
(

(

(/

•. Macintosh~

Macintos~ ResEdit 1.2 Reference

Final Draft.

caution! This book is NOT a release version! It is for the Apple Computer Technical Library
only! Do not distribute this book, or we will fmd "you, and you won't like it!

'* APPLE COMPUTER, INC.
This manual and the software
described in it are copyrighted,
with all rights reselVed. UnGer .
the copyrJght laws, this manual
or the softWare may not be
cOp'ied, in whole or part,
without written consent of
App'le, except in the normal use
of the software or to make a
backup copy of the software.
The same proprietary and
copyright notices must be
affIxecf to any ~rmitted
copies as were affixed to the
original. This exception does
not allow copies to be made for
others, whether or not sold, but
all of the material purchased
(with all backup copies) may
be sold, given, or loaned to
another person. Under the law;
copying includes translating
into another language or
format.
You may use the software on
any computer owned by you,
but extra copies cannot be
made for this purpose. .
The Apple logo is a registered
trademark orApple Computer,
Inc. Use of the "keyboard"
Apple logo (Option-Shift-K) for
commercIal purposes without
the prior written consent of
Apple may constitute
trademark infringement and
unfair competition in violation
of federal and state laws.

© Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010
Apple and the Apple logo are
re~tered trademarks of
Apple Computer, Inc.
APDA is a trademark of
Apple Computer, Inc.
ITC Zapf Dingbats is a
registered traaemark of
International Typeface
Corporation.
POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark, of Adobe Systems
Incorporated.
MacDraw®, MacWrite®, and
MacPaint@ are registered
trademarks of Claris
Corporation.
Simultaneously published in the
United States and Canada.

2123/89

Table of Contents

1 ResEdit Overview 3
Resources 5
Resource categories in ResEdit 6
Uses 7
Extensibility 8
The resource development cycle 8

2 Gettlng Started 7
Invoking ResEdit 9
Working with ftIes 10

Working within a ftIe 12
Working within a resource type 14
Resource ID numbers 18

3 Editing Individual Resources 19
Bit editors 21
Using the general editor 22
'WIND' resources 22

.~ 'ALR!' and 'DLOG' resources 25 .'
\

'Dffi' resources 26
'CURS' resources 29
'ICON'resources 31
'ICN#' resources 32
'SICN' resources 33
'FONT' resources 34

Editing 'FONT' resources 36
'PAT' resources 39
'P AT#' resources 40
'INTI', 'itlO', and 'itll' resources 40
'KCHR' resources 42

The main 'KCHR' editor 42
The character chart 43
The table chart 43
The virtual keycode chart 44
The keyboard region 44
The information region 44

Editing dead keys 45
The dead key editor 45

(The character chart 46

Table of Contents i

H

4

5

6

7

8

The nomatch character 46
The completion and substitution character pair list
The trashcan 46
The information region 46

The menus 46
The 'KCHR' menu 47
The Font menu 48
The Size menu 48

Using ResEdit Templates . 47
Editing 49

PIer editing 50

Creating ResEdlt Templates 51

ResEdit Tips 57
Hints and kinks 59

The 'LA YO' resource 61
KCHR' questions and answers 66

A Development Scenario 69
Putting an icon on your application 71

Let's try that once again, from the top 73

Extending ResEdlt 79
Pickers and editors 81
Code-containing resources in the ResEdit release 81

Samples 82
Sample editor 82
Sample picker 82
Sample LDEF 83

Building the examples 83
Using ResEd 83
Writing a ResEdit extension 84

Required routines 85
EditBicth 85
PickBicth 85
DoEvent 85
DoInfoUpdate
DoMenu 86

Using custom LDEFs
The ResEd interface

Data structures

86

87
88
88

Macintosh ResEdit 1.2 Reference

46

j

(
Figures and Tables

2 Getting Started 7
Figure 2-1 Disk volume windows 9
Figure 2-2 A File Info window 11
Figure 2-3 A Folder Info window 11
Figure 2-4 A ResEdit me window 12
Figure 2-5 A resource type window (with custom picker)

15
Figure 2-6 An 'ICN#' Get Info window 16
Figure 2-7 Preferences dialog box 17

3 Editing Individual Resources 19
Figure 3-1 Editing a 'WIND' resource 23
Figure 3-2 'WIND' resource displayed as text 24
Figure 3-3 Editing an 'ALRT resource 25
Figure 3-4 Editing a 'Dm' resource 27
Figure 3-5 Editing a 'CURS' resource 29
Figure 3-6 Editing an 'ICON' resource 31

,~
Figure 3-7 Editing an 'ICN#' resource 33
Figure 3-8 Editing a 'SICN' resource 34
Figure 3-9 Editing a 'FONT resource 36
Figure 3-10 Editing a 'PAT' resource 39
Figure 3-11 Editing a 'PAT#' resource 40
Figure 3-12 Editing an 'idO' resource 41
Figure 3-13 Editing an 'idl' resource 41
Figure 3-14 Editing a 'KCHR' resource 42
Figure 3-15 Editing a dead key 45

4 Using ResEdit Templates 47
Figure 4-1 The template editor for 'PIer 50

5 Creating ResEdit Templates 51
Figure 5-1 'WIND' template data 53

6 ResEdit Tips 57
Figure 6-1 'LA YO' template, view 1 62
Figure 6-2 'LA YO' template, view 2 63
Figure 6-3 'LA YO' template, view 3 64

(Figure 6-4 'LA YO' template, view 4 65
Figure 6-5 'LAYO' template, view 5 66

Figures and Tables v

7 A Development Scenario 69
Figure 7-1 Six resources and their relationships 72
Figure 7-2 Edited 'ICN#', ready to go 74
Figure 7-3 'ICN#' info box 75
Figure 7-4 'BNDL' template view 76

A The 'KCHR' Resource 105
FigureA-1 Modifier flag high byte 110

C The Macintosh Character Set 117
FigureC-1 Macintosh Character Set 119

vi Macintosh ResEclit 1.2 Reference

(

(

Chapter 1 ResEdit Overview

nus CHAPTER INTRODUCES RESEDrrn', a stand-alone application for editing resources.
ResEdit is an interactive, graphically based application for manipulating the various
resources in a Macintosh@ fIle. (Some Macintosh fIles don't have any resources, but
all applications and IOOst of the System Folder fIles do.) If you are used to other
computers, you will rapidly discover that resources are handled very differently on
the Macintosh computer. • .

1

(

~--

Resources

One of the features that distinguishes the Macintosh from other computers is the way it
handles what we call resources (fonts, sounds, icons, patterns, and so on). In most computers,
a "fIle" consists of a set of bytes, perhaps beginning with a header that contains information
about what kind of me it is, and where various pieces are to be-found inside the me. Fonts and
other resources, on the other hand, tend to be kept in a central pool, which is typically part of
the operating system, and can be reached only by accessing that pool. The Macintosh has,
instead, a me structure that can have two sets of bytes (a resource fork and a data fork), so that
resources may be housed within any me, in an area set aside specifically for that purpose. Any
me can have a resource fork, and any fIle can have a data fork. Some have only one, some
have both. For example, a typical MacWrite® document has only a data fork, containing text
and its associated formatting infonnation; but there is no rule to forbid you from changing the
situation. You could, for example, build a fon~ write some documentation for it, and ship font
and documentation together by giving the documentation me a resource fork and putting the
font into it

Resources are classified by type. Each type has its own name, which consists of exactly four
characters. Any characters in the Madntosh character set can occur in resource type names,
even unprintable ones, but typically they consist of lower- and uppercase letters, numerals,
punctuation marks, space, and Option-space. Resource type names are shown here with
prime marks around them (for example, 'idOl). If you see a name that appears to be shorter,
the empty-slots are probably filled with spaces (for example, 'snd ').

Another feature of this system is that code is regarded as a resource. It even has its own
resource type name (velY straightforwardly, 'CODE'). Any application, then, must have a
resource fork, which is where its code resides, along with various other necess~ resources,
such as menus. Apple reserves all names that don't contain any uppercase letters. Anything
with at least one uppercase letter in it is yours to use, though it is a good idea to check to be
sure that you don't accidentally use a type name that is already in use by someone else. The
Developer Technical Support group at Apple Computer, Inc. maintains a registIY of resource
types for registered developers. There are many different types of resources, and you can
create your own resource types with ResEdit if you don't find the type you need.

ResEdit lets you copy and paste all resource types, and lets you edit many of them ('NFNf' is a
notable exception, and is discussed briefly in the section on 'FONf' editing, in Chapter 3.)
ResEdit actually includes a number of different resource editors: There is a general resource
editor for editing any resource in hexadecimal and AScn fonnats, and there are individual
resource editors for various specific resource types. There is also a template editor, which
lets you edit some kinds of resources in a dialog box format, with fields that you can fill in as
appropriate. There are predefmed templates for quite a few resources already built into
ResEdit, and you can create others. For further infonnation on template editing, and on
generating your own templates, see Chapters 4 and 5.

CHAPTER 1 ResEdit Overview 3

Resource categories in ResEdit

ResEdit behaves as if there were three kinds or categories of resources on the Macintosh.

Resources of the fmt kind are accessed with individual pickers and edited with individual
editors. These resources and their editors are described in some detail in Chapter 3. Several of
these resources ('CURS', 'FONT', 'ICON', 'PAT', and so on) are in some sense pictorial. All of
the pictorial resources are edited with "bit" editors, which are discussed in Chapter 3.

Resources of the second kind are edited as templates. That is, if you open a resource of this
kind, you are presented with a dialog box, in which there are various labeled fields. You can
change the contents of the fields. There is information on existing templates and on generating
your own templates in Chapters 4 and 5, and an example of template editing in Chapter 6.

Resources of the third kind are edited with the general (hexadecimal) editor, unless you write
your own templates or editors for them.

Uses

ResEdit is especially useful for creating and changing graphic resources such as dialog boxes
and icons. For example, you can use ResEdit in the process of putting together a quick
prototype of a user interface, to try out different formats and presentations of resources.
Anyone can quickly learn to use ResEdit for translating resources into languages other than
English without having to recompile programs. You can use ResEdit to modify a program's
resources at any stage in the process of program development. ResEdit is also useful for
modifying the 'LA YO' resource in a copy of the Finder™, so that you can reconfigure some
aspects of the desktop display. See Chapter 6 for more details about the 'LAYO' resource.

4 Macintosh ResEdit Reference

(

Extensibility

A key feature of ResEdit is its extensibility. Because it can't anticipate the fonnats of all the
different types of resources that you may use, ResEdit is designed so that you can teach it to
recognize and parse new resource types.

There are two ways that you can extend ResEdit to handle new types:

• You can create templates for your own resource types. ResEdit lets you edit most resource
types by filling in the fields of a dialog box-this is the way you edit 'BNDL' and 'FREF'
resources, for example. The layout of these dialog boxes is determined by a template in
ResEdit's resource file, and you can add templates to edit new resource types. Resource
templates are described in Chapters 4 and 5.

• You can program your own special-purpose resource picker or editor (or both), and
add it to ResEdit. (The resource picker is the code that displays all the resources of one
type in the resource type window. The editor is the code that displays and allows you to
edit a particular resource. These pieces of code are separate from the main code of
ResEdit) A set of Pascal or C routines, called ResEd, is available for this purpose-see
Chapter 8 for infonnation.

The resource development cycle

ResEdit is often used with Macintosh Programmer's Workshop (MPWTM) and other program
development systems. Once you have created or modified a resource with ResEdi~ you can
use MPWs resource decompiler, DeRez, to convert the resource to a textual representation
that can be processed by the resource compiler, Rez. You can then add comments to this text
file or otherwise modify it with the MPW Shell editor or another text editor. Rez and DeRez are
fully described in the Macintosh Programmers Workshop Reference (MPW Reference). It is not
necessary to use Rez or DeRez unless you have some specific need or desire to modify or
comment the code that Rez produces; the resources generated by ResEdit are, in general,
entirely acceptable.

CHAPTER 1 ResEdit Overview 5

(

Chapter 2 Getting Started

IF YOU ARE NEW TO REsEDIT, you will want to proceed with some caution, as ResEdit is
quite powerful and can easily damage or destroy your mes. It is a good idea to edit
spare copies of mes rather than originals, and to avoid editing the contents of the
System Folder on the current startup volume. (Under MultiFinder™, you cannot use
ResEdit to open the current Finder or Desktop file.) Remember, also, that if you open
a me that is already open (for example, the currently active System file, or ResEdit
itself), and you make any changes, you must save those changes unless you revert
them before you attempt to close the me! •

7

(
Invoking ResEdit

ResEdit is a regular application, so if you are in the Finder or in HyperCard®, you can start it
up just as you would any other application. If you are using MPW, you can start ResEdit by
entering either of these commands in the MPW Shell:

ResEdit

ResEdit file! file2 ...

The latter command causes ResEdit to open the named ftles automatically.

ResEdit displays a window for each disk volume currently mounted. (See Figure 2-1.) Each
window shows a list of the ftles and folders available at the top directory level of that volume.
There is a close box in the upper-left comer of the window of a removable volume (a floppy
disk, for example). If you click the close box, ResEdit removes all windows associated with the
volume, and unmounts the volume. (If it is a floppy disk, it is ejected.) Nonremovable
volumes, such as hard disk drives, do not have close boxes, and cannot be unmounted.

If a volume is mounted during a ResEdit session, a window for that volume is created. If a
volume is unmounted during a session, all windows associated with that volume are closed.

Notice that disk windows (as well as many other windows in ResEdit) are resizeable.

• Figure 2-1 Disk volume windows

CHAPTER 2 Getting Started 9

Working with IDes

You can select a mename by clicking it or by typing one or more characters of the ftlename.
To select more than one item, hold down the Command key while clicking the individual
itermj or click an item at the beginning of the range you want to selec~ hold down the Shift
key, and click the item at the end of the range. You can, of course, then continue to select or
deselect individual items with the Command key. (These techniques will also work at other
levels within ResEdi~ for example to select resource types and, within a type, to select
individual resources.) To list the resource types in a me, select and open the mename from the
list. If you try to open a me that does not have a resource fork, ResEdit displays a dialog box
that asks you whether you want to open the me anyway. If you say yes, the me is opened and
given a resource fork.

When a directory window is the active window, the File menu commands act as follows:

New

Open

Close

Save

Get Info

Transfer ...

Quit

~ Warning

Creates a new me.

Opens the selected me or folder. (Choosing this command has the same
effect as double<licking the menameor selecting the mename and pressing
the Return key or the Enter key.)

Closes the volume window. (Using this command has the same effect as
clicking the close box.) If the volume is removable, it is removed. (A floppy
disk, for example, is ejected.)

Not usable at this level.

Displays me or folder information and allows you to change it. Figure 2-2 is
an example of a File Info window. Figure 2-3 is an example of a Folder Info
window.

Allows you to transfer to an application other than the application that
launched ResEdit, without ftrst retuming to the Finder.

Quits ResEdit and returns to the Finder (or the MPW Shell, HyperCard, or
whatever program launched ResEdit).

You can edit any me shown in the window, including the System me and
ResEdit itself (though there are some restrictions under MultiFinder). It's
dangerous, though, to edit a me that's currently in use, and it's important
to remember that if you must do so, and if you make any changes to the
me, you must save those changes. In general, it is much wiser to edit a
copy of the me instead. ...

10 Macintosh ResEdit Reference

(• Figure 2-2

• Figure 2-3

A File Info window

Type
L-.._---l

o System
DOn Desk
o Shared 0 No Inlts
o Rlways switch launch

o Bundle
o locked
color:rl ==B?-Ia-c-:-k---'

o File locked 0 File Busy 0 File Protect
o Resource map Is read only
o Printer drluer Is MultlFlnder compatible

2/6/89 10:59:16 AM

Modified 2/6/89 10:59:16 RM

Resource fork size - 0 bytes
Data fork size - 1024 bytes

A Folder Info window

o Inulslble
~ Inited

o System
cOlor:IF=::B~lu-e---'

Symantec Utils
Terminals
THE EYE OF ARGON
Toe Rag
UN*X

CHAPTER 2 Getting Started 11

ResEdit recognizes a new disk when it's inserted, and handles multiple disk drives. Note that
you can also use ResEdit to delete mes:

• To delete a me, select the me and choose Clear from the Edit menu.

• To copy a resource me, select all of its resources and copy them. Then paste them into a
new fIle. (File attributes are not automatically copied by this operation-you must set them
via the Get Info command.) ResEdit cannot copy a data fork.

Working within a me

When you open a me, a file window appears. This window displays a list of all the resource
types in that me (Figure 2-4). While this window is the active window, you can create new
resource types, copy or delete existing resources, and paste resources from other meso At this
level, all operations are performed on sets of resources. For example, selecting the resource
type 1ALR'r in a me causes all resources of type IALR!' in that me to be selected as a group.
Any operation you then perform on that group affects alllALR'r resources in the me.

• Figure 2-4 A ResEdit me window

• File Edit

Mona Lisa Ouer •• 0
l"'Iona LI

fil ... drlue ~
°fil flppleLink P-O 0 qaA
0 0 [) I5iD. L1nk.Help ~ ~
fil 0 filLi fil 0 fil Li ICON P-qa fil filM MENU

~ 0 fil [) Rc PICT
[) 0 sn'"
fil Iil WIND t P-
O 0 Ir;
0 0
e. Iil
~ f-~

rO_SJjOOKS

12 Macintosh ResEdit Reference

/

(When a me window is the active window, the File menu commands have the following
effects:

New

Open

Creates a new resource type in the open me. If a resource of the specified
type already exists, its me type window is opened. This command does not
create any resources when used at the me level.

Opens a me type window that displays all resources of the resource type
selected. (Select the resource type by clicking it or by typing its fIrst
character, if that's unique, or fIrst few characters.)

• Note: If you hold down the Option key while opening a resource type, the resource
window will open with the general resource picker. This procedure is equivalent to
choosing Open General, described next. Resource pickers are explained in "Working
Within a Resource Type," later in this chapter.

Open general

Close

Save

Revert

Transfer ...

Quit

Opens a window displaying all resources of the selected type, using the
general resource picker.

Closes all windows that are open for this me and asks if you want to save the
changes you have made.

Saves the changes you have made.

Changes the resource me back to the version that was last saved to disk.

Quits ResEdit, allowing you to transfer control to another application.

Quits ResEdit. If you have made any changes, ResEdit asks whether you
want to save them

When a me window is the active window, the Edit menu commands have the following
effects:

Undo

Cut

Copy

Not usable at the me level.

Removes all resources of the resource types selected, placing them in the
ResEdit scrap.

Copies all resources of the resource types selected into the ResEdit scrap.
Copy puts a single copied resource into the Clipboard. If you copy multiple
resources, ResEdit clears the clipboard and puts the resources into its own
scrap.

CHAPTER 2 Getting Started 13

Paste Copies the resouoces from the ResEdit scrap (or from the clipboard, if only
one resouoce is involved) into the file window's resouoce type list.

• Note: Many applications put more than one resouoce type at a time into the scrap when
Copy is chosen. For example, when an object is copied in MacDraW@, both an 'MDPL' and
a 'PIer are put into the scrap. When you paste into the file window in ResEdit, all
resources that are present will be pasted.

Clear

Duplicate

Removes all resouoces of the resource type selected, without pladng them in
the ResEdit scrap.

Not usable at the me level.

Working within a resource type

Opening a resource type produces a window that lists each resource of that type in the me.
The list is generated by a resource picker, and will take different forms, depending on the
particular resource picker that is displaying it. If you hold down the Option key during the
open or if you select Open General from the File menu, the general resouoce picker is invoked
even if there is a picker specifically configured for the resource type you are opening. The
general resource picker displays the resouoces by type, name, and ID number; pickers for
specific resouoce types generate displays that are appropriate for their type. Figure 2-5 shows a
picker for the 'ICON' resouoce type.

You can also write your own pickers. For more information, see Chapter 8.

14 Macintosh ResEdit Reference

(

(

• Figure 2·5 A resource type window (with custom picker)

mJ LiI If .. !ill It.

~ ~ [1J * :.:: ..

C\ P

When a resource type window is the active window, the File menu commands have the
following effects:

New Creates a n~w resource and opens its editor.

Open Opens the appropriate editor for the resource you selected.

Open as Template ...
Lets you open a resource using a template you specify.

• Note: If you hold down the Option and Command keys while opening a resource, the
effect is the same as that of choosing Open as Template.

Open General

Close

Save

Revert

Opens the general resource editor.

Closes the resource type window and any editor windows that exist for
resources of the current type.

Saves the changes you have made to the file.

Changes all resources of the open type back to what they were before you
opened the resource type window. Note that this does not revert the entire
file.

CHAPTER 2 Getting Started 15

Get Info

Preferences

Transfer ...

Quit

Displays resource information and allows you to change it. Figure 2-6 is an
example.

Allows you to choose whether the "locked disk" and "System me" warnings
are displayed, and to set two parameters for the current picker's display. (See
Figure 2-7.)

Quits ResEdi~ allowing you to transfer control to another application.

Quits ResEdit. If you have made any changes, ResEdit asks whether you
want to save them

• Figure 2-6 An 'leN#' Get Info window

Neme:
ID:

Owner 10: I
Sub 10: 1------1

'------'-~""'--'''''"'

Rttrlbutes:
o System Heap 0 Locked 0 Preload
o Purge able 0 Protected

16 Macintosh ResEdit Reference

(• Figure 2-7 Preferences dialog box

Preferences

o Don'1 display locked disk warnings
o Don'1 display Sys1em file warnings

S1andard picker width: 11225 I
Rowl displayed in Picker: @]

n OK I (Cancel)

When a resource type window is the active window, the Edit menu commands have the
follOwing effects:

Undo

Cut

Copy

Paste

Not usable.

Removes the resources that are selected, placing them in the ResEdit scrap. If
only one resource is selected, it is placed in the cUpboard.

Copies all the resources that are selected into the ResEdit scrap. If only one
resource is selected, it is copied to the clipboard.

Copies the resources from the ResEdit scrap (or from the clipboard) into the
resource type window.

• Note: Only resources of the currently open .type are copied into the resource type window.

Clear

Duplicate

Removes the resources that are selected, without pladng them in the ResEdit
scrap.

Creates a duplicate of the selected resources and assigns a unique resource
ID number to each new resource.

CHAPTER 2 Getting Started 17

When you choose Open as Template, a list of templates is displayed, and you can pick the one
you want to use.

• Note: Using a template with a resource that does not match its deftnition is improper and
may cause errors. Please be careful when you choose a template. (See Chapter 4 for more
infoanation.)

Resource ID numbers

Within a given resource type, resource ID numbers must be unique. Resources can, in general,
have any ID number between -32768 and +32767, but you should be aware of the following
restrictions, which apply to most resources:

• ID numbers from -32768 to -16385 are reserved. Do not use them!

• ID numbers from -16384 to -1 are used for system resources that are owned by other
system resources. For example, a dialog box used by a desk accessory (the desk accessory
is, itself, a resource of type 'DRVR') would have a number in this range.

• ID numbers from 0 to 127 are used for system resources.
• ID numbers from 128 to 32767 are available to you for your uses.

Some system resources own others; The "owner" contains code that reads the "owned"
resource into memory. For example, desk accessories can have their own patterns, strings, and
so on. Please see Chapter 5 of Inside Macintosh, Volume I, for IOOre information.

Fonts constitute a special case. For infonnation about fonts, see the section on 'FONT'
resources in Chapter 3.

18 Macintosh ResEdit Reference

(

Chapter 3 Editing Individual Resources

SOME OF RESEDIT'S RESOURCE EDITORS ARE DISCUSSED in this chapter. The use of the
editors not discussed here should be apparent when you run them. For information
on editing template resources, please see Chapter 4. •

19

(To open an editor for a particular resource in a file, either double-click the resource type name
or select it and choose Open from the File menu. One or more auxiliary menus may appear,
depending on the type of resource you're editing. Some editors, such as the 'Dm' editor,
allow you to open additional editors for the elements within the resource. All the editors use
File and Edit menus similar to those described in Chapter 2, but operate on individual
resources or individual elements of a resource, and hence vary in their appearance and
function as explained in this chapter.

If you hold down the Option and Command keys while opening a resource, a list of templates
is displayed. You may then select the template that is appropriate for the resource you are
opening. For more information on editing with templates, see Chapter 4.

Bit editors

Pictorial resource types are edited with a bit or pixel editor; for these resources, the cursor acts
like the pencil tool in MacPaint®.

Holding down the Shift key allows you to use the marquee tool. To make a selection, hold
down the Shift key while you drag. To move a selection you've made, Shift-drag. Remember
that you must continue to hold down the Shift key, else your next mouse-c1ick will turn off the
marquee and invert whatever pixel the mouse is on. You can also cu~ copy, and paste
selections you've made.

• Note: If you try to paste more bits than there is room for in the resource (for example, if
you try to paste a 4Ox40-bit area from a paint program into, say, an 'ICON', which can only
hold a 32x32-bit area), ResEdit beeps and does not perform the paste.

The 'FONT' editor, discussed in detail later in this chapter, is also a bit editor, but it has a
palette with several tools, the use of which is familiar from common paint programs, rather
than just the pencil and the marquee.

CHAPTER 3 Editing Individual Resources 21

Using the general editor

If you hold down the Option key while opening a resource, the general resource editor is
invoked. This editor allows you to edit the resource as hexadecimal or ASCII data. The general
resource editor can edit resources larger than 255K bytes. If a resource is between 256 and
?11K, each click in the up or down scroll arrow scrolls two lines; ifbetween 512 and 767K,
each click scrolls three lines, and so on. (The scroll bars keep track of position with an integer,
which is a single byte, and thus can only have values between 0 and 255.)

When you are using the general editor, if you enter hexadecimal text, the editor maintains byte
alignment of the incoming data. Thus, if you type 2, the editor displays 02. If you then type A,

the editor displays 2A.

The general editor has a Search menu. It allows you to search for the occurrence of a pattern
in the resource being displayed, and allows you to enter the pattern in either hexadecimal or
Macintosh character set notation (the latter being loosely described as "ASCII". See Appendix C
for a chart of the Macintosh character set). The general editor also allows you to move to a
specified offset from the beginning of the resource you're editing.

'WIND' resources

A 'WIND' resource deftnes a window on the screen. When you open a 'WIND' resource,
ResEdit displays a small picture of the screen with the window shown in its usual size and
location, to scale, and also presents a spedal menu, with the title WIND. You can size the
window by using its lower-right comer. You can move the window by clicking anywhere in i~
except in its lower-right comer, and dragging the window to where you want it. Moving or
sizing a window changes the default values when the window is actually displayed. To change
the name of the window, select Display as Text from the WIND menu. (When the window
appears on the screen in normal operation, the name may be displayed. If it is displayed, it
shows up as a title, in the title bar.)

Figure 3-1 shows a 'WIND' resource open for editing. Notice that there is a white area across
the top of the window in the figure. The white area represents the space that is taken up by
the menu bar when the window is actually displayed on the screen. Figure 3-2 shows the same
'WIND' resource displayed as text.

22 Macintosh ResEdit Reference

~~ ~ ~~ ~--~--

(• Figure 3-1 Editing a 'WIND' resource

• Figure 3-2 'WIND' resource displayed as text

Mandelbrot Set

top

left

53 bottom 296
I----i t----i
17 right 355
~--l I----l

prot ID 0 refton 0

OUlslble o goA way Flag

CHAPTER 3 Editing Individual Resources 23

'ALRT' and 'DLOG' resources

'ALRT' and 'DLOG' resources display dialog boxes on the screen. Editing them is much like
editing 'WIND' resources, except that if you double-click on the picture of the dialog box after
opening the resource, the corresponding 'Dffi' resource is automatically opened. (See the
next section.) When you display an individual 'ALRT' or'DLOG' resource, a corresponding
menu appears. It has only one item, Display as Text. In the text view, the resource ID of the
associated 'Dffi' can be changed.

Figure 3-3 shows an 'ALRT' open for editing. You can see the ALRT menu title in the menu bar.
Notice the white area at the top of the window, just under the words Alert ID = 149 from
Diatom; this space is where the menu bar appears when the alert is displayed on the screen.

• Figure 3--3 Editing an 'ALR!' resource

24 Macintosh ResEdit Reference

('Dm' resources

For 'Dm' (dialog item list) resources, the editor displays an image of the items from the list
as they would be displayed in a dialog or alert box. When you select an item, a size box
appears in the lower-right comer of its enclosing rectangle so that you can change the size of
the rectangle. You can move an item by dragging it with the mouse.

If you open an item within the dialog box, the editor associated with the item is invoked; for
an 'ICON', for example, the icon editor is invoked. If you hold down the Option key while
opening a 'CNTI', 'ICON', or 'PIer, the general data editor is invoked. If you hold down the
Option and Command keys while opening a 'CNTI', 'ICON', or 'PIer, the 'Dffi' Item Editor
(the editor used for buttons, static tex~ and so on) is invoked. Some dialog items are not
editable, and are listed as User Items. These are defined in the application, rather than in the
Dialog Manager, and are actually built only when you run the application.

When you edit a 'CNTI' item, you will fmd that two rectangles are used to determine the
location and size of the control. The location of the control within the 'Dffi' is determined by
the top and left values that you set in the 'Dffi' Item Editor. The size of the control is
determined by the size (bottom-to-top and right-to-Ieft) that you set in the 'CNTI' editor. This
means that no matter what you set the bottom and right values to in the 'Dffi' Item Editor,
they are reset to correspond to the size that is set in the 'CNTI' editor. You must edit both the
'Dffi' item and the control itself to set both the location and size!

Because they are linked, the 'Dffi' resource is usually given the same ID number as the parent
'DLOG' or 'ALRT'.

Figure 3-4 shows the 'Dffi' corresponding to the 'ALRI' from Figure 3-3. The ALRT menu has
been replaced by the Dffi menu.

CHAPTER 3 Editing Individual Resources 25

• Figure 3-4 Editing a 'Dffi' resource

The nffi menu contains the following commands:

Bring to Front Allows you to change the order of items in the item list. Bring to Front causes
the selected item to be drawn in front of any items that it may overlap. The
actual number of the item is shown by the 'Dffi' Item Editor.

Send to Back Causes the selected item to be drawn behind any items that it may overlap.

Set Item Number Allows you to specify a new number for the selected item.

Select Item Number

Align to Grid

Allows you to select an item by specifying its number.

Aligns the item on an invisible 8-pixel-by-8-pixel grid. If you change the
item location while Align to Grid is on, the location is adjusted such that the
upper-left comer lies on the nearest grid point to the location you gave it. If
you change the item size, it is constrained to be a multiple of 8 pixels in each
dimension.

26 Macintosh ResEdit Reference

Use RSRC Rectangle
Restores the enclosing rectangle to the rectangle size stored in the
underlying resource. Note that this command works on 'ICON', 'PIer, and
'CNn' items onlYj the other items have no underlying resources.

Use Full Window Adjusts the window size so that all items in the item list are visible in the
window. The window size that your program will use when it displays the
'Dffi' is actually stored in the parent 'ALRT' or'DLOG' resourcej this
command is present solely for your convenience when you are editing the
dialog items.

Use Owner Window
Changes the 'Dffi' back to the size specified in the parent 'DLOG' or 'ALRT'.
The algorithm used to ftnd the parent is as follows:

1. Check for a 'DLOG' with the same IDj
2. Check for an 'ALRT' with the same IDj
3. Check for any 'DLOG' that refers to this 'Dffi'j
4. Check for any 'ALRT' that refers to this 'Dffi'j
5. Use Full Window.

Font and Size menus are also present. These menus are provided to allow you to see how
your 'Dffi' looks when displayed in various typestyles. The font and size you set by using
these menus are not saved, and must be reset each time you edit the 'Dffi'.

CHAPTER 3 Editing Individual Resources 27

'CURS' resources

Cursors are pictorial resources of type 'CURS'. Figure 3-5 shows the 'CURS' editor. The top part
of the display has three large images for editing. The left image shows the cursor itself. The
middle image is the mask for the cursor, which affects how the cursor appears on various
backgrounds. The right image shows a gray picture of the cursor with a single point in black.
This point is the cursor's "hot spot." (The hot spot is the point in the cursor that the Macintosh
recognizes as the cursor's location. The hot spot of the familiar arrow cursor, for example, is its
point.) You can invert bits in the left and center images by clicking on them, and you can use
the marquee tool to cut, copy, paste, and move part or all of the picture areas in the left and
center images by holding the Shift key down and dragging, as with the other bit editors in
ResEdit. In addition, if you click a pixel in the right image, that pixel becomes the cursor's hot
spot.

In the bottom part of the display, the cursor is drawn to scale on three different background
patterns. To draw the cursor, a hole is made in the background by turning off the pixels in the
area of the screen covered by the mask. Then the cursor is overlaid onto the hole. Ordinarily,
the mask should just be a filled-in outline of the cursor, so that the cursor can be seen clearly.

• Figure 3-5 Editing a 'CURS' resource

The Cursor menu contains the following commands:

28 Macintosh ResEdit Reference

Try Cursor

Restore Arrow

Data-> Mask

Lets you try out the cursor by having it become the cursor in use.

Restores the standard arrow cursor.

Makes a fIlled-in copy of the cursor in the mask editing area.

CHAPTER 3 Editing Individual Resources 29

'ICON' resources

When icons appear within a program (HyperCard, where it is common to attach icons to
buttons, is a good example), they are resources of type 'ICON'. The 'ICON' editor, as shown in
Figure 3-6, displays one panel in the window. The left side of this panel shows an enlargement
of the icon, and is an editing area. The right side of the panel shows the icon at actual scale.
The editor for pictorial resources, including 'ICON', is a bit editor. It lets you click a pixel to
invert it, and (if you hold down the Shift key) permits you to use the marquee tool to cu~
copy, paste, and move part or all of the picture area. (Of course, you cannot move the entire
picture.) If you cut or copy a marquee selection, you can paste it as a 'PIer resource. First
close the editor and picker. (You must close the picker in order for this to work.) If you then
paste, ResEdit makes the contents of its scrap into a new 'PIer. The 'PIer resource picker
does not have to be open when you cut, copy, or paste.

• Figure 3-6 Editing an 'ICON' resource

30 Macintosh ResEdit Reference

, ",.r

'ICNI'resources

The 'ICNI' resource is one of the most common targets for ResEdit. The icons that you see on
the desktop, representing applications and their documents, are all'ICNl' icons, as are folder
icons and even the trashcan. The 'ICNI' resource is edited with a bit editor that permits you to
change any of the pixels in the icon, which are in a 32-pixeJ:-by-32-pixel square, and Of you
hold down the Shift key) lets you use the marquee tool to cut, copy, paste, and move part or
all of the picture, with the exception that if you use the marquee to select the entire picture, it
doesn't make any sense to talk about moving it. If you cut or copy a marquee selection, you
can later paste it as a 'PICf' resource. See the description of 'ICON' resource editing, earlier in
this chapter.

The 'ICNI' editor displays two panels in the window (Figure 3-7). The upper panel is used to
edit the icon. It contains an enlargement of the icon on the lef~ and an enlargement of the
icon's mask on the right. The lower panel shows, from left to righ~ how the icon will look
unselected, selected, and open on both a white and a gray background. It also shows how the
icon will appear unselected, selected, and open in the Finder's small icon view.

In recent versions of the Finder, 'ICNI' resources are displayed on the screen as follows: First
the mask is used to blank an area of the screen. Then an OR operation is performed, using the
icon as data, in the same screen area. (When a highlighted icon is displayed, the foreground
and background colors are swapped before the OR operation is performed on the data.) If the
mask is not the same shape as the outline of the icon, the results will in general be unaesthetic
unless the background is black.

The 'ICN#' menu contains the following commands:

Data-> Mask Makes a filled-in copy of the icon in the mask editing area.

Display using old method
Lets you display the icon in the lower panel, using the method that was used
by pre-6.0 Finders. If the mask is just a filled-in copy of the icon, you
probably won't see a difference between the old and new displays.

CHAPTER 3 Editing Individual Resources 31

• Figure3-7 Editing an'ICN#' resource

'SICN' resources

Small icon ('SICN') resources are edited with a bit editor, just as other pictorial resources are.
Unlike 'ICON' or 'ICN#' resources, 'SICN' resources can, and usually do, occur in groups. A
typical display is shown in Figure 3-8. The upper panel is enlarged, and shows the icon
currently being edited. The lower panel shows three icons at actual scale. The one shown in
the upper panel is enclosed in a box in the lower panel. To get to a different icon, click: its
picture in the lower panel. If the icon you want to edit is not currently visible, click either the
righthand or lefthand picture, as appropriate, until it appears.

You can add a new icon before (to the left of) the currently selected icon by choosing the New
/ command from the File menu. Commands on the Edit menu can be used to cu~ copy, paste,
clear, or duplicate icons.

32 Macintosh ResEdit Reference

(• Figure 3-8 Editing a 'SICN' resource

'FONT' resources

I':!T-i
IJ::-jJ

The 'FONT' resource is one of two major ways of representing bitmap (screen) fonts for the
Macintosh. (The 'NFNT' resource, described briefly later in this section, is the other.) The
'FONT' resource contains a series of pictures that typically represent items in the Macintosh
character set, though they need not do so. A chart of the Macintosh character set is presented
in Appendix C.

Because the Macintosh has no text mode, however, it is possible for the pictures to be just
that-pictures. 'FONT' resources on the Madntosh can contain scanned images and other
pictures just as easily as they can contain the alphabet.

The Macintosh can modify elements of a fon~ to slant them for an approximation of italics,
embolden them, and so on. Print quality on dot-matrix printers (and screen-display accuracy
as well) can be improved, however, by providing extra fonts that are constructed with those
styles built into them Frequently, 'FONT' resources come in families, so that it is possible to
display text on the screen (and print it on dot-matrix printers) in several styles, commonly
Roman, Bold, Italic, and a Bold-Italic combination, without taking processor time to calculate
the way such styles should look. These families can also correspond to downloadable
PostScript@ fonts for laser printers and typesetters.

CHAPTER 3 Editing Individual Resources 33

If you use ResEdit to examine a Fonts me from a recent Macintosh system software release,
you will fmd that it contains three kinds of resources: 'FOND', 'FONT', and Ivers' (a record of
the version number of the release). The 'FOND' resource "owns" one or more sizes of a
particular font, and contains kerning tables and other important information about the 'FONT'
resources it owns. The 'FOND' resource has a unique ID number, from which the ID numbers
of its subsidiary 'FONT's are calculated. To fmd the ID number of a particular 'FONT' resource,
take the ID number of the parent 'FOND', multiply by 128, and add the point size of the
'FONT'. For example, 'FONT' ID 268 corresponds to New York (family ID 2), in 12 point size.

The ID numbers of 'FOND' resources may be from 0 (Chicago, the default System font) to 255,
inclusive. Apple reserves ID numbers from 0 through 127. Unfortunately, there is a very large
number of bitmap fonts (many more, in fact, than 255 of them), so occasional ID number
collisions are unavoidable. Version 3.8 and later versions of the FontIDA Mover attempt to
resolve such collisions, as do some third-party system-enhancer packages.

There is also another, newer kind of font resource, type 'NFNT'. like 'FONT' resources, 'NFNT'
resources are also owned by 'FOND' resources. ID numbering of 'NFNT' fonts is, however, not
keyed to the ID number of the parent 'FOND'. Arbitrary numbering of 'NFNT' resources helps
avoid font ID number collisions, and facilitates resolution of conflicts when they do occur.
'NFNT' fonts can contain and display more than one bit per pixel, and can be assigned
absolute colors with a corresponding 'fctb' resource, which is a Colotrable record. (Font
Colotrable records are discussed in Inside MaCintosh, Volume V, in the section on the Color
Manager. The Font Manager is discussed in some detail in Inside Macintosh, Volumes IV and
V.) ResEdit cannot edit 'NFNT' fonts, but can copy and move them, as can version 3.8 and later
versions of the Font/DA Mover program. A third-party editor for 'NFNT' fonts is available.

Editing 'FONT' resources

Fonts are edited with a bit editor that is a superset of the bit editors for other pictorial
resources. This editor has several of the tools you are probably familiar with from prograrm
like MacPaint

The editing window for 'FONT' resources is divided into four panels: a character editing panel,
a sample text panel, a chatacter selection panel, and a typical set of graphics tools. These
panels are shown in Figure 3-9.

Macintosh ResEdit Reference

(• Figure 3-9

ASCII
65

Editing a 'FONT resource

Offnt
1

Yiclth
16

Loc.ltlon
203

Beauty is momentary in
the mind - / The fitful
tracing of a portal/But
in the flesh it is
immortal.

A B

The character editing pane~ on the left side of the window, shows an enlargement of the
selected chatacter. You can edit it, as with the other bit editors for pictorial resources, by
clicking bits on and off. Drag the black triangles at the bottom of the character editing panel to
set the left and right bounds (that is, the character width). Two of the three triangles at the left
side of the panel control the ascent and descent. If you want to increase the ascent or descent,
move the appropriate triangle fll'St. If you put pixels outside the indicated area and then move
the triangle, those pixels are wiped out.

... Warning Changing the ascent or descent of a character changes the ascent or
descent for the entire font. ...

The third triangle on the left shows the location of the baseline, which is fIXed and is displayed
only for reference. Below the panel are the character number (labeled "ASCII"), and the
chatacter's offset, width, and location, all in dedmal notation.

CHAPTER 3 Editing Individual Resources 35

• Note: The correspondence between the Macintosh character set number and a real ASCll
number is limited. Strictly speaking, ASCII is a set of 128 characters, numbered from 00
($00, the NUll character) through 127 ($7F, the DEL character), and is intended to
represent a basic character set rather than any font or typeface, in a relatively universally
understood fonn. Because the Macintosh character set is oriented toward electronic
publishing, which has more (and different) requirements, it has twice as many possible
character numbers. (See the section on the 'KCHR' editor, later in"this chapter.) For
ordinary text fonts, characters 0 through 127 of a Macintosh font are the ASCll character
set For Symbol, ITC ZapfDingbats®, and the various pictorial fonts, however, the
correspondence with ASCII is minimal. The Macintosh character set is shown in Appendix
C.

The sample text panel, at the upper right, displays a sample of text in the font currently being
edited. (You can change this text by clicking in the text panel and using normal Macintosh
editing techniques.)

The character selection panel is below the text panel. You can select a character to edit by
typing it (using the Shift and Option keys if necessary), or by clicking it in the row of three
characters shown. To move upward through the character number range, click the right
character in the row; to move downward, click the left character. The character you select is
boxed in the center of the row. (To scroll quickly, click the right or left character and drag the
pointer outside the selection panel, to the right or left)

The graphics tools panel, directly below the character selection panel, offers several familiar
graphics-manipulation tools, including the pencil, eraser, circles, and rectangles. The 'FONT'
editor, unlike the other bit editors, includes the marquee tool as a panel selection, and the
lassoo is also available.

Any changes you make in the character editing panel are reflected in the text panel and the
character selection panel, except on monitors displaying more than 2 colors or gray levels.

You can also change the name of a font The font name is stored in two places: as the name of
the 'FOND' resource of that font family, and as the name of the size 0 'FONT' resource. To
change the font name, select the individual 'FOND' resource with the name you wish to
change, and choose Get Info from the File menu. To maintain consistency, you should also
change the name of the O-point 'FONT' resource. This resource does not show up in the
normal display of all fonts in a me. To display it, hold down the Option key while you open
the 'FONT' type from the fIle window. You will see a generic list of fonts. Select the font with
the name you wish to change, and choose Get Info.

Macintosh ResEdit Reference

(~

'PAT' resources

The 'PAT' resource (pattern) editor is shown in Figure 3-10. It displays a single panel, with the
pattern shown around a central editing area. This area shows the pattern, enlarged. The outer
area shows the pattern at full scale, displaying changes as you edit. The bit editor for 'PAT'
resources is very similar to the bit editor for other pictorial resources. It lets you invert a bit in
the central editing area, and lets you use the marquee tool by holding down the Shift key
while you drag. The editing area is small, but it is possible to make some use of the marquee
tool.

• Figure 3-10 Editing a 'PAT' resource

CHAPTER 3 Editing Individual Resources 37

'PATI' resources

The 'PAT#' resource (pattern list) editor is a bit editor, much like the 'SIGN' editor, and is
shown in Figure 3-11. Instead of displaying a single enlarged picture of the pattern being
edited, it shows two. The one on the left is for editing; the one on the right shows the resulting
pattern at full scale. .

• Figure 3-11 Editing a 'PAT#' resource

'INTI}, 'itlO', and 'itl1' resources

The 'IN'Il' resource combines the functionality of the 'idOl and 'id1' resources. That is, 'INTL'
"US" ID - 0 is the same as litlOI "US" ID • 0 and IINTI' "US" 10 • 1 is the same as 'itl1 I "US" ID -,
O. These resources are used in international localization. For further infonnation, see Inside
Macintosh, Volume V, Chapter 16. Each of these resources (whether you edit them as 'IN'Il1 or
as litlO' and litl1 I) is shown as a window with a set of boxes to be ftlled in and some buttons
that can be clicked. Figures 3-12 and 3-13 show the windows for 'itlO' and'itl1'.

38 Macintosh ResEdit Reference

(• Figure 3-12 Editing an 'itlO' resource

Thousands separator:

($1,234.50) List separator:

($0.5) ; (SO.5)

Short Date:

1116/89

TIme: TIme separator:

4:25:06 AM Morning trailer:

4:25:06 PM Euenlng trailer: PM

24-hour troller:

----- - ~

D Minus sign for negotiue

181 Troiling decimal zeros

181 Leading Integer zero

o Leading 0 for day

o Leading 0 for month

o Include century

181 Leading 0 for seconds

181 Leading 0 for minutes

D Leading 0 for hours

181 12-hour time cycle

-co-u-n-tr-y -co-d-e'r:1 ==0=0 =-=u:::!s!:===::::;:-:o=-metrlc "U~~'-s-io-n-: '::::11=:::;1

• Figure 3-13 Editing an 'itll' resource

.- -- Itl1 ·US· ID - 0 from System
Names for months Names tor do s

July ... S_u_n_d_a;::.y ____ --i

February Rugust ~M...;.;;.on_d;;.;a;;.::y:....---....,

JilnUd'lJ

March September

Rpril October

May Nouember

June December

Day IE] Monthl I Date

Use ~charocters to abbreulate names

Country cOde:I,-..;o;.;o_-_u~s~_ """"

Mon, Jan 16, 1989 Denlon: 0
Monday, January 16, 1989

Tuesday
Wednesday
Thursday
Friday

Saturday

~. ~ Year I I
D Leading 0 in Dote
D Suppress Dote
o Suppress Day
o Suppress Month
o Suppress Year

CHAPTER 3 Editing Individual Resources 39

'KCHR' resources

The 'KCRR' resource controls keyboard mapping. The 'KCRR' editor can be used with any
Macintosh that runs system software release 5.0 or later. The main 'KCRR' editing screen is
shown in Figure 3-14, with Command-option-3 pressed; the "dead" key editor is shown in
Figure 3-15. There is an in-depth discussion of the 'KCHR' resource itSelf in Appendix A, and a
short section of 'KCRR' questions and answers in Chapter 6.

• Figure 3-14 Editing a 'KCRR' resoun::e

Keyboard region

The main 'K<lIR' editor

The display for the main 'KCHR' editor (Figure 3-14) is divided into five parts, described in the
sections that follow.

40 Macintosh ResEdit Reference

(The character chart

This chart shows the 256 characters that make up the currently selected font. It displays the
character generated by the currently pressed key, by highlighting it. You can also display a
character by clicking with the mouse in either the keyboard region or the virtual keycode
chart. These characters can be assigned to keys on the keyboard; to assign a character to a key,
drag the character either to a keycap in the keyboard region or to the virtual keycode chart.
You cannot assign characters to the Command, Option, Shift, Caps Lock, Control, Return, or
Enter keys.

The table chart

The Shif~ Caps lock, Option, Command, and Control keys are considered to be "modifiers";
no combination of modifier keys generates a character code unless some other key is also
pressed. The table chart shows which table is used by the currently depressed modifier key
combination.

Please notice that although there are 256 possible combinations of modifier keys, most versions
of the 'KCHR' resource use only 8 tables, and very few would ever use more than 16. This is
because similar modifier key combinations are frequently mapped to the same table. For
example, in the U.S. 'KCHR', all combinations involving the Control key point to table 6. Also,
the Caps lock and Shift combination points to table 1 (which is pointed to by the Shift key)
rather than table 2 (which is pointed to by the Caps Lock key on its own).

To change the table used by a modifier key combination, press that combination of modifier keys
and click on a different table. The mapping is changed by the editor. This feature is probably of
very little use, and the information is included for completeness. Here is a listing of the tables as
they are pointed to by various modifier key combinations in the U.S. 'KCHR', as supplied:

• Table 0 is shown with none of the modifier keys pressed, or with the Command key or
Command and Shift keys pressed.

• Table 1 is shown with the Shift key or Caps Lock and Shift keys pressed.

• Table 2 is shown with the Caps Lock key pressed.

• Table 3 is shown with the Option key pressed.

• Table 4 is shown with Shift and Option keys pressed.

• Table 5 is shown with Caps Lock and Option keys pressed.

• Table 6 is shown with Option and Command keys pressed.

• Table 7 is shown with the Control key (and any other keys) pressed.

CHAPTER 3 Editing Individual Resources 41

The virtual keycode chart

This chart shows all 128 keycodes in the current table, and highlights the keycode that is
generated if you press a particular key with the current modifier key combination. These
keycodes come from the keyboard, and are virtual in the sense that further translation has to
take place before a Macintosh character set number results and a character can be displayed.

The~reglon

This area reflects a particular keyboard layout You can choose a different keyboard for
displaying the virtual keycodes, by using the View as command on the KCHR menu. The
Apple® Extended Keyboard has two sets of modifier keys, and you can use the "Uncouple
modifier keys" command to get access to the alternate modifier keys (the ones on the right
side of the keyboard, which are usually coupled with the ones on the left side). If you do not
have the Apple Extended Keyboard connected to· your Macintosh, you cannot choose
"Uncouple modifier keys."

Note that the modifier keys shown on the keyboard picture have a gray border. This border
has two purposes:

• It reminds you that you cannot drag a character from the character chart onto a modifier
key.

• It helps you ftnd the modifier keys in the virtual keycode chart. (They also have a gray
border there.)

Note also that if you press the Option key, some keys in the display are shown with solid
black borders. These are "dead" keys. If you click a dead key, the special editor for dead keys
is invoked. For more information on editing dead keys, see "Editing Dead Keys," later in this
chapter.

The information region

This small chart shows you the character code and virtual keycode, both in hexadecimal form.

Editing dead keys

Some combinations of keys do not immediately specify a character. Because nothing appears
on the screen and the cursor does not move when these combinations are pressed, they are
called "dead" keys. Typically they act to modify the next key that is pressed after the dead key
is released. The special editor for dead keys is shown in Figure 3-15.

42 Macintosh ResEdit Reference

',,-.. /

• Figure 3-15 Editing a dead key

The dead key editor

The display for the dead key editor is divided into five functional sections.

The character chart

This chart displays the character codes and is used to assign a different character code to either
a completion character, a substitution character, or the nomatch character; you assign a code
by dragging the character to its new location. If you drag a character to one of the empty slots
(displayed in gray) in the completion and substitution character pair list, you automatically add
a new pair.

CHAPTER 3 Editing Individual Resources 43

The nomatch character

If the character typed after the dead key doesn't fi~ a "nornatch" character is displayed,
followed by the character you have typed. For example, Option-E must be followed by a
vowel; it doesn't make much sense to put an accent mark on a k. The nomatch character for
the current dead key is shown in the upper-right comer of the window.

The completion and substitutlo~ cbaracter pair Ust

This list shows the translation rules for the dead key that is currently selected. The left column
shows all completion characters; the right column shows all substitution characters. If the
character typed after the dead key is one of the completion characters, the matching
substitution character is actually produced. For example, pressing Option-e and then e
produces the character e.

The trashcan

To retOOve a completion/substitution character pair, just drag either character from that pair in
the completion/substitution pair list to the trashcan in the lower-right comer of the window.

The infonnation region

This area contains the character code in hexadecimal form whenever you click in one of the
other parts of the editor.

The menus

The 'KCHR' editor has three menus: KCRR, Fon~ and Size.

The 'KCHR' menu

This menu contains the following commands.

View as ... If you have the Key Layout fIle (which has been part of the system software
since version 4.2) in your System Folder, you'll be presented with a list of
keyboards to be used for displaying the virtual keycodes. Note that you are
not changing the layout of a particular keyboard, but the 'KCRR' resource
that is used by all keyboards and is based on the ISO (International
Standards Organization) ADB keyboard.

44 Macintosh ResEdit Reference

f Uncouple roodifier keys
When you have an ADB extended keyboard connected to your computer
this command is enabled. It can be used to uncouple the right modifier keys
(see note above) and thus edit the tables used by them. Please note that the
'KCHR' editor automatically recouples them whenever you bring another
window to the front or close the editor.

• Note: When you select Uncouple roodifier keys, you must also use View as to set the
current keyboard to a keyboard that supports uncoupled modifier keys. To avoid
confusion, and because not all keyboards support this decoupling, it is recommended that
you not make use of this command.

New Table Creates a new empty table.

Duplicate Table Creates an identical copy of the current table.

Remove unused tables
Looks to see if there are tables that are not used by any roodifer key
combination, and removes them.

Remove duplicate tables
looks to see if there are some tables that are completely identical, reassigns
modifier key combinations as necessary to one table, and removes the
duplicate(s).

Edit dead key... Displays a dialog box containing a list of all dead keys and lets you choose
one to edit. Note that there is a shortcut to edit dead keys: You can either
click a dead key on the screen, or press the dead key on the keyboard. In
either case the dead-key editor will automatically pop up.

Convert to dead key
Whenever you hold down a key with any combination of modifier keys and
choose this menu command, the key will be converted to a dead key. You
can then use the Edit dead key command to defme all valid completion and
substitution characters for the new dead key.

Remove dead key This command is enabled only when a dead-key window is open. It
rerooves the dead key currently being edited from the dead-key lis~
converting it into a live key in the process.

CHAPTER 3 Editing Individual Resources 45

The Font menu

This menu lets you choose a font for displaying the characters in the editor's window.

The Size menu

This menu lets you choose a size for the characters displayed in the emtor's window. All
characters in the window are automatically resized.

• Note: If you are editing 'KCHR' resources on a Macintosh SE, Macintosh Plus, or Macintosh
512K enhanced, the'KCHR' editor automatically sets the size to 9 points, so that the editing
window fits on the screen.

46 Macintosh ResEdit Reference

(

Chapter 4 Using ResEdit Templates

ONE GENERIC WAY OF EDITING A RESOURCE is to flll in the fields of a dialog box. The
contents of the dialog box are specified by a template contained, typically, in
ResEdit's own resource me. This chapter discusses template editing. •

47

rf

If you open an actual resource of any of the types listed in this chapter, you will find yourself
editing in a dialog box, the contents of which are specified by the template of the same name
as that resource type. (For example, the 'LAYO' resource, discussed further in Chapter 6, is
controlled by the 'TMPL' resource in ResEdit that is named LAYO.) The template specifies the
fonnat of the resource and also specifies what labels should be put beside the editText items
in the dialog box that's used for editing the resource.

• Note: Templates can contain a maximum of 2048 fields. For the purpose of enumerating, a
field is defined as any item that is drawn on the screen. That is, a label counts as a field, as
does a separator, and so on. This limiting number of 2048 is reached rather easily,
particularly in resources with repeating lists, as for example, 'pitt'.

The 'TMPL' resource inside ResEdit is a bit recursive, in the sense that the contents of each of
these named 'TMPL' resources is a template for a template. (There is even, of course, one for
'TMPL' itself.) As of early 1989, ResEdit contains 'TMPL' resources for these resource types:

'actb' 'CIT#' 'finfl 'itlk' 'PIer 'STR'
'acur' 'dctb' 'FOND' 'LAYO' 'pItt' 'STR#'
'ALRT 'Dm' 'FONT 'MACS' 'ppat' 'TEXf'
'APPL' 'DLOG' 'FREF 'MBAR' 'PRC3' 'TMPL'
'BNDL' 'DRVR' 'FRSV' 'mctb' 'PSAP' Ivers'
'ceth' 'FBfN' 'FWID' 'MENU! 'ROv#' 'WCtb'
'clut' 'FCMT 'inse' 'minf' 'scm' 'WIND'
'cmnu' 'fctb' 'itlh' 'nret' 'SIGN'
'CN11' 'FDIR' 'itlc' 'PAPA' 'SIZE'

Editing

When you are editing a template, the Tab key moves you from field to field within the
template. Here, however, the term field means an active area with an editable value in it. Fields
are shown on the screen as boxes.

To add a new field to a repeating sequence in a template, select a separator, which is usually a
set of asterisks (*****), and choose New from the File menu.

Some templates control windows or other rectangles. Frequently such a template will have a
Set button that lets you draw a rectangle on the screen. The pixel numbers for the rectangle
are automatically copied to the appropriate fields in the template. There is a Set button in the
'LA YO' template, which is discussed in Chapter 6, and another is shown in Figure 4-1.

CHAPTER 4 Using ResEdit Templates 49

Values can be entered into numeric fields in either decimal or hexadecimal notation.
Hexadecimal numbers are preceded by a dollar sign ($).

'PICf' editJng

There is no custom editor for 'PIC!" resources, though there is a custom picker. 'PICf'
resources can, however, be sized with the template that exists for them, which is shown in
Figure 4-1. If you click the Set button, you can then draw a rectangle on the screen to define
the shape and size of the picture. Otherwise, you can enter values in the fields as you would in
any template.

• Figure 4-1 The template editor for 'PICf'

11 01 RO 00
01 00 OR 00
DO 02 iO 90
01 DO 01 F5
01 OA 01 F5
01 OA 01 F5
02 E5 00 02
00 00 Ie E9
00 IE E9 00
3E 00 00 01
00 60 FD 00

02 RO 00 OE
00 00 00 02
00 Ie 01 89
01 E8 01 89
01 El 01 89
01 El 00 00
E5 00 06 FE
00 06 FE 00
13 FE 00 05
FF EO FD 00
00 18 FO 00

For other examples of template editing, see the description of the 'WIND' resource template in
Chapter 5 and the description of the 'IA YO' resource in Chapter 6. Procedures for generating
new templates are also covered in Chapter 5.

SO Macintosh ResEdit Reference

(

Chapter 5 Creating ResEdit Templates

THIs CHAPTER DESCRIBES HOW YOU CAN GENERATE TEMPLATES for your own resource
types. These templates, which are resources of type 'TMPL', need not reside within
ResEdit. •

51

I
/

(The 'TMPL' resource inside ResEdit with name WIND is shown in Figure 5-1. It is shown here
as a ready example of what 'TMPL' innards look like on the screen. The contents of this
window continue beyond what is visible in the figure, as you can tell by the scroll bar at its
right edge.

Ordinarily, of course, 'WIND' resources are edited with a custom editor. You can edit them
with the template shown in Figure 5-1, though, if you care to. .

• Figure 5-1 'WIND' template data

,. • File Edit

Heml I Doc. ResEdlt

Cl Semi 1'-- M TMPLs from ResEdlt
Cl ~ Oemi L I:: Pl TMPL "PRC3" ID • 40
Cl Cl Pi TMPL "PSAP" ID .41

~ Quauer PI
~ ~ ~ ~ DeskTop TMPL "ROv"" ID • 42
L..J L..J () pl TMPL "scrn" ID • 43
Cl i1 Clfish R~ TMPL "SIGN" ID = 44
~ Cl g Clfrogs & stuff R~ TMPL "SIZE" ID = 45
.. bfrom Hootoad I <'T "" = 46
10 TMPl "WIND" ID - 52 from ResEdit 0 • 47

***** Q: 0 • 48

Type

:=' P=ro=c=1 D==,___--------l� I
, DURO I !I~!i

:=1~=~~=~=bl=e~I,-----------------l1 I
-

~ _________ ~ ~ID.49

l~oundsRect I ijml p • 50
?I R=EC=T=~I;----------------' ~I!III D • 51

l!l~ ID = 52

Label
Type

Label
Type

Label

The window template consists of the following elements:

• A REef (four words) specifying the boundary of the window.

• A word that is the proeID for the window. (DWRD tells ResEdit to display the word in
decimal as opposed to hex.)

• A Boolean indicating whether the window is visible. (BOOL is two bytes in the
resource but is displayed as a radio button in the dialog window used for editing.)

• Another Boolean indicating whether the window has a close box.

CHAPTER 5 Creating ResEdit Templates 53

• A long word that is the reference value (ref Con) for the window. (DLNG indicates
that it should be displayed in the editor as a decimal number.)

• A Pascal string (PSTR), the title of the window.

You can look through the other templates and compare them with the structure of those
resources to get a feel for how you might defme your own resource template. (These
templates are equivalent to the resource type declarations contained in the {RIncludes}
directory-refer also to the DeRez command in the MPW Reference, and the appropriate
chapters of Inside Macintosh.)

These are the types you may choose from for your editable data fields:

DBYI', DWRD, DLNG
Decimal byte, word, long word.

HBYI', HWRD, HLNG

AWRD,ALNG

FBYI', FWRD, FLNG

HEXD

PSTR

LSTR

WSTR

ESTR,OSTR

CSTR

ECST,OCST

BOOL

BBIT

TNAM

CHAR

RECT

Hex byte, word, long word.

Word, long align.

Byte, word, long fill (with 0).

Hex dump of remaining bytes in resource. (This can only be the last type in
a resource.)

Pascal string (length byte followed by the characters).

Long string (length long followed by the characters).

Same as LSTR, but a word rather than a long word.

Pascal string padded to even or odd length (needed for Dm resources).

C string (characters followed by a null).

Even-padded C string, or odd-padded C string (padded with nulls).

Boolean (two bytes).

Binary bit. (There must be an even multiple of 8 of these; if fewer than 8 bits
are defmed, you must include placeholder bits.)

Type name (four characters, like OSType and ResType).

A single character.

An 8-byte rectangle.

54 Macintosh ResEdit Reference

(Hnnn A 3-digit hex number (where nnn < $9(0); displays nnn bytes in hex format

• Note: Scrolling can become extremely slow if there are a lot of BBIT or BOOL items in a
template.

ResEdit does the appropriate type checking for you when you put the editing dialog window away.

The template mechanism is flexible enough to describe a repeating sequence of items within a
resource, as in 'STR#', 'DITL', and 'MENU' resources. You can also have repeating sequences
within repeating sequences, as in 'BNDL' resources. To terminate a repeating sequence, put
the appropriate code in the template as follows.

LSTZ

LSTE

ZCNT

LSTC

LSTE

OCNT

LSTC

LSTE

LSTB

LSTE

List Zero-List End. Tenninated by a 0 byte (as in 'MENU' resources).

Zero Count/List Counl-List End. Terminated by a zero-based word count
that starts the sequence (as in 'DI11' resources).

One CountlList Coun~List End. Terminated by a one-based word count that
starts the sequence (as in'STR#' resources).

Ends at the end of the resource. (As in 'acur' and 'APPL' resources.)

The "list-begiri" code begins the repeating sequence of items, and the LSTE code is the end.
Labels for theSe codes are usually set to the string "*****". Both of these codes are required.
It is generally advisable to keep the beginning and ending labels identical to each other, and to
have them be no more than five characters long.

Remember that the list end is signalled by a NULL byte. There is a bug in ResEdit that causes it
to think the end of the list has been reached if you have any field data that begins with $00.
Please be carefull

CHAPTER 5 Creating ResEdit Templates 55

Your template does not have to be inside ResEditj it can be in any open file. Note that if more
than one currently open ftle contains a template for your resource type, the one in the most
recently opened fIle is used when you edit resources of your type. To create a template, follow
these steps:

1. Open the fIle that you want to put your template into.

2. Open the 'TMPL' type window. Use the New command to create the 'TMPL' type if it
doesn't already exist in the fIle.

3. Choose New from the File menu.

4. Select the list separator (*****) by clicking it with the mouse.

5. Choose New from the File menu. You may now begin entering the label, type pairs that
defme the template. Before closing the template editing window, choose Get Info from the
File menu and set the name of the template to the four-character name of your resource
type.

6. Close the fIle window and save changes.

The next time you try to edit or create a resource of the new type, you'll get the dialog box in
the format you have specilled.

56 Macintosh ResEdit Reference

(

,i
~

Chapter 6 ResEdit Tips

AS wrm ANY OTIIER UI1J1fY, &EsEDrr TAKFS SOME GE111NG USED TO. Herein are
presented a few handy tips and a few "hints and kinks" to help you become more
comfortable with the capabilities of the program. •

57

(Hints and kinks

• At the risk of being slightly repetitive, and because these things can be important, it is once
again suggested that you edit resources in a copy of your target me, rather than the
original. Also, if you edit a me that is already open, for example the current System file,
and you make any changes, you must save those changes! -

• If you choose Get Info for ResEciit, you will fmd that Application Memory Size is set to
512K. If you are editing very large resources, even 512K is not sufficient. On the other
hand, ResEdit can be run in as little as 384K if necessary, particularly if you are only
dealing with small resources.

• The follOwing sequence of steps can be used to copy a 'PICf' resource from most drawing
or painting programs into another me:
1. Open the file that contains the graphic that you want to tum into a 'PICf'.

2. Select and copy the part of the graphic that you want.

3. Start ResEdit and open the me that you want to contain the 'PIer resource.

4. Open the 'PIer picker for that file.

5. Choose Paste.

If you paste with the me window open instead of the 'PIer picker window, you will get both
the 'PIer and the application's private resource type (for example, 'MDPL' if your 'PICf' is
from MacDraw).

• To add a picture to a 'DLOG':
1. Get a picture. Add it to the 'PIer resources in your me. (See immediately previous

tip.)-

2. Use Copy to put the ID number of the new 'PIer in the scrap.

3. Go to the'Dm' that belongs to the 'DLOG' you are adding the picture to.

4. Choose New Item.

5. Click the PICT button.

6. Paste the ID number from the scrap.

7. Close the Dialog Item Editor.

8. Choose Use RSRC Rect from the menu.

9. Position the picture.

CHAPTER 6 ResEdit Tips 59

• If you are using the 'ICNI' editor or the 'ICON' editor, and you make a selection with the
marquee and then cut or copy it, you can paste it as a 'PIer resource. Fitst close the 'ICNI'
or 'ICON' editor and picker. (You must close the picker in order for this procedure to
work.) If you then paste, ResEdit makes the contents of its scrap into a new 'PIer. The
'PIer resource picker does not have to be open when you perform the paste operation.

• There are keyboard equivalents for many operations you would ordinarily perform with
the roouse. Try selecting a fIle by typing the fll'St letter or two, then opening it with the
Return keYi you can do the same with resource types, and then with individual resources.
The arrow keys also work-for example, in a fIle list, you can go down the list with the
down-arrow key, and you can even select an individual resource by typing its ID number.

• In general, it is a good idea to use the same ID for an 'ALR'r or 'DLOG' and its associated
'Dffi', though. this practice is not required.

• Other shortcuts and handy items:
o At the individual resource level: Option-doubleclick for Open General.

o At the individual resource level: Option-Command-double-dick for Open As
Template.

o At the individual resource level: Option-Command-Shift-double-click (or Shift-Open
As Template) displays the template-type dialog box without the list of templates. (You
can type in the template type you want.) If you are operating from a floppy disk, this
can be a fast method.

o Option-Cut and Option-Copy append the cut or copied item to the scrap. This feature
does not work at the individual item editor level, even in the general or template
editors. At the individual item editor level, holding down the Option key does not
change the action of Cut or Copy.

o In the 'Dffi' editor: Option-Comrnanci-double-click on a 'CNTI', 'ICON', or 'PIer to
open it as a dialog item.

o Comrnand-click in a picker for disjoint selection.

o Shift-click in a picker to extend a selection. (In a pictorial display such as the one for
'ICON' resources, the selection will extend as a rectangle.)

o Option-open a resource type to use the general picker.
o Shift-New to create a new resource type gives you the "new type" dialog box without the list of

resources. You must, of course, type in the resource type you want, rather than being able to
select from the list. Again, if you are operating from a floppy disk, this mn be a fast method.

o In the bit editors ('CURS' and 'ICNI', for example), Shift-drag creates a selection rectangle
(marquee). Shift-drag inside the marquee moves it. Releasing the Shift key and clicking inside the
editing area turns off the marquee, but also inverts a bit in the picture. The marquee is also
available in the 'FONT editor.

60 Macintosh ResEdit Reference

(

(

• Depending on where you use it, Revert does different things. In an editor, it reverts only
the currently open resource. In a ftle window, it reverts the entire ftle. In a resource picker,
it reverts all resources of the current type.

• If you hold down the Command, Option, and Shift keys while choosing About ResEdit
from the Apple menu, you can toggle a special stress-testing mode ("Pig mode"). In this
mode, ResEdit performs a compact-memory operation and a purge-memory operation
each time it receives an event from the queue, excepting mill events. This feature was
designed as an aid to debugging ResEdit itself, and is, clearly, something most people will
never have any use for. It is suggested that you avoid invoking this mode.

• If the 'Dffi' for a 'DLOG' that is being displayed contains a reference to a 'CNTI' that
doesn't exist, the editor will hang (in NewDialog) when it tries to draw the dialog box.
Please be careful!

• Because 'Dffi' and 'ALRT resources are ordinarily displayed where you put them in the
window, there is some chance that they may be mispositioned. That is, if you don't have
your code put them exactly where you want them, they could show up where you don't
want them To be sure that a dialog box shows up where you want it to, mark it as
invisible, and reposition it exactly in your code. Have your code mark it visible right after
displaying it. (This avoids embarrassment.)

• If you hold down the Option and Command keys and choose About ResEdit from the
Apple menu, you get a list of credits that tells you who has worked on the program.

The 'IAYO' resource

One of the resources inside the Finder is of particular interes~ because it controls a number of
defaults, most of which are part of the layout of your desktop. It is the 'LA YO' resource. To
open the Finder with ResEdit, you must be running under the Finder itself (rather than under
MultiFinder), or you must edit a copy of the Finder. It is, of course, suggested that you edit a
copy. If you are under MultiFinder and you try to open the currently active Finder, you get an
error message that tells you the Finder is already open from another application.

If you are in a risk-taking mood (or if you have done this a few hundred times already and
have become inured to it), boot without MultiFinder, open the Finder, and choose the 'LA YO'
resource type. There is only one 'LAYO' resource, ID number 128. Open it.

The ftrst part of the template is shown in Figure 6-1. The ftrst two items control the display
fovt; that is, the font that prints out under the icons on your desktop. The default is 9-point
Geneva, as shown. If you dislike sans-serif fonts, you can easily change the ftrst two items to 2
and 9 (for New York at 9 points), or to 20 and 10 (for Times at 10 points, as the 9-point version
of Times is very small).

CHAPTER 6 ResEditTips 61

• Figure6-1 'LA YO' template, view 1

LfiYO 10 - 128 from Finder

Font 10 113 1
Font Size Ej Screen Hdr
Hgt

Top line 1-21
break

Bottoe line 117
break

Printing hdr li2
hgt '----.....

Printing 132

The line of numbers labeled Wmdow Rect in Figure 6-2 allows you to specify the default
folder (and disk) window size and lOcation. If you like, you can specify these defaults by
clicking the Set button and then dIawing a rectangle on the screen. Please note that if you are
running under MultiFinder, editing the 'LA YO' resource in a copy of the Finder, and you try to
start your rectangle in an area of the screen that has something other than a ResEdit window in
it, the obvious result will obtain: You will fInd yourself summarily ejected from ResEdit into
whatever you have clicked on. The cure is equally obvious: Move a ResEdit window to the
area where you want to start drawing your rectangle before you click on the Set button, or use
the number fIelds instead of the Set button.

You can also explicitly set the location of seven tab stops .

• Figure6-2 'LA YO' template, view 2

LAYO 10 • 128 from Finder
fooler hgl

IIlndo. Reet ~ IT!:] ~ E!!:J l1!D
Line ~paelng 116 1
Tab ~top 1 120 I
Tab atop 2 Ilii I
Tab atop 3 ~
Tab atop i ~
Tab atop S 1;=37=6===;1
Tab alop 6 li2i I
Tab atop 7 li56 . I

62 Macintosh ResEdit Reference

(A bit further down the template are the numbers that control the placement of the icons
themselves, as shown in Figure 6-3. Some people dislike having icons with long names
overlap and obscure the names of other icons. One solution to this problem is to reset the Icon
Vertical Phase. Figure 6-3 shows some modified numbers, rather than the defaults supplied
with the system release.

... Warning Do not set the Icon Vertical Phase to exactly half the Icon Vertical Spacing
unless you like system crashes. ..

• Figure 6-3 'LA YO' template, view 3

5!1 I LAYO ID .. 128 from Finder

Reserved

Icon Harz.
spacing

Icon Uert.
spacing

Icon Uert.
phase

SII. Icon
Horz.

SII. Icon
Uert.

Figure 6-4 shows some unused bits, and three commands, the ftrst of which ("Use zoom
Rects") is on by default. If you set it to False, the Finder will not use the zoom boxes that are
present in many windows.

"Skip trash warnings" prevents the system from asking you whether you really want to throw
away that application or System me. Since you can avoid the warnings by simply holding
down the Option key when you throw things into the trashcan, this seems a bit extreme.
Moreover, it can be quite dangerous, depending on what you tend to throw out and how
attentive you are about it.

If you don't like having to clean up your windows, try turning on "Always grid drags". This
option makes the icons stick in place, at the grid spacing specilled in the part of the template
shown in Figure 6-3. Some people prefer to be able to put them anywhere, and will eschew
this option.

CHAPTER 6 ResEdit Tips 63

The Watch Thresh setting (not visible in any of the pictures) allows you to adjust how long the
Finder will wait, during lengthy operations such as me copying, before it displays a wristwatch
cursor with animated hands. The time is expressed in 60ths of a second. If you make it too
short, the cursor will jitter and change shape too often. Some older Finders do not make use of
this option.

• Figure 6-4 'LA YO' template, view 4

151 LRYO ID ,. 128 from Finder
date

Use ZOOIl 00 @1
Reels

Skip trash @O 01
.arnings

AI.ays grid 00 @1
drags

Unused " @O 01
Unused j @O 01
Unused 2 @O 01

Unused 1 @O 01

"" "...,

Figure 6-5 shows a few more unused bits and the end of the template.

Use Physical Icon is handy if you have a Macintosh II or Macintosh SE with two floppy disk
drives. If this option is on, the icon you get when you insert a floppy disk into your machine
indicates which drive the floppy disk is in. The disk location is certainly easy enough to recall
just after you put the disk in, but you may forget it later. Not a major issue, but certainly a
pleasant convenience.

Title Click lets you double-click the title bar of a folder's window to bring the parent folder'S
window to the front (or to open it if it is not already open). This feature can be quite handy.

When you create folders on an AppleTalk® server, New Folder Inherit causes them to get their
privileges from the parent folder, and when you duplicate existing folders on an AppleTalk
server, Copy Inherit causes the copies to inherit their privileges from the originals.

The "Max # of windows" field allows you to set the maximum number of windows the Finder
can have open at anyone time. Increasing this number causes the Finder to need more
memory. Under MultiFinder, you may have to increase the memory allocation for the Finder if
you make this number much larger than the default

64 Macintosh ResEdit Reference

(• Figure 6-5 'LA YO' template, view 5

LRYO 10 • 128 from Finder

Unused 5 @o 01
Unused 1 @o 01

r Use Phys 00 @1 In

f
Icon

Title Click 00 @1 ill Copy Inherit @O 01

il~11 He. Fold @O 01
Inherit

;:;1)
Color Style 10

"ax • of 10
.Indolls

Some of the items in the 'LAYO' template have not been discussed here. Of these, some are
not yet in use. Others are either arcane or self-evident.

'KOIR' questions and answers

• How do I change the character generated by Shift-e?

Shift-e normally generates a capital E character. To make this key combination generate a
different character, simply hold down the Shift key and drag a character (with the roouse) from
the character chart to the e key on the keyboard.

You will notice that when you press the Shift key, the table that is highlighted in the table list
changes. (For roost key layouts, the highlight switches from table 0 to table 1.) This change
shows you that any character changes you make will be made in the highlighted table. When
you make Shift-e generate a different character, you are changing every roodifier key
combination that uses the highlighted table. For example, if Option-Shift used the same table
as Shift, you woul~ also have changed the character that was generated by Option-Shift-e.

CHAPTER 6 ResEdit Tips 65

• How do I change the behavior of a modifier key combination?

For example, suppose you wanted Option-Shift-a to generate a different character from that
generated by Option-Command-Shift-a. If you hold down the Option and Shift keys and then
press and release the Command key, you will notice that (for most key layouts) the
highlighted table does not change. If you want these two modifier key combinations to be
different, you need to create a new table for one of them. To do this, -you can use either the
New Table command or the Duplicate Table command from the KCHR rrenu. If you want to
create only a few differences, you should use the Duplicate Table command. In our example,
we only want Option-Command-Shift-a to be different, so we would do the following:

1. Press and hold down the Option, Command, and Shift keys.

2. Choose Duplicate Table from the KCHR menu.

3. Select the new table which was added to the end of the list (while still holding down
the modifier keys).

4. Choose OK in the alert that appears.

5. Drag the character from the character chart to the key that you want to change (while
still holding down all of the modifier keys).

• How do I remove a table that is no longer being used?

If you have reassigned a modifier key combination so that a table is no longer used, you can
remove the table by choosing "Remove unused tables" from the KCHR rrenu. If there are
unused or duplicate tables present when the editor is closed, you will be asked whether they
should be removed.

• How do I create a dead key?
You can create a dead key (such as Option-e in most key layouts) by choosing "Convert to dead key" from
the KCHR menu while the key is being held down. For example, follow these steps to make Option-k into
a dead key:

1. Press and hold down the Option and k keys.

2. Choose "Convert to dead key" from the KCHR menu.

3. Release the keys.

4. Once again, press Option and k to activate the dead-key editor.

• How do I remove a dead key?

Follow these steps:

66 Macintosh ResEdit Reference

.. /'

«

1. Select the dead key to display the dead-key editor.

2. Choose "Remove dead key" from the KCHR menu.

• In the dead-key editor, how do I create a new completion/substitution pair?

When the dead-key editor is active, you may drag characters from the character chart to the
completion/substitution pair list. The character on the left in the list is the completion
character, and the character on the right is the substitution character. For example, Option-E
produces the E character.

• In the dead-key editor, how do I delete a completion/substitution pair?

To delete a completion/substitution pair, drag either character from that pair in the
completion/substitution pair list to the trashcan in the lower-right comer of the window.

CHAPTER 6 ResEditTips 67

(

Chapter 7 A Development Scenario

1lmRE ARE SEVERAL USES OF REsEDIT that become very familiar to developers, with
practice. This chapter purports to show you one of them, to make the path a little less
brambly for you, so you don't need to sharpen your machete quite so often and so
your arms don't get quite so tired. •

69

Putting an icon on your application

Let us suppose for a moment that you are Josephine Developer, and you want your shiny new
application and its documents to have their own icons, so they will have a distinctive look on
the screen. In order to add icons, you must provide the icons themselves, the information that
the Finder needs in order to know that your application has its own icons, and the information
that tells the Finder which icon to match with each file type.

The 'BNDL' resource describes how me types match up with icons.

The flfSt field in the 'BNDL' editing template is for the "signature" of your application. This
field is labeled OwnerName. The signature consists of four characters that are used as the
creator type for your application and its documents. (Figure 2-2 shows the information display
window for a file. The creator type is at the right side of the window.) Your signature may be
any combination of four characters, so long as at least one of them is an uppercase letter.
Apple reserves all signatures without any uppercase letters. You may include space, Option­
space, and punctuation symbols, but they don't count as upper case letters.

The second field in the 'BNDL' template is labeled OwnerID, and must be zero.

The 'BNDL' can have any ID, but 128 is a typical value. The 'BNDL' lists the 'FREF' and 'ICN#'
resources that will be used. It associates a local ID with an actual resource ID for each
resource. For example, in Figure 7-1, the 'BNDL' refers to two 'FREF' resources and two 'ICN#'
resources. The local IDs of the 'FREF' resources will be used by the Finder. The local IDs of the
'ICN#' resources will be used by the 'FREF' resources to tell which icons to show for which me
types. (The term "local ID" refers to an entry in a resource table inside a resource, in this case
the 'BNDL' resource.)

One 'PREP resource exists for each me type to which you want to attach an icon. For example,
you could have text documents, read-only text documents, and., of course, the application
itself. Every 'FREF has a different ID and a different me type value in it. The icon local ID value
in each 'FREF' does not have to be unique. It mus~ however, match one of the 'ICN#' local ID
values listed in the 'BNDL' resource.

You need one 'ICN#' resource for each different icon you want to show. While it is typical that
one 'ICN#' resource exists for each 'PREP resource, you don't have to do it that way. For
example, you may not care to have a separate icon for read-only text documents. You might
just want them to have the regular text document icon. .

You also need a signature resource. Its type is the same four characters as the signature in the
'BNDL'. The signature resource consists of a Pascal string that lists version and copyright
information. The ID of this signature resource must be zero.

CHAPTER 7 A Development Scenario 71

In all, four resources are necessary for the Finder to recognize and show your application's
icon, Figure 7-1 shows a slightly more involved example which has an icon for itself, and an
icon for its documents, The four characters 'TIXT' are the creator type for this particular
application, In Figure 7-1, the 'BNDL' resource lists all of the other resources involved ('PREP,
signature, and 'JCN#'), On the right are the five additional resources listed in the 'BNDL',

• Figure '-1

File type

Six resources and their relationships

put a length byte and that
many 1Jytes of text here ...

mcr
o

PREP

Local ID Resource ID

Must be 0

ResourceID

Icon's LocalID L-. ________ L-__ -===--__ ---I Aka Local ID 1

72 Macintosh ResEdit Reference

Once you have created these resources inside your application, set the application's bundle
bit The set bundle bit tells the Finder that it should look for the 'BNDL'.

The icon has to be in the Desktop file in order for the Finder to display it. To be sure the icon
gets put into the Desktop file, copy your application to a floppy disk, and rebuild the Desktop
me on the floppy disk. To do that, hold down the Option and Command keys and insert the
disk into your Macintosh. You will see a dialog box that asks whether you really want the
Desktop rebuilt Answer OK If you have done everything correctly, you should see your
application's new icon. If you change your icon, rebuild the Desktop me in order to see the
new one.

Copy your application onto a floppy and, if necessary, rebuild the Desktop me on the floppy
disk. (To do that, hold down the option and command keys and insert the disk into your
Macintosh. You will see a dialog box that asks whether you really want the Desktop rebuilt.
Answer Yes.) Your application should now have its own icon.

As a general rule, your resource IDs should always be in the range 128 through 32767.
Resource numbering is discussed in more detail in Inside Macintosh, Volume I, Chapter S.
Further discussion about adding icons to your applications and documents is offered in Inside
MaCintosh, Volume ill, Chapter 1, and in Macintosh Technical Note #48.

Let's try that once again, from the top

Here are the steps for a specific example, in which we attach an icon to an application.

• Create an icon that has the look you want, and get it into your application.

1. Find some 'ICN#' that looks vaguely similar to what you want, or has minimal stuff in it.
Else, start from scratch by choosing the New command.

2. If you are starting with an existing icon, copy it, then paste it into your application. If you
are using New, you can create the icon inside your application directly.

3. Edit the icon until you have what you want. (See the 'ICN#' editing section in Chapter 3 for
details of this process.) Results are shown in Figure 7-2. While this is probably not the
distinctive look you actually want for your application, it is different from most icons you
fmd lying about in the street

CHAPTER 7 A Development Scenario 73

• Figure7-2 Edited 'ICNI', ready to go

• Give the icon an appropriate ID number.

1. Do a Get Info on the icon and choose an ID number that makes sense to you-and, if you
like, a name. (ID numbers here must be at least 128.) Figure 7-3 shows the info for the

. 'leN#' shown in Figure 7-1.

74 Macintosh ResEdit Reference

(• Figure7-3 'ICN#' info box

Ownertgpe

o Locked 0 Preload
o Protected

• Create a 'BNDL' resource and a 'PREP resource to match.

1. Copy a 'BNDL' resource and a 'PREP' resource and paste them into your application, or
create your own from scratch. You will, of course, have to do them one at a time, unless
you have a me that has one each 'BNDL' and one each 'PREP.

2. Configure the 'BNDL' to match the 'ICN#'. Figure 7-4 shows the top of the template of an
appropriate 'BNDL'. (The bottom of the template, not visible in the figure, lists a 'PREP,
also with resource ID number 134.)

CHAPTER 7 A Development Scenario 75

• Figure7-4 'BNDL' template view

.. File Edit

Rpproach the Quince Stealthily. .h the Quince Stealthily.

iii - "Fungo Mudwad-

Om Moof I I ~
~ 0 . Al BNOls from Moof I ~ ...
o ~. ~lmlO_ BNOl "Sobboon Bundle" 10 - 134 from Moof

Oil CC
B1 ~ iI C de O.nerHaae HOOF

o 0 DI O.nerlO a

~ ~: HuaTypes 1

o 0 FR *****
ODIe
!L 0 IMl

o PI
~ 51
D'Yi
IcF01l~
OFontsl

Box o Games
o goofy

Type

• a(type

Local 10

RsrclD

o

10

3. Edit the 'PREP similarly. It is actually very simple, and merely needs to note that your File
Type is APPL, and your Icon localID is O. If your application has documents associated
with it, and you want to have icons for those too, you will need more 'FREF' and 'ICN#'
resources to go with them Look at the 'FREF resources in a reasonably complex
application for an example.

4. Create the signature resource. Use the New command at the me level to make a new
resource, ID 0, the type name of which is the OwnerName from your 'BNDL'. In this case,
that's 'MOOP.

5. You probably want to put a Pascal string into the empty signature resource. Include the
velSion and copyright information and anything else you deem appropriate. (A Pascal
string consists of a length byte followed by that many bytes of text.)

• Make sure it's all turned on.

t. Use ResEdit to do a Get Info on your application, and set the Bundle Bit

2. Use the Finder to do a Get Info on your application.

If you don't see your icon, there is another step you can take to get the icon into the Desktop
me so you can actually see it

76 Macintosh ResEdit Reference

Copy your application onto a floppy and, if necessary, rebuild the Desktop me on the floppy
disk. (To do that, hold down the Option and Command keys and insert the disk into your
Macintosh. You will see a dialog box that asks whether you really want the Desktop rebuilt.
Answer OK.) Your application should now have its own icon.

CHAPTER 7 A Development Scenario . 77

(

(

Chapter 8 Extending ResEdit

YOU MAY WANfTO CREATE AND EDIT YOUR OWN mES OF RESOURCES. You can write
pickers and editors as extensions to ResEdit in Pascal or C, substituting your own
program for parts of its code. This chapter describes the process and discusses
necessary and optional functions and procedures. •

79

(Pickers and editors

When ResEdit uses your program, it looks for two general capabilities: a picker and an editor.
Pickers and editors are separate from the main code of ResEdit and hence may be supplied by
user-written software.

The picker is the part that displays all the resources of your type in the resource type window.
It is given the resource type and should display all resources of that type in the current
resource me, using a suitable display format. If the picker is given an open call and there's a
suitable editor, it should launch the editor. You need not supply your own picker; if a custom
picker is not available, the standard picker is used to show a list of your resources, with their
names and IDs.

The editor is the code that displays and lets you edit a particular resource. The editor is given a
handle to the resource object and should open an edit window for you.

Note that pickers and editors can be opened from anywhere. For instance, a dialog editor
might open an icon picker so that you could choose an appropriate icon.

Code-containing resources in the ResEdit release

ResEdit includes three different types of resources that contain code. Much of the code is in
the normal 'CODE' resources. The editors and pickers are found in the 'RSSC' resources, and
the LDEF (or list defInition) procedures are found in the 'LDEF resources. The resource names
of the pickers and editors are very important. The resource name of the 'RSSC resource for a
picker should be the resource type that the picker will pick. The resource name for an editor
should be the resource type that the editor will edit, with a commercial "at" sign (@) in front of
it. Sub-editors (described under "GiveSubEBirth," later in this chapter) should have a dollar
sign ($) in front of the resource type name. For example, the 'Dffi' picker can be found in an
'RSSC resource with the name Dffi. The 'Dffi' editor can be found in an 'RSSC' resource with
the name @Dffi, and the 'Dffi' sub-editor in an 'RSSC' resource with the name $Dffi.

CHAPTER 8 Extending ResEdit 81

Samples

A sample resource editor, picker, and IDEF (list defmition procedure) are included with
ResEdit. The samples are provided in both C and Pascal and use the MPW 3.0 environmen~
the MPW C or Pascal Compiler, and the MPW Assembler. The appropriate build mes and
makeftles are also provided.

Sample editor

A sample ResEdit editor is provided in the me ResXXXXEd. In this sample, XXXX represents
your resource type. The sample editor will simply display a window and invert its contents.
Since the details of editing your resource are known only to you, it is up to you to fill in the
code necessary to make this into a real editor.

The sample editor is initialized by means of the EditBirth procedure when a resource of
type:XXXX rrrust be edited. EditBirth is passed two handles: a handle to the resource to be
edited (the same handle that would be received by using a GetResource calO and a handle
back to the picker that launched the editor.

The editor then creates a window and sets up any data structures needed to operate. Because
it may be loaded in and out of memory during any given session and because it doesn't have
access to global variables, it creates a handle to a data structure to hold all data that needs to
be preserved between calls. It stores the handle in the edit data structure rXXXXRec. Note
that the handle to the edit data structure is stored in the window's ref Con parameter. ResEdit
uses this data structure to identify which editor or picker is to receive a given call.

ResEdit detennines which editor should receive which events, so you need to do very little
event decoding in your editor. During an update even~ the BeginUpdate and EndUpdate

calls are done by ResEdi~ not by the extension program.

Sample picker

A sample ResEdit picker is provided in the me ICONPick. The sample picker is the actual
'ICON' picker from ResEdit. The 'ICON' IDEF (in the me ICONLDEF) is included with this
example so that you can see the interaction between a picker and its IDEF.

82 Macintosh ResEdit Reference

SampleLDEF

A sample ResEdit LDEF is provided in the file GNRLLDEF. An LDEF is a list definition
procedure used to customize the way the List Manager draws and highlights cells. For more
information, see Iruide Macintosh, Volume W, Chapter 30, and Technical Introduction to the
Macintosh Family, Chapter 3. In ResEdit, LDEFs are used to customize the look of the picker
windows. LDEFs are generally very simple procedures that draw or highlight a single cell of a
list The sample LDEF is the general LDEF from ResEdit This LDEF is used to display a files
resource list By looking at this LDEF and the one included with the 'ICON' picker, you can see
two different ways of using custom LDEFs.

Bullding the examples

You can build the examples by using the build scripts provided in the folder appropriate for
the language that you are using. The build scripts assume that ResEdit and the Examples folder
will be found in the directory {boodResEdit:. If these files are located elsewhere, the build
script files should be modified accordingly.

If ResEdit is successfully located, the MakeFile instructions will install the editor, picker, and
LDEFs "directly into ResEdit. When you are experimenting with changing any of these files, you
may want to build into a copy of ResEdit. If anything goes wrong, you can get a fresh copy of
ResEdit for your experiments.

Using ResEd

The program you write must be a Pascal unit or C header fIle and library. Its interface with
ResEdit is established by the MPW unit ResEd, contained in the fIle ResEd. p or ResEd.h. Your
unit must begin with a USES declaration for this unit.

The assembly-language code that "opens up" ResEdit and activates your program is contained
in the file ResEd68k.a. It must be linked with your Pascal or C module. When you open a
resource of your type, ResEdit will call this code.

If your build script does not automatically install your editor or picker, place it in ResEdit's fIle
by using ResEdit itself, with the type 'RSSC' and a unique ID number. Please use an ID number
greater than 10,000 to avoid future conflicts. Your editor'S name in the ResEdit fIle must be of
the form @ABCD, where ABCD is the name you have assigned to the new type it edits. Install
your picker (also of type 'RSSC') with the name ABCD (without the commercial "at" sign).

CHAPTER 8 Extending ResEdit 83

Writing a ResEdit extension

Here are two things to remember when writing a ResEdit extension:

• Always know which resource you are requesting and where it will come from. Many
resource ftles may be open at any given time. Whenever a resource is needed, make sure
which resource fIle you are accessing by using UseResFile or similar operations.

• Your editor may be called with an empty handle in order to create an entirely new
instance of the type you edit

In all of these procedures, remember to lock any handle that is going to be dereferenced (for
example, in a Pascal wi th statement). For example, in Pascal, the fIrst instructions in the
DoEvent procedure should be

BubbleUp(Handle(object»;
HLock(Handle(object»;

It is important to call the BubbleUp procedure to avoid heap fragmentation. Remember to
unlock the object at the end of the procedure!

If any of these procedures will need access to the current port, especially in Edi tBirth,
DoEvent, and DOMenu, call

SetPort (objectAA.wind)

if you are writing in Pascal, or

SetPort (*object->wind)

if you are writing in C.

Required routines

Each picker and editor must contain a set of required procedures. Some of these procedures
are appropriate only for editors and others are appropriate only for pickers, but all of them
must appear in all editors and pickers.

EditBirth

PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle);

This procedure should initialize the editor data structure and create an editor window for the
given resource type. In a picker, this procedure will do nothing and should be defIned as

84 Macintosh ResEdit Reference

"'",'

PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle);
BEGIN
END;

PickBirth

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);

This procedure should initialize the picker data structure and create a picker window for the
given type. P ickBirth is very similar to Edi tBirth except that it takes a resource type as
a parameter instead of a resource handle. In an editor, this procedure will do nothing and
should be defmed as

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);

BEGIN
END;

DoEvent

PROCEDURE DoEvent(VAR evt: EventRecord; object: ParentHandle);

DoEvent handles all events for the picker or editor. The object parameter can be locally
defmed as whatever type is appropriate (such as a P ickHandle) instead of the generic
ParentHandle.

Editors will normally handle all of the events (except those described in the next paragraph)
themselves, whereas pickers should simply call PickEvent.

Many events are handled by the main part of the ResEdit code before the DoEvent procedure
is called. For mouse-down events, ResEdit handles the following events: opening menus,
dragging windows, closing windows, switching between windows, and converting doub1e­
clicks to open commands. Update events call BeqinUpdate and EndUpdate around the
call to DoEvent. For key-down events, the DoMenu procedure is called if the Command key
was down (unless the key was Return, Enter, or an arrow); DoEvent is called otherwise.
MultiFinder suspend and resume events are converted into the appropriate activate or
deactivate events.

DolnfoUpdate

PROCEDURE DoInfoUpdate(oldID, newID: INTEGER; object: ParentHandle);

CHAPTER 8 Extending ResEdit 85

This procedure is called when information about a resource-for example, its ID number-is
changed in a Get Info window. (See the ShowInfo procedure, discussed later in this chapter
under "Miscellaneous utilities.") For editors, the DoInfoUpdate procedure should
recalculate the window title and the name stored in the ParentHandle and pass the update
on to its father by using the CallInfoUpdate procedure as follows:

CallInfoUpdate(oldID, newID, objectAA.fatherAA.windA.refCon,
objectAA.fatherAA.windA.windowKind); .

Pickers should simply call

PickInfoUp (oldID, newID, object);

DoMenu

PROCEDURE DoMenu(menu, item: INTEGER; object:ParentHandle);

DoMenu handles all menu events for the picker or editor. The object parameter can be locally
deftned as whatever type is appropriate (such as a P ickHandle) instead of the generic
ParentHandle.

The main part of the ResEdit code takes care of several of the menu-handling details. All
selections from the Apple menu are handled so that the editors and pickers do not need to
know anything about desk accessories. The Set Preferences, Quit, and Transfer commands in
the File menu are also handled by the main program. The Quit and Transfer commands
display the Save Changes dialog box and may pass a Close command to all editors and
pickers. (All other commands are passed directly to the DoMenu procedure.) If your editor
needs to do some cleaning up before the Quit command completes (such as, for example,
restoring the system color palette), it should do so when it receives a close or deactivate
command. If "no" is chosen in the Save File dialog box, the frontmost window receives a
deactivate event No events are passed to any other window. When your editor receives a
Close command, it can call CloseNoSave to see whether edit checking should be
performed. If the current me is being closed but the changes are not being saved,
CloseNoSave will return TRUE, and edit checking should not be performed.

Pickers can simply call

PickMenu (menu, item, object);

If your picker has loaded all of the resources, the DoMenu procedure should release them
when a Close command is received (to avoid heap fragmentation). The 'CURS' picker, for
example, must load all of the 'CURS' resources so that they can be drawn.

86 Macintosh ResEdit Reference

(

(

(

Using customLDEFs

Usually, you will want to write your own picker simply to display the resource list in a more
meaningful way (such as, in the 'ICON' picker, drawing the icons themselves instead of listing
their names). You can easily accomplish this task by providing a simple picker and a custom
LDEF that is used for drawing the picker list When you call WindList in your P ickBirth
procedure, pass the resource ID of your picker as the drawProc parameter. You can get the
resource ID by calling ResEdID. The resource ID is passed on to the LNew procedure. You
should then provide a custom LDEF with the same resource ID. The LDEF will be called
whenever the list needs to be updated. Please refer to the list Manager chapter in Inside
Macintosh, Volume Nfordetails of how the drawProc mechanism works.

CHAPTER 8 Extending ResEdit 87

The ResEd interface

The ResEd unit contains data structures, procedures, and functions that you can access from
your extension program They are described in the remainder of this chapter.

Data stroctures

The ResEd unit declares the data structures described in this section, which provide
communication between extension programs and ResEdit. Each editor or picker has its own
object handle. The data structure has to start with a handle to its parent's objec~ followed by
the name distinguishing the father. This name will be part of the son's window title. The next
field should be the window of the object that may be used by the son to get back to the father
through the ref Con in the windowRec record. The next field is the rebuild flag used to
indicate that.a window's data (for example, a pickers list) needs to be recalculated at the next
opportunity. The rest of the handle can be of any format. Editors and pickers typically declare
additional fields following the rebuild field, and can store in these additional fields global data
that they need to access from the DoEvent, DolnfoUpdate, and DoMenu procedures.

The name (in the ParentRecord) for a picker should be the name of the me, folder, or disk.
For editors, the name should be the complete name (not the window's title), preceded by an
editorNameChr character. An example of a complete name would be "ALRT ID - -1234
from AFile". This name is used to uniquely identify a window. The window's title is created by
GetWindowTitle or EditorWindSetup, described later in this chapter.

• Note: It is very important for editors and pickers to follow these conventions for name and
window title. For pickers, it is more important that the window's title be unique, and for
editors, that the name be unique. The AlreadyOpen procedure uses the window's name
and title to determine whether the window is open. Please refer to the description of
AlreadyOpen, later in this chapter under "Window management routines," for complete
infonnation about how the name and title are used.

88 Macintosh ResEdit Reference

(

:{
\\

The parent record

ParentPtr = AParentRec;
ParentHandle = AParentptr;
ParentRec = RECORD

father: ParentHandle;
name: Str64;
wind: WindowPeek;
rebuild: BOOLEAN;

END;

The picker record

{ Back ptr to dad }

Flag set by son to indicate that }
world has changed so father should
rebuild list }

The record for pickers is slightly different from the standard parent record. The first four fields
are the same as those in the parent record. The rest of the fields are specific to pickers.

PickPtr = APickRec;
PickHandle = APickPtr;
PickRec = RECORD

father: ParentHandle;
fName: STR64;
wind: WindowPtr;
rebuild: BOOLEAN;

pickID: INTEGER;
rType: ResType;
rNum: INTEGER;
rSize: LONGINT;
nInsts: INTEGER;
instances: ListHandle;
drawProc: Ptr;
scroll: ControlHandle;
END;

Other routines

{ Any type is OK here }

Back ptr to dad

Picker window }
Flag set by son to indicate that
world has changed so father}
should rebuild list }
Resource ID of this picker }
Resource type for this picker
Resfile number }
Size of a null resource
Number of instances
List of instances }
List draw procedure
Scroll bar }

You are likely to want more than just the required routines in your code. Here are others you
can use.

Launching routines

PROCEDURE GiveEBirth (resHandle: Handle; pick: PickHandle);

CHAPTER 8 Extending ResEdit 89

Gi veEBirth starts an editor. This routine is used when a picker wants to start an editor or
when an editor wants to start another editor (as when the 'OLOO' editor starts the 'ont'
editor). If Open as Template was chosen or an editor is not found, the 'GNRL' (template)
editor is started. If Open General is chosen or neither an editor nor a template is found, the
general (hexadecimal) editor is started. A call to the appropriate editor's EditBirth
procedure is then generated, as follows:

EditBirth (resHandle, pick)

In this call, ResHandle is the handle of the resource that is to be edited, and pick is the
caller's ParentHandle.

• Note: When an editor is starting another editor, it is important to remember that
pick"" . rType and pick"" • rNurn must be set before this routine is called. The
editor's ParentRecord will need to be a superset of a P ickRec, at least down to the
rNum field. The Gi veEBirth procedure looks into the P ickHandle parameter for
information (for example, the resource type) that it needs to start up an editor.

PROCEDURE GiveThisEBirth (resHandle: Handle; pick: PickHandle;
openThisType:ResType);

Gi veThisEBirth is similar to Gi veEBirth, except that it lets the caller specify the type
of editor to open. The specified editor is opened even if Open as Template or Open General is
chosen. If an editor of the specified type is not found, a template of the specified type is
opened. If a template is not found, the general editor is opened.

PROCEDURE GiveSubEBirth (resHandle: Handle; pick: PickHandle);

Gi veSubEBirth starts an editor that edits a part of another type of resource. For example,
the 'Ont' editor uses Gi veSubEBirth to start the Dialog Item Editor. Gi veSubEBirth
behaves exactly like Gi veEBirth except that the name of the resource that it looks for
begins with a dollar sign ($) instead of a commercial "at" sign (@). For example, the name of
the 'Ont' editor resource is @ont and the name of the 'Dnt' sub-editor resource is $ont.
This allows an editor to use the standard method for editing multiple occurrences of a subtype
within the resource. For example, a dialog item list CDITL') typically contains several dialog
items. Calling Gi veSubEBirth lets the user open multiple dialog items and treat them the
same as any other windows.

Information-passing routines

PROCEDURE CallInfoUpdate (oldID, newID: INTEGER; refcon: LONGINT; id:
INTEGER) ;

90 Macintosh ResEdit Reference

(

(

CallInfoUpdate passes an info update command to the specified window. After updating
its own window and data structures, each editor's DoInfoUpdate procedure should call this
routine to pass the info update along to its parent window. This call is necessary since the
parent may be displaying data (such as the ID or name in a picker window) that has been
changed. An editor could pass this information along by making the following call:

CallInfoUpdate (oldid, newid, fatherAA.windA.refcon,
fatherAA.windA.windowkind);

PROCEDURE PassMenu (menu, item: INTEGER; father: ParentHandle);

Pas sMenu passes menu commands on to any son pickers or editors that you have started.
For example, when your editor receives a Close command, it should pass that command along
to any su~tors or information windows that it has opened by making the following call:

PassMenu (fileMenu, closeItem, myObj)

Window management routines

FUNCTION AlreadyOpen (VAR windowTitle, windowName: STR255; dad:
ParentHandle): BOOLEAN;

AlreadyOpen looks to see if the window is already open. If the window is open,
AlreadyOpen activates it and returns TRUE. WindowTitle and windowName are as
defined by GetWindowTitle. You don't need to call this function if you are using the
WindSetup, CWindSetup, or EditorWindSetup procedure.

• Note: You should call AlreadyOpen, to avoid opening the same resource twice.
AlreadyOpen depends on your setting up the windowTitle and windowName
correctly. For pickers, the windowTitle must uniquely identify the window. For editors,
the name must uniquely identify the window. The name is used for editors so that the
window title can be simple and short. For example, the window title for a dialog item
might be Edit DITL item *3, whereas its name would be Edit DITL item :/t3

• DITL "<resource name>" id = <num> from <file name>.

FUNCTION CWindSetup (width, height: INTEGER; t, s: STR255):
WindowPtr;

This function is identical to WindSet up except that it creates a color window.

PROCEDURE GrowMyWindow (minWidth, minHeight: INTEGER; windPtr:
WindowPtr; lh: ListHandle);

This procedure is used by pickers to grow their windows. The rninWidth and minHeight
parameters detennine the minimum size of the window; windPt r is the window to be
grown; lh is the list that is in the window.

CHAPTER 8 Extending ResEdit 91

The GrowMyWindow procedure takes care of everything that is necessary to grow a pickets
window. If necessary, the list is resized and redrawn. Two-dimensional lists (such as those the
icon picker uses) are updated to fit as many cells as possible in the window without requiring
horizontal scrolling.

PROCEDURE GetWindowTitle (VAR windowTitle, windowName: STR255;
addFrom: BOOLEAN; dad: ParentHandle);

GetWindowTitle constructs the window title and name for an editor. This routine should
always be called in the DolnfoUpdate procedure, and should be called in the EditBirth
procedure if EditorWindSetup is not called. WindowTitle should be used for the
window's title. AddFrom detennines whether or not the name of the file is added to the title.
WindowName should be saved in the name field of the editor's data structure. This name is
used later to identify the window uniquely. On input, windowT it Ie should contain only the
title or the resource (for example, 'ALRT' or Cursor) and windowName should contain the
resource type (for example, 'ALRT'). If EditorWindSetup is not used, the following code
fragment can be used to assure that the name and title are correct:

GetReslnfo(myResource, theID, theType, windowTitle);
TypeToString (theType, windowTitle); .
SetETitle(myResource, windowTitle);
windowName :- windowTitle;
GetWindowtitle (windowTitle, windowName, TRUE, parent);

PROCEDURE SetETitle (resHandle: Handle; VAR title: STR255); Extended
Resource Manager

SetETitle concatenates the resource's ID with its name and places the result into title.
The resHandle parameter is the handle to the resource. You can use this routine when you
are constructing a window's name or title.

FUNCTION WindAlloc: WindowPtr;

WindAlloc returns a pointer to a window record to be used by your editor or picker. Using
this routine instead of allocating your own window pointer can help reduce heap
fragmentation. Because windows are pointers and must be nonrelocatable objects in the heap,
ResEdit uses this procedure to try to allocate WindowPtr pointers as low in the heap as
possible. When this procedure is called, it usually returns a Windowptr that it has previously
allocated low in the heap.

PROCEDURE WindReturn (w: WindowPtr);

WindReturn returns a window pointer that was allocated by WindAlloc. Use this
procedure when you terminate your editor or picker and you are finished with its window.
WindReturn makes the memory used by the window available to another picker or editor
for use as a new window, which helps keep the nonrelocatable window pointers as low in the
heap as possible.

92 Macintosh ResEdit Reference

(

it

FUNCTION WindList (w: WindowPtr; nAcross: INTEGER; cSize: Point;
drawProc:INTEGER): ListHandle;

WindList creates a new empty list and returns a handle to that list. This procedure should
be used by pickers to allocate their lists. WindList calls the LNew procedure to allocate a
list. w is the window in which the list will be created. nAcross specifies the number of cells
across that the list should contain. The list is allocated with 0 rows. cSize is the cSize
parameter to LNew. drawProc is the Proc parameter to LNew. For more information on
lists and a description of the LN ew parameters, see the List Manager chapter in Inside
MaCintosh, Volume IV. Please refer to the section "Using custom LDEFS," earlier in this
chapter, for information on specifying custom draw procedures.

PROCEDURE WindOrigin (w: WindowPtr);

WindOrigin moves the window pointed to by w to a position below and to the right of the
front window. This routine will guarantee that, if possible, the entire window will be visible. If
you are using the WindSetup, CWindSetup, or EditorWindSetup procedure, you·
don't need to call this procedure.

FUNCTION WindSetup (width, height: INTEGER; myType, name: STR255):
WindowPtr .

WindSetup should be called by pickers from the PickBirth routine to setup their
window(s). It creates and automatically positions a new window with the given width and
height, and displays a title formed by the concatenation of myType and name. A pointer to
the window is returned. Calling this routine is equivalent to calling Get windowT it Ie,
AlreadyOpen, WindAlloc, NewWindow, WindOrigin, and ShowWindow. The
myType parameter should contain the resource type, and the name parameter should contain
the name from the fathers parent record. For example, the 'CURS' picker makes the following
calls at the beginning of its P ickBirth procedure:

GetStr(fromStr, miscStrings, from); {get the 'from' string}
myTitle := 'CURS';
ConcatStr(myTitle, from);
myWind := WindSetup(GetMyWidth, GetMyHeight, myTitle, dadAA.name);

• Note: NIL is returned if the window can't be allocated for some reason or the window is
already allocated (a picker is already open). If NIL is returned, the P ickBirth routine
should be aborted.

FUNCTION EditorWindSetup (color: Boolean; width, height: INTEGER;
VAR windowTitle, windowName: STR255; addFrom:
BOOLEAN; dad: ParentHandle): windowPtr;

CHAPTER 8 Extending ResEdit 93

EditorWindSetup should be called by editors from the EditBirth procedure to set up
their windows. It is very similar to WindSet up except that it automates a few more details of
creating an editor's window. If the color parameter is TRUE, a color window is returned.
WindowTitle, windowName, and addFromare passed directly to GetWindowTitle.
Refer to the description of GetWindowTitle for details about these parameters.
windowName is returned with the string that should be used for the name in the
ParentRecord. This routine also takes care of constructing the windowTitle and
windowName correctly so that the window can be uniquely identified.

• Note: NIL is returned if the window can't be allocated for some reason or the window is
already allocated (an editor is already open). If NIL is returned, the Edi tBirth routine
should be aborted.

Resource utillties

FUNCTION AddNewRes (hNew: Handlei t: ResTypei idNew: INTEGER; s:
str255): BOOLEAN;

AddNewRes has the satre parameters and performs the same actions as the Madntosh
procedure AddResource, with a couple of additions. If an error is detected, an alert is
displayed and FAlSE is returned; TRUE is returned otherwise.

FUNCTION CurrentRes: INTEGER;

CurrentRes returns the ID number of the current resource file. This routine is the same as
the CurResFile trap except that if CurResFile returns SysMap, this routine returns 0
(for the System file).

A typical use of this procedure would be to save the current resource me so that it can be
restored later. For example:

SavedResFile := CurrentRes;
UseResFile(SomeOtherRes);

UseResFile(SavedResFile);

FUNCTION GetlIndex (t: ResType; index: INTEGER): Handle;

Get 1 Index is similar to the Get 1 IndResource trap. The only difference is that if the
resource is not found, this routine will set ResError to the resourceNotFound error and
return NIL.

FUNCTION GetlRes (t: ResType; id: INTEGER): Handle;

94 Macintosh ResEdit Reference

(

Get lRea is similar to the Get lReaource trap. The only difference is that if the resource is
not found, this routine will set ReaError to the reaNotFound error and return NIL.

PROCEDURE GetlMapEntry (VAR theEntry: ReaMapEntry; t: ReaType; id:
INTEGER) ;

Get lMapEnt ry accesses the current resource map for a resource of type t and ID number
id, placing the result in theEntry. For a description of resource maps, see "Format of a
Resource File" in Inside Macintosh, Volume I, Chapter 5.

PROCEDURE GetlIMapEntry (VAR theEntry: ReaMapEntrYi t: ReaType;
index: INTEGER);

Get lIMapEnt ry is similar to GetlMapEntry, described earlier, except that it refers to its
resource by index instead of by 10 number.

FUNCTION NeedToRevert (my Window: WindowPtr; theRes: Handle): Boolean;

The NeedToRevert function should be called by all editors before they revert their
resource. If the editors window is the frontmost window and the resource has been changed,
an alert is displayed, asking the user to verify that he or she really wants to revert the resource.
If the user does want to revert the resource, the function returns a value of TRUE. Otherwise, it
returns a value of FALSE. The my Window parameter is a pointer to the editors window. The
theRea parameter is the handle of the resource that is to be reverted.

FUNCTION NewRes (a: LONGINT; t: ReaType; 1: LiatHandle; VAR n:
INTEGER): Handle;

Given a size, s, NewRea allocates a new handle, clears it, adds it to the current resource me as
a resource of type t with a unique ID, adds it to the list 1 (unless 1 is NIL), and returns a
handle to the new resource. The parameter n is the item number in the list 1. If this function
fails, it returns a NIL handle.

FUNCTION RevertThisResource (theObj: ParentHandle; res: Handle):
BOOLEAN;

Revert ThiaResource restores a resource being edited to the state it was in before editing
started. The parameter res is a handle to the resource. The parameter theObj is the
ParentHandle from the current window. It is needed to determine whether the resource
was newly added. The RevertThiaReaource function returns a value of FALSE if the
resource was newly added by ResEdit (and, therefore, no longer exists after the reversion),
TRUE otherwise. If the resource has not been changed (its resChanged flag is not set),
nothing is done.

PROCEDURE RemoveResource (theRes: Handle);

CHAPTER 8 Extending ResEdit 95

This procedure should always be used in place of the toolbox call RmveResource. It
correctly handles resources that have the protected attribute set, by unprotecting them before
removing them Other than this, the function of this routine is the same as that of the
RmveResource toolbox procedure.

FUNCTION SysResFile: INTEGER;

This function returns the resource me ID of the System me. It is often necessary to take special
precautions when accessing the System me. This function allows you to take these precautions
without hard-coding a value for the system resource me ID, which may change in the future.

Miscellaneous utilities

PROCEDURE Abort;

Abort sets the abort flag, which will stop any command that is in progress. The most
common use of this command would be in stopping the Quit command. For example, if an
error is detected in a template when its window is being closed, the template editor calls
Abort so that processing of the Quit command will stop and the error can be corrected.

FUNCTION WasAborted: BOOLEAN;

WasAborted returns the state of the aborted flag (set by the Abort procedure just
described). This function is useful, for example, if you have just called PassMenu with a
Close command and you want to know if any of the windows that were closed encountered a
problem.

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT);

AbleMenu enables or disables menu items. Ablemenu differs from the Resource Manager
routines EnableItem and DisableItem in that it acts on the entire menu. The parameter
menu is a menu ID; enable is a mask. Values used for the mask can be found in the ResEd
me.

PROCEDURE BubbleUp (h: Handle);

BubbleUp sets Up the correct heap zone and then performs the Memory Manager routine
MoveHHI. For information about MoveHHi, see Inside MaCintosh, Volume IT, Chapter 1. This
routine should always be called before the Macintosh procedure HLock is called for any
handle, to avoid heap fragmentation. Remember to unlock any handle that you lock!

FUNCTION BuildType (t: ResType; 1: ListHandle): INTEGER;

Given a list that has been initialized with no rows, BuildType builds a list of all resources of
type t from the current resource me. (See the WindList routine described earlier in this
chapter.) If SetResLoad (FALSE) has not been called, all of the resources will be loaded
into memory. BuildType returns a count of the number of instances that it adds to the list.

96 Macintosh ResEdit Reference

(
A picker can set up its window with this sequence:

myList := WindList(myWindow, myListWidth, myCellSize, ResEdid)i
LDoDraw(FALSE, myList); {draw it later}
NInsts := BuildType(myType, myList);
LSetSelect(TRUE, Cell(O), myList); {automatically select first cell}
LDoDraw(TRUE, myList); {ok to draw it next time}

FUNCTION CheckError (err, msgID: INTEGER): BOOLEAN;

CheckError displays an error alert if err is nonzero. This routine has built-in alert
messages for several errors (such as disk write protected, out of memory, and so on). If
msgld is negative, a fatal error message is retrieved from the 'STR#' resource with ID of 128.
This resource is preloaded into memory, and may be accessible even if a serious error has
occurred. If msgID is nonnegative, an error message from the 'STR#' resource with ID of 129
is displayed. If the error is not one that is built in, the string with an ID of ms g I D is displayed
in the alert. TRUE is returned if err was zero, FALSE otherwise. When adding a new string
for use by CheckError, be sure to add it to the end of the existing list in the 'STR#' resource.

FUNCTION CloseNoSave: BOOLEAN;

CloseNoSave returns a Boolean value that indicates whether or not data checking should
be performed before clOSing. A return value of TRUE indicates that checking should not be
performed. For example, if the user is editing a template and there are errors in the template
when the Quit command is chosen, the template editor should not perform edit checking if
"no" was clicked in the Save Changes dialog box.

PROCEDURE ConcatStr (VAR strl: STR255; str2: STR255)i

ConcatStr concatenates str2 to strl, leaving the result in strl.

... Warning This routine does not check for aggregate string length in excess of 255
characters. Please be careful! •

FUNCTION DefaultListCellSize:INTEGER;

DefaultListCellSize returns the height of a list cell with the application font (ascent +
descent + leading). This function should be used by pickers when setting up their window.
For example, a picker might make the following call:

my Window := WindSetup (width, pickStdRows * DefaultListCellSize,
resType, dadAA.name);

FUNCTION DisplayAlert (which: AlertType; id: INTEGER): INTEGER;

CHAPTER 8 Extending ResEdit 97

DisplayAlert displays an alert with the given id. This routine assures that the alert
resource is loaded from ResEdit and that the cursor is reset to an arrow. Display of every alert
should use this routine. The which parameter determines the kind of alert that is displayed.

AlertType - (displayTheAlert, displayStopAlert, displayNoteAlert,
displayCautionAlert);

PROCEDURE FixHand (s: LONGINT; h: Handle)}

FixHand makes sure that the object to which h is a handle is s bytes long. If it is longer,
F ixHand shrinks i~ if it's shorter, F ixHand expands it and fills the extension with zeros.

PROCEDURE GetStr (num, list: INTEGER; VAR str: STR255);

GetStr returns, in str, string number num from ResEdit's 'STR#' resource with ID of list.
All strings should be stored in either 'STR#' or 'STR I resources to maintain the international
localizability of ResEdit

PROCEDURE FlashDialogItem (dp: DialogPtr; item: integer);

FlashDialogItemflashes (inverts) a dialog button for 8 ticks to indicate that the button
was selected.

PROCEDURE FrameDialogItem (dp: DialogPtr; item: integer);

FrameDialogItemdraws a frame around a dialog button to indicate that it is the default
button (the button that will be selected when either the Return or the Enter key is pressed).

FUNCTION GetQuickDrawVars: pQuickDrawVars;

This function returns a pointer to the QuickDraw™ variables that are normally available to
Macintosh programmers. Because of the way that pickers and editors are implemented, they
do not normally have access to these variables.

The following types are used with this function:

pQuickDrawVars = AQuickDrawVars;
QuickDrawVArs - RECORD

randSeed: LONGINT;
screenBits: BitMap;
arrow: Cursor;
dkGray: Pattern;
ltGray: Pattern;
gray: Pattern;
black: Pattern;
white: Pattern;
thePort: GrafPtr;

END; { QuickDrawVars

FUNCTION HandleCheck (h: Handle; msgID: INTEGER): BOOLEAN;

98 Macintosh ResEdit Reference

,/

(

HandleCheck checks to see if the handle h is NIL or empty. If it is either, HandleCheck

returns FALSE and displays an error alert, using string msgID from ResEdit's 'STR#' resource
ID 129. If the handle id is OK, HandleCheck returns TRUE.

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN);

MetaKeys returns the values of the modifier keys from the last event. Some menu commands
that have shortcut key combinations simulate the shortcut modifier keys when the menu
command is selected. For example, when Open as Template is selected, MetaKeys indicates
that the Command and Shift modifier keys were pressed. Because of these transformations,
MetaKeys should always be used to get the modifier values.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);

P ickEvent handles an event contained in evt for a standard picker referenced by pick.

PickEvent should be called from your picker's DoEvent procedure. It is usually sufficient
to call only this routine from DoEvent, with no other special processing at all.

PROCEDURE PickInfoUp (oldID, newID: INTEGER; pick: PickHandle);

PickInfoUp handles the update necessary when a resource's ID is changed in the Get Info
window. P ickInfoUp should be called from your picker's DoInfoUpdate procedure. It is
usually sufficient to call only this routine from DoInfoUpdate, with no other special
processing at all.

PROCEDURE PickMenu (menu, item: INTEGER; pick: pickHandle);

P ickMenu handles menu commands for a standard picker referenced by pick. P ickMenu

should be called from your picker's DoMenu procedure. This routine handles all of the
standard menu commands such as New, Open, Open as Template, Open General, Close, Get
Info, Save, Revert, Cut, Copy, Paste, Clear, and Duplicate. It is usually sufficient to call only this
routine from DoMenu, although you may want to release any of the resources that were
loaded.

FUNCTION pickStdRows: INTEGER;

This function returns the number of rows that should be displayed in a picker window. This
value is obtained from the Preferences dialog box. It is guaranteed that the number of rows
returned will all fit on the screen. A picker that doesn't use text rows for its display can
determine the height in pixels with the following calculation:

height := pickStdRows * DefaultListCellSize;

FUNCTION pickStdWidth: INTEGER;

This function returns the width in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified width is
guaranteed to fit on the screen.

FUNCTION ResEdID: INTEGER;

CHAPTER 8 Extending ResEdit 99

ResEdID returns the resource ID of the calling picker or editor. For editors, this value should
be saved in the windowKind field of the editor's window. For pickers, this value should be
saved in the P ickld field of the picker's P ickRec as well as in the windowKind field of
the window.

PROCEDURE SetResChanged (h: Handle)i

SetResChanged sets the resChanged attribute for the specified resource and also sets the
mapChanged attribute for the resource me that contains the resource. SetResChanged
should be called whenever a resource is changed.

PROCEDURE SendRebuildToPickerAndFile (theType: ResTypei
parent: ParentHandle)i

This procedure sends a rebuild (sets the rebuild flag in the window's parentRecord) to all
open picker windows of the specified type. A rebuild is also sent to the me picker in case a
new resource type is being added. This routine is useful if an editor creates a resource of
another type. This routine should be called to make sure that the resource picker and the me
picker are updated to reflect the addition of the new resource. For example, this routine is
called from the 'ALRT', 'DLOG', and 'Dm' editors.

PROCEDURE SetTheCursor (whichCursor: INTEGER)i

SetTheCursor changes the cursor to the specified cursor resource. The constant
arrowCursor defmed in the ResEd me should be used to set the cursor to the arrow. This
routine makes sure that the resource file is set to ResEdit before loading the cursor, so that the
cursor will be loaded from either ResEdit or the System me. The most common use of this
routine is to set the cursor to a watch (watchCursor) while something is being done that
may take a while.

PROCEDURE Show Info (h:Handlei dad: ParentHandle)i

ShowInfo puts up a Get Info window for the resource referenced by h that belongs to the
father object referenced by dad ShowInfo should be called by your editor when Get Info is
selected from the File menu.

PROCEDURE TypeToString (t: ResTypei VAR s: Str255)i

TypeToString returns a string consisting of the four characters that make up the Res Type
t.

PROCEDURE UseAppResi

The UseAppRes procedure sets the current resource file to be ResEdit itself. This is necessary
if you need to get a resource from ResEdit, such as a menu, string, alert, or dialog box. Be sure
to restore the original resource me when you are done with ResEdit's resource me. For
example:

100 Macintosh ResEdit Reference

(SavedResFile := CurrentRes;
UseAppRes;

UseResFile(SavedResFile);

Internal routines

The following routines are used internally within ResEdit and may be useful in other
circumstances.

PROCEDURE CallPBirth (theType: ResType; parent: ParentHandle; id:
INTEGER) ;

CallPBirth starts a picker. This routine will rarely be used. It directly calls the P ickBirth
routine of the picker with the specified id.

PROCEDURE CallEBirth (resHandle: Handle; parent: ParentHandle; id:
INTEGER) ;

CallEBirth starts an editor. This routine will rarely be used. It directly calls the
Edi tBirth routine of the editor with the specified id. This routine is used by the
Gi veEBirth routine described earlier in this chapter.

PROCEDURE CallEvent(VAR evt: EventRecord; refcon: LONGINTi id:
INTEGER) ;

CallEvent passes an event to the specified window. This routine will rarely if ever be used.
If an event must be passed to a specific ResEdit window, the call would be made as follows:

CallEvent (evt, theWindow~.refCon, theWindow~.windowKind);

PROCEDURE CallMenu (menu, item: INTEGER; refcon: LONGINT; id:
INTEGER) ;

CallMenu passes a menu command to the specified window. This routine will rarely if ever
be used. For example, if a Close command must be passed to a specific ResEdit window, the
call would be made as follows:

CallMenu (fileMenu, close Item, theWind~.refCon, theWindA.windowKind);

FUNCTION CopyRes (VAR h: Handle; rnakeID: BOOLEAN; resNew: INTEGER):
Handle;

CHAPTER 8 Extending ResEdit 101

Given a handle h to a resource, CopyRes makes a copy of the resource to the resource fIle
specified by refNum. Note that the handle is changed, so you can't keep track of your
resource by saving its handle before using CopyRes. If makeID is TRUE, a unique 10 will be
assigned to the copyj otherwise, it retains the ID of the original. CopyRes returns a handle to
the new copy (in the new me). This procedure is called from the P ickMenu procedure
described earlier.

PROCEDURE DoKeyScan (var evt: EventRecord; offset: integer; lh:
ListHandle);

DoKeyScan handles key-down events for pickers. The offset parameter is the byte offset
into a cell where the string to match'starts. This procedure is called from the P ickEvent
procedure described earlier.

PROCEDURE DoListEvt (e: EventRecord; 1: ListHandle);

DOListEvt is called from P ickEvent and should normally not need to be called from
elsewhere.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle): Handle;

DupP ick is called from P ickMenu and should normally not need to be called from
elsewhere.

FUNCTION GetType (templatesOnly: BOOLEAN; VAR s: STR255): BOOLEAN;

Get Type displays a dialog box containing a list of the types of resources that can be edited.
The list contains all types for which there are templates. If templa tesOnly is FALSE, the list
also contains all of the types for which there are editors. The selected type is returned in s.
TRUE is returned if a type was selectedj FALSE is returned otherwise.

PROCEDURE KillCache;

KillCache flushes all caches for all volumes (bitmap, control, and so on).

PROCEDURE MyCalcMask (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:
INTEGER) ;

MyCalcMask calculates a mask for the given source bit image and puts it into the destination
bit image. The paraIreters srcPtr and dstPtr reference the source and destination bit
imagesj srcRow, dstRow, height, and words define the area on which MyCalcMask
operates.

FUNCTION ResEditRes: INTEGER;

The ResEditRes procedure returns the resource me 10 of ResEdit. This routine will rarely
be needed. You can use this routine if you don't want to release a resource that you have been
editing,if the resource caIre from ResEdit.

PROCEDURE ScrapCopy (VAR h: Handle);

102 Macintosh ResEdit Reference

(

ScrapCopy copies the handle h into the ResEdit scrap. A different handle will be returned.

PROCEDURE ScrapEmpty;

ScrapEmpty empties the ResEdit and desktop scrap.

PROCEDURE ScrapPaste (pasteAll: BOOLEAN; typeToPaste: ResType;
resFile: INTEGER);

ScrapPaste pastes the resources from the ResEdit scrap to the file identified by the ID
number resFile. If pasteAll is TRUE, all resources found in the scrap are pasted. If
pasteAll is FALSE, only resources of type typeToPaste are pasted.

Obsolete routines

The following routines are obsolete and should no longer be used. They are no longer
available in the current version of ResEdit.

PROCEDURE AppRes;

Use the UseAppRes procedure instead.

PROCEDURE ClearHand (h: Handle);

No longer supported.

FUNCTION CountlRes (t: ResType): INTEGER;

Use the CountlResource toolbox procedure instead.

FUNCTION Count 1 Type : INTEGER;·

Use the Countl Types toolbox procedure instead.

FUNCTION ErrorCheck (err, msgID: INTEGER): BOOLEAN;

Use the CheckError procedure instead.

FUNCTION FileNewType types: ListHandle; VAR 5: str255): BOOLEAN;

Use the Get Type procedure instead.

PROCEDURE GetlIndxType (VAR theType: ResTypei i: INTEGER);

Use the Get 1 IndType toolbox procedure instead.

FUNCTION GetResLoad: BOOLEAN;

No longer supported.

PROCEDURE MySeedFill (srcPtr,dstPtr: Ptr; srcRow,dstRow,height,words:
INTEGER; seedH,seedV: INTEGER);

CHAPTER 8 Extending ResEdit 103

No longer supported.

PROCEDURE ResEverest;

Use the UseResFile procedure instead.

FUNCTION RevertResource(h: Handle): Boolean;

Use the RevertThisResource procedure instead.

PROCEDURE WindFree (w: WindowPtr);

Use the WindReturn procedure instead.

104 Macintosh ResEdit Reference

Appendix A The 'KCHR' Resource

nus APPENDIX CONfAINS MORE INFORMATION about the 'KCHR' resource, its structure
and function.

The 'KeRR' resource controls mapping from the keyboard to the resulting characters.
This mapping process involves several areas of the Macintosh architecture. •

105

4: Basic theory of keyboard operation

In order to appreciate fully the workings of the 'KCHR' editor, you really should be aware of
the process that it controls. Here is a summary.

Whenever a key on any type of keyboard is pressed, the operating system polls the key
information from the device. It then translates each raw keycode generated by the keyboard
into a virtual keycode and a combination of modifier keys by means of the 'KMAP' resource.
The resulting virtual keycode is keyboard-type-independent information about the key being
depressed.

Exceptions to the rule

Some countries have different layouts for different keyboards, mostly for historic reasons. In
order to deal with those exceptions, the 'itlk' resource contains a table of translation rules from
a virtual keycode generated by the actually connected keyboard to a virtual keycode on the
ISO ADB keyboard or to whatever keyboard is supported by the 'KCRR' resource for that
country.

Generating the character code

When the operating system has generated a virtual keycode, the KeyTrans () procedure
then translates the virtual keycode and the concurrently pressed modifier keys to a Macintosh
character set number based on the tables in the 'KCRR' resource. That character number, and
also the virtual keycode information, are then stored in the event queue and can be accessed
by calling GetNextEvent () .

APPENDIX A The 'KCRR' Resource 107

Dead keys

When you press a dead key, the first thing you'll notice is that nothing happens immediately
(that is, no event is fed into the queue). When you then press another key, the Event Manager
uses the ch3r.lcter number generated by this new key and the previously pressed dead key to
detennine which character number should be put in the event queue. This process is used, for
example, to generate the German Umlaut ch3r.lcters !,O,U,a,o, and U. You have to press the
dead key for a diaeresis (which is Option-u in the U.S. 'KCHR') and then press one of the keys
that generate the ch3r.lcters A,O,U,a,o or u. (You can also generate i, and e, which do not exist
in German, but, depending on the font, possibly not their uppercase equivalentci.) If you press
a key that generates none of the defmed ch3r.lcter numbers for this dead key, the Event
Manager generates the nomatch character (which is, in the case discussed here, the Umlaut
alone).

The Dead Array contains a list of dead keys. For each dead key, it defines the virtual keycode
and the table that is used to trigger the dead-key mechanism Then it lists pairs of completion
characters and substitution characters and, fmally the nomatch ch3r.lcters. The whole dead-
key mechanism can be described as follows: ..

1. Press a dead key on the keyboatd.

2. Press any key that generates a ch3r.lcter number that corresponds to a valid completion
ch3r.lcter.

You get the corresponding substitution ch3r.lcter in the event queue. (If you didn't press a
valid completion character in step 2, you get the nomatch character.)

108 Macintosh ResEdit Reference

(

'\1 .. ' .. :. "f,~

(

The structure of a 'KCHR' resource

Here is the defmition of a 'KCRR' for the resource compiler Rez. (This information can also be
found in the file SysTypes.r in the folder RIncludes in MPW.)

type 'KCHR' {

} ;

integer;

wide array [$100]
byte;

/* Version
/* Indexes

} ;

integer = $$CountOf(TableArray);
array TableArray {

wide array [$80] { /* ASCII characters*/

char;
} ;

} ;

integer = $$CountOf(DeadArray);
array DeadArray {

} ;

byte; /* Table number */

byte; /* Virtual keycode */
integer = $$CountOf(CompletorArray);
wide array CompletorArray {

char; /* Completing char
char;

} ;

char;
char;

/* Substituting char

/* No match charI

/* No match char2

*/
*/

*/
*/

*/

Each table in the Table Array describes the virtual keycode-to-character number translation
for one complete layer of the keyboard (that is, for all 128 possible keys). The Index Array
defines the mapping of modifier key combinations to tables. The high byte of the modifier flag
(described in Inside Macintosh, Volume V, Chapter 10) is used as an index to determine the
number of the table to be used for translation. The information in Inside Macintosh is,
however, not complete, since the alternate modifier keys (the Shif~ Option, and Control keys
on the right side of the ADB extended keyboard) are not mentioned. Those keys are normally
coupled with the corresponding keys on the left side. It is possible to uncouple them by
sending a command to the keyboard. (See "Reassigning Right Key Code" in Inside Macintosh,
Volume V, Chapter 10.) The correct bit layout of the high byte is shown in Figure A-I.

*/

APPENDIX A The 'KCRR' Resource 109

• FigureA-1 Modifier flag high byte

7 6 5 4 3 2 1 0

1 if Conunand key down

1 if Shift key down

'---- 1 if Caps Lock key down

'------ 1 if Option key down
a...-. _____ 1 if Control key down

'-------- 1 if alternate Shift key down
a...-. _______ 1 if alternate Option key down

1...-________ 1 if alternate Conunand key down

Suppose you hold down the Option key. This keypress will result in a value of 8 (bit 3 is set)
in the high byte of the modifier flag. Thus the Toobox Event Manager takes the value stored in
IndexArray [8] , which is 3 in the current U.S. 'KCRR', and therefore uses table 3 to
translate the keycodes to character numbers.

110 Macintosh ResEdit Reference

(

Appendix B Resource Types Defined for Rez and
ResEdit

THIs APPENDIX CONfAINS A LIST OF SOME RESOURCE 1YPES in use at Apple Computer,
Inc., current as of early 1989. An attempt has been made to give pertinent information
about what each type is, how it is handled by the resource compiler, Rez, and how it
is handled by ResEdit. This list is neither formal nor exhaustive! •

111

/

''-c

(lksource types defined for Bf:Z and lksEdit

Type Definition Bf:Z lksEdit

actb Alert Color Lookup Table Types.r Template
acur m?? XXXXXXX Template
ALRT Alert Template Types.r Editor, Template
APPL Application list (Desktop) XXXXXXX Template
BNDL Bundle Types.r Template
cctb Control Color Lookup Table Types.r Template
cien Color Icon Types.r XXXXXXX
clut Generic Color Lookup Table Types.r Template
CMOO For MPW Commando interrace Cmdo.r XXXXXXX
cmnu MacApp® temporary menu resource XXXXXXX Template
CN1l Control template Types.r Template
ersr Color Cursor Types.r XXXXXXX
CIY# City list from MAP CDEY XXXXXXX Template
CURS Cursor Types.r Editor
dctb Dialog Color Lookup Table Types.r Template

',f Dm Dialog Item List Types.r Editor, Template 0,

DLOG Dialog template Types.r Editor, Template
DRVR Driver SysTypes.r Template
FBTN MiniFinder button XXXXXXX Template
fctb Font Color Lookup Table Types.r Template
FCMf Getlnfo comments from Desktop me XXXXXXX Template
FDm MiniFinder button directory ID XXXXXXX Template
fmf Fontinfonnation SysTypes.r Template
FOND Font Family description SysTypes.r Template
FONT Font description SysTypes.r Editor, Template
FREF File Reference Types.r Template
FRSV ROM Font resources XXXXXXX Template
FWID Font Width Table SysTypes.r Template
ICON Icon Types~r Editor
ICN# Icon and its mask Types.r Editor

(Continued)

(':
APPENDIX B A List of Resource Types 113

Type De6nition Bez BesEd1t /
~. '"

~, .. --/

ictb Color Dialog Item list (not handled yet) XXXXXXX xxx:xxxx
insc Installer Script SysTypes.r Template
IN1l (0) International Formatting information SysTypes.r. Editor ... (same as itIO but

no longer used)
itlO International Formatting information SysTypes.r Editor
1N1l(1) International Datelfime information SysTypes.r Editor ... (same as itIl but

no longer used)
itll International Date!fime information SysTypes.r Editor
itl2 Intl Str Comparison Package hooks SysTypes.r xxx:xxxx
itl4 International Tokenize SysTypes.r xxx:xxxx
itlb International Script Bundle SysTypes.r Template
itlc International Configuration SysTypes.r Template
itlk Inti exception dictionary for 'KCHR' XXXXXXX Template
KCAP PhYSical layout of keyboard SysTypes.r xxx:xxxx
KCRR ASCTI Mapping (software) SysTypes.r Editor
KMAP Keyboard Mapping (hardware) SysTypes.r xxx:xxxx
KSWP Keyboard Swapping SysTypes.r xxx:xxxx
LAYO Fmder's layout resource XXXXXXX Template
MACS Version # in System me xxxxxxx Template
MBAR Menu Bar Types.r Template
mcky Mouse Tracking SysTypes.r xxx:xxxx
mctb Menu Color Lookup Table Types.r Template
meod MacroMaker™ information XXXXXXX xxx:xxxx
mdct MacroMaker information XXXXXXX xxx:xxxx
mern! MacApp memory utilization XXXXXXX xxx:xxxx
MENU Menu Types.r Template
minf Macro info (MacroMaker) XXXXXXX Template
mntb MacApp Menu Table(relate cmd # to menu) XXXXXXX XXXXXXX
mppc MPP Configuration resource SysTypes.r xxx:xxxx
rnxbc Foregnd, backgnd colms for MacsBug XXXXXXX xxx:xxxx
rnxbi Initial settings for MacsBug XXXXXXX ~
rnxbm Macros for MacsBug XXXXXXX xxx:xxxx
rnxbt Templates for MacsBug (byte count) XXXXXXX xxx:xxxx
rnxwt Templates for MacsBug (word count) XXXXXXX xxx:xxxx

(Continued)

114 Macintosh ResEdit Reference

c Type Definition Rcz ResEdit

NFNT Font description SysTypes.r XXXXXXX
nret Rectangle position list SysTypes.r Template
PAPA 7m XXXXXXX Template
PAT QuickDraw Pattern Types.r Editor
PAT# QuickDraw Pattern list Types.r Editor
PIC!' QuickDraw Picture Types.r Template
pItt Color Palette Types.r Template
ppat Pixel Pattern Types.r Template
ppt# Array of ppats XXXXXXX XXXXXXX
PRC3 Print record (PREC) id = 3 XXXXXXX Template
PSAP rn? XXXXXXX Template
ROv# ROM Resource Override SysTypes.r Template
scm Screen configuration SysTypes.r Template
seg! MacApp item of some sort . XXXXXXX XXXXXXX
SICN Small Icon Types.r Editor
SIGN 7m XXXXXXX Template
SIZE MultiFinder Size information Types.r Template

I snd Sound SysTypes.r XXXXXXX
" STR PascalStyle String Types.r Template

STR# PascalStyle String list Types.r Template
TEXT Unlabeled string.(Same as minO XXXXXXX Template
TMPL ResEdit template XXXXXXX Template
vers Version SysTypes.r Template
wctb Window Color Lookup Table Types.r Template
WIND Window template Types.r Editor, Template

APPENDIX B A Ust of Resource Types 115

(

Appendix C The Macintosh Character Set

THIs APPENDIX CONTAINS A CHART TIIAT DISPLAYS the regular character set for Macintosh
fonts. Theflrst 128 characters correspond to the standard ASOl set. Please remember
that not all fonts for the Macintosh have these standard characters in them. Specific
examples are Symbol and ITC Zapf Dingbats; there are many pictorial fonts available
as bitmaps for dot-matrix printing as well .•

117

(' First digit
0 1 2 3 4 5 6 7 8 9 A B C D E F

Second
A digit 0 0 @ p p e t • l -

1 1 A Q a q A e ±

2 2 B R b r C ¢ £, -.

3 3 c 5 c s E £, + •

4 4 D T d N i § v f
5 5 E U e u 0 i m I

6 6 F V f v fJ ii Cf d D

7 G W g w a 6 S A
*

8 H X h x a 0 ® Y
9 y y ~ 0 © P

A J z j z a 0 TIl U -
B K k it 0 I A

c < L \ ~ U II

= M m ~ U W 5
E > N 1\ n - ~ 11 1£ a: CE

: :.:,.,.

.{ F ? 0 0 ... ;.: e ii 0 f/J re ,:<:":.:.:::

_ Stands for a nonbreaking space, the same width as a digit.

o The dark-shaded characteJ's cannot normally be generated from the Macintosh
keyboard or keypad

APPENDIX C The Madntosh Character Set 119

Index

INDEX 121

122 Macintosh ResEdit Reference

• 56 Option key 15, 22
@ABCD84 F OwnerName field 71

("" fctb35
A Finder 7, 32,61 P

Align to Grid 27 'FOND'35 Paste 14,17
ALRT 25, 26, 60 'FONT' 21 'PAT'39
ascent 37 Font menu 48 'PAT#'4O

'FREF 8 picker 81
B 'PIer 26, 28

BNDL8, 55 G Pictorial resource types 21
BOOL53 general editor 6 Pig mode 61
Bring to Front 27 general resource editor 22 Preferences 16

Get Info 10, 16 'PSTR' 54

C graphics tools panel 38
character editing panel 37 Q
character selection panel 37 I Quit 10, 13, 16
Clear 14,17 'ICN#' 32
Close 10, 13, 15 icon 7, 26, 28, 31 R
CNTI26, 28 'INTI' 40 'REer53
Colotrable record 35 'itlO' 40 refCon54
Command key 15 'itll' 40 Remove dead key 48
Convert to dead key 48 Remove duplicate tables 47
Copy 13,17 K Remove unused tables 47
creator type 71 'KCHR'42,48 ResEd8, 83

C
CURS 29 'KCRR' menu; 47 resource editors 19
Cut 13, 17 resource ID numbers 18

L resource picker 8, 14
D 'LAYO'61 resource template 6

Data -> Mask 30 list separator 56 resource type 14
data fork. 12 Restore Arrow 30
DeRez8,54 M

restrictions 18
descent 37 Macintosh Programmers ResXXXXEd me 82
Desktop 7 Workshop 8 Revert 13, 16
dialog box 7 mask 32 Rez8
Display as Text 22 'MENU' 55 RSSC84
Display using old method 32 MPW8
'DffL'21, 26, 55,60 MultiFinder 7, 61 S
'DffL' associated with 'ALR!' sample text panel 37

or'DL0G25 N Save 10, 13, 15
DLNG54 New 10, 13, 15, 33 Select Item Number 27
'DLOG' 25, 26, 60 Send to Back 27
'DRVR' resources 18 New Table 47 Set Item Number 27
Duplicate 14, 18 NewDialog 61

'SICN' 33
Duplicate Table 47 nonexistent 'CNTL' 61 signature resource 71
DWRD53

0
Size menu 48
'STR#' 55

E Open 10, 13, 15

('~ Edit dead key. 47 Open as Template 15, 18
T

editor 8, 81 Open general 13, 15 template 8

INDEX 123

templates 18
Transfer 16
Transfer ... 10, 13
Try Cursor 30
type checking 55

U
Uncouple roodifier keys 47
Undo 13, 17
Use Full Wmdow 28
Use Owner Wmdow 28
Use RSRC Rectangle 28
UseResFile 84
USES declaration 83

V
View as ... 47

W
'WIND'22

124 Macintosh ResEdit Reference

THE APPLE PUBUSHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system
using Apple Macintosh~
computers and
Microsoft~ Word software.
Proof and final pages were
created on the Apple
LaserWrite~ printers. Line art
was created using Adobe
illustrator™. MacDraw® and
MacPaint® were also used to
create art for this manual.
POSTSCRIPT~, the page­
description language for the
LaserWriter, was developed by
Adobe Systems Incorporated.

Text type and display type are
Apple's corporate fon~ a
condensed version of
Garamond. Bullets are ITC Zapf
Dingbats~. Some elements,
sudi as program listings, are set
in Apple Courier.

2123/89

