
Software Development Training
I

• C++ Part II
. ~ "

i;:~nware Development Training

c++ Part II, Rev. 7192

f
'.

c++ Part 2

Copyright © 1992 Neal Goldstein and Apple Computer, Inc. All Rights Reserved.
No part of the written course material may be reproduced in any form or by any means without
permission in writing from Neal Goldstein or Apple Computer.

The sample programs and source code may be llsed by attendees of this seminar, or purchasers of these
seminar notes, for their own personal use. The programs and/or source code may not be used for
commercial purposes without permission in writing from Neal Goldstein or Apple Computer.

All attempts are made for the information presented in this seminar to be accurate and correct to the best
of our knowledge, however Neal Goldstein, Apple Computer, or the instructor cannot be held liable for
any incomplete or erroneous information. If you find anything to be misleading or incorrect, please
notify Neal Goldstein or Apple, which will make every effort to correct and update future releases.

Apple, the Apple Logo, AppleLink, Macintosh, and MacApp are registered trademarks of Apple
Computer, Inc.

© 1992 Ncal Goldstein and Apple Computcr, Inc. Introduclion 1

.Developed By: .~ - ,./

;~r ··Neal Goldstein
........ ..".,. , " ~ . ~ ... ,. "

I' Neal Goldstein :Design
of ! " • " • , ~,..,. ,. ,' .

. : ·-659 Tennyson Avenue
J ,. ~',. , ,

?:; . Palo Alto; CA 94301
... , "

~; ·(415) 327-4565
AppleLink D077}

·1; , ..••

© 1992 Neal Goldstcin and Apple Computcr, Inc Introduction 2

('

Table of Topics

Section 1 Introduction : <! \ ~. ' if:, :"1
Introduction .. 1

'j
I

Class goals .. :· ~-:.:• : 4 '
C++ on the Macintosh ... 6 .
C++ design goals , ': .. j • !.~ ••••• ,. : •••• i \ .. '" .-:; •.••• 8
Group discussion .. : 10

The most difficult things to do using C++. What is (still) hardr (.-" 1;" .' <",

Compiler and linker error messages to watch out for : : ~; 11
Memory allocation ... ; .. ,~,.~ . .. i::.;;.: ;.!o',\ :.L:':~i'" .13
Creating objects ... 14
FCunction overloading ... ~ j '.~{; 15

tenns ... 17 ~
Naming conventions .. :·:~:~ 18
Labs .. 19

~

Section 2 User-Defined Types
Operator functions ... 3
Members or non-members '" ... 4
friend ... 7
Overloading an operator example .. 8
L-ab21 .. 11

Overloading the the Stream class's operator«
Adding a new type .. , . " 13
Member overloaded operator example .. 19
L-ab22 .. 20

Overloading +, -, I, * operators as members
Non-member overloaded operator example .. 23
L-ab23 .. 24

Overloading +, -, I, * operators as non-members
User-defined conversions .. 27
Conversion functions ... 28
How user-defined conversions are applied .. , ... 29
Ambiguity of conversions ... , .. 30
Explicit casting .. 31
L-ab24 .. 32

Define int, char, and short conversion operators
L-ab25 .. 34

Unambiguous operator overloads and user-defined conversions

Section 3 Initialization and Assignment
Initialization and assignment. ... 3
L-ab26 ... 4

Default initialization
Memberwise initialization ... 7
No need for memberwise initialization ... 10
Explicit initialization constructors ... 11
L-ab27 ... 13

Defining an initialization constructor
Default initialization process ... 22
Member class object initialization ... 23

Table of Topics i

Responsibilities for member class object initialization .. 24
Base class initialization " 27
Responsi bilities for base class ini tialization .. 28
wb28 .. 34

Using the member initialization list to initialize base classes and member class
objects

'wb29 .. 36
. Defa.ult assignment

Memberwise assignment. , 38
Explicit .assignIllent operators ... 39
wb30 .. 41

Overloading an assignment operator
Default assignment process .. " 50
Responsibilities for member class object assignment .. 51
Base class assignment .. 54
Responsibilities for base class assignment .. 55
wb31 .. 58

Invoking a base class's and member class object's assignment operator
Initialization and ,assignment guidelines .. 60

Section 4 Inheritance
Public or private inheritance , 3
Using public inheritance .. 4
Using private inheritance .. 6
Inappropriate use of inheritance .. 7
Multiple inheritance .. 8
A multiple inheritance strategy ... 9
Multiple inheritance ambiguity .. 13
Resolving multiple inheritance ambiguity explicitly .. 15
wb32 .. 16

Using multiple inheritance and resolving ambiguity
Virtual base classes 19
wb33 .. 21

Using a virtual base to eliminate ambiguity
Problems with using virtual bases .. 23
wb34 .. 25

Casting a pointer to a class object with multiple bases
How casting effects a pointer to class object with multiple bases 27
Multiple inheritance issues ... 29

Section 5 Apple Extensions
Apple Extensions .. 3
Handle-Based and Pascal handle-based classes and objects 5
Using,C++ and Object Pascal ~ 7
14b35 8

Handle-based C++ classes and using Pascal classes from C++
wb36 ... :10
Deriving a C++ class from an Object Pascal class,
Section 6 FutuJ(e Directions
Exception handling .. 3
Parameterize'd types .. 4
Where to go from here .. 7
Books,. resources, magazines .. 8

Table of Topics ii

(

Section 1

Introduction

© 1992 NC<II GoldsLein and Apple Com pULer, Inc IntroduCLion 3

I
I

,
,

Ii
I,!' I
"

The Goals of This Class

• To be able to demonstrate competency in C++
by being able to write programs that
incorporate C++ features

• Use the object-oriented features of C++
appropriately

• Understand the relationship and interactions
between language features

© 1992 Neal Goldslein and Apple Compuler,lnc. IntroduClion 4

(This Section's Goals

• Understand the C++ approach and the
differences between C++ and C

• Examine what things are difficult in C++ and
how some language features can help

© 19n Ncal Goldstcin and Apple Computer, Inc. Introduction 5

I
I

;j
It~ ~
t

Features, Features, Features

Dynamic objects Dynamic binding Polymorphism D 1 ' 'bl k ec aratJons In oc s
Private inheritance Constructors Pointer to members

Constant functions Operator overloading Load/Dump
Public inheritance Data protection

C terms , Single inheritance
Operator Overloading Classes Symbolic constants

Assignment overrides
Type-safe linkage Function prototypes Objects

Implicit type conversions Pure Vinual Functions User defined types

Destructors Memberwise initialization Friends inline functions

New commenLs Initialization constructors
Apple extensions

Automatic typedds

new and delete

Operator runctions

ArgumenL type checking
Pass by reference

User Delined Conversions Static objects
Static members Reduced name spaces

© 1992 Ncal Goldstcin and Apple Computer, Inc,

Member functions
Streams

Function overloading

Vinual base classes
Reference variables

Multiple inheritance

Introduction 6

(

All This in Two Days?

• No way!
• Extending the language

Operator functions
Overload built in functions

User-specified conversions
Conversion functions and constructors

Memberwise assignment and initialization
Initialization constructors
Assignment operator overload

• Inheritance
• Apple extensions

© 1992 Neal Goldstein and Apple ComplIlcr, 1m:. Introduction 7

I

I
!1
II
II
II
I.
I
i,

c++ on the Macintosh

• Uses AT&T CFront preprocessor and MPW C
compiler

• Shares MPW C header files
#ifdef __ cplusplus
extern "e" {
#endif
pascal void InitGraf(void *globalPtr)

= OxA86E;
#ifdef __ cplusplus
}

#endif

Each copy of CFront is licensed by Apple from AT&T
There is also a native C++ compiler produced by Zortech that runs as an MPW tool

© 1992 NC4I1 Goldstcin and Appk Computcr. Inc. Introduction 8

c++

• Some call it a collection of features
masquerading as a language

• Reasons
Books and class written and taught by people without
real object-oriented development experience

The C++ concept of classes goes beyond what people
normally think of classes

© 1992 Neal Goldstein and Apple Com pULer. Inc

I

Introduclion 9

Design Goals of C++

• Support for object-oriented programming
• Support for data abstraction
• A better C
• Within the following constraints:

Compatibility with C
Requires C be a subset of C++

As efficient as C
C++ run time code performs as well

Implies no price for unused features

© 1992 Neal Goldstein and Apple Compuler. Inc.

~\

Introduction 10

I

Alternative View

a. A better C
h. Object-oriented applications
c. Extending the language
d. Side effects of b. & c. that result in a.

~ ..

© 1992 Neal GoldsLein and Apple Computer, Inc:. IntroduCLion 11

Group Discussion

• Break up into groups of three
• Make a list of the most difficult things to do

using C++
What is (still) hard?

© 1992 Neal Goldslein and Apple Com pUler, Inc

/ ,

IntroduClion 12

(Misleading Error Messages

class TNamedObject {
public:

void AcceptName(char* aName);
... };

void TNamedObject::AcceptNdte(char* aName) {
strcpy(fName, aName);}

error: AcceptNme() is not a member of TNamedObject
Fih: "SllldeIlllncM.cp"; line 100 # error: lWo iniliali/.ers for TSllldenl
Fih: "SludeIlllncM.cp": line WO # warning: aAdvisor nOl used
Fih: "SludenllncM.cp"; line 105 # error: lWo inilializcrs for TFacullY
File "SludcnllncM.cp"; line 105 # warning: aAdviscc nOluscd
File "SllldcntlncM.cp"; line 109 # error: two inilializers for TSludcnt
Fih: "SludcntlncM.cp"; line 109 # error: two inilialil.ers for TFaclilty
File "SludcnllncM.cp"; line 109 # warning: aAdvisor nOlllscd
Fih: "SludcnllncM.cp": line 109 # warning: aAdvisec nOluscd
File "SludcnllncM.cp"; lim: 149 # error: lWO inilialil.ers for TSludcnl

©)992 Neal Goldstein and Apple Computer, Inc.

? .

Introduction 13

Mysterious Un mangle Results
I forget to implement

class TGradStudent: public TStudent { ...
1--- virtual void WarningO; ... };

link: Error: Undefined entry, name: (Error 28)
unmangle "Warning_II TGradStudentFv"
Unmangled symbol: TGradStudent::WarningO

class TStudent { .,.
'--- virtual void PrintO; ... };

link: Error: Undefined entry, name: (Error 28)
unmangle "_ptbl_12TStudent"
Unmangled symbol: TStudent::_ptbl

© 1992 Neal Goldstein and Apple Computer, Inc. Introduction 14

(

Memory Allocation

Static
Class members

Stack
NewType aNewType;

Pointer-based dynalnic
NewType* aNewType = new NewType;

Handle-based dynamic
Apple-only extension

Look

the

same

NewTypeH* aNewTypeH - new NewTypeH; -

© 1992 NC4I1 Goldstein and Applc Computer. Inc. Introduction 15

(-""

Creating Objects "---.j

String* stringHeap = new String("stringHeap"); -Heap
stringHeap->Print();
(*stringHeap).Print();

String stringStack = String("stringStack"); Stack
stringStack.Print();
(&stringStack)->Print();

Member selector operator depends on how message is sent
Pointer to object ~
Object 8

But you can only delete objects created with new

We create an object as defined by a class

All instances of a class (object) share data structures and member functions

Class objects can be created on the stack or heap
Local variables are instantiated (allocated and initialized)

The class object is allocated enough storage for its data members land pointer]

For static objects, the variable is the definition

Stack space is allocated for all the data members

For dynamic objects, the variable is a pointer (or handle - Apple extension) to the object

Objects are a non-relocatable (or relocatable - Apple extension) block on the heap

Arrays of class objects

TString* theStrings = new TString[somesize];

If class has a constructor, it requires default constructor (constructor with no arguments)

Class or object

People understand there is a difference between

The class of something

The thing itself (an instance)

Daughter is a subclass of the girl-child class

But Sarah is my daughter

© 1992 Neal Goldstein and Applc Computcr, Inc. IntroduCLion 16

Function Overloading

TGradS tudent();
TGradStudent(TFaculty* aAdvisor);

TGradStudent(TStudent* aAdvisee);

TGradStudentCTFaculty* aAdvisor, TStudent* aAdvisee);

Function signature

N umber, order, and type of arguments

Two functions can have the same name as long as the types of their arguments differ i.e. their signatures
are unique:

void MyPrint(char* s);
void MyPrint(int i);

main () {

MyPrint("I love C++"); II MyPrint(char*) is invoked

MyPrint (12) ;

}

II MyPrint(int) is invoked

Useful when you want to have different versions of the same function; they should all be related
Draw(EpsType);

Draw (PictType) ;

Function overloading rules

If the return type and signatures march:

Redeclararion of the first

If signatures match, but return types differ:

Erroneous redeclaration of the first

If signatures differ in either number or type:

They are considered to be overloaded

When not to overload

Functions do not perfolll1 similar operations

© 1992 Ncal Goldstcin and Apple Computcr. Inc. Introduction 17

i
Ii

II
I.'

Rules and Resolution

• Functions are chosen by signature
• Application of standard and user-defined

converSIon
• Ambiguity

Move(int x);

Move (int x, int y=6);

Move(6); ??????

Resolving the overloaded function call

Functions are chosen by signature through a process called argument matching

Compares actual arguments of the call with formal arguments of each declared instance

One of three results:

A match

No match

Ambiguous match

Matches

Exact match (trivial conversions allowed)

Match with promotions

Match with standard conversions

Match with conversions requiring temporaries

Match with user-defined conversions

Match with ellipsis

Can distinguish between const and ordinary pointer and reference
ff(const char*);

ff(char*);

Cannot distinguish between const and ordinary objects
ff(int) ;

ff(const int); II makes no sense anyway (pass-by-value

© 1992 Neal Goldslein and Apple Computer, Inc

/

/

IntroduClion 18

(C Terms

Definition

intvaluel=l;
int& valuelR = valuel;
int value2 = 2;

value1 = value2;

Declaration
extern int value3;

Two values associated with a variable
The value stored at some location

rvalue

Ivalue

valuel == valuelR
value2

lvalue

value1 == valuelR
value2

The address in memOI), in which its data is stored
Ivalue

theValue = value+l

On right - data value
Data is read

On left - location value
Data is stored

theValue is referred to as an object
Definition of a variable

Causes storage to be allocated
Introduces variable's name and type
Optional initial value

int number = 2; II Declaration statement

Declaration of a variable
Announces variable exists and defined elsewhere

extern int number;

Declaration is not a definition
Assens definition exists elsewhere

© 1992 Ncal Goldstcin and Apple Computer, Inc.

rvalue

1
2

rvalue

2
') ...

Introduction 19

Naming Conventions

Boolean Type -TWindow, MZoom Class
EDay
fNumber
Draw -gApplication
TNote::fgUsers
anArea -
kWindowId
aDrawArea -

Enumeration type
Data member
Member function
Globals and static variable
Static data member
Autonlatic local variable
Function arguments
Constant
MultiWordNames

Notes===
Type names must begin with a capital letter:

Class names begin with a T for base classes, and M for mixin classes
Enumeration type names should begin with an E.
Examples: Boolean, TView, MPrintable, EFreezeLevel. Avoid using C types directly

Members:
Data member names should begin with an f, for "field."
Member function names need only begin with a capital letter.
Example: fChanged, DrawO.

Other:
Names of global variables (excluding static data members of classes) and static variables in functions
should begin with a g

Example: gApplication.
Names of static data members (class globals) should begin with fg

Example: TView::fgClock.
Names of local variables (automatic only: statics are treated like globals, see above) and function
arguments should begin with a word whose initial letter is lower case

Examples: seed, port, theArea.
Names of constants should begin with a k, including names of enumeration constants

Example: kMenuCommand.
In any name which contains more than one word, the first word should follow the convention for the type
of the name, with the first letter of each word capitalized. Do not use underscores in names.

Examples: TContainerView (class name), fYiewList (data member of class), fYiewList (data member
of class), RefreshSelf (function member of class), gDeviceList (global variable or local static),
fgNumber (static data member), theArea (iocal or parameter)

<0 1':J92 Ncal Goldstcin and Apple Computer, 1m:. Introduclion 20

(Labs

• Read all of the instructions before starting
• We will be using MPW tools
• Compiling the exercises

Set the correct directory

3€ B or select Build from the Build menu

Type in ProgramName

B ui ldprogram ProgramN ame on the worksheet

• Run the progralTI
ProgramName -Enter

• Conlpare your solutio/1 to the solution

Lab solutions are in a Solutions folder in each lab folder
Labs are designed to teach syntax

They are not application examples - certain things are not completely implemented
For example: error checking, memory management, ...

When writing actual C++ applications you must pay attention to the same things you had to pay
attention to when writing applications in other languages

In some cases you must pay even more attention to those things.

© 1991 Neal Goldstein and Apple Computer, Inc Introduction 21

/

(

Section 2

User-Defined Types

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 1

This Section's Goals

• Demonstrate competence in:
Member operator functions
Non-member operator functions
User-defined conversions
Eliminating operator function and user-defined
conversion ambiguity

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 2

(

(

Operator Functions

• c++ allows built in operators to be overloaded
for user-defined types

• Operator functions
ostream& operator«(const char*);

• cout «"hello world \n";

ostream& operator«(const char*);
ostream& operator« (int a);

ostream& operator« (long) ;

Operator overloading

The standard C operators can be overloaded for user-defined types
If you were to define a fixed point data type, you could define standard arithmetic operators for it

Use only where appropriate and clear
Defining the + operator for fixed point numbers helps clarify code
Defining & to mean "send a message" is crazy

Operator overloading only helps when the new operator is similar to the standard meaning of the
built-in operator

What can be overloaded

Only predefined operators may be overloaded
Precedence or associativity cannot be changed
The unary/binary aspect cannot be changed

The overloaded instance must have at least one argument of the class type
This means that operators may only be defined for class types

There is only one instance of the ++ and -- operators (CFront 2.0)
Overloading does not distinguish between prefix and postfix

Defining both is likely to be ambiguous

The signatures must be distinct

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 3

Members or Non-Members

cout «stringStack «'\n";

I Operand 1 I Operand2
i I

ostream& operator«(ostream& os, const String& str);

Non-member takes two arguments

stringStack[index];

IOperand2
I

char& String: :operator[] (int index) {
this -> ... Member takes one less argument

Loperandl is implicit - the class object -

Defining an operator overload as both member and non-member is ambiguous

© 1992 Neal Goldstein and Apple Computer, Inc.

/

User-Defined Types 4

(Member or Non-Member

• Member operators are invoked only when an
object of its class is the left operand

stringS tack [index];
char& String::operator[](int index) {

• Non-members invoked based on signature
cout «stringStack «'\n";
ostream& operator«(ostream& os, const String& str);
It may have to be declared as a friend

• Required as class member functions:
"=" "()" "->" "[]"

Non-member operator overloading is needed when implementing binary operators which can't be
member functions

Only the left side of the expression is considered in operator overloading
A good example is the output stream operator«

operator« is the (over10aded) output operator for each bui1t-in type
ostream& operator« (const char*);
ostream& operator« (int a);

The appropriate version of operator« is called for each variable
ostream& operator« (ostream& os, MyType& aMyType)

return (os« Acceptab1eConversionOfMyType);

Required as class member functions:
Assignment operator "="

Function call operator "0"
Pointer member selector operator "->"
Array index operator "[]"

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 5

How to do coot « aString;

class String {

private:
char*
int

} ;

fString;
fLength;

ostream& operator«(ostream& os, const String& str) {
return (os « str.fString);

}

.... 1--ThiS shouldn't be allowed ...
should it?

© 1992 Neal Goldstein and Apple Computer, Inc.

/

\. "

User-Defined Types 6

(Making friends

class String {
friend ostream& operator«(ostream& os, const String& str);

private:
char*
int

} ;

fString;
tLength;

ostream& operator«(ostream& os, const String& str) {
return (os « str.fString);

}

friend classes and functions are in conflict with the ideas of encapsulation and independence
A void them except when implementing binary operators which can't be member functions

Only the left side of the expression is considered in operator overloading
Overloading cout « MyCl.ass

This cannot be a member
Accessibility

Base class (inherited) member functions have no access to derived class members (unless declared a
friend)
Friends have no access to derived class members unless declared a friend to that derived class
In general, friends have the same access privileges as the members of that class

Derivation vs. friendship
Derivation extends the type

Adding it own unique elements
Friendship provides for access of non-public members

There is no type relationship
Derivation is not a special form of friendship

The friend declaration can be placed anywhere in the class definition
A friend is not able to use this.

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 7

Overloading operator[]

class String {
public:

char& operator[](int index);

} ;

© 1992 Neal Goldstein and Apple Computer, Inc.

/

c
User-Defined Types 8

(

(

(/

Overloading operator[] in TString
void String::CheckIndex(int index) { ... }

inline char& String::operator[](int index) {
this->CheckIndex(index);
return fString[index];

}

void mainO {
String* eString = new String("eString");
int indx =0, aLen = eString->ReturnLengthO;
for (indx; indx <aLen; ++indx)

cout « (*eString)[indx]; II Or eString->operator[](index);
cout« '\nil. L

} , First operand
must be an object

eString

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 9

A Simple Point Class

class Point {
public:

void
private:

short
short

} ;

Point(short iV, short iH);
PrintO;

v· ,
h;

© 1992 Neal Goldstein and Apple Compulcr, Inc.

(

User-Defined Typcs lO

(Lab 21

• In this lab you will overload the Stream class's
operator« to print a Point object

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 11

Lab 21 Output

aPoint (4,5) bPoint (2,3)
aPoint (4,5) bPoint (2,3)

1. Set the directory to Lab 21.
2. Open Point.cp and Point.h.
3. Define an overloaded operator« to print a Point object.
4. Make it a friend to the Point class.
5. Create two Points (aPoint) and (bPoint).
6. Include the following statement in main () :

cout « "aPoint " «aPoint « "bPoint"« bPoint « "\n";
7. Compile and test the program.

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 12

(

('

Adding a New Type

I want a new type called Elnt

This type stores itself encoded
It can be used anywhere an int is used

Elnt alnt = 8;

© 1992 Neal Goldstein and Applc Computcr, Inc. User-Defined Types 13

class Elnt

class Elnt (
public:

void
void

private:
void
int
int

);

Elnt(int thelnt);
ElntO;
PrintElntO;
PrintIntO;

For debugging
For debugging

EncodelntCint thelnt);
DecodelntO;
fInt;

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 14

(

Functions

Elnt: :Elnt(int theInt) (
this->Encodelnt(theInt); }

Elnt: :ElntO (
this->EncodeInt(O); }

void EInt::EncodeInt(int theInt) {
fInt = thelnt+4;}

int Elnt::DecodeIntO const {
return fInt-4;}

void Elnt::PrintElntO const {
cout « "The encoded int: " « fInt « '\n";}

void EInt::PrintIntO const {
cout « "The decoded int: " « this->DecodeIntO « '\n";}

© 1992 Neal Goldstein and Apple Com pULer, Inc. User-Defined Types 15

Results

void
mainO (

}

EInt eInt = 8;

elnt.PrintEIntO;
elnt.PrintlntO;

The encoded int is 12
The decoded int is 8

© 1992 Neal Goldstein and Apple Computer, Inc.

/

User-Defined Types 16

Some Problems With EInt

void
mainO {

Elnt intI;
EInt int2;
Elnt int3;

To add two Elnts
intI = AddElnt(int2,int3);

If Elnt were really as easy to use as a
built-in type, we should be able to:

int1 = int2+int3;
)

But our encoded integer is not very easy to use
Typical operations on encoded integers must be coded as functions

This is awkward

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 17

Point Example

void
mainO (

Point aPoint(4,4);
Point bPoint(2,2);
Point cPoint;
Point dPaint;

cPaint = aPaint + bPoint;
dPoint = aPoint - bPoint;

cout « "cPoint " « cPoint « ''\n'';
cout « "dPoint " « dPaint « ''\n'';
}

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 18

(Member Overload operator+

Point Point::operator+(const Point& pt) const (

return Point(v + pt.v, h + pt.h); II Only one Point created
}

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 19

Lab 22

• In this lab you will overload the basic
arithmetic operators +, -, /, * as members of
the EInt class

© 1992 Neal Goldstein and Apple Computer, Inc.

,/

User-Defined Types 20

I
/

Lab 22 Output

alnt1
The encoded int is 12
The decoded int is 8
alnt2
The encoded int is 13
The decoded int is 9
alnt2+alntl
alnt3
The encoded int is 21
The decoded int is 17

alnt2-alntl
alnt3
The encoded int is 5
The decoded int is 1
alnt2/alnt1
alnt3
The encoded int is 5
The decoded int is 1
alnt2*alnt1
alnt3
The encoded int is 76
The decoded int is 72

Lab Oi rections ~===

1. Set the directory to Lab 22.
2. Open Elnt.cp and Eln1.h.
3. Overload the +, -, *, and / operators for EInt, as members.
4. Define 3 EInt' S

aIntl initialized to 8,
aInt2 initialized to 9,

aInt3 initialized to O.
5. Print the encoded and decoded values of aIntl and aInt2.

6. Add aIntl to aInt2 f and assign the result to aInt3.

7. Print the encoded and decoded value of the aInt3.

8. Subtract aIntl from aInt2 f and assign the result to aInt3.

9. Print the encoded and decoded value of aInt3.

10. Divide aInt2 by aIntl and assign the result to aInt3.

11. Print the encoded and decoded value of aInt3.

12. Multiply aIntl by aInt2, and assign the result to aInt3.

13. Print the encoded and decoded value of aInt3.

14. Compile and test the program.

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 21

What Doesn't Work

void mainO {

EInt
EInt

aIntl = 0;
aInt2=9;

aIntl =2 +aInt2;

}

error: bad operand types int EInt for +

© 1992 Neal Goldstein and Apple Computcr,lnc. User-Defined Typcs 22

Non-Member Overload operator- il
II

'. (
I

Point operator-(const Point& ptl, const Point& pt2) { I

return Point(pt1.v - pt2.v,pt1.h - pt2.h)
}

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 23

Lab 23

• In this lab you will overload the basic
arithmetic operators +, -, I, * as non-members
of the EInt class

© 1992 Neal Goldstein and Apple CompuLer, Inc. User-Defined Types 24

/
i

Lab 23 Output

alnt1
The encoded int is 12
The decoded int is 8
alnt2
The encoded int is 13
The decoded int is 9
alnt2+alnt1
alnt3
The encoded int is 21
The decoded int is 17

1. Set the directory to Lab 23.
2. Open Elnt.cp and Eint.h.

alnt2-alnt1
alnt3
The encoded int is 5
The decoded int is 1
alnt2/alnt1
alnt3
The encoded int is 5
The decoded int is 1
alnt2*alnt1
alnt3
The encoded intis 76
The decoded int is 72

3. Overload the +, -, *, and / operators for EInt as non-members.
4. Make the operators friend functions of Elnt.

5. Define 3 Elnt's
aIntl initialized to 8,
aInt2 initialized to 9,
aInt3 initialized to O.

6. Print the encoded and decoded values of aIntl and aInt2.

7. Add alntl to aInt2, and assign the result to aInt3.

8. Print the encoded and decoded value of the aInt3.

9. Subtract aIntl from aInt2, and assign the result to aInt3.

10. Print the encoded and decoded value of aInt3.

11. Divide aInt2 by aIntl and assign the result to aInt3.

12. Print the encoded and decoded value of aInt3.

13. Multiply aIntl by aInt2, and assign the result to alnt3.

14. Print the encoded and decoded value of aInt3.

15. Compile and test the program.

© 1992 Neal Goldslein and Apple Com pUler, Inc. User-Defined Types 25

e,
Ii
11

II I
II

I
i
i

Some More Considerations

void mainO (

}

Elnt
EInt
EInt

aIntl = 8;
aInt2 = 9;
aInt3 = 0;

aIntl = aInt2 + 2; ----, .
alnt3 = 2 + aInt2; ~Now work fme ... but ...

int aInt4 = aInt3;

error: bad initializer type EInt for aInt4 (int expected)

© 1992 Neal Goldstein and Apple Computer, Inc.

C~)
User-Defined Types 26

User-Defined Conversions

void printString(const String& aStr) { ... }

class String {
public:

String(char* string);
operator char* 0;

Converts char* to String -
Converts String to char* -

... } ;

void mainO {
String stringObject = String("stringObject");
char* aCharPtr = "Hello";
aCharPtr = stringObject;
printString(aCharPtr);

}

Type conversion
Standard conversions limits the number of operators and overloaded conversions for built-in types

char, short, and int can all be automatically converted in expressions
It is unnecessary to define
feint);
f(char);
f(short)

They are all promoted to i.nt
Only operations on int then need be defined
Type conversion is done by the compiler and is transparent to the user

User-defined type conversions
Allow us to define set of conversions that can be applied to members of that class
Inform the compiler how that conversion is to be done
How to convert from this user-defined type to another type

Single argument constructors
How to convert from a type to this user-defined type

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 27

Conversion Functions

• I
String::String(char* string) (Single argument constructors

}

tLength = strlen(string);
fString = new char[fLength + 1];
strcpy(fString, string);
tLastlndex =0;

I •
String::operator char* 0 { User-defined type conversions

return fString;
}

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 28

(Conversions

• Standard conversions will be done before
user-defined ones

• User-defined conversion operators are utilized
last

• User-defined conversion operators are allowed
for built-in, derived, or class types

• Only one level of user-defined conversions
can apply

Standard -> User-defined -> Standard ... is allowed

Standard conversions will be done before user-defined ones
User-defined conversions are called only if no other conversions are possible

Conversion operators are called only if there is no other way to do it
Other overloaded functions
Assignment operators

Conversion operators are allowed for built-in, derived, or class types
Not for arrays or functions
Must be a member function
Multiple user-defined conversions achieving a match is ambiguous

Conversion constructors and operator conversions share the same precedence
Conversion operators are inherited
What if the required type does not exactly match any of the conversion operator types?

Standard conversion used to find user-defined conversion
Standard conversions applied to user-defined conversions
Will not allow a second user-defined conversion

Only one level of user-defined conversions can apply
Overloaded functions with class arguments

There is no distinction between a class object and a reference
Standard conversion

Derived class object, reference, or pointer implicitly convened into public base class type
A pointer to any class type converted to void*
Typed to the type of the function with the "closest" base class

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 29

Ambiguity of Conversions

class String (
public:

operator Shor~o;
operator long 0;

...);

void printDay(int aDay) (... }

void mainO (
String stringObjectl =" 1 ";
printDay(stringObjectl);

}

error: 2 possible conversions for argument

Ambiguity can result from application of conversions
Often an explicit cast will resolve the ambiguity
If two conversion operators are possible, and one is an exact match, while the other requires a standard
conversion, there is no ambiguity

© 1992 Ncal Goldstein and Apple Compulcr, Inc. User-Defined Types 30

(Explicit Cast

void mainO {
String stringObjectl =" 1 ";
printDay(short(stringObjectl));

}

('

© 1992 Neal GoldsLein and Apple CompuLer, Inc. User-Defined Types 31

Lab 24

• In this lab you will define conversion
operators that allow an EInt to be converted to
int, char, or short

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 32

(

~
l.
2.
3.
4.
5.

6.
7.

8.
9.

Lab 24 Output

Elnt::operator TypeO
Elnt::operator TypeO
Elnt::operator TypeO
Allow Entry Entry denied

Elnt::operator charO
Elnt::operator shortO
Elnt::operator intO
AllowEntry Entry denied

Set the directory to Lab 24.

Open Elnt.cp and Elnt.h.

Examine the operator overloads.

Output of step 8

Output of step 11

Examine Security: : AllowEntry (. ..). Notice it takes three arguments - int, short, and char.

Write a single conversion that allows us to pass in an Elnt to Security: : AllowEntry (...) . Place a
cout statement in the conversion function to know it has been called.

Define a Security object, aSecurity on the stack.
Define three Elnt's, alntl initialized with 8, alnt2 initialized with 9, and alnt3 initialized with O.
Call Security: : AllowEntry (...) with alntl, alnt2, and alnt3 as arguments.

Compile and test the program.
Define two more conversions so that all three conversions (int, char, and short) are defined. Place
a cout statement in each of the conversion functions to know which has been called.

10. Call Security: : AllowEntry (. ..) with three Elnt'S as arguments.

11. Compile and test the program.

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 33

Lab 25

• In this lab you will define a set of operator
overloads and user-defined conversions that
eliminate ambiguity

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 34

I
./

/

(

l.
2.

3.
4.

Lab 25 Output
reallnt = 1
real Short = 2

alnt3 = alnt2 + reallnt
alnt3: Encoded = 14 Decoded = 10

aInt3 = alnt2 + realShort
alnt3: Encoded = 15 Decoded = 11

reallnt = alnt2 + realShort
Elnt::operator intO
reallnt = 1 I

real Short = reallnt + alnt2
Elnt::operator shortO
realShort = 20

Set the directory to Lab 25.
Open Elnt.cp and Elnt.h.

Examine the operator overloads.
Compile the program.

5. Modify your operator overloads to generate the required output.
6. For hints, see the Hint file.
7. Compile and test the program.

© 1992 Neal Goldstein and Apple Computer, Inc. User-Defined Types 35

Section 3

Initialization and Assignment

© 1992 Neal Goldstein andAppk Computer, Inc. Initialization and Assignment 1

This Section's Goals

• Demonstrate competence in:
Knowing when and how to use default initialization
Defining an initialization constructor
Using the member initialization list to initialize a base
class and member class object
Knowing when and how to use default assignment
Overloading an assignment operator
Invoking base class and member class object assignment
operators in an overloaded assignment operator

© 1992 Ncal Goldstcin andApplc Computer. Inc. Initialization and Assignment 2

(

(

(

Initialization and Assignment

• A distinction that may be unimportant

• Initialization
An instance of a class is created
Done in a constructor of the type:

X::X(const X&)
EInt aInt1 = aInt2;

• Assignment
An object is replaced by another object
Done in an assignment operator of the type:

X& X::operator= (const X&)
aIm 1 = aInt2;

© 1992 Neal Goldstein andApplc Computer, 1nc. Initialization and Assignment 3

Lab 26

• In this lab you will initialize one object with
another, and examine the default compiler
behavior

© 1992 Ncal Goldstcin andApplc Computer, Inc Initialization and Assignment 4

/

(

(

Lab 26 Output

aLab 1 Comment: Great lab
aLab2Comment: Great lab

1. Set the directory to Lab 26.
2. Open Comment.cp and Comment.h.
3. Notice the Comment class has one constructor, and it takes a string as an argument.
4. Create one Comment object (aLablComment) on the stack, initializing it with a string.
5. Create a second Comment object (aLab2Comment) on the stack, initializing it with aLablComment.

What do you thing will happen?
6. Print both Comment objects to check your results.
7. Compile and test the program.

© 1992 Neal GoldsLein andApplc CompuLcr, Inc. IniLializaLion and Assignment 5

Initialization

EInt aInt1 = 8;
Elnt aInt2 = aIntl;

alnt 1.PrintElntO;
The encoded int is 12
alntl.PrintIntO:
The decoded int is 8

alnt2.PrintElnt();
The encoded int is 12
aInt2.PrintInt();
The decoded int is 8

© 1992 Neal Goldstein andApplc Computer, Inc. Initialization and Assignment 6

(Memberwise Initialization

• The "usual" constructors are not invoked
when initializing one class object with another

• The initialization of aInt2 is done through
copying each element of aIntl into aInt2

This is called memberwise initialization

• The compiler generates a constructor of the
type X: :X(const X&);

EInt: :EInt(const EInt& aEInt) {
tlnt = aElnt.flnt;

}

© 19Y:2 Neal Goldstein 4lndApplc Computer. Inc. Initialization and Assignment 7

An Easy "Mistake"

TString::TString(char* theString) {
cout« this « " In constructor with string \n"; ...

TString::TString(TString& theStringH
cout« this«" In initialization constructor with string\n"; ...

char* operator+ (TString string 1, TString string2) {
cout« "In plus operator\n"; ...

void mainO {

TString fString(aString+bString);

In initialization constructor with string
In initialization constructor with string
In plus operator
In constructor with string

© 1992 Ncal Goldstcin andApplc Computer, Inc. Initialization and Assignmem 8

(

(

Memberwise Initialization Happens:

TString
TString

char*

bString("Hello world ");
aString(bString);

Compare (TString string 1, TString string2)

TString
TString::operator+ (TString& string2)

Member class objects are not copied
Memberwise initialization is recursively applied

Memberwise initialization

Copies each built-in or derived from built-in type data member

Member objects are not copied

Memberwise initialization is recursively applied

Memberwise initialization occurs when:

I. One class object is initialized with another
TString bString ("Hello world");

TString aString(bString);

2. A class object is passed as an argument to a function

char* operator- (TString stringl, TString string2);

3. A class object is the return value of a function
TString TString::operator+ (TString& string2);

© 1992 Neal Goldstein andApplc Computcr. Inc. Initialization and Assignment 9

No Memberwise Initialization

char*
TString: :operator+ (TString& string2)

TString&
TString::operator+ (TString& string2)

There is no memberwise initialization when:

1. A class object is passed as a reference argument to a function

char* TString::operator+ (TString& string2);

2. A class object reference is the return value of a function
TString& TString: :operator+ (TString& string2);

© 1992 Neal Goldslein undApplc Compuler, Inc. Initializalion and Assignmem 10

("

(

Explicit Initialization Constructors

class Elnt {

int *¢:J fInt· , } ;

void main() f
Elnt
Elnt

aInt1 = 8;
alnt2 = aIntl;

alntl.PrintElnt();
alnt2.PrintEI nt();

The encoded int is 12 The fInt = Ox 157e44
The encoded int is 12 The flnt = Ox157e44

Consequences of memberwise initialization

At destructor time, the same pointer will be deleted twice

alntl

flnt =Ox157e44

alnt2

flnt = Ox157e44

There will be a problem if you try [Q delete the pointer twice

Solution: the X(const X&) conso'uctor

An explicit initialization constructor

When defined it is invoked for each initialization of one class object with another.

Elnt: : (Elnt& theElnt) is invoked and each allocates a new fInt so that each flnt has its own area
of memory.

© 1992 Neal Goldstein undApplc Computer, Inc Initialization and Assignment 11

Point Constructors

inline Point::Point(short iV, short iH) {
v = iV' ,
h = iH;

inline Point::Point(const Point& pt) {
v = pLY;
h = pLh;

Copy constructors often do the same thing
"regular" constructors do

© 1992 Neal Goldslcin andApplc Computcr, Inc. Initialization and Assignment 12

(

(

Lab 27

• In this lab you will determine when default
memberwise initialization should not be done,
and define the necessary initialization
constructor

© },)92 Ncal Goldstcin andApplc Computer. Inc. Initialization and Assignment 13

Lab 27 Output

aLab 1 Comment: Great lab
aLab2Comment: Great lab
tText deleted
tText deleted

I. Set the directory to Lab 27.
2. Open CommenLcp and Comment.h.
3. Make Comment: : fText a char*.

4. In the constructor allocate memory using new, and copy the string argument into that memory.
Is this something you would normally want to do?

5. Define a Comment: : -Comment () destructor.
In it delete ffext.
Put a cout statement in the destructor to let you know that it does execute.

6. Create one Comment object (aLablComment) on the stack, initializing it with a string.
7. Create a second Comment object (aLab2Comment) on the stack, initializing it with aLablComment.

8. Compile the program.
What do you think will happen when the program finishes executing?

9. Before you execute the program, Save YOllr Work
10. Run the program, g stoptool or g s~'sreco"er will often help.
II. Modify your program so that it executes correctly.

© 1992 Neal Goldslcin and Apple Compulcr, Inc. Initialization and Assignment 14

(

\" .. /

(Members and Base Classes

• EPoint
Like the Point class except:

Point::v and Point::h are now of type Elnt (instead
of short)

• EInt
fI nt is of type int*

• Point
Deri ved from EPoint

Additional data members fId of type Elnt and
tN ame of type char*

© 1992 Ncal Goldstcin andApplc Computer, Inc. Initialization and Assignment 15

The Classes
Elnt Copy construcLOr needed

int* fint; ---------,

EPoint Copy construcLOr not needed

Elnt
Elnt

V' ,

h' ,

Point Copy constructor needed

Elnt fId;
char* fName; ______ -l

© 1992 Neal Goldslein andApplc Compuler, 1m:. Inilializalion and Assignment 16

(

(

(/

EPoint Has an
Elnt Member Class Object

class EPoint {

public:
EPoint(short iV, short iH);

II Needs no initialization constructor

private:
Elnt v:

Elnt h;

I;

© 1992 Neal Goldstein andAppk Compuh.'f. Inc IniLialization and Assignment 17

Elnt - Point's Member Class Object

class EInt (
public:

EInt(int theInt);
EInt(const EInt& aInt); Needs initialization constructor
-EIntO;-delete fInt; _____ ----.11

flnt;J
private:

int*
} ;

© 199::! Neal Goldslein .mdApplc Compuh:r, Inc Inilializalion and Assignmenl 18

/
/

(.~

A Class Hierarchy
class EPoint (
public:

EPoint(short iV, short iH);

private:
Elnt v;
Elnt h; };

class Point: public EPoint {
public:

Point(short iV, short iH, char* aId);
Point(const Point& pt): Needs initialization constructor
-Point(): delete fName; I

private:
char*
Elnt

I
fName;
fld };

© 1992 Neal Goldstein andAppk Compuler, Inc.

I

IniLializaLion and Assignment 19

The Program

void mainO {

... }

Point aPoint(4. 4, 1, "aPoint");
Point bPoint(2, 2, 10. "bPoint");
cout « "aPoint " « aPoint « "\n";
cout « "bPoint " « bPoint « "\n";
Point cPoint(aPoint);
COUl « "cPaint " « cPoint « ''\n'';

aPoint (4,4) Id = 1 tName = aPoint

bPoint (2.2) Id = 10 fName = bPoint

cPoint (4,4) Id = 1 tName = aPoint+ 1

© 1992 Neal GoldsLein andApplc CompuLcr,lnc.

"- /

IniLializaLion and Assignment 20

(

{

Initialization Requirements?

• Point needs an initialization constructor
because of fNarne

• Elnt needs an initialization constructor
because of flnt

• EPoint appears not to need an initialization
constructor

Got it?

© 1992 Neal Goldstein andAppk COll1put~'r. Inc. Initialization and Assignment 21

Default Initialization Process

• Base classes are recursively memberwise
initialized before derived classes

In order of base class declaration

• Member class objects are recursively
memberwise initialized before containing classes

In order of member class declarations

© 1992 Neal Goldstein andApplc Computer. Inc.

EPoint: :Elnt
EPoint

Point::Elnt
Point

Initialization and Assignment 22

(

Member Class Object Initialization

• If there is a Point::Point(const Point&)
Invoke member initialization list
For class member objects not in the member
initialization list that require a constructor

Invoke constructor that takes no arguments
I f there is none - error

Invoke Point(const Point&)

• If there is no Point::Point(const Point&)
Perform recursive memberwise initialization for
member class objects

© 1992 Neal GoldsLein andApplc Computer. Inc. IniLializaLion and Assignment 23

Initialization Responsibilities

• The containing class does not define a X(canst X&)
constructor and a lnember class object does

That member class object's X(const X&) is invoked
Other member class objects may be memberwise
initialized
The containing class object is memberwise initialized

• The containing class does define a X(const X&)
constructor

Member class object initialization is the responsibility of
the containing class's initialization constructor

Or a constructor with no arguments is invoked

• Point lnust invoke Elnt's initialization constructor!

Handling of the member class initialization becomes responsibility of the containing class constructor

ContainingClass (const ContainingClass& aContainingClass): MemberClass (...)

If there is no ContainingClass(ContainingClass&)

Memberwise initialization is done

© 199~ Ncal Goldslcin andApple Compuler, Inc. Inilializalion and Assignmem 24

(

(

Point's Constructor

class Point: public EPoint {

Point(const Point& pt);
private:

Elnt fId;
char* fName;

} ;

© 1992 Neal Goldstein andApplr Computer, Inc.

Needed because of fName ...
also becomes responsible for fId

InilializaLion and Assignment 25

Initializing fld

Member initialization list

Point::Point(const Point& pt): fld(pLfId)
{ ... }

class Point {
public:

Point(const Point& pt);

private:
Elnt fId; Elnt(const Elnt& aInt) invoked for fId -

} ;

Member initialization list

Follows constructor signature and set off with a colon followed by a comma-separated list of member
name/argument pairs

Each member may appear once

Can appear only in the definition of the constructor

Data members that are built-in types may also be initialized

© 1992 Ncal Goldstcin andApplc Computer, Inc. Initialization and Assignment 26

(

(

Base Class Initialization

• If there is a Point: :Point(const Point&)
Invoke member initialization list
For base classes not in the member initialization list
that require a constructor

Invoke the constructor that takes no arguments
If there is none - error

Invoke Point(const Point&)

• If there is no Point: :Point(const Point&)
Perform recursive base class memberwise
initialization

© 1992 Ncal GoldsLcin andApplc C()mplll~r, Inc. IniLializaLion and Assignment 27

Initialization Responsibilities

• The derived class does not define a X(const X&)
constructor and a base class does

The base class's X(const X&) is invoked
The derived class object is memberwise initialized

• The derived class does define a X(const X&)
constructor

Base class initialization is the responsibility of the
derived class's initialization constructor

Or a constructor with no arguments is invoked

• Point is responsible for initializing EPoint!

Handling of the base class initialization becomes responsibility of the derived class constructor

DerivedClass(const DerivedClass& aDerivedClass): BaseClass(aDerivedClass)

If there is no BaseClass(BaseClass&)

Memberwise initialization is done

© 199~ Ne'll Goldstein andApplc Computer. Inc Initialization and Assignment 28

Point's Constructor

class Point: public EPoint t
Needed because of fName ...

Poim(const Poim& pt); - became responsible for fld ...
private: also responsible for EPoint

Elm fId;
char* fName;

} ;

(

(

© 1992 Ncul Goldslein 41ndAppk Compuler, Inc Iniliulizmion and Assignmem 29

Initializing EPoint

Member initialization list
I

Point::Point(const Point& pt) : EPoint(pt), fId(pt.fId)
{ ... }

class EPoint {

private:

No initialization constructors ...
memberwise initialization

Elnt v~----,
Elnt h; ~Elnt(const Elnt& alnt); invoked

} ~

~ 1992 Neal Goldslein andApplc CompuLer, Inc IniLializalion and Assignment 30

Default Initialization

No base class initialization specified
in member initialization list ...

Point::Point(const Point& pt) :/* EPoint(pt), */ fId(pt.fId)
{ ... }

class EPoint I
public:

EPoint(); EPoint::EPointO : v(O), h(O) invoked

private: LL.
Elm v; 'art ~
Elnt h; ----'r--Elnt::Elnt(O) invoked

} ;

© 1992 Ncul Goldstcin undAppk Computcr. Inc Initialization and Assignment 31

The Message

• The distinction between initialization and
assignment phases again becomes important

The other time was for const and references

• For base and Inelnber class initialization
constructors to be invoked:

They must be in the member initialization list

© 1992 Neal Goldstein andApplc Computer, Inc Initialization and Assignment 32

(Lab 28

• In this lab you will define an initialization
constructor that uses the member initialization
list to initialize its base class and member
class object

© 1992 Neal Goldstcin ~mdAppJc Computcr, Inc. Initialization and Assignment 33

Lab 28 Output

aLab 1 Categorized Comment:
The category: Morning
The comment: Great lab
The owner: Joe

aLab2CategorizedComment:
The category: Morning
The comment: Great lab
The owner: Joe

aLab3CategorizedComment:
The category: Afternoon
The comment: I'm learning a lot
The owner: John

1. Set the directory to Lab 2R.
2. Open CategorizedComment.cp and CategorizedComment.h.

fOwner deleted
fText deleted
fText deleted
fOwner deleted
fText deleted
fText deleted
fOwner deleted
fText deleted
fText deleted

3. Notice CategorizedComment is a class privately derived from Comment with a Comment as a
member.

It is private because it is not a "kind of" Comment.
4. Explain why it requires an explicit initialization constructor
5. Define an initialization constructor; what is it responsible for initializing?
6. Create one CategorizedComment object (aLablCategorizedComment) on the stack, initializing it

with a string.
7. Create a second CategorizedComment object (aLab2CategorizedComment) on the stack, initializing

it with aLablCategorizedComment.
8. Create a third CategorizedComment object (aLab3CategorizedComment) on the stack, initializing it

with a string.
9. Print aLablCategorizedComment, aLab2CategorizedComment, and aLab3CategorizedComment.
10. How many times should the Comment destructor be called?

Place a com statement in Comment: : -Comment () to check your answer.
11. Compile and test the program.

© 1992 Neal Goldstein andApplc Compuler. inc. initialization and Assignment 34

(

(

Lab 29

• In this lab you will assign one object to
another, and exanline the default compiler
behavior

© 1992 Neal Goldstcin andApplc Compulcr. Inc Initialization and Assignmcnt 35

Lab 29 Output

aLab 1 Comment: Great lab
aLab2Comment: Another Lab
aLab2Comment = aLab 1 Comment
aLab 1 Comment: Great lab
aLab2Comment: Great lab

1. Set the directory to Lab 29.
2. Open Commenr.cp and Commenr.h.
3. Notice the Comment class has one constructor, and it takes a string as an argument.
4. Create one Comment object (aLablComment) on the stack, initializing it with a string.
5. Create one Comment object (aLab2Comment) on the stack, initializing it with a string.
6. Print both Comment objects.
7. Assign aLablComment to aLab2Comment.

What do you think will happen'?
8. Print both Comment objects to check your answer.
9. Compile and test the program.

© 1992 Neal Goldstein andApple Computer, Inc. Initialization and Assignment 36

(Assignnlent

EInt aInt1 = 8;
Elnt aInt2 = 7;

aInt 1.PrintEInt();
The encoded int is 12

aInt2.PrintEInt();
The encoded int is 11

aIntl = alnt2;

aInt I.PrintEIntO;
The encoded int is 11

© 1992 Neal GoldsLein andAppk C'omplllcr. Inc IniLialization and AssignmenL 37

Memberwise Assignment

• The mechanics of assignment of one class
object to another of its class is the same as
memberwise initialization

• Memberwise assignment of non-static data
members

• The compiler generates a special assignment
operator of the type

X& X::operator= (const X&);
It is not inherited

© 1992 Ncal Goldstein andApplc Computcr, Inc. Initialization and Assignment 38

(~

(

Explicit Assignlnent Operators

class Elnt { ...
int * <? fInt; J ;

Elnt
Elnt

alntl = 8;
aInt2 = 7;

aInt I.PrintElntO;
alnt2.PrintElntO;
alntl =alnt2;
alnt 1.PrintElnt();

The encoded int is 12 The fInt = Ox 157e6c
The encoded int is 11 The fInt = Ox 157e78
The encoded int is 11 The fInt = Ox 157e78

Consequences

At destructor time, the same pointer will be deleted twice

aIntl

flnt = Ox157e78

aInt2

flnt = Ox157e78

There will be a problem if YOli try to delete the pointer twice.

The storage previously allocated to tlnt in aInt1 is lost forever;

flnt = Ox157e6c

There could have been other state variables we would have wanted initialized.

Order of creation.

Indexes (as in TString).

Solution: X& X::operator= (const X&):
We can provide (as with initialization) an explicit

X& x: :operator= (const X&);

An explicit assignment operator.

When defined it is invoked for each assignment of one class object to another

It simply copies the new value into "'fInt

© 1992 Neal Goldstein andAppk Computer. Inc. IniLialization and AssignmenL 39

String Assignment

String&
String::operator = (const String& aString) (

if <this == &aString) retuIl1 *this;
delete fString; ------------------,
fLength = aString.fLength;
fString = new char[fLength+ 1];
strcpy(fString, aString.fString);
return *this;

Assignment operators often do what initialization
constructors do ... plus a little more

© 1992 Neal Goldslein andApplc Compuler. Inc Initialization and Assignment 40

''--",,/

Lab 30

• In this lab you will determine when default
memberwise assignment should not be done,
and define the necessary assignment operator
overload

© 1992 Neal GoldsLein andApplc CompuLer, Inc. IniLializalion and Assignment 41

Lab 30 Output

aLab 1 Comment: Great lab
aLab2Comment: Another lab
aLab2Comment = aLab 1 Comment
aLab 1 Comment: Great lab
aLab2Comment: Great lab
tText deleted
tText deleted

1. Set the directory to Lab 30.
2. Open Comment.cp and Comment.h.
3. Make Comment: : fText a char*.
4. In the constructor allocate memory on the heap for it, and copy the string argument into that memory.
5. Define a Comment: : -Comment () destructor that deletes the fText member.

Put a cout statement in the destructor to let you know that it does execute.
6. Create one Comment object (aLablComment) on the stack, initializing it with a string.
7. Create a second Comment object (aLab2Comment) on the stack, initializing it with a string.
8. Assign aLablComment to aLab2Comment.
9. Compile the program.

What do you think will happen when the program finishes executing?
10. Before you execu te the program, SaJ'e Your Work.
11. Run the program, g stoptool or g s)'sreco\'er will often help.
12. Modify your program so that it executes correctly.

© 1992 Ncal Goldstcin andApplc CompuLer. Inc. IniLializaLion and AssignmenL 42

(

(

(/

Members and Base Classes

• EPoint
Like the Point class except:

Point::v and Point::h are now of type Elnt (instead
of short)

• Elnt
fInt is of type int*

• Point
Deri ved from EPoint

Additional data members fId of type Elnt and
fName of type char*

© 1992 Neal Goldsl('in andAppk Computer. Inc Initialization and Assignment 43

The Classes

Elnt Assignment operator needed

int* fint; ----------,

EPoint Assignment operator nOL needed

Elnt
Elnt

V' •
h' •

Point Assignment operator needed

Elnt fld;
char* fName;------------'

© 1992 Neal Goldstein and Apple Computer, Inc Initialization and Assignment 44

(

(

EPoint Has an
Elnt Melnber Class Object

class EPoint {

public:
EPoint(short iV. short iH);

II Needs no assignment operator

private:

} ;

Elnt v;
Elnt h;

© 199~ Neal Goldstein .mclApplc Computer. Inc. Initialization and Assignment 45

EInt - Point's Member Class Object

class Elnt {
public:

Elnt(int thelnt)~
Elnt& operator=(const Elnt& alnt);
Elnt& operator=(int alnt); Needs assignment
-ElntO; delete fInt: -----J operator

fInt;

private:

int*

© 1992 Neal Goldstein undAppk CompUlcr. Inc. Initialization and Assignment 46

(A Class Hierarchy
class EPoint (
public:

EPoint(short iV, short iH);

private:
Elnt v;
Elnt h; };

class Point: private EPoint {
public:

Point(short iV. short iH. char* aId);
Point& operator=(const Point& pt); Needs assignment operator
~Point(): delete fName;----------'1

private:
char*
Elnt

I.
tName;
f1d };

©)99~ Ncal Goldstein andApplc Computer. Inc.

I

IniLialization and Assignmcnt 47

The Program

void mainO l

... }

Point aPoint(4, 4, 1, "aPoint");
Point bPoint(2, 2, 10, "bPoint");
cout « "aPoint " « aPoint « "\n";
cout « "bPoint " « bPoint « ''\n'';
aPoint = bPoint;
cout « "aPoint " « aPoint « "\n";

aPoint (4.4) Id = 1 fName = aPoint

bPoint (2,2) Id = 10 fName = bPoint

aPoint (2.2) Id = 10 fName = bPoint+l

© 1992 Neal Goldstein andApplc Computer. Inc Initiali7.ation and Assignment 48

(,-
"

(,

Assignment Requirements?

• Point needs an assignment operator because
of fNa1ne

• EInt needs an assignlnent operator because of
fint

• EPoint appears not to need an assignment
operator

Got it?

© 1992 Ncal Goldstein andAppk Computer. Inc. Initialization and Assignmcnt 49

Default Assignment Process

• Class type of assignment determined by the
class of the object on the left side of the =

• Member class objects are recursively
memberwise assigned

• Base classes are recursively memberwise
assigned

© 1992 Neal Goldstein andApplc Computer, Inc. Initialization and Assignment 50

/ I

(

f

(-

Member Class Object Assignment

• If there is a Point::operator=(const Point& pt)
Do nothing

• If there is no Point::operator=(const Point& pt)
Perform recursive member class object memberwise
assignment

© 1992 Neal Goldslein andApplc Computer. Inl.". IniLialization and Assignmem 5 I

Assignment Responsibilities

• The containing class does not define an operator=
and a melnber class object does

That member class object's operator= is invoked
Other member classes objects may be memberwise
assigned
The containing class object is memberwise assigned

• The containing class does define an operator=
Member class assignment is the responsibility of the
containing class's operator=

Or no assignment is done

• Point Inust invoke EInt's assignment operator!

© 1992 Neal Goldstein andApple C()lllpUI~·r. Inc Initialization and Assignment 52

(

(

Point's Assignment Operator

class Point: public EPoint {
public:

Poi nt& operator = (const Point& pt);

private:

} ;

Elnt
char*

fId;
fName;

© IY92 Neal Goldstein andAppk Computer. Inc

Needed because of fN arne ...

also becomes responsible for fId

Initialization and Assignment 53

Assigning fld

Point& Point::operator = (const Point& pt) {

fId = pt.fId~ ---------------....,
... }

class Point: public EPoint {
public:

Point& operator = (const Point& pt);

private:
Elnt fld~ Elnt& operator=(const EInt& aInt) invoked

} ~

© 1992 Neal Goldstcin andApplc Computcr. 1m:. Initialization and Assignment 54

(

(

Base Class Assignment

• If there is a Point: :operator=(const Point& pt)
Do nothing

• If there is no Point: :operator=(const Point& pt)
Perform recursive base class memberwise assignment

© 1992 Ncal GoldsLcin andApplc CompUicr. Inc. IniLialization and Assignmcm 55

Assignment Responsibilities

• The deri ved class does not define an operator=
and a base class does

The base class's operator= is invoked
The derived class is memberwise assigned

• The derived class does define an operator=
Base class assignment is the responsibility of the derived
class's operator=

Or no assignment is done

• Point must invoke EPoint's assignment
operator!

© 1992 Ncal Goldslcin andAppk Compulcr. Inc Inilializmion and Assignmcnt 56

(

(----

Point's Assignlnent Operator

class Point: public EPoint {
public:

Point& operator = (const Point& pt);

private:

I:

Elnt
char*

fId' ,
fName;

© 1992 Neal Goldstein andApple Computer, Inc

Needed because of fName .. .
became responsible for fId .. .
also responsible for EPoint

Initialization and Assignment 57

Assigning EPoint

Point& Point::operator = (const Point& pt) {

thi s-> EPo i nt:: operator=(pt);
... }

class EPoint { No assignment operator ...
memberwise assignment J

private:
Elnt v;
Elnt h; y Elnt& operator=(const Elnt& aInt); invoked

} ;

© 19l)~ Neal Goldstein andApplc Computer, Inc. Initialization and Assignment 58

(

(

Lab 31

• In this lab you will define an assignment
operator that invokes its base class's and
member class object's assignment operators

© 1992 Ncal Goldstcin andApplc Computer. Inc Initialization and Assignment 59

Lab 31 Output
aLab 1 CategorizedComment:

The category: Morning
The comment: Great lab
The owner: Joe

aLab2CategorizedComment :
The category: Afternoon
The comment: Another lab
The owner: Joe

fOwner deleted
fText deleted
ffext deleted
fOwner deleted
ffext deleted
ffext deleted

aLab2CategorizedComment = aLab1 Categorized Comment
aLab 1 CategorizedComment:

The category: Morning
The comment: Great lab
The owner: Joe

aLab2CategorizedComment:
The category: Morning
The comment: Great lab
The owner: Joe

1. Set the directory to Lab 31.
2. Open CategorizedComment.cp and CategorizedComment.h.
3. Notice CategorizedComment is a class privately derived from Comment with a Comment as a member.

It is private because it is not a "kind of" Comment.

4. Explain why it requires an assignment operator.
5 Define an assignment operator: what is it responsible for?
6. Create one CategorizedComrnent object (aLablCategorizedComment) on the stack, initializing it

with a string.
7. Create a second CategorizedComrnent object (aLab2CategorizedComrnent) on the stack, initializing

it with a string.
8. Print aLablCategorizedComment and aLab2CategorizedComment.

9. Assign aLablCategorizedComrnent to aLab2CategorizedComrnent.

10. Print aLablCategorizedComrnent and aLab2CategorizedComrnent.

11. Compile and test the program.

© 1992 Neal Goldslein andApplc Compul~r. Inc Inilializalion and Assignment 60

(

Initialization and Assignment
Guidelines

• If a class provides either an assignment
operator or an initialization constructor, it will
probably need both

• They are required when:
Objects allocate memory or create objects for their
exclusive use
There are state dependent data members

© 1992 Neal GOI(\sil'in .mdAppk CompllI\.'f. Inc IniLializaLion and Assignment 6]

/

(

Section 4

Inheritence

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 1

This Section's Goals

• Demonstrate competence in:
Knowing how and when to use public and private
inheri tance
Using multiple inheritance and resolving ambiguity
U sing virtual base classes to eliminate ambiguity
Understanding what happens when casting a pointer to
a class object with multiple bases

© 1992 Neal Goldstein and Apple Computer, Inc.

~-./

Inheritance 2

(

Public or Private Inheritance

• Base classes should be public when type
information is required

Usually only useful for polymorphism
A function expecting a TStudent is handed a
TGradStudent

• Base classes should be private unless there is a
reason to share the base class's public protocol

The base class's behavior is inherited (and may be
overridden)
Portions of a base class's protocol can be shared by
reexporting the necessary members as public

© 1992 Neal Goldstein and Apple CompuLer, Inc. Inheritance 3

Using Public Inheritance

• N onnal inheritance
Strictly extending the type - Add functionality and:

Implement behavior
Associate values with abstract properties
Maintain a type relationship

• N on-nonnal inheritance
For simple code reuse or design problems

Complete overrides are possible
Change interface
Use of private inheritance

Nonnal inheritance
Extending the type - Add functionality and:

Implement behavior
For unimplemented abstract functions
Incrementally improve implemented functions

Always calling the inherited implementation
Associate values with abstract properties

Size is an abstraction
3-8 feet tall is an implementation

Maintain a type relationship
All members share the abstraction's properties

Goal - maintain purity of abstractions

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 4

(- Inheritance Hierarchy

Assemble normal bases

Class

t Non-normal

Class

aDerived Class

t Normal

Class

aDerived Class

bDerived Class

Inherit from a variety of classes, that match, or closely match, what we need

If necessary, completely override some behavior, and add some
Then treat this as a normal base

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 5

Using Private Inheritance

• The derived class is not considered a sUbtype
The subclass is not committed to act as a sUbtype

• The derived class has access to all base class
members

The relationship between a privately derived class and
its base class is the same as the relationship between a
publically derived class and its base class
... but base class members are not publicly exported
as members of the derived class

• Ther is no automatic derived class to base
class conversion

Function arguments or assignments

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 6

(Inheritance Should Not Be Used

• If a class is used by another class in purely a
client relationship

A pointer to that class should be a member

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 7

"

Multiple Inheritance

class TGradStudent : public TStudent , public TFaculty { ...

• Use in a controlled fashion
• Can result in a "write only" class structures

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 8

(

(

A Multiple Inheritance Strategy

• Define two categories of classes
Base classes which represent fundamental functional
objects (like a car)
Mixin classes which represent optional functionality
(like power steering)

• There are two rules you should follow

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 9

Rules for Multiple Inheritance

• Rule 1 - A class can inherit from zero or one
base classes, plus zero or more mixin classes

If a class does not inherit from a base class, it really
may be a mixin class
But not always: at the root of a hierarchy for example

• Rule 2 - A class which inherits from a base
class is a base class

It cannot be a mixin class
Mixin classes can only inherit from other mixin
classes

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 10

,r-' '" ('

(

(

(.

The Net Effect of the Two Rules

• Base classes form a conventional,
tree-structured inheritance hierarchy rather
than an arbitrary acyclic graph

The base class hierarchy becomes much easier to
understand
Mixins then become add-in "options" which do not
fundamentally alter the inheritance hierarchy

• But sometimes you should ignore the rules
Multiple inheritance can and should be used in other
ways ifit makes sense

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 11

(Multiple) Inheritance

• Things to consider
Is there an "is-a" (subtype) relationship (for public
inheri tance)?
Is it necessary to modify behavior (override
functi ons)?
Will polymorphism be used?

© 1992 Neal Goldstein and Apple Computer, Inc.

/

/ ",

./

Inheritance 12

(

(

Multiple Inheritance Ambiguity

class TDirectoryEntry {
public:

char* ReturnN ameO;
private:

char tName[20];
} ;

class TFaculty: public TDirectoryEntry { ... };
class TStudent: public TDirectoryEntry { ... };

class TGradStudent: public TStudent , public TFaculty { ...
virtual void PrintAdviseeO; ... };

void TGradStudent::PrintAdviseeO {
cout « ''\0'' « this->ReturnNameO ... }

error: ambiguous TStudent::ReturnNameO and TFaculty::ReturnNameO

Shouldn't often be a problem if you follow the rules

© 1992 Neal Goldstein and Apple Compulcr, Inc. Inhcritance 13

How This Looks

TDirectoryEntry RetumN ame()

TStudent

TDirectoryEntry RetumN ameO

TFaculty

TGradStudent

TGradStudent

© 1992 Neal Goldstein and Apple Computer, Inc.

\,"-. ./i

Inheritance 14

(

Resolving Ambiguity Explicitly

• When TDynamicString inherits multiple
Print() members

Make the call explicit by using the class scope
operator

TDynamicString* aDynamicString;

aDynamicString->TString::PrintO;

Although they may be accessed as if they were members of the derived class, inherited members
maintain their base class membership

They can be accessed using the class scope operator
aB.A: :£("B");

This is unnecessary except in two instances
When an inherited member's name is reused (overloaded) in the derived class

Reusing an inherited member's name within the derived class hides the inherited member
Similar to local identifier reusing name of variable defined at file scope

When two or more base classes define an inherited member with the same name

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 15

Lab 32

• In this lab you will use multiple inheritance to
allow polymorphism and resolve ambiguity

© 1992 Neal Goldstein and Apple Computer, Inc.

./

Inheritance 16

(Lab 32 Output

Joe Gard
Grade: B
Advisor: Mr. Sir
Department Comp Sci
Trouble

Joe Inherit
Grade: B
Ad visor: Joe Gard
Class of 2000
Trouble

Mr. Sir advises Joe Gard

Joe Gard advises Joe Inherit

1. Set the directory to Lab 32.
2. Open Student.cp and Student.h
3. Derive TGraduateStudent from both TStudent and TFaculty.

4. Make aUnderStudent' S advisor a TGraduateStudent.

(Change aUnderStudent->AcceptAdvisor(NULL);)

5. Compile the program.
6. Resolve any ambiguity.
7. Compile and test the program.

8. Make sure your output is exactly as above.

© 1992 Neal Goldslein and Apple Compuler, Inc. Inheritance 17

Two Solutions

• Solution 1- Explicit resolution
We had to initialize both tName's

aGradStudent->TStudent::AcceptName("Joe Gard");
aGradStudent->TFaculty::AcceptName("Joe Gard");

There are some problems:
A virtual function call, scoped to a class, is invoked
as a non-virtual function
The ambiguity is inherited by subsequent derivation

• Solution 2 - Make it virtual and override it
A derived member function of the same name hides all
instances and provides the necessary functionality

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 18

{ Enter Virtual Bases

class TDirectory Entry (...
char* ReturnNameO;

... } ;

class TFaculty : public virtual TDirectoryEntry (... };
class TStudent: public virtual TDirectoryEntry { ... };
class TGradStudent: public TStudent , public TFaculty { ... };

void TGradStudent: :PrintAdviseeO {
cout« ''\nil «this->ReturnNameO ... ;

... }

This now works, but ...

Band c are derived from A

D has both Band c as base classes
D will have two A'S if A is not a virtual base class, but only one A if A is a virtual base class

(
© 1992 Neal Goldslein and Apple Computer, Inc. Inheritance 19

How This Looks

TStudent

TFaculty

TGradStudent

TDirectory Entry ReturnNameO

© 1992 Neal Goldstein and Apple Computer, Inc.

I I
'v",,--/

Inheritance 20

(

(

Lab 33

• In this lab you will use a virtual base class to
eliminate ambiguity

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 21

Lab 33 Output

Joe Gard
Grade: B
Advisor: Mr. Sir
Department Comp Sci
Trouble

Joe Inherit
Grade: B
Advisor: Joe Gard
Class of 2000
Trouble

Mr. Sir advises Joe Gard

Joe Gard advises Joe Inherit

1. Set the directory to Lab 33.
2. Open Student.cp and Student.h.
3. Make TDirectoryEntry a virtual base for TFaculty and TStudent.

4. Call TGradStudent: : AcceptName (...) only once.
5. Compile and test the program.

© 1992 Neal Goldstein and Apple Computer, Inc.

~ ...

Inheritance 22

(

But

void
mainO {

}

TGradStudent* aGradStudent = new TGradStudent;
TDirectoryEntry* aDirectoryEntry = aGradStudent;
aGradStudent = (TGradStudent*)aDirectory Entry;

File" StudentlncM.cp"; line 196 # error:
cast: TDirectoryEntry* ->derived TGradStudent*;
TDirectoryEntry is virtual base

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 23

The Problem With Virtual Bases

• There's no way to convert a pointer to a virtual
base back to a pointer to its derived class

• Back to multiple occurrences of a base
void TGradStudent::PrintAdviseeO {

cout « ''\nil «this->TStudent::RetumNameO ... ;
... }

It doesn't "hurt" to have a base class twice (aside from wasting space because of multiple pointers to the
virtual function table, duplicate data, and reduced maintainability)
If you need to cast back from the base class pointer to something else you may not have a choice
If you follow the mixin strategy you are less likely to end up here

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 24

(

(

Lab 34

• In this lab you examine how casting under
multiple inheritance may provide some
surpnses

© 1992 Neal Goldstein and Apple Computer, Inc. Inherilance 25

Lab 34 Output
\.

• You will see

1. Set the directory to Lab 34./
2. Open Student.cp and Student.h
3. Examine the code in main () and TGradStudent: :DisplayTGradStudentThis (),

TDirectoryEntry::DisplayTDirectoryEntryThis(),andTFaculty::DisplayTFacultyThis()
What does it print?

4. Compile and run the program.
Are there any surprises?

5. Change the TFaculty and TStudent class definitions to make TDirectoryEntry a virtual base.
6. Add a new variable of type TDirectoryEntry*.
7. Assign aGradStudent to that variable.
8. Print out the value of the pointer and call DisplayTDirectoryEntryThis () using that pointer.
9. Add a new variable of type TFaculty*.
10. Assign aGradStudent to that variable.
11. Print out the value of the pointer and call DisplayTFacultyThis () using that pointer.
12. Compile and run the program.
13. Explain your results.

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 26

(-

(

Casting Changes the Pointer!

TGradStudent* aGradStudent = new TGradStudent;
cout« "aGradStudent pointer = " « long(aGradStudent) « '\n";

aGradStudent pointer = 16258600

TFaculty* aFaculty;
aFaculty = aGradStudent;
cout « "aFaculty pointer = " « long(aFaculty) « '\n";

aFaculty pointer = 16258616

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 27

Virtual vs Non Virtual Bases

16260460

16260492

Non virtual base

TDirectory Entry

TStudent

TDirectoryEntry

TFaculty

TGradStudent

aGradStudent pointer = 16260460

TGradStudent this pointer = 16260460

TDirectoryEntry this pointer = 16260460

TFaculty this pointer = 16260492

TDirectoryEntry this pointer = 16260492

V irtual base
aGradStudent pointer = 16258600

TGradStudent this pointer = 16258600

TDirectoryEntry this pointer = 16258628

TFaculty this pointer = 16258616

TDirectoryEntry this pointer = 16258628

aDirectoryEntry pointer = 16258628

TDirectoryEntry this pointer = 16258628

aFaculty pointer = 16258616

TFaculty this pointer = 16258616

© 1992 Neal Goldstein and Apple Computer, Inc.

TStudent

TFaculty

TGradStudent

TDirectory Entry

16258600

16258616

16258628

Inheritance 28

(

(

(

Multiple Inheritance Issues

• Using HandleObject or PascalObject means
you can't use multiple inheritance

One solution:
Allocate your own heap zone and manage it
yourself

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 29

Using Multiple Inheritance

• Design
• Implementation

© 1992 Neal Goldstein and Apple Computer, Inc. Inheritance 30

I, ,
~-j

(
il
r

Section 5

Apple Extensions

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 1

This Section's Goals

• Demonstrate competence in:
U sing Pascal classes from C++
Handle-based C++ classes
Deriving a C++ class from an Object Pascal class
Overriding and adding member functions to a C++
class derived from an Object Pascal class

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 2

(

Apple Extensions

• HandleObject

• PascalObject

• SingleObject

• Type modifier pascal

Pascal compatible external function declaration

• Optimized en urn

• Direct function calls - A-traps
• Pascal strings
• SANE interface
• MC68881 and MC68882 coprocessor support

Keyword pascal
Provides a Pascal compatible external function declaration

Optimized enum
Allocates 16 or 32 bits

SingleObject
Reduces virtual table sizes and overhead

Pascal string support
unsigned char* pasStr = "\pHello";
char* pasStr "\005Hello";

&pasStr [0] is a pointer to a Pascal string
&pasStr [1] is a pointer to a C string

Direct function calls

Inline machine instructions

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 3

II :1

I
!I
:i
"

Handle-Based Objects

• Handle-based classes
class MyClass : public HandleObject { ...

• Pascal handle-based classes
class MyClass : public PascalObject { ...
Object Pascal dispatching
virtual and pascal allows mixed language
hierarchies
inheri ted: :

Handle-Based objects
CFront generates code that treats pointer as a handle (new and delete use handles instead of pointers)
Declared and used exactly as pointer-based objects
Must be created by new (defined as a pointer): THandleClass* aHandleClass = new THandleClass

Members accessed as if by pointer: aHandleClass->Dolt();
To derive a handle-based class

class 'l'HandleClass : public HandleObject { ...

Restrictions on handle-based objects
Can be created only by the new operator
Multiple inheritance cannot be used
Pointers to handle-based classes may be cast only to pointers to handle-based class (or Handle)
Cannot allocate array of handle-based objects

Pascal handle-based objects
Derived from a predefined class - PascalObject

CFront generates Object Pascal compatible code (and uses Pascal method dispatching for virtual
functions)
C++ classes can be derived from Pascal classes and methods overriden
inherited keyword

Restrictions on pascal handle-based objects
C++ member functions must be virtual and declared pascal to be called from Object Pascal

Constructors and destructors allowed '" be careful
Overloading, type conversion functions, and operator functions not allowed for virtual members of
pascal classes or functions with pascal attribute

Allowed for other member functions but cannot be declared or accessed from Object Pascal

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 4

(Handle-Based Object Considerations

• Objects are not locked
• Appear to be pointers

But are dereferenced handles

• Use local variables

(

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 5

:'1
Ii
IJ

I
i

Using C++ and Object Pascal

• Keyword pascal
Pascal compatible external function declaration
Allows C++ virtual function calls from Object Pascal

• Member functions must be declared
virtual,pascal
derived from PascalObject

• A C++ header file
Corresponding to the Pascal class and method
definitions

• All Pascal base classes must be derived
(directly or indirectly) from PascalObject

pascal, virtual and PascalObject(TObject) allow interface with MacApp
Virtual functions to be defined or referenced from Pascal code must be declared with the pascal
keyword

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 6

"-- / ., .. /

Lab 35

• In this lab you will make a pointer-based C++
class handle-based and write a header file that
enables you to use a Pascal class from C++

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 7

Lab 35 Output

** Appointment on Monday
at: 8:30
with: Neal Goldstein
about: Class
for: 8 Hours
Notes: Bring the teacher an apple (lIfx)

For your appointment on Monday
with: Neal Goldstein

Bring the teacher an apple (lIfx)

1. Set the directory to Lab 35.
2. Open NoteP.p and NoteP.h.
3. Using the Pascal class definition in NoteP.p, create the corresponding C++ class definition that will

allow you to use the TNoteP class in your program.
4. Compile the program.
5. Open Schedule.cp and Schedule.h.
6. Modify TApt to be derived from a handle-based class.
7. Modify TApt: :PrintAptNote () to use local variables instead of data members.
8. HLock (and HUnlock) the TApt object when you need to.
9. Compile and test the program.

Note:Schedule.Make file provides for compiling the Pascal unit if needed, and linking in all of the
required libraries

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 8

(~ Lab 36

• In this lab you will derive a C++ class from a
Pascal class, override a Pascal method, and
add a new member function

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 9

II
I~
If
I
I

Lab 36 Output

** Appointment on Monday
at: 8:30
with: Neal Goldstein
about: Class
for: 8 Hours
Notes: Bring the teacher an apple (IIfx)

For your appointment on Monday
with: Neal Goldstein
note: Bring the teacher an apple (lIfx)

1. Set the directory to Lab 36.
2. Open Schedule.cp and Schedule.h.
3. Create a new class TNote, derived form TNoteP.

4. Add the member function INote (char* aNote).

5. Override the Pascal method PrintNote () .

6. Replace all uses of TNoteP with TNote.

7. In TNote: : INote (...) call the Pascal method INoteP (...).

You will have to convert the C string to a Pascal string (see hint).
8. In the TNote: : PrintNote () member, add a cout statement to reformat the line as shown above, and

then call the inherited Pascal PrintNote () method.
9. Compile and test the program.

Note:Schedule.Make file provides for compiling the Pascal unit if needed, and linking in all of the
required libraries

I

\,,~ /

© 1992 Neal Goldstein and Apple Computer, Inc. Apple Extensions 10

(

Section 6

The Future

© 1992 Neal Goldstein and Apple Computer, Inc. The Future 1

II
il

I
i

if

c++ Part II

• User defined types - extending the language
Operator functions

Overloading built in functions (including new and
delete

User-specified conversions
Conversion functions and constructors

Memberwise assignment and initialization
Initialization constructors
Assignment operator overload

• And lots more ...

© 1992 Neal Goldstein and Apple Computer, Inc. TheFuture 2

(Future Directions

• Exception handling
• Parameterized types

© 1992 Neal Goldstein and Apple Computer. Inc. The Future 3

Exception Handling

• A standard method for managing exceptions
• Each class currently handles its own

exceptions
This can make it difficult to use large collections and
libraries of classes

• The main problem
The runtime stack must be unwound so that the
destructors for class objects that have been unwound
are called

• The syntax has been publicly defined

© 1992 Neal Goldstein and Apple Computer, Inc. The Future 4

(

Parameterized Types or Templates

• Implemented in CFront 3.0
• Functions and classes are dependent on type
• To provide a list class, I have to specify a

different class for each list type
int* fIntArray[10];
char* fCharArray[lO];

• The same thing is true for functions
compare(int, int);
comparee char*, char*);

© 1992 Neal Goldstein and Apple Computer, Inc. The Future 5

Parameterized Classes

template <class Type>
class TList {
public:

Type&
Type&

private:

} ;

Type*
int

TListO;
operatorOO;
operator[] (int);

ITypePtr;
fNumber;

To create this class
TList<T Apt> aListl;
TList<Ptr> aList2;

© 1992 Neal Goldstein and Apple Computer, Inc. The Future 6

(Parameterized Functions

template <class Type>
Type&
first(TList<Type>& aList) {
... }

template <class Type>
Type&
TList<Type>::TListO {
... }

To define an object of a class:
TList<TApt> aListl;
TList<Ptr> aList2;

To invoke a function:
TApt aMyType = first(aListl);

© 1992 Neal Goldstein and Apple Computer, Inc.

,- """'#"", .

,··t.,;'

The Future 7

What Next?

Trying to learn object-oriented programming by
learning an object-oriented language ...

is like trying to communicate in a foreign language
by memorizing a vocabulary list

© 1992 Neal Goldstein and Apple Computer, Inc. The Future 8

(Books
Developing Object-Oriented Software for the Macintosh:
Analysis, Design, and Programming, by Neal Goldstein and Jeff
Alger, Addison-Wesley, 1992.

c++ Primer, by Stanley B. Lippman, 2nd ed., Addison-Wesley,
1991.

Elements of c++ Macintosh Programming, by Dan Weston,
Addison-Wesley, 1990.

The Annotated c++ Reference Manual, by Margaret A. Ellis
and B jame Stroustrup, Addison-Wesley, 1990.

The C++ Programming Language, by Bjame Stroustrup, 2nd
ed., Addison-Wesley, 1991.

© 1992 Neal Goldstein and Apple Computer, Inc. The Future 9

Resources

Mac~pp$ Group Address

Link "MacApp.Admin" to join

C++$ Group Address

Link "CPlus.Admin" to join

MacApp Developer's Association

Link: MADA

© 1992 Neal Gbidstelii'and Apple Computer, Inc. TheFuture 10

Magazines

Journal of Object-Oriented Programming
SIGS Publications, Inc.
310 Madison Ave, Suite 503
NY, NY 10017
(212) 972-7055

The C++ Report
310 Madison Avenue, Suite 503
NY, NY 10017
(212) 972-7055

© 1992 Neal Goldstein and Apple Computer, Inc.

1
',Yo"'_ ' .• ~'~ ._ ~"'"

The Future 11
" .- ~ "' . ~ -' l / .;::,

The poweT to be your best

© 1992 Neal Goldstein and Apple Computer, Inc. The Future]2

