumes

m BX=16

@ Registers preserved: DS, SS, SP, and BP
a Interrupts: Unspecified

11-14 MLI/MPI

Apple Computer/Novell Confidential

® ES:SI contains a pointer to a string containing the name of a protocol stack

Returns
® Interrupts: Are returned the same way they were entered and are not enabled inside the routine

® AX = (; a protocol stack corresponding to the name was found. BX returns the stack ID for
this stack

B AX <0; an error occurred:

AX = ITEM_NOT_PRESENT the protocol stack name passed is not registered
with the Link Support Layer
AX = BAD_PARAMETER the length of the name is 0 or greater than 15
GetPIDfromStackIDBoard

This command returns a protocol ID corresponding to a protocol stack ID and a board number. A
protocol stack uses this information to fill in the ProtoID field in a send ECB.

Assumes
8 BX=17

® Registers preserved: DS, SS, SP, and BP

® Interrupts: unspecified

B AX contains a stack ID.

® X contains a board number

® ES:SI points to a 6-byte area into which the protocol ID is returned

Returns

= Interrupts: returned the same way they were entered, and are not enabled inside the routine
B AX = 0; a match was found. The 6 bytes corresponding to the Protocol ID at ES:SI are filled in
B AX <(; an error occurred:

AX = ITEM_NOT_PRESENT there is no protocol ID associated with the
parameters passed (this probably means that no
MLID can use this protocol)
AX = BAD_PARAMETER. either the protocol stack ID or the board number
does not exist
GetMLIDControlEntry

Chapter 11: Link Support Procedures for Protocol Stacks 11-15

Apple Computer/Novell Confidential

This command returns the MLID Control Entry Point for the MLID corresponding to the board
number passed in AX. This command allows a protocol stack to communicate directly with an
MLID and obtain information such as the addresses of the MLID Configuration Table and the
MLID Statistics Table.

Assumes

BX=18

Registers preserved: DS, SS, SP, and BP
Interrupts} unspecified

AX contains the board number for the desired MLID Control Entry Point.

Returns

B [nterrupts: are returned the same way as they were entered, and are not enabled inside the
routine

B AX = (; the board number in AX exists. ES:SI contains the MLID Control Entry Point
B AX <0;an error occurred:

AX = ITEM_NOT_PRESENT there is no MILD with a board number of AX, but
there may be others at a higher AX value
AX = NO_MORE_ITEMS the board number in AX does not exist, and there

are no MLIDs registered at higher AX values

GetProtocolControlEntry

This command allows a protocol stack or application to communicate directly with another stack
and to obtain information from the Link Support Layer’s list of known protocol stacks.

Assumes

BX=19

Registers preserved: DS, SS, SP, and BP
Interrupts: unspecified

AX contains a stack ID, starting at 0. If AX contains OFFFFH, then CX contains the board
number for which the Protocol Control Entry Point of the default protocol stack is desired. If
AXcontains OFFFEH, then CX contains the board number for which the Protocol Control Entry
Point of the PreScan stack is desired

Returns
® Interrupts: Are returned the same way they were entered and are not enabled inside the routine

8 AX = 0; a stack exists corresponding to the stack ID in AX. ES:SI will contain the address of the
Protocol Stack Control Entry Point.

11116 MLI/MPI

Apple Computer/Novell Confidential

® AX<(; an error occurred:

AX = NO_MORE_ITEMS there is no MLID with a board number of CX, and
there are no others at a higher CX value; or there is no
stack with a stack ID of AX, and there are no others
at a higher AX value

AX = [TEM_NOT_PRESENT there is no MLID with a board number of CX, but
there may be others at a higher CX value; or there is
no stack with a stack ID of AX, but there may be
others at a higher AX value

GetLinkSupportStatistics

This command obtains a pointer to the Link Support Layer's statistics table, See Appendix F for a
description of the format of this table.

Assumes

BX=20
Registers preserved: DS, SS, SP, and BP
Interrupts: Unspecified

Returns

Interrupts: Are returned the same way they were entered and are not enabled inside the routine

AX=0

B ES:SI returns a pointer to the Link Support Layer's statistics table

BindStack

This command binds a protocol stack to an MLID allowing a protocol stack to receive packets from
the MLID. -

Assumes

BX=21

Registers preserved: DS, SS, SP, and BP
Interrupts: Unspecified

AX contains the stack ID to bind

(X contains the board number to bind

Chapter 11: Link Support Procedures for Protocol Stacks 11-17

Apple Computer/Novell Confidential

Returns
® Interrupts: Are returned the same way they were entered and are not enabled inside the routine
8 AX <0; an error occurred:

AX = BAD_PARAMETER. the MLID corresponding to the requested board
number or the protocol stack corresponding to the
requested stack ID does not exist

AX = DUPLICATE_ENTRY the specified binding already exists

UnbindStack

This command unbinds a protocol stack from an MLID. After this call is completed, the protocol
stack will no longer receive packets from the MLID to which it was once bound unless the protocol
stack is also registered as a default receiver for the MLID.

Assumes

BX=22

Registers preserved: DS, SS, SP, and BP

Interrupts: Unspecified

AX contains the stack ID to unbind

CX contains the board number to unbind

Returns

® [nterrupts: Are returned the same way they were entered, and are not enabled inside the routine
B AX <0; an error occurred:

AX = ITEM_NOT_PRESENT the specified binding does not exist
AX = BAD_PARAMETER. the MLID, corresponding to the requested board
number or the protocol stack corresponding to the
given stack ID does not exist
AddProtocolID

This command allows a protocol stack to add a new protocol ID for a given media.
Assumes

® BX=23

a8 Registers preserved: DS, SS, SP and BP

11118 MLI/MPI

Apple Computer/Novell Confidential

® Interrupts: Enabled on entry

® ES:SI points to the 6-byte protocol ID being added

= CX:DI points to a string containing the name of the protocol stack for this protocol ID. The
maximum length of the string is 15 characters. The string must have a leading length byte and a
trailing zero byte.

B AX contains the media ID for which the new protocol ID is being added

Returns

® Interrupts: Enabled on exit.

B AX = 0; the Link Support Layer successfully added the new protocol ID

® AX <0; an error occurred:

AX = OUT_OF_RESOURCES the Link Support Layer has no resources to register
another protocol ID _

AX = DUPLICATE_ENTRY there is already a protocol ID registered for the given
media type/protocol stack combination

AX = BAD_PARAMETER. the specified parameter is an illegal (unknown) name.

The field length will be equal or less than 15

& Note This call should only be made for PID information in the NET.CFG file because of the
limited number of protocol stack slots.

RelinquishControl

This command allows a protocol stack to yield control to the Link Support Layer, allowing the Link
Support Layer to perform any necessary background processing. The background processing
includes polling MLIDs if the poll bit is set in the Mode Flags field of the MLID Configuration Table
(see Appendix A). If the bit is set, the DriverPoll command of the MLID will be called. This call
should be made by any protocol stack that is waiting for an event to occur. For example, the
protocol stack could be waiting for a SendPacket to complete.

This call need not be made under a multitasking operating system. A protocol stack should yield to
the operating system or allow concurrent processing while waiting for an event. Undera .
multitasking operating system, this call does nothing.

Assumes '

® BX=24

® Registers preserved: DS, SS, SP, and BP

Chapter 11: Link Support Procedures for Protocol Stacks 11-19

Apple Computer/Novell Confidential

& Interrupts: enabled on entry

Returns
® Interrupts: Enabled on exit
®E AX =0. No errors are possible

1120 MLI/MPI

Apple/Novell Confidential

Appendix A MLID Configuration Table

The MLID Configuration Table contains information on the MLID and its
configuration. Variables in the file can include items such as the interrupt
number and port I/O address.

& Note: All data strings in the configuration table consist of a one-byte length (not
counting the terminating 0 byte), the data string itself, and a terminating 0 (null) byte.

(, MLID Configuration Table A-l

Apple/Novell Confidential

Offset Name

Bytes

Description

0 Signature
% CFG_MajorVersion

Z CFG_MinorVersion

8 NodeAddress

3 ModeFlags

% BoardNumber

8 BoardInstance

40 MaxDataSize

2 MaxRecvSize

4% CardName

0 ShortName

A-2 MLID Configuration Table

Contains the ASCII Data “HardwareDriverMLID”
padded with trailing spaces.
The major version number of the configuration table
(1 for this specification).
The minor version number of the configuration table
(0 .. 99 decimal, for example, 31 indicates version X.31).
This number should be 0 for this specification.
Contains the node address of the MLID in network
order, padded on the left (lower addresses) with 0s. For
example, a one-byte address xx would be filled in as 00 00
00 00 00 xx from low to high memory.
Bit mask for MLID information:

Bit 0 Setif a real driver

Bit 1 Set if driver uses DMA

Bit 2 Set if driver is 100% reliable on transmit

Bit3 Set if driver supports multicast

Bit 4 Set if driver supports promiscuous mode

Bit 5 Set if driver needs polling

Bit6 Set if driver supports raw send mode
The board number identifier supplied by the Link
Support Layer (0 ...2)
Represents the board instance number. This contains an
instance identifier to identify which of several boards
(supported by an MLID) correspond to this particular
table
Contains the maximum number of bytes that the driver
can transmit, not counting the link-level envelope. This
must be a number greater than 585. If hardware cannot
support at least 586 bytes, the driver must be written
to send multiple packets and reconstruct them
Best case room in ECB for received packets. This
corresponds to the LSL's ECB size less the size of the
smallest link-level header for the media.
Worst case room in ECB received packets. This
corresponds to the LSL's buffer size less the size of the
largest link-level header for the media. ‘
Pointer to data string containing a name uniquely
identifying the interface card hardware »
Pointer to data string (7 characters max) containing a
short name uniquely identifying the MLID in the
NET.CFG file

Apple/Novell Confidential

54 MediaType
58 CardID
6 MedialD

Pointer to data string containing the media type for the
MLID (for example, “\010EtherNet\0”)

Word containing a Novell/Apple-administered ID for
the interface card

Word containing a Novell/Apple-administered ID for
the media/link-level envelope combination

MLID Configuration Table A3

Apple/Novell Confidential

Offset

Description

62

2 &*

A4

Name Bytes

TransportTime 2

Reserved 16
MLID_MajorVersion 1
MLID_MinorVersion 1

Flags 2

SendRetries 2

Link
ShareFlag

Slot 2

I0Addr1 2

MLID Configuration Table

Number of milliseconds required to transmit a 586-byte

packet. (Note: This number must be set to at least 1
millisecond)

Must be set to 0

The major version number of the MLID

The minor version number of the MLID (0 .. 99 decimal;

for example, 31 indicates version X.31)
This field contains flags that are operating-system

dependent. For the MS-DOS-OS/2 environment the bits

are defined as follows:
Bit0=1 if MLID can operate in rea/ Mode
Bit 1 = 1 if MLID can operate in protected Mode
Bits 2-3 = 00 for MicroChannel architecture if
the MLID is to scan for the card.

Bits 2-3 = 01 when dual support for At Bus and
MicroChannel architecture support is provided

Bits 2-3 = 10 for MicroChannel architecture
if the card slot is fixed.

Bits 2-3 = 11 for non-MicroChannel
configuration.

Number of retries the MLID should perfonn before
failing a transmit (the number of actual retries may be
hardware-dependent).

Link pointer field for use by the Link Support Layer
Bits indicating sharing capability of the MLID
Bit 0 = set if MLID is shut down
Bit 1 = set if MLID can share I/O port #1
Bit 2 = set if MLID can share [/O port #2
Bit 3 = set if MLID can share memory range #1
Bit 4 = set if MLID can share memory range #2
Bit 5 = set if MLID can share interrupt #1
Bit 6 = set if MLID can share interrupt #2
Bit 7 = set if MLID can share DMA channel #1
Bit 8 = set if MLID can share DMA channel #2
All other bits are undefined and must be set to 0
Contains the slot number of the interface card in

configurations where a slot number is appropriate (for

example, MicroChannel architecture)

Contains the primary [/O address for the interface card

P

Apple/Novell Confidential
- %

IORangel Contains the number of I/O ports used at IOAddrl

* I0Addr2 Contains the secondary I/O address for the interface
card

100 IORange2 2 Contains the number of I/O ports used at I0Addr2

Offset Name Bytes Description

102 MemAddri1 4 Contains the primary memory address used by the
interface card

106 MemSizel 2 Contains the number of paragraphs used by the
interface card at MemAddrl

108 MemAddr2 4 Contains the secondary memory address used by the
interface card

112 MemSize2 2 Contains the number of paragraphs used by the
interface card at MemAddr2

114 Int1Line 1 The IRQ number for the first interrupt that the MLID
uses. Set to OFFH if not used

115 Int2Line 1. The IRQ number for the second interrupt that the
MLID uses. Set to OFFH if not used

116 DMAlLine 1 The DMA channel number for the first DMA channel

‘ that the MLID uses. Set to OFFH if not used
117 DMAZ2Line 1 The DMA channel number for the second DMA channel »

that the MLID uses. Set to OFFH if not used

MLID Configuration Table A5

Apple/Novell Confidential

Appendix B Protocol Stack Configuration Table

The following table provides information that helps you reference stacks by
name and version. This table is especiaily helpful if you want to search for a

Protocol Stack Configuration Table

particular stack by name.
Offset Name Bytes Description
-0 CFG_MajorVersion 1 Major version number of the configuration table (1

for this specification)

1 CFG_MinorVersion 1 Minor version number (0..99 decimal) of the
configuration table (0 for this specification)

2 Name 4 Address of a string with the name of the protocol
stack. This name may be longer than the name
used to register the stack with the Link Support
Layer.The name is preceded by a length byte and

@ terminated with a 0 byte
X 6 ProtocolName 4 Address of the protocol name (15 characters maximum)

used to register the stack with the Link Support Layer;
also used in the AddProtocolID and in the NET.CFG
file. The name is preceded by a length byte and
terminated with a 0 byte

10 Stack_MajorVersion 1 Major version number of the protocol stack

11 Stack_MinorVersion 1 Minor version number (0..99 decimal) of the protocol
stack

2 Reserved 16 must be set to 0

B-1

Apple/Novell Confidential

Appendix C ECB Format

The following table lists the fields used in the ECB.

Offset Name Bytes Description

0 FLink 4 Forward link for queueing

4 BLink 4 Backward link for queueing. For AES Event ECBs
this dword is the number of milliseconds that need to
elapse before the ESR routine is called

8 Status 2 Status word:
>0 in progress
0 completed successfully
<0 completed with error)

10 ESR 4 Address of a FAR Procedure to call when the ECB
has completed.

14 StackID 2 Stack ID (or OFFFFH for a Send ECB to
indicate a *raw” transmit)

16 ProtoID 6 Protocol ID

2 BoardNo 2 A board number

4 ImmAddr 6 Network address of source node (on receives) or
destination node (on transmits)

0 DriverWs 4 A 4-byte work area for the MLI

4 ProtoWs$ 8 An 8-byte work area for protocol stacks. This area will
not be modified by MLIDs or the Link Support Layer.

2 SendLen 2 Word containing the full data length of a send buffer,
counting all fragments

4 FragCnt 2 Number of fragments in following fragment list

4% FragPtrl 4 Pointer to the first fragment

0 Fraglenl 2 Length of the first fragment

52 Envelope x In receive ECBs, the incoming packet is stored here

C1

ECB Format

i .

Apple/Novell Confidential

Appendix D MLID Statistics Table Format

All MLID modules must keep a statistics table for network management
purposes. The following is the format of an MLID statistics table.

MLID Statistics Table Format

D-1

Apple/Novell Confidential

Offset Name Bytes Description

00 S’I’AT_MajorVersion 1 Major version number of the statistics table (1 for
this specification)

01 STAT_MinorVersion 1 Minor version number of the statistics table (0..99
decimal, 0 for this specification)

® GenericCnts 2 Number of 4 byte counters in fixed portion of table

04 ValidCntsMask 4 Bit mask indicating which counters are valid. The value,

0 indicates Yes. The value 1 indicates No. The
bit/counter correlations are determined by shifting left,
as you move down the counters in the table. So bit 7 of
the 4th byte corresponds to the first counter, as shown
in the following illustration. Similarly, Bit 0 of the first
byte corresponds to the 32nd counter (if present).

Valid Counters Mask

Bits |7 |6 |5|4|3|2|1]0

Byte1 §25(26|27|28|29{30(31|32

Byte2 |17)18]19]| 20| 21|22 23|24

Byee3 | 9 |10] 11| 12| 13|14 15|16

Byted | 1|23 |4|5]|6]|7]s

MLID Statistics Table Format D-2

Apple/Novell Confidential

8

12

16

24

52

TotalTXPackets

TotalRXPackets

NOECBsAvail

TXTooBig

TXTooSmalil

RXOverflow

RXTooBig

RXTooSmall

TXMiscErr

RXMiscErr

TXRetryCount

RXChksumeErr

RXMismatch

NumCustom

Total number of packets that were requested to be
transmitted (whether they were actually transmitted
or not)

Total number of incoming packets received

Number of incoming packets that were lost because
of unavailable ECBs

Number of requested packets for transmission that
were too big to send

Number of requested packets for transmission that
were normally too small to be transmitted. The
packets may still have been sent if the MLID does
padding

Number of incoming packets that were lost because
they were bigger than the ECB buffer size

Number of incoming packets that were bigger than the
maximum legal size for the media

Number of incoming packets that were smaller than
the minimum legal size for the media

Number of transmissions requests that were not sent
because of errors other than those explicitly listed in
this table

Number of incoming packets that were lost because of
errors other than those explicitly listed in this table

Total number of retries invoked to send packets

Total number of incoming packets lost due to
Checksum/CRC errors

Total number of incoming packets lost due to
conflicting information given by the hardware and the

packet internals

Total number of custom variables following this word

MLID Statistics Table Format D-3

Apple/Novell Confidential
There are NumCustom dwords starting at offset 56 that correspond to the custom statistics for the MLID.

Following these dwords, there are NumCustom pointers (4 bytes each) that point to strings describing the
custom statistics. The strings have a leading length byte and a terminating 0 byte.

MLID Statistics Table Format D-4

Apple/Novell Confidential

Appendix E Protocol Stack Statistics Table Format
All protocol stacks must keep a statistics table for the purpose of network
management. Any statistics that are not appropriate for a given protocol stack
should be set to OFFFFFFFFH. The following is the format of a Protocol Stack
Statistics Table.

Offset Name Bytes Description

0 STAT_MajorVersion 1 Major version number of the statistics table (01h for
this specification)

01 STAT_MinorVersion 1 Minor version number of the statistics table (0..99
decimal, 00h for this specification)

® GenericCnts 2 Number of 4-byte counters in fixed portion of table

o4 validCntsMask 4 Bit mask indicating which counters are valid. A value of
0 indicates Yes. A value of 1 indicates No. The
bit/counter correlations are determined by shifting left,
as you move down the counters in the table,

8 TotalTXPackets 4 Total number of packets that were requested to be
transmitted (whether they were actually transmitted
or not)

12 TotalRXPackets 4 Total number of incoming packets received

16 IgnoredRXPackets 4 Total number of incoming packets that were ignored
by the stack

2 NumCustom 2 Total number‘of custom variables following this word

There are NumCustom dwords starting at offset 16 that correspond to the custom statistics for the protocol
stack. Following these dwords are MumcCustom pointers (4 bytes each) that point to strings describing the
custom statistics. The strings have a leading length byte and a terminating 0 byte.

Protocoi Stack Statistics Table Format E-1

Apple/Novell Confidential

Appendix F Link Support Layer Statistics Table Format

The Link Support Layer will keep a statistics table for the purpose of network
management. The following is the format of the Link Support Layer

Statistics Table.

Offset Name Bytes Description

00 STAT_MajorVersion 1 Major version number of the statistics table (1 for
this specification)

01 STAT_MinorVersion 1 Minor version number of the statistics table (0..99
decimal, 0 for this specification)

@ GenericCats 2 Number of 4-byte counters in fixed portion of table

04 ValidCntsMask 4 Bit mask indicating which counters are valid. A value of
0 indicates Yes. A value of 1 indicates No. The
bit/counter correlations are determined by shifting left,
as you move down the counters in the table.

8 TotalTXPackets 4 Total number of packets that were requested to be
transmitted (whether they were actually transmitted
or not)

12 GetECBBfrs 4 Total number of GetECB requests

16 GetECBFails 4 Number of GetECB requests that failed because of
unavailable resources

2 AESEventCounts 4 Number of completed AES events

A PostponedEvents 4 Number of events that were postponed because of
StartCriticalRegion functions

] ECBCxIFails 4 Number of ECB cancel events that failed

Y] ValidBfrsReused 4 Number of ECBs on the hold queue that were reused

before they were removed from the hold queue

Link Support Layer Statistics Table Format F-1

Apple/Novell Confidential

¥

40

4

8

EnqueuedSendCnt
TotalRXPackets

UnclaimedPackets

NumCustom

2

Number of EnqueueSend events that have occurred
Number of incoming packets dispatched

Number of incoming packets that were not claimed by
any protocol stack

Total number of custom variables following this word

There are NumCustom dwords starting at offset 44 that correspond to the custom statistics for the Link
Support Layer. Following these dwords, there are NumCustom pointers (4 bytes each) that point to strings
describing the custom statistics. The strings have a leading length byte and a terminating 0 byte.

F-2

Link Support Layer Statistics Table Format

rE i,

Apple/Novell Confidential

Appendix G System Error Codes

The following error codes are defined for the network system.

OUT_OF_RESOURCES
BAD_PARAMETER
NO_MORE_ITEMS
ITEM_NOT_PRESENT
FAIL

RX_OVERFLOW

CANCELLED

BAD_COMMAND
DUPLICATE_ENTRY

NO_SUCH_HANDLER

NO_SUCH_DRIVER

8001H
8002H

8003H

8005H

8009H

800AH

800BH

There are no resources available to execute the desired function

One of the parameters passed to this function is unclear

There are no more items to return

The item that you requested was not found

An unspecified failure occurred

The received packet was an overflow packet and may be in error

The ECB associated with this error code was cancelled by an
MLIDShutdown or an explicit cancel call

The value passed in BX does not correspond to a legitimate command

The command or address you tried to add is already present

The protocol stack you tried to send a command to has been
deregistered

The MLID you tried to send a command to has been shut down

System Error Codes G-1

(

Apple/Novell Confidential

Appendix H NET.CFG Configuration File Format

The NET.CFG file contains the configuration information for the network
system. It is a control file that contains section headings and subsidiary
information. This appendix documents the section headings and the
currently defined subsidiary information. However, protocol stacks and
MLIDs may define new keywords and information to be stored in the file
that are specific to the MLIDs and protocol stacks. All keywords and main
headings are case insensitive.

NET.CFG Configuration File Format

H-1

Apple/Novell Confidential

The following is the format of the NET.CFG file:
Main heading

Sub infol

sub info 2

The main headings always start in the first column of the file, and all subsidiary information starts
in any column other than the first. Not all MLIDs or protocol stacks need to understand all of the
" possible keywords. The MLID or protocol stack designer determines which keywords need to be
understood.

The following main headings are allowed:

Link support The subsidiary information up to the next main heading describes
parameters for the Link Support Layer.
Protocol <name> The subsidiary information up to the next main heading describes

information for the named protocol stack. This name
corresponds to the protocol name given to the Link Support layer
at initialization time by the protocol stack.

Link driver <name> The subsidiary information up to the next main heading describes
information for the named MLID. This name corresponds to the
ShortName field in the MLID Configuration Table.

A #in column one indicates a comment line and will be ignored.
In the following definitions, the following conventions are used:
(1 optional element inside brackets

n# decimal number, digit # is for differentiation

h# hexadecimal number, digit # is for differentiation

H-2 NET.CFG Configuration File Format

Apple/Novell Confidential

Link support keywords

Buffers n1 n2

MemPool n1[k]

Configures the number of receive buffers (n1) and their size (n2)
that the Link Support Layer will create. N2 must be at least 586

Configures the size of the memory pool that the Link Support
Layer will maintain. The “k® notation has the usual meaning
(multiply by 1,024)

Protocol stack keywords

Sessions nl

Bind <Name>
Default <Name>

Configures the number of sessions that the protocol stack will
be required to maintain at one time

Requests the protocol stack to bind with the MLID <Name>

Requests the protocol stack to bind with the MLID <Namé> and
sets this MLID to the default MLID if appropriate

Link driver keywords

DMA [#n1] n2

INT (#n1] n2

MEM [#nl] h1 h2

PORT [#n1] hl h2

PS/2 Slot nl

PS/2Slot?

Node Address hl

Configures DMA channel nl (where nl is 1 or 2, and is assumed 1
if absent) to be channel n2

Configures the nith interrupt number (where n1 is 1 or 2, and is
assumed 1 if absent) to be interrupt number n2

Configures the n1th memory range (where nl is 1 or 2, and is
assumed 1 if absent) to be at address h1 for h2 paragraphs. The h2
is assumed to be 1 if not present

Configures the nlth I/O port range (where nl is 1 or 2, and is
assumed 1 if absent) to be at I/O port address h1, for h2 ports.

" The h2 is assumed to be 1 if not present

The nl is a number that indicates the PS/2 slot containing the
card for this MLID. (Slot number is 1-based. In other words, the
first slot number is 1, not 0)

Indicates that the MLID must scan for the PS/2 slot that
contains its card. This is the default if not present

Overrides any hard-coded node address in the MLID's hardware, i
the hardware allows it

NET.CFG Configuration File Format

H-3

Apple/Novell Confidential

Protocol <name> h1 Tells the MLID that the named protocol has a protocol type of
h1. This allows new protocols to be handled by existing MLIDs

SendRetries nl Configures the MLID to attempt nl retries on transmitted
packets. nl1 may be 0

. Envelope type name Configures which link-level envelope type the driver will create if
there is a possibility of more than one type (see appendix J for list
of names)

H-4 NET.CFG Configuration File Format

Lo
e

Apple/Novell Confidential

AppendixI Finding the Link Support Layer in DOS

cmpr: db

lpl:

nxt:

When running with MS-DOS, the Link Support Layer is found using the INT
2FH multiplexing interrupt with code similar to the following:

'LINKSUPS'

This first piece of code is needed for DOS 2 since DOS did not support the
multiplexing interrupt in that version of DOS. We make sure the vector is
not 0 or OFFFFH:OFFFFH. The Link Support Layer will properly intercept
int 2FH even under DOS 2.

sub
mov
cli
mov
mov
sti
mov
or
jz
mov
and
cmp
jz
sub
mov
mov
sub
push
int
cmp

pop
jz

inc
jnz

ax,ax
es,ax

cx,es:(2FH*4]
dx,es: [2FH*4+2]

ax,cx

ax,dx

bad ; vector was 0 - can't be loaded

ax,cx

ax,dx

ax,-1

bad ; vector was OFFFFH:0FFFFH - can't be loaded
bx, bx

es,bx

ah, OcOh ; Scan through the multiplex numbers COH thru OFFH

al,al
ax
2FH

al,offh ; If AL returns OFFH, something is using this mx

number
ax
fnd
ah
lpl

Finding the Link Support Layer in DOS

-1

Apple/Novell Confidential

; Here, the Link Support Layer was not found

bad:

Tell the user that the Link Support Layer must be loaded

mov
or

jz

push
mov di,

mov
mov
lea
cld
mov

repe

pop
jz
jmp

Here,
Point.

ax,dx
ax, bx
nxt

ds

si
si,cs
ds,si
si, cmpr

cx, 8
cmpsb
ds
fndit
nxt

we found the

Link

an int 2FH entity was found - see if it is the Link Support Layer

; Did this routine set DX:BX?
; No - try next mx number

; ES:DI points to description record

;Set DS:SI to point to comparison String

; Was the signature there?
;Not the right one - try again

Support Layer, and DX:BX contains its Initialization Entry

-2 Finding the Link Support Layer in DOS

K W““

Apple/Novell Confidential

Appendix] Defined Media IDs

The following media IDs/names are currently defined:

Media ID Name Description

01 LocalTalk The Apple LocalTalk media
D=1

I‘—lbm@bm)—hl

Destination node

ALAP type
(used as protocol ID)

17} Ethernet II Ethemet using a DEC Ethernet II envelope

|
i
g

Destination node
(6 bytes

L
Lilll

Source node

Ethemet I — (6 bytes)

Protocol ID
(2 bytes)

3 Ethemet 802.2 Ethernet using an 802.2 envelope

Defined Media IDs

1

Apple/Novell Confidential
D=3

r—lm@bt)——'
Protocol ID =

8023 Destination _§ 1 byte Dest SAP
(6 bytes) - (if not OAAH) or
1 OAAH +5bytes SNAP header

802.3 Source
(6 bytes)

TTTTT

LLC length
(2 bytes)

Destination SAP

Source SAP
(always = Dest SAP)

Control
(always = 3)

SNAP header
(5 bytes -
if Dest SAP = OAAH)

04 TokenRing Token Ring using an 802.2 envelope

]2 Defined Media IDs

=t

Apple/Novell Confidential

I‘——lby!(Sb‘is) |

ID=4

Access control

Frame control

802.3 Destination
(6 bytes)

R

802.3 Source
(6 bytes)

il

Routing information
(0to 18 bytes)

Destination SAP

Source SAP

Controi field
(1 byte-always = 3)

TTT1

SNAP header
(5 bytes -
if Dest SAP =

L1l

Protocol ID =

1 byte Dest SAP

(if not OAAH) or

OAAH + 5 bytes SNAP header

Defined Media IDs

J3

ey

Apple/Novell Confidential

Appendix K Defined Card IDs

The following card IDs and card names are currently understood by the
MLI/MPL. In this table each particular card ID has to be mapped to its

particular card.
Card ID Name Description
01 Apple LocalTalkPC The Apple LocalTalk PC card
17] EtherLink I The 3Com EtherLink I adapter
07] EtherLink II The 3Com EtherLink II adapter
04 EtherLink/MC The 3Com EtherLink/MC adapter
05 IBM 802.2 MLID for the IBM 802.2 interface using IBM Token

Ring cards

Defined Card IDs

K-1

4

ot

H

PR
i

Apple Computer/Novell Confidential

A Important

1 Using the DOS MLID Startup Modules

Using the DOS MLID Startup Modules

This document provides direction on using the DOS MLID Startup
Modules and should be used with the ODI Developer’ Guide, available
from APDA (Apple Programmer’s and Developer's Association) and
Novell, Inc. The modules consist of executable code and help you get
started writing your own MLIDs. The modules provide much of the
pedestrian work involved in writing MLIDs (such as registering the
drivers and protocol stacks, reading the NET.CFG file, and calling
Service Events). You only need to link your own code to the modules.

Your DOS MLID Startup modules consist of two files:
DSTARTUP.OBJ and DRIVER.OB]J. By linking these two files with
some of your well defined routines, you can write an MLID faster and
easier than writing all of the interface code required to implement an
MLID.

The file DSTARTUP.OBJ must be linked as the first object module,
since it contains the segment declarations; these segments must also
be in the following order.

The following are the segment declarations in DSTARTUP.OB]J:

DGROUP group _TEXT, DATA, CONST, _BSS, LDATA,
IDATA, ICNST, IBSS, ITEXT

_TEXT segment word public 'CODE'
_DATA segment word public 'DATA'
CONST segment word public 'DATA'
_BSS segment word public 'DATA'

LDATA segment para public 'DATA'
IDATA segment word public 'INIT'

ICNST segment word public 'INIT’
IBSS segment word public 'INIT'
ITEXT segment word public 'INIT’

& Note All segments are part of the GROUP. This allows you to
create a .COM file, if this is desirable.

Apple Computer/Novell Confidential

Variables Declared by The following variables are declared public by the startup code. The:
DSTARTUP.OBJ/ only exception is that _errmsg are filled in with the proper values by

DRIVER.OB]J

the startup code before _driver_init_config_ is called.

® _MyDgroup in segment _TEXT

This variable is a WORD that contains the value of DGROUP. This
WORD is in the _TEXT segment so that a CS-relative reference can
fetch the value. Although the code and data are in DGROUP
together, the code becomes very difficult to port to OS/2 if you rely
on this fact. For example, you can't assume that CS always equals
DS because this may not be true when you port this driver to OS/2.
There are only a few variables in the _TEXT segment, and these
variables are filled in by the startup code.

_Link_Support in segment _TEXT

This is a DWORD that contains the far address of the MLID
Support Entry Point of the Link Support Layer. This variable is called
by loading BX with the desired support function code, and
executing a FAR CALL through this variable.

_max_ecb_size in segment _DATA

This is a WORD that contains the maximum size of the data portion
of an ECB.

_errmsg in segment IDATA

This is a WORD that you can fill in with a near pointer to an error
message if your hardware initialization fails (See the Initialization
section next).

Permanent Variables The following variables must be declared public by your MLID code:

Declared by the MLID
code

® _swap_stack in segment _DATA

This variable is a WORD that contains a 0 if you do not want to
swap stacks when an interrupt occurrs. Otherwise, it should
contain the DGROUP-relative offset of the initial SP value which
should be loaded whenever an interrupt occurrs.

8 _card_name in segment CONST

2 Using the DOS MLID Startup Modules

Apple Computer/Novell Confidential

3 Using the DOS MLID Startup Modules

This is the address of a data string (preceded by a length byte, and
terminated with a 0-byte) that describes the interface card name. A
pointer to this string will be stored in the CardName field of the
configuration table for each instance of the MLID.

_driver_name in segment CONST

This is the address of a data string (preceded by a length byte, and
terminated with a 0-byte) that corresponds to the short name of
your driver. A pointer to this string will be stored in the ShortName
field of the configuration table for each instance of the MLID. This
is the name that the user must specify in the NET.CFG file.

_card_id in segment CONST

This is your Card ID. This value will be stored in the CardID field of
the configuration table for each instance of the MLID.

_ws_offsets in segment _DATA

This is a table of four WORDs containing the offsets of the four
workspace areas for up to four instances of the MLID. These
offsets must be relative to DGROUP, and must have a value other
than 0 to be valid. Use 0's for instances that the driver does not
support. (For example, if the MLID only has two instances, set the
third and fourth words of this array to 0.) These workspaces must
be in the segment LDATA so the data memory for the unused
instances can be freed when the MLID terminates and stays
resident.

_driver_ctl_tab in segment _DATA

This is a table that contains a list of offsets (relative to DGROUP)
to the various routines which implement the MLID Control
Routines. There should be 'NUM_DRIVER_CTLS' entries in this
table. Any calls that have a BX value greater than or equal to
'NUM_DRIVER_CTLS' will be dispatched through '_driver_ctl_dflt_".
Any routines dispatched by this table will have DS:BX pointing to
the appropriate instance data.

Apple Computer/Novell Confidential

Public Constants by
the MLID code

Temporary Variables
Declared by the MLID
code

The following constants must be declared public by the MLID code:

VER_MONTH The month of this MLID revision (1 ... 12).

VER_DAY The date of this MLID revision (1 ... 31)

VER_YEAR The year of this MLID revision (0 ... 99)

VER_MAJOR The major version number of this MLID.

VER_MINOR The minor version number of this MLID revision (0 ...
99 decimal).

NUM_DRIVER_CTLS The total number of procedure address
contained in '_driver_ctl_tab'.

OFFSET_0 As a first option, this constant should contain 0 if you
want your instance data described as DS = DGROUP, BX = offset
value. As a second option, this constant should be set to 1 (or a value
other than 0) if you want your instance data described as DS =
<<desired value>>, BX = 0. For this second option to work correctly, all
offsets in the '_ws_offsets' table must be on paragraph boundaries.
For this reason, your instance data should be in the LDATA segment
(it's paragraph aligned).

The following variables should be declared public by the MLID code:

® _signon_msg in segment ICNST

This is a string (not preceded by a length byte), terminating with a
'$' character which is your sign-on message. This string will be
output using DOS Function 09H as the first action of the startup
code.

8 _loaded_msg in segment ICNST

This is a string (not preceded by a length byte), terminating with a
'$* character which is the message you want to output to the
console if the MLID is already loaded. This string will be output
using DOS Function 09H if the startup code determines that the
MLID is already loaded.

4 Using the DOS MLID Startup Modules

Apple Computer/Novell Confidential

Public Procedures in
the MLID code

-

>

Using'the DOS MLID Startup Modules

This section describes the required routines you must implement to
have a functional MLID. The following public procedures should be
present in the MLID code in the _TEXT segment:

® _driver_send_

This near procedure is called whenever a packet is to be sent. DS:BX
will point to the appropriate instance data, and ES:SI will contain
the send ECB. Your routine must preserve only BP.

_driver_ctl_dfit_

This near procedure is called whenever a Driver Control call is
dispatched that is not in '_driver_ctl_tab’. DS:BX will point to the
appropriate instance data, and BP will contain the value of BX that
caused the call. Your routine does not need to preserve any register.

_driver_isr1_

This near routine is called whenever a card interrupt occurs on
IntlLine. All registers except BP have already been saved, the stack
has been swapped (if that feature was enabled using the
_stack_swap variable), and DS:BX is pointing to the instance data
for the board that caused the interrupt. Your routine should return:

AX = 0 if the interrupt was not intended for this driver. The next
chained interrupt handler would then be called.

AX = 1 for all commands other than those to get next handler,
call ServiceEvents, or call EndCriticalSection.

AX = 2 to call ServiceEvents.
AX = 3 to call EndCriticalSection.

The startup code keeps track of nested invocations of the ISRs, and
will not actually dispatch ServiceEvents until the last nested
interrupt is processed.

Apple Computer/Novell Confidential

® _driver_init_config_

This routine is called to check the validity of the configuration
table. The configuration table already has the fields defined in
NET.CFG filled in. This routine may also fill in the configuration
table with other driver-specific values. When this routine is entered,
the DWORD address of the configuration table for this instance is
pushed on the stack if there is an error in the configuration. This
routine should return the following condition:

If an error message occured, AX = 0 and _errmsg = DGROUP offset
of the error message. If there is no error, this routine should return
AX = a value other than 0.

_driver_isr2_

This near routine is called whenever a card interrupt occurs on
Int2Line. All registers except BP have already been saved, the stack
has been swapped (if that fearure was enabled using the
_stack_swap variable), and DS:BX is pointing to the instance data
for the board that caused the interrupt. The startup code keeps
track of nested invocations of the ISRs, and will not actually
dispatch ServiceEvents until the last nested interrupt is processed.
Refer to _driver_isrl_ for return values.

Note: This procedure must be present even if the MLID does not
use the Int2Line interrupt. In this case, just create a public label
somewhere in your code to satisfy the external reference
requirement.

_driver_init_

This near routine is called to initialize a driver instance. DS:BX points
to the configuration table corresponding to the driver instance. If
initialization occurred, this routine must return (in AX) a near
pointer to the byte after the instance data without any errors.
Otherwise, this routine should return a 0, and store a near pointer
into '_errmsg’ with the error string (terminated with a '$"). The
startup code will print this error message, shutdown any other
instances that are already initialized, and terminate to DOS without
staying resident. The configuration table should be examined for
correctness if this has not already been done, and any '_install_ints'
calls should be made to install the interrupt handlers for the driver.

Public Procedures in This routine returns CL = Int1Line interrupt disable mask for 8259 PIC

the Startup code

Interrupt Mask Register (IMR). CH = Int2Line disable mask, DL = port
address of IMR for IntiLine, DH = port address of IMR for Int2Line.

The following public procedures are present in the Startup code in the
_TEXT segment:

Using the DOS MLID Startup Modules

2 _install_ints_

Apple Computer/Novell Confidential

7 Using the DOS MLID Startup Modules

This near procedure should be called inside of '_driver_init' to install
the interrupts configured in the configuration table. DS:BX must
contain the address of the configuration table. The existing
interrupt vectors will be saved for restoration in _remove_ints.

_remove_ints_

This near procedure should be called to remove the interrupts
configured in the configuration table and restore them to their
previous values. DS:BX must contain the address of the
configuration table.

_set_IRQ_

This near procedure is made available for those who prefer not to
use _install_ints_ listed earlier, or need additional interrupts installed.
For example install_inits may not satisfy the requirements of your
particular driver. DX:AX contains the address of the new interrupt
handler, ES:BX is the address of a dword where the old interrupt
handler should be stored, and CX is the IRQ Number.

_restore_IRQ_

This near procedure reverses the results of _set_[RQ_. ES:BX is the
address where the old interrupt handler was saved and CX contains
the IRQ Number.

dear_SendQ_

This near procedure removes all queued ECBs (queued by the LSL or
by using the EnqueueSend command) from the send queue and
frees them so that the ECBs can be reused. AX must contain the
board number of the MLID making the call.

.
! V
\ .

