
Apple Computer, 1 nc.
• APRM I VL2340

32-BIT RISC MICROPROCESSOR

FEATURES
• 32-bit internal architecture

• 32-bit external data bus

• 64M-byte linear program address
space

• 4G-byte linear data address space

• Bustiming optimized for standard
DRAM usage with page mode
operation

• 64+M-byte/second bus bandwidth

• Simple/powerful instruction set
providing an excellent high level
language compiler target

• Hardware support for virtual memory
systems

• Low interrupt latency for real-time
application requirements

• Full CMOS implementation results in
low power consumption

• Single 5 V± 5% operation

• 100-pin ceramic pin grid array
(CPGA), quad plastic flatpack
(QPFP), or MegaCell format in
Apple VLSI Library

DESCRIPTION
The VL2340 Apple Proprietary RISC
Machine (APRM) is a full 32-bit general­
purpose microprocessor designed using
reduced instruction set computer
(RISC) methodologies. The APRM is an
Apple Computer, lnc. owned version of
the powerful Acom RISC Machine
(ARM). Applications in which the proc­
essor is useful include laser printers,
graphics engines, and any other
systems requiring fast real-time
response to extemal interrupt sources
and high processing throughput.

The APRM features a 32-bit data bus,
27 registers of 32 bits each, a load­
store architecture, a partially overlap­
ping register set, 1.5 µs worst-case
interrupt latency (at 16MHz operation),
conditional instruction execution, a 26·
bit linear program address space, a 32-
bit linear data address space, and an
average instruction execution rate of
from 12-to-14 million instrudions per
second (MIPS at 16MHz). Additionally,
the processor supports two addressing
modes: program counter (PC) and base
register relative modes. The ability to do
pre- and post-indexlng allows stacks
and queues to be easily implemented in

software. All instructions are 32 bits
long (aligned on word boundaries), with
register-to-register operations executing
in one cycle. The two data types
directly supported are 8-bit bytes and
32-bit words, with efficient compiler
generated support for 16-bit values.
The APRM includes support for un­
aligned access to 32-bit data words.

Using a load-store architecture simpli­
fies the execution unit of the processor,
since only a few instructions deal
directly with memory and the rest
operate register-to-register. Load and
store multiple register instructions
provide enhanced performance, making
context switches faster and exploiting
sequential memory access modes.

The processsor supports two types of
interrupts that differ in priority and
register usage. The lowest latency is
provided by the fast interrupt request
(FIRO) which is used primarily for l/O to
peripheral devices. The other interrupt
type (IRQ) is used for interrupt routines
that do not demand low-latency service
or where the overhead of a full context
switch is small compared with the
interrupt process execution time.

PINDIAGRAM
CERAMIC PIN GRID ARRAY

ORDER INFORMATION
Part Clock

N

M

Number Frequency Package

Ceramic Pin
VL2340-1 OGC 16 MHz Grid Array (CPGA)

VOOP A9 A7 AS A3 AO 00 01 04 oe 08 09 YSSC
@ @ @ @ @ @ @ @ @ @ @ @ @

A11 YSSP A8 AS M A1 ABE 02 05 07 010 YDDC YSSP
@ @ @ @ @ @ @ @ @ @ @ @ @

L
seetCK Min. Plastic Ouad

VL2340· 1 OFC Flatpack (POFP)

A12 A10 A2 NADA 03 011 012
@ @ @ @ @. @ @

A14 A13 013 014
K

Note: Operating temperature range is OOC to +70°C. @ @ @ @

A18 A15 015 018
@ @ @ @
A19 A18 A17 017 018 0111

H @ @ @ @ @ @

G
A20 A22 "21 APRM 021 020 022
@ @ @ BOTTOMVIEW @ @ @

A23 A24 A25 025 024 023
F @ @ @ @ @ @

A28 A27 027 028
E @ @ @ @

A28 A2ll D2ll 028
0 @ @ @ @

A30 A31 M1 CLK IRQ CPA 030
c @ @MSBLOW @ @ @ @ @

YSSP VODC PAGEO SEC CPB VSSO FIRQ MREQ R/W DBE VOOP 031
B @ @ @ @ @ @ @ @ @ @ @ @ @

A
V~ PGHITPAGE1 ALE MO TRAN VODO RES ABORT OPC BNI CPI VSSP

• @ @ @ @ @ @ @ @ @ @ @ @

2 3 4 5 8 7 8 9 10 11 12 13

Apple Computer, lnc. CONFIDENTIAL VLSI Technology, lnc. • 8375 South River Parkway • Tempe, AZ. 85284 • 602-752-8574

Apple Computer, 1 nc.
~~---------------{
FUNCTIONAL PIN DIAGRAM

• APRM I VL2340

POWER{

CLOCK {
INPUT

INTERRUPK
CONTROL.:

SYSTEM {
CONTROL.:

COPROCESS01
INTERFACE ·.

DATA BUS
D31 - DO

BLOCK DIAGRAM

NON-AUGNED
MEMORY
ADDflE•

INCREllENT

2T01
MULTl'LEXER

ADOREIS
aus

VCC(6) -i

GND(7) :
......

CLK

-IRQ

-FIRQ -

RES -
ABRT -

CPA -.....
CPB ·-
-CPI

~

32 • arr
BARREL
SHFTER

APRM
VL2340

AOOREll
INCRE-
MENT
LOOIC

INSTRUCTION
DECOOE

AND
EXECU110N
Pftl.ltE

IOOTH'S

32 • BIT
F1XED
POINT
ALU

llUL Tl'LJER

Apple Computer, lnc. CONFIDENTIAL 2

-M1
-MO

...... DBE
: ABE
..... ALE

-B/W
-RIW
-MREQ
-TRAN
-OPC
SEQ
PAGE1
PAGEO
PGHIT

- MSBLOW
_: NADR -

P9'ELllE
DATAlt

aus

ADDRESS BUS
A31 -AO

~} PROCESSOR
-0" MODE

......

...
-~ ...
~ - BUS --
~ CONTROL -....... „
~

„
......
„

.......

(

MEMORY BYTE DATA DATA
IELECTOfl 1119 REGISTER

(REA!Jt

MEMORY DATA DATA DATA BYTE IUS REGISTER SHFTER
(WRITE)

i..

Apple Computer, 1 nc. • APRM I VL2340

SIGNAL DESCRIPTIONS

Slgnal ft1
Name Number(1)

CLK C7

-IRQ ca

-FIRQ BS

RES AS

ABORT A9

031 - 00 See Package

DBE B11

-B/W A11

-M1,-MO C6,A5

A31 -AO See Package

ABE M7

ALE A4

-RNI B10

Signal
089crlptlon

Processor Clock Input - This input provides the clock to the circuit. The 02 internal clock is in
phase with this input and the 01 intemal clock is the nonoverlapping inverse.

Interrupt Request Input - This is the normal interrupt request pin. h may be asserted asyn­
chronously to cause the processor to be interrupted. h is active low.

Fast Interrupt Request Input - This interrupt request line has a higher priority than IRQ, but
otherwise is the sama. h too is activa low.

Reset Input - This is the raset signal for tha processor. While active, the processor executes
no-ops until the signal goes inadiv• from which point execution starts at the Reset Vector
location. This signal is active high.

Abort Input - This signal can be used to abort the current bus cycle being executed by
the processor. Typically, it is connected to a memory management unit to control accesses for
protection. The abort signal is active-high.

Data31 - DataO - This is the 32 bit bidirectional data bus used to transfer data to and from the
memory. These lines are tri-state and active-high.

Data Bus Enable Input - This is the asynchronous tri-state control signal for controlling
the drivers of the data bus. When asserted the data bus is enabled. This signal is active
high.

Not Byte I Word Output - This •early warning• (note 2) signal indicates to the memory system
that the current fetch is a byte fetch rather than a word fetch. h is asserted during the last
portion of the cycle preceding the cycle that requires a byte fetch. When asserted (low) the
memory system should deal with bytes. h is adive-low. While RES is active -B/W will remain
high.

Mode 1,0 Outputs - These two signals are used to indicate the current operating mode of
the processor. They can be used as address spaca modifiers to increase the address space,
or to assist a memory management unit in offering various protection modes. The lines are
active-low and the inverse of bits 1,0 of the processor status register. While RES is active MO
and M1 retain their previous states.

::Ml::MQ
0 0
0 1
1 0
1 1

M.QQE
Supervisor
FIRQ
IRQ
USER

Address 31 - Address 0 Outputs - These are the 31 address lines. AO and A1 are byte
addresses and should be ignored during opcode fetech cycles. During opcode fetches, the
current mode value may appear on these signals. The address lines are tri-state and active­
high.

Address Bus Enabl• Input - This is the asynchronous three-state control signal for
controlling the drivers of the address bus. When asserted the address bus is enabled. The
signal is active-high.

Address Latch Enable Input - This signal is used to control internal transparent latches on
the address outputs. When ALE is high the address outputs change during 02 to the value
required for the next cycle. Direct interfacing to ROMs requires address lines to be stable
until the end of 02. Holding ALE low until the end of 02 will latch the address outputs for
ROM cycles. Systems that do not directly interface to ROMs may tie ALE high.

Not Read/Write Output - This is the read I write signal from the processor. When asserted
(low), it indicates that the processor is performing a read operation. When negated (high),
the processor is performing a write operation. This signal is an •early warning• (note 2) signal
and is active low. While RES is adive -RNI will remain low.

Apple Computer, lnc. CONFIOENTIAL 3

Apple Computer, 1 nc. • APRM / VL2340

SIGNAL DESCRIPTIONS

Slgnal
Name

-MREQ

-TRAN

-OPC

SEQ

-CPI

CPB

Pin
Number

89

A6

A10

85

A12

86

CPA C12

NADR L7

PAGE1, PAGEO A3, 84

1MSBLOW 83

PGHIT A2

NOTES:

Slgnal
Descrlptlon

Next Memory Cycle Start Output - This is an "early warning" (note 2) indicator that is asserted
before the processor will start a memory cycle during the next clock phase. This signal is
active low. While RES is active -MREQ will remain low.

Translate Enable Output - This signal, when asserted by the processor tells a memory
management unit that translation should be done on the current address. When negated, it
indicates that the address should pass through untranslated. This signal is active-low.

lnstruction Fetch Output - This •ear1y waming• (note 2) signal when asserted indicates that the
current bus cycle is an instruction fetch. This signal is active-low. While RES is active -OPC
will remain low.

Next Address Sequential Output - This •early warning• (note 2) signal is asserted when the
processor will generate a sequential address during the next memory cycle. lt may be used to
control fast memory access modes. This signal is active-high. While RES is active SEQ will
remain high.

Coprocessor lnstruction (CMOS level output) - When the APRM executes a coprocessor in­
strudion, this output is driven low and the processor will wait for a responsefrom an attached
coprocessor device. The action taken is dependent upon the coprocessor response signalled
on the CPA and CPB inputs.

Coprocessor Busy (ffi level input) - An attached coprocessor that is capable of performing
the operation which the APRM is requesting (by asserting the-CPI), but cannot begin imme­
diately, should indicate the busy condition by driving this signal high. When the coprocessor
is ready to start it should bring the CPB signal low. The APRM samples this signal on the
falling edge of the 01 clock while the -CPI is active (low).

Coprocessor Absent (TTL level input) - A coprocessor capable of executing the operation cur­
rently requested by the APRM (-CPI active) should bring the CPA low immediately. H the
CPA is high on the falling edge of the 01 clock, the processor will abort the coprocessor
handshake and take the undefined instruction trap. H the CPA is low and remains low during
the -CPI active time, then the VL86C01 O will busy-wait until the CP8 signal becomes low and
complete the coprocessor instruction.

Next address (CMOS level input) - When asserted selects the current address plus four for
non-aligned memory reads. Also, the appropriate data bytes are latched from the first word
from memory. This signal is active high.

Page size (CMOS level inputs) - These two signals are decoded to determine the DRAM page
size of the memories used.

f1 ~ paqa Sjza
o o 256words
O 1 512 words
1 o 1024 words
1 1 2048 words

Most Significant byte low (CMOS input) - When asserted this input forces the upper eight
address outputs low. This Input is active high.

Page hit (CMOS level output) - This early warning signal indicates that the current memory
operation is the last address in the active page. This output is active low.

1. Pin numbers are for ceramic pin grid array package only.
2. •Early warning• signals are asserted during the last portion of the cycle preceding the cycle to which they apply.

Apple Computer, lnc. CONFIDENTIAL 4

Apple Computer, lnc.
• APRM / VL2340

FUNCTIONAL DESCRIPTION
The philosophy of RISC processor
design is based on the idea that some
processing functions can be moved
from hardware to software with the
result that the simplified hardware can
actually execute functions in software
faster than with complicated hardware.
Analysis done several years ago at
major research centers has shown that
a processor and compiler combination
can replace the traditional processor­
alone architectures. An historical fact of
the 16-bit processor workt is that after
chip designers spent many man-months
figuring out how to implement univer­
sally ac:ceptable complicated instruc­
tions to do things, few compiler writers
actually took advantage of these
complex instructions. Most compilers
only use a fraction of the instructions
and addressing modes of traditional
computer architectures.

The user pays for the unused silicon
required to implement these instruc­
tions. He pays for the inefficient
utilization in both cost of the processor
and in lower performance. The Silicon
spent for complex instruction decoding
and micro-sequencing could have been
used for additional pipelining, larger
register sets, or other special-purpose
hardware that can be used efficiently. lf
the addition of a new instruction causes
all instructions to execute 1 0% slower
due to internal processor delays, then
the new instruction had better be used
more than 10% of the time otherwise
overall perfonnance has been sacri­
ficed. This makes an argument for
simple perfonnance oriented architec­
tures that are more dependent on
compiler technology to implement less
frequently used instructions.

COMPARISON OF PROCESSORS
lnherent in the c:oncept of RISC proces­
sors is the notion that rnore instructions
are required to implement the same
functions that could be done by fewer
instructions with a complex instruction
set computer (CISC) processor. In
most cases even when more instruc­
tions are needed by RISC processors,
the function can still be performed
quicker on RISC processors than CISC
processors. This is causing the industry
to doubt the Million lnstruction Per
Second (MIPS) ratings of RISCproces­
sors, for good reason. The term MIPS

Apple Computer, lnc. CONFIDENTIAL

is often used exclusively as a means of
benchmarking performance. A better
measure of performance is to time
actual execution of real-world problems,
independent of the number of instruc­
tions required to implement the
function.

Benchmarks using compiled QuickDraw
routines approximate real conditions.
Measurements are based on pixel per
sec:ond generation, bit-fiekt extraction
rates, etc. Running well below its
maxium specified clock rates, the
APRM, running compiled code, will
outperform all popular, commercially
available microprocessors running hand
crafted code.

An important parameter to keep
constant when benchmarking proces­
sors is the memory ac:cess times, since
not all processors will meet perform­
ance claims when working with com­
modity memories.

Another traditional measure of perform­
ance in the microprocessor workt is the
clock frequency of the processor.
Faster is better has been the rule of
thumb, but what is actually the most
important consideration is the average
number of bus cycles per instruction. A
processor with a low clock frequency
and a low number of bus cycles per

FIGURE 1. VL2340 REGISTER MODEL
31

instruction can actually outperform a
processor with a high clock frequency
and a higher number of bus clock
cycles per instruction. The best choice
of processors is a one that benchmarks
high while using a relatively low clock
frequency and a small number of clocks
per instruction executed. The APRM
possesses these characteristics, giving
it the best future evolution path to
exploit advances in process technology.

PROGRAMMING MODEL
The APRM contains a large, partially
overlapping set of twenty-seven 32-bit
registers, although the programmer can
access only sixteen registers in any
mode of operation. Fifteen of the
registers are general purpose; with the
remaining twelve dedicated to functions
such as User Mode, FIRQ Mode, IRQ
Mode, Supervisor mode and the
Program Counter(PC) I Processor
Status Register(PSR). Figura 1 shows
the register modal of the APRM. Regis­
ters RO-to-R13 are accessible from the
user mode for any purpose. The
fourteenth register, user-mode return­
link register, is specific to the user
mode. lts contents are mapped with
those of other return-link registers as
the mode is changed. The return-link
register is used by the Branch-and-Link
instruction in a procedure call sequence
but may be used as a general-purpose

8 7 0

~ 1-1-----------------+------tl ~jl
(LINK)

~----------------...... ------.Ra
R9

1------------------+-------IR10

FAST 1------------------+-------i R11
IRQ 1------------------+-------IR12 MODE R13

R14 L------------------'-------' (LINK)

IRQ 1------------------+-------I R13 MODE R14 L------------------'-------' (LINK)

'------------------+-----~ R13 SUP ... R14
MODE (UNK)

31302928272625 2 1 0
L::IN:.i.l::,Z~!c:.i.1 v!.llL.!1.i.:l F""''-----~P:,.:;ROG=RA=M:.::COU=NTE:.:.:.::~R-----'i.;,;M;.;.1.i.:;IMö!;;;;,i ~~ I PC

5

Apple Computer, 1 nc. • APRM I VL2340

register at other times. The least
significant two bits of the processor
status ward (PSW) define the current
mode of operation.

Seven registers are dedicated to the
FIRQ mode and overlie user-mode
registers R8-to-A14 when the fast
interrupt request is serviced. The
registers AS FIRQ-to-A13 FIAQ are
local to the fast interrupt service routine
and are used instead of the user-mode
registers A10-A13. Register A14 FIRQ
holds the address used to restart the
interrupted program instead of pushing
it onto a stacl< at the expense of another
memory cycle. Using a link-register
helps provide very fast servicing of llO
related interrupts without disturbing the
contents of the general-purpose register
set although the FIRQ routine can
access the AO-to-R9 user-mode
registers if desired. The FIRQ mode is
used typically for very short interrupt
service routines that might fetch and
store characters in a disk-or-tape­
controller application.

The next two registers are dedicated to
the IRQ mode and overlie user mode
registers A13 and R14 when the IRQ is
serviced. Once again A14 IRQ is the
return link register that holds the restart
address and A13 IRQ is general­
purpose and dedicated to the IRQ
mode. This mode is used when the
interrupt service routine will be lengthy
and the overhead of saving and
reloading the register set wiH not be a
significant portion of the overall execu­
tion time.

Twa registers are dedicated to the
supervisor mode and overlay user mode
registers R13 and A14when a supervi­
sor mode switch is made using a
software interrupt (SWI) lnstructlon.
Operation of these two registers is the
same as previously dilcussed.

The last register (R15) contains the
processor status ward and program
counter and is shared l7f all modes of
operation. The upper six bits are
processor status, the next 24 bits are
the program counter (word address),
and the last two indicate the mode.

PROCESSOR STATUS REGISTER
Like most 32-bit processors, the APRM
makes a distinction between user and
supervisor modes: the user executes at

Apple Computer, lnc. CONFIDENTIAL

FIGURE 2. PROCESSOR STATUS REGISTER
31302928272625 2 1 0
!N!z!c!v! 1 !F! PROGRAMCOUNTER

~ L PC·24BmlYIELDS8'MB ,J,.. AOORESSTRANSl.ATION
ADORESS SPACE;...;;...;O;;..._USE_R ___ ;..;;FOR~C=ED=.=....:..:.::.;:=::.:.:.:.=:..:.._

FAST INTERRUPT MASK • 1 FAST IRQ UNDER PROGRAM CONTROL
NORMAL INTERRUPT MASK' 2 NORMAL IRQ UNOER PROGRAM CONTROL

1 1

OVERFLOW 3 SUPERVISOR UNOER PROGRAM CONTROL
...__ __ CARRY, -aoRROW, ROTATE EXTENO

""----ZERO
'----- NEGATIVE, SIGNED LESS THAN

the lowest privilege level, and the
supervisor and interrupts execute at
higher levels of privilege. Figure 2
shows the processor status ward
containing the control line states
associated with each mode.

' - ACCESS FROM NON-USER
MOOESONLY

addition to a return-link register, that are
only accessible in the FIRQ mode.
These dedicated registers can contain
all the pointers and byte~unts for
simple VO service routines thus
incurring no overhead when context
switching between processing and
servicing interrupts at high rates. The
other modes (IRQ and SUP) each have
one general-purpose and one return
address (link) register dedicated to
them. The general-purpose register is
ideally suited for implementing a local
stack for each mode. The need for
dedicated registers in these modes is

(

Translate is a control signal provided by
the processor for control of an external
memory management unit. The
translate line is enabled in the user
mode and disabled in the supervisor,
fast interrupt and normal interrupt
modes, since all modes except for the
user mode are expected to be running
secure code. Translated fetches can be
made from the supervisor mode l7f
setting an optional bit in the load I store
instrudions.

not as great since the time spent in an
interrupt or supervisor routine is on the (
average much greater than the time

The processor status register (PSR)
contains the program counter, mode
control bits, and condition codes as
shown in Figur• 2. The bits marked
with an asterisk are alterable only from
non-user modes. lf the user tries to
write to these bits, they remain un­
changed and the processor continues
operation in the user mode. In other
wards, this is not a trap condition. The
flags in the processor status register are
the standard Negative, Zero, Carry, and
Overflow. The sixteen allowable
combinations of the condition code bits
are shown in Table 1. These combina­
tions are used for all conditlonal
instruction execution slnce a oonditional
branch is nothing more than a jump
instructlon with condltional execution.

EXCEP110NS
The APRM supports a partially overlap­
ping register set so that when interrupts
are taken, the contents of the register
array do not have to be saved before
new operations can begin. lmproved
response time is accomplished, in the
case of the fast interrupt, by dedicating
six general-purpose registers, in

6

spent in transition between the routines.
The warking registers can be saved and
restored from stacl<s without significant
overhead.

The interrupt latency of the APRM is
very short because the instructlon
execution time is typically two clocks,
with a maximum of eighteeen (for a
load-multiple instruction, loading sixteen
registers). Once the processor recog­
nizes an interrupt is pending, the time to
begin processing is four clocks making
a total worst-case interrupt latency of
22.5 clocks.

In addition to interrupts, five other types
of exceptions are supported by the
processor. These are data-fetch cycle
aborts, instrudion-fetch cycle aborts,
software interrupts, undefined instruc­
tion traps and reset.

The APRM supports a 32-bit linear
address space allowing a total of 4G­
bytes of physical memory. The total
program space is limited to 26-bits of
address space, for a total of 64M-bytes
used by program execution.

H the abort signal is asserted by the

•

Apple Computer, 1 nc.

TABLE 1. INSTRUCTION CONDITION CODES

Encoded
Condltlon Valu•

Al E

cc 3

CS 2

EO 0

GE A

GT c

HI 8

LE D

LS 9

LT B

MI 4

NE 1

NV F

Pl 5

vc 7

vs 6

Operation

Always

Carry Clear/Unsigned lower Than

Carry Set/Unsigned Higher Or Same

Equal (Z Set)

Greater Than Or Equal (N • V) + (-N • -V)

Greater (((N •V)+ (- N •-V))• -Z)

Higher Unsigned (C • -Z)

Less Than Or Equal (((N • -V) + (-N • V)) + Z)

lower Or Same Unsigned (-C + Z)

less Than ((N •-V + (-N •V))

Negative (N)

Not Equal (-Z)

Never

Positive (-N)

Overflow Clear

Overflow Set

to the other traps and will start the
processor from a known address. When
the reset condition is recognized the
currently executing instruction will
terminate abnormally, the processor will
enter the supervisor mode, disable both
the FIRQ and IRQ Interrupts, and begin
execution at address OOOOH. While the
reset condition remains the processor
will execute dummy instruction fetches.

• APRM I VL2340

The processor exception vector map is
illustrated in Table 2. The exceptions
are prioritized reset (highest), address
exception, data abort, FIRQ, IRQ,
prefetch abort, undefined instruction,
and software interrupt (lowest). These
vector addresses normally will contain a
branch instruction to the associated
service routine except for the FIRQ
entry. In order to further reduce
latency, the FIRQ service routine may
begin at address 001 CH if the software
designer so chooses.

Whenever the processor enters the
supervisor mode, whether from an SWI,
undefined instruction trap, prefetch or
data abort, the IRQ is disabled and the
FIRQ unchanged.

INSTRUCTION SET
The APRM supports five basic types of
instructions, with several options
available to the programmer. These
instruction types are: data processing ,
data transfer, block data transfer,
branch, and software interrupt. All
instructions contain a 4-bit conditional
execution field (shown in Table 1) that
can cause an instruction to be skipped if
the c:ondition specified is not true. The
execution time for a skipped instruction
is one sequential cycle (100 ns at 1 o
MHz).

Data processing instructions operate
only on the intemal register file, and
each has three operand references: a
destination and two source fields. The
destination (Rd) can be any of the
registers including the processor status
register, although some bits in R15 can
only be changed in particular modes.
The source operands can have two

memory management unit during a data
fetch the processor will abort data
transfer instructions (LDR, STR) as if
they had never been executed. H the
instruction was a block data transfer
(LDM, STM) the processor will allow the
instructions to c:omplete. H the write­
back c:ontrol bit in these instructions is
set, the base address will be updated
even if it would have been overwritten
during the instruction execution. An
example of this would be execution of a
block data transfer instruction with the
base register in the lilt of registers to be
overwritten.

TABLE 2. EXCEPTION VECTOR MAP

Software Interrupt instructions are used
to change from user mode to supervisor
mode. When an SWI is encountered
the processor will save the current
program c:ounter (R15) into R14 SUP,
set the mode bits to the supervisor
mode, and start execution at the
software Interrupt vector address. An
undefined instruction will cause a trap
similar to the execution of a software
Interrupt except that the Undefined
lnstruction Vector will be used as a the
next address. Reset is treated similarly

Apple Computer, lnc. CONFIDENTIAL

Addre„ (Hex)

0000000

0000004

0000008

ooooooc
000 0010

000 0018

000 001C

7

Functlon Prlorlty Level

Reset 0

Undefined lnstruction Trap 5

Software Interrupt 6

Abort (Prefetch) 4

Abort (Data) 1

Normal Interrupt (IRQ) 3

Fast Interrupt (FIRQ) 2

Apple Computer, lnc.

TABLE 3. DATA PROCESSING INSTRUCTIONS

Flags
lnstructlon Functlon Operation Affected

ADC Add With Carry Rd:.Rn+Shift(S2)+C N,Z,C,V

ADD Add Rd:.Rn+Shift(S2) N,Z,C,V

AND And Rd:· Rn • Shift(S2) N,Z,C

BIC Bit Clear Rd:• Rn • -Shift(S2) N,Z,C

CMN Compare Negative Shift(S2)+Rn N,Z,C,V

CMP Compare Rn-Shift(S2) N,Z,C,V

EOR Exclusive OR Rd:.RnED Shift(S2) N,Z,C

MLA Multiply with Accumulate Rd:.Rm * As + Ad N,Z,C,V

MOV Move Rd:-Shift(S2) N,Z,C

MUL Multiply Rd:-Rm *As N,Z,C,V

MVN Move Negative Rd:• -Shift(S2) N,Z,C

ORR lnclusive OR Rd:-Rn+Shift(S2) N,Z,C

RSB Reverse Subtrad Rd:·Shift(S2)-Rn N, Z. C, V

Reverse Subtract
RSC Wrth Carry Rd:.Shift(S2)-Rn-1 +C N,Z,C,V

SBC Subtract With Carry Rd:·Rn-Shift(S2)· 1 +C N,Z,C,V

SUB Subtrad Rd:.Rn-Shift(S2) N,Z,C,V

TEO Test For Equality Rn ED Shift(S2) N,Z,C

TST Test Masked Rn • Shitt(S2) N,Z,C

TABLE 4 MEMORY ADDRESSING MODES

Addresslng Mode Operation Syntax

PC Relative EA* •PC +/-Offset (12 Bits) LABEL

Base Register Offset EA*-Rn
With Post-lncrement Rn+/-Offset~ Rn [Rn],Off

Base Register Offset EA * • Rn +/- Offset (12 Bits)
With Pre-lncrement„ Rn +/-Offset _. Rn [Rn~

Base Register Index EA* •Rn
Wrth Post-lncrement Rn+/-Rm_. Rn [Rn],Rm

Base Register Index EA* ·Rn +/-Am
With Pre-lncrement** Rn+/-Rm_. Rn [Rn,Rm]

• Effective Address
•• Program control of index register update; i.e., Rn may be left unchanged.

Apple Computer, lnc. CONFIDENTIAL 8

• APRM I VL2340

forms: both can be registers (Am and (.
Rn) or a register (Rn) and an 8-bit
immediate value. Both forms of
operand specification provide for the
optional shifting of one of the source
values using the on-board barrel shifter.
lf both operands are registers, the Am
can be shifted. For the other case, it is
the immediate value that can pass thru
the shifter. Another field in these in­
strudions allows for the optional
updating of the condition codes as a
result of execution of the operation.
Table 3 shows the possible data proc­
essing operations and the status flags
affeded.

Data transfer instructions are used to
move data between memory and the
register file (load), or vice-versa (store).
The effective address is calculated
using the contents of the source register
(Rn) plus an offset of either a 12-bit
immediate value or the contents of
another register (Am). When the offset
is a register it can optionally be shifted
before the address calculation is made.
Table 4 shows the addressing modes
supported and their corresponding (
assembler syntax. The offset may be
added to, or subtracted from the index
register Rn. lndexing can be either pre­
or-post depending on the desired
addressing mode. In the post-indexed
mode the transfer is performed using
the contents of the index register as the
effedive address and the index register
is modified by the offset and rewritten.
In the pre-indexed mode the effective
address is the Index register modified in
the appropriate manner by the offset.
Th• modified Index register can be
written back to Rn if the write-back bit is
set or left unchanged if desired. When
a register is used as the offset, it can
be pr•scaled by the barrel shifter in a
similar manner as with data processing
instrudions.

Data transfer instructions can manipu­
late bytes or words in memory. When a
byte is read from the memory, it is
placed in the low-order 8-bits of the
register and zero-extended to a full
word. For byte writes the lower 8-bits of
the register are replicated onto all four
bytes of the data bus. The memory
controller should be designed such that (
only the addressed byte is updated in ·
the memory.

„

Apple Computer, 1 nc.

Words are written into the address
space as most-significant byte first.
That is, the byte at the lowest address
will be found left justified in a register
and its memory location "BigEndian"
fashion. See Appendix 1 for details of
word and byte registration.

The APRM supports both logical and
physical address spaces at a lower
level in hardware than other proces­
sors. Data transfer instructions contain
a translate enable bit that allows non­
user mode programs to select the
logical or physical address space as
desired. The bit from the instruction is
placed on the TRAN pin of the proces­
sor to signal an external memory
management unit (MMU) whether to
translate first or pass the address from
the processor bus to the memory. This
allows programs executing in the
supervisor or interrupt modes to have
easy ac:cess to user memory areas for
page fault comiction or to have bounds
checking performed on dynamic data
structures in the system space by the
MMU. In the user mode, addresses are
always translated by the MMU if it is
implemented in the system.

The block data transfer instructions
allow multiple registers to be moved in a
single instruction. The instruction has a
field containing a bit for each of the
sixteen registers visible in the current
mode. Bit O corresponds to RO, and bit
15 corresponds to R15, the program
counter. A bit set in a particular position
means that the corresponding register
will be affectad by the transfer. The
registers are always saved from lowest
to highest, and RO will always appear at
a lower address than R1. The ability to
pre- or post- increment or decrement
allows both stacks and queues to be
implementad efficiently with any
convention chosen by the programmer.

The branch instruction has two forms,
branch and branch-with-link. The
branch instruction causes execution to
start at the current program c:ounter
plus a 24-bit offset contained in the in­
strudion. The offset is left-shifted by
two bits (forming a 26-bit address)
before it is added to the program
counter. Since all instructions are word­
aligned, a branch can reach any
location in the program address space.
The branch-with-link instruction copies

TABLE 5. INSTRUCTION EXECUTION TIMES

Ba• Executlon AdJustment for AdJustment for PC
Operation Time Source Shlft Modlflcatlon

AS•# AD 1S 1 S for Shift(RS) 1 S + 1 N if PC Modified

AS• AS AD 1S 1 S for Shift(RS) 1S + 1N if PC Modified

LOA 2S+ 1N 1S + 1N if PC Modified

STR 2N

LDM (n• + 1)S+1N 1 S + 1 N if PC Modified

STM (n• • 1)S+2N

BR 2S+ 1N

BR&LINK 2S+ 1N

SWI 2S+ 1N

MUL, MLA 1ss··

• - The number of registers transfered in a Load/Store Multiple instruction. H the
condition field in an instrudion is not true, the instruction is skipped and the execu­
tion time is 1 S cycle.
•• - This is the worst case time. The actual time is a function of the value in the As
register.

Apple Computer, lnc. CONFIOENTIAL 9

• APRM / VL2340

the program counter and processor
status register into R14 prior to branch­
ing to the new address. Returning from
the branch-with-link simply involves
reloading the program counter from R14
(MOV PC,R14). The PSR can option­
ally be restored from R14 (MOVS
PC,R14).

The software interrupt instrudion format
is used primarily for supervisor service
calls. When this instruction is executed,
the PC and PSR are saved in R14 SUP.
The PC is then set to the SWI vector
location and the processor placed in the
supervisor mode.

lnstructions operate at speeds depend­
ent upon the options seleded. Table 5
shows the instruction types, execution
rates and adjustments for operand
shifting or atfecting the program
c:ounter. The table is expressed in terms
of N and S cycles representing Non­
sequential and Sequential cycles
respectively. The processor is able to
take advantage of memories that have
faster access times when accessed
sequentially in the nibble or column
mode. These faster cycles are desig­
nated as S-cycles, while the N-cycles
typically take twice as long. lf faster
static memory is used, the N and S
cycles would be equal.

The APAM is offered in two packages,
a 100-pin ceramic pin grid array
(CPGA) package and a 100-pin quad
plastic flatpack (QPFP).

S implies a sequential cycle.

N implies a non sequential cycle.

Apple Computer, 1 nc. • APRM I VL2340

EXAMPLES OF THE INSTRUCTION SET
The following examples illustrate methods by which basic APRM instrudions can be combined to yield efficient code. None of the
methods saves a large amount of execution time, although they all save some, mostly they result in more compact c:ode.

EXAMPLE 1 • USING THE CONDITIONAL EXECUTION FOR THE LOGICAL-OR FUNCTION

CMP Rn, p
BEO Label
CMP Rm,q
BEO Label

; IF Rn • p OR Rm • q THEN
GOTOLabel

By using conditional execution, the routine compresses to:

CMP Rn, p
CMPNE Rm, q ; if Rn not equal p, try other test
BEO Label

EXAMPLE2·ABSOLUTEVALUE

TEO Rn, 0 ; check sign
RSBMI Rn, Rn, 0 ; and 2's complement if required

EXAMPLE 3 • UNSIGNED 32·BIT MUL TIPLY

; Enter with numbers in Ra, Rb - product contained in Rm
MOV ·. Rm, O ; init result register

LOOP MOVS Ra, Ra LSR 1 ; stops when Ra becomes zero
ADDCS Rm, Am, Rb ; Rm • Ra• Rb
ADD Rb,Rb,Rb
BNE LOOP ; (Ra • 0, Rb is altered)

EXAMPLE 4 • MUL TIPUCATION BY 4, 5, OR S AT RUN TIME

MOV Re, Ra, LSL 2 ; multiply by 4
CMP Rb, 5 ; test multiplier value
ADDCS Re, Re, Ra ; complete multiply by 5
ADDHI Re, Re, Ra ; complete multiply by 6

EXAMPLE 5 • MUL TIPUCATION BY CONSTANT (2AN)+1 USING THE BARREL SHIFTER (3,5,9,17, •••)

ADD Ra, Ra, LSL n

EXAMPLE 6 • MUL TIPUCATION BY CONSTANT (2AN) • 1 (3, 7, 15, •••)

RSB Ra, Ra, Ra, LSL n

EXAMPLE 7 • MUL TIPUCATION BY 6

ADD Ra, Ra, Ra LSL 1 ; multiply by 3
MOV Ra. Ra LSL 1 ; and then by 2

EXAMPLE 8 • MUL TIPL Y BY 10 AND ADD EXTRA NUMBER (DECIMAL TO BINARY CONVERSION)

ADD Ra, Ra, Ra LSL 2 ; multiply by 5
ADD Ra, Re, Ra LSL 1 ; multiply by 2 and add in next digit

EXAMPLE 9 ·DIVISION AND REMAINDER

; enter with numbers in Ra and Rb
MOV Rcnt, 1

DIV1 CMP Rb, Ra
MOVCC Rb, Rb LSL 1
MOVCC Rcnt, Rcnt ASL 1
BCC DIV1
MOV Rc,O

DIV2 CMP Ra, Rb
SUBCS Ra, Ra, Rb
ADDCS Re, Re, Rcnt
MOVS Rcnt, Rcnt, LSR 1
MOVNE Rb, Rb LSR 1
BNE DIV2

Apple Computer, lnc. CONFIDENTIAL

; bit to control the division
; move Rb until greater than Ra
; result in Re
; remainder in Ra

; test for possible subtradion
; subtract if valid
; put relevant bits in result
; shift control bit
; halve unless finished

10

(

(

Apple Computer, 1 nc.

INSTRUCTION CYCLE OPERATIONS
In the following tables -MREQ and SEQ
(which are pipelined up to one cycle
ahead of the cycle to which they apply)
are shown in the cycle in which they
appear, so they predict the address of
the next cycle. The address bus value,
-B/IN, -R/W, and -OPC (which appear
up to half a cycle ahead) are shown in
the cycle to which they apply.

BRANCH AND BRANCH WITH LINK
A branch instruction calculates the

branch destination in the first cycle,
while performing a prefetch from the
current PC. This prefetch is done in all
cases.

During the second cyde a fetch is
performed from the branch destination,
and the return address is stored in
register 14 if the link bit is set.

TABLE 6. BRANCH AND BRANCH WITH LINK

Cycle Addrass -8/W -R/W Data SEQ -MREQ -OPC

1 PC+8 1 0 (PC+8) 0 0 0

2 ALU 1 0 (ALU) 1 0 0

3 ALU+4 1 0 (ALU+4) 1 0 0

• APRM I VL2340

The third cycle performs a fetch from
the destination + 4, refiling the instruc­
tion pipeline, and if the branch is with
link, R14 is modified (four is subtracted
from it) to simplify return from SUB PC,
R14, #4 to MOV PC,R14. This makes
the STM .. (R14) LDM .. (PC) type of
subroutine werk correctly.

(PC is the address of the branch instruction, ALU is an address calculated by the processor (ALU) are the contents of that ad­
dress, etc).

DATA OPERATIONS
A data operation executes in a single
datapath cycle except where the shift is
determined by the contents of a
register. A register is read onto the A
Bus, and a second register or the
immediate field onto the B Bus. The
ALU combines the A Bus source and
the shifted B Bus source according to
the operation specified in the instruc-

TABLE 7. DATA OPERATIONS

tion, and the result (when required) is
written to the destination register.
(Compares and tests do not produce
results, only the ALU status flags are
changed).

An instruction prefetch occurs at the
same time as the above operation, and
the program counter is incremented.

When the shift length is specified by a

Type Cycle Acklrua -8/W -A/W D8t8 SEQ -MREQ ~PC

1 PC+8 1 0 (PC+8) 1 0 0
Normal

PC+12

1 PC+8 1 0 (PC+8) 0 0 0

Oest-PC 2 ALU 1 0 (ALU) 1 0 0

3 AUM 1 0 (AL~ 1 0 0

ALU+8

1 PC+8 1 0 (PC+8) 0 1 0

Shift (RS) 2 PC+12 1 0 - 1 0 1

PC+12

1 PC+8 1 0 (PC+8) 0 1 0

2 PC+12 1 0 - 0 0 1
Shift (RS),

3 ALU 1 0 (ALU) 1 0 0 Dest-PC
4 ALU+4 1 0 (ALU+4) 1 0 0

ALU+8

Apple Computer, lnc. CONFIDENTIAL 11

register, an additional datapath cycle
occurs before the above operation to
copy the bottom eight bits of that
register into a holding latch in the barre!
shifter. The instruction prefetch will
occur during this first cycle, and the
operation cycle will be internal (i.e., will
not request memory). The memory
interface may be designed such that
this internal cycle can be configured to
merge with the next cycle into a single
memory N-cycle.

The PC may be any (or all) of the
register operands. When read onto the
A Bus it appears without the PSR bits,
on the B Bus it appears with them.
Neither will affect external bus activity.
When it is the destination, however,
external bus activity may be affected. lf
the result is written to the PC, the
contents of the instruction pipeline are
invalidated, and the address for the next
instruction prefetch is taken from the
ALU rather than the address incremen­
ter. The instruction pipeline is refilled
before any further execution takes
place, and during this time exceptions
are locked out.

Apple Computer1 1 nc.

INSTRUCTION CYCLE OPERATIONS (Cont.)
MUL TIPLY AND MUL TIPLY (according to whether the instruction is
ACCUMULATE MLA or MUL) to initialize the destination
The multiply instrudions make use of register. During the same cycle one of
special hardware which implements a the operands is loaded into the Booth's
Booth's algorithm with earfy termination. shifter via the A Bus.
Ouring the first cycle the accumulate The datapath then cycles, adding the
register is brought to the ALU, which seoond operand to, subtracting it from,
either transmits it or produces zero or just transmitting, the result register.

~ Cycle Addreu -8/W

1 PC+S 1

(Rs) - 0,1 2 PC+12 1

PC+12

1 PC+S 1

2 PC+12 1

. PC+12 1
(Rs) > 1

M PC+12 1

M:t-1 PC+12 1

PC+12

LOAD REGISTER
The first cycle of a load register
instruction performs the address
calculation. The data is fetched from
memory during the second cycle, and
the base register modification is
performed during this cycle (if re­
quired). During the third cycle the data
is transferred to the destination
register, and external memory is
unused. This third cycle may normally
be merged with the following prefetch
to form one memory N-cycle. For
details of registration during the load
operation see Appendix 1.

Either the base or the destination (or
both) may be the PC, and the prefetch
sequence will be changed if the PC is
affected by the instruction.

The data fetch may abort, and in this
case the base and destination modifi­
cations are prevented.

(PC' is the PC value modified by write
back; t shows the cycle where the force
translation option in the instruction may
be used).

Apple Computer, lnc. CONFIDENTIAL

-R/W o.t• SEQ -MAEQ ~
0 1PC+~ 0 1 0

0 . 1 0 1

0 (PC+S) 0 1 0

0 . 0 1 1

0 . 0 1 1

0 . 0 1 1

0 . 1 0 1

TABLE 9. LOAD REGISTER
Type Cycle Addreu -8/W -RJW

1 PC+S 1 0

Normal 2 ALU B/W 0

3 PC+12 1 0

PC+12

1 PC+S 1 0

2 ALU B/W 0

3 PC+12 1 0
Oest• PC

"' l~ 1 0

5 (ALU)+4 1 0

(ALU)+S

1 PC+S 1 0

2 ALU B/W 0

Base· PC, 3 PC' 1 0
Wri'9back,

"'
PC' 1 0 OestlPC

5 PC'+4 1 0

PC'+S

1 PC+S 1 0

Base-PC,
2 ALU B/W 0

Writeback 3 PC' 1 0
Dest-PC

"' l~ 1 0

5 J_A1,l.1}_+4 1 0

(ALU)+S

12

• APRM I VL2340

The seoond operand is shifted in the
Nth cycle by 2N or 2N + 1 bits, under
control of the Booth's logic. The first
operand is shifted right two bits per
cycle, and when it is zero the instruction
terminates (possibly after an additional
cycle to clear a pending borrow). All
cycles except the first are internal.

H the destination is the PC, all writing to
it is prevented. The instruction will
proceed as normal except that the PC
will be unaffected. (H the S bit is set the
PSR flags will be meaningless) .

(M is the number cycles required by the
Booth's algorithm; see the section on
instruction speeds.)

o.t8 SEQ -MAEQ -OPC -TRAN

1PC+8) 0 0 0

(ALJ!)_ 0 1 1 t

. 1 0 1

(PC+S) 0 0 0

(ALU) 0 1 1 t

- 0 0 1

JtALU)) 1 0 0

{(ALU)+4) 1 0 0

(PC+S) 0 0 0

(ALU) 0 1 1 t

. 0 0 1

JPqi_ 1 0 0

JPC'+4l 1 0 0

(PC+S) 0 0 0

(ALU) 0 1 1 t

. 0 0 1

JiALU)) 1 0 0

JtALU)+4) 1 0 0

(

Apple Computer, 1 nc. • APRM I VL2340

INSTRUCTION CYCLE OPERATIONS (Cont.)

STORE REGISTER TABLE 10. STORE REGISTER
The first cycle of a store register is
similar to the first cycle of load register.
During the second cycle the base
modification is performed, and at the
same time the data is written to
memory. There is no third cycle.

The PC will only be modified if it is the
base and write back occurs. A data
abort prevents the base write back.

See Appendix 1 for memory registration
details.

Type

Normal

Base-PC,
Wrlte back,
Dest· PC

Cycle

1

2

1

2

3 „

Adclreu -8/W -R/W

PC+8 1 0

ALU BNI 1

PC+12

PC+8 1 0

ALU BNI 1

PC' 1 0

PC'+-4 1 0

PC'+8

Dm• SEQ

JPC+~ 0

RD 0

(PC+8) 0

RD 0

(PC'l_ 1

JPC'+~ 1

LOAD MULTIPLE REGISTERS TABLE 11. LOAD MULTIPLE REGISTERS
The first cycle of LDM is used to
calculate the a<tdress of the first word to
be transferred, while performing a
prefatch from memory. The seex>nd
cycle fetches the flrst word, and
performs the base modification. During
the third cycle, the first word is movecl
to the appropriate destlnatlon register
while the second word is fetched from
memory, and the modified base is
moved to the ALU A Bus Input latch for
holding in case it is needed to patch up
after an abort. The third cycle is re­
peatecl for subsequent f etches until the
last data word has been accessed, then
the final (intemal) cycle moves the last
word to its destination register. Th• last
cycle may be merged with the next
instruction prefetch to form a single
memory N-cycle.

H an abort occurs, the instrudion
continues to completion, but all reglster
writing after the abort II dlsablecl. The
final cycle is altered to restore the
modified base register (which may have
been overwritten by the load activity
before the abort occurred). lf the PC ls
the base, write back is prevented.

When the PC is in the list of registers to
be loaded, and assuming that no abort
takes place, the current instrudion
pipeline must be invalidatecl. Note that
the PC is always the last register to be
loaded, so an abort at any point will
prevent the PC from being overwritten.

Apple Computer, lnc. CONFIDENTIAL

Type

One
Reglsllr

One
Register,
Dest• PC

NRegllrars,
(N>t)

NReglarars,
(N>t,
Incl. PC)

Cycle

1

2

3

1

2

3 „
5

1

2

•
N

N+1

N+2

1

2 .
N

N+t

N+2

N+3

N+-4

13

Adclreu -8/W -R/W Dm•
PC+8 1 0 (PC+8)

ALU 1 0 ALU

PC+12 1 0 .
PC+12

PC+8 1 0 JPC+81
ALU 1 0 PC'

PC+12 1 0 .
PC' 1 0 JP~
PC'+-4 1 0 (PC'+-4)

PC'+8

PC+8 1 0 (~

ALU 1 0 (ALU)

ALU+. 1 0 JALU+J..

ALU+. 1 0 (ALU+.)

ALU+. 1 0 (ALU+.)

PC+12 1 0 .
PC+12

PC+8 1 0 (PC+8)

ALU 1 0 (ALU)

ALU+. 1 0 (ALU+.)

ALU+. 1 0 JALU+:)_

ALU+. 1 0 PC'

PC+12 1 0 .
PC' 1 0 J.PC_l_

PC'+-4 1 0 (PC'+4)

PC'+8

-llREQ -OPC -TRAN

0 0

0 1 t

0 0

0 1 t

0 0

0 0

SEQ -llREQ -OPC

0 0 0

0 1 1

1 0 1

0 0 0

0 1 1

0 0 1

1 0 0

1 0 0

0 0 0

1 0 1

1 0 1

1 0 1

0 1 1

1 0 1

0 0 0

1 0 1

1 0 1

1 0 1

0 1 1

0 0 1

1 0 0

1 0 0

App 1 e Computer, 1 nc. • APRM I VL2340

INSTRUCTION CYCLE OPERATIONS (Cont)

STORE MULTIPLE REGISTERS TABLE 12. STORE MULTIPLE REGISTERS
Store multiple proceeds very much as
load multiple, without the final cyde.
The restart problem is much more
straightforward here, as there is no
wholesale overwriting of registers with
which to contend.

SOFTWARE INTERRUPT AND
EXCEPTION ENTRY
Exceptions (and software interrupts)
force the PC to a particular value and
refill the instruction pipeline from there.
During the first .pycle the forced address
is constructed, and a mode change may
take place. The return address is
moved to register 14.

During the second cycle the retum
address is modified to facilitate retum,
though this modification is lass useful
than in the case of branch with link.

The third cycle is required only to
complete the refilling of the instruction
pipeline.

UNDEFINED INSTRUCTIONS AND
COPROCESSOR ABSEHT
When a Co-Processor detects a Co­
Processor instruction which it cannot
perform, and this must include all
undefined instructions, it must not drive
CPA or CPB. These will float high,
causing the undefined instruction trap to
betaken.

UNEXECUTED INSTRUCTIONS
Any instruction whose condition code is
not met will fall to execute. lt will add
one cyde to the execution time of the
code segment in which it is embedded.

Apple Computer, lnc. CONFIDENTIAL

~ ~· AddrH• -8/W -RIW Da• SEQ ~EQ -OPC

One reglster 1 PC+8 1 0 ~C+8_l 0 0 0

2 ALU 1 1 RA 0 0 1

1 PC+8 1 0 ~C+8_l 0 0 0

N Registers. 2 ALU 1 1 RA 1 0 1

(N>1) • ALU+. 1 1 R. 1 0 1

N ALU+. 1 1 R. 1 0 1

N+1 ALU+. 1 1 R. 0 0 1

TABLE 13. SOFTWARE INTERRUPT & EXCEPTION ENTRY
Cycle Addreu -8/W -WW Diii• SEQ -MREQ -OPC -TRAN

1 PC+8 1 0 (PC+8) 0 0 0 1

2 Xn 1 0 J_Xn_l 1 0 0 1

3 Xn+4 1 0 (Xn+4) 1 0 0 1

(For software interrupt PC is the
address of the SWI instruction, for
interrupts and raset PC is the address
of the instruction following the last one
to be executed before entering the
exception, for prefetch abort PC is the

address of the aborting instruction, for
data abort PC is the address af the
instruction following the one which
attempted the aborted data transfer. Xn
is the appropriate trap address).

TABLE 14. UNDEFINED INSTRUCTIONS AND
COPROCESSOR ABSENT

Cycle AclclrHe -8/W -WW .,... SEQ -MREQ -OPC -CPI

1 PC+8 1 0 (PC+81 0 1 0 0

2 PC+8 1 0 . 0 0 0 1

3 Xn 1 0 (Xn) 1 0 0 1

... Xn+4 1 0 J_Xn+4_l 1 0 0 1

Xn+8

TABLE 15. UNEXECUTED INSTRUCTIONS
Cycl• Adclreu -8/W -JVW Dat8 SEQ -MREQ -OPC

1 PC+8 1 0 (PC+8) 1 0 0

PC+8

14

CPA CPB
1 1

1 1

1 1

1 1

(

Apple Computer, 1 nc.

INSTRUCTION CYCLE OPERATIONS (Cont.)

INSTRUCTION SPEEDS
Due to the pipelined architecture of the
CPU, instructions overlap considerably.
In a typical cycle one instruction may be
using the data path while the next is
being decoded and the one after that is
being fetched. For this reason the

following table presents the incremental
number of cycles required by an
instruction, rather than the total number
of cycles for which the instruction uses
part of the processor. Elapsed time (in
cycles) for the routine may be calcu­
lated from these figures.

TABLE 16. INSTRUCTION SPEEDS
lnstn.ictlon lnstn.ictlon Timing
Type ~uatlon

Data Process!rig_ 1 s

Data Process~ With Re_gister Controlled Shift 1S+1S

Data Processin_g_ With PC Modified 2S + 1 N

Load R~ister 1S+1N+11

Load R~ster With PC Loaded 2S+2N+11

Store Register. 2N

Load Multi2_1e nS+1N+11

Load Multiple With PC Loaded (n + 1) S + 2 N + 1 1

Store Mul~le (n-1) S + 2 N

Branch and Branch With Link 2S + 1 N

Software Interrupt, Trap 2S + 1 N

Multl.Q!y and Mult.!Q_le With Accumulate 1S+ml

C~ocessor Data ~ation 1s+b1

Load or Store Coprocessor Data To Memory 1S+2N+bl

Move From Coprocessor To VL86C01 O Register 1S+bl+1C

Move From VL86C010 To C~rocessor Register 1 s + (b + 1) 1+1 c

n is the number of words transferred.

m is the number of cycles required btf
the multiply algorithm, which is de­
termined by the contents of Rs.
Multiplication btf 11ff number

Apple Computer, lnc. CONFIDENTIAL

between 2"(2m-3) and 2"(2m-1)-1
inclusive takes m cycles for m> 1.
Multiplication btf 0 or 1 takes 1 cycle.
The maximum value m can take is
16.

15

• APRM I VL2340

H the condition is met the instruction
execution time is shown in Table 16
below.

1 is an incremental cycle.

b is th• number of cycles spent in the
Co-Processor busy-wait loop.

H the condition is not met all instruc­
tions, take one S cycle.

Apple Computer, 1 nc.
• APRM I VL2340

TIMING CHARACTERISTICS: TA. 0°c to +10°c, vcc. s v ±5%

VL2340

Symbol Parameter Min. Typ. Max. Unlts Condltlons

tCK Clock Period 45 - 10000 ns

tCKL Clock Period Low 21 - 10000 ns

tCKH Clock Period High 14 - 10000 ns

tABE Address Bus Enable - - 14 ns

tABZ Address Bus Disable - - 14 ns

tALE Address Latch Fall-Through - - 14 ns

tALEL ALE Low Time - - 10000 ns See Note 1

tADDRS CLK Rising Edge To Address Valid Delay - - 25 ns

tADDRN CLK Falling Edge To Address Valid Delay - - 55 ns

tADRNA NADR To Address Valid Delay 5 - 18 ns

tADRMS MSBLOW To Address Valid Delay 5 - 11 ns

tAH Address Bus Hold Time 6 - - ns

tDBE Data Bus Enable Time - - 22 ns

tDBZ Data Bus Disable Time - - 22 ns

tDOUT Data Bus Output Delay - - 27 ns

tDOH Data Bus Hold Time 6 - - ns

tDIS Data In Setup Time To CLK 4 - - ns

tDIH Data In Hold Time To CLK 8 - - ns

tDISN Data In Setup Time To NADR 2 - - ns

tDIHN Data In Hold Time To NADR 3 - - ns

tABTS ABORT Setup Time 18 - - ns

tABTH ABORT Hold Time 6 - - ns

tlRS Interrupt Setup Time 4 - - ns See Note2

tRWD CLK To -fVW Valid - - 31 ns

tRWH -fVW Hold Time 5 - - ns

tMSD CLK To 4AREQ And SEQ Delay - - 32 ns

tMSH 4AREQ And SEQ Hold Time 6 - - ns

tBWD CLK To -B/W Valid - - 26 ns

tBWH -BIN Hold Time 5 - - ns

tMDD CLKTo -M1, - MO Valid - - 22 ns

tMDH M1 - MO Hold Time 6 - - ns

Notea:
1. ALE controls a dynamic storage latch; this parameter is specified to ensure that the stored charge cannot leak sufficiently to

generate intermediate logic levels in the associated logic.
2. The interrupt and reset inputs may be asynchronous. This time will guarantee that the interrupt request is latched during this

cycle.

Apple Computer, lnc. CONFIDENTIAL 16

(

Apple Computer, 1 nc. • APRM / VL2340

TIMING CHARACTERISTICS: TA= 0°c to +10°c, vcc = s v ±5%

VL2340

Symbol Parameter Min. Typ. Max. Unlts Condltlons

tOPCD CLK To -OPC Valid - - 23 ns

tOPCH -OPC Hold Time 5 - - ns

tTRMD CLK To-TRAN Valid - - 22 ns

tTRMH -TRAN Hold Time 6 - - ns

tTRDD CLK To-TRAN Valid - - 29 ns See Note 1

tTRDH -TRAN Hold Time 5 - - ns

tCPS CPA, -CPB Setup Time 18 - - ns

tCPH CPA, -CPB Hold Time 6 - - ns

tCPI CLK To -CPI Delay - - 22 ns

tCPIH -CPI Hold Time 4 - - ns

tPHIT C~K To PGHIT Delay - - 19 ns

tPHITH PGHIT Hold Time 7 - - ns

tlNC CLK To lncremented Address Delay 12 - 65 ns

Notas:
1. -TRAN will only change du ring CLK high as the result of a forced translation single data transfer operation while in the User

mode. Otherwise it will change during CLK low when the mode change tolfrom User mode occurs.

Apple Computer, lnc. CONFIDENTIAL 17

Apple Computer, 1 nc.

TIMING DIAGRAMS
PROCESSOR DATA BUS

CLK

ALE

ABE

A25 -
AO

DBE

031 - 00

tDBE

(Write) -"'----~
~""-""°4"'"'"""'=~

031 - 00

• APRM I VL2340

tADRNA

tDIH

(Raad) -1--------1f-------jr--~~---f--" T"I'---+---"

NADR

MSBLOW

tPHITH

PGHIT

tABTH

ABRT

----------~ tlRS -FIRQ, -

-IRQ ~------------------

Apple Computer, lnc. CONFIDENTIAL 18

•

(

Apple Computer, 1 nc.

TIMING DIAGRAMS
PROCESSOR CONTROL SIGNALS

CLK

-RN/

-MREQ,
SEQ --+----Jt

-BN/

-M1-
-MO

-OPC

CPA,
CPB

-CPI

Apple Computer, lnc. CONFIDENTIAL

• APRM I VL2340

19

Apple Computer, 1 nc. • APRM I VL2340

ABSOLUTE MAXIMUM RATINGS
Ambient Operating
T emperature -10°C to + 80°C

Storage Temperature -65°C to + 150°C

Supply Voltage to
Ground Potential -0.5 V to VCC + 0.3 V

Applied Output
Voltage -0.5 V to VCC + 0.3 V

Applied Input
Voltage -0.5 V to + 7.0 V

Stresses above those listed may cause
permanent damage to the device.
These are stress ratings only. Func­
tional operation of this device at these
or any other conditions above those

DC CHARACTERISTICS: TA= 0°c to +10°c, vcc • s v ± 5%

Symbol Parameter Min Typ Max

VOHT OUtput High Voltage, TTL-DATABUS VCC-0.75 - vcc
VOLT Output High Voltage, TTL-DATABUS - - 0.8

VOHC Output High Voltage CMOS VCC-0.75 - vcc

VOLC OUtput Low Voltage CMOS - - 0.4

indicated in this data sheet is not
implied. Exposure to absolute maxi­
mum rating conditions for extended
periods may affect device reliability.

Unlt Condltlons

V IOH--s.o mA

V IOL•5.0 mA

V IOH--2:5 mA

V IOL•2.5 mA

VIH Input High voltage 01,02 VCC-0.3 - VCC+0.3 V

All Others

VIL Input Low Voltage 01,02

All Others

ILI Input Leakage Current

ILO OUtput Leakage Current

ICC Operating Supply Current

IOS OUtput Short Circuit Current

CAPACITANCE: TA. 2s0c, f .1.0 MHz

Symbol

Cl

CO

o.ov

Notas:

Parameter

Clocklnput Capacitance (01, 02)

Other Input Capacitance

Output Capacitance

1.SV

AC Test
Points

2.4 - VCC+0.3 V

-0.3 - 0.3

-0.3 - 0.8

- - 10

- - 10

- 20 40

- - 40

Min Max Unlt

- 15

- 5

- 8

V1LOAD·2.4 V, DATABUS
V1 LOAD • 2.3 V, OTHERS
R1 • 1600, DATABUS

pF

pF

pF

R1 • 7500, OTHER OUTPUTS
C1·100 pF, DATABUS
C1 • 50 pF, CPI, ADDR.BUS
C1·15 pF, OTHER OUTPUTS

V

V

J. VIN • 0 V to VCC

.. ~ VOUT • 0 V to VCC

mA (Note 1)

mA

Condltlons

VIN • 0 V (Note2)

VIN • 0 V (Note2)

VOUT • 0 V (Note 2)

FIGURE 4. TEST LOAD CIRCUIT

----V1 LOAD

f Device Under Test
R1

C1 =c
1. Measured with outputs unloaded, at 1 o MHz. Add 4 mA per MHz.

• lncludes Scope
and Jig

Capacitance

2. Periodically sampled, rather than 100% tested.

Apple Computer, lnc. CONFIDENTIAL 20

(

(

Apple Computer1 1 nc.

PROGRAMMERS'MODEL
The APRM has a 32-bit data bus and a
32-bit address bus although only 26-bits
(64M-bytes) may be used for program
space. The processor supports two
data types, eight bit bytes and 32-bit
words. lnstructions are exactly one
word, and data operations (e.g., ADD)
are only performed on word quantities.
Load and store operations can transfer
either bytes or words. The APRM
supports four modes of operation,
including protected supervisor and
interrupt handling modes.

BYTE SIGNIFICANCE

REGISTERS
The processor has 27 registers (32-bits
each), 16 of which are visible to the
programmer at any time. The visible
subset depends on the current proces­
sor mode; special registers are
switched in to support interrupt and
supervisor processing. The register
bank organization is shown in Table 16.

User mode is the normal program
execution state; registers R15 - RO are
directly accessible.

All registers are general purpose and
may be used to hold data or address
values, except that register R15
contains the Program Counter (PC) and
the Processor Status Register (PSR).
Special bits in some instructions allow
the PC and PSR to be treated together
or separately as required. Figur• 6
shows the allocation of bits within R15.

• APRM I VL2340
R14 is used as the subroutine link
register, and receives a copy of R15
when a Branch and Link instruction is
executed. lt may be treated as a
general purpose register at all other
times. R14_svc, R14_irq and R14_firq
are used similarly to hold the return
values of R15 when interrupts and
exceptions arise, or when Branch and
Link instructions are executed within
supervisor or interrupt routines.

FIRQ Procealng • The FIRQ mode
(described in the Exceptions section)
has seven private registers mapped to
R14- Re (R14_fiq-R8_fiq). Many FIRQ
programs will not need to save any
registers.

IRQ Procealng - The IRQ state has
two private registers mapped to R14
and R13 (R14_irq and R13_irq).

Some programming techniques may
write a 32-bit (word) quantity to mem­
ory, but will later retrieve the data as a
sequence of byte (8-bit) items. For
these purposes, the processor stores
word data in most-significant-first (MSB
first) order. This means that the most
significant bytes of a 32-bit word
occupies the lowest byte address. The
byte address values are illustrated in
Figur• 5.

FIGURE 5. BYTE SIGNIFICANCE OF APRM

31 2423

TABLE 17. REGISTER ORGANIZATION

RO

R1

R2

R3

R4

R5

R8

R7

R8

R9

R10

R11

R12 (FP)

R13 (SP)

R14(LK)

R15 (PC)

General

General

Appe Ccln1Mer. lnc. CONFIOENTIAL

General

General

General

General

General

General

General

General

General

General

General

General

General

Supervisor IRQ

Supervisor IRQ

(Sharect by all Modes)

21

1615

FIRQ

FIRQ

FIRQ

FIRQ

FIRQ

FIRQ

FIRQ

8 7 0

Iyp!Ca!UH

General Usage

Word
Addr••
Value

0000
0001

Data Frame (by convention)

Stack Pointer (by convention)

R15 Save Area for BL or Interrupts

System Program Counter

Apple Computer, 1 nc.

Supervisor Mode - The SVC mode
(entered on SWI instrudions and other
traps) has two private registers mapped
to R14 and R13(R14_svc and
R13_svc).

The two private registers allow the IRQ
and supervisor modes each to have a
private stack pointer and link register.
Supervisor and IRQ mode programs are
expected to save the User state on their
respective stacks and then use the User
registers, remembering to restore the
User state before returning.

In User mode only the N, Z, C, and V
bits of the PSR may be changed. The 1,
F, and Mode flags will change only
when an exception arises. In supervi­
sor and interrupt modes all flags may be
manipulated directly.

EXCEPTIONS
Exceptions arise whenever there is a
need for the normal flow of program
execution to be broken, so that (for
instance) the processor can be diverted
to handle an interrupt from a peripheral.
The processor state just prior to
handling the exception must be
preserved so that the original program
can be resumed when the exception
routine has completed. Many excep­
tions may arise at the same time.

The processor handles exceptions by
using the banked registers to save
state. The ok:I PC and PSR are copied
into the appropriate R14, and the PC

and processor mode bits are forced to a
value which depends on the exception.
Interrupt disable flags are set where
required to prevent unmanageable
nestings of exceptions. In the case of a
reentrant interrupt handler, R14 shoulcl
be saved onto a stack in main memory
before re-enabling the interrupt. When
multiple exceptions arise simultane­
ously a fixed priority determines the
order in which they are handled.

FIRQ • The FIRQ (Fast Interrupt
Request) exception is extemally
generated by taking the -FIRO pln low.
This input can accept asynchronous
transitions, and is delayed by one clock
cycle for synchronization before it can
affect the processor execution flow. lt is
designed to support a data transfer or
channel process, and has sufficient
private registers to rernove the need for
register saving in such applications, so
that the overhead of context switching is
minimized. The FIRQ exception may
be disabled by setting the F flag in the
PSR (but note that this is not possible
from user mode). lf the F flag is clear
the processor checks for a low level on
the output of the FIRQ synchronizer at
the end of each instruction.

The impact upon execution of an FIRQ
interrupt is defined in Table 18. The
return-from-interrupt sequence is also
defined there. This will resume execu­
tion of the interrupted c:ode sequence,
and restore the original processor state.

FIGURE 6. PROGRAM COUNTER AND PROCESSOR STATUS REGISTER

31 2625

[FIRQ Oisable
0 • Enable
1 • Oisable

IRQ Oisable
0 • Enable
1. Oisable

--- Overflow

1615 2 1 0
1 1 1 1 1 1 ' 1 1 1 ' ' 1 1 i

Program Counter
(Word Aligned)

Processor Mode
00 • User Mode
01 • FIRQ Mode
10· IRQ Mode
11 • Supervisor Mode

----Carry/Not Borrow/Rotate Extend

-----Zero

----- Negative/Signed Less Than

Aj)ple ~er. lnc. CONFIOENTIAI. 22

• APRM I VL2340

IRQ • The IRQ (Interrupt Request) (
exception is a normal interrupt caused
by a low level on the -IRQ pin. lt has a
lower priority than FIRQ, and is masked
out when a FIRQ sequence is entered.
lts effect may be masked out at any
time by setting the 1 bit in the PC (but
note that this is not possible from user
mode). lf the 1 flag is clear, the proces­
sor checks for a low level on the output
of the IRQ synchronizer at the end of
each instruction.

The impact upon execution of an IRQ
interrupt is defined in Table 18. The
retum-from-interrupt sequence is also
defined there. This will resume execu­
tion of the interrupted code sequence,
restore the original processor state, and
reenable the IRQ interrupt.

Abort • The ABORT signal comes from
an external memory management
system, and indicates that the current
memory access cannot be completed.
For instance, in a vlrtual memory
system the data c:orresponding to the
current address may have been moved
out of memory onto a disk, and consid-
erable processor activity may be (
required to recover the data before the
access can be performed successfully.
The processor checks for an abort at
the end of the first phase of each bus
cycle. When successfully aborted, the
APRM will respond in one of three
ways:

(i) lf the abort occurred during an
instruction prefetch (a prefetch
abort), the prefetched instruction is
marked as invalid; when it c:omes to
execution, it is reinterpreted as
below. lf the instruction is not
executed, for example as a result of
a branch being taken while it is in
the pipeline, the abort will have no
effect.)

(ii) lf the abort occurred during a data
access (a data abort), the action
depends on the instruction type.
Data transfer instructions (LOR,
STR) are aborted as though they
had not executed. The LOM and
STM instructions complete, and if
writeback is set, the base is up­
dated. lf the instruction wouk:I
normally have overwritten the base (
with data (i.e. LOM with the base in
the transfer list), this overwriting is

Apple Computer, 1 nc. • APRM I VL2340

prevented. All register overwriting is
prevented after the abort is indi­
cated, which means in particular that
R15 (which is always last to be
transferred) is preserved in an
aborted LDM instruction.

(iii) H the abort occurred during an
internal cycle it is ignored.

Then, in cases (i) and (ii), the processor
will respond as defined in Table 18.

The return from Prefetch Abort defined
in the Figura will attempt to execute the
aborting instruction (which will only be
effective if action has been taken to
remove the cause of the original abort).
A Data Abort requires any auto­
indexing to be reversed before returning
to re-execute the offending instruction.
The return is perforrned as defined in
the Figure.

The abort mechanism allows a demand
paged virtual memory system to be
implemented when a suitable memory
management unit is available in the
system. The processor is allowed to
generate arbitrary addresses, and when
the data at an address is unavailable,
the memory manager signals an abort.
The processor traps into system
software which must work out the cause
of the abort, make the requested data
available, and retry the aborted instruc­
tion. The application program needs no
knowledge of the amount of memory
available to it, nor is its state in any way
affected by the abort.

Software Interrupt - The software
interrupt is used for getting into supervi­
sor mode, usually to request a particular
supervisor func:tion. Th• processor
response to the (SWI) instruction is
defined in Table 18, aa is the method of
returning. The indicatld return method
will return to the instructlon following the
SWI.

Undeflned lnstructlon Tr•p - When
the APRM executes a coprocessor in­
struction or an undefined instruction, it
offers it to any coprocessors which may
be present. H a coprocessor can
perform this instruction but is busy at
that moment, the processor will wait
until the coprocessor is ready. H no
coprocessor can handle the instruction
the APRM will take the undefined in­
struction trap.

AflPe ~. lnc. CONFIOENTIAL

The trap may be used for software
emulation of a coprocessor in a system
which does not have the coprocessor
hardware, or for general purpose
instruction set extension by software
emulation.

When the undefined instruction trap is
taken the APRM will respond as
defined in Table 18. The return from
this trap (after performing a suitable
emulation of the required function),
defined in the Figure will retum to the
instruction following the undefined
instruction.

RtHt - When RES goes high the
processor will stop the currently
executing instruction and start execut­
ing no-ops. When Reset goes low
again it will respond as defined in
Table 18. There is no meaningful
return from this condition.

Vector T•bl•

The conventional means of implement­
ing an interrupt dispatch function is to
provide a table of jumps to the appropri­
ate processing table, as below:

Mdress
0000000
0000004
0000008
ooooooc
0000010
0000014
0000018
000001C

Fynctjon
Reset
Undefined instruction
Software interrupt
Abort (prefetch)
Abort (data)
Unused
IRQ
FIRO

These are byte addresses, and each
contains a branch instruction pointing to
the relevant routine. The FIRO routine
might reside at 000001 CH onwards,
and thereb>f avoid the need for (and
execution time of) a branch instruction.

Exceptlon Prlorltlea-When multiple

TABLE 18. EXCEPTION TRAP CONSIDERATIONS

Trap Type CPU Trap Actlvlty Progrmm Return Sequence

1. Save R15 in R14 (SVC).
Reset 2. Force M1 :0 to SVC mode, and (nta)

set F & 1 status bits in PC.
3. Force PC to OxOOOOOO.

1. Save R15 in R14 (SVC).
Undefined 2. Force M1 :mO to SVC mode, MOVS PC,R14 ; SVC's R14.
lnstruction and set 1 status bit in the PC.

3. Force PC to Ox000004.

Software 1. Save R15 in R14 (SVC).
Interrupt 2. Force M1 :O to SVC mode, and

MOVS PC,R14 ; SVC's R14.
set 1 status bit in the PC.

3. Force PC to OxOOOOOB.

1. Save R15 in R14 (SVC). Prefetch Abort:
Prefetch SUBS PC, R14,4 ; SVC's R14.
and Data 2. Force M1 :O to SVC mode, and

Aborts set 1 status bit in the PC. Data Abort:
3. Force PC to Ox000010. MOVS PC, R14,8 ; SVC's R14.

1. Save R15 in R14 (IRQ).
IRQ 2. Force M1 :0 to IRQ mode, and SUBS PC, R14,4 ; IRQ's R14.

set 1 status bit in the PC.
3. Force PC to Ox000018.

1. Save R15 in R14 (FIRQ).
FIRQ 2. Force M1 :O to FIRQ mode, SUBS PC, R14,4 ; FIRQ's R14.

and set 1 status bit in the PC.
3. Force PC to Ox00001 C.

23

Apple ComputerJ 1 nc.

exceptions arise at the same time, a
fixed priority system determines the
order in which they will be handled:

1) Reset (highest priority)
2) Data aborts
3) FIRQ
4) IRQ
5) Prefetch abort
6) Undefined lnstrudion and

SWls (lowest priority)

Note that not all exceptions can occur at
once. Undefined instruction and
software interrupt are also mutually
exclusive since they each correspond to
particular (non-overlapping) decodings
of the current instrudion.

H a data abort occurs at the same time
as a FIRQ, and FIRQs are enabled (i.e.,
the F flag in the PSR is clear), the
processor will enter the data abort
handler and then immediately proceed

ApPe ~. lnc. CONFIDENTIAL

to the FIRQ vedor. Anormal return
from FIRQ will cause the data abort
handler to resume execution. Placing
data abort at a higher priority than FIRQ
is necessary to ensure that the transfer
error does not escape detedion, but the
time for this exception entry should be
refleded in worst case FIRQ latency
calculations.

Interrupt Latenclea - The worst case
latency for FIRQ, assuming that it is
enabled, consists of the langest time
the request can take to pass through
the synchronizer (Tsyncmax), plus the
time for the langest instruction to
complete (Tldm, the longest instrudion
is load multiple registers), plus the time
for data abort entry (taxe), plus the time
for FIRQ entry (Tfiq). At the end of this
time the processor will be executing the
instrudion at 1CH.

Tsyncmax is 2.5 processor cycles,

24

• APRM I VL2340

Tlclm is 18 cycles, Taxe is three cycles,
and Tfiq is two cycles. The total time is,
therefore, 25.5 processor cycles, which
is just over 2.5 microseconds in a
system using a continuous 1 O MHz
processor clock. In a DRAM based
system running at 4 and 8 MHz, for
example using the VL86C110 MMU,
this time becomes 4.5 microseconds,
and if bus bandwidth is being used to
support video or other OMA adivity, the
time will increase accordingly.

Th• maximum IRQ latency calculation
is similar, but must allow for the fact that
FIRQ has higher priority and count
delay entry into the IRQ handling
routine for an arbitrary length of time.

The minimum latency for FIRQ or IRQ
consists of the shortest time the request
can take through the synchronizer
(Tsyncmin) plus Tfiq. This is 3.5
processor cycles.

(

Apple Computer, lnc. • APRM I VL2340

INSTRUCTION SET
All APRM instructions are c:onditionally
executed, which means that their exe­
cution may or may not take place de­
pending on the values of the N, Z, C,
and V flags in the PSR at the end of
the preceding instruction.

H the Always c:ondition is specified,
the instruction will be executed
irrespective of the flags, and likewise
the Never condition will cause it not to
be executed (it will be a no-op, taking
one cycle and having no effect on the
processor state).

The other condition codes have
meanings as detailed above, for
instance code 0000 (EQual) causes
the instruction to be executed only if
the Z flag is set. This would corre­
spond to the case where a compare
(CMP) instruction had found the two
operands were different, the compare
instruction would have cleared the Z
flag, and the instruction will not be
executed.

The B and BL instructions are only exe­
cuted if the condition code field is true.

All branches support a 24 bit offset. The
offset is shifted left two bits and added
to the PC, with overflows being ignored.
The branch can therefore reach any
word aligned address within the
program address space. The branch
offset must take account of the prefetch
operation, which causes the PC to be
two words ahead of the current instruc­
tion.

Link blt - Branch with Link writes the
old PC and PSR into R14 of the current
bank. The PC value written lnto the link
register (R14) is adjusted to allow for

FIGURE 7. CONDITION FIELD
31 24 23 16 15 8 7 0

1 c~'x 1 1 1 1 1 1 1 1 1 (~ i:.in:Cti~) 1 1 1 1 1

Lcondltion Fielet
0000 • EQ - Z set (equal)
0001 • NE - Z clear (not equal)
0010 - CS - C set (unslgned hlgher or same)
0011 - cc - c clear (unalgned lower)
0100 • MI • N set (negative)
0101 • PL ·V set (overftow)
0111 • VC • V clear (no overftow)
1000 •HI - C set and Z cle• (unslgned higher)
1001 • LS - C clear or Z Ht (urmlgned lower or same)
101 O • GE - N set and V set. or N clear and V clear (greater or equal)
1011 - LT - N set and V clear, or N clear and V &et (leS8 than)
1100 • GT • Z clear, and ellher N set and V 181, or N c1ear and V clear (greater than)
1101 • LE - Z Ht, or N aet and V clear, or N clear and V set (less lhan or equal)
1110-AL - AMaya
1111 •NY - Never

FIGURE 8. BRANCH, AND BRANCH WITH UNK (B, BL)

~ av ~~ o I 6o~~ I ; 0 1 ILI • . . , . • . p'c'.R~ ~;rs:.r, . . . , . . . I

T L UnkBit L Condition 0 - Brand'I
Field 1 - Branch wHh Unk (Subroutine call)

the prefetch, and contains the address
of the instruction following the branch
and link instruction.

Return from SUbroutln• - When
returning to the caller, there is an option
to restore or to not restore the PSR.
The following table illustrates the
available combinations.

Re.torlng PSA:
Not Reatorlng PSR:

Link R1ql1t9r Ya!ld
MOVS PC,R14
MOV PC,R14

Link Sind to a StlCfc
LDM Rnl, (PC)A
LDM Rnl, (PC)

Syntax:
B(L){cond} <1xpression>

where L is used to request the Branch-with-Link form of the instruction.
H absent, R14 will not be affected by the instruction.

cond is a two-character mnernonic as shown in Condition Code section (EO, NE,
VS, etc.). H absent then AL (Always) will be used.

expression is the destination. The assembler calc:ulates the relative (word) offset.

ltems in { } are optional. ltems in < > must be present.

Ajlple ~. lnc. CONFIOENTIAL 25

Apple Computer, 1 nc. • APRM I VL2340

ExamplH:
Here BAL Here

B There

CMP R1,0
BEO Fred

BL ROM+ Sub

ADDS R1, 1
BLCC Sub

BLNV Sub

ALU INSTRUCTION
The ALU-type instruction is only
executed if the condition is true. The
various conditions are defined in the
Condition Code section.

The instruction produces a result by
performing a SPecified arithmetic or
logical operation on one or two oper­
ands. The first operand is always a

Apple~. lnc. CONFIOENTIAL

; Assembles to EAFFFFFE. (Note effect ot PC otfset)

; Always condition used as default

; Compare register one with zero, and branch to Fred if
; register one was zero. Else continue next instruction.

; Unconditionally call subroutine at computed address.

; Add one to register one, setting PSR flags on the result.
; Call Sub if the C flag is clear, which will be the case unless
; R1 contained FFFFFFFFH. Else continue next instruction.

; Never call subroutine (this is a NO-OP).

register (Rn). The second operand may
be a shifted register (Rm) or a rotated
eight-bit immediate value (lmm)
according to the value ot the 1 bit in the
instrudion. The condition codes in the
PSR may be preserved or updated as a
result of this instruction, according to
the value of the S bit in the instruction.
Certain operations (TST, TEQ, CMP,

26

CMN) do not write the result to Rd.
They are used only to perform tests and
to set the condition codes on the result,
and therefore should always have the S
bit set. (The assembler treats TST,
TEO, CMP and CMN as TSTS, TEOS,
CMPS and CMNS by default).

(

(

(

Apple Computer, 1 nc. • APRM I VL2340

FIGURE 9. ALU INSTRUCTION TYPES

31 28 25 20 1615 1211 0

j 6o~'x lo'olil~lsl 1 ~n' 1 1 ~d· 1 1 1 10~~~'2' 1 1 1 1

1 ~L L Destinati~ Register
Condition 1 st operand reglster

Code Set condition codes o . do not alter conditlon codes

Immediate Value 1 • set condition codes (S sufftx)

o. Operand 2 ls a reglster.
1 • Operand 2 ls an

immediate value.

Operation Code J lmm-1 -->Operand 2 is an immediate value.

0000 • AND - Rd • Op1 AND Op2
0001 • EOR - Rd • Op1 EOR Op2
0010 •SUB- Rd • Op1 - Op2
0011 • RSB - Rd • Op2 - Op1
0100. ADD- Rd • Op1 + Op2
0101 • ADC:: Rd • Op1 + Op2+ C
0110.sec- Rd-0p1-0p2+c
0111 • RSC - RD • Op2 - Op1 + C
1000 • TST - set condition codes on Op1 AND Op2
1001 • TEO - set conditlon codes on Op1 EOR Op2
1010. CMP - set conditlon codes on Op1 - Op2
1011 • CMN - set condition codes on Op1 + Op2
1100.0RR- Rd·Op1 OR0p2
1101 • MOV- Rd • Op2
1110. BIC - Rd • Op1 AND Op2
1111.MVN- Rd·Op2

11 8 7 0

1~~~1·1~·1

1 L Unslgned 8 blt immediate value
l__.-=. Righ„rotate amount 1D beapplied

10 8-blt imm (2-blt shift units).

11 7654 11 87854

1 " ' 1 1 ' lol 1 1 Rs' 1°1 1 H
1 T 1 T

Sh:h=nt is a 5-blt J
unsigned integer.

Shlft Amount

ShlftType
00 • L.oglcal Left (LSL)
01 • Log1c:a1 Right (LSR)
10. Arithmetlc Right (ASR)

Appe ~-. 1nc. CONFIDENTIAI.

Shift amount is speclfted
in botlDm byte of Rs.

27

11 • Rotate Right (ROR)

Apple Computer, 1 nc.

OPERATIONS

Assembler
Mnemonlc
AND
EOA
SUB
ASB
ADD
ADC
sec
ASC
TST
TEQ
CMP
CMN
OAA
MOV
BIC
MVN

Opcode
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

PSR Flags - The operations may be
classified as logical or arithmetic. The
logical operations (AND, EOA, TST,
TEO, OAA, MOV, BIC, MVN) perform
the logical action on all corresponding
bits of the operand or operands to
produce the result. H the S bit is set
(and Ad is not A15) the V flag in the
PSA will be unaffeded, the C flag will
be set to the carry out from the barrel
shifter (or preserved when the shift
operation is LSL 0), the Z flag will be set
if and only if the result is all zeroes, and
the N flag will be set to the logical value
of bit 31 of the result.

The arithmetic operations (SUB, ASB,
ADD,ADC,SBC,ASC,CMP,CMN)
treat each operand as a 32-bit integer
(either unsigned or 2's complement
signed, the two are equivalent). H the S
bit is set (and Ad is not R15) the V flag
in the PSR will be sat lf an overtlow
occurs into bit 31 of the result; this may
be ignored if the operands were
considered unsigned, but wams of a
possible error if the operands were 2's
complement signed. The C flag will be
set to the carry out of bit 31 of the ALU,
the Z flag will be set if and only if the
result was zero, and the N flag will be
set to the value of bit 31 of the result
(indicating a negative result if the
operands are considered to be 2's
complement signed).

Shlfts - When the second operand is
specified to be a shifted register, the
operation of the barrel shifter is con­
trolled by the shift field in the instruction.

Apple~. lnc. CONFIDENTIAL

Amlsm
Bit-wise logical AND of operands
Bit-wise logical Exclusive Or of operands
Subtract operand 2 from operand 1
Subtract operand 1 from operand 2
Add operands
Add operands plus carry (PSA C flag)
Subtract operand 2 from operand 1 plus carry
Subtract operand 1 from operand 2 plus carry
as AND, but result is not written
as EOA, but result is not written
as SUB, but result is not written
as ADD, but result is not written
Bit-wise logical OA of operands
Move operand 2 (operand 1 is ignored)
Bit clear (bit-wise AND of operand 1 and NOToperand 2)
Move NOToperand 2 (Operand 1 is ignored)

This field indicates the type of shift to be
performed (logical left or right, arithme­
tic right or rotate right). The amouot by
which the register should be shifted
may be contained in an Immediate field
in the instruction, or in the bottom byte
of another register as shown in Figure
8.

When the shift amount is specified in
the instruction, it is contained in a five­
bit field which may take any value from
zero to 31. A logical shift left (LSL)

FIGURE 10. LOGICAL SHIFT LEFT (LSL)

takes the conteots of Am and moves
each bit by the specified amount to a
more significant position. The least
significant bits of the result are filled
with zeroes, and the high bits of Am
which do not map into the result are
discarded, except that the least
significant discarded bit becomes the
shifter carry output which may be
latched into the C bit of the PSR when
the ALU operation is in the logical class
(see above). For example, the effect of
LSLS is:

31 24 23 16 15 8 7 0

lcarrvl~l.__'_'_'_' __ '_'_'_' __ '_'_'_' __ '_'_'_' __ '_'_' __ '_'_'_' __ '_'_'_' __ '_' __ I ~o
Contanll ot Rm, whk:h wiU appear (shifted) In Operand 2

Carry Flag 31 24 23 16 15 8 7 0

~ , , , 1 , , , 1 , , ~2~~~~~ , , , , 1 , • lo'o'o'o'ol

Example ot shlfled resutt In Operand 2 (shlfled conlBnt of Rm)

Note that LSL O is a special case,
where the shifter carry out is the old
value of the PSR C flag. The conteots
of Am are used diredly as the second
operand.

28

A Logical Shift Aight (LSA) is similar,
but the contents of Am are moved to
less significant positions in the result.
LSR 5 has the following effed:

(

(

Apple Computer, lnc. 9 APRM I VL2340

FIGURE 11. LOGICAL SHIFT RIGHT (LSR)

31 24 23 1615 8 7 0

0 ~1~_·_·_· __ •_'_'_' __ '_'_'_' __ ' _._._._, __ ·_·_·_• __ ·_·_·_• __ ·_·_·_• __ · __ ·~1~ lcM~I
ContenlS of Rm, whk:h will appeM (shifted) In Operand 2

31 2423
1 1 1 1 1 1 1 i

1615 8 7
•• 1 •• 1 1 1 i 1 1 '

Upper 27 bllB of Rm

0
' 1 1 ' 1

carry Flag

1 Bit4 I
ExMnple ot shlfted result In Operand 2 (shlfted content of Rm)

The form of the shift field which might
be expected to correspond to LSR 0 is
used to encode LSR 32, which has the
zero result, with bit 31 of Rm as the
carry output. Logical shift right zero is
redundant, as it is the same as logical
shift left zero. Therefore, the assem­
bler converts L$R 0, and ASR 0, and

ROR 0 into LSL 0, and allows LSR 32 to
be specified.

The Arithmetic Shift Right (ASR) is
similar to the logical shift right, except
that the high bits are filled with repli­
cates of the sign bit (bit 31) of the Rm
register, instead of zeros. This signed

FIGURE 12. ARITHMETIC SHIFT RIGHT (ASR)
31 24 23 1615 8 7

shift preserves the correct representa­
tion of a (signed) negative integer to be
divided by powers of two via a right
shift. For example, ASR 5 has the
following effect:

0

r;i ... I ,_' -·-·-~-on-1 ten-·-~-~-,-·R-~-.'wh-1-lch_' -~-1:-~--· -·-:-s:-lfted-' _')-~-~-per-· _'anc:t_._'_2_' __ ' I ~ I c~ I
~

31 24 23 1615 8 7 0 C~Aag

lf ~'~'fJI{ 1 1 1 (si;e~~)u;tr'2;tiit.'o/R1m1
'

1 '
151 1 Blt4 I

Example shift&d result In Operand 2 (shlfted content ot Rm)

The form of the shift field which might
be expected to give ASR O is used to
encode ASR 32. Bit 31 of Rm is again
used as the carry output, and each bit
of operand 2 is also equal to the sign

bit (bit 31) of Rm. The result is therefore
all ones or all zeros, according to the
value of bit 31 of Rm.

shift right operation, by wrapping them
around at the high end of the result.
For example, the effect of a ROR 5 is:

FIGURE 13. ROTATE RIGHT (ROR)

Rotate Right (ROR) operations reuse
the bits which •overshoot" in a logical

31 24 23 16 15 8 7 0 r I _'-·-eo_' -~~-· n-~-0-' ,-·Rm_·_. ·wh_'_ich_· -~-:-~-· -~-;-.~-.fted)-· -· -:n-~-· -·arld_._'_2_· _' I J ICanyl

31 2423 1615 8 7 0 Carry Aag

~~r~lf, 1 ,,, 1 'ljp~;7~~,~~~ • • 1 • • ,51 1 Bit4 I
Example of shlfted result in Operand 2 (shifted content of Rm)

Apple~. lnc. CONFIDENTIAL 29

Apple Computer, lnc. • APRM I VL2340

The form of the shift field which might
be expected to give ROR O is used to
encode a special function of the barrel

shifter, Rotate Right Extended (RAX).
This is a rotate right by one bit position
of the 33 bit quantity formed by append-

ing the PSR C flag to the most signifi- (
cant end of the contents of Am:

FIGURE 14. ROTATE RIGHT EXTENDED (RRX}

31 24 23 16 15 8 7 0

C ... I _' -·-C-1
on-

1 -~-n~-~f-1R-~-. ·-wh-1 1-~-~-:-, ap-
1 -~-·-·-<·-~-·-·_) l-1n-~-·-·_and_1 _'2_'_ ' , _ 81

31 2423 1615 8 7 0 Carry Flag

I ~~; ~~I f , 1 , , , , , ~;J ;7 ~i~ !r ~~ ~81~ , , 1 , , , 5 I ~
1 1

Example of shiftad result in Operand 2 (shiftad content of Rm)

11 Previous value of Carry Flag (from before lhe shift)

Bit o of Rm register

Reglster-Based Shlft Counts - Only
the least significant byte of the contents
of As is used to determine the shift
amount. H this byte is zero, the
unchanged contents of Am will be used
as the second operand, and the ok:t

Shlft
LSLby 32
LSL by more than 32
LSRby 32
LSR by more than 32
ASR by 32 or more
RORby32
ROR by more than 32

value of the PSR C flag will be passed
on as the shifter carry output.

H the byte has a value between one and
31, the shifted result will exactly match

Action

that of an instruction specified shift with
the same value and shift operation.

Shlfta of 32 or More - The result will be
a logical extension of the shifting
processes described above:

Result zero, carry out equal to bit zero of Am.
Result zero, carry out zero.
Result zero, carry out equal to bit 31 of Am.
Result zero, carry out zero.
Result filed with and carry out equal to bit 31 of Am.
Result equal to Am, carry out equal to bit 31 of Am.
Same result and carry out as ROR by n-32. Therefore, repeatedly
subtract 32 from count until within the range one to 32.

Note: The zero in bit seven of an instruction with a register controlled shift is compulsory; a one in this bit will cause the instruc­
tion to be a multiply or an undefined instruction.

Immediate Operand Rotation - The
immediate operand rotate field is a four­
bit unsigned integer which specifies a
shift operation on the eight bit immedi­
ate value. The immediate value is zero
extended to 32·bits, and then subject to
a rotate right by twice the value in the
rotate fielet. This enablel many
command constants to be generated,
for example all powers of two. Another
example is that the eight bit constant
may be aligned with the PSR flags (bits
zero, one, and 26 to 31). All the flags
can thereby be initialized in one TEOP
instrudion.

Wrltlng to R15 -When Ad is a register
other than R15, the condition code flags

Apple~. lnc. CONFIOENTIAL

in the PSR may be updated from the
ALU flags as described above. When
Ad is R15 and the S flag in the instruc­
tion is set, the PSR is overwritten by the
corresponding bits in the ALU result, so
bit 31 of the result goes to the N flag, bit
30 to the Z flag, bit 29 to the C flag and
bit 28 to the V flag. In user mode the
other flags (1, F, MI, MO) are protected
from direct change, but in non-user
modes these will also be affected,
accepting copies of bits 27, 26, one and
zero of tha rasult raspectivaly.

Whan one of these instructions is used
to change the processor mode (which is
only possibla in a non-user mode), the
following instruction should not access

30

a banked registar (R14-RS) during its
first cycla. A no-op should be inserted if
the naxt instruction must access a
banked register. Accessas to the
unbanked registars (R7-RO and R15)
are safa.

H the S flag is clear when Ad is R15,
only the 24 PC bits of R15 will be
writtan. Conversely, if the instruction is
of a type which does not normally
produce a rasult (CMP, CMN, TST,
TEQ) but Ad is R15 and tha S bit is set,
the result will be used in this case to
update thosa PSR flags which are not
protacted by virtue of the procassor
mode.

Apple Computer 1 1 nc. • APRM I Vl2340

R15 aa an Operand - lf R15 is used as
an operand in a data processing
instruction it can present different
values depending on which operand
position it occupies. lt will always
contain the value of the PC. lt may or
may not contain the values of the PSR
flags as they were at the completion of
the previous instruction.

Syntax:
MOV, MVN single operand instructions:

<0pcode>{cond}{S} Rd,<0p2>

When R15 appears in the Rm position it
will give the value of the PC together
with the PSR flags to the barre! shifter.

When R15 appears in either of the Rn
or Rs positions it will give the value of
the PC alone, with the PSR bits
replaced by zeroes.

The PC value will be the address of the

instruction, plus eight or 12 bytes due to
instruction prefetching. lf the shift
amount is specified in the instruction,
the PC will be eight bytes ahead. lf a
register is used to specify the shift
amount, the PC will be eight bytes
ahead when used as Rs, and 12 bytes
ahead when used as Rn or Rm.

CMP, CMN, TEQ, TST - instructions not producing a result:
<0pcode>{cond}{P} Rn,<0p2>

AND, EOR, SUB, RSB, ADD, ADC, sec, RSC, ORR, BIC:
<0pcode>{cond}{S} Rd, Rn, <0p2>

where Op2
cond
s
p

Rd, RnandRm
<Shifb

<Shiftname>s

ls Rm{,<Shifb} or, <expression>
Two-character condition mnemonic, see Condition Code section.
Set condition codes if S present (implied for CMP, CMN, TEO, TST).
Make Rd. R15 in instructions where Rd is not specified, otherwise Rd will
default to RO. (Used for changing the PSR directly from the ALU result.)
Are any valid register name, such as RO-R15, PC, SP, or LK.
ls <Shiftname> <registlH> or <Shiflname> expression, or RRX (rotate right
one bit with extend).
Are any of: ASL, LSL, LSR, ASR, or ROR.

Note: lf <expression> is used, the assembler will attempt to generate a shifted immediate eight-bit field to match the expression.
lf this is impossible, it will give an error.

Examplea:
ADDEO R2,R4,R5

TEOS R4,3

SUB R4, R5, R7 LSR R2

TEOP R15, O;

MOVNV RO, RO

MOV PC, LK

MOVS PC, R14

Apple~. lnc. CONFIDENTIAI.

; Equivalent to: if (ZFLAG) R2 • R4+R5.

; Test R4 for equality with 3 (The S is redundant, as the assembler
; assumes it. Equivalent to: ZFLAG • R4--3.

; Logical Right Shift R7 by the number in the bottom byte of R2, subtrad
; the result from R5, and put the answer into R4.
: Equivalent to: R4 • R5 - (R7»R2).

; (Assume non-user mode here). Change to
; user mode and clearthe N,Z,C,V,I, and F
; flags. Note that R15 is in the Rn position, so
; it comes without the PSR flags.
; Equivalent to: R15 • FLAGS • 0.

; ls a no-op, avoiding mode-change hazarcl.
; Equivalent to: RO • RO.

; Equivalent to: PC • LK, or PC • R14.
; Return from subroutine (R14 is an active one).

; Equivalent to: PC, PSR • R14.
; Return from subroutine, restoring the status.

31

Apple Computer, lnc. • APRM I VL2340

FIGURE 15. MULT1PLY, AND MULT1PLY-ACCUMULATE (MUL, MLA)

31 2827 22 19 1615 8 7 0

l~~1xlo 1 01 0 1 0 1 0 1 ol~~ 1 ~d 1 1 1 R~ 1 1 ·~; '1'0
1
0

11l 1R~ 1 1

I.-1 T ;:;;;.~ ~-::--)
Control Fleld MLA: Rd • Rm • Ra + Rn

Set Conditlon Codes

The Multiply and Multiply-Accumulate
instructions use a two-bit Booth's
algorithm to perform integer multiplica­
tion. They give the least significant 32·
bits of the product of two 32-bit oper·
ands, and may be used to synthesize
higher precision multiplications.

The Multiply form of the instruction
gives AD • Rm*Rs. Rn is ignored, and
should be set to zero for c:ompatibility
with possible future upgrades to the
instruction set.

The Multiply-Accumulate form gives
Rd. Rm*As+Rn, which can save an
explicit ADD instrudion in some circum­
stances.

Both forms of the instruction work on
operands which may be considered as
signed (two's c:omplement) or unsigned
integers.

Operand restrlctlona - Due to the way
the Booth's algorithm has been imple­
mented, certain c:ombinations of
operand registers should be avoided.

Syntax

o • Do not al18r Conditlon Codes
1 • Set Conditlon Codes

--- AccumuialB bit (MLA specifier)
O • Mulllply (MUL)
1 • Muitlply and AccumuialB (MLA)

(The assembler will issue a warning if
these restridions are violated.) The
destination register (Rd) should not be
the same as the Rm operand register,
as Ad is used to hold intermediate
values and Am is used repeatedly
during the multiply. A MUL will give a
zero result if Am • Ad, and a MLA will
give a meaningless result.

The destination register Ad should also
not be R15, as it ls protected from
modification by these instructions. The
instruction will have no effect, except
that meaningless values will be placed
in the PSA flags if the S bit is set. All
other register combinations will give
correct results, and Ad, Rn and As may
use the same register when required.

PSR Flags • Setting the PSR flags is
optional, and is c:ontrolled by the S bit in
the instruction. The N and Z flags are
set c:orrectly on the result (N is equal to
bit 31 of the result, Z is set if and only if
the result is zero), the V flag is unat-

fected by the instruction (as for logical
data processing instructions), and the C
flag is set to a meaningless value.

Writlng to R15 • As mentioned above,
R15 must not be use as the destination
register (Rd). lf it is so used, the in­
struction will have no effect except
possibly to scramble the PSR flags.

R15 aa an Operand - R15 may be used
as one or more of the operands, though
the result will rarely be useful. When (
used as Rs the PC bits will be used
without the PSA flags, and the PC value
will be eight bytes on from the address
of the multiply instruction. When used
as Rn, the PC bits will be used along
with the PSA flags, and the PC will
again be eight bytes on from the
address of the instruction. When used
as Am, the PC bits will be used together
with the PSA flags, but the PC will be
the address of the instruction plus 12
bytes in this case.

MUL{c:ondHS}
MLA {condHS}

Ad, Am, Rs

where cond
s

Ad, Am, Rs, Rn

ls a two-character condition code mnemonic
Set condition codes if present.

Rd, Rm, Rs and Rn Are valid register mnemonics, such as RO-R15, SP, LI<, or PC.

NotH:
Ad must not be R15 (PC), and must not be the same as Am.
ltems in{} are optional. Those in <> must be present.

Examples:
MUL
MLAEOS

Ajlple Con1MUr, lnc. CONFIOENTIAL

A1,R2,R3
R1, R2, R3, A4

; A1 • R2 • R3. (R1 ,R2,R3 • Rd,Rm,As)
; Equivalent to: if (ZFLAG) R1 • R2*R3 + R4.
; Condition codes are set, based on the result.

32

Apple Computer 1 1 nc. • APRM I VL2340

; The multiply instruction may be used to synthesize higher precision multiplications.
For instance, multiply two 32-bit integers and generate a 64-bit result:

MOV RO, R1 LSR 16 ; RO (temporary) •top half of R1.
MOV R4, R2 LSR 16 ; R4 • top half of R2.
BIC R1, R1, RO LSL 16 ; R1 • bottom half of R1.
BIC R2, R2, R4 LSL 16 ; R2 • bottom half of R2.
MUL R3, RO, R2 ; Low section of result.
MUL R2, RO, R2 ; Middle section of result.
MUL R1, R4, R1 ; Middle sectlon of result.
MUL R4, RO, R4 ; High section of result.
ADDS R1, R2, R1 ; Add middle sectlons. (MLA not used, as we need R3 correct).
ADDCS R4, R4, Ox10000 ; Carry from above add.
ADDS R3, R3, R1 LSL 16 ; R3 is now bottom 32 produd bits.
ADC R4, R4, R1 LSR 16 ; R4 is now top 32 bits.

Notas:
1. R1 ,R2 are resigters containing the 32-bit integers. R3,R4 are registers for the 64-bit result.
2. RO is a temporary register.
3. R1 and R2 are overwritten during the multiply.

Load/Store Value from Memory
(LDR,STR)
The register load/store instructions are
used to load or store single bytes or
words of data. The LOA and STR
instrudions differ from MOV instructions
in that they move data between registers
and a specified memory address. In
contrast, the MOV instructions move data
between registers, or move a constant
(contained in the instruction) into a
register.

The memory address used in LDR/STR
transf ers is calculated by addlng an offset
to or subtracting an offset f rom a base
register. Typically, a load of a labeled
mernory location involves the loading via
a (signed) offset from the current PC.
Regardless of the base register used, the
result of the offset calculation may be
written back into the bMe register if 'auto­
indexing' is required.

OffMts and Auto-lndexlng - Th• offset
from the base may be either a 12-bit
binary immediate value in the instruction,
or a second register (possibly shifted in
some manner). The offset may be added
to (U· 1) or subtracted from (U·O) the
base register Rn. Th• offset modification
may be performed either before (pre­
indexed, P·1) or after (post-indexed,
P·O) the base is used as the transfer
address.

The W bit gives optional auto increment

ApPe ~. lnc. CONFIOENTIAI.

and decrement addressing modes.
The modified base value may be
written back into the base (W• 1), or
the old base value may be kept
(W•O). In the case of post-indexed
addressing, the write back blt is
redundant, since the old base value
can be retained by setting the offset to
zero. Therefore, post-indexed data
transfers always write back the
modifled base.

Hardware Addreu Tran81atlon •
The only use of the W bit in a post·
indexed data transfer is in non-user
rnode code, where setting the W bit
forces the -TRAN pin low for the
transfer, allowing the operating
system to generate a user address in
a system where the memory manage­
ment hardware makes suitable use of
this pln.

Shlfted Reglater Offl8t • The eight
shift control bits are described in the
data processing instructions, but the
register specifled shift amounts are
not implemented in this instructlon
class.

Byte• and Word• - This instruction
class may be used to transfer a byte
(B•1) or a word (B-0) between a
processor register and memory.

A byte load (LDRB) expects the data
on bits 031 to 024 if the supplied

33

address is on a ward boundary, on bits
023 to 016 if it is a ward address plus
one byte, and so on. The selected byte
is placed in the bottom eight bits of the
destination register, and the remaining
bits of the register are filled with zeroes.

A byte store (SlRB) repeats the bottom
eight bits of the source register four
times across the data bus. The extemal
memory system should activate the
appropriate byte subsystem to store the
data.

A ward load (LDR) will norrnally
generate a ward aligned address but
may also generate a non-ward-aligned
address. An address offset from a ward
boundary will cause the data to be
rotated into the register so that the
addressed byte position in the data
occupies bits 031 to 024. Reference
Appendix 1, Table 1.

UM of R15 - These instructions will
never cause the PSR to be modified,
even when Rd or Rn is R15.

ff R15 is specified as the base register
(Rn), the PC is used without the PSR
flags. When using the PC as the base
register one must remember that it
contains an acldress eight bytes
advanced from the address of the
current instruction.

ff R15 is specified as the register offset
(Am), the value presented will be the

Apple Computer, 1 nc.

FIGURE 16. LOAD/STORE VALUE FROM MEMORY (LDR,STR)

31 28 25 20 1615 1211 0

1Co~1x10111 IPluleHLI 1 Rn 1 1 1 Rd 1 1 1 1 ·o:,.~~1 2 1 1 1 1 1

1 lWL L Sour~tlnalion Regislef
Conditlon Base Regi818f

Code Load/Store: 0. STA, 1 • LDR

Wrlte-bac:k blt
o • no wrff&.bac:k

• APRM I VL2340

1 • Wrlte addreaa back into base (!).
Byte/Word blt

o • word transfar
1 • byte transfar (B)

Up/Oownblt
0 • Offset is negative
1 • Offset is positive

Pre/Post lndexlng
o • post: (baae),lndex
1 • pre: [base,index)

lmm-1 ->Operand 2 is an immediate value.
11 0

1 'u·n;;~ ~ 2~bl1t :a1'ue' 1

lmm-0 -> Operand2 is in a reglslef.

11 7 8 5 " 3 0
1 II 1

Immediate Value
O. Operand 2 is a regislef.
1 • Operand 2 is an

Immediate value.

Shlft Amount __ ___.

Shlft amount II a S.blt
shlft count, eo be applled
to the Rm regiltar.

1 L 2nd-Operand regislef

ShlftType
00 • l.ogical Left (LSL)
01 • Logical Rlght (LSR)

10 • Arilhmetlc Right (ASR)
11 • Rotal8 Right (ROR)

Note: There is no Rs for of shift for the LDRJSTR class. That is, the shift amount cannot be contained in a register.

PC together with the PSR.

When R15 is the source register (Rd) of
a register store (STR) instruction, the
value stored will be the PC together
with the PSR. The stored value of the
PC will be 12 bytes on from the address
of the instruction. A load register (LDR}
with R15 as Rd will change only the PC,

Apple~. lnc. CONFIOENTIAL

and the PSR will be unchanged.

Data Abort• • A transfer to or from a
legal address may still present special
cases for a memory management
system. For instance, In a system
which uses virtual memory, the raquired
data may be absent from main memory.
The memory manager can signal a
problem by taking the processor ABRT

34

pin high, whereupon the data transfer
instruction will be prevented from
changing the processor state, and the
data abort trap will be taken. lt is up to
the system software to resolve the
cause of the problem. The instruction
can then be restarted and the original
program continued.

(

(

Apple Computer, 1 nc. • APRM I VL2340

Syntax:
LOR/STR{ cond}{B}{l} Rd,<Address>{I}

where LDR means Load from memory into a register.
STR means store from a register into memory.
cond is a two-character condition mnemonic (see Condition Code section).
8 lf present implies byte transfer, eise a word transfer.
T lf present, the W bit is set in a post-indexed instruction, causing the

- TRAN pin to go low for the transfer cycle. T is not allowed when a pre-i
indexed addressing mode is specified or implied.

Rd is a valid register: RO-R15, SP, LK, or PC.
Addl'9ss Can be any of the variations in the following table.

Address Varlants:
Address expression:

<expression>

Pre-indexed address:

An expression evaluating to a relocatable address:
The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the
expression. This is a PC-relative pre-indexed address. H out of range
(at assembly or link time), an error message will be given.

Offset is added to base register before using as effective address, and
offsets are placed within the [] pair. Rn may be viewed as a pointer:

[Rn]{!) No offset is added to base address pointer.
[Rn, <expression>HI} Signed offset of expression bytes is added to base pointer.
[Rn, RmHn Add Rm to Rn before using Rn as an address pointer.
[Rn, Rm {<Shift> count}]{ij Signed offset of Rm (modified by shift) is added to base pointer.

Post-indexed address: Offset is added to base reg, after using base reg for the effective address.
Offsets are placed after the () pair:

[Rn],<expression>{ 1}
[Rn], Rm{I}

Expression is added to Rn, after Rn's usage as a pointer.
Rm is added to Rn, after Rn's usage as an address pointer.
Shift the offset in Rm by count bits, and add to Rn, after
Rn's usage as an address pointer.

[Rn), Rm <Shift> count{I}

where expression
Rm,Rn

shift
count

Example• (Pr•lndex):

A signed 13-bit expression (including the sign).
A valid register names: RO-R15, SP, LK, or PC. lf RN. PC, the assembler
will subtract 8 from the expression to allow for processor address readahead.
Any of: LSL, LSR, ASR, ROR, or RAX.
Amount to shift Am by. lt is a 5-bit constant, and may not be
specified as an Rs register (as for some other instruction classes).
lf present, the 1 sets the W-bit in the instruction, forcing the
effactive offset tobe added to the Rn register, after completion.

In each of these examples, the effactive offset is added to the Rn (base pointer) register prior to using the Rn register as the
effective address. Rn is then updated only if the 1 suffix is supplied.

STR
STR
LOA
LOA

Apple~. lnc. CONFIOENTIAL

R1, [R2, R1]1
R3, [R2]
R1, [RO, 16)
R9, [AS, RO LSL 2)

; *(R2+R1) • R1. Then R2 +• R1.
; *(R2) • R3.
; R1 • *(RO + 16). Oon't update RO.
; R9 • *(AS + (R2<<2)). Don't update AS.

35

Apple Computer, 1 nc. • APRM I VL2340

LOREOB R2, [AS, S] ; if (Zflag) R2 • *(AS + S), a zero-filled byte load.

Examples (Post-Index}:
In each of these examples, the effedive offset is added to the Rn (base pointer) register after using the Rn register as the
effedive address. Rn is then updated unconditionally, regardless of any 1 suffix.

STR
STR
LOA
LOA
LOREOB

Examples (Expression}:

R1, [R2], R11
R3, [R2), RSI
R1, [RO), 16
R9, [AS), RO ASR 3
R2, [AS), S

; *R2 • R1. Then R2 +• R1.
; *(R2) • R3 .. Then R2 +• AS.
; R1 • *RO. Then RO +• 16.
; R9 • *AS. Then AS +• (AO / 8).
; if (Zflag) R2 •*AS, a zero-filled byte load, and then AS+• S.

In these examples, the PLACE label is an intemal or extemal PC-relative label, typically created as shown. PC-relative refer­
ences are precompensated for the 8-byte read-ahead done by the processor. PARMx is a register-relative label, typically created
via a OTYPE directive, and assumed tobe relative to the LK (A14) register. OATAx is similar, but is presumably defined relative
to the SP (R13) register, and GENERAL relative to RO. In any case, they may be located up to ±4096 bytes from the associated
base register.

.

LOA
STR
LOA
STR
B

PLACE OW
Across • • •

RO, OATA1
R2, PLACE
A1, PARMO
R1, GENERAL
Across

0

; SP-relative. Same as: LOA AO, [SP+OATA1].
; PC-relative. Same as: STR A2, [PC+ 16).
; LK-relative. Same as: LOA A1, [LK+OATA1].
; AC-relative. Same as: STR R1, [AO+GENERAL].
; Skip over the data temporary.

; T emporary storage area.
; Aesume execution.

FIGURE 17. LOAD/STORE REGISTER LIST FROM MEMORY (LDM,STM}

Appe Con1>1Mf. lnc. CONFIOENTIAL

31 28 27 2!5 20 19 1615 0

Condition
Code

Up/Oown Bit
0 • Offset is negalive
1 • offset is positive

j i II 1

L_ Base Register

Load/Saont:O-STM, 1-LDM
Writa-back bit

O • no write-back
1 • Write addreu back inlD bale (!).

PSR & Force-User bit (" suffix)
0 • Do not load PSR OI force u.. mode.
1 • Load PSR, and optionaly force user mode (").

PrelPost lndexing Form
0 • Post: (base),index
1 • Pre: (bale,index)

36

(

Apple Computer, 1 nc.

The multi-register transfer instructions
are used to load (LDM) or store (STM)
any subset of the currently visible
registers. They support all possible
stacking modes (push uplpop down, or
push down/pop up). They are very
efficient instrudions for saving or
restoring context, or for moving large
blocks of data around main memory.

Th• Register List - The instrudion can
cause the transfer of any registers in
the current bank (and non-user mode
programs can also transfer to and from
the user bank). The register list is
contained in a 16-bit field in the
instrudion, with each bit oorresponding
to a register. A logic one in bit zero of
the register fielet will cause RO to be
transferred, a logic zero will cause it not
to be transferred; similarly bit one
controls the tra.nsfer of R1, and so on.

Addreaalng Modea - The transfer
addresses are determined by the
contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U).
The registers are transferred in the
order lowest to highest, so R15 (if in
the list) will always be transferred last.
The lowest register also gets trans­
ferred to.1rom the lowest memory
address. This is illustrated in Figures
18 and 19.

Transfer of R15 - Whenever R15 is
stored to memory, the value transferred
is the PC together with the PSR flags.
The stored value of the PC will be 12
bytes advanced f rom the address cf the
STM instruction.

H R15 is in the transfer list of a load
multiple (LDM) instruction the PC is
overwritten, and the eff8c:I on the PSR
is oontrolled by the S bit. 1 the S bit is
zero the PSR is preserved unchanged,
but if the S bit is set the PSR will be
overwritten by the oorresponding bits of
the loaded value. In user mode,
however, the 1, F, M1, and MO bits are
protected from change, whatever the
value of the S bit. The mode at the start
of the instrudion determines whether
these bits are protected, and the
supervisor may retum to the user
program, reenabling interrupts and
restoring user mode with one LDM
instrudion.

Apple~. lnc. CONFIOENTIAL

Transfers to User Bank - For STM
instrudions the S bit is redundant as the
PSR is always stored with the PC
whenever R15 is in the transfer list. In
user mode the S bit is ignored, but in
other modes it has a second interpreta­
tion. S • 1 is used to force transfers to
take values from the user register bank
instead of from the current register
bank. This is useful for saving the user
state on process switches. Note that
when it is so used, write back of the
base will also be to the user bank,
though the base will be fetched from the
current bank. Therefore doni use write
back when forcing user bank.

In LDM instrudions the S bit is redun­
dant if R15 is not in the transfer list, and
again in user mode it is ignorad. In
non-user mode where R15 is not in the
transfer list, s-1 is used to force loaded
values into user registers instead of the
current register bank. When used in
this manner, care must be taken not to
read from a banked register during the
following cycle; if in doubt, insert a no­
op. Again, doni use write back when
forcing a user bank transfer.

R15 as the Base - When the base is the
PC, the PSR bits will be used to form
the address as well. Also, write back is
never allowad when the base is the PC
(setting the W bit will have no effect).

Base Wlthln th• Register List - When
write back is specified, the base is
written back at the end of the second
cyde of the instruction. During a STM,
tha first register is writtan out at the start
of the second cycle. A STM which
includes storing tha base, with the base
as the first register to be storad, will
therefore store the unchangad value,
whereas with the base second or later
in the transfer order, will store the
modified value. An LDM will always
overwrite the updatad base if the base
is in the list.

Abort Durlng an STM - H the abort
occurs during a store multiple instruc­
tion, the processor takas little action
until the instrudion oompletes, where­
upon it enters the data abort trap. The
memory manager is responsible for
preventing erroneous writes to the

37

• APRM I VL2340

memory. The only change to the
internal state of the processor will be
the modification of the base register if
write back was specified, and this must
be reversed by software (and the cause
of the abort resolved) before the
instrudion may be retried.

To illustrate the various load/store
modes, consider the transfer of R1, RS
and R7 in the case where Rn • 1 OOOH
and write back of the modified base is
required (W • 1). These figures show
the sequence of register transfers, the
addresses usad, and the value of Rn
after the instrudion has completed.

In all cases, had write back of the
modifiad base not been requirad (W•O),
Rn would have retainad its initial value
of 1 OOOH unless it was also in the
transfer list of the load multiple register
instrudion. Then it would have been
overwritten with the loaded value.

Aborts Durlng LDM - When the
processor detects a data abort during a
load multiple instrudion, it modifies the
operation of the instrudion to ensure
that recovery is possible.

Overwriting of registers stops when the
abort happens. The aborting load will
not take place, nor will the precading
one, but registers two or more positions
ahead of the abort (if any) will be
loaded. (This guarantees that the PC
will be preservad, since it is always the
last register tobe overwritten.)

The base register is restorad, to its
(modified) value if write back was
requested. This ensures recoverability
in the case where the base register is
also in the transfer list, and may have
been overwritten before the abort
occurred.

The data abort trap is taken when the
load multiple has completed, and the
system software must undo any base
modification (and resolve the cause of
the abort) before restarting the instruc­
tion.

Apple Computer, 1 nc. e APRM / VL2340

The following figures illustrate the
impact of various addressing modes.
R1, RS, and R7 are moved tolfrom
memory, where Rn.ox1000, and a

write-back of the modified base is done
CN• 1). The figures show the sequence
of incrementing •pushes•, the ad­
dresses used, and the final value of Rn.

Without writeback, Rn would remain at
Ox1000.

Figur• 19 illustrates decrementing
•pushes• to the stack based upon Rn.

FIGURE 17. INCREMENTING INDEX

Paet.fnenmlnl Add.....in1

i------t 01100C i------t 01100C

Rn__. 1------1 011000 R1 011000
-----t

...._ ___ Ox0FF4 ____ _,
OllOFF4

(1) Befont STM lnatruc:11on (2) Aller First T......,

i------1 01100C Rn _.--~--7 --t 01100C

--~-1--1 011000
~

i---J!'._1 --1 011000

____ _. OxOFF4_ ___ OxOFF4

(3) Afllr Second Tl'Mlfw (4) STM lnltructlan Compllte

,,.llicremenl Addrwlng

Ox100C 01100C

~1
Rn__. Ox1000 011000

OxOFF4 Ox0FF4

(1) (2)

Ox100C
Rn_. Ff7 01100C

~
~

011000 OX1000

OllOFF4 OllOFF4

(3) (4)

Apple~. lnc. CONFIOENTIAL 38

AGURE18. DECREMENTINGINDEX

PolW>lcnmlnl Add'"81ng

i------t 01100C

Rn__. 1------1 011000

R1
OllOFF4 ____ _,

Ox100C

Ox1000

(1) Bebe STM lnllructlon

OxOFF4

(2) After F1r1t Tranafw

01100C 01100C

011000 7 011000
R5
~ R1

Ox0FF4 Rn OxOFF4

(3) Afllr Second Tranaf9r (4) After STM lnarucb Compl•

PrH>ec1m.,. Add.-lng

Ox100C Ox100C

Rn_.
-----1

011000 011000

R1
..._ ___ _. OxOFF4 Ox0FF4

(1) (2)

01100C Rn_. 01100C

011000 011000
R7

R5 R5
R1 OxOFF4 R1 Ox0FF4

(3) (4)

(

(

(

Apple Computer, lnc. • APRM I Vl2340

Syntax:

LDMISTM{cond}<mode> Rn{!}, <Rlist>{"}

where cond ls an optional 2-letter condition code common to all instructions.
ls any of: FD, ED, FA, EA, IA, IB, DA, or DB. mode

Rn
Rlist

A

ls a valid register name: RO-R15, SP, LI<, or PC.
Can be a single register (as described above for Rn), or may be a list of
registers, enclosed in {} (eg {RO,R2,R7-R10,LK}).
H present, requests write back (W-1). Otherwise w.o.
H present, set S bit to load the PSR with the PC, or force transfer of user
bank, when in non-user mode.

Addreulng Mode Name• • There are different assembler mnemonics for each of the addressing modes, depending on whether
the instruction is being used to support stacks, or for other purposes. The names may be used interchangeably: e.g., LDMED
performs exactly th• same as LDMIB. The name equivalences and instruction bit values are:

uuaa Oth•r
Functlon ..§llä ugq11 l..IJl E.IJl U blt Optratlon

Pre-increment load LDMED LDMIB 1 1 1 Pop upwards
Post-increment load LDMFD LDMIA 1 0 1 Pop upwards
Pre-decrement load LDMEA LDMDB 1 1 0 Pop downwards
Post-decrem4!nt load LDMFA LDMDA 1 0 0 Pop downwards

Pre-increment store STMFA STMIB 0 1 1 Push upwards
Post-increment store STMEA STMIA O O 1 Push upwards
Pre-decrement store STMFD STMDB 0 1 0 Push downwards
Post-decrement store STMED STMDA 0 0 0 Push downwards

FD, ED, FA, EA indicate whether or not the addressed memory cell has valid data in it (from the previous push or pop), and which
direction the stack is to flow. They define the settings of the L, P, and U bits, based on the form of stack required.

The F and E refer to a "fu11• or •empty• stack cell. The A and D refer to whether the stack is ascending or descending. lf ascend­
ing, a STM will go up and LDM down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean lncrement After, lncrement Before,
Decrement After, Decrement Before.

Example•
LDMFD

STMIA

SPI, {RO, R1, R2} ; unstack 3 registers

BASE, {RO, R15} ; save all registers

These instructions may be used to save state on subroutine entry, and restore it efficiently on retum to the calling routine;

STMED SPI, {R~R3. LK}; Save RO to R3 for workspace,and R14 for returning.
BL Subroutine ; This caH will overwrite R14

LDMED SPI, {Ro-R3, PC} ; Restore workspace and retum, restoring PSR flags.

Apple~. lnc. CONFIOENTIAL 39

Apple Computer, lnc. • APRM I VL2340

FIGURE 20. SOFTWARE INTERRUPT (SW}

31 28 27 24 23 0

Nota: The machine comments field in bits 23:0 ara ignored by the hardware. They are made available for free interpretation by
the software executive, and may be found in LSB-first byte order on the stack.

The Software Interrupt (SWI) instruction
is used to enter supervisor mode in a
controlled manner. The instruction
causes the software interrupt trap to be
taken, which effects the mode change,
with execution resuming at Ox08. H this
address is suitably protected (by
external memory management hard­
ware) from modification by the user, a
fully protected operating system may be
constructed.

Syntax:
SWl{cond} <expression>

Return from the Supervisor - The PC
and PSR are saved in R14_svc upon
entering the software interrupt trap, with
the PC adjusted to point to the word
after the SWI instruction. MOVS R15,
R14_svc will return to the user program,
restore the user PSR and retum the
processor to user mode.

Note that the link mechanism is not re­
entrant, so if the supervisor code
wishes to use software interrupts within

itseH it must first save a copy of the
retum address.

Machln• Commenta Fleld - The
bottom 24 bits of the instruction are
ignored by the processor, and may be
used to communicate with the supervi­
sor code. For lnstance, the supervisor
may extract this field and use it to index
into an array of entry points for routines
which perform various supervisor
functions.

where cond ls the two-character condition code comrnon to all instructions.
expression ls a 24-bit field of any format. The processor itseH ignores it, but the

typical scenario is for the software executive to specify pattems in it,
which will be interpreted in a particular way by the executive, as commands.

Examplea:
acons Zero.o, ReadC-1, Write1·2 ; Assembler constants.

SWI
SWI
SWINE

ReadC
Writel+ "k•
0

; Get next character from read stream
; Output a "k• to th• Write stream
; Conditionally call supervisor with 0 in comment field

The above examples assume that suitable supervisor code exists. For instance:
; Assume that the R13_svc (the supervisor's R13) points to a suitable stack.

acons Zero-0, ReadC-1, Write1·2 ; Assembler constants.
acons CC_Mask. OxFC00003 ; Non-address area mask.

08h B Super ; SWI entry point
••

Super STMFD SPl,{rO,r 1, r2) ; Save working registers.
BIC r1, r14, CC_Mask; Strip condx codes from SWI instrudion address.
LDR RO, [R1, -4) ; Get copy of SWI instrudion.
BIC RO, RO, OxFFOOOOOO ; Get lower 24 bits of SWI, only.
MOV R1, SWI_ Table ; Get absolute address d PC-relative table.
LOA PC, [R1, RO LSL 2) ; Jump indirect on the table.

SWl_Table dw Zero_Action ; Address of service routines.
dw ReadC _Action
dw Write1 _Action

Write1 _Action ; Typical service routine.

LDM R13,{RO-R2, PC}" ; Restore workspace, and retum to inst after SWI.

Apple~. lnc. CONFIOENTIAL 40

(

(

Apple Computer, lnc.
• APRM I VL2340

FIGURE 21. COPROCESSOR DATA OPERATIONS (CPD)

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

l 6~'x l 1' 1 '1 o lc'p ~I 'cR~ 1 ~~d· 1 'c~; 1 c~ lol ~~~ 1
T
Condition

Code

The instruction is executed only if the
condition code field is true. The field is
described in the Condition Codes
section.

This is actually a class of instructions,
rather than a single instruction, and is
equivalent to the ALU class on the
APRM. All instructions in this class are
used to direct ihe coprocessor to
perform some intemal operation. No
result is sent back to the APRM, and
the APRM will not wait for the operation

Syntax:

T --r= -,-- --.-- -. =ir

c6= li:=::
Coproceuor Information
Destination

Regla'81' Coprocessor Number

to complete. The coprocessor could
maintain a queue of such instructions
awaiting execution. Their execution
may then overlap other APRM adivity,
allowing the two processors to perform
independent tasks in parallel.

Coproceaor Flelds - Only bit 4 and
bits 31 :24 are significant to the APRM;
the remaining bits are used by
coprocessors. The above field names
are used by convention, but particular
coprocessors may redefine the use of

any or all fields as appropriate, except
for the CP#. For the sake of future
family product introductions, it is
encouraged that the above conventions
be followed, unless absolutely neces·
sary.

By convention, the coprocessor should
perform an operation specified in the
CP Opc field (and possibly in the CP
field) on the contents of CRn and CRm,
placing the result into CRd.

CPD{cond} CP#,<expression1>, CRd, CRn, CRm{,<expression2>}

where cond ls the conditional execution code, common to all instructions.
CP# ls the (unique) coprocessor number, assigned by hardware.
CRd, CRn, CRm These are valid coprocessor registers: CAO-CA15.
expression1 Evaluates to a constant, and is placed in the CP Opcfield.
expression2 (Where present) evaluates to a constant, and is placed in the CP field.

Examples:
COP 1, 10, CR1, CR7, CR2 ; Request co-proc #1 to do operation 10 on CR7 and CR2, putting result into CR1.

; H the Z flag is set, request co-proc #2 to do CDPEQ 2, 5, CR1, cr2, Cr3, 2
; operation 5 (type 2) on CR2 and CA3, placing the result into CR1.

FIGURE 22. COPROCESSOR LOAD/STORE DATA (LDC/STC)

Apple~-. lnc. CONFIOENTIAL

31 28 27 24 23 2019 1615 1211 8 7 5 4 3 0

T J Cond•lon

lnde~Control
0 - PoSl·moY8
1-Pre-move

UplDown--­
O·Sublraa
1 - Adel Offset

i 1 1 ' 1

otl98I

1Cos>~1 a.e• Poeltlve Sn:IDll lmmedlal•
Reglll• Oll88I

ARM Bae Cos>roceaeor
Pointer Nurnber

Reglller Load/S1ore B•
Wrtlebeck 0 • Store IO Memory

0 • No writebeck 1 • Load to Coproc Reg
1 • Wrlle e.L to Rn.

Transter Length

41

Apple Computer, 1 nc.

The LDC and STC instructions are used
to load or store single bytes or words of
data. They differ from MCR and MAC
instructions in that they move data
between coprocessor registers and a
specified memory address. In contrast,
the other instructions move data
between registers, or move a constant
(contained in the instruction) into a
register.

The memory address used in LDC/STC
transfers is calculated by adding an
offset to or subtracting an offset from a
base pointer register, Rn. Typically, a
load of a labeled memory location
involves the loading via a (signed) offset
from the current PC. Regardless of the
base register used, the result of the
offset calculation may be written back
into the base register if 'auto-indexing'
is required.

Coprocessor Fields • The CP# field
identifies which coprocessor shall
supply or receive the data. A coproces­
sor will respond only if its number
matches the contents of this field

The CRd field and N bit contain
information which may be interpreted in
different ways by different coproces­
sors. By convention, however, CRd is
the register to be transferred (or the first
register, where more than one is to be
transferred). The N bit is used to
choose one of two transfer length
options. For instance, N·O could select

Syntax:

the transfer of a single register, and
N-1 could select the transfer of all
registers for context switching.

Offset• and lndexlng - The APRM is
responsible for providing the address
used by the memory system for the
transfer, and the modes available are
similar to those used for the APAM's
LDR/STR instructions.

Only 8-bit offsets are permitted, and the
APRM automatically scales them by two
bits to form a word offset to the pointer
in the Rn register. Of itself, the offset is
an 8-bit unsigned value, but a 9-bit
signed negative offset may be supplied.
The assembler will complement it to an
8-bit (positive) value and will clear the
instruction's U bit, forcing a compensat­
ing subtract. The result is a ±256 word
(1024 byte) offset from Rn. Again, the
APRM internally shifts the offset left two
bits before addition to the Rn register.

The offset modification may be per­
formed either before (pre-indexed, P-1)
or after (post-indexed, P·O) the base is
used as the transfer address. The
modified base value may be written
back into the base (W•1), or the old
base value may be kept (W•O). In the
case of post-indexed addressing, the
write back bit is redundant, since the old
base value can be retained by setting
the offset to zero. Therefore post­
indexed data transfers always write
back the modified base.

<LDC/STC>{cond}{LHT} CP#, CRd, <Address>{I}

where LDC means Load from memory into a coprocesaor register.
STC means store a coprocessor register to memory.

• APRM I Vl2340

For an offset of + 1, the value of the Rn (
base pointer register (modified, in the
preindexed case) is used for the first
word transferred. Should the instruction
be repeated, the second word will go
fromi1o an address one word (4 bytes)
higher than than pointed to by the
original Rn, and so on.

UH of R15 - lf A15 is specified as the
base register (Rn), the PC is used
without the PSR flags. When using the
PC as the base register note that it
contains an address eight bytes
advanced from the address of the
current instruction. As with the LORI
STR case, the assembler performs this
compensation automatically.

Hardware Addres• Tranalatlon - The
W bit may be used in non-user mode
programs (when post-indexed address­
ing is used) to force the -TRANS pin low
for the transfer cycle. This allows the
operating system to generate user
addresses when a suitable memory
management system is present.

Data Abort• - lf the address is legal but
the memory manager generates an (
abort, the data abort trap will be taken. ·
The writeback of the modified base will
take place, but all other processor state
data will be preserved. The coproces­
sor is partly responsible for ensuring
restartability. lt must either detect the
abort, or ensure that any actions
consequent from this instruction can be
repeated when the instruction is retried
after the resolution of the abort.

cond is a two-character condition mnemonic (see Condition Code section).
L lf present implies long transfer (N•1), eise a short transfer (N•O).
T lf present, the W bit is set in a post-indexed instruction, causing the

- TRAN pin to go low for the transfer cycle. T is not allowed when a pre-i
indexed addressing mode is specified or implied.

CP# Valid coprocessor number, determined by hardware.
CRd Valid coprocessor register number: CRO-CA15.
Address Can be any of the variations in the following table.

Apple~. lnc. CONFIDENTIAL 42

'• Apple Computer, lnc. • APRM I VL2340

Addre• V1rl1nta:
Address expression:

<expression>

Pre-indexed address:

[Rn]{I}

An expression evaluating to a relocatable address:

The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the
expression. This is a PC-relative pre-indexed address. H out of range
(at assembly or link time), an error message will be given.

Offset is added to base register before using as effective address, and
offsets are placed within the [] pair. Rn may be viewad as a pointer:

No offset is added to base address pointer.
[Rn, <expression>]
(Rn, <expression>Hn

Signed offset of expression bytes is added to base pointer.
Signed offset of expression bytes is added to base pointer. Then
this effective address is written back to Rn.

Post-indexed address: Offset is added to base reg, after using base reg for the effective
address. Offsets are placed after the [] pair:

[Rn],<expression> Expression is addad to Rn, after Rn's usage as a pointer.

where expression A signed 13-bit expression (lncluding the sign).
Rn Avalid register names: RO-Rt5, SP, LK, or PC. II RN· PC, the

assembler will subtract 8 from the expression to allow for processor
address readahead.

Examplea (Pre-lndex):
In each of these examples, the effective offset is addad to the Rn (base pointer) register prior to using the Rn register as the
effective addre11. Rn is then updated only if the 1 suffix is supplied. Copracessor #1 is used in all cases, for simplicity.

STC 1,CR3, [R2] ; •(R2) • CR3.
LDC 1,CR1, (RO, 16) ; CR1 • •(RO + 16). Oon't update RO.
LDCEQ 1,CR2, [AS, 12)1 ; if (Zflag) CR2 • •(RS + 12). Then, R5 +• 12.

Examplea (Poat-lndex):
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the
effective address. Rn is then updated unconditionally, regardless of any 1 suffix. Coprocessor #3 is used in all cases, for
simplicity.

STC
LOC
LDCEQL

Examplea (Expre•lon):

3, CR1, [R2], R11
3, CR1, [RO), 16
3, CR2, [RS], 4

; •R2 • CR1. Then R2 +• R1.
; CR1 • ·Ro. Then RO +• 16.
; if (Zflag) CR2 • •RS, and then (implicitly), R5 +• 4.
; Use the long option (probably to store multiple words).

In these examples, the PLACE label is an intemal or extemal PC-relative label, typically created as shown. PC-relative refer­
ences are precompensated for the 8-byte read-ahead done by the processor. lt may be located up to ±1024 bytes from the
associatad base register, and must be a multlple of 4 bytes in offset.

STC R2, PLACE ; PC-relative. Same as: STC R2, [PC+S].
B Across ; Skip over the data temporary.

' PLACE DW
Across • • •

AilPle ~er. lnc. CONFIOENTIAL

0 ; Temporary storage areL
; Resume execution.

43

Apple Computer, 1 nc.

FIGURE 23. COPROCESSOR REG TRANSFER (MCR,MRC)

Condltlon
Code

The instruction is executed only if the
condition code field is true. The field is
described in the Condition Codes
section.

the oonverse: A FLOAT of a 32-bit
value in an APRM register into a
floating point value within a ooprocessor
register.

• APRM I VL2340

conventional interpretation is that the
CP Opc and CP fields specify the
operation for the coprocessor to
perform, CRn is the coprocessor
register used as source or destination of
the transferred information, and CRm is
the second coprocessor register which
may be involved in some way depend­
ent upon the operation code.

This is actually a class of instructions,
rather than a single instruction, and is
equivalent to the ALU class on the
APRM. lnstructions in this class are
used to direct the coprocessor to
perform some operation between an
APRM register and a coprocessor
register. lt differs from the CPD
instruction in that the CPD performs
operations on the coprocessor's internal
registers only.

An important use of this instruction is to
communicate control information
directly from the coprocessor into the
APRM PSR flags. As an example, the
result of a oomparison of two floating
point values within the coprocessor can
be moved to the PSR to oontrol
subsequent execution flow.

T111n•f•• To/From R15: When a
coprocessor register transfer to APRM (
has R15 as the destination, bits 31 :28

An example of an MCR usage would be
a FIX of a floating point value held in
the ooprocessor, where the number is
converted to a 32-bit integer within the
coprocessor, and the result then
transferred back to an APRM register.
An example of an MAC usage would be

Syntax:

Coproceaor Fleld• - The CP# field is
used by all coprocessor instructions to
specify which coprocessor is being
invoked.

The CP Opc, CRn, CP, and CRm fields
are used only by the coprocessor, and
the Interpretation of these fields is sat
only by oonvention; other incompatible
interpretations are allowed. The

MCR/MRC{oond} CP#,<expression1>, Rd, CRn, CRm{,<expression2>}

where cond
CPI
Rd

ls the oonditional execution code, common to all instructions.
ls the (unique) coprocessor number, assigned by hardware.
ls the APRM source or destination register.
These are valid coprocessor registers: CRO-CR15.
Evaluates to a constant, and is placed in the CP Opc field.

of the transferred word are copied into
the N, Z, C, and V flags, respectively.
The other bits of the transferred word
are ignored; the PC and other PSR
flags are unaffected by the transfer.

A ooprocessor register transfer from
APRM with R1t as the source register
will save the PC together with the PSR
flags.

CRn, CRm
sxprsssion1
sxprsssion2 (Where present) evaluates to a constant, and is placed in the CP field.

ExamplH:
MCR 1, 10, R1, CR7, CR2

MRCEQ 2, 5, R1, cr2, Cr3, 2

AllPe Con1>1l•. lnc:. CONFIOENTIAL

; Request co-proc #1 to do operation 10 on
; CR7 and CR2, putting result into APRM's R1.

; H the Z flag is set, transfer the APRM's R1 reg to the co-proc register (defined
by hardware), and request co-proc #2 to do oper 5 (type 2) on CR2 and CR3.

44

(

Apple Computer, 1 nc. • APRM I VL2340

FIGURE 24. UNDEFINED (RESERVED) INSTRUCTIONS

31 28 27 24 23 8 7 4 3 0

1 ~~ 1~01 01 1lx'x'x'x'x'x'x'x'x'x'x'x'x'x'x'xl1'x'x'1 lx'x'x'xl

31 28 27 25 24 5 4 3 0

I~ 1~11 1lx'x'x'x'x'x'x'x'x1x'x'x'x'x1x1x1x 1x 1x 1x'1jx'x'x'xl

Note: The above instructions will be presented for execution only if the condition fielet is true.

lf the condition is true, the Undefined
lnstruction trap will be taken.

Note that the undefined instruction
mechanism involves offering these
instructions to any coprocessors which
may be present, and all coprocessors
must refuse to accept them by taking
CPA high.

Uslng Condttlonal lnstructlons -

Auembler Syntax - At present the
assembler has no mnemonics for
generating these instructions. lf they
are adopted in the future for some
specified use, suitable mnemonics will
be added to the assembler. Until such
time, these instructions should not be
used.

(1) Using conditionals for logical OR, this sequence:
CMP R1, p ; H R1 ·p or R2..q then goto Label
BEO Label
CMP R2,q
BEO Label

can be replaced by
CMP R1, p

INSTRUCTION SET SUMMARY
The following examples show ways in
which the basic processor instructions
can combine to give efficient code.
None of these methods saves a great
deal of execution time (although they
may save some), mostly they just save
code.

CMPNE Rm,q
BEO

; H condition not satisfied try other test

(2) Absolute value
TEO
RSBMI

Label

R1, 0
R1,R1,0

(3) Multiplication by 4, 5 or 6 (run time)
MOV R2, RO LSL 2
CMP R1, 5
ADDCS R2, R2, RO
ADDHI R2,R2,RO

(4) Combining discret• and range tests
TEO R2, 127
CMPNE R2, ••-1
MOVLS R2, •,•

Apple~. lnc. CONFIOENTIAL

; Test sign
; and 2's complement if necessary

; Multiply by 4
; Testvalue
; Complete multiply by 5
; Complete multiply by 6

; Discrete test
; Rangetest
; The, R2 .·.-

45

Apple Computer, 1 nc. • APRM I VL2340

Division and Remalnder
; Enter with numbers in RO and R1

MOV R4, 1
Div1 CMP R1, OxSOOOOOOO

CMPCC R1, RO
MOVCC R1, R1 LSL 1
BCC Div1
MOV R2,0

Div2 CMP RO, R1
SUBCS RO,RO,R1
ADDCS R2,R2,R4
MOVS R2nt, R4 LSR 1
MOVNE R1, R1 LSR 1
BNE Div2

Division result is in R2.
Remainder is in RO.

FIGURE 25. INSTRUCTION SET SUMMARY

; Bit to control the division
; Move R1 until greater than RO

; Test for possible subtraction
; Subtract if ok
; Put relevant bit into result
; Shift control bit
; Halve unless finished

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

01-11~
. !_ 1

Condx s Rn Rd Operand2

Condx 0 0 0 0 0 0 IA s Rd Rn Rs 1 0 0 Rm
T .- --.- T .

Condx 0 0 0 1 xxxxxxxxxxxxxxxx 1XX1 xxxx
Condx 01-11 PuleJ1L Rn Rd Offset (variants)

Condx 0 1 1 X X X X x'x X X x'x X X x'x X X lx X X 1 X X X X

Condx 1 0 0 PuieEL Rn R15 <---- Register List ----> RO
--.- --.- T --.-:i- T --.- T T

Condx 1 0 1 L Word address offset

Condx 1 1 0 PUJNBL Rn CRd CP# Offset . .
Condx 1 1 1 0 CPOpc CRn CRd CP# CP 0 CRm

Condx 1 1 1 0 Opc IL Crn Rd CP# CP 1 CRm
--.- --.- --.- --.- --.- --.- --.-
Condx 1 1 1 1 Bit space ignorecl bV processor

Alll)le ~. lnc. CONFIOENTIAL 46

Data Processing

Multiply

Undefined

Load, Store

Undefined

Multi-Register Transfer

Branch, Call

Coproc Data Transfer

Coproc Data Opr

Coproc Register Transfer

Software Interrupt

(

(

Apple Computer, 1 nc.

Pseudo Rllndom Binary Sequence
Generator - lt is often necessary to
generate (pseudo-) random numbers
and the most efficient algorithms are
based on shift register-based genera­
tors with exclusive or feedback rather

like a cyclic redundancy check genera­
tor. Unfortunately the sequence of a 32
bit generator needs more than one
feedback tap to be maximal length (i.e.
2"32-1 cycles before repetition). The
basic algorithm is Newbit • bit_33 xor

Enter with seed in RO (32 bits), R1 (1 bit in R1 lsb)
Uses R2

TST R1, R1LSR1
MOVS R2, RO RAX
AOC R1, R1, R1
EOR R2, R2, RO LSL 12
EOR RO,R2,R2 LSR 20

New seed in RO, R1 as before

MuHlpllcatlon by Constant:
(1) Multiplication by 2"n (1,2,4,8, 16,32 ..)

MOV RO, RO LSL n

(2) Multiplication by 2"n+ 1 (3,5,9, 17 ..)
AOO . RO, RO, RO LSL n

(3) Multiplication by 2"n-1 (3,7, 15 ..)
RSB RO, RO, RO LSL n

(4) Multiplication by 6

; Top bit into carry
; 33 bit rotate right
; Carry into lsb of R1
; (lnvolvedl)
; (Whewl)

AOO RO, RO, RO LSL 1 ; Multiply by 3
AOO RO, RO LSL 1 ;and then by 2

(5) Multiply by 10 and add in extra number
AOD RO, RO, RO LSL 2 ; Multiply by 5
MOV RO, R2, RO LSL 1 ; Multiply by 2 and add in next digit

(6) General recursive method for R1 .Ro*C,C a constant:

(a) lf C even, say C • 2"n*O, 0 odd:

0·1: MOV R1, RO LSL n
Oo1: (R1 ·RO*O)

MOV R1, R1 LSL n

(b) lf C MOO 4 • 1, say C • 2"n*D+ 1, D odd, N> 1:

D-1: ADD R1, RO, RO LSL n
Do1: (R1 • RO*D)

ADD R1, RO, R1 LSL n

(c) lf C MOO 4 • 3, say c. 2"n*D-1, D odd, n>1:

0·1: RSB R1, RO, RO LSL n
Oo1: (R1 -RO*D)

RSB R1, RO, R1 LSL n

• APRM I VL2340

bit_20, shift left the 33 bit number and
put in Newbit at the bottom. Then do
this for all the Newbits needed i.e. 32 of
them. Luckily, this can all be done in
SS cycles:

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 whlch is done by:

RSB R1, RO, RO LSL 2 ; Multiply by 3
RSB R1, RO, R1 LSL 2 ; Multiply by 4*3-1 • 11
ADO R1, RO, R1 LSL 2 ; Multiply by $*11+1 • 45

rather than by:

AOO R1, RO, RO LSL 3 ; Multiply by 9
AOD R1, R1, R1 LSL2 ; Multiply by 5*9 • 45

AppleCo-·~•11'. lnc. CONFIOENTIAL 47

Apple Computer, lnc. e APRM I VL2340

Loadlng • Word wlth Unknown Allgnment:
Enter with address in RO (32 bits)
Uses R1, R2; result In R2.
Note R2 must be less than R3, e.g. 2, 3

BIC R1, RO, 3
LDMIA R1, {R2,R3}
AND R1, R0, 3
MOVS R1, R1 LSL 3
MOVNE R2, R2, LSR R1
RSBNE R1, R1, 32
ORRNE R2, R2, R3 LSL R1

Slgn Extension of Partial Word
MOV RO, RO LSL 16
MOV RO, RO, LSR 16

Return,S.ttlng Condltlon CodH
BIOS PC, R14,CFLAG
ORRCCS PC, R14, CFLAG

; Get word aligned address.
; Get 64 bits containing answer.
; Correction fador in bytes, not in bits.
; Test if aligned.
; Produd bottom of result word (if not aligned).
; Get other shift amount.
; Combine two halves to get result.

; Movetotop
; ... and back to bottom
; (Use ASR to get sign extended version).

; Returns, clearing C flag rom link register.
; Conditionally retums, setting C flag.

Above code -should not be used except in User mode, since it will raset the interrupt enable flags to
their value when R14 was set up. This generally applies to non-user mode programming.
e.g., MOVS PC,R14 MOVPC,R14 is saferl

ApPe ~-. lnc. CONFIDENTIAL 48

(

Apple Computer, 1 nc.

Appendix 1 • Dlfferencea Between
VL86C010 (ARM) And APRM
The modifications made to the ARM in
order to create the APRM predomi­
nantly affect four instructions; load, load
multiple, store, and store multiple. For
the load and load multiple instructions
both byte and word operations are
modified. Only the word functions of
the store and store multiple are altered.

Tha APRM usas the "BigEndian• style
byta addrassing modes that are the
same as tha MC680x0 processor
family. See Tabla 1 for examples.

Tha APRM allows the usar to combine
segmants from two aligned words of
data into one nonaligned word oriented
as shown in Table 1. The data is
loaded via a nine step process which
genarates 2 complate memory ac­
casses (dbl access). The axpectad
address is ganerated by the APRM

(stap 1) tha user must notice that the
addrass is nonaligned and freeze the
clock (step 2). The user than provides
tha first word of data (step 3) and brings
tha NADA signal high (step 4). NADR
will latch the appropriata bytes of data
from tha first word and cause tha APRM
to output the naw addrass (stap 5).
This address is tha first address
incramanted by four bytes. Tha user
will provida tha sacond word of data
(step 6), deassert NADR (step 7) and
rastart the clock (stap 8). The APRM
will taka the combination of thase two
words shifted intarnally by the proper
amount and load them into the destina­
tion register (step 9). See Figure 1 for a
timing sequence of this procedure.

Table 2 datails the shift results for the
various addrass oombinations during
store operations. Extemal hardware
must fraeze tha processor clock and
anable the proper memory lanas for

TABLE 1. SHIFTS FOR LOAD OPERATIONS

Byte Addre„ Value

• APRM I VL2340
nondestructive un-aligned word stores.
NADR functions during double accass
stores of un-alignad word valuas to
ganarata tha next word aligned address
for writing the seoond data segmant.

The APRM also providas 32 address
signals although the program area is
still limited to tha lowar 26 bits. Whan­
avar the APRM is parforming an opoode
fatch tha upper six bits ara forced low.
lncreasing tha siza of tha address
space made tha address axception
check unacessary as the old exception
areas are now valid memory locations.
An input is added, MSBLOW, that when
asserted high causes tha upper eight
bits of the addrass bus to go low.

A programmable page detector is also
added. lt can be programmed for 256,
512, 1024, or 2048 word pages.
Whenever the naxt addrass, if synchro­
nous, would be the last word of the
page a new signal called PGHIT would
be asserted. See Table 3 for tha
dac:odes of the page inputs for the
various page sizes.

B/-W (A1, AO) !Data Bus Valu• (031-DO) jvl86C010 Shlfter (031·00) IAPRM Shlfter (031· DO)

1 00 11223344 00000044

1 01 11223344 00000033

1 10 11223344 00000022

1 11 11223344 00000011

000 11223344 11223344
0 100 5566.ZZ88_ 5566n88

001 11223344
0 101 5566n88 44112233

010 11223344
0 110 5566naa 33441122

011 11223344
0 111 5566n88 22334411

TABLE 2. SHIFTS FOR STORE OPERATIONS

Addre„Valu• Register Data Output Data at plns

00 11223344 11223344

01 11223344 44112233

10 11223344 33441122

11 11223344 22334411

...., Con1Mer, lnc. CONFIOENTIAI. 49

00000011

00000022

00000033

00000044

11223344 no shlft or
55667788 dblacce„

no support for wlth aupport
dblacce„ 22334455 for dbl

" 33445566 "

" " 445566n

TABLE 3. MEMORY PAGE
SIZE

Page (1,0) Page Slze

00 256Words

01 512Words

10 1024 Words

11 2048 Words

Apple Computer, lnc. • APRM I VL2340

FIGURE 1. NONAUGNED MEMORY CYCLES (

CLK____,,-/' Step2 "Step8 / "--
A31·AO X Step 1 X

Step5 >< ><~---------~
NAOR /Step4 "Step7

PGHIT

031·00 >< Step3 >< Step6 ><~--------------

Apple~. lnc. CONFIDENTIAL 50

. • ~

Apple Computer, lnc .

PACKAGE OUTLINES
100·PIN CERAMIC PIN GRID ARRAY

100-PIN QUAD PLASTIC FLATPACK (QPFP)

Apple~. lnc. CONFIOENTIAL 51

• APRM I VL2340

