L] —— W

For ResEdit 2.1

Ui

«.
ResEdit Reference

€.
Beta Draft

1990 September 24
Developer Technical Publications
© Apple Computer, Inc. 1990



& APPLE COMPUTER, INC.

'This manual is copyrighted by Apple or
by Apple’s suppliers, with all rights
reserved. Under the copyright laws, this
manual may not be copied, in whole or
in part, without the written consent of
Apple Computer, Inc. This exception
does not allow copies to be made for
others, whether or not sold, but all of
the material purchased may be sold,
given, or lent to another person. Under
the law, copying includes translating
into another language.

The Apple logo is a registered
trademark of Apple Computer, Inc. Use
of the "keyboard” Apple logo (Option-
Shift-K) for commercial purposes
without the prior written-consent of
Apple may constitute trademark
infringement and unfair competition in
violation of federal and state faws.

© Apple Computer, Inc., 19%
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX,
HyperCard, MacApp,
LaserWriter, and Macintosh
are registered trademarks of
Apple Computer, Inc.

APDA, MPW, MultiFinder, and Switcher
are trademarks of
Apple Computer, Inc.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

POSTSCRIPT is a registered trademark,
and lllustrator is a trademark, of Adobe
Systems Incorporated.

Simultaneously published in the United
States and Canada.

Limited Warranty on Media and
Replacement

If you discover physical defects in the
manual or in the media on which a
software product is distributed,
APDA will replace the media or
manual at no charge to you provided
you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF
THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR

~ REPRESENTATION, EITHER

EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS
ARESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
‘CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental or
consequential damages, so the above
limitation or exclusion may not apply
to you. This warranty gives you
specific legal rights, and you may also
have other rights which vary from
state to state.

.



Contents

Preface / xi

Prerequisites / xii
What this manual contains / xii
How to use this manual / xii
Conventions used in this book / xiii
Graphics / xiii
Where to get information / xiii
About APDA / xiv
About Developer Programs / xiv

1ResEdit Overview / 1

2Getting Started / 7

Resources / 2
New and changed resource types supported by ResEdit 2.0 / 3
Resource categories in ResEdit / 3
Uses / 4
Extensibility / 4
The resource development cycle / 5

Invoking ResEdit / 8
Working with files / 9
Resource checking / 10
Openingafile / 10
Menus in ResEdit / 13
The File menu / 13
The Edit menu / 17
The Resource menu / 18
The Window menu / 22
The View menu / 23
Starting an editor / 25
Resource ID numbers / 25



3The Bit Editors / 27

Overview of the bit editors / 28
Tools / 29
Menus / 30
The Transform menu / 30
The Color menu / 31
The 'FONT editor / 32
Editing Cursors / 33
Editing Icons / 35
Editing 'cicn' resources / 35
Creating new color icons / 36
Finder icons / 36
The Icons menu / 37
ICON' resources / 38
ICN# resources / 39
List resources / 41
SICN' resources / 41
Editing Patterns / 42
PAT ' resources / 43
PAT# resources / 43
ppat' resources / 44
ppt# resources / 44
FONT resources / 46
- Editing 'FONT resources / 47

40ther Resources / 51

Using the hexadecimal editor / 52
WIND', 'ALRT ", and 'DLOG' resources / 53
DITL' resources / 60
BNDL resources / 64
clut' and 'pltt' resources / 68
INTL, 'itl0", and 'itl1' resources / 70
KCHR' resources / 72
The main 'KCHR' editor / 72
The character chart / 73
The table chart / 73
The virtual keycode chart / 74
The keyboard region / 74
The information region / 74

iv ResEdit 2.1 Reference



= o,

Editing dead keys / 75
The dead-key editor / 75
The character chart / 75
The nomatch character / 76
The completion and substitution character pair list / 76
The Trash / 76
The information region / 76
The menus / 76
The KCHR menu / 76
The Font menu / 78
The Size menu / 78
MENU' resources / 80
TEXT ' and 'styl' resources / 85
vers' resources / 86

S5ResEdit Templates / 87

Template characteristics / 88
Editing / 89
PICT editing / 89
Creating New Templates / 90
Template example / 90

6ResEdit Tips / 95

Hints and kinks / 96
The 'LAYOQ' resource / 100
KCHR' questions and answers / 104

7The Programmatic Interface / 107

Pickers and editors / 108
Code-containing resources in the ResEdit release / 108
Samples / 109
Sample editor / 109
Sample picker / 109
Sample LDEF / 110
Building the examples / 110
Using Reskd / 110
Writing a ResEdit extension / 111
ResEdit 2.0 changes / 112
ResEd changes for the 2.0 release / 112

Contents



Required routines / 114
EditBirth / 114
PickBirth / 114
DoEvent / 115
DolnfoUpdate / 115
DoMenu / 115

Using custom LDEFs / 116

The ResEd interface / 117

Data structures / 117
The parent record / 118
The picker record / 118

Other routines / 119
Launching routines / 119
Information-passing routines / 120
Window management routines / 120
Resource utilities / 123
Miscellaneous utilities / 126
Internal routines / 134
Obsolete routines / 137

AThe 'KCHR' Resource / 139

Basic theory of keyboard operation / 140
Generating the virtual keycode / 140
Exceptions to the rule / 140
Generating the character code / 140
Dead keys / 141
The structure of a 'KCHR' resource / 142

BThe 'BNDL' Resource / 145

The structure of a 'BNDL' resource / 146
Definitions of the 'BNDL' and 'FREF' resources / 148

CResource Types Defined for Rez and ResEdit / 151

DThe Macintosh Character Set / 157

vi ResEdit 2.1 Reference



Figures and tables

2Getting Started / 7
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14

Figure 2-15°

Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19

3The Bit Editors / 27

Figure 3-1
Figure 3-2
Figure 3-3
Figure 34
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12

Splash screen 8

ResEdit file open dialog 9

Add resource fork alett 11

A ResEdit 2.0 file window 11

File menu 13

Open Special dialog box 15

A File Info window 15

AFolder Info window 16

Preferences dialogbox 16

Edit menu 17

The Resource menu for 'BNDL' 18

The Resource menu with a picker open 19

There is no template for 'CODE' resources 19
An'ICN# Get Info window 20

A resource type window (with custom picker) 21
The Window menu 22

The View menu and a ResEdit 2.0 file window 23
The View menu and a resource type window 24
Showing type attributes 24

Bit editing window layout 28
The Transform menu 30
The Color menu 31

'CURS' resource editor 33
Color cursor editing: mask examples 34
Color icon editor 35

Finder icon editor 37

Icons menu 38

'ICON' resource editor 38
'ICN# resource editor 39
'SICN' resource editor 41
Pattern Size Dialog Box 42

Figures and tables

vii



Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17

40ther Resources / 51

Figure 4-1
Figure 4-2
Figure 4-3
Figure 44
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21

Figure 4-22

Figure 4-23
Figure 4-24
Figure 4-25
Figure 4-26
Figure 4-27
Figure 4-28
Figure 4-29
Figure 4-30
Figure 4-31
Figure 4-32
Figure 4-33
Figure 4-34

viii ResEdit 2.1 Reference

'PAT ' resource editor 43
'PAT# resource editor 43
'ppat’ resource editor 44
'ppt# resource editor 45
'FONT resource editor 47

'WIND' resource editor 54

WIND menu 55

Setting "WIND' characteristics 55
'ALRT ' resource editor 56

ALRT menu 56

'ALRT ' Stage Info dialog box 57
'DLOG ' resource editor 57

DLOG menu 58

setting 'DLOG' characteristics 58
MiniScreen menu 59

Special parameter strings 59

'DITL resource editor 60
DITLitem editor 61

DITL menu 61

DITL menu View As dialogbox 62
Alignment menu 63

'BNDL' resource editor, simple view
The Icon chooser 65

'BNDL' resource editor, Extended view
'clut’ resource editor 68

clut menu 68

Editing an'itl0’ resource 70

Editing an'itll’ resource 71

Editing a 'KCHR' resource 72

Editing a dead key 75

The KCHR menu 77

'MENU' resource editor 80

'MENU' line item edit 81

'"MENU' mark pop-up 82

'MENU' Icon chooser 82

'emnu' editing 83

'MENU' ID dialog 84

'TEXT'and 'styl' editor 85

Editing a 'vers' resource 86

67



SResEdit Templates / 87
Figure 5-1
Figure 5-2
Figure 5-3

6ResEdit Tips / 95
Figure 6-1
Figure 6-2
Figure 6-3
Figure 64
Figure 6-5
Figure 6-6

AThe 'KCHR' Resource / 139
Figure A-1

BThe 'BNDL Resource / 145

Figure B-1  Six resources and their relationships

CResource Types Defined for Rez and ResEdit / 151

Table C-1

The template editor for 'PICT'
'TMPL' definition for type 'STR#'

'STR# template in use

'RMAP' resource 99

'"LAYO' template, view 1
'"LAYO' template, view 2
'LAYO' template, view 3
'"LAYO' template, view 4
"LAYO' template, view 5

Modifier flag high byte

9

100
101
102
103
104

143

20

147

Resource types defined for Rez and ResEdit 152

DThe Macintosh Character Set / 157

Figure D-1

Macintosh character set

159

Figures and tables

ix






Preface

ResEdit™, an extensible standalone resource editor for the Macintosh® computer, is a
powerful tool you can use to speed your software development process and to
credte icons, menus, and other resources for Macintosh programs and files. This
manual is a complete reference to ResEdit that includes introductions to the various
resource type editors included in the program, and a discussion of the framework
that is provided so that you can extend the capabilities of the program by adding
your own resource pickers and editors.



Prerequisites
To run ResEdit 2.0, the system you use must have at least 128 KB of ROM and at least 1
megabyte of memory.;

ResEdit 2.0 works with system software version 5.0 and later. ResEdit is compatible with (but
does not require) 32-bit QuickDraw™,

What this manual contains

Chapter 1 introduces the concepts behind ResEdit, starting with an overview of Macintosh
resources. Chapter 2 tells you about the user interface. Chapter 3 discusses the editors in
ResEdit that handle various kinds of bitmap resources (cursors, icons, and so on), and Chapter
4 discusses the other built-in editors. Chapter 5 describes template editing and tells you how
to build your own templates. Chapter 6 is a “hints and kinks” area that contains useful
information that will help you make efficient use of ResEdit. Chapter 7 describes the
programmatic interface to ResEdit and tells you what you need to know in order to write your
own picker and editor. Appendix A describes the inner workings of the 'KCHR' editor,
Appendix B describes the inner workings of the 'BNDL' resource, Appendix C lists a number
of extant resource types, and Appendix D is a chart of the regular Macintosh character set.

How to use this manual

If you have used.previous versions of ResEdit, you will probably want to take a quick look at
Chapter 2, which describes the user interface in some detail, specifically because the interface
has been changed extensively in version 2.0.

If you have never used ResEdit, you should probably read Chapters 1 and 2 and look over the
rest of the book. Use the program for a while, and then look at the book again. It will
probably make a lot more sense after you've actually played with ResEdit.

xii ResEdit 2.1 Reference



-

Conventions used in this book

The following visual cues are used throughout this book to identify different types of
information:

& Note: A note like this contains information that is interesting but not essential for an
understanding of the main text.

A\ Important A note like this contains information that is essential. a

A Warning Warnings like this indicate potential problems. a

This manual uses courier type to represent code fragments and the names of procedures.

Graphics

Most of the artwork in this book is taken directly from Macintosh screens. Some illustrations
show a condensed version of the screen with a sequence of windows or some particular

feature (such as a menu) evident. Others show only an active window, or an alert or
dialog box.

Where to get information

Apple technical books published by Addison-Wesley, such as Inside Macintosh, are available
at commercial bookstores. Books and manuals published by Apple are available through
APDA, the Apple Programmers and Developers Association, at the address listed below.
Technical notes and other materials of interest to Macintosh application developers are also
available from APDA.

Preface



About APDA

APDA provides a wide range of technical products and documentation, from Apple and other
suppliers, for programmers and developers who work on Apple equipment. You can contact
them as follows.

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299

Telephone: 1-800-282-APDA or 1-800-282-2732 if you are inside the United States;
in Canada, 1-800-637-0029; elsewhere in the world, 01-408-562-3910.
Fax: 408-562-3971 Telex: 171576 AppleLink: DEV.CHANNELS

About Developer Programs

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to them at the
following address:

Apple Developer Programs
Apple Computer, Inc.

20525 Mariani Avenue, M/S§ 75-2C
Cupertino, CA 95014-6299

xiv ResEdit 2.1 Reference




Chapter 1 ResEdit Overview

This chapter introduces the concept of resources as they are handled on the
Macintosh® computer, and introduces ResEdit™, an interactive, graphically
based application for manipulating resources in Macintosh files. Some
Macintosh files don’t contain any resources, but all applications and most of
the System Folder files do.



Resources

One of the ways in which the Macintosh is different from other computers is its handling of
resources (typefaces, icons, dialog boxes, and so on). In the Macintosh, resources are distinct
from data (for example, the text in a word-processing file). The Macintosh does not insist on
keeping resources in a central pool; they may be placed in any file.

In most computers, a file consists of a set of bytes, perhaps beginning with a header that
contains some information about the structure of the data contained in the file, and possibly
ending with some sort of trailer; in any case, the file is one set of bytes. The Macintosh has,
instead, a file structure that is designed to include two sets of bytes, a data forkand a resource
JSfork. Any file may contain only a data fork, only a resource fork, or both. While a plain
HyperCard stack, for example, has only data in it, people commonly add icons and sounds to
their stacks, creating resource forks for those stacks in the process.

Resources are classified by type. Each type has its own name, which consists of exactly four
characters. Any characters in the Macintosh character set can occur in resource type names,
even unprintable ones, but typically they consist of lower- and uppercase letters, numerals,
punctuation marks, space, and Option-space. Resource type names are shown here with
single straight quotation marks around them (for example, 'itl0"). If you see a name that
appears to be shorter, the empty slots are probably filled with spaces (for example, 'snd *).
Some resource types are named and described in Appendix C. There are many different types
of resources, and you can create your own resource types with ResEdit if you don'’t find the
type you need.

# Note: Apple Computer, Inc., reserves all names that don’t contain any uppercase letters.
Any combination with at least one uppercase letter in it is yours to use, though it is a good
idea to avoid using any type name that someone else has already used that you know of.

Another feature of this system is that code is regarded as a resource. It even has its own
resource type name (very straightforwardly, 'CODE'"). Any application, then, must have a
resource fork, which is where its code resides, along with various other resources, such as
menus.

2 ResEdit 2.1 Reference



S

ResEdit lets you copy and paste all resource types, and lets you edit many of them. 'NFNT" is
an exception, and is discussed briefly in the section on 'FONT editing, in Chapter 3.) ResEdit
actually includes a number of different resource editors: There is a general resource editor
for editing any resource in hexadecimal and ASCII formats, and there are individual resource
editors for various specific resource types. There is also a template editor, which lets you
edit some kinds of resources in a dialog box format, with fields that you can fill in as
appropriate. There are predefined templates for quite a few resources already built into
ResEdit, and you can create others. For further information on template editing and on
generating your own templates, see Chapters 4 and 5.

New and changed resource types supported by ResEdit 2.0

The 'cicn' color icon resource type is up to 8 bits deep and contains its own color lookup
information. It defaults to a size of 32 x 32 pixels, though both its height and its width can be
changed independently to be anything from 8 to 80 pixels. This icon resource includes a
monochrome version and mask. ResEdit 2.0 includes an editor for 'cicn' resources.

Finder icons for system software version 7.0 occur in 6 variants, including the old 'ICN# and
the new 'ics# types, as well as the new 4- and 8-bit small and large color icons (ics4', 'ics8',
'icl4', and 'icl8"). A comprehensive editor in ResEdit 2.0 lets you deal with each set of Finder
icons as a coherent group.

ResEdit 2.0 includes an editor for bundles, resource type 'BNDL' (bundles also involve other
resources, as described in Appendix B), and an editor for menus, resource types 'MENU',
'emnu', 'CMNU', and 'metb'. These editors are discussed in Chapter 3.

Resource categories in ResEdit

ResEdit behaves as if there were three kinds or categories of resources on the Macintosh.

Resources of the first kind are accessed with individual pickers and edited with individual
editors. These resources and their editors are described in some detail in Chapters 3 and 4.
Several of these resources ('CURS', 'FONT, 'ICON', 'PAT ', and so on) are in some sense
pictorial. All of the pictorial resources are edited with bit editors, which are discussed in
Chapter 3.

Chapter 1  ResEdit Overview



Resources of the second kind are edited as templates. That is, if you open a resource of this
kind, you are presented with a dialog box in which there are various labeled fields. You can
change the contents of the fields. Information on existing templates and on generating your
own templates appears in Chapter 5, and an example of template editing appears in
Chapter 6.

Resources of the third kind are edited with the hexadecimal editor, unless you write your own
templates or editors for them.

Uses

ResEdit is especially useful for creating and changing graphic resources such as dialog boxes
and icons. For example, you can use ResEdit to try out different formats and presentations of
resources in the process of putting together a quick prototype of a user interface. Anyone can
quickly learn to use ResEdit for translating resources into languages other than English
without having to recompile programs. You can use ResEdit to modify a program’s resources
at any stage in the process of program development. ResEdit is also useful for modifying the
'LAYO' (desktop layout control) resource in a copy of the Finder™ so that you can
reconfigure some aspects of the desktop display. See Chapter 6 for more details about the
'LAYO' resource.

Extensibility

A key feature of ResEdit is its extensibility. Because it can’t anticipate the formats of all the
different types of resources that you may use, ResEdit is designed so that you can teach it to
recognize and parse new resource types.

There are two ways that you can extend ResEdit to handle new types:

= You can create templates for your own resource types. ResEdit lets you edit most resource
types by filling in the fields of a dialog box; this is the way you edit the Finder's desktop
layout control resource, for example. The ordering of the items in these dialog boxes is
determined by a template in ResEdit’s resource file, and you can add templates to ResEdit
or to the ResEdit preferences file yourself to edit new resource types. Resource templates
are described in Chapters 4 and 5, and the desktop layout control resource is discussed in
some detail in Chapter 6.

4 ResEdit 2.1 Reference



LS

= You can program your own special-purpose resource picker or editor (or both) and
add it to either ResEdit or to the ResEdit Preferences file. (The resource pickeris the code
that displays all the resources of one type in the resource type window. The editoris the
code that displays and allows you to edit a particular resource. These pieces of code are
separate from the main code of ResEdit.) A set of Pascal or C routines, called ResEd, is
available for this purpose—see Chapter 7 for information. The advantage of adding your
code to the ResEdit Preferences file rather than to ResEdit itself is that doing so facilitates
updating to new versions of ResEdit as they become available.

The resource development cycle

ResEdit is often used with Macintosh Programmer’s Workshop (MPW®) and other program
development systems. Once you have created or modified a resource with ResEdit, you can
use the MPW resource decompiler, DeRez, to convert the resource to a textual representation
that can be processed by the resource compiler, Rez. You can then add comments to this text
file or otherwise modify it with the MPW Shell or another text editor. Rez and DeRez are fully
described in the Macintosh Programmer’s Workshop Reference (MPW Reference). It is not
necessary to use Rez or DeRez unless you have some specific need or desire to modify or
comment the code that DeRez produces; the resources generated by ResEdit are, in general,
entirely acceptable.

Chapter1 ResEdit Overview

5



S



Chapter 2

Getting Started

If you are new to ResEdit, you will want to proceed with some caution, as
ResEdit is quite powerful and can easily damage or destroy your files. If you
are accustomed to earlier versions of ResEdit, you will notice that the user
interface has been extensively changed and now conforms more closely to
the guidelines established by Apple Computer, Inc.



Invoking ResEdit

ResEdit is a regular application, so if you are in the Finder or in HyperCard you can start it up
just as you would any other application. If you are using MPW, you can start ResEdit by

entering either of these commands in the MPW Shell:
ResEdit
ResEdit filel file2 ...

The latter command causes ResEdit to open the named files automatically.

When ResEdit first starts up, it displays an animated “splash screen.” Figure 2-1 shows one of

the stages of this animation.

= Figure2-1  Splash screen

-
EENEEEN NN
EEEEENE B W
muE mE .
B "fnam s
] ] 1
el - ResEdit 2.1
e
ST ) 2.1a5
snEEEEN
T
] ]
i SEEmEEEESE §
| ]
] ]
i !
E Copyright ®1984-1990,
Apple Computer, inc.
i 3 EnuEs : All rights reserved.
EEEEEENENENNE
] 1T
[T T

8 ResEdit 2.1 Reference




- LS

The animation continues until you click the mouse anywhere or press any key. If you click
the mouse or press an unmodified key ResEdit puts up a dialog box, shown in Figure 2-2, that
lets you create a new file or open an existing one. If you press a command-key combination,
the splash screen is dismissed and ResEdit performs the action you have requested. This is
especially useful for command keys assigned to the Open Special menu, described in this
chapter. You can, if you wish, use the Preferences command on the File menu to choose not
to have ResEdit put up the dialog box.

= Figure 2-2 ResEdit file open dialog

1 .Allan Faster’s diskname.
& Rbout Time

0 Antiviral

4 RApple HD SC Setup

£ Bostonil

4 Box 8 for Mac 11

& ChangeRppFont

D Clock Doc

O Color Cutter 1.1

& Diagnostic Sound Sampler ]
& Disk First Rid

>l Ntlabatlattl...

[__Open ]

You can select a filename by clicking it or by typing one or more characters of the filename.

Working with files

ResEdit provides facilities to let you open files, create new files, create resources, move and
edit them, and perform two levels of verification on them.

Chapter 2 Getting Started 9



Resource checking

Sometimes a resource file gets corrupted. This is typically the result of a crash occurring while
the file is being updated. In the past, ResEdit would occasionally crash when you tried to
open a damaged file with it. Version 2.0 of ResEdit provides resource file checking facilities to
help avoid crashes and to minimize loss of data. The checking facility does not detect
corrupted individual resources; it bases its tests on the file’s resource map.

When you open a file, ResEdit performs a partial resource check on it. This test verifies only
that the resource map is located after the end of the resource data area, and that the header,
data, and map do not extend beyond the EOF of the resource fork. If the file does not pass
these initial tests, a full test is automatically performed. If you choose “Verify files when they
are opened” in the Preferences dialog, ResEdit performs a full test whenever you open a file.

If you want to invoke the full test yourself, choose Verify Resource File from the File menu.

In order to perform a full resource check, ResEdit walks through the entire resource map and
verifies that the type list, the reference lists, and the name list are consistent, that all resource
data areas can be located, and that they do not exceed the available file size. It also checks for
duplicate types, and for duplicate ID numbers within each type. ResEdit has several
techniques for locating the resource map, the existence and location of which is critical to the
process of recovering damaged resource files.

If damage is discovered, the user is offered a repair option. This procedure does not change
the damaged file. Instead, ResEdit creates a new file, extracts all the resources it can find in
the damaged file, and copies them to the new file. It then renames the old file (with an
extension of “(damaged)”. ResEdit also presents the user with status information about the
resources that were extracted.

There is one exception to the rule that the damaged file is not “touched” minor damage
occurs whenever a resource file is not properly closed. ResEdit repairs this damage without
asking the user’s permission. (The actual process involved is quite simple: ResEdit opens the
file using the Resource Manager, calls the updateResFile routine to rewrite the resource
map, and closes the file.) After performing the repair, it presents an alert to the user.

Opening a file

To list the resource types in a file, select and open the filename from the list in the file open
dialog. If you try to open a file that does not have a resource fork, ResEdit displays a dialog
box, shown in Figure 2-3, that asks you whether you want to open the file anyway. If you
permit it to open the file, ResEdit extends the file by creating a resource fork in it.

10 ResEdit 2.1 Reference



®m Figure2-3  Add resource fork alert

The file ‘MRose Funny’ has no
resource fork. Opening it will add one.
Do you wish to open it?

A Warning You can edit any file shown in the window, including the System file and
ResEdit itself, though there are some restrictions (the Finder and the
Desktop File cannot be opened by ResEdit under MultiFinder™, for
example). It's dangerous, though, to edit a file that's currently in use. In
general, it is much wiser to edit a duplicate instead of the file itself. a

When you open a file, a file window appears. This window displays a pictorial list of all the
resource types in that file (See Figure 2-4), unless you choose “by Name” from the View menu
(See Figure 2-18). If you do choose to view the resource list by name, you can also choose to
show the total size of each resource type.

m Figure2-4  AResEdit 2.0 file window

Chapter 2 Getting Started 11



When a file window is the active window, you can create new resource types, copy or delete
existing resources, and paste resources from other files. Here, operations are performed on
sets of resources. For example, selecting the resource type 'ALRT" in a file causes all resources
of type 'ALRT" in that file to be selected as a group. Any operation you then perform on that
group affects all 'ALRT" resources in the file. To select more than one resource type, hold
down the Command key while clicking the individual items or click an item at the beginning
of the range you want to select, hold down the Shift key, and click the item at the end of the
range. The Shift key allows you to select the items in a rectangular area. You can then
continue to select or deselect individual resource types with the Command key. (These
techniques will also work within an open resource type for selecting individual resources.)

¢ Note: Many applications put more than one resource type at a time into the scrap when
Copy is chosen. For example, when an object is copied in MacDraw®, an 'MDPL' resource
and a 'PICT resource are put into the scrap. When you paste into the file window in
ResEdit, all resources that are present are pasted.

¢ Note: You can no longer use ResEdit to delete files; also, ResEdit does not manipulate or
read data forks (this means, for example, that it cannot copy them).

12 ResEdit 2.1 Reference



A

Menus in ResEdit

The structure of menus in ResEdit has been changed with the 2.0 release. There are five main
menus discussed here (File, Edit, Resource, Window, View), and special menus for particular
resources that are discussed in the sections on editing those resources, in Chapter 3.

The File menu

Figure 2-5 shows the File menu.

= Figure 2-5 File menu

Open Special Fagade
Finder
Finder Sounds %°

Revert File Flash-it x*

Get Info for Finder Soundsl
: Get File/Folder Info...
'%; Verify Resource File...

Modify This Menu...

Page Setup...
Print... %8P

Preferences...

Quit %0

The File menu comrhands act as follows:

New... Brings up the new file dialog box.
Open... Brings up the file open dialog box similar to the one shown in Figure 2-2, but
without a New button.

Open Special Allows you to open files quickly. The Modify This Menu command, which always
appears at the bottom of the submenu, brings up the dialog box shown in Figure 2-6,
which allows you to add and remove files and command keys.

Chapter 2 Getting Started 13



Close

Closes the currently active window. (Using this command has the same effect as
clicking the close box.)

Save Saves the currently active file, if there is one.

Revert file Restores the currently active file, if there is one, to the last version you saved.

Get Info for This File
When no file is open this command is gray and cannot be used. When a file is open
the words “This File” are replaced by the filename, and this command is enabled. It
displays file information and allows you to change it. (See Figure 2-7.)

Get File/Folder Info...
Displays file or folder information and allows you to change it. Figure 2-7 shows a
File Info window as it appears under system software version 6.0. Figure 2-8 is a
Folder Info window, also for system software version 6.0.

Verify Resource File...
Allows you to check the resource map of a file you specify.

Page Setup... Brings up the page setup dialog box.

Print... Allows you to print from almost any picker or editor. When no files are open, it is
gray and cannot be used.

Preferences... Brings up the dialog box shown in Figure 2-9. This lets you specify whether you
want ResEdit to start up with a file open dialog, whether you want to be warned if
you attempt to open the System file or ResEdit itself, whether you want ResEdit to
perform a verify operation on files when you open them, and also allows you to set
the sizes of type picker and resource picker windows.

Quit Quits ResEdit and returns to the Finder (or the MPW Shell, HyperCard, or whatever

program launched ResEdit).

14 ResEdit 2.1 Reference



m Figure2-6  Open Special dialog box

Files on Open Special menu

Finder
Finder Sounds ="

Flash-it %

= Figure 2-7 A File Info window

Info for About Time ==

it
Type [APPL | Creator 2277

Osystem  [Jinvisible Color:[ Black |
[J on Desk & Inited [J Bundie

[ shared [ No Inits
O Riways switch launch

[J Resource map is read only [ File Protect
[ printer driver is MultiFinder compatible [ File Busy
Created [3/10/86 3:19:20 PM [J File Locked

Modified [8/12/86 2:16:46 PM

Size 10855 bytes in resource fork
0 bytes in data fork

Chapter2 Getting Started 15



m Figure2-8  AFolderInfo window

IZO==1 info for folder St. Millipede of Zipper x|

(710 -1 dliSt. Millipede of Zipper
OSystem [Jinvisible Color:| Black |

O on Desk [ Inited

m Figure29  Preferences dialog box

Preferences

Window at startup: @ Open dialag O None

Warning when System or ResEdit is opened

[J verify files when they are opened

Default window size:
Type pickers Resource pickers

Width in pixels: @
Height in pixels:

-m vri : )
——

16 ResEdit 2.1 Reference



The Edit menu

Figure 2-10 shows the Edit menu. It has only one unusual feature, the Select Changed
command on the last line. This command allows you to select only those items that have been

changed since the last time you saved the file you are working on.

= Figure 2-10

Edit menu

& File I

Resource Window UView

=im

Undo

=
2

ENT'L

Cut
8 Paste %RV

Clear

%/H
%xC

)| | oupticate =p
2 Select All %A
Select Changed

CRIL

[ 7
L1 L
»L00 REL

Chapter 2 Getting Started

17



The Resource menu

The Resource menu is configured to provide the commands appropriate for the frontmost
window. The same items are always present on the menu, but they have slightly different
meanings, depending on the context. The wording of the items on the menu always tells you
what they do when you choose them. Figure 2-11 shows the Resource menu with a resource
type picker open and the 'BNDL' type selected.

= Figure 2-11  The Resource menu for 'BNDL'

€ File Edit JiELULE Window UView

— Create New Resource ¥K
=LE The Dwarl gpen BNDL Picker

Dpen Using Template..,
4 ) l_.ﬂﬁ i
8| &
e

fpen Using Hen

Revert BNDL Resources

| |7 betresowceinto =
> > ==T 1)
(3 DATA m

2 @)

PRI TOMD

The Create New Resource command lets you create any resource type. The Open Picker
command invokes a picker for the particular kind of resource that is selected. This is reflected
in its name, which includes the name of the selected resource type. At this level, the only
other command you can use is the Revert Resources command, which takes the resources
back to the last saved version. If you have made changes in individual resources of the
selected type since the last time you saved the file, you can undo those changes here.

18 ResEdit 2.1 Reference



Figure 2-12 shows the Resource menu again, this time with a resource picker open. Note that
it is now possible to open a resource with a resource editor or template (if one is available) or
with the hexadecimal editor.

m Figure2-12  The Resource menu with a picker open

& File Edit ELUT:N Window Uiew
Create New Resource XK
The Dward gpen Resource Editor

Z BNDLs { Open Using Template...

) open Using Hen Editor

Revert This Resource

Get Resource Info =81

Figure 2-13 shows the result of attempting to use the Open Using Template command on a
'CODE' resource. There is, in fact, no template for resources of this type. It is generally not
useful to open a resource of one type with a template for a resource of a different type.

m Figure2-13  There is no template for 'CODE' resources

€ File Edit KT L] Window Uiew

The Dwarf Banana |

CODEs from The Dwarf Be
D Size ame

Select Template

Chapter 2 Getting Started

19



It is also possible to get information on the selected resource. Figure 2-14 shows the Get Info
window for a resource of type 'ICN#. This dialog lets you change the name and ID number of
the resource, and select or deselect some of its attributes.

System Heap: If this attribute is set, the resource is placed in the System heap unless it is
too large to fit. In that case, the resource is placed in the Application heap, as if the box
were not checked. This attribute should not be set for an Application’s resources.

Purgeable: If this attribute is set, the resource can be purged from memory if more room
is needed. It is typically a good idea to set this attribute, but there are exceptions.

Locked: If this attribute is set, the resource is locked in place in the heap, and cannot be
moved. This attribute overrides the “Purgeable” attribute.

Protected: If this attribute is set, the Resource Manager cannot change the name or ID
number of the resource, modify its contents, or remove the resource from the file that
contains it. The Toolbox routine that sets these attributes can be called, however, to unset
this one.

Preload: Setting this attribute causes the Resource Manager to load the resource into
memory immediately after opening the resource file.

Figure 2-14  An'ICN# Get Info window

Fagadelcons ] BC== into for ICN¥ 3247 from Facadelcons =]

ICN#s from Fagad Type:  ICN# Size: 256

D

in:

Name: |Smyth Dingbat |

Owner type

Owner 1D: DRUR KN
WDEF

Attributes:
Osystem Heap [JLocked [ Preload
|1 [ Purgeable [ Protected

Opening a resource type produces a window that lists each resource of that type in the file.
The list is generated by a resource picker, and will take different forms, depending on the
particular resource picker that is displaying it. The general resource picker displays the
resources by type, name, ID number, or order in the file; pickers for specific resource types
generate displays that are appropriate for their type. Figure 2-15 shows a picker for the 'TCN#"
resource type.

You can also write your own pickers. For more information, see Chapter 7.

20

ResEdit 2.1 Reference



( = Figure 2-15 A resource type window (with custom picker)

Facadelcons ]
h ICN#s from Fagad
K
1299 1318
& @ i
7 3060 3247
B @ @l

When a resource type window is the active window, the Edit menu commands have the

following effects:
Undo Not usable.
Cut Removes the resources that are selected, placing them in the ResEdit scrap. If only
p one resource is selected, it is placed in the clipboard.
Copy Copies all the resources that are selected into the ResEdit scrap. If only one resource
is selected, it is copied to the clipboard.
Paste Copies the resources from the ResEdit scrap (or from the clipboard) into the resource

type window.

# Note: Only resources of the currently open type are copied into the resource type window.

Clear Removes the resources that are selected without placing them in the ResEdit scrap.
Duplicate Creates a duplicate of the selected resources and assigns a unique resource ID
number to each new resource.

When you choose Open Using Template from the Resource menu, a list of templates is
displayed, and you can pick the one you want to use.

Chapter 2  Getting Started 21



The Window menu

The Window menu, shown in Figure 2-16, gives you an overview of what windows are
currently open, and indicates the currently active window with a checkmark. It also lets you
select a new current window. Note that the Window menu is sorted not by window depth,
but by file.

m Figure2-16  The Window menu

& File Edit Resource da BNDL

The Dwarf Banana-Tree
Virus Ax 1.6 BNDLs Banana

acurs from Virus |  BNDL ID = 128
acu b _ﬂ
==oT]
Uirus Ax 1.6 pnana-Tree
Fotect Preload Name

Number of acurs
o
4 [ECE BNDL 1D = 12 acur 1D = 0

signature:
Type Finder Icons

m
PN W

(3

e |

22 ResEdit 2.1 Reference



-

The View menu

The View menu is configured to match the frontmost window. When a file window is the
currently active window, the View menu lets you show the resource types in a file by Icon or
type name, and if you show them by type, it lets you show the size of each type. (That is, the
sum of the sizes of all resources within the type.) See Figure 2-17.

m  Figure 2-17  The View menu and a ResEdit 2.0 file window

& File Edit Resource Window

by icon
@ The Dwarf Banana- R5Y ./hg Type

v Show Size With Type

E]
4
1
0
0
1
2
9
1
1
1
1
1

When a resource type window is the currently active window, the View menu lets you choose
among several viewing styles (see Figure 2-18), and lets you show some attributes for each
resource when you are viewing by ID, Name, Size, or Order in File (See Figure 2-19).
Attributes cannot be edited in this view, only displayed.

For some resources, the “By Special” line that is grayed out in Figure 2-18 is changed to a
type-specific alternate (for example, “By cicn”) . Attributes cannot be displayed in the
special views,

When an individual resource is open, the View menu is not shown.

Chapter 2 Getting Started

23



m Figure2-18  The View menu and a resource type window

& File Edit Resource Window

~by 1D

The Dwarf Banana | by Name

_E0JZ BNDLs from The Dwarf B¢ =8| by Size

by Order in File
by Special

Show Attributes

= Figure2-19  Showing type attributes

[l

24 ResEdit 2.1 Reference




A

Starting an editor

To open an editor for a particular resource in a file, first open the picker for the resource type.
To do this, either doubleclick the resource type name or select it and choose Open Picker
from the Resource menu. (The command will actually name the resource type. For example,
Open ICON Picker.) Then doubleclick an individual resource, or select it and choose Open
Resource Editor from the Resource menu. When an editor is invoked, one or more auxiliary
menus may appear, depending on the type of resource you're editing. Some editors, such as
the 'DITL editor, allow you to open additional editors for the elements within the resource.
The editors vary in their appearance and function, as explained in chapters 3 and 4.

If you choose Open Using Template from the Resource menu or hold down the Option and
Command keys while opening a resource, a list of templates is displayed. You may then
select the template that is appropriate for the resource you are opening. For more information
on editing with templates, see Chapter 5.

Resource ID numbers

Within a given resource type, resource ID numbers must be unique. Resources can, in
general, have any ID number between -32768 and +32767, but you should be aware of the
following restrictions which apply to most resources:

s ID numbers from -32768 to -16385 are reserved. Do not use them!

» ID numbers from 16384 to -1 are used for system resources that are owned by other
system resources. For example, a dialog box used by a desk accessory (the desk
accessory is, itself, a resource of type 'DRVR") would have a number in this range.

s ID numbers from 0 to 127 are used for system resources.
= ID numbers from 128 to 32767 are available to you for your uses.
Some system resources own others. The “owner” contains code that reads the “owned”

resource into memory. For example, desk accessories can have their own patterns, strings,
and so on. Please see Chapter 5 of Inside Macintosh, Volume 1, for more information.

Fonts constitute a special case. For information about fonts, see the section on 'FONT'
resources in Chapter 3.

Chapter 2  Getting Started

25






DocTitle DraftNum

Chapter 3 The Bit Editors

Many important resources on the Macintosh are pictorial. These include
cursors, icons, patterns, and fonts. The ResEdit resource editors that handle
pictorial resources are discussed in this chapter. Other resource editors are
discussed in Chapter 4. For information on editing template resources,
please see Chapter 5.

Y24/90

27



Overview of the bit editors

Pictorial resource types are edited with a bit or pixel editor. The bit editors in ResEdit 2.1 are
all fundamentally alike except for the 'FONT editor, which is a special case and is discussed

separately.
Figure 3-1 shows the layout of a typical bit editor window.

= Figure 3-1

Bit editing window layout

EOE crsr "Fibonacci Kite” 10 = 11235 fro

The bit editor window contains these elements:

28

Atool palette at the left edge of the window.

A selector that brings up a tear-off palette of patterns, and (in color editors) another pair
of selectors, below the tool palette that allow you to select foreground and background
colors. These bring up tear-off color palettes.

A main editing window that shows an enlarged picture for “fat-bits” editing. The size of
this window varies from editor to editor.

Full-size views of the resource (in monochrome and, when appropriate, in color) and its
mask (if it has one), to the right of the main editing window.

In addition, some of the bit editors have views of the resource against various
backgrounds, at the right edge of the window.

ResEdit 2.1 Reference



A,

When you open a resource that involves color, the editor window is placed on the display
with the largest number of colors or gray levels. If you have two monitors, one of which is set
to black and white and the other is set to sixteen gray levels, the editing window is opened on
the monitor that can display gray. When you use ResEdit on systems with 24-bit monitors, you
will probably need to increase the Application Memory size beyond the default 512 KB in
order to avoid out-of-memory wamings.

Tools

The tools in the palette behave as you would expect them to from familiar paint programs,
with the exception of the color-dropper and the pencil. The color-dropper lets you pick up
the color of any pixel in the main editing window.

When you are using other drawing tools (e.g., the paint bucket), you can get the color-
dropper by holding down the Option key. This does not, however, work with the eraser , the
marquee, or the lasso.

The middle square on the left side of the tool palette is special, and its content changes from
editor to editor; in Figure 3-1, which shows the ‘crst' editor, it allows you to place the cursor’s
hot spot. This is discussed further in the section on cursor editing in this chapter. In some of
the editors this square is empty.

When you are editing a colored resource, the pencil tool behaves slightly differently from
what you might expect if you have only edited in Black & White previously. If you click on a
pixel in the editing window, that pixel changes to the currently selected color. If it is already
the currently selected color, it turns white instead.

#  Note: If you try to paste more bits than there is room for in a resource (for example, if you
try to paste a 40-by-40-bit area from a paint program into, say, an 'ICON', which can only
hold a 32-by-32-bit area), ResEdit pastes the selection centered into the active area, and
the boundary of the selection will be outside the active area of the editing window. You
can shift-drag to reposition the selection. If a marquee selection is already present in the
active area when you perform a paste operation, the 'PICT' in the clipboard is scaled into
the selection. You cannot paste into a lasso selection.

Chapter3 The Bit Editors

29



Menus

The bit editors have two menus in common: Transform, and Color (except for strictly
monochrome resources, the editors for which do not have a Color menu). Some of the editors
also have individual menus, which are discussed in the sections on those resources.

The Transform menu

The Transform menu is shown in Figure 3-2. It allows you to transform selected regions in
several ways. The Flip Horizontal, Flip Vertical, and Rotate commands are familiar from paint
programs. The Nudge commands move the selected region by 1 pixel in the indicated
direction. (You can also nudge the selected region by using the Arrow keys.) Flip and Rotate
commands require a rectangular (marquee) selection.

m Figure32  The Transform menu

" = File Edit Resource Window L (L] Colors cicn

| —@0S cicn “Clarus the DogCow* 1] Flip Horizontal [sendai ==5|
- Flip Vertical
Rotate

1)

Nudge Up
Nudge Down
Nudge Left

Nudge Right

v Show Grid

E40 11—

I0:

30 ResEdit 2.1 Reference




-,

The Color menu

m Figure3-3  The Color menu

File Edit Resource Window Transform QEWINIgY cicn
Apple Icon Colors
Recent Colors
«Standard 256 Colors
Standard 16 Colors
Standard 16 Grays
Standard 4 Grays
The Source of All Things
Heap o’ Grays
Heap o’ Reds
Strangebows
Heap o’ Greens
Heap o’ Blues
Heap o’ Cyans
Heap o’ Magentas
Heap o’ Yellows
Heap o’ Hues
Color Picker

Foreground <-> Background

Recolor Uslng Palette

The Color menu is shown in Figure 3-3. It lets you choose among any available 'clut' or 'pltt’
resources as well as from a standard set of options. If you have resources of your own that
you want to use, the ResEdit Preferences file is a good place for them.

The standard entries on the Color menu include the following:
Apple Icon Colors  Gives you a palette of Apple’s recommended colors for icons.

Recent Colors Gives you the set of colors that are currently present in the resource. These may
come from several palettes. This set includes colors that you have chosen since the
last time you closed the resource but haven't used yet. (When you close a resource,
unused colors are automatically removed.)

Standard 256 Colors
Gives you the standard 8-bit color palette.

Standard 16 Colors  Gives you the standard 4-bit color palette.
Standard 16 Grays  Gives you 4 bits of gray levels.
Standard 4 Grays ~ Gives you 2 bits of gray levels.

Chapter3 The Bit Editors 31



Color Picker Lets you use the standard color picker, with which you can select any of more than
16 million colors.

Foreground <-> Background
Swaps foreground and background colors.

Recolor Using Palette
Recolors the resource using the new palette you've chosen. Merely selecting a palette
does not change any of the colors in the resource you're editing.

Palette choices are different for Finder Icons. The only color choices available in the
Finder icon editor are Apple’s recommended icon colors, the standard 16-color (4-bit) palette,
and the standard 256-color (8-bit) palette.

¢ Note: ResEdit automatically removes any unused colors from a resource when you close it.

The 'FONT"' editor

The 'FONT editor, discussed in detail later in this chapter, is also a bit editor, but it is older
and has not been changed; if you need to edit fonts, you should probably use one or more of
the excellent third-party utilities that are now available.

AN

32 ResEdit 2.1 Reference




Editing Cursors

Cursors are pictorial resources of types 'CURS' and 'crst'. Figure 3-4 shows the 'CURS' editor;
the 'crsr! editor is shown twice in Figure 3-3. In each of these editors, the top part of the
display has a large image for editing and two smaller full-scale images. The upper image
shows the cursor itself. The lower image is the mask for the cursor, which affects how the
cursor appears on various backgrounds. The pixel in the editing window that is marked with
an “X” is the cursor’s “hot spot.” (The hot spot is the pixel in the cursor that the Macintosh
recognizes as the cursor’s location. The hot spot of the familiar arrow cursor, for example, is
its point.) There is a special “hot spot” tool on the palette. It is shaped like an “X”, as you
would expect. Click this tool and then click anywhere in the main image in the editing
window, to place the hot spot.

In the right edge of the display, the cursor is drawn to scale on five different background
pattemns. To draw the cursor, a hole is made in the background by turning off the pixels in the
area of the screen covered by the mask. Then the cursor is overlaid on the hole. (Figure 3-5
shows a pair of explanatory examples.) Ordinarily, the mask should be just a filled-in outline
of the cursor so that the cursor can be seen clearly. To edit the cursor's mask, click on the
small image labeled “Mask”. It is then displayed in the editing window. Initially this image is
blank; you can drag an upper image to the Mask image to create a mask, or select the mask
and paste an image into it.

Notice that the 'CURS' editor does not need (or have) a color-dropper tool.

m Figure3-4  'CURS resource editor

2 CURS "Pascal Mono" 1D = 14641 from

(—

Chapter3 The Bit Editors

33



Figure 3-5 shows two almost identical 'crst' edits. These illustrate the difference between
pasting the B&W image into the mask (left) and dragging the B&W image to the mask (right).
As you can see, the cursor on the right is entirely opaque: nowhere does the background
show through it.

m Figure3-5  Color cursor editing: mask examples

EDIZ crsr "Wilson-Shea OpenkKite® ID = 235{ crsr "Wiison-Shea DropKite” 10 = 523

= 1}

= " &
g—- .. -...: falor L
i ufa "a""
X~ . oV, MEZ u ; BAY

s "“un

=il

O
(—

The CURS and crsr menus contain the following command:

Try Pointer Lets you try out your handiwork by having it become the cursor in use
inside ResEdit, in place of the ordinary arrow cursor.

34 ResEdit 2.1 Reference



A,

Editing Icons

ResEdit contains editors for all the common icon resource types.

Editing 'cicn’ resources

Ordinary color icons are pictorial resources of type 'cicn'. Figure 3-6 shows the 'cicn' editor.
Please see the inside front cover for a color illustration of the 'cicn' editor.

It is possible to transfer images among the various framed images at the right edge of the 'cicn'
editor. If you drag across either the color image or the black-and-white image, an outline will
detach. You can then move that outline to the other image or to the mask. The destination
highlights to indicate that releasing the mouse button will transfer the image. If you transfer
the image to the mask, interior bits in the image are set to black.

m Figure36  Coloricon editor

Eﬂ cicn "Clarus the DogCow" i0 = 1144 from Ono-Sendai =

Chapter 3 The Bit Editors

35



Creating new color icons

When you create a new 'cicn' resource, you get the default set of 16 colors. The color menu,
shown in Figure 3-6, lets you select other color collections. The most commonly used
collection is Standard 256 Colors, which lets you pick colors from the 8-bit System color table.
Apple recommends that you use colors in the standard 16- and 256-color collections and
specifically the Apple Icon Colors, as these are typically present when a 'cicn’ icon is drawn.

The “Icon size” command brings up a dialog box that allows you to choose the horizontal and
vertical sizes of the icon. These sizes are separate; that is, the icon does not have to be a
square. The minimum for both is 8 pixels, and the maximum is 64. The Delete B&W Icon
command is only active when the Black and White icon is selected.

It is possible to create a 'cicn' resource without a B&W image, but because the system uses the
B&W image to display the icon on monitors that are set to black and white or to 4 grays or
colors, it is probably a good idea to include it.

Finder icons

Finder icons, beginning with system software version 7.0, constitute a suite, or family, of
pictorial resources. These include small and large color icons in 16 and 256 colors (types 'ics4'
and 'ics8 in the small size, 'icl4' and 'icl8' in the larger size) as well as small and large
monochrome icons, now types 'ics# and the familiar 'ICN#, which is discussed later in this
chapter. The large icons are 32-by-32 pixels, and effectively share the mask of the 'ICN# type.
The small icons are 16-by-16 pixels; they, too, share a common mask, in an 'ics# resource.

When you use the color-dropper, remember that the color selection is tied to the depth of the
image. That is, if you use the color-dropper to pick up the color of a pixel in, say, the icl4 or
ics4 image, this does not change the color selection in the icl8 and ics8 images (and vice
versa), nor does it change the “color” selection (black or white) in the ICN# and ics# images.

Opening any of these resources automatically invokes the Finder icon editor and starts the
subeditor for the particular resource type, provided Color QuickDraw is present. The 'TCN#'
resource type still has its own individual editor, but is typically edited in the Finder icon editor
with the other members of the suite. (Double-clicking a resource of type 'ICN#' opens the
'ICN# editor rather than the Finder icon editor if Color QuickDraw is not present, or if you
have installed an 'RMAP" resource in the ResEdit Preferences file to override the Finder Icon
editor. See Chapter 6 for details.)

36 ResEdit 2.1 Reference



A

Figure 3-7 shows the Finder icon editor during an 'icl8' edit. The other editing windows are
quite similar, all of them sharing the tool palette; here, as with the 'cicn' editor, a monochrome
illustration cannot fully represent the appearance of a color screen, but should give you some
idea of the appearance of this editor. Please see the inside front cover for a color illustration
of the Finder icon editor.

m Figure37  Finder icon editor

é-;:%i-i- Icon Family "Flaming Raku" 10 = 134 from Ono-Sendai F——|
= I =
jgl B aaiqfead SEisaan ? C “

~ IIIIII=EI==:=::!:III 1 ‘M
e TR
== apliESganREEEEEy “ & &
SR o ¢
oS il i (@800
S| §ifte wE2® wBaSTisamaza | o P
™ Enes @wdF
T = Ofine
——ARNRERERSY

When you click one of the eight small pictures labeled with resource type names, that icon is
opened for editing. Clicking in the display bar on the far right does nothing. This area shows
the icon in the form of three groups of images against the selected background. The groups
are labeled ‘Normal', ‘Open’, and ‘Offline’. The display shows the way the icons are drawn by
the system software version 7.0 Finder. In each group, the icon is shown unselected on the
left, and selected on the right.

The Icons menu

The Icons menu is shown in Figure 3-8. It allows you to choose a background for the display
section at the right edge of the window. The Delete command allows you to delete the icon
type currently being edited. If a mask is being edited, the Delete command allows you to
delete the monochrome icon ('ICN#' or 'ics#') that contains the mask.

Chapter 3 The Bit Editors

37



= Figure 3-8 Icons menu

" & Flle Edit Resource Window Transform Colors

~SCJE==3 Icon Family *Flaming Raku" |0 = 134 from On|¥ White Background

8 6ray Background
R LT TT T

LS HHHHHHH Black Background

Desktop Background

Cé
o &

Kol
% f.{: aveil

Offline

wiR

RS
ffa i

Ly [Ghirs

g

*
g
R

'ICON' resources

Icons that appear within a program (HyperCard is a good example), are typically resources of
type 'ICON'. The 'ICON' editor is shown in Figure 3-9.

= Figure 3-9 'ICON' resource editor

S)== ICON *Bill" ID = 2002 from lIy_perCard 1.2.5 ==
. =
P (- EEENREEENNEE ‘@
S SENN ESESEN
EEEEE B

| [EERSS
e,
::._5_
S

38 ResEdit 2.1 Reference



LS

If you cut or copy a marquee selection during editing, you can paste it into a type picker
window as a 'PICT resource. The 'PICT' resource picker does not have to be open when you
cut, copy, or paste.

'ICN#' resources

The 'ICN# resource is a common target for ResEdit. The icons that you see on the desktop in
system software version 6.0 and earlier, representing applications and their documents, are all
'ICN# icons, as are folder icons and even the trashcan. The 'ICN# resource type is edited
either in the Finder icon editor, or with its own editor. Both permit you to change any of the
pixels in the icon, which are in a 32-by-32-pixel square. If you cut or copy a marquee
selection, you can later paste it as a 'PICT' resource: see the description of TCON' resource
editing earlier in this chapter. When you doubleclick a resource of type 'ICN#, the specific
'ICN# editor is ordinarily activated only if Color QuickDraw is not present,. If you want to edit
a resource of type 'ICN#' alone and you have Color QuickDraw, you need to generate an
'"RMAP' resource in your ResEdit Preferences file to override the normal operation of ResEdit.
See Chapter 6 for details.

In system software version 7.0 and later, this icon is part of the Finder icon suite, and is
typically edited with the Finder icon editor.

The 'ICN# editor is shown in Figure 3-10.

m  Figure 3-10  'ICN# resource editor

BO=== ICN# *Evins’ DreadEdit!” 1D = 11111 from Ono-Sendai |

=7 ENEE NE ENEEEN

[ N EEERE EAN _EEm
NENNEENEE BEEN EENN
HENEEEE 6N NEE EER
HNNNEER EEE N
(] L

D %%% / 9? ;
e
g
S aanann Ef:-
B

E

Chapter 3 The Bit Editors 39



In recent versions of the Finder, 'ICN# resources are displayed on the screen as follows: First
the mask is used to blank an area of the screen. Then an OR operation is performed in the
same screen area, using the icon as data. (When a highlighted icon is displayed, the
foreground and background “colors” (in this case black and white) are swapped before the
OR operation is performed on the data.) If the mask is not the same shape as the outline of
the icon, the results will in general be unaesthetic unless the background is black.

40 ResEdit 2.1 Reference

el



List resources

Some pictorial resources contain sets or lists of pictures. Together these pictures make up an
individual resource. Editors for list resources have two kinds of editing regions. The first kind
is a bit editor, familiar from the editors that have already been described in this chapter. The
other kind is used to manipulate the elements in the list.

The picture currently being edited is shown in a box as with the other bit editors. To edit a
different picture, click it in the list on the right. You can drag elements to different positions in
the list; you can cut, copy, and paste elements. If there are more elements in the list than will
fit in the list display area, the scrollbar is enabled.

'SICN' resources

The small icon ('SICN') editor is shown in Figure 3-11.

You can add a new small-icon picture by choosing the Insert New SICN command from the
Resource menu. Commands on the Edit menu can be used to cut, copy, paste, clear, or
duplicate pictures.

m Figure3-11  'SICN resource editor

{ECJ2 SICN ID = 128 from Ono-Sendai =|

| | [ ]
&2 EEMD

)

Chapter 3 The Bit Editors

41



Editing Patterns

ResEdit 2.1 includes editors for four kinds of pattern resources: 'PAT ' (B&W patterns), 'PAT#'
(B&W pattern lists), 'ppat' (color patterns), and 'ppt# (color pattern lists).

Each pattern editor has a menu; the PAT and PAT# menus have only one command: Try
Pattern. This command lets you use your pattern as the desktop pattern on your screen.

The ppat and ppt# menus have two commands. The Pattern Size command brings up a
dialog box, shown in Figure 3-12, that lets you choose the size of the basic cell of your
pattern. Patterns are replicated or truncated, not scaled.

The Try Pattern command lets you use your pattern as the desktop pattern on your screen.
When you are in Try Pattern mode, you can shift back and forth between color and B&W
versions of the patterns by clicking on their respective pictures in the list area (see Figure 3-15
or 3-16).

m Figure 312  Pattern Size Dialog Box

Pattern Size

-t
(-]

w
N

(-
&

42 ResEdit 2.1 Reference




1%

'PAT ' resources
The 'PAT ' resource (B&W pattern) editor is shown in Figure 3-13. It displays two panels, with

the editing area on the left and the pattern shown on the right. The editing area is small, but it
is possible to make some use of the marquee tool.

m Figure3-13  'PAT' resource editor

(B PAT_ID = -15808 from Systd|

B -

[BRhES

'PAT# resources

The 'PAT# resource (B&W pattern list) editor is much like the 'SICN' editor; it is shown in
Figure 3-14.

m Figure 3-14  'PAT# resource editor

BCE PAT# -Rimast Trigonal” 10 =

=] 5
74 ,

[Giaimrae

&

Chapter 3 The Bit Editors

43



'ppat' resources

The 'ppat' resource (color pattern) editor is shown in Figure 3-15.

The B&W pattern is limited to 8-x-8 pixels, and cannot be resized, though it can be edited. It
is displayed on the right edge of the editor window, and is automatically sized to match the
color display above it. Unless your color pattern is also 8 pixels square, the B&W pattern
probably won't look quite like it, as is evident in Figure 3-15.

m Figure 315 'ppat resource editor

'ppt# resources

The 'ppt#' resource (color pattern list) editor is shown in Figure 3-16 There are three displays
in this editor. The display on the left is a color (or B&W) fat-bits version for editing. The
display in the middle shows the resulting pattern at full scale, both in color and in B&W. The
B&W pattern is sized to match the Color pattern. The display on the right is the list area.

44 ResEdit 2.1 Reference



i

'ppt#' resource editor

[E 2 ppt# "Butler's Bane® 1D = 999 from Ono-Sendai =]

= Figure 3-16

B&Y

45

Chapter3 The Bit Editors




FONT' resources

The 'FONT resource is one of two major ways of representing bitmap (screen) fonts for the
Macintosh. (The 'NFNT" resource, described briefly later in this section, is the other.) The
'FONT resource contains a series of pictures that typically represent items in the Macintosh
character set, though they need not do so. A chart of the Macintosh character set is presented
in Appendix D.

Because the Macintosh displays a character of type on its screen as a bitmap, however, it is
possible for the pictures to be just that—pictures. 'FONT' resources on the Macintosh can
contain scanned images and other pictures just as easily as they can contain the alphabet,
numerals, and punctuation marks.

The Macintosh can modify elements of a font—for example, it can boldface them, or slant
them for an approximation of italics. Print quality on dot-matrix printers (and screen-display
accuracy as well) can be improved, however, by providing extra fonts that are constructed
with those styles built into them. "FONT' resources typically come in families, so that it is
possible to display text on the screen (and print it on dot-matrix printers) in several styles,
most commonly roman, bold, italic, and a bold-italic combination, without taking processor
time to calculate the way such styles should look. These families can also correspond to
downloadable PostScript fonts for laser printers and typesetters.

If you use ResEdit to examine a Fonts file from a recent Macintosh system software version,
you will find that it contains three kinds of resources: 'FOND' 'FONT", and 'vers' (a record of
the version number of the release). The 'FOND' resource “owns” one or more sizes of a
particular font and contains kerning tables and other important information about the 'FONT'
resources it owns. The "FOND' resource has a unique ID number, from which the ID numbers
of its subsidiary 'FONT's are calculated. To find the ID number of a particular 'FONT'
resource, take the ID number of the parent 'FOND', multiply by 128, and add the point size of
the 'FONT". For example, 'FONT' ID 268 corresponds to New York (family ID 2), in

12 point size.

The ID numbers of 'FOND' resources may be from 0 (Chicago, the default System font) to 255,
inclusive. Apple reserves ID numbers from 0 through 127. Unfortunately, there are a great
many bitmap fonts (vastly more, in fact, than 255 of them), so occasional ID number collisions
are unavoidable. Version 3.8 and later versions of the Font/DA Mover attempt to resolve such
collisions, as do some third-party system-enhancer packages.

46 ResEdit 2.1 Reference




There is also another, newer kind of font resource, type 'NFNT". Like 'FONT resources,
'NFNT resources are also owned by 'FOND' resources. ID numbering of 'NFNT fonts is,
however, not keyed to the ID number of the parent 'FOND'. Arbitrary numbering of 'NFNT'
resources helps avoid font ID number collisions and facilitates resolution of conflicts when
they do occur. 'NFNT fonts, moreover, can contain and display more than 1 bit per pixel and
can be assigned absolute colors with a corresponding 'fctb' resource, which is a ColorTable
record. (Font ColorTable records are discussed in Inside Macintosh, Volume V, in the section
on the Color Manager. The Font Manager is discussed in some detail in Inside Macintosh,
Volumes IV and V.) ResEdit cannot edit 'NFNT fonts, but it can copy and move them, as can
version 3.8 and later versions of the Font/DA Mover. A third-party editor for 'NFNT" fonts is
available.

Editing FONT' resources

Fonts are edited with a bit editor that is a superset of the bit editors for other pictorial
resources. This editor has several of the tools you are probably familiar with from programs
like MacPaint.

The editing window for 'FONT resources is divided into four panels: a character-editing
panel, a sample text panel, a character-selection panel, and a typical set of graphics tools.
These panels are shown in Figure 3-17.

® Figure3-17  'FONT resource editor

Full NY Set, throug |
FONTs from Full NY Set, t |
[J=====—== New York 14 from Full NY Set, through 72 S===———=|

! Beauty is momentary in the
mind - / The fitful tracing of a
portal /But in the flesh it is
immortal.

u - Wallace Stevens

(= ~|O|0|0
- N e mee
ASCTI Ottset Wikeh Loastioa
65 0 12 174

Chapter 3 The Bit Editors

47



The character-editing panel, on the left side of the window, shows an enlargement of the
selected character. You can edit it, as with the other bit editors for pictorial resources, by
clicking bits on and off. Drag the black triangles at the bottom of the character-editing panel
to set the left and right bounds of the character (that is, the character width). Two of the three
triangles at the left side of the panel control the ascent and descent of characters in the font. If
you want to increase the ascent or descent, move the appropriate triangle first. If you put
pixels outside the indicated area and then move the triangle, those pixels are wiped out.

A Warning Changing the ascent or descent of a character changes the ascent or
descent for the entire font. a

The third triangle on the left shows the location of the baseline, which is fixed and is
displayed only for reference. Below the panel are the character number (labeled “ASCIT"), and
the character’s offset, width, and location, all in decimal notation.

& Note: The correspondence between the Macintosh character set number and a real ASCII
number is limited. Strictly speaking, ASCII is a set of 128 characters, numbered from 00
($00, the NULL character) through 127 ($7F, the DEL character), and is intended to
represent a basic character set rather than any font or typeface, in a relatively universally
understood form. Because the Macintosh character set is oriented toward electronic
publishing, which has more (and different) requirements, it has twice as many possible
character numbers. (See the section on the 'KCHR' editor later in this chapter.) For
ordinary text fonts, characters 0 through 127 of a Macintosh font are the ASCII character
set. For Symbol, ITC Zapf Dingbats®, and the various pictorial fonts, however, the
correspondence with the ASCII character set is minimal. The Macintosh character set is
shown in Appendix D.

The sample text panel, at the upper right, displays a sample of text in the font currently being
edited. (You can change this text by clicking in the text panel and using normal Macintosh
editing techniques.)

The character-selection panel is below the text panel. You can select a character to edit by
typing it (using the Shift and Option keys if necessary), or by clicking it in the row of three
characters shown. To move upward through the character number range, click the right
character in the row; to move downward, click the left character. The character you select is
boxed in the center of the row. (To scroll quickly, click the right or left character and drag the
pointer outside the selection panel, to the right or left.)

48 ResEdit 2.1 Reference




The graphics tools panel, directly below the character-selection panel, offers several familiar
graphics-manipulation tools, including the pencil, eraser, circles, and rectangles. The 'FONT
editor, unlike the other bit editors, includes the marquee tool as a panel selection, and the
lasso is also available.

Any changes you make in the character-editing panel are reflected in the text panel and the
character-selection panel, except on monitors displaying more than 2 colors or gray levels.

You can also change the name of a font. The font name is stored in two places: as the name
of the 'FOND' resource of that font family, and as the name of the size 0 'FONT resource. To
change the font name, select the individual "FOND' resource with the name you wish to
change, and choose Get Info from the File menu. To maintain consistency, you should also
change the name of the 0 point 'FONT resource. This resource does not show up in the
normal display of all fonts in a file. To display it, hold down the Option key while you open
the 'FONT type from the file window. You will see a generic list of fonts. Select the font with
the name you wish to change, and choose Get Info.

Chapter 3 The Bit Editors

49



:/ .

S~




ol x5,

DocTitle DrafiNum

Chapter 4 Other Resources

Some of the ResEdit resource editors are discussed in this chapter. The use
of the editors not discussed here should be apparent when you run them.
For information on editing template resources, please see Chapter 5.

51



Using the hexadecimal editor

The hexadecimal resource editor is invoked if you hold down the Option key while opening
a resource or choose Open Using Hex Editor from the Resource menu. This editor allows you
to edit the resource as hexadecimal or ASCII data. The hex editor can edit resources larger
than 255 KB. If a resource is between 256 KB and 511KB in size, each click in the up or down
scroll arrow scrolls two lines; if between 512 KB and 767 KB, each click scrolls three lines,
and so on. (The scroll bars keep track of position with an integer, which is a single byte, and
thus is limited to values between 0 and 255.)

If you enter hexadecimal text when you are using this editor, the editor maintains byte
alignment of the incoming data. Thus, if you type 2 into an empty byte, the editor displays
02. If you then type a, the editor displays 2a.

The hex editor has a Search menu. It allows you to search for the occurrence of a pattern in
the resource being displayed and allows you to enter the pattern in either hexadecimal or
Macintosh character set notation, the latter being loosely described as ASCII, though it is
actually considerably larger than the true ASCII set. See Appendix D for a chart of the
Macintosh character set. The hex editor also allows you to move to a specified offset from the
beginning of the resource you're editing.

52 ResEdit 2.1 Reference



'WIND', 'ALRT', and 'DLOG' resources

'"WIND' resources display windows on the screen. Figure 4-1 shows the "WIND' resource
editor. At the top of the editing window is a pictorial list of the different window styles, from
which you can choose. Below that is a MiniScreen in which is displayed a small picture of the
window. You can move and size the window in the MiniScreen. The MiniScreen menu,
shown in Figure 4-10, lets you choose the size of monitor you want the MiniScreen to
simulate. It defaults to Mac SE. At the bottom are numeric values (given in pixels) for the
positions of the edges of the window; these give you another way of changing the window’s
size and position. On the right side are radio buttons that allow you to choose between
default and custom color, and checkboxes to let you declare the window to be visible when it
is first drawn, and for the presence of a closebox.

In Figure 4-1, Custom Color has been selected, and controls that allow you to choose colors
for various parts of the window are visible. When you choose custom color, ResEdit creates a
'wetb' resource that corresponds to the "WIND', 'ALRT ', or 'DLOG' you are editing. The first
time you do this in a particular file, ResEdit prompts you to remember that you are creating a
new resource, and that if you remove the parent resource you should remember to remove
the extra 'wctb' that is left behind.

'ALRT' and 'DLOG' resources display, respectively, alert and dialog boxes.Editing 'ALRT ' and
'DLOG' resources is much like editing "WIND' resources, except that the corresponding 'DITL'
resource is automatically opened if you double-click on the picture of the alert or dialog box
after opening the resource. (See the next section.) You can choose a particular 'DITL' to go
with a given 'ALRT ' or 'DLOG', but the default is one that has the same ID number as the
parent resource. 'ALRT ' resources have a fixed format, so you don’t get to choose a window

type, nor do you have the options of selecting initial visibility or the presence of a closebox.
'DLOG' resources do allow you these options.

Figure 4-4 shows an 'ALRT" open for editing. Just as with the "WIND' example, the editor
displays a MiniScreen view of the resource.

#  Note: The first item in the 'DITL' associated with any 'ALRT' must be a button. The system
has no way of telling what is where, so it always regards the first item as a button. In the
alternate view of the 'ALRT", you can specify either item 1 or item 2 as the default. If item
1is the default, of course, item 2 need not be a button. There is an informal convention in
Macintosh programming that item 1 is the “OK” button, and item 2 is the cancel button if
there is a cancel button,

Chapter4 Other Resources 53



When you display an individual "WIND', 'ALRT", or 'DLOG' resource, a corresponding menu
appears. The WIND menu is shown in Figure 4-2, the ALRT menu in Figure 4-5, and the
DLOG menu in Figure 4-8. These menus are very similar.

‘The have the following commands in common:

Preview at Full Size
Displays the resource sized as it is in normal display, though not necessarily

positioned correctly.

Auto Position
Allows you to let ResEdit position the resource.

Show Height & Width
Shows relative size/position information.

Show Bottom & Right
Shows absolute size/position information.

Use Color Picker
Lets you use the Color Picker instead of the standard 256-color palette when you set
the colors of the various parts of the resource.

= Figure41  'WIND resource editor

‘ l ? ? ?

Color: (O Default
@ Custom

Content: D Frame:
Title tent: Highlight: [__]
Title bar: D

Top: Bottom: X Initially visible
Left: Right: [ Clase box

54 ResEdit 2.1 Reference



TS

® Figure42  WIND menu

MiniScreen
Set 'WIND' Characteristics...
Preview at Full Size
Ruto Pasition...
vNever Use Custom 'WOEF' for Drawing

vShow Height & Width
Show Bottom @ Right

Use Color Picker

The WIND menu contains the following commands:

Set "WIND' Characteristics

Brings up a dialog box, shown in Figure 44, that allows you to title the window and

set its refCon and ProcID.

Never use custom "WDEF for drawing

This command defaults to true. It causes the resource to be drawn with the standard

'"WDEF from the System file.

m Figure43  Setting "WIND' characteristics

'WIND' Characteristics

Window title: |Night Scented Stock

Chapter 4

Other Resources

55



m Figure44  'ALRT'resource editor

IEC==== ALRT "Croaker Courtbouillon® ID = 3333 from Ono-Sendai

Color: @& Defauit
QO Custom

DITL 10

Tnp: Height: (144 |
Lert:[144 | width: [283_|

m Figure45  ALRT menu

G1R:1 gk MiniScreen
Set 'ALRT Stage Info...
Preview at Full Size
Auto Position...

v Show Height & Width
Show Bottom @ Right

Use Color Picker

The ALRT menu contains the following command:

Set 'ALRT ' Stage Info
Brings up a dialog box, shown in Figure 4-6, that allows you to set the display
conditions for the resource at different stages. You can choose the number of beeps
you want, up to three; whether the OK or Cancel button is the default; and whether
the Alert box is to be drawn for each stage. The stages correspond to successive
occurrences of the alert condition, though stage 4 is for 4 or more occurrences.
Please see Inside Macintosh, Volume I, page 409 for further information.

56 ResEdit 2.1 Reference



m  Figure 4-6

'ALRT ' Stage Info dialog box

‘ALRT Stages

Stage  Alert bou

Default button

Sounds

@ 0K QO Cancel

@0K O Cancel

@0k O Cancel

@® 0K (O Cancel

-

1 X Visible

2 X visible

3 & visible

4 BJ visible
= Figure 47

'DLOG ' resource editor

BEO== o106 "wallace Greenslade, R.1.P." ID = 1961 from Ono-Sendal =———]|

w] D

?

& M

top— - (et r-1
- —
—

Top:

Left: Width:

Color: @ Default
QO Custom

DITL 1D:
[ Initially visible
[Oclose box

Chapter4 Other Resources

57



7N,

s Figure48  DLOG menu

TR MiniScreen
Set 'DLOG’ Characteristics...
Preview at Full Size
Auto Position...
v Never use custom 'WOEF' for drawing

v Show Height @ Width
Show Bottom & Right

Use Color Picker

The DLOG menu contains the following commands:

Set 'DLOG' Characteristics
Brings up a dialog box, shown in Figure 4-9, that allows you to title the resource, and
to set its refCon and ProciD.

Never use custom "WDEF for drawing
This command defaults to true. It causes the resource to be drawn with the standard
"WDEF from the System file. '

m Figure49  setting'DLOG' characteristics

'DLO6' Characteristics

Window title: | This is the BBC..,

Procin:[1___ ]

58 ResEdit 2.1 Reference



1

= Figure 410  MiniScreen menu

v3512 1 342 - Mac SE
640 % 480 - Mac 1!
640 » 400 - Mac Portable
640 ¥ 8?0 - Portrait
1152 » 870 - Two page

Other...

There are four special items that you can put into static text in a 'DITL' item or into a 'STR#'
resource. They are built of a caret (A) followed by a number from 0 to 3. Each of these refers
to one of the items in a global array named DAStrings, maintained by the Dialog Manager. An
occurrence of one of these causes the contents of the corresponding entry in that array to be
substituted via a ParamText call when the resource is displayed. An example of a 'DITL' with
these items is shown in Figure 4-11, with one of the items open for editing to show the
special strings it contains. Please see Inside Macintosh, Volume I, page 421 for further

information.

® Figure 411  Special parameter strings

DITL 1D = 132 from Finder

0

' \& re you sure you want to compietely 4| 222
A‘ eplace contents of
£R

o 52

iih contents o{é
T

7 76
"1 170
276

ok [ [Cance@

Edit DITL item #5 from Finder )

]’eu‘: -.Azn ‘/\3]

| Static Test w)

O Enabled Top:
Left:

Bottom:
Right:

Chapter4 Other Resources

59



'DITL' resources

The 'DITL' (dialog item list) resource editor can be invoked directly or from the 'WIND', ALRT
', and 'DLOG' editor. When you first invoke it, it displays an image of the items from the list
just as they would be displayed in a dialog or alert box. When you select an item, it is drawn
with an enclosing rectangle that has a size box appears in its lower-right comer so that you
can change its size. You can move an item by dragging it with the mouse.

To create a new item, drag the type you want from the item palette.

If you open an item within the dialog box, the item editor, shown in Figure 4-12, is invoked. If
you hold down the Option key while opening a 'CNTL', 'ICON', or 'PICT', the hexadecimal
editor is invoked. If you hold down the Option and Command keys, the items are drawn with
solid borders, and their item numbers are displayed. Some dialog items are not editable and
are listed as User Items. These are defined in the application, rather than in the Dialog
Manager, and are actually built only when you run the application.

Because they are linked, the 'DITL' resource is usually given the same ID number as the
parent 'DLOG' or 'ALRT". This is not necessary, however, and you can assign any 'DITL'
resource to any 'ALRT' or 'DLOG".

Figure 4-12 shows the 'DITL' corresponding to the 'ALRT" from Figure 4-4. Both items in the
'DITL' have been selected, and are shown surrounded by dashed borders.

m Figure 412  'DITL resource editor

ALRT “"Croaker Caurtbauillo

* |n 3333 from Ono-Sendal ===’=5’='

&) Button
B Check Box Dh, no! | have suffered Unexpecte(Z;
Error . Now | must go away from
@ Radio Button}l 9 y
& you, perhaps never to returni!
Control

T: Static Text
Edit Text

Top: Height: User Item

Left: width: [283 |

60 ResEdit 2.1 Reference



LS

The individual item editor, shown in Figure 4-13, has one popup menu, which allows you to
change the type of the item.

= Figure 413  DITL item editor

Button - i
# - |
E Check Box DITL item #2 from Ono-Sendal
LLCD R LULU LI TP (0h, no! | have suffered Unenpected.
Cantrol Evrar ~0. Now | must go away from:
you, perhaps never to return!!
Edit Text
icon
Picture Top: Bottom:
uSer |tem p
Help Item Left: Right: @j

m Figure 414 DITL menu

" & File Edit Resource Window i Alignment
Ono-Sendal Hsnumberzltems... Hobbe
Sat ttam Number... ble b 19.023K in
= A LL_UL B Select Item Number... =
ALRT “Croaker Courtbouillol /show Item Numbers dﬂ‘
<=2 DITL “Croaker Courtbouill L it

—1 HAlign Ta Grid |
Eh. nol | have suffered Une{ grid settings...

rror “0. Now | must go aw
ou, perhaps never to retur| shouw All Items
Use ttam’s Rectangle

[?o'm View Rs...

Balloon Help... ....
=5 I Picture

User ltem

Top: Helght:
Left: Width:

The DITL menu, shown in Figure 4-14, contains the following commands:

Renumber Items  Allows you to renumber items in the 'DITL'. Remember that item number 1 must be a
button.

Chapter 4 Other Resources 61



Set Item Number  Allows you to specify a new number for a selected item.
Select Item NumberAllows you to select an item by specifying its number.
Show Item Numbers Sets the display to show the number of each item in the 'DITL'.

Align to Grid Aligns the item on an invisible grid, the size of which defaults to 10x10 pixels. If you
change the item location while Align to Grid is on, the location is adjusted such that
the upper-left corner lies on the nearest grid point to the location you gave it. If you
change the item size, it is constrained to be a multiple of the current grid setting in
each dimension.

Grid Settings Allows you to set the horizontal and vertical grid quantizations. These both default to
10 pixels.

Show All Items Adjusts the window size so that all items in the item list are visible in the window.
The window size that your program will use when it displays the 'DITL' is actually
stored in the parent 'ALRT" or 'DLOG' resource; this command is present solely for
your convenience when you are editing the dialog items.

Use item’s rectangle When enabled, this probably lets you use the rectangle specified by the 'DITL'
item itself, rather than some rectangle from space. I have not yet seen it enabled,
however, so I can't figure it out.

View As Brings up a dialog box, shown in Figure 4-15, that allows you to set the typeface and
' size in which textual items are displayed in the editor. As you can see from the
figure, it does not actually change the resource itself.

Balloon Help Connects you unambiguously with The Future of Apple Computer. Congratulations!
Now, when we get around to releasing The Future, it will be... the future.

m Figure 415  DITL menu View As dialog box

"Uiew As" only changes the font
and size when viewed. It does
not modify any resources.

Font:|_ Chicago

size: 12 v]

62 ResEdit 2.1 Reference



18

Font and Size menus are also present. These menus are provided to allow you to see how
your 'DITL' looks when displayed in various typestyles. The font and size you set by using
these menus are not saved, and must be reset each time you edit the 'DITL'.

Figure 4-16 shows the Alignment menu. In this illustration, both of the items in the 'DITL' have
been selected.

m Figure 416  Alignment menu

LA X

= Flle Edit Resource Window DITL EIILUTHELY!
ResEdit 2.| 2 Rlign Left Sides
window. The window sizs tutyax progauy 8 Align Right Sides
ALRT & Align Top Edges
a2 Align Bottom Edges
@ § & Align Vertical Centers
1 q o= Align Horizontal Centers

ALRT “Croaker Courtbouillon® |
sFont] [[€ Fie ten Bassura Wimsems

®

[# Center Vertically in Window

EX [« Center Horizontally in Window

[l Edit Text s

- o

The first six items are only enabled when two or more items are selected. The last two items
may pertain to one or more items at a time, Use of all of these items is straightforward.

Chapter4 Other Resources

63



'BNDL' resources

To date, 'BNDL' resources have been mysterious, opaque, and difficult to learn about.

For historical reasons they have a fairly complex set of concepts behind them, but in fact, the
only thing they do is bring together an application’s documents (including the application file
itself) and their icons for the Finder. Any application that has a distinct icon on the desktop
also contains a 'BNDL' resource. For more details on the structure and concept of the 'BNDL'
resource itself, please refer to Appendix C, “The 'BNDL' Resource.”

The 'BNDL' editor in ResEdit 2.0 helps you create a bundle consisting of the necessary 'BNDL',
'FREF and Finder icon resources, and saves you the burden of dealing with the internal
workings of the bundle concept. The basic view you get when you first bring up the 'BNDL'
editor is shown in Figure 4-17. The window appears in the display with the largest available
number of gray levels or colors. (This is also true of the extended view, shown

in Figure 4-19.)

m Figure 417 'BNDL resource editor, simple view

TeachTent 1.2 |
BNOLs from TeachText .
BNDL ID = 128 from TeachTexnt 1.2

signature:
[ Type | Finder icons ]
APPL =
TEHT
w | R
&

The Finder bundles together documents, applications and their icons with a 4 character
signature, which must be unique for every application. All the necessary resources to do this
are stored in the so-called Desktop file (or in the desktop database in system software version
7.0). This signature is shown in the first line of the window. All characters in the Macintosh
character set (see Appendix D) are allowed in the signature. In order to register a unique
signature for your own application, please contact Macintosh Developer Technical Support
at Apple.

64 ResEdit 2.1 Reference



pF_ 19

This signature is used as the creator code for all files that are part of the bundle (the creator
code is a property of every file and can be set using the Get File/Folder Info command on the
File menu). Every file on the Macintosh also has a file type, which is another 4 character field
(several standard file types are defined: APPL for application, TEXT for plain text document,
PICT for picture files, etc.). This file type is not only used to differentiate between different
kinds of files but is also used to associate distinct icons with different files having the same
creator (i.e. belonging to the same application). This is what the list in the bottom part of the
'BNDL' editor window does. In order to create a new file type and its icon, select Create New
File Type from the Resource menu. Enter the file type in the left column and open the Finder
Icon field in the right column by selecting Choose Icon from the BNDL menu or by double-
clicking on the field.

Figure 4-18 shows the Icon chooser. Here you can either choose an existing icon for your file
type, or you can create your own by pressing the “New” button. Note that even though the
"BNDL' editor shows the entire Finder icon family, because of screen real estate considerations
you will only see a list of "ICN#' resources in this window.

m Figure 418  The Icon chooser

& File Edit Resource Window JEINIIN

TeachText 1.2 |

BNOLs from TeachTest 1.
[ b J Size. Yane
=33 BNDLID -
1 signature: Choose an icon for the type ttwo:
- . N ™
cBRE |
[ Type | Fll . ’
p2) 130 129 128
APPL
TENT
ttro - &
(New ) ( Eat ]
ttwo —

Once you have associated all your file types with distinct icons (remember to include the file
type APPL for your application itself) there are only a few more steps necessary in order to
make the Finder display your icons.

Chapter4 Other Resources

65



Select the Get File/Folder Info command from the File menu and choose your application in
the upcoming list of files. Now set the file type to APPL and the creator to the signature you
have entered in the 'BNDL' resource. Then set the Bundle bit and clear the Inited bit. This tells
the Finder that your application contains a 'BNDL' resource and that it hasn’t already seen
your file. If the Finder doesn’t immediately show your new icon, select your application and
use the Get Info command in the Finder.

¢ Note: Once the Finder has seen your 'BNDL' resource and loaded the icons into its
Desktop file, it will never again look at your 'BNDL', even if you clear the Inited bit.
In order to change the 'BNDL' resource or to change some icons, you will need to remove
your 'BNDL' resource from the Desktop file manually using ResEdit (this works, but is not
recommended), or to recreate the Desktop file. To do this, hold down the Option and
Command keys while restarting your Macintosh. The Finder will then ask you if you want
to rebuild the Desktop file. Remember that when you do this, you lose all comments you
may have entered in the Get Info windows in the Finder in system software previous to
system software version 7.0.

If you want to move information contained in the 'BNDL' resource from one file to another
you can do so by using the commands on the Edit menu. For copying operations, all
necessary information (including the Finder Icons) is copied with the file type. If you clear or
cut a file type in the 'BNDL' resource, please note that for safety reasons the Finder Icons are
not removed (beautiful icons are so hard to design, it is generally considered better to waste a
few bytes than accidentally kill one).

Should you ever have need to tinker with the internal workings of the 'BNDL' resource, you
can edit all information stored in the 'BNDL' and associated 'FREF' resources by selecting
Extended View from the BNDL menu. See Figure 4-19.

66 ResEdit 2.1 Reference



®  Figure 4-19

'BNDL' resource editor, Extended view

& File Edit Resource Window BNDL

TeachText 1.2

BNDLs from TeachText 1.
[ [ BNDL 10 = 128 from TeachText 1.2 R
signature: |[TTTI
3 10: |0 (should be 0)
I; © String: [TeachText, Uersion 1.2 |
FREF Finder icons
local jres ID Tgpe jlocal (res ID | X3y il S iesd est ool
o 128 |seeL |0 128 oD B
1 129 |mEHT |1 129 ggggﬁgg
2 [130 |wro |2 [130 Egg%gg
O

For historical reasons the third line of the extended view, which displays the contents of the
signature resource, is labeled “© string”. This is because in the days before the introduction of
the 'vers' resource to keep track of version information, the signature resource was used to
store such information. Today the contents of the signature resource are ignored by the
Finder unless the 'vers' resources are missing. In this case the Finder displays the contents in
its Get Info window. The 'vers' resource and its editor are described in detail in this chapter.

Chapter4 Other Resources

67



'clut' and 'pltt' resources

The 'clut’ (color lookup table) and 'pltt' (palette) resources are used to store color and
grayscale information. They are largely interchangeable, but the 'pltt' resource contains a
Usage command in addition to the information contained in a corresponding 'clut' resource.
Palettes are associated with windows. For more information, see the Palette Manager and
Color Manager chapters in Inside Macintosh, volume V. ResEdit 2.1 includes an editor for
'clut' and 'pltt’ resources, shown in its 'clut’ disguise in Figure 4-20.

m  Figure 420 ‘clut' resource editor

=L === clut “Heap o' 6rays” 1D = 1111 from ResEdit Preferences %

Green: 20303 |} by [S00 |
Biue: [20303 ]3] by [S00 |

® Figure 421  clut menu

Sm'i Bac
Bisnd
Complement
Load Colors...

REB Mot
v CMY Model
HSB Maodel
HLS Maodel

68 ResEdit 2.1 Reference



The clut menu, shown in Figure 4-21, contains the following commands:

Blend

Complement

Load Colors

RGB Model
CMY Model
HSB Model
HLS Model

Generates a ramp or blend between the endpoints of a selected range of colors. If
only three color patches are selected, the middle color will be set to a value halfway
between the extremes. If fewer than three color patches are selected, this command
is gray and cannot be used.

Allows you to specify a new number for a selected item.

Brings up a dialog box that allows you to load colors and gray levels from the
available palettes and tables. These include the standard 8-bit (256-color) set, the
standard 4-bit set, B&W, Apple’s recommended colors for icons, and any others that
are available in the ResEdit Preferences file or in any other files you have open.

These commands allow you to select from one of four models for handling colors.
The models are:

RGB: Red/Green/Blue

CMY: Cyan/Magenta/Yellow
HSB:  Hue/Saturation/Brightness
HLS:  Hue/Lightness/Saturation

RGB is the default model.

The sort menu (not shown) allows you to sort by any of the three criteria of the current
model. That s, if you are using the RGB model, it lets you sort by amount of red, green, or

blue.

The background menu (not shown) lets you choose white, gray, or black as the background
for the area of the editing window where there are no color patches.

Chapter4 Other Resources 69



"INTL', 'itl0', and 'itl1' resources

The 'INTL' resource combines the functionality of the 'itl0 and 'itll' resources. That is, 'INTL'
“US” ID = 0 is the same as 'itl0' “US” ID = 0, and 'INTL' “US” ID = 1 is the same as 'itl1' “US” ID
= (). These resources are used in international localization. For further information, see Inside
Macintosh, Volume V, Chapter 16. Each of these resources (whether you edit them as "INTL'
or as 'itl0' and 'itl1") is shown as a window with a set of boxes to be filled in and some buttons
that can be clicked. Figures 4-22 and 4-23 show the windows for 'itl0' and 'itl1".

s Figure 422  Editingan 'itl0' resource

== ItI0 "US" ID = 0 from System & =
Numbers: Decimal Point: ﬁ [X] Leading Currency Symbo
Thousands separator: |, [J Minus sign for negative
($1,234.50) List separsator: |; [X Trailing decimal zeros
(30.5) ; ($0.5) Currency: |$ [ Leading integer zero

Short Date: Date separator: [CJLeading 0 for day
Date Order:_M/0/¥] [JLeading 0 for month
1/16/89 O Include century

Time: Time separator: |: B Leading O for seconds

4:25:06 AM Morning trailer: | AM [ Leading 0 for minutes

4:25:06 PM  Evening trailer:| PM | [JLeading 0 for hours
24-hour trailer: { [ 12-hour time cycle

Country Code:| 00 - US ] O metric Dersion: Il l

70 ResEdit 2.1 Reference



( m Figure 423  Editing an 'itll' resource

=3 11 "US" ID = 0 from System =——————]

Names for months Names for days
[anuary KM Sunday
February August Monday
March September Tuesday
Wednesday
April October Thursday
May November Friday
June December Saturday

| J[Day J, [Month] [TDate ], [ ‘Year } |

Use Echaracters to abbreviate names [ Leading 0 in Date
[J suppress Date

Country Code:| 00 - US ] O] suppress Day
Mon, Jan 16, 1989 ”O"‘OND ] Ssuppress Month
Monday, January 16, 1989 O Suppress Year

Chapter4 Other Resources 71



'KCHR' resources

The 'KCHR' resource controls keyboard mapping. The 'KCHR' editor can be used with any
Macintosh that runs system software version 5.0 or later. The main 'KCHR' editing screen is
shown in Figure 4-24, with Command-Option-3 pressed; the dead key editor is shown in
Figure 4-25. Appendix A contains an in-depth discussion of the 'KCHR' resource itself, and a
short section of 'KCHR' questions and answers appears in Chapter 6.

m Figure 424  Editinga 'KCHR' resource

Character chart Virtmlke%oodec}m
- == KCHR "US" 1D = 0 from Systqm ===
1o JolelPIPIAle L Ol -[O0Halz [ul [[ | [OCIReSer I
oo 1]alelellq|X[e[* (o)1 [=[O[al{s [t [([*]. [=[a]0}f Table 1
FEHARRRAEAACECEEE ARNRNERAEE Y
FEE : FHEERERAEEEEE BB _D_‘lUD%Tables
[O[0[$]4[D]T|a[t|N sqg__'_gn nﬂ‘_p:g 2|0[0}| Table 4
oo [E[Uelu[S[T e O[O [O[Oi{g]4 |1 [T+ [3[O] || Tavte 5
oo[&l6[FIV[Mv[0[@[a[0[0[0l0[0kz]6 04 [0[0}| Tabte 6 Table
FEINEEIANARACSADGCE BAN  FABE
alo[(Ja[H[x[n[x[a[s]e]0(= [y |O|Cl{c|=|x #O[6]0
EhleltYlilylalsleOl [#O[Ol~[3]: 70
olo*:{1{zlilz[ale[=o] [OO[od [7]\ a
FNEAREARNEEEDNGEERE BN ARE
ool [<[LINTTER e {X[o[ojotq[8l/} Jals O
ol-[-M[Tm[}[c[e|o[o[o|o|o|oiwlolnf {0 [O
alol. b N[ al-[¢[al€lzlE[O[OlCl e[ Tml {-[ O
ajgj/j?loj_lo| |éjuid|ielee|0(0|0OMr]0]. 8]
oft]z 4]s516]7]8]9]lol-|=]O

The main 'KCHR' editor

The display for the main 'KCHR' editor (Figure 4-24) is divided into five parts, which are
described in the sections that follow.

72 ResEdit 2.1 Reference



EN

The character chart

This chart shows the 256 characters that make up the currently selected font. It displays the
character generated by the currently pressed key, by highlighting it. You can also display a
character by clicking with the mouse in either the keyboard region or the virtual keycode
chart. These characters can be assigned to keys on the keyboard. To assign a characterto a
key, drag the character either to a keycap in the keyboard region or to the virtual keycode
chart. You cannot assign characters to the Command, Option, Shift, Caps Lock, Control,
Return, or Enter keys.

The table chart

The Shift, Caps Lock, Option, Command, and Control keys are considered to be “modifiers”;
no combination of modifier keys generates a character code unless some other key is also
pressed. The table chart shows which table is used by the currently depressed modifier

key combination.

Please note that although there are 256 possible combinations of modifier keys, most versions
of the 'KCHR' resource use only 8 tables, and very few ever use more than 16. This is because
similar modifier key combinations are frequently mapped to the same table. For example, in
the U.S. 'KCHR', all combinations involving the Control key point to Table 6. Also, the Caps
Lock and Shift combination points to Table 1 (which is pointed to by the Shift key) rather than
Table 2 (which is pointed to by the Caps Lock key on its own).

To change the table used by a modifier key combination, press that combination of modifier
keys and click on a different table. The mapping is changed by the editor. This feature is
probably of very little use, and the information is included here for completeness. Here is a
listing of the tables as they are pointed to by various modifier key combinations in the U.S.
'KCHR', as supplied:

= Table 0 is shown with none of the modifier keys pressed, or with the Command key or
Command and Shift keys pressed.

s Table 1 is shown with the Shift key or Caps Lock and Shift keys pressed.
» Table 2 is shown with the Caps Lock key pressed.

s Table 3 is shown with the Option key pressed.

s Table 4 is shown with Shift and Option keys pressed.

» Table 5 is shown with Caps Lock and Option keys pressed.

s Table 6 is shown with Option and Command keys pressed.

= Table 7 is shown with the Control key (and any other keys) pressed.

Chapter4 Other Resources

73



The virtual keycode chart

This chart shows all 128 keycodes in the current table, and highlights the keycode that is
generated if you press a particular key with the current modifier key combination. These
keycodes come from the keyboard, and are virtual in the sense that further translation has to
take place before a Macintosh character set number results and a character can

be displayed.

The keyboard region

This area reflects a particular keyboard layout. You can choose a different keyboard for
displaying the virtual keycodes by using the View As command on the KCHR menu. The
Apple® Extended Keyboard and Extended Keyboard II have two sets of modifier keys, and
you can use the Uncouple Modifier Keys command, also on the KCHR menu, to get access to
the alternate modifier keys (the ones on the right side of the keyboard, which are usually
coupled with the ones on the left side). If you do not have the Apple Extended Keyboard or
Extended Keyboard I connected to your Macintosh, you cannot choose the Uncouple
Modifier Keys command.

Note that the modifier keys shown in the keyboard picture have a gray border. This border
has two purposes:

= It reminds you that you cannot drag a character from the character chart onto a
modifier key.

= It helps you find the modifier keys in the virtual keycode chart. (They have a gray border
there, too.)

Note also that if you press the Option key, some keys in the display are shown with solid
black borders. These are “dead” keys. If you click a dead key, the special editor for dead keys
is invoked. For more information on editing dead keys, see “Editing Dead Keys,” later in

this chapter.

The information region

This small chart shows you the character code and virtual keycode, both in hexadecimal form.

74 ResEdit 2.1 Reference



Eamadet

Editing dead keys

Some combinations of keys do not immediately specify a character. Because nothing appears
on the screen and the cursor does not move when these combinations are pressed, they are
called “dead” keys. Typically they act to modify the next key that is pressed after the dead key
is released. The special editor for dead keys is shown in Figure 4-25.

m Figure 425  Editing a dead key

=== vead Key #0 (Table 3, Key $0E) from System
Pl |pfAl8]*]o]é]-

i |ae|er] &
ooV A B NN =|O

i |~|olajo|o|o
Nic|x[g]l<|c|~|u][|a
s a o p=]N]a |-

clo]—~|o|o|C|O]—|m|>

J io|e|n]ale|n|m|e] e

+ ] B~

l—|-l—IN]< x| Zl<|c]H|0n|o|o

A
2
G
E
N
0
u
a
a
[
[
§
3

¢
SO S S O O | O] O] O D] =i | ==r] wor] «=o} @: | D)

Q"

o|ojojojojojojojo|ojojojojojojo

O|o|ojojojajo

@@ |D]w]vl=la|za|M|o e [x|v | liIe
EEEEEEEGEEOEEREE

FIEIE S

o|z|z|r|x|c]=|x|a|n|m|o|o]|x]|>|e

][] (=] =] [=] =] [=] (=] E] =] [=] (=] (=] =] = =

mnlnan mnn
Divinjap:
olsi3|—=ix

The dead-key editor

The display for the dead-key editor is divided into five functional sections.

The character chart

This chart displays the character codes and is used to assign a different character code to
either a completion character, a substitution character, or the nomatch character; you assign a
code by dragging the character to its new location. If you drag a character to one of the empty
slots (displayed in gray) in the completion and substitution character pair list, you
automatically add a new pair.

Chapter4 Other Resources

75



The nomatch character

If the character typed after the dead key doesn’t fit, a nomatch character is displayed,
followed by the character you have typed. For example, Option-E must be followed by a
vowel; it doesn’t make much sense to put an accent mark on a k. The nomatch character for’
the current dead key is shown in the upper-right corner of the window.

The completion and substitution character pair list

This list shows the translation rules for the dead key that is currently selected. There are two
columns, allowing for a total of 32 dead keys. The left half of each column shows all
completion characters; the right half shows all substitution characters. If the character typed
after the dead key is one of the completion characters, the matching substitution character is
actually produced. For example, pressing Option-e and then e produces the character é.

The Trash
To remove a completion/substitution character pair, just drag either character from that pair in

the completion/substitution pair list to the trashcan in the lower-right comer of
the window.

The information region

This area contains the character code in hexadecimal form whenever you click one of the
other parts of the editor. It is on the right edge of the window, and contains the word “Char:”.

The menus

The 'KCHR' editor has three menus: KCHR, Font, and Size.

The KCHR menu

This menu is shown in Figure 4-26.

76 ResEdit 2.1 Reference



il

m Figure 426 The KCHR menu

& File Edit Resource Window M Font Size
View as...
Uncouple modifier keys
P———— New Table
o] JolelPl IplAle]’ [ Duplicate Table 3
ajoj1j1]jAjQle]g al®|s Hl Table 1
GIEARARE Tlels Remove unused tables Table 2
al=3lcislelslE 1t 12 Remove duplicate tables A Table 3
0O|${4|D|T|d|t[N]i]|S]¥ H| Table 4
O[%[S[Ejule]ul0]i]e]u]] Edit dead key... Table 5
olofals[F[v[T{v|U]n[ala]] Converttodeadkey  Kilrapee
o[o[* [7[6[wlq[w[a[s[B[T[L Remour dead key Table 7
l_gﬂ(ﬂHthéboﬂ»"DD%e: 0]6 {0} 0§
o) i {vlifyidiéi|o|r *DDévg; 710} 0§
glof*{:{Jiz]jlz|ala|™]] gjajajl |7 0} O
ojo]+]; |K{[]k GG'EADUDED-, /18lalaf
ajol, [<]L[\i{1]sfu]"[e]AlO[O[Ol{q]B 9|0|0Of Cher:
ol-[=[M[1[m} [c[u[=]@[0[0[ala]{w[o O[_[o]a} Key:
E_D_.)N‘n“éﬁ/ESEEDCICl?eI 0|0
gloj/{?|o]|_]o é_q_gsaccu 0 ]
qoli|2]3]afs[e]7]8 9o - o=/
q |wlse |r |t uli [o]p 718 |9
nlilkh LI IN] Bidalsls
Inlm]. 1. 1/ 1 2[5

b

The KCHR menu contains the following commands.

View As...

Uncouple Modifier Keys

This command is enabled when you have an ADB extended keyboard connected to
your computer. It can be used to uncouple the right modifier keys (see note above)
and thus edit the tables used by them. Please note that the 'KCHR' editor
automatically recouples them whenever you bring another window to the front or

close the

editor.

If you have the Key Layout file (which has been part of the system software since
version 4.2) in your System Folder, you'll be presented with a list of keyboards to be
used for displaying the virtual keycodes. Note that you are not changing the layout of
a particular keyboard, but the 'KCHR' resource that is used by all keyboards and is
based on the ISO (International Standards Organization) ADB keyboard.

Chapter 4 Other Resources




& Note: When you select the Uncouple Modifier Keys command, you must also use the View
As command to set the current keyboard to a keyboard that supports uncoupled modifier
keys. To avoid confusion, and because not all keyboards support this decoupling, it is
recommended that you not make use of this command.

New Table Creates 2 new empty table.
Duplicate Table  Creates an identical copy of the current table.

Remove Unused Tables
Looks for tables that are not used by any modifer key combination, and removes
them.

Remove Duplicate Tables
Checks for tables that are identical, reassigns modifier key combinations as necessary
to one table, and removes the duplicate(s).

Edit Dead Key...  Displays a dialog box containing a list of all dead keys and lets you choose one to
edit. Note that there is a shortcut to edit dead keys: You can either click a dead key
on the screen, or press the dead key on the keyboard. In either case the dead-key
editor will automatically pop up.

Convert To Dead Key
Whenever you hold down a key with any combination of modifier keys and choose
this menu command, the key will be converted to a dead key. You can then use the
Edit dead key command to define all valid completion and substitution characters for
the new dead key.

Remove Dead Key This command is enabled only when a dead-key window is open. It removes the
dead key currently being edited from the dead-key list, converting it into a live key in
the process.

The Font menu

This menu lets you choose a font for displaying the characters in the editor’s window.

The Size menu

This menu lets you choose a size for the characters displayed in the editor’s window. All
characters in the window are automatically resized.

78 ResEdit 2.1 Reference



P18

¢ Note: If you are editing 'KCHR' resources on a Macintosh SE, Macintosh Plus, or Macintosh
512K enhanced, the 'KCHR' editor automatically sets the size to 9 points so that the editing
window fits on the screen.

Chapter4 Other Resources

79



'MENU' resources

Menus are an important part of the Macintosh user interface and are found in all applications
and many desk accessories. They are stored in resources of types 'MENU' (regular menus),
'emnu’ (MacApp® temporary menus; these are converted into 'MENU' resources by PostRez
during the MacApp build process, so you will never find one in an application), 'CMNU'
(MacApp permanent menus; these will be supported in future versions of MacApp), and
'metb' (menu color tables for any of the preceding types). The 'cmnu' and 'CMNU' types differ
from regular menus in that they have an additional command number field stored for each
item in the menu. ResEdit 2.0 supports editing of all these menu resource types with a new
editor that automatically integrates the color information stored in the 'mctb' resources and
thereby allows editing of menus in color. See the inside front cover for a color illustration of
menu editing.

The display of the menu editor, shown in Figure 4-27, is divided into two sections. The left
side shows the entire menu, and the right side displays detailed information about the item
selected on the left side. To accommodate menus with many items, the box on the left side
has a scroll bar.

Figure 427 'MENU' resource editor

% File Edit Resource Window MENU Style | Knabs |
Reskdit 2.0, Mar16

H Bou 8 for Mac |1 }
MENUs from Box 8 for M:

Entire Menu: [ Enabled

1
14 U shorter tines %5 O
i More Open %0
More Packed ®BP O & (Apple menu)
Faster ®F
Slower %6 Color

[y |

Title:
1 Item Text Default:

Menu Background: D

]

80 ResEdit 2.1 Reference



s

If the title of the menu is selected, the editor not only allows you to change the title but also
displays some information about the entire menu. You can enable/disable the entire menu
and also select colors for the menu’s title, for the item text default, and for the menu
background. On machines capable of displaying color the color patches pop up like menus
and let you select a color from a palette corresponding to the pixel-depths of the deepest
device intersecting the window. Should you, however, need to enter a color in RGB values,
you can double-click on the color patches and set the color using the standard color picker.
On monochrome machines the color picker is opened whenever you click the color patch,
because a palette cannot be displayed adequately. Since the “Apple” character can’t easily be
generated on some keyboards there is also a convenient radio button to make the menu title
the *Apple” character instead of text entered in the box. If you do enter the “Apple” character,
the editor automatically chooses the radio button.

When you create a new menu, there are no items to select in order to start the editing process.
You can choose Create New Item from the Resource menu, or type Command-K.

When an individual menu item is selected the display changes to the one shown in

Figure 4-28. As in the title’s display you can either edit the text of the item directly or you can
use the radio button to make the item a separation line (which you can also do by entering “-"
in the text box). You can use the Style menu to select a different style (bold, italic, and so on)
for each item, and you can enable or disable the item with the checkbox in the upper right
comer. For each item you can assign a command key equivalent (the menu manager is not
case sensitive, so for esthetic reasons and consistency you should only use uppercase
characters) and an item mark, which you can choose from an extensible pop-up menu shown
in Figure 4-29. Both the command key equivalent and the mark character can be displayed in
color. If you want to do that, select a color from the corresponding color palette pop-up
menus.

m Figure 428 'MENU line item edit

w_;__, MENU “Knobs® 10 = 132 from Box 8 for Mac || BBV —=
mm Selected Item: X Enabled
Shorter Lines %8S 1O
Longer Lines #/L Tent: @ [Longer Lines |
More Open %0
More Packed %P O —— (separator line)
Faster t 13
Slower ®6 Calor
[ has Submenu Tent:
cma-kog: L]
5 Mark: D _]

Chapter 4 Other Resources

81



m Figure 429 'MENU mark pop-up

== MENU "Knabs® 1D = 132 from Box 8 for Mac || ————|

Knobs I Selected Item: X Enabled
Shorter Lines %8S 1O
Longer Lines #L Tent: @ [Longer Lines |
More Open %0
More Packed =P O —(separator line)
Faster RBF
Slower 1 Color
[ has Submenu 2
v
Cmd-Key: :
5 None
Other...

In order to make an important item look unique you can put an icon in front of the item’s
text. Select Choose Icon from the MENU menu to get the dialog shown in figure 4-30.

m Figure 430 'MENU Icon chooser

€ Flle_Edit_Resource Window IS stute [izotz |

The Dwarf Banana |
MENUs from The DwarfB |

MENU “ 120tz Te

lZu!zl
Get Foabar
Put Foobar

Don’t Take me fo ot

Choose an icon for this menu item:

@ Normal Icons (ICON) { New | [ Cancel )
QO Reduced Icons (1CON)
Q© Small Icons (SICN)

82 ResEdit 2.1 Reference



1%

Because of menu manager restrictions, the icon’s ID must be in the range of 257 to 511 in
order for it to be used in a menu. All other icons are displayed in gray. If a regular item seems
to be too large for your menu, you can select the “Reduced” radio button to shrink the icon to
a more convenient 16x16 size or you can add a small icon (resource type 'SICN") instead of a
regular one. If you later want to remove the icon from an item, choose Remove Icon from the
MENU menu. In order to reduce clutter, the menu on the left side of the editing window does
not show icons.

If you want to see how your menu looks in real life you can try it out at the right edge of the
menu bar. To show you that this is not a regular menu but a sample of the menu you are
editing, its title is outlined with a black border.

Sometimes a menu may become overcrowded with items. That's when you should start to
think about organizing the items in groups and turning the menu into a hierarchical menu.
The menu editor helps you create submenus by providing you with the option to turn any
item into a submenu just by clicking in a checkbox. In order to edit the items of the submenu,
either select Open Submenu from the Resource menu or double-click on the item’s text.

If you happen to edit a 'cmnu' or 'CMNU' menu for inclusion in 2 MacApp program, you will
notice that there is an additional field shown in the item’s display that lets you set the
command number for each item. This is shown in Figure 4-31, bottom center.

s Figure 431 ‘'cmnu' editing

EOO=————— cmnu ID = 128 from The Dwarf Banana-Tree =

1 Have You Now Selected Item: X Enabled

Yau’re My Father???

Tent: @ [You're My Father??? |

QO — (separator line)

Color

[ has Submenu Tent:

Cmd-Kag:Ej @
5] Cmd—Num:E] Mark:[__]

The menu editor also lets you rearrange the items in your menu. You can either use the
standard commands on the edit menu, or you can put an item in a new position by dragging it
around in the menu on the left side of the window. As you move the item around, a black line
between items shows you where the item is currently located.

Chapter4 Other Resources

83



Selecting colors from the various pop-up palettes actually modifies an 'metb' resource (menu
color table) which is transparently generated and changed for you. If you want to get rid of
the colors you have set, you can reset the 'mctb' resource by selecting Use Default Colors
from the MENU menu.

The 'MENU' resource has two assigned ID numbers. One of these is the resource ID number;

it is set by getting information on the resource from the picker window, and is the ID number-

that always shows up in the picker window. The other is the menu ID number; it is set inside
the editor and is the part of the 'MENU' resource that is returned by the menu manager of the
Macintosh Toolbox in response to MenuSelect and MenuKey calls. Keeping these two
numbers the same, while not required, avoids confusion, and in fact they default to the same
number. See Chapter 6 for more information.

The corresponding '"MDEF' ID number is almost always 0. This refers to the standard 'MDEF
in the System File, which is generally appropriate. Some menus do, however, need to be
drawn differently. (Palettes, for example.) These could use separate 'MDEF resources, and
hence would not have 0 in this field. Figure 4-32 shows the 'MENU'" and 'MDEF' ID number
dialog box.

m Figure 432 'MENU ID dialog

Please enter the Menu 1D and
the resource ID of the MDEF to
be used below.

Menu 10:

MOEF 1D: E::]

84 ResEdit 2.1 Reference



A

'TEXT ' and 'styl' resources

When styled text is copied to the clipboard or stored in a resource file by the TextEdit
package, the style information pertaining to the text and the text itself are stored in two
resources, one of type "TEXT ', and one of type 'styl'. Previous versions of ResEdit have
allowed template editing of the "TEXT ' resource, but have not allowed access to 'sty!'
information. The "TEXT '/'styl' editor, shown in Figure 4-33, has menus for Font, Size, and
Style, and works much as you would expect a text editor to.

m Figure 433  'TEXT'and 'styl' editor

|_DEE TEHT/styl “Patrick’s Admonition” 1D = 440 from Ono-Sendai ===
Some of the other programs on this disk are similarly free; &
some, however, are shareware, which you will of course
ffay for if the{re of use to you. (Don't be a chintz.

a piece of shareware helps you detect and/or cure a virus,
you 've already gotten more value out of it than the
shareware fee can possibly cover.)

I — Patrick Nielsen Hayden

@14l

If you attempt to open a 'styl' resource, the editor is invoked. A 'styl' resource doesn’t make
much sense without some text to which it can be applied.

Chapter4 Other Resources

85



'vers' resources

The 'vers' resource is part of a Macintosh application. It is defined as a general source of
version information, but currently displays its information in the Finder’s Get Info window.

- The ‘vers' editor is shown in Figure 4-34. The Version number is displayed in three parts, with
a fourth Non-release part below. The allowable ranges for these numbers are as follows: main
number: 0-99; second part: 0-9; third part: 0-9; Non-release: 0-255. The editor will reject
numbers outside the allowable ranges, even though it appears to accept and save them; if you
close and reopen the resource, they show up as zero. If your version number has letters in it,
you should put the letters only in the short and long version strings. The Release and Country
Code items are popup menus. Release allows you to select from Development, Alpha, Beta,
and Final; Country Code is a longer list, currently containing 54 countries. The short version
string should, in general, contain only the ordinary version number (e.g., “2.1a5"), and the
long version string can also include copyright notices, authors names, release dates, and other
relevant information. It is displayed in the open area at the bottom of the Finder's Get Info
window.

m Figure 434  Editinga 'vers' resource

o=

=== vers 1D = 128 from Ono-Sendai T———=m]

Version number: 0 |.[1 [.]2 |

Release:| Development v| Non-release: E

Country Code:| 00 - USA |

Short version string: |This is a stickupi

Long version string (visible in Get Info):

Put all your bits in this bag, and lie down
behind the disk drivel

86 ResEdit 2.1 Reference



F__I%

Chapter 5 ResEdit Templates

One generic way of editing a resource is to fill in the fields of a dialog box.

The contents of the dialog box are specified by a template contained,
typically, in ResEdit's own resource file or in the ResEdit Preferences file.
This chapter discusses template editing and tells you how to create your
own templates.

87



Template characteristics

If you open an actual resource of any of the types listed in this chapter, you will find yourself
editing in a dialog box, the contents of which are specified by the template of the same name
as that resource type. (For example, the 'LAYOQ' resource, discussed further in Chapter 6, is
controlled by the "TMPL' resource named LAYO in ResEdit.) The template specifies the format
of the resource and also specifies what labels should be put beside the editText items in the
dialog box used for editing the resource.

+ Note: Templates can contain a2 maximum of 2048 fields. For the purpose of enumerating, a
field is defined as any item that is drawn on the screen. That is, a label counts as a field, as
does a separator, and so on. This limiting number of 2048 is reached rather easily,
particularly in resources with repeating lists, as for example, 'pltt'.

The 'TMPL' resource inside ResEdit is recursive, in the sense that the contents of each of these
named "TMPL' resources is a template for a template. (There is even, of course, one for "TMPL'
itself.) As of late 1990, ResEdit contains "TMPL' resources for these resource types:

factb' ‘acur' 'ALRT" 'APPL' 'BNDL'
'clut’ 'CMDK' 'CMNU' 'cmny’ 'CNTL'
'detb' 'DITL 'DLOG' 'DRVR' 'FBTN'
'FDIR' 'finf 'fld# 'FOND' 'FONT'
'FRSV' 'fval 'FWID' 'GNRL' 'icmt!
'indm’ 'infa' 'infs' 'inpk' 'inra’
"itlb' "itlc' "idk! "TAYC! 'MBAR'
'metb’ 'MENU' 'nrct! 'PAPA' 'PICK'
'plet! 'POST' 'ppat’ 'PRCO' 'PRC3'
'qrsc’ 'resf 'RMAP' 'ROV# 'RVEW"
'SIGN' 'SIZE' 'STR' 'STR#' TEXT
'TOOL! 'vers' 'wetb! "WIND' 'wstr'

88 ResEdit 2.1 Reference

'cctb!
IC"I'Y#I
'fetb'
'FREF'
'inbb'
|inscl

'PICT
'PSAP'
'Scm'

"TMPL'



4 e,

Editing

When you are editing a template, the Tab key moves you forward from field to field within
the template. Shift-Tab moves you backward. Here, however, the term field means an active
area with an editable value in it. Fields are shown on the screen as boxes.

To add a new field to a repeating sequence in a template, select a separator, which is usually
a set of asterisks (****¥*) and choose Create New Field from the Resource menu.

Some templates control windows or resources that contain rectangles. Some of these
templates will have a Set button that lets you draw a rectangle on the screen to delimit the
resource. The pixel numbers for the rectangle are automatically copied to the appropriate
fields in the template. There is a Set button in the 'LAYO' template, which is discussed in
Chapter 6; another is shown in Figure 5-1.

Values can be entered into numeric fields in either decimal or hexadecimal notation. You can
enter a hexadecimal number into any numeric field by preceding it with a dollar sign ($).

'PICT' editing

There is no custom editor for 'PICT resources, though there is a custom picker. 'PICT!
resources can, however, be sized with the template that exists for them, which is shown in
Figure 5-1. If you click the Set button, you can then draw a rectangle on the screen to define
the shape and size of the picture. Otherwise, you can enter values in the fields as you would
in any template.

Chapter 5 ResEdit Templates

89



Figure 5-1

The template editor for 'PICT

HyperCard 1.2.5 |

PICTs from HyperCard 1.2.5

x
Size

@A) Rect 128 |[33 [0 [0 |GeD)

Opcodes ${11 01 01 0O OR 00 00 00

00 01 56 02 00 98 00 OA

00 80 01 40 00 80 01 90

" 00 80 01 43 00 6D O1 8A

00 60 01 43 00 60 01 OA

00 00 OR 06  1F FO 01 FF

COF FOFE 00 0B 09 10

18010020 20 10 00 18

00 0B 09 IF  F5 01 04 30

24900066 00 0B 09 10

1601 04 30 2F D4 01 81

20.08 .00 13 2C £ 04 30

For other examples of template editing, see the description of the 'STR#' resource template in
this chapter and the description of the 'LAYO' resource in Chapter 6.

Creating New Templates

You can generate templates for your own resource types. These templates, which are resources
of type 'TMPL', need not reside within ResEdit. The ResEdit Preferences file in the System folder
is a good place to keep them.

Template example

The "TMPL' resource inside ResEdit with name STR# is shown in Figure 5-2. It is shown here as a
ready example of what "TMPL' innards look like on the screen.

90 -ResEdit 2.1 Reference



P TN

m Figure52  'TMPL definition for type 'STR#

EO=—== T™MPL "STR#" ID = 256 from ResEdit 2.002 =——

zEREN
Label

Type
EEEE

Labe!
Type

T
Label
Type

LXREX
Label

Type
xrEx

CNT

HumStrings

reney ]

LSTC

[

The string l
PSTR

[

T |

LSTE

[

QK]

Figure 5-3 shows the same template being used to edit an actual 'STR# resource. You can see
the comrespondence between the items in the "TMPL' resource and the resulting display.

® Figure53  'STR# template in use

& File Edit Resource Window Font

TeachText 1.2 ]

easal

TeachText 1..

STR#s from

STR# ID = 200 from TeachText 1.2 ===

B W En |

NuaStrings 20

REREK

The string

AEREXK

The string lTeachText

|

RERER

The string l? 1986-1988 Apple Computer, lnc.l

EERER

The string IBrgan Stearns

2ERER

Chapter 5 ResEdit Templates

91



You can look through the other templates and compare them with the structures of their
corresponding resources to get a feel for how you might define your own resource template.
(If you use MPW, note that these templates are equivalent to the resource type declarations
contained in the {RIncludes} directory—refer also to the DeRez command in the MPW
Reference, and the appropriate chapters of Inside Macintosh.)

These are the types you may choose from for your editable data fields:

DBYT, DWRD, DLNG

HBYT, HWRD, HLNG

AWRD, ALNG

FBYT, FWRD, FLNG

HEXD

PSTR

WSTR
ESTR, OSTR

WIR

ECST, OCST
BOOL
BBIT

TNAM
CHAR
RECT

Hnnn

Cnnn

Decimal byte, decimal word, decimal long word.
Hex byte, hex word, hex long word.

Word align, long align.

Byte fill, word fill, long fill (with 0).

Hex dump of remaining bytes in resource. (This can only be the last type
in a resource.)

Pascal string (length byte followed by the characters).

Long string (length long followed by the characters).

Same as LSTR, but a word rather than a long word.

Pascal string padded to even or odd length (needed for DITL resources).
C string (characters followed by a nulD).

Even-padded C string, or odd-padded C string (padded with nulls).
Boolean (two bytes).

Binary bit. (There must be 8 or an even multiple of 8 of these; if fewer than 8
bits are defined, you must include placeholder bits.)

Type name (four characters, like OSType and ResType).
A single character.

An 8-byte rectangle.

A 3-digit hex number; displays nnn bytes in hex format.

A Csstring that is nnn bytes long. The last byte is always a 0, so the string itself
occupies the first nnn-1 bytes.

92 ResEdit 2.1 Reference



POnn A Pascal string that is 77 bytes long. The length byte is not included in nn, so
the string occupies the entire specified length.

& Note: Scrolling can become extremely slow if a template contains many BBIT
or BOOL items.

ResEdit does the appropriate type checking for you when you put the editing dialog window away.

The template mechanism is flexible enough to describe a repeating sequence of items within
a resource, as in 'STR#, 'DITL!, and 'MENU' resources. You can also have repeating sequences
within repeating sequences, as in 'BNDL' resources. To terminate a repeating sequence, put
the appropriate code in the template as follows.

LSTZ

LSTE List Zero-List End. Terminated by a 0 byte (as in '"MENU' resources).

ZCNT

LSTC

LSTE Zero Count/List Count-List End. Terminated by a zero-based word count that starts
the sequence (as in 'DITL' resources).

OCNT

LSTC

LSTE One Count/List Couns-List End. Terminated by a one-based word count that starts
the sequence (as in 'STR#' resources).

LSTB

LSTE Ends at the end of the resource. (As in 'acur’ and 'APPL' resources.)

The “list-begin” code begins the repeating sequence of items, and the LSTE code is the end.
Labels for these codes are usually set to the string "****** Both of these codes are required.
It is generally advisable to keep the beginning and ending labels identical to each other, and
to have them be no more than five characters long.

Chapter5 ResEdit Templates 93



Your template does not have to be inside ResEdit; it can be in any open file. (The preferred
location is the ResEdit Preferences file in your System Folder.) Note that if more than one
currently open file contains a template for your resource type, the one in the most recently
opened file is used when you edit resources of your type. To create a template, follow
these steps:

1. Open the file that you want to put your template into.

2. Open the 'TMPL' type window. Use the Create New Resource command to create the
"TMPL' type if it doesn't already exist in the file.

3. Choose Create New Resource from the Resource menu.
4. Select the list separator (****¥) by clicking it.

5. Choose Insert New Field(s) from the Resource menu. You may now begin entering the
label, type pairs that define the template. Before closing the template editing window, choose
Get Info from the Resource menu and set the name of the template to the four-character
name of your resource type.

6. Close the file window and save changes.

The next time you try to edit or create a resource of the new type, you'll get the dialog box in
the format you have specified.

94 ResEdit 2.1 Reference



Chapter 6 ResEdit Tips

As with any other utility, ResEdit takes some getting used to. This chapter
presents a few handy tips and a few “hints and kinks” to help you become
more comfortable with the capabilities of the program.



Hints and kinks

= Atthe risk of being slightly repetitive, and because these things can be important, it is
once again suggested that you edit resources in a copy of your target file, rather than
the original.

s If you choose Get Info for ResEdit (from the Finder), you will find that Application
Memory Size is set to 500 KB. If you are editing large resources 500 KB is not sufficient,
and you should give ResEdit more memory.

s The following sequence of steps can be used to copy a 'PICT' resource from most drawing
or painting programs into another file:

1. Open the file that contains the graphic that you want to tum into a 'PICT".
2. Select and copy the part of the graphic that you want.
3. Start ResEdit and open the file that you want to contain the 'PICT' resource.
4. Open the 'PICT picker for that file.
5. Choose Paste.
If you paste with the file window open instead of the 'PICT' picker window, you will get both

the 'PICT and the application’s private resource type (for example, 'MDPL if your 'PICT" is
from MacDraw).

» Toadd a picture to a 'DLOG":
1. Geta picture. Add it to the "PICT resources in your file. (See the previous tip.)
2. Choose the Get Resource Info command from the Resource menu.
3. Use Copy to put the ID number of the new 'PICT" in the scrap.
(Instead of steps 2, 3, and 7 here, you can always just read the ID number when you copy the

'PICT and type it into the 'DITL' item by hand. ResEdit 2.0 displays the ID number of each
'PICT" resource.)

4. Goto the 'DITL that belongs to the 'DLOG' you are adding the picture to.
Choose New Item.

Click the PICT button.

Paste the ID number from the scrap.

Close the Dialog Item Editor.

Choose Use RSRC Rect from the menu.

10. Position the picture.

NI RPN NV

96 ResEdit 2.1 Reference



If you are using the any of the icon editors, and you make a selection with the marquee
and then cut or copy it, you can paste it as a 'PICT resource. First make the type picker of
your target (this can, of course, be the 'PICT picker) be the active window. If you then
paste, ResEdit makes the contents of its scrap into a new 'PICT". The 'PICT" resource
picker does not have to be open when you attempt to perform the

paste operation.

There are keyboard equivalents for many operations you would ordinarily perform with
the mouse. Try selecting a file in the file open dialog by typing the first letter or two, then
opening it with the Return key; you can do the same with resource types, and then with
individual resources. (With individual resources, you can type the ID number or the
name.) The arrow keys also work—for example, in a file list, you can go down the list
with the down-arrow key.

There is a hidden Change Color command in the bit editors. If you hold down the
Command key and pick a new color, all pixels of the current foreground (or background)
color are changed to the new color.

In general, it is a good idea to use the same ID for an 'ALRT" or 'DLOG' and its associated
'DITL, though this practice is not required.

Other shortcuts and handy items:

o In the resource picker: Option-double-click for Open Using Hex.

o Inthe resource picker: Option-Command-double-click for
Open Using Template.

o In the resource picker: Option-Command-Shift-double-click (or Shift-Open Using
Template) displays the template-type dialog box without the list of templates. (You

can enter the template type you want.) If you are operating from a floppy disk, this
can be a fast method.

o Option-Cut and Option-Copy append the cut or copied item to the scrap. At the
individual item editor level, holding down the Option key does not change the action
of Cut or Copy.

o Inthe 'DITL editor: Option-Command-double-click on a 'CNTL', 'ICON', or 'PICT to
open it as a dialog item.
o Command-click in a picker for disjoint selection.

o Shiftclick in a picker to extend a selection. (In a pictorial display such as the one for
'ICON' resources, the selection will extend as a rectangle.)

o Using Shift-Create New Resource to create a new resource type gives you the “new
type” dialog box without the list of resources. You must, of course, enter the resource
type you want rather than selecting it from the list. If you are operating from a floppy
disk, this can be a fast method.

Chapter 6 ResEdit Tips

97



98

o In the bit editors CCURS' and 'ICN#, for example), Shift-drag creates a selection
rectangle (marquee). Using Shift-drag inside the marquee moves it. Releasing the
Shift key and clicking inside the editing area turns off the marquee, but also inverts a
bit in the picture. The marquee is also available in the 'FONT editor.

If you hold down the Command, Option, and Shift keys while choosing About ResEdit
from the Apple menu, you can toggle a special stress-testing mode (“Pig mode”). In this
mode, ResEdit performs a compact-memory operation and a purge-memory operation
each time it receives an event from the queue, excepting null events. This feature was
designed as an aid to debugging ResEdit itself, and is clearly something most people will
never have any use for. It is suggested that you avoid invoking this mode unless you are
writing an editor and feel a need to stress-test it.

If the 'DITL' for a 'DLOG" that is being displayed contains a reference to a 'CNTL' that
doesn’t exist, the editor will hang (in NewDialog) when it tries to draw the dialog box.
Please be careful!

Because 'DITL' and 'ALRT' resources are ordinarily displayed where you put them in the
window, there is some chance that they may be mispositioned. That s, if you don’t have
your code display these resources exactly where you want them, they could show up
where you don’t want them. To be sure that a dialog box shows up where you want it,
mark it as invisible and reposition it exactly in your code. Have your code mark it visible
right after displaying it. (This avoids various embarrassments.)

If you have Color QuickDraw, but you want to be able to open the 'ICN# editor. by
doubleclicking a resource of type 'ICN# regardless, you can make a resource of type
'RMAP' in the ResEdit Preferences file. This resource should look like the one shown in
Figure 6-1. Notice that the name of the 'RMAP' resource is the name of the resource you
will be opening, and the Map To field contains the name of the editor you want to invoke.
Set the name of the 'RMAP' as usual, with the Get Info command.

ResEdit 2.1 Reference

e



m Figure6-1  'RMAP' resource

Eﬂ RMAP “ICN#™ ID = 128 from ResEdit Preferences |

[

MapTo [rcns
Editor only?

Except lon 0
count

1) sexes

5

m  If you hold down the Option and Command keys and choose About ResEdit from the
Apple menu, you get a list of credits that tells you who has worked on the program.
Under MultiFinder, hold down the Option and Command keys, pull down any menu
other than the Apple menu, and then move over to the Apple menu. Choose About
ResEdit.

= Although under ordinary conditions the menu ID number and the 'MENU' resource ID’
are kept identical to one another, there is one situation in which you may want to make
them different. If you are using an ordinary debugger to disassemble and walk through
the main event loop of your program, it is convenient to have the menu manager return
numbers like 1, 2, 3, 4, and 5 for the menus in your program. You would therefore set the
menu ID fields of your menus to consecutive integers. Then you might create a '"MBAR'
resource with ID 128 and list the '"MENU' resource IDs of your menus in it. You need only
call GetNewMBar (128) in your program to install all of the menus. When you are
debugging, a call to Menuselect (for example) retums a value of $00030004 if the 4th
itemin the 3rd menu has been chosen. This is rather more convenient than seeing
$00820004 and having to translate $82 to 130 decimal, and then remembering that 130
was your third menu. If you use a high-level debugger this approach is unnecessary.

Chapter 6 ResEdit Tips

99



The 'LAYO' resource

One of the resources inside the Finder is of particular interest, because it controls a number of
defaults, most of which are part of the layout of your desktop. It is the 'LAYO' resource. To
open the Finder with ResEdit, you must be running under the Finder itself (rather than under
MultiFinder), or you must edit a copy of the Finder. It is, of course, suggested that you edit a
copy. If MultiFinder is running and you try to open the currently active Finder, you getan
error message telling you that the Finder is already open from another application.

If you are in a risk-taking mood (or if you have done this a few hundred times already and
have become inured to it), boot without MultiFinder, open the Finder, and choose the 'LAYO'
resource type. There is only one 'LAYO' resource, ID number 128. Open it.

The first part of the template is shown in Figure 6-2.

= Figure6-2  'LAYO template, view 1

Font 1D B
Font Size 9

Screen Hdr 20
Hgt

break

Bottom line

break

Printing hdr E:—:_]

hgt

foalan hat

The first two items control the display font—that is, the font that prints out under the icons on
your desktop. The default is 9-point Geneva, as shown. If you dislike sans-serif fonts, you can
easily change the first two items to 2 and 9, for New York at 9 points, or to 20 and 10 (or even
12), for Times at 10 or 12 points; the 9-point version of Times is very small.

The line of numbers labeled Window Rect in Figure 6-3 allows you to specify the default
folder (and disk) window size and location.

100  ResEdit 2.1 Reference



® Figure6-3  'LAYO template, view 2

1 E=————1 LAV0 1D = 128 from Finder =————
footer hgt
Window Rect [62 |[14  ][250 ][418 |(GeD)
Line spacing |16
Tab stop 1 {20
Tab stop 2 [144
Tab stop 3 [184
Tab stop ¢ ‘200
Tab stop 5 [376
Tab stop 6 ‘121
Tab stop 7 [4s6

If you like, you can specify these defaults by clicking the Set button and then drawing a
rectangle on the screen. Please note that if MultiFinder is running when you edit the 'LAYO'
resource in a copy of the Finder, and you try to start your rectangle in an area of the screen
that has something other than a ResEdit window in it, you will find yourself summarily ejected
from ResEdit into whatever you have clicked. The cure is straightforward: Move a ResEdit
window to the area where you want to start drawing your rectangle before you click the Set
button, or use the number fields instead of the Set button. You can also explicitly set the
locations of the seven tab stops the Finder uses for displaying information about files when
you choose to view by Name, Date, Size, or Kind.

A bit further down the template are the numbers that control the placement of the icons
themselves, as shown in Figure 64.

Chapter6 ResEditTips 101



Reserved $00 ]

lcon Horz.
spacing

lcon Uert.
spacing

lcon Uert.
phase

60 l
Horz.
L

Sm. lecon
Uert .

Some people dislike having icons with long names overlapping and obscuring the names of
other icons. One solution to this problem is to change the Icon Vertical phase. Figure 6-3
shows some modified numbers, rather than the defaults supplied with the system release.

A Warning Do not set the Icon Vertical phase to exactly half the Icon Vertical
spacing unless you like system crashes. a

Figure 6-5 shows some unused bits and three commands, the first of which (“Use zoom
Rects”) is on by default. If you set it to False, the Finder will open and close windows slightly
faster, because it won't use its ‘zoom’ visual effect.

102  ResEdit 2.1 Reference



e

® Figure6-5  'LAYO template, view 4

[ === |AV0 ID = 128 from Finder =
date

Use zoom
Rects

Skip trash
warnings

Always grid
drags

Unused ¢
Unused 3
Unused 2

Unused 1
4.0 Qn

Skip trash warnings prevents the system from asking whether you really want to throw away
applications or System files. Since you can avoid the warning by holding down the Option
key when you throw things into the trashcan, this seems a bit extreme. Moreover, it can be
quite dangerous, depending on what you tend to throw out and how attentive you are about
it.

If you don't like having to clean up your windows, try tuming on Always grid drags. This
option makes the icons stick in place at the grid spacing specified in the part of the template
shown in Figure 6-4. Some people prefer to be able to put them anywhere and therefore
eschew this option.

The Watch Thresh setting (not visible in any of the figures) allows you to adjust how long the
Finder will wait during lengthy operations such as file copying before it displays a wristwatch
cursor with animated hands. The time is expressed in 60ths of a second. If you make it too
short, the cursor will jitter and change shape too often. Some older Finders do not make use
of this option.

Figure 6-6 shows a few more unused bits and the end of the template.

Chapter 6 ResEdit Tips

103



= Figure6-6  'LAYO template, view 5

S == LAY0 1D = 128 from fFinder =———
Unused 5 @0 O1

Unused ¢ @0 O1
Use Phys Qo0 @1

lcon
Title Click Q6 @1
Copy Inherit ®0 O1

New Fold @0 O1
Inherit

Color Style :0

Hax % of [o

sindows ‘

Use Phys Icon is handy if you have a Macintosh I or Macintosh SE with two floppy disk
drives. If this option is on, the icon you get when you insert a floppy disk into your machine
indicates which drive the floppy disk is in. The disk location is certainly easy enough to recall
just after you put the disk in, but you may forget it later. Knowing which drive a floppy disk is
in may not be a major issue, but is certainly a pleasant convenience. This option also includes
distinctive icons for an external hard disk and a CD-ROM drive.

Title Click lets you double-click the title bar of a folder’s window to bring the parent folder’s
window to the front (or to open it if it is not already open). This feature can be quite handy.

When you create folders on an AppleShare® server, New Folder Inherit causes them to get
their privileges from the parent folder, and when you duplicate existing folders on an
AppleTalk server, Copy Inherit causes the copies to inherit their privileges from the originals.

The Max # of windows field allows you to set the maximum number of windows the Finder
can have open at any one time. Increasing this number causes the Finder to need more
memory. Under MultiFinder, you may have to increase the memory allocation for the Finder if
you make this number much larger than the default.

Some of the items in the 'LAYO' template have not been discussed here. Of these, some are
not yet in use. Others are either arcane or self-evident.

'KCHR' questions and answers

s Howdo I change the character generated by Shift-e?

104  ResEdit 2.1 Reference




.

Shift-e normally generates a capital E character. To make this key combination generate a
different character, simply hold down the Shift key and use the mouse to drag a character
from the character chart to the e key on the keyboard.

You will notice that when you press the Shift key, the table that is highlighted in the table list
changes. (For most key layouts, the highlight switches from Table 0 to Table 1.) This change
shows you that any character changes you make will be made in the highlighted table. When
you make Shift-e generate a different character, you are changing every modifier key
combination that uses the highlighted table. For example, if Option-Shift used the same table
as Shift, you would also have changed the character generated by Option-Shift-e.

s How do I change the behavior of a modifier key combination?

For example, suppose you wanted Option-Shift-a to generate a different character from that
generated by Option-Command-Shift-a. If you hold down the Option and Shift keys and then
press and release the Command key, you will notice that (for most key layouts) the
highlighted table does not change. If you want these two modifier key combinations to be
different, you need to create a new table for one of them. To do this, you can use either the
New Table command or the Duplicate Table command from the KCHR menu. If you want to
create only a few differences, you should use the Duplicate Table command. In our example,
we only want Option-Command-Shift-a to be different, so we would do the following:

1. Press and hold down the Option, Command, and Shift keys.
2. Choose Duplicate Table from the KCHR menu.

3. Select the new table that was added to the end of the list (while still holding down
the modifier keys).

4. Choose OK in the alert box that appears.

5. Drag the character from the character chart to the key that you want to change
(while still holding down all of the modifier keys).

s HowdoI remove a table that is no longer being used?
If you have reassigned a modifier key combination so that a table is no longer used, you can
remove the table by choosing “Remove unused tables” from the KCHR menu. If there are

unused or duplicate tables present when you close the editor, you will be asked whether they
should be removed.

s HowdoI create a dead key?
You can create a dead key (such as Option-e in most key layouts) by choosing “Convert to

dead key” from the KCHR menu while holding down the key. For example, follow these steps
to make Option-k into a dead key:

1. Press and hold down the Option and k keys.
2. Choose “Convert to dead key” from the KCHR menu.
3. Release the keys.

Chapter 6 ResEdit Tips

105



4. Once again, press Option and k to activate the dead-key editor.
m HowdoI remove a dead key?

Follow these steps:
1. Select the dead key to display the dead-key editor.
2. Choose “Remove dead key” from the KCHR menu.
m HowdoI create a new completion/substitution pair in the dead-key editor?
When the dead-key editor is active, you can drag characters from the character chart to the
completion/substitution pair list. The character on the left in the list is the completion

character, and the character on the right is the substitution character. For example, Option-E
produces the £ character.

n HowdoI delete a completion/substitution pair in the dead-key editor?

To delete a completion/substitution pair, drag either character from that pair in the
completion/substitution pair list to the trashcan in the lower-right corner of the window.

106  ResEdit 2.1 Reference



.y,

DocTitle DrafiNum 92490

Chapter 7 The Programmatic Interface

You may want to create and edit your own types of resources. You can
write pickers and editors as extensions to ResEdit in Pascal or C, and put
them in the ResEdit Preferences file in your System Folder. This chapter
describes this process and discusses necessary and optional functions
and procedures.

107



Pickers and editors

Pickers and editors are separate from ResEdit’s main code and hence may be supplied by
user-written software.

The pickeris the part that displays all the resources of your type in the resource type window.
Itis given the resource type and should display all resources of that type in the current
resource file, using a suitable display format. If the picker is given an open call and there is a
suitable editor, it should launch that editor. You need not supply your own picker; if a custom
picker is not available, the standard picker is used to show a list of your resources with their
names and IDs.

The editor is the code that displays and lets you edit a particular resource. The editor is given
a handle to the resource object and should open an edit window for you.

Note that pickers and editors can be opened from anywhere in ResEdit or in your code. For
instance, a dialog editor may open an icon picker so that you can choose an appropriate icon.

Code-containing resources in the ResEdit release

ResEdit includes three different types of resources that contain code. Much of the code is in
the-normal 'CODE' resources. The editors and pickers are found in the 'RSSC' resources, and
the LDEF (or list definition) procedures are found in the 'LDEF resources. The resource
names of the pickers and editors are very important. The resource name of the 'RSSC'
resource for a picker should be the resource type that the picker will pick. The resource name
for an editor should be the resource type that the editor will edit, with a commercial “at” sign
(@) in front of it. Subeditors (described in the section “Launching routines” later in this
chapter) should have a dollar sign ($) in front of the resource type name. For example, the
'DITL' picker can be found in an 'RSSC' resource with the name DITL. The 'DITL' editor can be
found in an 'RSSC' resource with the name @DITL, and the 'DITL' subeditor in an 'RSSC'
resource with the name $DITL.

108  ResEdit 2.1 Reference




Samples

A sample resource editor, picker, and LDEF are included with ResEdit. The samples are
provided in both C and Pascal and use the MPW 3.1 environment, the MPW C or Pascal
Compiler, and the MPW Assembler. The appropriate build files and makefiles are

also provided.

Sample editor

A sample ResEdit editor is provided in the file XXXXEdit. In this sample, XXXX represents
your resource type. The sample editor will simply display a window and invert its contents.
Since the details of editing your resource are known only to you, it is up to you to fill in the
code necessary to make this sample into a real editor.

The sample editor is initialized by means of the EditBirth procedure when a resource of
type XXXX must be edited. EditBirth is passed two handles: a handle to the resource to
be edited (the same handle that would be received by using a GetResource call) and a
handle back to the picker that launched the editor.

The editor then creates a window and sets up any data structures needed to operate. Because
it may be loaded in and out of memory during any given session and because it doesn’t have
access to global variables, it creates a handle to a data structure to hold all data that needs to
be preserved between calls. It stores the handle in the edit data structure rxxxxrec. Note
that the handle to the edit data structure is stored in the window’s re£Con parameter.
ResEdit uses this data structure to identify which editor or picker is to receive a given event.

ResEdit determines which editor should receive which events, so you need to worry only
about events that affect your editor. During an update event, the BeginUpdate and
EndUpdate calls are done by ResEdit, not by the extension program.

Sample picker

A sample ResEdit picker is provided in the file ICON.Pick. The sample picker is the actual
'ICON' picker from ResEdit. The 'ICON' LDEF (in the file ICON.LDEF) is included with this
example so that you can see the interaction between a picker and its LDEF.

Chapter 7 The Programmatic Interface

109



Sample LDEF

A sample ResEdit LDEF is provided in the file ICON.LDEF. An LDEF is a list definition
procedure used to customize the way the List Manager draws and highlights cells. For more
information, see Inside Macintash, Volume IV, Chapter 30, and Technical Introduction to the
Macintosh Family, Chapter 3. In ResEdit, LDEFs are used to customize the look of the picker
windows. LDEFs are generally very simple procedures that draw or highlight a single cell of a
list. The sample LDEF is the 'ICON' LDEF from ResEdit. This LDEF is used to display a

file's Icons.

Building the examples

You can build the examples by using the build scripts provided in the folder appropriate to
the language that you are using. The build scripts assume that ResEdit and the Examples
folder will be found in the directory {boot}ResEdit:. If these files are located elsewhere, the
build script files should be modified accordingly.

If ResEdit is successfully located, the MakeFile instructions will install the editor, picker, and
LDEFs directly into ResEdit. When you experiment with changing any of these files, you may
want to build into a copy of ResEdit. If anything goes wrong, you can then get a fresh copy of
ResEdit to continue your experiments.

Using ResEd

The program you write must be a Pascal unit or C header file and library. Its interface with
ResEdit is established by the MPW unit ResEd, contained in the file ResEd.p or ResEd.h. If
your unit is written in PASCAL, it must begin with a uses declaration for this unit.

The assembly-language code that “opens up” ResEdit and activates your program is contained
in the file RSSC.a. It must be linked with your Pascal or C module. When you open a resource
of your type, ResEdit will call this code.

If your build script does not automatically install your editor or picker, place it in ResEdit's file
by using ResEdit itself, with the type 'RSSC' and a unique ID number. Please use an ID
number greater than 10,000 to avoid future conflicts. Your editor’s name in the ResEdit file
must be of the form @ABCD, where ABCD is the name you have assigned to the new type it
edits. Install your picker (also of type 'RSSC") with the name ABCD (without the commercial
“at” sign).

110  ResEdit 2.1 Reference

,,,,,,




A s,

Writing a ResEdit extension

Here are two things to remember when writing a ResEdit extension:

= Always know which resource you are requesting and where it will come from. Many
resource files may be open at any given time. Whenever a resource is needed, make sure
which resource file you are accessing by using UseResFi e or similar operations.

= Your editor may be called with an empty handle in order to create an entirely new
instance of the type you edit.

In all of these procedures, remember to lock any handle that is going to be dereferenced (for
example, in a Pascal with statement). For example, in Pascal, the first instructions in the
DoEvent procedure should be

BubbleUp (Handle (object)) ;
HLock (Handle (object)) ;

It is important to call the BubbleUp procedure to avoid heap fragmentation. Remember to
unlock the object at the end of the procedure!

If any of these procedures will need access to the current port, especially EditBirth,
DoEvent, and DoMenu, call
SetPort (object””.wind)

if you are writing in Pascal, or
SetPort ((*object)->wind)

if you are writing in C.

Chapter 7 The Programmatic Interface

111



ResEdit 2.0 changes

Here’s what you have to do to upgrade an editor to ResEdit 2.0:

Change the name field of your parent record from sTR64 to STR255.

Add ab1eMenu for the Resource menu on activate:

AbleMenu (rsrcMenu, rsrcEditor);
Change AbleMenu for the File menu to

AbleMenu (fileMenu, fileAll):;
Add PrintItemto the DoMenu procedure:

printItem:

PrintWindow (NIL):;

In DoMenu, change RevertItemto rsrcRevertItemand GetInfoItemto
rsrcGet InfoItem. Move them from the File menu to the Resource menu.

Add the IsThisYours function and be sure to make it public. See the example code
for details.

EditorWindSetup NOW requires a windowKind parameter and a d1ogID
parameter; windowKind should be the resource ID of the editor or picker (returned by
ResEdID), and d10g1D should be NoDialog or the resource ID of a dialog to be used for
the window.

Windorigin now takes a ParentHandle parameter and requires that the
windowKind field of the argument window be set to the resource ID of the editor.

ResEd changes for the 2.0 release

PickRec was changed to remove some unused fields and add other fields for the
View menu.

ParentRec Was changed to include an STR255 instead of STR64.
Menu and string constants were changed.

Several procedures have Interface changes; these are the new interfaces:

FUNCTION EditorWindSetup (dlogID: INTEGER; color: BOOLEAN; width,

height: INTEGER; VAR windowTitle, windowName: STR255; addFrom: BOOLEAN;
windowKind: INTEGER; father: ParentHandle): WindowPtr;

PROCEDURE WindOrigin (w: WindowPtr; dad: ParentHandle);

112 ResEdit 2.1 Reference



PROCEDURE PickMenu (tossOnClose: BOOLEAN; menu, item: INTEGER;
pick: PickHandle);

Chapter 7 The Programmatic Interface

113



The following routines are no longer available:

CWindSetup
WindSetup
RevertResource
PickStdRows
CallEBirth
CallEvent
CallMenu
CallPBirth
CopyRes
DoKeyScan
DoListEvt

Required routines

Each picker and editor must contain a set of required procedures. Some of these procedures
are appropriate only for editors, and others are appropriate only for pickers, but all of them
must appear in all editors and pickers.

EditBirth
PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle):;

This procedure should initialize the editor data structure and create an editor window for the
given resource type. In a picker, this procedure will do nothing and should be
defined as

PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle);
BEGIN
END;

PickBirth
PROCEDURE PickBirth (theType: ResType:; dad: ParentHandle);

This procedure should initialize the picker data structure and create a picker window for the
given type. PickBirth is very similar to EditBirth except that it takes a resource type as
a parameter instead of a resource handle. The poPickBirth procedure can usually be used
to take care of most initialization for a picker. In an editor, this procedure will do nothing and
should be defined as

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle):;

BEGIN

END;

114  ResEdit 2.1 Reference



DoEvent
PROCEDURE DoEvent (VAR evt: EventRecord; object: ParentHandle);

DoEvent handles all events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a PickHandle) instead of the generic
ParentHandle.

Editors will normally handle all of the events (except those described in the next paragraph)
themselves, whereas pickers should simply call pickEvent.

Many events are handled by the main part of the ResEdit code before the boEvent
procedure is called. For mouse-down events, ResEdit handles the following events: pulling
down menus, dragging windows, switching between windows, and converting doubleclicks
to open commands. Update events call BeginUpdate and Endupdate around the call to
DoEvent. For key-down events, the DoMenu procedure is called if the Command key was
down (unless the key was Return, Enter, or an arrow); DoEvent is called otherwise.
MultiFinder suspend and resume events are converted into the appropriate activate or
deactivate events.

DolnfoUpdate
PROCEDURE DoInfoUpdate (0ldID, newID: INTEGER; object: ParentHandle);

This procedure is called when information about a resource—for example, its ID number—is
changed in a Get Info window. (See the ShowInfo procedure, discussed later in this chapter
in the section “Miscellaneous utilities.”) For editors, the DoInfoupdate procedure should
recalculate the window title and the name stored in the ParentHand1le and pass the update
on to its father by using the cal111nfoUpdate procedure as follows:

CallInfoUpdate (01dID, newID, object*“~.father~~.wind”.refCon,
object~~.father*”.wind”.windowKind) ;

Pickers should simply call
PickInfoUp (0ldID, newID, obiject):;

DoMenu
PROCEDURE DoMenu (menu, item: INTEGER; object: ParentHandle);

DoMenu handles all menu events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a PickHandle) instead of the generic
ParentHandle.

Chapter 7 The Programmatic Intefface 115



The main part of the ResEdit code takes care of several of the menu-handling details. All
selections from the Apple menu are handled so that the editors and pickers do not need to
know anything about desk accessories. All commands in the File menu are also handled for
you. The Quit command displays the Save Changes dialog box and may pass a Close
command to all editors and pickers. If your editor needs to do some cleaning up before the
Quit command completes, it should do so when it receives a Close or deactivate command. If
“no” is chosen in the Save File dialog box, the frontmost window receives a deactivate event.
No events are passed to any other window. When your editor receives a Close command, it
can call closeNosave to see whether edit checking should be performed. If the current file
is being closed but the changes are not being saved, c1oseNosave will return TRUE, and
edit checking should not be performed.

Pickers can simply call
PickMenu (tossOnClose, menu, item, object);

If your picker has loaded all of the resources, it should call pickMenu with tossonClose
set to TRUE so the resources are released when a Close command is received.

Using custom LDEFs

You will typically want to write your own picker simply to display the resource list in 2 more
meaningful way (such as drawing the icons themselves in the 'ICON' picker, instead of listing
their names). You can easily accomplish this task by providing a simple picker and a custom
LDEF that is used for drawing the picker list. When you call DoPickBirth in your
PickBirth procedure, pass the resource ID of your picker as the PickerResID parameter.
You can get the resource ID by calling ResEd1D. The resource ID is passed on to the LNew
procedure. You should then provide a custom LDEF with the same resource ID. The LDEF will
be called whenever the list needs to be updated. Please refer to the chapter on the List
Manager in Inside Macintosh, Volume IV, for details of the workings of the

drawProc mechanism,

In most cases, the DrawLDEF procedure takes care of most of the tasks required of an LDEF.
All you have to do is provide a procedure to draw your resource type.

116  ResEdit 2.1 Reference




The ResEd interface

The ResEd unit contains data structures, procedures, and functions that you can access from
your extension program. They are described in the remainder of this chapter.

Data structures

The ResEd unit declares the data structures described in this section, which provide
communication between extension programs and ResEdit. Each editor or picker has its own
object handle. The data structure has to start with a handle to its parent’s object, followed by
the name distinguishing the father. This name will be part of the son’s window title. The next
field should be the window of the object that may be used by the son to get back to the father
through the refCon in the windowRec record. The next field is the rebuild flag, which is
used to indicate that a window’s data (for example, a picker's list) must be recalculated at the
next opportunity. For editors, the rest of the handle can have any format; pickers have
additional data, as described in this chapter. Editors and pickers typically declare additional
fields following the rebuild field, and can store in these additional fields global data that they
need to access from the DoEvent, DoInfoUpdate, and DoMenu procedures.

The name (in the ParentRecord) for a picker should be the name of the file, folder, or
disk. For editors, the name should be the complete name (not the window’s title), preceded
by an editorNameChr character. An example of a complete name would be “ALRT ID = -
1234 from AFile”. This name is used to uniquely identify a window. The window’s title is
created by GetWwindowTit le Of EditorWindSetup, described later in this chapter.

# Note: It is important for editors and pickers to follow these conventions for name and
window title. For pickers, it is more important that the window’s title be unique, and for
editors, that the name be unique. The A1readyopen procedure uses the window’s
name and title to determine whether the window is open. Please refer to the description
of Alreadyopen later in this chapter in the section “Window management routines” for
complete information about how the name and title are used.

Chapter 7 The Programmatic Interface

117



The parent record

ParentPtr = “ParentRec;
ParentHandle = “ParentPtr;
ParentRec = RECORD
father: ParentHandle; { Back ptr to dad }
name: Str255;
wind: WindowPeek;
rebuild: BOOLEAN; { Flag set by son to indicate that }
{ world has changed so father should }
{ rebuild 1list }
END;

The picker record

The record for pickers is slightly different from the standard parent record. The first four fields
are the same as those in the parent record. The rest of the fields are specific to pickers.

PickPtr = “~PickRec;

PickHandle = “PickPtr;

ViewTypes = (viewById, viewByName, viewBySize,
viewByOrder, viewBySpecial):;

PickRec = RECORD

father: ParentHandle; { Back ptr to dad }
fName: STR255;

wind: WindowPtr; { Directory window }
rebuild: BOOLEAN; { Flag set by son to

indicate that father
should rebuild list }

pickID: INTEGER; { ID of this picker }

rType: ResType; { Type for picker }

rNum: INTEGER; { Resfile number }

rSize: LONGINT; { Size of a null resource }

nInsts: INTEGER; { Number of instances }

instances: ListHandle; { List of instances }

drawProc: Ptr; { List draw proc }

scroll: ControlHandle:; { Scroll bar }

viewBy: ViewTypes; { Current view type }

ldefType: ResType; { Which LDEF to use }

theViewMenu: MenuHandle; { The picker view menu }

showAttributes: BOOLEAN; { Show attrs in window? }

viewMenuMask: LONGINT; { Which items are enabled? }

cellSize: Cell; { Cell size for special view. }
END;

118  ResEdit 2.1 Reference



e

Other routines

The required routines are called by ResEdit itself. Here are others you can use. These are
called by the editor or picker.

Launching routines

PROCEDURE GiveEBirth (resHandle: Handle; pick: PickHandle);

GiveEBirth starts an editor. This routine is used when a picker wants to start an editor or
when an editor wants to start another editor (as when the 'DLOG' editor starts the 'DITL'
editor). If Open Using Template was chosen or an editor is not found, the 'GNRL' (template)
editor is started. If Open Using Hex Editor is chosen or neither an editor nor a template is
found, the hexadecimal editor is started. A call to the appropriate editor's EditBirth
procedure is then generated, as follows:

EditBirth (resHandle, pick)

In this call, ResHand1e is the handle of the resource that is to be edited, and pick is the
caller’s parentHandle.

¢ Note: When an editor is starting another editor, it is important to remember that
pick~~.rType and pick~~ . rNum must be set before this routine is called. The
- editor’s ParentRecord will need to be equivalent to a PickRec, at least down to the
rNunmn field. The GiveEBirth procedure looks into the PickHandle parameter for
information (for example, the resource type) that it needs to start up an editor.

PROCEDURE GiveThisEBirth (resHandle: Handle; pick: PickHandle;
openThisType:ResType) ;

GiveThisEBirth is similar to GiveEBirth, except that it lets the caller specify the type
of editor to open. The specified editor is opened even if Open Using Template or Open Using
Hex Editor is chosen. If an editor of the specified type is not found, a template of the specified
type is opened. If a template is not found, the hexadecimal editor is opened.

Chapter 7 The Programmatic Interface

119



PROCEDURE GiveSubEBirth (resHandle: Handle; pick: PickHandle):;

GiveSubEBirth starts an editor that edits a part of another type of resource. For example,
the 'DITL' editor uses GiveSubEBirth to start the Dialog Item Editor. GiveSubEBirth
behaves exactly like GiveEBirth except that the name of the resource that it looks for
begins with a dollar sign ($) instead of a commercial “at” sign (@). For example, the name of
the 'DITL' editor resource is @DITL and the name of the 'DITL' subeditor resource is $DITL.
This distinction allows an editor to use the standard method for editing multiple occurrences
of a subtype within the resource. For example, a dialog item list ('DITL") typically contains
several dialog items. Calling GiveSubEBirth lets the user open multiple dialog items and
treat them in the same way as any other windows.

Information-passing routines

PROCEDURE CallInfoUpdate (0ldID, newID: INTEGER;
refcon: LONGINT; id: INTEGER );

CalllInfoUpdate passes an information update command to the specified window. After
updating its own window and data structures, each editor's DoInfoUpdate procedure
should call this routine to pass the information update along to its parent window. This call is
necessary since the parent may be displaying data (such as the ID or name in a picker
window) that has been changed. An editor could pass this information along by making the
following call: ‘

CallInfoUpdate (oldid, newid, father”~”.wind”.refcon,
father”*~.wind”.windowkind) ;

PROCEDURE PassMenu (menu, item: INTEGER; father:
ParentHandle);

PassMenu passes menu commands on to any son pickers or editors that you have started.
For example, when your editor receives a Close command, it should pass that command
along to any subeditors or information windows that it has opened by making the following
call:

PassMenu (fileMenu, closeltem, myObj)

Window management routines

FUNCTION AlreadyOpen (VAR windowTitle, windowName: STR255;
dad: ParentHandle): BOOLEAN; )

AlreadyOpen looks to see if the window is already open. If the window is open,
AlreadyOpen activates it and returns TRUE. WindowTit le and windowName are as
defined in the note immediately below. You don't need to call this function if you are using
the PickerwindSetup of EditorWindSetup procedure.

120  ResEdit 2.1 Reference



& Note: You should call A1readyopen, to avoid opening the same resource twice.
AlreadyOpen depends on your setting windowTit le and windowName correctly.
For pickers, the window’s title must uniquely identify the window. For editors, the name
stored in the parentRec data structure must uniquely identify the window. The name is
used for editors so that the window title can be simple and short. For example, the
window title for a dialog item mightbe Edit DITL item #3, whereas its name would
be Edit DITL item #3 ¢ DITL "<resource name>" id = <num> from
<file name>.

PROCEDURE GrowMyWindow (minWidth, minHeight: INTEGER;
windPtr: WindowPtr; lh: ListHandle);

This procedure is used by pickers to grow their windows. The minwidth and minHeight
parameters determine the minimum size of the window; windpt r is the window to be
grown; 1h is the list that is in the window.

The GrowMyWindow procedure takes care of everything that is necessary to grow a picker's
window. If necessary, the list is resized and redrawn. Two-dimensional lists (such as those
used by the icon picker) are updated to fit as many cells as possible in the window without
requiring horizontal scrolling.

PROCEDURE GetWindowTitle (VAR windowTitle, windowName: STR255;
addFrom: BOOLEAN; dad: ParentHandle);

GetWindowTit le constructs the window title and name for an editor. This routine should
always be called in the DoInfoUpdate procedure, and should be called in the EditBirth
procedure if Edit orWwindSetup is not called. windowTit e should be used for the
window’s title. AddF rom determines whether or not the name of the file is added to the title.
windowName should be saved in the name field of the editor’s data structure. This name is
used later to identify the window uniquely. On input, windowTit le should contain only
the title or the resource (for example, 'ALRT"), and windowName should contain the resource
type (for example, 'ALRT". If EditorWwindSetup is not used, the following code fragment
can be used to assure that the name and title are correct:

GetResInfo (myResource, theID, theType, windowTitle);
TypeToString (theType, windowTitle);

SetETitle (myResource, windowTitle);

windowName := windowTitle;

GetWindowtitle (windowTitle, windowName, TRUE, parent):;

PROCEDURE SetETitle (resHandle: Handle; VAR title: STR255);
Extended Resource Manager

SetETitle concatenates the resource’s ID with its name and places the resultinto tit1le.
The resHandle parameter is the handle to the resource. You can use this routine when you
are constructing a window’s name or title.

Chapter 7 The Programmatic Interface

121



FUNCTION WindAlloc: WindowPtr;

WindAlloc returns a pointer to a window record to be used by your editor or picker. Using
this routine instead of allocating your own window pointer can help reduce heap
fragmentation. Because windows are pointers and must be nonrelocatable objects in the
heap, ResEdit uses this procedure to try to allocate windowPt r pointers as low in the heap
as possible. When this procedure is called, it usually returns a windowPt r that it has
previously allocated low in the heap.

PROCEDURE WindReturn (w: WindowPtr):;

WindReturn returns a window pointer that was allocated by windal1loc. Use this
procedure when you terminate your editor or picker and you are finished with its window.
WindReturn makes the memory used by the window available to another picker or editor
for use as a new window. This helps keep the nonrelocatable window pointers as low in the
heap as possible.

FUNCTION WindList (w: WindowPtr; nAcross: INTEGER;
cSize: Point; drawProc:INTEGER): ListHandle;

WindList creates a new empty list and returns a handle to that list. This procedure should
be used by pickers to allocate their lists. windList calls the LNew procedure to allocate a
list. w is the window in which the list will be created. nacross specifies the number of cells
across that the list should contain. The list is allocated with 0 rows. cSize is the csize
parameter to LNew. drawProc is the Proc parameter to LNew. For more information on
lists and a description of the LNew parameters, see the chapter on the List Manager in Inside
Macintosh, Volume IV. Please refer to the section “Using custom LDEFs,” earlier in this
chapter, for information on specifying custom draw procedures.

PROCEDURE WindOrigin (w: WindowPtr; dad:ParentHandle);

Windorigin moves the window pointed to by w to the first available position in the set of
offset positions; this is usually a position immediately below and to the right of the front
window. If w is a color window, the window is positioned on the deepest available display
device. This routine guarantees that, if possible, the entire window will be visible.
Windorigin requires the windowkind field of w be set to a ResEdit value (for example by a
call to ResEd1d), and that the window size be set. If you are using the PickerwindSetup
or EditorWindSetup procedure, you don’t need to call this procedure.

FUNCTION PickerWindSetup(color: BOOLEAN; width,
height: INTEGER; VAR windowTitle: STR255;
windowKind: INTEGER; dad: ParentHandle) : WindowPtr;

PickerWindSetup should be called by pickers from the PickBirth procedure. It is similar to the
EditorWindSetup procedure.

122  ResEdit 2.1 Reference



A,

FUNCTION EditorWindSetup (dlogID: INTEGER; color: Boolean;
width, height: INTEGER; VAR windowTitle,
windowName: STR255; addFrom: BOOLEAN;
windowKind: INTEGER; dad: ParentHandle): WindowPtr;

EditorWindSetup should be called by editors from the EditBirth procedure to set up
their windows. If the color parameter is TRUE, a color window is retumed. Color windows
are positioned on the deepest available display. windowTitle, windowName, and
addFromare passed directly to GetwindowTit le. Refer to the description of
GetWindowTit le for details about these parameters. WwindowName is returned with the
string that should be used for the name in the ParentRecord. This routine also takes care
of constructing the windowTit le and windowName cormectly so that the window can be
uniquely identified. If dlogID is not set to noDialog, the width and height parameters should
be set to 0 if you want to use the size stored in the DLOG resource. Use the d1ogID
parameter if you want your window to be a dialog; for normal windows, pass the constant
noDialog. The windowkind parameter is used to initialize the window. Pass the result of
a Resed1d call here.

& Note: NIL is returned if the window can't be allocated for some reason or the window is
already allocated (that is, an editor is already open). If NIL is returned, the EditBirth
routine should be aborted.

Resource utilities

FUNCTION AddNewRes (hNew: Handle; t: ResType; idNew: INTEGER;
8: str255): BOOLEAN;

AddNewRes has the same parameters and performs the same actions as the Macintosh
procedure addResource. The only difference is that if an error is detected, an alert is
displayed and FALSE is returned; TRUE is retumed otherwise.

FUNCTION BeautifulUniquelID (t: ResType): INTEGER;
This routine should be used instead of the toolbox procedure Unique1ID. It will return the
first unused resource ID starting with ID 128.

FUNCTION CurrentRes: INTEGER;

CurrentRes retums the ID number of the current resource file. This routine is the same as
the curResFile trap except that if CurResFile retumns sysMap, this routine returns 0
(for the System file).

Chapter 7 The Programmatic Interface

123



A typical use of this routine is to save the current resource file so that it can be restored later.
For example:

savedResFile := CurrentRes;
UseResFile (someOtherRes) ;

°
.

UseResFile (savedResFile);

FUNCTION GetlIndex (t: ResType; index: INTEGER): Handle;

Get1Index is similar to the Get 1IndResource trap. The only difference is that if the
resource is not found, this routine will set ResExror to the resourceNotFound error and
return NIL. '

FUNCTION GetlRes (t: ResType; id: INTEGER): Handle;

Get 1Res is similar to the Get 1Resource trap. The only difference is that if the resource is
not found, this routine will set ResError to the resNotFound error and return NIL.

PROCEDURE GetlMapEntry (VAR theEntry: ResMapEntry;
t: ResType; id: INTEGER);

Get 1MapEnt ry accesses the current resource map for a resource of type t and ID number
id, placing the result in t heEnt ry. For a description of resource maps, see “Format of a
Resource File” in Inside Macintosh, Volume 1, Chapter 5.

PROCEDURE GetlIMapEntry (VAR theEntry: ResMapEntry;
t: ResType; index: INTEGER);

Get1IMapEntry is similar to Get 1MapEnt ry, except that it refers to its resource by index
instead of by ID number.

FUNCTION NeedToRevert (myWindow: WindowPtr; theRes: Handle):
Boolean;

The NeedToRevert function should be called by all editors before they revert their
resource. If the editor’s window is the frontmost window and the resource has been changed,
an alert is displayed asking the user to verify that he or she really wants to revert the resource.
If the user does want to revert the resource, the function returns a value of TRUE. Otherwise it
returns a value of FALSE. The mywindow parameter is a pointer to the editor’s window. The
theRes parameter is the handle of the resource that is to be reverted.

124  ResEdit 2.1 Reference



FUNCTION NewRes (s: LONGINT; t: ResType; l: ListHandle;
VAR n: INTEGER): Handle;

Given a size, s, NewRes allocates a new handle, clears it, adds it to the current resource file
as a resource of type t with a unique ID, adds it to the list 1 (unless 1 is NIL), and returns a
handle to the new resource. The parameter n is the item number in the list 1. If this function
fails, it returns a NIL handle.

FUNCTION ResEditGetlResource (theType: ResType; ID: INTEGER;
VAR wasLoaded: BOOLEAN; VAR error: INTEGER): Handle;

ResEditGet 1Resource should be used in place of the toolbox routine Get 1Resource.
It's equivalent to Get 1Resource except for the fact that it returns a wasLoaded variable to
indicate whether the resource is already in use. If wasLoaded is retuned TRUE, the caller
should NEVER free the resource with the ReleaseResource procedure.

PROCEDURE ResourceIDHasChanged (theObj: ParentHandle;
theType: ResType; theOldId, theNewld: INTEGER):

Call this procedure if you have changed the ID of a resource. If you change a resource ID and
don’t call this routine, revert won't work properly.

FUNCTION RevertThisResource (theObj: ParentHandle;
res: Handle): BOOLEAN;

RevertThisResource festores a resource being edited to the state it was in before editing
started. The parameter res is a handle to the resource. The parameter theobs3 is the
ParentHandle from the current window. It is needed to determine whether the resource
was newly added. The RevertThisResource function returns a value of FALSE if the
resource was newly added by ResEdit (and, therefore, no longer exists after the reversion),
and TRUE otherwise. If the resource has not been changed (its resChanged flag is not set),
nothing is done.

PROCEDURE RemoveResource (theRes: Handle);

This procedure should always be used in place of the toolbox call RmveResource. It
correctly handles resources that have the protected attribute set, by unprotecting them before
removing them. The function of this routine is otherwise the same as that of the
RmveResource toolbox procedure.

FUNCTION SysResFile: INTEGER;

This function returns the resource file ID of the System file. It is often necessary to take special
precautions when accessing the System file. This function allows you to take these
precautions without hard-coding a value for the system resource file ID, which may change in
the future.

Chapter 7 The Programmatic Interface

125



Miscellaneous utilities

PROCEDURE Abort;

Abort sets the abort flag, which will stop any command that is in progress. The most
common use of this command is in stopping the Quit command. For example, if an error is
detected in a template when its window is being closed, the template editor calls Abort so
that processing of the Quit command will stop and the error can be corrected.

FUNCTION WasAborted: BOOLEAN;

WasAborted retums the state of the aborted flag (set by the abort procedure just
described). This function is useful, for example, if you have just called PassMenu with a
Close command and you want to know if any of the windows that were closed encountered
a problem.

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT) :;

AbleMenu enables or disables menu items. Ablemenu differs from the Resource Manager
routines EnableItemand DisableItemin that it acts on the entire menu. The parameter
menu is 2 menu ID; enable is 2 mask. Values used for the mask can be found in the

ResEd file.

PROCEDURE BubbleUp (h: Handle):;

BubbleUp sets up the correct heap zone and then performs the Memory Manager routine
MoveHHT. For information about MoveHH1, see Inside Macintosh, Volume 11, Chapter 1.
This routine should always be called, to avoid heap fragmentation, before the Macintosh
procedure HLock is called for any handle. Remember to unlock any handle that you lock!

FUNCTION BuildType (t: ResType; 1l: ListHandle): INTEGER;

Given a list that has been initialized with no rows, Bui1dType builds a list of all resources of
type t from the current resource file. (See the windList routine described earlier in this
chapter.) If setResLoad (FALSE) has not been called, all of the resources will be loaded
into memory. BuildType retums a count of the number of instances that it adds to the list.

A picker that doesn’t use PickerwindSetup can set up its window with this sequence:
myList := WindList (myWindow, myListWidth, myCellSize, ResEdid):;

LDoDraw (FALSE, myList); {draw it later}

NInsts := BuildType (myType, myList); '

LSetSelect (TRUE, Cell(0), myList); {automatically select first cell}
LDoDraw (TRUE, myList); {ok to draw it next time}

126  ResEdit 2.1 Reference



i &,

PROCEDURE CenterDialog (theType: ResType; dialog: INTEGER);

This procedure centers dialogs or alerts on the same screen as the current port, which is
assumed to be a window:. If the dialog is in color, it is centered on the screen with the most
colors on which any portion of the current port appears. ResType can be ‘DLOG’ or ‘ALRT
dialog is the resource ID of the dialog or alert. The 'DLOG' or 'ALRT' resource is loaded
into memory and its boundsRect is centered. When you use the dialog or alert (for example,
in GetNewDialog) the resource will be found in memory with the correct boundsRect.

FUNCTION CheckError (err, msgID: INTEGER): BOOLEAN;

CheckError displays an error alert if err is nonzero. This routine has built-in alert
messages for several errors (such as disk write-protected, out of memory, and so on). If
msgId is negative, a fatal error message is retrieved from the 'STR# resource with ID of 128.
This resource is preloaded into memory, and may be accessible even if a serious error has
occurred. If msgID is nonnegative, an error message from the 'STR#' resource with ID of 129
is displayed. If the error is not one that is built in, the string with an ID of msg1D is displayed
in the alert. TRUE is returned if erx was zero, FALSE otherwise. When adding a new string
for use by checkError, be sure to add it to the end of the existing list in the

'STR#' resource.

FUNCTION CloseNoSave: BOOLEAN;

CloseNoSave retums a Boolean value that indicates whether data checking should be
performed before closing. A return value of TRUE indicates that checking should not be
performed. For example, if the user is editing a template and there are errors in the template
when the Quit command is chosen, the template editor should not perform edit checking if
“no” was clicked in the Save Changes dialog box.

FUNCTION ColorAvailable (needColorQD: BOOLEAN) : BOOLEAN;
ColorAvailable retumns TRUE if color QuickDraw is available. If the needColorgD
parameter is TRUE, an alert is displayed if color QuickDraw is not available.

PROCEDURE ConcatStr (VAR strl: STR255; str2: STR255);

ConcatStr concatenates str2 to stril, leaving the resultin st r1.

A Warning This routine does not check for aggregate string lengths in excess of 255
characters. Please be carefull a

Chapter 7 The Programmatic Interface

127



FUNCTION DefaultListCellSize:INTEGER; P

DefaultListCellSize returns the height of a list cell with the application font (ascent + N
descent + leading). This function should be used by pickers that display resources as text
strings when setting up their window.

FUNCTION DisplayAlert (which: AlertType; id: INTEGER):
INTEGER;

Displayalert displays an alert with the given id. This routine assures that the alert
resource is loaded from ResEdit and that the cursor is reset to an arrow. The which
parameter determines the kind of alert that is displayed.

AlertType = (displayTheAlert, displayStopAlert, displayNoteAlert,
displayCautionAlert);

FUNCTION DisplaySTRAlert (which: AlertType; STRName: STR255;
STRIndex: INTEGER) : BOOLEAN;

This procedure is similar to DisplayAlert except that a standard alert box is used and the
text is retrieved from a 'STR# resource. If you want to display an alert, just create a 'STR#'
resource in ResEdit and call this routine with the 'STR# resource name and the index in the
string list of the string to be used. Whenever possible, this routine should be used instead of
DisplayAlert.

FUNCTION DoPickBirth(color: BOOLEAN; buildList: BOOLEAN:
wWidth, wHeight, columns: INTEGER; pickerResId: INTEGER;
pick: PickHandle): BOOLEAN;

DoPickBirth takes care of just about everything needed to initialize a picker. If
buildrist is TRUE, the list of all of the resources will be created. pick is the handle to a
partially initialized pickHand1e. The fields that should be initialized before this procedure
is called are: father, rType, viewBy, cellSize, and 1de£Type. The example picker
shows how these fields should be initialized.

PROCEDURE DrawLDEF (message: INTEGER; lSelect: BOOLEAN;
lRect: Rect; theRes: Handle; id: INTEGER;
title: STR255; maxH, maxV: INTEGER;
DrawResource: ProcPtr; lh: ListHandle):;

DrawLDEF is a general purpose drawing routine for graphical LDEFs like 'ICON', 'cicn', and
so on. It should be called from an LDEF that is used by a picker. If t it 1e is an empty string,
id is converted to a string and used as the title. The drawProc is of the form: PROCEDURE
DrawResource (lRect: Rect; theRes: Handle).

Use of this procedure is shown in the example picker LDEF.

128  ResEdit 2.1 Reference



1%

PROCEDURE DrawMBarLlater (forceItNow: BOOLEAN) ;

DrawMBarLater should be used instead of the toolbox DrawMenuBar procedure. It will
collect updates to the menubar but actually draw the menubar only when no other events are
pending. Using this procedure avoids flashing the menubar as menus are added and
removed. If forceItNow is TRUE, the menubar is drawn immediately and any pending
updates are cleared.

FUNCTION FindOwnerWindow (theRes: Handle) : WindowPeek;

FindownerWindow checks all of ResEdit's windows to see if an editor is open for the
specified resource. If you're writing an editor that uses a resource that may be in use by
another editor (for example, two 'DLOG' resources may share the same 'DITL), call
FindOwnerWindow to determine whether the resource should be released.

PROCEDURE FixHand (s: LONGINT; h: Handle);
FixHand makes sure that the object to which h is a handle is s bytes long. If it is longer,
FixHand shrinks it; if it's shorter, FixHand expands it and fills the extension with zeros.
PROCEDURE GetNamedStr (index: INTEGER; name: STR255;
VAR str: STR255);

GetNamedStr returns in st r the indexth string in the 'STR#' resource named name. All
strings should be stored in either 'STR# or 'STR ' resources to maintain the international
localizability of ResEdit.

PROCEDURE GetStr (num, list: INTEGER; VAR str: STR2S5S5);

GetStr retums, in st r, string number num from ResEdit’s 'STR# resource with ID of 1ist.
All strings should be stored in either 'STR# or 'STR ' resources to maintain the international
localizability of ResEdit.

PROCEDURE FlashDialogItem (dp: DialogPtr; item: integer);
FlashDialogItem flashes (inverts) a dialog button for 8 ticks to indicate that the button
was selected. This procedure should be called from a dialogs filter procedure.

PROCEDURE FrameDialogItem (dp: DialogPtr; item: integer);

FrameDialogItemdraws a frame around a dialog button to indicate that it is the default
button (the button that will be selected when either the Return or the Enter key is pressed).
This procedure should be called when an update event is received by a dialog’s

filter procedure.

Chapter 7 The Programmatic Interface

129



FUNCTION GetQuickDrawVars: pQuickDrawVars;

This function returns a pointer to the QuickDraw variables that are normally available to
Macintosh programmers. Because of the way that pickers and editors are implemented, they
do not normally have access to these variables. The following types are used with
this function:

pQuickDrawVars = “~QuickDrawVars;

QuickDrawVArs = RECORD

randSeed: LONGINT;
screenBits: BitMap;

arrow: Cursor;

dkGray: Pattern;
ltGray: Pattern;
gray: Pattern;
black: Pattern;
white: Pattern;
thePort: GrafPtr;

END; { QuickDrawVars }

FUNCTION HandleCheck (h: Handle; msgID: INTEGER): BOOLEAN;

HandleCheck checks to see if the handle h is NIL or empty. If it is either, HandleCheck
returns FALSE and displays an error alert, using string msg 1D from ResEdit's 'STR# resource
ID 129. If the handle id is OK, Hand1leCheck returns TRUE.

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN) ;

MetaKeys returns the values of the modifier keys from the last event. Some menu
commands that have shortcut key combinations simulate the shortcut modifier keys when the
menu command is selected. For example, when Open Using Template is selected,
MetaKeys indicates that the Command and Option modifier keys were pressed. Because of
these transformations, Met akeys should always be used to get the modifier values.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);

PickEvent handles an event contained in evt for a standard picker referenced by pick.
PickEvent should be called from your picker's DoEvent procedure. It is usually sufficient
to call only this routine from DoEvent, with no other special processing at all.

PROCEDURE PickInfoUp (0ldID, newID: INTEGER;:
pick: PickHandle):;

PickInfoUp handles the update necessary when a resource’s ID is changed in the Get Info
window. PickInfoup should be called from your picker's DoInfoUpdate procedure. It is
usually sufficient to call only this routine from DoInfoUpdate, with no other special
processing at all.

130  ResEdit 2.1 Reference



PROCEDURE PickMenu (tossOnClose: Boolean; menu, item: INTEGER;
pick: PickHandle);

PickMenu handles menu commands for a standard picker referenced by pick. PickMenu
should be called from your picker's DoMenu procedure. This routine handles all of the
standard menu commands. If tossonC1ose is TRUE, all of the resources displayed by the
picker are released when it receives a Close command. It is usually sufficient to call only this
routine from DoMenu.

FUNCTION PickStdWwidth: INTEGER;

This function returns the width in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified width is
guaranteed to fit on the screen.

FUNCTION PickStdHeight: INTEGER;

This function returns the height in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified height is
guaranteed to fit on the screen. PickstdHeight replaces the old

PickStdRows procedure.

FUNCTION PrintSetup: Handle;

Use PrintSetup if you are doing your own printing instead of using PrintWindow.
Return type is actually THPrint. The following code can be used to set up your own
printing loop:

myPrintHandle := PrintSetup;
IF myPrintHandle <> NIL THEN
BEGIN
PrOpen;
IF PrError = noErr THEN
BEGIN
IF PrJobDialog( myPrintHandle ) THEN
BEGIN
printingPort := PrOpenDoc (myPrintHandle, NIL, NIL );
IF PrError = noErr THEN

BEGIN
{do the usual printing loop here (see TechNote #161) }
{Warning: be careful NOT to change the current resfile |}
{ or the printing manager will fail }
PrCloseDoc( printingPort );
END;

Chapter 7 The Programmatic Interface

131



END;
PrClose;
END;

END;

PROCEDURE PrintWindow (toPrint: ‘PicHandle):;

PrintWindow does just that. If you pass it NIL, it will print an image of the current window.
If you pass it a PicHandle, it will print the picture.

FUNCTION ResEdID: INTEGER;

ResEAID retums the resource ID of the calling picker or editor. For editors, this value should
be saved in the windowkind field of the editor’s window. For pickers, this value should be
saved in the Pick1d field of the picker's pickRec as well as in the windowKind field of
the window.

PROCEDURE SetResChanged (h: Handle);

SetResChanged sets the resChanged attribute for the specified resource and also sets
the mapChanged attribute for the resource file that contains the resource. SetResChanged
should be called whenever a resource is changed.

PROCEDURE SendRebuildToPickerAndFile (theType: ResType:;
parent: ParentHandle); ‘

This procedure sends a rebuild (sets the rebuild flag in the window’s parentRecord) to all
open picker windows of the specified type. A rebuild is also sent to the file picker in case a
new resource type is being added. This routine is useful if an editor creates a resource of
another type. This routine should be called to make sure that the resource picker and the file
picker are updated to reflect the addition of the new resource. For example, this routine is
called from the 'ALRT", 'DLOG', and 'DITL' editors.

132 ResEdit 2.1 Reference



PROCEDURE SendRebuildToPicker (theType: ResType;
parent: ParentHandle):;

This procedure is similar to SendRebuildToPickerAndFile except that it doesn’t send
the rebuild on to the file (what a surprise!).

PROCEDURE SetTheCursor (whichCursor: INTEGER) ;

SetTheCursor changes the cursor to the specified cursor resource. The constant
arrowCursor defined in the ResEd file should be used to set the cursor to the arrow. This
routine makes sure that the resource file is set to ResEdit before loading the cursor, so that the
cursor will be loaded from either ResEdit or the System file. The most common use of this
routine is to set the cursor to a watch (wat chCursor) while something is being done that
may take a while.

PROCEDURE ShowInfo (h:Handle; dad: ParentHandle):;

ShowInfo puts up a Get Info window for the resource referenced by h that belongs to the
father object referenced by dad. showInfo should be called by your editor when Get Info is
selected from the File menu.

PROCEDURE TypeToString (t: ResType; VAR s: Str255);

TypeToString retums a string consisting of the four characters that make up
the ResType t.

PROCEDURE UseAppRes;

The useappRes procedure sets the current resource file to be the ResEdit Preferences file.
This is necessary if you need to get a resource from ResEdit, such as a menu, string, alert, or
dialog box. Be sure to restore the original resource file when you are done with ResEdit’s
resource file. For example:

SavedResFile := CurrentRes;
UseAppRes;

UseResFile (SavedResFile) ;

Chapter 7 The Programmatic Interface

133



FUNCTION WasItLoaded: BOOLEAN;

WasItLoaded should be called by every editor in the EditBirth procedure. The retumn
value should be saved in the ParentRec data structure. When a Close command is received,
the resource being edited should be released only if was1t Loaded returned FALSE. A return
value of TRUE means the resource may already be in use by ResEdit or the System and
therefore shouldn’t be released.

PROCEDURE WritePreferences (prefType: ResType;
preflId: INTEGER; prefName: STR255; prefHandle: Handle):

You can use WwritePreferences to add your own preference resource to the ResEdit
preferences file. Pre£Type is the resource type that you have chosen for your preference
resource. Pre£Id and pre£fName are the ID and name for the resource. PrefHandle isa
handle to the preference data itself. To read your preferences you can use this code:
myPrefs:= GetlNamedResource (prefType, prefName)

Internal routines

The following routines are used internally within ResEdit and may be useful in
other circumstances.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle):
Handle;

DupPick is called from P ickMenu and should normally not need to be called from any
other procedures.

PROCEDURE GetErrorText (error: INTEGER; VAR errorText:
STR2S5S) ;

GetErrorText Will return an error string for the given error. If no specific error text is
found, an I/O error is returned.

FUNCTION GetType (templatesOnly: BOOLEAN; VAR 8: STR255):
BOOLEAN;

Get Type displays a dialog box containing a list of the types of resources that can be edited.
The list contains all types for which there are templates. If templatesonly is FALSE, the
list also contains all the types for which there are editors. The selected type is returned in s.
- TRUE is returned if a type was selected; FALSE is returned otherwise.

PROCEDURE KillCache;

Killcache flushes all caches for all volumes (bitmap, control, and so on).

134  ResEdit 2.1 Reference



.,

FUNCTION MapResourceType (editor: BOOLEAN; theRes: Handle;
origResType: ResType) : ResType;

This function checks the 'RMAP' resources in ResEdit and the ResEdit preferences file to see if
the specified resource type should be treated as if it were a different type.

PROCEDURE MyCalcMask (srcPtr,dstPtr: Ptr; srcRow, dstRow,
height, words: INTEGER);

MyCalcMask calculates a mask for the given source bit image and puts it into the destination
bit image. The parameters srcPtr and dstPt r reference the source and destination bit
images; srcRow, dstRow, height, and words define the area on which
MyCalcMask operates.

PROCEDURE NoDoubleClickHere;

Call this procedure in your mouse-down processing code if you don’t want ResEdit to convert
a doubleclick at this location to an Open command. This should be used if a double-click
makes sense only in part of your window.

FUNCTION PlaySyncSound(which: INTEGER; sndHandle: Handle):
BOOLEAN;

PlaySyncSound is used by the 'snd ' picker to play sounds.

FUNCTION ResEditRes: INTEGER;
The ResEditRes procedure returns the resource file ID of ResEdit. This routine will rarely
be needed. You can use this routine if you don’t want to release a resource that you have
been editing, if the resource came from ResEdit.

FUNCTION RestoreRemovedResources (pick: PickHandle): BOOLEAN;
This function reverts all resources of the type handled by the picker (pick~~.rType). It
returns true if the list needs to be rebuilt.

PROCEDURE ScrapCopy ( VAR h: Handle );
ScrapCopy copies the handle h into the ResEdit scrap. A different handle will be returned.

PROCEDURE ScrapEmpty;

ScrapEmpty empties the ResEdit and desktop scrap.

Chapter 7 The Programmatic Interface

135



PROCEDURE ScrapPaste (pasteAll: BOOLEAN; typeToPaste: ResType; 7
resFile: INTEGER); R

ScrapPaste pastes the resources from the ResEdit scrap to the file identified by the ID
number resFile. If pasteall is TRUE, all resources found in the scrap are pasted. If
pasteall is FALSE, only resources of type typeToPaste are pasted.

The next four routines implement the color palette pop-up menu used by
the 'MENU' editor.

PROCEDURE InstallColorPalettePopup( whichWindow: WindowPtr;
CQDishere, isActive: Boolean );

InstallColorPalettePopup Sets up a palette for the window containing the system
colors for the deepest available device. Call this procedure immediately after opening your
window and whenever you receive an update event. whichwindow is the window
containing the pop-up menu, copishere is TRUE when Color QuickDraw is available, and
isactive is TRUE when the window is the frontmost one.

PROCEDURE DrawColorPopup( whichWindow: WindowPtr;
itemBox: Rect; whichColor: RGBColor;
CQDishere: Boolean );

DrawColorPopup draws the color patch and a drop shadow indicating that this is actually a
pop-up menu. Call this procedure for every pop-up palette whenever you need to update the
window contents. whichwindow is the window containing the pop-up palette, itemBox is
the rRect to be used to draw the color patch, whichColor is the RGBColor to be drawn
and copishere is TRUE when Color QuickDraw is available.

FUNCTION ColorPalettePopupSelect ( whichWindow: WindowPtr;
itemBox: Rect; VAR whichColor: RGBColor;
CQDishere: Boolean ): Boolean;

ColorPalettePopupSelect handles mouse-down events in the color palette pop-up
menu. Call this procedure whenever you receive a mouse-down event in one of your color
patches. whichwindow is the window containing the pop-up, itemBox is the Rect to be
used to draw the color patch, whichColor is the RGBColor to be used as default and
capishere is TRUE when Color QuickDraw is available. On exit, whichColor contains
the RGBColor selected by the user.

PROCEDURE DeinstallColorPalettePopup( whichWindow: WindowPtr;
CQDishere: Boolean );

DeinstallColorPalettePopup removes the palette from the window. Call this
procedure before closing the window.

136  ResEdit 2.1 Reference



a———

Obsolete routines

The following routines are obsolete and should no longer be used. They are no longer
available in the current version of ResEdit.

FUNCTION CWindSetup (width, height: INTEGER; t, s8: STR255):
WindowPtr;

Use PickerWindSetup Of EditorWindSetup instead.

FUNCTION WindSetup (width, height: INTEGER; myType, name:
STR255) : WindowPtr

Use PickerWindSetup Of EditorWindSetup instead

FUNCTION PickStdRows: INTEGER;

No longer supported. Use PickStdHeight instead.

PROCEDURE CallPBirth (theType: ResType; parent: ParentHandle;
id: INTEGER );

PROCEDURE CallEBirth (resHandle: Handle; parent: ParentHandle;
id: INTEGER );

PROCEDURE CallEvent( VAR evt: EventRecord; refcon: LONGINT;
id: INTEGER );

PROCEDURE CallMenu (menu, item: INTEGER; refcon: LONGINT;
id: INTEGER);

FUNCTION CopyRes (VAR h: Handle; makeID: BOOLEAN;
resNew: INTEGER): Handle:;

PROCEDURE DoKeyScan (var evt: EventRecord; offset: integer;
lh: ListHandle);

PROCEDURE DoListEvt (e: EventRecord; l: ListHandle):;

Chapter 7 The Programmatic Interface

137






DocTitle DraftNum 924/90

Appendix A The 'KCHR' Resource

This appendix contains more information about the 'KCHR' resource, its
structure, and its function. The 'KCHR' resource controls mapping from the
keyboard to the resulting characters. This mapping process involves several
areas of the Macintosh architecture.

139



Basic theory of keyboard operation

In order to appreciate fully the workings of the 'KCHR' editor, you really should be aware of
the process that it controls. Here is a summary.

Generating the virtual keycode

Whenever a key on any type of keyboard is pressed, the operating system polls the key
information from the device. It then translates each raw keycode generated by the keyboard
into a virtual keycode and a combination of modifier keys by means of the 'KMAP' resource.
The resulting virtual keycode is information about the key being depressed that is
independent of the keyboard type.

Exceptions to the rule

Some countries have different layouts for different keyboards, mostly for historical reasons.
To deal with those exceptions, the 'itlk' resource contains a table of translation rules from a
virtual keycode generated by the actually connected keyboard to a virtual keycode on the ISO
ADB keyboard or to whatever keyboard is supported by the 'KCHR' resource for that country.

Generating the character code

When the operating system has generated a virtual keycode, the KeyTrans () procedure
then translates the virtual keycode and the concurrently pressed modifier keys into a
Macintosh character set number based on the tables in the 'KCHR' resource. That character
number and the virtual keycode information are then stored in the event queue and can be
accessed by calling GetNextEvent ().

140  ResEdit 2.1 Reference



Dead keys

When you press a dead key, the first thing you’ll notice is that nothing happens immediately
(that is, no event is fed into the queue). When you then press another key, the Event Manager
uses the character number generated by this new key and the previously pressed dead key to
determine which character number should be put in the event queue. This process is used,
for example, to generate the German characters with umlauts A,0,U,4,6, and . You have to
press the dead key for a diaeresis (which is Option-u in the U.S. 'KCHR') and then press one
of the keys that generate the characters A,0,U,a,0, or u. (You can also generate i, and &,
which do not exist in German, but, depending on the font, possibly not their uppercase
equivalents.) If you press a key that generates none of the defined character numbers for this
dead key, the Event Manager generates the nomatch character (which is, in the case discussed
here, the umlaut alone).

The Dead Array contains a list of dead keys. For each dead key it defines the virtual keycode
and the table that is used to trigger the deaD-key mechanism. It then lists pairs of completion
characters and substitution characters and, finally, the nomatch characters. The whole
deaD-key mechanism can be described as follows:

1. Press a dead key on the keyboard.
2. Press any key that generates a character number that corresponds to a valid
completion character.

You get the corresponding substitution character in the event queue. (If you didn't press a
valid completion character in step 2, you get the nomatch character.)

Appendix A The 'KCHR' Resource

141



The structure of a 'KCHR' resource

Here is the definition of a 'KCHR' for the resource compiler Rez. (This information can also be
found in the file SysTypes.r in the folder {RIncludes} in MPW.)

type 'KCHR' {

integer; /* Version */
wide array [$100] { /* Indexes */
byte;

}:

integer = $$CountOf (TableArray);

array TableArray {
wide array [$80] { /* ASCII characters */

char;

}:

}:

integer = $$CountOf (DeadArray):

array DeadArray {
byte; /* Table number */
byte; /* Virtual keycode = */
integer = $$CountOf (CompletorArray) ;
wide array CompletorArray {

char; /* Completing char */
char; /* Substituting char */
}:
char; /* No match charl */
char; /* No match char2 */

}:
}:

Each table in the Table Array describes the virtual keycode-to-character number translation
for one complete layer of the keyboard (that is, for all 128 possible keys). The Index Array
defines the mapping of modifier key combinations to tables. The high byte of the modifier
flag (described in Inside Macintosh, Volume V, Chapter 10) is used as an index to determine
the number of the table to be used for translation. The information in Inside Macintosh is,
however, not complete, because the altemate modifier keys (the Shift, Option, and Control
keys on the right side of the ADB extended keyboard) are not mentioned. Those keys are
normally coupled with the corresponding keys on the left side. It is possible to uncouple
them by sending a command to the keyboard. (See “Reassigning Right Key Code” in Inside
Macintosh, Volume V, Chapter 10.) The correct bit layout of the high byte is shown in
Figure A-1.

142  ResEdit 2.1 Reference



(' " m FigureA-1  Modifier flag high byte

{7]6[s5]4[3[2]1]0

1if alternate Option key down
1 if alternate Shift key down
1 if Control key down
1 if Option key down -
1 if Caps Lock down -
1 if Shift key down -
1 if Command key down -

1 if alternate Command key down -I J J

Suppose you hold down the Option key. This keypress will result in a value of 8 (bit 3 is set)
in the high byte of the modifier flag. Thus the Toolbox Event Manager takes the value stored
in IndexArray (8], which is 3 in the current U.S. 'KCHR!, and therefore uses Table 3 to
translate the keycodes to character numbers.

A

Appendix A The 'KCHR' Resource 143






A

Appendix B The 'BNDL' Resource

The 'BNDL' resource bundles together icons (resource types 'ICN#, 'ics#,
'ic4, "icl8', 'ics4", 'ics8), file type references (resource type 'FREF"), and the
“signature” resource (whose resource type is identical to the creator field of
the application file) for the Finder. This enables the Finder to display distinct
icons for an application and its documents, and also enables it to launch the
appropriate application when the user double-clicks a document.

145



The structure of a 'BNDL' resource

The 'BNDL' resource contains a reference to the signature resource type and ID (for historical
reasons the ID must be 0) as well as a list of resource types (almost always only 'FREF' and
'ICN#, although other things are theoretically possible) and localID to resourceID mapping
tables. The term “local” ID is used, because this ID is used within the 'BNDL' resource itself to
tie together the file reference and its icons. When the Finder copies the 'BNDL' resource and
all its bundled resources to the Desktop file (or the desktop database in System 7.0), it
actually has to change the resource ID numbers to avoid ID conflicts within the Desktop. The
local ID numbers remain unchanged.

The signature resource can contain anything you want, although, for historical reasons, it
typically contains some version and copyright information. The resource ID of the signature
resource needs to be 0. If you use the 'BNDL' editor in ResEdit 2.0 this resource is
transparently created and maintained for you.

For every file type that should be displayed with a distinct icon in the Finder there need to be
two entries in the 'BNDL' resource, which in turn refer to one 'FREF resource, and one 'ICN#
resource (or an entire Finder icon family for system software version 7.0). The 'FREF resource
contains the 4 character file type and a reference to a local ID for an icon to be used for this
file type. Even if you plan to include an entire Icon Family, you only need to list the 'ICN#"
resource in the 'BNDL' resource. The System 7.0 Finder automatically recognizes and loads all
the other parts of the Finder Icon Family. The relationship of local ID numbers and resource
ID numbers is shown in Figure B-1.

146 ResEdit 2.1 Reference



i

® FigureB-1  Six resources and their relationships

. Must be 0

FREF

0 128

1 129
LocalID Resource ID

ICN#

== === = ——
0 128
N

LocalID Resource ID

i A Resource ID
File type 3m @’
Icon's Local ID Aka Local ID 0

Resource ID
T A———

File type TEXT
Icon's Local ID AkalocalID 1

In order for the Finder to recognize a 'BNDL' resource these conditions must be met:

1) The bundle must be complete; that is, all the resources listed here must exist and their
relationships must be defined. If you use the 'BNDL' resource editor built into ResEdit 2.0
you can be sure that this condition is met.

Appendix B The 'BNDL Resource 147



2) The file’s creator must be identical to the signature specified in the 'BNDL' resource and
the file’s file type must be one listed in the 'BNDL' (i.e., it must have its own 'FREF and
corresponding 'ICN#). Typically the file type will be 'APPL' for application, although any
file can contain 'BNDL' resources. Specific examples other than 'APPL' are 'INIT and
'CDEV". Use the Get File/Folder Info command in the File menu to change the file’s file
type or creator.

3) The file’s Bundle bit must be set and the Inited bit must be cleared. The Finder always sets
the Inited bit whenever it finds a new file and reads in some information about it. By
clearing this bit you tell the Finder to reread that information. Use the Get File/Folder Info
command in the File menu to change the Bundle and Inited bits.

4) There must not already be a 'BNDL' resource with the same signature in the Desktop file
(or desktop database in System 7.0). If you want to change an existing bundle (to modify
the icons, for example) you will need to recreate the Desktop file by rebooting while
holding down the Option and Command keys. Note that by doing so you will lose all
comments you may have entered in the Get Info windows in the Finder in system
software before version 7.0.

Definitions of the 'BNDL' and 'FREF' resources

Here are the definitions of the 'BNDL' and 'FREF resources from the MPW Types.R file:

yE— BNDL + Bundle - -—-- =*/
type 'BNDL' {
literal longint;
/* Signature */
integer;
/* Version ID */
integer = $$CountOf (TypeArray) - 1;
array TypeArray {
literal longint;
/* Type */
integer = $$CountOf (IDArray) - 1;
wide array IDArray {
integer;
/* Local ID */
integer:;
/* Actual ID */
}:
}:

148 ResEdit 2.1 Reference



}s

FREF ¢ File Reference

/*
type 'FREF'

}s

{
literal longint;

/* File Type *x/
integer;
/* Icon ID */
pstring;
/* Filename x/

Appendix B The 'BNDL' Resource -

149






Appendix C Resource Types Defined for
Rez and ResEdit

This appendix contains a list of some resource types in use at Apple
Computer, Inc., current as of miD-1990. An attempt has been made to give
pertinent information about what each type is, how it is handled by the
resource compiler, Rez, and how it is handled by ResEdit. This list is neither
formal nor exhaustive!

151



= TableC-1 Resource types defined for Rez and ResEdit

Type

actb
acur
ADBS
ALRT
APPL
atpl
bmap
BNDL
CACH
cctb
CDEF
cicn
clut
CMDO
cmnu
CNTL
CODE
CODE
crsr
ctab

CTY#
CURS
dctb
DICL
DITL
DLOG
DRVR
DSAT

FBTN
fctb

152

Definition Rez ResEdit

Alert Color Lookup Table Types.r Template
Animated cursor resource Types.r Template

ADB driver loaded before INIT 31 ====-= = = =  =—====

Alert Template Types.r Template, Editor
Application list (Desktop) ====- Template
AppleTalk Resource =  ===== = —=—--

BitMap = meee= eee—-

Bundle Types.r Template, Editor
RAM Cache Control Code @ = ===== = —ceec

Control Color Lookup Table Types.r Template

Code for drawing controls = ===== =  —==--

Color Icon Types.r = =  ====-= ., Editor
Generic Color Lookup Table Types.r Template

For MPW commando interface Cmdo.r  -==--

MacApp temporary menu resource ====-= = = —==—- , Editor
Control Template Types.r Template

Jump Table =  e=ece=e  ccce-
Application Code @ == ===== 0 ecece-

Color Cursor Types.r = =  —=====

Cache Tab <list of possible cache sizes>

City list from MAP CDEV ————— Template

Cursor Types.r =  =—==-- , Editor
Dialog Color Lookup Table Types.r Template

<for MacWorkstation> = = =  ==e== 00 ecea-

Dialog Item List Types.r Template, Editor
Dialog Template Types.r Template, Editor
Driver SysTypes.r Template

Startup alerts & code to display them

MiniFinder button = = === 0@l === Template
Font Color Lookup Table Types.r Template
(Continued)
ResEdit 2.1 Reference



s

= Table C-1 Resource types defined for Rez and ResEdit (continued)
Type Definition Rez ResEdit
FCMT GetInfo comments from Desktop file

----- Template
FDIR MiniFinder button directory ID ====- Template
finf Font information SysTypes.r Template
FKEY Function Key Code @ = ===== = =—c--
fla# List of folder names for folder msg

SysTypes.r Template
FMTR Format Record ——— —eee-
FOBJ Information about Folders = ===== = =—==--
FOND Font Family Description SysTypes.r Template
FONT Font Description SysTypes.r Template, Editor
FREF File Reference Types.r Template
FRSV ROM Font resources =  ===== Template
FWID Font Width Table SysTypes.r Template
gama Gamma Table (color correction for screen)
GNRL NBP Timeout and retry info for AppleTalk
ICON Icon Types.r = =—-——=- , Editor
ICN# Icon List Types.r =  =—==-- , Editor
ictb Color dialog item list = =  ===== = —=—a-
INIT Code that is run at system startup time
insc Installer Script SysTypes.r Template
INTL International Formatting Information

itl1o0

(==

SysTypes.r  ==---- , Editor
itl0; no longer used)

International Formatting Information

SysTypes.r  =—----- , Editor

INTL 1 International Date/Time Information

(==

SysTypes.r  -—-——--- , Editor
itll; no longer used)

Appendix C  Resource Types Defined for Rez and ResEdit

153



s Table C-1 Resource types defined for Rez and ResEdit (continued)
Type Definition Rez ResEdit
iti1 International Date/Time Information

SysTypes.r  ===—- , Editor
itl2 Intl Str Comparison Package Hooks

' SysTypes.r = --—---

it14 International Tokenize SysTypes.r  =-=-=-=
itlb International Script Bundle SysTypes.r  ==—=--=—
itlc International Configuration SysTypes.r  ==-==
itlk Intl exception dictionary for kchar

SysTypes.r Template
KCAP Physical Layout of Keyboard SysTypes.r Template
KCHR ASCII Mapping (software) SysTypes.r  ===—-= , Editor
KEYC old keyboard layout <used by old INIT 0+1>
KMAP Keyboard Mapping (hardware) SysTypes.r Template
ksen Keyboard/Script icon Types.r = =  ====-=
KSWP Keyboard Swapping SysTypes.r Template
LAYO Finder layout resource ——— Template
LDEF Code for drawing lists = = =  ===== = 0————-
mach cdev filtering SysTypes.r  ===-=-
MACS Version # in system file @ = = -===- Template
MBAR Menu Bar Types.r Template
MBDF Menu bar definition procedure <Code>
mcky Mouse Tracking SysTypes.r Template
mctb Menu Color Lookup Table Types.r  ===== , Editor
mcod MacroMaker information = =  ===== 0 —==--
mdct MacroMaker information @ = = ===== 0z @ —ce--
MDEF Code for drawing menus = =  ===== 0 = -===-
mem! MacApp memory utilization = =  ===== 0 Z@m——ee
MENU Menu Types.r Template, Editor
minf Macro info (MacroMaker) @ = =  ====- Template
mitqg Default queue sizes for MakelTable

SysTypes.r  ===-=-=

(Continued)

154  ResEdit 2.1 Reference



N

s Table C-1 Resource types defined for Rez and ResEdit (continued)
Type Definition Rez ResEdit
mntb MacApp menu table(relate command # to menu)
mppc MPP Configuration Resource SysTypes.r  =—-—=--=
NBPC NBP configuration <AppleTalk>  ===== = = =  —===-
ncts List of constants === §===== = ===
NENT Font Description SysTypes.r  ==-=--
nrct Rectangle position list SysTypes.r Template
PACK Packages of code used as ROM extensions
PAPA Printer Access Protocol Address (AppleTalk)

----- Template
PAT Quickdraw Pattern Types.r =  —=—=—-= , Editor
PAT# Quickdraw Pattern List Types.r =  —=——- , Editor
PDEF Code to drive printers = =  e===== 0 ———--
PICT Quickdraw Picture Types.r Template
pltt Color Palette . Types.r Template
POST Postscript - found in Laser Prep file

————— Template
ppat Pixel Pattern Types.r Template
ppt# Array of ppats =0 Z@m==e= @@ @ —e——-
PREC Printer driver’s private data storage
PRCO Default page setup info for printer

(PRED id = 0) = ====- Template

PRC3 Print record (PREC id = 3) = = =-===- Template
PSAP Just a string === 0@  e===== Template
PTCH ROM Patch  eeeee emee-
qrsc System 7.0 query resource = = ====—-— Template
ROvV# ROM Resource Override SysTypes.r Template
scrn Screen Configuration SysTypes.r Template
seg! Mac2App = emeeee eee—-
SERD RAM serial driver == z ==e== = =ee--
SICN Small Icon Types.r = =  —=—=== , Editor
sizcgvnv...B ee=—— Template

Appendix C  Resource Types Defined for Rez and ResEdit

(Continued)

155



= TableC-1

Resource types defined for Rez and ResEdit (continued)

Type

SIZE
snd
STR
STR#
styl
TEXT

tlst
TMPL
vers
wctb
WDEF
WIND
wstr

156

Definition

MultiFinder Size Information
Sound

PascalStyle String

PascalStyle String List

Style information for TextEdit
Unlabeled string. (Same as minf)

Title list

ResEdit template

Version

Window Color Lookup Table

Code for drawing windows
Window Template

Query str used by grsc resource

ResEdit 2.1 Reference

Rez

Types.r
SysTypes.r

-—— -
- -

Types.r

ResEdit

Template
(player)
Template
Template
, Editor

Template
Template
Template
Template
Template, Editor
Template



Appendix D The Macintosh Character Set

This appendix contains a chart that displays the regular character set for
Macintosh fonts. The first 128 characters correspond to the standard ASCII
character set. Please remember that not all fonts for the Macintosh have
these standard characters in them. Specific examples are Symbol and ITC

Zapf Dingbats; there are also many pictorial fonts available as bitmaps for
dot-matrix printing.

157






A

m FigureD-1  Macintosh character set

3 4 5 6 7 8 A B CDE F
ole|pr| - |p|Ale|t i -]i]¢]
1{A|Qfa|q|A|&é]|°|z|i]|— 0 I
2B r|o|c|c|i]e|=]-]"].]0]
scs|c|s|e]is]2]v]"].]|0]
afpfrla|c|f]i]s|v]s] |m|0]
s|{EfulelulOofile]pl=|"]4]: l
6 |[F|Vv|f|lv|Uulda|qg|a]a|+]E]|"
716 |wlg|lwla|lo|8|Z|«<]|O0)A]"
8|H|X|h|x|af|lo|® |IT|[»>»|F|E|"
sl1|ly|i|lylalole|=x Y|E|-
Jlz|jlz|d|o|™|S |==}/ |1
skt k|o]i]s sfafo]i]e
<L v fala]-elAal<]i]s l
=M1 |{m|)|c|uf=]|Q]b]>]|1]" l
>IN|A|n|~]é]u z|Eli]|0]|~ I
/{2 ]0]_|o e |li|@|o |l |O] |
s  Sspace
dd  delete —
nbsp  non-breaking space (option-space on US keyboard)
The key labeled Delete on the US keyboard actually
generates bs (08) character.
The shaded characters cannot normally be generated
from the Macintosh keyboard or keypad.

Appendix D The Macintosh Character Set

159






Index

24-bit monitors, using ResEdit with 29
@ABCD 101

A

AbleMenu procedure 115
Abort procedure 115
AddNewRes function 112
Align to Grid 37

AlreadyOpen function 109
'ALRT' resource editor 32-34
'ALRT" resource type 32, 35, 87
APDA xiii

Apple Developer Programs xiv
Application Memory size 29, 86
ascent 56

ASCII character set 56

BeautifulUnique1ID function 112
bit editor 3, 28, 29, 87

bit editor tools See tools
black-and-white resource 28
'BNDL resource editor 3841, 135
'BNDL' resource type 3, 38, 134-137
Bring to Front 37

BubbleUp procedure 115
BuildType function 115

Bundle bit 40

bundle resource editor 29

C

CallInfoUpdate procedure 109
'CDEV' resource type 136
CenterDialog procedure 116
character set

ASCII 56

Macintosh 2, 56
character-editing panel 56
character-selection panel 56

characters

Option-space 2

unprintable 2
CheckError function 116
'cicn’ resource editor 29, 4245
'cicn' resource type 3, 42
Clear 21
Close 14
CloseNoSave function 116
‘cmnu’ resource editor 69-73
‘cmnu’ resource type 3, 69
'CNTL' resource editor 35
'CNTL' resource type 35, 87
code, as resource 2
'CODE' resource type 2, 19, 98
color icon editor 29
color-dropper tool 42, 48
ColorAvailable function 116
ColorPalettePopupSelect function 125
ColorTable record 55
commands, menu See individual

command name

ConcatStr procedure 116
Convert to dead key 68
Copy 21
corrupted resource 9
CurrentRes function 113
CURS menu 46
'CURS' resource editor 46
'CURS' resource type 46
Cut 21

D

damaged resource 9
Data -> Mask 46, 52
data fork 2, 12
default System font 54
DefaultListCellSize function 117
DeinstallColorPalettePopup procedure
125
DeRez 5
descent 56
Desktop File 11
rebuilding 40
Developer Programs, Apple xiv
dialog box 4
User Items in 35
dialog item list 35
Dialog Manager 35

Display using old method 52

DisplayAlert function 117

DisplaySTRAlert function 117

DITL menu 37

'DITL' resource editor 28, 35-37, 87

'DITL' resource type 32, 35, 86, 87
associated with 'ALRT' or 'DLOG'

32

'DLOG' resource editor 32-34

'DLOG' resource type 32, 35, 86, 87

DoEvent procedure 101, 104

DolnfoUpdate procedure 104

DoMenu procedure 101, 104

DoPickBirth function 117

DrawColorPopup procedure 125

DrawLDEF procedure 117

DrawMBarlater procedure 118

'DRVR' resource type 25

Duplicate 21

Duplicate Table 68

DupPick function 123

E

Edit dead key... 68
Edit menu 17
EditBirth procedure 101, 103
editors
'ALRT' 32-34
bit 29, 87
'BNDL' 3841, 135
'cicn 29
'cicn' 42-45
‘emnu’ 69-73
'CNTL' 35
color icon 29
'CURS' 46
'DITL' 28, 35-37, 87
'DLOG' 32-34
'FONT" 29, 54-57, 87
hexadecimal 3
'ICN# 51-52, 87
'ICON 50, 87
'INTL' 60-61
i’ 60-61
'itl1' 60-61
'KCHR' 62-69
'KCHR' dead key 62
'MENU' 69-73
monochrome 28

Index 161



'PAT' 58
'PAT# 59
'SICN' 53
template 3
"WIND' 30-31
bundle 29
Finder icon family 29, 4749, 51
menu 29
EditorWindSetup function 112
eraser tool 42
extensibility of ResEdit 4

F

'fetb' resource type 55
File menu 13-16
file type 39, 136
file window 12
files
Desktop 11
ICON.LDEF 99, 100
ICON.Pick 99
ResEdit Preferences 83
Types.R 136
XXXXEdit 99
Finder 11, 89
Finder icon family 47
Finder icon family resource editor 29,
4749, 51
FindOwnerWindow function 118
FixHand procedure 118
FlashDialogltem procedure 118
folder icon 51
Font Manager 55
FONT menu 68
Font/DA Mover 54, 55
‘FOND' resource type 54
'FONT editor: ascent of character 56
'FONT editor: descent of character 56
'FONT resource editor 29, 54-57, 87
'FONT" resource type 25, 54
fork
data 2
resource 2
FrameDialogltem procedure 118
'FREF" resource type 38, 134
functions
AddNewRes 112
AlreadyOpen 109
BeautifulUniquelID 112

162  ResEdit 2.1 Reference

BuildType 115
CheckError 116
CloseNoSave 116
ColorAvailable 116
ColorPalettePopupSelect 125
CurrentRes 113
DefaultListCellSize 117
DisplayAlert 117
DisplaySTRAlert 117
DoPickBirth 117
DupPick 123
EditorWindSetup 112
FindOwnerWindow 118
Getlindex 113

GetlRes 113
GetQuickDrawVars 119
GetType 123
HandleCheck 119
IsThisYours 102
MapResourceType 124
NeedToRevert 113
NewRes 114
PickerWindSetup 112
PickStdHeight 120
PickStdWidth 120
PlaySyncSound 124
PrintSetup 120

ResEdID 121
ResEditGet1Resource 114
ResEditRes 124
RestoreRemovedResources 124
RevertThisResource 114
SysResFile 114
WasAborted 115
WasltLoaded 123
WindAlloc 111

WindList 111

G

general editor See hexadecimal editor
Get File/Folder Info... 14

Get Info for This File 14

Get Info window 20

Get1IMapEntry procedure 113
Get1Index function 113
Get1MapEntry procedure 113
Get1Res function 113

GetErrorText procedure 123
GetNamedStr procedure 118

GetQuickDrawVars procedure 119
GetStr procedure 118

GetType function 123
GetWindowTitle procedure 110
GiveEBirth procedure 108
GiveSubEBirth procedure 109
GiveThisEBirth procedure 108
graphic resource 4

graphical resource editor 28
graphics tools panel 57
GrowMyWindow procedure 110
HandleCheck procedure 119
hexadecimal editor 4, 30

L)

'icl4' resource type 3, 47
'icl8' resource type 3, 47
ICN# menu 52
'ICN# resource editor 51-52, 87
'ICN# resource picker 20
'ICN# resource type 3, 39, 47, 51, 134
icon4
'ICON resource editor 50, 87
'ICON' resource type 29, 35, 50, 87
Icon Vertical phase 91
ICON.LDEF file 99, 100
ICON.Pick file 99
icons

folder 51

monochrome 48

trashcan 51
'ics# resource type 3, 47
ics4' resource type 3, 47
ics8' resource type 3, 47
ID number

local 134

resource 134
ID number restriction 25
'INIT resource type 136
Inited bit 40
InstallColorPalettePopup procedure

125

'INTL resource editor 60-61
'INTL' resource type 60
IsThisYours function 102
it} resource editor 60-61
'itl’ resource type 60
'it]1' resource editor 60-61



'itl1' resource type 60

K

KCHR menu 66, 94, 95

'KCHR' dead key editor 62

'KCHR' resource editor 6269

'KCHR' resource type 62, 94-95, 128-
131

'KCHR' with Macintosh SE, Macintosh
Plus, or Macintosh 512K
enhanced 68

KillCache procedure 123

'KMAP' resource type 128

L

'LAYO' resource type 4, 76, 89-93
'LDEF resource type 98

list separator 83

local ID number 134

M

MacApp

permanent menu 69

temporary menu 69
Macintosh character set 2, 56

Macintosh Programmer’s Workshop 5
MapResourceType function 124
marquee tool 28, 29
mask 42, 48, 52
'MBAR ' resource type 838
'metb resource type 3, 69
'"MDEF resource type 72
'MDPL resource type 12, 86
memory requirements xii
'MENU' resource editor 29, 69-73
'MENU' resource ID 88
'MENU' resource type 3, 69
menus

CURS 46

DITL37

Edit 17

File 13-16

FONT 68

KCHR 66, 94, 95

Resource 17-21

SIZE 68

Style 70

Transform 43, 48

View 22-24

Window 22
menus: ICN# 52
MetaKeys procedure 119
monochrome editor 28
monochrome icon 48
MPW DeRez command 81
MPW resource compiler and

decompiler 5

MultiFinder 11, 89
MyCalcMask procedure 124

N

NeedToRevert function 113

New 53

New Table 68

NewDialog 88

NewRes function 114

New... 13

'NFNT resource type 3, 54
NoDoubleClickHere procedure 124
nonexistent 'CNTL' 88

L))

obsolete routine 126
Open Special 13

Open Using Template 21
Open... 13

Option key 30, 35
Option-space character 2
oval-drawing tool 48

P

Page Setup... 14

paint bucket tool 42
ParamText 32

parent record definition 106
PassMenu procedure 109
Paste 21

'PAT resource editor 58
'PAT' resource type 58
'PAT# resource editor 59
'PAT# resource type 59
pencil tool 28, 48

PickBirth procedure 103
picker record definition 107
pickers 98

pickers: 'ICN# 20
PickerWindSetup function 112
PickEvent procedure 104, 119

PickInfoUp procedure 119
PickMenu procedure 105, 120
PickStdHeight function 120
PickStdWidth function 120

- pictorial resource 3

pictorial resource editor 28

Pictorial resource type 28

'PICT resource type 12, 35, 50, 77, 86,

87

Pig mode 88

pixel editor 28

PlaySyncSoundfunction 124

PostRez 69

Preferences... 14

PrintSetup function 120

PrintWindow procedure 121

Print... 14

procedures
AbleMenu 115
Abort 115
BubbleUp 115
CallInfoUpdate 109
CenterDialog 116
ConcatStr 116
DeinstallColorPalettePopup 125
DoEvent 101, 104
DolnfoUpdate 104
DoMenu 101, 104
DrawColorPopup 125
DrawLDEF 117
DrawMBarLater 118
EditBirth 101, 103
FixHand 118
FlashDialogltem 118
FrameDialogltem 118
Get1IMapEntry 113
Get1MapEntry 113
GetErrorText 123
GetNamedStr 118
GetStr 118
GetWindowTitle 110
GiveEBirth 108
GiveSubEBirth 109
GiveThisEBirth 108
GrowMyWindow 110
InstallColorPalettePopup 125
KillCache 123
MetaKeys 119
MyCalcMask 124
NoDoubleClickHere 124

Index 163



PassMenu 109

PickBirth 103

PickEvent 104, 119
PickInfoUp 119

PickMenu 105, 120
PrintWindow 121
RemoveResource 114
ResourceIDHasChanged 114
ScrapCopy 124

ScrapEmpty 124
ScrapPaste 125

SendRebuildToPicker 122
SendRebuildToPickerAndFile 121
SetETitle 111
SetResChanged 121
SetTheCursor 122
Showlnfo 122
TypeToString 122
UseAppRes 122
WindOrigin 111
WindRetumn 111
WritePreferences 123

Q

Quit 14

R

rebuilding a Desktop file 40
Remove dead key 68
Remove duplicate tables 68
Remove unused tables 68
RemoveResource procedure 114
ResEd 5, 100

ResEdID function 121
ResEdit Preferences file 83
ResEditGet1Resource function 114
ResEditRes function 124
resource 4

resource category 3
resource editors 27
resource file checking 9
resource fork 2

resource ID number 25, 134
Resource menu 17-21
resource picker 20

resource type 20

resource type name 2
resource types

164  ResEdit 2.1 Reference

'ALRT' 32, 35, 87
'BNDL' 3, 38, 134-137
'CDEV' 136

'cicn' 3, 42

‘cmnu' 3, 69

'CNTL 35, 87
'CODE' 2, 19, 98
'CURS' 46

'DITL' 32, 35, 86, 87
'DLOG' 32, 35, 86, 87
'DRVR' 25

fetb' 55

'FOND' 54

'FONT 25, 54

'FREF 38, 134

icd' 3, 47

'icl8' 3, 47

'ICN# 3, 39, 47, 51, 134
"ICON' 29, 35, 50, 87
ics#' 3, 47

ics4' 3, 47

Yics8' 3, 47

'INIT 136

'INTL' 60

'itl0" 60

'itl' 60

'KCHR' 62, 94-95, 128-131
'KMAP' 128

"LAYO' 4, 76, 89-93
'LDEF 98

'MBAR' 88

'mctb' 3, 69

'MDEF' 72

'MDPL' 12, 86
'MENU' 3, 69

'NFNT 3, 54

'PAT' 58

'PAT# 59

'PICT' 12, 35, 50, 77, 86, 87
'RSSC' 98, 101

'SICN' 53, 71

'STR# 32, 81

'TMPL' 76, 80

'vers' 41, 54

"WIND' 30

ResourcelDHasChanged procedure
114
resources 2
corrupted 9
damaged 9
pictorial 3
signature 41
RestoreRemovedResources function
124
Revert file 14
RevertThisResource function 114
Rez5
ROM requirements xii
'RSSC' resource type 98, 101

S

sample text panel 56

Save 14

ScrapCopy procedure 124

ScrapEmpty procedure 124

ScrapPaste procedure 125

Select Item Number 37

Send to Back 37

SendRebuildToPicker procedure 122

SendRebuildToPickerAndFile
procedure 121

Set Item Number 37

SetETitle procedure 111

SetResChanged procedure 121

SetTheCursor procedure 122

Shift key 29

ShowInfo procedure 122

'SICN' resource editor 53

'SICN' resource type 53, 71

signature resource 41

SIZE menu 68

software requirements xii

'STR# resource type 32, 81

straight quotation mark 2

Style menu 70

SysResFile function 114

T

template 4, 21
template editor 3
"TMPL' resource type 76, 80
tool palette 29
tools
color-dropper 42, 48



eraser 42
marquee 28, 29
oval-drawing 48
paintbucket 42
pencil 28, 48
Transform menu 43, 48
trashcan icon 51
Try Cursor 46

24-bit monitors, using ResEdit with 29

type checking 82
Types.R file 136
TypeToString procedure 122

U

Uncouple modifier keys 67
Undo 21

unprintable character 2
Use Full Window 37

Use RSRC Rectangle 37
UseAppRes procedure 122
UseResFile 101

USES declaration 100

A4

Verify Resource File 10
Verify Resource File... 14
‘vers' resource type 41, 54
View as... 67

View menu 22-24

w

WasAborted function 115
WasltLoaded function 123
WIND 30
WindAlloc function 111
WindList function 111
WindOrigin procedure 111
Window menu 22
windows

file 12

Get Info 20
'WIND' resource editor 30-31
'WIND' resource type 30
WindReturn procedure 111
WritePreferences procedure 123

XYz
XXXXEdit file 99

Index

165



THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited, and
composed on a desktop publishing system using
Apple Macintosh® computers and Microsoft® Word
software. Proof and final pages were created on Apple
LaserWriter® printers. Line art was created using
Adobe Ilustrator™, POSTSCRIPT®, the page-
description language for the LaserWriter, was
developed by Adobe Systems Incorporated. Screen
shots were taken with Flashit.

Text type and display type are Apple’s corporate font,
a condensed version of Garamond. Bullets are ITC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier.

Writer: Jon Singer

166  ResEdit 2.1 Reference

Developmental Editor: Silvio Orsino and Steve Hiatt
Hlustrator: Deb Dennis and Sandee Karr

Production Supervisor: Renee Ekleberry

Special thanks to:

Nobu Toge for Flashit.

Mikel Bvins for DreadEdit.

The ResEdit engineering team, particularly Peter, Craig, and
Alexander, who helped the author more than he can say.

Developer Technical Support at Apple for assistance above
and beyond the call of nature, and for Clarus the DogCow.
Moof™



