y
@ 4ople Computer, Inc.

& APRM / VL2340

FEATURES
« 32-bit internal architecture

« 32-bit external data bus

+ 64M-byte linear program address
space

+ 4G-byte linear data address space
« Bus timing optimized for standard

DRAM usage with page mode
operation

» 64+M-byte/second bus bandwidth

 Simple/powerful instruction set
providing an excellent high level
language compiler target

- Hardware support for virtual memory
systems

* Low interrupt latency for real-time
application requirements

« Full CMOS implementation results in
low power consumption

» Single 5 V £ 5% operation

« 100-pin ceramic pin grid array
(CPGA), quad plastic flatpack
(QPFP), or MegaCell format in
Apple VLSI Library

32-BIT RISC MICROPROCESSOR

DESCRIPTION

The VL2340 Apple Proprietary RISC
Machine (APRM) is a full 32-bit general-
purpose microprocessor designed using
reduced instruction set computer
(RISC) methodologies. The APRM is an
Apple Computer, Inc. owned version of
the powerful Acorn RISC Machine
(ARM). Applications in which the proc-
essor is useful include laser printers,
graphics engines, and any other
systems requiring fast real-time
response to external interrupt sources
and high processing throughput.

The APRM features a 32-bit data bus,
27 registers of 32 bits each, a load-
store architecture, a partially overlap-
ping register set, 1.5 us worst-case
interrupt latency (at 16MHz operation),
conditional instruction execution, a 26-
bit linear program address space, a 32-
bit linear data address space, and an
average instruction execution rate of
from 12-to-14 million instructions per
second (MIPS at 16MHz). Additionally,
the processor supports two addressing
modes: program counter (PC) and base
register relative modes. The ability to do
pre- and post-indexing allows stacks
and queues to be easily implemented in

software. All instructions are 32 bits
long (aligned on word boundaries), with
register-to-register operations executing
in one cycle. The two data types
directly supported are 8-bit bytes and
32-bit words, with efficient compiler
generated support for 16-bit values.
The APRM includes support for un-
aligned access to 32-bit data words.

Using a load-store architecture simpli-
fies the execution unit of the processor,
since only a few instructions deal
directly with memory and the rest
operate register-to-register. Load and
store multiple register instructions
provide enhanced performance, making
context switches faster and exploiting
sequential memory access modes.

The processsor supports two types of
interrupts that differ in priority and
register usage. The lowest latency is
provided by the fast interrupt request
(FIRQ) which is used primarily for 1O to
peripheral devices. The other interrupt
type (IRQ) is used for interrupt routines
that do not demand low-latency service
or where the overhead of a full context
switch is small compared with the
interrupt process execution time.

PIN DIAGRAM ORDER INFORMATION
CERAMIC PIN GRID ARRAY Part Clock
VODP A9 A7 AS A3 A0 DO D1 D4 DS D8 D9 V8SC Number Frequency Package
N @ @ @ @ @ @ @ @ @ @ ®@ @ O Ceramic Pin
JETESELEEEEETT| mzmwioso | o | CioAmy cron
A12 A10 A2 NADR D3 D11 D12 see tCK Min. Plastic Quad
Ll ® ® ®©@ ©@ @ ® @
Ae A1 013 DI VL2340-10FC Flatpack (PQFP)
) ?. f?s g .S?. Note: Operating temperature range is 0°C to +70°C.
'} OO ®©@ @®
A9 A18 A17 D17 D18 D19
Hl©@ ®© PRM ®©@ © ®
A20 A2 A21 A 021 D22
«® ® © BOTTOM VIEW © ® @
A23 A4 A2S D25 024
Fl® @ © ®@ ©@ ©®
A28 A27 027 D2¢
El@® ®© ®©@ @®
A28 A9 D20 D28
ol® ©®© (OJNO]
A A3 M1 ClK IRQ CPA D0
¢l ® ®pusaow ®©@ ©@ @ ® ©
VSSP VDDC PAGEO SEQ CPB VSSO FIRQ MREQ AW DBE VDDP D31
8l © ®© © ®© ®©® ® ® ® ® ®© @O
vsscPGHITPAGEI ALE MO TRAN VDDO RES ABORTOPC BW CPlI VSSP
V@O ©®® OO ®© ©®©® ©® ©®
1 2 3 4 s 6 7 8 1 11 12 13

Apple Computer, Inc. CONFIDENTIAL VLSI Technology, Inc. « 8375 South River Parkway » Tempe, AZ 85284 « 602-752-8574

r A
@ ~ole Computer, Inc. QO AprM VL2340

FUNCTIONAL PIN DIAGRAM
VCC(6
___vec® J ADDRESS BUS
POWER GND(7) | A31 - AO
-M1
CLOCK CLK Mo ® _ PROCESSOR
INPUT X ————» > MODE
DBE ~
- ¢4
INTERRUPT ———F:%g_" ABE
- ==
CONTROLY ____ -FIRQ ALE
APRM -B/W >
SYSTEM RES VL2340 —R/W -
CONTROLY _____ABRT _ -MREQ
-TRAN BUS
—-OPC > CONTROL
._—C_PA_. SEQ >
COPROCESSOR CPB >
INTERFACE —_— PAGE1
3 —CPI >
S L uL PAGEO
PGHIT
DATA BUS o MSBLOW
D31 - DO e NADR
)
BLOCK DIAGRAM
INSTRUCTION
AND _
PWPELINE
, 8Us : ' DATAN —
<: | _IL
MEMORY " | ADORESS
————N] INCRE- N REGISTER
! REGISTER |-ACORBUS 3 _a [FLE
= ul O H U e e e
INCREMENT ' ol L I' RREAD)
2701
MULTIPLEXER ?Ail'g BOOTH'S < A
A%“ SHIFTER MULTWPLIEER L ‘omy $ gc'}.e :> Q:’T.A
<:. —/] REGISTER SHIFTER
32 - BT
FIXED
POINT
ALY
|

Apple Computer, Inc. CONFIDENTIAL 2

g
@ #0oie Computer, inc. O apam vizzao

SIGNAL DESCRIPTIONS

Signal Pin Signal

Name Number (1) Description

CLK c7 Processor Clock Input - This input provides the clock to the circuit. The @2 internal clock is in
phase with this input and the @1 internal clock is the nonoverlapping inverse.

-IRQ C8 Interrupt Request Input - This is the normal interrupt request pin. it may be asserted asyn-
chronously to cause the processor to be interrupted. It is active low.

-FIRQ B8 Fast Interrupt Request Input - This interrupt request line has a higher priority than IRQ, but
otherwise is the same. It too is active low.

RES A8 Reset Input - This is the reset signal for the processor. While active, the processor executes

no-ops until the signal goes inactive from which point execution starts at the Reset Vector
location. This signal is active high.

ABORT A9 Abort Input - This signal can be used to abort the current bus cycle being executed by
the processor. Typically, it is connected to a memory management unit to control accesses for
protection. The abort signal is active-high.

D31 -Do See Package Data31 - Data0 - This is the 32 bit bidirectional data bus used to transfer data to and from the
memory. These lines are tri-state and active-high.

DBE - B11 Data Bus Enable Input - This is the asynchronous tri-state control signal for controlling
the drivers of the data bus. When asserted the data bus is enabled. This signal is active
high.

-BW A1l Not Byte / Word Output - This "early warning” (note 2) signal indicates to the memory system

that the current fetch is a byte fetch rather than a word fetch. It is asserted during the last
portion of the cycle preceding the cycle that requires a byte fetch. When asserted (low) the
memory system should deal with bytes. It is active-low. While RES is active -B/W will remain
high.

-M1, -Mo C6, A5 Mode 1,0 Outputs - These two signals are used to indicate the current operating mode of
the processor. They can be used as address space modifiers to increase the address space,
or to assist a memory management unit in offering various protection modes. The lines are
active-low and the inverse of bits 1,0 of the processor status register. While RES is active MO
and M1 retain their previous states.

-Mi-Mo MODE
0o o0 Supervisor
o 1 FIRQ
1 0 IRQ
1 1 USER
A31 - A0 See Package Address 31 - Address 0 Outputs - These are the 31 address lines. A0 and A1 are byte

addresses and should be ignored during opcode fetech cycles. During opcode fetches, the
current mode value may appear on these signals. The address lines are tri-state and active-
high.

ABE M7 Address Bus Enable Input - This is the asynchronous three-state control signal for
controlling the drivers of the address bus. When asserted the address bus is enabled. The
signal is active-high. ‘

ALE A4 Address Latch Enable Input - This signal is used to control internal transparent latches on
the address outputs. When ALE is high the address outputs change during @2 to the value
required for the next cycle. Direct interfacing to ROMs requires address lines to be stable
until the end of @2. Holding ALE low until the end of @2 will latch the address outputs for
ROM cycles. Systems that do not directly interface to ROMs may tie ALE high.

-RW B10 Not Read/Write Output - This is the read / write signal from the processor. When asserted
(low), it indicates that the processor is performing a read operation. When negated (high),
the processor is performing a write operation. This signal is an "early warning” (note 2) signal
and is active low. While RES is active -R/W will remain low.

Apple Computer, Inc. CONFIDENTIAL 3

g
@ 4poe Computer, inc. O aprM vizsa0

SIGNAL DESCRIPTIONS

Signal Pin Signal

Name Number Description

-MREQ B9 Next Memory Cycle Start Output - This is an "early warning” (note 2) indicator that is asserted

before the processor will start a memory cycle during the next clock phase. This signal is
active low. While RES is active -MREQ will remain low.

-TRAN A6 Translate Enable Output - This signal, when asserted by the processor tells a memory
management unit that translation should be done on the current address. When negated, it
indicates that the address should pass through untranslated. This signal is active-low.

-OPC A10 Instruction Fetch Output - This "early warning” (note 2) signal when asserted indicates that the
current bus cycle is an instruction fetch. This signal is active-low. While RES is active -OPC
will remain low.

SEQ BS Next Address Sequential Output - This "early warning” (note 2) signal is asserted when the
processor will generate a sequential address during the next memory cycle. It may be used to
control fast memory access modes. This signal is active-high. While RES is active SEQ will
remain high.

-CPI A12 Coprocessor Instruction (CMOS level output) - When the APRM executes a coprocessor in-
struction, this output is driven low and the processor will wait for a responsefrom an attached
coprocessor device. The action taken is dependent upon the coprocessor response signalled
on the CPA and CPB inputs.

cPB B6 Coprocessor Busy (TTL level input) - An attached coprocessor that is capable of performing
the operation which the APRM is requesting (by asserting the —CPl), but cannot begin imme-
diately, should indicate the busy condition by driving this signal high. When the coprocessor
is ready to start it should bring the CPB signal low. The APRM samples this signal on the (
falling edge of the @1 clock while the —CPl is active (low).

CPA C12 Coprocessor Absent (TTL level input) - A coprocessor capable of executing the operation cur-
rently requested by the APRM (—CP! active) should bring the CPA low immediately. If the
CPA is high on the falling edge of the @1 clock, the processor will abort the coprocessor
handshake and take the undefined instruction trap. If the CPA is low and remains low during
the —CP!I active time, then the VL86C010 will busy-wait until the CPB signal becomes low and
complete the coprocessor instruction.

NADR L7 Next address (CMOS level input) - When asserted selects the current address plus four for
non-aligned memory reads. Also, the appropriate data bytes are latched from the first word
from memory. This signal is active high.

PAGE1, PAGEO A3, B4 Page size (CMOS level inputs) - These two signals are decoded to determine the DRAM page
size of the memories used.

Bl B0 PageSize
0 0

256 words
0o 1 512 words
1 0 1024 words
1 1 2048 words
MSBLOW B3 Most Significant byte low (CMOS input) - When asserted this input forces the upper eight
address outputs low. This input is active high.
PGHIT A2 Page hit (CMOS level output) - This early warning signal indicates that the current memory

operation is the last address in the active page. This output is active low.

NOTES:
1. Pin numbers are for ceramic pin grid array package only.
2. "Early warning" signals are asserted during the last portion of the cycle preceding the cycle to which they apply.

Apple Computer, Inc. CONFIDENTIAL 4

~

Vi
' Apple Computer, Inc.

& APRM / VL2340

FUNCTIONAL DESCRIPTION
The philosophy of RISC processor
design is based on the idea that some
processing functions can be moved
from hardware to software with the
result that the simplified hardware can
actually execute functions in software
faster than with complicated hardware.
Analysis done several years ago at
major research centers has shown that
a processor and compiler combination
can replace the traditional processor-
alone architectures. An historical fact of
the 16-bit processor world is that after
chip designers spent many man-months
figuring out how to implement univer-
sally acceptable complicated instruc-
tions to do things, few compiler writers
actually took advantage of these
complex instructions. Most compilers
only use a fraction of the instructions
and addressing modes of traditional
computer architectures.

The user pays for the unused silicon
required to implement these instruc-
tions. He pays for the inefficient
utilization in both cost of the processor
and in lower performance. The silicon
spent for complex instruction decoding
and micro-sequencing could have been
used for additional pipelining, larger
register sets, or other special-purpose
hardware that can be used efficiently. If
the addition of a new instruction causes
all instructions to execute 10% slower
due to internal processor delays, then
the new instruction had better be used
more than 10% of the time otherwise
overall performance has been sacri-
ficed. This makes an argument for
simple performance oriented architec-
tures that are more dependent on
compiler technology to implement less
frequently used instructions.

COMPARISON OF PROCESSORS
inherent in the concept of RISC proces-
sors is the notion that more instructions
are required to implement the same
functions that could be done by fewer
instructions with a complex instruction
set computer (CISC) processor. In
most cases even when more instruc-
tions are needed by RISC processors,
the function can still be performed
quicker on RISC processors than CISC
processors. This is causing the industry
to doubt the Million Instruction Per
Second (MIPS) ratings of RISCproces-
sors, for good reason. The term MIPS

is often used exclusively as a means of
benchmarking performance. A better
measure of performance is to time
actual execution of real-worid problems,
independent of the number of instruc-
tions required to implement the
function.

Benchmarks using compiled QuickDraw
routines approximate real conditions.
Measurements are based on pixel per
second generation, bit-field extraction
rates, etc. Running well below its
maxium specified clock rates, the
APRM, running compiled code, will
outperform all popular, commercially
available microprocessors running hand
crafted code.

An important parameter to keep
constant when benchmarking proces-
sors is the memory access times, since
not all processors will meet perform-
ance claims when working with com-
modity memories.

Another traditional measure of perform-
ance in the microprocessor world is the
clock frequency of the processor.
Faster is better has been the rule of
thumb, but what is actually the most
important consideration is the average
number of bus cycles per instruction. A
processor with a low clock frequency
and a low number of bus cycles per

instruction can actually outperform a
processor with a high clock frequency
and a higher number of bus clock
cycles per instruction. The best choice
of processors is a one that benchmarks
high while using a relatively low clock
frequency and a small number of clocks
per instruction executed. The APRM
possesses these characteristics, giving
it the best future evolution path to
exploit advances in process technology.

PROGRAMMING MODEL

The APRM contains a large, partially
overlapping set of twenty-seven 32-bit
registers, although the programmer can
access only sixteen registers in any
mode of operation. Fifteen of the
registers are general purpose; with the
remaining twelve dedicated to functions
such as User Mode, FIRQ Mode, IRQ
Mode, Supervisor mode and the
Program Counter(PC) / Processor
Status Register(PSR). Figure 1 shows
the register model of the APRM. Regis-
ters RO-to-R13 are accessible from the
user mode for any purpose. The
fourteenth register, user-mode return-
link register, is specific to the user
mode. Its contents are mapped with
those of other return-link registers as
the mode is changed. The return-link
register is used by the Branch-and-Link
instruction in a procedure call sequence
but may be used as a general-purpose

FIGURE 1. VL2340 REGISTER MODEL

31

8 7 0

] _] RO

R10

USER

R11

R12

R13

R4

(LINK)

R8

R10

FAST

R11

R12

R13

Ri4

(LINK)

IRQ

R13

R14

(LINK)

SuP

R13

R14

1
PROGRAM COUNTER [M1]m0] R15
- PSR/

LINK
2 o (LINK)

PC

Apple Computer, Inc. CONFIDENTIAL

y
‘ Apple Computer, Inc.

*

& APRM/VL2340 .

register at other times. The least
significant two bits of the processor
status word (PSW) define the current
mode of operation.

Seven registers are dedicated to the
FIRQ mode and overlie user-mode
registers R8-to-R14 when the fast
interrupt request is serviced. The
registers R8 FIRQ-to-R13 FIRQ are
local to the fast interrupt service routine
and are used instead of the user-mode
registers R10-R13. Register R14 FIRQ
holds the address used to restart the
interrupted program instead of pushing
it onto a stack at the expense of another
memory cycle. Using a link-register
helps provide very fast servicing of /O
related interrupts without disturbing the
contents of the general-purpose register
set although the FIRQ routine can
access the R0-to-R9 user-mode
registers if desired. The FIRQ mode is
used typically for very short interrupt
service routines that might fetch and
store characters in a disk-or-tape-
controller application.

The next two registers are dedicated to
the IRQ mode and overlie user mode
registers R13 and R14 when the IRQ is
serviced. Once again R14 IRQ is the
return link register that holds the restart
address and R13 IRQ is general-
purpose and dedicated to the IRQ
mode. This mode is used when the
interrupt service routine will be lengthy
and the overhead of saving and
reloading the register set will not be a
significant portion of the overall execu-
tion time.

Two registers are dedicated to the
supervisor mode and overlay user mode
registers R13 and R14 when a supervi-
sor mode switch is made using a
software interrupt (SWI) instruction.
Operation of these two registers is the
same as previously discussed.

The last register (R15) contains the
processor status word and program
counter and is shared by all modes of
operation. The upper six bits are
processor status, the next 24 bits are
the program counter (word address),
and the last two indicate the mode.

PROCESSOR STATUS REGISTER
Like most 32-bit processors, the APRM
makes a distinction between user and
supervisor modes: the user executes at

FIGURE 2. PROCESSOR STATUS REGISTER

31302928272625 2 10 (
[NIZICIVTTE] PROGRAM COUNTER T
]
|
L PC - 24 BITS YIELDS 64MB MODE* ADDRESS TRANSLATION
ADDRESS SPACE 0 USER FORCED

FAST INTERRUPT MASK * 1 FASTIRQ UNDER PROGRAM CONTROL

NORMAL INTERRUPT MASK® 2 NORMAL IRQ UNDER PROGRAM CONTROL

OVERFLOW 3 SUPERVISOR UNDER PROGRAM GONTROL

CARRY, -BORROW, ROTATE EXTEND

ZERO .

NEGATIVE, SIGNED LESSTHAN ~ ACCESS FROM NON-USER

MODES ONLY

the lowest privilege level, and the
supervisor and interrupts execute at
higher levels of privilege. Figure 2
shows the processor status word
containing the control line states
associated with each mode.

Translate is a control signal provided by
the processor for control of an external
memory management unit. The
translate line is enabled in the user
mode and disabled in the supervisor,
fast interrupt and normal interrupt
modes, since all modes except for the
user mode are expected to be running
secure code. Translated fetches can be
made from the supervisor mode by
setting an optional bit in the load / store
instructions.

The processor status register (PSR)
contains the program counter, mode
control bits, and condition codes as
shown in Figure 2. The bits marked
with an asterisk are alterable only from
non-user modes. If the user tries to
write to these bits, they remain un-
changed and the processor continues
operation in the user mode. In other
words, this is not a trap condition. The
flags in the processor status register are
the standard Negative, Zero, Carry, and
Overflow. The sixteen allowable
combinations of the condition code bits
are shown in Table 1. These combina-
tions are used for all conditional
instruction execution since a conditional
branch is nothing more than a jump
instruction with conditional execution.

EXCEPTIONS

The APRM supports a partially overlap-
ping register set so that when interrupts
are taken, the contents of the register
array do not have to be saved before
new operations can begin. Improved
responsae time is accomplished, in the
case of the fast interrupt, by dedicating
six general-purpose registers, in

addition to a return-link register, that are
only accessible in the FIRQ mode.
These dedicated registers can contain
all the pointers and byte-counts for
simple VO service routines thus
incurring no overhead when context
switching between processing and
servicing interrupts at high rates. The
other modes (IRQ and SUP) each have
one general-purpose and one return
address (link) register dedicated to
them. The general-purpose register is
ideally suited for implementing a local
stack for each mode. The need for
dedicated registers in these modes is
not as great since the time spent in an
interrupt or supervisor routine is on the (
average much greater than the time
spent in transition between the routines.
The working registers can be saved and
restored from stacks without significant
overhead.

The interrupt latency of the APRM is
very short because the instruction
execution time is typically two clocks,
with a maximum of eighteeen (for a
load-multiple instruction, loading sixteen
registers). Once the processor recog-
nizes an interrupt is pending, the time to
begin processing is four clocks making
a total worst-case interrupt latency of
22.5 clocks.

In addition to interrupts, five other types
of exceptions are supported by the
processor. These are data-fetch cycle
aborts, instruction-fetch cycle aborts,
software interrupts, undefined instruc-
tion traps and reset.

The APRM supports a 32-bit linear
address space allowing a total of 4G-
bytes of physical memory. The total
program space is limited to 26-bits of
address space, for a total of 64M-bytes
used by program execution. {

if the abort signal is asserted by the

Apple Computer, Inc. CONFIDENTIAL

6

Vi
@ ~ople Computer, Inc.

& APRM / VL2340

TABLE 1. INSTRUCTION CONDITION CODES

Encoded
Condition Vaiue Operation
AL E Always
cC 3 Carry Clear/Unsigned Lower Than
CcS 2 Carry Set/Unsigned Higher Or Same
EQ 0 Equal (Z Set)
GE A Greater Than Or Equal (N+V)+ (-N+-V)
GT C Greater (((N*V)+ (=N+-V))+-2)
HI 8 Higher Unsigned (C +-Z)
LE D Less Than Or Equal ((N*=V)+(-N*V))+2)
LS 9 Lower Or Same Unsigned (-C +Z)
LT B Less Than ((N+-V + (-N+V))
M . 4 Negative (N)
NE 1 Not Equal (-Z)
NV F Never
PL 5 Positive (—N)
vC 7 Overtlow Clear
VS 6 Overflow Set

memory management unit during a data
fetch the processor will abort data
transfer instructions (LDR, STR) as i
they had never been executed. If the
instruction was a block data transfer
(LDM, STM) the processor will allow the
instructions to complete. If the write-
back control bit in these instructions is
set, the base address will be updated
even if it would have been overwritten
during the instruction execution. An
example of this would be execution of a
block data transfer instruction with the
base register in the list of registers to be
overwritten.

Software interrupt instructions are used
to change from user mode to supervisor
mode. When an SWI is encountered
the processor will save the current
program counter (R15) into R14 SUP,
set the mode bits to the supervisor
mode, and start execution at the
software interrupt vector address. An
undefined instruction will cause a trap
similar to the execution of a software
interrupt except that the Undefined
Instruction Vector will be used as a the
next address. Reset is treated similarly

to the other traps and will start the
processor from a known address. When
the reset condition is recognized the
currently executing instruction will
terminate abnormally, the processor will
enter the supervisor mode, disable both
the FIRQ and IRQ interrupts, and begin
execution at address 0000H. While the
reset condition remains the processor
will execute dummy instruction fetches.

The processor exception vector map is
illustrated in Table 2. The exceptions
are prioritized reset (highest), address
exception, data abort, FIRQ, IRQ,
prefetch abort, undefined instruction,
and software interrupt (lowest). These
vector addresses normally will contain a
branch instruction to the associated
service routine except for the FIRQ
entry. In order to further reduce
latency, the FIRQ service routine may
begin at address 001CH if the software
designer so chooses.

Whenever the processor enters the
supervisor mode, whether from an SWI,
undefined instruction trap, prefetch or
data abort, the IRQ is disabled and the
FIRQ unchanged.

INSTRUCTION SET

The APRM supports five basic types of
instructions, with several options
available to the programmer. These
instruction types are: data processing ,
data transfer, block data transfer,
branch, and software interrupt. All
instructions contain a 4-bit conditional
execution field (shown in Table 1) that
can cause an instruction to be skipped if
the condition specified is not true. The
execution time for a skipped instruction
is one sequential cycle (100 ns at 10
MHz).

Data processing instructions operate
only on the intemnal register file, and
each has three operand references: a
destination and two source fields. The
destination (Rd) can be any of the
registers including the processor status
register, although some bits in R15 can
only be changed in particular modes.
The source operands can have two

TABLE 2. EXCEPTION VECTOR MAP

Address (Hex) Function Priority Level
000 0000 Reset 0
000 0004 Undefined Instruction Trap 5
000 0008 Software Interrupt 6
000 000C Abort (Prefetch) 4
000 0010 Abort (Data) 1
000 0018 Normal Interrupt (IRQ) 3
000 001C Fast Interrupt (FIRQ) 2

Apple Computer, Inc. CONFIDENTIAL

r i
‘ Apple Computer, Inc.

® APRM / VL2340

TABLE 3. DATA PROCESSING INSTRUCTIONS

Flags
Instruction | Function Operation Atfected
ADC Add With Carry Rd:=Rn+Shift(S2)+C N,Z.C V
ADD Add Rd:=Rn+Shift(S2) N,Z,C V
AND And Rd:= Rn « Shift(S2) N, Z C
BIC Bit Clear Rd:= Rn « —Shift(S2) N,Z C
CMN Compare Negative Shift(S2)+Rn N Z C V
CMP Compare Rn-Shift(S2) N,Z C,V
EOR Exclusive OR Rd:=Rn @ Shift(S2) N, Z C
MLA Multiply with Accumulate Rd:=Rm * Rs + Rd N, Z,C,V
MoV Move Rd:=Shift(S2) N, Z C
MUL Multiply Rd:=Rm * Rs N,ZCV
MVN Move Negative Rd:= -Shift(S2) N,ZC
ORR Inclusive OR Rd:=Rn+Shift(S2) N, Z,C
RSB Reverse Subtract Rd:=Shift(S2)-Rn N, Z CV
Reverse Subtract

RSC With Carry Rd:=Shift(S2)-Rn-1+C | N,Z,C,V
SBC Subtract With Carry Rd:=Rn-Shift(S2)-14C | N,Z,C,V
SUB Subtract Rd:=Rn-Shift(S2) N,Z,CV
TEQ Test For Equality Rn €D Shift(S2) N,Z.C
TST Test Masked Rn - Shift(S2) N,Z C

TABLE 4 MEMORY ADDRESSING MODES

Addressing Mode Operation Syntax
PC Relative EA* = PC +/~ Offset (12 Bits) | LABEL
Base Register Offset EA' = Rn

With Post-Increment Rn +/- Offset—§»> Rn [Rn],Off
Base Register Offset EA* = Rn +/~ Offset (12 Bits)

With Pre-Increment** Rn +/- Offset —» Rn [Rn,Off)
Base Register index EA*'=Rn

With Post-Increment Rn +/~-Rm - Rn [Rn},Rm
Base Register Index EA® = Rn +/-Rm

With Pre-Increment** Rn +/- Rm - Rn {Rn,Rm)

* Effective Address

** Program control of index register update; i.e., Rn may be left unchanged.

forms: both can be registers (Rm and (
Rn) or a register (Rn) and an 8-bit
immediate value. Both forms of
operand specification provide for the
optional shifting of one of the source
values using the on-board barrel shifter.
if both operands are registers, the Rm
can be shifted. For the other case, it is
the immediate value that can pass thru
the shifter. Another field in these in-
structions allows for the optional
updating of the condition codes as a
result of execution of the operation.
Table 3 shows the possible data proc-
essing operations and the status flags
affected.

Data transfer instructions are used to
move data between memory and the
register file (load), or vice-versa (store).
The effective address is calculated
using the contents of the source register
(Rn) plus an offset of either a 12-bit
immediate value or the contents of
another register (Rm). When the offset
is a register it can optionally be shifted
before the address calculation is made.
Table 4 shows the addressing modes
supported and their corresponding (
assembler syntax. The offset may be
added to, or subtracted from the index
register Rn. Indexing can be either pre-
or-post depending on the desired
addressing mode. In the post-indexed
mode the transfer is performed using
the contents of the index register as the
effective address and the index register
is modified by the offset and rewritten.
in the pre-indexed mode the effective
address is the index register modified in
the appropriate manner by the offset.
The modified index register can be
written back to Rn if the write-back bit is
set or left unchanged if desired. When
aregister is used as the offset, it can
be pre-scaled by the barrel shifter in a
similar manner as with data processing
instructions.

Data transfer instructions can manipu-
late bytes or words in memory. When a
byte is read from the memory, it is
placed in the low-order 8-bits of the
register and zero-extended to a full
word. For byte writes the lower 8-bits of
the register are replicated onto all four
bytes of the data bus. The memory
controller should be designed such that (,(
only the addressed byte is updated in
the memory.

Apple Computer, Inc. CONFIDENTIAL

y
' Apple Computer, Inc.

® APRM / VL2340

Words are written into the address
space as most-significant byte first.
That is, the byte at the lowest address
will be found left justified in a register
and its memory location "BigEndian”
fashion. See Appendix 1 for details of
word and byte registration.

The APRM supports both logical and
physical address spaces at a lower
level in hardware than other proces-
sors. Data transfer instructions contain
a translate enable bit that allows non-
user mode programs to select the
logical or physical address space as
desired. The bit from the instruction is
placed on the TRAN pin of the proces-
sor to signal an external memory
management unit (MMU) whether to
translate first or pass the address from
the processor bus to the memory. This
allows programs executing in the
supervisor or interrupt modes to have
easy access to user memory areas for
page fault correction or to have bounds
checking performed on dynamic data
structures in the system space by the
MMU. In the user mode, addresses are
always translated by the MMU ff it is
implemented in the system.

The block data transfer instructions
allow muttiple registers to be moved in a
single instruction. The instruction has a
field containing a bit for each of the
sixteen registers visible in the current
mode. Bit 0 corresponds to RO, and bit
15 corresponds to R15, the program
counter. A bit set in a particular position
means that the corresponding register
will be affected by the transfer. The
registers are always saved from lowest
to highest, and RO will always appear at
a lower address than R1. The ability to
pre- or post- increment or decrement
allows both stacks and queues to be
implemented efficiently with any
convention chosen by the programmer.

The branch instruction has two forms,
branch and branch-with-link. The
branch instruction causes execution to
start at the current program counter
plus a 24-bit offset contained in the in-
struction. The offset is left-shifted by
two bits (forming a 26-bit address)
before it is added to the program
counter. Since all instructions are word-
aligned, a branch can reach any
location in the program address space.
The branch-with-link instruction copies

TABLE 5. INSTRUCTION EXECUTION TIMES

Base Execution | Adjustment for Adjustment for PC
Operation Time Source Shiit Modification
RS.#— RD 18 1S for Shift(RS) 1S + 1IN if PC Modified
RS+ RS -9 RD 1S 1S for Shift(RS) 1S + 1N if PC Modified
LDR 2S + 1IN 1S + 1N if PC Modified
STR 2N
LDM (n"+1)S+ 1IN 1S + 1N if PC Modified
ST™M (n*-1)S+2N
BR 2S + 1IN
BR & LINK 25 + 1IN
SWI 2S+ 1IN
MUL, MLA 16S**

* - The number of registers transfered in a Load/Store Multiple instruction. If the

condition field in an instruction is not true, the instruction is skipped and the execu-
tion time is 1S cycle.
** - This is the worst case time. The actual time is a function of the value in the Rs

register.

the program counter and processor
status register into R14 prior to branch-
ing to the new address. Returning from
the branch-with-link simply involves
reloading the program counter from R14
(MOV PC,R14). The PSR can option-
ally be restored from R14 (MOVS
PC,R14).

The software interrupt instruction format
is used primarily for supervisor service
calls. When this instruction is executed,
the PC and PSR are saved in R14 SUP.
The PC is then set to the SWI vector
location and the processor placed in the
supervisor mode.

Instructions operate at speeds depend-
ent upon the options selected. Table 5
shows the instruction types, execution
rates and adjustments for operand
shifting or affecting the program
counter. The table is expressed in terms
of N and S cycles representing Non-
sequential and Sequential cycles
respectively. The processor is able to
take advantage of memories that have
faster access times when accessed
sequentially in the nibble or column
mode. These faster cycles are desig-
nated as S-cycles, while the N-cycles
typically take twice as long. If faster
static memory is used, the N and S
cycles would be equal.

The APRM is offered in two packages,
a 100-pin ceramic pin grid array
(CPGA) package and a 100-pin quad
plastic flatpack (QPFP).

S implies a sequential cycle.
N implies a non sequential cycle.

Apple Computer, Inc. CONFIDENTIAL

Y i
‘ Apple Computer, Inc.

EXAMPLES OF THE INSTRUCTION SET

The following examples illustrate methods by which basic APRM instructions can be combined to yield efficient code. None of the
methods saves a large amount of execution time, although they all save some, mostly they result in more compact code.

EXAMPLE 1 - USING THE CONDITIONAL EXECUTION FOR THE LOGICAL-OR FUNCTION

; IF Rn = p OR Rm = q THEN
; GOTO Label

; if Rn not equal p, try other test

; check sign

CMP Rn,p
BEQ Label
CMP Rm,q
BEQ Label
By using conditional execution, the routine compresses to:
CMP Rn,p
CMPNE Rm, q
BEQ Label
EXAMPLE 2- ABSOLUTE VALUE
TEQ ARn0
RSBMI Rn,Rn, 0

; and 2's complement if required

EXAMPLE 3 - UNSIGNED 32-BIT MULTIPLY
; Enter with numbers in Ra, Rb - product contained in Rm

MOV~ Rm,0

LOOP MOVS Ra,RalSR1
ADDCS Rm, Rm, Rb
ADD Rb,Rb, Rb
BNE LOOP

; init result register
; stops when Ra becomes zero
;Rm=Ra*Rb

; (Ra=0, Rbis altered)

EXAMPLE 4 - MULTIPLICATION BY 4, 5, OR 6 AT RUN TIME

MOV Rc, Ra, LSL2
CMP Rb,S
ADDCS Re, Re, Ra
ADDHI Rc, Rc, Ra

EXAMPLE 5 - MULTIPLICATION BY CONSTANT (2AN)+1 USING THE BARREL SHIFTER (3,5,9,17, ...)

ADD Ra,Ra, LSLn

; multiply by 4

; test multiplier value

; complete multiply by 5§
; complete multiply by 6

EXAMPLE 6 - MULTIPLICATION BY CONSTANT (2AN) - 1 (3,7, 15, ...)

RSB Ra, Ra, Ra, LSL n
EXAMPLE 7- MULTIPLICATIONBY 6

ADD Ra,Ra,RalSL1
MOV Ra,RalSL1

; multiply by 3
;andthen by 2

EXAMPLE 8 - MULTIPLY BY 10 AND ADD EXTRA NUMBER (DECIMAL TO BINARY CONVERSION)

ADD Ra,Ra Ra LSL2
ADD Ra,Rc,Ra LSL1

EXAMPLE 9 - DIVISION AND REMAINDER

; enter with numbers in Ra and Rb
MOV Rent, 1

DIVt CMP Rb,Ra
MOVCC Rb, Rb LSL 1
MOVCC Rent, Rent ASL 1

BCC Divi
MOV Rc, 0
Diva CMP RaRb

SUBCS Ra, Ra, Rb
ADDCS Re, Re, Rent
MOVS Rent, Rent, LSR 1

; multiply by 5
; multiply by 2 and add in next digit

; bit to control the division

; move Rb until greater than Ra
; result in Re

; remainder in Ra

; test for possible subtraction
; subtract if valid

; put relevant bits in result

; shift control bit

MOVNE Rb, Rb LSR 1 ; halve unless finished
BNE DIv2
Apple Computer, Inc. CONFIDENTIAL 10

® APRM / VL2340

y
' Apple Computer, Inc.

® APRM / VL2340

INSTRUCTION CYCLE OPERATIONS

In the following tables ~MREQ and SEQ
(which are pipelined up to one cycle
ahead of the cycle to which they apply)
are shown in the cycle in which they
appear, so they predict the address of
the next cycle. The address bus value,
-BMW, -RW, and -OPC (which appear
up to half a cycle ahead) are shown in
the cycle to which they apply.

BRANCH AND BRANCH WITH LINK
A branch instruction calculates the

branch destination in the first cycle,
while performing a prefetch from the
current PC. This prefetch is done in all
cases.

During the second cycle a fetch is
performed from the branch destination,
and the return address is stored in
register 14 if the link bit is set.

The third cycle performs a fetch from
the destination + 4, refiling the instruc-
tion pipeline, and if the branch is with
link, R14 is modified (four is subtracted
from it) to simplify return from SUB PC,
R14, #4 to MOV PC,R14. This makes
the STM. .(R14) LDM .. (PC) type of
subroutine work correctly.

TABLE 6. BRANCH AND BRANCH WITH LINK

Cycle | Address |-B/W |-R/W | Data SEQ |-MREQ| -OPC

1 PC+8 1 0 (PC+8) 0 0 0

2 ALU 1 0 (ALU) 1 0 0

3 ALU+4 1 0 (ALU+4) 1 0 0

(PC is the address of the branch instruction, ALU is an address calculated by the processor (ALU) are the contents of that ad-
dress, efc).

DATA OPERATIONS tion, and the result (when required) is

A data operation executes in a single
datapath cycle except where the shift is
determined by the contents of a
register. A register is read onto the A
Bus, and a second register or the
immediate field onto the B Bus. The
ALU combines the A Bus source and
the shifted B Bus source according to
the operation specified in the instruc-

written to the destination register.
(Compares and tests do not produce
results, only the ALU status flags are
changed).

An instruction prefetch occurs at the
same time as the above operation, and
the program counter is incremented.

When the shift length is specified by a

TABLE 7. DATA OPERATIONS

register, an additional datapath cycle
occurs before the above operation to
copy the bottom eight bits of that
register into a holding latch in the barrel
shifter. The instruction prefetch will
occur during this first cycle, and the
operation cycle will be internal (i.e., will
not request memory). The memory
interface may be designed such that
this internal cycle can be configured to
merge with the next cycle into a single
memory N-cycle.

The PC may be any (or all) of the

Type Cycle | Address | -B/W -RW | Dsta SEQ |-MREQ [-OPC register operands. When readsolgto the
A Bus it appears without the PSR bits
1 1]
Normal ! PC+8 ! 9 (PC+8) 9 0 on the B Bus it appears with them.
PC+12 Neither will affect external bus activity.
1 PC+8 1 0 (PC+8) 0 0 0 When it is the destination, however,
Dest=PC ALY 1 0 (ALU) 1 0 0 external bus activity may be affected. If
the result is written to the PC, the
3 ALU-4 ! 9 (ALU+4) ! 9 ° contents of the instruction pipeline are
ALU+8 invalidated, and the address for the next
1 PC+8 1 0 (PC+8) 0 1 0 instruction prefetch is taken from the
Shitt (RS) 2 PC+12 1 0 _ 1 1 ALU rather than the address incremen-
ter. The instruction pipeline is refilled
PC+12 before any further execution takes
1 PC+8 1 0 (PC+8) 0 1 0 place, and during this time exceptions
' 2 PC+12 1 0 - 0 0 1 are locked out.
g::‘t.(gg)' 3 ALU 1 0 (ALV) 1 0 0
4 ALU+4 1 0 (ALU+4) 1 0 0
ALU+8
Apple Computer, Inc. CONFIDENTIAL 11

g
' Apple Computer, Inc.

® APRM / VL2340

INSTRUCTION CYCLE OPERATIONS (Cont.)

MULTIPLY AND MULTIPLY
ACCUMULATE

The multiply instructions make use of
special hardware which implements a
Booth's algorithm with early termination.
During the first cycle the accumulate
register is brought to the ALU, which
either transmits it or produces zero

(according to whether the instruction is
MLA or MUL) to initialize the destination
register. During the same cycle one of
the operands is loaded into the Booth's
shifter via the A Bus.

The datapath then cycles, adding the
second operand to, subtracting it from,
or just transmitting, the result register.

The second operand is shifted in the
Nth cycle by 2N or 2N + 1 bits, under
control of the Booth's logic. The first
operand is shifted right two bits per
cycle, and when it is zero the instruction
terminates (possibly after an additional
cycle to clear a pending borrow). All
cycles except the first are internal.

If the destination is the PC, all writing to

Type Cycle | Address| -BW | -RW | Data sea | -Mreal| -opc it is prevented. The instruction will
PC+8] o (PC+8) 0] o proceed as normal except that the PC
(Rs) = 0.1 will be unaffected. (If the S bit is set the
‘ 2 | PC+12 L 0 ! 0 L PSR flags will be meaningless).
PC+12
1 PC+8 1 0 (PC+8) 0 1 0
2 PC+12 1 0 - 0 1 1
(Rs) > 1 . PC+12 1 0 - 0 1 1
M PC+12 ! 0 - ° ! ! (M is the number cycles required by the
M#1 | PC+12 1 o - 1 o 1 Booth’s algorithm; see the section on
PC+12 instruction speeds.)
LOAD REGISTER TABLE 9. LOAD REGISTER
The first cycle of a load register
instruction performs the address Type Cycle| Address | 8/W | -R'W | Deta SEQ | -MREQ |-OPC |-TRAN (
calculation. The data is fetched from 1 PC+8 1 0 | (PC+8) 0 0 0
memory during the second cycle, and Normal 2 ALU BW| o (ALY) 1 1 t
the base register modification is 3 PCs12 1 0 i 1 0 1
performed during this cycle (if re- b
quired). During the third cycle the data C12
is transferred to the destination 1 PC+8 1 0 (PC+8) 0 0 0
register, and external memory is 2 ALU BW| o (ALU) o 1 1 t
unused. This third cycle may normally -
be merged with the following prefetch Dest= PC ———2 1 1 1 O S
to form one memory N-cycle. For 4 | (ALY 11 0 | (AY) 1 0 0
details of registration during the load 5 (ALU)+4 | 1 0 ((ALUY+4) | 1 0 0
operation see Appendix 1. ' (ALU)+8
Either the base or the destination (or 1 PC+8 1 0 (PC48) 0 0 0
both) may be the PC, and the prefetch 2 ALU BW 0 (ALU) 0 1 1 t
sequence will be changed if the PC is ' ;
affected by the instruction. 37:.';3:; 2 :2 1 2 P.(: 2 2 1
! 1 0 0
The data fetch may abort, and inthis ~ Dest#PC | = L 7C B
case the base and destination modifi- 5 | PCwd 11 10] (PCH ! I
cations are prevented. PC+8
1 PC+8 1 0 (PC+8) 0 0 0
B PC, 2 ALV BW 0 (ALU) 0 1 1 t
Writeback | 3 PC' 1 0 - 0 0 1
Dest-PC | 4 | (Ay) 1] o | A 1 ° 0
5 | (ALU)+a | 1 0 | (ALUM4) | 1 0 0
(ALU)+8
(PC’ is the PC value modified by write
back; t shows the cycle where the force
translation option in the instruction may
be used).
Apple Computer, inc. CONFIDENTIAL 12

4
@ vote Computer, inc O aprm vizsao

INSTRUCTION CYCLE OPERATIONS (Cont.)

STOREREGISTER TABLE 10. STORE REGISTER
The first cycle of a store register is
similar to the first cycle of load register. Type Cycle| Address |[-BW |-RW | Data SEQ |-MREQ |-OPC | -TRAN
During the second cycle the base 1 PC+8 1 0 (PC+8) 0 0
modification is performed, and at the Normal 2 ALU Bw | 1 RD 0 ° 1 t
same time the data is written to
memory. There is no third cycle. PC+12
The PC will only be modified i it is the M e, 1 10 1(P+g | O 0 °
base and write back occurs. A data aﬁ'& 2_| ALY BW | 1 RD 0 o L
abort prevents the base write back. Dest=PC |_3 PC’ 1 0 | (PC) 1 0 0

. o 4 | PC+4 1 0 | (PC+4) | 1 0 0
See Appendix 1 for memory registration -
details. PC+8
LOAD MULTIPLE REGISTERS TABLE 11. LOAD MULTIPLE REGISTERS
The first cycle of LDM is used to
calculate the address of the firstwordto ~ TYP® Cycle | Address| -8/W | -R'W | Dasta | SEQ |-MREQ | -OPC
be transferred, while performing a 1 PC+8 1 0 (PC+8) 0 0 0
prefetch from memory. The second One 2 ALU 1 0 ALU 0 1 1
cycle fetches the first word, and
performs the base modification. During Register 3 PCs12 ! 0 . ! 9 !
the third cycle, the first word is moved PC+12
to the appropriate destination register 1 PC+8 1 0 (PC+8) 0 0 0
while the second word is fetched from 2 ALU 1) PC’ 0 1 1
memory, and the modified base is One
moved to the ALU A Bus input latch for Register, 3 PC+12 ! 0 - 0 ° !
holding in case it is needed to patchup ~ 0est=PC ‘4 PC’ 1 o (PC) 1 0 0
after an abort. The third cycle is re- 5 PC'+4 1 0 (PC'+4) | 1 0 0
peated for subsequent fetches until the PC+8
last data word has been accessed, then
the final (internal) cycle moves the last 1 Pc+8 L 0 (PC+8) | © 0 0
word to its destination register. The last 2 ALU 1 0 (ALV) 1 0 1
cycle may be merged with the next N Registers, . ALU+. 1 0 (ALU+) | 1 0 1
instruction prefetch to form a single (N>1) N ALU»] o (ALU+)) o]
memory N-cycle. - -
If an abort occurs, the instruction Mol | A : 2 (Alby) L0 ! !
continues to completion, but all register N+2 | PCr12 ! ° . ! ° !
writing after the abort is disabled. The PC+12
final cycle is altered to restore the 1 PC+8 1 0 (Pc+8) | o 0 0
modified base register (which may have
been overwritten by the load activity 2 AL ! 0 (ALY ! o !
before the abort occurred). If the PC is : ALU+. L] 0 (ALU+) | 1 0 !
the base, write back is prevented. !::eglsm N ALU+. 1 0 (ALU+.) 1 0 1
When the PC is in the list of registers to §,.d,';=c, N+t | ALUs. 1 0 PC’ 0 1 1
be loaded, and assuming that no abort N+2 | PC+12 1 0 - 0 0 1
takes place, tf;)o‘ wrrelr: in:(t’ru'?ion N3 | PC 1 0 (PC) 1 0 0
pipeline must be invalidated. Note that ; .
the PC is always the last register to be Ned | PC4 ! ° (PC+4) | 1 ° °
loaded, so an abort at any point will PC+8

prevent the PC from being overwritten.

Apple Computer, Inc. CONFIDENTIAL 13

4
@ ~opie Computer, Inc.

L

& APRM /VL2340 -

INSTRUCTION CYCLE OPERATIONS (cont.)
TABLE 12. STORE MULTIPLE REGISTERS

STORE MULTIPLE REGISTERS
Store multiple proceeds very much as
load muitiple, without the final cycle.
The restart problem is much more
straightforward here, as there is no
wholesale overwriting of registers with
which to contend.

Type Cycle | Address| -B'W | -RW | Data SEQ |-MREQ| -OPC
One register 1 PC+8 1 0 (PC+8)[o 0 0
2 ALV 1 1 RA 0 0 1
1 PC+8 1 0 (PC+8)| o 0 0
N Registers, 2 ALU 1 1 RA 1 0 1
(N>1) . ALU+. 1 1 R. 1 0 1
N ALU+., 1 1 R. 1 0 1
N+1 | ALU+. 1 1 R. 0 0 1

SOFTWARE INTERRUPT AND
EXCEPTION ENTRY

Exceptions (and software interrupts)
force the PC to a particular value and
refill the instruction pipeline from there.
During the first cycle the forced address
is constructed, and a mode change may
take place. The return address is
moved to register 14.

During the second cycle the return
address is modified to facilitate return,
though this modification is less useful
than in the case of branch with link.

The third cycle is required only to
complete the refilling of the instruction
pipeline.

TABLE 13. SOFTWARE INTERRUPT & EXCEPTION ENTRY

Cycle | Address | -BW | -RW | Data SEQ |-MREQ | -oPC | -TRAN
1 PC+8 1 0 (PC+8) 0 0 0 1
2 Xn 1 0 (Xn) 1 0 0 1
3 Xned 1 0 (Xn+4) 1 0 0 1

(For software interrupt PC is the
address of the SWI instruction, for

interrupts and reset PC is the address
of the instruction following the last one

to be executed before entering the
exception, for prefetch abort PC is the

address of the aborting instruction, for
data abort PC is the address of the
instruction following the one which

attempted the aborted data transfer. Xn
is the appropriate trap address).

UNDEFINED INSTRUCTIONS AND
COPROCESSOR ABSENT

When a Co-Processor detects a Co-
Processor instruction which it cannot
perform, and this must include all
undefined instructions, it must not drive
CPA or CPB. These will float high,
causing the undefined instruction trap to
be taken.

TABLE 14. UNDEFINED INSTRUCTIONS AND

COPROCESSOR ABSENT
Cycle | Address | -BW | -RW | Deta | SEQ |-MREQ |-OPC | -CP1 | CPA | CPB
1 Pc+8 | 1 | o | (Pcsg)| © 1 o | o | 1 |1
2 pc+8 | 1 | o - o | o o | 1 |1 |1
3 Xn 1 o Jom | 1 0 o | 1+ |1 |1
4 Xn+4 1 | o | ety 1 0 'HEEEEE
X8

UNEXECUTED INSTRUCTIONS
Any instruction whose condition code is

TABLE 15. UNEXECUTED INSTRUCTIONS

not met will fail to execute. It will add Cycle | Address| -8W | -RW | Data SEQ_|-MREQ) -OPC
one cycle to the execution time of the 1 PC+8 1 0 (PC+8) 1 0 0
code segment in which it is embedded. PC+8

Apple Computer, Inc. CONFIDENTIAL 14

(

p |
@ Aople Computer, Inc.

& APRM / VL2340

INSTRUCTION CYCLE OPERATIONS (Cont.)

INSTRUCTION SPEEDS

Due to the pipelined architecture of the
CPU, instructions overlap considerably.
In a typical cycle one instruction may be
using the data path while the next is
being decoded and the one after that is
being fetched. For this reason the

following table presents the incremental
number of cycles required by an
instruction, rather than the total number
of cycles for which the instruction uses
part of the processor. Elapsed time (in
cycles) for the routine may be caicu-
lated from these figures.

If the condition is met the instruction
execution time is shown in Table 16
below.

TABLE 16. INSTRUCTION SPEEDS

Instruction Instruction Timing
Type Equation

Data Processing 18

Data Processing With Register Controlled Shift 1S+18S

Data Processing With PC Modified 28 + 1IN

Load Register 1S+ 1N + 11
Load Register With PC Loaded 28 + 2N + 11|
Store Register. 2N

Load Multiple nS + 1N+ 11
Load Multiple With PC Loaded (n+1) S + 2N + 1 |
Store Multiple (n-1)S + 2N
Branch and Branch With Link 2S + 1IN

Software Interrupt, Trap 2S + 1N

Multiply and Multiple With Accumulate 1S+ml
Coprocessor Data Operation 1S+bl

Load or Store Coprocessor Data To Memory 1S + 2N + bl
Move From Coprocessor To VL86C010 Register | 1S + bl1+1C
Move From VL86C010 To Coprocessor Register | 1S + (b+1)1+1C

n is the number of words transferred.

m is the number of cycles required by
the multiply algorithm, which is de-
termined by the contents of Rs.
Multiplication by any number

between 24(2m-3) and 2*(2m-1)-1
inclusive takes m cycles for m>1.
Multiplication by 0 or 1 takes 1 cycle.
The maximum value m can take is
16.

| is an incremental cycle.

b is the number of cycles spent in the
Co-Processor busy-wait loop.

I the condition is not met all instruc-
tions, take one S cycle.

Apple Computer, Inc. CONFIDENTIAL

15

VA
@& ~opie Computer, Inc.

.

& APRM /VL2340 -

TIMING CHARACTERISTICS: TA =0°Ct0 +70°C, VCC = 5 V +5%

VL2340
Symbol Parameter Min. Typ. Max. Units | Conditions
tCK Clock Period 45 - 10000 ns
tCKL Clock Period Low 21 - 10000 ns
tCKH Clock Period High 14 - 10000 ns
tABE Address Bus Enable - - 14 ns
tABZ Address Bus Disable - - 14 ns
tALE Address Latch Fail-Through - - 14 ns
tALEL ALE Low Time - - 10000 ns See Note 1
tADDRS CLK Rising Edge To Address Valid Delay - - 25 ns
tADDRN CLK Falling Edge To Address Valid Delay - - 55 ns
tADRNA NADR To Address Valid Delay 5 - 18 ns
tADRMS MSBLOW To Address Valid Delay 5 - 1 ns
tAH Address Bus Hold Time 6 - - ns
tDBE Data Bus Enable Time - - 22 ns
tDBZ Data Bus Disable Time - - 22 ns
tDOUT Data Bus Output Delay - - 27 ns
tDOH Data Bus Hold Time 6 - - ns
tDIS Data In Setup Time To CLK 4 - - ns
tDIH Data In Hold Time To CLK 8 - - ns
tDISN Data In Setup Time To NADR 2 - - ns
tDIHN Data In Hold Time To NADR 3 - - ns
tABTS ABORT Setup Time 18 - - ns
tABTH ABORT Hold Time - - ns
tIRS Interrupt Setup Time 4 - - ns See Note 2
tRWD CLK To -R/W Valid - - 31 ns
tRWH —R/W Hold Time 5 - - ns
tMSD CLK To -MREQ And SEQ Delay - - 32 ns
tMSH -MREQ And SEQ Hold Time 6 - - ns
tBWD CLK To -B/W Valid - - 26 ns
tBWH -B/W Hold Time 5 - - ns
tMDD CLK To -M1, - M0 Valid - - 22 ns
tMDH M1 - MO Hold Time 6 - - ns
Notes:

1. ALE controls a dynamic storage latch; this parameter is specified to ensure that the stored charge cannot leak sufficiently to
generate intermediate logic levels in the associated logic.
2. The interrupt and reset inputs may be asynchronous. This time will guarantee that the interrupt request is latched during this

cycle.

(

Apple Computer, Inc. CONFIDENTIAL

16

g
@ Aople Computer, Inc. O ArPRM / VL2340

TIMING CHARACTERISTICS: TA =0°C to +70°C, VCC = 5 V +5%

VL2340

Symbol Parameter Min. Typ. Max. Units | Conditions
tOPCD CLK To -OPC Valid - - 23 ns

tOPCH ~OPC Hold Time 5 - - ns

tTRMD CLK To -TRAN Valid - - 22 ns

tTRMH -TRAN Hold Time 6 - - ns

tTRDD CLK To -TRAN Valid - - 29 ns See Note 1
tTRDH -TRAN Hold Time 5 - - ns

tCPS CPA, —CPB Setup Time 18 - - ns

tCPH CPA, —CPB Hold Time 6 - - ns

tCPI CLK To —CPI Delay - - 22 ns

tCPIH ~CP! Hold Time 4 - - ns

tPHIT CLK To PGHIT Delay - - 19 ns

tPHITH PGHIT Hold Time 7 - - ns

tINC CLK To Incremented Address Delay 12 - 65 ns

Notes:
1.-TRAN will only change during CLK high as the result of a forced translation single data transfer operation while in the User
mode. Otherwise it will change during CLK low when the mode change to/from User mode occurs.

Apple Computer, Inc. CONFIDENTIAL 17

.

i
@ 4ople Computer, Inc. O aprM/vizsa0

TIMING DIAGRAMS (
PROCESSOR DATA BUS
< 1CK >
l§————— {CKH ————P
< tCKL »
CLK
\-'\ / \L_

g— tALEL —P

ALE \ X < 1INC >
4

tADDRN PI ez
ABE
—P| tALE [€@— —P| tAH |[4—

A25 tABE <¢— tADDRS
A0 P pei 3
<¢—— tDOUT DI —{ tADRNA <

DBE ’

] I tDBE l —

-<4—P| tADRMS tDBE

D31 - DO
o iz)
D31 -DO {DIHN—> —P tDIH (
(Read) ?
tDISN | @———P» tDIS

NADR j(
MSBLOW
A

@—— tPHIT tPHITH—
PGHIT
tABTS — tABTH
ABRT |

tiRS |€4—
-FIRQ,
-IRQ

Apple Computer, Inc. CONFIDENTIAL 18

y
Apple Computer, Inc. &
. Pp puter, APRM / VL2340
TIMING DIAGRAMS
PROCESSOR CONTROL SIGNALS
¢ tCK »
——————— ICKH —————— P
< tCKL >
CLK
X }'4— tRWD \\
——————— tMSD ———————P —P tRWH
-RW
—{ tMSH < tBWD >
-MREQ, | K
SEQ — X
—P tBWH
-BW
<4 tMDD <¢—— tOPCD — P
-M1- T
-MO]
—p tMDH —» {OPCH
—OPC m‘c
o
< tTRMD - g——— {TRDD
-TRAN |
—&»1 tTRMH —P tTRDH
CPB ﬁ
—P tCPH tCPIH —P

<— (CPI
—CPI

Apple Computer, Inc. CONFIDENTIAL

19

Y
@ 4ople Computer, Inc.

® APRM / VL2340

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed may cause

Ambient Operating

Temperature -10°C to + 80°C
Storage Temperature —§5°C to + 150°C
Supply Voltage to

Ground Potential -0.5 Vto VCC + 0.3 V
Applied Output

Voltage —-05VtoVCC+03V
Applied Input
Voltage -05Vto+7.0V

permanent damage to the device.

These are stress ratings only. Func-
tional operation of this device at these

or any other conditions above those

indicated in this data sheet is not
implied. Exposure to absolute maxi-
mum rating conditions for extended
periods may affect device reliability.

DC CHARACTERISTICS: TA = 0°C to +70°C, VCC =5V + 5%

Symbol Parameter Min Typ Max Unit Conditions
VOHT Output High Voltage, TTL-DATABUS VCC-0.75 - vee v IOH = =5.0 mA
VOLT Output High Voltage, TTL-DATABUS - - 0.8 v IOL = 5.0 mA
VOHC "Output High Voltage CMOS VCC-0.75 - vCC Vv " |IOH = -2.5 mA
VOLC Qutput Low Voltage CMOS - - 0.4 \J IOL = 2.5 mA
VIH Input High voltage o1, 22 VCC-0.3 - VCC+0.3 Vv
All Others 2.4 - VCC+0.3 \J
VIL Input Low Voltage 21,22 93 — 03 v
All Others -0.3 - 0.8 \
Ll Input Leakage Current - - 10 A VIN=0V1toVCC
ILO Output Leakage Current - - 10 4 VOUT =0V to VCC
ICC Operating Supply Current - 20 40 mA (Note 1)
108 Output Short Circuit Current - - 40 mA
CAPACITANCE: TA=25°C,f=1.0 MHz
Symbol Parameter Min Max Unit Conditions
cl Clockinput Capacitance (31, 92) - 15 pF VIN = 0 V (Note2)
Other Input Capacitance - 5 pF VIN = 0 V (Note2)
CcO Output Capacitance - 8 pF VOUT = 0 V (Note 2)

FIGURE 3. TEST WAVEFORMS
Input

3.0V
0.0V

Notes:

V1 LOAD = 2.4V, DATABUS
V1 LOAD = 2.3V, OTHERS

R1 = 160Q, DATABUS

R1 = 7500, OTHER OUTPUTS
C1 = 100 pF, DATABUS

C1 = 50 pF, CP!, ADDR.BUS
C1 = 15 pF, OTHER OUTPUTS

1. Measured with outputs unloaded, at 10 MHz. Add 4 mA per MHz.
2. Periodically sampled, rather than 100% tested.

FIGURE 4. TEST LOAD CIRCUIT

V1 LOAD

r Device Under Test
R1

* Includes Scope
and Jig
Capacitance

Apple Computer, Inc. CONFIDENTIAL

20

y
@& ~ople Computer, Inc.

® APRM / VL2340

PROGRAMMERS’ MODEL
The APRM has a 32-bit data bus and a
32-bit address bus although only 26-bits
(64M-bytes) may be used for program
space. The processor supports two
data types, eight bit bytes and 32-bit
words. Instructions are exactly one
word, and data operations (e.g., ADD)
are only performed on word quantities.
Load and store operations can transfer
either bytes or words. The APRM
supports four modes of operation,
including protected supervisor and
interrupt handling modes.

BYTE SIGNIFICANCE

Some programming techniques may
write a 32-bit (word) quantity to mem-
ory, but will later retrieve the data as a
sequence of byte (8-bit) items. For
these purposes, the processor stores
word data in most-significant-first (MSB
first) order. This means that the most
significant bytes of a 32-bit word
occupies the lowest byte address. The
byte address values are illustrated in
Figure 5.

REGISTERS

The processor has 27 registers (32-bits
each), 16 of which are visible to the
programmer at any time. The visible
subset depends on the current proces-
sor mode; special registers are
switched in to support interrupt and
supervisor processing. The register
bank organization is shown in Table 16.

User mode is the normal program
execution state; registers R15 - RO are
directly accessible.

All registers are general purpose and
may be used to hold data or address
values, except that register R15
contains the Program Counter (PC) and
the Processor Status Register (PSR).
Special bits in some instructions allow
the PC and PSR to be treated together
or separately as required. Figure 6
shows the allocation of bits within R15.

R14 is used as the subroutine link
register, and receives a copy of R15
when a Branch and Link instruction is
executed. It may be treated as a
general purpose register at all other
times. R14_svc, R14_irq and R14_firq
are used similarly to hold the return
values of R15 when interrupts and
exceptions arise, or when Branch and
Link instructions are executed within
supervisor or interrupt routines.

FIRQ Processing - The FIRQ mode
(described in the Exceptions section)
has seven private registers mapped to
R14 - R8 (R14_fiq-R8_fiq). Many FIRQ
programs will not need to save any
registers.

IRQ Processing - The IRQ state has
two private registers mapped to R14
and R13 (R14_irq and R13_irq).

FIGURE 5. BYTE SIGNIFICANCE OF APRM

Word
Address
31 2423 1615 8 7 o_ Value
Byte Addr. 0000 Byte Addr. 0001] Byte Addr. 0002 Byte Addr. 0003 0000

Byte Addr. 0004 | Byte Addr. 0005]Byte Addr. 0006 | Byte Addr. 0007 0001

TABLE 17. REGISTER ORGANIZATION

RO General

R1 General

R2 General

R3 General

R4 General

RS General

Ré General

R7 General

R8s General FIRQ

Re General FIRQ

R10 General FIRQ

R11 General FIRQ
R12(FP) General FIRQ
R13 (SP) General Supervisor IRQ FIRQ
R14 (LK) General Supervisor IRQ FIRQ
R15 (PC) (Shared by all Modes)

General Usage

Data Frame (by convention)
Stack Pointer (by convention)
R15 Save Area for BL or Interrupts
System Program Counter

‘Apple Computer, Inc. CONFIDENTIAL

21

y
‘ Apple Computer, Inc.

Supervisor Mode - The SVC mode
(entered on SWI instructions and other
traps) has two private registers mapped
to R14 and R13(R14_svc and
R13_svc).

The two private registers allow the IRQ
and supervisor modes each to have a
private stack pointer and link register.
Supervisor and IRQ mode programs are
expected to save the User state on their
respective stacks and then use the User
registers, remembering to restore the
User state before returning.

In User mode only the N, Z, C, and V
bits of the PSR may be changed. The |,
F, and Mode flags will change only
when an exception arises. In supervi-
sor and interrupt modes all flags may be
manipulated directly.

EXCEPTIONS

Exceptions arise whenever there is a
need for the normal flow of program
execution to be broken, so that (for
instance) the processor can be diverted
to handle an interrupt from a peripheral.
The processor state just prior to
handling the exception must be
preserved so that the original program
can be resumed when the exception
routine has completed. Many excep-
tions may arise at the same time.

The processor handles exceptions by
using the banked registers to save
state. The old PC and PSR are copied
into the appropriate R14, and the PC

and processor mode bits are forced to a
value which depends on the exception.
Interrupt disable flags are set where
required to prevent unmanageable
nestings of exceptions. In the case of a
reentrant interrupt handler, R14 should
be saved onto a stack in main memory
before re-enabling the interrupt. When
multiple exceptions arise simultane-
ously a fixed priority determines the
order in which they are handled.

FIRQ - The FIRQ (Fast Interrupt
Request) exception is externally
generated by taking the —FIRQ pin low.
This input can accept asynchronous
transitions, and is delayed by one clock
cycle for synchronization before it can
affect the processor execution flow. It is
designed to support a data transfer or
channel process, and has sufficient
private registers to remove the need for
register saving in such applications, so
that the overhead of context switching is
minimized. The FIRQ exception may
be disabled by setting the F flag in the
PSR (but note that this is not possible
from user mode). If the F flag is clear
the processor checks for a low level on
the output of the FIRQ synchronizer at
the end of each instruction.

The impact upon execution of an FIRQ
interrupt is defined in Table 18. The
return-from-interrupt sequence is also
defined there. This will resume execu-
tion of the interrupted code sequence,
and restore the original processor state.

FIGURE 6. PROGRAM COUNTER AND PROCESSOR STATUS REGISTER

31 26 25 16 15 210
N‘[z c v ' . l LR " L v v ' v v v ' v v v ' v A\l v ' v h
L I]
l— FIRQ Disable Program Counter
0 = Enable (Word Aligned)
1 = Disable
Mode
IRQ Disable T o
0 = Enable 01 = FIRQ Mode
1 = Disable 10 = IRQ Mode
11 = Supervisor Mode
Overflow
Carry/Not Borrow/Rotate Extend
Zero
Negative/Signed Less Than

IRQ - The IRQ (Interrupt Request)
exception is a normal interrupt caused
by a low level on the —IRQ pin. It has a
lower priority than FIRQ, and is masked
out when a FIRQ sequence is entered.
lts effect may be masked out at any
time by setting the | bit in the PC (but
note that this is not possible from user
mode). K the | flag is clear, the proces-
sor checks for a low level on the output
of the IRQ synchronizer at the end of
each instruction.

The impact upon execution of an IRQ
interrupt is defined in Table 18. The
return-from-interrupt sequence is also
defined there. This will resume execu-
tion of the interrupted code sequence,
restore the original processor state, and
reenable the IRQ interrupt.

Abort - The ABORT signal comes from
an external memory management
system, and indicates that the current
memory access cannot be completed.
For instance, in a virtual memory
system the data corresponding to the
current address may have been moved
out of memory onto a disk, and consid-
erable processor activity may be
required to recover the data before the
access can be performed successfully.
The processor checks for an abort at
the end of the first phase of each bus
cycle. When successfully aborted, the
APRM will respond in one of three
ways:

(i) ¥ the abort occurred during an
instruction prefetch (a prefetch
abort), the prefetched instruction is
marked as invalid; when it comes to
execution, it is reinterpreted as
below. If the instruction is not
executed, for example as a result of
a branch being taken while it is in
the pipeline, the abort will have no
effect.)

(ii) if the abort occurred during a data
access (a data abort), the action
depends on the instruction type.
Data transfer instructions (LDR,
STR) are aborted as though they
had not executed. The LDM and
STM instructions complete, and if
writeback is set, the base is up-
dated. If the instruction would
normally have overwritten the base
with data (i.e. LDM with the base in
the transfer list), this overwriting is

Apple Computer, Inc. CONFIDENTIAL

(

.

w APRM /VL2340 -

y
@& Apple Computer, Inc.

& APRM / VL2340

prevented. All register overwriting is
prevented after the abort is indi-
cated, which means in particular that
R15 (which is always last to be
transferred) is preserved in an
aborted LDM instruction.

(iii) f the abort occurred during an
internal cycle it is ignored.

Then, in cases (i) and (ii), the processor
will respond as defined in Table 18.

The return from Prefetch Abort defined
in the Figure will attempt to execute the
aborting instruction (which will only be
effective if action has been taken to
remove the cause of the original abort).
A Data Abort requires any auto-
indexing to be reversed before returning
to re-execute the offending instruction.
The return is performed as defined in
the Figure.

The abort mechanism allows a demand
paged virtual memory system to be
implemented when a suitable memory
management unit is available in the
system. The processor is allowed to
generate arbitrary addresses, and when
the data at an address is unavailable,
the memory manager signals an abort.
The processor traps into system
software which must work out the cause
of the abort, make the requested data
available, and retry the aborted instruc-
tion. The application program needs no
knowledge of the amount of memory
available to it, nor is its state in any way
affected by the abort.

Software Interrupt - The software
interrupt is used for getting into supervi-
sor mode, usually to request a particular
supervisor function. The processor
response to the (SWI) instruction is
defined in Table 18, as is the method of
returning. The indicated return method
will return to the instruction following the
SWL

Undefined Instruction Trap - When
the APRM executes a coprocessor in-
struction or an undefined instruction, it
offers it to any coprocessors which may
be present. If a coprocessor can
perform this instruction but is busy at
that moment, the processor will wait
until the coprocessor is ready. If no
coprocessor can handle the instruction
the APRM will take the undefined in-
struction trap.

The trap may be used for software
emulation of a coprocessor in a system
which does not have the coprocessor
hardware, or for general purpose
instruction set extension by software
emulation.

When the undefined instruction trap is
taken the APRM will respond as
defined in Table 18. The return from
this trap (after performing a suitable
emulation of the required function),
defined in the Figure will return to the
instruction following the undefined
instruction.

Reset - When RES goes high the
processor will stop the currently
executing instruction and start execut-
ing no-ops. When Reset goes low
again it will respond as defined in
Table 18. There is no meaningful
return from this condition.

The conventional means of implement-
ing an interrupt dispatch function is to
provide a table of jumps to the appropri-
ate processing table, as below:

Address Eunction

0000000 Reset

0000004 Undefined instruction
0000008 Software interrupt
000000C Abort (prefetch)
0000010 Abort (data)
0000014 Unused

0000018 IRQ

000001C FIRQ

These are byte addresses, and each
contains a branch instruction pointing to
the relevant routine. The FIRQ routine
might reside at 000001CH onwards,
and thereby avoid the need for (and
execution time of) a branch instruction.

Exception Priorities - When multiple

Vector Table
TABLE 18. EXCEPTION TRAP CONSIDERATIONS
Trap Type CPU Trap Activity Program Return Sequence
1. Save R15in R14 (SVC).
Reset 2. Force M1:0 to SVC mode, and| (rva)
set F & | status bits in PC.
3. Force PC to 0x000000.
1. Save R15in R14 (SVC).
Undefined 2. Force M1:m0 to SVC mode, MOVS PC,R14 ;SVC's R14.
Instruction and set | status bit in the PC.
3. Force PC to 0x000004.
Software 1. Save R15in R14 (SVC).
Interru 2. Force M1:0 to SVC mode, and . .
pt set | status bit in the PC. MOVS PC,R14 ;SVC'sRi4.
3. Force PC to 0x000008.
. Prefetch Abort:
Prefetch 1. Save R15in R14 (SVC). . .
andData | 2. Force M1:01o SVC mode, and |-SUBS PC, R144 ;SVC's Ri4.
Aborts set | status bit in the PC. Data Abort:
3. Force PC to 0x000010. MOVS PC,R148 ;SVC's R14.
1. Save R15in R14 (IRQ).
IRQ 2. Force M1:0 to IRQ mode, and SUBS PC,R14,4 :IRQ'sRi4.
set | status bit in the PC.
3. Force PC to 0x000018.
1. Save R15 in R14 (FIRQ).
FIRQ 2. Force M1:0 to FIRQ mode, SUBS PC,R144 ;FIRQ'sR14.
and set | status bit in the PC.
3. Force PC to 0x00001C.

'Appie Computer, Inc. CONFIDENTIAL

23

y
' Apple Computer, Inc.

& APRM / VL2340

exceptions arise at the same time, a
fixed priority system determines the
order in which they will be handled:

1) Reset (highest priority)

2) Data aborts

3) FIRQ

4) IRQ

5) Prefetch abort

6) Undefined Instruction and
SWis (lowest priority)

Note that not all exceptions can occur at
once. Undefined instruction and
software interrupt are also mutually
exclusive since they each correspond to
particular (non-overlapping) decodings
of the current instruction.

if a data abort occurs at the same time
as a FIRQ, and FIRQs are enabled (i.e.,
the F flag in the PSR is clear), the
procaessor will enter the data abort
handler and then immediately proceed

to the FIRQ vector. A normal return
from FIRQ will cause the data abort
handler to resume execution. Placing
data abort at a higher priority than FIRQ
is necessary to ensure that the transfer
error does not escape detection, but the
time for this exception entry should be
reflected in worst case FIRQ latency
calculations.

Interrupt Latencles - The worst case
latency for FIRQ, assuming that it is
enabled, consists of the longest time
the request can take to pass through
the synchronizer (Tsyncmax), plus the
time for the longest instruction to
complete (Tidm, the longest instruction
is load multiple registers), plus the time
for data abort entry (texc), plus the time
for FIRQ entry (Tfiq). At the end of this
time the processor will be executing the
instruction at 1CH.

Tsyncmax is 2.5 processor cycles,

Tidm is 18 cycles, Texc is three cycles,
and Tfiq is two cycles. The total time is,
therefore, 25.5 processor cycles, which
is just over 2.5 microseconds in a
system using a continuous 10 MHz
processor clock. In a DRAM based
system running at 4 and 8 MHz, for
example using the VL86C110 MMU,
this time becomes 4.5 microseconds,
and if bus bandwidth is being used to
support video or other DMA activity, the
time will increase accordingly.

The maximum IRQ latency calculation
is similar, but must allow for the fact that
FIRQ has higher priority and count
delay entry into the IRQ handling
routine for an arbitrary length of time.

The minimum latency for FIRQ or IRQ
consists of the shortest time the request
can take through the synchronizer
(Tsyncmin) plus Tfiq. This is 3.5
processor cycles.

Apple Computer, Inc. CONFIDENTIAL

24

(

y
@& ~ople Computer, Inc.

& APRM / VL2340

INSTRUCTION SET

All APRM instructions are conditionally
executed, which means that their exe-
cution may or may not take place de-
pending on the values of the N, Z, C,
and V flags in the PSR at the end of
the preceding instruction.

If the ALways condition is specified,
the instruction will be executed
irrespective of the flags, and likewise
the Never condition will cause it not to
be executed (it will be a no-op, taking
one cycle and having no effect on the
processor state).

The other condition codes have
meanings as detailed above, for
instance code 0000 (EQual) causes
the instruction to be executed only if
the Z flag is set. This would corre-
spond to the case where a compare
(CMP) instruction had found the two
operands were different, the compare
instruction would have cleared the Z
flag, and the instruction will not be
executed.

FIGURE 7. CONDITION FIELD

31 24 23 16 15 87 (o]
T T T T T T
[Condxl (any instruction)]

E Condition Field

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = CS - C set (unsigned higher or same)

0011 = CC - C clear (unsigned lower)

0100 = Mi - N set (negative)

0101 = PL - V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z dlear (unsigned higher)

1001 = LS - C clear or Z set (unsigned lower or same)

1010 = GE - N setand V set, or N clear and V clear (greater or equal)
1011 = LT - Nsetand V clear, or N clear and V set (less than)

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Zset, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - Always

1111 = NV - Never

The B and BL instructions are only exe-
cuted if the condition code field is true.

All branches support a 24 bit offset. The

offset is shifted left two bits and added
to the PC, with overflows being ignored.
The branch can therefore reach any
word aligned address within the
program address space. The branch
offset must take account of the prefetch
operation, which causes the PC to be
two words ahead of the current instruc-
tion.

FIGURE 8. BRANCH, AND BRANCH WITH LINK (B, BL)
31 2827 2423 0

Condx|1o1f] T

l— Link Bit

Condition 0 = Branch
Field 1 = Branch with Link (Subroutine call)

T
PC-Relative Offset

the prefetch, and contains the address

Link blt - Branch with Link writes the of the instruction following the branch

Return from Subroutine - When
returning to the caller, there is an option

to restore or to not restore the PSR.
The following table illustrates the
available combinations.

old PC and PSR into R14 of the current
bank. The PC value written into the link
register (R14) is adjusted to allow for

and link instruction.

Restoring PSR: MOVS PC,R14 LDM Rnl, (PC)*
Not Restoring PSR: MOV PC,R14 LDM Rni, (PC)
Syntax:
B(L){cond} <expression>
where L is used to request the Branch-with-Link form of the instruction.
If absent, R14 will not be affected by the instruction.
cond is a two-character mnemonic as shown in Condition Code section (EQ, NE,
VS, etc.). If absent then AL (Always) will be used.
expression is the destination. The assembler calculates the relative (word) offset.

ltems in { } are optional. ltems in <> must be present.

Apple Computer, inc. CONFIDENTIAL 25

y
. Apple Computer, Inc.

Examples:

Here BAL Here ; Assembles to EAFFFFFE. (Note effect of PC offset)
B There ; Always condition used as default
CMP Rt1,0 ; Compare register one with zero, and branch to Fred if
BEQ Fred ; register one was zero. Else continue next instruction.
BL ROM + Sub ; Unconditionally call subroutine at computed address.
ADDS Ri,1 ; Add one to register one, setting PSR flags on the result.
BLCC Sub ; Call Sub if the C flag is clear, which will be the case unless

; R1 contained FFFFFFFFH. Else continue next instruction.

BLNV Sub ; Never call subroutine (this is a NO-OP).

ALU INSTRUCTION register (Rn). The second operand may CMN) do not write the result to Rd.

The ALU-type instruction is only
executed if the condition is true. The
various conditions are defined in the
Condition Code section.

The instruction produces a result by
performing a specified arithmetic or
logical operation on one or two oper-
ands. The first operand is always a

be a shifted register (Rm) or a rotated
eight-bit inmediate value (Imm)
according to the value of the | bit in the
instruction. The condition codes in the
PSR may be preserved or updated as a
result of this instruction, according to
the value of the S bit in the instruction.
Certain operations (TST, TEQ, CMP,

They are used only to perform tests and
to set the condition codes on the result,
and therefore should always have the S
bit set. (The assembler treats TST,
TEQ, CMP and CMN as TSTS, TEQS,
CMPS and CMNS by default).

Apple Computer, inc. CONFIDENTIAL

26

(

L2

& APRM/VL2340

g
@& ~ople Computer, Inc.

& APRM / VL2340

FIGURE 9. ALU INSTRUCTION TYPES
31 28 25 20 16 15 12 1

[condx |0 0|1 |opoodels| " rn [Rd |

T
Operandz

=

Destination Register

Condition 1st operand register

Code Set condition codes

0 = do not alter condition codes

Immediate Value 1 = set condition codes (S suffix)

0 = Operand 2 Is a register.

1 = Operand 2 is an

immediate value.

Operation Code -—l

0000 = AND - Rd = Op1 AND Op2

0001 = EOR - Rd = Op1 EOR Op2

0010 = SUB - Rd = Op1 - Op2

0011 = RSB - Rd = Op2 - Op1

0100 = ADD - Rd = Op1 + Op2

0101 = ADC- Rd=Op1 +0p2+C

0110=SBC- Rd=Op1-0p2+C

0111 =RSC- RD=0p2-0pt1 +C

1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2

Imm=1 --> Operand 2 is an immediate value.
1 87 0

Rotate] Immediate

| I—- Unsigned 8 bit immediate value
Right-rotate amount to beapplied
to 8-bit imm (2-bit shift units).

Imm=0 —> Operand2 is in a register.
1 43 0

a4

shitFied | Rm |

1100 = ORR - Rd = Op1 OR Op2 L_ L 2nd-Operand register
1 - V - -
1190 Blo. - 2:-8:12ANDOp2 Shift applied to Am (as shown
1111« MVN - Rd = Op2 o in bolow expansion figures).
[I
11 7654 11 87654
| = 1
Shift Amount Shift T
Shift amount is a 5-bit OO!T;)oichsﬂ (Lsy)
unsigned integer. 01 = Logical Right (LSR)
Shsiﬂhf\m"wm - 10 = Arithmetic Right (ASR)
in bottom byte of Rs. 11 = Rotate Right (ROR)

Appie Computer, inc. CONFIDENTIAL

27

y
' Apple Computer, Inc.

OPERATIONS

Assembler
Mnemonic Opcode
AND 0000
EOR 0001
SuB 0010
RSB 0011
ADD 0100
ADC 0101
SBC 0110
RSC 0111
TST 1000
TEQ 1001
CMP 1010
CMN 1011
ORR 1100
MOV 1101
BIC 1110
MVN 1111

Action

Bit-wise logical AND of operands
Bit-wise logical Exclusive Or of operands
Subtract operand 2 from operand 1
Subtract operand 1 from operand 2

Add operands

Add operands plus carry (PSR C flag)

® APRM / VL2340 (

Subtract operand 2 from operand 1 plus carry
Subtract operand 1 from operand 2 plus carry

as AND, but result is not written
as EOR, but result is not written
as SUB, but result is not written
as ADD, but result is not written
Bit-wise logical OR of operands
Move operand 2 (operand 1 is ignored)

Bit clear (bit-wise AND of operand 1 and NOT operand 2)
Move NOT operand 2 (operand 1 is ignored)

PSR Flags - The operations may be
classified as logical or arithmetic. The
logical operations (AND, EOR, TST,
TEQ, ORR, MOV, BIC, MVN) perform
the logical action on all corresponding
bits of the operand or operands to
produce the result. If the S bit is set
(and Rd is not R15) the V flag in the
PSR will be unaffected, the C flag will
be set to the carry out from the barrel
shifter (or preserved when the shift
operation is LSL 0), the Z flag will be set
if and only if the result is all zeroes, and
the N flag will be set to the logical value
of bit 31 of the result.

The arithmetic operations (SUB, RSB,
ADD, ADC, SBC, RSC, CMP, CMN)
treat each operand as a 32-bit integer
(either unsigned or 2's complement
signed, the two are equivalent). lf the S
bit is set (and Rd is not R15) the V flag
in the PSR will be set if an overflow
occurs into bit 31 of the result; this may
be ignored if the operands were
considered unsigned, but wams of a
possible error if the operands were 2's
complement signed. The C flag will be
set to the carry out of bit 31 of the ALU,
the Z flag will be set if and only if the
result was zero, and the N flag will be
set to the value of bit 31 of the result
(indicating a negative result if the
operands are considered to be 2's
complement signed).

Shifts - When the second operand is
specified to be a shifted register, the
operation of the barrel shifter is con-
trolled by the shift field in the instruction.

This field indicates the type of shift to be
performed (logical left or right, arithme-
tic right or rotate right). The amount by
which the register should be shifted
may be contained in an immediate field
in the instruction, or in the bottom byte
of another register as shown in Figure
8.

When the shift amount is specified in
the instruction, it is contained in a five-
bit field which may take any value from
zero to 31. A logical shift left (LSL)

takes the contents of Rm and moves
each bit by the specified amount to a
more significant position. The least
significant bits of the result are filled
with zeroes, and the high bits of Rm
which do not map into the result are
discarded, except that the least
significant discarded bit becomes the
shifter carry output which may be
latched into the C bit of the PSR when
the ALU operation is in the logical class
(see above). For example, the effect of
LSLS is:

FIGURE 10. LOGICAL SHIFT LEFT (LSL)

31 2423

16 15 87 0

[camy|@—]

rer{yvrrvjlrvyvrgr vy

Y{TrYTrryrjrvyrrfpryrrrrryrr>y

Contents of Rm, which will appear (shifted) in Operand 2

CarryFlag 31 2423 1615 87 0
|§t27] |'”"”"'L;m";z}t'u;&ﬁn;"ﬁT"lolo'o'o'o]

Example of shifted result in Operand 2 (shifted content of Rm)

| *—o

Note that LSL 0 is a special case,
where the shifter carry out is the old
value of the PSR C flag. The contents
of Rm are used directly as the second
operand.

A Logical Shift Right (LSR) is similar,
but the contents of Rm are moved to
less significant positions in the result.
LSR 5 has the following effect:

Apple Computer, Inc. CONFIDENTIAL

28

4
@ Appie Computer, Inc O aprm) vizas

FIGURE 11. LOGICAL SHIFT RIGHT (LSR)

31 2423 16 15 87 0
0 L.,.....,....,..,.......,......,I Icaﬂyl
Contents of Rm, which will appear (shifted) in Operand 2

31 2423 1815 87 0 Canry Flag
l[ooooo " " upperzzbimotRm ' | [Bits]

Example of shifted result in Operand 2 (shifted content of Rm)

The form of the shift field which might ROR 0 into LSL 0, and allows LSR 32 to shift preserves the correct representa-

be expected to correspond to LSR 0 is be specified. tion of a (signed) negative integer to be
used to encode LSR 32, which has the The Arithmetic Shift Ri ; divided by powers of two via a right
zero result, with bit 31 of Rm as the simeilarr to't‘;\eetfogic:tl !;l‘?"htﬁ(gAh? ’?x:ept shift. For example, ASR 5 has the
carry output. Logical shift right zero is C : P following effect:

d tis th ical that the high bits are filled with repli-
redundant, as it is the same as logica cates of the sign bit (bit 31) of the Rm

shift left zero. Therefore, the assem-

bler converts LSR 0, and ASR 0, and register, instead of zeros. This signed

FIGURE 12. ARITHMETIC SHIFT RIGHT (ASR)

31 2423 1615 87 0

I...,...,.,...,,,,,.,...,...,.,.J |°a"Y|
e:“g" Contents of Rm, which will appear (shifted) in Operand 2

31 2423 16 15 8 0 Carry Flag

7
I1????l% (Sign extended) upper 27 bits of Rm 5| |B‘t4l

Example shifted result in Operand 2 (shifted content of Rm)

The form of the shift field which might bit (bit 31) of Rm. The result is therefore shift right operation, by wrapping them
be expected to give ASR 0 is used to all ones or all zeros, according to the around at the high end of the result.
encode ASR 32. Bit 31 of Rm is again value of bit 31 of Rm. For example, the effect of a ROR 5 is:

used as the carry output, and “d.‘ bit Rotate Right (ROR) operations reuse
of operand 2 is also equal to the sign the bits which “overshoot” in a logical

FIGURE 13. ROTATE RIGHT (ROR)

31 2423 16 15 87 0

T T T T T T T T T T T T T Cary
Contents of Rm, which will appear (shifted) in Operand 2

31 2423 16 15 87 0 Carry Flag

R T T T T T T T -

Lower§ | Upper 27 bits of Rm value 5 Bit4

Example of shifted result in Operand 2 (shifted content of Rm)

Apple Computer, Inc. CONFIDENTIAL 29

4
@& Aople Computer, Inc.

The form of the shift field which might
be expected to give ROR 0 is used to
encode a special function of the barrel

shifter, Rotate Right Extended (RRX).
This is a rotate right by one bit position
of the 33 bit quantity formed by append-

ing the PSR C flag to the most signifi- {

cant end of the contents of Rm:

FIGURE 14. ROTATE RIGHT EXTENDED (RRX)

N ICany|-—|

31 2423 16 15 87 0
l..,, Ty
| Contents of Rm, which will appear (shifted) in Operand 2
31 24 23 16 16 87
Lower 8? Upper 27 bits of Rm value

Example of shifted result in Operand 2 (shifted content of Rm)
Previous value of Carry Flag (from before the shift)

Bit 0 of Rm register

Register-Based Shift Counts - Only
the least significant byte of the contents
of Rs is used to determine the shift
amount. If this byte is zero, the
unchanged contents of Rm will be used
as the second operand, and the old

Shift

LSL by 32

LSL by more than 32
LSR by 32

LSR by more than 32
ASR by 32 or more
ROR by 32

ROR by more than 32

Immediate Operand Rotation - The
immediate operand rotate field is a four-
bit unsigned integer which specifies a
shift operation on the eight bit immedi-
ate value. The immediate value is zero
extended to 32-bits, and then subject to
a rotate right by twice the value in the
rotate field. This enables many
command constants to be generated,
for example all powers of two. Another
example is that the eight bit constant
may be aligned with the PSR flags (bits
zero, one, and 26 to 31). All the flags
can thereby be initialized in one TEQP
instruction.

Writing to R15 - When Rd is a register
other than R1S, the condition code flags

value of the PSR C flag will be passed
on as the shifter carry output.

if the byte has a value between one and
31, the shifted result will exactly match

Action

that of an instruction specified shift with
the same value and shift operation.

Shifts of 32 or More - The result will be
a logical extension of the shifting
processes described above:

Result zero, carry out equal to bit zero of Rm.

Result zero, carry out zero.

Result zero, carry out equal to bit 31 of Rm.

Result zero, carry out zero.

Result filed with and carry out equal to bit 31 of Rm.

Result equal to Rm, carry out equal to bit 31 of Rm.

Same result and carry out as ROR by n-32. Therefore, repeatedly
subtract 32 from count until within the range one to 32.

Note: The zero in bit seven of an instruction with a register controlled shift is compulsory; a one in this bit will cause the instruc-
tion to be a multiply or an undefined instruction.

in the PSR may be updated from the
ALU flags as described above. When
Rd is R15 and the S flag in the instruc-
tion is set, the PSR is overwritten by the
corresponding bits in the ALU result, so
bit 31 of the result goes to the N flag, bit
30 to the Z flag, bit 29 to the C flag and
bit 28 to the V flag. In user mode the
other flags (I, F, Ml, MO) are protected
from direct change, but in non-user
modes these will also be affected,
accepting copies of bits 27, 26, one and
zero of the result respectively.

When one of these instructions is used
to change the processor mode (which is
only possible in a non-user mode), the
following instruction should not access

a banked register (R14-R8) during its
first cycle. A no-op should be inserted if
the next instruction must access a
banked register. Accesses to the
unbanked registers (R7-R0 and R15)
are safe.

if the S flag is clear when Rd is R15,
only the 24 PC bits of R15 will be
written. Conversely, if the instruction is
of a type which does not normally
produce a result (CMP, CMN, TST,
TEQ) but Rd is R15 and the S bit is set,
the result will be used in this case to
update those PSR flags which are not
protected by virtue of the processor
mode.

Apple Computer, Inc. CONFIDENTIAL

30

.

& APRM /VL2340

y
@& Apple Computer, Inc.

® APRM / VL2340

R15 as an Operand - If R15 is used as
an operand in a data processing
instruction it can present different
values depending on which operand
position it occupies. It will always
contain the value of the PC. It may or
may not contain the values of the PSR
flags as they were at the completion of
the previous instruction.

Syntax:

MOV, MVN single operand instructions:
<opcode>{cond}{S} Rd,<Op2>

When R15 appears in the Rm position it
will give the value of the PC together
with the PSR flags to the barrel shifter.

When R15 appears in either of the Rn
or Rs positions it will give the value of
the PC alone, with the PSR bits
replaced by zeroes.

instruction, plus eight or 12 bytes due to
instruction prefetching. If the shift
amount is specified in the instruction,
the PC will be eight bytes ahead. If a
register is used to specify the shift
amount, the PC will be eight bytes
ahead when used as Rs, and 12 bytes
ahead when used as Rn or Rm.

The PC value will be the address of the

CMP, CMN, TEQ, TST - instructions not producing a result:

<opcode>{cond}{P} Rn,<Op2>

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC:

<opcode>{cond}{S} Rd, Rn, <Op2>

where Op2 Is Rm{,<shift>} or, <expression>
cond Two-character condition mnemonic, see Condition Code section.
S . Set condition codes if S present (implied for CMP, CMN, TEQ, TST).
P Make Rd = R15 in instructions where Rd is not specified, otherwise Rd will

default to RO. (Used for changing the PSR directly from the ALU resutt.)
Rd, Rn and Am Are any valid register name, such as R0-R15, PC, SP, or LK.

<shift>

Is <shiftname> <register> or <shiftname> expression, or RAX (rotate right

one bit with extend).

<shiftname>s

Are any of: ASL, LSL, LSR, ASR, or ROR.

Note: If <expression> is used, the assembler will attempt to generate a shifted immediate eight-bit field to match the expression.

if this is impossible, it will give an error.

Examples:

ADDEQ R2, R4, RS ; Equivalent to: if (ZFLAG) R2 = R4+RS.

TEQS R4,3 ; Test R4 for equality with 3 (The S is redundant, as the assembler
; assumes it. Equivalentto: ZFLAG = R4==3.

suB R4, RS, R7 LSR R2 ; Logical Right Shift R7 by the number in the bottom byte of R2, subtract
; the result from RS, and put the answer into R4.
: Equivalent to: R4 = RS - (R7>>R2).

TEQP R1S5, 0; ; (Assume non-user mode here). Change to
; user mode and clear the N,.Z,C,V,I, and F
; flags. Note that R15 is in the Rn position, so
; it comes without the PSR flags.
; Equivalent to: R15 = FLAGS = 0.

MOVNV RO, RO ; Is a no-op, avoiding mode-change hazard.
; Equivalentto: RO = RO.

MOV PC, LK ; Equivalentto: PC = LK, or PC = R14.
; Return from subroutine (R14 is an active one).

MOVS PC, R14 ; Equivalentto: PC, PSR = R14.

; Return from subroutine, restoring the status.

Appie Computer, Inc. CONFIDENTIAL

K}

y
. Apple Computer, Inc.

FIGURE 15. MULTIPLY, AND MULTIPLY-ACCUMULATE (MUL, MLA)

31 2827

22 19 1615 87

0

Lconex [0 00 coolls] Ra | An | Rs |1001[Am |

[| [
— Operand registers
Conditional Execution MUL: Rd=Rm*®Rs (Rs is ignored)
ComroiFleldxecu MLA: Rd = Rm* Rs + Rn
Set Condition Codes
0 = Do not atter Condition Codes
1 = Set Condition Codes
Accumulate bit (MLA specifier)
0 = Multiply (MUL)

1 = Multiply and Accumulate (MLA)

The Multiply and Multiply-Accumulate
instructions use a two-bit Booth's
algorithm to perform integer multiplica-
tion. They give the least significant 32-
bits of the product of two 32-bit oper-
ands, and may be used to synthesize
higher precision multiplications.

The Multiply form of the instruction
gives RD = Rm*Rs. Rn is ignored, and
should be set to zero for compatibility
with possible future upgrades to the
instruction set.

The Multiply-Accumulate form gives

Rd = Rm*Rs+Rn, which can save an
explicit ADD instruction in some circum-
stances.

Both forms of the instruction work on
operands which may be considered as
signed (two’s complement) or unsigned
integers.

Operand restrictions - Due to the way

the Booth's algorithm has been imple-
mented, certain combinations of

(The assembler will issue a warning if
these restrictions are violated.) The
destination register (Rd) should not be
the same as the Rm operand register,
as Rd is used to hold intermediate
values and Rm is used repeatedly
during the multiply. A MUL will give a
zero result f Rm = Rd, and a MLA will
give a meaningless result.

The destination register Rd should also
not be R15, as it is protected from
modification by these instructions. The
instruction will have no effect, except
that meaningless values will be placed
in the PSR flags if the S bit is set. All
other register combinations will give
correct results, and Rd, Rn and Rs may
use the same register when required.

PSR Flags - Setting the PSR flags is
optional, and is controlled by the S bit in
the instruction. The N and Z flags are
set correctly on the result (N is equal to
bit 31 of the result, Z is set if and only if
the result is zero), the V flag is unaf-

fected by the instruction (as for logical
data processing instructions), and the C
flag is set to a meaningless value.

Writing to R15 - As mentioned above,
R15 must not be use as the destination
register (Rd). I it is so used, the in-
struction will have no effect except
possibly to scramble the PSR flags.

R15 as an Operand - R15 may be used
as one or more of the operands, though
the result will rarely be useful. When
used as Rs the PC bits will be used
without the PSR flags, and the PC value
will be eight bytes on from the address
of the multiply instruction. When used
as Rn, the PC bits will be used along
with the PSR flags, and the PC will
again be eight bytes on from the
address of the instruction. When used
as Rm, the PC bits will be used together
with the PSR flags, but the PC will be
the address of the instruction plus 12
bytes in this case.

operand registers should be avoided.
Syntax
MUL{cond}{S} Rd, Rm, Rs
MLA {cond}{S} Rd, Rm, Rs, Rn
where cond Is a two-character condition code mnemonic
S Set condition codes if present.
Rd, Rm, Rs and Rn Are valid register mnemonics, such as R0-R15, SP, LK, or PC.
Notes:

Rd must not be R15 (PC), and must not be the same as Rm.
ltems in {} are optional. Those in <> must be present.

Examples:
MUL R1, R2, R3
MLAEQS R1, R2, R3, R4

; R1 = R2* R3. (R1,R2,R3 = Rd,Rm,Rs)
; Equivalent to: if (ZFLAG) R1 = R2°R3 + R4.
; Condition codes are set, based on the result.

‘Appie Computer, Inc. CONFIDENTIAL

32

(

L

& APRM /VL2340 .

Vi
‘ Apple Computer, Inc.

& APRM / VL2340

; The multiply instruction may be used to synthesize higher precision multiplications.

; For instance, multiply two 32-bit integers and generate a 64-bit result:

; Add middle sections. (MLA not used, as we need R3 correct).

MOV Ro, R1LSR 16 ; RO (temporary) = top half of R1.
MOV R4, R2LSR 16 ; R4 = top half of R2.

BIC R1, R1, ROLSL 16 ; R1 = bottom half of R1.

BIC R2, R2, R4 LSL 16 ; R2 = bottom half of R2.

MUL R3, Ro, R2 ; Low section of result.

MUL R2, Ro, R2 ; Middle section of result.

MUL R1, R4, R1 ; Middle section of result.

MUL R4, Ro, R4 ; High section of result.

ADDS R1, R2, R1

ADDCS R4, R4, 0x10000 ; Carry from above add.

ADDS R3, R3, R1LSL 16 ; R3 is now bottom 32 product bits.
ADC R4, R4, R1LSR 16 ; R4 is now top 32 bits.

Notes:

1. R1,R2 are resigters containing the 32-bit integers. R3,R4 are registers for the 64-bit result.

2. RO is a temporary register.

3. R1 and R2 are overwritten during the multiply.

Load/Store Value from Memory
(LDR,STR)

The register load/store instructions are
used to load or store single bytes or
words of data. The LDR and STR
instructions differ from MOV instructions
in that they move data between registers
and a specified memory address. In
contrast, the MOV instructions move data
between registers, or move a constant
(contained in the instruction) into a
register.

The memory address used in LDR/STR
transfers is calculated by adding an offset
to or subtracting an offset from a base
register. Typically, a load of a labeled
memory location involves the loading via
a (signed) offset from the current PC.
Regardless of the base register used, the
result of the offset calculation may be
written back into the base register if ‘auto-
indexing’ is required.

Offsets and Auto-indexing - The offset
from the base may be either a 12-bit
binary immediate value in the instruction,
or a second register (possibly shifted in
some manner). The offset may be added
to (U=1) or subtracted from (U=0) the
base register Rn. The offset modification
may be performed either before (pre-
indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer
address.

The W bit gives optional auto increment

and decrement addressing modes.
The modified base value may be
written back into the base (W=1), or
the oid base value may be kept
(W=0). In the case of post-indexed
addressing, the write back bit is
redundant, since the old base value
can be retained by setting the offset to
zero. Therefore, post-indexed data
transfers always write back the
modified base.

Hardware Address Translation -
The only use of the W bit in a post-
indexed data transfer is in non-user
mode code, where setting the W bit
forces the —TRAN pin low for the
transfer, allowing the operating
system to generate a user address in
a system where the memory manage-
ment hardware makes suitable use of
this pin.

Shifted Register Offset - The eight
shift control bits are described in the
data processing instructions, but the
register specified shift amounts are
not implemented in this instruction
class.

Bytes and Words - This instruction
class may be used to transfer a byte
(B=1) or a word (B=0) between a
processor register and memory.

A byte load (LDRB) expects the data
on bits D31 to D24 if the supplied

address is on a word boundary, on bits
D23to D16 if it is a word address plus
one byte, and so on. The selected byte
is placed in the bottom eight bits of the
destination register, and the remaining
bits of the register are filled with zeroes.

A byte store (STRB) repeats the bottom
eight bits of the source register four
times across the data bus. The external
memory system should activate the
appropriate byte subsystem to store the
data.

A word load (LDR) will normally
generate a word aligned address but
may also generate a non-word-aligned
address. An address offset from a word
boundary will cause the data to be
rotated into the register so that the
addressed byte position in the data
occupies bits D31 to D24. Reference
Appendix 1, Table 1.

Use of R15 - These instructions will
never cause the PSR to be modified,
even when Rd or Rn is R15.

If R15 is specified as the base register
(Rn), the PC is used without the PSR
flags. When using the PC as the base
register one must remember that it
contains an address eight bytes
advanced from the address of the
current instruction.

If R15 is specified as the register offset
(Rm), the value presented will be the

Apple Commputer, Inc. CONFIDENTIAL

VA
@& ~ppie Computer, Inc Q) AprM / vL2340

FIGURE 16. LOAD/STORE VALUE FROM MEMORY (LDR,STR)

31 28 25 20 1815 1211 0
[[[PR A | me | otz]
| l I
Source/Destination Register
Condition Base Register
Load/Store: 0 = STR, 1 = LDR
Write-back bit
0 = no write-back
1 = Write address back into base (!).
L. Byte/Word bit
0 = word transfer
! = byto ranster (B) — imm=1 --> Operand 2 is an immediate value.
~—— Up/Down bit 1 o
0 = offset is negative r""'-'-r"""-"l-""-"'l
1 = offset is positive Unsigned 12-bit value
— Pre/Post Indexing
0 = post: [base},index

1a=pre: [basejndex] — Imm=0 --> Operand2 is in a register.

1 76543 0
ryryvr v M

| [“lo| am |

: l L 2nd-Operand register
Immediate Value Shift Amount -[Shift T P

0 = Operand 2 is a register. Shift amount is a 5-bit oo!p;gml_en (LsL)
1 = Operand 2 is an shift count, to be applied 01 = Logical Right (LSR)
immediate value. 1o the Rm register. 10 = Arithmetic Right (ASR)

11 = Rotate Right (ROR)
Note: There is no Rs for of shift for the LDR/STR class. That is, the shift amount cannot be contained in a register.

PC together with the PSR. and the PSR will be unchanged. pin high, whereupon the data transfer
instruction will be prevented from

When R15 is the source register (Rd) of Data Aborts - A transfer to or from a :

a register store (STR) instruction, the legal address may still present special Z:z'gﬂ?,:?f Wmm'aks:ar’;;d th:o
value stored will be the PC together cases for a memory management the system s?ﬂwar tor Iv theup
with the PSR. The stored value of the system. For instance, in a system Sy 6 {0 resolve

cause of the problem. The instruction
can then be restarted and the original
program continued.

PC will be 12 bytes on from the address which uses virtual memory, the required

of the instruction. A load register (LDR) data may be absent from main memory.

with R15 as Rd will change only the PC, The memory manager can signal a
problem by taking the processor ABRT

Apple Computer, inc. CONFIDENTIAL 34

o

y
@& Apple Computer, Inc. & APEM / VL2340

Syntax:
LDR/STR{cond}{BH{T} Rd,<Address>{!}
where LDR means Load from memory into a register.

STR means store from a register into memory.

cond is a two-character condition mnemonic (see Condition Code section).

B If present implies byte transfer, else a word transfer.

T If present, the W bit is set in a post-indexed instruction, causing the
~TRAN pin to go low for the transter cycle. T is not allowed when a pre-i
indexed addressing mode is specified or implied.

Rd is a valid register: R0-R15, SP, LK, or PC.

Address Can be any of the variations in the following table.

Address Variants:
Address expression: An expression evaluating to a relocatable address:

<expression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the
expression. This is a PC-relative pre-indexed address. If out of range
(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using as effective address, and
offsets are placed within the [] pair. Rn may be viewed as a pointer:

[Rn){1} No offset is added to base address pointer.
[Rn, <expression>)} Signed offset of expression bytes is added to base pointer.
[Rn, Rm){}} Add Rm to Rn before using Rn as an address pointer.

[Rn, Rm {<shift> count} |{!} Signed offset of Rm (modified by shiff) is added to base pointer.

Post-indexed address: Offset is added to base reg, after using base reg for the effective address.
Offsets are placed after the [] pair:

[Rn],<expression>{1} Expression is added to Rn, after Rn’s usage as a pointer.

[Rn], Rm{} Rm is added to Rn, after Rn's usage as an address pointer.

[Rn], Rm <shift> count{l} Shift the offset in Rm by count bits, and add to Rn, after
Rn'’s usage as an address pointer.

where expression A signed 13-bit expression (including the sign).
Rm, Rn A valid register names: R0-R1S5, SP, LK, or PC. If RN = PC, the assembler
will subtract 8 from the expression to allow for processor address readahead.
shift Any of: LSL, LSR, ASR, ROR, or RRX.
count Amount to shift Rm by. It is a 5-bit constant, and may not be
specified as an Rs register (as for some other instruction classes).
/ If present, the | sets the W-bit in the instruction, forcing the

effective offset to be added to the Rn register, after completion.

Examples (Pre-index):
In each of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the
effective address. Rn is then updated only if the ! suffix is supplied.

STR R1, [R2, R1]! ; *(R2+R1) = R1. Then R2+=R1.
STR R3, [R2) ; *(R2) = R3.

LDR R1, [RO, 16) ; R1 = *(R0 + 16). Don't update RO.

LDR R9, [RS, RO LSL 2] : R9 = *(R5 + (R2<<2)). Don't update RS.

Apple Computer, Inc. CONFIDENTIAL 35

y
' Apple Computer, Inc. & APRM / VL2340

LDREQB R2, [Rs, 5] ; if (Zflag) R2 = *(RS5 + 5), a zero-filled byte load.

S

Examples (Post-index):
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the
effective address. Rn is then updated unconditionally, regardless of any | suffix.

STR R1, [R2], R1! ;'R2 = R1. Then R2 += R1.

STR R3, [R2], Rs! ; *(R2) = R3. Then R2 += RS.

LDR R1, [RO], 16 ; R1 = *RO. Then RO += 16.

LDR R9, [RS], RO ASR 3 ; R9 = "“R5. Then RS += (RO / 8).

LDREQB R2, [R5), 5 ; if (Zflag) R2 = *RS5, a zero-filled byte load, and then RS += 5.
Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-
ences are precompensated for the 8-byte read-ahead done by the processor. PARMx is a register-relative label, typically created
via a DTYPE directive, and assumed to be relative to the LK (R14) register. DATAX is similar, but is presumably defined relative
to the SP (R13) register, and GENERAL relative to RO. In any case, they may be located up to +4096 bytes from the associated
base register.

LDR RO, DATA{ ; SP-relative. Same as: LDR RO, [SP+DATA1].
STR R2, PLACE ; PC-relative. Same as: STR R2, [PC+16].
LDR . R1, PARMO ; LK-relative. Same as: LDR R1, [LK+DATA1].
STR R1, GENERAL ; RO-relative. Same as: STR R1, [RO+GENERAL].
8 Across ; Skip over the data temporary.
i°LACE Dw 0 ; Temporary storage area.
Across e« ; Resume execution.
FIGURE 17. LOAD/STORE REGISTER LIST FROM MEMORY (LDM,STM) (
31 2827 25 2019 1615 0

[Conax [1 0 oP[Us/WL] Rn | " Regiswrist |

I | L— Base Register
Condition Load/Store: 0 = STM, 1 = LDM
Code Write-back bit
0 = no write-back
1 = Write address back into base (!).
PSR & Force-User bit (* suffix)
0 = Do not load PSR or force user mode.
1 = Load PSR, and optionally force user mode (*).
Up/Down Bit Pre/Post indexing Form
0 = offset is negative 0 = Post: [base}index
1 = offset is positive 1 = Pre: [base,index]

Apple Computer, Inc. CONFIDENTIAL 36

4
@& ~pple Computer, Inc.

® APRM / VL2340

The multi-register transfer instructions
are used to load (LDM) or store (STM)
any subset of the currently visible
registers. They support all possible
stacking modes (push up/pop down, or
push down/pop up). They are very
efficient instructions for saving or
restoring context, or for moving large
blocks of data around main memory.

The Register List - The instruction can
cause the transfer of any registers in
the current bank (and non-user mode
programs can also transfer to and from
the user bank). The register list is
contained in a 16-bit field in the
instruction, with each bit corresponding
to a register. A logic one in bit zero of
the register field will cause RO to be
transferred, a logic zero will cause it not
to be transferred; similarly bit one
controls the transfer of R1, and so on.

Addressing Modes - The transfer
addresses are determined by the
contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U).
The registers are transferred in the
order lowest to highest, so R15 (if in
the list) will always be transferred last.
The lowest register also gets trans-
ferred to/from the lowest memory
address. This is illustrated in Figures
18 and 19.

Transfer of R15 - Whenever R15 is
stored to memory, the value transferred
is the PC together with the PSR flags.
The stored value of the PC will be 12
bytes advanced from the address of the
STM instruction.

If R15 is in the transfer list of a load
multiple (LDM) instruction the PC is
overwritten, and the effect on the PSR
is controlled by the S bit. ¥ the S bit is
zero the PSR is preserved unchanged,
but if the S bit is set the PSR will be
overwritten by the corresponding bits of
the loaded value. In user mode,
however, the |, F, M1, and MO bits are
protected from change, whatever the
value of the S bit. The mode at the start
of the instruction determines whether
these bits are protected, and the
supervisor may retumn to the user
program, reenabling interrupts and
restoring user mode with one LDM
instruction.

Transfers to User Bank - For STM
instructions the S bit is redundant as the
PSR is always stored with the PC
whenever R15 is in the transfer list. In
user mode the S bit is ignored, but in
other modes it has a second interpreta-
tion. S = 1is used to force transfers to
take values from the user register bank
instead of from the current register
bank. This is useful for saving the user
state on process switches. Note that
when it is so used, write back of the
base will also be to the user bank,
though the base will be fetched from the
current bank. Therefore don't use write
back when forcing user bank.

In LDM instructions the S bit is redun-
dant if R15 is not in the transfer list, and
again in user mode it is ignored. In
non-user mode where R15 is not in the
transfer list, S=1 is used to force loaded
values into user registers instead of the
current register bank. When used in
this manner, care must be taken not to
read from a banked register during the
following cycle; if in doubt, insert a no-
op. Again, don't use write back when
forcing a user bank transfer.

R15 as the Base - When the base is the
PC, the PSR bits will be used to form
the address as well. Also, write back is
never allowed when the base is the PC
(setting the W bit will have no effect).

Base Within the Register List - When
write back is specified, the base is
written back at the end of the second
cycle of the instruction. During a STM,
the first register is written out at the start
of the second cycie. A STM which
includes storing the base, with the base
as the first register to be stored, will
therefore store the unchanged value,
whereas with the base second or later
in the transfer order, will store the
modified value. An LDM will always
overwrite the updated base if the base
is in the list. '

Abort During an STM - If the abort
occurs during a store multiple instruc-
tion, the processor takes little action
until the instruction completes, where-
upon it enters the data abort trap. The
memory manager is responsible for
preventing erroneous writes to the

memory. The only change to the
internal state of the processor will be
the modification of the base register if
write back was specified, and this must
be reversed by software (and the cause
of the abort resolved) before the
instruction may be retried.

To illustrate the various load/store
modes, consider the transfer of R1, RS
and R7 in the case where Rn = 1000H
and write back of the modified base is
required (W = 1). These figures show
the sequence of register transfers, the
addresses used, and the value of Rn
after the instruction has completed.

In all cases, had write back of the
modified base not been required (W=0),
Rn would have retained its initial value
of 1000H unless it was also in the
transfer list of the load multiple register
instruction. Then it would have been
overwritten with the loaded value.

Aborts During LDM - When the
processor detects a data abort during a
load multiple instruction, it modifies the
operation of the instruction to ensure
that recovery is possible.

Overwriting of registers stops when the
abort happens. The aborting load will
not take place, nor will the preceding
one, but registers two or more positions
ahead of the abort (if any) will be
loaded. (This guarantees that the PC
will be preserved, since it is always the
last register to be overwritten.)

The base register is restored, to its
(modified) value if write back was
requested. This ensures recoverability
in the case where the base register is
also in the transfer list, and may have
been overwritten before the abort
occurred.

The data abort trap is taken when the
load multiple has completed, and the
system software must undo any base
modification (and resolve the cause of
the abort) before restarting the instruc-
tion.

Apple Computer, Inc. CONFIDENTIAL

37

y
‘ Apple Computer, Inc.

& APRM / VL2340

The following figures illustrate the
impact of various addressing modes.
R1, RS, and R7 are moved to/from
memory, where Rn=0x1000, and a

write-back of the modified base is done

(W=1). The figures show the sequence

of incrementing "pushes®, the ad-

dresses used, and the final value of Rn.

Without writeback, Rn would remain at

0x1000.

Figure 19 illustrates decrementing
"pushes” to the stack based upon Rn.

FIGURE 17. INCREMENTING INDEX

Post-increment Addressing
0x100C 0x100C
Rn —p 0x1000 R1 0x1000
OxOFF4 OXOFF4
(1) Before STM Instruction (2) Atter First Transfer
oxi100c Rn—p 0x100C
— R7
RS RS
Rl 0x1000 R1 0x1000
OXOFF4 OXOFF4
(3) After Second Transfer (4) STM Instruction Complete
Pre-increment Addressing
0x100C 0x100C
=]
Rn —p> 0x1000 0x1000
OxOFF4 OxXOFF4
(1) 2]
oxtooc RAn—b A7 0x100C
LS 5
R1 R
0x1000 0x1000
OXOFF4 OxXOFF4
3 4

FIGURE 18. DECREMENTING INDEX

Post-Decrement Addressing
0x100C 0x100C
Rn —p 0x1000 0x1000
R1
OxOFF4 O0xOFF4
(1) Before STM instruction (2) After First Transfer
0x100C 0x100C
_ Ox1000 R7 0x1000
RS RS
L1 R1
Ox0FF4 Pn OxOFF4
(3) Aher Second Transfer (4) After STM instruction Complete
Pre-Decrement Addressing
0x100C 0x100C
Rn —p> 0x1000 0x1000
R1
OxOFF4 OxOFF4
(V) 2
oxtoo¢c Rn—b 0x100C
0x1000 0x1000
_ R7
L) RS
R1 OxOFF4 R1 OxOFF4

4

Apple Cormputer, Inc. CONFIDENTIAL

4
' App]e Computer‘, InC. & APRM / VL2340

Syntax:
LDM|STM{cond}<mode> Rn{!}, <Rlist>{*}

where cond s an optional 2-letter condition code common to all instructions.

mode s any of: FD, ED, FA, EA, |A, IB, DA, or DB.

Rn Is a valid register name: RO-R15, SP, LK, or PC.

Rlist Can be a single register (as described above for Rn), or may be a list of
registers, enclosed in { } (eg {R0,R2,R7-R10,LK]}).

! If present, requests write back (W=1). Otherwise W=0.

A If present, set S bit to load the PSR with the PC, or force transfer of user
bank, when in non-user mode.

Addressing Mode Names - There are different assembler mnemonics for each of the addressing modes, depending on whether
the instruction is being used to support stacks, or for other purposes. The names may be used interchangeably: e.g., LDMED
performs exactly the same as LDMIB. The name equivalences and instruction bit values are:

Use as Other

—Function Stack usages LBt PBit UbR Operation
Pre-increment load LDMED LDMIB 1 1 1 Pop upwards
Post-increment load LDMFD LDMIA 1 0 1 Pop upwards
Pre-decrement load LDMEA LDMDB 1 1 0 Pop downwards
Post-decrement load LDMFA LDMDA 1 0 0 Pop downwards
Pre-increment store STMFA STMIB 0 1 1 Push upwards
Post-increment store STMEA STMIA 0 0 1 Push upwards
Pre-decrement store STMFD STMDB 0 1 0 Push downwards
Post-decrement store STMED STMDA 0 o 0 Push downwards

FD, ED, FA, EA indicate whether or not the addressed memory cell has valid data in it (from the previous push or pop), and which
direction the stack is to flow. They define the settings of the L, P, and U bits, based on the form of stack required.

The F and E refer to a “full” or “empty” stack cell. The A and D refer to whether the stack is ascending or descending. If ascend-
ing, a STM will go up and LDM down, if descending, vice-versa.

1A, 1B, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After, Increment Before,
Decrement After, Decrement Before.

Examples
LDMFD SP}, {R0, R1, R2} ; unstack 3 registers
STMIA BASE, {R0, R15} ; save all registers
These instructions may be used to save state on subroutine entry, and restore it efficiently on retumn to the calling routine;
STMED SPI, {R0O-R3, LK} ; Save RO to R3 for workspace,and R14 for returning.
BL Subroutine ; This call will overwrite R14

LDMED SPI, {R0-R3, PC} ; Restore workspace and retumn, restoring PSR flags.

Apple Computer, inc. CONFIDENTIAL 39

4
@& ~ople Computer, Inc. A\ APRM / VL2340

FIGURE 20. SOFTWARE INTERRUPT (SW)

31 2827 2423 0
..,.,.r,r..,..fl

| Condx |1 11 1] ™ " instructon 1o exscutive (ignored by AR

[Condition

Field

Note: The machine comments field in bits 23:0 are ignored by the hardware. They are made available for free interpretation by
the software executive, and may be found in LSB-first byte order on the stack.

The Software Interrupt (SWI) instruction Return from the Supervisor - The PC itself it must first save a copy of the
is used to enter supervisor mode in a and PSR are saved in R14_svc upon return address.
controlled manner. The instruction entering the software interrupt trap, with
causes the software interrupt trap to be the PC adjusted to point to the word gchln; ‘ﬁ:m":.:“, Fleld -_The
taken, which effects the mode change, after the SW| instruction. MOVS R15, bottom 24 bits of the instruction are
with execution resuming at 0x08. if this R14_svc will return to the user program, '9";’“ by the processor, and may be
address is suitably protected (by restore the user PSR and return the used to cor:mt.mlcate with the supervi-
external memory management hard- processor to user mode. :\oaryO::tT';lct‘:t:il:fsit:lzi‘c:r;;h:s:uir:on;::erx
ware) from modmcatpn by the user, a Note that the link mechanism is not re- into an array of ent ints for routines
fully protected operating system may be . . . y 1Yy po
constructed entrant, so if the supervisor code which perform various supervisor
) wishes to use software interrupts within functions.

Syntax:

SWi{cond} <expression>
where cond Is the two-character condition code common to all instructions.

expression Is a 24-bit field of any format. The processor itself ignores it, but the

typical scenario is for the software executive to specify patterns in it,
which will be interpreted in a particular way by the executive, as commands.

Examples:

acons Zero=0, ReadC=1, Write1=2 ; Assembler constants.

SwWi ReadC ; Get next character from read stream

Swi Writel+k" ; Output a “k” to the Write stream

SWINE 0 ; Conditionally call supervisor with 0 in comment field

The above examples assume that suitable supervisor code exists. For instance:
; Assume that the R13_svc (the supervisor's R13) points to a suitable stack.

acons Zero=0, ReadC=1, Write1=2 ; Assembler constants.
acons CC_Mask = 0xFC00003 ; Non-address area mask.
08h B Super ; SWI entry point
Super STMFD SPL{rOr 1, r2) ; Save working registers.
BIC r1, r14, CC_Mask ; Strip condx codes from SWI instruction address.
LDR RO, [R1, -4] ; Get copy of SWI instruction.
BIC Ro, R0, 0xFF000000 ; Get lower 24 bits of SWI, only.
MOV R1, SWI_Table ; Get absolute address of PC-relative table.
LDR PC,[R1, ROLSL 2] ; Jump indirect on the table.
SWI_Table dw Zero_Action ; Address of service routines.

dw ReadC_Action
dw Write1_Action

Write1_Action ; Typical service routine.

LDM R13,{R0-R2, PC}* ; Restore workspace, and return to inst after SWI.

Appie Computer, inc. CONFIDENTIAL 40

y
@& ~opie Computer, Inc.

& APRM / VL2340

FIGURE 21. COPROCESSOR DATA OPERATIONS (CPD)

31 2827 2423 2019

1615 1211

87 543

0

az

[Condx[1110cropc| crn | crd | cPe | cp [of cAm |

==

Condition

Code

| [T T T I
1
Coprocessor Coprocessor Operand
Operation Registers

Code .
Coprocesser Auxiliary

Coprocessor Information

Destination

Register Coprocessor Number

The instruction is executed only if the
condition code field is true. The field is
described in the Condition Codes
section.

This is actually a class of instructions,
rather than a single instruction, and is
equivalent to the ALU class on the
APRM. All instructions in this class are
used to direct the coprocessor to
perform some internal operation. No
result is sent back to the APRM, and
the APRM will not wait for the operation

to complete. The coprocessor could
maintain a queue of such instructions
awaiting execution. Their execution
may then overlap other APRM activity,
allowing the two processors to perform
independent tasks in parallel.

Coprocessor Fields - Only bit 4 and
bits 31:24 are significant to the APRM;
the remaining bits are used by
coprocessors. The above field names
are used by convention, but particular
coprocessors may redefine the use of

CP#,<expression1>, CRd, CRn, CRm{, <expression2>}

any or all fields as appropriate, except
for the CP#. For the sake of future
family product introductions, it is
encouraged that the above conventions
be followed, unless absolutely neces-
sary.

By convention, the coprocessor should
perform an operation specified in the
CP Opc field (and possibly in the CP
field) on the contents of CRn and CRm,
placing the result into CRd.

Syntax:

CPD{cond}
where cond

CP#»

Is the conditional execution code, common to all instructions.
Is the (unique) coprocessor number, assigned by hardware.

CRd, CRn, CRm These are valid coprocessor registers: CR0-CR15.

expression1

expression2 (Where present)
Examples:

CDP 1,10, CR1, CR7, CR2

CDPEQ 2, 5, CR1, cr2,Cr3, 2

Evaluates to a constant, and is placed in the CP Opc field.

evaluates to a constant, and is placed in the CP field.

; Request co-proc #1 to do operation 10 on CR7 and CR2, putting result into CR1.

; i the Z flag is set, request co-proc #2 to do
; operation 5 (type 2) on CR2 and CRS3, placing the result into CR1.

FIGURE 22. COPROCESSOR LOAD/STORE DATA (LDC/STC)

31 2827 2423 2019 1615 1211 87 543 O
—r—r——r— ——r T
| conax |1 1 oplulNivL| A [cra | cre [omse |
—'|'— | T T
Coprocessor 8-Bit Positive
Condiion Src/Dat Immediate
Code Register Ofiset
ARM Base L___ coprocessor
Index Control Pointer Number
(::Posl-movo Register Load/Store Bi
Pre-move L Writeback 0 = Store to Memory
Up/Do 0 = No writeback 1 = Load to Coproc Reg
o-smtraa 1= Write e.a. to Rn.
1=AddOffset L — Transter Length
Apple Computer, Inc. CONFIDENTIAL 41

g
@& ~pple Computer, Inc.

® APRM / VL2340

The LDC and STC instructions are used
to load or store single bytes or words of
data. They differ from MCR and MRC
instructions in that they move data
between coprocessor registers and a
specified memory address. In contrast,
the other instructions move data
between registers, or move a constant
(contained in the instruction) into a
register.

The memory address used in LDC/STC
transfers is calculated by adding an
offset to or subtracting an offset from a
base pointer register, Rn. Typically, a
load of a labeled memory location
involves the loading via a (signed) offset
from the current PC. Regardless of the
base register used, the result of the
offset calculation may be written back
into the base register if ‘auto-indexing’
is required.

Coprocessor Fields - The CP# field
identifies which coprocessor shall
supply or receive the data. A coproces-
sor will respond only if its number
matches the contents of this field

The CRd field and N bit contain
information which may be interpreted in
different ways by different coproces-
sors. By convention, however, CRd is
the register to be transferred (or the first
register, where more than one is to be
transferred). The N bit is used to
choose one of two transfer length
options. For instance, N=0 could select

Syntax:

the transfer of a single register, and
N=1 could select the transfer of all
registers for context switching.

Offsets and Indexing - The APRM is
responsible for providing the address
used by the memory system for the
transfer, and the modes available are
similar to those used for the APRM's
LDR/STR instructions.

Only 8-bit offsets are permitted, and the
APRM automatically scales them by two
bits to form a word offset to the pointer
in the Rn register. Of itself, the offset is
an 8-bit unsigned value, but a 9-bit
signed negative offset may be supplied.
The assembler will complement it to an
8-bit (positive) value and will clear the
instruction’s U bit, forcing a compensat-
ing subtract. The result is a +256 word
(1024 byte) offset from Rn. Again, the
APRM internally shifts the offset left two
bits before addition to the Rn register.

The offset modification may be per-
formed either before (pre-indexed, P=1)
or after (post-indexed, P=0) the base is
used as the transfer address. The
modified base value may be written
back into the base (W=1), or the old
base value may be kept (W=0). In the
case of post-indexed addressing, the
write back bit is redundant, since the old
base value can be retained by setting
the offset to zero. Therefore post-
indexed data transfers always write
back the modified base.

<LDC/STC>{cond{L{T} CP#, CRd, <Address>{l}

For an offset of +1, the value of the Rn
base pointer register (modified, in the
preindexed case) is used for the first
word transferred. Should the instruction
be repeated, the second word will go
fromsto an address one word (4 bytes)
higher than than pointed to by the
original Rn, and so on.

Use of R15 - if R15 is specified as the
base register (Rn), the PC is used
without the PSR flags. When using the
PC as the base register note that it
contains an address eight bytes
advanced from the address of the
current instruction. As with the LDR/
STR case, the assembler performs this
compensation automatically.

Hardware Address Transiation - The
W bit may be used in non-user mode
programs (when post-indexed address-
ing is used) to force the -TRANS pin low
for the transfer cycle. This allows the
operating system to generate user
addresses when a suitable memory
management system is present.

Data Aborts - If the address is legal but
the memory manager generates an
abort, the data abort trap will be taken.
The writeback of the modified base will
take placs, but all other processor state
data will be preserved. The coproces-
sor is partly responsible for ensuring
restartability. It must either detect the
abort, or ensure that any actions
consequent from this instruction can be
repeated when the instruction is retried
after the resolution of the abort.

where LDC means Load from memory into a coprocessor register.

STC means store a coprocessor register to memory.

cond is a two-character condition mnemonic (see Condition Code section).

L if present implies long transfer (N=1), else a short transfer (N=0).

T if prosont the W bit is set in a post-indexed instruction, causing the
—~TRAN pin to go low for the transfer cycle. T is not allowed when apre-i
indexed addressing mode is specified or implied.

CP# Valid coprocessor number, determined by hardware.

CRd Valid coprocessor register number: CR0O-CR15.

Address Can be any of the variations in the following table.

Apple Computer, Inc. CONFIDENTIAL

(

4
@ ~pple Computer, Inc O aprm /vizsao

Address Variants:
Address expression: An expression evaluating to a relocatable address:

<expression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the
expression. This is a PC-relative pre-indexed address. If out of range
(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using as effective address, and
offsets are placed within the [] pair. Rn may be viewed as a pointer:

[Rn){}} No offset is added to base address pointer.

[Rn, <expression>] Signed offset of expression bytes is added to base pointer.

[Rn, <expression>)} Signed offset of expression bytes is added to base pointer. Then
this effective address is written back to Rn.

Post-indexed address: Offset is added to base reg, after using base reg for the effective
address. Offsets are placed after the {] pair:

[Rn),<expression> Expression is added to Rn, after Rn’s usage as a pointer.
where expression A signed 13-bit expression (including the sign).
Rn Avalid register names: R0-R15, SP, LK, or PC. K RN =PC, the

assembler will subtract 8 from the expression to allow for processor
address readahead.

Examples (Pre-index):
In each of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the
effective address. Rn is then updated only if the | suffix is supplied. Coprocessor #1 is used in all cases, for simplicity.

STC 1,CR3, [R2] ; *(R2) = CR3.

LDC 1,CR1, [RO, 16] ; CR1 = *(RO + 16). Don't update RO.

LDCEQ 1,CR2, [RS, 12]! ; it (Zflag) CR2 = *(R5 + 12). Then, R5 += 12.
Examples (Post-index):

In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the
effective address. Rn is then updated unconditionally, regardless of any | suffix. Coprocessor #3 is used in all cases, for

simplicity.
STC 3, CRt, [R2], R1! ; *‘R2 = CR1. Then R2 += R1.
LDC 3, CR1, [Ro], 16 ; CR1 = *RO. Then RO += 16.
LDCEQL 3,CR2, [Rs), 4 ; if (Zflag) CR2 = *RS, and then (implicitly), RS += 4.
; Use the long option (probably to store multiple words).
Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative label, typically created as shown. PC-relative refer-
ences are precompensated for the 8-byte read-ahead done by the processor. It may be located up to +1024 bytes from the
associated base register, and must be a multiple of 4 bytes in offset.

STC R2, PLACE ; PC-relative. Same as: STC R2, [PC+8].
B Across ; Skip over the data temporary.

i’LACE DwW 0 ; Temporary storage area.

Across e ; Resume execution.

Apple Computer, Inc. CONFIDENTIAL 43

y
' Apple Computer, Inc.

FIGURE 23. COPROCESSOR REG TRANSFER (MCR,MRC)

31 2827 2423 21 19

1615 1211

87 543 O

| conax [1110]coop|t| crn | Rd | cP# | cP |1 cam |

I [| T
|
Condition Coprocessor Coprocessor Operand
Code Operation sgg:t Registers
Code Coprocesser Auxiliary
Register
| Information
Load/Store Bit Coprocessor Number
0 = Store to co-proc

1 = Load from co-proc

The instruction is executed only if the
condition code field is true. The field is
described in the Condition Codes
section.

This is actually-a class of instructions,
rather than a single instruction, and is
equivalent to the ALU class on the
APRM. Instructions in this class are
used to direct the coprocessor to
perform some operation between an
APRM register and a coprocessor
register. I differs from the CPD
instruction in that the CPD performs
operations on the coprocessor's internal
registers only.

An example of an MCR usage would be
a FIX of a floating point value held in
the coprocessor, where the number is
converted to a 32-bit integer within the
coprocessor, and the result then
transferred back to an APRM register.
An example of an MRC usage would be

Syntax:

the converse: A FLOAT of a 32-bit
value in an APRM register into a
floating point value within a coprocessor
register.

An important use of this instruction is to
communicate control information
directly from the coprocessor into the
APRM PSR flags. As an example, the
result of a comparison of two floating
point values within the coprocessor can
be moved to the PSR to control
subsequent execution flow.

Coprocessor Flelds - The CP# field is
used by all coprocessor instructions to
specify which coprocessor is being
invoked.

The CP Opc, CRn, CP, and CRm fields
are used only by the coprocessor, and
the interpretation of these fields is set
only by convention; other incompatible
interpretations are allowed. The

MCR/MRC{cond} CP#,<expressioni>, Rd, CRn, CRm{,<expression2>}

where cond
CP#
Rd
CRn, CAm
expression1
expression2
Examples:
MCR 1,10, R1, CR7, CR2

MRCEQ 22, 5, R1, cr2, Cr3, 2

Is the conditional execution code, common to all instructions.
Is the (unique) coprocessor number, assigned by hardware.
Is the APRM source or destination register.

These are valid coprocessor registers: CR0-CR15.
Evaluates to a constant, and is placed in the CP Opc field.
(Where present) evaluates to a constant, and is placed in the CP field.

; Request co-proc #1 to do operation 10 on

conventional interpretation is that the
CP Opc and CP fields specify the
operation for the coprocessor to
perform, CRn is the coprocessor
register used as source or destination of
the transferred information, and CRm is
the second coprocessor register which
may be involved in some way depend-
ent upon the operation code.

Transfers To/From R15: When a
coprocessor register transfer to APRM
has R15 as the destination, bits 31:28
of the transferred word are copied into
the N, Z, C, and V flags, respectively.
The other bits of the transferred word
are ignored; the PC and other PSR
flags are unaffected by the transfer.

A coprocessor register transfer from
APRM with R1t as the source register
will save the PC together with the PSR

flags.

; CR7 and CR2, putting result into APRM's R1.

; f the Z flag is set, transfer the APRM's R1 reg to the co-proc register (defined
by hardware), and request co-proc #2 to do oper 5 (type 2) on CR2 and CR3.

Apple Computer, Inc. CONFIDENTIAL

& APRM /VL2340 °

(

4
@& ~pole Computer, Inc. \ APRM / VL2340

FIGURE 24. UNDEFINED (RESERVED) INSTRUCTIONS
3 2827 2423 87 43 0
[condx [0001 [xxxxx xx xx xx xxx x x| 1 xX1]xxx x|

3 28272524 543 0
[Conax [01 1fxxx XXX X XXX XX XXX XX X X X]1}x x X x|

Note: The above instructions will be presented for execution only if the condition field is true.

if the condition is true, the Undefined Assembler Syntax - At present the INSTRUCTION SET SUMMARY
Instruction trap will be taken. assembler has no mnemonics for The following examples show ways in
generating these instructions. If they which the basic processor instructions

Note that the undefined instruction

R N are adopted in the future for some can combine to give efficient code.
;‘:;:;?fnms :2":;"‘:0""':::39;’:?:”0,1 specified use, suitable mnemonics will None of these methods saves a great
may be present Zn d g“ coprocessors be added to the as§emblor. Until such deal of execution time (although they
must refuse to-accept them by taking ﬂ;";; these instructions should not be comadyesave some). mostly they just save

CPA high.

Using Conditional Instructions -
(1) Using conditionals for logical OR, this sequence:
CcMP

Ri,p ; f R1=p or R2=q then goto Label

BEQ Label

CMP R2, q

BEQ Label

can be replaced by

CMP Ri,p

CMPNE Rm, q ; if condition not satisfied try other test

BEQ Label
(2) Absolute value

TEQ R1,0 ; Test sign

RSBMI R1,R1,0 ; and 2's complement if necessary
(3) Muttiplication by 4, 5 or 6 (run time)

MOV R2,ROLSL 2 ; Multiply by 4

CcMP R1,5 ; Test value

ADDCS R2, R2, RO ; Complete multiply by 5

ADDHI R2, R2, RO ; Complete multiply by 6
(4) Combining discrete and range tests

TEQ R2, 127 ; Discrete test

CMPNE R2, **-1 ; Range test

MOVLS R2,"" ; The, R2 ="."

Apple Computer, Inc. CONFIDENTIAL 45

»

) |
@& ~ople Computer, Inc. A\ APRM / VL2340

(

Division and Remainder
; Enter with numbers in RO and R1

MoV R4, 1 ; Bit to control the division
Div1 CMP R1, 0x80000000 ; Move R1 until greater than RO
CMPCC R1, RO
MOVCCR1, R1LSL 1
BCC Div1
MOV R2,0
Div2 CMP RO, R1 ; Test for possible subtraction
SUBCS Ro,R0,R1 ; Subtract if ok
ADDCS R2, R2, R4 ; Put relevant bit into result
MOVS R2nt, R4 LSR 1 ; Shift control bit
MOVNE R1,R1LSR 1 ; Halve unless finished
BNE Div2

; Division result is in R2.
. Remainder is in RO.

FIGURE 25. INSTRUCTION SET SUMMARY
31 2827 2423 2019 1615 1211 87 43 O

Condx [0 1 ||O'pc:>de S .an) r.;dﬁ i f(‘)p;r;n'dlz " | Daa Processing
Condx [000000 |Als| Rd Rn Rs |1 004 Rm | Mutiply
Condx [00 01X XXX XXXXXXXXXXXX[1XX1|XXXX| Undefined
Condx |0 1|1 PiUIB M{L Rn Rd Offset (variants) Load, Store (
Condx [0 1 XXX XXXXXXXXXXXXXXXXX[1]xX X X| Undefined
condx |10 0[P|ulBML| Rn [R15 < Register List —--> RO| Mutti-Register Transfer
Condx [101Jt] ' Wordaddressoffset. | Branch, Call
Condx |1 1 0[P[UNWL| Rn | cRd | cPe Offset Coproc Data Transfer
Condx |11 10[cPopc|] GRn | cRd | cP# | cP [o| cRm | Coproc Data Opr
Condx |1 11 ol Opc Crmn Rd CP# cPl1| crRm | Coproc Register Transfer
Condx [1111] ' Bitspaceignoredby processor | Software Interrupt

(

Apple Computer, inc. CONFIDENTIAL 46

) |
@& ~ople Computer, Inc.

® APRM / VL2340

Psesudo Random Binary Sequence
Generator - It is often necessary to
generate (pseudo-) random numbers
and the most efficient algorithms are
based on shift register-based genera-
tors with exclusive or feedback rather

like a cyclic redundancy check genera-
tor. Unfortunately the sequence of a 32
bit generator needs more than one
feedback tap to be maximal length (i.e.
2*32-1 cycles before repetition). The
basic algorithm is Newbit = bit_33 xor

; Enter with seed in RO (32 bits), R1 (1 bit in R1 Isb)

; Uses R2
TST R1,R1LSR 1
MOVS R2, RO RRX
ADC Rt,R1, Rt
EOR R2,R2, ROLSL 12
EOR RO,R2,R2LSR 20
; New seed in RO, R1 as before

Multiplication by Constant:

(1) Muttiplication by 2*n (1,2,4,8,16,32..)

MOV RO,ROLSLn

(2) Muttiplication by 2*n+1 (3,5,9,17..)

ADD RO,RO,ROLSLn

(3) Muttiplication by 2*n-1 (3,7,15..)
RSB RO, RO, ROLSLn
(4) Multiplication by 6
ADD RO, RO, ROLSL 1
ADD RO, RO LSL 1

(5) Multiply by 10 and add in extra number

ADD Ro,RO,ROLSL2
MOV R0, R2, ROLSL 1

; Top bit into carry

; 33 bit rotate right

; Carry into Isb of R1
; (Involved!)

; (Whewl)

; Multiply by 3
;and then by 2

; Multiply by 5
; Multiply by 2 and add in next digit

(6) General recursive method for R1 =R0*C,C a constant:
(a) If C even, say C = 2*n*D, D odd:
D=1: MOV Ri{,ROLSLn

Do t:

(R1 =R0*D)

MOV R1,R1LSLn
(b) f CMOD 4 = 1, say C = 2*n"D+1, D odd, N>1:

D=1: ADD
Dot:

R1, RO, ROLSL n
(R1 = RO*D)

ADD Ri1,RO,R1LSLn
(c) HCMOD 4 = 3, say C = 2*n*D-1, D odd, n>1:

D=1: RSB
Dot:

R1, RO, ROLSL n
(R1 =R0°D)

RSB Ri1,R0,R1LSLn
This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Ri1,RO,ROLSL2
RSB R1,R0,R1LSL2
ADD Ri1,R0,R1LSL2

rather than by:

ADD Ri1,R0,ROLSL3
ADD R1,R1,R1LSL2

; Multiply by 3
: Multiply by 4°3-1 = 11
; Multiply by $°1141 = 45

: Multiply by 9
: Multiply by 5°9 = 45

bit_20, shift left the 33 bit number and
put in Newbit at the bottom. Then do
this for all the Newbits needed i.e. 32 of
them. Luckily, this can all be done in
58 cycles:

Apple Co—*ar, Inc. CONFIDENTIAL

47

) |
@& ~ople Computer, Inc.] APRM / VL2340

(

Loading a Word with Unknown Alignment:
; Enter with address in RO (32 bits)
; Uses R1, R2; result in R2.
; Note R2 must be less than R3, e.g. 2, 3
BIC R1, Ro, 3 ; Get word aligned address.
LDMIA R1, {R2,R3} ; Get 64 bits containing answer.
AND R1, RO, 3 ; Correction factor in bytes, not in bits.
MOVS R1,R1LSL3 ; Test if aligned.
MOVNE R2, R2, LSR R1 ; Product bottom of result word (if not aligned).
RSBNE R1, R1, 32 ; Get other shift amount.
ORRNE R2, R2, R3 LSL R1 ; Combine two halves to get result.
Sign Extension of Partial Word
MOV RO, ROLSL 16 ; Move to top
MOV Ro, RO, LSR 16 ; ... and back to bottom
; (Use ASR to get sign extended version).
Return,Setting Condition Codes
BICS PC, R14,CFLAG ; Returns, clearing C flag rom link register.
ORRCCS PC, R14, CFLAG ; Conditionally returns, setting C flag.
; Above codeshould not be used except in User mode, since it will reset the interrupt enable flags to
; their value when R14 was set up. This generally applies to non-user mode programming.
; e.9., MOVS PC,R14 MOVPC,R14 s safer!
(
(

Apple Computer, Inc. CONFIDENTIAL 48

y
' Apple Computer, Inc.

& APRM / VL2340

Appendix 1 - Differences Between
VL86C010 (ARM) And APRM

The modifications made to the ARM in
order to create the APRM predomi-
nantly affect four instructions; load, load
multiple, store, and store multiple. For
the load and load multiple instructions
both byte and word operations are
modified. Only the word functions of
the store and store multiple are altered.

The APRM uses the "BigEndian" style
byte addressing modes that are the
same as the MC680x0 processor
family. See Table 1 for examples.

The APRM allows the user to combine
segments from two aligned words of
data into one nonaligned word oriented
as shown in Table 1. The data is
loaded via a nine step process which
generates 2 complete memory ac-
cesses (dbl access). The expected
address is generated by the APRM

(step 1) the user must notice that the
address is nonaligned and freeze the
clock (step 2). The user then provides
the first word of data (step 3) and brings
the NADR signal high (step 4). NADR
will latch the appropriate bytes of data
from the first word and cause the APRM
to output the new address (step 5).

This address is the first address
incremented by four bytes. The user
will provide the second word of data
(step 6), deassert NADR (step 7) and
restart the clock (step 8). The APRM
will take the combination of these two
words shifted internally by the proper
amount and load them into the destina-
tion register (step 9). See Figure 1 for a
timing sequence of this procedure.

Table 2 details the shift results for the
various address combinations during
store operations. External hardware
must freeze the processor clock and
enable the proper memory lanes for

TABLE 1. SHIFTS FOR LOAD OPERATIONS

nondestructive un-aligned word stores.
NADR functions during double access
stores of un-aligned word values to
generate the next word aligned address
for writing the second data segment.

The APRM also provides 32 address
signals although the program area is
still limited to the lower 26 bits. When-
ever the APRM is performing an opcode
fetch the upper six bits are forced low.
Increasing the size of the address
space made the address exception
check unecessary as the old exception
areas are now valid memory locations.
An input is added, MSBLOW, that when
asserted high causes the upper eight
bits of the address bus to go low.

A programmable page detector is also
added. It can be programmed for 256,
512, 1024, or 2048 word pages.
Whenever the next address, if synchro-
nous, would be the last word of the
page a new signal called PGHIT would
be asserted. See Table 3 for the
decodes of the page inputs for the
various page sizes.

Byte Address Value
B/-W (A1, AO) Data Bus Value (D31-D0) VL86C010 Shifter (D31-D0) IAPRM Shifter (D31- DO)
1 00 11223344 00000044 00000011
1 01 11223344 00000033 00000022
1 10 11223344 00000022 00000033
1 11 11223344 00000011 00000044
000 11223344 11223344 11223344 No shiftor
0 100 55667788 55667788 55667788 dbl access
001 11223344 no suppotrt for with support
0 101 55667788 44112233 dbl access 22334455 for dbl access
010 11223344 "
0 110 55667788 33441122 33445566
011 11223344 " "
0 111 55667788 22334411 44556677
TABLE 2. SHIFTS FOR STORE OPERATIONS TABLE 3. MEMORY PAGE
SIZE
Address Value Register Data Output Data at pins
Page (1,0 Page Size
00 11223344 11223344 Page (1.0) =
00 256 Words
01 11223344 44112233
01 512 Words
10 11223344 33441122
10 1024 Words
11 11223344 22334411
1 2048 Words

~a Computer, inc. CONFIDENTIAL

49

Vi
@& ~ople Computer, Inc.

& APRM / VL2340

FIGURE 1. NONALIGNED MEMORY CYCLES

CLK / Step 2 Step 8

N

Apple Computer, Inc. CONFIDENTIAL 50

(

4
@& ~ople Computer, Inc.] APRM / VL2340

PACKAGE OUTLINES
100-PIN CERAMIC PIN GRID ARRAY

100-PIN QUAD PLASTIC FLATPACK (QPFP)

Apple Computer, inc. CONFIDENTIAL 51

